o YANOHNO 2 O SEO # z“
w&é&&mﬁ 00 M. MRRITRY

%m%% L%@@%

4@§§h@®a§%sa ¥
 omeromgngy. SR ezt
AQ&R%m&%QWJ«d?&M..&gOmJO 38 - 1

(el -1 ok iy

731.5&, m..

oo B 0 57316 6 oA >
B:
IRRIR O w0 1 BRTD
EETN R

Learn the Boot Process of Linux,

Windows, and Unix

Yogesh Babar

Hands-on Booting

Learn the Boot Process of Linux,
Windows, and Unix

Yogesh Babar

Apress’

Hands-on Booting

Yogesh Babar
Pune, India

ISBN-13 (pbk): 978-1-4842-5889-7 ISBN-13 (electronic): 978-1-4842-5890-3
https://doi.org/10.1007/978-1-4842-5890-3

Copyright © 2020 by Yogesh Babar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5889-7. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5890-3

This book is dedicated to Red Hat. Its amazing work culture
has proved that sharing is caring.

Table of Contents

About the AULNOFcoiiiiiieenriiieenrinss s an s nnn e s annn e e s nnnnnes xi
About the Technical REVIEWETcucuisseesrrsssssnnsssssssnnnssssssnnsssssssssssssssssnsssssssnnssssssnns Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
L0 T1 L T] | Xvii
Chapter 1: Introduction.........cccccuriiisennnmnssssnmmssssssssessssssssesssssssesssssssesssssssessssnnnnsnsss 1
Y2 et e A e AR e AR e Re e e A AeRe e e e A e Reae e e eeeAeRe e e e e 1
L OO 2
The FOCUS Of THIS BOOKccccreerieereererrerssesesserssessesesesssessessesesssessesaesssssssssssesssessesaessssssessesasnnes 3
01T T 170 o] OO 3

I OO RP 3
Chapter 2: Multiboot..........cccceemmiinssnnnmmnssssnnmmmssssnmmmssssssesssssssessssssesssnsssessssnnnnsnss 5
List of Operating SYSIEMSccvvvivirirrrirre s s ae e sa s s sae e e e s nne s 5
Installing the Operating SYSTEMScccviiiiin e 7
Primary/Logical Partitions ... st se s s ns 7

o1 110 11 o S 7

First 0S INStallation: XPccccoriiinicnirssirnse s s 10

BOOT SECION.....cccicc e 12
Unified Extensible Firmware Interface (UEFI)ccoovrvrvenncncrsee et 96
Chapter 3: GRUB BOOOAdEceusummssunmssansssnsssansssassssnsssansssansssnsssansssansssnsssanssans 133
GRUB 2 IMplementation ...t snas 134
GRUB 2 0n BIOS-Based SYSTEMS.........ccccorererernererererreeressesese s sessesessese e sessesessssessenes 134
GRUB 2 0n UEFI-BaSed SYSIEIMcccveerieereririrree s reres e sesseessessessesseessessessssssesasssensens 148

Boot Loader SPecification (BLS)........ccovrrererrererrenerensesesesessesessssesessesesss e sessssessssessesesessesenns 149

TABLE OF CONTENTS

Common BOOLIOAAET ISSUEScccvurmrmiiiiririnssese s 153
“Can’t Boot” Issue 1 (BOOHOAUEN).......ccueerrererrerrererrenersereseesessessessessssessessessssessessesassssessenses 153
“Can’t Boot” IsSue 2 (BOOHIOAUEN).......cceeerrererrerererrenersersesaesessessessessssessessesssssssessesasssssessesaes 162
“Can’t Boot” Issue 3 (Bootloader + KErnel).......ccovvrrrriererensensesessssensesessesessessessessssessenses 164

Secure Boot Feature 0f UEF ..o e sesssssneas 167

100 OS MUHDOOT PrOJECTcovicirircresir it r e s s pe s n e 169

A Dummy Small BOOLIOAUETcccoveeeereerieererenere e 176

GRUB 2 @t @ LOW IBVEI.....coveerereirieerreseresesesseses e s e s sessssssss s s sesssnnnns 177

Chapter 4: Kernel.....cccuuseeememmmmmmmmmsssssssssnsmssnnnnnsnness 183

Loading the Kernel in MEMOIY......ccccovvviriereninienresessesessessessesessessessessssessessesssssssessessesssssssesnens 183

After Loading the Kernel in MEMOIY ..o s s s s s e ssnesaesse s 185
Protected MOE ... s 190
LONG MOGE......ooeeiece et e s s e e s a e e n e e ae e 191
What EXIracts VIMIINUZ? ..o s sssssesnns 193
EXIFACT_KEIMEL ... 195

INSIAE the KEIMEL......ce e e 200

Chapter 5: initramfs.........ccciusmmmsmmmmmmsnmmemmnmmasmsmmssmasmsasasasam——s 207

WHY INIFAMTS? ... re e ne s e nne e 207

INFFASTIPUCTUTE ...t e ne s 209
101 T 210
I DTS e ————————————————— 210
(00 1T 210

initramfs IMplementation...........cccivinn i —————————— 215

DN e —————————————————— 215
NOrMal BiNANIES.......cveiiririisii e 215
SPECIAI BINANIES.....ceeeirererriserinesrne s ne s nr e n s 217
NEetwOrking BiNANIESc.cueerrierrrereriserinsessse s e e sss e ss e s s nsanes 217
HOOKS....ceeeeireee e e s r e p e e nn e e e e nnas 218
SYSTEMA BINAIES.....cuecerrierrrererese e sr s s e nnnne e nr s 218

TABLE OF CONTENTS

3] 1 OSSPSR 218
Filesystem and Storage-Related BiNAriesccvcevvrerrerererensersesessssessessessssessessessesessessesaes 218
NEetWOrking BiNAIIESccceverieriernerierier e rse s se s s se e s r e s s sa e s s sae s 219
SPECIAI BINAIIES.....crereerteierererresessere s s sesse s ssese s ssessessese s e saesaesas e saesaesaese s e saesassessensesaens 219
BASIC BINAIIES.....coviviriueeiririsiseese s s p e 220

] 221

Virtual FileSYSIBIMS......cccciiiccirr e e e e s 223
01 223
PPOC ANG SYS ..cuviiriiiirere st s s r e s s b e s b e e e R b e e R e b e e e e Re e e e e R e 224

1] (7 | RSSO 224

1D, [DB4.....eeeeeeerereeeseee e E e 225

INItrAMTS BOOLING......cccrreerieerinesine s e 226
How Does the Kernel Extract initramfs from Memory?cooccvvvvnrcnnnnsnnsesnsesessesensnns 230
How Does the Kernel Mount initramfs as ROOt?..........ccccovrevnnnnnnsnnnesnnese s sesenns 234

Chapter 6: dracut.........ccccmeemmmmmmmmmmsssssnr s —————————————— 2D

[T T = (=T O 235
Making an initramfs IMAQEccoriinirir e 239
Dracut and MOGUIES........c..cccrererree e 244
How Does dracut Select MOdUIES? ..o s 244
Customizing iNItramIS.........ccuciiiinr e ———— 254
dracut Module or Kernel MOdUIB? ... e 261
“Can’t Boot” Issue 4 (initramfs)........cccucrrenninininnns s s s snes 262
“Can’t Boot” Issue 5 (iNIitramfs)........cccucriennnnnnnnnsn e s 266
Kernel Command-Ling OPLiONS ... e s s ssssessesaens 266
(00 S 267
3] S 267
(O 269
TRGD AN QUITE .o s 269
T 1 1 G 27
dracut Command-Ling OPLioNS ... s 271
L0 B LT (oI (0 T 1T (0 271

TABLE OF CONTENTS

FA.ROSTONIY=0 .. ————— 271
FAFSTAD = 0. ——————————— 272

[0 S]] 0 £ LSS 272
rd.driver.blacklist, rd.driver.pre, and rd.driVer.poSt........cccvvvrvrierinrnrensese e sese e 276

(0 0 T 0 oSO 280
rd.memdebug= [0-4]....ccorrrrrrrrrr e —————————— 280
Ivm, raid, and Multipath-Related dracut Command-Line Parameters............ccecveervrerseriennen 281
rd.break and rd.Shell ... ————— 283
Chapter 7: systemd (Part I)ccccurcemmmmnsnnnnmmssssnnmmsssssssssssssssnsssssssnsssssssssssssssnnnnss 285
£33 (1T] S 286
How Does systemd Reduce Boot TIME?.........ccceerrrerernenereneresse e 290
SYSEEMA-ANAIYZE ... e 294
“Can’t Boot” ISSUE 6 (SYSTEMA)ccoerrrecrerereree e 298
Flow of systemd Inside initramfs..........ccocrrrenrenrnsrrsse e 304
SYStemMd-jOUrNALSOCKEL ..o 307
Aracut-CMAIINE.SEIVICE.ccoeeererererrese e s e ne e 309
Aracut-Pre-UEV.SEIVICEccueiirrierere st s st e s s r s nne s 326
Aracut-pre-trigger.SEIVICEcvrererererresereseseseseses e s e s ses e s e e ses e sessssessesesessesenns 331
SYSteMA-UAEV-trJUELSEIVICEceeereecrrrcreree s s 334
0o N {1 S 338

Ly T 1] R 353
dracut-iNItQUEUEB.SEIVICEcccuerrecircirc e e s s nne 353
PIYMOULN. ... e n e e re e 363
SYSINILIANGEL ... —————————— 373
DASICAAIGEL.....c.ece e ——————————— 391
dracut-pre=MOUNT.SEIVICEccivvrcireresr e s s r s e nne 391
Chapter 8: Debugging Shellscccimnnnnmmmmmmssnnnmmsssssnmmssssnmmssssnmsssssnman—m 393
THE SHEIL ... 393
How Does systemd Drop Us to an Emergency Shell?ovvvrveniennnnsenienesessesesesessesenaens 395
resCUe.Service and eMErgenCY.SEIVICEccuuuurrrrrerseeressersesseessessessesssessesessssssesaessesssesaesaensenns 406

viil

TABLE OF CONTENTS

Chapter 9: systemd (Part ll)ccocccmrrnssnnmnmnssssnnnmmmssssnmmssssssnssssssssessssssssessssnnnnss 413
3] (010 01410 3 R 413
INIEFAAAIGET ... ——————————— 417
(o] T (01174 010 G) 421

Switching to the New Root Filesystem on an init-Based System...........ccocoevrvenrescrnicnen 421
Switching to a New Root Filesystem on a systemd-Based Systemcccovevrvicrencenene 426

Chapter 10: Rescue Mode and Live IMages......ccccrumssmmmmmmssssnnnssssssnnnsssssssssssssssnnnss 435

RESCUE IMOUE ..o s se e s e e e s ne e e e e nnna 435
Rescue Mode iNItramfS...........covererinnnsennessese s s sss s ssssssesenss 440
“Can’t Boot” ISSUE 9 (CRFO0L).......ccccvrererrnrerrseserese s sesese s sr s sn s s e e s sennes 443
Rescue Mode of Enterprise Linux Distributions.........c.cccvvvninininnsninennsssesse s sessenns 449

TN 111 V0T OO 454
SQUASHFS ... e e e e e e e nae s 456
L0101 T OSSPSR 457
Booting Sequence 0f @ LiVe IMAJEccccvvererinernse s ss s ssnnes 457

P L 1 |

ix

About the Author

Yogesh Babar has been with Red Hat for the past ten years.
Currently he is a principal technical support engineer in the
Linux kernel domain. He specializes in the troubleshooting
and performance tuning of Linux enterprise servers. The
Linux boot process is his forte, and he regularly speaks at
open source conferences and forums. He also conducts
workshops on operating systems for engineering students.

About the Technical Reviewer

Marc Sandusky is an embedded software engineer with

28 years’ experience in low-level programming. He has
worked in industries such as PC BIOS, medical devices,

and defense. He is experienced in embedded OSs (Linux,
Windows Embedded Compact), RTOS (uCOS/II, FreeRTOS),
and bare-metal systems. He currently lives in southern
California with his wife and three children. You can reach
him atmarc_sandusky@outlook.com or www.linkedin.com/
in/marc-sandusky-67852b2/.

xiii

http://www.linkedin.com/in/marc-sandusky-67852b2/
http://www.linkedin.com/in/marc-sandusky-67852b2/

Acknowledgments

I would like to thank Harald Hoyer for writing dracut and Lennart Poettering for writing
systemd. Harald, you had tremendous patience when answering my back-to-back
questions.

Thanks also to: Sheetal, Rama and Shoumik, who encouraged me to document the
booting procedure; Parth Goswami, who helped me write a brief article about it; Rangan
and Raghvendra Pai for asking for regular updates on it; and Gokhale Sir for igniting a
spark in me and also for showing me what I am really good at.

To the entire Apress team, especially acquisitions editor Celestine John, project
coordinator Aditee Mirashi, and development editor Matthew Moodie who put
tremendous efforts into developing this book. Special thanks to Marc Sandusky for
technically reviewing the book. With it being my first book, I made a lot of mistakes, but
the entire Apress team stood behind me throughout the process.

Last but not the least, thanks to my beautiful, strong, and amazing wife. Darshana,
what patience you have shown! Sometimes I wonder how you managed to stay with

someone like me who is always chasing some project.

Introduction

I'was in the first week at a new job, and I saw one of our customers asking for assistance
on a “can’t boot” issue. I was new and inexperienced. I wanted to assist, but I could
not. The customer was panicked since it brought production down. Every minute was
counting for them, because thousands of users were not able to access that system
since it was unbootable. Everyone was panicking. Eventually some of our most senior
engineers resolved the issue. It took them almost five hours to put the system back

in production. Everything turned out well in the end, but that tense situation created
something in me, which was a desire to learn. I decided to learn the entire booting
sequence.

When I started looking for books and articles on the Internet, I was disappointed.
There are thousands of books and countless articles available on operating systems, but I
could not find a single book that thoroughly explained the entire booting sequence.

There is a saying in the open source world: if there is something you are looking for
and it is not available, then build it. So, I decided to learn the booting sequence on my
own. It took me years to understand the entire booting sequence. The best thing I did on
my journey was to keep notes and also start teaching what I learned to others. After all,
sharing is caring. My booting sessions became popular among engineering students and
system administrators. Some of them really pushed me hard to write a proper book on
the topic. I contacted Apress, and they liked the idea, so today you have the first book of
booting in your hands.

This book has a unique approach. First I discuss why someone should learn about
booting. In other words, why is it important? Next I explain how different bootloaders
work by installing almost 100+ operating systems on one machine. There is a dedicated
chapter on the Linux bootloader. In fact, there are dedicated chapters for every
component involved in the booting sequence. Next, I explain the kernel’s role in the
booting sequence. The kernel plays a vital role along with systemd. Since systemd is the
first process started by kernel, eventually it takes care of the entire booting sequence.
There are several chapters that cover systemd, so this book is a good resource for those
who want to read about systemd. I have also covered the most common “can’t boot”
scenarios of Linux. This makes the book a great resource for system admins as well. Tt

xvii

INTRODUCTION

does not mean this book is for Linux experts only. If you know basics of Linux, then this
book is for you. The book is a great bridge between the beginners and experts of Linux. I
hope you will like the effort.

There is an old saying: no book is perfect. If you find some bugs in this book or
you simply want to get in touch with me, please feel free to write to me at
yogeshbabar420@gmail. com.

Thank you,

Yogesh Babar

xviii

CHAPTER 1

Introduction

Not everyone knows Fedora. One day, someone asked me a question:
Student: What is Fedora?
Me: Fedora is Linux.
Student: What is Linux?
Me: Linux is an operating system.
Student: What is an operating system?
Me: It runs computers.
Student: What is a computer?
Me: Computers help users.
Student: What is a user?
Me: A user is just like me.
Student: Who the hell are you?

Me: Well, my name is Yogesh Babar. I have worked at Red Hat for
the last ten years, and I love talking about how operating systems
boot.

Why?

Everyone knows that an operating system takes approximately 20 to 30 seconds to boot. So,
why did I write a 486-page book about a 30-second booting sequence? The answer is simple.

e There is no proper document/article/book available that explains the
complete booting sequence. You will find hundreds of good books on
operating systems but none on how a system boots.

© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_1

https://doi.org/10.1007/978-1-4842-5890-3_1#ESM

CHAPTER 1 INTRODUCTION

e You can resolve boot issues only if you know how the system boots.

o Ifyouare a sysadmin and attending an interview, the interviewers
will ask about how Linux boots.

o “Can’tboot” issues are always the highest severity as the entire
production system goes down because of them. If the system is slow,
the production is still up and running; though it is affected, at least it
is still running. A server that has 10,000 users but can’t boot means
the entire production system is down. That’s the importance of
booting, and as I said, you cannot solve boot issues if you don’t know
how a system boots.

e It's fun to understand the booting procedure.

o While learning all of this, you will gain immense happiness.

What?

So, what exactly is booting? In technical terms, the process of copying the kernel from
the hard disk to memory and then executing it is called booting. But that definition does
not really inspire us to learn about booting.

I'will put it in my own words: A mother is a superset, and her newborn baby is a
subset of her. In the same way, an operating system is a superset, and booting is a subset
of it. A subset belongs to its superset.

Now consider this statement: “A child gives birth to a mother”

Technically it is wrong, but imagine that until a woman has a baby, she is a woman;
the moment she has a baby, a woman becomes a mother. So, a child gives birth to a
mother.

The same happens in computers. Technically booting is part of an operating system,
and the operating system should give birth to booting, but it’s the other way around. It’s
booting that gives birth to the operating system. Hence, we can say that booting is the
procedure that gives birth to an operating system.

CHAPTER 1 INTRODUCTION

The Focus of This Book

The book explains the booting procedure of an x86 architecture-based desktop or server
system, and it covers the booting procedure of various operating systems. The primary
focus is on the in-depth analysis of the Linux booting procedure, with a secondary

focus on other popular operating systems such as Windows and UNIX. As you know,
there are a huge number of Linux distributions. Some are for desktop users, some are
for enterprise customers, some are solely for gaming purposes, and some are available
for users who prefer to follow a do-it-yourself approach. It is almost impossible to cover
each and every distribution’s booting sequence. Hence, I have decided to choose the
Linux distribution that is the first choice for enterprise customers, and that is Red Hat
Enterprise Linux (RHEL).

RHEL is based on Fedora Linux. Fedora is fast moving (a six-month release cycle),
whereas RHEL is a slow-moving distribution (a two- to three-year release cycle). This
means Fedora adopts the latest developments as soon as the QE (Quality Engineering)
team gives them the green light. Since Fedora is a testing bed of popular enterprise Linux
distributions, whatever is available in Fedora eventually becomes part of RHEL. systemd
is the best example of this. That’s why I have chosen Fedora Linux to explain the Linux
booting sequence.

Power Supply

It all starts when you hit the power button. When you press the power button, the power
supply goes to the motherboard. The motherboard sends a signal to your power supply
(SMPS/PSU), which returns a good power supply, and as a result, the motherboard tries
to start the CPU.

CPU

When the x86 architecture-based CPU starts, it clears the old data from all the registers
and starts with this:

IP oxfffo
CS selector 0xf000
CS base oxffff0000

CHAPTER 1 INTRODUCTION

oxffff0000 + Oxfff0 = Oxfffffffo. This is the memory location at which the
CPU expects to find the first instruction to execute. At this location, it contains a jump
instruction that points to a BIOS entry point. In other words, this is how the BIOS starts
or the CPU lands at the BIOS/firmware.

After this, the firmware and bootloader are the next stage of a booting procedure.
It’s the job of the firmware to launch the bootloader of an operating system. In the next
chapter, I will discuss what happens in the firmware and how it executes the bootloader.

CHAPTER 2

Multiboot

Understanding the bootloader and firmware is complex. It is not necessarily difficult, but
the topic can be complicated. To make it easy to digest for the readers of this book, I will
use three test systems.

System Number System Name Purpose

1 BIOS To demonstrate the BIOS

2 UEFI To demonstrate UEFI

3 Jarvis For a 100+ OS multiboot project

Since the bootloaders and firmware work closely together, I will start by installing
a specific list of operating systems on each system and while doing that explain the
relationship between the bootloader and the firmware. This approach will make complex
topics easier to understand, more interesting, and a lot of fun. In short, I will explain the
bootloader and firmware (BIOS/UEFI) together though they are different concepts.

Note The BIOS-based multiboot part of this chapter was inspired by Mr Vijay
Gokhale Sir’s workshop on the subject. | thank him for the inspiration.

List of Operating Systems

We will be installing the following operating systems on our first BIOS system, which
means on a system that has the BIOS firmware installed:

e Sun OpenSolaris 2009
o FedoraLinux 15

o PC-BSD9.0

© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_2

https://doi.org/10.1007/978-1-4842-5890-3_2#ESM

CHAPTER2 MULTIBOOT

e« Windows 7

¢ Red Hat Enterprise Linux 6.0
o Windows Server 2003 (2k3)

¢ Windows XP

I know these operating systems are quite old, but I have chosen them for a reason.

See, the BIOS itself is an outdated firmware, so if you want to understand the BIOS,
you have to use old operating systems only. Remember, you can understand UEFI (the
current firmware) only if you understand the BIOS. It’s like you will understand Java
better if you know C well. Also, using these old operating systems will give me a chance
to touch upon the Windows and Unix bootloaders as well. In addition, it will provide me
with the opportunity to explain the GRUB legacy bootloader of Linux.

The idea is to multiboot our BIOS system with all the operating systems mentioned
earlier. To do that, we need to follow every operating system’s rules and regulations.

0S Rules

Unix Unix operating systems (OpenSolaris and BSD) have to be installed on a
primary partition only.

Linux Linux does not have any installation rules. It can be installed on any primary
or logical partition.

Windows The Windows operating system can be installed on any partition (primary or
logical), but the predecessor of the Windows family has to be present on the
first primary. That means you can install Windows 7 on a logical partition, but
its predecessor, which is XP or win2k3, has to be present on the first primary
partition. Also, you cannot break the Windows operating system sequence
of installation. For example, one cannot install Windows 7 first and then the
older win2k3 or XP. It has to be in this sequence: 98, then 2000, and then XP.

Take some time and try to prepare your OS installation sequence. Verify your booting
sequence now.
The final sequence of the operating system is as shown here:

1) Windows XP

2) Sun OpenSolaris 2008

CHAPTER2 MULTIBOOT

3) PC-BSD9.0

4) Windows Server 2003

5) Windows 7

6) Red Hat Enterprise Linux 6

7) Fedora 15

Installing the Operating Systems

Now we'll talk about installing the operating systems.

Primary/Logical Partitions

With the BIOS, we can create only four partitions. But of course you probably have seen
more partitions used than that. So, let me change my statement a bit. On a BIOS-based
system, you can create only four primary partitions on your disk. If you want more than
that, then you need to make the fourth primary partition a secondary (also called an
extended) partition. The extended partition will work as a container, and inside this
container you can create as many logical partitions as you want. Why are these partitions
called logical partitions, because they are not visible to BIOS? Also, why can the BIOS
make only four primary partitions? These questions will be answered when we discuss
the master boot record.

Partitioning

Let’s partition the BIOS system’s hard disk first. We will use the GParted live CD for this.
GParted is a tool from the GNU community. It’s a free, open source, Debian Linux-based
live ISO image. Figure 2-1 shows our BIOS system’s partition layout.

CHAPTER2 MULTIBOOT

eCE /dev/sda - GParted ..
GParted Edit View Device Partition Help

] @ = © Q@ 9 o [E) /devisda (75.00 GiB) ~
New Delete ! Resize/Move ' Copy Paste Undo Apply

Partition File System Size Used Unused Flags

unallocated unallocated 75.00 GiB

[0 operations pending
< Workspace 1 » 14 Nov, Thu 06:33:36 « »

Figure 2-1. The partition layout of the BIOS in GParted

The GParted operation to partition a hard disk is straightforward. We will create the
partition layout shown in Figure 2-2 on the 75 GB of disk space.

CHAPTER2 MULTIBOOT

Figure 2-2. GParted-made partition layout

CE /dev/sda - GParted . .
GParted Edit View Device Partition Help
O 8 =i © a S [E) idevisda (75.00 GiB) ~
New Delete Resize/Move ! Copy Paste Undo Apply
/dev/sdal Jdev/sda2 (dev/sda3 /dev/sdas Jdev/sdaé [dev/sda7 /dev/sdag
9.77 GiB 9.77 GiB 9.77 GiB 9.77 GIB 9.77 GB 9.77 GiB 9.77 GiB
Partition |Fi|e System |Labe| Size | Used | Unused Flags
/devisdal [l fat32 XP2009 9.77 GiB 9.78 MiB 9.76 GiB
[devisdaz [l ext3 Solaris 2009 9.77 Gig 307.23 MiB 9.47 GiB
/dev/sda3 . ext3 PC-BSD 9 9.77 GiB 307.23 MiB 9.47 GiB
v [dev/sda4d extended 45.70 GiB
jdevsdas [ntfs windows 2003 9.77 GiB 50.75 MiB 9.72 GiB
/devisda6 | ntfs windows 7 9.77 GiB 50.75 MiB 9.72 GiB
/devisda7 [l ext3 RHEL 6 9.77 GiB 307.23 MiB 9.47 GiB
/dev/sda8 . ext3 Fedora 15 9.77 GiB 307.23 MiB 9.47 GiB
/devisdag [l linux-swap swap 6.63GiB 0.008B 6.63 GiB
operations pending 4
< Workspace 1 » 14 Nov. Thu 06:38:30 < »

For more information on how to use GParted to partition your hard drive, please
refer to the GParted documentation at https://gparted.org/articles.php.

In Figure 2-3, you can see the disk name, partition size, used filesystem, and

associated flags (if any).

xP Solaris PC-BSD g i
j Win2k3 Seven
Fat-32 Ext-3 Ext-3 : NTFS NTFS
: sdab sdaf
sda1l sda2 sda3 -

Logical partitions

RHEL-6 Fedora-15
Ext-3 Ext-3
sda7 sda-8

4th Extended primary partition sdad

Primary partitions

Figure 2-3. GParted-made filesystem layout

Let’s install our first operating system on our first primary partition.

https://gparted.org/articles.php

CHAPTER 2 MULTIBOOT

First 0S Installation: XP

In Figure 2-4, you can see a partition layout shown by the Windows XP installer.

Windows XP Professional Setup
g partitio and

the UP and R0 select an item in the list.
To et up Windows XP on the selected item, p 3 ENTER.
To create a partition in the unpartitioned space, pres

To delete the selected partition, press D.

76796 MB Disk @ at Id 1 on bus B on ate [MBR1]

18888

[Unkno
(windo
{(windo]
10888
y 10808
[Unknown] 6724

R=Insta)=De lete Partition F3=0uit

Figure 2-4. Partition layout shown by XP’s installer

We are installing XP on the first primary partition. In terms of Windows, itis a C:
drive, as shown in Figure 2-4. After finishing the installation and rebooting the system,
we get Windows XP on our screen (Figure 2-5).

10

CHAPTER2 MULTIBOOT

Figure 2-5. XP after successful installation

It’s time to understand how Windows XP has been booted, but before that, we need
to understand the boot sector. The boot sector is every HDD's first sector (512 bytes)
plus 31 KB of space; in other words, it’s the first 63 sectors on the boot medium (0 to 62).

Or, you can consider under the boot sector that some space (512 bytes + 31 KB) of
every partition will be reserved to store the bootloader-related information. This
space (again, 512 bytes + 31 KB) will not be shown by the OS to users. The actual data
storage in a partition starts after this reserved space. Refer to Figure 2-6 for a better
understanding of this.

R : 5 512 : U -
= = o B Can't -
s : T : Store
E H : + Data . Actual partition where user can store data
9 g Inthis *
: T 31 - Reser -
E . o KB - ved
D . [2 area
© st partition 2nd partition 3rd partition 4th partition
Below

‘Boot Sector’
Explained in
much detail

Figure 2-6. The disk layout on a BIOS-based system

11

CHAPTER2 MULTIBOOT

Boot Sector

There is one amazing saying in Sanskrit that goes like this: "t & faur: sger: gaf<1 g,
This means there is only one truth but various ways to reach it. As shown in Figure 2-7,
the boot sector is called by different names, but ultimately the concept remains the same.
People refer this structure with the following names:

e Master boot record (MBR)
e Bootrecord
¢ Boot sector

¢ Bootloader

——» 32256 Bytes / 512 Bytes + 31 Kilobytes

63 Sectors
f— » 512 Bytes / First Sector «—— 31 KB «—
62 sectors 1 sector = 512 Bytes
Boot Vendor NULL | MBR | Fdisk Bootloader ist 2nd
Strap signature signature partition partition
440 64 31 KiloBytes
bytes 4 bytes 2 bytes| bytes | 2 Bytes 31744 bytes

Figure 2-7. The boot sector

In this book, we'll call it the boot sector because the hard disk drive (HDD) is always
divided into sectors, and every sector is of either 512 bytes or 4 KB in size. Most HDDs
follow a 512-byte sector size.

On a BIOS-based system, every OS vendor (it does not matter if it is Windows, Unix, or
Linux) has to divide the bootloader into three parts. Part-1 of the bootloader will be kept
at the bootstrap, which is 440 bytes. Part-2 will be kept in the bootloader section, which is
31 KB in size, and the final part-3 will be kept inside the actual partition where a particular
OS has been installed. So, in simple terms, whenever an OS gets installed (in our case it’s
Windows XP), it divides its New Technology Loader (NTLDR) bootloader into three parts.

12

CHAPTER2 MULTIBOOT

Location Size Part Information

Bootstrap 440 bytes NTLDR part-1 The tiniest part
Bootloader 31 KB NTLDR part-2 Bigger compared to part-1
Inside an actual OS partition ~ No size limitation ~ NTLDR part-3 The biggest part

But why is the bootloader divided into three parts?

It is because of historical reasons. The BIOS has technical limitations in that it cannot

access more than 512 bytes or cannot read beyond the first sector. So, it is obvious that
when BIOS finishes its task, it jumps on the entire HDD’s first 512 bytes and whoever
is there simply runs that program. Fortunately, that program will be our bootstrap (440

bytes). Since the bootstrap is tiny in size, it does only one thing, which is to jump on a

bigger space, which is the part-2 bootloader. It is 31 KB in size. This 31 KB is again very tiny,

and it has to find an even bigger size. This bootloader will jump to part-3, which is inside a
partition. This part-3 file will be at the C: drive with the file name NTLDR. The part-3 file of

XP’s bootloader is visible in Figure 2-8.

File Edt ‘View Favorites Took Help

Qe - ©

Address | e C2\

& O Seach [T Folders [T+

System Tasks

L.aJ Documents and Settings

() Hide the contents of

L—J Program Fies
—

this drive P AUTOEXEC.BAT
ih Add or remove L-J WINDOWS .;‘:2; M5-DOS Batch File
programs 0¥E
&7 Search for files or :
Folders 1. boot,ini 4 CONFIG.SYS
fapd Configuration Settings Syshem file

File and Folder Tasks &

Iﬂ Rename this file
[y Move this File

(D) Copy this fils
Publish this file to the
° Web

() E-mad this file
I Delete this file

Other Places

i My Computer

(&) My Documents
[Shered Documents

Date Crested: 4] 14/2008 10:00 AM Size: 244 KB
14 start

w Cil

Figure 2-8. The part-3 file of XP’s bootloader

J My Computer
O

10:15PM

13

CHAPTER2 MULTIBOOT

As you can see, the file is much bigger in size (245 KB). This file will do the heavy
lifting of the bootloader’s actual job, which is copying the kernel of Windows XP called
winload.exe (this file knows where XP’s kernel is) from C: \windows in memory. Once
the kernel is copied into memory, the bootloader’s job is done, and it goes away.
Remember, 0S==kernel==0S. Once the kernel is in memory, it will take care of the rest of
the booting sequence. You can see XP’s boot sequence in Figure 2-9.

1
Boot Vendor NULL MBR Fdisk Bootloader 1st L. : 2nd
Strap signature signature partition partition

1
NTLDR —— i Third _
NTLER1 Part-2 Partes Jurmp
part-

~l

|

|

c:\windows\kernel -

440 64 31 KiloBytes

bytes 4 bytes 2 bytes| bytes | 2 Bytes 31744 bytes Actual OS installation
! A
fTTTsTT T fTsQump ~ -~~~ """ 7°7°7

Figure 2-9. The boot sequence of Windows XP

I know there are probably a lot of questions in your mind. But keep reading, and
all of your questions will be answered. Let’s go ahead and discuss the fields of the boot
sector that I have not explained yet. You can refer to Figure 2-10 for this.

——» 32256 Bytes / 512 Bytes + 31 Kilobytes

63 Sectors
& 512 Bytes / First Sector «—— 31 KB «—
62 sectors 1 sector = 512 Bytes
Boot Vendor NULL | MBR | Fdisk Bootloader ist 2nd
Strap signature signature partition partition
440 64 31 KiloBytes
bytes 4 bytes 2 bytes| bytes | 2 Bytes 31744 bytes

Figure 2-10. The boot sector

14

CHAPTER2 MULTIBOOT

The vendor signature field is for HDD vendors. The data that is mentioned here
tells us which vendor has manufactured this HDD, such as Seagate, Western Digital,
Samsung, etc. So, basically it holds the HDD manufacturer information.

NULL has only 2 bytes of space. The NULL means NULL. If this is not NULL, then
the BIOS will consider this HDD as faulty/corrupted at the time of the POST routine, and
booting will be halted. So, it has to be NULL. Whenever the OS abruptly reboots or when
the OS or HDD itself detects the bad sector or some sort of serious corruption, this field
will be marked as non-NULL.

The MBR field could be the most popular section of all of these fields. MBR stands for
“master boot record,” and it is 64 bytes in size. The MBR is further divided into four parts.
Each part is 16 bytes in size, and every part holds one partition’s information.

Size Parts Stores

16 bytes Part-1 First partition’s information
16 bytes Part-2 Second partition’s information
16 bytes Part-3 Third partition’s information
16 bytes Part-4 Fourth partition’s information

This means 64 bytes of the MBR can hold only four entries of the partition, and
this is the reason why you can make only four primary partitions on a BIOS-based
system.

The fdisk signature is also called the boot flag; some people simply call it *, or in
Windows style, it is also called an active/inactive flag. The fdisk is important in the case
of multibooting different operating systems, which we will not talk about now. For now, I
want you to remember these two rules:

o The logical partition cannot be active.

e The OS cannot boot from the logical partition.

15

CHAPTER2 MULTIBOOT

As of now, these two rules will not make any sense to you, but we will discuss them at
the right time. Figure 2-11 shows the complete booting sequence of Windows XP.

BIOS
POST

Back to BIOS

First Sector
Of HDD
Bootstrap
stage-1

Bootloader
Part-2
stage-1.5

stage-2
Part-3
Of bootloader

Kernel of
Windows
XP

Figure 2-11. The boot sequence of Windows XP

We will install and boot a new OS now, namely, OpenSolaris 2008.

16

CHAPTER2 MULTIBOOT

OpenSolaris 2008

Figure 2-12 shows the screen when booting with an OpenSolaris 2008 installation

medium.

GNU GRUB wversion B.95 (638K lower ~# 3143552K upper memory)

OpenSolaris 2868.85
OpenSolaris 208688.85 text console
Boot from Hard Disk

Use the * and 4 keys to select which entry is highlighted.
Press enter to boot the selected 0S, ‘e’ to edit the
commands before booting, or 'c’ for a command-line.

®0 pgpensoLaris

Figure 2-12. The welcome screen of the OpenSolaris 2008 installation medium

17

CHAPTER 2 MULTIBOOT

We need to install OpenSolaris on the second partition. You can see in Figure 2-13
that we have chosen the second primary partition for the installation.

o = I z
Browse and run installed applications 9 En| Wed Nov 13, 10:53PM ey’ O

| OpenSolaris 2008.05 Installer

o
© gpensoLaris
Disk
Welcome Where should OpenSolaris be installed? Recommended size: 7GB Minimum: 3.0GB

Disk
Time Zone | ‘
Locale | 75.0GB ATA

Users

s can be installed on the whole disk or on a partition on the disk.
i_) Use the whole disk
(=) Partition the disk
The following partitions were found on the disk.
There must be one Solaris partition. It will be the target for this installation
Partition Type Size (GB)

Ext Wind5 H

Solaris sl |08 [5] & waming: The gata in this partition wil be erases

Finish

Linux native | &
EXT-DOS gl as7

Available Space:) Type “=" into any partition size to adjust the avaltable disk space.

S Beset

Fouc || @telp

| [[O Opensolaris 2008.05 I... (G

Figure 2-13. Disk layout shown by the OpenSolaris 2008 installer

18

CHAPTER2 MULTIBOOT

But as you can see in Figure 2-14, the installation fails with some error messages.

