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Introduction

I was in the first week at a new job, and I saw one of our customers asking for assistance 

on a “can’t boot” issue. I was new and inexperienced. I wanted to assist, but I could 

not. The customer was panicked since it brought production down. Every minute was 

counting for them, because thousands of users were not able to access that system 

since it was unbootable. Everyone was panicking. Eventually some of our most senior 

engineers resolved the issue. It took them almost five hours to put the system back 

in production. Everything turned out well in the end, but that tense situation created 

something in me, which was a desire to learn. I decided to learn the entire booting 

sequence.

When I started looking for books and articles on the Internet, I was disappointed. 

There are thousands of books and countless articles available on operating systems, but I 

could not find a single book that thoroughly explained the entire booting sequence.

There is a saying in the open source world: if there is something you are looking for 

and it is not available, then build it. So, I decided to learn the booting sequence on my 

own. It took me years to understand the entire booting sequence. The best thing I did on 

my journey was to keep notes and also start teaching what I learned to others. After all, 

sharing is caring. My booting sessions became popular among engineering students and 

system administrators. Some of them really pushed me hard to write a proper book on 

the topic. I contacted Apress, and they liked the idea, so today you have the first book of 

booting in your hands.

This book has a unique approach. First I discuss why someone should learn about 

booting. In other words, why is it important? Next I explain how different bootloaders 

work by installing almost 100+ operating systems on one machine. There is a dedicated 

chapter on the Linux bootloader. In fact, there are dedicated chapters for every 

component involved in the booting sequence. Next, I explain the kernel’s role in the 

booting sequence. The kernel plays a vital role along with systemd. Since systemd is the 

first process started by kernel, eventually it takes care of the entire booting sequence. 

There are several chapters that cover systemd, so this book is a good resource for those 

who want to read about systemd. I have also covered the most common “can’t boot” 

scenarios of Linux. This makes the book a great resource for system admins as well. It 
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does not mean this book is for Linux experts only. If you know basics of Linux, then this 

book is for you. The book is a great bridge between the beginners and experts of Linux. I 

hope you will like the effort.

There is an old saying: no book is perfect. If you find some bugs in this book or  

you simply want to get in touch with me, please feel free to write to me at 

yogeshbabar420@gmail.com.

Thank you,

Yogesh Babar

InTroduCTIon
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CHAPTER 1

Introduction
Not everyone knows Fedora. One day, someone asked me a question:

Student: What is Fedora?

Me: Fedora is Linux.

Student: What is Linux?

Me: Linux is an operating system.

Student: What is an operating system?

Me: It runs computers.

Student: What is a computer?

Me: Computers help users.

Student: What is a user?

Me: A user is just like me.

Student: Who the hell are you?

Me: Well, my name is Yogesh Babar. I have worked at Red Hat for 

the last ten years, and I love talking about how operating systems 

boot.

 Why?
Everyone knows that an operating system takes approximately 20 to 30 seconds to boot. So, 

why did I write a 486-page book about a 30-second booting sequence? The answer is simple.

• There is no proper document/article/book available that explains the 

complete booting sequence. You will find hundreds of good books on 

operating systems but none on how a system boots.

https://doi.org/10.1007/978-1-4842-5890-3_1#ESM
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• You can resolve boot issues only if you know how the system boots.

• If you are a sysadmin and attending an interview, the interviewers 

will ask about how Linux boots.

• “Can’t boot” issues are always the highest severity as the entire 

production system goes down because of them. If the system is slow, 

the production is still up and running; though it is affected, at least it 

is still running. A server that has 10,000 users but can’t boot means 

the entire production system is down. That’s the importance of 

booting, and as I said, you cannot solve boot issues if you don’t know 

how a system boots.

• It’s fun to understand the booting procedure.

• While learning all of this, you will gain immense happiness.

 What?
So, what exactly is booting? In technical terms, the process of copying the kernel from 

the hard disk to memory and then executing it is called booting. But that definition does 

not really inspire us to learn about booting.

I will put it in my own words: A mother is a superset, and her newborn baby is a 

subset of her. In the same way, an operating system is a superset, and booting is a subset 

of it. A subset belongs to its superset.

Now consider this statement: “A child gives birth to a mother.”

Technically it is wrong, but imagine that until a woman has a baby, she is a woman; 

the moment she has a baby, a woman becomes a mother. So, a child gives birth to a 

mother.

The same happens in computers. Technically booting is part of an operating system, 

and the operating system should give birth to booting, but it’s the other way around. It’s 

booting that gives birth to the operating system. Hence, we can say that booting is the 

procedure that gives birth to an operating system.

Chapter 1  IntroduCtIon
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 The Focus of This Book
The book explains the booting procedure of an x86 architecture–based desktop or server 

system, and it covers the booting procedure of various operating systems. The primary 

focus is on the in-depth analysis of the Linux booting procedure, with a secondary 

focus on other popular operating systems such as Windows and UNIX. As you know, 

there are a huge number of Linux distributions. Some are for desktop users, some are 

for enterprise customers, some are solely for gaming purposes, and some are available 

for users who prefer to follow a do-it-yourself approach. It is almost impossible to cover 

each and every distribution’s booting sequence. Hence, I have decided to choose the 

Linux distribution that is the first choice for enterprise customers, and that is Red Hat 

Enterprise Linux (RHEL).

RHEL is based on Fedora Linux. Fedora is fast moving (a six-month release cycle), 

whereas RHEL is a slow-moving distribution (a two- to three-year release cycle). This 

means Fedora adopts the latest developments as soon as the QE (Quality Engineering) 

team gives them the green light. Since Fedora is a testing bed of popular enterprise Linux 

distributions, whatever is available in Fedora eventually becomes part of RHEL. systemd 

is the best example of this. That’s why I have chosen Fedora Linux to explain the Linux 

booting sequence.

 Power Supply
It all starts when you hit the power button. When you press the power button, the power 

supply goes to the motherboard. The motherboard sends a signal to your power supply 

(SMPS/PSU), which returns a good power supply, and as a result, the motherboard tries 

to start the CPU.

 CPU
When the x86 architecture–based CPU starts, it clears the old data from all the registers 

and starts with this:

IP              0xfff0

CS selector     0xf000

CS base         0xffff0000

Chapter 1  IntroduCtIon
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0xffff0000 + 0xfff0 = 0xfffffff0. This is the memory location at which the 

CPU expects to find the first instruction to execute. At this location, it contains a jump 

instruction that points to a BIOS entry point. In other words, this is how the BIOS starts 

or the CPU lands at the BIOS/firmware.

After this, the firmware and bootloader are the next stage of a booting procedure. 

It’s the job of the firmware to launch the bootloader of an operating system. In the next 

chapter, I will discuss what happens in the firmware and how it executes the bootloader.

Chapter 1  IntroduCtIon
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CHAPTER 2

Multiboot
Understanding the bootloader and firmware is complex. It is not necessarily difficult, but 

the topic can be complicated. To make it easy to digest for the readers of this book, I will 

use three test systems.

System Number System Name Purpose

1 BIOS To demonstrate the BIOS

2 UEFI To demonstrate UEFI

3 Jarvis For a 100+ OS multiboot project

Since the bootloaders and firmware work closely together, I will start by installing 

a specific list of operating systems on each system and while doing that explain the 

relationship between the bootloader and the firmware. This approach will make complex 

topics easier to understand, more interesting, and a lot of fun. In short, I will explain the 

bootloader and firmware (BIOS/UEFI) together though they are different concepts.

Note The BIOS-based multiboot part of this chapter was inspired by Mr Vijay 
Gokhale Sir’s workshop on the subject. I thank him for the inspiration.

 List of Operating Systems
We will be installing the following operating systems on our first BIOS system, which 

means on a system that has the BIOS firmware installed:

• Sun OpenSolaris 2009

• Fedora Linux 15

• PC-BSD 9.0

https://doi.org/10.1007/978-1-4842-5890-3_2#ESM
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• Windows 7

• Red Hat Enterprise Linux 6.0

• Windows Server 2003 (2k3)

• Windows XP

I know these operating systems are quite old, but I have chosen them for a reason.

See, the BIOS itself is an outdated firmware, so if you want to understand the BIOS, 

you have to use old operating systems only. Remember, you can understand UEFI (the 

current firmware) only if you understand the BIOS. It’s like you will understand Java 

better if you know C well. Also, using these old operating systems will give me a chance 

to touch upon the Windows and Unix bootloaders as well. In addition, it will provide me 

with the opportunity to explain the GRUB legacy bootloader of Linux.

The idea is to multiboot our BIOS system with all the operating systems mentioned 

earlier. To do that, we need to follow every operating system’s rules and regulations.

OS Rules

Unix Unix operating systems (OpenSolaris and BSD) have to be installed on a 

primary partition only.

Linux Linux does not have any installation rules. It can be installed on any primary 

or logical partition.

Windows The Windows operating system can be installed on any partition (primary or 

logical), but the predecessor of the Windows family has to be present on the 

first primary. That means you can install Windows 7 on a logical partition, but 

its predecessor, which is XP or win2k3, has to be present on the first primary 

partition. Also, you cannot break the Windows operating system sequence 

of installation. For example, one cannot install Windows 7 first and then the 

older win2k3 or XP. It has to be in this sequence: 98, then 2000, and then XP.

Take some time and try to prepare your OS installation sequence. Verify your booting 

sequence now.

The final sequence of the operating system is as shown here:

 1) Windows XP

 2) Sun OpenSolaris 2008

ChAPTEr 2  MULTIBOOT
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 3) PC-BSD 9.0

 4) Windows Server 2003

 5) Windows 7

 6) Red Hat Enterprise Linux 6

 7) Fedora 15

 Installing the Operating Systems
Now we’ll talk about installing the operating systems.

 Primary/Logical Partitions
With the BIOS, we can create only four partitions. But of course you probably have seen 

more partitions used than that. So, let me change my statement a bit. On a BIOS-based 

system, you can create only four primary partitions on your disk. If you want more than 

that, then you need to make the fourth primary partition a secondary (also called an 

extended) partition. The extended partition will work as a container, and inside this 

container you can create as many logical partitions as you want. Why are these partitions 

called logical partitions, because they are not visible to BIOS? Also, why can the BIOS 

make only four primary partitions? These questions will be answered when we discuss 

the master boot record.

 Partitioning
Let’s partition the BIOS system’s hard disk first. We will use the GParted live CD for this. 

GParted is a tool from the GNU community. It’s a free, open source, Debian Linux–based 

live ISO image. Figure 2-1 shows our BIOS system’s partition layout.

ChAPTEr 2  MULTIBOOT
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The GParted operation to partition a hard disk is straightforward. We will create the 

partition layout shown in Figure 2-2 on the 75 GB of disk space.

Figure 2-1. The partition layout of the BIOS in GParted

ChAPTEr 2  MULTIBOOT
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For more information on how to use GParted to partition your hard drive, please 

refer to the GParted documentation at https://gparted.org/articles.php.

In Figure 2-3, you can see the disk name, partition size, used filesystem, and 

associated flags (if any).

Let’s install our first operating system on our first primary partition.

Figure 2-2. GParted-made partition layout

Figure 2-3. GParted-made filesystem layout

ChAPTEr 2  MULTIBOOT
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 First OS Installation: XP
In Figure 2-4, you can see a partition layout shown by the Windows XP installer.

We are installing XP on the first primary partition. In terms of Windows, it is a C: 

drive, as shown in Figure 2-4. After finishing the installation and rebooting the system, 

we get Windows XP on our screen (Figure 2-5).

Figure 2-4. Partition layout shown by XP’s installer

ChAPTEr 2  MULTIBOOT
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It’s time to understand how Windows XP has been booted, but before that, we need 

to understand the boot sector. The boot sector is every HDD’s first sector (512 bytes)  

plus 31 KB of space; in other words, it’s the first 63 sectors on the boot medium (0 to 62). 

Or, you can consider under the boot sector that some space (512 bytes + 31 KB) of 

every partition will be reserved to store the bootloader-related information. This 

space (again, 512 bytes + 31 KB) will not be shown by the OS to users. The actual data 

storage in a partition starts after this reserved space. Refer to Figure 2-6 for a better 

understanding of this.

Figure 2-5. XP after successful installation 

Figure 2-6. The disk layout on a BIOS-based system

ChAPTEr 2  MULTIBOOT
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 Boot Sector
There is one amazing saying in Sanskrit that goes like this: .  

This means there is only one truth but various ways to reach it. As shown in Figure 2-7,  

the boot sector is called by different names, but ultimately the concept remains the same. 

People refer this structure with the following names:

• Master boot record (MBR)

• Boot record

• Boot sector

• Bootloader

In this book, we’ll call it the boot sector because the hard disk drive (HDD) is always 

divided into sectors, and every sector is of either 512 bytes or 4 KB in size. Most HDDs 

follow a 512-byte sector size.

On a BIOS-based system, every OS vendor (it does not matter if it is Windows, Unix, or 

Linux) has to divide the bootloader into three parts. Part-1 of the bootloader will be kept 

at the bootstrap, which is 440 bytes. Part-2 will be kept in the bootloader section, which is 

31 KB in size, and the final part-3 will be kept inside the actual partition where a particular 

OS has been installed. So, in simple terms, whenever an OS gets installed (in our case it’s 

Windows XP), it divides its New Technology Loader (NTLDR) bootloader into three parts.

Figure 2-7. The boot sector

ChAPTEr 2  MULTIBOOT
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Location Size Part Information

Bootstrap 440 bytes NTLDr part-1 The tiniest part

Bootloader 31 KB NTLDr part-2 Bigger compared to part-1

Inside an actual OS partition No size limitation NTLDr part-3 The biggest part

But why is the bootloader divided into three parts?

It is because of historical reasons. The BIOS has technical limitations in that it cannot 

access more than 512 bytes or cannot read beyond the first sector. So, it is obvious that 

when BIOS finishes its task, it jumps on the entire HDD’s first 512 bytes and whoever 

is there simply runs that program. Fortunately, that program will be our bootstrap (440 

bytes). Since the bootstrap is tiny in size, it does only one thing, which is to jump on a 

bigger space, which is the part-2 bootloader. It is 31 KB in size. This 31 KB is again very tiny, 

and it has to find an even bigger size. This bootloader will jump to part-3, which is inside a 

partition. This part-3 file will be at the C: drive with the file name NTLDR. The part-3 file of 

XP’s bootloader is visible in Figure 2-8.

Figure 2-8. The part-3 file of XP’s bootloader

ChAPTEr 2  MULTIBOOT
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As you can see, the file is much bigger in size (245 KB). This file will do the heavy 

lifting of the bootloader’s actual job, which is copying the kernel of Windows XP called 

winload.exe (this file knows where XP’s kernel is) from C:\windows in memory. Once 

the kernel is copied into memory, the bootloader’s job is done, and it goes away. 

Remember, OS==kernel==OS. Once the kernel is in memory, it will take care of the rest of 

the booting sequence. You can see XP’s boot sequence in Figure 2-9.

I know there are probably a lot of questions in your mind. But keep reading, and 

all of your questions will be answered. Let’s go ahead and discuss the fields of the boot 

sector that I have not explained yet. You can refer to Figure 2-10 for this.

Figure 2-10. The boot sector

Figure 2-9. The boot sequence of Windows XP

ChAPTEr 2  MULTIBOOT
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The vendor signature field is for HDD vendors. The data that is mentioned here 

tells us which vendor has manufactured this HDD, such as Seagate, Western Digital, 

Samsung, etc. So, basically it holds the HDD manufacturer information.

NULL has only 2 bytes of space. The NULL means NULL. If this is not NULL, then 

the BIOS will consider this HDD as faulty/corrupted at the time of the POST routine, and 

booting will be halted. So, it has to be NULL. Whenever the OS abruptly reboots or when 

the OS or HDD itself detects the bad sector or some sort of serious corruption, this field 

will be marked as non-NULL.

The MBR field could be the most popular section of all of these fields. MBR stands for 

“master boot record,” and it is 64 bytes in size. The MBR is further divided into four parts. 

Each part is 16 bytes in size, and every part holds one partition’s information.

Size Parts Stores

16 bytes Part-1 First partition’s information

16 bytes Part-2 Second partition’s information

16 bytes Part-3 Third partition’s information

16 bytes Part-4 Fourth partition’s information

This means 64 bytes of the MBR can hold only four entries of the partition, and 

this is the reason why you can make only four primary partitions on a BIOS-based 

system.

The fdisk signature is also called the boot flag; some people simply call it *, or in 

Windows style, it is also called an active/inactive flag. The fdisk is important in the case 

of multibooting different operating systems, which we will not talk about now. For now, I 

want you to remember these two rules:

• The logical partition cannot be active.

• The OS cannot boot from the logical partition.

ChAPTEr 2  MULTIBOOT
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As of now, these two rules will not make any sense to you, but we will discuss them at 

the right time. Figure 2-11 shows the complete booting sequence of Windows XP.

We will install and boot a new OS now, namely, OpenSolaris 2008.

Figure 2-11. The boot sequence of Windows XP

ChAPTEr 2  MULTIBOOT
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 OpenSolaris 2008

Figure 2-12 shows the screen when booting with an OpenSolaris 2008 installation 

medium.

Figure 2-12. The welcome screen of the OpenSolaris 2008 installation medium
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We need to install OpenSolaris on the second partition. You can see in Figure 2-13 

that we have chosen the second primary partition for the installation.

Figure 2-13. Disk layout shown by the OpenSolaris 2008 installer

ChAPTEr 2  MULTIBOOT
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But as you can see in Figure 2-14, the installation fails with some error messages.

The error messages are related to the filesystem. So, we will prepare the filesystem 

manually by using the fdisk utility; however, before that, you should know what hard disk 

name has been assigned by OpenSolaris. The pfexec format command output (shown 

in Figure 2-15) will provide us with the HDD name.

Figure 2-14. The installation fails with some error messages.
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So, the assigned hard disk’s name is c4d1. We need to pass this device name to the 

fdisk utility. See the complete command in Figure 2-16.

The disk name indicates controller number 4, disk number 1, and partition number 0. 

Through the fdisk utility, we first deleted the second partition (which was ext3/Linux native) 

and created a new partition with a Solaris2 filesystem. The new partition becomes partition 

number 4. Also, it automatically becomes the active partition (refer to Figure 2-17). We have 

not yet talked about the “active or fdisk signature” part, but we will talk about it soon.

Figure 2-15. The HDD name assigned by OpenSolaris

Figure 2-16. The fdisk command
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Returning to our installation, let’s restart the installation, and as you can see in 

Figure 2-18, this time we have chosen the OpenSolaris filesystem–formatted partition to 

install our OpenSolaris 2008.

Figure 2-17. The changes made through the fdisk command

ChAPTEr 2  MULTIBOOT
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This time, the installation will not fail (refer to Figure 2-19), and OpenSolaris 2008 

will be installed.

Figure 2-18. Installing OpenSolaris on the OpenSolaris filesystem partition
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After the installation, we will reboot our BIOS system. What OS do you think will boot?

 – Windows XP?

 – OpenSolaris?

 – XP and OpenSolaris together?

 – None?

Take a while and think before continuing....

Figure 2-19. The installer will not fail

ChAPTEr 2  MULTIBOOT
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Figure 2-20 shows what we get on-screen after rebooting.

So, the OS that is booting here is OpenSolaris, and it is giving us an option to boot XP 

as well. Let’s shed some light on what happened in the background. OpenSolaris saw that 

it was getting installed in its own partition (the second partition), but there is another OS 

available in the first partition, which is Windows (or at least a “non-Unix OS”).

But how did OpenSolaris come to know there is another OS installed on the first 

primary partition?

When OpenSolaris was installed in its own partition, it saw that the fdisk signature was 

set on the first primary partition. (Again, the fdisk signature is also called the active flag or 

simply the * flag.) As we saw earlier in our boot sector specification diagram (Figure 2- 21), 

every partition has 512 bytes + 31 KB of space reserved for booting purposes, and this space is 

hidden from the user.

Figure 2-20. The welcome screen after reboot
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In other words, when we created a partition layout through GParted, the tool made 

the following compartments for every partition:

 1) Bootstrap

 2) Vendor signature

 3) NULL

 4) MBR

 5) Fdisk signature

 6) Bootloader

But it filled data only in the vendor signature and MBR fields. The vendor signature 

field will have data as per the vendor of the HDD, whereas in the case of the MBR field, 

the data will be as follows:

• The start and end of the first primary partition

• The start and end of the second primary partition

• The start and end of the third primary partition

• The start and end of the fourth primary partition

Figure 2-21. The boot sector
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Basically, there will be four entries, and each entry will consume 16 bytes. Apart 

from the vendor signature and MBR, the other fields will be empty. Also, please note 

that GParted will prepare all the compartments (512 bytes + 31 KB) but will fill only the 

vendor signature and MBR fields for the first primary partition.

Coming back to the fdisk signature field, when Windows XP was installed, it 

established the following:

• Part-1 of NTLDR in the bootstrap

• Part-2 of NTLDR in the bootloader

• Part-3 of NTLDR inside the first primary partition

Then it set the fdisk signature in its own partition (2 bytes).

So, the disk layout will be something like shown in Figure 2-22.

OpenSolaris found this disk layout. When the OpenSolaris installation was complete 

and it wanted to install its bootloader (GRUB), it saw an asterisk (*) on the first primary 

partition, and that is when it realized there is a Windows OS already installed. Now 

GRUB (the OpenSolaris bootloader) has two options.

• Install part-1 (bootstrap) and part-2 (bootloader) of Grand Unified 

Bootloader (GRUB) in the first primary partition, and install part-3 of 

GRUB in its own partition (the second partition where OpenSolaris 

has been installed).

• Or install part-1 (bootloader) in its own partition’s first 512 bytes, 

part-2 in its own partition’s 31 KB, and part-3 also in its own partition; 

then put * on its own second partition (refer to Figure 2-23).

Figure 2-22. The disk layout after XP’s installation
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Please note that the boot flag is back to the OpenSolaris partition. Also, GParted does 

not understand the Solaris2 partition; hence, it shows ext3 as a filesystem name.

If OpenSolaris chooses option 1, then OpenSolaris has to clear Windows XP’s part-1 

and part-2 of the bootloader. It also means only OpenSolaris will boot, and XP will never 

be able to boot. Hence, OpenSolaris chooses option-2, giving equal opportunity to boot 

Windows XP. OpenSolaris also makes a Windows XP entry in one of its own files (we will 

talk about this file later in the chapter). Whenever OpenSolaris starts booting up, GRUB 

will refer to that file, and it will find the Windows entry in it, which will be shown  

on-screen. Figure 2-24 shows the OpenSolaris welcome screen.

Figure 2-23. The disk layout in GParted after OpenSolaris installation
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So, the complete booting sequence of OpenSolaris is as follows:

 1. Power on the system.

 2. The CPU jumps to the BIOS.

 3. The BIOS runs the POST routine.

 4. We go back to the BIOS.

 5. The BIOS is kind of dumb; it will check the boot priority set by  

the user.

• When I say boot priority, I means the device through which 

system will boot.

• It could be CDROM, USB, HDD, PXE, etc.

 6. The BIOS will jump to the entire HDD’s first 512 bytes or on the 

first sector of the boot device.

• The boot device could be anything, but as of now we are 

considering an HDD.

Figure 2-24. The OpenSolaris welcome screen
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 7. The BIOS will hand over control to whichever binary is present in 

the bootstrap.

• Who do you think is there? The Windows bootloader (NTLDR) or 

OpenSolaris (GRUB)? Think for a while and then continue.

• The boot sector stored in the first 512 bytes is NTLDR of 

Windows XP.

• You must have noticed the 440 bytes of the bootstrap space is 

very tiny, and no code can boot an OS from it. Hence, part-1 

of NTLDR (bootstrap) just jumps to the bigger space, which is 

part- 2 (bootloader/31 KB/virtual boot record). Part-2 checks 

the MBR (64 bytes) and finds four entries in it. This means the 

disk has four primary partitions. But there is an issue here: out 

of four primary partitions, which partition has the OS? You 

might say, of course, it’s the first and second partitions, but 

how will the bootloader know where the OS is? And which one 

should it boot? This is a genuine question, and to solve this 

problem, the fdisk signature field has been created. Whichever 

partition has these 2 bytes filled or set, that partition has an 

OS. So, when Windows XP or OpenSolaris was getting installed, 

it’s a duty of that OS to fill the 2 bytes of the fdisk signature field 

or set the * on its own partition so that the bootloader will know 

which partition has the OS. In our case, the * is on its second 

partition (OpenSolaris kept it while it was getting installed). 

This is how part-2 of NTLDR will know that it has to jump to the 

second partition.

 8. Part-2 of NTLDR jumps to the second partition, which means 

it simply jumps to part-1 of the GRUB bootloader in the second 

partition (bootstrap).

 9. Part-1 of GRUB (bootstrap/440 bytes) is again tiny, so it will again 

jump to a bigger space, which is part-2 of GRUB (bootloader).
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 10. Part-2 knows where part-3 is. The location of part-3 will be hard-

coded in part-2, so it will simply jump to part-3. Part-3 will read 

the text file /rpool/boot/grub/menu.lst (see Figure 2-25); this is 

the same file that was created by OpenSolaris when it detected XP 

on the first primary.

Figure 2-25. The OpenSolaris menu.lst file
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 11. Part-3 of GRUB will read this text file and print whatever is written 

after the 'title variable, and that is how we reach the screen 

shown in Figure 2-26.

Figure 2-27 shows the complete booting sequence of OpenSolaris.

Figure 2-26. The OpenSolaris welcome screen
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If a user chooses the OpenSolaris option to boot, then part-3 of the OpenSolaris 

GRUB knows where the kernel of OpenSolaris is, which is in the /boot directory. 

GRUB will copy the kernel from /boot to memory and give control to the kernel. 

This is where the GRUB bootloader’s task ends, and it goes away. Now the kernel 

of OpenSolaris will take care of the rest of the booting sequence. We will talk about 

the kernel in Chapter 4.

If a user chooses the Windows XP option to boot, then part-3 of the OpenSolaris 

GRUB will jump back to part-1 of NTLDR (bootstrap). Part-1 of NTLDR will jump to 

part-2 of NTLDR. Part-2 will jump to part-3. Part-3 of NTLDR will load winload.exe in 

memory. The winload.exe file knows where the kernel of XP is. It will eventually be 

copied or loaded into memory by NTLDR. Once the kernel is in memory, NTLDR’s job is 

done (remember, kernel=OS=kernel). Since XP’s kernel is in memory, it will take care of 

the rest of the booting sequence.

Figure 2-27. The OpenSolaris booting sequence
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 PC-BSD 9.0

The * or the boot flag is on the OpenSolaris partition, so now we will install PC-BSD 9.0. 

In Figure 2-28, the installer of PC-BSD shows the number of partitions on which PC-BSD 

9.0 can be installed.

As you can see, the hard disk naming convention is different in BSD compared to 

earlier OSs. We need to install BSD on the third partition, which is ada0s2. It stands for 

“Adapter number zero and slice number 2.” The slice can be considered as a partition. 

Figure 2-29 shows the disk layout and disk naming conventions.

Figure 2-28. The number of partitions

ChAPTEr 2  MULTIBOOT



34

Assign the ada0s2 space to / (the root filesystem). Figure 2-30 shows the partition 

layout of PC-BSD 9.0. You will also notice that the filesystem of BSD is UFS, which is the 

Unix File System.

Figure 2-29. The disk layout and disk naming conventions
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After the installation, the system will restart. Now take some time and think about 

which OS will boot.

Which of the following will it be?

• OpenSolaris, which would give it a chance to boot Windows and BSD

• Will it be PC-BSD, which would give it chance to boot the other two 

OSs?

• Will it be PC-BSD alone?

• Will it be Windows XP alone?

• Will it be OpenSolaris alone?

• Or will none of the OSs boot?

Figure 2-30. The partition layout of PC-BSD 9.0
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Please visit the booting flowcharts of earlier operating systems and try to come up 

with your own booting sequence.

As you can see in Figure 2-31, the OS that will boot is OpenSolaris, which will create a 

chance to boot Windows only.

PC-BSD is not booting. Before going to the next page, again take some time and think 

about what happened

Figure 2-31. PC-BSD is not booting.
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You are right—there is a chance that PC-BSD might have not kept the */boot flag/

fdisk signature on its own partition. Let’s see if that is the case. We will boot with GParted 

(Figure 2-32) and verify our theory.

Figure 2-32. The GParted welcome screen
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As you can see in Figure 2-33, PC-BSD does not have * set on its own partition.

Figure 2-33. The disk layout on GParted
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So, the booting sequence looks like Figure 2-34.

This means OpenSolaris does not know BSD is installed on the third partition. 

Hence, the PC-BSD entry is not with OpenSolaris. What if we keep the boot flag on 

BSD’s partition? Will it boot? But how do we keep the boot flag on the third partition? It’s 

simple—GParted gives us that option. Right-click the third partition and select the boot 

flag, as shown in Figure 2-35.

Figure 2-34. The boot sequence and why PC-BSD is not able to boot
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Figure 2-36 shows how the disk layout looks after setting the boot flag on BSD’s third 

partition.

Figure 2-35. Setting the boot flag on PC-BSD

ChAPTEr 2  MULTIBOOT



41

Now which OS do you think will boot?

• PC-BSD alone?

• PC-BSD, which would give the chance to boot every other OS?

• Again OpenSolaris, which would create an option to boot Windows?

• OpenSolaris alone?

• Windows XP alone?

Figure 2-37 shows the answer; after reboot, it’s only PC-BSD that is booting, and it is 

not giving an option to boot any other OS.

Figure 2-36. The disk layout
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Let’s try to understand how PC-BSD managed to boot.

 1. Power on the system.

 2. The BIOS executes the POST routine. The POST checks the 

hardware health and gives a healthy beep if everything is good 

and goes back to the BIOS.

 3. The BIOS is dumb, and it simply jumps to the first sector of the 

entire HDD, which is a bootstrap of Windows XP.

 4. XP’s part-1 (NTLDR) jumps to a bigger space, which is part-2 of 

NTLDR (the bootloader). The bootloader checks the MBR and 

finds there are four primary partitions, but which one is active? To 

check that, the bootloader checks the first primary partition’s fdisk 

signature, which is not set, so it checks the second partition’s boot 

Figure 2-37. The welcome screen of PC-BSD
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flag, which is also not set. Hence, it jumps to the third partition 

where it finds the boot flag set. The bootloader (part-2) of NTLDR 

jumps to BSD’s partition and runs the bootstrap of BSD’s bootloader. 

The bootloader of BSD is BTX, which stands for Boot Extended. 

BTX jumps to its second part and eventually to the third part. The 

third part of BTX knows where the kernel of BSD is. Part-3 of BTX 

copies the kernel image of BSD in memory, and this is where BTX 

stops and PC-BSD starts booting and shows us a welcome screen. 

Figure 2-38 shows the flowchart of the booting sequence of PC- BSD.

The interesting part of BSD booting is that when PC-BSD was getting installed, it 

found the boot flag on the second partition, which is the OpenSolaris partition. Now BSD 

has three options.

 a. Keep the boot flag on its own third partition.

 b. Keep the boot flag on its own third partition and make a 

OpenSolaris entry in some of its files.

 c. Keep the boot flag as it is on the second partition.

Figure 2-38. The boot sequence of PC-BSD
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If BSD chooses the first option (a), then only BSD would be able to boot, and that 

would be an injustice to the other installed operating systems. We want BSD to choose 

the second option (b) since it gives justice to boot every other OS, but BTX is an old 

bootloader, and it does not have the ability to multiboot other operating systems. Hence, 

BSD chooses the third option (c). Therefore, it’s only OpenSolaris that is booting, and it 

provides the option to boot XP. Remember, XP is not booting. It’s only OpenSolaris that is 

booting, and by reading the menu.lst file, it is giving the option to boot XP. It also means 

BSD itself chose not to boot.

What if we go back and keep the boot flag on the first partition of Windows XP? Then 

which OS will boot? In Figure 2-39, we have achieved this.

Figure 2-39. The boot sequence of PC-BSD
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It’s Windows XP alone that will boot, and the booting sequence is simple. Figure 2-40 

explains how Windows XP is able to boot.

Before installing the new OS, we need to move the boot flag from BSD’s third 

partition to OpenSolaris’ second partition. Figure 2-41 shows the changed boot flag from 

XP’s partition to the OpenSolaris partition.

Figure 2-40. The boot sequence of Windows XP
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With this change, OpenSolaris will start booting, and along with that, Windows XP 

will also boot, but BSD will not be able to boot. So, does this mean that every time we 

boot BSD we have to put the boot flag back to BSD’s partition? As of now, yes, but we will 

automate all of this with the help of bootloaders.

 Windows Server 2003

As you can see in Figure 2-42, we will install Windows Server 2003 (win2k3) on the first 

logical partition. For win2k3, it is a D: drive.

Figure 2-41. The disk layout from GParted
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After the installation, which OS do you think will boot?

• win2k3 alone?

• Will win2k3 provide an option to boot every other OS?

• win2k3 and OpenSolaris together?

• PC-BSD?

• XP alone?

• win2k3 and XP?

Before continuing, think for a while and come up with your own answer.

As you can see in Figure 2-43, the OS that will boot is win2k3.

Figure 2-42. The disk layout shown by the win2k3 installer

Figure 2-43. win2k3’s welcome screen after reboot
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And win2k3 is giving the option to boot Windows XP. This means only the Windows 

family of operating systems is booting. Also, here are some questions that we should 

consider:

• Where is the boot flag now?

• Which OS will boot if we keep the boot flag on the second partition?

• Which OS will boot if we keep the boot flag on the third partition?

• Which OS will boot if we keep the boot flag on the logical partition 

(win2k3’s partition)?

• Is there any way to boot only Windows XP?

You will receive all the answers to these questions in the following discussion.

One thing is clear here: win2k3 is the only OS that is booting. Before discussing 

how it is able to boot, we need to check what scenario it has created on the disk to boot 

successfully.

When win2k3 was getting installed, it saw that it was getting installed on a logical 

partition and that the boot flag is on the OpenSolaris partition (refer to Figure 2-44).

To boot, win2k3 has to put the boot flag on its own partition by installing its 

bootloader’s (again, NTLDR’s) part-1 and part-2 in its own 512 bytes + 31 KB. But there 

is a problem here. Do you remember the rules we saw at the time of Windows XP’s 

installation?

• The logical partition cannot be active.

• The OS cannot boot from the logical partition.

Because of these two rules, win2k3 cannot keep the boot flag on its own partition, and 

ultimately it cannot boot from the logical partition. Figure 2-45 shows the boot  sequence of 

why win2k3 cannot boot from the logical partition. But what is the reason for such rules?

Figure 2-44. The disk layout when win2k3 was getting installed
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It’s simple: MBR has only four entries, which are as follows:

• First primary = sda1

• Second primary = sda2

• Third primary = sda3

• Fourth primary = extended partition (not logical partition) = sda4

The win2k3 partition is sda5. In other words, it is SATA disk a (first) and partition 

number 5. Since the MBR does not have an entry for a logical partition, part-2 of XP’s 

NTLDR does not know that there is a fifth partition available. So, even if win2k3 keeps 

the boot flag on its own partition, XP’s NTLDR cannot see it. Hence, win2k3 will never 

boot. Now, why can the MBR not have more than five entries? It’s because 64 bytes 

can store only four entries. Why not increase the size of the MBR? Actually, even if the 

developers want to increase the size of the MBR, they simply can’t. You will understand 

the reason when we talk about the UEFI firmware later in this chapter.

Now this has become a chicken-and-egg problem for win2k3. It wants to boot, but 

for that it has to keep the boot flag on its own partition, but if it does that, then the BIOS 

cannot see that partition. How do we resolve this problem?

Some amazing developers have resolved this problem, and whoever came up with 

this idea is simply a legend. win2k3 transfers its NTLDR bootloader on the first primary, 

which means part-1, part-2, and part-3. It also means win2k3 will delete all the XP 

NTLDR’s parts since the space (512 bytes + 31 KB) is tiny and both the bootloaders can’t 

fit there. (There is one sweet spot here, which is called VBR, which is beyond the scope 

Figure 2-45. win2k3’s boot sequence if it tries to boot from the logical partition
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of this book.) However, while deleting, XP’s bootloader win2k3 makes XP’s entry in one 

of its text files and keeps it at the first primary partition. The file is called boot.ini, as 

shown in Figure 2-46.

While doing this, win2k3 keeps the boot flag on the first primary partition only. So, 

this is how win2k3 is booting:

 1. Power on the system.

 2. The CPU goes to the BIOS. The BIOS runs the POST.

 3. POST checks, and the hardware gives the healthy beep and goes 

back to the BIOS.

 4. The BIOS jumps to the first primary partition’s first 512 bytes.

Figure 2-46. The boot.ini file
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 5. The bootstrap will start, which is win2k3’s part-1 of NTLDR.

 6. Part-1 will look for part-2 of NTLDR.

 7. Part-2 will check the MBR and check the fdisk signature.

 8. The fdisk signature is set on the first primary, which means part-2 

will jump inside XP’s first primary partition and will run part-3 of 

win2k3’s NTLDR. To just give you an idea, part-3 is new and not 

XP’s old NTLDR. Here I provide two images.

• Note the size of NTLDR (part-3) in Figure 2-47. This is when we 

installed Windows XP.

• In Figure 2-48, note the size of NTLDR (part-3) after the 

installation of win2k3.

Figure 2-47. The size of NTLDR’s part-3 file of Windows XP
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As you can see, part-3 of NTLDR of Windows XP was 245 KB, but now with win2k3 

it’s 291 KB.

 9. Part-3 of NTLDR (win2k3) will read the boot.ini file from the same 

partition (the first primary) and will print whatever is written in 

quotes. Figure 2-49 shows what will be printed on the screen.

Figure 2-48. The size of NTLDR’s part-3 file of win2k3

Figure 2-49. The welcome screen shown by win2k3
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 10. If a user chooses the Windows Server 2003, Enterprise option, 

then part-3 of win2k3’s NTLDR knows where the kernel of win2k3 

is. This is in the fifth partition where win2k3 has been installed. It 

copies the kernel in memory, and NTLDR of win2k3 goes away.

 11. If a user chooses the Microsoft Windows XP Professional option, 

then part-3 of NTLDR also knows where the kernel of Windows 

XP is. This is in the first primary partition. First it starts winload.

exe; eventually winload.exe copies XP’s kernel in memory, and 

NTLDR goes away. Figure 2-50 shows the complete boot sequence 

of Windows XP.

So, this is how Windows XP and win2k3 are able to boot. Let’s return to our fdisk 

signatures discussion; since only win2k3 is booting and the other OSs are not able to 

boot, I have some questions to ask:

• Can we boot only Windows XP?

• What if we keep the boot flag on OpenSolaris?

• What if we keep the boot flag on PC-BSD?

• What if we don’t keep the boot flag anywhere?

Figure 2-50. The boot sequence of Windows XP
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Take your time, think, revisit the flowcharts, and come up with your answer.

Ready? We cannot boot only Windows XP. It’s just not possible since in the Windows 

XP bootloaders all the parts have been replaced by win2k’s NTLDR. Also, only win2k3 

knows now where XP is, and only win2k3 can boot Windows XP. This also means if 

win2k3’s bootloader’s part-1 is corrupted or deleted, we will lose XP forever. But if we 

keep the boot flag on PC-BSD, then it will boot as usual. Figure 2-51 shows the boot 

sequence of PC-BSD.

If we don’t keep the boot flag on any of the partitions, then it simply won’t boot. This 

is similar to the situation that we discussed when talking about what would happen if the 

boot flag was set on the logical partition. Figure 2-52 shows the boot sequence to explain 

why none of the OSs is able to boot.

Figure 2-51. The boot sequence of PC-BSD
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Setting up a boot flag on the logical partition is as good as not setting up a boot 

flag anywhere.

Now, the main question is, what if we keep the boot flag on the OpenSolaris partition? 

OpenSolaris will fail to boot. The OpenSolaris bootloader, which is GRUB, will throw the 

error message shown in Figure 2-53.

But why? It should boot, right? Nothing has been changed in OpenSolaris (512 bytes +  

31 KB). It’s just that win2k3 has moved the boot flag from the OpenSolaris partition 

to the first primary. So, ideally, it should boot, but it won’t, and the reason is win2k3’s 

behavior. When win2k3 was getting installed, it faced a similar situation that OpenSolaris 

and PC-BSD faced. In other words, the boot flag is on a different partition, and that 

partition has another OS. What OpenSolaris did in that situation was move the boot flag 

from XP’s partition to its own second partition, but since this will make XP unbootable, 

it generously made an entry for XP in its own file (menu.lst). OpenSolaris reads this file 

every time and gives an equal chance to XP to boot.

Figure 2-52. The boot sequence to show why none of the OSs is able to boot

Figure 2-53. GRUB dropped on prompt
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In the case of PC-BSD, it detects that the boot flag is on OpenSolaris, and if it 

is moved to its own partition, it would make OpenSolaris unbootable. Hence, BSD 

generously chose not to put the boot flag on its own partition so that another OS would 

not become unbootable. But win2k3 does not have that generosity. When win2k3 was 

getting installed, it saw that the boot flag is on a non-Windows-based OS. So, it moved 

the boot flag of OpenSolaris, but since that is a non-Windows-based OS, it did not create 

an entry in boot.ini. Going further, win2k3 even corrupted/removed part-1 of the 

OpenSolaris GRUB. Hence, OpenSolaris is not able to boot now.
Later, win2k3 went ahead and cleared XP’s bootloader, but it made the entry for 

XP in boot.ini since it is a Windows operating system. That’s why I said win2k3 does 
not have the same generosity that is shown by OpenSolaris and PC-BSD. But we will fix 
OpenSolaris in the “Tweaking GRUB” section of this chapter.

 Windows 7

As you can see in Figure 2-54, we are installing Windows 7 in the fifth partition.

Figure 2-54. The disk layout shown by the Windows 7 installer
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Windows does not show an extended partition to avoid confusion for simple desktop 

users.

1st  = XP     2nd = Solaris    3rd  = PC-BSD      4th  = win2k3      5th  = 7

After the installation, which OS do you think will boot? As usual, take your time and 

come up with your answer before continuing to Figure 2-55.

Figure 2-55. The welcome screen shown by Windows 7
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You guessed right: Windows 7 will boot. The following is the complete booting 

sequence of Windows 7:

 1. Power on the system.

 2. The CPU will jump to the BIOS.

 3. After the POST routine, the BIOS will jump to the entire HDD’s 

first sector.

 4. When Windows 7 was getting installed, the * was on the first 

primary, and Windows 7 was getting installed in a logical 

partition. So, Windows 7 is facing the same problems that  

win2k3 faced.

 5. To make itself bootable, Windows 7 will follow the same path, 

which is followed by win2k3. Windows 7 will install its part-1, part-

2, and part-3 on the first primary partition. Part-3 is not necessary 

to install on the first primary since part-2 has a hard- coded 

location for part-3, but this is how the Windows family works.

 6. When part-1 and part-2 of Windows 7 were getting installed on 

the first primary, obviously Windows 7 has to delete the win2k3 

NTLDR (part-1 and part-2), but while deleting the files, Windows 

7 recognizes that win2k3 is a Windows family OS; hence, Windows 

7’s bootloader called Boot Configuration Data (BCD) makes an 

entry for win2k3 in its own file, which can be seen in bcdedit.

exe. Check Figure 2-56 to see the output of bcdedit.exe.

“Windows Legacy OS Loader” in Figure 2-56 means win2k3.
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 7. So, coming back to booting sequence, it looks like this: BIOS ➤ 

POST ➤ BIOS ➤ first sector of HDD.

 8. The first 440 bytes of the bootstrap is part-1 of Window 7’s BCD 

bootloader. It will look for a bigger space, which is part-2 of BCD.

 9. Part-2 of BCD will read the MBR and will come to know that on 

this HDD there are four primary partitions, but to check which 

one is active, it will start checking the fdisk signature of every 

partition, but it will find the first primary itself is active.

Figure 2-56. The output of bcdedit.exe 
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 10. Part-2 will jump inside the first primary where part-3 of Window 

7’s BCD bootloader is stored. Part-3 will read its bootloader 

configuration file through bcdedit.exe and will list the entries 

that are mentioned in front of the description variable. 

Figure 2- 57 shows what will appear on-screen.

 11. If a user chooses Windows 7, then as you can see in bcdedit.exe, 

part-3 of BCD will call winload.exe from C:\windows\systemd32. 

Remember, here C: means Windows 7’s partition, which is the 

sixth logical partition.

Figure 2-57. Welcome screen shown by Windows 7
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 12. The winload.exe file knows the location of Windows 7’s kernel. 

It will start loading the kernel in memory, and once it is done, 

Windows 7’s kernel will take care of the rest of the booting 

sequence. You can see the animation shown by Windows 7 once it 

starts its booting sequence in Figure 2-58.

Figure 2-58. The animation shown by Windows 7 during the booting sequence
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Figure 2-59 shows the complete flowchart of Windows 7’s booting sequence.

Figure 2-59. The booting sequence of Windows 7
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Figure 2-60. The boot sequence of win2k3 and XP

 13. If the user chooses Earlier Version of Windows, then BCD’s part-3 

will call part-3 of NTLDR, which is on the first primary partition 

only, and the booting sequence will continue, which we saw with 

win2k3. Figure 2-60 explains the boot sequence of win2k3 and XP.
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 Red Hat Enterprise Linux 6 (RHEL 6)

The RHEL installer’s name is Anaconda. The Anaconda installer is used by all the 

Fedora-based distributions. In Figure 2-61, we have started installing RHEL 6.

Figure 2-61. The welcome screen of RHEL 6’s boot medium
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Figure 2-62 shows our current partition layout.

Figure 2-62. Partition layout shown by the Anaconda installer
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As shown in Figure 2-63, we need to assign root (/) to the sda7 partition and reformat 

it with ext4, which is the default filesystem choice of RHEL 6.

Figure 2-63. The partition scheme that Anaconda will implement
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As visible in Figure 2-64, RHEL 6 (or Anaconda) has detected some OS, and it is 

trying to give equal opportunity to the other OS to boot (specified as Other). There are 

two OS entries, which RHEL 6’s bootloader (GRUB) will show at the time of the boot.

As per RHEL 6, the other OS will boot from sda5. This means the following:

sda1 = XP

sda2 = Solaris

sda3 = PC BSD

sda4 = Extended partition

sda5 = Win win2k3    <<<-----------

Figure 2-64. Anaconda detecting another OS
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At the time of the boot, if a user chooses the Other option, win2k3 is supposed to 

boot. Which OS will boot after choosing the Other option? Take your time and come up 

with your own booting sequence.

Let’s reboot the system and see which OS is booting. As you can see in Figure 2-65, 

it’s RHEL 6 that is booting and giving you a chance to boot the other OS.

This is how RHEL 6 boots:

 1. When the system is powered on, it goes to the BIOS, then from the 

BIOS to POST, and from POST back to the BIOS.

 2. The BIOS ultimately lands in the entire HDD’s first sector and runs 

the bootstrap.

 3. When RHEL 6 was getting installed, the * was on the first primary 

partition.

 4. The problem that was faced by win2k3 and Windows 7 is faced by 

RHEL 6 also. RHEL 6 is getting installed in a logical partition that 

the BIOS cannot reach or see. So, to tackle this issue, RHEL 6 has 

to shift its part-1 and part-2 of the bootloader (GRUB) to the first 

Figure 2-65. The RHEL 6 welcome screen
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primary partition. Remember, Windows shifted part-3 as well to 

the first primary, but RHEL (and in general any Linux OS) will shift 

only the first two parts to the first primary partition, and part-3 of 

GRUB will be kept in its own partition; in our case, this is sda-7.

 5. While replacing the first primary partition’s part-1 and part-2, 

RHEL noticed that there is already some other OS installed, and 

to give it an equal chance to boot, it made an entry for it in its 

own partition’s /boot/grub/grub.conf named configuration file. 

Figure 2-66 shows the grub.conf file.

As you can see, whatever is written after the title variable will be printed on the 

screen.

 6. Returning to the boot sequence, the bootstrap that is in the first 

primary partition is from RHEL.

 7. Part-1 of RHEL’s GRUB will jump to part-2.

Figure 2-66. The grub.conf file
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 8. Part-2 of GRUB has a hard-coded location for part-3 of 

GRUB. Part-3 of GRUB is on RHEL’s partition, which is sda7.

 9. Part-3 of GRUB will read the grub.conf file from the /boot/grub 

directory, and whatever is written after title will be printed on 

the screen. Figure 2-67 shows this.

 10. If a user chooses the first entry, which is Red Hat Enterprise 

Linux 6, then part-3 of GRUB knows where the kernel of RHEL is. 

Figure 2-68 shows the grub.conf file.

Figure 2-67. The welcome screen shown by RHEL 6’s GRUB
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 11. The kernel binary file will be at /boot/vmlinuz. (Notice the 

kernel variable from Figure 2-68.) Basically, the same grub.conf 

file will tell the location of the kernel to part-3 of GRUB. It will 

copy the kernel (vmlinuz) in memory, and the GRUB bootloader’s 

job is done. RHEL’s kernel will take care of the rest of the booting 

sequence. Meanwhile, when the system is booting, a nice 

animation, as shown in Figure 2-69, will appear on the screen.

Figure 2-70 shows the flowchart of the complete booting sequence of RHEL 6.

Figure 2-68. The grub.conf file of RHEL 6

Figure 2-69. The animation to hide the complicated log messages

ChAPTEr 2  MULTIBOOT



72

 12. If a user chooses Other instead, then it will call whatever is present 

on the sda5 partition. As you can see in Figure 2-71, sda5 is on 

win2k3’s partition.

Figure 2-71. The other OS is on partition 5

Figure 2-70. The boot sequence of RHEL 6

 13. When win2k3 was installed, it shifted all of its bootloader’s parts 

to the first primary. This means win2k3’s partition does not have 

a bootloader present, so of course no OS will boot. Figure 2-72 

shows the error message thrown on-screen if you try to boot the 

other OS.
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Now, I have a couple of questions to ask:

• Where is the * now?

• If I keep the * on the second partition, which OS will boot?

• If I keep the * on the third partition, which OS will boot?

• If I keep the * on the fifth (logical) partition, which OS will boot?

• If I do not keep the * on any of the partition, which OS will boot?

In all of these scenarios, only one OS will boot, and that will be RHEL 6 (Figure 2-73).

Figure 2-72. The error message

Figure 2-73. The RHEL 6 desktop screen

No matter where you keep the * or even if you don’t keep the * on any partition, it’s 
only the RHEL that will be booting all the time. The reason is simple, but it changes the 

booting sequence altogether. The Red Hat Enterprise Linux bootloader, which is GRUB, 
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does not follow the *, and it does not check which partition is active before calling part-3 

of its bootloader. In fact, none of the Linux OSs bothers to check the active partition. 

They simply skip that step. So, the booting sequence becomes the following:

 1. First the system goes to the BIOS, then POST, then back to the 

BIOS, and finally to the first primary partition’s bootstrap.

 2. RHEL’s part-1 of GRUB jumps to part-2 of GRUB, which (after 

skipping the fdisk signature part) jumps to part-3 of GRUB.

 3. Part-3 of GRUB goes to /boot/grub.conf, which prints the OS 

entries.

 4. If a user chooses RHEL, then the kernel loads from /boot/vmlinuz 

in memory.

 5. The kernel will take care of the rest of the OS booting, which has 

been extensively explained in the rest of the book. 

This also means there is only one OS currently booting, and that is RHEL 6. That’s 

bad! Hence, we need to tweak GRUB to boot the rest of the operating systems.

 Tweaking GRUB

The best feature of GRUB is that it can boot any other OS, regardless of whether it is 

Linux based or not. The trick to boot another OS used by GRUB is simple but amazing. 

For any bootloader to boot OS, you need to do nothing more than load the respective 

OS’s kernel in memory. GRUB knows where the kernel of a Linux OS is (/boot/vmlinuz). 

But GRUB does not know where the kernel of Windows or PC-BSD is. The trick is that 

these operating systems’ respective bootloaders know the location of their respective 

kernels. So, GRUB just calls their respective bootloaders; for example, if GRUB wants 

to boot BSD, it is at the third primary partition. Refer to Figure 2-74, which shows the 

partition layout, for a better understanding of this.

Figure 2-74. The partition layout of the BIOS
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BSD installed its bootloader on its own partition’s reserved 512 bytes + 31 KB. So, 

GRUB will call part-1 of BTX. This is called chainloading. The GRUB bootloader’s part- 3 

will chainload part-1 of BTX. BTX’s part-1 knows what to do next, which is to look for 

part-2. Part-2 will jump to part-3, and it will load BSD’s kernel in memory so BSD will 

start booting up. To achieve this chainloading, we need to tell GRUB the location of 

part- 1 of BTX through the grub.conf file. The location will be hard disk number 1 and 

partition number 3, but GRUB starts its count from 0 so the location will be hard disk 

number 0 and partition number 2. The entry in /boot/grub.conf is as follows:

              title pc-bsd               <<<---- the os entry title

              rootnoverify (hd0,2)       <<<---- location of BTX

              chainloader +1             <<<---- grub will chainload the BTX

As you can see in Figure 2-75, the other operating system entries are similar to BSD; 

only the partition number will change.

Figure 2-75. The tweaked grub.conf file of RHEL 6
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After rebooting, GRUB will show the mentioned title entries. See Figure 2-76.

If a user chooses Windows, it will call part-2 of BCD, which is in the 31 KB space 

of the first primary. This 31 KB space is also called the volume boot record (VBR). I 

deliberately skipped the VBR explanation since it will unnecessarily create confusion. So, 

in the case of Windows chainloading, just keep in mind that instead of part-1, part-2 will 

be called. For those who want a bit more information about VBR, MBR is the master boot 

record for the hard drive, located at the first sector of the hard drive. Each volume (think 

partition) has its own boot record called the VBR as the first sector of the partition. Two 

names for two similar things.

So, BCD’s part-2 will call part-3 of BCD, which is in the first primary partition. It will 

read the BCD OS entries (bcdedit.exe), as shown in Figure 2-77, and will print them 

on- screen.

Figure 2-76. The GRUB welcome screen shown by RHEL 6
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If a user chooses the Earlier Version of Windows, as we saw earlier (during Windows 

7’s booting sequence), it will run part-3 of NTLDR, which is again on the first primary 

partition. As shown in Figure 2-78, NTLDR will read the boot.ini file from the C drive 

and will print the OS entries.

Figure 2-77. The OS entries shown by the BCD bootloader

Figure 2-78. The OS entries shown by win2k3’s NTLDR
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If a user chooses XP, part-3 of NTLDR knows where the kernel of XP is. Instead, 

the user chooses win2k3, and then the same NTLDR will load the kernel of win2k3 in 

 memory.

Refer to Figure 2-79, which is the main boot screen provided by RHEL, if the user 

chooses OpenSolaris.

The following are the instructions that will be followed by GRUB:

title Solaris

      rootnoverify (hd0,1)

      chainloader  +1

So, RHEL GRUB’s part-3 will hand over control to the bootstrap of the second 

primary partition, but remember that win2k3 has cleared part-1 of OpenSolaris GRUB. 

Hence, as visible in Figure 2-80, it will fail to boot.

Figure 2-79. The OS entries shown by RHEL

Figure 2-80. OpenSolaris failed to boot
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This means we need to fix the OpenSolaris bootloader first. To fix it, we need to boot 

from the OpenSolaris live CD image, which we used to install OpenSolaris and, once it 

was booted, installed part-1 and part-2 (part-2 is not necessary but good to reinstall) of 

GRUB from the live CD to the OpenSolaris partition’s reserved 512 bytes + 31 KB. The 

command that we will use is installgrub. As the name suggests, the command will copy 

part-1 (stage1) and part-2 (stage2) of GRUB from the live image and place them in the 

OpenSolaris partition’s 512 bytes + 31 KB space. Figure 2-81 shows the command in action.

#installgrub  /boot/grub/stage1  /boot/grub/stage2  /dev/rdsk/c4d1s0

After rebooting, RHEL will again show the same OS entries (Figure 2-82) since for 

RHEL nothing has changed.

Figure 2-81. The installgrub command
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If this time we choose OpenSolaris, then RHEL GRUB’s part-3 will chainload part-1 

of OpenSolaris GRUB from the second partition. Part-1 will call part-2, and eventually it 

will call part-3 from the actual OpenSolaris partition. Part-3 of OpenSolaris GRUB will 

read /rpool/boot/grub/menu.lst, and as shown in Figure 2-83, it will print the titles on 

the screen.

Figure 2-83. The OS entries shown by OpenSolaris

Figure 2-82. The OS entries shown by RHEL
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If a user chooses OpenSolaris, then part-3 of OpenSolaris GRUB will load the kernel 

from /boot. If the user chooses Windows, then part-3 of OpenSolaris GRUB will follow 

these instructions from /rpool/boot/grub/menu.lst:

title Solaris

      rootnoverify (hd0,1)

      chainloader  +1

We know now what is going to appear on-screen (refer to Figure 2-84).

The story will continue if the user chooses Earlier Version of Windows, which we 

have already discussed. Going back to the original OS list, Figure 2-85 shows what is 

presented by RHEL’s GRUB.

Figure 2-84. The OS entries shown by BCD
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If the user chooses to boot BSD, you know exactly what is going to happen. Part-3 

of RHEL’s GRUB will chainload part-1 of BTX from the third primary partition. Part-1 

of BTX will call part-2, and part-2 will call part-3 of BTX. Part-3 of BTX will show the 

welcome screen, as shown in Figure 2-86.

Figure 2-85. The OS entries shown by RHEL
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Figure 2-86. PC-BSD’s welcome screen

Once chosen to boot, part-3 of BTX will load the kernel of BSD Unix in memory. So, 

all the operating systems, whichever we installed so far, are able to boot now, and it does 

not matter which partition is active. But can we hack the Windows bootloaders and force 

them to boot the Linux and Unix operating systems from our list? We can, and that’s 

what we will do now.