2 Sad] v
irowse and run instalied applicationsiad) En Wed Nov 13, 1054 PM g [

OpenSolaris 2008.05 Installer

%% opensoLaris
Installation Failed
Welcome

L Preview 2 installation did not

Time Zone
Locale |6 ~ Installation Log

Users | <OM Mov 14 06:52:40> Timezone setting will be TZ=UTC
<OM Mov 14 06:52:40> Set timezone

Installafl] |<OM Nov 14 06:53:48> disk partition info changed

=<0M Mov 14 01:24:16> Timezone setting will be TZ =Asia/Calcutta

<0OM Mov 14 01:24:16> Set timezone

<OM Mov 14 01:24:38> Set user root in password and shadow file

<0OM Mov 14 01:24:38> list_ufs_db:: The entry ‘yogesh' was not found in the fetc/passwd table

<0M Mov 14 01:24:38> Set user yogesh in password and shadow file

<OM Nov 14 01:24:38> g table fetc/inet/AAASyaDED to jetcfinet/h

=0OM Mov 14 01:24:38= Disk was changed

<0OM Nov 14 01:24:38> Disk contains valid Solans partition

=<0M Mov 14 01:24:38> whole_disk = 0

<OM Mov 14 01:24:38> diskname set = cddl

<OM Nov 14 01:24:38> Set fdisk attrs

<TIDM_E Nov 14 01:24:38> fdisk: fdisk -n -F failed. Couldn't create fdisk partition table on disk c4dl
<TIMM_E Nov 14 01:24;38> Couldn’t create fdisk partition table on disk <cddl>

=0M Mov 14 01:24:38> Could not create fdisk target

<0M Mov 14 01:24:38> Tl process completed unsuccessfully

<OM Mov 14 01:24:38> ti_create_target exited with status = -1

<0OM Mov 14 01:24:38> Target instantiation failed exit_val=-1

Finish

it || @Hep

|1l 2 Opensolaris 2008.05 1... [} Installation Log] Emm

Figure 2-14. The installation fails with some error messages.

The error messages are related to the filesystem. So, we will prepare the filesystem
manually by using the fdisk utility; however, before that, you should know what hard disk
name has been assigned by OpenSolaris. The pfexec format command output (shown
in Figure 2-15) will provide us with the HDD name.

19

CHAPTER 2 MULTIBOOT

@ & Terminal
File Edit View Terminal Tabs Help

i -bash-3.2# pfexec format

Searching for disks...done

B AVAILABLE RISK SELECTIONS:

0. jc4dl =drive type unknown>

_ “~/pTiko,0/pci-1ide@7,1/ide@1/cmdk@l, 0
Specify disk (enter its number): ~C
-bash-3.2#

-bash-3.2# |}

Figure 2-15. The HDD name assigned by OpenSolaris

So, the assigned hard disk’s name is c4d1. We need to pass this device name to the
fdisk utility. See the complete command in Figure 2-16.

File Edit View Terminal Tabs Help

-bash-3.2# fdisk /dev/rdsk/c4d1po |

Figure 2-16. The fdisk command

The disk name indicates controller number 4, disk number 1, and partition number 0.
Through the fdisk utility, we first deleted the second partition (which was ext3/Linux native)
and created a new partition with a Solaris2 filesystem. The new partition becomes partition
number 4. Also, it automatically becomes the active partition (refer to Figure 2-17). We have
not yet talked about the “active or fdisk signature” part, but we will talk about it soon.

20

CHAPTER2 MULTIBOOT

2 @ Terminal =IS]%]
File Edit View Terminal Tabs Help

Total disk size is 9790 cylinders g
Cylinder size is 16065 (512 byte) blocks

Cylinders
Partition Status Type Start End Length %

Ext Win95 0 1274 1275 13
Linux native 2549 3823 1275 13
EXT-DOS 3824 9790 5967 61
Active Solaris2 1274 2447 1174 12

Bwe e

SELECT ONE OF THE FOLLOWING:

Create a partition

Spec1fy the active partition

Delete a partition

Change between Solaris and Solaris2 Partition IDs
Exit (update disk configuration and exit)

Cancel (exit without updating disk configuration)
Enter Selection: 5

O’\U\J‘-‘bWNI—l

Partition 4 is now the active partition.

4\

Figure 2-17. The changes made through the fdisk command

Returning to our installation, let’s restart the installation, and as you can see in
Figure 2-18, this time we have chosen the OpenSolaris filesystem-formatted partition to
install our OpenSolaris 2008.

21

CHAPTER 2 MULTIBOOT

6‘;%- Applications Places System @Q | [En| Wed Nov 13, 10:58 PM

=]

=] | OpenSolaris 2008.05 Installer
o

Q:%
© opensolaris
Disk
Welcome Where should OpenSolaris be installed? ded size: 7GB

Disk
Time Zone

S
Locale 75.0GB ATA

Usars

] ris can be on the whole disk or on a partition on the disk.
) Use the whole disk
(=) Partition the disk
The following partitions were found on the disk
There must be one Solaris partition. It will be the target for this installation.
Partition Type Size (GB)

Ext Win5 :J

Finish

Solaris _:J 9.0 Ej ! Warning: The data in this partition will be erased,
Linux native _:J)
EXT-DOS _:.l 15.7

Available Space: Type =" into any partition size to adjust the available disi space.

o Euep

&8 [[2 Opensolaris 200805 1... | [C

Figure 2-18. Installing OpenSolaris on the OpenSolaris filesystem partition

This time, the installation will not fail (refer to Figure 2-19), and OpenSolaris 2008
will be installed.

22

CHAPTER2 MULTIBOOT

'9'-% Applications Places System @Q I En Wec

o gpensolaris
Installing
Welcome

Disk

Time Zone
Locale
Users
Installation

Finish

*ODEHSOLBI'IS

Building cpio file lists

Figure 2-19. The installer will not fail

After the installation, we will reboot our BIOS system. What OS do you think will boot?

Windows XP?
OpenSolaris?
XP and OpenSolaris together?

None?

Take a while and think before continuing....

23

CHAPTER 2 MULTIBOOT

Figure 2-20 shows what we get on-screen after rebooting.

GNU GRUB wversion 8.95 (638K lower / 3143552K upper memory)

OpenSolaris 2888.85 snu_86_rc3 XB6
Hindouws

Use the * and 4 Keys to select which entry is highlighted.
Press enter to boot the selected 0S, ‘e’ to edit the
commands before booting, or 'c’ for a command-line.

[

®0 gpensoLaris

Figure 2-20. The welcome screen after reboot

So, the OS that is booting here is OpenSolaris, and it is giving us an option to boot XP
as well. Let’s shed some light on what happened in the background. OpenSolaris saw that
it was getting installed in its own partition (the second partition), but there is another OS
available in the first partition, which is Windows (or at least a “non-Unix OS”).

But how did OpenSolaris come to know there is another OS installed on the first
primary partition?

When OpenSolaris was installed in its own partition, it saw that the fdisk signature was
set on the first primary partition. (Again, the fdisk signature is also called the active flag or
simply the * flag.) As we saw earlier in our boot sector specification diagram (Figure 2-21),
every partition has 512 bytes + 31 KB of space reserved for booting purposes, and this space is
hidden from the user.

24

CHAPTER2 MULTIBOOT

~———» 32256 Bytes / 512 Bytes + 31 Kilobytes o
63 Sectors
L s 512 Bytes / First Sector <———+31 KB o—|
62 sectors 1 sector = 512 Bytes
Boot Vendor NULL MBR | Fdisk Bootloader st 2nd
Strap signature signature partition partition
448 64 31 KiloBytes
bytes 4 bytes 2 bytes| bytes | 2 Bytes 31744 bytes

Figure 2-21. The boot sector

In oth
the follow

1)
2)
3)
4)
5)

6)

er words, when we created a partition layout through GParted, the tool made
ing compartments for every partition:

Bootstrap
Vendor signature
NULL

MBR

Fdisk signature

Bootloader

But it filled data only in the vendor signature and MBR fields. The vendor signature
field will have data as per the vendor of the HDD, whereas in the case of the MBR field,
the data will be as follows:

The start and end of the first primary partition
The start and end of the second primary partition
The start and end of the third primary partition

The start and end of the fourth primary partition

25

CHAPTER2 MULTIBOOT

Basically, there will be four entries, and each entry will consume 16 bytes. Apart
from the vendor signature and MBR, the other fields will be empty. Also, please note
that GParted will prepare all the compartments (512 bytes + 31 KB) but will fill only the
vendor signature and MBR fields for the first primary partition.

Coming back to the fdisk signature field, when Windows XP was installed, it
established the following:

e Part-1 of NTLDR in the bootstrap
e Part-2 of NTLDR in the bootloader
e Part-3 of NTLDR inside the first primary partition

Then it set the fdisk signature in its own partition (2 bytes).
So, the disk layout will be something like shown in Figure 2-22.

* / Active / Boot flag field is set by XP of its own
partition. It means rest of the partitions has fdisk signature

| (2 bytes) field available but its empty or it is not set.

*

Logical partitions but no OS is installed yet.

But every partition has its own 512 bytes + 31 KB space
reserved and fields like bootstrap, vendor signature,
NULL, MBR, Bootloader etc has been created but they
are empty as of now.

2nd partition/ 3rd partition/
XP Solaris is not BSD is not
Installed yet Installed yet

Figure 2-22. The disk layout after XP’s installation

OpenSolaris found this disk layout. When the OpenSolaris installation was complete
and it wanted to install its bootloader (GRUB), it saw an asterisk (*) on the first primary
partition, and that is when it realized there is a Windows OS already installed. Now
GRUB (the OpenSolaris bootloader) has two options.

o Install part-1 (bootstrap) and part-2 (bootloader) of Grand Unified
Bootloader (GRUB) in the first primary partition, and install part-3 of
GRUB in its own partition (the second partition where OpenSolaris

has been installed).

e Orinstall part-1 (bootloader) in its own partition’s first 512 bytes,
part-2 in its own partition’s 31 KB, and part-3 also in its own partition;
then put * on its own second partition (refer to Figure 2-23).

26

CHAPTER2 MULTIBOOT

CE /dev/sda - GParted .
GParted Edit View Device Partition Help |
0D @ ‘ &1 [L d « [} devisda (75.00 GiB) ~

MNew Delete ' Resize/fMove ' Copy Paste Undo Apply
Jdevjsdal jdevfsdad Jdevjsda2 Jdevjsdas Jdevfsdas jdevisda7 Jdevfsdag
9.77 GiB 8.99 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB
Partition IFie System |Labe| Size Used Unused Flags :
Jdev/sdal . fataz 9.77 GiB 2.97 GiB 6.79 GiB lba |

jdev/sdad ext3 Solaris 2009 8.99 GiB

M unallocated 790.86 MiB

unallocated

Jdev/sda2 . ext3 PC-BSD 9 9.77 GiB 307.23 MiB 9.47 GiB

= jdev/sda3 extended 45.70 GiB -
/dev/sdaS I ntfs windows 2003 9.77 GiB 50.78 MiB 9.72 GiB
/dev/sdab I ntfs windows 7 9.77 GiB 50.78 MiB 9.72 GiB
[devjsda7 M ext3 RHEL 6 9.77 GiB 307.23 MiB 9.47 GiB
/dev/jsda8 . ext3 Fedora 15 9.77 GiB 307.23 MiB 9.47 GiB
/dev/sdag B linux-swap swap 6.63 GIB 0.00B 6.63 GiB

0 operations pending

< Workspace 1 = 14 Nov. Thu 07:17:06 = = [

Figure 2-23. The disk layout in GParted after OpenSolaris installation

Please note that the boot flag is back to the OpenSolaris partition. Also, GParted does
not understand the Solaris2 partition; hence, it shows ext3 as a filesystem name.

If OpenSolaris chooses option 1, then OpenSolaris has to clear Windows XP’s part-1
and part-2 of the bootloader. It also means only OpenSolaris will boot, and XP will never
be able to boot. Hence, OpenSolaris chooses option-2, giving equal opportunity to boot
Windows XP. OpenSolaris also makes a Windows XP entry in one of its own files (we will
talk about this file later in the chapter). Whenever OpenSolaris starts booting up, GRUB
will refer to that file, and it will find the Windows entry in it, which will be shown
on-screen. Figure 2-24 shows the OpenSolaris welcome screen.

27

CHAPTER 2 MULTIBOOT

GNU GRUB wversion 8.95 (638K lower / 3143552K upper memory)

OpenSolaris 2888.85 snu_86_rc3 XB6
Hindouws

Use the * and 4 Keys to select which entry is highlighted.
Press enter to boot the selected 0S, ‘e’ to edit the
commands before booting, or 'c’ for a command-line.

00
Qs ®
®0 gpensoLaris

Figure 2-24. The OpenSolaris welcome screen

So, the complete booting sequence of OpenSolaris is as follows:
1. Power on the system.
2. The CPU jumps to the BIOS.
3. The BIOS runs the POST routine.
4. We go back to the BIOS.

5. The BIOS is kind of dumb; it will check the boot priority set by
the user.

o WhenIsay boot priority,] means the device through which
system will boot.

e It could be CDROM, USB, HDD, PXE, etc.

6. The BIOS will jump to the entire HDD'’s first 512 bytes or on the
first sector of the boot device.

e The boot device could be anything, but as of now we are
considering an HDD.

28

CHAPTER2 MULTIBOOT

7. The BIOS will hand over control to whichever binary is present in
the bootstrap.

e Who do you think is there? The Windows bootloader (NTLDR) or
OpenSolaris (GRUB)? Think for a while and then continue.

o The boot sector stored in the first 512 bytes is NTLDR of
Windows XP.

¢ You must have noticed the 440 bytes of the bootstrap space is
very tiny, and no code can boot an OS from it. Hence, part-1
of NTLDR (bootstrap) just jumps to the bigger space, which is
part-2 (bootloader/31 KB/virtual boot record). Part-2 checks
the MBR (64 bytes) and finds four entries in it. This means the
disk has four primary partitions. But there is an issue here: out
of four primary partitions, which partition has the OS? You
might say, of course, it’s the first and second partitions, but
how will the bootloader know where the OS is? And which one
should it boot? This is a genuine question, and to solve this
problem, the fdisk signature field has been created. Whichever
partition has these 2 bytes filled or set, that partition has an
0OS. So, when Windows XP or OpenSolaris was getting installed,
it’s a duty of that OS to fill the 2 bytes of the fdisk signature field
or set the * on its own partition so that the bootloader will know
which partition has the OS. In our case, the * is on its second
partition (OpenSolaris kept it while it was getting installed).
This is how part-2 of NTLDR will know that it has to jump to the
second partition.

8. Part-2 of NTLDR jumps to the second partition, which means
it simply jumps to part-1 of the GRUB bootloader in the second
partition (bootstrap).

9. Part-1 of GRUB (bootstrap/440 bytes) is again tiny, so it will again
jump to a bigger space, which is part-2 of GRUB (bootloader).

29

CHAPTER2 MULTIBOOT

10. Part-2 knows where part-3 is. The location of part-3 will be hard-
coded in part-2, so it will simply jump to part-3. Part-3 will read
the text file /rpool/boot/grub/menu.1st (see Figure 2-25); this is
the same file that was created by OpenSolaris when it detected XP
on the first primary.

888

File Edit View Terminal Tabs Help
yogesh@opensolaris:~$ cat /rpool/boot/grub/menu.lst
splashlmage /boot/grub/splash.xpm.gz

kernel$ /platform/186pc/kerne1/$ISADIR/un1x -B $ZFS-BOOTFS
module$ /platform/i86pc/$ISADIR/boot _archive
R LR LR END BOOTADM- == v mmmmmemmmemm e

title Windows |
rootnoverify (hde,o)

chainloader +1

Unknown partition of type 131 found on /dev/rdsk/c4dlp® partition: 2
It maps to the GRUB device: (hd@,1)

Unknown partition of type 5 found on /dev/rdsk/c4dlp@® partition: 3
It maps to the GRUB device: (hd@,2)
yogesh@opensolaris:~$ JJ

3l

EA

Figure 2-25. The OpenSolaris menu.lst file

30

CHAPTER 2

11. Part-3 of GRUB will read this text file and print whatever is written
after the 'title variable, and that is how we reach the screen
shown in Figure 2-26.

GNU GRUB wversion 8.95 (638K lower / 3143552K upper memory)

OpenSolaris 2888.85 snu_86_rc3 XB6
Hindouws

Use the * and 4 Keys to select which entry is highlighted.
Press enter to boot the selected 0S, ‘e’ to edit the
commands before booting, or 'c’ for a command-line.

Figure 2-26. The OpenSolaris welcome screen

Figure 2-27 shows the complete booting sequence of OpenSolaris.

MULTIBOOT

31

CHAPTER2 MULTIBOOT

BIOS jumps
Here.
1st jum
{18t himnp) _ Second partition is active
How many WWhich hence the part-3 of XP's
partitions are Partitionis NTLDR will call the part-1 Jumps to core
available ~ active of solaris GRUB GRUB (pan-3)
(3rd jump) _(8th jump) (5th jump) (7th jump)
‘ } }
Bootstrap Boot Windows XP's Boot Boot Solaris actual
N Loader actual partition Strap N Loader partition
Ven. u fdisk P Ven. u fdisk
part-1 Sign L MBR Sign Part-2 a part-1 Sign L MER Sign Part -2 r Part-3
15 ‘ I .
NTLDR Cintidr GRUB
NTLDR ol - GRUB menu. st
3 i "
Looks for bigger space (2nd jump) Looks for bigger space (6th jump) Part-3 of GRUB
Reads the

frpool/bootgrub/menu. st
file provides the
Windows & solaris
bootable cptions
(8th jump)

58
0 gpensolans

Figure 2-27. The OpenSolaris booting sequence

If a user chooses the OpenSolaris option to boot, then part-3 of the OpenSolaris
GRUB knows where the kernel of OpenSolaris is, which is in the /boot directory.
GRUB will copy the kernel from /boot to memory and give control to the kernel.
This is where the GRUB bootloader’s task ends, and it goes away. Now the kernel
of OpenSolaris will take care of the rest of the booting sequence. We will talk about
the kernel in Chapter 4.

If a user chooses the Windows XP option to boot, then part-3 of the OpenSolaris
GRUB will jump back to part-1 of NTLDR (bootstrap). Part-1 of NTLDR will jump to
part-2 of NTLDR. Part-2 will jump to part-3. Part-3 of NTLDR will load winload.exe in
memory. The winload. exe file knows where the kernel of XP is. It will eventually be
copied or loaded into memory by NTLDR. Once the kernel is in memory, NTLDR’s job is
done (remember, kernel=0S=kernel). Since XP’s kernel is in memory, it will take care of

the rest of the booting sequence.

32

CHAPTER2 MULTIBOOT

PC-BSD 9.0

The * or the boot flag is on the OpenSolaris partition, so now we will install PC-BSD 9.0.
In Figure 2-28, the installer of PC-BSD shows the number of partitions on which PC-BSD
9.0 can be installed.

pc-sysinstaller

@ pcassD

Disk setup

Please select the disk for system installation
|ada0 - 76800MB Mware Virtual IDE Hard Drive =| €&

Basic Mode] Advanced Mode |

If installing as the only operating system, check "Use Entire Disk”™.
™ Use Entire Disk

ada0sl: 10000MB (DOS or Windows 95 with 32 bit FAT (LBA))
ada0s4: 9209ME (Solaris x86 (new))

ada0s2: 10000M8 (Linux native)

ada0s3: 46799M8 (Extended DOS)

«f= Add Partition | == Delete Partition

—Additional Options
& UFS Filesystem (" ZFS Filesystem (64bit with 4GB RAM recommended)
I™ Encrypt user data ™ Partition disk with GPT

Figure 2-28. The number of partitions

Asyou can see, the hard disk naming convention is different in BSD compared to
earlier OSs. We need to install BSD on the third partition, which is ada0s2. It stands for
“Adapter number zero and slice number 2.” The slice can be considered as a partition.
Figure 2-29 shows the disk layout and disk naming conventions.

33

CHAPTER2 MULTIBOOT

pc-sysinstaller

@ PcasD

Disk setup

Please select the disk for system installation
|adao - 76800MB Mware Virtual IDE Hard Drive ~| &

Basic Mode I Advanced Mode |
if installing as the only operating system, check “Use Entire Disk".
™ Use Entire Disk

ada0sl: 10000ME (DOS or Windows 95 with 32 bit FAT (LBA))
ada0s4: 9209MB (Solans x86 (new))

A1a0 DO0DME TUMUX many
ada0s3: 46799MB (Extended DOS)

<} Add Partition | == Delete Partition

- Additional Options -
& UFS Filesystem ¢ ZFS Filesystem (64bit with 4GB RAM recemmended)
[Encrypt user data [Partition disk with GPT

Figure 2-29. The disk layout and disk naming conventions

Assign the ada0s2 space to / (the root filesystem). Figure 2-30 shows the partition
layout of PC-BSD 9.0. You will also notice that the filesystem of BSD is UFS, which is the
Unix File System.

34

pc-sysinstaller

@ PcasD

Disk setup

Please select the disk for system installation

CHAPTER 2

|adao - 76800MB Mware Virtual IDE Hard Drive ~| @ |

Basic Mode Advanced Mode |

o Add ‘ / Edit | —nemove|

Slice I Mount I Size

The following partitions will be created during the installation

I Type

Use default layout

MULTIBOOT

ada0s2 !
ada0s2 SWAP
ada0s2 fvar
ada0s2 fusr

2000
256

2048
5686

UFS+5U]
SWAP

UFS+5U)
UFS+5U)

I~ Partition disks with GPT

Figure 2-30. The partition layout of PC-BSD 9.0

After the installation, the system will restart. Now take some time and think about
which OS will boot.
Which of the following will it be?

OpenSolaris, which would give it a chance to boot Windows and BSD

Will it be PC-BSD, which would give it chance to boot the other two

0OSs?

Will it be PC-BSD alone?
Will it be Windows XP alone?
Will it be OpenSolaris alone?

Or will none of the OSs boot?

35

CHAPTER 2 MULTIBOOT

Please visit the booting flowcharts of earlier operating systems and try to come up
with your own booting sequence.

As you can see in Figure 2-31, the OS that will boot is OpenSolaris, which will create a
chance to boot Windows only.

GNU GRUB wversion 8.95 (638K lower / 3143552K upper memory)

OpenSolaris 2888.85 snu_86_rc3 XB6
Hindouws

Use the * and 4 Keys to select which entry is highlighted.
Press enter to boot the selected 0S, ‘e’ to edit the
commands before booting, or 'c’ for a command-line.

[

®0 gpensoLaris

Figure 2-31. PC-BSD is not booting.

PC-BSD is not booting. Before going to the next page, again take some time and think
about what happened

36

CHAPTER2 MULTIBOOT

You are right—there is a chance that PC-BSD might have not kept the */boot flag/
fdisk signature on its own partition. Let’s see if that is the case. We will boot with GParted
(Figure 2-32) and verify our theory.

M S OFeil it Lot ions

one 8 LB Z2sibbb NUE UErsion naintainer: Steven Shi

2l Tive cones oith ABSULI TELYSNITHARRANTY.

Figure 2-32. The GParted welcome screen

37

CHAPTER2 MULTIBOOT

Asyou can see in Figure 2-33, PC-BSD does not have * set on its own partition.

CE /devfsda - GParted | |
GParted Edit View Device Partition Help
D @8 [< @ o 9 o £} /devisda (75.00 GiB) ¥
New Delete | Resize/Move ! Copy Paste Undo Apply
Jdev/sdal Jdev/sdad Jdevfsda2 [dev/sdas Jdevfsda6 Jdevfsda7? /devfsda8
9.77 GiB 8.99 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB
Partition Il-'ila System ILaheI Size Used Unused Flags
Idevjsdal B fat32 9.77 GiB 2.97 GiB 6.79 Gig |ba
/dev/sdad A W ext3 Solaris 2009 8.99 GiB --- boot
unallocated M unallocated 790.86 MiB

Jdev/sda2 i unknown
v [dev/sda3 extended

() New
3 Delete Delete

[dev/sdas I ntfs windows 200 = 3 MiB 9.72 GIB
/dev/sda6 M ntfs windows 7 'ﬂ SRR b MiB 9.72 GiB
Jdev/sda7 M ext3 reELe |5 Copy Ctrl+C b mig 9.47 GiB
Jdev/sdas B ext3 Fedora1s | D) Baste GtV E vie 9.47 GiB

Idev/sdag M linux-swap swap 93 Format to » 6.63 GiB

Mount

MName Partition
Manage Flags
Check

Label File System
New UUID

[o operations pending

4« Workspace 1 » 14 Nov, Thu 07:38:39 < » @) Information

Figure 2-33. The disk layout on GParted

38

CHAPTER2 MULTIBOOT

So, the booting sequence looks like Figure 2-34.

BIOS jumps
Here.
18t jumn
VIR) Second partition is active
How many WWhich hence the pan-3 of XP's Jumps to the
partitions are partition is NTLDR will call the part-1 core of GRUB
available ~ active of solaris GRUB (part-3)
(3rd jump) _(4th jump) L51h jump) __(Mthjump)
‘ v ¥
Bootstrap Boot Windows XF'e Boot Boot Solaris actual
N Loader actual partition Strap N Loader partition
Ll || fdisk Yool fdisk
- i g Part-3 L Si ? ~
part-1 Sign % MBR Sign Part-2 part-1 ign L MER Sign Part -2 Part-3
15 ‘ I .
NTLDR Cintidr GRUB
NTLDR ol - GRUB menu.lst
3 i "
Looks for bigger space (2nd jump) Looks for bigger space (6th jump) Part-3 of GRUB
Reads the

frpool/bootigrubimenu. st
file provides the
Windows & solaris
bootable cptions
(8th jump)

opensoLans

Figure 2-34. The boot sequence and why PC-BSD is not able to boot

This means OpenSolaris does not know BSD is installed on the third partition.
Hence, the PC-BSD entry is not with OpenSolaris. What if we keep the boot flag on
BSD'’s partition? Will it boot? But how do we keep the boot flag on the third partition? It’s
simple—GParted gives us that option. Right-click the third partition and select the boot
flag, as shown in Figure 2-35.

39

CHAPTER2 MULTIBOOT

CE /dev/sda - GParted ---
GParted Edit View Device Partition Help '

D ﬂ [= [T Q [9 4 [E} devisda (75.00 GiB)

New Delete ' Resize/Move | Copy Paste Undo Apply
/dev/sdal /dev/sdad 0= Minage flsascn (deqadaz o v/sda7 /dev/sda8
9.77 GiB 8.99 GiB Manage flags on /dev/sda2 7 GiB 9.77 GiB
Partition |File System didg Unused Flags
/dev/sdal I fat32 Clbab 7 GiB 6.79 GiB Iba
/dev/sdad A W ext3 03 hidden i --- boot
unallocated 1 unallocated 0 irst
0 s
v [dev/sda3 extended 0 vm
/devjsdas W ntfs 0 palo MiB 9.72 GiB
Jdev/sda6 [ntfs O prep MiB 9.72GiB
[devjsda7 B ext3 0 raid MiB 9.47 GiB
[dev/sdas M ext3 3 MiB 9.47 GiB
/devjsda9 M linux-swap ¥ Close I 008 6.63 Gig

0 operations pending

< Workspace 1 » 14 Nov, Thu 07:39:03 =« » /dev/sda - GParted = Manage flags on /dev/sda2

Figure 2-35. Setting the boot flag on PC-BSD

Figure 2-36 shows how the disk layout looks after setting the boot flag on BSD’s third
partition.

40

CHAPTER2 MULTIBOOT

CE /devisda - GParted . .
GParted Edit View Device Partition Help ‘!
D ﬂ [= [9 J mfdav{sda (75.00 GiB) |+ |'I

New Delete ' ResizefMove ! Copy Paste ' Undo Apply
b
i
/dev/sdal /dev/sdad fdev/sda2 /dev/sdas [dev/sdag [dev/sda7 [dev/sdas
9.77 GiB 8.99 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB |
Partition IFiie System ILabeI Size Used Unused Flags | |
/dev/sdal . fat32 9.77 GiB 2.97 GiB 6.79 GiB Iba
devisdaa A\ [l ext3 Solaris 2009 8.99 GiB
unallocated M unallocated 790.86 MiB .- -
/dev/sda2
< [dev/sda3 extended 45.70 GiB
/devjsdas I ntfs windows 2003 9.77 GiB 50.78 MiB 9.72 GiB
Jdev/sdaé M ntfs windows 7 9.77 GiB 50.78 MiB 9.72 GiB
/dev/sda7 . ext3 RHEL 6 9.77 GiB 307.23 MiB 9.47 GiB
/dev/sdas M ext3 Fedora 15 9.77 GiB 307.23 MiB 9.47 GiB
/devjsdag B linux-swap swap 6.63 GiB 0.008B 6.63 GiB
operations pending

<« Workspace 1 » 14 Nov, Thu 07:39:13 « » []

Figure 2-36. The disk layout

Now which OS do you think will boot?
o PC-BSD alone?
e PC-BSD, which would give the chance to boot every other OS?
o Again OpenSolaris, which would create an option to boot Windows?
e OpenSolaris alone?
e Windows XP alone?

Figure 2-37 shows the answer; after reboot, it’s only PC-BSD that is booting, and it is
not giving an option to boot any other OS.

41

CHAPTER 2 MULTIBOOT

Figure 2-37. The welcome screen of PC-BSD

Let’s try to understand how PC-BSD managed to boot.
1. Power on the system.

2. The BIOS executes the POST routine. The POST checks the
hardware health and gives a healthy beep if everything is good
and goes back to the BIOS.

3. The BIOS is dumb, and it simply jumps to the first sector of the
entire HDD, which is a bootstrap of Windows XP.

4. XP’spart-1 (NTLDR) jumps to a bigger space, which is part-2 of
NTLDR (the bootloader). The bootloader checks the MBR and
finds there are four primary partitions, but which one is active? To
check that, the bootloader checks the first primary partition’s fdisk
signature, which is not set, so it checks the second partition’s boot

42

CHAPTER2 MULTIBOOT

flag, which is also not set. Hence, it jumps to the third partition
where it finds the boot flag set. The bootloader (part-2) of NTLDR
jumps to BSD’s partition and runs the bootstrap of BSD’s bootloader.
The bootloader of BSD is BTX, which stands for Boot Extended.

BTX jumps to its second part and eventually to the third part. The
third part of BTX knows where the kernel of BSD is. Part-3 of BTX
copies the kernel image of BSD in memory, and this is where BTX
stops and PC-BSD starts booting and shows us a welcome screen.
Figure 2-38 shows the flowchart of the booting sequence of PC-BSD.

BIOS jumps
Here.
(1st jump)
How many Which
partitions are Dar_tlilon is
available ~ active
(3rd jump) _(4th jump)
: i
Bootstrap Boot | Windows XP's actual 512KB i A
N Loader | Partition +31KB !]
Ven. u fdisk of ! ;ao:t;mn of
i = ris
part-1 Sign L MER Sign Part-2 | Part3 o
It i H
NTLDR C:\ntidr
NTLDR Ciwindowswinload exe
Looks for bigger space (2nd jump) =
Knows the location
Third partition is active Jumps to the ‘ of I:es::a}u;f B}SD
hence the part-2 of XP's core of BTX jump
NTLDR will call the (part-3)
part-1 of BSD's BTX Tth jum|
(5th jump)
Bootstrap Boot PC-BSD
Loader actual
Ven, E faish partition
part-1 Sign : Part-2
= :: MEIS] s Part-3
2 BTX
BTX

X

Looks for bigger space (6th jump)

Figure 2-38. The boot sequence of PC-BSD

The interesting part of BSD booting is that when PC-BSD was getting installed, it
found the boot flag on the second partition, which is the OpenSolaris partition. Now BSD
has three options.

a. Keep the boot flag on its own third partition.

b. Keep the boot flag on its own third partition and make a
OpenSolaris entry in some of its files.

c. Keep the boot flag as it is on the second partition.

43

CHAPTER2 MULTIBOOT

If BSD chooses the first option (a), then only BSD would be able to boot, and that
would be an injustice to the other installed operating systems. We want BSD to choose
the second option (b) since it gives justice to boot every other OS, but BTX is an old
bootloader, and it does not have the ability to multiboot other operating systems. Hence,
BSD chooses the third option (c). Therefore, it’s only OpenSolaris that is booting, and it
provides the option to boot XP. Remember, XP is not booting. It’s only OpenSolaris that is
booting, and by reading the menu. 1st file, it is giving the option to boot XP. It also means
BSD itself chose not to boot.

What if we go back and keep the boot flag on the first partition of Windows XP? Then
which OS will boot? In Figure 2-39, we have achieved this.

CE /dev/sda - GParted .|
GParted Edit View Device Partition Help

D ' o Q 9 [} /devisda (75.00 GiB) ¥ r
New Delete ! Resize/fMove | Copy Paste ! Undo Apply l d
Jdevjsdal jdevfsdad Jdevjsda2 Jdevjsdas Jdevfsdas jdevisda7 Jdevfsdag
9.77 GiB 8.99 GiB 9.77 GiB 9.77 GiB 9.77 GiBg 9.77 GiB 9.77 GiB |
Partition IFie System |Labe| I Size I Used | Unused I Flags I I
/dev/sdal B fat32 9.77 GiB 2.97 GiB 6.79 GiB boot, Iba |'
/devisdad A\ [l ext3 Solaris 2009 8.99 GiB I
unallocated unallocated 790.86 MiB
/devisda2 A\ [l unknown 9.77 GiB
= jdev/sda3 extended 45.70 GiB
/dev/sdas B ntfs windows 2003 9.77 GiB 50.78 MiB 9.72 GiB
/devjsda6 W ntfs windows 7 9.77 GiB 50.78 MiB 9.72 GiB
/dev/sda7 B ext3 RHEL 6 9.77 GiB 307.23 MiB 9.47 GiB
/dev/sda8 M ext3 Fedora 15 9.77 GiB 307.23 MiB 9.47 GiB
/devjsdag B linux-swap swap 6.63 GIB 0.00B 6.63 GiB
0 operations pending 7

< Workspace 1 = 14 Nov. Thu 07:44:47 = » [=

Figure 2-39. The boot sequence of PC-BSD

44

CHAPTER2 MULTIBOOT

It's Windows XP alone that will boot, and the booting sequence is simple. Figure 2-40
explains how Windows XP is able to boot.

BIOS

POST

Back to BIOS

First Sector
Of HDD
Bootstrap
stage-1

Bootloader
Part-2
stage-1.5

Part-3
Of bootloader
After checking
the fdisk
signature

Kernel of
Windows
XP

Figure 2-40. The boot sequence of Windows XP

Before installing the new OS, we need to move the boot flag from BSD’s third
partition to OpenSolaris’ second partition. Figure 2-41 shows the changed boot flag from
XP’s partition to the OpenSolaris partition.

45

CHAPTER2 MULTIBOOT

CE /dev/sda - GParted -
GParted Edit View Device Partition Help !
B | &1 [) 9 [0} /devisda (75.00 GiB) ~

New Delete ' Resize/Move ' Copy Paste | Undo Apply .
Jdev/sdal /dev/sdad /dev/sda2 Jdev/sdas [devisda6 /dev/sda7 /dev/sda8
9.77 GiB 8.99 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB 9.77 GiB
Partition |Fi|a System ILabeI Size Used Unused Flags I .
/dev/sdal XP 2009 9.77 GiB 2.97 GiB 6.79 GiB |ba

Jdev/sdad

unallocated M unallocated 790.86 MiB

Jdevjsda2 £\ Il unknown 9.77 GiB |
= jdev/sda3 extended 45.70 GiB - -
/dev/sdas B ntfs windows 2003 9.77 GiB 50.78 MiB 9.72 GiB |
/dev/sdaé M ntfs windows 7 9.77 GiB 50.78 MiB 9.72 GiB
Jdev/sda7 e RHEL 6 9.77 GiB 307.23 MiB 9.47 GiB |
/dev/sda8 B ext3 Fedora 15 9.77 GiB 307.23 MiB 9.47 GiB
/dev/sdag B linux-swap swap 6.63 GIB 0.00B 6.63 GiB |

[o operations pending

< Workspace 1 » 14 Nov, Thu 07:49:06 <« » [=]

Figure 2-41. The disk layout from GParted

With this change, OpenSolaris will start booting, and along with that, Windows XP
will also boot, but BSD will not be able to boot. So, does this mean that every time we
boot BSD we have to put the boot flag back to BSD’s partition? As of now, yes, but we will
automate all of this with the help of bootloaders.

Windows Server 2003

Asyou can see in Figure 2-42, we will install Windows Server 2003 (win2k3) on the first
logical partition. For win2k3, it is a D: drive.

46

CHAPTER2 MULTIBOOT

Partitionl (¥XP> [FAT321
Partition3 [Unknown]
Unpartitioned space
Partition2 [Unknown]

Partition5 <(windows 7> [NTFS]
Partition6t [Unknown]
Partition? [Unknownl
Partition8 [Unknown]l

Figure 2-42. The disk layout shown by the win2k3 installer

After the installation, which OS do you think will boot?

win2k3 alone?

Will win2k3 provide an option to boot every other OS?
win2k3 and OpenSolaris together?

PC-BSD?

XP alone?

win2k3 and XP?

Before continuing, think for a while and come up with your own answer.

Asyou can see in Figure 2-43, the OS that will boot is win2k3.

Please select the operating system to start:

Hindows Server 2883, Enterprise

Microsoft HWindows XP Professional

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.

Figure 2-43. win2k3’s welcome screen after reboot

47

CHAPTER2 MULTIBOOT

And win2k3 is giving the option to boot Windows XP. This means only the Windows
family of operating systems is booting. Also, here are some questions that we should
consider:

e Where is the boot flag now?
o Which OS will boot if we keep the boot flag on the second partition?
e Which OS will boot if we keep the boot flag on the third partition?

e Which OS will boot if we keep the boot flag on the logical partition
(win2k3's partition)?

o Isthere any way to boot only Windows XP?

You will receive all the answers to these questions in the following discussion.

One thing is clear here: win2k3 is the only OS that is booting. Before discussing
how it is able to boot, we need to check what scenario it has created on the disk to boot
successfully.

When win2k3 was getting installed, it saw that it was getting installed on a logical
partition and that the boot flag is on the OpenSolaris partition (refer to Figure 2-44).

* Logical partitions
XP - SauzER I____2k_3 __ .
olaris - win
Swap .
Fat-32 Ext-3 : NTFS e
Ext-3 ! sdas Linux-swap
sdail sda3 H '
sda2 e L e e . T T P e T e P P T T T e e Tt e Tt e T et
4th Extended primary partition sda4

Primary partitions

Figure 2-44. The disk layout when win2k3 was getting installed

To boot, win2k3 has to put the boot flag on its own partition by installing its
bootloader’s (again, NTLDR’s) part-1 and part-2 in its own 512 bytes + 31 KB. But there
is a problem here. Do you remember the rules we saw at the time of Windows XP’s

installation?
o Thelogical partition cannot be active.
e The OS cannot boot from the logical partition.

Because of these two rules, win2k3 cannot keep the boot flag on its own partition, and
ultimately it cannot boot from the logical partition. Figure 2-45 shows the boot sequence of
why win2k3 cannot boot from the logical partition. But what is the reason for such rules?

48

CHAPTER2 MULTIBOOT

BIOS jumps
Here.
(1st jump)
How many Whm)
partitions are IDE"_‘“"D"1 L] The bootflag is on win2k3 but MBR has only 4 primary partition entries and
available active? none of them has bootflag set (5th jump)
(3rd jump) _(4th jump)
Bootslrap Boot | Windows XP's actual 512KB | Actual * l
N Loader | Partition +31KB | oadition | PO
» \Sran u fdisk o of i ol amsnl 2k3 e 0s
art- n i - = is . actual
o g II: MBR s:gn Part-2 Solaris | Solaris partiion sth not
NTLDR NTLDR| Cilntidr partition found
c'windowsiwinload exe ' Extended 4th partiton
i
[1

Looks for bigger space (2nd jump)

Figure 2-45. win2k3’s boot sequence if it tries to boot from the logical partition

It’s simple: MBR has only four entries, which are as follows:
o First primary = sdal
e Second primary = sda2
e Third primary = sda3
o Fourth primary = extended partition (not logical partition) = sda4

The win2k3 partition is sda5. In other words, it is SATA disk a (first) and partition
number 5. Since the MBR does not have an entry for a logical partition, part-2 of XP’s
NTLDR does not know that there is a fifth partition available. So, even if win2k3 keeps
the boot flag on its own partition, XP’s NTLDR cannot see it. Hence, win2k3 will never
boot. Now, why can the MBR not have more than five entries? It’s because 64 bytes
can store only four entries. Why not increase the size of the MBR? Actually, even if the
developers want to increase the size of the MBR, they simply can’t. You will understand
the reason when we talk about the UEFI firmware later in this chapter.

Now this has become a chicken-and-egg problem for win2k3. It wants to boot, but
for that it has to keep the boot flag on its own partition, but if it does that, then the BIOS
cannot see that partition. How do we resolve this problem?

Some amazing developers have resolved this problem, and whoever came up with
this idea is simply a legend. win2k3 transfers its NTLDR bootloader on the first primary,
which means part-1, part-2, and part-3. It also means win2k3 will delete all the XP
NTLDR’s parts since the space (512 bytes + 31 KB) is tiny and both the bootloaders can’t
fit there. (There is one sweet spot here, which is called VBR, which is beyond the scope

49

CHAPTER2 MULTIBOOT

of this book.) However, while deleting, XP’s bootloader win2k3 makes XP’s entry in one
of its text files and keeps it at the first primary partition. The file is called boot.ini, as
shown in Figure 2-46.

B boot.ini - Notepad

File Edit Format View Help

[boot Toader]
Timeout=30
default=multi(0)disk(0)rdisk(0)partition(4)\WINDOWS
[operating systems]

mu tiEO%d skEogrdiskEagpartitiong4g\wINoows "windows Server 2003, Enterprise” /noexecute=optout /
multiCo)disk(0)rdisk(0)partition(l)\WINDOWS

"microsoft windows xp professional” /noexecute=optin

4 start - C\ [P boot.ini - Notepad U, 12:32AM

Figure 2-46. The boot.ini file

While doing this, win2k3 keeps the boot flag on the first primary partition only. So,
this is how win2k3 is booting:

1. Power on the system.
2. The CPU goes to the BIOS. The BIOS runs the POST.

3. POST checks, and the hardware gives the healthy beep and goes
back to the BIOS.

4. The BIOS jumps to the first primary partition’s first 512 bytes.

50

CHAPTER2 MULTIBOOT

5. The bootstrap will start, which is win2k3’s part-1 of NTLDR.
6. Part-1 will look for part-2 of NTLDR.
7. Part-2 will check the MBR and check the fdisk signature.

8. The fdisk signature is set on the first primary, which means part-2
will jump inside XP’s first primary partition and will run part-3 of
win2k3’s NTLDR. To just give you an idea, part-3 is new and not
XP’s old NTLDR. Here I provide two images.

e Note the size of NTLDR (part-3) in Figure 2-47. This is when we
installed Windows XP.

Fle Edt View Favorkes Tools Help aw
QBak ~) (T P search [Foders [M-

Address <@ C:\ Vi kd Go
- ~
System Tasks 'L;J Docurnents and Settings I;,.J Program Files
[T Hide the contents of
this drive e AUTOEXEC.BAT
'_'ﬁ Add or remove I WINDOWS gy | Ms-DOS Batch File
programs | w |oe
7 Search for files or
folders 1 boot.ini - CONFIG,5YS
gl Configuration Settings 1 System file
1 KB —!| 0kB
File and Folder Tasks & N 10.57S 5 s
=1 .. 4 MSDOS,
DI Rename this file HEH L_I\‘;“;"" file : ::l 3';."5Etzr?m file
[Move this file . J
[} Copy this file S| NTDETECT.COM :
€} Publsh this file to the F s PPN
‘Web | N—
() E-mail this file
¢ Delete this file
Other Places
:i My Computer
ﬂ My Documents
| Shared Documents 3
Date Created: 4/14J2008 10:00 AM Size: 244 KB 244 KB jmcoﬂ‘ﬂw

'_’,‘ start 3 'y, 10:15PM

Figure 2-47. The size of NTLDR’s part-3 file of Windows XP

« In Figure 2-48, note the size of NTLDR (part-3) after the
installation of win2k3.

51

CHAPTER2 MULTIBOOT

Fle Edt View Favorites Tools Help ."a'

QBack ») - (F PO seach [Folders [+

Address |<e C:\ vl Go
~ -
System Tasks ['" Documents and Settings L;J Program Files
| Hide the contents of
this drive . CE| AUTOEXEC.BAT
L) Add or remove e WINDOWS ¢y | M5-DOS Batch File
programs i AR 0 KE
Search for files or _
folders 4. boot.ini ~y CONFIG.5YS
Yegd Configuration Settings se2l| System file
1KB 0 KB
File and Folder Tasks 2 '
y 10.5Y5
@[Rename this file H E';-'zé-_-r..- File Tee
[y Move this file
[} Copy this file S| NTDETECT.COM
: MS-DOS Application aus
&) Publish this file to the 47 KB ias
‘Web —
(2) E-mail this file
¥ Delete this file
Other Places £
i My Computer
(L) My Documents
) Shared Documents 3
Date Created: 2/18/2007 7:33 AM Size: 290 KB 290 KB j My Computer

-_r.‘ start ci "9, 3:51AM

Figure 2-48. The size of NTLDR’s part-3 file of win2k3

As you can see, part-3 of NTLDR of Windows XP was 245 KB, but now with win2k3
it’'s 291 KB.

9. Part-3 of NTLDR (win2k3) will read the boot . ini file from the same
partition (the first primary) and will print whatever is written in
quotes. Figure 2-49 shows what will be printed on the screen.

Please select the operating system to start:

HWindows Server 2883, Enterprise

Microsoft HWindows XP Professional

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.

Figure 2-49. The welcome screen shown by win2k3

52

CHAPTER2 MULTIBOOT

10. Ifauser chooses the Windows Server 2003, Enterprise option,
then part-3 of win2k3’s NTLDR knows where the kernel of win2k3
is. This is in the fifth partition where win2k3 has been installed. It
copies the kernel in memory, and NTLDR of win2k3 goes away.

11. Ifauser chooses the Microsoft Windows XP Professional option,
then part-3 of NTLDR also knows where the kernel of Windows
XP is. This is in the first primary partition. First it starts winload.
exe; eventually winload.exe copies XP’s kernel in memory, and
NTLDR goes away. Figure 2-50 shows the complete boot sequence

of Windows XP.
BIOS
) . i Part-3 of NTLDR
Power on System PoaT Part L(Tifl_"[l)"gzm s Part-“;‘?rftxgazms T
partition

First partition is
active | boot flag/ *

Load winZk3's kemnel

Load XP's kernel

Figure 2-50. The boot sequence of Windows XP

So, this is how Windows XP and win2k3 are able to boot. Let’s return to our fdisk
signatures discussion; since only win2k3 is booting and the other OSs are not able to
boot, I have some questions to ask:

e Can we boot only Windows XP?
o What if we keep the boot flag on OpenSolaris?
o What if we keep the boot flag on PC-BSD?

o What if we don’t keep the boot flag anywhere?

53

CHAPTER2 MULTIBOOT

Take your time, think, revisit the flowcharts, and come up with your answer.

Ready? We cannot boot only Windows XP. It’s just not possible since in the Windows
XP bootloaders all the parts have been replaced by win2k’s NTLDR. Also, only win2k3
knows now where XP is, and only win2k3 can boot Windows XP. This also means if
win2k3’s bootloader’s part-1 is corrupted or deleted, we will lose XP forever. But if we
keep the boot flag on PC-BSD, then it will boot as usual. Figure 2-51 shows the boot
sequence of PC-BSD.

BIOS jumps
Here.
(1st jump)
How many Which
partitions are partition is
available ~ active
(3rd jump) _(4th jump)
. i
Bootstrap Boot [/ Windows XF's actual S1ZKB | Acqyal
N Loader | Partition +31KB | Catition of
Ven. U fdlisk Of i Soari
= i S olaris
part-1 Sign 0 MBR Sign Part.2 | Part-3of win2k3 Solaris |
of 2k3 It * of win2k3 H
Ciintidr
NTLDR NTLDR
Looks for bigger space (2nd jump) Part-3 of BTX
Knows the location
- < . Jumps to the of kernel of BSD
Third partition is active core part of BTX ‘ (8th jump)
hence the part-2 of (part-3)
win2k3's NTLDR will call (Tth jump)
the part-1 of BSD's BTX
(5th jump) | ;
Bootstrap Boot PC-BSD
actual
N Loader 7
Ven. U disk partition
part-1 Sign B MER Sign Part-2 Partd
E .
BTX BTX
BTX

Looks for bigger space (6th jump)

Figure 2-51. The boot sequence of PC-BSD

If we don’t keep the boot flag on any of the partitions, then it simply won’t boot. This
is similar to the situation that we discussed when talking about what would happen if the
boot flag was set on the logical partition. Figure 2-52 shows the boot sequence to explain
why none of the OSs is able to boot.

54

CHAPTER2 MULTIBOOT

BIOS jumps
Here,
(1st jump)
How many Whm .
partitions are DEI'_HIDDH L] The bootflag is on win2k3 but MBR has only 4 primary partition entries and
available EC“V_E? none of them has bootflag set (5th jump)
(3rd jump) _(4th jump)
Boolstrap Boot Mnldlmws XP's aclual 512KB i Acteal * l
N Loader | Partition *31KB | podion | FC A
Ven, u fdisk — o |y BSD win2k3 a0 0s
an-1 Sign . 5 art- s . actual
pi 9 II: MBR s:gn Part-2 Solaris | Solaris partiion Sth not
NTLDR NTLDR| Cintldr partition found
c'windowsiwinload exe ' Extended 4th partition
i
[1

Looks for bigger space (2nd jump)

Figure 2-52. The boot sequence to show why none of the OSs is able to boot

Setting up a boot flag on the logical partition is as good as not setting up a boot
flag anywhere.

Now, the main question is, what if we keep the boot flag on the OpenSolaris partition?
OpenSolaris will fail to boot. The OpenSolaris bootloader, which is GRUB, will throw the
error message shown in Figure 2-53.

Minimal BASH-like line editing is supported. For the first word,
TAB lists possible command completions. Anywhere else TAB lists
possible device or file completions. ESC at any time exits.

grub> _

Figure 2-53. GRUB dropped on prompt

But why? It should boot, right? Nothing has been changed in OpenSolaris (512 bytes +
31 KB). It’s just that win2k3 has moved the boot flag from the OpenSolaris partition
to the first primary. So, ideally, it should boot, but it won’t, and the reason is win2k3’s
behavior. When win2k3 was getting installed, it faced a similar situation that OpenSolaris
and PC-BSD faced. In other words, the boot flag is on a different partition, and that
partition has another OS. What OpenSolaris did in that situation was move the boot flag
from XP’s partition to its own second partition, but since this will make XP unbootable,
it generously made an entry for XP in its own file (menu.1lst). OpenSolaris reads this file
every time and gives an equal chance to XP to boot.

55

CHAPTER2 MULTIBOOT

In the case of PC-BSD, it detects that the boot flag is on OpenSolaris, and if it
is moved to its own partition, it would make OpenSolaris unbootable. Hence, BSD
generously chose not to put the boot flag on its own partition so that another OS would
not become unbootable. But win2k3 does not have that generosity. When win2k3 was
getting installed, it saw that the boot flag is on a non-Windows-based OS. So, it moved
the boot flag of OpenSolaris, but since that is a non-Windows-based OS, it did not create
an entry in boot. ini. Going further, win2k3 even corrupted/removed part-1 of the
OpenSolaris GRUB. Hence, OpenSolaris is not able to boot now.

Later, win2k3 went ahead and cleared XP’s bootloader, but it made the entry for
XP in boot.ini since it is a Windows operating system. That’s why I said win2k3 does
not have the same generosity that is shown by OpenSolaris and PC-BSD. But we will fix
OpenSolaris in the “Tweaking GRUB” section of this chapter.

Windows 7

As you can see in Figure 2-54, we are installing Windows 7 in the fifth partition.

Where do you want to install Windows?

| Name Total Size| Free Space| Type

e Disk 0 Unallocated Space 790.0 MB 7900 MB

= Disk 0 Partition 3 98GB 0.0MB Primary

" Disk 0 Partition 4 98 GB 64 GB Logical

‘r_._,;? Disk 0 Partition 5: windows 7 9.8 GB 9.7 GB Logical

Disk 0 Partition 6 98 GB 00MB Logical

<

+4 Refresh Drive options (advanced)

&* Load Driver

. The recommended free space for installation is 25048 MB.

1 Collecting information 2 Installing Windows

Figure 2-54. The disk layout shown by the Windows 7 installer
56

CHAPTER2 MULTIBOOT

Windows does not show an extended partition to avoid confusion for simple desktop
users.

1st = XP 2nd = Solaris 3rd = PC-BSD 4th = win2k3 s5th =7

After the installation, which OS do you think will boot? As usual, take your time and
come up with your answer before continuing to Figure 2-55.

wWindows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Earlier version of windows
Windows 7

h'd

To specify an advanced option for this choice, press F8.
seconds until the highlighted choice will be started automatically: 13

Tools:

windows Memory Diagnostic

ENTER=Choose TAB=Menu ESC=Cancel

Figure 2-55. The welcome screen shown by Windows 7

57

CHAPTER2 MULTIBOOT

You guessed right: Windows 7 will boot. The following is the complete booting
sequence of Windows 7:

1. Power on the system.
2. The CPU will jump to the BIOS.

3. After the POST routine, the BIOS will jump to the entire HDD’s
first sector.

4. When Windows 7 was getting installed, the * was on the first
primary, and Windows 7 was getting installed in a logical
partition. So, Windows 7 is facing the same problems that
win2k3 faced.

5. To make itself bootable, Windows 7 will follow the same path,
which is followed by win2k3. Windows 7 will install its part-1, part-
2, and part-3 on the first primary partition. Part-3 is not necessary
to install on the first primary since part-2 has a hard-coded
location for part-3, but this is how the Windows family works.

6. When part-1 and part-2 of Windows 7 were getting installed on
the first primary, obviously Windows 7 has to delete the win2k3
NTLDR (part-1 and part-2), but while deleting the files, Windows
7 recognizes that win2k3 is a Windows family OS; hence, Windows
7’s bootloader called Boot Configuration Data (BCD) makes an
entry for win2k3 in its own file, which can be seen in bcdedit.
exe. Check Figure 2-56 to see the output of bcdedit.exe.

“Windows Legacy OS Loader” in Figure 2-56 means win2k3.

58

CHAPTER2 MULTIBOOT
E¥ Administrator: C:\Windows\System32\cmd.exe L o] 6 =]
icrosoft Windows [Uersion 6.1.76011] -
opyright <{c?> 2089 Microsoft Corporation. All rights reserved.
\Windows\system32>bcdedit -
indows Boot Manager
identifier {bootmgr>
evice partition=D:
escription Windows Boot Manager
locale en—US
inherit {globalsettings>
efault {current?
esumeobject {adffaB48-8708-11ea-%e5a-8a53799d88e 3>
isplayorder intldr>
{current?
oolsdisplayorder {mendiag>
imeout 30
dindows Legacy 05 Loader
identifier {ntldr>
device partition=D:
path snt lde
escription Earlier Uersion of Windows
indows Boot Loader
identifier {current?
device partition=C:
path “Windowsssystem32:\winload.exe
description Windows 7
locale en—-US
inherit {bootloadersettings’
recoveryseguence {adffaB42-8700-11ea-%e5a-8a53799d88e3>
recoveryenabled Yes
psdevice partition=C:
lsystemroot “Windows
resumeobject {adffaB48-8700-11ea—%e5a-8a53799d88e3>
x Optln
sWindowsssystem32>
B

Figure 2-56. The output of bcdedit.exe

7. So, coming back to booting sequence, it looks like this: BIOS »
POST » BIOS » first sector of HDD.

8. The first 440 bytes of the bootstrap is part-1 of Window 7’s BCD
bootloader. It will look for a bigger space, which is part-2 of BCD.

9. Part-2 of BCD will read the MBR and will come to know that on
this HDD there are four primary partitions, but to check which
one is active, it will start checking the fdisk signature of every
partition, but it will find the first primary itself is active.

59

CHAPTER 2 MULTIBOOT

10. Part-2 will jump inside the first primary where part-3 of Window
7’s BCD bootloader is stored. Part-3 will read its bootloader
configuration file through bcdedit.exe and will list the entries
that are mentioned in front of the description variable.

Figure 2-57 shows what will appear on-screen.

windows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Earlier version of windows

indows 7 >

To specify an advanced option for this choice, press F8.
seconds until the highlighted choice will be started automatically: 13

Tools:

windows Memory Diagnostic

ENTER=Choose TAB=Menu ESC=Cance]l

Figure 2-57. Welcome screen shown by Windows 7

11. Ifauser chooses Windows 7, then as you can see in bcdedit.exe,
part-3 of BCD will call winload. exe from C:\windows\systemd32.
Remember, here C: means Windows 7’s partition, which is the
sixth logical partition.

CHAPTER2 MULTIBOOT

12. Thewinload.exe file knows the location of Windows 7’s kernel.
It will start loading the kernel in memory, and once it is done,
Windows 7’s kernel will take care of the rest of the booting
sequence. You can see the animation shown by Windows 7 once it
starts its booting sequence in Figure 2-58.

Starting Windows

Figure 2-58. The animation shown by Windows 7 during the booting sequence

61

CHAPTER 2

MULTIBOOT

Figure 2-59 shows the complete flowchart of Windows 7’s booting sequence.

BIOS jumps
Here.
(18t jump)
How many ~ Which
partitions are partition is
available active
(3rd jump) _(4th jump)
Eootstrap Boot Windows XP's actual partition
N L i % Windows Seven's
Ven. u fdlisk Part-3 of win2k3 C:\ntidr Open PC Actual partition
part-1 Sign Part-2 g Win ual pai
L MBR Sign art . Solaris BSD [
of 7 L . of 7 bool.ini 2k3
Ci\windows\systemd32\
BCD BCD i
4 i Part-3 of BCD C:\bed %“‘“WM
Looks for bigger space (2nd jump) (5th jump) part-2
calls the part-3
of BCD

(6th jump)
part-3 shows
the entries from
bededit.exe

(7th jump) if user
chooses 7. Then part-3
runs the winload.exe

(8th jump)
winload.exe loads
the 7's kemnel in
_/memory

Figure 2-59. The booting sequence of Windows 7

62

CHAPTER 2

13. Ifthe user chooses Earlier Version of Windows, then BCD’s part-3
will call part-3 of NTLDR, which is on the first primary partition
only, and the booting sequence will continue, which we saw with
win2k3. Figure 2-60 explains the boot sequence of win2k3 and XP.

Part-3 of NTLDR
from win2k3's
partition

Read boot.ini and
present two OS
options to choose

Is win2k3
chosen
by user?

Load win2k3's kernel from
its own partition

Load XP's kernel

Figure 2-60. The boot sequence of win2k3 and XP

MULTIBOOT

63

CHAPTER2 MULTIBOOT

Red Hat Enterprise Linux 6 (RHEL 6)

The RHEL installer’s name is Anaconda. The Anaconda installer is used by all the
Fedora-based distributions. In Figure 2-61, we have started installing RHEL 6.

Helcome to Red Hat Enterprise Linux 6.8!

[Install or upgrade an existing system
Install system with basic video driver
Rescue installed system

Boot from local drive

Memory test

Press [Tabl to edit options

RED HAT’
ENTERPRISE LINUX® 6

Copyright © 2003-2010 Red Hat, Inc. and others. All rights reserved.

Figure 2-61. The welcome screen of RHEL 6’s boot medium

64

CHAPTER2 MULTIBOOT

Figure 2-62 shows our current partition layout.

Drive /dev/sda (76800 MB) (Model: ATA VMware Virtual 1)

jdev/sdal |/dev/sda2|l/dev/sda3 |/dev/sda5 |/dev/sdab |/dev/sda7 |fdev/sda8 [/dev/s
10000 MB [9209 MB |{10000 MB |10000 MB [10000 MB {10000 MB [10000 MB |6794 M

Size Mount Point/

Device (MB) RAID/Volume Type Format
- Hard Drives
+ sda

sdal 10000 EFI System Partition
sda2 9209 ext3
Free 790
sda3 10000 Unknown

- sdad 46799 Extended

sdas 10000 ntfs

sdab 10000 ntfs

sda8 10000 ext3
sda9 6794 swap

Create || Edit || Delete || Reset |

: 4 Back ‘ | =) Next ‘

Figure 2-62. Partition layout shown by the Anaconda installer

65

CHAPTER2 MULTIBOOT

As shown in Figure 2-63, we need to assign root (/) to the sda7 partition and reformat
it with ext4, which is the default filesystem choice of RHEL 6.

Drive /dev/sda (76800 MB) (Model: ATA VMware Virtual 1)

/dev/sdal |fdev/sda2|l/dev/sda3 |/dev/sdaS |/dev/sdab |fdev/sdaT |/dev/sda8 |/dev/sd|
10000 MB (9209 MB |(]10000 ME |10000 MB {10000 MB |10000 MB |10000 MB |6794 M

Size Mount Point/

Device (MB) RAID/Volume Type Format
< Hard Drives
v sda

sdal 10000 EFI System Partition
sda2 9209 ext3
Free 790
sda3 10000 Unknown

- sda4 46799 Extended

sda5 10000 ntfs

sda6 10000 ntfs

sda8 10000 ext3
sda9 6794 swap

Create | Edit || Delete || Reset |

.. 4aBack ‘ =) Next ‘

Figure 2-63. The partition scheme that Anaconda will implement

66

CHAPTER2 MULTIBOOT

As visible in Figure 2-64, RHEL 6 (or Anaconda) has detected some OS, and it is
trying to give equal opportunity to the other OS to boot (specified as Other). There are
two OS entries, which RHEL 6’s bootloader (GRUB) will show at the time of the boot.

& Install boot loader on /dev/sda. |Change device

[Use a boot loader password

Boot loader operating system list

Default Label Device Add
Other /dev/sda5 Edit
O] Red Hat Enterprise Linux 6 /dev/sda?
Delete

. 4Back B Next

Figure 2-64. Anaconda detecting another OS

As per RHEL 6, the other OS will boot from sda5. This means the following:

sdal = XP

sda2 = Solaris

sda3 = PC BSD

sda4 = Extended partition

sda5 = Win win2k3 PO O ——

67

CHAPTER2 MULTIBOOT

At the time of the boot, if a user chooses the Other option, win2k3 is supposed to
boot. Which OS will boot after choosing the Other option? Take your time and come up
with your own booting sequence.

Let’s reboot the system and see which OS is booting. As you can see in Figure 2-65,
it's RHEL 6 that is booting and giving you a chance to boot the other OS.

GNU GRUB wversion 8.97 (638K lower - 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.el6.x86_64)

Other

Use the T and 4 keys to select which entry is highlighted.
Press enter to boot the selected 0S, 'e’ to edit the
commands before booting, ’a’ to modify the kernel arguments
before booting, or ’'c’ for a command-line.

Figure 2-65. The RHEL 6 welcome screen

This is how RHEL 6 boots:

1. When the system is powered on, it goes to the BIOS, then from the
BIOS to POST, and from POST back to the BIOS.

2. The BIOS ultimately lands in the entire HDD'’s first sector and runs
the bootstrap.

3. When RHEL 6 was getting installed, the * was on the first primary
partition.

4. The problem that was faced by win2k3 and Windows 7 is faced by
RHEL 6 also. RHEL 6 is getting installed in a logical partition that
the BIOS cannot reach or see. So, to tackle this issue, RHEL 6 has
to shift its part-1 and part-2 of the bootloader (GRUB) to the first

68

CHAPTER2 MULTIBOOT

primary partition. Remember, Windows shifted part-3 as well to
the first primary, but RHEL (and in general any Linux OS) will shift
only the first two parts to the first primary partition, and part-3 of
GRUB will be kept in its own partition; in our case, this is sda-7.

5. While replacing the first primary partition’s part-1 and part-2,
RHEL noticed that there is already some other OS installed, and
to give it an equal chance to boot, it made an entry for it in its
own partition’s /boot/grub/grub.conf named configuration file.
Figure 2-66 shows the grub. conf file.

@ Applications Places System @ && [Z ¢ O % Tue Nov 26, 23:29 root

root@localhost:~/Desktop

File Edit View Search Terminal Help
[root@localhost Desktopl# cat /boot/grub/grub.conf

grub.conf generated by anaconda

3

¥ Note that you do not have to rerun grub after making changes to this file
¥ NOTICE: You do not have a /boot partition. This means that

$# all kernel and initrd paths are relative to /, eg.

root (hde,6)

H kernel /boot/vmlinuz-version ro root=/dev/sda7

3 initrd /boot/initrd-[generic-]version.img

¥boot=/dev/sda

jefault=0

timeout=5

splashimage=(hde,6)/boot/grub/splash.xpm.gz

1iddenmenu

title Red Hat Enterprise Linux 6 (2.6.32-642.el6.x86_64) :
root (hde,6)

kernel /boot/vmlinuz-2.6.32-642.e16.x86 64 ro root=UUID=890a091c-45a3-4947-afd9-ee5468172
z2a rd NO LUKS rd NO LVM LANG=en US.UTF-8 rd NO MD SYSFONT=latarcyrheb-sunlé crashkernel=auto KE
fBOARDTYPE=pc KEYTABLE=us rd_NO DM rhgb quiet

initrd /boot/initramfs-2.6.32-642.e16.x86 64.img
title Other

rootnoverify (hde,4)

chainloader +1
[root@localhost Desktopl# [i

Figure 2-66. The grub.conffile

As you can see, whatever is written after the title variable will be printed on the

screemn.

6. Returning to the boot sequence, the bootstrap that is in the first
primary partition is from RHEL.

7. Part-1 of RHEL's GRUB will jump to part-2.

69

CHAPTER2 MULTIBOOT

8. Part-2 of GRUB has a hard-coded location for part-3 of
GRUB. Part-3 of GRUB is on RHELS partition, which is sda?7.

9. Part-3 of GRUB will read the grub. conf file from the /boot/grub
directory, and whatever is written after title will be printed on
the screen. Figure 2-67 shows this.

GNU GRUB wversion 8.97 (638K lower ~ 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.el16.x86_64)

Other

Use the * and 4 keys to select which entry is highlighted.
Press enter to boot the selected 0S, ’'e’ to edit the
commands before booting, 'a’ to modify the kernel arguments
before booting, or ’c’ for a command-line.

Figure 2-67. The welcome screen shown by RHEL 6’s GRUB

10. Ifauser chooses the first entry, which is Red Hat Enterprise
Linux 6, then part-3 of GRUB knows where the kernel of RHEL is.
Figure 2-68 shows the grub. conf file.

70

CHAPTER2 MULTIBOOT

:itle Red Hat Enterprise Linux 6 (2.6.32-642.e16.x86 64)

root (hd@,6)

kernel /boot/vmlinuz-2.6.32-642.e16.x86 64 ro root=UUID=890a091c-45a3-4947-afd9-ee5468f72
:2a rd NO LUKS rd NO LVM LANG=en US.UTF-8 rd NO MD SYSFONT=latarcyrheb-sunl6 crashkernel=auto KE
‘BOARDTYPE=pc KEYTABLE=us rd NO DM rhgb quiet

initrd /boot/initramfs-2.6.32-642.e16.x86 64.1ima

Figure 2-68. The grub.conffile of RHEL 6

11. The kernel binary file will be at /boot/vmlinuz. (Notice the
kernel variable from Figure 2-68.) Basically, the same grub.conf
file will tell the location of the kernel to part-3 of GRUB. It will
copy the kernel (vmlinuz) in memory, and the GRUB bootloader’s
job is done. RHEL' kernel will take care of the rest of the booting
sequence. Meanwhile, when the system is booting, a nice

animation, as shown in Figure 2-69, will appear on the screen.

RED HAT ENTERPRISE LINUX" 6

Figure 2-69. The animation to hide the complicated log messages

Figure 2-70 shows the flowchart of the complete booting sequence of RHEL 6.

71

CHAPTER 2 MULTIBOOT

BIOS jumps
Here.
{18t jump)
Bootstrap Boot Windows Extended
N Loader XP's actual —
Ven. U fdisk partition open| PC e Seven's RHEL's actual partition
i n
part-1cf (Sign L | mer Sign | Part-2of Solaris| BSD Actual
RHEL L 3" | RHEL 23| artition | Part-3 of GRUB
/boot/grub/grub. conf
GRUB GRUB /boot/vmlinuz
s 1 _
[T T
Looks for bigger space (2nd jump) Skips the fdisk sign checking and jumps directly o hard coded localion

of Part-3 (3rd Jump) of GRUB

Part-3 reads the grub.cfg and prints the OS entries (4th jump)

-

If user choose RHEL then
Part-3 of GRUB will load the /bootivmiinuz
(Sth jump)

Figure 2-70. The boot sequence of RHEL 6

12. Ifauser chooses Other instead, then it will call whatever is present
on the sda5 partition. As you can see in Figure 2-71, sda5 is on
win2k3’s partition.

Boot loader operating system list
Default Label Device

Other /dev/sda5
® Red Hat Enterprise Linux 6 /dev/sda7

Figure 2-71. The other OS is on partition 5

13. When win2k3 was installed, it shifted all of its bootloader’s parts
to the first primary. This means win2k3’s partition does not have
a bootloader present, so of course no OS will boot. Figure 2-72

shows the error message thrown on-screen if you try to boot the
other OS.

72

RED HAT ENTERPRISE LINUX' &

CHAPTER2 MULTIBOOT

NTLDR is missing

Figure 2-72. The error message
Now, I have a couple of questions to ask:
e Where is the * now?
o IfIkeep the * on the second partition, which OS will boot?
o IfIkeep the * on the third partition, which OS will boot?
o IfIkeep the * on the fifth (logical) partition, which OS will boot?
e IfIdo notkeep the * on any of the partition, which OS will boot?

In all of these scenarios, only one OS will boot, and that will be RHEL 6 (Figure 2-73).

@) Applications Places System u & @ & @ -'El Tue Nov 26, 00:13) yogesh

Click to view your appointments and tasks

Figure 2-73. The RHEL 6 desktop screen

No matter where you keep the * or even if you don’t keep the * on any partition, it’s
only the RHEL that will be booting all the time. The reason is simple, but it changes the

booting sequence altogether. The Red Hat Enterprise Linux bootloader, which is GRUB,

73

CHAPTER2 MULTIBOOT

does not follow the *, and it does not check which partition is active before calling part-3

of its bootloader. In fact, none of the Linux OSs bothers to check the active partition.

They simply skip that step. So, the booting sequence becomes the following:

1.

First the system goes to the BIOS, then POST, then back to the
BIOS, and finally to the first primary partition’s bootstrap.

RHELS part-1 of GRUB jumps to part-2 of GRUB, which (after
skipping the fdisk signature part) jumps to part-3 of GRUB.

Part-3 of GRUB goes to /boot/grub.conf, which prints the OS
entries.

If a user chooses RHEL, then the kernel loads from /boot/vmlinuz
in memory.

The kernel will take care of the rest of the OS booting, which has
been extensively explained in the rest of the book.

This also means there is only one OS currently booting, and that is RHEL 6. That'’s

bad! Hence, we need to tweak GRUB to boot the rest of the operating systems.

Tweaking GRUB

The best feature of GRUB is that it can boot any other OS, regardless of whether it is
Linux based or not. The trick to boot another OS used by GRUB is simple but amazing.

For any bootloader to boot OS, you need to do nothing more than load the respective
OS’s kernel in memory. GRUB knows where the kernel of a Linux OS is (/boot/vmlinuz).
But GRUB does not know where the kernel of Windows or PC-BSD is. The trick is that
these operating systems’ respective bootloaders know the location of their respective

kernels.

So, GRUB just calls their respective bootloaders; for example, if GRUB wants

to boot BSD, it is at the third primary partition. Refer to Figure 2-74, which shows the

partition layout, for a better understanding of this.

XP

Fat-32

BTX | Logical partitions
Solaris { PC-BSD T T T T I T T i

Boot ! i win2k3 Seven RHEL-6 Fedora-15 Swap i
Ext-3 | loader | Ex3 ; NTFS NTFS Ext-3 Ext-3 Linux-swap

56 & : sda5 sdab sda? sda-8
sda2 : sda3 3

bytes + ! .

K8 4th Extended primary partition sda4

Primary partitions

Figure 2-74. The partition layout of the BIOS

74

CHAPTER2 MULTIBOOT

BSD installed its bootloader on its own partition’s reserved 512 bytes + 31 KB. So,
GRUB will call part-1 of BTX. This is called chainloading. The GRUB bootloader’s part-3
will chainload part-1 of BTX. BTX's part-1 knows what to do next, which is to look for
part-2. Part-2 will jump to part-3, and it will load BSD’s kernel in memory so BSD will
start booting up. To achieve this chainloading, we need to tell GRUB the location of
part-1 of BTX through the grub. conf file. The location will be hard disk number 1 and
partition number 3, but GRUB starts its count from 0 so the location will be hard disk
number 0 and partition number 2. The entry in /boot/grub.conf is as follows:

title pc-bsd <<«---- the os entry title
rootnoverify (hdo,2) <<<---- location of BTX
chainloader +1 <<<---- grub will chainload the BTX

As you can see in Figure 2-75, the other operating system entries are similar to BSD;
only the partition number will change.

.Appllcatmns Places System @ & __{': (J) ¢ 6 lg"g Wed Nov 27,01:26 root

root@localhost:/boot/grub
File Edit View Search Terminal Help
NOTICE: You do not have a /boot partition. This means that

all kernel and initrd paths are relative to /, eg. |
root (hdo,6)
kernel /boot/vmlinuz-version ro root=/dev/sda7
initrd /boot/initrd-[generic-]version.img
kboot /dev/sda
lefa '-0
=5

splashlmage-indo 6)/boot/grub/splash.xpm.gz

e Red Hat Enterprise Linux 6 (2.6.32-642.el16.x86 64)
t (hde,6)

1 /boot/vmlinuz-2.6.32-642.e16.x86 64 ro root=UUID=890a091c-45a3-4947-afd9-ee5468f72
c2a rd NO LUKS rd NO LVM LANG=en US.UTF-8 rd No ‘MD SYSFONT=latarcyrheb-sun16 crashkernel=auto KE
YBOARDTYPE= pc KEYTABLE=us rd NO DM rhgb quiet IE

| /boot/initramfs-2.6.32-642.e16.x86 64.img

le Windows
tr fy (hde,e)
+1
e Solaris
ot fy (hde,l)
+1
e BSD
fy (hd®,2)
1 +1I
== INSERT -- 29,16-23 Bot '7
| @ root@Iocalhost:/boot/q... | aP &

Figure 2-75. The tweaked grub.conf file of RHEL 6

75

CHAPTER2 MULTIBOOT

After rebooting, GRUB will show the mentioned title entries. See Figure 2-76.

GNU GRUB wersion 8.97 (638K lower / 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.e16.x86_64)

Hindows
Solaris
BSD

Use the * and 4 keys to select which entry is highlighted.
Press enter to boot the selected 0S, 'e’ to edit the
commands before booting, 'a’ to modify the kermel arguments
before booting, or 'c’ for a command-line.