 Hacking the Windows Bootloaders

It’s actually pretty easy to trick the Windows bootloaders. As we saw earlier, bootloaders 

do chainloading; for example, part-1 calls part-2 of its bootloader and so on. To 

understand the trick, let’s take BSD as an example. Part-1 of BCD is calling its part-2 of 

BCD, but if we tell BCD’s part-1 to chainload part-1 of RHEL, then part-1 of RHEL will 

run, and it will eventually follow its own booting sequence. Part-1 of GRUB (RHEL) will 
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call part-2 of GRUB, and it will eventually chainload part-3 of GRUB since part-3’s block 

address is hard-coded in part-2. This means once part-1 of any bootloader runs, it will 

start following its own boot sequence, and we will take advantage of this behavior.

To achieve this, we need to get part-1 of every non-Windows-based bootloader 

and place it into the Windows filesystem. So, the filesystem could be FAT32 or 

NTFS. Obviously, placing part-1 of every non-Windows-based bootloader on the 

first primary has the most advantages since every Windows operating system has 

installed their respective bootloaders on the first primary partition. So, through the dd 

command, we will copy the first 512 bytes (even the first 440 bytes is enough) of every 

non-Windows-based OS and place them in XP’s partition. Let’s mount the first primary 

partition, as shown in Figure 2-87.

Let’s copy the first 512 bytes and place them on the sda1 partition. Refer to Figure 2- 88 

for this.

Figure 2-87. The mount command
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Now we will boot back in XP, and as shown in Figure 2-89, we will add the part-1 

files entries in the boot.ini file. The boot.ini file is read by both Windows bootloaders, 

which are BCD and win2k3’s NTLDR.

Figure 2-88. Transferring the first 512 bytes to the first primary
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The following are the entries that we have added:

c:\RHEL.out="RHEL"

c:\SOLARIS.out = "SOLARIS"

c:\BSD.out="BSD"

Just like the grub.conf file, whatever is written in double quotes in boot.ini will be 

considered the title of the OS entry. Now let’s reboot the system and choose the Windows 

OS entry from the RHEL OS list (refer to Figure 2-90).

Figure 2-89. Adding the entries in the boot.ini file
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Figure 2-90. The OS list shown by RHEL

How we reached this screen is easy to understand.

 1. The system goes first to the BIOS, then to POST, then to the BIOS, 

then to the first 512 bytes, and then to the bootstrap (part-1) of 

RHEL (GRUB).

 2. Then comes part-1 of GRUB, which jumps to part-2 of GRUB, 

which jumps to part-3 of GRUB, which goes to /boot/grub.conf, 

which prints the OS titles.

 3. The user has chosen Windows, so next comes part-1 of BCD from 

the first primary partition and then part-2 of BCD.

 4. Finally, it goes to part-3, then bcd.exe, and it will read the boot.ini 

file and whatever is written into the double quotes will be printed 

on screen.

The OS list is visible in Figure 2-91.
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If the user chooses Earlier Version of Windows, then BCD’s part-3 will call part-3 of 

win2k3’s NTLDR. NTLDR will again read the boot.ini file and print the OS list, as shown 

in Figure 2-92.

If a user chooses OpenSolaris, then part-3 of NTLDR will run the Solaris.out file 

from C: (the first primary partition). The Solaris.out file is nothing but part-1 of the 

OpenSolaris bootloader from the second partition. Part-1 of the OpenSolaris bootloader 

will call part-2 and eventually part-3 of GRUB. It will read the menu.lst file and will print 

the OS list (Figure 2-93).

Figure 2-91. The OS entries shown by Windows 7 (BCD)

Figure 2-92. The OS entries shown by win2k3’s NTLDR
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If the user again chooses Windows, then part-3 of OpenSolaris will call part-2 of BCD 

from the first primary partition (rootnoverify (hd0,0)). (Part-2 of BCD will be in the 

VBR section of the first primary partition. We will not cover the VBR in this book.) BCD’s 

part- 2 will call part-3 of BCD. It will read the OS entries through bcdedit.exe and from 

boot.ini and print the OS entries. The OS entries printed on the screen are visible in 

Figure 2- 94.

Figure 2-93. The OS entries shown by OpenSolaris GRUB

Figure 2-94. The OS entries shown by Windows 7 (BCD)
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This is how we have created a bootloader’s loop (refer to Figure 2-95 and Figure 2- 96).

As you can see, Linux is booting Windows, Linux is booting Unix, Unix is booting 

Windows, Windows is booting Windows, and Windows is booting Linux, but one thing is 

still missing, and that is Linux is booting Linux. For that, we will install the final OS from 

our list, and that is Fedora 15.

 Fedora 15

As shown in Figure 2-97, we are installing Fedora 15 on sda8.

Figure 2-95. The RHEL entry has been chosen to boot

Figure 2-96. The OS entries shown by RHEL’s GRUB
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By default Fedora will try to install its bootloader on the first primary, but if we allow 

that, then again we need to add the entry of every other OS in its grub.conf. Instead, we 

will follow a different approach. We will install the bootloader of Fedora (GRUB) on its 

own partition (sda8) instead of sda1. See Figure 2-98.

Figure 2-97. The Fedora installer
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This means after rebooting Fedora will never be able to boot since RHEL’s GRUB 

does not know about this new OS, so we need to add Fedora’s entry into grub.conf of 

RHEL. To do that, let’s mount sda8, as shown in Figure 2-99.

Copy Fedora’s entries (see Figure 2-100) from Fedora GRUB’s grub.conf file: /mnt/

boot/grub.conf.

Figure 2-98. The bootloader device selection

Figure 2-99. The mounting of Fedora’s partition
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The entries are simple. Whenever part-3 of Fedora is called, it will load the kernel 

of Fedora from /boot/vmlinuz-2.6.38.6-26.rc1.fc15.x86_64 into the memory. After 

that, it will load initramfs from /boot/initramfs-2.6.38.6-26.rc1.fc15.x86_64.img 

into the memory.

Figure 2-101 shows RHEL’s /etc/grub.conf file after copying the entry of Fedora 

from /mnt/etc/grub.conf.

Figure 2-100. The grub.conf file of Fedora 15
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After reboot, we will get the Fedora entry (Figure 2-102).

When the user chooses Fedora to boot, as per the entry in RHEL’s grub.conf file, 

part-3 of RHEL’s GRUB will load the kernel from the eighth partition (sda8 of Fedora) and 

will also load initramfs from the same location (we will talk about initramfs in Chapter 5),  

and the bootloader will go away.

Figure 2-101. The grub.conf file of RHEL

Figure 2-102. The OS entries shown by RHEL
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 Complete Flowchart

Figure 2-103 shows the complete flowchart of every OS that we have installed so far.

I hope you now understand the way bootloaders boot the operating systems on a 

BIOS-based system. Now it’s time to understand the new firmware, which is Unified 

Extensible Firmware Interface (UEFI).

Figure 2-103. The complete flowchart of all the operating systems
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 Unified Extensible Firmware Interface (UEFI)
Here are the BIOS limitations you have observed so far:

• You can have only four primary partitions.

• The BIOS cannot read the logical partitions.

• The BIOS is kind of dumb; it just jumps to the first sector  

of your HDD.

• The maximum partition size with a BIOS-based system is 2.2 TB.

Why does it have such limitations? The BIOS firmware was designed in 1982 for IBM 

PC-5150 (Figure 2-104), which used to have this configuration:

CPU       = 8088 - 16bit x86 processor

Memory    = upto 256KB max

OS        = MS-DOS

As you can see, the BIOS was designed for this PC 38 years ago. In these three 

decades, operating systems grew from floppy disks to NVME disks and from text mode 

to shiny GUIs. The hardware devices went from drivers to plug and play, but the BIOS 

remained the same, which initially had a 16-bit instruction set, and in later stages it 

started using a 32-bit instruction set. Nowadays we have 64-bit CPUs, but the BIOS is 

still made from 32-bit instructions. The reason we did not upgrade the BIOS to 64-bit 

Figure 2-104. IBM PC-5150
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is because of historical reasons. When everything is working, why rewrite something? 

That’s the philosophy the computer industry has adopted anyway. When the CPU went 

from 16-bit (8088) to 64-bit (i9), the BIOS remained either on 16-bit or on 32-bit, because 

at the time of the early stages of booting, it was not necessary to have a 64-bit CPU, and 

this is the reason we have CPU modes (real, protected, and long).

In real mode, the CPU will be restricted to 16 bits. In this mode, programs like the 

old BIOS that have 16-bit instructions will run. These programs cannot run in any other 

mode. Later, the CPU will switch from real mode to protected mode. The protected 

mode is 32 bits, and programs these days, like the BIOS, that have 32-bit instructions 

sets will run under this mode, and later the CPU will be placed in long mode, which 

is 64 bits. Remember, these modes are not implemented by the CPU; rather, they are 

implemented by firmware like the BIOS. This means if we remove the same CPU from a 

real mode- enabled system and place it on a system that does not have real mode, then 

the same CPU will directly start in protected mode. We will talk about these modes again 

in Chapter 4.

Since the BIOS runs in protected mode, the address space that is available for the 

BIOS is only 4 GB. If the system has 20 GB of memory, the BIOS will only be able to 

address up to 4 GB. Though the system has a 64-bit I9 processor, the BIOS will still 

be able to use only 32 bits of it. Because of these hardware challenges, the BIOS has 

limitations.

 BIOS Limitations

These are some limitations of the BIOS:

• BIOS will only be able to jump to the first sector, which is 512 bytes.

• The MBR, which is 64 bytes in size, is part of the first boot sector. 

If we increase the size of the MBR, it will go beyond the 512 bytes; 

hence, we cannot increase the size of the MBR, which is the 

reason why the BIOS can provide only four primary partitions.

• BIOS cannot generate good graphics/GUIs.

• Now this is a generic statement, and it is used in comparison with 

UEFI. There are some BIOS vendors that have implemented web 

browsers outside of the OS, but such implementations are rare to 

see on normal desktop hardware.
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• Also, at Phoenix, some of the BIOS implementations has a FAT32 

driver in it through which it manages to show icons inside a 

setup. 

• You cannot use a mouse in the BIOS.

• There are many BIOS vendors that have mouse support, but again 

it is rare to find in normal desktop systems.

• The maximum partition size is 2.2 TB.

• The BIOS uses and supports an MS-DOS partition table, which is 

quite old, and it has its own drawbacks like 2.2 TB of maximum 

partition size.

• The BIOS is dumb because it does not understand the bootloader  

or the OS.

• It is slow because of the hardware limitations.

• In terms of booting speed, the BIOS is slow since it takes time to 

initialize the hardware.

• The BIOS takes almost 30 seconds to start the actual OS-level 

booting.

• It struggles to initialize the new-generation hardware devices.

• BIOS has limited preboot tools.

• Compared to the UEFI firmware, the BIOS has very few preboot 

tools such as remote hardware diagnostics, etc.

So, to overcome all these BIOS limitations, Intel started an initiative in 1998 called 

Intel Boot Initiative (IBI); later it became Extensible Firmware Interface (EFI). Intel was 

joined by every other possible OS and hardware vendor (HP/Apple/Dell/Microsoft/

IBM/Asus/AMD/American Megatrends /Phoenix Technologies). They made an open 

source forum for this project, and finally it became Unified Extensible Interface (UEFI).

The open source code is signed under the BSD license, but Intel’s base code is 

still proprietary. UEFI is basically an open source framework, and vendors build their 

applications on top of it based on the specification provided by UEFI.org. For example, 

American Megatrends built APTIO, and Phoenix Technologies built the SecureCore UEFI 

firmware. Apple was the first that dared to launch systems with UEFI firmware in it. All 
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the drawbacks that the BIOS has are because of its 16-bit instruction set. Since this 16-bit 

instruction set limits BIOS hardware usage to 1 MB of address space, UEFI targeted and 

resolved that limitation.

 UEFI Advantages

UEFI supports 64-bit processors; hence, it does not face any of the hardware limitations 

that the BIOS faces.

• UEFI can use the full CPU. Unlike the BIOS (which is stuck with 16 

bits of processor), UEFI can access up to 64 bits.

• UEFI can use a full RAM module. Unlike 1 MB of address space of the 

BIOS, UEFI can support and use terabytes of RAM.

• Instead of 64 bytes of a tiny MBR, UEFI uses the GPT (GUID) partition 

table, which will provide an infinite number of partitions, and all 

will be primary partitions. In fact, there is no concept of primary and 

logical partitions.

• A maximum partition size is 8 zettabytes.

• UEFI has enterprise management tools.

 a) You will be able to fix the computer remotely.

 b) You will be able to browse the Internet inside the UEFI 

firmware.

 c) You will be able to change the UEFI firmware behavior/

settings from OS.

i)  To change the settings of BIOS, we have to reboot the 

system since OS runs in long mode, whereas BIOS runs in 

real mode, and real mode can only be possible at the time 

of boot.

• UEFI is a small OS.

 a) You will have full access to audio and video devices.

 b) You will be able to connect to WiFi.

 c) You will be able to use the mouse.
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 d) In terms of the GUI, UEFI will provide a rich graphics 

interface.

 e) UEFI will have its own app store like we have for Android and 

Apple phones.

 f ) You will be able to download and use the applications from 

the UEFI app store, just like with Android and Apple phones. 

Hundreds of apps are available such as calendars, email 

clients, browser, games, shells, etc.

 g) UEFI is able to run any binary that has an EFI executable 

format.

 h) It boots operating systems securely with the help of the Secure 

Boot feature. We will discuss the Secure Boot feature in depth 

later in this book.

 i) UEFI is backward compatible, meaning it will support the 

“BIOS way” of booting. In other words, operating systems that 

do not have UEFI support will also be able to boot with UEFI.

 The GUI of UEFI

Figure 2-105 shows the GUI implementation of ASUS.
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Here are some things to notice:

• The rich GUI

• Mouse pointer

• Icons, buttons, scroll options, animations, graphs, drop-down 

options, etc.

Of course, you need to get an expensive motherboard to get such a rich UEFI 

implementation, but even the basic UEFI implementations are much better than the 

BIOS implementations.

Figure 2-105. ASUS UEFI implementation

ChAPTEr 2  MULTIBOOT



102

 UEFI Implementation

The UEFI forum releases the UEFI specification. The current UEFI specification when 

writing this book was 2.8 and can be downloaded from https://uefi.org/specifications. 

The current specification is 2,551 pages long, and every vendor (motherboard, OS, UEFI 

developer, etc.) has to agree to it. The specification forces regulations that every vendor has 

to follow. The following are some of the major UEFI regulations.

EFI System Partition (ESP)

Every OS vendor has to create one EPS partition, and the bootloader has to be installed 

in this partition only. It is not necessary to create ESP as a first partition; it could be 

created anywhere, but the ESP should have the FAT16/32 (preferably FAT32) filesystem. 

The recommended ESP size is a minimum of 256 MB. The OS vendor has to create the 

following directory structure in ESP:

EFI System Partition

      ├── EFI
      │     ├── <OS_vendor_name>
      │     │         ├── <boot_loader_files>

Once this structure is created, the OS has to install the bootloader inside the  

/EFI/<os_vendor_name>/ location only. Figure 2-106 shows you the UEFI structure.

Figure 2-106. The UEFI structure
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This means, like the 512 bytes + 31 KB space reserved for bootloaders, in the same 

way we have a 256 MB minimum dedicated space for bootloaders in UEFI. The ESP 

partition will be mounted in Linux under the mount point /boot/efi.

EFI

It’s compulsory for every OS vendor to write bootloader files in the EFI executable 

format. Also, the files should have the .efi extension.

Secure Boot

One of the best features UEFI provides is Secure Boot. The feature was proposed by 

Microsoft and later added in the UEFI specification. Microsoft first used the Secure Boot 

feature in Windows 8. We will talk about Secure Boot in detail once we get familiarized 

with how UEFI works.

Partition Table

The recommended partition table is GPT, which is a GUID partition table, whereas the 

BIOS uses an MS-DOS partition table.

For a better understanding of UEFI, we will use the same approach that we used with 

the BIOS. We will use a new system named UEFI, which has the UEFI firmware on it, and 

we will install a couple of OSs in it.

 List of Operating Systems

As you know, UEFI uses a GPT partition table; hence, there is no primary or secondary/

logical partition concept. This also means there is no particular priority to the 

installations of operating systems. You can install operating systems in any way you 

want. We will install the OSs in this order:

 1) Ubuntu 18

 2) Windows 10

 3) Fedora 31
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 Ubuntu 18.04 LTS

We have almost 64.4 GB of HDD. It is not necessary to use a GParted-like tool to create 

the partition layout like we used with the BIOS. We will use a Ubuntu-provided default 

disk utility instead. See Figure 2-107.

As shown in Figure 2-108, we will create a 3 GB ESP partition first.

Figure 2-107. The disk layout provided by Ubuntu
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Once ESP is created, we will make one more partition (10 GB) for Ubuntu’s root 

filesystem. Figure 2-109 shows the final partition layout of Ubuntu.

Figure 2-108. Creating the ESP partition

Figure 2-109. The partition layout of Ubuntu
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After the installation, you can see in Figure 2-110 that ESP is mounted on /boot/efi 

and the root filesystem is mounted on sda2.

Also, as per the UEFI specification, Ubuntu has created a directory structure of  

/EFI/ubuntu in the /boot/efi (sda1) mount point and installed the GRUB bootloader 

in it. See Figure 2-111.

Also notice the .efi extensions to the bootloader files. The following is the Ubuntu 

booting sequence on a UEFI system:

 1) Power on the system.

 2) It goes to the UEFI firmware. UEFI launches POST.

Figure 2-110. The mount points

Figure 2-111. The EFI directory of Ubuntu
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 3) POST checks the hardware and gives a healthy beep if everything 

is good.

 4) POST goes back to UEFI.

 5) UEFI is smart; instead of jumping to the first 512 bytes, UEFI finds 

the ESP partition.

 6) It jumps inside ESP. Again, UEFI is smart, and it understands 

the bootloader. It lists the bootloader’s name on the screen. 

In Ubuntu’s case, it sees the grubx64.efi file; hence, it lists 

the Ubuntu name in the boot priority of UEFI. Please refer to 

Figure 2- 112, where you can see the ubuntu entry inside UEFI’s 

boot priority menu.

Figure 2-112. The boot priority window of UEFI

ChAPTEr 2  MULTIBOOT



108

 7) Remember, the bootloader has not yet been called or started by 

UEFI. The BIOS used to show you only the available boot device 

names like CD-ROM, HDD, and PXE, but UEFI goes inside the 

device to check for the ESP partition and shows the OS name 

directly.

 8) The moment the user chooses the Ubuntu option, UEFI will run 

grubx64.efi from the ESP partition. The absolute path will be /

boot/efi/EFI/ubuntu/grubx64.efi Next, grubx64.efi will read 

grub.cfg, which is present in the same directory, and as shown in 

Figure 2-113, it will print the title entries.

With the BIOS, there used to be jumps like this:

 a) Go to the fdisk signature, go to part-1 of the bootloader, and go to part-2 of 

the bootloader.

 b) Go to part-3 of the bootloader and then go to the bootloader configuration 

file like menu.lst or grub.cfg.

 c) Print the titles.

With UEFI, the (a) jump is skipped. UEFI directly jumps to (b). The BIOS used to 

have a bootloader divided into three parts because of space constraints, but UEFI does 

not have any space limitations. Hence, the entire bootloader is available in just one 

single binary. For example, in the case of Ubuntu, grubx64.efi has one, two, and three 

parts all added in a single binary, which is grubx64.efi.

Figure 2-113. The welcome screen of Ubuntu
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The grubx64.efi file will eventually load the kernel (vmlinuz) and initramfs from /

boot into the memory, and then Ubuntu’s GRUB bootloaders job is done. Figure 2-114 

shows the flowchart of Ubuntu’s boot sequence.

 Windows 10

As you can see in Figure 2-115, partition 1 is ESP, and partition 2 is the root (/) of Ubuntu.

Figure 2-114. Ubuntu’s boot sequence
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Now we will create a new partition for Windows. While creating a new partition, 

Windows will reserve some space for the Windows recovery tool called MSR (Microsoft 

Recovery, partition 3). See Figure 2-116.

Figure 2-115. The partition layout shown by Windows 10

Figure 2-116. The MSR space reservation
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As shown in Figure 2-117, on the newly created partition 4, we will install Windows 10.

Windows will by default detect the ESP partition, and by following the UEFI 

specification, it will create a directory named Microsoft in it and will install its 

bootloader (BCD) in it. If Windows does not find ESP, then it will create one for us. 

Since Windows is mainly for desktop users, it will not show us the ESP partition (refer to 

Figure 2-118) the way Ubuntu shows it.

Figure 2-117. Installing Windows 10 on partition 4
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This is how Windows 10 will boot on a UEFI-based system:

 1) Power on the system: first UEFI, then POST, then UEFI,  

and then ESP.

 2) As visible in Figure 2-119, print the OS entries as per the 

directories found in ESP  (/boot/efi/EFI).

Figure 2-118. ESP is hidden
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 3) The moment the user chooses Windows Boot Manager, UEFI will 

launch the bootmgfw.efi file from the EFI/Microsoft directory. 

On a Linux-based system, the same file’s absolute path will be /

boot/efi/EFI/Microsoft/bootmgfw.efi.

 4) bootmgfw.efi will eventually load the kernel of Windows from  

C:\windows\system32\.

 5) The Windows kernel will take care of the rest of the booting, and 

while doing that, a famous animation, shown in Figure 2-120, will 

be shown to users.

Figure 2-119. The OS entries inside UEFI
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 6) As you can see from Figure 2-121, as of now, only one OS is 

booting, and that is Windows 10. But don’t worry, because 

Windows 10 is bound to follow the UEFI specification, so it has not 

touched Ubuntu’s directory and of course has not added Ubuntu’s 

entry in its own bootloader file.

Figure 2-120. The famous Windows loading screen

Figure 2-121. The boot sequence of Windows 10
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 Fedora 31

The final OS that we will install is Fedora 31. As shown in Figure 2-122, we will again 

create a standard partition, which is sda5, and we will mount /dev/sda1 (ESP) on /

boot/efi.

Remember, do not format sda1, which is ESP. Losing ESP means losing the 

bootloaders of Windows and Ubuntu. After installation, Fedora’s GRUB will present us 

with the OS list (Figure 2-123).

Figure 2-122. The Fedora installation

Figure 2-123. The OS entries shown by Fedora
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While installing GRUB, the Fedora installer Anaconda detected other operating 

systems from ESP. To give them an equal chance to boot, Fedora added Ubuntu and 

Windows entries in grub.cfg. The following is the booting sequence of Fedora:

 1) Power on the system: first UEFI, then POST, then UEFI.

 2) UEFI will jump inside ESP.

 3) It will go inside an ESP directory and choose the OS to boot by 

checking the boot priority. As of now, the boot priority is set to 

Fedora. Check out Figure 2-124.

 4) Since the boot priority is set to Fedora, UEFI will go inside the /

boot/efi/EFI/fedora directory (refer Figure 2-125) and will 

launch the file grubx64.efi.

Figure 2-124. The Fedora entry inside UEFI
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 5) grubx64.efi will read the file grub.cfg and print the OS entries 

on-screen. Figure 2- 126 shows this.

 6) The moment the user chooses Fedora, the same grubx64.efi 

will load vmlinuz and initramfs of Fedora from /boot (sda4) 

into memory. The Fedora kernel will take care of the rest of the 

booting sequence. Check out Figure 2-127 for the flowchart. The 

steps taken by the kernel will be discussed in much more detail in 

Chapter 4.

Figure 2-125. The Fedora EFI directory

Figure 2-126. The OS entries shown by Fedora
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 UEFI Shell

UEFI is a small operating system. Like normal operating systems, UEFI provides a 

required environment to run the applications. Of course, UEFI will not be able to run 

every binary, but the binaries that are built in the EFI executable format will easily be 

able to run. One of the best apps (application/binary) provided by UEFI is the shell. As 

shown in Figure 2-128, you can find it mostly in boot priority settings of UEFI.

Figure 2-127. The boot sequence of Fedora
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If your system’s UEFI implementation does not provide the shell, then you can 

download the shell app from the TianoCore project site or from its EDK-II GitHub page.

https://www.tianocore.org/

https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/

X64/Shell.efi

Format the USB device with the FAT32 filesystem and place the downloaded Shell.

efi file in it. Boot back with the same USB device, and UEFI will present you a UEFI shell 

through its boot priority window. See Figure 2-129.

Figure 2-128. The built-in UEFI shell
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The amazing thing to notice here is that UEFI did not show that the system has a 

USB device connected. Rather, UEFI went inside the USB device and saw the FAT32 

filesystem. It saw the shell.efi file and realized this is not a normal EFI app; rather, it 

will provide the shell to the user. If it had been a BIOS, it would have only shown that 

system as USB disk connected, but here UEFI is showing you have a shell inside a USB-

connected disk.

The moment you choose the option Launch EFI Shell from USB drives, it will execute 

the shell.efi file and will present you with a shell (Figure 2-130) when an OS is not 

present. That is remarkable.

Figure 2-129. The UEFI shell loaded from USB
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The blk* entries are the device names, whereas fs* is a filesystem naming 

convention. Since the UEFI shell is able to read the FAT32 filesystem (ESP partition), we 

can browse the ESP directory, as shown in Figure 2-131.

Figure 2-130. The UEFI shell
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The fs0 stands for file system number 0. It is shell’s internal command that we can 

use to change the partition. As you can see in Figure 2-132 and in Figure 2-133, fs2 is 

our ESP.

Figure 2-131. Browsing the EFI directory
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Figure 2-132. The EFI directory

We can simply run the grubx64.efi file through the shell, and GRUB will appear 

on- screen. See Figure 2-134.

Figure 2-133. Ubuntu’s bootloader directory

Figure 2-134. The GRUB of Ubuntu
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For a UEFI shell, grubx64.efi is a simple app. In a similar way, as shown in 

Figure 2- 135 we can launch the Windows bootloader too. See also Figure 2-136.

The shell can be useful in resolving the “can’t boot” scenarios. Consider the scenario 

shown in Figure 2-137 where the system is throwing an error on a GRUB prompt.

Figure 2-136. The famous Windows animation

Figure 2-137. The system is unable to boot

Figure 2-135. Launching the Windows bootloader from the UEFI shell

ChAPTEr 2  MULTIBOOT



125

By using a UEFI shell, we are able to check whether GRUB-related files are 

present or not.

 Misconceptions About UEFI

The following are some misconceptions about UEFI.

Misconception 1: UEFI Is a New BIOS or UEFI Is a BIOS

People keep saying that UEFI is a new BIOS. In fact, when you go inside the UEFI 

firmware, the firmware itself says it is a UEFI BIOS. Check out Figure 2-138.

No, UEFI is not a BIOS nor is it a new BIOS. UEFI is here to replace the BIOS. UEFI is 

a completely new firmware, and you cannot have a BIOS and UEFI on the same system. 

You have either UEFI or a BIOS.

Figure 2-138. The UEFI is not a BIOS
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It is pretty simple to identify whether you have a BIOS or UEFI. If you can use a 

mouse inside the firmware, then you have UEFI, and if you see a rich GUI, then you have 

UEFI. The correct way to check is by using an efibootmgr-like command.

# efibootmgr -v

Fatal: Couldn't open either sysfs or procfs directories for accessing EFI 

variables.

Try 'modprobe efivars' as root.

If you get output like this from the efibootmgr command on a Linux system, then 

you have a BIOS. If you get something like this, then you have UEFI:

# efibootmgr -v

BootCurrent: 0005

Timeout: 2 seconds

BootOrder: 0005,0004,0003,0000,0001,0002,0006,0007,000A

Boot0000* EFI VMware Virtual SCSI Hard Drive (0.0)

      PciRoot(0x0)/Pci(0x15,0x0)/Pci(0x0,0x0)/SCSI(0,0)

Boot0001* EFI VMware Virtual SATA CDROM Drive (1.0)

      PciRoot(0x0)/Pci(0x11,0x0)/Pci(0x4,0x0)/Sata(1,0,0)

This is the correct way of identifying what firmware your system has. Returning to 

our UEFI BIOS discussion, the vendors are using the UEFI and BIOS terms together 

because most users will not understand the term UEFI. For example, an article saying 

“change the parameters in your UEFI” might be confusing for most users, but saying 

“change the parameters in your BIOS” will be well understood by everyone. Hence, 

vendors are using the term UEFI/BIOS just for the sake of understanding, but remember 

you can have only one firmware at a time, not both.

Misconception 2: Microsoft Is Evil

As we have seen, UEFI is a forum, and operating system vendors are part of it, including 

Microsoft. To make the booting more secure, Microsoft proposed a Secure Boot feature 

in UEFI. Secure Boot will stop the execution of unauthorized or compromised binaries at 

the time of the boot. This solves these three problems:
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• It guarantees that grubx64.efi, which is about to run, is from an 

authentic source.

• It guarantees that BCD does not have any backdoor in it.

• It stops something from executing if it is unauthorized.

This is how Secure Boot works:

 1) Microsoft will generate a key pair (public and private key).

 2) Microsoft will digitally sign its bootloader or its files with the 

private key.

 3) The public key of Microsoft will be kept inside the UEFI firmware.

 4) The digital signature that was generated in step 2 will be 

regenerated by the public key of Microsoft, which is present inside 

the UEFI.

 5) If the digital signature matches, then only UEFI will allow the 

*.efi file’s execution.

 6) If the digital signature does not match, then UEFI will consider 

that a harmful program, or at least it is not shipped by Microsoft, 

UEFI will halt the execution.

Pretty nice implementation by Microsoft, right? Yes, it is. But the problem 

will arise when the Secure Boot feature is enabled and you choose Linux to boot. 

UEFI will take out Microsoft’s public key and will generate the digital signature 

of grubx64.efi. The generated digital signature will not, of course, match with 

Microsoft’s bootloader files, so it will be considered an unauthorized program, and 

UEFI will stop the execution. In other words, Linux or any non-Windows OS will 

never be able to boot. So, what’s the resolution to this? Simple: UEFI should provide 

an option to disable the Secure Boot feature, which it does. See Figure 2-139. In fact, 

the option to disable the Secure Boot feature has to be present in UEFI firmware. 

This is imposed in the UEFI specification.
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But Microsoft has clearly called out that the only systems that will be certified are 

ones that have Secure Boot enabled. This means if you are hardware vendor and want 

your system to be certified for Windows, then it has to have Secure Boot enabled. This 

move was considered “evil” by some of industry leaders since non-Windows-based 

operating systems will not be able to boot on the same hardware. We will return to the 

discussion of whether Microsoft is evil or not later, but first let’s see what options non-

Windows OSs have.

Figure 2-139. Disabling the Secure Boot feature
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Linux Vendors Should Make Their Own Key Pair

Yes, every Linux OS vendor should make their own key pair and then sign their 

bootloaders with their private key and keep the public key in the UEFI firmware. 

Whenever a user chooses Windows to boot, UEFI will use the Windows public key, 

and whenever the user chooses Linux to boot, UEFI will use the Linux public key to 

regenerate the digital signature of the Linux bootloader’s files. This seems to be an 

easy resolution, but this will not work. There are almost 200+ active Linux distributions 

on the market, and they generally have new versions released every six months. This 

means almost every six months you will have a newer version of Linux distro on the 

market. This means roughly that Linux vendors will have almost 400 keys a year, so 

obviously you cannot fit this many keys in UEFI. Even if you could, this will hamper 

one of the main mottos of UEFI design, which is speedy booting. So, in short, this 

cannot be a resolution.

All Linux Vendors Should Make Only One Key Pair

This also cannot be a resolution. There are 200+ active Linux distributions, and their 

offices are spread over the world. If all Linux vendors came together and made only 

one key pair, then this key pair would have to be shipped throughout the internet to the 

developers throughout the world. It would be a security nightmare. So in short, it would 

be difficult to maintain; hence, this is not a resolution.

Disable UEFI’s Secure Boot Feature

This seems to be the only workable approach. UEFI does provide a facility to disable 

the Secure Boot feature, and Microsoft has no objection on providing such a facility. 

For example, say you have a dual-boot system, which has Windows 10 and Fedora 31 

installed. If you want to boot Windows, then Secure Boot has to be enabled in UEFI, and 

if next time you want to boot Linux, then you have to go inside UEFI and change the 

enabled Secure Boot to a disabled state. You can consider this a workaround, but this is 

not practical; hence, it cannot be considered as a resolution.

So, how can Linux take advantage of Secure Boot? There is only one resolution, and 

that is to use Microsoft’s private key to digitally sign the Linux bootloader files, and guess 

what, Microsoft has agreed to this. So, at this stage, Linux is able to secure boot by using 

Microsoft’s key pair, and hence Microsoft is certainly not evil. It just wanted to make its 

boot sequence secure.
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But there is one problem in this arrangement; GRUB development will be dependent 

on Microsoft’s key pair. If any new change is committed to GRUB, we need to re-sign it 

by using Microsoft’s key. Ubuntu resolved this problem first by introducing a smaller 

bootloader called shim. This bootloader is supposed to get signed by Microsoft’s key, 

and then this bootloader’s job is to call the actual bootloader, which is GRUB. With this 

approach, the Linux world has broken Microsoft’s signing dependency. Since shim will 

never change (at least it would be rare), GRUB development will continue the way it has.

So, if Secure Boot is enabled, then the boot sequence of Linux will be as follows:

 1. Power on the system: first UEFI, then POST, and then UEFI.

 2. ESP lists the operating systems and available bootable devices.

 3. If the user chooses Linux, the boot process regenerates the digital 

signature of the shim.efi file by using Microsoft’s public key.

 4. If the digital signature matches, then allow execution of shim.efi.

 5. shim.efi will call the original bootloader, which is grubx64.efi.

 6. grubx64.efi will read the grub.cfg file from ESP and will present 

the available OS list.

 7. If the user again chooses Linux, then the same grubx64.efi file 

will start loading the kernel and initramfs in memory.

Refer to Figure 2-140 to see the list of files involved in this boot sequence.
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Misconception 3: Disable the UEFI

One of the biggest misconceptions is that you can disable UEFI and start the BIOS. No, 

you cannot disable the firmware of your system; also, you cannot have two firmware on 

one system. You have either UEFI or the BIOS. When people say “disable UEFI,” it means 

they would like to say, let UEFI boot with the BIOS or in a legacy way. One of the biggest 

features of UEFI is that it is backward compatible, meaning it does understand the BIOS 

way of booting, which is the 512 bytes + 31KB approach. So, when you change the UEFI 

settings from the UEFI way to the legacy way, it only means that UEFI will not follow the 

ESP way of booting. Rather, the firmware will follow the BIOS way of booting, but this 

does not mean you are disabling the UEFI firmware. When you boot a UEFI system the 

BIOS way, then you lose all the features that UEFI provides.

Since you now have a better understanding of firmware and the way bootloaders 

work, it is the right time to dive deeper into the GRUB bootloader.

Figure 2-140. The files involved in the described boot sequence
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CHAPTER 3

GRUB Bootloader
The bootloader that Linux systems use these days is GRUB version 2. The first stable 

release of GRUB 2 was in 2012, but it started appearing in enterprise-level Linux in 2014 

with Centos 7 and RHEL 7. After 2015, it saw wide adoption in almost every popular 

Linux distribution. Usually when users file bugs or ask for new features, developers 

listen to the feedback, prioritize the work, and eventually launch a new version of code. 

However, in the case of GRUB, it worked another way. The developers decided to change 

the entire structure of GRUB 2 when users were happy with GRUB Legacy (version 1).

“GRUB Legacy has become unmaintainable, due to messy code 

and design failures. We received many feature requests, and 

extended GRUB beyond the original scope, without redesigning 

the framework. This resulted in the state that it was impossible to 

extend GRUB any further without rethinking everything from the 

ground.”

—GNU GRUB FAQ (https://www.gnu.org/software/grub/grub- 

faq.html)

Here are some of the features that GRUB 2 provides or are in development:

• Full USB support.

• Linux Unified Setup Key (LUKS) support. LUKS is the standard for 

Linux hard disk encryption.

• A fancy menu implementation that will have animations, colorful 

effects, style sheets, etc.

• A “parted” tool will be added inside the bootloader. When this is 

added, users will be able to edit the disk configuration at the time of 

boot.

https://doi.org/10.1007/978-1-4842-5890-3_3#ESM
https://www.gnu.org/software/grub/grub-faq.html
https://www.gnu.org/software/grub/grub-faq.html
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This chapter will cover the following:

 – How GRUB 2 is implemented for the BIOS and UEFI firmware

 – The firmware-specific structural changes in GRUB 2

 – The Bootloader Specification feature of GRUB 2

 – The Secure Boot feature of UEFI and how it is implemented in GRUB 2

 – Several bootloader-related issues and how we can fix them

 GRUB 2 Implementation
As we have seen so far, GRUB takes control of the firmware. This means it has to deal 

with UEFI as well as the BIOS. Let’s see how GRUB 2 has been implemented on BIOS- 

based systems first.

 GRUB 2 on BIOS-Based Systems
GRUB 2 on a BIOS-based system keeps all of its files in three different locations.

• /boot/grub2/

• /etc/default/grub

• /etc/grub.d/

In the case of Ubuntu, version 2 is not used in GRUB’s name, so it will be /boot/

grub/ instead of /boot/grub2/, grub-install instead of grub2-install, or grub- 

mkconfig instead of grub2-mkconfig.

Let’s discuss the locations and their contents.

 /boot/grub2

This is the location where GRUB 2 will be installed. As you can see in Figure 3-1, the 

directory holds the bootloader’s core files.
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Device.map

GRUB does not understand disk names like sda or vda since these disk naming 

conventions were created by the SCSI drivers of operating systems. It is obvious that 

GRUB runs when the OS is not present, so it has its own disk naming convention.  

The following are GRUB’s disk naming conventions:

GRUB Version Disk Naming Convention Meaning

2 hd0, msdos1 hard disk number 0 and partition number 1, 

which has an MS-doS partition table

2 hd1, msdos3 hard disk number 2 and partition number 3, 

which has an MS-doS partition table

2 hd2, gpt1 hard disk number 3 and partition number 1, 

which has a Gpt partition table

1 hd0, 0 hard disk number 0 and partition number 1

In GRUB, the hard disk starts at 0, and the partition numbers start at 1, whereas the 

OS naming conventions of disks and partitions start at 1. Since the OS and GRUB disk 

naming conventions are different, there has to be a mapping for the users, and that is 

why the device.map file was created.

# cat /boot/grub2/device.map

      # this device map was generated by anaconda

      (hd0)      /dev/sda

Figure 3-1. The files present in /boot/grub2
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The device.map file will be used by the grub2-install like commands to 

understand on which disk GRUB’s core files are installed. Here’s an example of this file:

# strace -o delete_it.txt  grub2-install  /dev/sda

      Installing for i386-pc platform.

      Installation finished. No error reported.

# cat delete_it.txt | grep -i 'device.map'

      openat(AT_FDCWD, "/boot/grub2/device.map", O_RDONLY) = 3

      read(3, "# this device map was generated "..., 4096) = 64

      openat(AT_FDCWD, "/boot/grub2/device.map", O_RDONLY) = 3

      read(3, "# this device map was generated "..., 4096) = 64

The grub2-install command will take input in the form of the OS disk naming 

conventions since users are not aware of the GRUB disk naming conventions. During the 

execution, grub2-install will convert the SCSI disk naming conventions to the GRUB 

disk naming conventions by reading the device.map file.

grub.cfg

This is the main configuration file of GRUB. As you can see in Figure 3-2, it’s a huge script 

file that is generated by referring to some other script files, which we will discuss soon. It 

is highly advisable not to change the contents of grub.cfg as doing so might make your 

Linux version unbootable. This is the file from which GRUB part-3 takes instructions like 

the following:

• Location of the kernel and initramfs

• /boot/vmlinuz-<version>

• /boot/initramfs-<version>

• Kernel command-line parameters

• Root filesystem name and its location, etc.
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GRUB has its own set of commands, as you can see here:

GRUB Command Purpose

menuentry this will print the title on-screen.

set root this will provide the disk and partition names where the kernel and initramfs 

are stored.

linux the absolute path of the linux kernel file

initrd the absolute path of the initramfs file of linux

So, the booting sequence of GRUB 2 on a BIOS-based system of Fedora is as follows:

 1. Power on a system: first BIOS, then POST, then BIOS, and then the 

first sector.

 2. First is the bootstrap (part-1 of GRUB), then part-2 of GRUB, and 

then part-3 of GRUB.

 3. Part-3 of GRUB will read the previously shown grub.cfg from /

boot/grub2/ (in the case of Ubuntu, it will be /boot/grub/) and 

will print the welcome screen, as shown in Figure 3-3.

Figure 3-2. The grub.cfg file
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 4. The moment the user chooses the Ubuntu menuentry, it will run 

the set root, linux, and initrd commands and will start loading 

the kernel and initramfs in memory.

 5. In Fedora-like Linux distributions, you will find a different 

approach. There will be a grub.cfg file, but the menuentry, set 

root, linux, and initrd commands will not be available in grub.

cfg. There has been a new development in a GRUB upstream 

project called BLS. We will cover that later in this chapter.

i386-pc

This directory has all the GRUB-supported filesystem modules (drivers) in it (please refer 

to Figure 3-4). All the *.mod files are the modules. By using these modules, GRUB can 

load the kernel and initramfs files in memory. For example, the /boot of this system has 

an ext4 filesystem, so obviously when exploring and loading the vmlinuz and initramfs 

files from /boot, GRUB needs the ext4 module, which it gets from the ext4.mod file. It’s 

similar to /boot on the XFS or UFS filesystem; hence, the xfs.mod and ufs.mod files are 

present in /boot/grub2/i386-pc. At the same time, you will find modules like http.mod 

and pxe.mod. This means GRUB 2’s part-3 can load the kernel and initramfs files from 

the http and pxe devices. In general, the *.mod files add features, not just devices. The 

features may include device support, filesystem support, or protocol support.

Earlier, /boot under LVM was not possible, and the reason was simple. GRUB had 

to understand the LVM devices. To understand and assemble the LVM device, GRUB 

would need the LVM module as well as LVM binaries such as vgscan, vgchange, pvs, 

lvscan, etc. It would increase the size of GRUB as a package; hence, the enterprise Linux 

system vendors have always avoided /boot under LVM devices. But since UEFI has been 

introduced, GRUB has started supporting /boot on LVM devices.

Figure 3-3. The welcome screen
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Figure 3-4. The .mod* files from /boot/grub2/i386-pc
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Figure 3-4. (continued)

Chapter 3  GrUB Bootloader



141

As you can see in Figure 3-5, along with these *.mod files, you will find a couple of 

other files in the /boot/grub2/i386-pc/ location.

The core.img file is part-3 of GRUB 2. So, the Linux booting sequence becomes as 

follows:

-> Power on -> BIOS -> POST -> BIOS ->

-> part-1 of GRUB2 -> Part-2 of GRUB2 -> core3.img -> grub.cfg ->

-> if /boot is on an xfs filesystem -> /boot/grub2/i386-pc/xfs.mod ->

-> load vmlinuz & initramfs in main memory.

Once the kernel is in memory, GRUB 2’s job is done. The rest of the booting 

sequence will be carried out by the kernel, which we will discuss in Chapter 4.

 /etc/default/grub

Another important file is, of course, /etc/default/grub. Please see Figure 3-6.

Figure 3-4. (continued)

Figure 3-5. The files in addition to *.mod
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This file is used by GRUB to accept the cosmetic and kernel command-line changes 

from the user.

$ cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/root_vg-swap rd.lvm.lv=root_vg/root 

rd.lvm.lv=root_vg/swap console=ttyS0,115200 console=tty0"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

As you can see, in this file, we can change the default timeout of the GRUB welcome 

screen, the font, the submenus, and the default kernel command-line parameters like 

the root device name, the swap device name, etc.

 /etc/grub.d/

Now this is where things get really interesting about GRUB 2.

GRUB 2 has a command called grub2-mkconfig. The name of command suggests 

that it will make the GRUB configuration file grub.cfg, which will be referred by  

part-3 of GRUB to show the welcome screen. The grub2-mkconfig file will first take the 

cosmetic and kernel command-line parameter inputs from /etc/default/grub and run 

the script files listed in Figure 3-7 from the /etc/grub.d/ directory.

Figure 3-6. The contents of the /etc/default directory
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As you can see, the files have numbers assigned with them. This means they will run 

in order.

The 00_header, 01_users, 08_fallback_counting, 10_reset_boot_success, and 

12_menu_auto_hide script files do the housekeeping work. For instance, the 00_header 

script file is responsible for adding a header to the grub.cfg file. For example, on 

Fedora Linux, the following header will be added in grub.cfg after running the grub2-

mkconfig file:

### BEGIN /etc/grub.d/00_header ###

set pager=1

if [ -f ${config_directory}/grubenv ]; then

  load_env -f ${config_directory}/grubenv

elif [ -s $prefix/grubenv ]; then

  load_env

fi

if [ "${next_entry}" ] ; then

   set default="${next_entry}"

   set next_entry=

Figure 3-7. The contents of the /etc/grub.d/ directory
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   save_env next_entry

   set boot_once=true

else

   set default="${saved_entry}"

fi

if [ x"${feature_menuentry_id}" = xy ]; then

  menuentry_id_option="--id"

else

  menuentry_id_option=""

fi

export menuentry_id_option

if [ "${prev_saved_entry}" ]; then

  set saved_entry="${prev_saved_entry}"

  save_env saved_entry

  set prev_saved_entry=

  save_env prev_saved_entry

  set boot_once=true

fi

function savedefault {

  if [ -z "${boot_once}" ]; then

    saved_entry="${chosen}"

    save_env saved_entry

  fi

}

function load_video {

  if [ x$feature_all_video_module = xy ]; then

    insmod all_video

  else

    insmod efi_gop

    insmod efi_uga

    insmod ieee1275_fb

    insmod vbe

    insmod vga
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    insmod video_bochs

    insmod video_cirrus

  fi

}

terminal_output console

if [ x$feature_timeout_style = xy ] ; then

  set timeout_style=menu

  set timeout=5

# Fallback normal timeout code in case the timeout_style feature is

# unavailable.

else

  set timeout=5

fi

### END /etc/grub.d/00_header ###

The 08_fallback_counting script file will add the following contents in grub.cfg:

### BEGIN /etc/grub.d/08_fallback_counting ###

insmod increment

# Check if boot_counter exists and boot_success=0 to activate this 

behaviour.

if [ -n "${boot_counter}" -a "${boot_success}" = "0" ]; then

  # if countdown has ended, choose to boot rollback deployment,

  # i.e. default=1 on OSTree-based systems.

  if  [ "${boot_counter}" = "0" -o "${boot_counter}" = "-1" ]; then

    set default=1

    set boot_counter=-1

  # otherwise decrement boot_counter

  else

    decrement boot_counter

  fi

  save_env boot_counter

fi

### END /etc/grub.d/08_fallback_counting ###
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As you can see, the file adds the code that will watch the default timeout value of a 

GRUB’s welcome screen, the same way the rest of the files (10_reset_boot_success and 

menu_auto_hide) will do the housekeeping work for GRUB. Let’s look at the script files 

that make GRUB 2 one of the best bootloaders for multibooting.

10_linux

This file contains almost 500 lines of a bash script file. Whenever a user executes the 

grub2-mkconfig command, it will run this script. The 10_linux file will find out what 

other Linux distributions you have installed on your system. It will literally go partition 

by partition and find all the other Linux versions that have been installed on your system. 

If there are any others, then it will make a menuentry of it in grub.cfg. Along with 

menuentry, it will add the respective kernel and initramfs entries. Isn’t that amazing?

Consider you installed Ubuntu first and then Fedora; now you don’t have to add 

the entries of Ubuntu manually into Fedora’s grub.cfg. You have to just run grub2- 

mkconfig. The command will run 10_linux for us, and it will eventually find out that 

Ubuntu is installed and will add the appropriate entry for it.

20_linux_xen

After grub2-mkconfig, this script file will find out whether your system has the XEN 

kernel installed. If it does, then it will add the appropriate entry for it in grub.cfg. Most 

of the Linux distributors ship XEN as a separate kernel package. XEN is mostly used by 

hypervisors.

20_ppc_terminfo

If your system has PPC or a PowerPC architecture from IBM, then this script file will find 

the respective kernel for it and will add the appropriate entry into grub.cfg.
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30_os_prober

If you have any non-Linux-based OS installed on your HDD, then this script file will find 

that OS and will make the appropriate entry for it. In other words, if you have Windows 

installed on your system, it will automatically find that out and will make an appropriate 

entry for it in grub.cfg. This is the reason that, after installing our third OS (Fedora 31) 

on a UEFI system, we got the list of operating systems without doing anything. You can 

see the welcome screen presented by Fedora 31 in Figure 3-8.

After the Fedora installation, Anaconda ran grub2-mkconfig in the background, 

which eventually ran 30_os_prober, and it found the Windows installation and made the 

appropriate entry for it in grub.cfg.

30_uefi-firmware

This script will run successfully only if you have a UEFI system. The job of this script 

file is to add the appropriate entries of UEFI firmware in grub.cfg. As you can see in 

Figure 3-8, the System setup entry has been added by the 30_uefi-firmware script file.

### BEGIN /etc/grub.d/30_uefi-firmware ###

menuentry 'System setup' $menuentry_id_option 'uefi-firmware' {

        fwsetup

}

### END /etc/grub.d/30_uefi-firmware ###

If the user chooses the “System setup” option, then it will boot back to the UEFI 

firmware. You can see the UEFI firmware interface in Figure 3-9.

Figure 3-8. The welcome screen
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40_custom and 41_custom

These are given to the user in case the user wants to add some custom entries to grub.

cfg. For example, if grub2-mkconfig fails to add any of the installed OS as entries, then 

users can add a custom entry to these two custom files. You can make your own custom 

files, but you need to make sure each has a number assigned to it and has executable 

permission.

 GRUB 2 on UEFI-Based System
Again, there are three locations where GRUB 2 stores its files. Figure 3-10 shows the 

directories and its files.

Figure 3-9. The UEFI firmware
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The grub.cfg file that was shown earlier in /boot/grub2/ has been shifted inside 

ESP (/boot/efi/EFI/fedora/). Also, as you can see, there is no i386-pc directory. 

This is because of the rich device and filesystem support provided by EFI. Inside ESP, 

you will find a couple of *.efi files, including our shim.efi and grubx64.efi binaries. 

The etc/default/grub file, which is responsible for GRUB’s cosmetic changes and for 

kernel command-line parameters, is still at the same location. The device.map file is 

not available since the grub2-install command does not have significance on a UEFI 

system. We will talk about this command later in the chapter.

 Boot Loader Specification (BLS)
The BLS is a new development on GRUB upstream projects that hasn’t been adopted 

by many mainstream distributions yet. Specifically, this scheme has been adopted by 

Fedora-based operating systems such as RHEL, Fedora, Centos, Oracle Linux, etc., but 

not by Debian-based distributions such as Ubuntu, Mint, etc.

On BIOS-based systems, whichever OS has control of the first 512 bytes has control 

of all the operating systems’ booting sequences, which is why every OS tries to get hold 

of the first 512 bytes. This situation arises because the BIOS always lands in the first 512 

bytes of the HDD and calls part-1 of the bootloader (bootstrap). The part-1 to part-2 and 

part-2 to part-3 transitions happen later, and then at the end part-3 reads the bootloader- 

specific configuration file (bcdedit in the case of Windows, grub.cfg in the case of 

Linux). If that configuration file has the entries for other installed OSs, then they will get 

a chance to boot. So, long story short: whoever has control of the first 512 bytes controls 

the entire booting sequence. But with ESP, every OS gets an equal chance to boot 

because UEFI checks the ESP directories and lists all the available OS entries. Developers 

started wondering if they could get something like this in a BIOS-based system, and they 

came up with BLS.

Figure 3-10. The GRUB 2 locations on a UEFI-based system
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In BLS, a new location (the fifth one) has been introduced to store the bootloader- 

related files, and that is /boot/loader/. So, we have now five locations where GRUB will 

store its files.

• /boot/grub2/

• /etc/default/grub

• /etc/grub.d

• /boot/efi/EFI/<OS_vendor>/ (in the case of UEFI only)

• /boot/loader/ (BLS files will be stored here)

The idea is that after the new kernel installation, the kernel itself with its post-scripts 

(something like the kernel-core package in the case of Fedora) will create an entry for 

a new kernel in the /boot/loader/ directory. For example, we have this kernel package 

installed:

# rpm -q kernel

Kernel-5.3.7-301.fc31.x86_64

This is the same package that will provide the /boot/vmlinuz and /boot/initramfs 

files. Once this kernel is installed, it prepares the following file:

# cat /boot/loader/entries/36543031048348f9965e3e12e48bd2b1-5.3.7-301.fc31.

x86_64.conf

title Fedora (5.3.7-301.fc31.x86_64) 31 (Thirty One)

version 5.3.7-301.fc31.x86_64

linux /vmlinuz-5.3.7-301.fc31.x86_64

initrd /initramfs-5.3.7-301.fc31.x86_64.img

options $kernelopts

grub_users $grub_users

grub_arg --unrestricted

grub_class kernel

As you can see, the file has four entries.

• The title that will be printed by part-3 of GRUB

• The location and name of the kernel file
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• The location and name of the initramfs file

• The $kernelopts variable that has been declared in the /boot/

grub2/grubenv file

# cat /boot/grub2/grubenv

# GRUB Environment Block

saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64

menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/mapper/fedora_localhost--live-root ro resume=/dev/

mapper/fedora_localhost--live-swap rd.lvm.lv=fedora_localhost-live/root 

rd.lvm.lv=fedora_localhost-live/swap rhgb quiet

boot_indeterminate=0

Basically, kernelopts provides the kernel command-line parameters like the name 

of the root filesystem (/dev/mapper/fedora_localhost--live-root) and in which 

mode it has to be mounted (ro - read only).

So, the booting sequence becomes like this:

 1) BIOS -> POST -> BIOS

 2) Part-1 of GRUB -> part-2 of GRUB -> part-3 of GRUB

 3) Part-3 of GRUB -> read grub.cfg

 4) Part-3 of GRUB -> reads /boot/loader/entries/*

 5) Prints all the file titles that are present in /boot/loader/entries

For an example, consider a new OS has been installed or a new kernel has been 

installed. It has to generate its own entry file and place it in the first primary partition’s 

/boot/loader/entries/ directory. This way, every time the first primary OS’s GRUB 

part- 3 reads the entry, the other OS will have a chance to boot. The entry file can be 

created by using Fedora’s kernel-install command.

#kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.fc31.

x86_64/vmlinuz
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The command will make the appropriate entry for kernel-5.3.7-301.fc31.x86_64 

in /boot/loader/entries/, as shown here:

# ls /boot/loader/entries/ -l

total 8

-rw-r--r--. 1 root root 329 Dec  9 10:18 2058a9f13f9e489dba29c477a8ae2493- 

0- rescue.conf

-rw-r--r--. 1 root root 249 Oct 22 01:04 

2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64.conf

The number associated with the *.conf file is unique. The BLS has its own 

advantages and disadvantages.

Here are the advantages:

• Every OS will get an equal chance to boot.

• It works irrespective of the BIOS and UEFI firmware.

• In the case of the BIOS, the latest Linux installation removes part- 1 

and part-2 of the earlier installed operating system, which has 

become obsolete since the latest Linux installation will make its own 

entry through the kernel-install command on earlier OSs.

Here are the disadvantages:

• The BLS is not completely implemented yet. If the second OS wants 

to make its entry in the first OS, then /boot of the first OS has to be 

shared. That is not the case as of now. So, I consider this as a  half- 

implementation.

• The BLS unnecessarily complicates the booting sequence since 

we have two configuration files to refer to: grub.conf and <uniq_

no><kernel_version>.conf from /boot/loader/entries/. The BLS 

especially makes life difficult in the case of resolving the “can’t boot” 

issues.

• Except Fedora-based distros, no one has adopted the BLS yet, 

which seems to be a wise decision. It looks like Fedora is the most 

committed to the upstream project; hence, the BLS has been 

implemented in Fedora.
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 Common Bootloader Issues
Based on this knowledge, let’s try to resolve some of the most common bootloader- 

related “can’t boot” issues.

 “Can’t Boot” Issue 1 (Bootloader)
Issue: After powering up the system, it is dropping you on the GRUB prompt, as shown 

in Figure 3-11.

This is what you see on your screen. You must have encountered this error at least 

once in your life. Let’s try to resolve it.

 1) You will be able to resolve the issue only if you know what the 

issue is all about. Right now, though, we have no idea what the 

problem is since we just started the system and this is what we get.

 2) The screen is called a GRUB prompt. When this is called a prompt, 

it means you can execute commands at it. Remember, this is a 

GRUB command prompt, which means it can accept only GRUB 

commands.

 3) By looking at Figure 3-11, out of three parts of GRUB, which part of 

GRUB has provided us with the GRUB prompt?

 4) Of course, it must be part-3 because part-1 and part-2 have very 

little space, so they cannot fit such functionality. So, we have 

successfully reached part-3 of GRUB, and most important, it 

does not matter whether this system has UEFI or the BIOS. Since 

we have reached part-3, it means we have left the firmware 

environment. That’s the crucial input. Now we cannot concentrate 

on part-3 only.

Figure 3-11. The GRUB 2 prompt
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 5) What is the purpose of part-3 of GRUB? Simple. It reads grub.cfg, 

and from there it gets the kernel and initramfs locations. If it is a 

BLS-enabled system, then it gets the kernel and initramfs names 

from the /boot/loader/entries/ directories. For this example, 

we will assume this system is not BLS-aware. Part-3 then loads 

vmlinuz and initramfs in memory.

 6) Since part-3 has provided us with the GRUB prompt but failed to 

load the OS, it means either the kernel and initramfs files are not 

present or the grub.cfg file is not pointing out the correct location 

of these files.

 7) So, in such a situation we can try to boot Fedora manually. 

Manually means we will provide the kernel and initramfs files with 

absolute paths by using the GRUB prompt. This is how it can be 

done.