Figure 2-76. The GRUB welcome screen shown by RHEL 6

If a user chooses Windows, it will call part-2 of BCD, which is in the 31 KB space
of the first primary. This 31 KB space is also called the volume boot record (VBR). I
deliberately skipped the VBR explanation since it will unnecessarily create confusion. So,
in the case of Windows chainloading, just keep in mind that instead of part-1, part-2 will
be called. For those who want a bit more information about VBR, MBR is the master boot
record for the hard drive, located at the first sector of the hard drive. Each volume (think
partition) has its own boot record called the VBR as the first sector of the partition. Two
names for two similar things.

So, BCD’s part-2 will call part-3 of BCD, which is in the first primary partition. It will
read the BCD OS entries (bcdedit.exe), as shown in Figure 2-77, and will print them

on-screen.

76

CHAPTER2 MULTIBOOT

wWindows Boot Manager

Choose an operating system to start, or press TABE to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Earlier Version of wWindows

[indows 7 >

To specify an advanced option for this choice, press F8.
Seconds until the highlighted choice will be started automatically: 13

Tools:

wWindows Memory Diagnostic

ENTER=Choose TAB=Menu ESC=Cancel

Figure 2-77. The OS entries shown by the BCD bootloader

If a user chooses the Earlier Version of Windows, as we saw earlier (during Windows
7’s booting sequence), it will run part-3 of NTLDR, which is again on the first primary
partition. As shown in Figure 2-78, NTLDR will read the boot. ini file from the C drive
and will print the OS entries.

Please select the operating system to start:

Hindows Server 26883, Enterprise

Microsoft Windows XP Professional

Use the up and down arrow keys to rove the highlight to your choice.
Press ENTER to choose.

Figure 2-78. The OS entries shown by win2k3’s NTLDR

77

CHAPTER2 MULTIBOOT

If a user chooses XP, part-3 of NTLDR knows where the kernel of XP is. Instead,
the user chooses win2k3, and then the same NTLDR will load the kernel of win2k3 in
memory.

Refer to Figure 2-79, which is the main boot screen provided by RHEL, if the user
chooses OpenSolaris.

GNU GRUB wversion 8.97 (638K lower -~ 3143552R upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.el6.x86_64)
Windows
Solaris

BSD

Figure 2-79. The OS entries shown by RHEL

The following are the instructions that will be followed by GRUB:

title Solaris
rootnoverify (hdo,1)
chainloader +1

So, RHEL GRUB’s part-3 will hand over control to the bootstrap of the second
primary partition, but remember that win2k3 has cleared part-1 of OpenSolaris GRUB.
Hence, as visible in Figure 2-80, it will fail to boot.

GNU GRUB wversion 8.95 (638K lower 7 3143552K upper mMemory)
[Minimal BASH-like line editing is supported. For the first word, TAB
lists possible command completions. Anywhere else TAB lists the possible
completions of a devicesfilename. 1

grub>

Figure 2-80. OpenSolaris failed to boot
78

CHAPTER2 MULTIBOOT

This means we need to fix the OpenSolaris bootloader first. To fix it, we need to boot
from the OpenSolaris live CD image, which we used to install OpenSolaris and, once it
was booted, installed part-1 and part-2 (part-2 is not necessary but good to reinstall) of
GRUB from the live CD to the OpenSolaris partition’s reserved 512 bytes + 31 KB. The
command that we will use is installgrub. As the name suggests, the command will copy
part-1 (stagel) and part-2 (stage2) of GRUB from the live image and place them in the
OpenSolaris partition’s 512 bytes + 31 KB space. Figure 2-81 shows the command in action.

#installgrub /boot/grub/stageil /boot/grub/stage2 /dev/rdsk/c4d1iso

o0 = =3
Browse and run installed applications|

| |En Tue Nov 26, 12:03PM ¥’ @

2 @ Terminal EE8
Eile Edit View Jerminal Tabs Help j
-bash-3.2# installgrub /boot/grub/stagel /boot/grub/stage2 /dev/rdsk/c4dlsé
Solaris boot partition inactive.

stagel written to partition 1 sector 0 (abs 20482048)

stage? written to partition 1, 260 sectors starting at 58 (abs 20482098)
-bash-3.2#

& (@ Terminal =

Figure 2-81. The installgrub command

After rebooting, RHEL will again show the same OS entries (Figure 2-82) since for
RHEL nothing has changed.

79

CHAPTER 2 MULTIBOOT

GNU GRUB wversion B8.97 (638K lower ~ 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.el6.%x86_64)
Hindows

Solaris

BSD

Figure 2-82. The OS entries shown by RHEL

If this time we choose OpenSolaris, then RHEL GRUB's part-3 will chainload part-1
of OpenSolaris GRUB from the second partition. Part-1 will call part-2, and eventually it
will call part-3 from the actual OpenSolaris partition. Part-3 of OpenSolaris GRUB will
read /rpool/boot/grub/menu.lst, and as shown in Figure 2-83, it will print the titles on

the screen.

GNU GRUB wversion 8.95 (638K lower ~ 3143552K upper memory)

OpenSolaris 2888.85 snu_86_rc3 XB86
Hindows

Use the + and ¥ Keys to select which entry is highlighted.
Press enter to boot the selected 0S, 'e’ to edit the
commands before booting, or 'c’ for a command-line.

00
O e®
®0 popensolLaris

Figure 2-83. The OS entries shown by OpenSolaris

80

CHAPTER2 MULTIBOOT

If a user chooses OpenSolaris, then part-3 of OpenSolaris GRUB will load the kernel
from /boot. If the user chooses Windows, then part-3 of OpenSolaris GRUB will follow
these instructions from /rpool/boot/grub/menu.1st:

title Solaris
rootnoverify (hdo,1)
chainloader +1

We know now what is going to appear on-screen (refer to Figure 2-84).

Windows Boot Manager

Choose an operating system to start, or press TABE to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Earlier Version of wWindows
[indows 7

To specify an advanced option for this choice, press F8.
Seconds until the highlighted choice will be started automatically: 13

Tools:

wWindows Memory Diagnostic

ENTER=Choose TAB=Menu ESC=Cance]l

Figure 2-84. The OS entries shown by BCD

The story will continue if the user chooses Earlier Version of Windows, which we

have already discussed. Going back to the original OS list, Figure 2-85 shows what is
presented by RHEL's GRUB.

81

CHAPTER 2 MULTIBOOT

GNU GRUB wversion 8.97 (638K lower -~ 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.elb6.x86_64)

Hindows
Solaris
BSD

Use the T and 4+ keys to select which entry is highlighted.
Press enter to boot the selected 0S, 'e’ to edit the
commands before booting, 'a’ to modify the kernel arguments
before booting, or 'c’ for a command-line.

Figure 2-85. The OS entries shown by RHEL

If the user chooses to boot BSD, you know exactly what is going to happen. Part-3
of RHEL's GRUB will chainload part-1 of BTX from the third primary partition. Part-1
of BTX will call part-2, and part-2 will call part-3 of BTX. Part-3 of BTX will show the
welcome screen, as shown in Figure 2-86.

82

CHAPTER2 MULTIBOOT

Figure 2-86. PC-BSD'’s welcome screen

Once chosen to boot, part-3 of BTX will load the kernel of BSD Unix in memory. So,
all the operating systems, whichever we installed so far, are able to boot now, and it does
not matter which partition is active. But can we hack the Windows bootloaders and force
them to boot the Linux and Unix operating systems from our list? We can, and that’s

what we will do now.

Hacking the Windows Bootloaders

It’s actually pretty easy to trick the Windows bootloaders. As we saw earlier, bootloaders
do chainloading; for example, part-1 calls part-2 of its bootloader and so on. To
understand the trick, let’s take BSD as an example. Part-1 of BCD is calling its part-2 of
BCD, but if we tell BCD'’s part-1 to chainload part-1 of RHEL, then part-1 of RHEL will
run, and it will eventually follow its own booting sequence. Part-1 of GRUB (RHEL) will

83

CHAPTER2 MULTIBOOT

call part-2 of GRUB, and it will eventually chainload part-3 of GRUB since part-3’s block
address is hard-coded in part-2. This means once part-1 of any bootloader runs, it will
start following its own boot sequence, and we will take advantage of this behavior.

To achieve this, we need to get part-1 of every non-Windows-based bootloader
and place it into the Windows filesystem. So, the filesystem could be FAT32 or
NTES. Obviously, placing part-1 of every non-Windows-based bootloader on the
first primary has the most advantages since every Windows operating system has
installed their respective bootloaders on the first primary partition. So, through the dd
command, we will copy the first 512 bytes (even the first 440 bytes is enough) of every
non-Windows-based OS and place them in XP’s partition. Let’s mount the first primary
partition, as shown in Figure 2-87.

QApplications Places System . & ____/:

¢ © =3 | satNov30,12:06AM| root

(3] root@localhost:~/Desktop
File Edit View Search Terminal Help

[root@localhost Desktop]# mount /dev/sdal /mnt/ [~
[root@localhost Desktop]#
[root@localhost Desktop]# ls /mnt/

Click to view your appointments and tasks |

: Program Files b=
Boot Documents and Settings N ' SRECYCLE.BIN
WINDOWS

[root@localhost Desktopl# |}

Figure 2-87. The mount command

Let’s copy the first 512 bytes and place them on the sdal partition. Refer to Figure 2-88
for this.

84

CHAPTER2 MULTIBOOT

¢ @ =5 SatNov30,12:09 AM root

@ Applications Places System @ & [
=l root@localhost:~/Desktop

L Change account settings and status
File Edit View Search Terminal Help

[root@localhost Desktopl# dd if=/dev/sda of=/mnt/RHEL.out bs=512 count=1 E]
1+0 records in

1+0 records out

512 bytes (512 B) copied, 0.000599244 s, 854 kB/s

[root@localhost Desktop]#

[root@localhost Desktopl# dd if=/dev/sda2 of=/mnt/SOLARIS.out bs=512 count=1
1+0 records in

140 records out

512 bytes (512 B) copied, 0.00106082 s, 483 kB/s

[root@localhost Desktop]#

[root@localhost Desktop]# dd if=/dev/sda3 of=/mnt/BSD.out bs=512 count=1

1+0 records in

140 records out

512 bytes (512 B) copied, 0.000965299 s, 530 kB/s

[root@localhost Desktop]#

[root@localhost Desktop]# ls /mnt/

Boot
(1G. WINDOWS
Documents and Settings Program Files
[(; $RECYCLE.BIN
[root@localhost Desktopl# [}
[@ root@localhost:~/Desk... | -1 N

Figure 2-88. Transferring the first 512 bytes to the first primary

Now we will boot back in XP, and as shown in Figure 2-89, we will add the part-1
files entries in the boot. ini file. The boot. ini file is read by both Windows bootloaders,
which are BCD and win2k3’s NTLDR.

85

CHAPTER2 MULTIBOOT

I boot.ini - Notepad

File Edt Format Yiew Help

»
;warning: Boot.ini is used on windows xP and earlier operating systems.
swarning: Use BCDEDIT.exe to modify windows vista boot options.

tboor Toader]

timeout=30

default=multi(0)disk (0Irdisk(0)partition(4) \WINDOWS

[operating systems]

mu tiEogd1skEogrdiskEogpartitiongd)\wxuoows-"windnws Server 2003, Enterprise"” /NOEXECUTE=0PTOUT /
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft windows xP Professional” /NOEXECUTE=OPTIN

C:\RHEL.out="RHEL"
C:\SOLARIS. out="SOLARIS"
C:\BSD.out="BsSD"

. s stanrt 2 P boot.ini - Notepad

Figure 2-89. Adding the entries in the boot.ini file

The following are the entries that we have added:

c:\RHEL.out="RHEL"
c:\SOLARIS.out = "SOLARIS"
c:\BSD.out="BSD"

Just like the grub. conf file, whatever is written in double quotes in boot.ini will be
considered the title of the OS entry. Now let’s reboot the system and choose the Windows
OS entry from the RHEL OS list (refer to Figure 2-90).

86

CHAPTER2 MULTIBOOT

GNU GRUB wversion 8.97 (638K lower -~ 3143552K upper memory)

BSD

Red Hat Enterprise Linux 6 (2.6.32-642.e16.x86_64)

Solaris

Figure 2-90. The OS list shown by RHEL

How we reached this screen is easy to understand.

1.

The system goes first to the BIOS, then to POST, then to the BIOS,
then to the first 512 bytes, and then to the bootstrap (part-1) of
RHEL (GRUB).

Then comes part-1 of GRUB, which jumps to part-2 of GRUB,
which jumps to part-3 of GRUB, which goes to /boot/grub.conf,
which prints the OS titles.

The user has chosen Windows, so next comes part-1 of BCD from
the first primary partition and then part-2 of BCD.

Finally, it goes to part-3, then bcd. exe, and it will read the boot.ini
file and whatever is written into the double quotes will be printed

on screer.

The OS list is visible in Figure 2-91.

87

CHAPTER 2 MULTIBOOT

wWindows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Earlier version of windows

windows 7
RHEL
SOLARIS
BSD

Figure 2-91. The OS entries shown by Windows 7 (BCD)

If the user chooses Earlier Version of Windows, then BCD’s part-3 will call part-3 of
win2k3’s NTLDR. NTLDR will again read the boot. ini file and print the OS list, as shown
in Figure 2-92.

Please select the operating system to start:

Windows Server 20883, Enterprise

Microsoft Hindows XP Professional
RHEL

SOLARIS

BSD

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.

Figure 2-92. The OS entries shown by win2k3’s NTLDR

If a user chooses OpenSolaris, then part-3 of NTLDR will run the Solaris.out file
from C: (the first primary partition). The Solaris.out file is nothing but part-1 of the
OpenSolaris bootloader from the second partition. Part-1 of the OpenSolaris bootloader
will call part-2 and eventually part-3 of GRUB. It will read the menu. 1st file and will print
the OS list (Figure 2-93).

88

CHAPTER 2 MULTIBOOT
GNU GRUB wversion B8.95 (638K lower ~/ 3143552K upper memory)

OpenSolaris 2888.85 snv_86_rc3 X86
Hindows

Use the t+ and 4 keys fo select which entry is highlighted.
Press enter to boot the selected 0S, 'e’ to edit the
commands beforel booting, or 'c’ for a command-line.

®0 pgpensoLaris

Figure 2-93. The OS entries shown by OpenSolaris GRUB

If the user again chooses Windows, then part-3 of OpenSolaris will call part-2 of BCD
from the first primary partition (rootnoverify (hdo,0)). (Part-2 of BCD will be in the
VBR section of the first primary partition. We will not cover the VBR in this book.) BCD’s
part-2 will call part-3 of BCD. It will read the OS entries through bcdedit.exe and from

boot.ini and print the OS entries. The OS entries printed on the screen are visible in
Figure 2-94.

windows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

wWindows 7
RHEL
SOLARIS
BSD

Figure 2-94. The OS entries shown by Windows 7 (BCD)

89

CHAPTER 2 MULTIBOOT

This is how we have created a bootloader’s loop (refer to Figure 2-95 and Figure 2-96).

Please select the operating system to start:

Windows Server 2883, Enterprise
Microsoft Hindows XP Professional
SOLARIS

BSD

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.

Figure 2-95. The RHEL entry has been chosen to boot

GNU GRUB wversion 8.97 (638K lower - 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.e16.%x86_64)

Hindows
Solaris
BSD

Figure 2-96. The OS entries shown by RHEL's GRUB

As you can see, Linux is booting Windows, Linux is booting Unix, Unix is booting
Windows, Windows is booting Windows, and Windows is booting Linux, but one thing is
still missing, and that is Linux is booting Linux. For that, we will install the final OS from
our list, and that is Fedora 15.

Fedora 15

As shown in Figure 2-97, we are installing Fedora 15 on sda8.

90

CHAPTER2 MULTIBOOT

Applications Places

Fedora Installer

Drive /dev/sda (76800 MB) (Model: ATA VMware Virtual 1)

idevisda2|l/devrsdas [[devisdas [/devisdas idevisda7 [/dev/sdas [[devisd
3209 MB |]L0000 MB (L0000 MB |10000 ME [LO0OOO ME (10000 MB (5754 M

Idevisdal
10000 MB

Devi Size Mount Point/ B F -
evice e orma’
(MB) RAID/Volume P

= Hard Drives

¥ sda

sdal 10000 vfat

sda2 9209 ext3

Free 790

sda3 10000 Unknown

= sdad 46799 Extended
sdaS 10000 ntfs
sdab 10000 ntfs
sda7 10000 extd
v

sda% 6794 swap

Create Edit Delete Reset

Back Mext

& Fedora Installer

Figure 2-97. The Fedora installer

By default Fedora will try to install its bootloader on the first primary, but if we allow
that, then again we need to add the entry of every other OS in its grub.conf. Instead, we
will follow a different approach. We will install the bootloader of Fedora (GRUB) on its
own partition (sda8) instead of sdal. See Figure 2-98.

91

CHAPTER 2 MULTIBOOT

Applications Pl

Fri Nov 29, 8:57 PM

¥ Install boot loader on /dev/sda. | Change device

Use a boot loader password

Boot loader operating system list

Default Label Device

Add
Other /dev/sdaS Edit
i
0 Fedora /dev/sda8
Boot loader device Delete
Where would you like to install the
boot loader for your system?
Master Boot Record (MBR) - /dev/sda
® |First sector of boot partition - /dev/sda8
b BIOS Drive Order
Cancel OK
Back Next
& Fedora Installer Ei

Figure 2-98. The bootloader device selection

This means after rebooting Fedora will never be able to boot since RHEL's GRUB

does not know about this new OS, so we need to add Fedora’s entry into grub. conf of
RHEL. To do that, let’s mount sda8, as shown in Figure 2-99.

@ Applications Places System @ & {’ ¢ @ I'g Sat Nov 30, 2:32 AM| rool

Click to view your appointments and tasks

root@localhost:~/Desktop
File Edit View Search Terminal Help

‘root@localhost Desktopl# mount /dev/sda8 /mnt/
‘root@localhost Desktopl#

root@localhost Desktopl# vim /mnt/boot/grub/grub.conf ||

Figure 2-99. The mounting of Fedora’s partition

Copy Fedora’s entries (see Figure 2-100) from Fedora GRUB'’s grub. conf file: /mnt/
boot/grub.conf.

92

CHAPTER2 MULTIBOOT

M Applications Places System @ & [a =% SatNov 30, 2:32AM root

Browse and run installed applications JRCEUCIEICILBEG L)
File Edit View Search Terminal Help
grub.conf generated by anaconda

#
Note that you do not have to rerun grub after making changes to this file
NOTICE: You do not have a /boot partition. This means that
all kernel and initrd paths are relative to /, eg.
root (hde,7)
kernel /boot/vmlinuz-version ro root=/dev/sda8
initrd /boot/initrd-[generic-]version.img
#boot=/dev/sda8
=0
=5

splashimage=(hd0,7)/boot/grub/splash.xpm.gz

[ELtLe Fedora (2.6.38.6-26.rcl.fcl5.x86 64)

"

/vmlinuz-2.6.38.6-26.rcl.fc15.x86 64 ro root=UUID=26294080-58fd-4771-b460-7ac
rd NO LVM rd NO MD rd NO DM LANG=en US.UTF-8 SYSFONT=latarcyrheb-sunl6 KEYTA

it! Other
(hde,4)
+1
== INSERT -- 21,1 ALl
(@ root@localhost: ~/Desk... B

Figure 2-100. The grub.conffile of Fedora 15

The entries are simple. Whenever part-3 of Fedora is called, it will load the kernel
of Fedora from /boot/vmlinuz-2.6.38.6-26.rc1.fc15.x86_64 into the memory. After
that, it will load initramfs from /boot/initramfs-2.6.38.6-26.rc1.fc15.x86_64.img
into the memory.

Figure 2-101 shows RHEL's /etc/grub. conf file after copying the entry of Fedora
from /mnt/etc/grub.conf.

93

CHAPTER 2 MULTIBOOT

M@ Applications Places System @ && (7 ¢ @ =5 SatNov30, 2:33AM root
fBrowseand LS EVETICIGG root@localhost:~/Desktop o
File Edit View Search Terminal Help

splashimage=(hd®,6)/boot/grub/splash.xpm.gz ~

Red Hat Enterprise Linux 6 (2.6.32-642.el6.x86 64)
(hde,6)

/boot/vmlinuz-2.6.32-642.e16.x86 64 ro root=UUID=890a091c-45a3-4947-afd9-ee5468172
c¢2a rd NO LUKS rd NO LVM LANG=en US.UTF-8 rd NO MD SYSFONT=latarcyrheb-sunl6é crashkernel=auto KE
YBOARDTYPE=pc KEYTABLE=us rd NO DM rhgb quiet

/boot/initramfs-2.6.32-642.el6.x86_64.img

Windows
(hde,e)
+1
Solaris
(hde, 1 =
+1
BSD
(hd@,2)
+1

Fedora (2.6.38.6-26.rcl.fcl5.x86 64)
hde,7)
/boot/vmlinuz-2.6.38.6-26.rcl.fcl15.x86 64 ro root=UUID=26294080-58Td-4771-b4606-7ac

6591621a6 rd NO LUKS rd NO LVM rd NO MD rd NO DM LANG=en US.UTF-8 SYSFONT=latarcyrheb-sunlé KEYTA
b quiet
/boot/initramfs-2.6.38.6-26.rcl.fc15.x86 64.img

-- INSERT -- 5.4 Kot
| [@ root@localhost: ~/Desk...

.(!

Figure 2-101. The grub.conf file of RHEL
After reboot, we will get the Fedora entry (Figure 2-102).

GNU GRUB wversion 8.97 (638K lower - 3143552K upper memory)

Red Hat Enterprise Linux 6 (2.6.32-642.e16.x86_64)
Hindous
Solaris

BSD

Fedora (2.6.38.6-26.rcl. fc15.x86_64)

Figure 2-102. The OS entries shown by RHEL

When the user chooses Fedora to boot, as per the entry in RHELs grub. conf file,
part-3 of RHEL's GRUB will load the kernel from the eighth partition (sda8 of Fedora) and
will also load initramfs from the same location (we will talk about initramfs in Chapter 5),

and the bootloader will go away.

94

CHAPTER2 MULTIBOOT

Complete Flowchart

Figure 2-103 shows the complete flowchart of every OS that we have installed so far.

i
I
i = Part-3 of RHEL's
| | Poweron->Bios > R Par2ofRHELs | | GRUBreads
| POST -> BIOS RHEL’s GRUB GRUB grub.conf and prints
| the OS entries
I e e e o e e e
! i T 3) | .
I
| Solaris Windows BSD
RHEL - : I
! ™| rootnoverify (hd0,1) rootnaverify (hd0,0) rootnoverty (h02) | | pecon
;] 1 1 1 —
| Part-3 of RHEL's Part-1 & part-2 of Part-2 & part-3 of Part-1 & par-2 of 1 Part-3 of RHEL's
| GRUB would load Solaris GRUB from Seven's BCD from BSD's BTX from : ‘GRUB would load
| the /bootivmiinuz & sda2 sdal sda3 | the /bootivmlinuz &
: fbootiinitramfs from T I 1 i | /bootinitramfs from
sda? | sda8
: part-3 of Solaris GRUB Will read the O8 Part-3 of BSD's BTX |
| from sda2 will read the entries from would load the :
! menu.Ist and prints the bededit.exe and kernel from sda3 |
I 0OS entries boat.ini from sdat |
| r L ~ I
I
I
! Solaris -k, Windows [-—- }
! ! |
| i H i ! !
|
L e 1l Solaris Windows BSD |
4 : : rootnoverify (hd0,1) rootnoverify (hd0,0) rootnoverify (hd0,2)
| 1 1
: i { : 1 ¥ ¥ }
I [
= RHEL - Solaris Windows 7 Earlier version of Windows BSD o
| 1"
i
! y l l
I Pa y
| Part-3 of BCD would
1 would load the : run the winlosd.sxe Part-3 of NTLDR
I [bootivmiinuz & ——\\ hich will load the would read the
! fbootfinitrams from \ } ; boot.ini and would
] 4 seven's kemel in list the OS S
| memory. entries
| N\ T
1) 5 1] 1)
| ~
e RHEL ~ Solaris XP 2k3 BSD -
Part-3 of win2k3's Part-3 of win2k3's
NTLDR would load NTLDR would load
the XP's kemel in the 2k3's kemnel in
memory

Figure 2-103. The complete flowchart of all the operating systems

I hope you now understand the way bootloaders boot the operating systems on a
BIOS-based system. Now it’s time to understand the new firmware, which is Unified
Extensible Firmware Interface (UEFI).

95

CHAPTER2 MULTIBOOT

Unified Extensible Firmware Interface (UEFI)

Here are the BIOS limitations you have observed so far:
e You can have only four primary partitions.
o The BIOS cannot read the logical partitions.

e The BIOS is kind of dumb; it just jumps to the first sector
of your HDD.

e The maximum partition size with a BIOS-based system is 2.2 TB.

Why does it have such limitations? The BIOS firmware was designed in 1982 for IBM
PC-5150 (Figure 2-104), which used to have this configuration:

CPU = 8088 - 16bit x86 processor
Memory = upto 256KB max
0S = MS-DOS

Figure 2-104. IBM PC-5150

As you can see, the BIOS was designed for this PC 38 years ago. In these three
decades, operating systems grew from floppy disks to NVME disks and from text mode
to shiny GUIs. The hardware devices went from drivers to plug and play, but the BIOS
remained the same, which initially had a 16-bit instruction set, and in later stages it
started using a 32-bit instruction set. Nowadays we have 64-bit CPUs, but the BIOS is
still made from 32-bit instructions. The reason we did not upgrade the BIOS to 64-bit

96

CHAPTER2 MULTIBOOT

is because of historical reasons. When everything is working, why rewrite something?
That'’s the philosophy the computer industry has adopted anyway. When the CPU went
from 16-bit (8088) to 64-bit (i9), the BIOS remained either on 16-bit or on 32-bit, because
at the time of the early stages of booting, it was not necessary to have a 64-bit CPU, and
this is the reason we have CPU modes (real, protected, and long).

In real mode, the CPU will be restricted to 16 bits. In this mode, programs like the
old BIOS that have 16-bit instructions will run. These programs cannot run in any other
mode. Later, the CPU will switch from real mode to protected mode. The protected
mode is 32 bits, and programs these days, like the BIOS, that have 32-bit instructions
sets will run under this mode, and later the CPU will be placed in long mode, which
is 64 bits. Remember, these modes are not implemented by the CPU; rather, they are
implemented by firmware like the BIOS. This means if we remove the same CPU from a
real mode-enabled system and place it on a system that does not have real mode, then
the same CPU will directly start in protected mode. We will talk about these modes again
in Chapter 4.

Since the BIOS runs in protected mode, the address space that is available for the
BIOS is only 4 GB. If the system has 20 GB of memory, the BIOS will only be able to
address up to 4 GB. Though the system has a 64-bit I9 processor, the BIOS will still
be able to use only 32 bits of it. Because of these hardware challenges, the BIOS has

limitations.

BIOS Limitations

These are some limitations of the BIOS:
o BIOS will only be able to jump to the first sector, which is 512 bytes.

o The MBR, which is 64 bytes in size, is part of the first boot sector.
If we increase the size of the MBR, it will go beyond the 512 bytes;
hence, we cannot increase the size of the MBR, which is the
reason why the BIOS can provide only four primary partitions.

e BIOS cannot generate good graphics/GUIs.

o Now this is a generic statement, and it is used in comparison with
UEFI. There are some BIOS vendors that have implemented web
browsers outside of the OS, but such implementations are rare to
see on normal desktop hardware.

97

CHAPTER2 MULTIBOOT

e Also, at Phoenix, some of the BIOS implementations has a FAT32
driver in it through which it manages to show icons inside a
setup.

¢ You cannot use a mouse in the BIOS.

e There are many BIOS vendors that have mouse support, but again
itis rare to find in normal desktop systems.

e The maximum partition size is 2.2 TB.

e The BIOS uses and supports an MS-DOS partition table, which is
quite old, and it has its own drawbacks like 2.2 TB of maximum
partition size.

e The BIOS is dumb because it does not understand the bootloader
or the OS.

e Itisslow because of the hardware limitations.

o Interms of booting speed, the BIOS is slow since it takes time to
initialize the hardware.

o The BIOS takes almost 30 seconds to start the actual OS-level
booting.

o [Itstruggles to initialize the new-generation hardware devices.
e BIOS has limited preboot tools.

o Compared to the UEFI firmware, the BIOS has very few preboot
tools such as remote hardware diagnostics, etc.

So, to overcome all these BIOS limitations, Intel started an initiative in 1998 called
Intel Boot Initiative (IBI); later it became Extensible Firmware Interface (EFI). Intel was
joined by every other possible OS and hardware vendor (HP/Apple/Dell/Microsoft/
IBM/Asus/AMD/American Megatrends /Phoenix Technologies). They made an open
source forum for this project, and finally it became Unified Extensible Interface (UEFI).

The open source code is signed under the BSD license, but Intel’s base code is
still proprietary. UEFI is basically an open source framework, and vendors build their
applications on top of it based on the specification provided by UEFI.org. For example,
American Megatrends built APTIO, and Phoenix Technologies built the SecureCore UEFI
firmware. Apple was the first that dared to launch systems with UEFI firmware in it. All

98

http://uefi.org

CHAPTER2 MULTIBOOT

the drawbacks that the BIOS has are because of its 16-bit instruction set. Since this 16-bit

instruction set limits BIOS hardware usage to 1 MB of address space, UEFI targeted and

resolved that limitation.

UEFI Advantages

UEFI supports 64-bit processors; hence, it does not face any of the hardware limitations
that the BIOS faces.

UEFI can use the full CPU. Unlike the BIOS (which is stuck with 16
bits of processor), UEFI can access up to 64 bits.

UEFI can use a full RAM module. Unlike 1 MB of address space of the
BIOS, UEFI can support and use terabytes of RAM.

Instead of 64 bytes of a tiny MBR, UEFI uses the GPT (GUID) partition
table, which will provide an infinite number of partitions, and all

will be primary partitions. In fact, there is no concept of primary and
logical partitions.

A maximum partition size is 8 zettabytes.
UEFI has enterprise management tools.
a) You will be able to fix the computer remotely.

b) You will be able to browse the Internet inside the UEFI
firmware.

c) You will be able to change the UEFI firmware behavior/
settings from OS.

i) To change the settings of BIOS, we have to reboot the
system since OS runs in long mode, whereas BIOS runs in
real mode, and real mode can only be possible at the time
of boot.

UEFI is a small OS.
a) You will have full access to audio and video devices.
b) Youwill be able to connect to WiFi.

c¢) You will be able to use the mouse.

99

CHAPTER 2

MULTIBOOT

d)

e)

f)

g)

h)

In terms of the GUI, UEFI will provide a rich graphics
interface.

UEFI will have its own app store like we have for Android and
Apple phones.

You will be able to download and use the applications from
the UEFI app store, just like with Android and Apple phones.
Hundreds of apps are available such as calendars, email
clients, browser, games, shells, etc.

UEFI is able to run any binary that has an EFI executable
format.

It boots operating systems securely with the help of the Secure
Boot feature. We will discuss the Secure Boot feature in depth
later in this book.

UEFI is backward compatible, meaning it will support the
“BIOS way” of booting. In other words, operating systems that
do not have UEFI support will also be able to boot with UEFI.

The GUI of UEFI

Figure 2-105 shows the GUI implementation of ASUS.

100

CHAPTER2 MULTIBOOT

UEFI BIOS Utility - EZ Mode
LS

T english Q) EZ Tuning Wizard(F11)

€D

Normal
Switch all

[XMP. | pisabled

EVO Plus 178
% CHA FANY
-

% " CHA FAN2 % CHA FAN3

£ -

% HAMP \ CPU OPT FAN
£ 1161 RPM

%\ EXT FAN1 %\ EXT FAN2
e -

QFan Control '::(' Boot Menu(F8)

Default(F5) Save & Exit(F10) Advanced Mode(F7)| <] Search on FAQ

Figure 2-105. ASUS UEFI implementation

Here are some things to notice:
¢ Therich GUI
e Mouse pointer

e Icons, buttons, scroll options, animations, graphs, drop-down
options, etc.

Of course, you need to get an expensive motherboard to get such a rich UEFI
implementation, but even the basic UEFI implementations are much better than the
BIOS implementations.

101

CHAPTER2 MULTIBOOT

UEFI Implementation

The UEFI forum releases the UEFI specification. The current UEFI specification when
writing this book was 2.8 and can be downloaded from https://uefi.org/specifications.
The current specification is 2,551 pages long, and every vendor (motherboard, OS, UEFI
developer, etc.) has to agree to it. The specification forces regulations that every vendor has
to follow. The following are some of the major UEFI regulations.

EFI System Partition (ESP)

Every OS vendor has to create one EPS partition, and the bootloader has to be installed
in this partition only. It is not necessary to create ESP as a first partition; it could be
created anywhere, but the ESP should have the FAT16/32 (preferably FAT32) filesystem.
The recommended ESP size is a minimum of 256 MB. The OS vendor has to create the
following directory structure in ESP:

EFI System Partition

— EFI

| — <0s_vendor_name>
| | — <boot_loader_files»

Once this structure is created, the OS has to install the bootloader inside the
/EFI/<os_vendor name>/ location only. Figure 2-106 shows you the UEFI structure.

HDD

EFI System Partition (ESP)

ﬂFI directory \

Microsoft

BCD
| Bootloader

Fedora Fedora Windows Ubuntu Other....

GRUB
Bootloader

sl ac kware

LILO
| Bootloader

Fat-32
Partition - 1 Partition -2 Partition - 3 Partition - 4 Partition - 5

Figure 2-106. The UEFI structure

102

https://uefi.org/specifications

CHAPTER2 MULTIBOOT

This means, like the 512 bytes + 31 KB space reserved for bootloaders, in the same
way we have a 256 MB minimum dedicated space for bootloaders in UEFI. The ESP
partition will be mounted in Linux under the mount point /boot/efi.

EFI

It's compulsory for every OS vendor to write bootloader files in the EFI executable
format. Also, the files should have the .efi extension.

Secure Boot

One of the best features UEFI provides is Secure Boot. The feature was proposed by
Microsoft and later added in the UEFI specification. Microsoft first used the Secure Boot
feature in Windows 8. We will talk about Secure Boot in detail once we get familiarized
with how UEFI works.

Partition Table

The recommended partition table is GPT, which is a GUID partition table, whereas the
BIOS uses an MS-DOS partition table.

For a better understanding of UEFI, we will use the same approach that we used with
the BIOS. We will use a new system named UEFI, which has the UEFI firmware on it, and
we will install a couple of OSs in it.

List of Operating Systems

As you know, UEFI uses a GPT partition table; hence, there is no primary or secondary/
logical partition concept. This also means there is no particular priority to the
installations of operating systems. You can install operating systems in any way you
want. We will install the OSs in this order:

1) Ubuntu 18
2) Windows 10

3) Fedora3l

103

CHAPTER2 MULTIBOOT

Ubuntu 18.04 LTS

We have almost 64.4 GB of HDD. It is not necessary to use a GParted-like tool to create
the partition layout like we used with the BIOS. We will use a Ubuntu-provided default
disk utility instead. See Figure 2-107.

Mon 12310

Install

Installation type

[free space

Device Type Mount point Format? Size Used System
Jdevfsda
free space B c4424MmB

+ | = || €hange New Partition Table... | Revert
Device for boot loader installation:

[devfsda VMware, VMware Virtual S (64.4 GB) -

Quit Back Install Now

Figure 2-107. The disk layout provided by Ubuntu

As shown in Figure 2-108, we will create a 3 GB ESP partition first.

104

CHAPTER2 MULTIBOOT

For Create partition

Size: 3000 — + |[MB
Type For the new partition: © Primary
Logical
Location For the new partition: © Beginning of this space

End of this space

Use as: | EFI System Partition v

Cancel | OK

Figure 2-108. Creating the ESP partition

Once ESP is created, we will make one more partition (10 GB) for Ubuntu’s root
filesystem. Figure 2-109 shows the final partition layout of Ubuntu.

Mon 12112

Install

Installation type

E—

B free space @ sda1 (extd) M sdaz (extd) [free space

Device Type Mount point Format? Size Used System
fdevfsda

free space 1MB

fdev/sda2 extd4 [v 10000 MB unknown

free space 51424 MB

+ | = | Change... New Partition Table Revert

Device for boot loader installation:

/dev/sda VMware, VMware Virtual S (64.4 GB) -

Quit Back Install Now

Figure 2-109. The partition layout of Ubuntu

105

CHAPTER2 MULTIBOOT

After the installation, you can see in Figure 2-110 that ESP is mounted on /boot/efi
and the root filesystem is mounted on sda2.