 8) linux is a GRUB command through which we need to give 

the absolute path of the kernel (vmlinuz) file. As we know, the 

vmlinuz file is at /boot, and GRUB follows its own disk naming 

convention. So, the path of /boot will be hard disk number 0 and 

partition number 1. Of course, you might not be aware on which 

HDD or partition /boot has been stored. In that case, you can get 

the help of the autocomplete feature of GRUB. You can press Tab 

twice, and GRUB will prompt you for the available options. Let’s 

find out the HDD and partition number of /boot. Please refer to 

Figure 3-12.

Figure 3-12. The available partitions on hard disk number 0
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The first tab after hd0 showed us that there are two partitions 

available under the hard disk number 0. The second partition is 

not readable to GRUB, so of course the second partition cannot 

be /boot. Hence, we will choose the msdos1 partition. Then, as 

shown in Figure 3-13, we will start looking for the vmlinuz file in it 

with the help of autocomplete.

As you can see inside HDD number 0 and partition number 1, we 

found two vmlinuz files; one is of a rescue kernel, and another one 

is the normal kernel file of Fedora 31. As shown in Figure 3-14, we 

will choose the normal kernel and will provide the root filesystem 

name to it. If you are unaware of the root filesystem name of your 

system, then you can boot the system with the rescue or live image 

and check the /etc/fstab entries. We will talk about the rescue 

mode in Chapter 10.

Figure 3-13. The vmlinuz file
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The absolute path of the vmlinuz file is (hd0,msdos1)/

vmlinuz-5.3.7-301.fc31.x86_64. Next to it is the ro kernel 

command- line parameter, which stands for “read-only.” After ro, 

we have a root kernel command-line parameter to which we have 

passed our system’s root filesystem name, which is - /dev/mapper/

fedora_localhost--live-root. It’s an lvm device.

grub> linux (hd0,msdos1)/vmlinuz-5.3.7-301.fc31.x86_64 ro

     root=/dev/mapper/fedora_localhost--live-root

After successfully executing the linux command, we need to pass 

on the initramfs name. We have two commands available that we 

can use: initrd and initrd16. Please refer to Figure 3-15.

grub> initrd (hd0,msdos1)/initramfs-5.3.7-301.fc31.x86_64.img

Figure 3-14. The root filesystem name and the ro flag
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 9) The moment you execute the boot command, as shown 

in Figure 3- 16 and in Figure 3-17, GRUB’s part-3 will take 

these inputs and load /boot/vmlinuz-5.3.7-301.fc31.

x86_64 from sda1 (hd0,msdos1). Then it will load /boot/

initramfs-5.3.7-301.fc31.x86_64.img and give control to the 

kernel. The kernel will eventually mount the root (/) filesystem 

from /dev/mapper/fedora_locahost--live-root on the  

/ directory and will show the login screen.

Figure 3-15. The linux, initrd, and boot commands in action
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Figure 3-16. The console messages while booting
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 10) In the case of Ubuntu 18, the commands are slightly different. On 

Fedora 31, we gave the /boot partition’s address directly to the 

linux command, whereas in Ubuntu we have a separate GRUB 

command called set root for it.

As you can see in Figure 3-18, the root filesystem name of the Ubuntu 18 system is /

dev/sda1. It’s a standard partition unlike the lvm device of Fedora 31.

As soon as we provide the proper inputs to GRUB 2, it leads us to the login screen. 

You can see the login screen of Ubuntu in Figure 3-19.

Figure 3-17. The login screen

Figure 3-18. Ubuntu has a slightly different approach
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 11) Coming back to our Fedora system, since it has been booted now, 

we can regenerate the grub.cfg file by using the grub2-mkconfig 

command, as shown in Figure 3-20.

We can execute grub-mkconfig in case of Ubuntu. Please refer to Figure 3-21.

Figure 3-19. The login screen presented by Ubuntu

Figure 3-20. grub2-mkconfig command
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But if it is a UEFI system and you want to regenerate grub.cfg, then, as shown 

in Figure 3-22, the location of grub.cfg would be ESP.

 12) Once grub.cfg is generated, we need to regenerate the BLS 

entries for Fedora.

#kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.

fc31.x86_64/vmlinuz

The command will make the appropriate entry for kernel-5.3.7-301.fc31.

x86_64 in /boot/loader/entries/.

# ls /boot/loader/entries/ -l

total 8

-rw-r--r--. 1 root root 329 Dec  9 10:18 

2058a9f13f9e489dba29c477a8ae2493- 0- rescue.conf

-rw-r--r--. 1 root root 249 Oct 22 01:04 

2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64.conf

Figure 3-21. The grub-mkconfig command of Ubuntu

Figure 3-22. grub2-mkconfig on a UEFI-based system
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 13) If Fedora is on a UEFI system, then the BLS step remains the same.

 14) After rebooting, Fedora is able to boot smoothly, and the “can’t 

boot” issue has been fixed.

 “Can’t Boot” Issue 2 (Bootloader)
Issue: After powering on the system, it passes the firmware stage, but after that, as you 

can see in Figure 3-23, there is nothing on the screen.

 Resolution for a BIOS-Based System

Here are the steps to solve this:

 1.  Since the BIOS firmware stage has been passed, it means 

something is wrong at the bootloader level.

 2. Since we are not getting anything on the screen, it means part-1 or 

part-2 of GRUB is missing or at least they are corrupted (512 bytes 

+ 31 KB). If it had reached part-3, then we would have gotten at 

least the GRUB prompt. So, the issue has been isolated, and the 

plan of action is to replace part-1 and part-2 of GRUB.

 3. This can be done with the grub2-install command. First either 

boot with live medium of the same Linux distro or, if available, 

boot in rescue mode. The live image and rescue mode will be 

explained in Chapter 10.

Figure 3-23. The blank screen
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Figure 3-24. The grub2-install command

Figure 3-25. Installing grub2 in a temporary directory

As you can see in Figure 3-24, grub2-install takes the device name as an input. 

Please note that the device name should not be a partition number; rather, it should 

be a disk name. This is because part-1 and part-2 of GRUB has to be installed on the 

first 512 bytes + 31 KB of a disk, not inside a partition. You need to replace sda with 

your disk name.

Along with part-1 and part-2 of the bootloader files, grub2-install repairs or re- 

installs the i386-pc directory, which has all the modules of the GRUB 2 bootloader. 

We can cross-verify this by installing the modules in a custom directory. Please see 

Figure 3- 25.

You can see that all the GRUB 2 files have been restored along with GRUB’s module 

files.

# ls temp/grub2/

      fonts  grubenv  i386-pc

# ls -l temp/grub2/i386-pc/ | wc -l

      279

After rebooting, Fedora should boot normally, and the “can’t boot” issue should 

have been fixed. If GRUB drops you on a command prompt, then you need to follow the 

steps mentioned for issue 1 since grub2-install repairs the binaries, but it does not 

regenerate the grub.cfg file.

But what if you face a similar problem on a UEFI-based system?
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 Resolution for a UEFI-Based System

Here are the steps:

 1. As you might have guessed, we have to just change the passed 

device name of the grub2-install command, as shown in 

Figure 3-26. The device name should be ESP.

 “Can’t Boot” Issue 3 (Bootloader + Kernel)
Issue: The complete /boot is missing.

 Resolution for BIOS-Based Systems

Here are the steps:

 1. Recovering the lost /boot is not possible (or at least it’s outside the 

scope of this book).

 2. Boot in rescue mode or boot with a live image and mount our “can’t 

boot” system’s root filesystem. The rescue mode and how it works are 

discussed in Chapter 10.

 3. First make a new /boot directory and set the proper permissions on it.

• #mkdir /boot

• #chmod 555 /boot

• #chown root:root /boot

• If /boot is supposed to be a separate partition, then mount it with 

the correct partition.

Figure 3-26. The grub-install command on a UEFI-based system
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 4. As we know, /boot is where we store the files of the bootloader, 

kernel, and initramfs. Since /boot is missing, we need to create 

every file for it.

• #dnf reinstall kernel

• This is for a Fedora-based system. If it is a Debian-based 

system, then you can use the apt-get command and can 

reinstall the kernel.

• This will install the vmlinuz file and will also regenerate the 

initramfs file for it.

 5. Now we need to install GRUB.

• #grub2-install /dev/<disk_name>

• In our case, the command is #grub2-install /dev/sda.

• This will repair GRUB’s part-1 , part-2, and i386-pc directory 

from /boot/grub2.

• To repair part-3 of GRUB and to have some GRUB-provided tools, 

we need to install two packages on a Fedora-based system.

• #dnf reinstall grub2 grub2-tools

• As the name suggests, the grub2 package will provide part-3 

of GRUB, and grub2-tools will provide some of the tools like 

grub2-install.

• Now it’s time to regenerate the GRUB configuration file.

• #grub2-mkconfig -o /boot/grub2/grub.cfg

• Finally, fix the BLS.

• #kernel-install add 5.3.7-301.fc31.x86_64 /lib/

modules/5.3.7-301.fc31.x86_64/vmlinuz

Chapter 3  GrUB Bootloader



166

 Resolution for UEFI-Based Systems

Here are the steps:

• /boot and /boot/efi/ are separate mount points.

• # mkdir /boot

• # chmod 555 /boot

• # chown root:root /boot

• # yum reinstall kernel

• Now we need to create an ESP partition, and as we know, it has to be 

a VFAT partition. Then assign an ESP partition type to it.

• #mkdir /boot/efi

• #mount /dev/sda2 /boot/efi

• In our case, the partition that I have created for ESP is sda2.

• #grub2-install --efi-directory=/boot/efi

• This will install the grubx64.efi file in ESP.

• The rest of the required files are provided by the grub2-efi, shim, 

and grub2-tools packages.

• #yum reinstall grub2-efi shim grub2-tools

• Regenerate the configuration files.

• #grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

• #kernel-install add 5.3.7-301.fc31.x86_64 /lib/

modules/5.3.7-301.fc31.x86_64/vmlinuz

After rebooting the system, it is able to boot without any issue.

Now it’s time to shed some more light on UEFI’s Secure Boot environment.
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 Secure Boot Feature of UEFI
Secure Boot is an amazing feature of UEFI. It makes sure no untrusted binary will run 

while booting. So far, we have seen the following:

• The digital signature is a unique string.

• The digital signature of any file will be generated from  

a private key.

• The same digital signature can be regenerated from  

the public key.

• If the file is not altered, then the digital signature should match.

• Microsoft made its key pair (public and private keys).

• Microsoft digitally signed its bootloader-related files (BCD) with its 

private key.

• Microsoft’s public key is present inside UEFI.

• While booting, UEFI will regenerate the digital signature of the 

bootloader by using the available public key. If the digital signatures 

do not match, then UEFI will discard the execution of .efi files.

• To use this feature in the Linux environment, a new bootloader 

has been created called shim, and it has been signed by Microsoft’s 

private key so that UEFI will allow the shim.efi execution.

• Shim.efi’s job is to call the actual GRUB file, which is grubx64.efi.

But Secure Boot does not stop here. Because there is a possibility that grubx64.efi  

itself has been compromised, or in fact any code that runs after the bootloader could 

have been compromised, securing the booting environment up to the bootloader 

level only is not sufficient; hence, these days the Secure Boot feature secures the entire 

booting procedure of Linux. This is how it works:

 1. Fedora will prepare its own key pair and will sign the GRUB files 

with Fedora’s private key.

 2. The public key of Fedora will be kept inside the shim.efi file.
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 3. As the booting sequence continues, GRUB’s digital signature will 

be regenerated by using the public key that is inside shim.efi.

 4. If the signature matches then grubx64.efi and other bootloader 

files will be allowed to run by UEFI. 

 5. GRUB’s ultimate job is to load the kernel (/boot/vmlinuz).

 6. This vmlinuz file can also be compromised, so to avoid that, the 

kernel will be signed by the same private key that was used to sign 

GRUB.

 7. Vmlinuz's digital signature will be regenerated by using the public 

key that is inside shim.efi.

 8. Once the digital signature matches, the kernel takes control of the 

booting sequence.

 9. But the kernel uses a lot of modules/drivers that are eventually 

inserted inside the kernel. So, these modules that are again 

binaries could be compromised, and since they are going to 

become part of kernel/vmlinuz, then eventually the kernel itself 

will be compromised.

 10. So, the kernel as a package will prepare its own key pair. All the 

modules will be signed by this kernel’s private key, and the public 

key will be shipped with the kernel package itself. The private key 

of a kernel package will be destroyed later.

 11. At the time of the booting, while inserting the modules in the 

kernel, the digital signature of the module will be regenerated by 

using the public key, which is with the kernel.

 12. By following the steps mentioned, the Secure Boot feature makes 

sure that only binaries from trusted parties are executed.

The block diagrams shown Figure 3-27 will simplify the booting procedure even 

more.
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 100 OS Multiboot Project
One of my students asked me a question: how many operating systems can we install 

on one system and multiboot them with one bootloader? I didn’t know the answer, 

but I decided to try to find out. I decided that I would use a GRUB 2 bootloader to boot 

every operating system that I have installed. I have been installing and multibooting the 

operating systems for almost two years now. I have installed 106 operating systems so 

far. This is our third system, which I named Jarvis. Here are the hardware and software 

details of Jarvis:

• UEFI firmware.

• Two disks attached (sda and sdb).

• The booting method is UEFI.

• sda is formatted with an MS-DOS partition table.

• sdb is formatted with a GPT partition table.

• All the operating systems are identified and booted by the GRUB 2 

bootloader.

The operating systems that are installed on the sda disk were installed by setting the 

booting method to UEFI, and it has all the new operating systems. The operating systems 

that are on sdb were installed by setting the booting method of the firmware to legacy. 

sdb hosts most of the old-generation operating systems or at least those operating 

systems that do not have UEFI support. Here are the details:

Figure 3-27. The Secure Boot procedure
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Partition Operating System Filesystem Size

sda-1 eSp (eFI System partition) Fat32 20 GB

sda-2 MSr (Microsoft recovery) MSr 16 MB

sda-3 Windows 10 NtFS 9.7 GB

sda-4 Swap Swap 2.01 GB

sda-5 openSUSe linux 13.2 eXt4 10 GB

sda-6 Mint linux 17.2 eXt4 10 GB

sda-7 oracle openSolaris 11.2 ZFS 10 GB

sda-8 Sabayon linux 15.06 eXt4 10 GB

sda-9 Some random free space N/a 8.4 MB

sda-10 Kali linux 2.0 eXt4 10 GB

sda-11 arch linux 2015-8.1 eXt4 10 GB

sda-12 debian linux 8.1 eXt4 10 GB

sda-13 Semplice linux 7.0.1 eXt4 10 GB

sda-14 Slackware 14.1 linux eXt4 10 GB

sda-15 openmandriva 2014.2 eXt4 10 GB

sda-16 Mate Ubuntu linux15.04 eXt4 10 GB

sda-17 Steam oS beta eXt4 10 GB

sda-18 Manjaro linux 0.8.13.1 eXt4 10 GB

sda-19 Netrunner linux 16 eXt4 10 GB

sda-20 Windows 8 NtFS 10 GB

sda-21 Korora linux 22 eXt4 10 GB

sda-22 KaoS linux 2015.08 eXt4 10 GB

sda-23 lubuntu linux 15.04 eXt4 10 GB

sda-24 Sonar linux 2015.2 eXt4 10 GB

sda-25 antergos linux 2015.08.18 eXt4 10 GB

sda-26 Mythbuntu linux 14.04.2 eXt4 10 GB

(continued)
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Partition Operating System Filesystem Size

sda-27 rosa linux fresh r5 eXt4 10 GB

sda-28 Sparkylinux 4.0 eXt4 10 GB

sda-29 Vinux linux 4.0 eXt4 10 GB

sda-30 Xubuntu linux 14.04.3 eXt4 10 GB

sda-31 Ubuntu Studio 14.04.3 eXt4 10 GB

sda-32 Suse enterprise 12 eXt4 10 GB

sda-33 Ubuntu linux 14.04 eXt4 10 GB

sda-34 Ubuntu linux 15.04 eXt4 10 GB

sda-35 Scientific linux 7 eXt4 10 GB

sda-36 CentoS linux 7 eXt4 10 GB

sda-37 Solus linux daily eXt4 10 GB

sda-38 Ubuntu Server 14 linux eXt4 10 GB

sda-39 Fedora 21 linux eXt4 10 GB

sda-40 Fedora 22 linux eXt4 10 GB

sda-41 Blackarch 2015.07.31 eXt4 10 GB

sda-42 Gentoo linux multilib 20140826 eXt4 10 GB

sda-43 Calculate linux 14.16.2 eXt4 10 GB

sda-44 Fedora 20 linux eXt4 10 GB

sda-45 Fedora 23 linux eXt4 10 GB

sda-46 Manjaro linux 15-0.9 eXt4 10 GB

sda-47 Ubuntu linux 16.04 eXt4 10 GB

sda-48 chapeau linux 23 eXt4 10 GB

sda-49 arquetype linux 22 eXt4 10 GB

sda-50 Fx64 linux 22 eXt4 10 GB

sda-51 Viperr linux 7 eXt4 10 GB

sda-52 hanthana linux 21 eXt4 10 GB

(continued)
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Partition Operating System Filesystem Size

sda-53 Qubes r3.1 linux eXt4 10 GB

sda-54 Fedora 24 eXt4 10 GB

sda-55 Korora-23 eXt4 10 GB

sda-56 sabayon-16 eXt4 10 GB

sda-57 Korora-24 eXt4 10 GB

sda-58 Sonar 16 linux eXt4 10 GB

sda-59 Viper 9 linux eXt4 10 GB

sda-60 arquetype linux 23 eXt4 10 GB

sda-61 Manjaro linux 16 eXt4 10 GB

sda-62 Manjaro linux Gaming 16 eXt4 10 GB

sda-63 Calculate linux 15 eXt4 10 GB

So, the total number of UEFI OS installations on the sda disk is 59 since four 

partitions are reserved for ESP- and MSR-like stuff. The following are the sdb disk 

installations details:

Partition Operating System Filesystem Size

sdb-1 pCBSd 10.1.2 ZFS 10 GB

sdb-2 Magia 2 linux eXt4 10 GB

sdb-3 Magia 3 linux eXt4 10 GB

sdb-4 extended/secondary N/a 970 GB approximately

sdb-5 Q4oS linux 1.2.8 eXt4 10 GB

sdb-6 Qubes r2 linux eXt4 10 GB

sdb-7 pardus linux 2013 eXt4 10 GB

sdb-8 Gobolinux 015 eXt4 10 GB

sdb-9 Crux linux 3.1 eXt4 10 GB

sdb-10 point linux 3.0 eXt4 10 GB

(continued)
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Partition Operating System Filesystem Size

sdb-11 extix linux 15.3 eXt4 10 GB

sdb-12 Bodhi linux 3.0 eXt4 10 GB

sdb-13 debian linux 7.0 eXt4 10 GB

sdb-14 debian linux 6.0 eXt4 10 GB

sdb-15 BoSS linux 6.1 eXt4 10 GB

sdb-16 CrunchBang rc1 linux eXt4 10 GB

sdb-17 handy linux 2.1 eXt4 10 GB

sdb-18 lite linux 2.4 eXt4 10 GB

sdb-19 WattoS linux r9 eXt4 10 GB

sdb-20 pinGuy oS 14.04.3 linux eXt4 10 GB

sdb-21 SuperX 3.0 linux eXt4 10 GB

sdb-22 Julinux 10X rev 3.1 linux eXt4 10 GB

sdb-23 Black lab linux 2015.7 eXt4 10 GB

sdb-24 hamara linux 1.0.3 eXt4 10 GB

sdb-25 peppermint lInux 20150518 eXt4 10 GB

sdb-26 Ubuntu 13.10 linux eXt4 10 GB

sdb-27 linuxMint 13 mate eXt4 10 GB

sdb-28 linux Mint 14.1 cinnamon eXt4 10 GB

sdb-29 linuxMint 15 xfce eXt4 10 GB

sdb-30 linuxMint 16 Kde eXt4 10 GB

sdb-31 peppermint 4 20131113 eXt4 10 GB

sdb-32 peppermint 5 20140623 eXt4 10 GB

sdb-33 Fedora 12 eXt4 10 GB

sdb-34 trisquel 7 linux eXt4 10 GB

sdb-35 oracle linux 7.1 eXt4 10 GB

sdb-36 Fedora 14 linux eXt4 10 GB

(continued)
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Partition Operating System Filesystem Size

sdb-37 Fedora 15 linux eXt4 10 GB

sdb-38 Fedora 17 linux eXt4 10 GB

sdb-39 Fedora 19 linux eXt4 10 GB

sdb-40 rhel 6.5 linux eXt4 10 GB

sdb-41 SolydX 201506 eXt4 10 GB

sdb-42 oracle linux 6.7 eXt4 10 GB

sdb-43 openSuse 11.3 eXt4 10 GB

sdb-44 lMde (linux Mint 2 debian edition) eXt4 10 GB

sdb-45 Centrych linux 12.04 eXt4 10 GB

sdb-46 elementary oS 2013 eXt4 10 GB

sdb-47 elementary oS 2015 eXt4 10 GB

sdb-48 Sabayon 13.08 linux eXt4 10 GB

sdb-49 deepin 2013 linux eXt4 10 GB

sdb-50 deepin 15.1 linux eXt4 10 GB

The total number of operating systems booting the BIOS way on the sdb disks is  

50 – 2 = 48.

Two partitions are reserved for swap and the extended partition.

So, the total number of installations on the Jarvis system is 106, and as you can see in 

Figure 3-28, all of these OSs are multibooted by using the GRUB 2 bootloader. With this 

project I have realized that there is no end to this. The GRUB 2 and UEFI combination 

can handle n number of operating systems.
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Figure 3-29. The time taken by the grub-mkconfig command

How did I manage to install this many operating systems? Simple. I fired the grub- 

mkconfig command after every new OS installation, which found all the operating 

systems from all the attached disks.

# time grub-mkconfig -o multiboot_grub.cfg

The previous command is used after installing Ubuntu 18, which was the 106th OS in 

the list.

As you can see in Figure 3-29, when I installed the 106th OS, grub-mkconfig took 

almost one hour to complete, and the resulting GRUB configuration file had 5,500 lines 

in it.

Figure 3-28. The 106 operating systems listed by GRUB 2
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 A Dummy Small Bootloader
We know that the BIOS jumps to the first 512 bytes and calls the GRUB 2 bootloader. To 

understand how exactly BIOS calls the bootloader, we will make our own bootloader. 

Our bootloader will be very tiny compared to GRUB 2. Our bootloader will just print ! on 

the screen. But with this example, you will be able to understand how the BIOS jumps to 

the bootloaders as with GRUB 2, as shown here:

#cat boot.nasm

    ;

    ; Note: this example is written in Intel Assembly syntax

    ;

     [BITS 16]

     [ORG 0x7c00]

    boot:

        mov al, '!'       <<-- Character for interrupt

        mov ah, 0x0e      <<-- Display character

        mov bh, 0x00      <<-- Set video mode

        mov bl, 0x07      <<-- Clear/Scroll screen down

        int 0x10           <<--- BIOS interrupt 10 which is taking inputs 

from al, ah, bh, bl

        jmp $

        times 510-($-$$) db 0       <<--- Out of 512 bytes first 510 bytes 

are filled  with 0's.

                                    In the real world it will be filled with 

grub's boot strap.

        db 0x55           <<-- &

        db 0xaa            <<-- | tells BIOS that this is the device which 

is active/fdisk sign/boot flag.

     #nasm -f bin boot.nasm && qemu-system-x86_64 boot

This will make a boot disk (disk image) from the boot.nasm file, and it will be an 

input to qemu, which will execute it. As you can see in Figure 3-30, you will see ! printed 

on the screen.
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Basically, the qemu machine is considering boot as a disk, and whenever the qemu 

machine finishes its BIOS stage, the BIOS drops at the first 512 bytes of the boot disk. 

Here you will find that the first 510 bytes are written as 0 and the in last 2 bytes we have ! 

(the bootloader), and it will be printed on our screen.

So far, we have gotten a good overview of GRUB 2; now going further in the next 

section, we will discuss what really happens inside GRUB 2.

 GRUB 2 at a Low level
While writing this book, the latest available source code of GRUB was GRUB 2.04, which 

I have been using here. The bootstrap binary (if the system is BIOS based) from the first 

440 bytes of 512 bytes is called boot.img, which is available at /usr/lib/grub/i386-pc/

boot.img.

# ls -lh /usr/lib/grub/i386-pc/boot.img

-rw-r--r--. 1 root root 512 Mar 28  2019 /usr/lib/grub/i386-pc/boot.img

# file  /usr/lib/grub/i386-pc/boot.img

/usr/lib/grub/i386-pc/boot.img: DOS/MBR boot sector

The boot.img file is created from the source code written in the file /GRUB 2.04/

grub-core/boot/i386/pc/boot.S.

Figure 3-30. Our small tiny bootloader
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The following is a snippet of it:

<snip>

1 /* -*-Asm-*- */

  2 /*

  3  *  GRUB  --  GRand Unified Bootloader

  4  *   Copyright (C) 1999,2000,2001,2002,2005,2006,2007,2008,2009  Free 

Software Foundation, Inc.

  5  *

  6  *  GRUB is free software: you can redistribute it and/or modify

  7  *   it under the terms of the GNU General Public License as published by

  8  *  the Free Software Foundation, either version 3 of the License, or

  9  *  (at your option) any later version.

 10  *

 11  *  GRUB is distributed in the hope that it will be useful,

 12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of

 13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

 14  *  GNU General Public License for more details.

 15  *

 16  *  You should have received a copy of the GNU General Public License

 17  *  along with GRUB.  If not, see <http://www.gnu.org/licenses/>.

 18  */

 19

 20 #include <grub/symbol.h>

 21 #include <grub/machine/boot.h>

 22

 23 /*

 24  *  defines for the code go here

 25  */

 26

 27         /* Print message string */

 28 #define MSG(x)  movw $x, %si; call LOCAL(message)

 29 #define ERR(x)  movw $x, %si; jmp LOCAL(error_message)

 30
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 31         .macro floppy

 32 part_start:

 33

 34 LOCAL(probe_values):

 35         .byte   36, 18, 15, 9, 0

 36

 37 LOCAL(floppy_probe):

 38         pushw   %dx

 39 /*

 40  *  Perform floppy probe.

 41  */

 42 #ifdef __APPLE__

 43         LOCAL(probe_values_minus_one) = LOCAL(probe_values) - 1

 44         movw    MACRO_DOLLAR(LOCAL(probe_values_minus_one)), %si

 45 #else

 46         movw    MACRO_DOLLAR(LOCAL(probe_values)) - 1, %si

 47 #endif

 48

 49 LOCAL(probe_loop):

 50         /* reset floppy controller INT 13h AH=0 */

 51         xorw    %ax, %ax

 52         int     MACRO_DOLLAR(0x13)

 </snip>

You can consider boot.img as a first stage of the bootloader or part-1 of GRUB. This 

boot.img file transfers control to diskboot.img, which is part-2 of GRUB.

# ls -lh /usr/lib/grub/i386-pc/diskboot.img

-rw-r--r--. 1 root root 512 Mar 28  2019 /usr/lib/grub/i386-pc/diskboot.img

# file /usr/lib/grub/i386-pc/diskboot.img

/usr/lib/grub/i386-pc/diskboot.img: data
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The diskboot.img file is made from the source code of grub-2.04/grub-core/boot/

i386/pc/diskboot.S. The following is a snippet of it:

<snip>

1 /*

  2  *  GRUB  --  GRand Unified Bootloader

  3  *  Copyright (C) 1999,2000,2001,2002,2006,2007,2009,2010 Free Software 

Foundation, Inc.

  4  *

  5  *  GRUB is free software: you can redistribute it and/or modify

  6  *  it under the terms of the GNU General Public License as published by

  7  *  the Free Software Foundation, either version 3 of the License, or

  8  *  (at your option) any later version.

  9  *

 10  *  GRUB is distributed in the hope that it will be useful,

 11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of

 12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

 13  *  GNU General Public License for more details.

 14  *

 15  *  You should have received a copy of the GNU General Public License

 16  *  along with GRUB.  If not, see <http://www.gnu.org/licenses/>.

 17  */

 18

 19 #include <grub/symbol.h>

 20 #include <grub/machine/boot.h>

 21

 22 /*

 23  *  defines for the code go here

 24  */

 25

 26 #define MSG(x)  movw $x, %si; call LOCAL(message)

 27

 28         .file   "diskboot.S"

 29

 30         .text

 31
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 32          /* Tell GAS to generate 16-bit instructions so that this code 

works

 33            in real mode. */

 34         .code16

 35

 36         .globl  start, _start

 37 start:

 38 _start:

 39         /*

 40          * _start is loaded at 0x8000 and is jumped to with

 41          * CS:IP 0:0x8000 in kernel.

 42          */

 </snip>

The diskboot.img file then loads the actual core part of GRUB 2, which is part-3 of 

GRUB. You can also consider that part-3 of GRUB is a kernel of the bootloader. At this 

stage, GRUB 2 will be capable of reading the filesystem.

# ls /boot/grub2/i386-pc/core.img -lh

-rw-r--r--. 1 root root 30K Dec  9 10:18 /boot/grub2/i386-pc/core.img

From /GRUB 2.00/grub-core/kern/main.c, GRUB 2 sets the root device name, 

reads grub.cfg, and at the end shows the operating system list to choose.

I hope you understand how GRUB 2 works now. The following is a quick summary of 

what we have discussed so far:

 a. The bootloader is the first code that runs after the firmware.

 b. The bootloader/GRUB copies the kernel in memory.

 c. The bootloader loads the initramfs image in memory and gives 

the kernel a pointer to it.

 d. The bootloader hand overs control to the kernel.
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CHAPTER 4

Kernel
This chapter will cover the kernel.

 Loading the Kernel in Memory
This is an interesting chapter. So far, we have seen that up to this stage GRUB 2 had full 

control of the booting procedure. Now it has to hand over control to the kernel. In this 

chapter, we will see how and where the bootloader loads the kernel. In other words, how 

is the kernel extracted? Then we will see the booting-related tasks achieved by the Linux 

kernel and at the end how the kernel starts systemd.

Note The source code of the kernel that is used in this chapter is version 
kernel-5.4.4. When I was writing this book, that was the latest stable code 
available; see https://www.kernel.org/. An excellent resource on this 
subject is the Inside Linux book, written by 0xAX. I have learned a lot from it, and 
I’m sure you will too. You can find the book at https://0xax.gitbooks.io/
linux-insides/.

To hand over the control to the kernel, the bootloader has to achieve two major things.

• Load the kernel into memory

• Set some of the fields of the kernel as per the boot protocol

https://doi.org/10.1007/978-1-4842-5890-3_4#ESM
https://www.kernel.org/
https://0xax.gitbooks.io/linux-insides/
https://0xax.gitbooks.io/linux-insides/
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The complete boot protocol is available at https://www.kernel.org/doc/

Documentation/x86/boot.txt. The original boot protocol was defined by none other 

than Linus Torvalds.

         ~                               ~

         |  Protected-mode kernel        |

 100000  +-------------------------------+

         |  I/O memory hole              |

 0A0000  +-------------------------------+

         |  Reserved for BIOS            |  Leave as much as possible unused

         ~                               ~

         |  Command line                 |  (Can also be below the X+10000 

mark)

X+10000  +-------------------------------+

         |  Stack/heap                   |  For use by the kernel real-mode 

code.

X+08000  +-------------------------------+

         |  Kernel setup                 |  The kernel real-mode code.

         |  Kernel boot sector           |  The kernel legacy boot sector.

      X  +-------------------------------+

         |  Boot loader                  |  <- Boot sector entry point 

0000:7C00. You will see the same

         |                               |  address location at our boot.asm 

file which we created above.

  001000 +-------------------------------+

         |  Reserved for MBR/BIOS        |

 000800  +-------------------------------+

         |  Typically used by MBR        |

 000600  +-------------------------------+

         |  BIOS use only                |

 000000  +-------------------------------+
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As per the boot protocol, it’s the duty of a bootloader to pass on or set some of 

the fields of the kernel header. The fields are the root device name, mount options 

like ro or rw, the initramfs name, the initramfs size, etc. These same fields are called 

kernel command- line parameters, and we already know that the kernel command-line 

parameters are passed by GRUB/the bootloader to the kernel.

GRUB will not load the kernel (/boot/vmlinuz) at any random location; it will 

always be loaded at a special location. The special location will vary as per the Linux 

distribution and version you are using and as per the CPU architecture of the system. 

vmlinuz is an archive file, and the archive is made from three parts.

Vmlinuz (bZimage) =  Header   + kernel setup code + vmlinux (actual  

compressed kernel)

                     (part-1)   (part-2)            (part-3)

 After Loading the Kernel in Memory
We need to imagine here that GRUB 2 has loaded the kernel in memory at the special 

location. Here are the initial-level steps carried out by the kernel archive file vmlinuz as 

soon as it loaded in memory:

 1) As soon as the bootloader loads the kernel in memory at a specific 

location, the binary made from the file arch/x86/boot/header.S 

runs.

 2) Confusion occurs if vmlinuz is an archive and the bootloader has 

not extracted it yet. The bootloader has just loaded the kernel at a 

specific location. Then why is the code that is inside the vmlinuz 

archive file able to run?

 3) We will see the short answer first, and the long answer will be 

discussed in the “What Extracts vmlinuz?” section of this chapter. 

So, the short answer is a binary made from the arch/x86/boot/

header.S file is not in the archive; rather, it is part of a header that 

does a kernel_setup task. The header is outside of an archive.

Vmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual compressed kernel)

          --->Outside of archive<--- + -------->Inside archive<----

--->header.s file is here<---
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 4) Let’s consider for now that vmlinuz has been extracted, and let’s 

continue our booting sequence. So far, we have seen that GRUB 

has loaded the kernel in memory at a special location and runs 

the binary made from arch/x86/boot/header.S. This binary is 

responsible for the Kernel_setup part. The kernel_setup file 

does the following tasks:

 a) Align the segment registers

 b) Set up the stack and BSS

In every chapter, a flowchart will give us a clear idea about what 

we have learned and, in terms of booting, where we have reached. 

Figure 4-1 shows the start of the flowchart that we will build in 

this chapter as we progress. It shows the actions performed by the 

kernel_setup code of header.s.

Figure 4-1. Steps taken by kernel_setup 
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 5) Then it jumps to the main() function at arch/x86/boot/main.c. 

The main.c file is also part of a kernel header, and the header is 

outside the actual archive.

Vmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual compressed kernel)

          --->Outside of archive<--- + -------->Inside archive<---------

         --->main.c file is here<---

#vim arch/x86/boot/main.c

<snip>

134 void main(void)

135 {

136         /* First, copy the boot header into the "zeropage" */

137         copy_boot_params();

138

139         /* Initialize the early-boot console */

140         console_init();

141         if (cmdline_find_option_bool("debug"))

142                 puts("early console in setup code\n");

143

144         /* End of heap check */

145         init_heap();

146

147         /* Make sure we have all the proper CPU support */

148         if (validate_cpu()) {

149                 puts(" Unable to boot - please use a kernel 

appropriate "

150                      "for your CPU.\n");

151                 die();

152         }

153

154         /* Tell the BIOS what CPU mode we intend to run in. */

155         set_bios_mode();

156
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157         /* Detect memory layout */

158         detect_memory();

159

160          /* Set keyboard repeat rate (why?) and query the lock 

flags */

161         keyboard_init();

162

163         /* Query Intel SpeedStep (IST) information */

164         query_ist();

165

166         /* Query APM information */

167 #if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)

168         query_apm_bios();

169 #endif

170

171         /* Query EDD information */

172 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)

173         query_edd();

174 #endif

175

176         /* Set the video mode */

177         set_video();

178

179         /* Do the last things and invoke protected mode */

180         go_to_protected_mode();

181 }

</snip>

As you can see, the main.c source code is responsible for the following:

 1) It copies the boot parameters (the kernel command-line 

parameters) from the bootloader. The copy_boot_params function 

will be used to copy the following boot parameters passed by the 

bootloader:

debug, earlyprintk, ro, root, ramdisk_image, ramdisk_size etc.
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 2) It initializes the console and checks whether the debug-like kernel 

command-line parameter has been passed by the user. If it has, 

the kernel will show the verbose-level messages on the screen.

 3) It initializes the heap.

 4) If the CPU cannot be validated, then it throws an error message 

through the validate_cpu() function. Distributions like Fedora 

and Ubuntu customize the error message, from 'unable to 

boot - please use the kernel appropriate for your cpu' to 

something like 'The CPU is not supported'. The customization 

will also panic the kernel, and the booting will be halted.

 5) Then it detects the memory layout and prints it on-screen at an 

early stage of booting. The same memory layout messages can be 

seen after the boot by using the 'dmesg' command, as shown here:

[    0.000000] BIOS-provided physical RAM map:

[    0.000000] BIOS-e820: [mem 0x0000000000000000-0x0000000000057fff] usable

[    0.000000] BIOS-e820: [mem 0x0000000000058000-0x0000000000058fff] reserved

[    0.000000] BIOS-e820: [mem 0x0000000000059000-0x000000000009cfff] usable

[    0.000000] BIOS-e820: [mem 0x000000000009d000-0x00000000000fffff] reserved

[    0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000007e5f7fff] usable

[    0.000000] BIOS-e820: [mem 0x000000007e5f8000-0x000000007e5f8fff] ACPI NVS

[    0.000000] BIOS-e820: [mem 0x000000007e5f9000-0x000000007e5f9fff] reserved

[    0.000000] BIOS-e820: [mem 0x000000007e5fa000-0x0000000087f62fff] usable

[    0.000000] BIOS-e820: [mem 0x0000000087f63000-0x000000008952bfff] reserved

[    0.000000] BIOS-e820: [mem 0x000000008952c000-0x0000000089599fff] ACPI NVS

[    0.000000] BIOS-e820: [mem 0x000000008959a000-0x00000000895fefff] ACPI data

[    0.000000] BIOS-e820: [mem 0x00000000895ff000-0x00000000895fffff] usable

[    0.000000] BIOS-e820: [mem 0x0000000089600000-0x000000008f7fffff] reserved

[    0.000000] BIOS-e820: [mem 0x00000000f0000000-0x00000000f7ffffff] reserved

[    0.000000] BIOS-e820: [mem 0x00000000fe010000-0x00000000fe010fff] reserved

[    0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000086e7fffff] usable

 6) Initialize the keyboard and its layout.

 7) Set the basic video mode.
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 8) Jump to the protected mode through the go_to_protected_

mode() function. Please refer to Figure 4-2 for a better 

understanding.

 Protected Mode
Up to this point, we have worked in real mode, which has 20-bit address limitations 

because of that we can access up to 1 MB of memory. With the go_to_protected_mode() 

function, the kernel has switched the CPU from real mode to the protected mode. 

Protected mode has a 32-bit address limitation, so the CPU can access up to 4 GB of 

memory. In simple terms, in real mode only those programs will run that have a 16-bit 

instruction set, for example, the BIOS. In protected mode, only the 32-bit programs will 

run. The kernel does some hardware-related tasks in protected mode and then launches 

a CPU in long mode.

Figure 4-2. The flowchart
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Please note that this book follows Intel’s X86 architecture, and the real, protected, 

and long mode discussions are based on Intel’s 64-bit architecture.

 Long Mode
Long mode does not put any memory restrictions on the CPU. It can use all the installed 

memory. Placing the CPU in long mode will be achieved by the head_64.S file from 

arch/x86/boot/compressed/head_64.S. It is responsible for the following:

 1) Preparing for long mode means it will check whether it supports 

long mode or not.

 2) Enter into long mode.

 3) Decompress the kernel.

The following are functions that get called from the head_64.S assembly file:

$ cat arch/x86/boot/compressed/head_64.S | grep -i call

    call    1f

    call    verify_cpu

    call    get_sev_encryption_bit

    call    1f

    call    1f

    call    .Ladjust_got

     * this function call.

    call    paging_prepare

     * this function call.

    call    cleanup_trampoline

    call    1f

    call    .Ladjust_got

    call    1f

     * Relocate efi_config->call().

    call    make_boot_params

    call    1f

     * Relocate efi_config->call().

    call    efi_main

    call    extract_kernel    /* returns kernel location in %rax */

    .quad    efi_call
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Function Working

verify_cpu This will make sure the CpU has a long mode.

make_boot_params This will take care of the bootloader-passed boot-time parameters.

efi_main UeFI firmware-related stuff.

extract_kernel The function is defined in arch/x86/boot/compressed_misc.c.  

This is the function that will decompress vmlinux from vmlinuz.

For a better understanding, please refer to the flowchart shown in Figure 4-3.

Figure 4-3. The flowchart, updated
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Wait a minute: if the kernel is not yet decompressed, then how come we proceed at 

this point? Here comes the long answer.

 What Extracts vmlinuz?
So far, we understand that it’s GRUB that loads the kernel in memory, but at the same 

time, we noticed that the vmlinuz image is an archive. So, what extracts this image? Is it 

GRUB?

No, it is not GRUB. Rather, it’s the kernel that extracts itself. Yes, I said it’s the kernel 

that extracts the kernel. The vmlinuz could be the operating system world’s only file that 

extracts itself. But how is it possible to extract yourself? To understand this, let’s get some 

more insight about vmlinuz first.

The “vm” of vmlinuz stands for “virtual memory.” In the earlier stages of Linux 

development, the virtual memory concept was not yet developed, so when it was added, 

the “vm” characters were added to the name of the Linux kernel. The “z” stands for a 

zipped file.

$ file vmlinuz-5.0.9-301.fc30.x86_64

vmlinuz-5.0.9-301.fc30.x86_64: Linux kernel x86 boot executable bzImage, 

version 5.0.9-301.fc30.x86_64 (mockbuild@bkernel04.phx2.fedoraproject.org) 

#1 SMP Tue Apr 23 23:57:35 U, RO-rootFS, swap_dev 0x8, Normal VGA

As you can see, vmlinuz is bzImage (bzImage stands for “big zimage”). vmlinuz is 

a compressed file of the actual kernel’s binary vmlinux. You cannot decompress this 

file with gunzip/bunzip or even with tar. The easiest way to extract vmlinuz and to get 

the vmlinux file is to use the extract-vmlinux script file provided by the kernel-devel 

package (in the case of Fedora). The file will be present at /usr/src/kernels/<kernel_

version>/scripts/extract-vmlinux.

# . /extract-vmlinux /boot/vmlinuz-5.3.7-301.fc31.x86_64 >> /boot/temp/

vmlinux

# file /boot/temp/*

/boot/temp/vmlinux: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),

statically linked, BuildID[sha1]=ec96b29d8e4079950644230c0b7868942bb70366, 

stripped
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There are various ways to open the vmlinux and vmlinuz kernel files.

     $ xxd vmlinux | less

     $ objdump vmlinux | less

     $ objdump vmlinux -D | less

     $ hexdump vmlinux | less

     $ od vmlinux | less

We will use the od command with some of the switches to open the vmlinuz file.

     $ od -A d -t x1 vmlinuz-5.0.9-301.fc30.x86_64 | less

<snip>

0000000 4d 5a ea 07 00 c0 07 8c c8 8e d8 8e c0 8e d0 31

0000016 e4 fb fc be 40 00 ac 20 c0 74 09 b4 0e bb 07 00

0000032 cd 10 eb f2 31 c0 cd 16 cd 19 ea f0 ff 00 f0 00

0000048 00 00 00 00 00 00 00 00 00 00 00 00 82 00 00 00

0000064 55 73 65 20 61 20 62 6f 6f 74 20 6c 6f 61 64 65

0000080 72 2e 0d 0a 0a 52 65 6d 6f 76 65 20 64 69 73 6b

0000096 20 61 6e 64 20 70 72 65 73 73 20 61 6e 79 20 6b

0000112 65 79 20 74 6f 20 72 65 62 6f 6f 74 2e 2e 2e 0d

0000128 0a 00 50 45 00 00 64 86 04 00 00 00 00 00 00 00

0000144 00 00 01 00 00 00 a0 00 06 02 0b 02 02 14 80 37

0000160 8e 00 00 00 00 00 80 86 26 02 f0 48 00 00 00 02

0000176 00 00 00 00 00 00 00 00 00 00 20 00 00 00 20 00

0000192 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000208 00 00 00 c0 b4 02 00 02 00 00 00 00 00 00 0a 00

0000224 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

0000256 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00

0000272 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000288 00 00 00 00 00 00 00 00 00 00 80 39 8e 00 48 09

0000304 00 00 00 00 00 00 00 00 00 00 2e 73 65 74 75 70

0000320 00 00 e0 43 00 00 00 02 00 00 e0 43 00 00 00 02

0000336 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00

0000352 50 60 2e 72 65 6c 6f 63 00 00 20 00 00 00 e0 45

0000368 00 00 20 00 00 00 e0 45 00 00 00 00 00 00 00 00

0000384 00 00 00 00 00 00 40 00 10 42 2e 74 65 78 74 00
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0000400 00 00 80 f3 8d 00 00 46 00 00 80 f3 8d 00 00 46

0000416 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00

0000432 50 60 2e 62 73 73 00 00 00 00 80 86 26 02 80 39

0000448 8e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000464 00 00 00 00 00 00 80 00 00 c8 00 00 00 00 00 00

0000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff

0000496 ff 22 01 00 38 df 08 00 00 00 ff ff 00 00 55 aa

0000512 eb 66 48 64 72 53 0d 02 00 00 00 00 00 10 c0 37

0000528 00 01 00 80 00 00 10 00 00 00 00 00 00 00 00 00

0000544 00 00 00 00 50 5a 00 00 00 00 00 00 ff ff ff 7f

0000560 00 00 00 01 01 15 3f 00 ff 07 00 00 00 00 00 00

0000576 00 00 00 00 00 00 00 00 b1 03 00 00 11 f3 89 00

0000592 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00

0000608 00 c0 b4 02 90 01 00 00 8c d8 8e c0 fc 8c d2 39

0000624 c2 89 e2 74 16 ba 50 58 f6 06 11 02 80 74 04 8b

</snip>

# od -A d -t x1 /boot/vmlinuz-5.3.7-301.fc31.x86_64 | grep -i '1f 8b 08 00'

0018864 8f 1f 8b 08 00 00 00 00 00 02 03 ec fd 79 7c 54

So, on 0018864, the actual kernel (vmlinux) starts, whereas the vmlinuz file starts 

at 0000000. This means from 0000000 to 0018864, what we have is the header of the 

file, such as header.S, misc.c, etc. This will extract the actual kernel (vmlinux) from 

vmlinuz. You can consider a header to be like a cap on a vmlinux binary, and when this 

cap is available, it becomes vmlinuz. In the following sections, we will see how the kernel 

routine extracts vmlinuz.

 extract_kernel
Let’s get back to the extract_kernel function from arch/x86/boot/compressed/misc.c.

asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,

                                          unsigned char *input_data,

                                          unsigned long input_len,

                                          unsigned char *output,

                                          unsigned long output_len)
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As you can see, the function will accept seven arguments.

Argument Purpose

rmode A pointer to the boot_params structure that is filled by the bootloader

heap A pointer to the boot_heap file that represents the start address of the early 

boot heap

input_data A pointer to the start of the compressed kernel or in other words a pointer to 

arch/x86/boot/compressed/vmlinux.bin.bz2

input_len The size of the compressed kernel

output The start address of the future decompressed kernel

output_len The size of decompressed kernel

run_size The amount of space needed to run the kernel including .bss and .brk sections

Along with the kernel, the bootloader will also load initramfs in memory. We will 

talk about initramfs in Chapter 5. So, before extracting the kernel image, the header 

or the kernel routine has to take care that the vmlinuz extraction will not overwrite or 

overlap the already loaded initramfs image. So, the extract_kernel function will also 

take care of calculating the initramfs address space and will adjust the kernel image 

decompression accordingly. Once we get the correct address where the header can 

decompress vmlinuz, it will extract the kernel there.

340 asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,

341                                   unsigned char *input_data,

342                                   unsigned long input_len,

343                                   unsigned char *output,

344                                   unsigned long output_len)

345 {

346         const unsigned long kernel_total_size = VO__end - VO__text;

347         unsigned long virt_addr = LOAD_PHYSICAL_ADDR;

348         unsigned long needed_size;

349

350          /* Retain x86 boot parameters pointer passed from 

startup_32/64. */

351         boot_params = rmode;
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352

353         /* Clear flags intended for solely in-kernel use. */

354         boot_params->hdr.loadflags &= ~KASLR_FLAG;

355

356         sanitize_boot_params(boot_params);

357

358         if (boot_params->screen_info.orig_video_mode == 7) {

359                 vidmem = (char *) 0xb0000;

360                 vidport = 0x3b4;

361         } else {

362                 vidmem = (char *) 0xb8000;

363                 vidport = 0x3d4;

364         }

365

366         lines = boot_params->screen_info.orig_video_lines;

367         cols = boot_params->screen_info.orig_video_cols; 

368

369         console_init();

370

371         /*

372           *  Save RSDP address for later use. Have this after console_

init()

373           *  so that early debugging output from the RSDP parsing code 

can be

374          * collected.

375          */

376         boot_params->acpi_rsdp_addr = get_rsdp_addr();

377

378         debug_putstr("early console in extract_kernel\n");

379

380         free_mem_ptr     = heap;        /* Heap */

381         free_mem_end_ptr = heap + BOOT_HEAP_SIZE;

382

383         /*
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384          *  The memory hole needed for the kernel is the larger of 

either

385          * the entire decompressed kernel plus relocation table, or the

386          * entire decompressed kernel plus .bss and .brk sections.

387          *

388          * On X86_64, the memory is mapped with PMD pages. Round the

389          * size up so that the full extent of PMD pages mapped is

390          * included in the check against the valid memory table

391          * entries. This ensures the full mapped area is usable RAM

392          * and doesnt include any reserved areas.

393          */

394         needed_size = max(output_len, kernel_total_size);

395 #ifdef CONFIG_X86_64

396         needed_size = ALIGN(needed_size, MIN_KERNEL_ALIGN);

397 #endif

398

399         /* Report initial kernel position details. */

400         debug_putaddr(input_data);

401         debug_putaddr(input_len);

402         debug_putaddr(output);

403         debug_putaddr(output_len);

404         debug_putaddr(kernel_total_size);

405         debug_putaddr(needed_size);

406

407 #ifdef CONFIG_X86_64

408         /* Report address of 32-bit trampoline */

409         debug_putaddr(trampoline_32bit);

410 #endif

411

412         choose_random_location((unsigned long)input_data, input_len,

413                                 (unsigned long *)&output,

414                                 needed_size,

415                                 &virt_addr);

416

417         /* Validate memory location choices. */
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418         if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))

419                  error("Destination physical address inappropriately 

aligned");

420         if (virt_addr & (MIN_KERNEL_ALIGN - 1))

421                  error("Destination virtual address inappropriately 

aligned");

422 #ifdef CONFIG_X86_64

423         if (heap > 0x3fffffffffffUL)

424                 error("Destination address too large");

425          if (virt_addr + max(output_len, kernel_total_size) > KERNEL_

IMAGE_SIZE)

426                  error("Destination virtual address is beyond the kernel 

mapping area");

427 #else

428         if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))

429                 error("Destination address too large");

430 #endif

431 #ifndef CONFIG_RELOCATABLE

432         if ((unsigned long)output != LOAD_PHYSICAL_ADDR)

433                  error("Destination address does not match LOAD_

PHYSICAL_ADDR");

434         if (virt_addr != LOAD_PHYSICAL_ADDR)

435                  error("Destination virtual address changed when not 

relocatable");

436 #endif

437

438         debug_putstr("\nDecompressing Linux... ");

439         __decompress(input_data, input_len, NULL, NULL, output, output_len,

440                         NULL, error);

441         parse_elf(output);

442         handle_relocations(output, output_len, virt_addr);

443         debug_putstr("done.\nBooting the kernel.\n");

444         return output;

445 }
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The decompression method will be chosen according to the compression algorithm 

used at the time of kernel compilation. The decompression methods can be seen in the 

same misc.c file.

           <snip from misc.c>

 57 #ifdef CONFIG_KERNEL_GZIP

 58 #include "../../../../lib/decompress_inflate.c"

 59 #endif

 60

 61 #ifdef CONFIG_KERNEL_BZIP2

 62 #include "../../../../lib/decompress_bunzip2.c"

 63 #endif

 64

 65 #ifdef CONFIG_KERNEL_LZMA

 66 #include "../../../../lib/decompress_unlzma.c"

 67 #endif

 68

 69 #ifdef CONFIG_KERNEL_XZ

 70 #include "../../../../lib/decompress_unxz.c"

 71 #endif

 72

 73 #ifdef CONFIG_KERNEL_LZO

 74 #include "../../../../lib/decompress_unlzo.c"

 75 #endif

     </snip>

Once the kernel is decompressed in memory, the entry point of the extracted kernel 

will be obtained from the extract_kernel function, and the CPU will jump inside a kernel.

 Inside the Kernel
The kernel does numerous things, but I will list what is of most interest to you as 

someone learning about booting.

• The kernel will set the kernel stack size to 16 KB if the architecture 

is 64-bit. This means every new process will get its own kernel stack 

which will be 16 KB in size.
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• page_size will be set to 4 KB, which is the default page size on an 

Intel 64-bit architecture.

• The kernel will prepare the interrupt and exception handling 

mechanism also called the interrupt descriptor table (IDT).

• The kernel will set the page fault handling mechanism.

• The kernel will collect the initramfs file details such as file name, size, 

address, relocation address, major and minor numbers of a new root 

device, etc., from /arch/x86/kernel/setup.c.

• Then it extracts initramfs from the source code file init/

initramfs.c.

• Finally, it launches systemd by using the start_kernel function of 

init/main.c.

You will notice that this is the first time we came outside of the arch directory. 

That means we can consider this code as architecture independent. Once the kernel is 

launched, it does numerous things, and it is almost impossible to cover all of it in this 

book. In terms of booting, the kernel’s motto is to launch systemd from initramfs. Since 

initramfs has already been loaded in memory by the bootloader, extracting the initramfs 

kernel requires the initramfs file details, which the kernel will get from /arch/x86/

kernel/setup.c.

      Initramfs file name,

      Initramfs file size,

      Initramfs files address,

      Initramfs files relocation address,

      Major and minor numbers on which initramfs will be mounted.

Once the kernel receives the details of the initramfs file, it will extract the initramfs 

archive from the init/initramfs.c file. We will discuss how exactly the kernel extracts 

initramfs in memory in Chapter 5. To mount initramfs as a root device, it needs virtual 

filesystems like proc, sys, dev, etc., so the kernel accordingly prepares them.

    err = register_filesystem(&proc_fs_type);

        if (err)

        return;
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The kernel will later mount the extracted initramfs as a root with the help of the do_

mount_root function of init/do_mounts.c. Once the initramfs is mounted in memory, 

the kernel will launch systemd from it. systemd will be launched through the same 

start_kernel function of an init/main.c file.

     asmlinkage void __init start_kernel(void)

Basically, once the root filesystem is ready, it will get inside the root filesystem and 

will create two threads: PID 1 is a systemd process, and PID 2 is a kthread. For better 

understanding, please refer to the flowchart shown in Figure 4-4.

Figure 4-4. The flowchart, updated again
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Figure 4.4. (continued)

Figure 4-5 shows the complete boot sequence that we have discussed so far.
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Figure 4-5. The boot sequence in a block diagram
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Before we continue and look at how the kernel extracts initramfs and runs systemd 

from it, we need to understand the basics of initramfs such as why we need it, what its 

structure is, etc. Once we understand the importance and basics of initramfs, we will 

continue our booting sequence with systemd’s role in the boot sequence.
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CHAPTER 5

initramfs
In this chapter, we will discuss why we really need initramfs and why it’s important in the 

booting procedure. We know that initramfs is loaded into memory by the bootloader, but 

we haven’t discussed yet how initramfs is extracted. This chapter will address that. We 

will also see the steps to extract, rebuild, and customize initramfs. Later, we will see the 

structure of initramfs as well as the booting sequence of a system inside initramfs.

 Why initramfs?
The aim of the booting procedure is to present the user with their own files that reside in 

the root filesystem. In other words, it is the kernel’s duty to find, mount, and present the 

user’s root filesystem to the user. To achieve this goal, the kernel has to run the systemd 

binary, which again resides in the user’s root filesystem. Now this has become a chicken- 

and- egg problem. To run a systemd process, first we have to mount the root filesystem, 

and to mount the root filesystem, we have to run systemd from the root filesystem. Also, 

along with the actual root filesystem, users might have files on some other filesystems 

such as NFS, CIFS, etc., and that list of other filesystems is also inside the root filesystem 

(/etc/fstab).

So, to solve this chicken-and-egg problem, the developers came up with a resolution 

called initramfs (which means “initial RAM filesystem”). initramfs is a temporary 

root filesystem (inside the main memory) that will be used to mount the actual root 

filesystem (from the hard disk or network). So, the whole purpose of initramfs is to 

mount the user’s root filesystem from the HDD/network. Ideally, the kernel is capable 

enough to mount the root filesystem from disk on its own without initramfs, but these 

days a user’s root filesystem could be anywhere. It could be on RAID, on an LVM, or on 

a multipath device. It could be on n number of filesystem types like XFS, BTRFS, ext4, 

ext3, NFS, etc. It could even be on an encrypted filesystem like LUKS. So, it is almost 
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impossible for a kernel to incorporate all these scenarios in its own vmlinux binary. Let 

me provide some real-life scenarios in this section.

Let’s say the root file system is on NFS and there is no initramfs concept. That means 

the kernel has to mount the user’s root filesystem from NFS on its own. In such a case, 

the kernel has to achieve the following tasks:

 1. Bring up the primary network interface.

 2. Invoke a DHCP client and get an IP address from the DHCP server.

 3. Find the NFS share and associated NFS server.

 4. Mount the NFS share (the root filesystem).

To achieve these steps, the kernel needs to have the following binaries: 

NetworkManager, dhclient, mount, etc.

Now let’s say the root filesystem is on a software RAID device. Then the kernel has to 

do the following tasks:

 1. Find the RAID disks first with mdadm --examine --scan.

 2. Once the underlying disks on which the software RAID is spanned 

are identified, it has to assemble the RAID with mdadm --assemble 

--scan.