Activities [Terminal « Mon 17:52 S O~

root@yogesh-virtual-machine: fhomefyogesh

’) File Edit Vview Search Terminal Help

root@yogesh-virtual-machine: /home/yogesh# df -h
Size Used Avail UseX% Mounted on
7.9G e 7.9G 0% [dev
1.6G__1.8M 1.6G 1% /run
9.2G 5.2G 3.5G 61% /
7.96 @ 7.96G 0% /dev/shm
5.6M 4.8K 5.8M 1% /run/lock
7.9G 8 _7.9G 0% /sys/fs/caroup
2.86 6.1M 2.8G 1% [boot/efi
1.6G S6K 1.6G 1% /runfuser /1688
89M BIM 8 168% /snap/core/7276
2.6 2.6G 8 100% /mediaf/yogesh/Ubuntu 18.64.3 LTS amdé64
55M 55M 0 100% /snap/corelB8/1066
43M 43M 6 160% [snap/gtk-common-themes/1313
156M 156M 0 108% /snap/gnome-3-28-18084/67
4.2 4.2M 6 100% /snap/gnome-calculator 466
15M 15M © 108% /snap/gnome-charactersf296
1.6M 1.6M 0 108% /snap/gnome-logs/61
3.84 3.8M 0 108% /snap/gnome-system-monitor/180
1.6G ® 1.6G 0% frunjfuser/®
root@yogesh-virtual-machine: /home/yogesh#

Figure 2-110. The mount points

Also, as per the UEFI specification, Ubuntu has created a directory structure of
/EFI/ubuntu in the /boot/efi (sdal) mount point and installed the GRUB bootloader
in it. See Figure 2-111.

root@yogesh-virtual-machine: /home/yogesh# 1s -1 /boot/efi/EFI/ubuntu/
total 3724

“FWX====== 1 root root 108 Dec 2 17:47 BOOTX64.CSV
drwx------ 2 root root 4096 Dec 2 17:47 fw
“FWX====-=- 1 root root 75992 Dec 2 17:47 fwupx64.efi
-FWX--~---- 1 root root 126 Dec 2 17:47 grub.cfg
-TWX----~-- 1 root root 1116024 Dec 2 17:47 grubx64.efi
“-FrWX=-=-==--- 1 root root 1269496 Dec 2 17:47 mmx64.efi
-TWX------ 1 root root 1334816 Dec 2 17:47 shimx64.efi

root@yogesh-virtual-machine: /home/yogesh# I

Figure 2-111. The EFI directory of Ubuntu

Also notice the .ef1i extensions to the bootloader files. The following is the Ubuntu
booting sequence on a UEFI system:

1) Power on the system.

2) It goes to the UEFI firmware. UEFI launches POST.
106

CHAPTER2 MULTIBOOT

3) POST checks the hardware and gives a healthy beep if everything
is good.

4) POST goes back to UEFI.

5) UEFIis smart; instead of jumping to the first 512 bytes, UEFI finds
the ESP partition.

6) Itjumps inside ESP. Again, UEFI is smart, and it understands
the bootloader. It lists the bootloader’s name on the screen.
In Ubuntu'’s case, it sees the grubx64.ef1i file; hence, it lists
the Ubuntu name in the boot priority of UEFI. Please refer to
Figure 2-112, where you can see the ubuntu entry inside UEFI’s
boot priority menu.

Boot Manager

Continue to boot using
> default boot order.

ubuntu

EFI UMua Jirtual SCSI Hard Drive (0.0)
EFT UM Jirtual SATA CDROM Drive (1.0)
EFI Network

EFI Internal Shell (Unsupported option)

Tl=Move Highlight {Enter>=Select Entry

Figure 2-112. The boot priority window of UEFI

107

CHAPTER2 MULTIBOOT

7) Remember, the bootloader has not yet been called or started by
UEFI. The BIOS used to show you only the available boot device
names like CD-ROM, HDD, and PXE, but UEFI goes inside the
device to check for the ESP partition and shows the OS name
directly.

8) The moment the user chooses the Ubuntu option, UEFI will run
grubx64.efi from the ESP partition. The absolute path will be /
boot/efi/EFI/ubuntu/grubx64.efi Next, grubx64.efi will read
grub.cfg, which is present in the same directory, and as shown in
Figure 2-113, it will print the title entries.

GNU GRUB wersion 2.62

Advanced options for Ubuntu
System setup

Figure 2-113. The welcome screen of Ubuntu

With the BIOS, there used to be jumps like this:

a) Go to the fdisk signature, go to part-1 of the bootloader, and go to part-2 of
the bootloader.

b) Go to part-3 of the bootloader and then go to the bootloader configuration
file like menu.1lst or grub.cfg.

c) Print the titles.

With UEF], the (a) jump is skipped. UEFI directly jumps to (b). The BIOS used to
have a bootloader divided into three parts because of space constraints, but UEFI does
not have any space limitations. Hence, the entire bootloader is available in just one
single binary. For example, in the case of Ubuntu, grubx64.ef1i has one, two, and three
parts all added in a single binary, which is grubx64.ef1i.

108

CHAPTER2 MULTIBOOT

The grubx64.ef1i file will eventually load the kernel (vmlinuz) and initramfs from /
boot into the memory, and then Ubuntu’s GRUB bootloaders job is done. Figure 2-114
shows the flowchart of Ubuntu’s boot sequence.

UEFI to ESP Jump -1
| HDD

EFI System Partition (ESP)

EFI directory -
/boot/efi/EFI

05 entries (jump- 2)

Ubuntu

grubx64.efi Ubuntu
(jump - 3)

...... Other....
fbootivmlinuz

grub.cfg /bootinitramfs
(jump - 4) A

Fat-32 /

Partition - 1 Partition -2 Partition - 3 Partition - 4 Partition - 5

Jump - 5

Figure 2-114. Ubuntu’s boot sequence

Windows 10

Asyou can see in Figure 2-115, partition 1 is ESP, and partition 2 is the root (/) of Ubuntu.

109

CHAPTER2 MULTIBOOT

. @) Windows Setup

Where do you want to install Windows?

Name Total size Free space Type
f_:,“? Drive 0 Partition 1 28GB 28 GB System
<z Drive 0 Partition 2 9.3GB 00MB Primary
e~ Drive 0 Unallocated Space 479 GB 479 GB
44 Refresh)(Delete & Format 3 New

€ Load driver ot Extend Sze: (17000 131 M8 [Apply | [Cancel |

%

Figure 2-115. The partition layout shown by Windows 10

Now we will create a new partition for Windows. While creating a new partition,
Windows will reserve some space for the Windows recovery tool called MSR (Microsoft
Recovery, partition 3). See Figure 2-116.

Windows Setup “

To ensure that all Windows features work correctly, Windows might create
additional partitions for system files.

| ok | | Cancel |

Figure 2-116. The MSR space reservation

110

CHAPTER2 MULTIBOOT

As shown in Figure 2-117, on the newly created partition 4, we will install Windows 10.

@ o Windows Setup i
Where do you want to install Windows?
Name Total size Free space Type

[Drive 0 Partition 1 28GB 28GB System

e~ Drive 0 Partition 2 93GB 00MB Primary

e~ Drive 0 Partition 3 16.0 MB 160 MB MSR (Reserved)

In(Drive 0 Partition 4 166 GB 166GB Primary

7 Drive 0 Unallocated Space 313 GB 313GB

€4 Refresh /< Delete & Format New

&* Load driver Z'} Extend

1. The amount of free space on the selected partition is smaller than the 34046 MB recommendation.
We recommend making it at least 34046 MB or selecting another partition.

Figure 2-117. Installing Windows 10 on partition 4

Windows will by default detect the ESP partition, and by following the UEFI
specification, it will create a directory named Microsoft in it and will install its
bootloader (BCD) in it. If Windows does not find ESP, then it will create one for us.
Since Windows is mainly for desktop users, it will not show us the ESP partition (refer to

Figure 2-118) the way Ubuntu shows it.

111

CHAPTER2 MULTIBOOT

= | 4 = | This PC
“ Computer View
B v 4 @, ThisPC

v O Search This PC

~ Folders (7)

Quick access

I Desktop

* 3D Objects Desktop
& Downloads »
[%] Documents » 3 N
e locuments ownloads
| Pictures + E .‘
b Music
B videos Music Pictures
@& OneDrive
3 This PC E Videos
¥ Network
 Devices and drives (2)
Local Disk (C:) DVD Drive (D:)
S — CCCOMA _XB4FRE_EN-US_
Wy 537 GB free of 16.5 GB 0 bytes free of 4.36 GB
9 items

Figure 2-118. ESP is hidden

This is how Windows 10 will boot on a UEFI-based system:

1) Power on the system: first UEFI, then POST, then UEF],
and then ESP.

2) Asvisible in Figure 2-119, print the OS entries as per the
directories found in ESP (/boot/efi/EFI).

112

il

CHAPTER2 MULTIBOOT

Boot Manager

> 10 boot using
the default boot order.

ubuntu
Windows Boot Manager

) I Hard Drive (0.0)
tual SATA CDROM Drive (1.0)

EFI Network

EFI Internal Shell (Unsupported option)

Tl=Move Highlight {Enter>=Select Entry

Figure 2-119. The OS entries inside UEFI

3) The moment the user chooses Windows Boot Manager, UEFI will
launch the bootmgfw.efi file from the EFI/Microsoft directory.
On a Linux-based system, the same file’s absolute path will be /
boot/efi/EFI/Microsoft/bootmgfw.efi.

4) bootmgfw.efi will eventually load the kernel of Windows from
C:\windows\system32\.

5) The Windows kernel will take care of the rest of the booting, and
while doing that, a famous animation, shown in Figure 2-120, will
be shown to users.

113

CHAPTER 2 MULTIBOOT

Figure 2-120. The famous Windows loading screen

6) Asyou can see from Figure 2-121, as of now, only one OS is
booting, and that is Windows 10. But don’t worry, because
Windows 10 is bound to follow the UEFI specification, so it has not
touched Ubuntu’s directory and of course has not added Ubuntu’s
entry in its own bootloader file.

UEFI to ESP Jump -1

| HDD

EFI System Partition (ESP)

.f//EFI directory \

05 entries (jump- 2)

Ubuntu

Microsoft

Ubuntu Windows 10 | ... Other....

bootmgfw.efi /bootivmlinuz windows 10 kemel
(jump - 3) fbootfinitramfs

BCD
configuration file
(jump - 4)

\ /

N Fawa2 ' p /

Faniuon =] Partition -2 Fartition { 3 - Partition - 4 Partition - 5

Jump -5
Figure 2-121. The boot sequence of Windows 10
114

CHAPTER2 MULTIBOOT

Fedora 31

The final OS that we will install is Fedora 31. As shown in Figure 2-122, we will again
create a standard partition, which is sda5, and we will mount /dev/sdal (ESP) on /
boot/efi.

* New Fedora 31 Installation sdal
: . Mount Point: Device(s):
s #1610, i:bo:h‘e-‘n I VMware, VMware Virtual § (sda)

* Ubuntu Linux 18.04 for x86_64

! 9.31GiB
sda?

+ Unknown

Figure 2-122. The Fedora installation

Remember, do not format sdal, which is ESP. Losing ESP means losing the
bootloaders of Windows and Ubuntu. After installation, Fedora’s GRUB will present us
with the OS list (Figure 2-123).

Fedora (5.3.7-301.fc31.x86_64) 31 (Thirty One)

Fedora (0-rescue-280526b3bc5e4c49acB83cBeSfbdfdb2e) 31 (Thirty One)
Windows Boot Manager (on /deu/sdal)

Ubuntu 18.04.3 LIS (18.049) (on /dev/sda2)

Advanced options for Ubuntu 18.04.3 LTS (18.04) (on /dev/sda2)
System setup

Figure 2-123. The OS entries shown by Fedora

115

CHAPTER 2 MULTIBOOT

While installing GRUB, the Fedora installer Anaconda detected other operating
systems from ESP. To give them an equal chance to boot, Fedora added Ubuntu and
Windows entries in grub. cfg. The following is the booting sequence of Fedora:

1) Power on the system: first UEFI, then POST, then UEFI.
2) UEFIwill jump inside ESP.

3) Itwill go inside an ESP directory and choose the OS to boot by
checking the boot priority. As of now, the boot priority is set to
Fedora. Check out Figure 2-124.

Boot Manager

Continue to boot using
the default boot order.

Fedora
ubuntu
Windows Boot Manager

I Hard Drive (0.0)
A CDROM Drive (1.0)

Tl=Move Highlight {Enter>=Select Entry

Figure 2-124. The Fedora entry inside UEFI

4) Since the boot priority is set to Fedora, UEFI will go inside the /
boot/efi/EFI/fedora directory (refer Figure 2-125) and will
launch the file grubx64.ef1i.

116

total 14836

Figure 2-125. The Fedora EFI directory

1

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

[root@localhost yogesh]#

112

110
4096
1468744
2271560
10801
1024
1468744
2271560
927824
1159560
1210776
975536
969264
1210776
1204496

Oct
Oct
Oct
Oct
Oct
Dec
Dec
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

2
2
23
10
10
2
2
10
10

N NMNNNNMNNMDN

2018
2018
18:14
02:26
02:26
08:02
08:02
02:26
02:26
2018
2018
2018
2018
2018
2018
2018

CHAPTER 2

[root@localhost yogesh]# 1s -1 /boot/efi/EFI/fedora/

BOOTIA32.CSV
BOOTX64.CSV

gcdia32.efi
gcdx64.efq
grub.cfg
grubenv
grubia32.efi
grubx64.efi
mmia32.efi
mmx64 .efi
shim.ef1
shimia32.efi

MULTIBOOT

shimia32-fedora.efi

shimx64.efi

shimx64-fedora.efi

5) grubx64.efiwill read the file grub.cfg and print the OS entries

on-screen. Figure 2-126 shows this.

Fedora (5.3.7-301.fc31.x86_64) 31 (Thirty One)

Fedora (0-rescue-280526b3bcSed4c49ac83cBeSfbdfdb2e) 31 (Thirty One)

Windows Boot Manager (on /dev/sdal)

Ubuntu 18.04.3 LTS (18.04) {(on /dev/sdal)

Advanced options for Ubuntu 18.04.3 LIS (18.04) {(on /dev/sda2)
System setup

Figure 2-126. The OS entries shown by Fedora

6) The moment the user chooses Fedora, the same grubx64.efi
will load vmlinuz and initramfs of Fedora from /boot (sda4)

into memory. The Fedora kernel will take care of the rest of the

booting sequence. Check out Figure 2-127 for the flowchart. The

steps taken by the kernel will be discussed in much more detail in
Chapter 4.

117

CHAPTER 2

UEFI to ESP Jump -1

MULTIBOOT

HDD
EFI System Partition (ESP)
EFI directory
entries ump =
Ubuntu
Microsoft
Ubuntu Windows 10 Fedora Other....
IFEEOFB
fbootivmlinuz windows 10 kernel fboot/vmlinuz
grubx64.efi [boot/initramfs Ibootfinitramfs
(jump - 3)
grub.cfg
(jump - 4)
Fat-32 /
Partition - 1 Partition -2 Partition - 3 Partition - 4 Partition - 5
Jump -5

Figure 2-127. The boot sequence of Fedora

UEFI Shell

UEFI is a small operating system. Like normal operating systems, UEFI provides a
required environment to run the applications. Of course, UEFI will not be able to run
every binary, but the binaries that are built in the EFI executable format will easily be
able to run. One of the best apps (application/binary) provided by UEFI is the shell. As
shown in Figure 2-128, you can find it mostly in boot priority settings of UEFI.

118

CHAPTER2 MULTIBOOT

Boot Manager

Boot normally

Fedora

ubuntu

Windows Boot Manac 652854E37)
EFT UHuware Uirtua Hard Drive (0.0)

EFI UMware Uirtual SATA CDROM Drive (1.0)

EFI Network

Enter setup
leset the systenm
Shut down the systen

Tl=Move Highlight <{Enter>=Select Entry

Figure 2-128. The built-in UEFI shell

If your system’s UEFI implementation does not provide the shell, then you can
download the shell app from the TianoCore project site or from its EDK-II GitHub page.

https://www.tianocore.org/

https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/
X64/Shell.efi

Format the USB device with the FAT32 filesystem and place the downloaded Shell.
efi file in it. Boot back with the same USB device, and UEFI will present you a UEFI shell
through its boot priority window. See Figure 2-129.

119

https://www.tianocore.org/
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi

CHAPTER 2 MULTIBOOT

w7 UEFI BIOS Utility — Advanced Mode

2019 1 9 . 3 0'13' L2 English (=] MyFavorite(F3) ?' fan Control(F6) Tuning Wizard(F11) [Z]Hot Keys

My Favorites Main Extreme Tweaker Advanced Monitor Boot Tool Exit [Hardware Monitor

> Load Optimized Defaults CPU
> Save Changes & Reset 7:500 i
> Discard Changes & Exit

100.0 MHz

> Launch EFI Shell from USB drives

49152 MB

11.904 V

o Attempts to Launch EFI Shell application (Shell.efi) from one of the available filesystem devices.
1

Last Modified EzMode(F7)| 3] Search on FAQ

Version 2.17.1246. Copyright (C) 2018 American Megatrends, Inc.

Figure 2-129. The UEFI shell loaded from USB

The amazing thing to notice here is that UEFI did not show that the system has a
USB device connected. Rather, UEFI went inside the USB device and saw the FAT32
filesystem. It saw the shell.ef1i file and realized this is not a normal EFI app; rather, it
will provide the shell to the user. If it had been a BIOS, it would have only shown that
system as USB disk connected, but here UEFI is showing you have a shell inside a USB-
connected disk.

The moment you choose the option Launch EFI Shell from USB drives, it will execute
the shell.ef1i file and will present you with a shell (Figure 2-130) when an OS is not
present. That is remarkable.

120

CHAPTER2 MULTIBOOT

blk3 :HardDisk - Alias (ull)
PciRoot (0x0) /Pci (0x11,0x0) /Pci (0x4,0x0) /Sata (0x1,0x0,0x0) /HD (2,MBR, 0x
6F869649,0xAC, 0x54D4)
blk4 :CDRon - Alias (mull)
PciRoot (0x0) /Pci (0x11,0x0) /Pci (0x4,0x0) /Sata (0x1,0x0,0x0) /CDROM (0x0,0
x41D4,0x4)
blk5 :BlockDevice - Alias (null)
PciRoot (0x0) /Pci (0x11,0x0) /Pci (0x4,0x0) /Sata (0x1,0x0,0x0)
blk6 :Removable HardDisk - Alias (wull)
PciRoot (0x0) /Pci (0x15,0x0) /Pci (0x0,0x0) /Scsi (0x0,0x0) /HD (2, GPT , B49BDS
62-70F9-4477-A0D3-0143F07EBIEG , 0x596800 , 0x12A0B00)
blk? :Removable HardDisk - Alias (null)
PciRoot (0x0) /Pci (0x15,0x0) /Pci (0x0,0x0) /Scsi (0x0,0x0) /HD (3,GPT ,4FBBAC
07-CA42-41C9-910B-E323BCBDB2FD , 0x1837000 , 0x8000)
blk8 :Removable HardDisk - Alias (ull)
PciRoot (0x0) /Pci (0x15,0x0) /Pci (0x0,0x0) /Scsi (0x0,0x0) /HD (4,GPT ,BETEIE
01-B172-42F5-B95D-6E37BE6AZ2C93, 0x183F000, 0x212C000)
blk9 :Removable HardDisk - Alias (wull)
PciRoot (0x0) /Pci (0x15,0x0) /Pci (0x0,0x0) /Scsi (0x0,0x0) /HD (5,GPT ,ASO0EB
JE-8702-4CB6-ABOB-BSEC2BF59F47, 0x396B000 , 0x12A0000)
blkA :Removable BlockDevice - Alias (null)
PciRoot (0x0) /Pci (0x15,0x0) /Pci (0x0,0x0) /Scsi (0x0,0x0)

Press ESC in 3 seconds to skip startup.nsh, any other key to continue.
Shell>

Figure 2-130. The UEFI shell

The blk* entries are the device names, whereas fs* is a filesystem naming
convention. Since the UEFI shell is able to read the FAT32 filesystem (ESP partition), we
can browse the ESP directory, as shown in Figure 2-131.

121

CHAPTER2 MULTIBOOT

Shell> fs0:
fs0:\> Is
Directory of: fs0:\
10723719 11:21p <DIR> 2,048
0 File(s) 0 bytes
1 Dir(s)

fs0:\> cd EFI

fsO:\EFI> lIs
Directory of: fs0:\EFI

10723719 11:21p <DIR> 2,048
10/23/19 11:21p <DIR> 0
10/23/19 11:21p <DIR> 2,048
0 File(s) 0 bytes
3 Dir(s)

fs0:\EFI> cd BOOT
fs0:\EFI\BOOT> _

Figure 2-131. Browsing the EFI directory

The fs0 stands for file system number 0. It is shell’s internal command that we can
use to change the partition. As you can see in Figure 2-132 and in Figure 2-133, fs2 is
our ESP.

122

CHAPTER2 MULTIBOOT

fs2:\EFI> Is
Directory of: fs2:\EFI

12/02/19 12:17p <DIR> 4,096
12/02/19 12:17p <DIR> 0
12/02/19 12:17p <DIR> 4,096
12/03/19 08:38p <DIR> 4,096
12/02/19 12:30p <DIR> 4,096
12/02/19 08:02a <DIR> 4,096

0 File(s) 0 bytes

6 Dir(s)

fs2:\EFI> cd ubuntu

Figure 2-132. The EFI directory

fs2 \EFI\ubuntu> ls
Directory of: fs2:\EFI\ubuntu

12/02/19 12:17p <DIR> 4,096
12/02/19 12:17p <DIR> 4,09
12/02/19 12:17p <DIR> 4,096
12/02/19 12:17p 15,992 fuupxbd.efi
12702719 12:1p 1,116,024 grubxbd.efi
12/02/19 12:1p 126 grub.cfy
12/02/19 12:17p 1,334,816 shimxbd .efi
12702719 12:1%p 1,269,496 wmx6d.efi
12/02/19 12:17p 108 BOOTX64.CSU
b File(s) 3,796,562 bytes
3 Dir(s)

fs2 \EFI\ubuntu> grubxb4.efi_

Figure 2-133. Ubuntu’s bootloader directory

We can simply run the grubx64.efi file through the shell, and GRUB will appear
on-screen. See Figure 2-134.

GNU GRUB wersion 2.02

Advanced options for Ubuntu
System setup
Figure 2-134. The GRUB of Ubuntu

123

CHAPTER 2 MULTIBOOT

For a UEFI shell, grubx64.ef1i is a simple app. In a similar way, as shown in
Figure 2-135 we can launch the Windows bootloader too. See also Figure 2-136.

fs2:\EFI\Microsoft> cd Boot

fs2:\EFI\Microsoft\Boot> bootmgfw.efi_

Figure 2-135. Launching the Windows bootloader from the UEFI shell

Figure 2-136. The famous Windows animation

The shell can be useful in resolving the “can’t boot” scenarios. Consider the scenario
shown in Figure 2-137 where the system is throwing an error on a GRUB prompt.

Minimal BASH-like line editing is supported. For the first word,
TAB lists possible command completions. Anywhere else TAB lists
possible device or file completions. ESC at any time exits.

grub> _
Figure 2-137. The system is unable to boot
124

CHAPTER2 MULTIBOOT

By using a UEFI shell, we are able to check whether GRUB-related files are

present or not.

Misconceptions About UEFI

The following are some misconceptions about UEFI.

Misconception 1: UEFI Is a New BIOS or UEFI Is a BIOS

People keep saying that UEFI is a new BIOS. In fact, when you go inside the UEFI

firmware, the firmware itself says it is a UEFI BIOS. Check out Figure 2-138.
No, UEFI is not a BIOS nor is it a new BIOS. UEFI is here to replace the BIOS. UEFI is
a completely new firmware, and you cannot have a BIOS and UEFI on the same system.

You have either UEFI or a BIOS.

w“7 UEFI BIOS Jtility - EZ Mode

i English @ EZ Tuning Wizard(F11)

VI EXTREME BIOS Ver
960X CPL

9152 MB (DDR4 2133MHz)

G-5kill 16284MB 2133MHz 3B)
N/A 5 D 860 EVO 500GE (500.1GE)
Corsair 8192MB 2133MHz

384MB 2133MHz

/ “ CHA FAN1

% CHAFAN3
'

)\ HAMP 2 OPT FAN
£ N /1161 RPM

W EXT FAN1 % EXT FAN2
e’ .

r)
QFan Control |

Default(FS) Save & Exit(F10)

Figure 2-138. The UEFI is not a BIOS

Normal

Switch all |

Q M1: Samsung 550 970 EVO Plus 178

Wi s Boot Manager (P6: Samsung SSD
860 EVOD 500GB) .

3¢ Boot Menu(F8)

Advanced Mode(F7)| 3] Search on FAQ

125

CHAPTER2 MULTIBOOT

It is pretty simple to identify whether you have a BIOS or UEFI. If you can use a
mouse inside the firmware, then you have UEFI, and if you see a rich GUI, then you have
UEFL. The correct way to check is by using an efibootmgr-like command.

efibootmgr -v

Fatal: Couldn't open either sysfs or procfs directories for accessing EFI
variables.
Try 'modprobe efivars' as root.

If you get output like this from the efibootmgr command on a Linux system, then
you have a BIOS. If you get something like this, then you have UEFI:

efibootmgr -v

BootCurrent: 0005

Timeout: 2 seconds

BootOrder: 0005,0004,0003,0000,0001,0002,0006,0007,000A

Boot0000* EFI VMware Virtual SCSI Hard Drive (0.0)
PciRoot(0x0)/Pci(0x15,0x0)/Pci(0x0,0x0)/SCSI(0,0)

Boot0001* EFI VMware Virtual SATA CDROM Drive (1.0)
PciRoot(0x0)/Pci(0x11,0x0)/Pci(0x4,0x0)/Sata(1,0,0)

This is the correct way of identifying what firmware your system has. Returning to
our UEFI BIOS discussion, the vendors are using the UEFI and BIOS terms together
because most users will not understand the term UEFI. For example, an article saying
“change the parameters in your UEFI” might be confusing for most users, but saying
“change the parameters in your BIOS” will be well understood by everyone. Hence,
vendors are using the term UEFI/BIOS just for the sake of understanding, but remember

you can have only one firmware at a time, not both.

Misconception 2: Microsoft Is Evil

As we have seen, UEFI is a forum, and operating system vendors are part of it, including
Microsoft. To make the booting more secure, Microsoft proposed a Secure Boot feature
in UEFI. Secure Boot will stop the execution of unauthorized or compromised binaries at
the time of the boot. This solves these three problems:

126

CHAPTER2 MULTIBOOT

o Itguarantees that grubx64.efi, which is about to run, is from an
authentic source.

o It guarantees that BCD does not have any backdoor in it.

o It stops something from executing if it is unauthorized.
This is how Secure Boot works:

1) Microsoft will generate a key pair (public and private key).

2) Microsoft will digitally sign its bootloader or its files with the
private key.

3) The public key of Microsoft will be kept inside the UEFI firmware.

4) The digital signature that was generated in step 2 will be
regenerated by the public key of Microsoft, which is present inside
the UEFIL.

5) Ifthe digital signature matches, then only UEFI will allow the
*. efi file’s execution.

6) If the digital signature does not match, then UEFI will consider
that a harmful program, or at least it is not shipped by Microsoft,
UEFI will halt the execution.

Pretty nice implementation by Microsoft, right? Yes, it is. But the problem
will arise when the Secure Boot feature is enabled and you choose Linux to boot.
UEFI will take out Microsoft’s public key and will generate the digital signature
of grubx64.efi. The generated digital signature will not, of course, match with
Microsoft’s bootloader files, so it will be considered an unauthorized program, and
UEFI will stop the execution. In other words, Linux or any non-Windows OS will
never be able to boot. So, what’s the resolution to this? Simple: UEFI should provide
an option to disable the Secure Boot feature, which it does. See Figure 2-139. In fact,
the option to disable the Secure Boot feature has to be present in UEFI firmware.
This is imposed in the UEFI specification.

127

CHAPTER2 MULTIBOOT

Virtual Machine Settings

Hardware Options

Settings Summary ekna s _
02 General UEFI Input grabbed: | Default =
P> Power Input ungrabbed: | Default v

(U Shared Folders Disabled The default settings are specified in Edit > Preferences > Priority.

@ snapshots

‘D AutoProtect Disabled Settings

O Guest Isolation g o '
[[Z Access Control Not encrypted Gather debugging information: | Default v
[m]vMware Tools Time sync off [[J Disable memory page trimming

B3 VNC Connecti... Disabled [(JLog virtual machine progress periodically

(3P unity [Enable Template mode (to be used for doning)

5 e Gather verbose USE debugging information

S Autologin Mot available

e p ks e st dow s v e

[[JEnable VBS (Virtualization Based Security) support

Firmware type

/A Changing firmware might cause the installed guest
operating system to become unbootable.

[@]:(e]]
® UEFI
[[Jenable secure boot

File locations
Configuration: | 1:\Guest_OS\UEFI_OS\UEFL.vmx |

Log: | (Not powered on) |

Figure 2-139. Disabling the Secure Boot feature

But Microsoft has clearly called out that the only systems that will be certified are
ones that have Secure Boot enabled. This means if you are hardware vendor and want
your system to be certified for Windows, then it has to have Secure Boot enabled. This
move was considered “evil” by some of industry leaders since non-Windows-based
operating systems will not be able to boot on the same hardware. We will return to the
discussion of whether Microsoft is evil or not later, but first let’s see what options non-
Windows OSs have.

128

CHAPTER2 MULTIBOOT

Linux Vendors Should Make Their Own Key Pair

Yes, every Linux OS vendor should make their own key pair and then sign their
bootloaders with their private key and keep the public key in the UEFI firmware.
Whenever a user chooses Windows to boot, UEFI will use the Windows public key,
and whenever the user chooses Linux to boot, UEFI will use the Linux public key to
regenerate the digital signature of the Linux bootloader’s files. This seems to be an
easy resolution, but this will not work. There are almost 200+ active Linux distributions
on the market, and they generally have new versions released every six months. This
means almost every six months you will have a newer version of Linux distro on the
market. This means roughly that Linux vendors will have almost 400 keys a year, so
obviously you cannot fit this many keys in UEFI. Even if you could, this will hamper
one of the main mottos of UEFI design, which is speedy booting. So, in short, this

cannot be a resolution.

All Linux Vendors Should Make Only One Key Pair

This also cannot be a resolution. There are 200+ active Linux distributions, and their
offices are spread over the world. If all Linux vendors came together and made only
one key pair, then this key pair would have to be shipped throughout the internet to the
developers throughout the world. It would be a security nightmare. So in short, it would
be difficult to maintain; hence, this is not a resolution.

Disable UEFI’s Secure Boot Feature

This seems to be the only workable approach. UEFI does provide a facility to disable

the Secure Boot feature, and Microsoft has no objection on providing such a facility.

For example, say you have a dual-boot system, which has Windows 10 and Fedora 31
installed. If you want to boot Windows, then Secure Boot has to be enabled in UEFI, and
if next time you want to boot Linux, then you have to go inside UEFI and change the
enabled Secure Boot to a disabled state. You can consider this a workaround, but this is
not practical; hence, it cannot be considered as a resolution.

So, how can Linux take advantage of Secure Boot? There is only one resolution, and
that is to use Microsoft’s private key to digitally sign the Linux bootloader files, and guess
what, Microsoft has agreed to this. So, at this stage, Linux is able to secure boot by using
Microsoft’s key pair, and hence Microsoft is certainly not evil. It just wanted to make its
boot sequence secure.

129

CHAPTER2 MULTIBOOT

But there is one problem in this arrangement; GRUB development will be dependent
on Microsoft’s key pair. If any new change is committed to GRUB, we need to re-sign it
by using Microsoft’s key. Ubuntu resolved this problem first by introducing a smaller
bootloader called shim. This bootloader is supposed to get signed by Microsoft’s key,
and then this bootloader’s job is to call the actual bootloader, which is GRUB. With this
approach, the Linux world has broken Microsoft’s signing dependency. Since shim will
never change (at least it would be rare), GRUB development will continue the way it has.

So, if Secure Boot is enabled, then the boot sequence of Linux will be as follows:

1. Power on the system: first UEFI, then POST, and then UEFI.
2. ESP lists the operating systems and available bootable devices.

3. Ifthe user chooses Linux, the boot process regenerates the digital
signature of the shim. ef1i file by using Microsoft’s public key.

4. Ifthe digital signature matches, then allow execution of shim.efi.
5. shim.efiwill call the original bootloader, which is grubx64.ef1i.

6. grubx64.efiwill read the grub.cfg file from ESP and will present
the available OS list.

7. Ifthe user again chooses Linux, then the same grubx64.efi file
will start loading the kernel and initramfs in memory.

Refer to Figure 2-140 to see the list of files involved in this boot sequence.

130

CHAPTER2 MULTIBOOT

[root@localhost yogesh]# 1ls -1 /boot/efi/EFI/fedora/
‘total 14836

== . 1 root root 112 Oct 2 2018 BOOTIA32.CSV
S . 1 root root 110 Oct 2 2018 BOOTX64.CSV
[drwx====== . 2 root root 4096 Oct 23 18:14 fonts

[SENXSE=EE . 1 root root 1468744 Oct 10 02:26 gcdiaz2.efi

=rWX == . 1 root root 2271560 Oct 10 02:26 gcdx64.efi
=rWX====== . 1 root root 10801 Dec 2 08:02 grub.cfg
=== . 1 root root 1024 Dec 2 VU8:UZ2 grubenv
B . 1 root root 1468744 Oct 10 02:26 grubia32.efi

=, . 1 root root 2271560 Oct 10 02:26 grubx64.efi

|= WY === . 1 root root 927824 Oct 2 2018 mmia32.ef1
EXeE== . 1 root root 1159560 Oct 2 2018 mmx64.efi
S . 1 root root 1210776 Oct 2 2018 shim.ef1
B . 1 root root 975536 Oct 2 2018 shimia32.efi
=rWX====== . 1 root root 969264 Oct 2 2018 shimia32-fedora.efi
SN . 1 root root 1210776 Oct 2 2018 shimx64.efi
EERX==ae . 1 root root 1204496 Oct 2 2018 shimx64-fedora.efi

[root@localhost yogesh]#

Figure 2-140. The files involved in the described boot sequence

Misconception 3: Disable the UEFI

One of the biggest misconceptions is that you can disable UEFI and start the BIOS. No,
you cannot disable the firmware of your system; also, you cannot have two firmware on
one system. You have either UEFI or the BIOS. When people say “disable UEFI,” it means
they would like to say, let UEFI boot with the BIOS or in a legacy way. One of the biggest
features of UEFI is that it is backward compatible, meaning it does understand the BIOS
way of booting, which is the 512 bytes + 31KB approach. So, when you change the UEFI
settings from the UEFI way to the legacy way, it only means that UEFI will not follow the
ESP way of booting. Rather, the firmware will follow the BIOS way of booting, but this
does not mean you are disabling the UEFI firmware. When you boot a UEFI system the
BIOS way, then you lose all the features that UEFI provides.

Since you now have a better understanding of firmware and the way bootloaders
work, it is the right time to dive deeper into the GRUB bootloader.

131

CHAPTER 3

GRUB Bootloader

The bootloader that Linux systems use these days is GRUB version 2. The first stable

release of GRUB 2 was in 2012, but it started appearing in enterprise-level Linux in 2014

with Centos 7 and RHEL 7. After 2015, it saw wide adoption in almost every popular

Linux distribution. Usually when users file bugs or ask for new features, developers

listen to the feedback, prioritize the work, and eventually launch a new version of code.

However, in the case of GRUB, it worked another way. The developers decided to change

the entire structure of GRUB 2 when users were happy with GRUB Legacy (version 1).

“GRUB Legacy has become unmaintainable, due to messy code
and design failures. We received many feature requests, and
extended GRUB beyond the original scope, without redesigning
the framework. This resulted in the state that it was impossible to
extend GRUB any further without rethinking everything from the
ground.”

—GNU GRUB FAQ (https://www.gnu.org/software/grub/grub-
taqg.html)

Here are some of the features that GRUB 2 provides or are in development:

Full USB support.

Linux Unified Setup Key (LUKS) support. LUKS is the standard for
Linux hard disk encryption.

A fancy menu implementation that will have animations, colorful
effects, style sheets, etc.

A “parted” tool will be added inside the bootloader. When this is
added, users will be able to edit the disk configuration at the time of
boot.

133

© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_3

https://doi.org/10.1007/978-1-4842-5890-3_3#ESM
https://www.gnu.org/software/grub/grub-faq.html
https://www.gnu.org/software/grub/grub-faq.html

CHAPTER 3 GRUB BOOTLOADER

This chapter will cover the following:

How GRUB 2 is implemented for the BIOS and UEFI firmware

The firmware-specific structural changes in GRUB 2

The Bootloader Specification feature of GRUB 2

The Secure Boot feature of UEFI and how it is implemented in GRUB 2

Several bootloader-related issues and how we can fix them

GRUB 2 Implementation

As we have seen so far, GRUB takes control of the firmware. This means it has to deal
with UEFI as well as the BIOS. Let’s see how GRUB 2 has been implemented on BIOS-
based systems first.

GRUB 2 on BI0S-Based Systems

GRUB 2 on a BIOS-based system keeps all of its files in three different locations.
o /boot/grub2/
o /etc/default/grub
o /etc/grub.d/

In the case of Ubuntu, version 2 is not used in GRUB'’s name, so it will be /boot/
grub/ instead of /boot/grub2/, grub-install instead of grub2-install, or grub-
mkconfig instead of grub2-mkconfig.

Let’s discuss the locations and their contents.

/boot/grub2

This is the location where GRUB 2 will be installed. As you can see in Figure 3-1, the
directory holds the bootloader’s core files.