 3. To achieve this, the kernel needs to have the mount and mdadm 

binaries and some configuration files of the software RAID 

devices.

Now let’s say the root file system is on a logical volume. Then the kernel has to finish 

the following tasks on its own:

 1. Find the physical volumes with pvs.

 2. Find the volume group with vgscan and then activate it with 

vgchange.

 3. Scan the LVS with lvscan.

 4. Finally, once the root lv is populated, mount it as a root 

filesystem.

 5. To achieve this, the kernel needs to have pvscan, pvs, lvscan, 

vgscan, lvs, and vgchange-like binaries.
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Let’s say the root filesystem is on an encrypted block device. Then the kernel has to 

complete the following tasks:

 1. Collect a password from the user and/or insert a hardware token 

(such as a smart card or a USB security dongle).

 2. Create a decryption target with the device mapper.

To achieve all of this, the kernel needs LUKS-related binaries.

For a kernel, it is not possible to incorporate all of these root filesystem possibilities; 

hence, developers have come up with the initramfs concept whose sole purpose is to 

mount the root filesystem.

The kernel can still perform all of the steps we have discussed. For example, if you 

build a simple command-line Linux system from LFS (www.linuxfromscratch.org/), 

you don’t need initramfs to mount a root filesystem, as the kernel itself is capable 

enough to mount the root filesystem. But the moment you try to add a GUI into it 

through BLFS, you need initramfs.

So, the conclusion is that the kernel can mount the root filesystem on its own, 

but for that, the kernel has to keep all of the discussed binaries, supportive libraries, 

configuration files, etc., in the vmlinuz file. This will create a lot of issues.

• It will spoil the main motive of the kernel binary.

• The kernel binary will be huge in size. The bigger size of the binary 

will be difficult to maintain.

• The huge binary is difficult to manage, upgrade, share, and handle on 

servers (in terms of RPM packages).

• The approach won’t be as per the KISS rule (keep it simple, stupid).

 Infrastructure
To understand the initramfs structure, we need to first understand three different 

filesystems.
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 ramfs
For ease of understanding, we will compare ramfs to the kernel’s caching mechanism. 

Linux has a unique feature called a page cache. Whenever you perform any I/O 

transactions, it caches those transactions in pages. Caching pages in memory is always 

good. This will save our future I/O transactions. And whenever the system encounters 

a low-memory situation, the kernel just discards these cached pages from memory. 

ramfs is just like our cache memory. But the issue with ramfs is that it does not have 

backing storage; hence, it cannot swap out the pages (swap is again a storage device). 

So, obviously, the kernel will not be able to free this memory as there is no place to save 

these pages. Hence, ramfs will keep growing, and you cannot really put a limit on its size. 

What we can do is allow only root users to write into ramfs to ease the situation.

 tmpfs
tmpfs is just like ramfs but with a few additions. We can put a limit on the size of tmpfs, 

which we were not able to do in ramfs. Also, tmpfs pages can use swap space.

 rootfs
rootfs is a tmpfs that is an instance of ramfs. The advantage of rootfs is you cannot 

unmount it. This is because of the same reason you can’t kill the systemd process.

initramfs uses ramfs as a filesystem, and the space occupied by initramfs in memory 

will be released once the user’s root filesystem has been mounted.

# dmesg | grep Free

[    0.813330] Freeing SMP alternatives memory: 36K

[    3.675187] Freeing initrd memory: 32548K    <<<=======<<<<<<===== NOTE

[    5.762702] Freeing unused decrypted memory: 2040K

[    5.767001] Freeing unused kernel image memory: 2272K

[    5.776841] Freeing unused kernel image memory: 2016K

[    5.783116] Freeing unused kernel image memory: 1580K
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Earlier, instead of initramfs, Linux used to use initrd (initial RAM disk), but initrd 

is deprecated now, and hence we will list only a few important points for comparison 

with initramfs.

initrd

• Being formatted/treated as a block device means initrd cannot 

scale. That means once you bring initrd in memory and consider it 

as a block device, you cannot increase or decrease its size.

• We will waste some of the memory in cache as initrd is considered 

as a block device, because the Linux kernel is designed to keep the 

block device contents in cache to reduce I/O transactions. In short, 

unnecessarily the kernel will cache the initrd contents, which are 

already in memory.

Initramfs

• In initrd, there will always be the overhead of the filesystem driver 

and its binaries like mke2fs. The mke2fs command is used to create 

ext2/3/4 filesystems. This means some of the RAM area will first be 

formatted, with the ext2/3/4 filesystem by mke2fs, and then initrd 

will be extracted on it, whereas initramfs is just like tmpfs, which you 

can grow or shrink any time on the fly.

• There is no duplication of data between block devices and cache.

• To use initramfs as the root filesystem, the kernel does not need any 

driver or binary like mke2fs as the initramfs archive will be extracted 

in main memory as it is.

# ls -lh /boot/initramfs-5.3.7-301.fc31.x86_64.img

-rw-------. 1 root root 32M Dec  9 10:19 /boot/initramfs-5.3.7-301.fc31.

x86_64.img
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We can use the lsinitrd tool to see the contents of initramfs, or we can extract 

initramfs with the help of the skipcpio tool.

#lsinitrd

<snip>

Image: /boot/initramfs-5.3.7-301.fc31.x86_64.img: 32M

========================================================================

Early CPIO image

========================================================================

drwxr-xr-x   3 root     root            0 Jul 25  2019 .

-rw-r--r--   1 root     root            2 Jul 25  2019 early_cpio

drwxr-xr-x   3 root     root            0 Jul 25  2019 kernel

drwxr-xr-x   3 root     root            0 Jul 25  2019 kernel/x86

drwxr-xr-x   2 root     root            0 Jul 25  2019 kernel/x86/microcode

-rw-r--r--   1 root     root       100352 Jul 25  2019 kernel/x86/

microcode/GenuineIntel.bin

========================================================================

Version: dracut-049-27.git20181204.fc31.1

Arguments: -f

dracut modules:

bash

systemd

systemd-initrd

nss-softokn

i18n

network-manager

network

ifcfg

drm

plymouth

dm

kernel-modules

kernel-modules-extra

kernel-network-modules

lvm
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qemu

qemu-net

resume

rootfs-block

terminfo

udev-rules

dracut-systemd

usrmount

base

fs-lib

shutdown

========================================================================

drwxr-xr-x  12 root     root            0 Jul 25  2019 .

crw-r--r--   1 root     root       5,   1 Jul 25  2019 dev/console

crw-r--r--   1 root     root       1,  11 Jul 25  2019 dev/kmsg

crw-r--r--   1 root     root       1,   3 Jul 25  2019 dev/null

crw-r--r--   1 root     root       1,   8 Jul 25  2019 dev/random

crw-r--r--   1 root     root       1,   9 Jul 25  2019 dev/urandom

lrwxrwxrwx   1 root     root            7 Jul 25  2019 bin -> usr/bin

drwxr-xr-x   2 root     root            0 Jul 25  2019 dev

drwxr-xr-x  11 root     root            0 Jul 25  2019 etc

drwxr-xr-x   2 root     root            0 Jul 25  2019 etc/cmdline.d

drwxr-xr-x   2 root     root            0 Jul 25  2019 etc/conf.d

-rw-r--r--   1 root     root           124 Jul 25  2019 etc/conf.d/systemd.

conf

-rw-r--r--   1 root     root            0 Jul 25  2019 etc/fstab.empty

-rw-r--r--   1 root     root          240 Jul 25  2019 etc/group

-rw-r--r--   1 root     root           22 Jul 25  2019 etc/hostname

lrwxrwxrwx   1 root     root            25 Jul 25  2019 etc/initrd-release 

-> ../usr/lib/initrd-release

-rw-r--r--   1 root     root         8581 Jul 25  2019 etc/ld.so.cache

-rw-r--r--   1 root     root           28 Jul 25  2019 etc/ld.so.conf

drwxr-xr-x   2 root     root            0 Jul 25  2019 etc/ld.so.conf.d

-rw-r--r--   1 root     root            17 Jul 25  2019 etc/ld.so.conf.d/

libiscsi-x86_64.conf
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-rw-rw-r--   1 root     root           19 Jul 25  2019 etc/locale.conf

drwxr-xr-x   2 root     root            0 Jul 25  2019 etc/lvm

-rw-r--r--   1 root     root       102256 Jul 25  2019 etc/lvm/lvm.conf

-rw-r--r--   1 root     root         2301 Jul 25  2019 etc/lvm/lvmlocal.conf

-r--r--r--   1 root     root           33 Jul 25  2019 etc/machine-id

drwxr-xr-x   2 root     root            0 Jul 25  2019 etc/modprobe.d

</snip>

To extract the contents of initramfs, use the skipcpio binary from /usr/lib/

dracut/skipcpio/. The skipcpio is provided by the dracut tool. We will cover dracut in 

Chapter 6.

#/usr/lib/dracut/skipcpio initramfs-5.3.7-301.fc31.x86_64.img | gunzip -c | 

cpio -idv

If you look at the extracted initramfs contents, you will be surprised to know that it 

looks just like the user’s root filesystem. Please note that we have extracted initramfs into 

the /root/boot directory.

# ls -lh /root/boot/

total 44K

lrwxrwxrwx.  1 root root    7 Mar 26 18:03 bin -> usr/bin

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 dev

drwxr-xr-x. 11 root root 4.0K Mar 26 18:03 etc

lrwxrwxrwx.  1 root root   23 Mar 26 18:03 init -> usr/lib/systemd/systemd

lrwxrwxrwx.  1 root root    7 Mar 26 18:03 lib -> usr/lib

lrwxrwxrwx.  1 root root    9 Mar 26 18:03 lib64 -> usr/lib64

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 proc

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 root

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 run

lrwxrwxrwx.  1 root root    8 Mar 26 18:03 sbin -> usr/sbin

-rwxr-xr-x.  1 root root 3.1K Mar 26 18:03 shutdown

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 sys

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 sysroot

drwxr-xr-x.  2 root root 4.0K Mar 26 18:03 tmp

drwxr-xr-x.  8 root root 4.0K Mar 26 18:03 usr

drwxr-xr-x.  3 root root 4.0K Mar 26 18:03 var
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You will find bin, sbin, usr, etc, var, lib, and lib64-like directories that we used 

to see in our user’s root filesystem. Along with that, you will notice the virtual filesystem 

directories such as dev, run, proc, sys, etc. So, initramfs is just like the user’s root 

filesystem. Let’s explore each directory for the better understanding of the initramfs 

implementation.

 initramfs Implementation
Now we will look as the contents of initramfs and how exactly initramfs is organized. 

Through this section, you will realize that initramfs is nothing but a small root filesystem.

bin
 Normal Binaries
We can use all the following binaries on a system that has finished its booting procedure. 

Since all these binaries are available inside initramfs, when the system is still booting, we 

will be able to use all these commands at the time of the boot. 

cat, chown, cp, dmesg, echo, grep, gzip, less, ln, mkdir, mv, ps, rm, sed, 

sleep, umount, uname, vi, loadkeys, kbd_mode, flock, tr, true, stty, mount, 

sort etc.

[root@fedorab boot]# ls -la bin/

total 7208

drwxr-xr-x. 2 root root    4096 Jan 10 12:01 .

drwxr-xr-x. 8 root root    4096 Dec 19 14:30 ..

-rwxr-xr-x. 1 root root 1237376 Dec 19 14:30 bash

-rwxr-xr-x. 1 root root   50160 Dec 19 14:30 cat

-rwxr-xr-x. 1 root root   82688 Dec 19 14:30 chown

-rwxr-xr-x. 1 root root  177144 Dec 19 14:30 cp

-rwxr-xr-x. 1 root root   89344 Dec 19 14:30 dmesg

-rwxr-xr-x. 1 root root    2666 Dec 19 14:30 dracut-cmdline

-rwxr-xr-x. 1 root root     422 Dec 19 14:30 dracut-cmdline-ask

-rwxr-xr-x. 1 root root    1386 Dec 19 14:30 dracut-emergency

-rwxr-xr-x. 1 root root    2151 Dec 19 14:30 dracut-initqueue
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-rwxr-xr-x. 1 root root    1056 Jan 10 12:01 dracut-mount

-rwxr-xr-x. 1 root root     517 Dec 19 14:30 dracut-pre-mount

-rwxr-xr-x. 1 root root     928 Dec 19 14:30 dracut-pre-pivot

-rwxr-xr-x. 1 root root     482 Dec 19 14:30 dracut-pre-trigger

-rwxr-xr-x. 1 root root    1417 Dec 19 14:30 dracut-pre-udev

-rwxr-xr-x. 1 root root   45112 Dec 19 14:30 echo

-rwxr-xr-x. 1 root root   76768 Dec 19 14:30 findmnt

-rwxr-xr-x. 1 root root   38472 Dec 19 14:30 flock

-rwxr-xr-x. 1 root root  173656 Dec 19 14:30 grep

-rwxr-xr-x. 1 root root  107768 Dec 19 14:30 gzip

-rwxr-xr-x. 1 root root   78112 Dec 19 14:30 journalctl

-rwxr-xr-x. 1 root root   17248 Dec 19 14:30 kbd_mode

-rwxr-xr-x. 1 root root  387504 Dec 19 14:30 kmod

-rwxr-xr-x. 1 root root  192512 Dec 19 14:30 less

-rwxr-xr-x. 1 root root   85992 Dec 19 14:30 ln

-rwxr-xr-x. 1 root root  222616 Dec 19 14:30 loadkeys

lrwxrwxrwx. 1 root root       4 Dec 19 14:30 loginctl -> true

-rwxr-xr-x. 1 root root  158056 Dec 19 14:30 ls

-rwxr-xr-x. 1 root root   99080 Dec 19 14:30 mkdir

-rwxr-xr-x. 1 root root   80264 Dec 19 14:30 mkfifo

-rwxr-xr-x. 1 root root   84560 Dec 19 14:30 mknod

-rwsr-xr-x. 1 root root   58984 Dec 19 14:30 mount

-rwxr-xr-x. 1 root root  169400 Dec 19 14:30 mv

-rwxr-xr-x. 1 root root   50416 Dec 19 14:30 plymouth

-rwxr-xr-x. 1 root root  143408 Dec 19 14:30 ps

-rwxr-xr-x. 1 root root   60376 Dec 19 14:30 readlink

-rwxr-xr-x. 1 root root   83856 Dec 19 14:30 rm

-rwxr-xr-x. 1 root root  127192 Dec 19 14:30 sed

-rwxr-xr-x. 1 root root   52272 Dec 19 14:30 setfont

-rwxr-xr-x. 1 root root   16568 Dec 19 14:30 setsid

lrwxrwxrwx. 1 root root       4 Dec 19 14:30 sh -> bash

-rwxr-xr-x. 1 root root   46608 Dec 19 14:30 sleep

-rwxr-xr-x. 1 root root  140672 Dec 19 14:30 sort

-rwxr-xr-x. 1 root root   96312 Dec 19 14:30 stat
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-rwxr-xr-x. 1 root root   92576 Dec 19 14:30 stty

-rwxr-xr-x. 1 root root  240384 Dec 19 14:30 systemctl

-rwxr-xr-x. 1 root root   20792 Dec 19 14:30 systemd-cgls

-rwxr-xr-x. 1 root root   19704 Dec 19 14:30 systemd-escape

-rwxr-xr-x. 1 root root   62008 Dec 19 14:30 systemd-run

-rwxr-xr-x. 1 root root   95168 Dec 19 14:30 systemd-tmpfiles

-rwxr-xr-x. 1 root root  173752 Dec 19 14:30 teamd

-rwxr-xr-x. 1 root root   58400 Dec 19 14:30 tr

-rwxr-xr-x. 1 root root   45112 Dec 19 14:30 true

-rwxr-xr-x. 1 root root  442552 Dec 19 14:30 udevadm

-rwsr-xr-x. 1 root root   41912 Dec 19 14:30 umount

-rwxr-xr-x. 1 root root   45120 Dec 19 14:30 uname

-rwxr-xr-x. 1 root root 1353704 Dec 19 14:30 vi

 Special Binaries

Special Binary Purpose

bash initramfs will provide us with a shell at the time of boot.

mknod We will be able to create devices.

udevadm We will be able to manage devices. dracut uses udev, an event-driven tool, 

which will launch certain programs such as lvm, mdadm, etc., when certain udev 

rules are matched. for example, whenever certain udev rules are matched, 

storage volumes and network card device files will appear under /dev.

kmod a tool to manage the kernel modules.

 Networking Binaries
There is only one network related binary available under bin and that is teamd (initramfs 

can handle the teaming network devices).
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 Hooks
We will discuss hooks in Chapters 7 and 9.

dracut-cmdline               dracut-cmdline-ask

dracut-emergency             dracut -initqueue

dracut-mount                 dracut -pre-pivot

dracut - pre-trigger         dracut -pre-udev

 Systemd Binaries

Binary Purpose

systemd this is the parent of every process that is a replacement of init. this is the 

first process, which runs the moment we enter initramfs.

systemctl systemd’s service manager.

systemd- cgls this will list the existing control groups (cgroups).

systemd- escape this will convert the string in systemd unit format, also called escaping.

systemd- run this can run the programs as a service but in transient scope.

systemd- tmpfiles this creates, deletes, and cleans up volatile and temporary files and directories.

journalctl a tool to deal with systemd journal.

 Sbin
 Filesystem and Storage-Related Binaries

Binary Purpose

blkid to read device attributes

chroot to change the root filesystem device

e2fsck to check ext2/3/4 filesystems

fsck, fsck.ext4 to check and repair the filesystem

swapoff in case you want to stop the swap device
(continued)
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Binary Purpose

dmsetup a device mapper tool for LVm management

dmeventd a device mapper event daemon

lvm an LVm management tool that will provide lvscan, vgscan, vgchange, 

pvs, etc., commands

lvm_scan a script to find the LVm devices

 Networking Binaries

Binaries Purpose

dhclient to get the ip from the DhCp server

losetup to set the loop device

Netroot a support for a root over the network

NetworkManager a tool to manage the network devices

 Special Binaries

Binaries Purpose

depmod to generate modules.dep (symlink of kmod)

lsmod to list the loaded modules (symlink of kmod)

modinfo to print the module’s information (symlink of kmod)

modprobe to load or insert the modules (symlink of kmod)

rmmod to remove the loaded module (symlink of kmod)

init / systemd a first process

kexec a kexec kernel that is used by the Kdump

udevadm Udev manager
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 Basic Binaries
Finally, here are the basic binaries:

Halt, poweroff, reboot

 [root@fedorab boot]# ls -lah sbin/

total 13M

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 8 root root 4.0K Dec 19 14:30 ..

-rwxr-xr-x. 1 root root 126K Dec 19 14:30 blkid

-rwxr-xr-x. 1 root root  50K Dec 19 14:30 chroot

lrwxrwxrwx. 1 root root   11 Dec 19 14:30 depmod -> ../bin/kmod

-rwxr-xr-x. 1 root root 2.9M Dec 19 14:30 dhclient

-r-xr-xr-x. 1 root root  45K Dec 19 14:30 dmeventd

-r-xr-xr-x. 1 root root 159K Dec 19 14:30 dmsetup

-rwxr-xr-x. 2 root root 340K Dec 19 14:30 e2fsck

-rwxr-xr-x. 1 root root  58K Dec 19 14:30 fsck

-rwxr-xr-x. 2 root root 340K Dec 19 14:30 fsck.ext4

lrwxrwxrwx. 1 root root   16 Dec 19 14:30 halt -> ../bin/systemctl

lrwxrwxrwx. 1 root root   22 Dec 19 14:30 init -> ../lib/systemd/systemd

-rwxr-xr-x. 1 root root 1.2K Dec 19 14:30 initqueue

lrwxrwxrwx. 1 root root   11 Dec 19 14:30 insmod -> ../bin/kmod

-rwxr-xr-x. 1 root root  197 Dec 19 14:30 insmodpost.sh

-rwxr-xr-x. 1 root root 203K Dec 19 14:30 kexec

-rwxr-xr-x. 1 root root  496 Dec 19 14:30 loginit

-rwxr-xr-x. 1 root root 117K Dec 19 14:30 losetup

lrwxrwxrwx. 1 root root   11 Dec 19 14:30 lsmod -> ../bin/kmod

-r-xr-xr-x. 1 root root 2.4M Dec 19 14:30 lvm

-rwxr-xr-x. 1 root root 3.5K Dec 19 14:30 lvm_scan

lrwxrwxrwx. 1 root root   11 Dec 19 14:30 modinfo -> ../bin/kmod

lrwxrwxrwx. 1 root root   11 Dec 19 14:30 modprobe -> ../bin/kmod

-rwxr-xr-x. 1 root root 2.7K Dec 19 14:30 netroot

-rwxr-xr-x. 1 root root 5.3M Dec 19 14:30 NetworkManager

-rwxr-xr-x. 1 root root  16K Dec 19 14:30 nologin

-rwxr-xr-x. 1 root root 150K Dec 19 14:30 plymouthd

lrwxrwxrwx. 1 root root   16 Dec 19 14:30 poweroff -> ../bin/systemctl
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-rwxr-xr-x. 1 root root 1.4K Dec 19 14:30 rdsosreport

lrwxrwxrwx. 1 root root   16 Dec 19 14:30 reboot -> ../bin/systemctl

lrwxrwxrwx. 1 root root   11 Dec 19 14:30 rmmod -> ../bin/kmod

-rwxr-xr-x. 1 root root  25K Dec 19 14:30 swapoff

-rwxr-xr-x. 1 root root 6.0K Dec 19 14:30 tracekomem

lrwxrwxrwx. 1 root root   14 Dec 19 14:30 udevadm -> ../bin/udevadm

Isn’t it amazing to see that without having an actual user’s root filesystem we will be 

able to use and manage the shell, network, modules, devices, etc.? In other words, you 

do not really need a user’s root filesystem, unless a user wants to access their private 

files, that is. Just kidding.

Now a question comes to mind: where and how can we use all of these commands? 

These binaries or commands will be automatically used by initramfs. Or, to say it 

correctly, these binaries or commands will be used by the systemd of initramfs to mount 

the user’s actual root filesystem, but if systemd fails to do so, it will provide us with a 

shell, and we will be able to use these commands and troubleshoot further. We will 

discuss this in Chapters 7, 8, and 9.

 etc
The binaries from the bin and sbin directories will have their own configuration files, 

and they will be stored in the etc directory of initramfs.

 [root@fedorab boot]# tree etc/

etc/

├── cmdline.d
├── conf.d
│   └── systemd.conf
├── fstab.empty
├── group
├── hostname
├── initrd-release -> ../usr/lib/initrd-release
├── ld.so.cache
├── ld.so.conf
├── ld.so.conf.d
│   └── libiscsi-x86_64.conf
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├── locale.conf
├── lvm
│   ├── lvm.conf
│   └── lvmlocal.conf
├── machine-id
├── modprobe.d
│   ├── firewalld-sysctls.conf
│   ├── kvm.conf
│   ├── lockd.conf
│   ├── mlx4.conf
│   ├── nvdimm-security.conf
│   └── truescale.conf
├── mtab -> /proc/self/mounts
├── os-release -> initrd-release
├── passwd
├── plymouth
│   └── plymouthd.conf
├── sysctl.conf
├── sysctl.d
│   └── 99-sysctl.conf -> ../sysctl.conf
├── systemd
│   ├── journald.conf
│   └── system.conf
├── system-release -> ../usr/lib/fedora-release
├── udev
│   ├── rules.d
│   │   ├── 11-dm.rules
│   │   ├── 59-persistent-storage-dm.rules
│   │   ├── 59-persistent-storage.rules
│   │   ├── 61-persistent-storage.rules
│   │   └── 64-lvm.rules
│   └── udev.conf
├── vconsole.conf
└── virc

10 directories, 35 files
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 Virtual Filesystems
Virtual filesystems are the kind of filesystems whose files are not really present on disk; 

rather, the entire filesystem is available in memory. This has its own advantages and 

disadvantages; for example, you get a very high throughput, but the filesystem cannot 

store the data permanently. There are three virtual filesystems available inside initramfs, 

which are dev, proc, and sys. Here I have given a brief introduction to the filesystems, 

but we will talk about them in detail in the next chapters:

[root@fedorab boot]# ls -lah dev

total 8.0K

drwxr-xr-x.  2 root root  4.0K Dec 19 14:30 .

drwxr-xr-x. 12 root root  4.0K Dec 19 14:33 ..

crw-r--r--.  1 root root 5,  1 Dec 19 14:30 console

crw-r--r--.  1 root root 1, 11 Dec 19 14:30 kmsg

crw-r--r--.  1 root root 1,  3 Dec 19 14:30 null

crw-r--r--.  1 root root 1,  8 Dec 19 14:30 random

crw-r--r--.  1 root root 1,  9 Dec 19 14:30 urandom

[root@fedorab boot]# ls -lah proc/

total 8.0K

drwxr-xr-x.  2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

[root@fedorab boot]# ls -lah sys/

total 8.0K

drwxr-xr-x.  2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

 dev
As of now, there are only five default device files, but as the system boots up, udev will 

fully populate this directory. The console, kmsg, null, random, and urandom devices files 

will be created by the kernel itself, or in other words, these device files are handcrafted 

by using the mknod command, but the rest of the device files will be populated by udev.
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 proc and sys
As soon as the kernel takes control of the booting procedure, the kernel will create 

and populate these directories. The proc filesystem will hold all the processes’ related 

information such as /proc/1/status, whereas sys will hold the device and its driver- 

related information such as /sys/fs/ext4/sda5/errors_count.

 usr, var
As we all know, these days usr is a separate filesystem hierarchy in the root filesystem. 

Our /bin, /sbin, /lib, and /lib64 are nothing but symlinks to usr/bin, usr/sbin, usr/

lib, and usr/lib64.

# ls -l bin

lrwxrwxrwx. 1 root root 7 Dec 21 12:19 bin -> usr/bin

# ls -l sbin

lrwxrwxrwx. 1 root root 8 Dec 21 12:19 sbin -> usr/sbin

# ls -la usr

total 40

drwxr-xr-x.  8 root root  4096 Dec 21 12:19 .

drwxr-xr-x. 12 root root  4096 Dec 21 12:19 ..

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 bin

drwxr-xr-x. 12 root root  4096 Dec 21 12:19 lib

drwxr-xr-x.  4 root root 12288 Dec 21 12:19 lib64

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 libexec

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 sbin

drwxr-xr-x.  5 root root  4096 Dec 21 12:19 share

# ls -la var

total 12

drwxr-xr-x.  3 root root 4096 Dec 21 12:19 .

drwxr-xr-x. 12 root root 4096 Dec 21 12:19 ..

lrwxrwxrwx.  1 root root   11 Dec 21 12:19 lock -> ../run/lock

lrwxrwxrwx.  1 root root    6 Dec 21 12:19 run -> ../run

drwxr-xr-x.  2 root root 4096 Dec 21 12:19 tmp
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 lib, lib64
There are almost 200 libraries, and almost all of them are provided by glibc, such as 

libc.so.6.

The lib and lib64 directories are the symlinks of usr/lib and usr/lib64.

# ls -l lib

lrwxrwxrwx. 1 root root 7 Dec 21 12:19 lib -> usr/lib

# ls -l lib64

lrwxrwxrwx. 1 root root 9 Dec 21 12:19 lib64 -> usr/lib64

# ls -la lib/

total 128

drwxr-xr-x. 12 root root  4096 Dec 21 12:19 .

drwxr-xr-x.  8 root root  4096 Dec 21 12:19 ..

drwxr-xr-x.  3 root root  4096 Dec 21 12:19 dracut

-rwxr-xr-x.  1 root root 34169 Dec 21 12:19 dracut-lib.sh

-rw-r--r--.  1 root root    31 Dec 21 12:19 fedora-release

drwxr-xr-x.  6 root root  4096 Dec 21 12:19 firmware

-rwxr-xr-x.  1 root root  6400 Dec 21 12:19 fs-lib.sh

-rw-r--r--.  1 root root   238 Dec 21 12:19 initrd-release

drwxr-xr-x.  6 root root  4096 Dec 21 12:19 kbd

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 modprobe.d

drwxr-xr-x.  3 root root  4096 Dec 21 12:19 modules

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 modules-load.d

-rwxr-xr-x.  1 root root 25295 Dec 21 12:19 net-lib.sh

lrwxrwxrwx.  1 root root    14 Dec 21 12:19 os-release -> initrd-release

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 sysctl.d

drwxr-xr-x.  5 root root  4096 Dec 21 12:19 systemd

drwxr-xr-x.  2 root root  4096 Dec 21 12:19 tmpfiles.d

drwxr-xr-x.  3 root root  4096 Dec 21 12:19 udev

# ls -la lib64/libc.so.6 

lrwxrwxrwx. 1 root root 12 Dec 21 12:19 lib64/libc.so.6 -> libc-2.30.so
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# dnf whatprovides lib64/libc.so.6

glibc-2.30-5.fc31.x86_64 : The GNU libc libraries

Repo        : @System

Matched from:

Filename    : /lib64/libc.so.6

 initramfs Booting
The basic flow of booting sequence inside initramfs is easy to understand:

 1) Since initramfs is a root filesystem (temporary), it will create the 

environment that is necessary to run the processes. initramfs will 

be mounted as a root filesystem (temporary /), and programs like 

systemd will be started from it.

 2) Afterward, a new user’s root filesystem from your HDD or network 

will be mounted on a temporary directory inside initramfs.

 3) Once the user’s root filesystem is mounted inside initramfs, the 

kernel will start the init binary, which is a symlink to systemd, the 

first process of the operating system.

# ls init -l

 lrwxrwxrwx. 1 root root 23 Dec 21 12:19 init -> usr/lib/systemd/systemd

 4) Once everything is good, the temporary root filesystem (initramfs 

root filesystem) will be unmounted, and systemd will take care 

of the rest of the booting sequence. Chapter 7 will cover systemd 

booting.

We can cross-verify whether the kernel really launches the init/systemd process as 

soon as it extracts initramfs. We can modify the init script for this, but the hurdle is that 

systemd is a binary, whereas init used to be a script. We can edit init easily since it is a 

script file, but we cannot edit the systemd binary. However, to have good understanding 

and to verify our booting sequence to see whether systemd is getting called as soon as 

the kernel extracts initramfs, we will use an init-based system. This would be a fair 

example since systemd is here to replace the init system. Also, init is still a symlink to 

systemd. We will use a Centos 6 system, which is an init-based Linux distribution.
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First extract initramfs.

# zcat  initramfs-2.6.32-573.el6.x86_64.img  |  cpio –idv

[root@localhost initramfs]# ls -lah

total 120K

drwxr-xr-x. 26 root root 4.0K Mar 27 12:56 .

drwxr-xr-x.  3 root root 4.0K Mar 27 12:56 ..

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 bin

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 cmdline

drwxr-xr-x.  3 root root 4.0K Mar 27 12:56 dev

-rw-r--r--.  1 root root   19 Mar 27 12:56 dracut-004-388.el6

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 emergency

drwxr-xr-x.  8 root root 4.0K Mar 27 12:56 etc

-rwxr-xr-x.  1 root root 8.8K Mar 27 12:56 init

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 initqueue

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 initqueue-finished

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 initqueue-settled

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 initqueue-timeout

drwxr-xr-x.  7 root root 4.0K Mar 27 12:56 lib

drwxr-xr-x.  3 root root 4.0K Mar 27 12:56 lib64

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 mount

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 netroot

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 pre-mount

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 pre-pivot

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 pre-trigger

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 pre-udev

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 proc

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 sbin

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 sys

drwxr-xr-x.  2 root root 4.0K Mar 27 12:56 sysroot

drwxrwxrwt.  2 root root 4.0K Mar 27 12:56 tmp

drwxr-xr-x.  8 root root 4.0K Mar 27 12:56 usr

drwxr-xr-x.  4 root root 4.0K Mar 27 12:56 var
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Open an init file and add the following banner in it:

#vim init

   "We are inside the init process. Init is replaced by Systemd"

<snip>

#!/bin/sh

#

# Licensed under the GPLv2

#

# Copyright 2008-2009, Red Hat, Inc.

# Harald Hoyer <harald@redhat.com>

# Jeremy Katz <katzj@redhat.com>

echo "we are inside the init process. Init is replaced by Systemd"

wait_for_loginit()

{

    if getarg rdinitdebug; then

        set +x

        exec 0<>/dev/console 1<>/dev/console 2<>/dev/console

        # wait for loginit

        i=0

        while [ $i -lt 10 ]; do

.

.

.

</snip>

Repack initramfs with the test.img name.

[root@localhost initramfs]# find . | cpio -o -c | gzip -9 > /boot/test.img

163584 blocks

# ls -lh /boot/

total 66M

-rw-r--r--. 1 root root 105K Jul 23  2015 config-2.6.32-573.el6.x86_64

drwxr-xr-x. 3 root root 1.0K Aug  7  2015 efi

-rw-r--r--. 1 root root 163K Jul 20  2011 elf-memtest86+-4.10

drwxr-xr-x. 2 root root 1.0K Dec 21 16:12 grub
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-rw-------. 1 root root  27M Dec 21 15:55 initramfs-2.6.32-573.el6. 

x86_64.img

-rw-------. 1 root root 5.3M Dec 21 16:03 initrd-2.6.32-573.el6.

x86_64kdump.img

drwx------. 2 root root  12K Dec 21 15:54 lost+found

-rw-r--r--. 1 root root 162K Jul 20  2011 memtest86+-4.10

-rw-r--r--. 1 root root 202K Jul 23  2015 symvers-2.6.32-573.el6.x86_64.gz

-rw-r--r--. 1 root root 2.5M Jul 23  2015 System.map-2.6.32-573.el6.x86_64

-rw-r--r--. 1 root root  27M Mar 27 13:16 test.img

-rwxr-xr-x. 1 root root 4.1M Jul 23  2015 vmlinuz-2.6.32-573.el6.x86_64

Boot with the new test.img initramfs, and you will notice right after unpacking 

initramfs that our banner is getting printed.

<snip>

.

.

.

cpuidle: using governor ladder

cpuidle: using governor menu

EFI Variables Facility v0.08 2004-May-17

usbcore: registered new interface driver hiddev

usbcore: registered new interface driver usbhid

usbhid: v2.6:USB HID core driver

GRE over IPv4 demultiplexor driver

TCP cubic registered

Initializing XFRM netlink socket

NET: Registered protocol family 17

registered taskstats version 1

rtc_cmos 00:01: setting system clock to 2020-03-27 07:53:44 UTC (1585295624)

Initalizing network drop monitor service

Freeing unused kernel memory: 1296k freed

Write protecting the kernel read-only data: 10240k

Freeing unused kernel memory: 732k freed

Freeing unused kernel memory: 1576k freed

we are inside the init process. Init is replaced by Systemd

dracut: dracut-004-388.el6
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dracut: rd_NO_LUKS: removing cryptoluks activation

device-mapper: uevent: version 1.0.3

device-mapper: ioctl: 4.29.0-ioctl (2014-10-28) initialised:  

dm-devel@redhat.com

udev: starting version 147

dracut: Starting plymouth daemon

.

.

</snip>

 How Does the Kernel Extract initramfs from Memory?
Let’s take a minute and try to recall whatever we have learned so far.

 1) The bootloader runs first.

 2) The bootloader copies the kernel and initramfs in memory.

 3) The kernel extracts itself.

 4) The bootloader passes on the location of initramfs to the kernel.

 5) The kernel extracts initramfs in memory.

 6) The kernel runs systemd from the extracted initramfs.

The extraction takes place in the kernel’s init/initramfs.c file. The populate_

rootfs function is responsible for the extraction.

populate_rootfs function:

<snip>

.

.

646 static int __init populate_rootfs(void)

647 {

648         /* Load the built in initramfs */

649          char *err = unpack_to_rootfs(__initramfs_start, __initramfs_

size);

650         if (err)
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651                  panic("%s", err); /* Failed to decompress INTERNAL 

initramfs */

652

653         if (!initrd_start || IS_ENABLED(CONFIG_INITRAMFS_FORCE))

654                 goto done;

655

656         if (IS_ENABLED(CONFIG_BLK_DEV_RAM))

657                  printk(KERN_INFO "Trying to unpack rootfs image as 

initramfs...\n");

658         else

659                 printk(KERN_INFO "Unpacking initramfs...\n");

660

661          err = unpack_to_rootfs((char *)initrd_start, initrd_end - 

initrd_start);

662         if (err) {

663                 clean_rootfs();

664                 populate_initrd_image(err);

665         }

666

667 done:

668         /*

669           * If the initrd region is overlapped with crashkernel reserved 

region,

670          * free only memory that is not part of crashkernel region.

671          */

672         if (!do_retain_initrd && initrd_start && !kexec_free_initrd())

673                 free_initrd_mem(initrd_start, initrd_end);

674         initrd_start = 0;

675         initrd_end = 0;

676

677         flush_delayed_fput();

678         return 0;

679 }

.

.

</snip>
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unpack_to_rootfs function:

<snip>

.

.

443 static char * __init unpack_to_rootfs(char *buf, unsigned long len)

444 {

445         long written;

446         decompress_fn decompress;

447         const char *compress_name;

448         static __initdata char msg_buf[64];

449

450         header_buf = kmalloc(110, GFP_KERNEL);

451          symlink_buf = kmalloc(PATH_MAX + N_ALIGN(PATH_MAX) + 1,  

GFP_KERNEL);

452         name_buf = kmalloc(N_ALIGN(PATH_MAX), GFP_KERNEL);

453

454         if (!header_buf || !symlink_buf || !name_buf)

455                 panic("can't allocate buffers");

456

457         state = Start;

458         this_header = 0;

459         message = NULL;

460         while (!message && len) {

461                 loff_t saved_offset = this_header;

462                 if (*buf == '0' && !(this_header & 3)) {

463                         state = Start;

464                         written = write_buffer(buf, len);

465                         buf += written;

466                         len -= written;

467                         continue;

468                 }
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469                 if (!*buf) {

470                         buf++;

471                         len--;

472                         this_header++;

473                         continue;

474                 }

475                 this_header = 0;

476                  decompress = decompress_method(buf, len, &compress_

name);

477                  pr_debug("Detected %s compressed data\n", compress_

name);

478                 if (decompress) {

479                          int res = decompress(buf, len, NULL, flush_

buffer, NULL,

480                                    &my_inptr, error);

481                         if (res)

482                                 error("decompressor failed");

483                 } else if (compress_name) {

484                         if (!message) {

485                                 snprintf(msg_buf, sizeof msg_buf,

486                                           "compression method %s not 

configured",

487                                          compress_name);

488                                 message = msg_buf;

489                         }

490                 } else

491                          error("invalid magic at start of compressed 

archive");

492                 if (state != Reset)

493                         error("junk at the end of compressed archive");

494                 this_header = saved_offset + my_inptr;

495                 buf += my_inptr;

496                 len -= my_inptr;

497         }
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498         dir_utime();

499         kfree(name_buf);

500         kfree(symlink_buf);

501         kfree(header_buf);

502         return message;

503 }

.

.

</snip>

Inside the populate_rootfs function there is a unpack_to_rootfs function. This is 

the worker function that unpacks initramfs and returns 0 for failure and 1 for success. 

Also note the interesting function parameters.

• __initramfs_start:  This is the exact location/address of a  

loaded initramfs (initramfs will be loaded by the bootloader, so 

obviously the address location is also provided by the bootloader 

through boot_protocol).

• __initramfs_size: This is the size of the initramfs image.

 How Does the Kernel Mount initramfs as Root?
The initramfs blob is just an (optionally compressed) cpio file. The kernel extracts it by 

creating a tmpfs/ramfs filesystem in memory as the root filesystem. So, there’s not really 

a fixed location; the kernel just allocates memory for the extracted files as it goes along. 

We have already seen that GRUB 2/the bootloader places the kernel at a specific location 

that will be architecture dependent, but initramfs image extraction does not take place at 

any specific location.

Now before we proceed further with our booting sequence, we need to understand 

the dracut tool, which generates initramfs. This tool will provide us with a better 

understanding of initramfs and systemd.
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CHAPTER 6

dracut
Put simply, dracut is a tool that creates the initramfs filesystem on Fedora-based 

systems. Debian- and Ubuntu-based systems use a similar tool called update-initramfs. 

If you want to generate, regenerate, or customize the existing initramfs, then you should 

know how to use the dracut tool. This chapter will explain how dracut works along with 

how to generate and customize initramfs. Also, you will learn some of the most common 

“can’t boot” issues related to initramfs.

 Getting Started
Every kernel has its own initramfs file, but you might be wondering why you never had to 

use the dracut command to create initramfs while installing a new kernel. Instead, you 

just found the respective initramfs in the /boot location. Well, when you install a new 

kernel, the post-scripts command of the kernel’s rpm package calls dracut and makes 

initramfs for you. Let’s see how it works on a Fedora-based system:

# rpm -q --scripts kernel-core-5.3.7-301.fc31.x86_64

postinstall scriptlet (using /bin/sh):

if [ `uname -i` == "x86_64" -o `uname -i` == "i386" ] &&

   [ -f /etc/sysconfig/kernel ]; then

   /bin/sed -r -i -e 's/^DEFAULTKERNEL=kernel-smp$/DEFAULTKERNEL=kernel/' /

etc/sysconfig/kernel || exit $?

fi

preuninstall scriptlet (using /bin/sh):

/bin/kernel-install remove 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.

fc31.x86_64/vmlinuz || exit $?

posttrans scriptlet (using /bin/sh):

/bin/kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.fc31.

x86_64/vmlinuz || exit $?

https://doi.org/10.1007/978-1-4842-5890-3_6#ESM
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As you can see, the post-scripts command of the kernel package calls the kernel- 

install script. The kernel-install script executes all the scripts that are available at  

/usr/lib/kernel/install.d.

# vim /bin/kernel-install

 94 if ! [[ $MACHINE_ID ]]; then

 95     ENTRY_DIR_ABS=$(mktemp -d /tmp/kernel-install.XXXXX) || exit 1

 96     trap "rm -rf '$ENTRY_DIR_ABS'" EXIT INT QUIT PIPE

 97 elif [[ -d /efi/loader/entries ]] || [[ -d /efi/$MACHINE_ID ]]; then

 98     ENTRY_DIR_ABS="/efi/$MACHINE_ID/$KERNEL_VERSION"

 99 elif [[ -d /boot/loader/entries ]] || [[ -d /boot/$MACHINE_ID ]]; then

100     ENTRY_DIR_ABS="/boot/$MACHINE_ID/$KERNEL_VERSION"

101  elif [[ -d /boot/efi/loader/entries ]] || [[ -d /boot/efi/$MACHINE_ID ]];  

then

102     ENTRY_DIR_ABS="/boot/efi/$MACHINE_ID/$KERNEL_VERSION"

103 elif mountpoint -q /efi; then

104     ENTRY_DIR_ABS="/efi/$MACHINE_ID/$KERNEL_VERSION"

105 elif mountpoint -q /boot/efi; then

106     ENTRY_DIR_ABS="/boot/efi/$MACHINE_ID/$KERNEL_VERSION"

107 else

108     ENTRY_DIR_ABS="/boot/$MACHINE_ID/$KERNEL_VERSION"

109 fi

110

111 export KERNEL_INSTALL_MACHINE_ID=$MACHINE_ID

112

113 ret=0

114

115 readarray -t PLUGINS <<<"$(

116     dropindirs_sort ".install" \

117         "/etc/kernel/install.d" \

118         "/usr/lib/kernel/install.d"

119 )"
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Here you can see the scripts executed by kernel-install:

# ls /usr/lib/kernel/install.d/ -lh

total 36K

-rwxr-xr-x. 1 root root  744 Oct 10 18:26 00-entry-directory.install

-rwxr-xr-x. 1 root root 1.9K Oct 19 07:46 20-grubby.install

-rwxr-xr-x. 1 root root 6.6K Oct 10 13:05 20-grub.install

-rwxr-xr-x. 1 root root  829 Oct 10 18:26 50-depmod.install

-rwxr-xr-x. 1 root root 1.7K Jul 25  2019 50-dracut.install

-rwxr-xr-x. 1 root root 3.4K Jul 25  2019 51-dracut-rescue.install

-rwxr-xr-x. 1 root root 3.4K Oct 10 18:26 90-loaderentry.install

-rwxr-xr-x. 1 root root 1.1K Oct 10 13:05 99-grub-mkconfig.install

As you can see, this executes the 50-dracut.install script. This particular script 

executes the dracut command and makes initramfs for a particular kernel.

 46         for ((i=0; i < "${#BOOT_OPTIONS[@]}"; i++)); do

 47             if [[ ${BOOT_OPTIONS[$i]} == root\=PARTUUID\=* ]]; then

 48                 noimageifnotneeded="yes"

 49                 break

 50             fi

 51         done

 52          dracut -f ${noimageifnotneeded:+--noimageifnotneeded}  

"$BOOT_DIR_ABS/$INITRD" "$KERNEL_VERSION"

 53         ret=$?

 54         ;;

 55     remove)

 56         rm -f -- "$BOOT_DIR_ABS/$INITRD"

 57         ret=$?

 58         ;;

 59 esac

 60 exit $ret

Similarly, there is the script 51-dracut-rescue.install, which will make initramfs 

for the rescue kernel.
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100         if [[ ! -f "$BOOT_DIR_ABS/$INITRD" ]]; then

101              dracut -f --no-hostonly -a "rescue" "$BOOT_DIR_ABS/$INITRD" 

"$KERNEL_VERSION"

102             ((ret+=$?))

103         fi

104

105         if [[ "${BOOT_DIR_ABS}" != "/boot" ]]; then

106             {

107                 echo "title      $PRETTY_NAME - Rescue Image"

108                 echo "version    $KERNEL_VERSION"

109                 echo "machine-id $MACHINE_ID"

110                 echo "options    ${BOOT_OPTIONS[@]} rd.auto=1"

111                 echo "linux      $BOOT_DIR/linux"

112                 echo "initrd     $BOOT_DIR/initrd"

113             } > $LOADER_ENTRY

114         else

115             cp -aT "${KERNEL_IMAGE%/*}/bls.conf" $LOADER_ENTRY

116              sed -i 's/'$KERNEL_VERSION'/0-rescue-'${MACHINE_ID}'/' 

$LOADER_ENTRY

117         fi

Hence, every kernel will have its own initramfs file.

# ls -lh /boot | grep -e vmlinuz -e initramfs

-rw-------. 1 root root  80M Dec  2 18:32 initramfs-0-rescue- 280526b3bc5e4c49a

c83c8e5fbdfdb2e.img

-rw-------. 1 root root  28M Dec 23 06:37 initramfs-5.3.16-300.fc31.x86_64.img

-rw-------. 1 root root  30M Dec  2 18:33 initramfs-5.3.7-301.fc31.x86_64.img

-rwxr-xr-x. 1 root root 8.9M Dec  2 18:32 vmlinuz-0-rescue- 280526b3bc5e4c49ac8

3c8e5fbdfdb2e

-rwxr-xr-x. 1 root root 8.9M Dec 13 23:51 vmlinuz-5.3.16-300.fc31.x86_64

-rwxr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

Note the size of the kernel (vmlinuz) file and its associated initramfs file size. The 

initramfs file is much bigger than the kernel.
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 Making an initramfs Image
First check which kernel has been installed on your system with this command:

# rpm -qa | grep -i kernel-5

kernel-5.3.16-300.fc31.x86_64

kernel-5.3.7-301.fc31.x86_64

Choose the kernel version for which you want to generate a new initramfs image and 

pass it to dracut.

# dracut /boot/new.img 5.3.7-301.fc31.x86_64 -v

<snip>

dracut: Executing: /usr/bin/dracut /boot/new.img 5.3.7-301.fc31.x86_64 -v

dracut: dracut module 'busybox' will not be installed, because command 

'busybox' could not be found!

dracut: dracut module 'stratis' will not be installed, because command 

'stratisd-init' could not be found!

dracut: dracut module 'biosdevname' will not be installed, because command 

'biosdevname' could not be found!

dracut: dracut module 'busybox' will not be installed, because command 

'busybox' could not be found!

dracut: dracut module 'stratis' will not be installed, because command 

'stratisd-init' could not be found!

dracut: *** Including module: bash ***

dracut: *** Including module: systemd ***

dracut: *** Including module: systemd-initrd ***

dracut: *** Including module: nss-softokn ***

dracut: *** Including module: i18n ***

dracut: *** Including module: network-manager ***

dracut: *** Including module: network ***

dracut: *** Including module: ifcfg ***

dracut: *** Including module: drm ***

dracut: *** Including module: plymouth ***

.

.

</snip>
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In the previous code, dracut will create an initramfs file called new.img in the current 

directory for the 64-bit Fedora kernel, Kernel-5.3.7-301.fc31.x86_64.

# ls -lh new.img

-rw-------. 1 root root 28M Dec 23 08:16 new.img

If the kernel version is not provided, then dracut will make initramfs for the kernel 

through which the system has been booted. The kernel version that has been passed to 

dracut must match the kernel directory present in the /lib/modules/ location.

# ls /lib/modules/ -l

total 4

drwxr-xr-x. 6 root root 4096 Dec  9 10:18 5.3.7-301.fc31.x86_64

# ls /lib/modules/5.3.7-301.fc31.x86_64/ -l

total 18084

-rw-r--r--.  1 root root     249 Oct 22 01:04 bls.conf

lrwxrwxrwx.  1 root root      38 Oct 22 01:04 build -> /usr/src/

kernels/5.3.7-301.fc31.x86_64

-rw-r--r--.  1 root root  213315 Oct 22 01:03 config

drwxr-xr-x.  5 root root    4096 Oct 24 04:44 extra

drwxr-xr-x. 13 root root    4096 Oct 24 04:43 kernel

-rw-r--r--.  1 root root 1127438 Dec  9 10:18 modules.alias

-rw-r--r--.  1 root root 1101059 Dec  9 10:18 modules.alias.bin

-rw-r--r--.  1 root root    1688 Oct 22 01:04 modules.block

-rw-r--r--.  1 root root    8324 Oct 22 01:04 modules.builtin

-rw-r--r--.  1 root root   10669 Dec  9 10:18 modules.builtin.bin

-rw-r--r--.  1 root root   60853 Oct 22 01:04 modules.builtin.modinfo

-rw-r--r--.  1 root root  415475 Dec  9 10:18 modules.dep

-rw-r--r--.  1 root root  574502 Dec  9 10:18 modules.dep.bin

-rw-r--r--.  1 root root     381 Dec  9 10:18 modules.devname

-rw-r--r--.  1 root root     153 Oct 22 01:04 modules.drm

-rw-r--r--.  1 root root      59 Oct 22 01:04 modules.modesetting

-rw-r--r--.  1 root root    2697 Oct 22 01:04 modules.networking

-rw-r--r--.  1 root root  139947 Oct 22 01:04 modules.order
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-rw-r--r--.  1 root root     700 Dec  9 10:18 modules.softdep

-rw-r--r--.  1 root root  468520 Dec  9 10:18 modules.symbols

-rw-r--r--.  1 root root  572778 Dec  9 10:18 modules.symbols.bin

lrwxrwxrwx.  1 root root       5 Oct 22 01:04 source -> build

-rw-------.  1 root root 4426726 Oct 22 01:03 System.map

drwxr-xr-x.  2 root root    4096 Oct 22 01:02 updates

drwxr-xr-x.  2 root root    4096 Oct 24 04:43 vdso

-rwxr-xr-x.  1 root root 9323208 Oct 22 01:04 vmlinuz

As we know, initramfs is a temporary root filesystem, and its main purpose is to 

provide an environment that will help mount the user’s root filesystem. The user’s root 

filesystem could be a local to a system, or it could be a network device, and to use that 

device, the kernel should have drivers (modules) for that hardware and, while booting, 

get these modules from initramfs.

For example, say the user’s root filesystem is a locally connected hard disk, and the 

HDD is a SCSI device. So, initramfs has to have the SCSI drivers added in its archive.

# lsinitrd | grep -i scsi | awk '{ print $9 }'

etc/ld.so.conf.d/libiscsi-x86_64.conf

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/firmware/iscsi_ibft.

ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/iscsi_boot_sysfs.

ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/libiscsi.ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx/qla4xxx.

ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/scsi_transport_

iscsi.ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/scsi_transport_

srp.ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/virtio_scsi.ko.xz

usr/lib/udev/scsi_id
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On top of the SCSI device, users might have configured a RAID device. If they have, 

then the kernel needs to have RAID device drivers to identify and assemble the RAID 

device. Similarly, some of the users’ HDDs could be connected through an HBA card. In 

such situations, the kernel needs a qlaXxxx-like modules.

# lsinitrd | grep -i qla

        usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx

         usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx/

qla4xxx.ko.xz

Please note that these days '/lib' is a symlink to '/usr/lib/'.

In the case of some users, the HDD could be coming from Fiber Channel over 

Ethernet. Then the kernel needs FCOE modules. In a virtualized environment, the HDD 

could be a virtual disk exposed by a hypervisor. In that case, to mount the user’s root 

filesystem, the virtIO module is necessary. This way, the list of hardware and their 

respective modules goes on.

Obviously, the kernel cannot store all of these necessary module files (.ko) in its own 

binary (vmlinuz). Hence, one of the main jobs of initramfs is to store all the modules that 

are necessary to mount the user’s root filesystem. This is also one of the reasons why the 

initramfs file size is much bigger compared to the kernel file. But remember, initramfs is 

not the source of the modules. The modules will always be provided by the kernel and 

archived in initramfs by dracut. The kernel (vmlinuz) is the source of all the modules, but 

as you can rightly guess, the kernel size will be huge if the kernel stores all the modules in 

its vmlinuz binary. Hence, along with a kernel package, a new package named kernel- 

modules has been introduced, and this package provides all the modules that are present 

at the /lib/modules/<kernel-version-arch> location; dracut pulls only those modules 

(.ko files) that are necessary for mounting the user’s root filesystem.

# rpm -qa | grep -i kernel

        Kernel-headers-5.3.6-300.fc31.x86_64

        kernel-modules-extra-5.3.7-301.fc31.x86_64

        kernel-modules-5.3.7-301.fc31.x86_64

        kernel-core-5.3.16-300.fc31.x86_64

        kernel-core-5.3.7-301.fc31.x86_64
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        kernel-5.3.16-300.fc31.x86_64

        abrt-addon-kerneloops-2.12.2-1.fc31.x86_64

        kernel-5.3.7-301.fc31.x86_64

        libreport-plugin-kerneloops-2.10.1-2.fc31.x86_64

        Kernel-modules-5.3.16-300.fc31.x86_64

# rpm -ql kernel-modules-5.3.7-301.fc31.x86_64 | wc -l

    1698

    # rpm -ql kernel-modules-5.3.7-301.fc31.x86_64

    <snip>

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/atmtcp.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/eni.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/firestream.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/he.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/nicstar.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/solos-pci.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/suni.ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/cfag12864b.

ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/cfag12864bfb.

ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/charlcd.ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/hd44780.ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/ks0108.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bcma/bcma.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/ath3k.ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bcm203x.ko.xz

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bfusb.ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bluecard_

cs.ko.xz

     /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bpa10x.ko.xz

    .

    .

    </snip>
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As you can see, the kernel-modules package that came with kernel-5.3.7-301 

provides almost 1,698 modules. Also, the kernel-module package will be a dependency 

of the kernel package; hence, whenever kernel is installed, kernel-modules will be 

pulled and installed by a Fedora-based operating system.

 Dracut and Modules
We’ll now review the dracut modules.

 How Does dracut Select Modules?
To understand how dracut pulls the modules in initramfs, first we need to understand 

the depmod command. depmod analyzes all the kernel modules in the /lib/

modules/<kernel-version-arch> location and makes a list of all the modules along 

with their dependency modules. It keeps this list in the modules.dep file. (Note that 

on Fedora-based systems, it is good to refer to the module’s location as /usr/lib/

modules/<kernel_version>/*.) Here’s an example:

# vim /lib/modules/5.3.7-301.fc31.x86_64/modules.dep

<snip>

.

.

kernel/arch/x86/kernel/cpu/mce/mce-inject.ko.xz:

kernel/arch/x86/crypto/des3_ede-x86_64.ko.xz: kernel/crypto/des_generic.ko.xz

kernel/arch/x86/crypto/camellia-x86_64.ko.xz:

kernel/arch/x86/crypto/blowfish-x86_64.ko.xz: kernel/crypto/blowfish_

common.ko.xz

kernel/arch/x86/crypto/twofish-x86_64.ko.xz: kernel/crypto/twofish_common.

ko.xz

.

.

</snip>

In this code, you can see that the module named des3_ede needs the module des_

generic to work properly. In another example, you can see that the blowfish modules 
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have a blowfish_comman module as a dependency. So, dracut reads the modules.

dep file and starts pulling the kernel modules in the initramfs image from the /lib/

modules/5.3.7-301.fc31.x86_64/kernel/ location.

# ls /lib/modules/5.3.7-301.fc31.x86_64/kernel/ -l

total 44

drwxr-xr-x.  3 root root 4096 Oct 24 04:43 arch

drwxr-xr-x.  4 root root 4096 Oct 24 04:43 crypto

drwxr-xr-x. 80 root root 4096 Oct 24 04:43 drivers

drwxr-xr-x. 43 root root 4096 Oct 24 04:43 fs

drwxr-xr-x.  4 root root 4096 Oct 24 04:43 kernel

drwxr-xr-x.  8 root root 4096 Oct 24 04:43 lib

drwxr-xr-x.  2 root root 4096 Oct 24 04:43 mm

drwxr-xr-x. 51 root root 4096 Oct 24 04:43 net

drwxr-xr-x.  3 root root 4096 Oct 24 04:43 security

drwxr-xr-x. 13 root root 4096 Oct 24 04:43 sound

drwxr-xr-x.  3 root root 4096 Oct 24 04:43 virt

The kernel provides thousands of modules, but every module does not need to 

be added in initramfs. Hence, while collecting the modules, dracut pulls very specific 

modules.

# find /lib/modules/5.3.7-301.fc31.x86_64/ -name '*.ko.xz' | wc -l

3539

If dracut pulled every module, then the size of initramfs would be large. Also, why 

pull every module when it is not necessary? So, dracut pulls only those modules that are 

necessary to mount the user’s root filesystem on that system.

# lsinitrd | grep -i '.ko.xz'  | wc -l

221

As you can see, initramfs has only 221 modules, whereas the kernel has almost 3,539 

modules in it.

If we include 3,539 modules in initramfs, it would make initramfs huge, which will 

eventually slow down the booting performance because the initramfs archive loading 

and decompression time will be high. Also, we need to understand that initramfs’ 

main task is to mount the user’s root filesystem. Therefore, it makes sense to include 
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only those modules that are necessary to mount the root filesystem. For example, the 

Bluetooth-related modules are not necessary to add in initramfs since the root filesystem 

will never be coming from a Bluetooth-connected device. So, you will not find any 

Bluetooth-related modules in initramfs, even though there are a couple of bluetooth 

modules provided by the kernel (kernel-modules).

# find /lib/modules/5.3.7-301.fc31.x86_64/ -name 'bluetooth'

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/net/bluetooth

    /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth

# lsinitrd | grep -i blue

    <no_output>

By default, dracut will add only host-specific modules in initramfs. It does this by 

inspecting the current system state and the modules that are currently used by the 

system. Being host-specific is the default approach of every leading Linux distribution. 

Fedora and Ubuntu-like systems also create a generic initramfs image, called a rescue 

initramfs image. The rescue initramfs includes all possible modules for devices on which 

users can possibly make a root filesystem. The idea is that the generic initramfs should 

be applicable to all the systems. Therefore, the rescue initramfs will always be bigger in 

size compared to the host-specific initramfs. dracut has a bunch of logic to decide which 

modules are needed to mount the root filesystem. This is what man page of dracut says, 

but remember in Fedora-based Linux, --hostonly is the default.

“If you want to create lighter, smaller initramfs images, you may want to 
specify the --hostonly or -H option. Using this option, the resulting image 
will contain only those dracut modules, kernel modules and filesystems, 
which are needed to boot this specific machine. This has the drawback, that 
you can’t put the disk on another controller or machine, and that you can’t 
switch to another root filesystem, without recreating the initramfs image. 
The usage of the --hostonly option is only for experts and you will have to 
keep the broken pieces. At least keep a copy of a general purpose image (and 
corresponding kernel) as a fallback to rescue your system.”

In the Chapter 5 we saw that there are a number of binaries, modules, and 

configuration files that were chosen by dracut and added in initramfs, but how does 

dracut choose files from the user’s large root filesystem?
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The files are chosen by running the scripts in the location /usr/lib/dracut/

modules.d. This is the place where all the scripts of dracut are stored. dracut runs these 

scripts while generating initramfs, as shown here:

# ls /usr/lib/dracut/modules.d/ -l

total 288

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 00bash

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 00systemd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 00warpclock

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 01fips

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 01systemd-initrd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 02systemd-networkd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 03modsign

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 03rescue

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 04watchdog

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 05busybox

drwxr-xr-x. 2 root root 4096 Oct 24 04:42 05nss-softokn

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 05rdma

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 10i18n

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 30convertfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 35network-legacy

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 35network-manager

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 40network

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 45ifcfg

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 45url-lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 50drm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 50plymouth

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 80lvmmerge

drwxr-xr-x. 2 root root 4096 Oct 24 04:42 90bcache

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90btrfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90crypt

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90dm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90dmraid

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90dmsquash-live

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90dmsquash-live-ntfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-modules
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drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-modules-extra

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-network-modules

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90livenet

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90lvm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90mdraid

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90multipath

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90qemu

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90qemu-net

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90stratis

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 91crypt-gpg

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 91crypt-loop

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95cifs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95debug

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95fcoe

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95fcoe-uefi

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95fstab-sys

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95iscsi

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95lunmask

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95nbd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95nfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95resume

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95rootfs-block

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95ssh-client

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95terminfo

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95udev-rules

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95virtfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 97biosdevname

drwxr-xr-x. 2 root root 4096 Jan  6 12:42 98dracut-systemd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98ecryptfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 98ostree

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98pollcdrom

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98selinux

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98syslog

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98usrmount

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99base
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drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99earlykdump

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99fs-lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 99img-lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99kdumpbase

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99shutdown

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99squash

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99uefi-lib

The same output can be viewed by using #dracut --list-modules.

Whenever we try to make an initramfs filesystem, dracut starts executing the  

module- setup.sh script files in each directory in /usr/lib/dracut/modules.d/.

# find /usr/lib/dracut/modules.d/ -name 'module-setup.sh'

/usr/lib/dracut/modules.d/95iscsi/module-setup.sh

/usr/lib/dracut/modules.d/98ecryptfs/module-setup.sh

/usr/lib/dracut/modules.d/30convertfs/module-setup.sh

/usr/lib/dracut/modules.d/90crypt/module-setup.sh

/usr/lib/dracut/modules.d/10i18n/module-setup.sh

/usr/lib/dracut/modules.d/99earlykdump/module-setup.sh

/usr/lib/dracut/modules.d/95nbd/module-setup.sh

.

.

.

/usr/lib/dracut/modules.d/04watchdog/module-setup.sh

/usr/lib/dracut/modules.d/90lvm/module-setup.sh

/usr/lib/dracut/modules.d/35network-legacy/module-setup.sh

/usr/lib/dracut/modules.d/01systemd-initrd/module-setup.sh

/usr/lib/dracut/modules.d/99squash/module-setup.sh

/usr/lib/dracut/modules.d/05busybox/module-setup.sh

/usr/lib/dracut/modules.d/50drm/module-setup.sh

This module-setup.sh script will pick the module, binary, and configuration files 

that are specific to that host. For example, the first module-setup.sh script, which will 

run from the 00bash directory, will include the bash binary in initramfs.
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# vim /usr/lib/dracut/modules.d/00bash/module-setup.sh

  1 #!/usr/bin/bash

  2

  3 # called by dracut

  4 check() {

  5     require_binaries /bin/bash

  6 }

  7

  8 # called by dracut

  9 depends() {

 10     return 0

 11 }

 12

 13 # called by dracut

 14 install() {

 15     # If another shell is already installed, do not use bash

 16     [[ -x $initdir/bin/sh ]] && return

 17

 18     # Prefer bash as /bin/sh if it is available.

 19     inst /bin/bash && ln -sf bash "${initdir}/bin/sh"

 20 }

 21

As you can see, the script file is adding the /bin/bash binary in initramfs. Let’s look 

at another example, this one of plymouth.

# vim /usr/lib/dracut/modules.d/50plymouth/module-setup.sh

  1 #!/usr/bin/bash

  2

  3 pkglib_dir() {

  4     local _dirs="/usr/lib/plymouth /usr/libexec/plymouth/"

  5     if type -P dpkg-architecture &>/dev/null; then

  6          _dirs+=" /usr/lib/$(dpkg-architecture -qDEB_HOST_MULTIARCH)/

plymouth"

  7     fi

  8     for _dir in $_dirs; do
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  9         if [ -x $_dir/plymouth-populate-initrd ]; then

 10             echo $_dir

 11             return

 12         fi

 13     done

 14 }

 15

 16 # called by dracut

 17 check() {

 18     [[ "$mount_needs" ]] && return 1

 19     [ -z $(pkglib_dir) ] && return 1

 20

 21     require_binaries plymouthd plymouth plymouth-set-default-theme

 22 }

 23

 24 # called by dracut

 25 depends() {

 26     echo drm

 27 }

 28

 29 # called by dracut

 30 install() {

 31     PKGLIBDIR=$(pkglib_dir)

 32     if grep -q nash ${PKGLIBDIR}/plymouth-populate-initrd \

 33         || [ ! -x ${PKGLIBDIR}/plymouth-populate-initrd ]; then

 34         . "$moddir"/plymouth-populate-initrd.sh

 35     else

 36         PLYMOUTH_POPULATE_SOURCE_FUNCTIONS="$dracutfunctions" \

 37             ${PKGLIBDIR}/plymouth-populate-initrd -t "$initdir"

 38     fi

 39

 40     inst_hook emergency 50 "$moddir"/plymouth-emergency.sh

 41

 42     inst_multiple readlink

 43

Chapter 6  draCut



252

 44     if ! dracut_module_included "systemd"; then

 45         inst_hook pre-trigger 10 "$moddir"/plymouth-pretrigger.sh

 46         inst_hook pre-pivot 90 "$moddir"/plymouth-newroot.sh

 47     fi

 48 }

Simply grepping require_binaries will show all the binaries that dracut will add in 

the generic initramfs.

# grep -ir "require_binaries" /usr/lib/dracut/modules.d/

/usr/lib/dracut/modules.d/90mdraid/module-setup.sh:    require_binaries 

mdadm expr || return 1

/usr/lib/dracut/modules.d/80lvmmerge/module-setup.sh:    require_binaries 

lvm dd swapoff || return 1

/usr/lib/dracut/modules.d/95cifs/module-setup.sh:    require_binaries 

mount.cifs || return 1

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh:    require_binaries 

gpg || return 1

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh:       require_

binaries gpg-agent &&

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh:       require_

binaries gpg-connect-agent &&

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh:       require_

binaries /usr/libexec/scdaemon &&

/usr/lib/dracut/modules.d/45url-lib/module-setup.sh:    require_binaries 

curl || return 1

/usr/lib/dracut/modules.d/90stratis/module-setup.sh:    require_binaries 

stratisd-init thin_check thin_repair mkfs.xfs xfs_admin xfs_growfs || 

return 1

/usr/lib/dracut/modules.d/90multipath/module-setup.sh:    require_binaries 

multipath || return 1

/usr/lib/dracut/modules.d/95iscsi/module-setup.sh:    require_binaries 

iscsi-iname iscsiadm iscsid || return 1

/usr/lib/dracut/modules.d/95ssh-client/module-setup.sh:    require_binaries 

ssh scp  || return 1
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/usr/lib/dracut/modules.d/35network-manager/module-setup.sh:    require_

binaries sed grep || return 1

/usr/lib/dracut/modules.d/90dmsquash-live-ntfs/module-setup.sh:    require_

binaries ntfs-3g || return 1

/usr/lib/dracut/modules.d/91crypt-loop/module-setup.sh:    require_binaries 

losetup || return 1

/usr/lib/dracut/modules.d/05busybox/module-setup.sh:    require_binaries 

busybox || return 1

/usr/lib/dracut/modules.d/99img-lib/module-setup.sh:    require_binaries 

tar gzip dd bash || return 1

/usr/lib/dracut/modules.d/90dm/module-setup.sh:    require_binaries dmsetup 

|| return 1

/usr/lib/dracut/modules.d/03modsign/module-setup.sh:    require_binaries 

keyctl || return 1

/usr/lib/dracut/modules.d/97biosdevname/module-setup.sh:    require_

binaries biosdevname || return 1

/usr/lib/dracut/modules.d/95nfs/module-setup.sh:    require_binaries rpc.

statd mount.nfs mount.nfs4 umount || return 1

/usr/lib/dracut/modules.d/90dmraid/module-setup.sh:    require_binaries 

dmraid || return 1

/usr/lib/dracut/modules.d/95fcoe/module-setup.sh:    require_binaries 

dcbtool fipvlan lldpad ip readlink fcoemon fcoeadm || return 1

/usr/lib/dracut/modules.d/00warpclock/module-setup.sh:    require_binaries 

/sbin/hwclock || return 1

/usr/lib/dracut/modules.d/35network-legacy/module-setup.sh:    require_

binaries ip dhclient sed awk grep || return 1

/usr/lib/dracut/modules.d/00bash/module-setup.sh:    require_binaries /bin/

bash

/usr/lib/dracut/modules.d/95nbd/module-setup.sh:    require_binaries nbd- 

client || return 1

/usr/lib/dracut/modules.d/90btrfs/module-setup.sh:    require_binaries 

btrfs || return 1

/usr/lib/dracut/modules.d/00systemd/module-setup.sh:    if require_binaries 

$systemdutildir/systemd; then
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/usr/lib/dracut/modules.d/10i18n/module-setup.sh:    require_binaries 

setfont loadkeys kbd_mode || return 1

/usr/lib/dracut/modules.d/90lvm/module-setup.sh:    require_binaries lvm || 

return 1

/usr/lib/dracut/modules.d/50plymouth/module-setup.sh:    require_binaries 

plymouthd plymouth plymouth-set-default-theme

/usr/lib/dracut/modules.d/95fcoe-uefi/module-setup.sh:    require_binaries 

dcbtool fipvlan lldpad ip readlink || return 1

Once again, dracut does not include every module from /usr/lib/dracut/

modules.d. It includes only host-specific modules. In the following section, you will learn 

how to add or omit specific modules from initramfs.

 Customizing initramfs
Dracut also has its own modules. The kernel modules and dracut modules are different. 

Dracut collects the host-specific binaries, the associated libraries, the configuration files, 

and the hardware device modules and groups them under the name dracut modules. 

The kernel modules consist of the .ko files of the hardware device. You can see the 

dracut modules list either from /usr/lib/dracut/modules.d/ or from the dracut 

--list-modules command.

# dracut --list-modules | xargs -n6

bash systemd warpclock fips systemd-initrd systemd-networkd

modsign rescue watchdog busybox nss-softokn rdma

i18n convertfs network-legacy network-manager network ifcfg

url-lib drm plymouth lvmmerge bcache btrfs

crypt dm dmraid dmsquash-live dmsquash-live-ntfs kernel-modules

kernel-modules-extra kernel-network-modules livenet lvm mdraid multipath

qemu qemu-net stratis crypt-gpg crypt-loop cifs

debug fcoe fcoe-uefi fstab-sys iscsi lunmask

nbd nfs resume rootfs-block ssh-client terminfo

udev-rules virtfs biosdevname dracut-systemd ecryptfs ostree

pollcdrom selinux syslog usrmount base earlykdump

fs-lib img-lib kdumpbase shutdown squash uefi-lib
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If you want to add or omit specific dracut modules (not the hardware device 

module) from initramfs, then dracut.conf plays a vital role here. Note that dracut.conf 

is a configuration file of dracut, not of initramfs; hence, it will not be available inside 

initramfs.

# lsinitrd | grep -i 'dracut.conf'

    <no output>

dracut will refer to the dracut.conf file while generating initramfs. By default it 

will be an empty file.

# cat /etc/dracut.conf

    # PUT YOUR CONFIG IN separate files

    # in /etc/dracut.conf.d named "<name>.conf"

    # SEE man dracut.conf(5) for options

There are various options provided by dracut.conf that you can use to add or omit 

the module.

Suppose you want to omit the plymouth-related files (binaries, configuration 

files, modules, etc.) from initramfs; then you can either add a omit_

dracutmodules+=plymouth in dracut.conf or use the omit (-o) switch of the dracut 

binary. Here’s an example:

# lsinitrd | grep -i plymouth | wc -l

    118

There are almost 118 plymouth-related files present in the currently booted kernel. 

Let’s try to omit plymouth-related files now.

# dracut -o plymouth /root/new.img

# lsinitrd /root/new.img | grep -i plymouth | wc -l

    4

As you can clearly see, all plymouth-related dracut modules have been eliminated 

from our newly built initramfs. Therefore, the plymouth-related binaries, configuration 

files, libraries, and hardware device modules (if available) will not be captured by dracut 

in initramfs. The same result can be achieved by adding omit_dracutmodules+= 

plymouth in dracut.conf.
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# cat /etc/dracut.conf | grep -v '#'

    omit_dracutmodules+=plymouth

# dracut /root/new.img --force

# lsinitrd /root/new.img | grep -i plymouth

-rw-r--r--   1 root     root          454 Jul 25  2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.path

-rw-r--r--   1 root     root          435 Jul 25  2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service

drwxr-xr-x   2 root     root            0 Jul 25  2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service.wants

lrwxrwxrwx   1 root     root           33 Jul 25  2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service.wants/systemd-vconsole-setup.

service -> ../systemd-vconsole-setup.service

The following comes from the man page:

Omitting dracut Modules

Sometimes you don’t want a dracut module to be included for reasons of 
speed, size or functionality. To do this, either specify the omit_dracutmod-
ules variable in the dracut.conf or /etc/dracut.conf.d/myconf.conf configu-
ration file (see dracut.conf(5)), or use the -o or --omit option on the 
command line: # dracut -o “multipath lvm” no-multipath-lvm.img

Like when we omitted the dracut module, we can add any module that is available 

in /usr/lib/dracut/modules.d. We can use the --add switch of dracut or can use add_

dracutmodules+= in dracut.conf. For example, you can see that we do not have NFS 

modules/files/binaries added in our new.img initramfs because my test system is not 

booting from NFS and not using any NFS mount point in it. Obviously, dracut will skip 

the nfs module from /usr/lib/dracut/modules.d. So, let’s add it in our initramfs.

#lsinitrd | grep -i nfs

<no_output>

# cat /etc/dracut.conf

    # PUT YOUR CONFIG IN separate files

    # in /etc/dracut.conf.d named "<name>.conf"

    # SEE man dracut.conf(5) for options
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    #omit_dracutmodules+=plymouth

    add_dracutmodules+=nfs

# dracut /root/new.img --force

# lsinitrd /root/new.img | grep -i nfs | wc -l

    33

We can also achieve this by using the dracut command with the --add switch.

# lsinitrd /root/new.img | grep -i nfs

# dracut --add nfs /root/new.img --force

# lsinitrd /root/new.img | grep -i nfs

Arguments: --add 'nfs' --force

nfs

-rw-r--r--   1 root     root           15 Jul 25  2019 etc/modprobe.d/nfs.conf

drwxr-xr-x   2 root     root            0 Jul 25  2019 usr/lib64/libnfsidmap

-rwxr-xr-x   1 root     root        50416 Jul 25  2019 usr/lib64/

libnfsidmap/nsswitch.so

-rwxr-xr-x   1 root     root        54584 Jul 25  2019 usr/lib64/

libnfsidmap.so.1.0.0

lrwxrwxrwx   1 root     root           20 Jul 25  2019 usr/lib64/

libnfsidmap.so.1 -> libnfsidmap.so.1.0.0

-rwxr-xr-x   1 root     root        42744 Jul 25  2019 usr/lib64/

libnfsidmap/sss.so

-rwxr-xr-x   1 root     root        46088 Jul 25  2019 usr/lib64/

libnfsidmap/static.so

-rwxr-xr-x   1 root     root        62600 Jul 25  2019 usr/lib64/

libnfsidmap/umich_ldap.so

-rwxr-xr-x   1 root     root          849 Oct  8  2018 usr/lib/dracut/hooks/

cleanup/99-nfsroot-cleanup.sh

-rwxr-xr-x   1 root     root         3337 Oct  8  2018 usr/lib/dracut/hooks/

cmdline/90-parse-nfsroot.sh

-rwxr-xr-x   1 root     root          874 Oct  8  2018 usr/lib/dracut/hooks/

pre-udev/99-nfs-start-rpc.sh

drwxr-xr-x   5 root     root            0 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs
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drwxr-xr-x   2 root     root            0 Jul 25  2019  usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/blocklayout

-rw-r--r--   1 root     root        16488 Jul 25  2019 usr/lib/modules/ 

5.3.7-301.fc31.x86_64/kernel/fs/nfs/blocklayout/blocklayoutdriver.ko.xz

drwxr-xr-x   2 root     root            0 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common

-rw-r--r--   1 root     root         2584 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common/grace.ko.xz

-rw-r--r--   1 root     root         3160 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common/nfs_acl.ko.xz

drwxr-xr-x   2 root     root            0 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/filelayout

-rw-r--r--   1 root     root        11220 Jul 25  2019 usr/lib/modules/ 

5.3.7-301.fc31.x86_64/kernel/fs/nfs/filelayout/nfs_layout_nfsv41_files.ko.xz

drwxr-xr-x   2 root     root            0 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/flexfilelayout

-rw-r--r--   1 root     root        20872 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/flexfilelayout/nfs_layout_

flexfiles.ko.xz

-rw-r--r--   1 root     root       109684 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfs.ko.xz

-rw-r--r--   1 root     root        18028 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfsv3.ko.xz

-rw-r--r--   1 root     root       182756 Jul 25  2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfsv4.ko.xz

-rwxr-xr-x   1 root     root         4648 Oct  8  2018 usr/lib/nfs-lib.sh

-rwsr-xr-x   1 root     root       187680 Jul 25  2019 usr/sbin/mount.nfs

lrwxrwxrwx   1 root     root            9 Jul 25  2019 usr/sbin/mount.nfs4 

-> mount.nfs

-rwxr-xr-x   1 root     root          719 Oct  8  2018 usr/sbin/nfsroot

drwxr-xr-x   4 root     root            0 Jul 25  2019 var/lib/nfs

drwxr-xr-x   2 root     root            0 Jul 25  2019 var/lib/nfs/rpc_pipefs

drwxr-xr-x   3 root     root            0 Jul 25  2019 var/lib/nfs/statd

drwxr-xr-x   2 root     root            0 Jul 25  2019 var/lib/nfs/statd/sm
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Like we added the extra nfs dracut module in our initramfs, the same way we can 

have only the nfs module in our initramfs with the help of adding dracutmodules+= in 

dracut.conf. This means the resultant initramfs will have only the nfs module in it. The 

rest of the modules from /usr/lib/dracut/modules.d/ will be discarded.

# cat /etc/dracut.conf

    #omit_dracutmodules+=plymouth

    #add_dracutmodules+=nfs

    dracutmodules+=nfs

# dracut /root/new.img —force

# lsinitrd /root/new.img

Image: /root/new.img: 20M

========================================================================

Early CPIO image

========================================================================

drwxr-xr-x  3 root     root       0 Jul 25  2019 .

-rw-r—r--   1 root     root       2 Jul 25  2019 early_cpio

drwxr-xr-x  3 root     root       0 Jul 25  2019 kernel

drwxr-xr-x  3 root     root       0 Jul 25  2019 kernel/x86

drwxr-xr-x  2 root     root       0 Jul 25  2019 kernel/x86/microcode

-rw-r—r--   1 root     root       100352 Jul 25  2019 kernel/x86/microcode/

GenuineIntel.bin

========================================================================

Version:

Arguments: --force

dracut modules:

nss-softokn

network-manager

network

kernel-network-modules

nfs

=======================================================================
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As you can see, only the nfs module has been added along with its dependencies like the  

network dracut module. Also, notice the size difference between both versions of initramfs.

# ls -lh initramfs-5.3.16-300.fc31.x86_64.img

     -rw-------. 1 root root 28M Dec 23 06:37 initramfs-5.3.16-300.fc31.

x86_64.img

# ls -lh /root/new.img

    -rw-------. 1 root root 20M Dec 24 11:05 /root/new.img

The same can be achieved by using the -m or --modules switch of dracut.

# dracut -m nfs /root/new.img --force

If you want to add only the hardware device module, then please note that hardware 

device module means the *.ko files provided by the kernel-modules package at /lib/

modules/<kernel-version>/drivers/<module-name>. Then the --add switch of dracut 

or add_dracutmodules+= will not help because these two switches add the dracut 

modules and not the kernel module (.ko) file. So, to add the kernel module, we need to 

use either a --add-drivers switch of dracut or drivers+= or add_drivers+= in dracut.

conf. Here’s an example:

# lsinitrd /root/new.img | grep -i ath3k

The Bluetooth-related module named ath3k is not present in our initramfs, but it is 

one of the modules provided by the kernel.

#ls -lh /lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/bluetooth/ath3k.

ko.xz

Let’s add it, as shown here:

# dracut --add-drivers ath3k /root/new.img --force

Now it has been added, as shown here:

# lsinitrd /root/new.img | grep -i ath3k

Arguments: --add-drivers 'ath3k' --force

-rw-r--r-- 1 root  root 246804 Jul 25 03:54 usr/lib/firmware/ath3k-1.fw

-rw-r--r-- 1 root  root   5652 Jul 25 03:54 usr/lib/modules/5.3.7-301.fc31.

x86_64/kernel/drivers/bluetooth/ath3k.ko.xz

As you can see, the ath3k.ko module has been added in initramfs.
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 dracut Module or Kernel Module?
Let’s examine when to add a dracut module and when to add a kernel module. Here’s 

a scenario: your host root filesystem is on a normal SCSI device. So, obviously, your 

initramfs has neither a multipath.ko kernel module nor a multipath.conf-like 

configuration file for it.

 1) All of sudden you decide to shift your root filesystem from the 

normal local disk to a SAN (I would never recommend such 

change on a production system), and the SAN is connected 

through a multipath device.

 2) To get the entire environment of the multipath device, you need 

to add the multipath dracut module here so that the entire 

environment of multipath will be pulled into initramfs.

 3) After a few days, you add a new NIC card on the same system, and 

the NIC card vendor has provided drivers for it. A driver is nothing 

but a .ko file (kernel object). To add this module in your initramfs, 

you have to choose to add the kernel module option. This will 

add the driver of only the NIC card, not the entire environment.

But what if you want to add some specific file to the initramfs, which is neither 

a kernel module nor a dracut module? dracut provides the install_items+= and 

--include variables of dracut.conf through which we can add specific files. The files 

could be anything from a normal text to a binary file, etc.

#lsinitrd /root/new.img | grep -i date

    <no_output>

The date binary is not by default present in initramfs. But to add a binary, we can use 

an install_itsems+ switch.

# cat /etc/dracut.conf

    # PUT YOUR CONFIG IN separate files

    # in /etc/dracut.conf.d named "<name>.conf"

    # SEE man dracut.conf(5) for options
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    #omit_dracutmodules+=plymouth

    #add_dracutmodules+=nfs

    #dracutmodules+=nfs

    install_items+=date

# dracut /root/new.img --force

# lsinitrd /root/new.img | grep -i date

-rwxr-xr-x   1 root     root       122456 Jul 25 02:36 usr/bin/date

As you can see, the date binary has been added, but the most important thing is it 

does not only add the binary; rather, it also adds the library that is necessary to run the 

date command. The same can be achieved with the --install switch of the dracut 

command. But this has a limitation; it cannot add the user-made custom binaries. To do 

that, we need to use the --include switch of dracut. With --include, you can include 

the normal files, directories, or even a binary in initramfs. In the case of the binary, if 

your binary needs a supporting library, then you have to specify that library name with 

its absolute path.

 “Can’t Boot” Issue 4 (initramfs)
Issue: A Linux production system has been rebooted after four months for regular 

maintenance, and it has stopped booting. It keeps throwing this error message on the 

screen:

<snip>

.

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout 

scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout 

scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout 

scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout 

scripts

.

</snip>

Chapter 6  draCut



263

Resolution: Here are the steps to resolve the issue: 

 1. The error message starts by saying it is not able to reach the swap 

device, and then the process times out.

[TIME] Timed out waiting for device /dev/mapper/fedora_localhost--live-swap

This is a crucial piece of information since this tells you that 

something is wrong with this system’s filesystems.

 2. The swap device is based on an HDD, and the swap filesystem 

has been created on it. Now the swap device itself is missing. 

So, either the underlying disk itself is not accessible or the swap 

filesystem is corrupted. With this understanding, we can now 

concentrate on the storage side only. The isolation of the issue is 

important since the “can’t boot” issue has thousands of situations 

that could cause the system to stop booting.

 3. Either we will boot with rescue mode or we can use a live image of 

the same distribution and version. This is a Fedora 31 system, and 

as shown in Figure 6-1, I will use the rescue option from GRUB.

Figure 6-1. The GRUB splash screen
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 4. Once we boot into rescue mode, we will mount the user’s root 

filesystem and chroot into it. Now why is rescue mode able to boot 

when the normal kernel is not able to boot on the same system? This 

is a valid question, and the answer will be covered in Chapter 10.

 5. Since we are able to mount the root filesystem in a rescue kernel but 

not able to mount the root filesystem with the normal kernel, that 

means something is wrong with the initramfs image. Maybe some 

module that is necessary to handle the HDD is missing. Let’s verify 

this theory.

 6. This is a virtualized system, which means it has a virtual disk. This 

can be seen from the /dev directory.

#ls /dev/vd*

vda vda1 vda2

 7. To handle the virtualized disks, we need to have a virtio_blk 

module present in initramfs.

#lsinitrd /boot/new.img | grep -i virt

Arguments: --omit-drivers virtio_blk

-rw-r--r-- 1 root  root   14132 Jul 25 03:54

     usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/char/

virtio_console.ko.xz

-rw-r--r-- 1 root  root   25028 Jul 25 03:54

     usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/net/

virtio_net.ko.xz

-rw-r--r-- 1 root  root   7780 Jul 25 03:54

     usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/

virtio_scsi.ko.xz

-rw-r--r-- 1 root  root   499 Feb 26  2018 usr/lib/sysctl.d/60-

libvirtd.conf

As you can see, the virtio_blk module is missing.

 8. Since virtio_blk is missing, obviously the kernel cannot detect 

and access the vda disk, which is where the user has the root 

filesystem as well as the swap filesystem.
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 9. To fix this issue, we need to add the missing virtio_blk module 

in initramfs.

#dracut --add-drivers=virtio_blk /boot/new.img --force

# lsinitrd | grep -i virtio_blk

     -rw-r--r--   1 root     root         8356 Jul 25 03:54 usr/

lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/block/virtio_

blk.ko.xz

 10. We will boot by using our new.img initramfs. How to boot the 

system manually with the help of the GRUB command prompt 

was already discussed in “can’t boot” issue 1.

 11. After adding the missing virtio_blk module, the “can’t boot” 

issue has been fixed. You can see the successfully booted system 

in Figure 6-2.

Figure 6-2. The login screen of Fedora

Chapter 6  draCut



266

 “Can’t Boot” Issue 5 (initramfs)
Issue: Figure 6-3 shows what is visible on-screen.

Resolution: Here are the steps to resolve the issue:

 1) Now this is easy to understand and to resolve.

 2) The error message is self-explanatory; the initramfs file itself is 

missing.

 3) Either the initramfs itself is missing or it’s just that the /boot/

loader/entries/* file has a wrong entry in it. In this case, 

initramfs itself is missing.

 4) So, we need to boot in rescue mode and mount the user’s root 

filesystem.

 5) Either reinstall the kernel’s rpm package so that the postscripts 

part of the package will regenerate the missing initramfs and will 

also update the BLS entries accordingly.

 6) Or you can regenerate initramfs with the help of the dracut 

command.

 Kernel Command-Line Options
As we have already seen, GRUB accepts kernel command-line parameters and passes 

them to the kernel. The kernel has hundreds of command-line parameters, and it is 

almost impossible for anyone to cover each and every parameter. So, we will focus only 

on those parameters that are necessary while booting the operating system. If you are 

Figure 6-3. The console messages
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interested in all of the kernel command-line parameters, then visit the following page: 

https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html.

The list of parameters on that page are of the series 4 of kernels, but most of the 

parameter explanations are applicable to series 5 kernels as well. The best option is to 

always look at the kernel documentation at /usr/share/doc/.

 root
• This is one of the main kernel’s command-line parameters.  

The ultimate aim of booting is to mount the user’s root filesystem.  

The root kernel command-line parameter provides the name of the 

user’s root filesystem, which the kernel is supposed to mount.

• On behalf of the kernel, systemd, which ran from initramfs, mounts 

the user’s root filesystem.

• If the user’s root filesystem is not available or if the kernel is not able 

to mount it, then it will be considered a panic situation for the kernel.

 init
• The kernel runs systemd from initramfs, and that becomes the first 

process. It’s also called PID-1 and is the parent of every process.

• But if you are a developer and you want to run your own binary 

instead of systemd, then you can use the init kernel command-line 

parameter. Here’s an example:

init=/sbin/yogesh

As you can see in Figure 6-4, this will run the yogesh binary instead of systemd.

Figure 6-4. The kernel command-line parameters
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But yogesh is not available on the actual root filesystem; hence, as shown in 

Figure 6- 5, it will fail to boot.

• The system has dropped us in the emergency shell. Refer to Chapter 8 

for a detailed discussion about debugging shells.

• The reason for dropping us in the emergency shell and the reason 

for the “can’t boot” issue is mentioned in /run/initramfs/

rdsosreport.txt. Figure 6-6 shows a snippet of the rdsosreport.

txt file.

Figure 6-5. The emergency shell
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• The interesting part to note here is that our /sbin/yogesh binary will 

be called at the time of the chroot’ing to the actual root filesystem. 

We have not discussed chroot yet; you can find a detailed discussion 

in Chapter 10.

 ro
• This is a supporting parameter to the root kernel command-line 

parameter. ro stands for “read-only” file system. The user’s root 

filesystem will be mounted inside initramfs, and it will be mounted 

in read-only mode if the ro kernel command-line parameter has 

been passed. The ro is the default choice of every major Linunx 

distribution.

 rhgb and quite
• Almost every Linux distribution shows the animation at the time 

of booting to make the booting procedure more exciting, but 

the important console messages that are required to analyze the 

booting sequence will be hidden behind the animation. To stop 

the animation and to see the verbose console messages on-screen, 

remove the rhgb and quite parameters.

• When rhgb and quite are passed, as you can see in Figure 6-7, the 

plymouth animation will be shown.

Figure 6-6. The rdsosreport.txt file
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• When rhgb and quite are removed, as you can see in Figure 6-8, the 

console messages will be exposed to the user.

• You can also press Escape at the animation (plymouth) screen and 

can see the console messages, but for that, you have to be physically 

present in front of the production system, which is unlikely.

Figure 6-7. The plymouth screen

Figure 6-8. The console messages
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 selinux
• Sometimes to resolve the “can’t boot” issues, you want to completely 

get rid of SELinux. You can pass selinux=0 kernel command line 

parameter at that time. This will disable SELinux altogether.

These were some of the kernel command-line parameters that directly affect the 

booting sequence. Like with the kernel command-line parameters, GRUB can accept 

dracut command-line parameters too, which will be accepted by initramfs or more 

precisely by systemd of initramfs.

 dracut Command-Line Options
In layperson’s terms, you can consider command-line parameters starting with rd. to be 

dracut command-line parameters that will be understood by initramfs.

 rd.auto (rd.auto=1)
• According to the man page, this enables auto assembly of special 

devices such as cryptoLUKS, dmraid, mdraid, or lvm. The default 

is off.

• Consider a scenario like earlier where your system did not have 

mdraid (s/w raid) configured, but now you have recently 

implemented it, and you want that device to be activated at the 

time of the boot. In other words, the storage state of the machine 

is changed at the time of the initramfs creation. Now, without 

regenerating the new initramfs, you want the new configuration 

(LVM or LUKS) to be activated at the time of the boot.

 rd.hostonly=0
• According to the man page, this removes all compiled in the 

configuration of the host system that the initramfs image was built 

on. This helps booting, if any disk layout has changed, especially in 

combination with rd.auto or other parameters specifying the layout.
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• Say that your graphics card provider (such as Nvidia) has given you 

special drivers/modules that are present in your initramfs, but the 

modules have started creating a problem. Since the graphics driver 

will be loaded at an early stage of booting, you want to avoid the 

use of that module; instead, you want to use a generic driver (vesa). 

In that scenario, you can use rd.hostonly=0. With this parameter, 

initramfs will load the generic driver and will avoid the host-specific 

Nvidia driver.

 rd.fstab = 0
• According to the man page, use this parameter if you do not want to 

honor special mount options for the root filesystem found in /etc/

fstab of the real root.

 rd.skipfsck
• According to the man page, this skips fsck for rootfs and /usr. If 

you’re mounting /usr to be read-only and the init system performs 

fsck before the remount, you might want to use this option to avoid 

duplication.

• Most Linux administrators have a misconception about fsck and 

how it is combined with the ro kernel command-line parameter. 

Most of us think that the kernel first mounts the actual root filesystem 

in ro mode and then performs an fsck on it so that the fsck 

operation will not corrupt the root filesystem data. Once the fsck is 

successful, it will remount the root filesystem in read-write mode by 

referring to /etc/fstab.

• But this understanding has a basic flaw, which is that fsck cannot be 

performed on a mounted filesystem irrespective of ro or rw mode.
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The following Fedora system’s user root filesystem is on the sda5 device, and it 

is currently mounted in read-only mode, so fsck would fail since the filesystem is 

mounted:

# fsck.ext4 /dev/sda5

    e2fsck 1.45.3 (14-Jul-2019)

    /dev/sda5 is mounted.

    e2fsck: Cannot continue, aborting.

Hence, it is proved that the purpose of the user’s root filesystem getting mounted in 

ro mode is not to perform a fsck. Then what is the reason to pass the ro command-line 

parameter to the kernel? Let’s discuss it through the booting sequence.

• The kernel extracts initramfs and passes command-line parameters 

like root and ro to systemd, which will start from initramfs.

• systemd will find the actual root filesystem.

• Once the root filesystem (device) is identified, systemd will perform 

the fsck on it.

• If the fsck is successful, then systemd will mount the root filesystem 

as ro (as per the passed kernel command-line parameter) inside 

initramfs itself. It will be mounted as read-only in the /sysroot 

directory of initramfs.

• As you can see in Figure 6-9, the kernel has extracted initramfs 

and started systemd from it (I have removed the rhgb and quite 

parameters).
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Systemd then scanned the connected storage devices for the root filesystem and 

found one. Before mounting the user’s root filesystem, it first performed the fsck on it 

and later mounted it inside initramfs on the directory sysroot. The user’s root filesystem 

will be mounted in read-only mode.

• The reason for mounting it in read-only mode is simple to 

understand. Suppose the system fails to boot, but it has managed to 

mount the user’s root filesystem on sysroot and has provided us with 

a shell to fix the “can’t boot” issue. Users might accidentally corrupt 

or even delete the user’s root filesystem that is mounted under 

sysroot. So, to prevent the user’s root filesystem from such accidents, 

it is preferred to mount it in read-only mode.

#switch_root:/# ls -ld /sysroot/

    dr-xr-xr-x 19 root 0 4096 Sep 10  2017 /sysroot/

• How to use the debugging shells and how initramfs provides them 

will be discussed in Chapter 8.

Figure 6-9. The console messages
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• Figure 6-10 shows systemd continuing its booting sequence and 

leaving the initramfs environment.

• As you can see Figure 6-10, the switch root leaves the current 

initramfs environment and changes the root from initramfs’ 

temporary root filesystem to /sysroot, which has the user’s root 

filesystem mounted. (The switch root process will be discussed in 

Chapter 9.)

• Right after entering into the user’s root filesystem, systemd of the 

user’s root filesystem reads /etc/fstab and takes the appropriate 

action on mount points. For example, on this Fedora system, there is 

the user’s root filesystem entry as well as the /boot entry (boot is on 

separate partition):

#cat /etc/fstab

/dev/mapper/fedora_localhost--live-root  /     ext4    defaults    1 1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot  ext4    defaults  1 2

/dev/mapper/fedora_localhost--live-swap none   swap    defaults     0 0

Figure 6-10. The console messages
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• As you can see in Figure 6-11, at this stage, systemd will perform fsck 

only on the boot device before mounting it. Please note that it is not 

performing fsck on the user’s root filesystem since it has already 

been performed inside an initramfs environment. Also the user’s 

root filesystem is currently mounted, and we all know that it does not 

make sense to do an fsck on the swap device.

• If there had been any other extra mount points like /usr, it would 

have performed fsck on that device too.

• fsck depends on the fifth parameter of /etc/fstab. If it is 1, then 

fsck will be performed at the time of boot. This fstab setting is not 

applicable to the user’s root filesystem since fsck will be compulsory 

performed on user’s root filesystem inside initramfs, which is before 

reading the /etc/fstab file.

• rd.skipfsck is applicable only to root and the user’s root filesystem. 

It is not applicable to any other filesystem like /boot.

 rd.driver.blacklist, rd.driver.pre, and rd.driver.post
This is from the man page of rd.driver.blacklist:

rd.driver.blacklist=<drivername>[,<drivername>,...]

do not load kernel module <drivername>. This parameter can be specified 
multiple times.

Figure 6-11. The fsck console messages
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rd.driver.blacklist is one of the most important dracut command-line 

parameters. As the name suggests, it will blacklist the specified modules. Let’s try to 

blacklist the virtio-related drivers that are quite important for virtual guest systems.

# lsmod | grep -i virt

    virtio_balloon         24576  0

    virtio_net             57344  0

    virtio_console         40960  2

    virtio_blk             20480  3

    net_failover           20480  1 virtio_net

It is available in initramfs as well.

# lsinitrd | grep -i virtio

-rw-r--r-- 1 root  root  8356 Jul 25 03:54 usr/lib/modules/5.3.7-301.fc31.

x86_64/kernel/drivers/block/virtio_blk.ko.xz

-rw-r--r--   1 root     root        14132 Jul 25 03:54 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/drivers/char/virtio_console.ko.xz

-rw-r--r--   1 root     root        25028 Jul 25 03:54 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/drivers/net/virtio_net.ko.xz

-rw-r--r--   1 root     root         7780 Jul 25 03:54 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/virtio_scsi.ko.xz

Remember, to blacklist the module, as you can see in Figure 6-12, you need to 

make sure that every other dependent module also has to be blacklisted; otherwise, the 

dependent modules would pull the blacklisted module. For example, in this case, the 

virtio_balloon, virtio_net, virtio_console, virtio_blk, and virtio_pci modules 

are dependent on each other. That means if we blacklist only virtio_blk, the other 

dependent modules will still load the virtio_blk module.
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The virtio-related drivers are important. This is the same driver through which 

virtual disks and networks of hypervisors get exposed to the guest operating system. 

Since we blacklisted them, the guest OS will stop booting. You can see the “can’t boot” 

console messages in Figure 6-13.

So, the blacklisting of the virtio modules is successful, but there are two issues in 

this approach.

• rd.driver.blacklist will only block the modules that are loading 

from initramfs.

• We need to manually provide the list of modules to rd.driver.

blacklist every time.

Figure 6-12. The kernel command-line parameter

Figure 6-13. The console messages
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If the module is not in initramfs, then you cannot really block it from loading. For 

example, the bluetooth module is not loaded from initramfs, but the kernel loads it after 

the initramfs environment.

# lsmod | grep -i bluetooth

    bluetooth             626688  37 btrtl,btintel,btbcm,bnep,btusb,rfcomm

    ecdh_generic           16384  1 bluetooth

    rfkill                 28672  5 bluetooth

# lsinitrd | grep -i bluetooth

    <no_output>

To block the kernel from loading the bluetooth module, we need to tell the modprobe 

command to block the module from loading. modprobe is a binary that loads or removes 

modules on behalf of the kernel.

Make a new blacklist.conf file. (You can choose any name, but it has to have a 

.conf suffix) and blacklist the module.

#cat /etc/modprobe.d/blacklist.conf

    blacklist bluetooth

But after reboot, you will find that bluetooth is again loaded by kernel.

#lsmod | grep -i bluetooth

    bluetooth             626688  37 btrtl,btintel,btbcm,bnep,btusb,rfcomm

    ecdh_generic           16384  1 bluetooth

    rfkill                 28672  5 bluetooth

This is because the bluetooth module is a dependency of multiple other modules 

such as btrtl, btintel, btbcm, bnep, btusb, rfcomm, and rfkill. Hence, modprobe has 

loaded bluetooth as a dependency of other modules. In such situations, we need to 

fool the modprobe command by adding the install bluetooth /bin/true line in the 

blacklist.conf file, as shown here:

# cat /etc/modprobe.d/blacklist.conf

    install bluetooth /bin/true
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After rebooting, you will find the bluetooth module has been blocked.

# lsmod | grep -i bluetooth

    <no_output>

You can also use /bin/false instead of /bin/true.

After the explanation of rd.driver.blacklist, the rd.driver.pre and rd.driver.

post dracut command-line parameters are easier to understand, and the man pages are 

self-explanatory, shown here:

rd.driver.pre=<drivername>[,<drivername>,...]

force loading kernel module <drivername>. This parameter can be specified 
multiple times.

rd.driver.post=<drivername>[,<drivername>,...]

force loading kernel module <drivername> after all automatic loading 
modules have been loaded. This parameter can be specified multiple times.

 rd.debug
This comes from the man page:

set -x for the dracut shell. If systemd is active in the initramfs, all output is 
logged to the systemd journal, which you can inspect with “journalctl -ab”. 
If systemd is not active, the logs are written to dmesg and /run/initramfs/
init.log. If “quiet” is set, it also logs to the console.

rd.debug will enable the debug logging of systemd, which will log huge messages  

on the console as well as in the systemd journals. The detailed messages provided by  

rd.debug will be helpful in identifying systemd-related “can’t boot” issues.

 rd.memdebug= [0-4]
This comes from the man page:

Print memory usage info at various points, set the verbose level from 0 to 4. 
Higher level means more debugging output:

       0 - no output

       1 - partial /proc/meminfo
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       2 - /proc/meminfo

       3 - /proc/meminfo + /proc/slabinfo

       4 - /proc/meminfo + /proc/slabinfo + tracekomem

• This will print all the memory subsystem–related information on- 

screen, such as the meminfo and slabinfo file contents.

 lvm, raid, and Multipath-Related dracut Command-Line 
Parameters
This comes from the man pages:

       rd.lvm=0

disable LVM detection

       rd.lvm.vg=<volume group name>

only activate the volume groups with the given name. rd.lvm.vg can be 
specified multiple times on the kernel command line.

       rd.lvm.lv=<logical volume name>

only activate the logical volumes with the given name. rd.lvm.lv can be 
specified multiple times on the kernel command line.

       rd.lvm.conf=0

remove any /etc/lvm/lvm.conf, which may exist in the initramfs

• Out of these parameters, you must have at least observed the rd.lvm.lv  

option passed by GRUB. The purpose of rd.lvm.lv is to activate the 

given LVM device at an early stage of booting. By default, the major 

Linux distributors activate only root and swap (if configured) LV 

devices. Activating only the root filesystem at the time of the boot 

speeds up the booting procedure. After switching the root from 

initramfs to the actual root filesystem, systemd can activate the 

remaining volume groups as per the list at /etc/fstab.

• Similarly, dracut provides multipath and RAID-related command- 

line parameters, which are again self-explanatory.
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MD RAID

       rd.md=0

disable MD RAID detection

       rd.md.imsm=0

disable MD RAID for imsm/isw raids, use DM RAID instead

       rd.md.ddf=0

disable MD RAID for SNIA ddf raids, use DM RAID instead

       rd.md.conf=0

ignore mdadm.conf included in initramfs

       rd.md.waitclean=1

wait for any resync, recovery, or reshape activity to finish before continuing

       rd.md.uuid=<md raid uuid>

only activate the raid sets with the given UUID.  This parameter can be 
specified multiple times.

   DM RAID

       rd.dm=0

disable DM RAID detection

       rd.dm.uuid=<dm raid uuid>

only activate the raid sets with the given UUID.  This parameter can be 
specified multiple times.

   MULTIPATH

       rd.multipath=0

disable multipath detection
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• dracut provides n number of command-line parameters for 

networks, NFS, CIFS, iSCSI, FCoE, etc. It also means these are the 

various options on which you can put your root filesystem, but it is 

almost impossible to cover each and every dracut command-line 

parameter. Also, I am not in favor of booting the system from all these 

complex structures. I believe in keeping the user’s root filesystem 

always on the local disk so that the booting procedure will be easy 

and mainly because the simpler booting sequence is quicker to fix in 

the case of a “can’t boot” situation.

 rd.break and rd.shell
rd.shell will provide us with the shell at the end of the booting sequence, and with rd.break, 

we can break the booting sequence. But to understand these parameters, we need to have a good 

understanding of systemd. hence, before discussing rd.break and the dracut hooks, we will discuss 

systemd first in our next chapter. the following are the parameters accepted by rd.break:

Parameters Purpose

cmdline this hook collects the kernel command-line parameters.

pre- udev this hook starts before starting the udev handler.

pre- trigger In this hook, you can set udev environment variables with 'udevadm' 

control --property=KEY=value or control the further execution of udev.

pre- mount this hook starts before mounting the user’s root filesystem at /sysroot.

mount the hook will be started after mounting the root filesystem at /sysroot.

pre- pivot the hook will be executed just before switching to actual root filesystem.
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CHAPTER 7

systemd (Part I)
Here is what we know about the booting sequence so far:

 1) The bootloader loads the kernel and initramfs in memory.

 2) The kernel will be loaded at a specific location (an architecture- 

specific location), whereas initramfs will be loaded at any 

available location.

 3) The kernel extracts itself with the help of the header of the 

vmlinuz file.

 4) The kernel extracts initramfs in main memory  

(init/initramfs.c) and mounts it as a temporary root filesystem 

(/) in main memory.

 5) The kernel launches (init/main.c) the systemd as a first process 

with PID-1 from a temporary root filesystem.

 6) systemd will find the user’s root filesystem and will chroot into it.

This chapter will address how systemd, which is forked from initramfs, manages to 

mount the user’s root filesystem, and we will also see the detailed booting sequence of 

systemd inside initramfs. But before that, we need to understand systemd as a process.

I will let systemd’s man page do the talking here:

“After the root file system is found and mounted, the initrd hands 

over control to the host’s system manager (such as systemd(1)) 

stored in the root file system, which is then responsible for probing 

all remaining hardware, mounting all necessary file systems and 

spawning all configured services.”

https://doi.org/10.1007/978-1-4842-5890-3_7#ESM


286

 Structure
systemd was first introduced in Fedora 15. We all know that systemd is a replacement 
for init scripts (quite literally, /sbin/init is now a symlink to /usr/lib/systemd/
systemd), and it amazingly reduces the boot time. However, in reality, systemd is much 
bigger than just a replacement for init. This is what systemd does:

 1) It maintains logs with journalctl.

 2) It extensively uses cgroups version 1 and 2.

 3) It reduces boot time.

 4) It manages units. service is just one type of unit that systemd 
handles. The following are the units that systemd provides and 
manages:

Unit Purpose

systemd.service To manage the services

systemd.socket To create and manage the sockets

systemd.device To create and use devices based on udev’s inputs

systemd.mount To mount the filesystem

systemd.automount To automount the filesystem

systemd.swap To make and manage swap devices

systemd.target Group of services instead of runlevels

systemd.path Information about a path monitored by systemd, for path-based activation

systemd.timer For time-based activation

systemd.slice Resource management such as CPU, memory, I/O for service units

Unit files will be stored and loaded from these three locations:

Path Description

/etc/systemd/system Local configuration

/run/systemd/system Runtime units

/usr/lib/systemd/system Units of installed packages
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/etc/systemd/system is an admin location, whereas /usr/lib/systemd/system 

is an application vendor location. This means the admin’s location will get precedence 

over the application vendor’s location if the same unit file is present at both locations. 

Please note that in this chapter all the commands are executed from the directory in 

which initramfs has been extracted.

#  tree etc/systemd/

       etc/systemd/

       ├── journald.conf
       └── system.conf
0 directories, 2 files

#ls usr/lib/systemd/system | column

basic.target                       plymouth-switch-root.service

cryptsetup.target                  poweroff.target

ctrl-alt-del.target                poweroff.target.wants

default.target                     reboot.target

dracut-cmdline-ask.service         reboot.target.wants

dracut-cmdline.service             remote-fs-pre.target

dracut-emergency.service           remote-fs.target

dracut-initqueue.service           rescue.service

dracut-mount.service               rescue.target

dracut-pre-mount.service           rescue.target.wants

dracut-pre-pivot.service           rpcbind.target

dracut-pre-trigger.service         shutdown.target

dracut-pre-udev.service            sigpwr.target

emergency.service                  slices.target

emergency.target                   sockets.target

emergency.target.wants             sockets.target.wants

final.target                       swap.target

halt.target                        sysinit.target

halt.target.wants                  sysinit.target.wants

initrd-cleanup.service             sys-kernel-config.mount
initrd-fs.target                   syslog.socket
initrd-parse-etc.service           systemd-ask-password-console.path
initrd-root-device.target          systemd-ask-password-console.service
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initrd-root-fs.target              systemd-ask-password-console.service.wants
initrd-switch-root.service         systemd-ask-password-plymouth.path
initrd-switch-root.target          systemd-ask-password-plymouth.service
initrd-switch-root.target.wants    systemd-ask-password-plymouth.service.wants
initrd.target                      systemd-fsck@.service
initrd.target.wants                systemd-halt.service
initrd-udevadm-cleanup-db.service  systemd-journald-audit.socket
kexec.target                       systemd-journald-dev-log.socket
kexec.target.wants                 systemd-journald.service
kmod-static-nodes.service          systemd-journald.socket
local-fs-pre.target                systemd-kexec.service
local-fs.target                    systemd-modules-load.service
multi-user.target                  systemd-poweroff.service
multi-user.target.wants            systemd-random-seed.service
network-online.target              systemd-reboot.service
network-pre.target                 systemd-sysctl.service
network.target                     systemd-tmpfiles-setup-dev.service
nss-lookup.target                  systemd-tmpfiles-setup.service
nss-user-lookup.target             systemd-udevd-control.socket
paths.target                       systemd-udevd-kernel.socket
plymouth-halt.service              systemd-udevd.service
plymouth-kexec.service             systemd-udev-settle.service
plymouth-poweroff.service          systemd-udev-trigger.service
plymouth-quit.service              systemd-vconsole-setup.service
plymouth-quit-wait.service         timers.target
plymouth-reboot.service            umount.target
plymouth-start.service

The third location, /run/systemd/system, is a temporary location and will be used 
internally by systemd to manage units. For example, it will be used extensively while 
creating the sockets. In fact, /run is a separate filesystem introduced with systemd to 
store runtime data. As of now, the /run directory of initramfs is empty, which is obvious 
because initramfs is not in use.

#ls run/

    <no_output>
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Also, it is expected that there are fewer unit files that are present in initramfs than the 

ones that are available on the user’s root filesystem. dracut will collect only those systemd 

unit files that are necessary to mount the user’s root filesystem. For example, it does not 

make sense to add the httpd or mysql related systemd unit files in initramfs. Let’s try to 

understand one of the service unit files of systemd, as shown here:

# cat /usr/lib/systemd/system/sshd.service

[Unit]

Description=OpenSSH server daemon

Documentation=man:sshd(8) man:sshd_config(5)

After=network.target sshd-keygen.target

Wants=sshd-keygen.target

[Service]

Type=notify

EnvironmentFile=-/etc/crypto-policies/back-ends/opensshserver.config

EnvironmentFile=-/etc/sysconfig/sshd-permitrootlogin

EnvironmentFile=-/etc/sysconfig/sshd

ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO_POLICY $PERMITROOTLOGIN

ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure

RestartSec=42s

[Install]

WantedBy=multi-user.target

This sshd service unit file will not be part of initramfs since you do not need an ssh 

service to mount the user’s root filesystem. The service unit file is divided into three 

parts: [unit], [service], [install].

• [unit]:

After=network.target sshd-keygen.target

The sshd service will start only if network.target (listed units) and 

sshd-keygen (listed units) have successfully started. If either of them 

fails, then the sshd service will also fail.
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Wants=sshd-keygen.target

This is a less severe version of Requires. If any of the units that 

are mentioned in wants fails, then also the sshd service (or that 

particular service) will start, whereas in Requires the sshd service 

will start only if the units mentioned under Requires have been 

successfully started. Before is the opposite of After The Wants, 

After, Before, and Requires all work independently of each 

other. It is a common practice to use Wants and After together.

Conflicts=

This can be used to list the units that are conflicting with the 

current unit. Starting this unit might stop the listed conflicting 

units.

OnFailure=

OnFailure units will start when any given unit reaches the failed 

state. 

• [Service]:

ExecStart=/usr/sbin/sshd

Starting an sshd service unit just starts the binary mentioned after 

ExecStart.

• [Install]:

The Install section of a unit file is not used by systemd. Rather, it 

is used by the systemctl enable, or disable command. It will be 

used by systemctl to create or destroy the symlinks.

 How Does systemd Reduce Boot Time?
Lennart Poettering, the creator of systemd, gives a classic example of how systemd reduces 

the boot time in his blog at http://0pointer.de/blog/projects/systemd.html. This blog 

is one of the best resources if you really want to deep dive into the systemd world.

There are four daemons: syslog, dbus, avahi, and bluetooth.
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syslog is necessary for every daemon to log the messages. So, syslog is a requirement for 

every other daemon. avahi needs syslog and dbus to run. bluetooth needs dbus and syslog 

but does not need avahi to be running. With the Sysv/init script model, this happens:

 1) syslog will start first.

 2) When it is completely ready, the dbus service will be started.

 3) After dbus, avahi will be started.

 4) Finally, the bluetooth service will be started. See Figure 7-1.

Figure 7-1. The init model

bluetooth and avahi are not dependent on each other, but bluetooth has to 

wait until avahi starts. Ubuntu-like distributions use upstart instead of init, which 

improves the boot time to some extent. In upstart, the services that are not dependent 

on each other will start in parallel, meaning avahi and bluetooth will start together. 

Please see Figure 7-2 for reference.
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In systemd, all the services are started at the same time with the help of sockets. 

Here’s an example:

 1) systemd will create a socket for syslog (which has been replaced 

with journald).

 2) A socket /dev/log is a symlink to /run/systemd/journal/dev-log.

# file /dev/log

      /dev/log: symbolic link to /run/systemd/journal/dev-log

# file /run/systemd/journal/dev-log

      /run/systemd/journal/dev-log: socket

Figure 7-2. The upstart model
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As mentioned earlier, the run filesystem will be used by systemd for socket file creation.

 3) For dbus, the socket is created at /run/dbus/system_bus_socket. To 

run, dbus needs journald to be running, but since the system is still 

booting and journald/syslog is not fully started yet, dbus will log its 

messages to journald’s socket /dev/log, and whenever the journald 

service is fully ready, it will fetch the messages from the socket.

 4) It’s the same for the bluetooth service; it needs the dbus service to 

be running to start. So, systemd will create a /run/dbus/system_

bus_socket socket before the dbus service starts. The bluetooth 

service will not wait for dbus to start. You can refer to Figure 7-3 for 

a better understanding.

Figure 7-3. The systemd model
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 5) If the systemd created socket runs out of buffer, then the 

bluetooth service will be blocked until the socket is available. 

This socket approach will drastically reduce the boot time.

This socket-based approach was originally tried in macOS. It was called launchd at 

that time. Lennart Poettering took inspiration from it.

 systemd-analyze
systemd provides the systemd-analyze tool to check the time taken by the system to boot.