134

CHAPTER 3 GRUB BOOTLOADER

‘root@localhost yogeshbabar]# 1ls /boot/grub2/ -1

:otal 32

‘-rw-r--r--. 1 root root 64 Dec 6 20:10 device.map

Irwxr-xr-x. 2 root root 4096 Dec 6 20:10 fonts

-rw-r--r--. 1 root root 5814 Dec 6 20:10 grub.cfg

.rwxrwxrwx. 1 root root 25 Oct 10 12:56 grubenv -> ../efi/EFI/fedora/grubenv
Irwxr-xr-x. 2 root root 12288 Dec 6 20:10 :&0-p

Irwxr-xr-x. 3 root root 4096 Oct 24 04:42 thenes
-root@localhost yogeshbabar]#

Figure 3-1. The files present in /boot/grub2

Device.map

GRUB does not understand disk names like sda or vda since these disk naming
conventions were created by the SCSI drivers of operating systems. It is obvious that
GRUB runs when the OS is not present, so it has its own disk naming convention.
The following are GRUB's disk naming conventions:

GRUB Version Disk Naming Gonvention Meaning

2 hdo, msdos1 Hard disk number 0 and partition number 1,
which has an MS-DOS partition table

2 hd1, msdos3 Hard disk number 2 and partition number 3
which has an MS-DOS partition table

2 hd2, gpt1 Hard disk number 3 and partition number 1,

which has a GPT partition table

1 hdo, 0 Hard disk number 0 and partition number 1

In GRUB, the hard disk starts at 0, and the partition numbers start at 1, whereas the
OS naming conventions of disks and partitions start at 1. Since the OS and GRUB disk
naming conventions are different, there has to be a mapping for the users, and that is
why the device.map file was created.

cat /boot/grub2/device.map
this device map was generated by anaconda
(hdo) /dev/sda

135

CHAPTER 3 GRUB BOOTLOADER

The device.map file will be used by the grub2-install like commands to
understand on which disk GRUB's core files are installed. Here’s an example of this file:

strace -o delete_it.txt grub2-install /dev/sda
Installing for i386-pc platform.
Installation finished. No error reported.

cat delete_it.txt | grep -i 'device.map’

openat (AT_FDCWD, "/boot/grub2/device.map”, O RDONLY) = 3
read(3, "# this device map was generated "..., 4096) = 64
openat (AT_FDCWD, "/boot/grub2/device.map”, O RDONLY) = 3
read(3, "# this device map was generated "..., 4096) = 64

The grub2-install command will take input in the form of the OS disk naming
conventions since users are not aware of the GRUB disk naming conventions. During the
execution, grub2-install will convert the SCSI disk naming conventions to the GRUB
disk naming conventions by reading the device.map file.

grub.cfg

This is the main configuration file of GRUB. As you can see in Figure 3-2, it’s a huge script
file that is generated by referring to some other script files, which we will discuss soon. It
is highly advisable not to change the contents of grub.cfg as doing so might make your
Linux version unbootable. This is the file from which GRUB part-3 takes instructions like
the following:

¢ Location of the kernel and initramfs
e /boot/vmlinuz-<version>
e /boot/initramfs-<version>

e Kernel command-line parameters

e Root filesystem name and its location, etc.

136

CHAPTER 3 GRUB BOOTLOADER

xxen]; then \nsmod xzio; insmod lzoplo; Tl

insmod part_msdos

insmod ext

set root='hdd, nsdosi’

Af [x5feature_platform_search_hint « xy]; then
search --no-floppy --fs-wuld --set=root --hint

else
search --no-Tloppy --Ts-uuld --setsroot
1

-blos=hdf, msdos] --hint-efizhds, medosl --hint-barenstal=ahcld msdost GfebBfcd-3757-4843-Bad7-a2451 1764430

6TebBlca- 3T5T-A843-Ba47 224501764438

nux fboot/valinuz-5.8.0-23-genaric rootsUUID-6febafcd-1FS7- 4843 BadT-a245F 1764438 ro Flnd_oresesds/preseed.cfg suto noprospt pricrityscritical localessn US gquiet
initrd fbootfinitrd.ing-5.8.8-23-generlc

1
submenu “Advanced options for Ubuntu' Smenuentry Ld option 'gnulinux-advanced-SfebBfcd-3f57-4843-BadT-a245f 704430’ |
menuentry 'Ubuntu, with Linux 5.8.8-23-generic’| --class ubuntu --class gnu-linux --class gau --class os Smenuentry 1d_option 'gnulinux-5.8.8-23-generic-advanced-ofebsfca
-3157-4843-8a47- 22451 T 76443e" [
recordfail
Load_vides
gfamode SLinux_gfx_node
Lngmad gzio
Af [x5grub_platform = xxen]1; then insmod xile; insmod lroplo; i
tnsnod part_medos

Ansnod ext2
set roota’hdd, msdosl
L [xSTeature_platforn_search_hint = xy]; then
search --no-floppy --fs-uuld --set=root t-blos=hd t-efl=hde,msdosl --hint-baremetal-ahcls, madosl efeb8fcd-375T-4843-8247- 22457762430
else
search --no-Floppy --f5-uuld --setarcot &febBfcd-3f57-4643-Bad7 2245776443
L
echo 'Loadina Linux 5.0.0-23-generic ..."
1nux /boot/wnlinuz-5.8.8-23-generic rooteliliDeGlebafcd-Af57-4843-Badi-a245f f 762430 ro| find_preseeds/presesd.cfg auto noprompt priorityscritical localesen US g

#cho ‘Loading inltlal randisk ...°
initrd /bect/initrd.ing-5.0.8-23-generic
1
menuentry 'Ubuntu, with Linux 5.8.8-23-generic (recovery mode)' --class ubuntu --class gou-linux --class gnu --class os Smenuentry_id_option 'goulinux-5.8.0-23-generic-r
ecovery-6feb8fcd-3f57-4843-8ad7-a2457FT6443e" {
recordfall
1 Load_vides
tnsnod gzlo
Af [xSgrub_platform = xxen]; then insmod xzlo; insmed lzeplo; i
insnod part_msdos
insmod ext2
sat root="hos, nsdosl

Figure 3-2. The grub.cfg file

GRUB has its own set of commands, as you can see here:

GRUB Command Purpose

menuentry This will print the title on-screen.

set root This will provide the disk and partition names where the kernel and initramfs
are stored.

linux The absolute path of the Linux kernel file

initrd The absolute path of the initramfs file of Linux

So, the booting sequence of GRUB 2 on a BIOS-based system of Fedora is as follows:

1. Power on a system: first BIOS, then POST, then BIOS, and then the
first sector.

2. Firstis the bootstrap (part-1 of GRUB), then part-2 of GRUB, and
then part-3 of GRUB.

3. Part-3 of GRUB will read the previously shown grub.cfg from /
boot/grub2/ (in the case of Ubuntuy, it will be /boot/grub/) and
will print the welcome screen, as shown in Figure 3-3.

137

CHAPTER 3 GRUB BOOTLOADER

GNU GRUB wversion 2.2

e
Advanced options for Ubuntu

Memory test (memtest86+)

Memory test (memtest86+, serial console 115208)

Figure 3-3. The welcome screen

4. The moment the user chooses the Ubuntu menuentry, it will run
the set root, linux, and initrd commands and will start loading
the kernel and initramfs in memory.

5. In Fedora-like Linux distributions, you will find a different
approach. There will be a grub. cfg file, but the menuentry, set
root, linux, and initrd commands will not be available in grub.
cfg. There has been a new development in a GRUB upstream
project called BLS. We will cover that later in this chapter.

i1386-pc

This directory has all the GRUB-supported filesystem modules (drivers) in it (please refer
to Figure 3-4). All the *.mod files are the modules. By using these modules, GRUB can
load the kernel and initramfs files in memory. For example, the /boot of this system has
an ext4 filesystem, so obviously when exploring and loading the vmlinuz and initramfs
files from /boot, GRUB needs the ext4 module, which it gets from the ext4.mod file. It’s
similar to /boot on the XFS or UFS filesystem; hence, the xfs.mod and ufs.mod files are
present in /boot/grub2/i386-pc. At the same time, you will find modules like http.mod
and pxe.mod. This means GRUB 2’s part-3 can load the kernel and initramfs files from
the http and pxe devices. In general, the *.mod files add features, not just devices. The
features may include device support, filesystem support, or protocol support.

Earlier, /boot under LVM was not possible, and the reason was simple. GRUB had
to understand the LVM devices. To understand and assemble the LVM device, GRUB
would need the LVM module as well as LVM binaries such as vgscan, vgchange, pvs,
lvscan, etc. It would increase the size of GRUB as a package; hence, the enterprise Linux
system vendors have always avoided /boot under LVM devices. But since UEFI has been
introduced, GRUB has started supporting /boot on LVM devices.

138

CHAPTER 3 GRUB BOOTLOADER

[root@fedorab yogesh]# 1s /boot/grub2/i386-pc/

acpi.mod
adler32.mod
affs.mod
afs.mod
ahci.mod

all video.mod
aout.mod
archelp.mod
ata.mod
at_keyboard.mod
backtrace.mod
bfs.mod
biosdisk.mod
bitmap.mod
bitmap scale.mod
blocklist.mod
blscfg.mod
boot.img
boot.mod
bsd.mod

bswap test.mod
btrfs.mod
bufio.mod
cat.mod
cbfs.mod
cbls.mod
cbmemc .mod
cbtable.mod
cbtime.mod
chain.mod
cmdline _cat_test.mod
cmosdump . mod
cmostest.mod
cmp . mod

cmp test.mod
command. lst
configfile.mod
core.img

cpio be.mod
cpio.mod
cpuid.mod
crc64.mod

gcry twofish.mod
gcry whirlpool.mod
gdb.mod

geli.mod
gettext.mod
gfxmenu.mod
gfxterm background.mod
gfxterm_menu.mod
gfxterm.mod
gptsync.mod
gzio.mod
halt.mod
hashsum.mod
hdparm.mod
hello.mod
help.mod
hexdump . mod
hfs.mod
hfspluscomp.mod
hfsplus.mod
http.mod
increment.mod
iorw.mod

1509660 .mod
jfs.mod

jpeg.mod
keylayouts.mod
keystatus.mod
1dm.mod
legacycfg.mod
legacy password test.mod
linux.mod
loadenv.mod
loopback.mod
lsacpi.mod
lsapm.mod
lsmmap.mod
1s.mod

lspci.mod
luks.mod

lvm.mod
lzopio.mod

Figure 3-4. The .mod* files from /boot/grub2/i386-pc

pata.mod
pbkdf2.mod

pbkdf2 test.mod
pcidump.mod
pci.mod

plan9.mod
play.mod

png.mod

priority queue.mod
probe.mod
procfs.mod
progress.mod
pxechain.mod
pxe.mod
raid5rec.mod
raidérec.mod
random.mod
read.mod
reboot.mod
regexp.mod
reiserfs.mod
relocator.mod
romfs.mod
scsi.mod
search fs file.mod
search_fs_uuid.mod
search_label.mod
search.mod
sendkey.mod
serial.mod
setjmp.mod

setjmp test.mod
setpci.mod
sfs.mod

shift test.mod
signature_test.mod
sleep.mod

sleep test.mod
spkmodem.mod
squash4.mod
strtoull test.mod
syslinuxcfg.mod

139

CHAPTER 3 GRUB BOOTLOADER

cryptodisk.mod
crypto.lst
crypto.mod
€s5536.mod
ctz_test.mod
datehook.mod
date.mod
datetime.mod
diskfilter.mod
disk.mod

div.mod
div_test.mod
dm_nv.mod
drivemap.mod
echo.mod
efiemu.mod
ehci.mod

elf.mod

eval.mod
exfat.mod
exfctest.mod
ext2.mod
extcmd.mod
f2fs.mod

fat.mod

file.mod
font.mod
freedos.mod
fshelp.mod

Ts. 15t
functional test.mod
gcry arcfour.mod
gcry blowfish.mod
gcry camellia.mod
gcry cast5.mod
gcry_crc.mod
gcry des.mod
gcry dsa.mod
gcry idea.mod
gcry_md4.mod
gcry md5.mod
gcry rfc2268.mod
gcry rijndael.mod
gcry rmd160.mod

Figure 3-4. (continued)

140

macbless.mod
macho.mod
mda_text.mod

mdraid@9 be.mod

mdraid@9.mod
mdraidlx.mod
memdisk.mod
memrw.mod
minicmd.mod
minix2 be.mod
minix2.mod
minix3 be.mod
minix3.mod
minix be.mod
minix.mod

mmap . mod
moddep.lst
modinfo.sh
morse.mod
mpi.mod
msdospart.mod
mul test.mod
multiboot2.mod
multiboot.mod
nativedisk.mod
net.mod
newc.mod
nilfs2.mod
normal.mod
ntfscomp.mod
ntfs.mod
ntldr.mod
odc.mod
offsetio.mod
ohci.mod
part_acorn.mod
part_amiga.mod
part_apple.mod
part bsd.mod
part_dfly.mod
part_dvh.mod
part_gpt.mod
partmap.lst
part_msdos.mod

tar.mod
terminal.lst
terminal.mod
terminfo.mod
test blockarg.mod
testload.mod
test.mod
testspeed.mod
tftp.mod
tga.mod
time.mod
trig.mod
tr.mod
truecrypt.mod
true.mod

udf.mod

ufsl be.mod

ufsl.mod

ufs2.mod

uhci.mod

usb keyboard.mod
usb.mod

usbms . mod

usbserial common.mod
usbserial ftdi.mod
usbserial pl2303.mod
usbserial usbdebug.mod
usbtest.mod

vbe.mod

verify.mod
version.mod

vga.mod

vga text.mod

video bochs.mod
video_cirrus.mod
video colors.mod
video fb.mod
videoinfo.mod
video.lst

video.mod

videotest checksum.mod
videotest.mod
xfs.mod

xnu.mod

CHAPTER 3 GRUB BOOTLOADER

gcry rsa.mod part plan.mod xnu uuid.mod

gcry seed.mod part sun.mod xnu uuid test.mod
gcry_serpent.mod part_sunpc.mod xzio.mod

gcry shal.mod parttool.lst zfscrypt.mod

gcry sha256.mod parttool.mod zfsinfo.mod

gcry sha512.mod password.mod zfs.mod

gcry tiger.mod password pbkdf2.mod

[root@fedorab yogeshl# []
Figure 3-4. (continued)

As you can see in Figure 3-5, along with these *.mod files, you will find a couple of
other files in the /boot/grub2/i386-pc/ location.

[root@localhost yogeshbabar]# 1ls -1hS /boot/grub2/i386-pc/ | grep -v mod
total 3.0M

-rw-r--r--. 1 root root 30K Dec 7 11:35 core.img
-rw-r--r--. 1 root root 4.0K Dec 7 11:35 command.lst
-rw-r——-r-—. 1 root root 936 Dec 7 11:35 crypto.lst
-rw-r--r--. 1 root root 512 Dec 7 11:35 boot.img
=rW=r——r=—18root roct s 219 Nec 7111358 s St
-rw-r--r--. 1 root root 202 Dec 7 11:35 terminal.lst
-rw-r--r--. 1 root root 111 Dec 7 11:35 partmap.lst
-rw-r——r——. 1 root root 33 Dec 7 11:35 video.lst
-rw-r--r--. 1 root root 17 Dec 7 11:35 parttool.lst

[root@localhost yogeshbabar]# I

Figure 3-5. The files in addition to *. mod

The core.img file is part-3 of GRUB 2. So, the Linux booting sequence becomes as
follows:

-> Power on -> BIOS -> POST -> BIOS ->

-> part-1 of GRUB2 -> Part-2 of GRUB2 -> core3.img -> grub.cfg ->

-> if /boot is on an xfs filesystem -> /boot/grub2/i386-pc/xfs.mod ->
-> load vmlinuz & initramfs in main memory.

Once the kernel is in memory, GRUB 2’s job is done. The rest of the booting
sequence will be carried out by the kernel, which we will discuss in Chapter 4.

/etc/default/grub

Another important file is, of course, /etc/default/grub. Please see Figure 3-6.

141

CHAPTER 3 GRUB BOOTLOADER

[root@localhost yogeshbabar]#

[root@localhost yogeshbabar]# 1s /etc/default/ -1
total 8

-rw-r--r--. 1 root root 363 Dec 6 20:10 grub
-rw-r--r--. 1 root root 119 Sep 2 19:20 useradd
[root@localhost yogeshbabar]#

Figure 3-6. The contents of the /etc/default directory

This file is used by GRUB to accept the cosmetic and kernel command-line changes

from the user.

$ cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g"' /etc/system-release)"
GRUB_DEFAULT=saved

GRUB_DISABLE SUBMENU=true

GRUB_TERMINAL OUTPUT="console"
GRUB_CMDLINE_LINUX="resume=/dev/mapper/root vg-swap rd.lvm.lv=root vg/root
rd.lvm.lv=root vg/swap console=ttyS0,115200 console=ttyo"

GRUB_DISABLE RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

As you can seg, in this file, we can change the default timeout of the GRUB welcome
screen, the font, the submenus, and the default kernel command-line parameters like
the root device name, the swap device name, etc.

/etc/grub.d/

Now this is where things get really interesting about GRUB 2.

GRUB 2 has a command called grub2-mkconfig. The name of command suggests
that it will make the GRUB configuration file grub. cfg, which will be referred by
part-3 of GRUB to show the welcome screen. The grub2-mkconfig file will first take the
cosmetic and kernel command-line parameter inputs from /etc/default/grub and run
the script files listed in Figure 3-7 from the /etc/grub.d/ directory.

142

CHAPTER 3 GRUB BOOTLOADER

[root@localhost yogeshbabar]#
[root@localhost yogeshbabar]# ls /etc/grub.d/ -1

total 88

-rwxr-xr-x. 1 root root 9346 Oct 10 12:56 00_header
=EWXr=Xr=x. 1S rootrroot 236 Oct 10 12:56 01_users

=rwxr=xr=x. 1 root root 835 Oct 10 12:56 08_fallback_counting
-rwxr-xr-x. 1 root root 13797 Oct 10 12:56 10_Llinux

=rwWXr=Xr=x. 1" root root 762 Oct 10 12:56 10_reset_boot_success
-rwxr=xr-x. 1 root root 892 Oct 10 12:56 12 menu_auto_hide
—-rwxr-xr-x. 1 root root 11699 Oct 10 12:56 20_Llinux_xen
-rwxr-xr-x. 1 root root 2562 Oct 10 12:56 20_ppc_terminfo
-rwxr-xr-x. 1 root root 10673 Oct 10 12:56 30_os-prober
-rwxr-xr-x. 1 root root 1415 Oct 10 12:56 30_uefi-firmware
-rwxr-xr-x. 1 root root 218 Oct 10 12:56 40_custom
-rwxr-xr-x. 1 root root 220 Oct 10 12:56 41 _custom

-rw-r--r--. 1 root root 483 Oct 10 12:56 README
[root@localhost yogeshbabar]# I

Figure 3-7. The contents of the /etc/grub.d/ directory

As you can see, the files have numbers assigned with them. This means they will run
in order.

The 00_header, 01_users, 08 fallback counting, 10 reset boot success, and
12_menu_auto_hide script files do the housekeeping work. For instance, the 00_header
script file is responsible for adding a header to the grub. cfg file. For example, on
Fedora Linux, the following header will be added in grub. cfg after running the grub2-
mkcontig file:

BEGIN /etc/grub.d/00 header
set pager=1

if [-f ${config directory}/grubenv]; then
load_env -f ${config directory}/grubenv
elif [-s $prefix/grubenv]; then
load_env
fi
if ["${next_entry}"] ; then
set default="${next_entry}"
set next_entry=

143

CHAPTER 3 GRUB BOOTLOADER

save_env next_entry

set boot once=true
else

set default="${saved entry}"
fi

if [x"${feature _menuentry id}" = xy]; then
menuentry id option="--id"
else

menuentry id option=
fi

export menuentry id option

if ["${prev_saved entry}"]; then
set saved entry="${prev_saved entry}"
save_env saved entry
set prev_saved entry=
save_env prev_saved entry
set boot_once=true
fi
function savedefault {
if [-z "${boot once}"]; then
saved_entry="${chosen}"
save_env saved entry
fi
}

function load video {

if [x$feature _all video module = xy]; then
insmod all video

else
insmod efi_gop
insmod efi uga
insmod ieee1275 fb
insmod vbe
insmod vga

144

CHAPTER 3 GRUB BOOTLOADER

insmod video bochs
insmod video cirrus
fi

terminal _output console
if [x$feature timeout style = xy] ; then
set timeout style=menu
set timeout=5
Fallback normal timeout code in case the timeout style feature is
unavailable.
else
set timeout=5
fi
END /etc/grub.d/00_header #i##

The 08_fallback_counting script file will add the following contents in grub.cfg:

BEGIN /etc/grub.d/08_fallback_counting
insmod increment
Check if boot counter exists and boot success=0 to activate this
behaviour.
if [-n "${boot counter}" -a "${boot success}" = "0"]; then
if countdown has ended, choose to boot rollback deployment,
i.e. default=1 on OSTree-based systems.
if ["${boot counter}" = "0" -o "${boot counter}" = "-1"]; then
set default=1
set boot counter=-1
otherwise decrement boot counter
else
decrement boot counter
fi
save_env boot counter
fi
END /etc/grub.d/08 fallback counting

145

CHAPTER 3 GRUB BOOTLOADER

As you can see, the file adds the code that will watch the default timeout value of a
GRUB’s welcome screen, the same way the rest of the files (10_reset_boot _success and
menu_auto_hide) will do the housekeeping work for GRUB. Let’s look at the script files
that make GRUB 2 one of the best bootloaders for multibooting.

10 _linux

This file contains almost 500 lines of a bash script file. Whenever a user executes the
grub2-mkconfig command, it will run this script. The 10_linux file will find out what
other Linux distributions you have installed on your system. It will literally go partition
by partition and find all the other Linux versions that have been installed on your system.
If there are any others, then it will make a menuentry of it in grub. cfg. Along with
menuentry, it will add the respective kernel and initramfs entries. Isn’t that amazing?
Consider you installed Ubuntu first and then Fedora; now you don’t have to add
the entries of Ubuntu manually into Fedora’s grub.cfg. You have to just run grub2-
mkconfig. The command will run 10_linux for us, and it will eventually find out that
Ubuntu is installed and will add the appropriate entry for it.

20 linux_xen

After grub2-mkcontig, this script file will find out whether your system has the XEN
kernel installed. If it does, then it will add the appropriate entry for it in grub. cfg. Most
of the Linux distributors ship XEN as a separate kernel package. XEN is mostly used by
hypervisors.

20_ppc_terminfo

If your system has PPC or a PowerPC architecture from IBM, then this script file will find
the respective kernel for it and will add the appropriate entry into grub. cfg.

146

CHAPTER 3 GRUB BOOTLOADER

30_os_prober

If you have any non-Linux-based OS installed on your HDD, then this script file will find
that OS and will make the appropriate entry for it. In other words, if you have Windows
installed on your system, it will automatically find that out and will make an appropriate
entry for it in grub. cfg. This is the reason that, after installing our third OS (Fedora 31)
on a UEFI system, we got the list of operating systems without doing anything. You can
see the welcome screen presented by Fedora 31 in Figure 3-8.

Fedora (5.3.7-301.fc31.x86_64) 31 (Thirty One)

Fedora (0-rescue-280526b3bc5e4c49acB83cBeS5fbdfdb2e) 31 (Thirty One)
Windous Boot Manager (on /deu/sdal)

Ubuntu 18.04.3 LTS (18.04) (on /dev/sdal)

Advanced options for Ubuntu 18.04.3 LIS (18.04) {on /deu/sda?2)
System setup

Figure 3-8. The welcome screen

After the Fedora installation, Anaconda ran grub2-mkconfig in the background,
which eventually ran 30_os_prober, and it found the Windows installation and made the
appropriate entry for it in grub.cfg.

30 uefi-firmware

This script will run successfully only if you have a UEFI system. The job of this script
file is to add the appropriate entries of UEFI firmware in grub. cfg. As you can see in
Figure 3-8, the System setup entry has been added by the 30_uefi-firmware script file.

BEGIN /etc/grub.d/30 uefi-firmware
menuentry 'System setup' $menuentry id option 'uefi-firmware' {
fwsetup

}
END /etc/grub.d/30_uefi-firmware

If the user chooses the “System setup” option, then it will boot back to the UEFI
firmware. You can see the UEFI firmware interface in Figure 3-9.

147

CHAPTER 3 GRUB BOOTLOADER

Boot Manager

Continue to boot using
the default boot order.

Fedora

ubuntu

Windows Boot Mana

EFI UMware Uirtual Hard Drive (0.0)

EFI UMware UVirtual SATA CDROM Drive (1.0)

EFI Network

EFI Internal Shell (Unsupported option)

T1=Move Highlight {Enter>=Select Entry

Figure 3-9. The UEFI firmware

40 custom and 41 custom

These are given to the user in case the user wants to add some custom entries to grub.
cfg. For example, if grub2-mkconfig fails to add any of the installed OS as entries, then
users can add a custom entry to these two custom files. You can make your own custom
files, but you need to make sure each has a number assigned to it and has executable
permission.

GRUB 2 on UEFI-Based System

Again, there are three locations where GRUB 2 stores its files. Figure 3-10 shows the
directories and its files.

148

CHAPTER 3 GRUB BOOTLOADER

[rootelocalhost yogesh]# 1s /boot/grub2f
grubenv ther

[rcot@loca‘lhost yogesh]: 1s ;boot;efi;EFIffedora;

Q'J'T" 32 g 54 .efi uben grubx64.efi mmx64.efi shimia32.efi shimx64.efq

BOOTX csy gcdi efi grub.cfg grubiz ':.e" mmia32.efd shim.efi shimia32-fedora.efi shimx64-fedora.efi
[root@localhost yogesh]# ls fetc!default!grub

Jetc/default/grub

[root@localhost yogeshl# [|

Figure 3-10. The GRUB 2 locations on a UEFI-based system

The grub.cfg file that was shown earlier in /boot/grub2/ has been shifted inside
ESP (/boot/efi/EFI/fedora/). Also, as you can see, there is no 1386-pc directory.
This is because of the rich device and filesystem support provided by EFI. Inside ESP,
you will find a couple of *. ef1i files, including our shim.efi and grubx64.efi binaries.
The etc/default/grub file, which is responsible for GRUB'’s cosmetic changes and for
kernel command-line parameters, is still at the same location. The device.map file is
not available since the grub2-install command does not have significance on a UEFI
system. We will talk about this command later in the chapter.

Boot Loader Specification (BLS)

The BLS is a new development on GRUB upstream projects that hasn’t been adopted
by many mainstream distributions yet. Specifically, this scheme has been adopted by
Fedora-based operating systems such as RHEL, Fedora, Centos, Oracle Linux, etc., but
not by Debian-based distributions such as Ubuntu, Mint, etc.

On BIOS-based systems, whichever OS has control of the first 512 bytes has control
of all the operating systems’ booting sequences, which is why every OS tries to get hold
of the first 512 bytes. This situation arises because the BIOS always lands in the first 512
bytes of the HDD and calls part-1 of the bootloader (bootstrap). The part-1 to part-2 and
part-2 to part-3 transitions happen later, and then at the end part-3 reads the bootloader-
specific configuration file (bcdedit in the case of Windows, grub.cfg in the case of
Linux). If that configuration file has the entries for other installed OSs, then they will get
a chance to boot. So, long story short: whoever has control of the first 512 bytes controls
the entire booting sequence. But with ESP, every OS gets an equal chance to boot
because UEFI checks the ESP directories and lists all the available OS entries. Developers
started wondering if they could get something like this in a BIOS-based system, and they
came up with BLS.

149

CHAPTER 3 GRUB BOOTLOADER

In BLS, a new location (the fifth one) has been introduced to store the bootloader-
related files, and that is /boot/loader/. So, we have now five locations where GRUB will
store its files.

o /boot/grub2/

o /etc/default/grub

o /etc/grub.d

o /boot/efi/EFI/<0S_vendor>/ (in the case of UEFI only)
e /boot/loader/ (BLS files will be stored here)

The idea is that after the new kernel installation, the kernel itself with its post-scripts
(something like the kernel-core package in the case of Fedora) will create an entry for
anew kernel in the /boot/loader/ directory. For example, we have this kernel package
installed:

rpm -q kernel

Kernel-5.3.7-301.fc31.x86_64

This is the same package that will provide the /boot/vmlinuz and /boot/initramfs
files. Once this kernel is installed, it prepares the following file:

cat /boot/loader/entries/36543031048348f9965e3e12e48bd2b1-5.3.7-301.fc31.
x86_64.conf

title Fedora (5.3.7-301.fc31.x86 64) 31 (Thirty One)
version 5.3.7-301.fc31.x86 64

linux /vmlinuz-5.3.7-301.fc31.x86 64

initrd /initramfs-5.3.7-301.fc31.x86_64.img

options $kernelopts

grub_users $grub_users

grub_arg --unrestricted

grub_class kernel

As you can see, the file has four entries.
o The title that will be printed by part-3 of GRUB

o Thelocation and name of the kernel file

150

CHAPTER 3 GRUB BOOTLOADER

o The location and name of the initramfs file

o The $kernelopts variable that has been declared in the /boot/
grub2/grubenv file

cat /boot/grub2/grubenv

GRUB Environment Block
saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64
menu_auto_hide=1

boot success=0

kernelopts=root=/dev/mapper/fedora_localhost--live-root ro resume=/dev/
mapper/fedora_localhost--live-swap rd.lvm.lv=fedora localhost-live/root
rd.lvm.lv=fedora localhost-live/swap rhgb quiet

boot_indeterminate=0

Basically, kernelopts provides the kernel command-line parameters like the name
of the root filesystem (/dev/mapper/fedora_localhost--live-root) and in which
mode it has to be mounted (ro - read only).

So, the booting sequence becomes like this:

1) BIOS ->POST -> BIOS

2) Part-1 of GRUB -> part-2 of GRUB -> part-3 of GRUB

3) Part-3 of GRUB ->read grub.cfg

4) Part-3 of GRUB -> reads /boot/loader/entries/*

5) Prints all the file titles that are present in /boot/loader/entries

For an example, consider a new OS has been installed or a new kernel has been
installed. It has to generate its own entry file and place it in the first primary partition’s
/boot/loader/entries/ directory. This way, every time the first primary OS’s GRUB
part-3 reads the entry, the other OS will have a chance to boot. The entry file can be
created by using Fedora’s kernel-install command.

#kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.fc31.
x86_64/vmlinuz

151

CHAPTER 3 GRUB BOOTLOADER

The command will make the appropriate entry for kernel-5.3.7-301.fc31.x86_64
in /boot/loader/entries/, as shown here:

1s /boot/loadexr/entries/ -1

total 8

-YW-r--1r--. 1 root root 329 Dec 9 10:18 2058a9f13f9e489dba29c477a8ae2493-
0-rescue.conf

-IW-I--r--. 1 root root 249 Oct 22 01:04
2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.Fc31.x86_64.conf

The number associated with the *. conf file is unique. The BLS has its own
advantages and disadvantages.
Here are the advantages:

o Every OS will get an equal chance to boot.
o Itworks irrespective of the BIOS and UEFI firmware.

o Inthe case of the BIOS, the latest Linux installation removes part-1
and part-2 of the earlier installed operating system, which has
become obsolete since the latest Linux installation will make its own
entry through the kernel-install command on earlier OSs.

Here are the disadvantages:

e The BLS is not completely implemented yet. If the second OS wants
to make its entry in the first OS, then /boot of the first OS has to be
shared. That is not the case as of now. So, I consider this as a half-
implementation.

e The BLS unnecessarily complicates the booting sequence since
we have two configuration files to refer to: grub.conf and <uniq_
no><kernel version>.conf from /boot/loader/entries/. The BLS
especially makes life difficult in the case of resolving the “can’t boot”
issues.

o Except Fedora-based distros, no one has adopted the BLS yet,
which seems to be a wise decision. It looks like Fedora is the most
committed to the upstream project; hence, the BLS has been
implemented in Fedora.

152

CHAPTER 3 GRUB BOOTLOADER

Common Bootloader Issues

Based on this knowledge, let’s try to resolve some of the most common bootloader-
related “can’t boot” issues.

“Can’t Boot” Issue 1 (Bootloader)

Issue: After powering up the system, it is dropping you on the GRUB prompt, as shown
in Figure 3-11.

Minimal BASH-like line editing is supported. For the first word,
TAB lists possible command completions. Anywhere else TAB lists
possible device or file completions. ESC at any time exits.

grub>

Figure 3-11. The GRUB 2 prompt

This is what you see on your screen. You must have encountered this error at least
once in your life. Let’s try to resolve it.

1) You will be able to resolve the issue only if you know what the
issue is all about. Right now, though, we have no idea what the
problem is since we just started the system and this is what we get.

2) The screen is called a GRUB prompt. When this is called a prompt,
it means you can execute commands at it. Remember, this is a
GRUB command prompt, which means it can accept only GRUB

commands.

3) Bylooking at Figure 3-11, out of three parts of GRUB, which part of
GRUB has provided us with the GRUB prompt?

4) Of course, it must be part-3 because part-1 and part-2 have very
little space, so they cannot fit such functionality. So, we have
successfully reached part-3 of GRUB, and most important, it
does not matter whether this system has UEFI or the BIOS. Since
we have reached part-3, it means we have left the firmware
environment. That'’s the crucial input. Now we cannot concentrate

on part-3 only.

153

CHAPTER 3 GRUB BOOTLOADER

5) Whatis the purpose of part-3 of GRUB? Simple. It reads grub.cfg,
and from there it gets the kernel and initramfs locations. If it is a
BLS-enabled system, then it gets the kernel and initramfs names
from the /boot/loader/entries/ directories. For this example,
we will assume this system is not BLS-aware. Part-3 then loads
vmlinuz and initramfs in memory.

6) Since part-3 has provided us with the GRUB prompt but failed to
load the OS, it means either the kernel and initramfs files are not
present or the grub. cfg file is not pointing out the correct location
of these files.

7) So, in such a situation we can try to boot Fedora manually.
Manually means we will provide the kernel and initramfs files with
absolute paths by using the GRUB prompt. This is how it can be
done.

8) linuxisa GRUB command through which we need to give
the absolute path of the kernel (vmlinuz) file. As we know, the
vmlinuz file is at /boot, and GRUB follows its own disk naming
convention. So, the path of /boot will be hard disk number 0 and
partition number 1. Of course, you might not be aware on which
HDD or partition /boot has been stored. In that case, you can get
the help of the autocomplete feature of GRUB. You can press Tab
twice, and GRUB will prompt you for the available options. Let’s
find out the HDD and partition number of /boot. Please refer to
Figure 3-12.

possible device or file completions. ESC at any time exits.

grub> linux (hd@,
Possible partitions are:

Partition hdB,msdosl: Filesystem type extx - Last modification time
20819-12-88 B85:35:35 Sunday, UUID 223c49e4-flae-4f6d-a7aB-eaBaacf6388e -
Partition start at 1824KiB - Total size 1B48576RiB

Partition hdB,msdos2: No known filesystem detected - Partition start at
1849686RiB - Total size 251648B8KiB

Figure 3-12. The available partitions on hard disk number 0

154

CHAPTER 3 GRUB BOOTLOADER

The first tab after hdo showed us that there are two partitions
available under the hard disk number 0. The second partition is
not readable to GRUB, so of course the second partition cannot
be /boot. Hence, we will choose the msdos1 partition. Then, as
shown in Figure 3-13, we will start looking for the vmlinuz file in it
with the help of autocomplete.

grub> linux (hd8,msdosl)/umli
Possible files are:

vmlinuz-5.3.7-381. fc31. x86_64
vMl inuz-B-rescue-3654383184834
8f9965e3e12e48bd2b1

Figure 3-13. The vmlinuz file

As you can see inside HDD number 0 and partition number 1, we
found two vmlinuz files; one is of a rescue kernel, and another one
is the normal kernel file of Fedora 31. As shown in Figure 3-14, we
will choose the normal kernel and will provide the root filesystem
name to it. If you are unaware of the root filesystem name of your
system, then you can boot the system with the rescue or live image
and check the /etc/fstab entries. We will talk about the rescue
mode in Chapter 10.