# systemd-analyze

Startup finished in 1.576s (kernel) + 1.653s (initrd) + 11.574s (userspace) 

= 14.805s

graphical.target reached after 11.561s in userspace

As you can see, my Fedora system took 1.5 seconds to initialize the kernel; then it 

spent 1.6 seconds inside initramfs and took almost 11 seconds to start the services or 

initialize the user space. The total time taken was almost 15 seconds. The total time is 

calculated right from the bootloader to the graphical target.

Here are some important notes:

• The total time does not include the time taken by desktop 

environments like GNOME, KDE, Cinnamon, etc. This also makes 

sense since the desktop environments are not handled by systemd, 

so a systemd tool cannot calculate the time taken by desktop 

environments.

• Also, there is a possibility that because of systemd’s socket approach, 

services were still starting even after the total time (14.805 seconds).

So, to give more insight and clean data, systemd-analyse provides a blame tool.

# systemd-analyze blame

          31.202s dnf-makecache.service

          10.517s pmlogger.service

          9.264s NetworkManager-wait-online.service

          4.977s plymouth-switch-root.service

          2.994s plymouth-quit-wait.service

          1.674s systemd-udev-settle.service
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          1.606s lightdm.service

          1.297s pmlogger_check.service

           938ms docker.service

           894ms dracut-initqueue.service

           599ms pmcd.service

           590ms lvm2-monitor.service

           568ms abrtd.service

           482ms firewalld.service

           461ms systemd-logind.service

           430ms lvm2-pvscan@259:3.service

           352ms initrd-switch-root.service

           307ms bolt.service

           290ms systemd-machined.service

           288ms registries.service

           282ms udisks2.service

           269ms libvirtd.service

           255ms sssd.service

           209ms systemd-udevd.service

           183ms systemd-journal-flush.service

           180ms docker-storage-setup.service

           169ms systemd-journald.service

           156ms polkit.service

           .

           .

           </snip>

The blame output could easily be misunderstood; i.e., two services might be 

initializing at the same time, and thus the time spent to initialize both services is much 

less than the sum of both individual times combined. For more precise data, you can use 

the plot tool of systemd-analyse, which will generate the graph and provide many more 

details about the boot time. You can see the generated plot image in Figure 7-4.

# systemd-analyze plot > plot.svg

# eog plot.svg
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Figure 7-4. The generated plot image
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The following are some of the other tools that systemd-analyse provides that can be 

used to identify the boot time.

systemd-analyze <tool> Description

time Prints time spent in the kernel

blame Prints list of running units 

ordered by time to init

critical-chain 

[UNIT...]

Prints a tree of the time-critical 

chain of units

plot Outputs sVG graphic showing 

service initialization

dot [UNIT...] Outputs dependency graph in 

dot(1) format

log-level [LEVEL] Gets/sets logging threshold for 

manager

log-target [TARGET] Gets/sets logging target for 

manager

dump Output state serialization of 

service manager

cat-config shows configuration file and 

drop-ins

unit-files Lists files and symlinks for units

units-paths Lists load directories for units

exit-status [STATUS...] Lists exit status definitions

syscall-filter 

[NAME...]

Prints list of syscalls in 

seccomp filter

condition... evaluates conditions and 

asserts

verify FILE... Checks unit files for 

correctness

(continued)
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systemd-analyze <tool> Description

service-watchdogs 

[BOOL]

Gets/sets service watchdog 

state

calendar SPEC... Validates repetitive calendar 

time events

 timestamp... Validates a timestamp

timespan SPAN... Validates a time span

security [UNIT...] analyzes security of unit

 “Can’t Boot” Issue 6 (systemd)
Issue: The system successfully boots, but the nagios service fails to start at the time of 

the boot.

Here are the steps to resolve this issue:

 1) We need to isolate the issue first. Remove the rhgb quiet kernel 

command-line parameters when GRUB appears on the screen.

 2) The verbose logs show that the system is able to boot, but the 

nagios service fails to start while booting. As you can see, the 

NetworkManager service of systemd which is responsible for the 

network has successfully started. This means it is not a network 

communication issue.

13:23:52   systemd: Starting Network Manager...

13:23:52    systemd: Started Kernel Samepage Merging (KSM)  

Tuning Daemon.

13:23:52   systemd: Started Install ABRT coredump hook.

13:23:52   abrtd: Init complete, entering main loop

13:23:52   systemd: Started Load CPU microcode update.

13:23:52   systemd: Started Authorization Manager.

13:23:53    NetworkManager[1356]: <info>  [1534389833.1078] 

NetworkManager is starting... (for the first time)
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13:23:53    NetworkManager[1356]: <info>  [1534389833.1079] Read 

config: /etc/NetworkManager/NetworkManager.conf (lib: 

00-server.conf,  10-slaves- order.conf)

13:23:53    NetworkManager[1356]: <info>  [1534389833.1924] 

manager[0x558b0496a0c0]: monitoring kernel firmware 

directory '/lib/firmware'.

13:23:53    NetworkManager[1356]: <info>  [1534389833.2051] dns- 

mgr[0x558b04971150]: init: dns=default, rc-manager=file

13:23:53   systemd: Started Network Manager.

 3) The nagios service tries to execute right after the NetworkManager 

service. This means nagios must have mentioned after=Network.

target in its service unit file. But the nagios service fails to start.

13:24:03   nagios: Nagios 4.2.4 starting... (PID=5006)

13:24:03   nagios: Local time is Thu  13:24:03 AEST 2018

13:24:03   nagios: LOG VERSION: 2.0

13:24:03    nagios: qh: Socket '/usr/local/nagios/var/rw/nagios.qh' 

successfully initialized

13:24:03   nagios: qh: core query handler registered

13:24:03    nagios: nerd: Channel hostchecks registered 

successfully

13:24:03    nagios: nerd: Channel servicechecks registered 

successfully

13:24:03    nagios: nerd: Channel opathchecks registered 

successfully

13:24:03    nagios: nerd: Fully initialized and ready to 

rock!  Nagios Can't ping devices (not 100% packet loss 

at the end of each line)

13:24:04    nagios: HOST ALERT:  X ;DOWN;SOFT;1;CRITICAL -  X: Host 

unreachable @  X. rta nan, lost 100%

Resolution: The strange thing is that the nagios error message says it failed to 

start because it is not able to connect to the network, but as per NetworkManager, it has 

successfully started, and the system has already been placed in network.
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The issue is clearly created by systemd’s “speeding up the booting procedure” 
approach. To place the system in the network, systemd has to do a lot of work: initialize 
the network cards, activate the link, put the IP on the NIC card, check if any duplicate IPs 
are already available, start communicating on the network, etc. Obviously, to finish every 
bit of this, systemd will take some time. On my test system, it took almost 20 seconds to 
fully populate the network. Of course, systemd cannot pause the booting sequence for 
that whole time. If systemd waits until the network fully populates, then one of the main 
aspects of systemd’s innovation to speed up the booting process will be ruined.

systemd with the help of NetworkManager will give its best shot to make sure we are 
on the network, but it will not wait for the user-specified network spawning and will not 
wait until every rule of topology is achieved.

In some situations like this “can’t boot” issue, it is possible that NetworkManager has 
told systemd to initialize nagios, which was dependent on network.target, but the 
network is not yet fully up, so nagios might not be able to contact its servers.

 1) To solve such issues, systemd suggests enabling NetworkManager-
wait-online.service. This service will make NetworkManager 
wait until the network fully comes up. Once the network is fully 
populated, NetworkManager will signal to systemd to start the 
services that are dependent on network.target.

# cat /usr/lib/systemd/system/NetworkManager-wait-online.service
[Unit]
Description=Network Manager Wait Online
Documentation=man:nm-online(1)
Requires=NetworkManager.service
After=NetworkManager.service
Before=network-online.target

[Service]
Type=oneshot
ExecStart=/usr/bin/nm-online -s -q --timeout=30
RemainAfterExit=yes

[Install]
WantedBy=network-online.target

This simply calls the nm-online binary and passes the -s switch to it. The service will 
hold NetworkManager for a maximum of 30 seconds.

ChaPTeR 7  sysTemd (PaRT I)



301

This is what the man page has to say about the nm-online:

“Wait for NetworkManager startup to complete, rather than waiting for network 
connectivity specifically. Startup is considered complete once NetworkManager 
has activated (or attempted to activate) every auto- activate connection which is 
available given the current network state. (This is generally only useful at boot 
time; after startup has completed, nm- online -s will just return immediately, 
regardless of the current network state.) ”

 2) After enabling NetworkManager-wait-online-service, the issue 

has been resolved, but the boot time has been reduced slightly. As 

you can see in Figure 7-5, most of the boot time has been eaten up 

by NetworkManager-wait-online-service, which is expected.

Figure 7-5. The plot after enabling NetworkManager-wait-online-service
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systemd provides one more tool, bootchart, which is basically a daemon through which 

you can conduct a performance analysis of the Linux boot process. It will collect the data at 

boot time and make a graph out of it. You can consider bootchart to be an advanced version 

of a systemd-analyze plot. To use this tool, as shown in Figure 7-6, you need to pass the full 

path of the systemd-bootchart binary to the init kernel command- line parameter.

Figure 7-6. The kernel command-line parameters

After the successful boot process, as you can see in Figure 7-7, the tool will create a detailed 

graph image at /run/log/bootchart*. Once the image is generated,  systemd- bootchart will 

hand over control to the systemd, and systemd will continue the booting procedure.
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Since we now understand the basics of systemd, we can continue our paused 

booting sequence. So far, we have reached the stage where the kernel has extracted 

initramfs in RAM and started the systemd binary from it. Once the systemd process 

starts, it will follow the regular booting sequence.

Figure 7-7. The bootchart graph
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Figure 7-8. The booting flowchart

 Flow of systemd Inside initramfs
systemd will be launched from initramfs and will follow the booting sequence shown 

in Figure 7-8. Harald Hoyer (who created dracut initramfs and is the lead systemd 

developer) created this flowchart, which is also available in the systemd man pages.
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Figure 7-8. (continued)
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This flowchart comes from the man page of dracut. The ultimate aim of systemd in 

the booting procedure is to mount the user’s root filesystem inside initramfs (sysroot) 

and then switch into it. Once systemd has switch_rooted into the new (user’s) root 

filesystem, it will leave the initramfs environment and continue the booting procedure 

by starting the userspace services such as httpd, mysql, etc. It will also draw a desktop/

GUI if the user is booting the system in graphical mode. This book’s scope is to cover the 

booting sequence until systemd mounts the user’s root filesystem and then switches into 

it. There are a few reasons for not covering the booting sequence after switch_root. I 

will mention the reasons here, which are very important:

• The ultimate goal of booting is to mount the user’s root filesystem 

and present it to the user, which this book is covering in detail.

• The activities performed by systemd after initramfs are easy to 

understand since systemd performs similar activities but under the 

new root filesystem environment.

• Production systems generally do not run in graphical mode.

• Linux has a couple of desktops such as GNOME, KDE, Cinnamon, 

Unity, etc. Every user has their own favorite desktop, and it is almost 

impossible to document every step taken by every desktop while 

booting.

So, with this understanding, in this chapter we will cover the booting sequence up to 

basic.target. Please refer to Figure 7-9.
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 systemd-journal.socket
Every process has to log its messages. In fact, a process, service, or daemon will start only 

if it is able to log its messages in the OS logging mechanism. These days, the OS logging 

mechanism is journald. So, it is obvious that the journald service has to be started 

first, but as we know, systemd won’t wait until the services fully start. To speed up the 

procedure, it uses the socket approach. Hence, systemd has to start the journald sockets 

first. The journald service creates the following four sockets and listens for messages:

• systemd-journald.socket

• systemd-journald-dev-log.socket

Figure 7-9. The boot sequence up to basic.target

ChaPTeR 7  sysTemd (PaRT I)



308

• systemd-journald-audit.socket

• syslog.socket

These sockets will be used by daemons, applications, and every process to log their 

messages.

 # vim usr/lib/systemd/system/systemd-journald.socket

#  SPDX-License-Identifier: LGPL-2.1+

#

#  This file is part of systemd.

#

#  systemd is free software; you can redistribute it and/or modify it

#  under the terms of the GNU Lesser General Public License as published by

#  the Free Software Foundation; either version 2.1 of the License, or

#  (at your option) any later version.

[Unit]

Description=Journal Socket

Documentation=man:systemd-journald.service(8) man:journald.conf(5)

DefaultDependencies=no

Before=sockets.target

# Mount and swap units need this. If this socket unit is removed by an

# isolate request the mount and swap units would be removed too,

# hence let's exclude this from isolate requests.

IgnoreOnIsolate=yes

[Socket]

ListenStream=/run/systemd/journal/stdout

ListenDatagram=/run/systemd/journal/socket

SocketMode=0666

PassCredentials=yes

PassSecurity=yes

ReceiveBuffer=8M

Service=systemd-journald.service

# cat usr/lib/systemd/system/systemd-journald-dev-log.socket | grep -v '#'
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[Unit]

Description=Journal Socket (/dev/log)

Documentation=man:systemd-journald.service(8) man:journald.conf(5)

DefaultDependencies=no

Before=sockets.target

IgnoreOnIsolate=yes

[Socket]

Service=systemd-journald.service

ListenDatagram=/run/systemd/journal/dev-log

Symlinks=/dev/log

SocketMode=0666

PassCredentials=yes

PassSecurity=yes

ReceiveBuffer=8M

SendBuffer=8M

We have already discussed the way sockets work, especially the /dev/log socket. The 

next step in the booting sequence is dracut-cmdline.service.

 dracut-cmdline.service
After initializing journald sockets, systemd collects the kernel command-line 

parameters such as the root, rflags, and fstype variables through usr/lib/systemd/

system/dracut-cmdline.service. This is also called a cmdline hook of initramfs, which 

we mentioned at the end of Chapter 6. The hook can be called by passing the cmdline 

value to rd.break (a dracut command-line parameter). We will explore this stage of 

the booting process by using the cmdline hook. We need to pass the rd.break=cmdline 

dracut command-line parameter to the kernel at the time of the boot.

Inside initramfs, systemd calls this hook from usr/lib/systemd/system/dracut- 

cmdline.service.
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# cat usr/lib/systemd/system/dracut-cmdline.service

#  This file is part of dracut.

#

# See dracut.bootup(7) for details

[Unit]

Description=dracut cmdline hook

Documentation=man:dracut-cmdline.service(8)

DefaultDependencies=no

Before=dracut-pre-udev.service

After=systemd-journald.socket

Wants=systemd-journald.socket

ConditionPathExists=/usr/lib/initrd-release

ConditionPathExistsGlob=|/etc/cmdline.d/*.conf

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/cmdline

ConditionKernelCommandLine=|rd.break=cmdline

ConditionKernelCommandLine=|resume

ConditionKernelCommandLine=|noresume

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-cmdline

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

# Bash ignores SIGTERM, so we send SIGHUP instead, to ensure that bash

# terminates cleanly.

KillSignal=SIGHUP

As you can see, systemd has called a dracut-cmdline script. The script is available in 

initramfs itself, which will collect the kernel command-line parameters.
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# vim bin/dracut-cmdline

 24 #  Get the "root=" parameter from the kernel command line, but 

differentiate

 25 #  between the case where it was set to the empty string and the case 

where it

 26 # wasn't specified at all.

 27 if ! root="$(getarg root=)"; then

 28     root_unset='UNSET'

 29 fi

 30

 31 rflags="$(getarg rootflags=)"

 32 getargbool 0 ro && rflags="${rflags},ro"

 33 getargbool 0 rw && rflags="${rflags},rw"

 34 rflags="${rflags#,}"

 35

 36 fstype="$(getarg rootfstype=)"

 37 if [ -z "$fstype" ]; then

 38     fstype="auto"

 39 fi

 40

 41 export root

 42 export rflags

 43 export fstype

 44

 45 make_trace_mem "hook cmdline" '1+:mem' '1+:iomem' '3+:slab' '4+:komem'

 46 # run scriptlets to parse the command line

 47  getarg 'rd.break=cmdline' -d 'rdbreak=cmdline' && emergency_shell -n 

cmdline "Break before cmdline"

 48 source_hook cmdline

 49

 50 [ -f /lib/dracut/parse-resume.sh ] && . /lib/dracut/parse-resume.sh

 51

 52 case "${root}${root_unset}" in

 53     block:LABEL=*|LABEL=*)

 54         root="${root#block:}"
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 55         root="$(echo $root | sed 's,/,\\x2f,g')"

 56         root="block:/dev/disk/by-label/${root#LABEL=}"

 57         rootok=1 ;;

 58     block:UUID=*|UUID=*)

 59         root="${root#block:}"

 60         root="block:/dev/disk/by-uuid/${root#UUID=}"

 61         rootok=1 ;;

 62     block:PARTUUID=*|PARTUUID=*)

 63         root="${root#block:}"

 64         root="block:/dev/disk/by-partuuid/${root#PARTUUID=}"

 65         rootok=1 ;;

 66     block:PARTLABEL=*|PARTLABEL=*)

 67         root="${root#block:}"

 68         root="block:/dev/disk/by-partlabel/${root#PARTLABEL=}"

 69         rootok=1 ;;

 70     /dev/*)

 71         root="block:${root}"

 72         rootok=1 ;;

 73     UNSET|gpt-auto)

 74         # systemd's gpt-auto-generator handles this case.

 75         rootok=1 ;;

 76 esac

 77

 78 [ -z "${root}${root_unset}" ] && die "Empty root= argument"

 79 [ -z "$rootok" ] && die "Don't know how to handle 'root=$root'"

 80

 81 export root rflags fstype netroot NEWROOT

 82

 83 export -p > /dracut-state.sh

 84

 85 exit 0

Basically, there are three parameters (kernel command-line parameters) that will be 

exported in this hook:

• root = User’s root file system name
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• rflags = User’s root filesystem flags (ro or rw)

• fstype = Auto (auto mounting or not)

Let’s see how these parameters are discovered by initramfs (or in the cmdline 

hook of initramfs). The getarg named function will be used to get these three kernel 

command- line parameters.

root="$(getarg root=)

rflags="$(getarg rootflags=)

fstype="$(getarg rootfstype=)"

.

.

export root

export rflags

export fstype

The getarg function is defined in the usr/lib/dracut-lib.sh file of initramfs.

#vim usr/lib/dracut-lib.sh

 201 getarg() {

 202     debug_off

 203     local _deprecated _newoption

 204     while [ $# -gt 0 ]; do

 205         case $1 in

 206             -d) _deprecated=1; shift;;

 207             -y) if _dogetarg $2 >/dev/null; then

 208                     if [ "$_deprecated" = "1" ]; then

 209                         [  -n "$_newoption" ] && warn "Kernel command 

line option '$2' is deprecated, use '$_

newoption' instead." || warn "Option '$2' is 

deprecated."

 210                     fi

 211                     echo 1

 212                     debug_on

 213                     return 0

 214                 fi

 215                 _deprecated=0
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 216                 shift 2;;

 217             -n) if _dogetarg $2 >/dev/null; then

 218                     echo 0;

 219                     if [ "$_deprecated" = "1" ]; then

 220                         [  -n "$_newoption" ] && warn "Kernel command 

line option '$2' is deprecated, use '$_

newoption=0' instead." || warn "Option '$2' 

is deprecated."

 221                     fi

 222                     debug_on

 223                     return 1

 224                 fi

 225                 _deprecated=0

 226                 shift 2;;

 227             *)  if [ -z "$_newoption" ]; then

 228                     _newoption="$1"

 229                 fi

 230                 if _dogetarg $1; then

 231                     if [ "$_deprecated" = "1" ]; then

 232                         [  -n "$_newoption" ] && warn "Kernel command 

line option '$1' is deprecated, use '$_

newoption' instead." || warn "Option '$1' is 

deprecated."

 233                     fi

 234                     debug_on

 235                     return 0;

 236                 fi

 237                 _deprecated=0

 238                 shift;;

 239         esac

 240     done

 241     debug_on

 242     return 1

 243 }

The getarg function is calling the _dogetarg function from the same file.
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 165 _dogetarg() {

 166     local _o _val _doecho

 167     unset _val

 168     unset _o

 169     unset _doecho

 170     CMDLINE=$(getcmdline)

 171

 172     for _o in $CMDLINE; do

 173         if [ "${_o%%=*}" = "${1%%=*}" ]; then

 174             if [ -n "${1#*=}" -a "${1#*=*}" != "${1}" ]; then

 175                 # if $1 has a "=<value>", we want the exact match

 176                 if [ "$_o" = "$1" ]; then

 177                     _val="1";

 178                     unset _doecho

 179                 fi

 180                 continue

 181             fi

 182

 183             if [ "${_o#*=}" = "$_o" ]; then

 184                 # if cmdline argument has no "=<value>", we assume "=1"

 185                 _val="1";

 186                 unset _doecho

 187                 continue

 188             fi

 189

 190             _val="${_o#*=}"

 191             _doecho=1

 192         fi

 193     done

 194     if [ -n "$_val" ]; then

 195         [ "x$_doecho" != "x" ] && echo "$_val";

 196         return 0;

 197     fi

 198     return 1;

 199 }
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Then the _dogetarg() function calls the getcmdline named function, which collects 

the actual kernel command-line parameters from /proc/cmdline.

 137 getcmdline() {

 138     local _line

 139     local _i

 140     local CMDLINE_ETC_D

 141     local CMDLINE_ETC

 142     local CMDLINE_PROC

 143     unset _line

 144

 145     if [ -e /etc/cmdline ]; then

 146         while read -r _line || [ -n "$_line" ]; do

 147             CMDLINE_ETC="$CMDLINE_ETC $_line";

 148         done </etc/cmdline;

 149     fi

 150     for _i in /etc/cmdline.d/*.conf; do

 151         [ -e "$_i" ] || continue

 152         while read -r _line || [ -n "$_line" ]; do

 153             CMDLINE_ETC_D="$CMDLINE_ETC_D $_line";

 154         done <"$_i";

 155     done

 156     if [ -e /proc/cmdline ]; then

 157         while read -r _line || [ -n "$_line" ]; do

 158             CMDLINE_PROC="$CMDLINE_PROC $_line"

 159         done </proc/cmdline;

 160     fi

 161     CMDLINE="$CMDLINE_ETC_D $CMDLINE_ETC $CMDLINE_PROC"

 162     printf "%s" "$CMDLINE"

 163 }
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Here is the booting sequence so far:

 1. The bootloader collects the kernel command-line parameters from 

the user and stores them in its own configuration file (grub.cfg).

 2. It passes those command-line parameters to the kernel by filling 

the kernel header.

 3. The kernel extracts itself and copies the kernel command-line 

parameters found in the kernel header.

 4. The kernel extracts initramfs in memory and uses it as a 

temporary root filesystem.

 5. In the same procedure, the kernel prepares the virtual filesystems 

such as proc, sys, dev, devpts, shm, etc.

 6. The kernel stores the command-line parameters in the /proc/

cmdline file.

 7. systemd collects the kernel command-line parameters by reading 

the /proc/cmdline file and stores them in the root, rootfs, and 

fstype variables.

We can verify this procedure by using the cmdline hook.

Getting back to the /bin/dracut-cmdline script, let’s take a look:

 41 export root

 42 export rflags

 43 export fstype

 44

 45 make_trace_mem "hook cmdline" '1+:mem' '1+:iomem' '3+:slab' '4+:komem'

 46 # run scriptlets to parse the command line

  47 getarg 'rd.break=cmdline' -d 'rdbreak=cmdline' && emergency_shell -n 

cmdline "Break before cmdline"

 48 source_hook cmdline

 49

 50 [ -f /lib/dracut/parse-resume.sh ] && . /lib/dracut/parse-resume.sh
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The condition says if the user has passed the rd.break=cmdline parameter on the 

kernel stanza of GRUB, then execute the emergency_shell function. Figure 7-10 shows 

the condition.

Figure 7-10. The condition

If the user has passed rd.break=cmdline, then the script calls the function named 

emergency_shell. As the name suggests, it will provide the debugging shell, and if the 

debugging shell has successfully launched, then it calls another function named source_

hook and passes the cmdline parameter to it. Whoever wrote this code to provide users 

with a debugging shell is a genius programmer!

We will not discuss the emergency shell function at this stage since we need to 

understand systemd more first. Hence, we will discuss it in much more detail in Chapter 8.

Figure 7-11 shows the flowchart of the dracut-cmdline.service units working.
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Figure 7-11. The flowchart of dracut-cmdline.service

ChaPTeR 7  sysTemd (PaRT I)



320

Going further, a user’s root filesystem name could just be /dev/sda5, but the same 

sda5 device might be referred via uuid, partuuid, or label. At the end, every other 

reference of sda5 has to reach /dev/sda5; hence, the kernel prepares symlinks files for all 

of these different device names under /dev/disk/. Please refer to Figure 7-12.

Figure 7-12. The /dev/disk directory contents

The same /bin/dracut-cmdline script converts the mear sda5 root filesystem name 

to /dev/disk/by-uuid/6588b8f1-7f37-4162-968c-8f99eacdf32e.

 52 case "${root}${root_unset}" in

 53     block:LABEL=*|LABEL=*)

 54         root="${root#block:}"

 55         root="$(echo $root | sed 's,/,\\x2f,g')"

ChaPTeR 7  sysTemd (PaRT I)



321

 56         root="block:/dev/disk/by-label/${root#LABEL=}"

 57         rootok=1 ;;

 58     block:UUID=*|UUID=*)

 59         root="${root#block:}"

 60         root="block:/dev/disk/by-uuid/${root#UUID=}"

 61         rootok=1 ;;

 62     block:PARTUUID=*|PARTUUID=*)

 63         root="${root#block:}"

 64         root="block:/dev/disk/by-partuuid/${root#PARTUUID=}"

 65         rootok=1 ;;

 66     block:PARTLABEL=*|PARTLABEL=*)

 67         root="${root#block:}"

 68         root="block:/dev/disk/by-partlabel/${root#PARTLABEL=}"

 69         rootok=1 ;;

 70     /dev/*)

 71         root="block:${root}"

 72         rootok=1 ;;

 73     UNSET|gpt-auto)

 74         # systemd's gpt-auto-generator handles this case.

 75         rootok=1 ;;

 76 esac

 77

 78 [ -z "${root}${root_unset}" ] && die "Empty root= argument"

 79 [ -z "$rootok" ] && die "Don't know how to handle 'root=$root'"

 80

 81 export root rflags fstype netroot NEWROOT

 82

 83 export -p > /dracut-state.sh

 84

 85 exit 0

Let’s see the cmdline hook in action. As shown in Figure 7-13, pass rd.

break=cmdline on the kernel stanza of GRUB.
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The kernel will extract initramfs, the systemd process will launch, systemd will 

initialize the journald sockets, and as you can see in Figure 7-14, systemd will drop us 

on a cmdline shell since we told systemd to break (hook) the booting sequence before 

executing the dracut-cmdline hook.

Figure 7-13. The kernel command-line parameter

Figure 7-14. The command-line hook
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Currently, we are inside initramfs, and we have paused (dracut hooked) systemd’s 

booting sequence after systemd-journal.socket. Since dracut-cmdline.service has 

not yet started, systemd has not yet collected the kernel command-line parameters such 

as root, rsflags, and fstype from /proc/cmdline. Please see Figure 7-15 for a better 

understanding. Also, the symlinks under /dev/disk have not yet been created by dracut.

Figure 7-15. The command-line hook

Since systemd has not yet collected the name of the user’s root filesystem, there is no 

question that you will not find user’s root filesystem mounted inside initramfs. sysroot is a 

directory inside initramfs where systemd mounts the user’s root filesystem. Refer to Figure 7-16.

Figure 7-16. The sysroot directory
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But if we do not pass any argument to rd.break or simply exit from the current 

cmdline shell, we will be dropped at the switch_root shell. The switch_root shell is the 

final stage of systemd’s boot sequence inside initramfs. In Figure 7-17, you can see that 

we are passing rd.break without any arguments.

Figure 7-17. The rd.break kernel command-line parameter

As you can see in Figure 7-18, in the switch_root shell since the dracut-cmdline.

service has been executed, you will find the kernel command-line parameters have 

been collected by systemd. Also, the user’s root filesystem has been mounted inside 

initramfs under sysroot.

Figure 7-18. The switch_root hook

If we exit from this stage, switch_root (pivot_root) will be performed by systemd, 

and it will leave the initramfs environment. Later systemd will carry the remaining 

booting procedure, and as shown in Figure 7-19, eventually we will get the desktop.

ChaPTeR 7  sysTemd (PaRT I)



325

Coming back to our booting sequence so far, we have reached the pre-udev stage. 

You can refer to Figure 7-20 for this.

Figure 7-19. The login screen of Fedora

Figure 7-20. The booting sequence covered so far
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 dracut-pre-udev.service
Next systemd will deal with the attached devices. For that, systemd has to start the udev 

daemon, but before starting the udev service, it checks whether users want to stop the 

booting procedure before udev kicks in. If a user has passed the rd.break=pre-udev 

dracut command-line parameter, systemd will stop the booting sequence just before 

executing the udev daemon.

# cat usr/lib/systemd/system/dracut-pre-udev.service | grep -v '#'

[Unit]

Description=dracut pre-udev hook

Documentation=man:dracut-pre-udev.service(8)

DefaultDependencies=no

Before=systemd-udevd.service dracut-pre-trigger.service
After=dracut-cmdline.service
Wants=dracut-cmdline.service
ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-udev
ConditionKernelCommandLine=|rd.break=pre-udev
ConditionKernelCommandLine=|rd.driver.blacklist

ConditionKernelCommandLine=|rd.driver.pre

ConditionKernelCommandLine=|rd.driver.post

ConditionPathExistsGlob=|/etc/cmdline.d/*.conf

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot
Type=oneshot

ExecStart=-/bin/dracut-pre-udev
StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP
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It will drop us on a pre-udev shell. Notice the after, before, and wants variables. 

Executing dracut-pre-udev.service just starts a /bin/dracut-pre-udev binary from 

initramfs. In Figure 7-21, we have passed rd.break=pre-udev as a kernel command-line 

parameter.

Figure 7-22. The pre-udev hook

Figure 7-21. Passing the pre-udev kernel command-line parameter

To understand the pre-udev hook, you can simply list the contents of /dev, and in 

Figure 7-22 you will notice there is no device file named sda. sda is our HDD where we 

have our root filesystem.

The reason for the absence of sda device files is because the udev daemon has not 

started yet. The daemon will be started by the /usr/lib/systemd/system/systemd- 

udevd.service unit file, which will start after the pre-udev hook.

# cat usr/lib/systemd/system/systemd-udevd.service | grep -v '#'
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[Unit]
Description=udev Kernel Device Manager
Documentation=man:systemd-udevd.service(8) man:udev(7)
DefaultDependencies=no
After=systemd-sysusers.service systemd-hwdb-update.service
Before=sysinit.target
ConditionPathIsReadWrite=/sys

[Service]
Type=notify
OOMScoreAdjust=-1000
Sockets=systemd-udevd-control.socket systemd-udevd-kernel.socket
Restart=always
RestartSec=0
ExecStart=/usr/lib/systemd/systemd-udevd
KillMode=mixed
WatchdogSec=3min
TasksMax=infinity
PrivateMounts=yes
ProtectHostname=yes
MemoryDenyWriteExecute=yes
RestrictAddressFamilies=AF_UNIX AF_NETLINK AF_INET AF_INET6
RestrictRealtime=yes
RestrictSUIDSGID=yes
SystemCallFilter=@system-service @module @raw-io
SystemCallErrorNumber=EPERM
SystemCallArchitectures=native
LockPersonality=yes
IPAddressDeny=any

Let’s try to understand how udev works and how it creates device files under /dev.
It’s the kernel that detects the connected hardware to the system; more precisely, it’s 

the drivers that are compiled inside kernels or the modules inserted later that will detect 
the hardware and will register their objects with sysfs (/sys mount point). Because of 
the /sys mount point, this data becomes available to userspace and to tools like udev. 
So, it’s the kernel that detects the hardware through drivers and creates a device file in 
/dev, which is a devfs filesystem. After this, the kernel sends a uevent to udevd, and 
udevd changes the device file’s name, owner, or group, or it sets the proper permissions 

according to the rules defined here:
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     /etc/udev/rules.d,

     /lib/udev/rules.d, and

     /run/udev/rules.d

# ls etc/udev/rules.d/

     59-persistent-storage.rules  61-persistent-storage.rules

# ls lib/udev/rules.d/

      50-udev-default.rules        70-uaccess.rules    75-net-description.

rules  85-nm-unmanaged.rules

      60-block.rules               71-seat.rules       80-drivers.rules          

90-vconsole.rules

      60-persistent-storage.rules  73-seat-late.rules  80-net-setup-link.

rules   99-systemd.rules

initramfs has few udev rules files compared to the available udev rules present on the 

user’s root filesystem. Basically, it has only those rules that are necessary to manage the 

user’s root filesystem devices. Once udevd is in control, it will call the respective systemd 

units based on lib/udev/rules.d/99-systemd.rules. Here’s an example:

# cat lib/udev/rules.d/99-systemd.rules

SUBSYSTEM=="net", KERNEL!="lo", TAG+="systemd",  ENV{SYSTEMD_ALIAS}+="/sys/

subsystem/net/devices/$name"

SUBSYSTEM=="bluetooth", TAG+="systemd", ENV{SYSTEMD_ALIAS}+="/sys/

subsystem/bluetooth/devices/%k"

SUBSYSTEM=="bluetooth", TAG+="systemd", ENV{SYSTEMD_WANTS}+="bluetooth.

target", ENV{SYSTEMD_USER_WANTS}+="bluetooth.target"

ENV{ID_SMARTCARD_READER}=="?*", TAG+="systemd", ENV{SYSTEMD_

WANTS}+="smartcard.target", ENV{SYSTEMD_USER_WANTS}+="smartcard.target"

SUBSYSTEM=="sound", KERNEL=="card*", TAG+="systemd", ENV{SYSTEMD_

WANTS}+="sound.target", ENV{SYSTEMD_USER_WANTS}+="sound.target"

SUBSYSTEM=="printer", TAG+="systemd", ENV{SYSTEMD_WANTS}+="printer.target", 

ENV{SYSTEMD_USER_WANTS}+="printer.target"

SUBSYSTEM=="usb", KERNEL=="lp*", TAG+="systemd", ENV{SYSTEMD_

WANTS}+="printer.target", ENV{SYSTEMD_USER_WANTS}+="printer.target"
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SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ENV{ID_USB_

INTERFACES}=="*:0701??:*", TAG+="systemd", ENV{SYSTEMD_WANTS}+="printer.

target", ENV{SYSTEMD_USER_WANTS}+="printer.target"

SUBSYSTEM=="udc", ACTION=="add", TAG+="systemd", ENV{SYSTEMD_WANTS}+="usb- 

gadget.target"

The rule is tagged with the systemd tag. That means whenever a bluetooth device 

is detected, udevd will call systemd’s bluetooth.target. The bluetooth.target will 

execute the /usr/libexec/bluetooth/bluetoothd binary, which will take care of the 

rest of the bluetooth device handling. So, the complete sequence of udevd handling the 

bluetooth device is as follows:

 1) If a user has a bluetooth device connected to the system while 

booting, it’s the kernel or drivers compiled in the kernel or 

modules inserted later that will detect the bluetooth device and 

register its object with /sys. 

 2) Later the kernel will create a device file in the /dev mount point. 

After the device file creation, the kernel will send a uevent to 

udevd.

 3) udevd will refer to lib/udev/rules.d/99-systemd.rules 

from initramfs and will call systemd. As per the tag, systemd is 

supposed to handle the rest of it.

 4) systemd will execute the bluetooth.target, which will execute 

the bluetoothd binary, and the bluetooth hardware will be ready 

to be used.

Of course, bluetooth is not the kind of hardware that is necessary at the time of the 

boot. I have taken this example just for the ease of understanding.

So, we have reached up to systemd-udev.service. systemd will continue its booting 

sequence and will execute dracut-pre-trigger.service. You can see the booting 

sequence in Figure 7-23.
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 dracut-pre-trigger.service
systemd’s initramfs boot sequence will be broken (hooked) if the user has passed the 

rd.break=pre-trigger dracut command-line parameter. You can see in Figure 7-24 

that we have passed pre-trigger as an argument to the rd.break kernel command-line 

parameter.

Figure 7-23. The boot sequence covered so far

Figure 7-24. The rd.break=pre-trigger kernel command-line parameter

It will drop us on a pre-trigger shell, which is just after starting the udevd service. 

First let’s see how it drops on a pre-trigger shell.

# cat usr/lib/systemd/system/dracut-pre-trigger.service | grep -v '#'

[Unit]

Description=dracut pre-trigger hook

Documentation=man:dracut-pre-trigger.service(8)

DefaultDependencies=no

Before=systemd-udev-trigger.service dracut-initqueue.service
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After=dracut-pre-udev.service systemd-udevd.service systemd-tmpfiles-setup- 

dev.service

Wants=dracut-pre-udev.service systemd-udevd.service

ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-trigger

ConditionKernelCommandLine=|rd.break=pre-trigger

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-pre-trigger

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

Please note the After, Before, and wants sections of the service unit file. 

This service file will execute /bin/dracut-pre-trigger from initramfs if this 

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-trigger directory exists and 

if the user has passed rd.break=pre-trigger as a command-line parameter.

[root@fedorab boot]# cat bin/dracut-pre-trigger

#!/usr/bin/sh

export DRACUT_SYSTEMD=1

if [ -f /dracut-state.sh ]; then

    . /dracut-state.sh 2>/dev/null

fi

type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

source_conf /etc/conf.d

make_trace_mem "hook pre-trigger" '1:shortmem' '2+:mem' '3+:slab' 

'4+:komem'

source_hook pre-trigger
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getarg 'rd.break=pre-trigger' 'rdbreak=pre-trigger' && emergency_shell -n 

pre-trigger "Break pre-trigger"

udevadm control --reload >/dev/null 2>&1 || :

export -p > /dracut-state.sh

exit 0

As you can see, it is checking the passed dracut command-line parameters 

(rd.break=pre-trigger) through the getarg function. We saw how getarg works 

earlier in this chapter. If the user has passed rd.break=pre-trigger, then it will call 

the emergency_shell function with pre-trigger as a parameter passed to it. The 

emergency_shell function is written in the dracut-lib.sh file. This function will 

provide us with the pre- trigger shell. Chapter 8 covers the procedure behind providing 

an emergency shell.

As the pre-trigger name suggests, and as you can see in Figure 7-25, we have 

stopped the booting sequence just before the udev triggers. Hence, the sda disk is not yet 

available under dev.

Figure 7-25. The pre-trigger hook

This is because the udevadm trigger has not been executed yet. The service dracut- 

pre- trigger.service executes only udevadm control --reload, which reloads the 

udev rules. As shown in Figure 7-26, the service systemd-udev.service has been 

started, but the systemd-udev-trigger service has not yet started.
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 systemd-udev-trigger.service
Figure 7-27 shows the stage of booting we have reached.

Figure 7-27. The booting sequence so far

Figure 7-26. The pre-trigger hook
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As we have seen, with pre-udev the /dev was not populated since the systemd- udevd.

service itself was not started. With pre-trigger, it’s the same: /dev is not populated, but 

the udevd service has started. The udevd service will create an environment to start/run the 

various udev tools like udevadm. By using the environment provided by the udevd daemon, 

as you can see in Figure 7-28, inside pre-trigger we will be able to execute the udevadm, 

which we were not able to use at the pre-udev shell.

Figure 7-28. The pre-trigger hook

As you can see inside the pre-trigger switch, the sda device has not been created 

yet. But since we have a udevadm environment ready, we can discover the devices 

through it. As shown in Figure 7-29, we will first mount the kernel configuration 

filesystem.

pre-trigger:/ # udevadm trigger --type=subsystems --action=add

Then we will trigger udevadm to add the devices.

pre-trigger:/ # udevadm trigger --type=devices --action=add
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As you can see in Figure 7-29, the sda devices have been created. The same 
commands will be fired by systemd through systemd-udev-trigger.service, which will 
discover and create the storage device files under /dev.

# cat usr/lib/systemd/system/systemd-udev-trigger.service  | grep -v ‘#’

[Unit]
Description=udev Coldplug all Devices
Documentation=man:udev(7) man:systemd-udevd.service(8)
DefaultDependencies=no
Wants=systemd-udevd.service
After=systemd-udevd-kernel.socket systemd-udevd-control.socket
Before=sysinit.target
ConditionPathIsReadWrite=/sys

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/udevadm trigger –type=subsystems –action=add
ExecStart=/usr/bin/udevadm trigger –type=devices –action=add

But as you can see in Figure 7-30, the same udevadm command will not be successful 

in the pre-udev hook since the udev environment is missing.

Figure 7-29. The pre-trigger hook
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This is the importance of dracut-pre-trigger.service or of the pre-trigger hook.
The flowchart given in Figure 7-31 will help you understand the steps so far taken by 

systemd inside initramfs. The flowchart will be even more understandable after reading 

Chapter 8. I highly recommend revisiting this chapter after finishing Chapter 8.

Figure 7-31. The flowchart

Figure 7-30. The udevadm in pre-udev hook
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 local-fs.target
As you can see in Figure 7-32, we have reached the local-fs-target stage of booting.

Figure 7-32. The booting sequence covered so far

So, systemd has reached up to local-fs.target. So far, systemd has been executing 

services one after another only because storage devices were not ready. Since the 

udevadm trigger was successful and storage devices have been populated, it’s time to 

prepare the mount points, which will be achieved by local-fs.target. Before entering 

into local-fs.target, it will make sure to run the local-fs.pre.target.

# cat usr/lib/systemd/system/local-fs-pre.target

[Unit]

Description=Local File Systems (Pre)

Documentation=man:systemd.special(7)

RefuseManualStart=yes

#cat usr/lib/systemd/system/local-fs.target

[Unit]

Description=Local File Systems

Documentation=man:systemd.special(7)

DefaultDependencies=no
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Conflicts=shutdown.target

After=local-fs-pre.target

OnFailure=emergency.target

OnFailureJobMode=replace-irreversibly

The systemd-fstab-generator will be navigated by local-fs.target.

man page - systemd.special

systemd-fstab-generator(3) automatically adds dependencies of type 
Before= to all mount units that refer to local mount points for this target 
unit. In addition, it adds dependencies of type Wants= to this target unit for 
those mounts listed in /etc/fstab that have the auto mount option set.

The systemd-fstab-generator binary will be called from initramfs.

# file usr/lib/systemd/system-generators/systemd-fstab-generator

usr/lib/systemd/system-generators/systemd-fstab-generator: ELF 64-bit LSB 

pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /

lib64/ld-linux-x86-64.so.2, BuildID[sha1]=e16e9d4188e2cab491f551b5f703a5caa

645764b, for GNU/Linux 3.2.0, stripped

In fact, systemd runs all the generators at an early stage of the booting sequence.

# ls -l usr/lib/systemd/system-generators

     total 92

     -rwxr-xr-x. 1 root root  3750 Dec 21 12:19 dracut-rootfs-generator

     -rwxr-xr-x. 1 root root 45640 Dec 21 12:19 systemd-fstab-generator

     -rwxr-xr-x. 1 root root 37032 Dec 21 12:19 systemd-gpt-auto-generator

systemd-fstab-generator is one of them. The main task of systemd-fstab- 

generator is to read the kernel command line and create systemd mount unit files under 

the /tmp directory or under /run/systemd/generator/ (keep reading, and this all will 

make sense). As you can see, it’s a binary, which means we need to check the C source 

code of systemd to understand what it does. The systemd-fstab-generator takes either 

no input or three inputs.

# usr/lib/systemd/system-generators/systemd-fstab-generator /dev/sda5

This program takes zero or three arguments.
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Of course, the three inputs are the root filesystem name, filesystem type, and root 

filesystem flag. While writing this book, the latest version of systemd is version 244, so we 

have used this for the explanation here. The previously shown error message comes from 

src/shared/generator.h.

# vim systemd-244/src/shared/generator.h

 57  /* Similar to DEFINE_MAIN_FUNCTION, but initializes logging and assigns 

positional arguments. */

 58  #define DEFINE_MAIN_GENERATOR_FUNCTION(impl)                            \

 59          _DEFINE_MAIN_FUNCTION(                                          \

 60                 ({                                                      \

 61                         log_setup_generator();                          \

 62                         if (argc > 1 && argc != 4)                      \

 63                                  return log_error_errno(SYNTHETIC_

ERRNO(EINVAL), \

 64                                                  "This program takes zero 

or three arguments."); \

 65                 }),                                                     \

 66                 impl(argc > 1 ? argv[1] : "/tmp",                       \

 67                      argc > 1 ? argv[2] : "/tmp",                       \

The systemd-fstab-generator binary is made from src/fstab-generator/fstab- 

generator.c.

# vim systemd-244/src/fstab-generator/fstab-generator.c

868  static int run(const char *dest, const char *dest_early, const char 

*dest_late) {

869         int r, r2 = 0, r3 = 0;

870

871         assert_se(arg_dest = dest);

872         assert_se(arg_dest_late = dest_late);

873

874         r = proc_cmdline_parse(parse_proc_cmdline_item, NULL, 0);

875         if (r < 0)
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876                  log_warning_errno(r, "Failed to parse kernel command 

line, ignoring: %m");

877

878         (void) determine_root();

879

880          /* Always honour root= and usr= in the kernel command line if 

we are in an initrd */

881         if (in_initrd()) {

882                 r = add_sysroot_mount();

883

884                 r2 = add_sysroot_usr_mount();

885

886                 r3 = add_volatile_root();

887         } else

888                 r = add_volatile_var();

889

890         /* Honour /etc/fstab only when that's enabled */

891         if (arg_fstab_enabled) {

892                 /* Parse the local /etc/fstab, possibly from the initrd */

893                 r2 = parse_fstab(false);

894

895                  /* If running in the initrd also parse the /etc/fstab 

from the host */

896                 if (in_initrd())

897                       r3 = parse_fstab(true);

898                 else

899                        r3 = generator_enable_remount_fs_service(arg_dest);

900         }

901

902         return r < 0 ? r : r2 < 0 ? r2 : r3;

903 }

904

905 DEFINE_MAIN_GENERATOR_FUNCTION(run);
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As you can see, first it parses the command-line parameters through the function 

proc_cmdline_parse.

root        = root filesystem name

rootfstype  = root filesystem type

rootflags   = ro, rw or auto etc.

systemd-fstab-generator runs twice: when it is inside of initramfs and when it is 

outside of initramfs. Once systemd comes out of initramfs (after mounting the user’s 

root filesystem in sysroot), systemd-fstab-generator will collect the command-line 

parameters for the usr filesystem (if it is a separate partition and if its entry is available in 

etc/fstab).

'usr' filesystem name

'usr' filesystem type

'usr' filesystem flags

For ease of understanding, we will consider the following:

Inside of initramfs:   Before mounting the user's root filesystem in  /sysroot

Outside of initramfs:   After mounting the user's root filesystem in /sysroot

So, the systemd-fstab-generator binary will collect the user’s root filesystem–

related command-line parameters when systemd is running inside initramfs, and it will 

collect the usr filesystem-related command-line parameters when systemd is running 

outside of initramfs. systemd is running inside or outside of initramfs will be checked 

through the in_initrd function. The function is written in the file src/basic/util.c. 

It’s interesting to check how it verifies whether it is inside or outside the initramfs 

environment.

# vim systemd-244/src/basic/util.c

 54 bool in_initrd(void) {

 55         struct statfs s;

 56         int r;

 57

 58         if (saved_in_initrd >= 0)

 59                 return saved_in_initrd;

 60
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 61         /* We make two checks here:

 62          *

 63          * 1. the flag file /etc/initrd-release must exist

 64          * 2. the root file system must be a memory file system

 65          *

 66          * The second check is extra paranoia, since misdetecting an

 67          * initrd can have bad consequences due the initrd

 68          * emptying when transititioning to the main systemd.

 69          */

 70

 71         r = getenv_bool_secure("SYSTEMD_IN_INITRD");

 72         if (r < 0 && r != -ENXIO)

 73                  log_debug_errno(r, "Failed to parse $SYSTEMD_IN_INITRD, 

ignoring: %m");

 74

 75         if (r >= 0)

 76                 saved_in_initrd = r > 0;

 77         else

 78                  saved_in_initrd = access("/etc/initrd-release", F_OK) 

>= 0 &&

 79                                   statfs("/", &s) >= 0 &&

 80                                   is_temporary_fs(&s);

 81

 82         return saved_in_initrd;

 83 }

It checks whether the /etc/initrd-release file is available. If this file is not present, 

it means we are outside of initramfs. This function then calls the statfs function, which 

will provide the filesystem details, as shown here:

struct statfs {

               __fsword_t f_type;    /* Type of filesystem (see below) */

               __fsword_t f_bsize;   /* Optimal transfer block size */

               fsblkcnt_t f_blocks;  /* Total data blocks in filesystem */

               fsblkcnt_t f_bfree;   /* Free blocks in filesystem */

               fsblkcnt_t f_bavail;  /* Free blocks available to

                                        unprivileged user */
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               fsfilcnt_t f_files;   /* Total file nodes in filesystem */

               fsfilcnt_t f_ffree;   /* Free file nodes in filesystem */

               fsid_t     f_fsid;    /* Filesystem ID */

               __fsword_t f_namelen; /* Maximum length of filenames */

               __fsword_t f_frsize;  /* Fragment size (since Linux 2.6) */

               __fsword_t f_flags;   /* Mount flags of filesystem

                                        (since Linux 2.6.36) */

               __fsword_t f_spare[xxx];

                               /* Padding bytes reserved for future use */

           };

Then it calls the is_temporary_fs() function, which is written inside  /src/basic/

stat-util.c.

190  bool is_temporary_fs(const struct statfs *s) {

191         return is_fs_type(s, TMPFS_MAGIC) ||

192                 is_fs_type(s, RAMFS_MAGIC);

193 }

As you can see, it checks whether the root filesystem has a ramfs magic number 

assigned to it. If yes, then we are inside initramfs. In our case, we are inside the initramfs 

environment, so this function will return true and will proceed further from  src/fstab- 

generator/fstab-generator.c to create only the root filesystem’s -.mount (sysroot.

mount) unit files. If we had been outside of initramfs (after mounting sysroot with the 

user’s root filesystem), it would have created a -.mount unit file for the usr filesystem. In 

short, first it checks if we are inside initramfs. If we are, then it creates the mount unit file 

for the root filesystem, and if we’re outside, then it creates it for the usr (if it is a separate 

filesystem) filesystem. To see this in action, we will drop ourselves in the switch_root 

(hook) stage so that we are able to run the systemd-fstab-generator binary manually.

 1) First I have deleted the /tmp directory contents. This is because 

the fstab generator makes the mount unit files inside /tmp.

 2) Run the systemd-fstab-generator binary, and as you can see in 

Figure 7-33, it has created a couple of files in /tmp.
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 3) It has created a sysroot.mount unit file. As the name suggests, 

it has been created to mount the user’s root filesystem. The unit 

file has been created by reading /proc/cmdline. Please refer to 

Figure 7-34 to see the contents of sysroot.mount file.

The root filesystem will be mounted from sda5 (by using the UUID) to the sysroot 

directory.

 4) Check the requires section of the sysroot.mount unit file. It 

says systemd-fsck- root.service has to be executed first, before 

mounting the root filesystem. Figure 7- 35 shows the systemd-

fsck-root.service file.

Figure 7-34. The sysroot.mount file

Figure 7-33. The systemd-fstab-generato0072
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So while booting, if you are inside initramfs, then systemd-fstab-generator will 

generate the mount unit files for the user’s root filesystem, and the respective fsck 

service file will also be generated.

At the end of the initramfs booting sequence, systemd will refer to these files from 

the /tmp directory, will perform the fsck first on a root device, and will mount the root 

filesystem on sysroot (inside initramfs); eventually switch_root will be performed.

Now you must understand that though the binary name is systemd-fstab- generator, 

it does not really create the /etc/fstab file. Rather, its job is to create the systemd mount 

units for root (when inside initramfs) and usr (when outside of initramfs) at /tmp or inside 

the run/systemd/generator/ directories. This system has only the root mount point, so it 

created the systemd unit files only for root filesystem. Inside initramfs, it calls add_sysroot_

mount for mounting the user’s root filesystem. Once it is mounted, the root filesystem 

systemd calls the add_sysroot_usr_mount function. These functions call the add_mount 

named function, which in turn makes the systemd mount unit files. The following is a 

snippet of the add_mount function from src/fstab-generator/fstab- generator.c:

# vim systemd-244/src/fstab-generator/fstab-generator.c

341      r = unit_name_from_path(where, ".mount", &name);

342         if (r < 0)

343                  return log_error_errno(r, "Failed to generate unit 

name: %m");

344

345         r = generator_open_unit_file(dest, fstab_path(), name, &f);

346         if (r < 0)

347                 return r;

348

349         fprintf(f,

Figure 7-35. The systemd-fsck-root.service file contents
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350                 "[Unit]\n"

351                 "SourcePath=%s\n"

352                  "Documentation=man:fstab(5) man:systemd-fstab- 

generator(8)\n",

353                 source);

354

355          /* All mounts under /sysroot need to happen later, at initrd- 

fs.target time. IOW, it's not

356           * technically part of the basic initrd filesystem itself, and 

so shouldn't inherit the default

357          * Before=local-fs.target dependency. */

358         if (in_initrd() && path_startswith(where, "/sysroot"))

359                 fprintf(f, "DefaultDependencies=no\n");

The current system has only a root partition. To help you understand this even better, 

here I have prepared a test system that has root, boot, usr, var, and opt as separate 

filesystems:

UUID = f7ed74b5-9085-4f42-a1c4-a569f790fdad    /       ext4   defaults   1  1

UUID = 06609f65-5818-4aee-a9c5-710b76b36c68    /boot   ext4   defaults   1  2

UUID = 68fa7990-edf9-4a03-9011-21903a676322    /opt    ext4   defaults   1  2

UUID = 6fa78ab3-6c05-4a2f-9907-31be6d2a1071    /usr    ext4   defaults   1  2

UUID = 9c721a59-b62d-4d60-9988-adc8ed9e8770    /var    ext4   defaults   1  2

We will drop ourselves in the pre-pivot shell (which we have not discussed yet) of 

initramfs. Figure 7-36 shows that we have passed the rd.break=pre-pivot command- 

line parameter to the kernel.

Figure 7-36. The kernel command-line parameter
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As you can see in Figure 7-37, in the pre-pivot hook, the root filesystem will be 

mounted along with the usr filesystem since the pre-pivot hook stops the booting 

sequence after mounting the user’s root filesystem on sysroot. But opt, var, and boot 

will not be mounted.

Even if you run systemd-fstab-generator, you will find that only the usr and root 

mount unit files will be created. You can see the systemd-fstab-generator output in 

Figure 7-38.

This proves that in an initramfs environment, only root and usr will be mounted. 

The rest of the mount points will be mounted after initramfs or after switching to root. 

Since the var filesystem is not mounted yet, the journalctl logs will be maintained 

Figure 7-37. The pre-pivot hook

Figure 7-38. The systemd-fstab-generator in pre-pivot hook
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from the /run filesystem, and as we know, this is a temporary filesystem. This clearly 

says that inside the initramfs environment, you cannot access the permanent logs 

of journald, which are at /var/log. Please refer to Figures 7-39, 7-40, and 7-41 to 

understand this better.

Figure 7-39. The journalctl command in pre-pivot hook

Figure 7-40. The logs provided by journalctl from /run
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Did you notice one thing? The dracut-cmdline service is reading the kernel 

command- line parameters, and the usr-related command-line parameters are not 

available in /proc/cmdline. So, how does systemd manage to mount the usr filesystem? 

Also, at the time of initramfs generation, dracut does not copy the etc/fstab file in it.

# lsinitrd | grep -i fstab

-rw-r--r--  1 root root       0 Jul 25 03:54 etc/fstab.empty

-rwxr-xr-x  1 root root   45640 Jul 25 03:54 usr/lib/systemd/system- 

generators/systemd-fstab-generator

# lsinitrd -f etc/fstab.empty

     <no_output>

Then how does systemd manage to mount the usr filesystem inside initramfs when it 

does not have an entry of it?

When systemd-fstab-generator runs during local-fs.target, it makes the 

mount unit files only for root; then it continues the booting sequence and mounts the 

root file system on sysroot. Once the root filesystem is mounted, it reads the usr entry 

from /etc/sysroot/etc/fstab and makes a usr.mount unit file and at the end mounts 

it. Let’s cross-verify this understanding:

 1) Drop in the pre-pivot hook.

 2) Delete the /etc/fstab from the mounted /sysroot.

 3) Run the systemd-fstab-generator.

 4) Refer to Figure 7-42.

Since the root filesystem name will be fetched by dracut-cmdline from proc/

cmdline, systemd-fstab-generator will make the sysroot.mount. But since the fstab 

file is missing inside sysroot, it will consider the usr as an separate partition that is not 

available, and it will skip creating the usr.mount unit file even though usr is a separate 

mount point.

Figure 7-41. The journalctl behavior in pre-pivot hook
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What if you want to have opt- and var-like separate mount points available inside 

/sysroot or you want them in an initramfs environment? systemd’s man page has an 

answer for this, shown here:

x-initrd.mount

An additional filesystem to be mounted in the initramfs. See the initrd-
 fs.target description in systemd.special(7).

initrd-fs.target

systemd-fstab-generator(3) automatically adds dependencies of type 
Before= to sysroot-usr.mount and all mount points found in /etc/fstab 
that have x-initrd.mount and not have the noauto mount options set.

So, we need to use the x-initrd.mount [systemd.mount] option in /etc/fstab. For 

example, here I have enabled the var mount point inside initramfs through the same 

pre-pivot environment:

pre-pivot:/# vi /sysroot/etc/fstab

UUID=f7ed74b5-9085-4f42-a1c4-a569f790fdad  /      ext4  defaults   1  1

UUID=06609f65-5818-4aee-a9c5-710b76b36c68  /boot  ext4  defaults   1  2

UUID=68fa7990-edf9-4a03-9011-21903a676322  /opt   ext4  defaults   1  2

UUID=6fa78ab3-6c05-4a2f-9907-31be6d2a1071  /usr   ext4  defaults   1  2

UUID=9c721a59-b62d-4d60-9988-adc8ed9e8770  /var   ext4  defaults,x-initrd.

mount   1  2

As you can see in Figure 7-43, the var mount unit file has been created, but fsck is 

available only for the root filesystem. Please refer to the flowchart in Figure 7-44 to help 

you understand this better.