155

CHAPTER 3 GRUB BOOTLOADER

possible device or file completions. ESC at any time exits.

grub> linux (hd@,
Possible partitions are:

Partition hd@,msdosl: Filesystem type ext» - Last modification time
2819-12-88 85:35:35 Sunday, UUID 223c49ed4-flae-4f6d-a7aB-eaBaacf6388e -
Partition start at 1824RiB - Total size 1B4B57GRiB

Partition hdB,msdos2: No known filesystem detected - Partition start at
1849688KiB - Total size 25164808RiB

grub> linux (hdB,msdosl)sumli
Possible files are:

uMlinuz-5.3.7-381. fc31.x86_64
vMlinuz-B-rescue-3654383104834
8f9965e3e12e48bd2b1
grub> linux (hdB,msdosl)sumlinuz-5.3.7-381.fc31.x86_64 ro root=/dev/mapper/fedor
a_localhost--live-root
grub> initrd
Possible commands are:

initrd initrd16
grub>

Figure 3-14. The root filesystem name and the ro flag

The absolute path of the vmlinuz file is (hd0o,msdos1)/
vmlinuz-5.3.7-301.fc31.x86_64. Next to it is the ro kernel
command-line parameter, which stands for “read-only.” After ro,
we have a root kernel command-line parameter to which we have
passed our system’s root filesystem name, which is - /dev/mapper/
fedora_localhost--live-root. It’s an lvm device.

grub> linux (hdo,msdos1)/vmlinuz-5.3.7-301.fc31.x86_64 ro
root=/dev/mapper/fedora_localhost--live-root

After successfully executing the 1inux command, we need to pass
on the initramfs name. We have two commands available that we
can use: initrd and initrd16. Please refer to Figure 3-15.

grub> initxd (hdo,msdos1)/initramfs-5.3.7-301.fc31.x86_64.img

156

CHAPTER 3 GRUB BOOTLOADER

2819-12-88 85:35:35 Sunday, UUID 223c49e4-flae-4f6d-a7aB-eaBaacf6388e -
Partition start at 1B824KiB - Total size 1848576KiB

Partition hdB,msdos2: No known filesystem detected - Partition start at
18496808KiB - Total size 251648088KiB

grub> linux (hdB8,msdos1)/umli
Possible files are:

vMlinuz-5.3.7-381. fc31.x86_64

vMlinuz-B-rescue-3654383184834

8f9965e3e12e48bd2b1

grub> linux (hd8,msdos1)/vmlinuz-5.3.7-381.fc31.x86_64 ro root=/dev/mapper/fedor
a_localhost--live-root

grub> initrd

Possible commands are:

initrd initrdi16
grub> initrd (hd8,msdosl)/initramfs
Possible files are:

initramfs-5.3.7-381.fc31.xB6_64. img
initramfs-B8-rescue-36543831848348f99
65e3e12e48bd2bl. img
grub> initrd (hdB,msdosl)/initramfs-5.3.7-381.fc31.x86_64. img
grub> boot_

Figure 3-15. The linux, initrd, and boot commands in action

9) The moment you execute the boot command, as shown
in Figure 3-16 and in Figure 3-17, GRUB’s part-3 will take
these inputs and load /boot/vmlinuz-5.3.7-301.fc31.
x86_64 from sda1l (hdo,msdos1). Then it will load /boot/
initramfs-5.3.7-301.fc31.x86_64.1img and give control to the
kernel. The kernel will eventually mount the root (/) filesystem
from /dev/mapper/fedora_locahost--live-root on the
/ directory and will show the login screen.

157

CHAPTER 3 GRUB BOOTLOADER

L e B e B B e B B B e B R e e B e B B e o B

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

OK
OK

OK
OK
OK

e e e e e e e e e e e R e b e e b e

Started dnf makecache --timer.

Started Updates mlocate database every day.

Started Daily Cleanup of Temporary Directories.

Started daily update of the root trust anchor for DNSSEC.
Reached target Paths.

Reached target Timers.

Listening on Avahi mDNS/DNS-SD Stack Activation Socket.
Listening on CUPS Scheduler.

Listening on D-Bus System Message Bus Socket.

Listening on Open-iSCSI iscsid Socket.

Listening on Open-iSCSI iscsiuio Socket.

Listening on Libvirt local socket.

Listening on Libvirt admin socket.

Listening on Libvirt local read-only socket.

Listening on SSSD Kerberos Cache Manager responder socket.
Listening on Virtual machine lock manager socket.
Listening on Virtual machine log manager socket.
Reached target Sockets.

Reached target Basic System.

Starting Modem Manager. ..

Starting Avahi mDNS/DNS-SD Stack. ..

Starting Bluetooth service...

Starting firewalld - dynamic firewall daemom...
Starting GSSAPI Proxy Daemonm. ..

Starting LSB: Init script for live image....

Started Machine Check Exception Logging Daemon.

Started Hardware RNG Entropy Gatherer Daemon.

Starting RealtimeKit Scheduling Policy Service...
Starting System Security Services Daemonm...

Starting Switcheroo Control Proxy service...

Starting Virtual Machine and Container Registration Service...

Starting Disk Manager...

Started UGAuth Service for open-um-tools.

Started Service for virtual machines hosted on Wuare.
Started LSB: Init script for live image..

Starting ABRT Automated Bug Reporting Tool...

Figure 3-16. The console messages while booting

158

CHAPTER 3 GRUB BOOTLOADER

. yogesh babar

fedora®

Figure 3-17. The login screen

10) Inthe case of Ubuntu 18, the commands are slightly different. On
Fedora 31, we gave the /boot partition’s address directly to the
linux command, whereas in Ubuntu we have a separate GRUB
command called set root for it.

As you can see in Figure 3-18, the root filesystem name of the Ubuntu 18 system is /
dev/sdal. It's a standard partition unlike the 1vm device of Fedora 31.

grub> set root='hdo,msdos1’

grub> linux /boot/vmlinuz-5.9.9-23-generic ro root=/dev/sdal
grub> initrd /boot/initrd.img-5.0.0-23-generic

grub> boot_

Figure 3-18. Ubuntu has a slightly different approach

As soon as we provide the proper inputs to GRUB 2, it leads us to the login screen.
You can see the login screen of Ubuntu in Figure 3-19.

159

CHAPTER 3 GRUB BOOTLOADER

lgl Yogesh Babar

Figure 3-19. The login screen presented by Ubuntu

11) Coming back to our Fedora system, since it has been booted now,
we can regenerate the grub. cfg file by using the grub2-mkconfig
command, as shown in Figure 3-20.

[root@localhost yogeshbabar]# grub2-mkconfig -o /boot/grub2/grub.cfg
Generating grub configuration file ...

done

[root@localhost yogeshbabar]#

Figure 3-20. grub2-mkconfig command

We can execute grub-mkconfig in case of Ubuntu. Please refer to Figure 3-21.

160

CHAPTER 3 GRUB BOOTLOADER

root@ubuntu: /home/yogesh# grub-mkconfig -o /boot/grub/grub.cfg
Sourcing file " /etc/default/grub’

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-5.0.0-23-generic

Found initrd image: /boot/initrd.img-5.0.0-23-generic

Found memtest86+ image: /boot/memtest86+.elf

Found memtest86+ image: /boot/memtest86+.bin

done

root@ubuntu: /home/yogesh#

Figure 3-21. The grub-mkconfig command of Ubuntu

But if it is a UEFI system and you want to regenerate grub.cfg, then, as shown
in Figure 3-22, the location of grub. cfg would be ESP.

[root@localhost yogesh]# grub2-mkconfig -o /boot/efi/EFI/fedora/grub.cfg
Generating grub configuration file ...

Found Windows Boot Manager on /dev/sdal@/EFI/Microsoft/Boot/bootmgfw.efi
Found Ubuntu 18.04.3 LTS (18.04) on /dev/sda2

Adding boot menu entry for EFI firmware configuration

done

[root@localhost yogesh]# I

Figure 3-22. grub2-mkconfig on a UEFI-based system

12) Once grub.cfgis generated, we need to regenerate the BLS

entries for Fedora.

#kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.
fc31.x86_64/vmlinuz

The command will make the appropriate entry for kernel-5.3.7-301.fc31.
x86_64 in /boot/loader/entries/.

1s /boot/loader/entries/ -1

total 8

-IW-r--r--. 1 root root 329 Dec 9 10:18
2058a9f13f9e489dba29c477a8ae2493-0-rescue.conf

-IW-r--T--. 1 root root 249 Oct 22 01:04
2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64.conf

161

CHAPTER 3 GRUB BOOTLOADER

13) If Fedora is on a UEFI system, then the BLS step remains the same.

14) After rebooting, Fedora is able to boot smoothly, and the “can’t
boot” issue has been fixed.

“Can’t Boot” Issue 2 (Bootloader)

Issue: After powering on the system, it passes the firmware stage, but after that, as you

can see in Figure 3-23, there is nothing on the screen.

Figure 3-23. The blank screen

Resolution for a BI0S-Based System

Here are the steps to solve this:

1. Since the BIOS firmware stage has been passed, it means
something is wrong at the bootloader level.

2. Since we are not getting anything on the screen, it means part-1 or
part-2 of GRUB is missing or at least they are corrupted (512 bytes
+31 KB). If it had reached part-3, then we would have gotten at
least the GRUB prompt. So, the issue has been isolated, and the
plan of action is to replace part-1 and part-2 of GRUB.

3. This can be done with the grub2-install command. First either
boot with live medium of the same Linux distro or, if available,
boot in rescue mode. The live image and rescue mode will be
explained in Chapter 10.

162

CHAPTER 3 GRUB BOOTLOADER

Asyou can see in Figure 3-24, grub2-install takes the device name as an input.
Please note that the device name should not be a partition number; rather, it should
be a disk name. This is because part-1 and part-2 of GRUB has to be installed on the
first 512 bytes + 31 KB of a disk, not inside a partition. You need to replace sda with
your disk name.

[root@localhost yogeshbabar]# grub2-install /dev/sda
Installing for i386-pc platform.

Installation finished. No error reported.
[root@localhost yogeshbabar]#

Figure 3-24. The grub2-install command

Along with part-1 and part-2 of the bootloader files, grub2-install repairs or re-
installs the 1386-pc directory, which has all the modules of the GRUB 2 bootloader.
We can cross-verify this by installing the modules in a custom directory. Please see
Figure 3-25.

[root@localhost yogeshbabar]# grub2-install --boot-directory=temp /dev/sda
Installing for i386-pc platform.

Installation finished. No error reported.

[root@localhost yogeshbabar]#

Figure 3-25. Installing grub2 in a temporary directory

You can see that all the GRUB 2 files have been restored along with GRUB’s module
files.

1s temp/grub2/
fonts grubenv 1386-pc

1s -1 temp/grub2/i386-pc/ | wc -1
279

After rebooting, Fedora should boot normally, and the “can’t boot” issue should
have been fixed. If GRUB drops you on a command prompt, then you need to follow the
steps mentioned for issue 1 since grub2-install repairs the binaries, but it does not
regenerate the grub. cfg file.

But what if you face a similar problem on a UEFI-based system?

163

CHAPTER 3 GRUB BOOTLOADER

Resolution for a UEFI-Based System

Here are the steps:

1. Asyou might have guessed, we have to just change the passed
device name of the grub2-install command, as shown in
Figure 3-26. The device name should be ESP.

root@yogesh: /home/yogesh# grub-install --efi-directory=/boot/efi/
Installing for x86_64-efi platform.

Installation finished. No error reported.

root@yogesh: /home/yogesh# [|

Figure 3-26. The grub-install command on a UEFI-based system

“Can’t Boot” Issue 3 (Bootloader + Kernel)

Issue: The complete /boot is missing.

Resolution for BI0S-Based Systems

Here are the steps:

1. Recovering the lost /boot is not possible (or at least it’s outside the
scope of this book).

2. Bootin rescue mode or boot with a live image and mount our “can’t
boot” system’s root filesystem. The rescue mode and how it works are
discussed in Chapter 10.

3. First make a new /boot directory and set the proper permissions on it.
o #mkdir /boot
o #chmod 555 /boot
o #chown root:root /boot

o If/boot is supposed to be a separate partition, then mount it with
the correct partition.

164

CHAPTER 3 GRUB BOOTLOADER

As we know, /boot is where we store the files of the bootloader,
kernel, and initramfs. Since /boot is missing, we need to create
every file for it.

e Hdnf reinstall kernel

e Thisis for a Fedora-based system. If it is a Debian-based
system, then you can use the apt-get command and can
reinstall the kernel.

o This will install the vmlinuz file and will also regenerate the
initramfs file for it.

Now we need to install GRUB.
o #grub2-install /dev/<disk_name>
e Inour case, the command is #grub2-install /dev/sda.

o This will repair GRUB's part-1, part-2, and 1386-pc directory
from /boot/grub2.

e Torepair part-3 of GRUB and to have some GRUB-provided tools,
we need to install two packages on a Fedora-based system.

o #dnf reinstall grub2 grub2-tools

o Asthe name suggests, the grub2 package will provide part-3
of GRUB, and grub2-tools will provide some of the tools like
grub2-install.

o Nowit’s time to regenerate the GRUB configuration file.
o #grub2-mkconfig -o /boot/grub2/grub.cfg
o Finally, fix the BLS.

o #kernel-install add 5.3.7-301.fc31.x86_64 /lib/
modules/5.3.7-301.fc31.x86_64/vmlinuz

165

CHAPTER 3

GRUB BOOTLOADER

Resolution for UEFI-Based Systems

Here are the steps:

e /boot and /boot/efi/ are separate mount points.

mkdir /boot
chmod 555 /boot
chown root:root /boot

yum reinstall kernel

o Now we need to create an ESP partition, and as we know, it has to be

a VFAT partition. Then assign an ESP partition type to it.

#imkdir /boot/efi

#mount /dev/sda2 /boot/efi

o Inour case, the partition that I have created for ESP is sda2.
#igrub2-install --efi-directory=/boot/efi

o This will install the grubx64. ef1i file in ESP.

The rest of the required files are provided by the grub2-efi, shim,
and grub2-tools packages.

o #yum reinstall grub2-efi shim grub2-tools
Regenerate the configuration files.
o #grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

o #kernel-install add 5.3.7-301.fc31.x86_64 /lib/
modules/5.3.7-301.fc31.x86_64/vmlinuz

After rebooting the system, it is able to boot without any issue.

Now it’s time to shed some more light on UEFI’s Secure Boot environment.

166

CHAPTER 3 GRUB BOOTLOADER

Secure Boot Feature of UEFI

Secure Boot is an amazing feature of UEFI. It makes sure no untrusted binary will run

while booting. So far, we have seen the following:

The digital signature is a unique string.

o The digital signature of any file will be generated from
a private key.

o The same digital signature can be regenerated from
the public key.

o Ifthefile is not altered, then the digital signature should match.
Microsoft made its key pair (public and private keys).

Microsoft digitally signed its bootloader-related files (BCD) with its
private key.

Microsoft’s public key is present inside UEFL.

While booting, UEFI will regenerate the digital signature of the
bootloader by using the available public key. If the digital signatures
do not match, then UEFI will discard the execution of .ef1i files.

To use this feature in the Linux environment, a new bootloader
has been created called shim, and it has been signed by Microsoft’s
private key so that UEFI will allow the shim.efi execution.

Shim.efi’s job is to call the actual GRUB file, which is grubx64.ef1i.

But Secure Boot does not stop here. Because there is a possibility that grubx64.efi

itself has been compromised, or in fact any code that runs after the bootloader could

have been compromised, securing the booting environment up to the bootloader

level only is not sufficient; hence, these days the Secure Boot feature secures the entire

booting procedure of Linux. This is how it works:

1.

Fedora will prepare its own key pair and will sign the GRUB files
with Fedora’s private key.

2. The public key of Fedora will be kept inside the shim.ef1i file.

167

CHAPTER 3 GRUB BOOTLOADER

3. Asthe booting sequence continues, GRUB's digital signature will
be regenerated by using the public key that is inside shim.ef1i.

4. Ifthe signature matches then grubx64.efi and other bootloader
files will be allowed to run by UEFI.

5. GRUB’s ultimate job is to load the kernel (/boot/vmlinuz).

6. This vmlinuz file can also be compromised, so to avoid that, the
kernel will be signed by the same private key that was used to sign
GRUB.

7. Vmlinuz's digital signature will be regenerated by using the public
key that is inside shim.ef1i.

8. Once the digital signature matches, the kernel takes control of the
booting sequence.

9. Butthe kernel uses a lot of modules/drivers that are eventually
inserted inside the kernel. So, these modules that are again
binaries could be compromised, and since they are going to
become part of kernel/vmlinuz, then eventually the kernel itself
will be compromised.

10. So, the kernel as a package will prepare its own key pair. All the
modules will be signed by this kernel’s private key, and the public
key will be shipped with the kernel package itself. The private key
of a kernel package will be destroyed later.

11. Atthe time of the booting, while inserting the modules in the
kernel, the digital signature of the module will be regenerated by
using the public key, which is with the kernel.

12. By following the steps mentioned, the Secure Boot feature makes
sure that only binaries from trusted parties are executed.

The block diagrams shown Figure 3-27 will simplify the booting procedure even
more.

168

CHAPTER 3 GRUB BOOTLOADER

Microsoft's Microsoft's Fedora's k:rzzﬂ]; Ifmr: QOut of
key pair key pair key pair omme key pair Secure Boot
used used used Pk R scope

Modules

[| 1 I H
] |] I !

Has public Has public Does not ol Does not
key of key of has any iedg e has any
Microsoft Fedora public key o] public key

Figure 3-27. The Secure Boot procedure

100 0OS Multiboot Project

One of my students asked me a question: how many operating systems can we install
on one system and multiboot them with one bootloader? I didn’t know the answer,

but I decided to try to find out. I decided that I would use a GRUB 2 bootloader to boot
every operating system that I have installed. I have been installing and multibooting the
operating systems for almost two years now. I have installed 106 operating systems so
far. This is our third system, which I named Jarvis. Here are the hardware and software
details of Jarvis:

o UEFI firmware.

o Two disks attached (sda and sdb).

e The booting method is UEFL

o sdais formatted with an MS-DOS partition table.
o sdbis formatted with a GPT partition table.

o All the operating systems are identified and booted by the GRUB 2
bootloader.

The operating systems that are installed on the sda disk were installed by setting the
booting method to UEF], and it has all the new operating systems. The operating systems
that are on sdb were installed by setting the booting method of the firmware to legacy.
sdb hosts most of the old-generation operating systems or at least those operating
systems that do not have UEFI support. Here are the details:

169

CHAPTER 3

170

GRUB BOOTLOADER
Partition Operating System Filesystem Size
sda-1 ESP (EFI System Partition) FAT32 20 GB
sda-2 MSR (Microsoft Recovery) MSR 16 MB
sda-3 Windows 10 NTFS 9.7GB
sda-4 Swap Swap 2.01GB
sda-5 openSUSE Linux 13.2 EXT4 10 GB
sda-6 Mint Linux 17.2 EXT4 10 GB
sda-7 Oracle OpenSolaris 11.2 ZFS 10 GB
sda-8 Sabayon Linux 15.06 EXT4 10 GB
sda-9 Some random free space N/A 8.4 MB
sda-10 Kali Linux 2.0 EXT4 10 GB
sda-11 Arch Linux 2015-8.1 EXT4 10 GB
sda-12 Debian Linux 8.1 EXT4 10 GB
sda-13 Semplice Linux 7.0.1 EXT4 10 GB
sda-14 Slackware 14.1 Linux EXT4 10 GB
sda-15 Openmandriva 2014.2 EXT4 10 GB
sda-16 Mate Ubuntu Linux15.04 EXT4 10 GB
sda-17 Steam 0S beta EXT4 10 GB
sda-18 Manijaro Linux 0.8.13.1 EXT4 10 GB
sda-19 Netrunner Linux 16 EXT4 10 GB
sda-20 Windows 8 NTFS 10 GB
sda-21 Korora Linux 22 EXT4 10 GB
sda-22 KaOS Linux 2015.08 EXT4 10 GB
sda-23 Lubuntu Linux 15.04 EXT4 10GB
sda-24 Sonar Linux 2015.2 EXT4 10 GB
sda-25 Antergos Linux 2015.08.18 EXT4 10 GB
sda-26 Mythbuntu Linux 14.04.2 EXT4 10GB
(continued)

CHAPTER 3 GRUB BOOTLOADER

Partition Operating System Filesystem Size

sda-27 Rosa Linux fresh R5 EXT4 10GB
sda-28 SparkyLinux 4.0 EXT4 10 GB
sda-29 Vinux Linux 4.0 EXT4 10 GB
sda-30 Xubuntu Linux 14.04.3 EXT4 10 GB
sda-31 Ubuntu Studio 14.04.3 EXT4 10 GB
sda-32 Suse Enterprise 12 EXT4 10 GB
sda-33 Ubuntu Linux 14.04 EXT4 10 GB
sda-34 Ubuntu Linux 15.04 EXT4 10 GB
sda-35 Scientific Linux 7 EXT4 10 GB
sda-36 CentOS Linux 7 EXT4 10 GB
sda-37 Solus Linux Daily EXT4 10 GB
sda-38 Ubuntu Server 14 Linux EXT4 10 GB
sda-39 Fedora 21 Linux EXT4 10 GB
sda-40 Fedora 22 Linux EXT4 10 GB
sda-41 BlackArch 2015.07.31 EXT4 10 GB
sda-42 Gentoo Linux multilib 20140826 EXT4 10GB
sda-43 Calculate Linux 14.16.2 EXT4 10 GB
sda-44 Fedora 20 Linux EXT4 10 GB
sda-45 Fedora 23 Linux EXT4 10 GB
sda-46 Manjaro Linux 15-0.9 EXT4 10GB
sda-47 Ubuntu Linux 16.04 EXT4 10 GB
sda-48 chapeau Linux 23 EXT4 10 GB
sda-49 Arquetype Linux 22 EXT4 10 GB
sda-50 Fx64 Linux 22 EXT4 10 GB
sda-51 Viperr Linux 7 EXT4 10 GB
sda-52 Hanthana Linux 21 EXT4 10 GB

(continued)

171

CHAPTER 3 GRUB BOOTLOADER

Partition Operating System Filesystem Size

sda-53 Qubes R3.1 Linux EXT4 10 GB
sda-54 Fedora 24 EXT4 10 GB
sda-55 Korora-23 EXT4 10 GB
sda-56 sabayon-16 EXT4 10 GB
sda-57 Korora-24 EXT4 10 GB
sda-58 Sonar 16 Linux EXT4 10 GB
sda-59 Viper 9 Linux EXT4 10 GB
sda-60 Arquetype Linux 23 EXT4 10 GB
sda-61 Manjaro Linux 16 EXT4 10 GB
sda-62 Manjaro Linux Gaming 16 EXT4 10 GB
sda-63 Calculate Linux 15 EXT4 10 GB

So, the total number of UEFI OS installations on the sda disk is 59 since four
partitions are reserved for ESP- and MSR-like stuff. The following are the sdb disk
installations details:

Partition Operating System Filesystem Size
sdb-1 PCBSD 10.1.2 ZFS 10 GB
sdb-2 Magia 2 Linux EXT4 10 GB
sdb-3 Magia 3 Linux EXt4 10 GB
sdb-4 Extended/secondary N/A 970 GB approximately
sdb-5 Q40S Linux 1.2.8 EXT4 10 GB
sdb-6 Qubes R2 Linux EXT4 10 GB
sdb-7 Pardus Linux 2013 EXT4 10GB
sdb-8 GoboLinux 015 EXT4 10 GB
sdb-9 Crux Linux 3.1 EXT4 10 GB
sdb-10 Point Linux 3.0 EXT4 10 GB

(continued)

172

CHAPTER 3 GRUB BOOTLOADER

Partition Operating System Filesystem Size

sdb-11 Extix Linux 15.3 EXT4 10 GB
sdb-12 Bodhi Linux 3.0 EXT4 10 GB
sdb-13 Debian Linux 7.0 EXT4 10 GB
sdb-14 Debian Linux 6.0 EXT4 10 GB
sdb-15 BOSS Linux 6.1 EXT4 10 GB
sdb-16 CrunchBang rc1 Linux EXT4 10 GB
sdb-17 Handy Linux 2.1 EXT4 10 GB
sdb-18 Lite Linux 2.4 EXT4 10 GB
sdb-19 WattOS Linux R9 EXT4 10 GB
sdb-20 PinGuy OS 14.04.3 Linux EXT4 10 GB
sdb-21 SuperX 3.0 Linux EXT4 10 GB
sdb-22 JuLinux 10X Rev 3.1 Linux EXT4 10 GB
sdb-23 Black Lab Linux 2015.7 EXT4 10 GB
sdb-24 Hamara Linux 1.0.3 EXT4 10 GB
sdb-25 Peppermint Linux 20150518 EXT4 10 GB
sdb-26 Ubuntu 13.10 Linux EXT4 10 GB
sdb-27 LinuxMint 13 mate EXT4 10 GB
sdb-28 Linux Mint 14.1 cinnamon EXT4 10 GB
sdb-29 LinuxMint 15 xfce EXT4 10 GB
sdb-30 LinuxMint 16 KDE EXT4 10 GB
sdb-31 Peppermint 4 20131113 EXT4 10 GB
sdb-32 Peppermint 5 20140623 EXT4 10 GB
sdb-33 Fedora 12 EXT4 10 GB
sdb-34 Trisquel 7 Linux EXT4 10 GB
sdb-35 Oracle Linux 7.1 EXT4 10 GB
sdb-36 Fedora 14 Linux EXT4 10 GB

(continued)

173

CHAPTER 3 GRUB BOOTLOADER

Partition Operating System Filesystem Size

sdb-37 Fedora 15 Linux EXT4 10 GB
sdb-38 Fedora 17 Linux EXT4 10 GB
sdb-39 Fedora 19 Linux EXT4 10 GB
sdb-40 RHEL 6.5 Linux EXT4 10 GB
sdb-41 SolydX 201506 EXT4 10 GB
sdb-42 Oracle Linux 6.7 EXT4 10 GB
sdb-43 OpenSuse 11.3 EXT4 10 GB
sdb-44 LMDE (Linux Mint 2 Debian edition) EXT4 10 GB
sdb-45 Centrych Linux 12.04 EXT4 10 GB
sdb-46 Elementary 0S 2013 EXT4 10 GB
sdb-47 Elementary 0S 2015 EXT4 10 GB
sdb-48 Sabayon 13.08 Linux EXT4 10 GB
sdh-49 Deepin 2013 Linux EXT4 10 GB
sdb-50 Deepin 15.1 Linux EXT4 10 GB

The total number of operating systems booting the BIOS way on the sdb disks is
50 -2 =48.

Two partitions are reserved for swap and the extended partition.

So, the total number of installations on the Jarvis system is 106, and as you can see in
Figure 3-28, all of these OSs are multibooted by using the GRUB 2 bootloader. With this
project I have realized that there is no end to this. The GRUB 2 and UEFI combination
can handle n number of operating systems.

174

CHAPTER 3 GRUB BOOTLOADER

23420272227

Figure 3-28. The 106 operating systems listed by GRUB 2

How did I manage to install this many operating systems? Simple. I fired the grub-
mkconfig command after every new OS installation, which found all the operating
systems from all the attached disks.

time grub-mkconfig -o multiboot_grub.cfg

The previous command is used after installing Ubuntu 18, which was the 106th OS in
the list.

Asyou can see in Figure 3-29, when I installed the 106th OS, grub-mkconfig took
almost one hour to complete, and the resulting GRUB configuration file had 5,500 lines
init.

'Adding boot menu entry for EFI firmware configuration
. done

' real 52m51.508s

. user Om51.640s

. Sys 4m25.944s

. root@yogesh-desktop: /home/yogesh# [

Figure 3-29. The time taken by the grub-mkconfig command

175

CHAPTER 3 GRUB BOOTLOADER

A Dummy Small Bootloader

We know that the BIOS jumps to the first 512 bytes and calls the GRUB 2 bootloader. To
understand how exactly BIOS calls the bootloader, we will make our own bootloader.

Our bootloader will be very tiny compared to GRUB 2. Our bootloader will just print ! on

the screen. But with this example, you will be able to understand how the BIOS jumps to
the bootloaders as with GRUB 2, as shown here:

#icat boot.nasm

)

; Note: this example is written in Intel Assembly syntax

5
[BITS 16]
[ORG 0x7c00]

boot:

mov al, "I
mov ah, O0xOe
mov bh, 0x00

mov bl, 0x07

<<-- Character for interrupt
<<-- Display character

<<-- Set video mode

<<-- Clear/Scroll screen down

int ox10 <<--- BIOS interrupt 10 which is taking inputs
from al, ah, bh, bl

jmp $

times 510-($-$$) db 0 <<--- Out of 512 bytes first 510 bytes
are filled with 0's.
In the real world it will be filled with
grub's boot strap.

db 0x55 «-- &

db oxaa <<-- | tells BIOS that this is the device which

is active/fdisk sign/boot flag.

#nasm -f bin boot.nasm && qemu-system-x86_64 boot

This will make a boot disk (disk image) from the boot.nasm file, and it will be an

input to gemu, which will execute it. As you can see in Figure 3-30, you will see ! printed

on the screen.

176

CHAPTER 3 GRUB BOOTLOADER

QEMU
SeaBIDS (version 1.9.1-1.fcZ24)

iPXE (http:/sipxe.org) 00:03.0 CAOGO PCIZ.10 PnP PMM+O?FI3ESO+OVEF3ESO CAGO

Booting from Hard Disk...
t

Figure 3-30. Our small tiny bootloader

Basically, the gemu machine is considering boot as a disk, and whenever the gemu
machine finishes its BIOS stage, the BIOS drops at the first 512 bytes of the boot disk.
Here you will find that the first 510 bytes are written as 0 and the in last 2 bytes we have !
(the bootloader), and it will be printed on our screen.

So far, we have gotten a good overview of GRUB 2; now going further in the next
section, we will discuss what really happens inside GRUB 2.

GRUB 2 at a Low level

While writing this book, the latest available source code of GRUB was GRUB 2.04, which
I have been using here. The bootstrap binary (if the system is BIOS based) from the first
440 bytes of 512 bytes is called boot. img, which is available at /usr/1ib/grub/i386-pc/
boot. img.

1s -lh /usx/lib/grub/i386-pc/boot.img
-IW-r--I--. 1 root root 512 Mar 28 2019 /usr/lib/grub/i386-pc/boot.img

file /usr/lib/grub/i386-pc/boot.img
/usr/1ib/grub/i386-pc/boot.img: DOS/MBR boot sector

The boot. img file is created from the source code written in the file /GRUB 2.04/
grub-core/boot/i386/pc/boot.S.

177

CHAPTER 3

GRUB BOOTLOADER

The following is a snippet of it:

<snip>

1 /* -*-Asm-*- */

2 /*
3 *
4

*

O 00 N o U

10
11
12
13
14
15
16
17
18
19

* K X X X K X X X ¥ X X ¥

*
~

GRUB -- GRand Unified Bootloader
Copyright (C) 1999,2000,2001,2002,2005,2006,2007,2008,2009 Free
Software Foundation, Inc.

GRUB is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

GRUB is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GRUB. If not, see <http://www.gnu.org/licenses/>.

20 #include <grub/symbol.h>
21 #include <grub/machine/boot.h>

22
23 /*
24 %
25 */
26
27

defines for the code go here

/* Print message string */

28 #define MSG(x) mowvw $x, %si; call LOCAL(message)
29 #define ERR(x) movw $x, %si; jmp LOCAL(error message)

30

178

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

CHAPTER 3 GRUB BOOTLOADER

.macro floppy
part start:

LOCAL(probe_values):
.byte 36, 18, 15, 9, 0

LOCAL(floppy_probe):
pushw %dx
/*
* Perform floppy probe.
*/
#ifdef _APPLE__
LOCAL (probe_values_minus_one) = LOCAL(probe values) - 1
movw MACRO_DOLLAR(LOCAL(probe values minus one)), %si
#else
Movw MACRO DOLLAR(LOCAL(probe values)) - 1, %si
#endif

LOCAL (probe loop):

50 /* reset floppy controller INT 13h AH=0 */
51 XOTW %ax, %hax

52 int MACRO DOLLAR(0x13)

</snip>

You can consider boot . img as a first stage of the bootloader or part-1 of GRUB. This

boot. img file transfers control to diskboot.img, which is part-2 of GRUB.

1s -lh /usr/1lib/grub/i386-pc/diskboot.img

-TW-

I--r--. 1 root root 512 Mar 28 2019 /usr/lib/grub/i386-pc/diskboot.img

file /usr/lib/grub/i386-pc/diskboot.img
/usr/1ib/grub/i386-pc/diskboot.img: data

179

CHAPTER 3 GRUB BOOTLOADER

The diskboot. img file is made from the source code of grub-2.04/grub-core/boot/
1386/pc/diskboot.S. The following is a snippet of it:

<snip>
1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (C) 1999,2000,2001,2002,2006,2007,2009,2010 Free Software
Foundation, Inc.
4 *
5 * GRUB is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * GRUB is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the CGNU General Public License
16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
17 */
18

19 #include <grub/symbol.h>

20 #include <grub/machine/boot.h>
21

22 /*

23 * defines for the code go here
24 */

25

26 #define MSG(x) mowvw $x, %si; call LOCAL(message)
27

28 .file "diskboot.S"

29

30 .text

31

180

CHAPTER 3 GRUB BOOTLOADER

32 /* Tell GAS to generate 16-bit instructions so that this code
works

33 in real mode. */

34 .code16

35

36 .globl start, start

37 start:

38 start:

39 /*

40 * start is loaded at 0x8000 and is jumped to with

41 * CS:IP 0:0x8000 in kernel.

42 */

</snip>

The diskboot. img file then loads the actual core part of GRUB 2, which is part-3 of
GRUB. You can also consider that part-3 of GRUB is a kernel of the bootloader. At this
stage, GRUB 2 will be capable of reading the filesystem.

1s /boot/grub2/i386-pc/core.img -lh
-Tw-r--r--. 1 root root 30K Dec 9 10:18 /boot/grub2/i386-pc/core.img

From /GRUB 2.00/grub-core/kern/main.c, GRUB 2 sets the root device name,
reads grub.cfg, and at the end shows the operating system list to choose.

I hope you understand how GRUB 2 works now. The following is a quick summary of
what we have discussed so far:

a. The bootloader is the first code that runs after the firmware.
b. The bootloader/GRUB copies the kernel in memory.

c. The bootloader loads the initramfs image in memory and gives
the kernel a pointer to it.

d. The bootloader hand overs control to the kernel.

181

CHAPTER 4

Kernel

This chapter will cover the kernel.

Loading the Kernel in Memory

This is an interesting chapter. So far, we have seen that up to this stage GRUB 2 had full
control of the booting procedure. Now it has to hand over control to the kernel. In this
chapter, we will see how and where the bootloader loads the kernel. In other words, how
is the kernel extracted? Then we will see the booting-related tasks achieved by the Linux
kernel and at the end how the kernel starts systemd.

Note The source code of the kernel that is used in this chapter is version
kernel-5.4.4.When | was writing this book, that was the latest stable code
available; see https://www.kernel.org/. An excellent resource on this
subject is the Inside Linux book, written by 0xAX. | have learned a lot from it, and
I'm sure you will too. You can find the book at https://0xax.gitbooks.io/
linux-insides/.

To hand over the control to the kernel, the bootloader has to achieve two major things.
e Load the kernel into memory

o Setsome of the fields of the kernel as per the boot protocol

183
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_4

https://doi.org/10.1007/978-1-4842-5890-3_4#ESM
https://www.kernel.org/
https://0xax.gitbooks.io/linux-insides/
https://0xax.gitbooks.io/linux-insides/

CHAPTER 4 KERNEL

The complete boot protocol is available at https://www.kernel.org/doc/

Documentation/x86/boot.txt. The original boot protocol was defined by none other

than Linus Torvalds.

~

100000 +

0A0O000 +

X+10000 +

X+08000 +

001000 +
000800 +
000600 +

000000 +

184

Protected-mode kernel

Reserved for BIOS

Command line

Kernel setup
Kernel boot sector

Boot loader

Leave as much as possible unused

(Can also be below the X+10000
mark)

For use by the kernel real-mode
code.

The kernel real-mode code.
The kernel legacy boot sector.

<- Boot sector entry point
0000:7C00. You will see the same
address location at our boot.asm
file which we created above.

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/boot.txt

CHAPTER 4 KERNEL

As per the boot protocol, it’s the duty of a bootloader to pass on or set some of
the fields of the kernel header. The fields are the root device name, mount options
like ro or 1w, the initramfs name, the initramfs size, etc. These same fields are called
kernel command-line parameters, and we already know that the kernel command-line
parameters are passed by GRUB/the bootloader to the kernel.

GRUB will not load the kernel (/boot/vmlinuz) at any random location; it will
always be loaded at a special location. The special location will vary as per the Linux
distribution and version you are using and as per the CPU architecture of the system.
vmlinuz is an archive file, and the archive is made from three parts.

VUmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual
compressed kernel)

(part-1) (part-2) (part-3)

After Loading the Kernel in Memory

We need to imagine here that GRUB 2 has loaded the kernel in memory at the special
location. Here are the initial-level steps carried out by the kernel archive file vmlinuz as
soon as it loaded in memory:

1) Assoon as the bootloader loads the kernel in memory at a specific
location, the binary made from the file arch/x86/boot/header.S
runs.

2) Confusion occurs if vmlinuz is an archive and the bootloader has
not extracted it yet. The bootloader has just loaded the kernel at a
specific location. Then why is the code that is inside the vmlinuz
archive file able to run?

3) We will see the short answer first, and the long answer will be
discussed in the “What Extracts vmlinuz?” section of this chapter.
So, the short answer is a binary made from the arch/x86/boot/
header.S file is not in the archive; rather, it is part of a header that
does a kernel setup task. The header is outside of an archive.

VUmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual compressed kernel)
--->0Outside of archive<--- + -------- >Inside archive<----
--->header.s file is here<---

185

CHAPTER 4 KERNEL

4) Let’s consider for now that vmlinuz has been extracted, and let’s

continue our booting sequence. So far, we have seen that GRUB
has loaded the kernel in memory at a special location and runs
the binary made from arch/x86/boot/header.S. This binary is
responsible for the Kernel setup part. The kernel setup file
does the following tasks:

a) Align the segment registers
b) Set up the stack and BSS

In every chapter, a flowchart will give us a clear idea about what
we have learned and, in terms of booting, where we have reached.
Figure 4-1 shows the start of the flowchart that we will build in
this chapter as we progress. It shows the actions performed by the
kernel setup code of header.s.

[——— —

I
- arch/x86/boot/header.s
| - Part of a kernel header
- The first file which
I will be executed from
i kernel header.
- It aligns the segment
| registers
- Sets the stack and BSS
I

Figure 4-1. Steps taken by kernel_setup

186

CHAPTER 4 KERNEL

5) Then it jumps to the main() function at arch/x86/boot/main.c.
The main. c file is also part of a kernel header, and the header is
outside the actual archive.