Figure 7-42. The systemd-fstab-generator behavior
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Figure 7-43. The working of systemd-fstab-generator

Figure 7-44. The flowchart
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 swap.target
As you can see in Figure 7-45, we have reached the swap.target stage of booting.

This will execute parallel to local-fs.target. local-fs-.target makes the mount 

points for root and usr, whereas swap.target makes the mount unit files for the swap 

device. Once the root filesystem mount file is ready, sysroot is mounted according to it. 

systemd-fstab-generator will read the fstab, and if the swap device entry is present, 

 it will make the swap.mount unit file. That means the swap.mount file will be created 

only after switching into the user’s root filesystem (switch_root into sysroot).  

The swap.mount will not be created at this stage.

 dracut-initqueue.service
This service creates the actual root, swap, and usr devices. Let’s understand this with an 

example.

With the pre-udev hook, we have seen that sda-like devices are not available. 

Neither udevadm command will work as the udevd service itself is not started yet. Refer to 

Figure 7-46.

Figure 7-45. The booting sequence so far
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With the pre-trigger hook, the sda device is not created, but the udevd service 

has been started; hence, as you can see in Figure 7-47 and Figure 7-48, you can use a 

udevadm- like tool, which will create the sda device under /dev, but it will not create lvm 

or raid-like devices on it. Such devices are also called dm (device mapper) devices. So, 

the pre-trigger service will not be able to make the device files for the root if it is on 

lvm, and therefore the devices like /dev/fedora_localhost-live/ will not be created.

Figure 7-46. The working of the pre-udev hook

Figure 7-47. The pre-trigger hook
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The service dracut-initqueue.service has not started yet. Let’s see first what 

exactly the unit file says.

# cat usr/lib/systemd/system/dracut-initqueue.service | grep -v '#'

[Unit]

Description=dracut initqueue hook

Documentation=man:dracut-initqueue.service(8)

DefaultDependencies=no

Before=remote-fs-pre.target

Wants=remote-fs-pre.target

After=systemd-udev-trigger.service

Wants=systemd-udev-trigger.service

ConditionPathExists=/usr/lib/initrd-release

ConditionPathExists=|/lib/dracut/need-initqueue

ConditionKernelCommandLine=|rd.break=initqueue

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

Figure 7-48. The sda devices have been created under the pre-trigger hook
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ExecStart=-/bin/dracut-initqueue

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

As you can see, this service is simply starting the /bin/dracut-initqueue script, and 

if we open this script, you will find it is actually executing the udevadm settle command 

with a timeout value of 0.

 # vim bin/dracut-initqueue

 22 while :; do

 23

 24     check_finished && break

 25

 26     udevadm settle --exit-if-exists=$hookdir/initqueue/work

 27

 28     check_finished && break

 29

 30     if [ -f $hookdir/initqueue/work ]; then

 31         rm -f -- "$hookdir/initqueue/work"

 32     fi

 33

 34     for job in $hookdir/initqueue/*.sh; do

 35         [ -e "$job" ] || break

 36         job=$job . $job

 37         check_finished && break 2

 38     done

 39

 40     udevadm settle --timeout=0 >/dev/null 2>&1 || continue

 41

 42     for job in $hookdir/initqueue/settled/*.sh; do

 43         [ -e "$job" ] || break

 44         job=$job . $job
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 45         check_finished && break 2

 46     done

 47

 48     udevadm settle --timeout=0 >/dev/null 2>&1 || continue

 49

 50     # no more udev jobs and queues empty.

 51     sleep 0.5

This will eventually run the lvm_scan command from lib/dracut/hooks/

initqueue/timeout/. Note the root and rd.break kernel command-line parameters 

that are passed in Figure 7-49.

As you can see in Figure 7-50, the lvm_scan command is written in one of the files.

So, here we have two options: either we can just execute /bin/dracut-initqueue or, 

as shown in Figure 7-51, we can execute the lvm_scan command either from the pre- 

trigger hook or from the initqueue hook.

Figure 7-49. The kernel command-line parameters

Figure 7-50. The initqueue hook
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Since we have discussed up to the LVM part of initramfs, it is the right time to see one 

of the most common and crucial “can’t boot” issue.

 “Can’t Boot” Issue 7 (systemd + Root LVM)

Issue: We changed the standard root device name from /dev/mapper/fedora_

localhost--live-root to /dev/mapper/root_vg-root. We made the appropriate entry 

in /etc/fstab, but after rebooting, the system is not able to boot. Figure 7-52 shows what 

is visible on the screen.

Figure 7-51. The lvm_scan command in the initqueue hook

Figure 7-52. The console messages
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Since we have a better understanding of dracut-initqueue now, we can see that the 

error messages clearly mean systemd is not able to assemble the root lvm device.

 1. Let’s isolate the issue first by recalling the performed steps. The 

original root lv name is as follows:

#cat /etc/fstab

/dev/mapper/fedora_localhost--live-root     /        

ext4  defaults 1  1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679  /boot  ext4  defaults 1  2

/dev/mapper/fedora_localhost--live-

swap        none   ext4  defaults 0  0

 2. The root volume group name has been changed.

# vgrename  fedora_localhost-live  root_vg

The volume group Fedora_localhost-live was successfully renamed to 

root_vg.

 3. The /etc/fstab entry of root lvm has been appropriately 

changed.

/dev/mapper/root_vg-root /            ext4    defaults   1 1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4  defaults  1 2

/dev/mapper/root_vg-swap none         swap    defaults      0 0

But after rebooting, systemd starts throwing dracut-initqueue timeout error 

messages.

The steps look like they were properly followed, but we need to investigate further to 

understand why dracut-initqueue is not able to assemble LVMs.

If we wait for some time on the error screen, as shown in Figure 7-53, systemd will 

automatically drop us on an emergency shell. We will see in detail how systemd drops us 

in an emergency shell in Chapter 8.
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As shown in Figure 7-54, we will scan the currently available LVs and will mount root 

vg to verify its contents.

As you can see, root_vg (the renamed vg) is available, and we are able to activate it 

too. It clearly means that the LVM metadata is not corrupted and that the LVM device 

Figure 7-53. The emergency shell

Figure 7-54. Activating the LVs
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does not have any integrity issues. As shown in Figure 7-55, we will mount root_vg on a 

temporary directory and cross-verify its fstab entries from the emergency shell itself.

vg is intact, the fstab entries are correct, and we are able to mount the root vg. What 

is missing then?

The missing part is that the kernel command-line parameters have not been 

adjusted in GRUB. See Figure 7-56.

To boot, we need to interrupt the GRUB splash screen and need to change the kernel 

command-line parameters from what’s shown in Figure 7-57.

Figure 7-55. Mounting the root filesystem

Figure 7-56. The kernel command-line parameters

Figure 7-57. The old kernel command-line parameters
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See Figure 7-58 for the new ones.

Once the system is booted, change /etc/default/grub from this:

# cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_localhost--live-swap rd.lvm.

lv=fedora_localhost-live/root rd.lvm.lv=fedora_localhost-live/swap 

console=ttyS0,115200 console=tty0"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

to the following:

# cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/root_vg-swap rd.lvm.lv=root_vg/root 

rd.lvm.lv=root_vg/swap console=ttyS0,115200 console=tty0"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

It is not necessary to change the /etc/default/grub file since Fedora uses the BLS 

entries from /boot/loader/entries.

Figure 7-58. The new kernel command-line parameters
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Change /boot/grub2/grubenv from this:

# cat /boot/grub2/grubenv

saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64

menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/mapper/fedora_localhost--live-root ro resume=/dev/

mapper/fedora_localhost--live-swap rd.lvm.lv=fedora_localhost-live/root 

rd.lvm.lv=fedora_localhost-live/swap console=ttyS0,115200 console=tty0

boot_indeterminate=9

to the following:

# cat /boot/grub2/grubenv

saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64

menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/root_vg/root ro resume=/dev/mapper/root_vg-swap 

rd.lvm.lv=root_vg/root rd.lvm.lv=root_vg/swap console=ttyS0,115200 

console=tty0

boot_indeterminate=9

This fixes the “can’t boot” issue.

 plymouth
Now it’s time to talk about one interesting service called plymouth. Earlier Linux would 

show boot messages directly on the console, which was kind of boring for desktop users. 

Hence, plymouth was introduced, as shown here:

# cat usr/lib/systemd/system/plymouth-start.service

[Unit]

Description=Show Plymouth Boot Screen

DefaultDependencies=no

Wants=systemd-ask-password-plymouth.path systemd-vconsole-setup.service

After=systemd-vconsole-setup.service systemd-udev-trigger.service systemd- 

udevd.service

Before=systemd-ask-password-plymouth.service
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ConditionKernelCommandLine=!plymouth.enable=0

ConditionVirtualization=!container

[Service]

ExecStart=/usr/sbin/plymouthd --mode=boot --pid-file=/var/run/plymouth/pid 

--attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

Type=forking

KillMode=none

SendSIGKILL=no

As you can see, from the /usr/lib/systemd/system/plymouth-start.service unit 

file, plymouth starts right after systemd-udev-trigger.service and before dracut- 

initqueue.service, as shown in Figure 7-59.

As shown in Figure 7-60, plymouth will be active throughout the booting procedure.

Figure 7-59. The booting sequence
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Figure 7-60. plymouth 
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plymouth is a tool that shows you an animation at the time of the boot. For example, 

in Fedora, it doesn’t show the console messages shown in Figure 7-61.

plymouth shows you the animation shown in Figure 7-62.

Figure 7-61. When plymouth is not available
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 Installing plymouth

If you want to install the different themes of plymouth, then this is what you can do:

 1. Download plymouth-theme from gnome-look.org, or you can use 

the following:

# dnf install plymouth-theme*

Figure 7-62. The plymouth screen
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 2. Extract the downloaded theme to the following location: /usr/

share/plymouth/themes/

# ls -l /usr/share/plymouth/themes/

total 52

drwxr-xr-x. 2 root root 4096 Apr 26  2019 bgrt

drwxr-xr-x  3 root root 4096 Mar 30 09:15 breeze

drwxr-xr-x  2 root root 4096 Mar 30 09:15 breeze-text

drwxr-xr-x. 2 root root 4096 Mar 30 09:15 charge

drwxr-xr-x. 2 root root 4096 Apr 26  2019 details

drwxr-xr-x  2 root root 4096 Mar 30 09:15 fade-in

drwxr-xr-x  2 root root 4096 Mar 30 09:15 hot-dog

drwxr-xr-x  2 root root 4096 Mar 30 09:15 script

drwxr-xr-x  2 root root 4096 Mar 30 09:15 solar

drwxr-xr-x  2 root root 4096 Mar 30 09:15 spinfinity

drwxr-xr-x. 2 root root 4096 Apr 26  2019 spinner

drwxr-xr-x. 2 root root 4096 Apr 26  2019 text

drwxr-xr-x. 2 root root 4096 Apr 26  2019 tribar

 3. You need to rebuild initramfs as plymouth runs from the initramfs 

environment. For example, its configuration file has to be updated 

for the new plymouth theme.

# cat /etc/plymouth/plymouthd.conf

# Administrator customizations go in this file

#[Daemon]

#Theme=fade-in

[Daemon]

Theme=hot-dog

After rebooting, as shown in Figure 7-63, you will see a new plymouth theme called 

hot-dog.
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 Managing plymouth

Since plymouth starts at an early stage, dracut does provide some command-line options 

to manage plymouth’s behavior.

      plymouth.enable=0

           disable the plymouth bootsplash completely.

     rd.plymouth=0

           disable the plymouth bootsplash only for the initramfs.

The hot-dog image shown earlier is called a splash screen. To see the installed/

chosen splash screen, you can use the following:

#plymouth --show-splash

Figure 7-63. The hot-dog plymouth theme
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Another main motive of plymouth is to maintain all the boot-time messages in a 

simple text file that users can examine after the boot. The logs will be stored at /var/

log/boot.log, but remember that this file is maintained by plymouth. This means you 

will find the booting messages only after starting plymouth. But at the same time, we 

need to keep in mind that plymouth does start at an early stage of initramfs (right after 

udevd kicks in).

# less /varlog/boot.log

<snip>

------------ Sat Jul 06 01:43:12 IST 2019 ------------

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mShow Plymouth Boot ScreenESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mPathsESC[0m.

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mForward Password R...s to 

Plymouth Directory WatchESC[0m.

[ESC[0;32m  OK  ESC[0m] Found device ESC[0;1;39m/dev/mapper/fedora_

localhost--live-rootESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mInitrd Root DeviceESC[0m.

[ESC[0;32m  OK  ESC[0m] Found device ESC[0;1;39m/dev/mapper/fedora_

localhost--live-swapESC[0m.

          Starting ESC[0;1;39mResume from hiber...fedora_localhost--live- 

swapESC[0m...

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mResume from hibern...r/fedora_

localhost--live-swapESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mLocal File Systems (Pre)

ESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mLocal File SystemsESC[0m.

         Starting ESC[0;1;39mCreate Volatile Files and DirectoriesESC[0m...

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mCreate Volatile Files and 

DirectoriesESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mSystem 

InitializationESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mBasic SystemESC[0m.

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mdracut initqueue hookESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mRemote File Systems (Pre)

ESC[0m.
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[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mRemote File 

SystemsESC[0m.

          Starting ESC[0;1;39mFile System Check...fedora_localhost--live- 

rootESC[0m...

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mFile System Check ...r/fedora_

localhost--live-rootESC[0m.

         Mounting ESC[0;1;39m/sysrootESC[0m...

[ESC[0;32m  OK  ESC[0m] Mounted ESC[0;1;39m/sysrootESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mInitrd Root File 

SystemESC[0m.

          Starting ESC[0;1;39mReload Configuration from the Real 

RootESC[0m...

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mReload Configuration from the 

Real RootESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mInitrd File 

SystemsESC[0m.

[ESC[0;32m  OK  ESC[0m] Reached target ESC[0;1;39mInitrd Default 

TargetESC[0m.

         Starting ESC[0;1;39mdracut pre-pivot and cleanup hookESC[0m...

[ESC[0;32m  OK  ESC[0m] Started ESC[0;1;39mdracut pre-pivot and cleanup 

hookESC[0m.

         Starting ESC[0;1;39mCleaning Up and Shutting Down DaemonsESC[0m...

[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mTimersESC[0m.

[ESC[0;32m  OK  ESC[0m] Stopped ESC[0;1;39mdracut pre-pivot and cleanup 

hookESC[0m.

[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mInitrd Default 

TargetESC[0m.

[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mRemote File 

SystemsESC[0m.

[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mRemote File Systems (Pre)

ESC[0m.

[ESC[0;32m  OK  ESC[0m] Stopped ESC[0;1;39mdracut initqueue hookESC[0m.

         Starting ESC[0;1;39mPlymouth switch root serviceESC[0m...

[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mInitrd Root DeviceESC[0m.

[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mBasic SystemESC[0m.
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[ESC[0;32m  OK  ESC[0m] Stopped target ESC[0;1;39mSystem 

InitializationESC[0m.

.

.

</snip>

 Structure

plymouth takes inputs from initramfs/systemd to understand what stage of the booting 

procedure has been completed (as a percentage of the booting procedure) and 

accordingly shows the animation or a progress bar on the screen. There are two binaries 

that take care of the plymouth work.

      /bin/plymouth            (Interface to plymouthd)

    /usr/sbin/plymouthd  (main binary which shows splash and logs boot 

messages in boot.log file)

There are various plymouth services available inside initramfs on which systemd 

relies on.

# ls -l usr/lib/systemd/system/ -l | grep -i plymouth

-rw-r--r--. 1 root root  384 Dec 21 12:19 plymouth-halt.service

-rw-r--r--. 1 root root  398 Dec 21 12:19 plymouth-kexec.service

-rw-r--r--. 1 root root  393 Dec 21 12:19 plymouth-poweroff.service

-rw-r--r--. 1 root root  198 Dec 21 12:19 plymouth-quit.service

-rw-r--r--. 1 root root  204 Dec 21 12:19 plymouth-quit-wait.service

-rw-r--r--. 1 root root  386 Dec 21 12:19 plymouth-reboot.service

-rw-r--r--. 1 root root  547 Dec 21 12:19 plymouth-start.service

-rw-r--r--. 1 root root  295 Dec 21 12:19 plymouth-switch-root.service

-rw-r--r--. 1 root root  454 Dec 21 12:19 systemd-ask-password-plymouth.path

-rw-r--r--. 1 root root  435 Dec 21 12:19 systemd-ask-password-plymouth.service

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 systemd-ask-password-plymouth. 

service.wants

systemd, when running in initramfs, calls these services from time to time during 

the boot phase. As you can see, every service is calling the plymouthd binary and passing 
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switches accordingly to the current stage of booting. For example, plymouth-start.

service simply starts the plymouthd binary with mode boot. There are only two modes; 

one is boot, and another one is shutdown.

# cat usr/lib/systemd/system/plymouth*  | grep -i execstart

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=-/usr/bin/plymouth quit                                    <<---

ExecStart=-/usr/bin/plymouth --wait

ExecStart=/usr/sbin/plymouthd --mode=reboot --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=boot --pid-file=/var/run/plymouth/pid 

--attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=-/usr/bin/plymouth update-root-fs --new-root-dir=/sysroot   <<---

Another example we can consider is that at the time of the switch_root, systemd 

simply calls plymouth-switch-root.service, which in turn runs the plymouthd binary 

with an updated root filesystem as sysroot. In other words, you can say along with 

switch_root that plymouth changes its root directory from initramfs to the actual root 

filesystem. Going further, you can see that systemd starts the plymouth service in the 

same way that systemd sends a quit message to plymouthd at the end of the booting 

sequence. At the same time, you probably noticed that systemd calls plymouth at the 

time of the reboot or shutdown too. It is not really a big deal since it just calls the same 

plymouthd with the appropriate mode.

 Sysinit.target
So, we have reached the sysinit.target stage. Figure 7-64 shows the booting sequence 

we have covered so far.
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Since this is a target unit, its job is to hold or start a bunch of other units (services, 

sockets, etc.). The list of units will be available in its wants directory. As you can see, the 

available unit files are nothing but symbolic links to the original service unit files.

#ls -l usr/lib/systemd/system/sysinit.target.wants/

total 0

kmod-static-nodes.service -> ../kmod-static-nodes.service

plymouth-start.service -> ../plymouth-start.service

systemd-ask-password-console.path -> ../systemd-ask-password-console.path

systemd-journald.service -> ../systemd-journald.service

systemd-modules-load.service -> ../systemd-modules-load.service

systemd-sysctl.service -> ../systemd-sysctl.service

systemd-tmpfiles-setup-dev.service -> ../systemd-tmpfiles-setup-dev.service

systemd-tmpfiles-setup.service -> ../systemd-tmpfiles-setup.service

systemd-udevd.service -> ../systemd-udevd.service

systemd-udev-trigger.service -> ../systemd-udev-trigger.service

Most of the services have already been started before we reach sysinit.target. 

For example, systemd-udevd.service and systemd-udev-trigger.service (after the 

pre-trigger service) have already been started, and we have already seen that systemd 

-udevd.service will execute the /usr/lib/systemd/systemd-udevd binary, whereas 

Figure 7-64. The booting sequence covered so far
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the systemd-udev-trigger service will execute the udevadm binary. Then why are we 

starting these services again with sysinit.target? We are not. sysinit.target will 

start only the services that have not yet started, and it will ignore taking any action on the 

services that are already started. Let’s see the purpose of each of these service unit files.

The kmod-static-nodes systemd unit file executes the kmod binary with the static- 

nodes switch. We have already seen in Chapter 5 that lsmod, insmod, modinfo, modprobe, 

depmod, etc., are the symlinks to the kmod binary.

#lsinitrd | grep -i kmod

lrwxrwxrwx   1 root  root  11 Jul 25 03:54 usr/sbin/depmod -> ../bin/kmod

lrwxrwxrwx   1 root  root  11 Jul 25 03:54 usr/sbin/insmod -> ../bin/kmod

lrwxrwxrwx   1 root  root  11 Jul 25 03:54 usr/sbin/lsmod -> ../bin/kmod

lrwxrwxrwx   1 root  root  11 Jul 25 03:54 usr/sbin/modinfo -> ../bin/kmod

lrwxrwxrwx   1 root  root  11 Jul 25 03:54 usr/sbin/modprobe -> ../bin/kmod

lrwxrwxrwx   1 root  root  11 Jul 25 03:54 usr/sbin/rmmod -> ../bin/kmod

# cat usr/lib/systemd/system/kmod-static-nodes.service | grep -v '#'

[Unit]

Description=Create list of static device nodes for the current kernel

DefaultDependencies=no

Before=sysinit.target systemd-tmpfiles-setup-dev.service

ConditionCapability=CAP_SYS_MODULE

ConditionFileNotEmpty=/lib/modules/%v/modules.devname

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/bin/kmod static-nodes --format=tmpfiles --output=/run/

tmpfiles.d/static-nodes.conf

With the static-nodes switch, systemd is just collecting all of the static nodes 

(devices) present in the system. Why do we need static nodes in the age of dynamic 

node handling (udev)? There are some modules like fuse or ALSA that need some device 

files present in /dev, or they might create them. But it could be dangerous since the 

device files are made by kernel or udev. So, to avoid modules from creating device files, 
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systemd will create static nodes like /dev/fuse or /dev/snd/seq through the kmod- 

static- nodes.service. The following are the static nodes created by kmod-static-

nodes.service on a Fedora system:

# kmod static-nodes

Module: fuse

      Device node: /dev/fuse

            Type: character device

            Major: 10

            Minor: 229

Module: btrfs

      Device node: /dev/btrfs-control

            Type: character device

            Major: 10

            Minor: 234

Module: loop

      Device node: /dev/loop-control

            Type: character device

            Major: 10

            Minor: 237

Module: tun

      Device node: /dev/net/tun

            Type: character device

            Major: 10

            Minor: 200

Module: ppp_generic

      Device node: /dev/ppp

            Type: character device

            Major: 108

            Minor: 0

Module: uinput

      Device node: /dev/uinput

            Type: character device

            Major: 10

            Minor: 223
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Module: uhid

      Device node: /dev/uhid

            Type: character device

            Major: 10

            Minor: 239

Module: vfio

      Device node: /dev/vfio/vfio

            Type: character device

            Major: 10

            Minor: 196

Module: hci_vhci

      Device node: /dev/vhci

            Type: character device

            Major: 10

            Minor: 137

Module: vhost_net

      Device node: /dev/vhost-net

            Type: character device

            Major: 10

            Minor: 238

Module: vhost_vsock

      Device node: /dev/vhost-vsock

            Type: character device

            Major: 10

            Minor: 241

Module: snd_timer

      Device node: /dev/snd/timer

            Type: character device

            Major: 116

            Minor: 33

Module: snd_seq

      Device node: /dev/snd/seq

            Type: character device

            Major: 116

            Minor: 1
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Module: cuse

      Device node: /dev/cuse

            Type: character device

            Major: 10

            Minor: 203

Next, we have the plymouth service, which has already been started; then we have 

systemd-ask-password-console.path, which is a .path unit file.

# cat usr/lib/systemd/system/systemd-ask-password-console.path | grep -v '#'

[Unit]

Description=Dispatch Password Requests to Console Directory Watch

Documentation=man:systemd-ask-password-console.service(8)

DefaultDependencies=no

Conflicts=shutdown.target emergency.service

After=plymouth-start.service

Before=paths.target shutdown.target cryptsetup.target

ConditionPathExists=!/run/plymouth/pid

[Path]

DirectoryNotEmpty=/run/systemd/ask-password

MakeDirectory=yes

The .path unit file is for path-based activation, but since we have not encrypted our 

root disk with LUKS, we do not have the actual service file that will accept the password 

from the user. If we had configured LUKS, we would have had the /usr/lib/systemd/

system/systemd-ask-password-plymouth.service service unit file, as shown here:

# cat usr/lib/systemd/system/systemd-ask-password-plymouth.service

[Unit]

Description=Forward Password Requests to Plymouth

Documentation=http://www.freedesktop.org/wiki/Software/systemd/

PasswordAgents

DefaultDependencies=no

Conflicts=shutdown.target

After=plymouth-start.service

Before=shutdown.target
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ConditionKernelCommandLine=!plymouth.enable=0

ConditionVirtualization=!container

ConditionPathExists=/run/plymouth/pid

[Service]

ExecStart=/usr/bin/systemd-tty-ask-password-agent --watch --plymouth

As you can see, this is executing the systemd-tty-ask-password-agent binary, 

which will ask for a password with plymouth instead of a TTY. Next, the service unit file 

is systemd-journald.service, which will start the journald daemon for us. Until this 

time, all the messages are logged with the journald socket, which systemd started as the 

first service of the booting sequence. The journald socket is 8 MB in size. If the socket 

runs out of buffer, then the services will be blocked until the socket becomes available. 

The 8 MB of buffer space is more than enough for the production systems.

#vim usr/lib/systemd/system/sysinit.target.wants/systemd-journald.service

[Unit]

Description=Journal Service

Documentation=man:systemd-journald.service(8) man:journald.conf(5)

DefaultDependencies=no

Requires=systemd-journald.socket

After=systemd-journald.socket systemd-journald-dev-log.socket systemd- 

journald- audit.socket syslog.socket

Before=sysinit.target

[Service]

OOMScoreAdjust=-250

CapabilityBoundingSet=CAP_SYS_ADMIN CAP_DAC_OVERRIDE CAP_SYS_PTRACE CAP_

SYSLOG CAP_AUDIT_CONTROL CAP_AUDIT_READ CAP_CHOWN CAP_DAC_READ_SEARCH CAP_

FOWNER CAP_SETUID CAP_SETGID CAP_MAC_OVERRIDE

DeviceAllow=char-* rw

ExecStart=/usr/lib/systemd/systemd-journald

FileDescriptorStoreMax=4224

IPAddressDeny=any

LockPersonality=yes

MemoryDenyWriteExecute=yes
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Restart=always

RestartSec=0

RestrictAddressFamilies=AF_UNIX AF_NETLINK

RestrictNamespaces=yes

RestrictRealtime=yes

RestrictSUIDSGID=yes

Sockets=systemd-journald.socket systemd-journald-dev-log.socket systemd- 

journald- audit.socket

StandardOutput=null

SystemCallArchitectures=native

SystemCallErrorNumber=EPERM

SystemCallFilter=@system-service

Type=notify

WatchdogSec=3min

LimitNOFILE=524288

Next, if you want systemd to load some specific module statically, then you can get 

some help from our next service, which is systemd-modules-load.service.

# cat usr/lib/systemd/system/systemd-modules-load.service | grep -v '#'

[Unit]

Description=Load Kernel Modules

Documentation=man:systemd-modules-load.service(8) man:modules-load.d(5)

DefaultDependencies=no

Conflicts=shutdown.target

Before=sysinit.target shutdown.target

ConditionCapability=CAP_SYS_MODULE

ConditionDirectoryNotEmpty=|/lib/modules-load.d

ConditionDirectoryNotEmpty=|/usr/lib/modules-load.d

ConditionDirectoryNotEmpty=|/usr/local/lib/modules-load.d

ConditionDirectoryNotEmpty=|/etc/modules-load.d

ConditionDirectoryNotEmpty=|/run/modules-load.d

ConditionKernelCommandLine=|modules-load

ConditionKernelCommandLine=|rd.modules-load
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[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/lib/systemd/systemd-modules-load

TimeoutSec=90s

The service executes /usr/lib/systemd/systemd-modules-load. The binary 

understands the two command-line parameters.

• module_load: This is a kernel command-line parameter.

• rd.module_load: This is a dracut command-line parameter.

If you pass a dracut command-line parameter, then systemd-modules-load will 

statistically load the module in memory, but for that, the module has to be present in 

initramfs. If it is not present in initramfs, then first it has to be pulled in initramfs. While 

generating initramfs, dracut reads the <module-name>.conf files from here:

/etc/modules-load.d/*.conf

/run/modules-load.d/*.conf

/usr/lib/modules-load.d/*.conf

You need to create the *.conf file and need to mention the module name in it, which 

you want to add in initramfs.

For example, here we have created a new initramfs image that does not have the vfio 

module in it:

# dracut new.img

# lsinitrd | grep -i vfio

  <no_output>

To pull the module statistically inside initramfs, here we have created the vfio.conf 

file:

# cat /usr/lib/modules-load.d/vfio.conf

  vfio
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Here we have rebuilt initramfs:

# dracut new.img -f

# lsinitrd new.img | grep -i vfio

Jul 25 03:54 usr/lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/vfio

Jul 25 03:54 usr/lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/vfio/

vfio.ko.xz

Jul 25 03:54 usr/lib/modules-load.d/vfio.conf

As you can see, the module has been pulled inside initramfs, and it will be loaded in 

memory as soon as the service systemd-modules-load.service starts.

Loading modules statistically is not really a good idea. These days, modules are 

loaded dynamically in memory when it is necessary or on demand, whereas static 

modules will always be loaded in memory irrespective of need or demand.

Don’t get confused with the /etc/modprobe.d directory. Its use is to pass the options 

to modules. Here’s an example:

#cat /etc/modprobe.d/lockd.conf

     options lockd nlm_timeout=10

nlm_timeour=10 is an option passed to the lockd module. Remember, the .conf file 

inside /etc/modprobe.d has to be a module name. Through the same conf file, you can 

set an alias for the module name. Here’s an example:

"alias my-mod really_long_modulename"

Next, systemd will set the sysctl kernel parameters with the help of systemd- 

sysctl.service.

# cat usr/lib/systemd/system/systemd-sysctl.service | grep -v '#'

[Unit]

Description=Apply Kernel Variables

Documentation=man:systemd-sysctl.service(8) man:sysctl.d(5)

DefaultDependencies=no

Conflicts=shutdown.target

After=systemd-modules-load.service

Before=sysinit.target shutdown.target

ConditionPathIsReadWrite=/proc/sys/net/
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[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/lib/systemd/systemd-sysctl

TimeoutSec=90s

systemd-sysctl.service will start the /usr/lib/systemd/systemd-sysctl binary, 

which will set the kernel tuning parameters by reading the *.conf files from three 

different locations.

/etc/sysctl.d/*.conf

     /run/sysctl.d/*.conf

     /usr/lib/sysctl.d/*.conf

Here’s an example:

# sysctl -a | grep -i swappiness

      vm.swappiness = 60

The default swappiness kernel parameter value is set to 60. If you want to change 

it to 10 and it has to be permanent across reboots, then add it in /etc/sysctl.d/99- 

sysctl.conf.

#cat /etc/sysctl.d/99-sysctl.conf

     vm.swappiness = 10

You can reload and set the sysctl parameters by using this:

# sysctl -p

vm.swappiness = 10

To make these changes in initramfs, you need to regenerate initramfs. At the time of 

the boot, systemd-sysctl.service will read the swappiness value from the 99-sysctl.

conf file and will set it in the initramfs environment.

systemd creates many temporary files for its smooth execution. After setting up the 

sysctl parameters, it executes the next service, called systemd-tmpfiles-setup-dev.

service, which will execute the /usr/bin/systemd-tmpfiles --prefix=/dev --create 

--boot binary. This will create dev filesystem-related temporary files according to these 

rules:
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/etc/tmpfiles.d/*.conf

/run/tmpfiles.d/*.conf

/usr/lib/tmpfiles.d/*.conf

After sysinit.target, systemd will verify if the required sockets are created or not 

through sockets.target.

# ls usr/lib/systemd/system/sockets.target.wants/ -l

total 0

32 Jan  3 18:05 systemd-journald-audit.socket -> ../systemd-journald-audit.

socket

34 Jan  3 18:05 systemd-journald-dev-log.socket -> ../systemd-journald-dev- 

log.socket

26 Jan  3 18:05 systemd-journald.socket -> ../systemd-journald.socket

31 Jan  3 18:05 systemd-udevd-control.socket -> ../systemd-udevd-control.

socket

30 Jan  3 18:05 systemd-udevd-kernel.socket -> ../systemd-udevd-kernel.

socket

So, our boot process has finished the sequence up to sysinit.target. Refer the 

flowchart shown in Figure 7-65.

Figure 7-65. The boot sequence covered so far
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 “Can’t Boot” Issue 8 (sysctl.conf)

Issue: After rebooting, the kernel is panicking, and the system is not able to boot. This is 

what is visible on the console:

[    4.596220] Mem-Info:

[    4.597455] active_anon:566 inactive_anon:1 isolated_anon:0

[    4.597455]  active_file:0 inactive_file:0 isolated_file:0

[    4.597455]  unevictable:19700 dirty:0 writeback:0 unstable:0

[    4.597455]  slab_reclaimable:2978 slab_unreclaimable:3180

[    4.597455]  mapped:2270 shmem:22 pagetables:42 bounce:0

[    4.597455]  free:23562 free_pcp:1982 free_cma:0

[    4.611930] Node 0 active_anon:2264kB inactive_anon:4kB active_file:0kB 

inactive_file:0kB unevictable:78800kB isolated(anon):0kB isolated(file):0kB 

mapped:9080kB dirty:0kB writeback:0kB shmem:88kB shmem_thp: 0kB 

shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB unstable:0kB all_

unreclaimable? yes

[    4.621748] Node 0 DMA free:15900kB min:216kB low:268kB high:320kB 

active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB 

unevictable:0kB writepending:0kB present:15992kB managed:15908kB 

mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_

pcp:0kB free_cma:0kB

[    4.632561] lowmem_reserve[]: 0 1938 4764 4764 4764

[    4.634609] Node 0 DMA32 free:38516kB min:27404kB low:34252kB 

high:41100kB active_anon:0kB inactive_anon:0kB active_file:0kB 

inactive_file:0kB unevictable:0kB writepending:0kB present:2080628kB 

managed:2015092kB mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB 

free_pcp:2304kB local_pcp:0kB free_cma:0kB

[    4.645636] lowmem_reserve[]: 0 0 2826 2826 2826

[    4.647886] Node 0 Normal free:39832kB min:39956kB low:49944kB 

high:59932kB active_anon:2264kB inactive_anon:4kB active_file:0kB 

inactive_file:0kB unevictable:78800kB writepending:0kB present:3022848kB 

managed:2901924kB mlocked:0kB kernel_stack:1776kB pagetables:168kB 

bounce:0kB free_pcp:5624kB local_pcp:1444kB free_cma:0kB

[    4.659458] lowmem_reserve[]: 0 0 0 0 0
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[    4.661319] Node 0 DMA: 1*4kB (U) 1*8kB (U) 1*16kB (U) 0*32kB 2*64kB (U) 

1*128kB (U) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (M) 3*4096kB (M) = 

15900kB

[    4.666730] Node 0 DMA32: 1*4kB (M) 0*8kB 1*16kB (M) 1*32kB (M) 1*64kB 

(M) 0*128kB 0*256kB 1*512kB (M) 3*1024kB (M) 1*2048kB (M) 8*4096kB (M) = 

38516kB

[    4.673247] Node 0 Normal: 69*4kB (UME) 16*8kB (M) 10*16kB (UME) 7*32kB 

(ME) 5*64kB (E) 1*128kB (E) 1*256kB (U) 9*512kB (ME) 9*1024kB (UME) 

2*2048kB (ME) 5*4096kB (M) = 39892kB

[    4.680399] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 

hugepages_size=1048576kB

[    4.683930] Node 0 hugepages_total=2303 hugepages_free=2303 hugepages_

surp=0 hugepages_size=2048kB

[    4.687749] 19722 total pagecache pages

[    4.689841] 0 pages in swap cache

[    4.691580] Swap cache stats: add 0, delete 0, find 0/0

[    4.694275] Free swap  = 0kB

[    4.696039] Total swap = 0kB

[    4.697617] 1279867 pages RAM

[    4.699229] 0 pages HighMem/MovableOnly

[    4.700862] 46636 pages reserved

[    4.703868] 0 pages cma reserved

[    4.705589] 0 pages hwpoisoned

[    4.707435] Tasks state (memory values in pages):

[    4.709532] [  pid  ]   uid  tgid total_vm      rss pgtables_bytes 

swapents oom_score_adj name

[    4.713849] [    341]     0   341     5118     1178    77824         

0         -1000 (md-udevd)

[    4.717805] Out of memory and no killable processes...

[    4.719861] Kernel panic - not syncing: System is deadlocked on memory

[    4.721926] CPU: 3 PID: 1 Comm: systemd Not tainted 5.3.7-301.fc31.

x86_64 #1

[    4.724343] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 

1.12.0-2.fc30 04/01/2014

[    4.727959] Call Trace:
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[    4.729204]  dump_stack+0x5c/0x80

[    4.730707]  panic+0x101/0x2d7

[    4.747357]  out_of_memory.cold+0x2f/0x88

[    4.749172]  __alloc_pages_slowpath+0xb09/0xe00

[    4.750890]  __alloc_pages_nodemask+0x2ee/0x340

[    4.752452]  alloc_slab_page+0x19f/0x320

[    4.753982]  new_slab+0x44f/0x4d0

[    4.755317]  ? alloc_slab_page+0x194/0x320

[    4.757016]  ___slab_alloc+0x507/0x6a0

[    4.758768]  ? copy_verifier_state+0x1f7/0x270

[    4.760591]  ? ___slab_alloc+0x507/0x6a0

[    4.763266]  __slab_alloc+0x1c/0x30

[    4.764846]  kmem_cache_alloc_trace+0x1ee/0x220

[    4.766418]  ? copy_verifier_state+0x1f7/0x270

[    4.768120]  copy_verifier_state+0x1f7/0x270

[    4.769604]  ? kmem_cache_alloc_trace+0x162/0x220

[    4.771098]  ? push_stack+0x35/0xe0

[    4.772367]  push_stack+0x66/0xe0

[    4.774010]  check_cond_jmp_op+0x1fe/0xe60

[    4.775644]  ? _cond_resched+0x15/0x30

[    4.777524]  ? _cond_resched+0x15/0x30

[    4.779315]  ? kmem_cache_alloc_trace+0x162/0x220

[    4.780916]  ? copy_verifier_state+0x1f7/0x270

[    4.782357]  ? copy_verifier_state+0x16f/0x270

[    4.783785]  do_check+0x1c06/0x24e0

[    4.785218]  bpf_check+0x1aec/0x24d4

[    4.786613]  ? _cond_resched+0x15/0x30

[    4.788073]  ? kmem_cache_alloc_trace+0x162/0x220

[    4.789672]  ? selinux_bpf_prog_alloc+0x1f/0x60

[    4.791564]  bpf_prog_load+0x3a3/0x670

[    4.794915]  ? seq_vprintf+0x30/0x50

[    4.797085]  ? seq_printf+0x53/0x70

[    4.799013]  __do_sys_bpf+0x7e5/0x17d0

[    4.800909]  ? __fput+0x168/0x250

[    4.802352]  do_syscall_64+0x5f/0x1a0
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[    4.803826]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

[    4.805587] RIP: 0033:0x7f471557915d

[    4.807638] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 

89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 

<48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d fb 5c 0c 00 f7 d8 64 89 01 48

[    4.814732] RSP: 002b:00007fffd36da028 EFLAGS: 00000246 ORIG_RAX: 

0000000000000141

[    4.818390] RAX: ffffffffffffffda RBX: 000055fb6ad3add0 RCX: 

00007f471557915d

[    4.820448] RDX: 0000000000000070 RSI: 00007fffd36da030 RDI: 

0000000000000005

[    4.822536] RBP: 0000000000000002 R08: 0070756f7267632f R09: 

000001130000000f

[    4.826605] R10: 0000000000000000 R11: 0000000000000246 R12: 

0000000000000000

[    4.829312] R13: 0000000000000006 R14: 000055fb6ad3add0 R15: 

00007fffd36da1e0

[    4.831792] Kernel Offset: 0x26000000 from 0xffffffff81000000 

(relocation range: 0xffffffff80000000-0xffffffffbfffffff)

[    4.835316] ---[ end Kernel panic - not syncing: System is deadlocked on 

memory ]---

So, this is a “kernel panic” issue. We need to isolate the issue first since kernel 

panic can occur due to thousands of situations. If you look at the highlighted messages 

of kernel panic, it is clear that an “OOM-killer” has been invoked since the system is 

running out of memory. The kernel tried to free the memory from cache and even tried 

to use the swap space, but eventually it gave up, and the kernel panicked.

So, we have isolated the issue. We need to concentrate on who is eating the memory. 

The OS out-of-memory (OOM) mechanism will be invoked when the system has 

immense memory pressure.

There are three situations when an OOM-killer can be invoked during the boot 

sequence:

• The system has really low physical memory installed.

• The wrong kernel tuning parameters have been set.

• Some modules have a memory leak.

ChaPTeR 7  sysTemd (PaRT I)



389

This system has 4.9 GB of physical memory, which is not big, but it is certainly more 

than enough for the Linux kernel to finish the booting sequence.

Some modules might have memory leaks, but identifying that will be a difficult task. 

So, we will verify first whether any memory-related kernel tuning parameters have been 

set incorrectly.

 1. To do that, we will drop ourselves inside initramfs. In Figure 7-66, 

we have passed rd.break as a kernel command-line parameter.

 2. We will remount sysroot in read-write mode and verify the 

sysctl parameters.

switch_root:/# cat /proc/sys/vm/nr_hugepages

               2400

 3. The issue is the wrongly reserved number of hugepages. We will 

disable the setting as per Figure 7-67.

Figure 7-66. The kernel command-line parameter

Figure 7-67. Disabling the hugepage setting
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After rebooting, the system is able to boot successfully. Let’s try to understand what 

went wrong. This system has 4.9 GB of memory, and earlier there were no hugepages 

reserved.

# cat /proc/meminfo | grep -e MemTotal -e HugePages_Total

MemTotal:        4932916 kB

HugePages_Total:       0

# cat /proc/sys/vm/nr_hugepages

0

A normal page is 4 KB in size, whereas a hugepage is 2 MB in size, which is 512 times 

bigger than a normal page. Hugepage has its own advantages, but at the same time it has 

its own disadvantages too.

• A hugepage cannot be swapped out.

• The kernel don’t use hugepages.

• Only the applications that are hugepage-aware can use the 

hugepages.

Someone wrongly set the 2,400 hugepages and rebuilt initramfs.

# echo "vm.nr_hugepages = 2400" >> /etc/sysctl.conf

     # sysctl -p

           vm.nr_hugepages = 2400

     # dracut /boot/new.img

     # reboot

So, 2,400 hugepages = 4.9 GB, which is all the installed main memory, and since the 

total memory got reserved in hugepages, the kernel cannot use it. So, while booting, 

when systemd reached the stage of sysinit.target and executed systemd-sysctl.

service, the service read the sysctl.conf file from initramfs and reserved 4.9 GB of 

hugepages, which the kernel cannot use. Therefore, the kernel itself ran out of memory, 

and the system panicked.
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 basic.target
So, we have reached basic.target. As we know, targets are for synchronizing or 

grouping the units. basic.target is a synchronization point for late boot services.

# cat usr/lib/systemd/system/basic.target | grep -v '#'

[Unit]

Description=Basic System

Documentation=man:systemd.special(7)

Requires=sysinit.target

Wants=sockets.target timers.target paths.target slices.target

After=sysinit.target sockets.target paths.target slices.target tmp.mount

RequiresMountsFor=/var /var/tmp

Wants=tmp.mount

So, basic.target will be successful when all the earlier services’ unit files requires, 

wants, and after phases are successfully started. In fact, almost all of the services have 

After=basic.target added in their unit files.

 dracut-pre-mount.service
systemd will execute the dracut-pre-mount.service service just before mounting 

the user’s root filesystem inside initramfs. Since it is a dracut service, it will execute 

only if the user has passed the rd.break=pre-mount dracut command-line parameter. 

Figure 7-68 shows that we have passed rd.break=pre-mount as a kernel command-line 

parameter.

As you can see in Figure 7-69, it has dropped us at the emergency shell, and the 

user’s root filesystem is not mounted at sysroot. Yes, I said it has dropped us at the 

emergency shell, but you will be surprised to see that the emergency shell is nothing but 

a simple bash shell provided by systemd but at the time when booting is not finished 

yet. To understand the emergency shell better, we will pause our booting sequence for 

a while and discuss the debugging shells of initramfs in Chapter 8. We will resume our 

paused systemd’s booting sequence in Chapter 9.
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Figure 7-68. The kernel command-line parameter

Figure 7-69. The pre-mount hook

ChaPTeR 7  sysTemd (PaRT I)



393
© Yogesh Babar 2020 
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_8

CHAPTER 8

Debugging Shells
As of now, we know that initramfs has bash built in, and we have used it from time to 

time through rd.break hooks. This chapter’s aim is to understand how systemd provides 

us with a shell inside an initramfs. What are the steps that have to be followed, and how 

can one use it more effectively? But before that, let’s recap what we have learned so far 

about the debugging and emergency shells of initramfs.

 The Shell
rd.break

           drop to a shell at the end

rd.break drops us inside initramfs, and we can explore the initramfs environment 

through it. This initramfs environment is also called the emergency mode. In normal 

scenarios, we get dropped in emergency mode when initramfs is not able to mount 

the user’s root filesystem. Remember, passing rd.break without any parameters will 

drop us at initramfs after mounting the user’s root filesystem under /sysroot but 

before performing switch_root on it. You can always find the detailed logs in the /run/

initramfs/rdsosreport.txt file. Figure 8-1 shows the logs from rdsosreport.txt.

https://doi.org/10.1007/978-1-4842-5890-3_8#ESM
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In the log messages, you can clearly see that it dropped just before performing 

pivot_root. pivot_root and switch_root will be discussed in Chapter 9, whereas 

chroot will be discussed in Chapter 10. Once you exit from the emergency shell, systemd 

will continue the paused booting sequence and will eventually provide the login screen.

Then we discussed how we can use emergency shells to fix some of the “can’t boot” 

issues. For example, initramfs is as good as the user’s root filesystem. So, it does have 

lvm, raid, and filesystem-related binaries that we can use to find, assemble, diagnose, 

and fix the missing user’s root filesystem. Then we discussed how we can mount it under 

/sysroot and explore the contents of it to fix grub.cfg’s wrong entries, for example.

Likewise, rd.break does provide us with various options to break the booting 

sequence at different stages.

cmdline: This hook gets the kernel command-line parameters.

pre-udev: This breaks the booting sequence before the udev handler.

pre-trigger: You can set udev environment variables with the 

udevadm control or can set --property=KEY=value like parameters 

or control the further execution of udev with udevadm.

Figure 8-1. The rdsosreport.txt runtime logs
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pre-mount: This breaks the booting sequence before mounting the 

user’s root filesystem at /sysroot.

mount: This breaks the booting sequence after mounting the root 

filesystem at /sysroot.

pre-pivot: This breaks the booting sequence just before 

switching to the actual root filesystem.

Now let’s see how exactly systemd manages to provide us with the shells in these 

various stages.

 How Does systemd Drop Us to an Emergency Shell?
Let’s consider an example of a pre-mount hook. systemd from initramfs collects the rd.

break=pre-mount command-line parameter from dracut-cmdline.service, and it 

runs the systemd service dracut-pre-mount.service from the initramfs location /usr/

lib/systemd/system. The service will run before running initrd-root-fs.target, 

sysroot.mount, and systemd-fsck-root.service.

# cat usr/lib/systemd/system/dracut-pre-mount.service | grep -v #'

[Unit]

Description=dracut pre-mount hook

Documentation=man:dracut-pre-mount.service(8)

DefaultDependencies=no

Before=initrd-root-fs.target sysroot.mount systemd-fsck-root.service

After=dracut-initqueue.service cryptsetup.target

ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-mount

ConditionKernelCommandLine=|rd.break=pre-mount

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-pre-mount
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StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

As you can see, it is simply executing the /bin/dracut-pre-mount script from initramfs.

# vim bin/dracut-pre-mount

  1 #!/usr/bin/sh

  2

  3 export DRACUT_SYSTEMD=1

  4 if [ -f /dracut-state.sh ]; then

  5     . /dracut-state.sh 2>/dev/null

  6 fi

  7 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

  8

  9 source_conf /etc/conf.d

 10

 11  make_trace_mem "hook pre-mount" '1:shortmem' '2+:mem' '3+:slab' 

'4+:komem'

 12 # pre pivot scripts are sourced just before we doing cleanup and switch over

 13 # to the new root.

 14  getarg 'rd.break=pre-mount' 'rdbreak=pre-mount' && emergency_shell -n 

pre-mount "Break pre-mount"

 15 source_hook pre-mount

 16

 17 export -p > /dracut-state.sh

 18

 19 exit 0

Inside the /bin/dracut-pre-mount script, the most important line is the following:

getarg rd.break=pre-mount' rdbreak=pre-mount

     && emergency_shell -n pre-mount "Break pre-mount"
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We have already discussed the getarg function, which is used to check what parameter 

has been passed to rd.break=. If rd.break=pre-mount has been passed, then only the 

emergency-shell() function will be called. The function is defined in /usr/lib/dracut-lib.

sh, and it passes pre-mount as a string parameter to it. -n stands for the following:

[ -n STRING ] or [ STRING ]: True if the length of STRING is 

nonzero

The emergency_shell function accepts the _rdshell_name variable’s value as pre- mount.

if [ "$1" = "-n" ]; then

      _rdshell_name=$2

Here, -n is considered as the first argument ($1), and pre-mount is the second 

argument ($2). So, the value of _rdshell_name becomes pre-mount.

#vim /usr/lib/dracut-lib.sh

1123 emergency_shell()

1124 {

1125     local _ctty

1126     set +e

1127     local _rdshell_name="dracut" action="Boot" hook="emergency"

1128     local _emergency_action

1129

1130     if [ "$1" = "-n" ]; then

1131         _rdshell_name=$2

1132         shift 2

1133     elif [ "$1" = "--shutdown" ]; then

1134         _rdshell_name=$2; action="Shutdown"; hook="shutdown-emergency"

1135         if type plymouth >/dev/null 2>&1; then

1136             plymouth --hide-splash

1137         elif [ -x /oldroot/bin/plymouth ]; then

1138             /oldroot/bin/plymouth --hide-splash

1139         fi

1140         shift 2

1141     fi

1142

1143     echo ; echo
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1144     warn "$*"
1145     echo
1146
1147     _emergency_action=$(getarg rd.emergency)
1148     [ -z "$_emergency_action" ] \
1149         && [ -e /run/initramfs/.die ] \
1150         && _emergency_action=halt
1151
1152      if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d 

rdbreak; then
1153         _emergency_shell $_rdshell_name
1154     else
1155         source_hook "$hook"
1156          warn "$action has failed. To debug this issue add \"rd.shell 

rd.debug\" to the kernel command line."
1157         [ -z "$_emergency_action" ] && _emergency_action=halt
1158     fi
1159
1160     case "$_emergency_action" in
1161         reboot)
1162             reboot || exit 1;;
1163         poweroff)
1164             poweroff || exit 1;;
1165         halt)
1166             halt || exit 1;;
1167     esac
1168 }

Then, at the end, it calls another _emergency_shell function from the same file 
(note the underscore before the function name). As you can see, _rdshell_name is the 
argument to the _emergency_shell function.

_emergency_shell $_rdshell_name

Inside the _emergency_shell() function, we can see that _name gets the argument, 
which is pre-mount.

local _name="$1"

#vim usr/lib/dracut-lib.sh
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1081 _emergency_shell()

1082 {

1083     local _name="$1"

1084     if [ -n "$DRACUT_SYSTEMD" ]; then

1085         > /.console_lock

1086         echo "PS1=\"$_name:\\\${PWD}# \"" >/etc/profile

1087         systemctl start dracut-emergency.service

1088         rm -f -- /etc/profile

1089         rm -f -- /.console_lock

1090     else

1091         debug_off

1092         source_hook "$hook"

1093         echo

1094         /sbin/rdsosreport

1095          echo 'You might want to save "/run/initramfs/rdsosreport.txt" to a 

USB stick or /boot'

1096         echo 'after mounting them and attach it to a bug report.'

1097          if ! RD_DEBUG= getargbool 0 rd.debug -d -y rdinitdebug -d -y 

rdnetdebug; then

1098             echo

1099             echo 'To get more debug information in the report,'

1100             echo 'reboot with "rd.debug" added to the kernel command line.'

1101         fi

1102         echo

1103         echo 'Dropping to debug shell.'

1104         echo

1105         export PS1="$_name:\${PWD}# "

1106         [ -e /.profile ] || >/.profile

1107

1108         _ ctty="$(RD_DEBUG= getarg rd.ctty=)" && _ctty="/dev/${_ctty##*/}"

1109         if [ -z "$_ctty" ]; then

1110             _ctty=console

1111             while [ -f /sys/class/tty/$_ctty/active ]; do

1112                 _ctty=$(cat /sys/class/tty/$_ctty/active)

1113                 _ctty=${_ctty##* } # last one in the list
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1114             done

1115             _ctty=/dev/$_ctty

1116         fi

1117         [ -c "$_ctty" ] || _ctty=/dev/tty1

1118          case "$(/usr/bin/setsid --help 2>&1)" in *--ctty*) CTTY="--

ctty";; esac

1119         setsid $CTTY /bin/sh -i -l 0<>$_ctty 1<>$_ctty 2<>$_ctty

1120     fi

The same pre-mount string has been passed to PS1. Let’s see first what exactly PS1 is.

PS1 is called a pseudo variable. This will be shown by bash when the user has 

successfully logged in. Here’s an example:

[root@fedora home]#

  |  |   |    |

[username]@[host][CWD][# since it is a root user]

The ideal entries accepted by bash are PS1='\u:\w\$'.

u = This is the username.

w = This is the working directory.

$ = If UID is 0, then #; otherwise $'.

So, in our case, when we get a emergency shell, PS1 will be printed by the shell as follows:

'pre-mount#'

Next in the source code, you can see that the PS1 variable’s new value is also getting 

added in /etc/profile. The reason is that bash reads this file every time before 

presenting the shell to the user. At the end, we are simply starting the dracut-emergency 

service.

systemctl start dracut-emergency.service

The following is the dracut-emergency.service file from usr/lib/systemd/system/ 

of initramfs:

# cat usr/lib/systemd/system/dracut-emergency.service | grep -v #'
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[Unit]

Description=Dracut Emergency Shell

DefaultDependencies=no

After=systemd-vconsole-setup.service

Wants=systemd-vconsole-setup.service

Conflicts=shutdown.target emergency.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=-/bin/dracut-emergency

ExecStopPost=-/bin/rm -f -- /.console_lock

Type=oneshot

StandardInput=tty-force

StandardOutput=inherit

StandardError=inherit

KillMode=process

IgnoreSIGPIPE=no

TasksMax=infinity

KillSignal=SIGHUP

The service is simply executing /bin/dracut-emergency. This script first stops the 

plymouth service.

type plymouth >/dev/null 2>&1 && plymouth quit

This stores the hook variable’s value as emergency and calls the source_hook function 

with the emergency argument.

export _rdshell_name="dracut" action="Boot" hook="emergency"

source_hook "$hook"

# vim bin/dracut-emergency

     1 #!/usr/bin/sh

  2

  3 export DRACUT_SYSTEMD=1
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  4 if [ -f /dracut-state.sh ]; then

  5     . /dracut-state.sh 2>/dev/null

  6 fi

  7 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

  8

  9 source_conf /etc/conf.d

 10

 11 type plymouth >/dev/null 2>&1 && plymouth quit

 12

 13 export _rdshell_name="dracut" action="Boot" hook="emergency" 

 14 _emergency_action=$(getarg rd.emergency)

 15

 16 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d rdbreak; then

 17     FSTXT="/run/dracut/fsck/fsck_help_$fstype.txt"

 18     source_hook "$hook"

 19     echo

 20     rdsosreport

 21     echo

 22     echo

 23     echo Entering emergency mode. Exit the shell to continue.'

 24     echo Type "journalctl" to view system logs.'

 25      echo You might want to save "/run/initramfs/rdsosreport.txt" to a 

USB stick or /boot'

 26     echo after mounting them and attach it to a bug report.'

 27     echo

 28     echo

 29     [ -f "$FSTXT" ] && cat "$FSTXT"

 30     [ -f /etc/profile ] && . /etc/profile

 31     [ -z "$PS1" ] && export PS1="$_name:\${PWD}# "

 32     exec sh -i -l

 33 else

 34     export hook="shutdown-emergency"

 35      warn "$action has failed. To debug this issue add \"rd.shell rd.debug\" 

to the kernel command line."

 36     source_hook "$hook"
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 37     [ -z "$_emergency_action" ] && _emergency_action=halt

 38 fi

 39

 40 /bin/rm -f -- /.console_lock

 41

 42 case "$_emergency_action" in

 43     reboot)

 44         reboot || exit 1;;

 45     poweroff)

 46         poweroff || exit 1;;

 47     halt)

 48         halt || exit 1;;

 49 esac

 50

 51 exit 0

The source_hook function is again defined in usr/lib/dracut-lib.sh.

source_hook() {

    local _dir

    _dir=$1; shift

    source_all "/lib/dracut/hooks/$_dir" "$@"

}

The _dir variable has captured the hook name, which is emergency. All the hooks 

are nothing but a bunch of scripts, stored and executed from the /lib/dracut/hooks/ 

directory of initramfs.

# tree usr/lib/dracut/hooks/

usr/lib/dracut/hooks/

├── cleanup
├── cmdline
│   ├── 30-parse-lvm.sh
│   ├── 91-dhcp-root.sh
│   └── 99-nm-config.sh
├── emergency
│   └── 50-plymouth-emergency.sh
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├── initqueue
│   ├── finished
│   ├── online
│   ├── settled
│   │   └── 99-nm-run.sh
│   └── timeout
│       └── 99-rootfallback.sh
├── mount
├── netroot
├── pre-mount
├── pre-pivot
│   └── 85-write-ifcfg.sh
├── pre-shutdown
├── pre-trigger
├── pre-udev
│   └── 50-ifname-genrules.sh
├── shutdown
│   └── 25-dm-shutdown.sh
└── shutdown-emergency

For an emergency hook, it is executing usr/lib/dracut/hooks/emergency/50- 
plymouth- emergency.sh, which is stopping the plymouth service.

#!/usr/bin/sh
plymouth --hide-splash 2>/dev/null || :

Once the emergency hook is executed and plymouth has been stopped, it will go back 
to bin/dracut-emergency and print the following banner:

echo Entering emergency mode. Exit the shell to continue.'
echo Type "journalctl" to view system logs.'
echo You might want to save "/run/initramfs/rdsosreport.txt" to a USB stick 
or /boot'
echo after mounting them and attach it to a bug report.'

So, it does not matter what the rd.break=hook_name user has passed. systemd will 
execute the emergency hook, and once the banner is printed, it will fetch the  /etc/
profile directory in which we have added PS1=_rdshell_name/PS1=hook_name, and 
then we can simply run the bash shell.

exec sh -i –l
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When the shell starts running, it will read /etc/profile, and it will find the PS1=hook_

name variable. In this case, hook_name is pre-mount. That is why pre-mount as a prompt 

name of bash has been printed. Refer to the flowchart shown in Figure 8-2 for a better 

understanding of this.

Figure 8-2. The flowchart
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If a user passes any other parameter to rd.break, for example, initqueue, then it will 
be fed into PS1, _rdshell_name, and hook variables. Later, bash will be called through 
the emergency service. Bash will read the PS1 value from the /etc/profile file and will 

show the initqueue name in the prompt.

The conclusion is that the same bash shell will be provided to the user under various 

prompt names (cmdline, pre-mount, switch_root, pre-udev, emergency, etc.) but at 

different boot stages of initramfs.

cmdline:/# pre-udev:/#

pre-trigger:/# initqueue:/#

pre-mount:/# pre-pivot:/#

switch_root:/#

Similar to this, rescue.target will be executed by systemd.

 rescue.service and emergency.service
The rescue service is also called single-user mode in the systemd world. So if the user 

has requested to boot in single-user mode, then systemd actually drops the user on 

the emergency shell at the rescue.service stage. Figure 8-3 shows you the booting 

sequence covered so far.

Chapter 8  Debugging ShellS



407

You can either pass rescue.target or pass runlevel1.target or emergency.

service to systemd.unit to boot in single-user mode. As shown in Figure 8-4, we will 

use Ubuntu this time to explore the booting stages.

Figure 8-3. The flowchart of the booting sequence
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This will drop us on an emergency shell. The single-user mode, rescue service, and 

emergency service all launch the dracut-emergency binary. This is the same binary that 

we launched in the emergency hook of dracut.

# cat usr/lib/systemd/system/emergency.service | grep -v ' #'

[Unit]

Description=Emergency Shell

DefaultDependencies=no

After=systemd-vconsole-setup.service

Wants=systemd-vconsole-setup.service

Conflicts=shutdown.target

Before=shutdown.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=/bin/dracut-emergency

ExecStopPost=-/usr/bin/systemctl --fail --no-block default

Type=idle

StandardInput=tty-force

StandardOutput=inherit

Figure 8-4. The kernel command-line parameter
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StandardError=inherit

KillMode=process

IgnoreSIGPIPE=no

TasksMax=infinity

KillSignal=SIGHUP

# cat usr/lib/systemd/system/rescue.service | grep -v ' #'

[Unit]

Description=Emergency Shell

DefaultDependencies=no

After=systemd-vconsole-setup.service

Wants=systemd-vconsole-setup.service

Conflicts=shutdown.target

Before=shutdown.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=/bin/dracut-emergency

ExecStopPost=-/usr/bin/systemctl --fail --no-block default

Type=idle

StandardInput=tty-force

StandardOutput=inherit

StandardError=inherit

KillMode=process

IgnoreSIGPIPE=no

TasksMax=infinity

KillSignal=SIGHUP

And as we all know, the dracut-emergency script executes a bash shell.
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# vim bin/dracut-emergency

  1 #!/usr/bin/sh

  2

  3 export DRACUT_SYSTEMD=1

  4 if [ -f /dracut-state.sh ]; then

  5     . /dracut-state.sh 2>/dev/null

  6 fi

  7 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

  8

  9 source_conf /etc/conf.d

 10

 11 type plymouth >/dev/null 2>&1 && plymouth quit

 12

 13 export _rdshell_name="dracut" action="Boot" hook="emergency" 

 14 _emergency_action=$(getarg rd.emergency)

 15

 16 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d rdbreak; then

 17     FSTXT="/run/dracut/fsck/fsck_help_$fstype.txt"

 18     source_hook "$hook"

 19     echo

 20     rdsosreport

 21     echo

 22     echo

 23     echo 'Entering emergency mode. Exit the shell to continue.'

 24     echo 'Type "journalctl" to view system logs.'

 25      echo 'You might want to save "/run/initramfs/rdsosreport.txt" to a 

USB stick or /boot'

 26     echo 'after mounting them and attach it to a bug report.'

 27     echo

 28     echo

 29     [ -f "$FSTXT" ] && cat "$FSTXT"

 30     [ -f /etc/profile ] && . /etc/profile

 31     [ -z "$PS1" ] && export PS1="$_name:\${PWD}# "

 32     exec sh -i -l

 33 else
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 34     export hook="shutdown-emergency"

 35      warn "$action has failed. To debug this issue add \"rd.shell 

rd.debug\" to the kernel command line."

 36     source_hook "$hook"

 37     [ -z "$_emergency_action" ] && _emergency_action=halt

 38 fi

 39

 40 /bin/rm -f -- /.console_lock

 41

 42 case "$_emergency_action" in

 43     reboot)

 44         reboot || exit 1;;

 45     poweroff)

 46         poweroff || exit 1;;

 47     halt)

 48         halt || exit 1;;

 49 esac

 50

 51 exit 0

Figure 8-5. The emergency shell

As you can see in Figure 8-5, sysroot is not mounted yet since we have not reached 

the mounting stage of booting.

I hope you now understand how systemd presents the emergency shell to users at 

various booting stages. In the next chapter, we will resume our paused systemd’s booting 

sequence.
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CHAPTER 9

systemd (Part II)
So far, we have reached the service dracut.pre-mount.service where the user’s root 

filesystem is not yet mounted inside initramfs. systemd’s next stage of booting will mount 

the root filesystem on sysroot.

 sysroot.mount
systemd accepts the mount dracut command-line parameter, which will drop us on a 

mount emergency shell. As you can see in Figure 9-1, we have passed the rd.break=mount 

kernel command-line parameter.

As you can see in Figure 9-2, sysroot has been mounted with a user’s root filesystem 

in read-only mode.

Figure 9-1. The kernel command-line parameter

Figure 9-2. The mount hook

https://doi.org/10.1007/978-1-4842-5890-3_9#ESM
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The dracut.mount hook (usr/lib/systemd/system/dracut-mount.service) will 

run the /bin/dracut-mount script from initramfs, which will do the mounting part.

#vim usr/lib/systemd/system/dracut-mount.service

As you can see, this is executing the dracut-mount script from initramfs and also 

exporting the NEWROOT variable with the sysroot value.

Environment=NEWROOT=/sysroot

ExecStart=-/bin/dracut-mount

[Unit]

Description=dracut mount hook

Documentation=man:dracut-mount.service(8)

After=initrd-root-fs.target initrd-parse-etc.service

After=dracut-initqueue.service dracut-pre-mount.service

ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/mount

ConditionKernelCommandLine=|rd.break=mount

DefaultDependencies=no

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-mount

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

#vim bin/dracut-mount

  1 #!/usr/bin/sh

  2 export DRACUT_SYSTEMD=1

  3 if [ -f /dracut-state.sh ]; then
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  4     . /dracut-state.sh 2>/dev/null

  5 fi

  6 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

  7

  8 source_conf /etc/conf.d

  9

 10 make_trace_mem "hook mount" '1:shortmem' '2+:mem' '3+:slab'

 11

 12  getarg 'rd.break=mount' -d 'rdbreak=mount' && emergency_shell -n mount 

"Break mount"

 13 # mount scripts actually try to mount the root filesystem, and may

 14 #  be sourced any number of times. As soon as one suceeds, no more are 

sourced.

 15 i=0

 16 while :; do

 17     if ismounted "$NEWROOT"; then

 18         usable_root "$NEWROOT" && break;

 19         umount "$NEWROOT"

 20     fi

 21     for f in $hookdir/mount/*.sh; do

 22         [ -f "$f" ] && . "$f"

 23         if ismounted "$NEWROOT"; then

 24             usable_root "$NEWROOT" && break;

 25              warn "$NEWROOT has no proper rootfs layout, ignoring and 

removing offending mount hook"

 26             umount "$NEWROOT"

 27             rm -f -- "$f"

 28         fi

 29     done

 30

 31     i=$(($i+1))

 32     [ $i -gt 20 ] && emergency_shell "Can't mount root filesystem"

 33 done

 34
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 35 export -p > /dracut-state.sh

 36

 37 exit 0

We saw in Chapter 8 how exactly it drops us on an emergency shell and the 

associated functions of this. Since we stopped the booting sequence after mounting 

the user’s root filesystem inside initramfs, as you can see in Figure 9-3, the systemd- 

fstab- generator has already been executed, and the -mount unit files have already 

been created.

Remember, the user’s root filesystem name added in sysroot.mount has been 

taken from the /proc/cmdline file. The sysroot.mount clearly mentions what has to be 

mounted and where it has to be mounted.

Figure 9-3. The systemd-fstab-generator behavior
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 initrd.target
As we have said multiple times, the ultimate aim of the booting sequence is to provide 

the user’s root filesystem to the user, and while doing that, the major stages that systemd 

achieves are as follows:

 1) Find the user’s root filesystem.

 2) Mount the user’s root filesystem (we have reached this stage of 

booting).

 3) Find the other necessary filesystems and mount them  

(usr, var, nfs, cifs, etc.).

 4) Switch into the mounted user’s root filesystem.

 5) Start the user space daemons.

 6) Start either multi-user.target or graphical.target (which is 

outside the scope of this book).

As you can see, as of now, we have reached step 2, which is mounting the user’s 

root filesystem inside initramfs. We all know that systemd has .targets, and target is 

nothing but a bunch of unit files. The .target can be successfully started only when all 

of its unit files have been successfully started.

There are many targets in the systemd world, such as basic.target, multi-user.

target, graphical.target, default.target, and sysinit.target to name a few. The 

ultimate aim of initramfs is to achieve the initrd.target. Once the initrd.target 

is successfully started, then systemd will switch_root into it. So, first, let’s look at 

initrd.target and where it stands in terms of the booting sequence. Please refer to the 

flowchart shown in Figure 9-4.
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Figure 9-4. The booting sequence
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When you are outside of initramfs (that means after switch_root), systemd’s default.

target will be either multi-user.target or graphical.target, whereas inside initramfs 

(that means before switch_root) after basic.target, systemd’s default.target will be 

initrd.target. So, after successfully completing the sysinit.target and basic.target, 

systemd’s main task is to achieve the initrd.target. To reach there, systemd will use the 

sysroot.mount stage to read the mount unit files created by systemd-fstab-generator. The 

service dracut-mount.service will mount the user’s root filesystem to /sysroot, and then 

systemd will execute the service initrd-parse- etc.service. It will parse the /sysroot/

etc/fstab file and will make the mount unit files for usr or any other mount points that have 

the x-initrd.mount option set. This is how the initrd-parse-etc.service works:

# cat usr/lib/systemd/system/initrd-parse-etc.service | grep -v '#'

[Unit]

Description=Reload Configuration from the Real Root

DefaultDependencies=no

Requires=initrd-root-fs.target

After=initrd-root-fs.target

OnFailure=emergency.target

OnFailureJobMode=replace-irreversibly

ConditionPathExists=/etc/initrd-release

[Service]

Type=oneshot

ExecStartPre=-/usr/bin/systemctl daemon-reload

ExecStart=-/usr/bin/systemctl --no-block start initrd-fs.target

ExecStart=/usr/bin/systemctl --no-block start initrd-cleanup.service

Basically, the service is executing systemctl with a daemon-reload switch. This will 

reload the systemd manager configuration. This will rerun all generators, reload all unit 

files, and re-create the entire dependency tree. While the daemon is being reloaded, all 

sockets that systemd listens to on behalf of the user configuration will stay accessible. 

The systemd generators, which will be re-executed, are as follows:

# ls usr/lib/systemd/system-generators/ -l

     total 92

     -rwxr-xr-x. 1 root root  3750 Jan 10 19:18 dracut-rootfs-generator

     -rwxr-xr-x. 1 root root 45640 Dec 21 12:19 systemd-fstab-generator

     -rwxr-xr-x. 1 root root 37032 Dec 21 12:19 systemd-gpt-auto-generator
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As you can see, it will execute systemd-fstab-generator, which will read the /sysroot/

etc/fstab entries and create the mount unit files for usr and for devices that have the 

x-initrd.mount option set. In short, systemd-fstab-generator has executed twice.

So, when you drop yourself to the mount shell (rd.break=mount), you are actually 

interrupting the booting sequence after the target initrd.target. This target just runs 

the following services:

# ls usr/lib/systemd/system/initrd.target.wants/

     dracut-cmdline-ask.service  dracut-mount.service       dracut-pre- 

trigger.service

     dracut-cmdline.service      dracut-pre-mount.service   dracut-pre-udev.

service

     dracut-initqueue.service    dracut-pre-pivot.service

Please refer to Figure 9-5 for a better understanding of this.

Figure 9-5. The overall execution of initrd.target
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 switch_root/pivot_root
Now we have reached the final stage of systemd’s booting, which is switch_root. 

systemd switches the root filesystem from initramfs (/) to the user’s root filesystem  

(/sysroot). systemd achieves this by taking the following steps:

 1. Mounting the new root filesystem (/sysroot)

 2. Turning it into the root filesystem (/)

 3. Removing all accesses to the old (initramfs) root filesystem

 4. Unmounting the initramfs filesystem and de-allocating the ramfs 

filesystem

There are three major points that will be discussed in this chapter.

• switch_root: We will explain this the old init way.

• pivot_root: We will explain this the systemd way.

• chroot: We will explain this in Chapter 10.

 Switching to the New Root Filesystem on an init-Based 
System
An init-based system uses switch_root to switch to a new root filesystem (sysroot). 

The purpose of switch_root is explained well on its man page, as shown here:

#man switch_root

NAME

       switch_root - switch to another filesystem as the root of the mount tree

SYNOPSIS

       switch_root [-hV]

       switch_root newroot init [arg...]

DESCRIPTION

        switch_root moves already mounted /proc, /dev, /sys and /run to 

newroot and makes newroot the new root filesystem and starts init 

process.
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        WARNING: switch_root removes recursively all files and directories 

on the current root filesystem.

OPTIONS

       -h, --help

              Display help text and exit.

       -V, --version

              Display version information and exit.

RETURN VALUE

       switch_root returns 0 on success and 1 on failure.

NOTES

        switch_root will fail to function if newroot is not the root of a 

mount. If you want to switch root into a directory that does not 

meet this requirement then you can first use a bind-mounting trick 

to turn any directory into a mount point:

              mount --bind $DIR $DIR

So, it switches to a new root filesystem (sysroot), and along with the root, it moves 

the old root filesystem’s virtual file systems (proc, dev, sys, etc.) to the new root. The 

best feature of switch_root is that after mounting the new root filesystem, it starts the 

init process on its own. Switching to a new root filesystem takes place in dracut’s source 

code. The latest version of dracut while writing this book was 049. The switch_root 

function is defined in the dracut-049/modules.d/99base/init.sh file.

387 unset PS4

388

389 CAPSH=$(command -v capsh)

390 SWITCH_ROOT=$(command -v switch_root)

391 PATH=$OLDPATH

392 export PATH

393

394 if [ -f /etc/capsdrop ]; then

395     . /etc/capsdrop

396     info "Calling $INIT with capabilities $CAPS_INIT_DROP dropped."

397     unset RD_DEBUG
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398     exec $CAPSH --drop="$CAPS_INIT_DROP" -- \

399         -c "exec switch_root \"$NEWROOT\" \"$INIT\" $initargs" || \

400     {

401         warn "Command:"

402          warn capsh --drop=$CAPS_INIT_DROP -- -c exec switch_root 

"$NEWROOT" "$INIT" $initargs

403         warn "failed."

404         emergency_shell

405     }

406 else

407     unset RD_DEBUG

408     exec $SWITCH_ROOT "$NEWROOT" "$INIT" $initargs || {

409         warn "Something went very badly wrong in the initramfs.  Please "

410         warn "file a bug against dracut."

411         emergency_shell

412     }

413 fi

In the previous code, you can see that exec switch_root has been called just like it 

was described on the man page of switch_root. The defined variable values of NEWROOT 

and INIT are as follows:

NEWROOT = "/sysroot"

INIT   = 'init' or  'sbin/init'

Just for your information, these days the init file is a symlink to systemd.

# ls -l sbin/init

lrwxrwxrwx. 1 root root 22 Dec 21 12:19 sbin/init -> ../lib/systemd/systemd

To successfully switch_root the virtual filesystems, they have to be mounted first. 

This will be achieved through dracut-049/modules.d/99base/init.sh. These are the 

steps that will be followed:

 1. Mount the proc filesystem.

 2. Mount the sys filesystem.

 3. Mount the /dev directory with devtmpfs.
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 4. Create the stdin, stdout, stderr, pts, and shm device files 

manually.

 5. Make the /run mount point with tmpfs in it. (The /run mount 

point is not available on init-based systems.)

#vim dracut-049/modules.d/99base/init.sh

 11 NEWROOT="/sysroot"

 12 [ -d $NEWROOT ] || mkdir -p -m 0755 $NEWROOT

 13

 14 OLDPATH=$PATH

 15 PATH=/usr/sbin:/usr/bin:/sbin:/bin

 16 export PATH

 17

 18 # mount some important things

 19 [ ! -d /proc/self ] && \

 20     mount -t proc -o nosuid,noexec,nodev proc /proc >/dev/null

 21

 22 if [ "$?" != "0" ]; then

 23      echo "Cannot mount proc on /proc! Compile the kernel with  

CONFIG_PROC_FS!"

 24     exit 1

 25 fi

 26

 27 [ ! -d /sys/kernel ] && \

 28     mount -t sysfs -o nosuid,noexec,nodev sysfs /sys >/dev/null

 29

 30 if [ "$?" != "0" ]; then

 31      echo "Cannot mount sysfs on /sys! Compile the kernel with  

CONFIG_SYSFS!"

 32     exit 1

 33 fi

 34

 35 RD_DEBUG=""

 36 . /lib/dracut-lib.sh

 37
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 38 setdebug

 39

 40 if ! ismounted /dev; then

 41      mount -t devtmpfs -o mode=0755,noexec,nosuid,strictatime devtmpfs  

/dev >/dev/null

 42 fi

 43

 44 if ! ismounted /dev; then

 45      echo "Cannot mount devtmpfs on /dev! Compile the kernel with 

CONFIG_DEVTMPFS!"

 46     exit 1

 47 fi

 48

 49 # prepare the /dev directory

 50 [ ! -h /dev/fd ] && ln -s /proc/self/fd /dev/fd >/dev/null 2>&1

 51 [ ! -h /dev/stdin ] && ln -s /proc/self/fd/0 /dev/stdin >/dev/null 2>&1

 52 [ ! -h /dev/stdout ] && ln -s /proc/self/fd/1 /dev/stdout >/dev/null 2>&1

 53 [ ! -h /dev/stderr ] && ln -s /proc/self/fd/2 /dev/stderr >/dev/null 2>&1

 54

 55 if ! ismounted /dev/pts; then

 56     mkdir -m 0755 /dev/pts

 57      mount -t devpts -o gid=5,mode=620,noexec,nosuid devpts /dev/pts >/

dev/null

 58 fi

 59

 60 if ! ismounted /dev/shm; then

 61     mkdir -m 0755 /dev/shm

 62      mount -t tmpfs -o mode=1777,noexec,nosuid,nodev,strictatime tmpfs  

/dev/shm >/dev/null

 63 fi

 64

 65 if ! ismounted /run; then

 66     mkdir -m 0755 /newrun

 67     if ! str_starts "$(readlink -f /bin/sh)" "/run/"; then
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 68          mount -t tmpfs -o mode=0755,noexec,nosuid,nodev,strictatime 

tmpfs /newrun >/dev/null

 69     else

 70         #  the initramfs binaries are located in /run, so don't mount it 

with noexec

 71          mount -t tmpfs -o mode=0755,nosuid,nodev,strictatime tmpfs /

newrun >/dev/null

 72     fi

 73     cp -a /run/* /newrun >/dev/null 2>&1

 74     mount --move /newrun /run

 75     rm -fr -- /newrun

 76 fi

 Switching to a New Root Filesystem on a  
systemd-Based System
The steps are almost similar to what we discussed for an init-based system. The only 

difference for systemd is a binary made from C code. So, obviously, switching the  

root will take place in systemd’s C source code, as shown here:

src/shared/switch-root.c:

First, consider the following:

new_root = sysroot

old_root = /

This will move the virtual filesystems that are already populated in initramfs’ root 

filesystem; then the path_equal function checks whether the new_root path is available.

if (path_equal(new_root, "/"))

      return 0;

Later it calls a pivot_root syscall (init uses switch_root) and changes the root 

from / (the initramfs root filesystem) to sysroot (the user’s root filesystem).

pivot_root(new_root, resolved_old_root_after) >= 0)
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Before we go further, we need to understand what pivot_root is and what it does.

# man pivot_root

NAME

       pivot_root - change the root filesystem

SYNOPSIS

       pivot_root new_root put_old

DESCRIPTION

        pivot_root moves the root file system of the current process to 

the directory put_old and makes new_root the new root file system.  

Since pivot_root(8) simply calls pivot_root(2), we refer to the man 

page of the latter for further details:

Note that, depending on the implementation of pivot_root, root and cwd of 
the caller may or may not change. The following is a sequence for invoking 
pivot_root that works in either case, assuming that pivot_root and chroot 
are in the current PATH:

cd new_root

pivot_root . put_old

exec chroot . command

Note that chroot must be available under the old root and under the new 
root, because pivot_root may or may not have implicitly changed the root 
directory of the shell.

Note that exec chroot changes the running executable, which is necessary if 
the old root directory should be unmounted afterwards. Also note that 
standard input, output, and error may still point to a device on the old root 
file system, keeping it busy. They can easily be changed when invoking 
chroot (see below; note the absence of leading slashes to make it work 
whether pivot_root has changed the shell’s root or not).

pivot_root changes the root filesystem (the initramfs root filesystem) of the 

current process (systemd) to the new root filesystem (sysroot), and it also changes the 

running executable (systemd from initramfs) to a new one (systemd from the user’s root 

filesystem).
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After pivot_root, it detaches the old root device of initramfs (src/shared/switch- 

root.c).

# vim src/shared/switch-root.c

96         /*  We first try a pivot_root() so that we can umount the old 

root dir. In many cases (i.e. where rootfs is /),

 97          *  that's not possible however, and hence we simply overmount 

root */

 98         if (pivot_root(new_root, resolved_old_root_after) >= 0) {

 99

100                 /*  Immediately get rid of the old root, if detach_

oldroot is set.

101                  *  Since we are running off it we need to do this 

lazily. */

102                 if (unmount_old_root) {

103                         r =  umount_recursive(old_root_after,  

MNT_DETACH);

104                         if (r < 0)

105                                  log_warning_errno(r, "Failed to unmount 

old root directory tree, ignoring: %m");

106                 }

107

108         } else if (mount(new_root, "/", NULL, MS_MOVE, NULL) < 0)

109                  return log_error_errno(errno, "Failed to move %s  

to /: %m", new_root);

110

After a successful pivot_root, this is the current state:

• sysroot has become root (/).

• The current working directory has become root (/).

• chroot will be executed so that bash changes its root directory from 

the old root (initramfs) to the new (user’s) root filesystem. chroot will 

be discussed in the next chapter.

Finally, delete the old_root device (rm -rf).
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110

111         if (chroot(".") < 0)

112                 return log_error_errno(errno, "Failed to change root: %m");

113

114         if (chdir("/") < 0)

115                  return log_error_errno(errno, "Failed to change 

directory: %m");

116

117         if (old_root_fd >= 0) {

118                 struct stat rb;

119

120                 if (fstat(old_root_fd, &rb) < 0)

121                          log_warning_errno(errno, "Failed to stat old 

root directory, leaving: %m");

122                 else

123                          (void) rm_rf_children(TAKE_FD(old_root_fd), 0, 

&rb); /* takes possession of the dir fd, even 

on failure */

124         }

For a better understanding, I highly recommend reading the entire src/shared/

switch-root.c source code shown here:

  1 /* SPDX-License-Identifier: LGPL-2.1+ */

  2

  3 #include <errno.h>

  4 #include <fcntl.h>

  5 #include <limits.h>

  6 #include <stdbool.h>

  7 #include <sys/mount.h>

  8 #include <sys/stat.h>

  9 #include <unistd.h>

 10

 11 #include "base-filesystem.h"

 12 #include "fd-util.h"

 13 #include "fs-util.h"
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 14 #include "log.h"

 15 #include "missing_syscall.h"

 16 #include "mkdir.h"

 17 #include "mount-util.h"

 18 #include "mountpoint-util.h"

 19 #include "path-util.h"

 20 #include "rm-rf.h"

 21 #include "stdio-util.h"

 22 #include "string-util.h"

 23 #include "strv.h"

 24 #include "switch-root.h"

 25 #include "user-util.h"

 26 #include "util.h"

 27

 28 int switch_root(const char *new_root,

 29                  const char *old_root_after, /* path below the new root, 

where to place the old root after the transition */

 30                 bool unmount_old_root,

 31                 unsigned long mount_flags) {  /* MS_MOVE or MS_BIND */

 32

 33         _cleanup_free_ char *resolved_old_root_after = NULL;

 34         _cleanup_close_ int old_root_fd = -1;

 35         bool old_root_remove;

 36         const char *i;

 37         int r;

 38

 39         assert(new_root);

 40         assert(old_root_after);

 41

 42         if (path_equal(new_root, "/"))

 43                 return 0;

 44

 45         /* Check if we shall remove the contents of the old root */

 46         old_root_remove = in_initrd();

 47         if (old_root_remove) {
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 48                  old_root_fd = open("/", O_RDONLY|O_NONBLOCK| 

O_CLOEXEC|O_NOCTTY|O_DIRECTORY);

 49                 if (old_root_fd < 0)

 50                          return log_error_errno(errno, "Failed to open 

root directory: %m");

 51         }

 52

 53         /*  Determine where we shall place the old root after the 

transition */

 54         r =  chase_symlinks(old_root_after, new_root, CHASE_PREFIX_

ROOT|CHASE_NONEXISTENT, &resolved_old_root_after, NULL);

 55         if (r < 0)

 56                  return log_error_errno(r, "Failed to resolve %s/%s: 

%m", new_root, old_root_after);

 57         if (r == 0) /* Doesn't exist yet. Let's create it */

 58                 (void) mkdir_p_label(resolved_old_root_after, 0755);

 59

 60         /*  Work-around for kernel design: the kernel refuses MS_MOVE if 

any file systems are mounted MS_SHARED. Hence

 61          * remount them MS_PRIVATE here as a work-around.

 62          *

 63          * https://bugzilla.redhat.com/show_bug.cgi?id=847418 */

 64         if (mount(NULL, "/", NULL, MS_REC|MS_PRIVATE, NULL) < 0)

 65                  return log_error_errno(errno, "Failed to set \"/\" 

mount propagation to private: %m");

 66

 67         FOREACH_STRING(i, "/sys", "/dev", "/run", "/proc") {

 68                 _cleanup_free_ char *chased = NULL;

 69

 70                 r =  chase_symlinks(i, new_root, CHASE_PREFIX_

ROOT|CHASE_NONEXISTENT, &chased, NULL);

 71                 if (r < 0)

 72                          return log_error_errno(r, "Failed to resolve 

%s/%s: %m", new_root, i);

 73                 if (r > 0) {
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 74                         /*  Already exists. Let's see if it is a mount 

point already. */

 75                         r = path_is_mount_point(chased, NULL, 0);

 76                         if (r < 0)

 77                                  return log_error_errno(r, "Failed to 

determine whether %s is a mount  

point: %m", chased);

 78                          if (r > 0) /* If it is already mounted, then do 

nothing */

 79                                 continue;

 80                 } else

 81                          /* Doesn't exist yet? */

 82                         (void) mkdir_p_label(chased, 0755);

 83

 84                 if (mount(i, chased, NULL, mount_flags, NULL) < 0)

 85                          return log_error_errno(errno, "Failed to  

mount %s to %s: %m", i, chased);

 86         }

 87

 88         /*  Do not fail if base_filesystem_create() fails. Not all 

switch roots are like base_filesystem_create() wants

 89          *  them to look like. They might even boot, if they are RO and 

don't have the FS layout. Just ignore the error

 90          * and switch_root() nevertheless. */

 91          (void) base_filesystem_create(new_root, UID_INVALID,  

GID_INVALID);

 92

 93         if (chdir(new_root) < 0)

 94                  return log_error_errno(errno, "Failed to change 

directory to %s: %m", new_root);

 95

 96         /*  We first try a pivot_root() so that we can umount the old 

root dir. In many cases (i.e. where rootfs is /),

 97          *  that's not possible however, and hence we simply overmount 

root */
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 98         if (pivot_root(new_root, resolved_old_root_after) >= 0) {

 99

100                 /*  Immediately get rid of the old root, if detach_

oldroot is set.

101                  *  Since we are running off it we need to do this 

lazily. */

102                 if (unmount_old_root) {

103                         r = umount_recursive(old_root_after, MNT_DETACH);

104                         if (r < 0)

105                                  log_warning_errno(r, "Failed to unmount 

old root directory tree, ignoring: %m");

106                 }

107

108         } else if (mount(new_root, "/", NULL, MS_MOVE, NULL) < 0)

109                  return log_error_errno(errno, "Failed to move %s to  

/: %m", new_root);

110

111         if (chroot(".") < 0)

112                  return log_error_errno(errno, "Failed to change root: %m");

113

114         if (chdir("/") < 0)

115                  return log_error_errno(errno, "Failed to change 

directory: %m");

116

117         if (old_root_fd >= 0) {

118                 struct stat rb;

119

120                 if (fstat(old_root_fd, &rb) < 0)

121                          log_warning_errno(errno, "Failed to stat old 

root directory, leaving: %m");

122                 else

123                          (void) rm_rf_children(TAKE_FD(old_root_fd),  

0, &rb); /* takes possession of the dir fd, 

even on failure */

124         }

Chapter 9  systemd (part II)



434

125

126         return 0;

127 }

Here we have successfully switched to the user’s root filesystem and left the initramfs 

environment. Now systemd from the user’s root filesystem with PID 1 will start running 

and take care of the rest of the booting procedure, which is as follows:

 – systemd will start the user space services such as httpd, mysql, 

postfix, network services, etc.

 – Ultimately, the goal will be to reach default.target. As we discussed 

earlier, before switch_root, the target called default.target of 

systemd will be initrd.target, and after switch_root, it will be 

either multi-user.target or graphical.target.

But what happens to the existing systemd process, which started from initramfs (the 

root filesystem)? Is it getting killed after switch_root or pivot_root? Is the new systemd 

process starting from the user’s root filesystem?

The answer is simple.

 1) systemd of initramfs creates a pipe.

 2) systemd forks.

 3) The original PID 1 chroots into /systemd and executes /sysroot/

usr/lib/systemd/systemd.

 4) The forked systemd serializes its state over the pipe to PID 1  

and exits.

 5) PID 1 deserializes the data from the pipe and continues with the 

fresh configuration in / (formerly /sysroot).

I hope you have enjoyed the journey of systemd inside initramfs. As we mentioned 

earlier, the rest of the systemd booting sequence, which will take place outside of 

initramfs, will be more or less similar to what we have discussed so far.

How GUI is started is beyond the scope of this book. In our next chapter, we will 

discuss the live ISO images and about the rescue mode.
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CHAPTER 10

Rescue Mode and  
Live Images
In this final chapter, we’ll cover rescue mode and live images. During our rescue mode 

discussion, we’ll cover the rescue initramfs, as well as some “can’t boot” issues. The 

live images discussion covers Squashfs, rootfs.img, and the booting sequence of live 

images.

 Rescue Mode
There are two ways to boot in rescue mode.

• Through the built-in GRUB menuentry. Refer to Figure 10-1.

Figure 10-1. The rescue mode entry from GRUB

• Through a live ISO image. Refer to Figure 10-2.

https://doi.org/10.1007/978-1-4842-5890-3_10#ESM
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As the name suggests, this mode is designed to rescue the systems that are stuck in 

“can’t boot” issues. Imagine a situation where the system is not able to mount the root 

filesystem and you are getting this never-ending generic message:

‘dracut-initqueue: warning dracut-initqueue timeout - starting timeout 

scripts’.

And say you have only one kernel installed, as shown here: 

<snip>

.

.

[  OK  ] Started Show Plymouth Boot Screen.

[  OK  ] Started Forward Password R...s to Plymouth Directory Watch.

[  OK  ] Reached target Paths.

[  OK  ] Reached target Basic System.

[  145.832487] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

[  146.541525] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

[  147.130873] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

[  147.703069] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

Figure 10-2. The rescue mode entry from a live image
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[  148.267123] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

[  148.852865] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

[  149.430171] dracut-initqueue[437]: Warning: dracut-initqueue timeout - 

starting timeout scripts

.

.

</snip>

Since this system has only one kernel (which can’t boot), how would you fix the 

“can’t boot” issue without an environment? Rescue mode was created for this sole 

purpose. Let’s first choose the default rescue mode, which comes pre-installed with 

Linux and can be chosen from the GRUB menu. Please see Figure 10-3.

The rescue mode will boot normally, and as you can see in Figure 10-4, if everything 

is good, it will present the user with its root filesystem.

Figure 10-3. The GRUB screen
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But a question comes to mind: when the normal kernel is not able to boot, then how 

come the same system is able to boot in rescue mode?

This is because when you install Fedora or any Linux distribution, the installer of 

Linux, called Anaconda, installs two kernels inside /boot.

# ls -lh /boot/

total 164M

-rw-r--r--. 1 root root 209K Oct 22 01:03 config-5.3.7-301.fc31.x86_64

drwx------. 4 root root 4.0K Oct 24 04:44 efi

-rw-r--r--. 1 root root 181K Aug  2  2019 elf-memtest86+-5.01

drwxr-xr-x. 2 root root 4.0K Oct 24 04:42 extlinux

drwx------. 5 root root 4.0K Mar 28 13:37 grub2

-rw-------. 1 root root  80M Dec  9 10:18  initramfs-0-rescue- 2058a9f13f9e48

9dba29c477a8ae2493.img

-rw-------. 1 root root  32M Dec  9 10:19 initramfs-5.3.7-301.fc31.x86_64.img

drwxr-xr-x. 3 root root 4.0K Dec  9 10:18 loader

drwx------. 2 root root  16K Dec  9 10:12 lost+found

-rw-r--r--. 1 root root 179K Aug  2  2019 memtest86+-5.01

-rw-------. 1 root root  30M Jan  6 09:37 new.img

-rw-------. 1 root root 4.3M Oct 22 01:03 System.map-5.3.7-301.fc31.x86_64

Figure 10-4. The root filesystem mounted under rescue mode
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-rwxr-xr-x. 1 root root 8.9M Dec  9 10:18  vmlinuz-0-rescue- 2058a9f13f9e489d

ba29c477a8ae2493

-rwxr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

As you can see, vmlinuz-5.3.7-301.fc31.x86_64 is a normal kernel, whereas 

vmlinuz-0-rescue-19a08a3e86c24b459999fbac68e42c05 is the rescue kernel, which is a 

separate kernel with its own initramfs file, called initramfs-0-rescue- 19a08a3e86c24b

459999fbac68e42c05.img.

Let’s say you installed a new package (.rpm or .deb) provided by nvidia, which 

has new graphics drivers in it. Since the graphics drivers have to be added in initramfs, 

the nvidia package rebuilt the original kernel initramfs (initramfs-5.3.7-301.fc31.

x86_64.img). So, the original kernel has the newly added graphics driver, but the rescue 

initramfs does not have that driver added. When the user tries to boot, the system fails 

to boot with the original kernel (vmlinuz-5.3.7-301.fc31.x86_64) since the installed 

graphics driver is not compatible with the attached graphics card, but at the same time 

the system will successfully boot with the rescue mode because the noncompatible 

drivers are not present in the rescue initramfs. The rescue mode kernel will have the 

same command-line parameters as the normal kernel has, and therefore the installed 

rescue kernel knows the name of the user’s root filesystem.

Figure 10-5 shows the normal kernel’s command-line parameters.

Figure 10-5. The normal kernel’s command-line parameters

Figure 10-6 shows the rescue kernel’s command-line parameters.

Figure 10-6. The rescue kernel’s command-line parameters
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 Rescue Mode initramfs
The rescue mode initramfs (initramfs-0-rescue- 2058a9f13f9e489dba29c

477a8ae2493.img) is much bigger in size than the original kernel’s initramfs 

(initramfs-5.3.7-301.fc31.x86_64.img).

# ls -lh /boot/

total 164M

-rw-r--r--. 1 root root 209K Oct 22 01:03 config-5.3.7-301.fc31.x86_64

drwx------. 4 root root 4.0K Oct 24 04:44 efi

-rw-r--r--. 1 root root 181K Aug  2  2019 elf-memtest86+-5.01

drwxr-xr-x. 2 root root 4.0K Oct 24 04:42 extlinux

drwx------. 5 root root 4.0K Mar 28 13:37 grub2

-rw-------. 1 root root  80M Dec  9 10:18  initramfs-0-rescue- 2058a9f13f9e48

9dba29c477a8ae2493.img

-rw-------. 1 root root  32M Dec  9 10:19 initramfs-5.3.7-301.fc31.x86_64.img

drwxr-xr-x. 3 root root 4.0K Dec  9 10:18 loader

drwx------. 2 root root  16K Dec  9 10:12 lost+found

-rw-r--r--. 1 root root 179K Aug  2  2019 memtest86+-5.01

-rw-------. 1 root root  30M Jan  6 09:37 new.img

-rw-------. 1 root root 4.3M Oct 22 01:03 System.map-5.3.7-301.fc31.x86_64

-rwxr-xr-x. 1 root root 8.9M Dec  9 10:18 vmlinuz-0-rescue- 2058a9f13f9e489d

ba29c477a8ae2493

-rwxr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

Why is this? It’s because the rescue initramfs is not host-specific the way a normal 

kernel’s initramfs is. The rescue initramfs is a generic initramfs that is prepared by 

considering all the possible devices on which a user can create a root filesystem. Let’s 

compare both the initramfs systems.

# tree

.

├── normal_kernel
│   └── initramfs-5.3.7-301.fc31.x86_64.img
└── rescue_kernel
    └── initramfs-0-rescue-2058a9f13f9e489dba29c477a8ae2493.img

2 directories, 2 files
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We will extract them in their respective directories.

#/usr/lib/dracut/skipcpio

     initramfs-5.3.7-301.fc31.x86_64.img | gunzip -c | cpio -idv

#/usr/lib/dracut/skipcpio

      initramfs-0-rescue-2058a9f13f9e489dba29c477a8ae2493.img | gunzip -c | 

cpio -idv

We will make the list of files from the extracted initramfs.

# tree normal_kernel/ > normal.txt

# tree rescue_kernel/ > rescue.txt

The following are the differences among both the initramfs systems. The rescue 

initramfs system has almost 2,189 extra files compared to the normal initramfs. Also, 

almost 719 extra modules have been added in the rescue initramfs.

# diff -yt rescue.txt normal.txt  | grep '<' | wc -l

     2186

# diff -yt rescue.txt normal.txt  | grep '<' | grep -i '.ko'  | wc -l

     719

<skip>

.

.

│   │   ├── lspci                                               <
│   │   ├── mdadm                                               <
│   │   ├── mdmon                                               <
│   │   ├── mdraid-cleanup                                      <
│   │   ├── mdraid_start                                        <
│   │   ├── mount.cifs                                          <
│   │   ├── mount.nfs                                           <
│   │   ├── mount.nfs4 -> mount.nfs                             <
│   │   ├── mpathpersist                                        <
│   │   ├── multipath                                           <
│   │   ├── multipathd                                          <
│   │   ├── nfsroot                                             <
│   │   ├── partx                                               <
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│   │   ├── pdata_tools                                         <
│   │   ├── ping -> ../bin/ping                                 <
│   │   ├── ping6 -> ../bin/ping                                <
│   │   ├── rpcbind -> ../bin/rpcbind                           <
│   │   ├── rpc.idmapd                                          <
│   │   ├── rpcinfo -> ../bin/rpcinfo                           <
│   │   ├── rpc.statd                                           <
│   │   ├── setpci                                              <
│   │   ├── showmount                                           <
│   │   ├── thin_check -> pdata_tools                           <
│   │   ├── thin_dump -> pdata_tools                            <
│   │   ├── thin_repair -> pdata_tools                          <
│   │   ├── thin_restore -> pdata_tools                         <
│   │   ├── xfs_db                                              <
│   │   ├── xfs_metadump                                        <
│   │   └── xfs_repair                                          <
    ├── lib                                                     <
    │   ├── iscsi                                               <
    │   ├── lldpad                                              <
    │   ├── nfs                                                 <
    │   │   ├── rpc_pipefs                                      <
    │   │   └── statd                                           <
    │   │       └── sm                                          <
</skip>

The rescue initramfs will have almost all the modules and supported files for the 

device on which the user can make a root filesystem, whereas the normal initramfs will 

be host-specific. It will have only those modules and supported files of the device on 

which the user has made the root filesystem. If you want to make a rescue initramfs on 

your own, then you can install a dracut-config-generic package on Fedora-based 

systems. The package provides only one file, and it has the configuration to turn off the 

host- specific initramfs generation.

# rpm -ql dracut-config-generic

     /usr/lib/dracut/dracut.conf.d/02-generic-image.conf
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# cat /usr/lib/dracut/dracut.conf.d/02-generic-image.conf

     hostonly="no"

As you can see, the file will restrict dracut from creating a host-specific initramfs.

 “Can’t Boot” Issue 9 (chroot)
Issue: Both the normal and rescue kernels are failing to boot. Figure 10-7 shows the 

normal kernel panic messages.

The thrown kernel panic messages are complaining that the kernel is not able to 

mount the root filesystem. We saw earlier that whenever the kernel is not able to mount 

the user’s root filesystem, it throws the dracut-initqueue timeout messages.

'dracut-initqueue: warning dracut-initqueue timeout - starting timeout 

scripts'

However, this time, the panic messages are different. So, it looks like the issue is not 

related to the user’s root filesystem. One more clue is that it mentions the VFS filesystem; 

VFS stands for “virtual file system,” so this indicates that the panic messages are not 

able to mount the root filesystem from initramfs. Based on these clues, I guess we have 

isolated the issue, and we should concentrate on initramfs of both the kernels.

Figure 10-7. The kernel panic messages
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As you can see in Figure 10-8, the rescue mode kernel panic messages are also similar.

Resolution: Here are the steps to resolve the issue:

 1) Since the installed rescue kernel is also panicking, we need to use 

the live image of Fedora or of any Linux distribution to boot. As 

shown in Figure 10-9 and Figure 10-10, we are using a live image 

of Fedora.

Figure 10-8. The rescue mode kernel panic messages

Figure 10-9. The live image welcome screen
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 2) The system has booted in rescue mode. The live image booting 

sequence will be discussed in the “Live Images” section of this 

chapter. Let’s become a sudo user first.

$ sudo su

We trust you have received the usual lecture from your local 

system administrator. It usually boils down to these three things:

#1) Respect the privacy of others.

#2) Think before you type.

#3) With great power comes great responsibility.

[root@localhost-live liveuser] #

 3) The root directory that we are seeing here is from a live image. 

Since the live image kernel does not know the name of the user’s 

root filesystem, it cannot mount it like a rescue kernel.

[root@localhost-live liveuser]# ls /

     bin boot dev etc home lib lib64 lost+found media mnt

     opt proc root run sbin srv sys tmp usr var

 4) Let’s find out what is wrong with the initramfs of the normal 

and rescue kernels. To do that, we need to mount the user’s root 

filesystem first.

Figure 10-10. Booting with a live image
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# vgscan -v
  Found volume group "fedora_localhost-live" using metadata type lvm2

# lvscan -v
  ACTIVE      '/dev/fedora_localhost-live/swap' [2.20 GiB] inherit
  ACTIVE      '/dev/fedora_localhost-live/root' [18.79 GiB] 
inherit

# pvscan -v
  PV /dev/sda2  VG fedora_localhost-live  lvm2 [<21.00 GiB / 0  free]
  Total: 1 [<21.00 GiB] / in use: 1 [<21.00 GiB] / in no VG: 0 [0 ]

As you can see, this system has a user’s root filesystem based on LVM. The physical 
volume is on the sda device. Next we will mount the user’s root filesystem on a 
temporary directory.

# mkdir temp_root
# mount /dev/fedora_localhost-live/root temp_root/
# ls temp_root/
     bin   dev  home  lib64  media  opt   root  sbin  sys
     tmp usr boot  etc  lib   lost+found  mnt    proc  run
     srv   @System.solv user_root_fs.txt  var

 5) Let’s check the initramfs file’s status.

# ls temp_root/boot/ -l
     total 0

The boot directory of the user’s root filesystem is empty. That is because on 
this system, the boot is a separate partition.

# mount /dev/sda1 temp_root/boot/
#ls temp_root/boot/
Config-5.3.7-301.fc31.x86_64  efi elf-memtest86+-5.01
extlinux grub2 loader lost+found
Memtest86+-5.01 System.map-5.3.7-301.fc31.x86_64
vmlinuz-0-rescue-19a08a3e86c24b459999fbac68e42c05
vmlinuz-5.3.7-301.fc31.x86_64

Surprisingly, as you can see, there are no initramfs files available on the user’s root 

filesystem, and this is the reason why both the kernels were panicking.
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So, the issue has been identified, and we need to regenerate the initramfs. To make 

the new initramfs, we need to use the dracut command, but there are some problems.

• Whichever binary or command we execute, that binary will be from 

the live image root filesystem. For example, the dracut command 

will run from /usr/bin/dracut, whereas the user’s root filesystem’s 

binary is in temp_root/usr/bin/dracut.

• To run any binary, it needs supporting libraries like libc.so, which 

will again be used from the root filesystem of a live image. This 

means the entire environment that we are using now is from the live 

image, and it can create serious issues. For example, we can install 

any package, and it will be installed in the live image root filesystem, 

not in the user’s root filesystem.

In short, we need to change our current root (/) from the live image root filesystem 

to the user’s root filesystem (temp_root). chroot is the command that we need to use for 

this.

 6) The name itself suggests it will change the root of bash from the 

current root to the new root. chroot will be successful only if the 

virtual filesystems are already mounted on the new root.

root@localhost-live liveuser]# ls /

     bin  boot  dev  etc  home  lib  lib64  lost+found  media  mnt

     opt  proc  root  run  sbin  srv  sys  tmp  usr  var

Our current root is the live image root filesystem. Before chroot, we will mount the 

proc, dev, devpts, sys, and run virtual filesystems.

# mount -v --bind /dev/ temp_root/dev

mount: /dev bound on /home/liveuser/temp_root/dev.

# mount -vt devpts devpts temp_root/dev/pts -o gid=5,mode=620

mount: devpts mounted on /home/liveuser/temp_root/dev/pts.

# mount -vt proc proc temp_root/proc

mount: proc mounted on /home/liveuser/temp_root/proc.

# mount -vt sysfs sysfs temp_root/sys

mount: sysfs mounted on /home/liveuser/temp_root/sys.
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# mount -vt tmpfs tmpfs temp_root/run

mount: tmpfs mounted on /home/liveuser/temp_root/run.

 7) We are all set to chroot into a user’s root filesystem.

# chroot temp_root/

# ls

     bin   dev  home  lib64       

media  opt   root  sbin  sys   tmp

     usr boot  etc  lib   lost+found  mnt    proc  run   srv

     @System.solv  user_root_fs.txt  var

So, temp_root became the root filesystem of bash now. If you exit from this shell, 

bash will change its root directory from the user’s root filesystem to a live image root 

filesystem. So, as long as we are in the same shell instance, our root directory is temp_

root. Now, no matter what command or binary we execute, it will run inside the user’s 

root filesystem environment. Hence, it is completely safe to execute the processes in this 

environment now.

 8) To fix this “can’t boot” issue, we need to regenerate initramfs.

root@localhost-live /]# ls /lib/modules

5.3.7-301.fc31.x86_64

[root@localhost-live /]# cd /boot/

[root@localhost-live boot]# rpm -qa | grep -i 'kernel-5' 

kernel-5.3.7-301.fc31.x86_64

[root@localhost-live boot]# dracut initramfs-5.3.7-301.fc31.

x86_64.img  5.3.7-301.fc31.x86_64

 9) If you want to regenerate the rescue kernel initramfs, then you 

need to install a dracut-config-generic package.

 10) After rebooting, the system is able to boot, and the “can’t boot” 

issue has been fixed.
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 Rescue Mode of Enterprise Linux Distributions
In some of the Linux distributions such as CentOS, the rescue image approach is a bit 

different. The enterprise edition of Linux will try to find the user’s root filesystem on 

its own. Let’s see this in action. Figure 10-11 and Figure 10-12 show the rescue mode 

selection procedure of CentOS.

Figure 10-11. The CentOS welcome screen

Figure 10-12. The rescue mode selection
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If we choose option 1, continue, then the rescue mode will search the disk and will 

find the root filesystem on its own. Once the user’s root filesystem has been identified, it 

will mount it under the /mnt/sysimage directory. Please refer to Figure 10-14.

Figure 10-13. The informative message

It will boot, and as you can see in Figure 10-13, it will display some messages on  

the screen.
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Figure 10-14. The root filesystem is mounted under /mnt/sysimage

Figure 10-15. chroot

As you can see, it has mounted the user’s root filesystem in /mnt/sysimage; we just 

need to chroot into it. But the beauty is we don’t need to mount the virtual filesystems 

beforehand. This is because, as you can see in Figure 10-15, the chroot binary used in 

CentOS has been customized, and it will mount the virtual filesystems on its own.
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If we had chosen option 2, Read-Only Mount, then the rescue scripts would have 

mounted the user’s root filesystem in read-only mode but in /mnt/sysimage. If we had 

chosen the third option of Skip, the rescue system would not have attempted to find and 

mount the user’s root filesystem on its own; it would have simply provided us  

with a shell.

But how does it manage to find out the root filesystem when the rescue kernel of the 

CentOS ISO does not have a user’s root filesystem name with it?

There is no trick here that Anaconda can do to find out the user’s root filesystem 

name. Anaconda will mount each and every disk connected to the system and check 

whether /etc/fstab is present on it or not. If /etc/fstab is found, then it will fetch 

the user’s root filesystem name from it. If your system has a huge number of disks 

attached, then there is a high chance that Anaconda might take a long time to mount the 

user’s root filesystem. It is better to manually mount the user’s root filesystem in such 

a scenario. The source code to find the user’s root filesystem is present in Anaconda’s 

source tarball, as shown here:

#vim pyanaconda/storage/root.py

 91 def _find_existing_installations(devicetree):

 92     """ Find existing GNU/Linux installations on devices from the  

device tree.

 93

 94     :param devicetree: a device tree to find existing installations in

 95     :return: roots of all found installations

 96     """

 97     if not os.path.exists(conf.target.physical_root):

 98         blivet_util.makedirs(conf.target.physical_root)

 99

100     sysroot = conf.target.physical_root

101     roots = []

102     direct_devices = (dev for dev in devicetree.devices if dev.direct)

103     for device in direct_devices:

104          if not device.format.linux_native or not device.format.

mountable or \

105            not device.controllable or not device.format.exists:

106             continue
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107

108         try:

109             device.setup()

110         except Exception:  # pylint: disable=broad-except

111              log_exception_info(log.warning, "setup of %s failed", 

[device.name])

112             continue

113

114         options = device.format.options + ",ro"

115         try:

116             device.format.mount(options=options, mountpoint=sysroot)

117         except Exception:  # pylint: disable=broad-except

118              log_exception_info(log.warning, "mount of %s as %s failed", 

[device.name, device.format.type])

119             blivet_util.umount(mountpoint=sysroot)

120             continue

121

122         if not os.access(sysroot + "/etc/fstab", os.R_OK):

123             blivet_util.umount(mountpoint=sysroot)

124             device.teardown()

125             continue

126

127         try:

128              (architecture, product, version) = get_release_

string(chroot=sysroot)

129         except ValueError:

130             name = _("Linux on %s") % device.name

131         else:

132              # I'd like to make this finer grained, but it'd be very 

difficult

133             # to translate.

134             if not product or not version or not architecture:

135                 name = _("Unknown Linux")

136             elif "linux" in product.lower():

137                 name = _("%(product)s %(version)s for %(arch)s") % \
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138                      {"product": product, "version": version, "arch": 

architecture}

139             else:

140                 name = _("%(product)s Linux %(version)s for %(arch)s") % \

141                      {"product": product, "version": version, "arch": 

architecture}

142

143         (mounts, swaps) = _parse_fstab(devicetree, chroot=sysroot)

144         blivet_util.umount(mountpoint=sysroot)

145         if not mounts and not swaps:

146             # empty /etc/fstab. weird, but I've seen it happen.

147             continue

148         roots.append(Root(mounts=mounts, swaps=swaps, name=name))

149

 Live Images
Live images are one of the best features of Linux systems. This book wouldn’t be 

complete if we just stuck to the normal hard disk booting part. Let’s see how a live image 

of Linux boots. First let’s mount the ISO image and see what it holds.

# mkdir live_image

# mount /dev/cdrom live_image/

mount: /home/yogesh/live_image: WARNING: device write-protected, mounted 

read-only.

# tree live_image/

live_image/

├── EFI
│   └── BOOT
│       ├── BOOT.conf
│       ├── BOOTIA32.EFI
│       ├── BOOTX64.EFI
│       ├── fonts
│       │   └── unicode.pf2
│       ├── grub.cfg
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│       ├── grubia32.efi
│       ├── grubx64.efi
│       ├── mmia32.efi
│       └── mmx64.efi
├── images
│   ├── efiboot.img
│   ├── macboot.img
│   └── pxeboot
│       ├── initrd.img
│       └── vmlinuz
├── isolinux
│   ├── boot.cat
│   ├── boot.msg
│   ├── grub.conf
│   ├── initrd.img
│   ├── isolinux.bin
│   ├── isolinux.cfg
│   ├── ldlinux.c32
│   ├── libcom32.c32
│   ├── libutil.c32
│   ├── memtest
│   ├── splash.png
│   ├── vesamenu.c32
│   └── vmlinuz
└── LiveOS
    └── squashfs.img

The live image is divided into four directories: EFI, images, isolinux, and LiveOS.

• EFI:

We have already discussed this directory when talking about the 

bootloader. The UEFI firmware will jump into this directory and 

will run the grubx64.efi file. The grubx64.efi file will read the 

grub.cfg file and will pull the initrd.img and vmlinuz files from 

the isolinux directory.

Chapter 10  resCue Mode and Live iMages 



456

• images:

This will be used mainly if we are booting through PXE. A network 

boot is out of the scope of this book.

• isolinux:
If UEFI is booting the BIOS way, then it will read the grub.conf 

file from here. This directory is mainly for storing the initrd and 

vmlinuz files. In other words, this directory is /boot for a normal 

root filesystem.

• liveOS:

This is where the magic happens. This directory has a file named 

squashfs.img. Once you mount that, you will find rootfs.img  

in it.

# mkdir live_image_extract_1

# mount live_image/LiveOS/squashfs.img  live_image_extract_1/

# ls live_image_extract_1/

     LiveOS

# ls live_image_extract_1/LiveOS/

     rootfs.img

# mkdir live_image_extract_2

# mount live_image_extract_1/LiveOS/rootfs.img live_image_extract_2/

# ls live_image_extract_2/

      bin  boot  dev  etc  home  lib  lib64  lost+found  media   

mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var

 SquashFS
Squashfs is a small, compressed, read-only filesystem. This filesystem is generally used 

for embedded systems where every byte of storage is precious. Squashfs gives us more 

flexibility and performance over tarball archives. Squashfs stores a live Fedora’s root 

filesystem (rootfs.img) in it, and it will be mounted as read-only.
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# mount | grep -i rootfs

/home/yogesh/live_image_extract_1/LiveOS/rootfs.img on /home/yogesh/ 

live_image_extract_2 type ext4 (ro,relatime,seclabel)

You can use the mksquashfs command provided by squashfs-tool to make the 

Squashfs image/archive.

 rootfs.img
rootfs.img is an ext4 filesystem with a typical root filesystem in it. Some distros create 

a guest user or a user named live for a live image, but in Fedora it’s the root user who 

does everything.

# file live_image_extract_1/LiveOS/rootfs.img

live_image_extract_1/LiveOS/rootfs.img: Linux rev 1.0 ext4 filesystem data, 

UUID=849bdfdc-c8a9-4fed-a727-de52e24d981f, volume name "Anaconda" (extents) 

(64bit) (large files) (huge files)

 Booting Sequence of a Live Image
Here is the sequence:

 1) The firmware will call the bootloader (grubx64.efi). It will read 

the grub.cfg file and copy the vmlinuz and initrd files from the 

isolinux directory.

 2) The kernel will extract itself at a specific location and will extract 

initramfs at any available location.

 3) systemd, started from initramfs, will extract the rootfs.img file to 

the device-mapper target device at /dev/mapper/live-rw, mount 

it on the root (/) filesystem, and switch_root into it.

 4) Once the root filesystem is available, you can consider it as a 

normal operating that is installed in a CD, DVD, or .iso file.

Also, it is obvious that the live-image initramfs will be much bigger in size compared 

to the host-specific initramfs.
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