Umlinuz (bZimage) = Header + kernel setup code + vmlinux (actual compressed kernel)
--->Outside of archive<--- + -------- >Inside archive<---------
--->main.c file is here<---

#vim arch/x86/boot/main.c

<snip>

134 void main(void)

135 {

136 /* First, copy the boot header into the "zeropage" */

137 copy_boot_params();

138

139 /* Initialize the early-boot console */

140 console init();

141 if (cmdline find option bool("debug"))

142 puts("early console in setup code\n");

143

144 /* End of heap check */

145 init heap();

146

147 /* Make sure we have all the proper CPU support */

148 if (validate cpu()) {

149 puts("Unable to boot - please use a kernel
appropriate "

150 "for your CPU.\n");

151 die();

152 }

153

154 /* Tell the BIOS what CPU mode we intend to run in. */

155 set_bios _mode();

156

187

CHAPTER 4 KERNEL

157 /* Detect memory layout */

158 detect _memory();

159

160 /* Set keyboard repeat rate (why?) and query the lock
flags */

161 keyboard init();

162

163 /* Query Intel SpeedStep (IST) information */

164 query ist();

165

166 /* Query APM information */

167 #if defined(CONFIG APM) || defined(CONFIG APM MODULE)

168 query apm bios();

169 #endif

170

171 /* Query EDD information */

172 #if defined(CONFIG EDD) || defined(CONFIG EDD MODULE)

173 query edd();

174 #endif

175

176 /* Set the video mode */

177 set_video();

178

179 /* Do the last things and invoke protected mode */

180 go_to protected mode();

181 }

</snip>

Asyou can see, the main.c source code is responsible for the following:

1) It copies the boot parameters (the kernel command-line
parameters) from the bootloader. The copy_boot params function
will be used to copy the following boot parameters passed by the
bootloader:

debug, earlyprintk, ro, root, ramdisk image, ramdisk size etc.

188

CHAPTER 4 KERNEL

2) Itinitializes the console and checks whether the debug-like kernel

command-line parameter has been passed by the user. If it has,

the kernel will show the verbose-level messages on the screen.

3) Itinitializes the heap.

4) Ifthe CPU cannot be validated, then it throws an error message

through the validate cpu() function. Distributions like Fedora

and Ubuntu customize the error message, from 'unable to

boot - please use the kernel appropriate for your cpu'to

somethinglike 'The CPU is not supported'.The customization

will also panic the kernel, and the booting will be halted.

5) Then it detects the memory layout and prints it on-screen at an

early stage of booting. The same memory layout messages can be

seen after the boot by using the 'dmesg' command, as shown here:

.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:

.000000] BIOS-e820:
.000000] BIOS-e820:
.000000] BIOS-e820:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

O O O O O O O O O O O 0o o o o o o

.000000] BIOS-e820:

.000000] BIOS-e820:

.000000] BIOS-provided physical RAM map:

[mem 0x0000000000000000-0X0000000000057fff] usable
[mem 0x0000000000058000-0x0000000000058fFf] reserved
[mem 0x0000000000059000-0x000000000009cfff] usable
[mem 0x000000000009d000-0x00000000000Fffff] reserved
[mem 0x0000000000100000-0x000000007e5F7fff] usable
[mem 0x000000007e5f8000-0x000000007e5f8fff] ACPI NVS
[mem 0x000000007e5f9000-0x000000007e5f9fff] reserved
[mem 0x000000007e5fa000-0x0000000087f62fff] usable
[mem 0x000000008763000-0x000000008952bfff] reserved
[mem 0x000000008952c000-0x0000000089599FFf] ACPI NVS
[mem 0x000000008959a000-0x00000000895fefff] ACPI data
[mem 0x00000000895ff000-0x00000000895Fffff] usable
[mem 0x0000000089600000-0x000000008f7fffff] reserved
[mem 0x00000000f0000000-0x00000000f7ffffff] reserved
[mem 0x00000000fe010000-0x00000000fe010fff] reserved
[mem 0x0000000100000000-0X000000086e7fffff] usable

6) Initialize the keyboard and its layout.

7) Set the basic video mode.

189

CHAPTER 4 KERNEL

8) Jump to the protected mode through the go to protected_

mode () function. Please refer to Figure 4-2 for a better

understanding.

\J

Real mode
220 =1MB
of memory
is accessible

arch/x86/boot/header.s
Part of a kernel header
The first file which
will be executed from
kernel header.

It aligns the segment
registers

Sets the stack and BSS

arch/x86/boot/main.c

Part of kernel header
copy_boot_params(}--------
console_init()

init_heap()

validate_cpu()
set_BIOS_mode()
detect_memory()-------ceun-
keyboard_init()
query_mca()

query_ist()
query_apm_bios()
query_edd()

set_video()
go_to_protected_mode()----

Figure 4-2. The flowchart

Protected Mode

M debug, eartyprintkro,

root, ramdisk_image,
" ramdisk_size

J

W

&)

Memory_mapping in
dmesg

hiw related stuff will be
carried by cpu

Protected mode:
2%32= 4GB
Memory access

Up to this point, we have worked in real mode, which has 20-bit address limitations

because of that we can access up to 1 MB of memory. With the go_to_protected mode()

function, the kernel has switched the CPU from real mode to the protected mode.

Protected mode has a 32-bit address limitation, so the CPU can access up to 4 GB of

memory. In simple terms, in real mode only those programs will run that have a 16-bit

instruction set, for example, the BIOS. In protected mode, only the 32-bit programs will

run. The kernel does some hardware-related tasks in protected mode and then launches

a CPU in long mode.

190

CHAPTER 4 KERNEL

Please note that this book follows Intel’s X86 architecture, and the real, protected,
and long mode discussions are based on Intel’s 64-bit architecture.

Long Mode

Long mode does not put any memory restrictions on the CPU. It can use all the installed
memory. Placing the CPU in long mode will be achieved by the head 64.S file from
arch/x86/boot/compressed/head 64.S. It is responsible for the following:

1) Preparing for long mode means it will check whether it supports

long mode or not.
2) Enter into long mode.
3) Decompress the kernel.

The following are functions that get called from the head_64.S assembly file:

$ cat arch/x86/boot/compressed/head_64.5 | grep -i call
call 1f
call verify cpu
call get sev_encryption bit
call 1f
call 1f
call .Ladjust_got
* this function call.
call paging prepare
* this function call.
call cleanup_trampoline

call 1f
call .Ladjust_got
call 1f

* Relocate efi_config->call().

call make_boot params

call 1f

* Relocate efi_config->call().

call efi main

call extract_kernel /* returns kernel location in %rax */
.quad efi _call

191

CHAPTER 4 KERNEL

Function Working

verify cpu This will make sure the CPU has a long mode.

make_boot_params This will take care of the bootloader-passed boot-time parameters.
efi_main UEFI firmware-related stuff.

extract_kernel The function is defined in arch/x86/boot/compressed misc.c.

This is the function that will decompress vmlinux from vmlinuz.

For a better understanding, please refer to the flowchart shown in Figure 4-3.

\J

Real mode
2420 = 1MB
of memory
is accessible

arch/x86/boot/header.s
Part of a kernel header
The first file which
will be executed from
kernel header.

It aligns the segment
registers

Sets the stack and BSS

arch/x86/boot/main.c

Part of kernel header
copy_boot_params()}--------
console_init()

init_heap()

validate_cpu()
set_BIOS_mode()
detect_memory()-------cnom--
keyboard_init()
query_mca()

query_ist()
query_apm_bios()
query_edd()

set_video()
go_to_protected_mode()----

debug, earlyprintk,ro,
root, ramdisk_image,
""" [ramdisk_size

J

Memory_mapping in
dmesg

hiw related stuff will be
carried by cpu

| arch/x86/boot/compressed/head_64.s
N verify_cpu() (and launch long mode)
| make_boot_params()

Now on efi_main()

Long mode 3f()
In which we do decompress_kernel()
not have any
memory
limitation

Figure 4-3. The flowchart, updated

192

!
!
!
!
!

Protected mode:
2432= 4GB
Memory access

CHAPTER 4 KERNEL

Wait a minute: if the kernel is not yet decompressed, then how come we proceed at
this point? Here comes the long answer.

What Extracts vmlinuz?

So far, we understand that it's GRUB that loads the kernel in memory, but at the same
time, we noticed that the vmlinuz image is an archive. So, what extracts this image? Is it
GRUB?

No, it is not GRUB. Rather, it’s the kernel that extracts itself. Yes, I said it’s the kernel
that extracts the kernel. The vmlinuz could be the operating system world’s only file that
extracts itself. But how is it possible to extract yourself? To understand this, let’s get some
more insight about vmlinuz first.

The “vm” of vmlinuz stands for “virtual memory.” In the earlier stages of Linux
development, the virtual memory concept was not yet developed, so when it was added,

the “vm” characters were added to the name of the Linux kernel. The “z” stands for a
zipped file.

vmlinuz-5.0.9-301.fc30.x86_64: Linux kernel x86 boot executable bzImage,
version 5.0.9-301.fc30.x86 64 (mockbuild@bkernelo4.phx2.fedoraproject.org)
#1 SMP Tue Apr 23 23:57:35 U, RO-rootFS, swap_dev 0x8, Normal VGA

As you can see, vmlinuz is bzImage (bzImage stands for “big zimage”). vmlinuz is
a compressed file of the actual kernel’s binary vmlinux. You cannot decompress this
file with gunzip/bunzip or even with tar. The easiest way to extract vmlinuz and to get
the vmlinux file is to use the extract-vmlinux script file provided by the kernel-devel
package (in the case of Fedora). The file will be present at /usr/src/kernels/<kernel
version>/scripts/extract-vmlinux.

./extract-vmlinux /boot/vmlinuz-5.3.7-301.fc31.x86_64 >> /boot/temp/
vmlinux

file /boot/temp/*

/boot/temp/vmlinux: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
statically linked, BuildID[shal]=ec96b29d8e4079950644230c0b7868942bb70366,
stripped

193

CHAPTER 4 KERNEL
There are various ways to open the vmlinux and vmlinuz kernel files.

$ xxd vmlinux | less

$ objdump vmlinux | less

$ objdump wvmlinux -D | less
$ hexdump vmlinux | less

$ od vmlinux | less

We will use the od command with some of the switches to open the vmlinuz file.

$od -A d -t x1 vmlinuz-5.0.9-301.fc30.x86_64 | less

<snip>

0000000 4d 5a ea 07 00 cO 07 8c c8 8e d8 8e cO 8e do 31
0000016 e4 fb fc be 40 00 ac 20 cO 74 09 b4 0e bb 07 00
0000032 cd 10 eb f2 31 cO cd 16 cd 19 ea fo ff 00 fO 00
0000048 00 00 00 00 00 00 00 00 00 00 00 00 82 00 00 00
0000064 55 73 65 20 61 20 62 6f 6f 74 20 6¢ 6f 61 64 65
0000080 72 2e 0d Oa 0a 52 65 6d 6T 76 65 20 64 69 73 6b
0000096 20 61 6e 64 20 70 72 65 73 73 20 61 6e 79 20 6b
0000112 65 79 20 74 6f 20 72 65 62 6f 6f 74 2e 2e 2e od
0000128 0a 00 50 45 00 00 64 86 04 00 00 00 00 00 00 00
0000144 00 00 01 00 00 00 a0 00 06 02 Ob 02 02 14 80 37
0000160 8e 00 00 00 00 00 80 86 26 02 f0O 48 00 00 00 02
0000176 00 00 00 00 00 00 00 00 00 00 20 00 00 00 20 00
0000192 00 00 00 00 00O 00 00 OO 00 OO OO OO0 00 0O 00 00
0000208 00 00 00 cO b4 02 00 02 00 00 00 00 00 00 Oa 00
0000224 00 00 00 00 00 OO OO OO OO OO OO OO OO 00 00 00
*

0000256 00 00 00 00 00 00 06 00 00 00 OO 00 00 00 00 00
0000272 00 00 00 00 00 OO OO OO OO OO OO OO OO 00 00 00
0000288 00 00 00 00 00 00 00 00 00 00 80 39 8e 00 48 09
0000304 00 00 00 00 00 00 00 00 00 00 2e 73 65 74 75 70
0000320 00 00 e0 43 00 00 00 02 00 00 e0 43 00 00 00 02
0000336 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00
0000352 50 60 2e 72 65 6¢ 6f 63 00 00 20 00 00 00 e0 45
0000368 00 00 20 00 00 00 €0 45 00 00 00 00 00 00 00 00
0000384 00 00 00 00 00 00 40 00 10 42 2e 74 65 78 74 00

194

0000400
0000416
0000432
0000448
0000464
0000480
0000496
0000512
0000528
0000544
0000560
0000576
0000592
0000608
0000624
</snip>

00
00
50
8e
00
00
f
eb
00
00
00
00
00
00
c2

00
00
60
00
00
00
22
66
01
00
00
00
00
co
89

80
00
2e
00
00
00
01
48
00
00
00
00
00
b4
e2

3
00
62
00
00
00
00
64
80
00
01
00
00
02
74

8d
00
73
00
00
00
38
72
00
50
01
00
00
90
16

00
00
73
00
00
00
df
53
00
5a
15
00
00
01
ba

00
00
00
00
80
00
08
od
10
00
3f
00
00
00
50

46
00
00
00
00
00
00
02
00
00
00
00
00
00
58

00
00
00
00
00
00
00
00
00
00
ff
b1
00
8c
16

00
00
00
00
c8
00
00
00
00
00
07
03
00
ds
06

80
00
80
00
00
00
ff
00
00
00
00
00
00
8e
11

13
00
86
00
00
00
f
00
00
00
00
00
01
co
02

8d
00
26
00
00
00
00
00
00
ff
00
11
00
fc
80

00
00
02
00
00
00
00
10
00
ff
00
f3
00
8c
74

00
20
80
00
00
00
55
co
00
ff
00
89
00
d2
04

46
00
39
00
00
f
da
37
00
7f
00
00
00
39
8b

CHAPTER 4 KERNEL

od -Ad -t x1 /boot/vmlinuz-5.3.7-301.fc31.x86_64 | grep -i '1f 8b 08 00’
8f 1f 8b 08 00 00 00 00 00 02 03 ec fd 79 7c 54

0018864

So, on 0018864, the actual kernel (vmlinux) starts, whereas the vmlinuz file starts
at 0000000. This means from 0000000 to 0018864, what we have is the header of the
file, such as header.S, misc.c, etc. This will extract the actual kernel (vmlinux) from

vmlinuz. You can consider a header to be like a cap on a vmlinux binary, and when this

cap is available, it becomes vmlinuz. In the following sections, we will see how the kernel

routine extracts vmlinuz.

extract kernel

Let’s get back to the extract_kernel function from arch/x86/boot/compressed/misc.c.

asmlinkage visible void *extract kernel(void *rmode, memptr heap,
unsigned char *input_data,
unsigned long input_len,

unsigned char *output,
unsigned long output len)

195

CHAPTER 4 KERNEL

As you can see, the function will accept seven arguments.

Argument Purpose

rmode A pointer to the boot_params structure that is filled by the bootloader

heap A pointer to the boot_heap file that represents the start address of the early
boot heap

input_data A pointer to the start of the compressed kernel or in other words a pointer to
arch/x86/boot/compressed/vmlinux.bin.bz2

input_len The size of the compressed kernel
output The start address of the future decompressed kernel
output_len The size of decompressed kernel

run_size The amount of space needed to run the kernel including .bss and . brk sections

Along with the kernel, the bootloader will also load initramfs in memory. We will
talk about initramfs in Chapter 5. So, before extracting the kernel image, the header
or the kernel routine has to take care that the vmlinuz extraction will not overwrite or
overlap the already loaded initramfs image. So, the extract_kernel function will also
take care of calculating the initramfs address space and will adjust the kernel image
decompression accordingly. Once we get the correct address where the header can
decompress vmlinuz, it will extract the kernel there.

340 asmlinkage _ visible void *extract kernel(void *rmode, memptr heap,

341 unsigned char *input_data,

342 unsigned long input_len,

343 unsigned char *output,

344 unsigned long output len)

345 {

346 const unsigned long kernel total size = VO __end - VO__ text;

347 unsigned long virt addr = LOAD_PHYSICAL_ ADDR;

348 unsigned long needed size;

349

350 /* Retain x86 boot parameters pointer passed from
startup_32/64. */

351 boot_params = rmode;

196

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373

374
375
376
377
378
379
380
381
382
383

CHAPTER 4 KERNEL

/* Clear flags intended for solely in-kernel use. */
boot_params->hdr.loadflags &= ~KASLR_FLAG;

sanitize boot params(boot params);

if (boot params->screen info.orig video mode == 7) {
vidmem = (char *) 0xb0000;
vidport = 0x3b4;
} else {
vidmem = (char *) 0xb8000;
vidport = 0x3d4;

lines = boot_params->screen_info.orig video_lines;
cols = boot params->screen_info.orig video cols;

console init();

/*

* Save RSDP address for later use. Have this after console
init()

* so that early debugging output from the RSDP parsing code
can be

* collected.

*/

boot params->acpi rsdp addr = get rsdp addr();

debug putstr("early console in extract kernel\n");

free _mem ptr = heap; /* Heap */
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;

/*

197

CHAPTER 4 KERNEL

384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

198

*

*

* K X X X ¥ X

*/

The memory hole needed for the kernel is the larger of
either

the entire decompressed kernel plus relocation table, or the
entire decompressed kernel plus .bss and .brk sections.

On X86_64, the memory is mapped with PMD pages. Round the
size up so that the full extent of PMD pages mapped is
included in the check against the valid memory table
entries. This ensures the full mapped area is usable RAM
and doesnt include any reserved areas.

needed size = max(output len, kernel total size);
#ifdef CONFIG X86 64
needed size = ALIGN(needed size, MIN_KERNEL_ALICN);

Report initial kernel position details. */

debug_putaddr(input_data);
debug_putaddr(input_len);
debug_putaddr (output);
debug_putaddr(output_len);
debug_putaddr(kernel total size);
debug_putaddr(needed size);

#ifdef CONFIG X86_64

Report address of 32-bit trampoline */

debug_putaddr(trampoline 32bit);

choose_random location((unsigned long)input data, input len,

#endif
/*
/*
#endif
/*

(unsigned long *)&output,
needed size,
dvirt addr);

Validate memory location choices. */

418
419

420
421

CHAPTER 4 KERNEL

if ((unsigned long)output & (MIN_KERNEL ALIGN - 1))
error("Destination physical address inappropriately
aligned");

if (virt_addr & (MIN_KERNEL ALIGN - 1))
error("Destination virtual address inappropriately
aligned");

422 #ifdef CONFIG X86 64

423
424
425

426

427 #else
428

429

430 #endif
431 #ifndef
432

433

434
435

436 #endif
437

438

439

440

441

442

443

444

445 }

if (heap > Ox3fffffffffffuL)
error("Destination address too large");
if (virt_addr + max(output_len, kernel total size) > KERNEL_
IMAGE SIZE)
error("Destination virtual address is beyond the kernel
mapping area");

if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & ox7fffffff))
error("Destination address too large");

CONFIG_RELOCATABLE

if ((unsigned long)output != LOAD PHYSICAL ADDR)
error("Destination address does not match LOAD_
PHYSICAL ADDR");

if (virt addr != LOAD PHYSICAL ADDR)
error("Destination virtual address changed when not
relocatable");

debug_putstr("\nDecompressing Linux... ");

__decompress(input data, input len, NULL, NULL, output, output len,

NULL, error);
parse_elf(output);
handle relocations(output, output len, virt addr);
debug_putstr("done.\nBooting the kernel.\n");
return output;

199

CHAPTER 4 KERNEL

The decompression method will be chosen according to the compression algorithm

used at the time of kernel compilation. The decompression methods can be seen in the

same misc.c file.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

<snip from misc.c>

#ifdef CONFIG_KERNEL GZIP
#include "../../../../1ib/decompress
#endif

#ifdef CONFIG_KERNEL BZIP2

#include "../../../../lib/decompress
#endif

#ifdef CONFIG_KERNEL LZMA

#include "../../../../lib/decompress_
#endif

#ifdef CONFIG KERNEL XZ

#include "../../../../1ib/decompress_
#tendif

#ifdef CONFIG_KERNEL LZ0O
#include "
#endif

</snip>

«./../../../1ib/decompress

inflate.c'

bunzip2.c'

unlzma.c"

unxz.c"

unlzo.c"

Once the kernel is decompressed in memory, the entry point of the extracted kernel

will be obtained from the extract_kernel function, and the CPU will jump inside a kernel.

Inside the Kernel

The kernel does numerous things, but I will list what is of most interest to you as

someone learning about booting.

200

o The kernel will set the kernel stack size to 16 KB if the architecture

is 64-bit. This means every new process will get its own kernel stack

which will be 16 KB in size.

CHAPTER 4 KERNEL

o page_sizewill be set to 4 KB, which is the default page size on an
Intel 64-bit architecture.

o The kernel will prepare the interrupt and exception handling
mechanism also called the interrupt descriptor table (IDT).

o The kernel will set the page fault handling mechanism.

¢ The kernel will collect the initramfs file details such as file name, size,
address, relocation address, major and minor numbers of a new root
device, etc., from /arch/x86/kernel/setup.c.

o Then it extracts initramfs from the source code file init/
initramfs.c.

o Finally, it launches systemd by using the start_kernel function of
init/main.c.

You will notice that this is the first time we came outside of the arch directory.
That means we can consider this code as architecture independent. Once the kernel is
launched, it does numerous things, and it is almost impossible to cover all of it in this
book. In terms of booting, the kernel’s motto is to launch systemd from initramfs. Since
initramfs has already been loaded in memory by the bootloader, extracting the initramfs
kernel requires the initramfs file details, which the kernel will get from /arch/x86/
kernel/setup.c.

Initramfs file name,

Initramfs file size,

Initramfs files address,

Initramfs files relocation address,

Major and minor numbers on which initramfs will be mounted.

Once the kernel receives the details of the initramfs file, it will extract the initramfs
archive from the init/initramfs. c file. We will discuss how exactly the kernel extracts
initramfs in memory in Chapter 5. To mount initramfs as a root device, it needs virtual
filesystems like proc, sys, dev, etc., so the kernel accordingly prepares them.

err = register filesystem(&proc fs type);
if (err)
return;

201

CHAPTER 4 KERNEL

The kernel will later mount the extracted initramfs as a root with the help of the do_
mount_root function of init/do_mounts.c. Once the initramfs is mounted in memory,

the kernel will launch systemd from it. systemd will be launched through the same

start_kernel function of an init/main.c file.

asmlinkage void _ init start_kernel(void)

Basically, once the root filesystem is ready, it will get inside the root filesystem and
will create two threads: PID 1 is a systemd process, and PID 2 is a kthread. For better

understanding, please refer to the flowchart shown in Figure 4-4.

Real mode
2420 = 1MB
of memory
is

SGGQTibe

arch/x86/boot/header.s
Part of a kernel
header

The first file which
will be executed from
kernel header.

It aligns the segment
registers

Sets the stack and BSS

arch/x86/boot/main.c
Part of kernel header

copy_boot_params()_______

console_init()
init_heap()
validate_cpu()
set_BIOS_mode()

detect_memory(J----------

keyboard_init()
query_mca()
query_ist()
query_apm_bios()
query_edd()
set_video()

go_to_protected_mode()

(n_debug,

earlyprintk,ro, root,
wramdisk_image,
ramdi It_e:i7A

w

o
Memory_mapping in
dmesg

Now on
Long mode
In which we
do not have
any memory

limitation

v

Figure 4-4.

202

decompress_kernel()

arch/x86/boot/compressed/head_64.
verify_cpu() (and launch long

make_boot_params()

v

The flowchart, updated again

hiw related stuff will
be carried by cpu

— — — o

Protected mode
A32= 4GB
Memory access.

CHAPTER 4

| ¥
I - arch/x86/boot/compressed/misc.c

I - decompress_kernel() function is
defined in this file.

ge—-

rI1-1od?a - Decompressed kernels
entry point will be | _ _ _ _ _ — — —
I extracted and CPU will *
| jump to that location.
4 - arch/x86/kernel/setup.c
l - From this file kernel
will get the initrd
| file name, size,
address, its relocation
| Major and minor numbers
| l\ of new root device etc.
/
| - init/initramfs.c
- This file will extract
I S the initramfs in RAM.
{ - The initramfs will not
* be extracted at any
| specific location.
init/main.c \
| start_kernel()
| Launch systemd
I
I
O O
I
| Systemd
Y \\-._____/

Figure 4.4. (continued)

Figure 4-5 shows the complete boot sequence that we have discussed so far.

KERNEL

203

CHAPTER 4 KERNEL

Real
Mode

Power up MBD -> SMPS -> MBD Clears the old
registers
Bootioader oot Is name, grub cfg etc -‘\
Bootimg - diskbootimg Core of GRUB2
Igrub-2.00/grub-core/booti38apeboot S fgrub-2.00grub-¢ i s ¢

/)ads the kermnel (vmlinuz) + initramfs/

archixgé/oootheader.S

kemel_setup

—

arch/xgé/boot/main.c
Copy_boot_params
Console, heap, Keyboard initialization
CPU validation, Memory detection etc

T
Protected
Mode

s

Protected mode (go_to_protected_mode)
(Hardware related stuff)

_ba.5

Long Mode

Decompress the actual kernel file (vmlinw)

(decompress_kemel)

Kernel

p’/
w
p/

Set kemel stack size to 16 KB, Page size to 4 KB, IDT

farch/x86/kernel/setup.c

Initramfs file name, size, address
where itis loaded ,

Major - Minor number for the root
device etc.

inivmain.c

Start init’ process. (PID 1)
Start kthread (PID 2)

Figure 4-5. The boot sequence in a block diagram

204

Header
routines
(outside

of

actual
compressed
kemel
image)

CHAPTER 4 KERNEL

Before we continue and look at how the kernel extracts initramfs and runs systemd
from it, we need to understand the basics of initramfs such as why we need it, what its
structure is, etc. Once we understand the importance and basics of initramfs, we will
continue our booting sequence with systemd’s role in the boot sequence.

205

CHAPTER 5

initramfs

In this chapter, we will discuss why we really need initramfs and why it’s important in the
booting procedure. We know that initramfs is loaded into memory by the bootloader, but
we haven’t discussed yet how initramfs is extracted. This chapter will address that. We
will also see the steps to extract, rebuild, and customize initramfs. Later, we will see the
structure of initramfs as well as the booting sequence of a system inside initramfs.

Why initramfs?

The aim of the booting procedure is to present the user with their own files that reside in
the root filesystem. In other words, it is the kernel’s duty to find, mount, and present the
user’s root filesystem to the user. To achieve this goal, the kernel has to run the systemd
binary, which again resides in the user’s root filesystem. Now this has become a chicken-
and-egg problem. To run a systemd process, first we have to mount the root filesystem,
and to mount the root filesystem, we have to run systemd from the root filesystem. Also,
along with the actual root filesystem, users might have files on some other filesystems
such as NFS, CIFS, etc., and that list of other filesystems is also inside the root filesystem
(/etc/fstab).

So, to solve this chicken-and-egg problem, the developers came up with a resolution
called initramfs (which means “initial RAM filesystem”). initramfs is a temporary
root filesystem (inside the main memory) that will be used to mount the actual root
filesystem (from the hard disk or network). So, the whole purpose of initramfs is to
mount the user’s root filesystem from the HDD/network. Ideally, the kernel is capable
enough to mount the root filesystem from disk on its own without initramfs, but these
days a user’s root filesystem could be anywhere. It could be on RAID, on an LVM, or on
a multipath device. It could be on 7 number of filesystem types like XFS, BTRFS, ext4,
ext3, NES, etc. It could even be on an encrypted filesystem like LUKS. So, it is almost

207
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_5

https://doi.org/10.1007/978-1-4842-5890-3_5#ESM

CHAPTER 5 INITRAMFS

impossible for a kernel to incorporate all these scenarios in its own vmlinux binary. Let
me provide some real-life scenarios in this section.

Let’s say the root file system is on NFS and there is no initramfs concept. That means
the kernel has to mount the user’s root filesystem from NFS on its own. In such a case,
the kernel has to achieve the following tasks:

1. Bring up the primary network interface.

2. Invoke a DHCP client and get an IP address from the DHCP server.
3. Find the NFS share and associated NFS server.

4. Mount the NFS share (the root filesystem).

To achieve these steps, the kernel needs to have the following binaries:
NetworkManager, dhclient, mount, etc.

Now let’s say the root filesystem is on a software RAID device. Then the kernel has to
do the following tasks:

1. Find the RAID disks first with mdadm --examine --scan.

2. Once the underlying disks on which the software RAID is spanned
are identified, it has to assemble the RAID with mdadm --assemble
--scan.

3. To achieve this, the kernel needs to have the mount and mdadm
binaries and some configuration files of the software RAID
devices.

Now let’s say the root file system is on a logical volume. Then the kernel has to finish
the following tasks on its own:

1. Find the physical volumes with pvs.

2. Find the volume group with vgscan and then activate it with
vgchange.

3. Scan the LVS with 1vscan.

4. Finally, once the root lvis populated, mount it as a root
filesystem.

5. To achieve this, the kernel needs to have pvscan, pvs, lvscan,
vgscan, 1vs, and vgchange-like binaries.

208

CHAPTER 5 INITRAMFS

Let’s say the root filesystem is on an encrypted block device. Then the kernel has to
complete the following tasks:

1. Collect a password from the user and/or insert a hardware token
(such as a smart card or a USB security dongle).

2. Create a decryption target with the device mapper.

To achieve all of this, the kernel needs LUKS-related binaries.

For a kernel, it is not possible to incorporate all of these root filesystem possibilities;
hence, developers have come up with the initramfs concept whose sole purpose is to
mount the root filesystem.

The kernel can still perform all of the steps we have discussed. For example, if you
build a simple command-line Linux system from LFS (www.linuxfromscratch.org/),
you don’t need initramfs to mount a root filesystem, as the kernel itself is capable
enough to mount the root filesystem. But the moment you try to add a GUI into it
through BLFS, you need initramfs.

So, the conclusion is that the kernel can mount the root filesystem on its own,
but for that, the kernel has to keep all of the discussed binaries, supportive libraries,
configuration files, etc., in the vmlinuz file. This will create a lot of issues.

o Itwill spoil the main motive of the kernel binary.

e The kernel binary will be huge in size. The bigger size of the binary
will be difficult to maintain.

o The huge binary is difficult to manage, upgrade, share, and handle on
servers (in terms of RPM packages).

e The approach won’t be as per the KISS rule (keep it simple, stupid).

Infrastructure

To understand the initramfs structure, we need to first understand three different
filesystems.

209

http://www.linuxfromscratch.org/

CHAPTER 5 INITRAMFS

ramfs

For ease of understanding, we will compare ramfs to the kernel’s caching mechanism.
Linux has a unique feature called a page cache. Whenever you perform any I/0O
transactions, it caches those transactions in pages. Caching pages in memory is always
good. This will save our future I/O transactions. And whenever the system encounters

a low-memory situation, the kernel just discards these cached pages from memory.
ramfs is just like our cache memory. But the issue with ramfs is that it does not have
backing storage; hence, it cannot swap out the pages (swap is again a storage device).

So, obviously, the kernel will not be able to free this memory as there is no place to save
these pages. Hence, ramfs will keep growing, and you cannot really put a limit on its size.
What we can do is allow only root users to write into ramfs to ease the situation.

tmpfs

tmpfs is just like ramfs but with a few additions. We can put a limit on the size of tmpfs,
which we were not able to do in ramfs. Also, tmpfs pages can use swap space.

rootfs

rootfs is a tmpfs that is an instance of ramfs. The advantage of rootfs is you cannot
unmount it. This is because of the same reason you can’t kill the systemd process.

initramfs uses ramfs as a filesystem, and the space occupied by initramfs in memory
will be released once the user’s root filesystem has been mounted.

dmesg | grep Free

.813330] Freeing SMP alternatives memory: 36K

.675187] Freeing initrd memory: 32548K <K=======¢<<===== NOTE
.762702] Freeing unused decrypted memory: 2040K

.767001] Freeing unused kernel image memory: 2272K

.776841] Freeing unused kernel image memory: 2016K

.783116] Freeing unused kernel image memory: 1580K

L T e B e Y e T e B e |
Ul U1 U1 U1 W O

210

CHAPTER 5 INITRAMFS

Earlier, instead of initramfs, Linux used to use initrd (initial RAM disk), but initrd
is deprecated now, and hence we will list only a few important points for comparison
with initramfs.

initrd

o Being formatted/treated as a block device means initrd cannot
scale. That means once you bring initrd in memory and consider it
as a block device, you cannot increase or decrease its size.

e We will waste some of the memory in cache as initrd is considered
as a block device, because the Linux kernel is designed to keep the
block device contents in cache to reduce I/0 transactions. In short,
unnecessarily the kernel will cache the initrd contents, which are

already in memory.
Initramfs

o Ininitrd, there will always be the overhead of the filesystem driver
and its binaries like mke2fs. The mke2fs command is used to create
ext2/3/4 filesystems. This means some of the RAM area will first be
formatted, with the ext2/3/4 filesystem by mke2fs, and then initrd
will be extracted on it, whereas initramfs is just like tmpfs, which you

can grow or shrink any time on the fly.

e There is no duplication of data between block devices and cache.

e To use initramfs as the root filesystem, the kernel does not need any
driver or binary like mke2fs as the initramfs archive will be extracted
in main memory as it is.

1s -lh /boot/initramfs-5.3.7-301.fc31.x86_64.img

-ITW------- . 1 root root 32M Dec 9 10:19 /boot/initramfs-5.3.7-301.fc31.
x86_64.1img

211

CHAPTER 5 INITRAMFS

We can use the 1sinitrd tool to see the contents of initramfs, or we can extract

initramfs with the help of the skipcpio tool.

#lsinitxd
<snip>

Image: /boot/initramfs-5.3.7-301.fc31.x86_64.img:

drwxr-xr-x 3 root root 0 Jul 25
-IwW-r--1r-- 1 root root 2 Jul 25
drwxr-xr-x 3 root root 0 Jul 25
drwxr-xr-x 3 root root 0 Jul 25
drwxr-xr-x 2 root root 0 Jul 25
-Tw-r--r-- 1 root root 100352 Jul 25

microcode/GenuineIntel.bin

Version: dracut-049-27.git20181204.fc31.1

Arguments: -f

dracut modules:

bash

systemd
systemd-initrd
nss-softokn

i18n

network-manager
network

ifcfg

drm

plymouth

dm

kernel-modules
kernel-modules-extra
kernel-network-modules
Lvm

212

2019 .

2019 early cpio

2019 kernel

2019 kernel/x86

2019 kernel/x86/microcode
2019 kernel/x86/

gemu
gemu-net
resume
rootfs-block
terminfo
udev-rules
dracut-systemd
usrmount

base

fs-1ib
shutdown

CHAPTER 5 INITRAMFS

drwxr-xr-x 12
CIW-T--T--
CIW-T--T--
CYW-T--T--

1

1

1
CIW-1r--1-- 1
CIW-r--1-- 1
lrwxrwxrwx 1
drwxr-xr-x 2
drwxr-xr-x 11
drwxr-xr-x 2
drwxr-xr-x 2

-TW-r--1-- 1

-IW-Y--T--
-IW-Y--T--
-IW-T--T--

N N S =Y

Irwxrwxrwx

-IW-YT--Y--
-IW-Y--Y--
drwxr-xr-X

R, N R R

-ITW-T--T--

root
root
root
root

root
root
root
root

root
root
root
root

root
root
root
root

dev/console
dev/kmsg
dev/null
dev/random
dev/urandom
bin -> usr/bin
dev

etc
etc/cmdline.d
etc/conf.d
etc/conf.d/systemd.

etc/fstab.empty
etc/group
etc/hostname
etc/initrd-release

-> ../usr/lib/initrd-release

0 Jul 25 2019

1 Jul 25 2019
11 Jul 25 2019
3 Jul 25 2019

8 Jul 25 2019

9 Jul 25 2019

7 Jul 25 2019

0 Jul 25 2019

0 Jul 25 2019

0 Jul 25 2019

0 Jul 25 2019
124 Jul 25 2019

conf

0 Jul 25 2019
240 Jul 25 2019
22 Jul 25 2019
25 Jul 25 2019
8581 Jul 25 2019
28 Jul 25 2019
0 Jul 25 2019
17 Jul 25 2019

libiscsi-x86 64.

etc/1d.so.cache
etc/1d.so.conf
etc/1d.so.conf.d
etc/1d.so.conf.d/
conf

213

CHAPTER 5 INITRAMFS

-IW-IW-r-- 1 root root 19 Jul 25 2019 etc/locale.conf
drwxr-xr-x 2 root root 0 Jul 25 2019 etc/lvm

-IwW-r--r-- 1 root root 102256 Jul 25 2019 etc/lvm/lvm.conf
-Iw-r--r-- 1 root root 2301 Jul 25 2019 etc/lvm/lvmlocal.conf
-r--r--1-- 1 root root 33 Jul 25 2019 etc/machine-id
drwxr-xr-x 2 root root 0 Jul 25 2019 etc/modprobe.d
</snip>

To extract the contents of initramfs, use the skipcpio binary from /usr/1ib/
dracut/skipcpio/. The skipcpio is provided by the dracut tool. We will cover dracut in
Chapter 6.

#/usr/lib/dracut/skipcpio initramfs-5.3.7-301.fc31.x86_64.img | gunzip -c |
cpio -idv

If you look at the extracted initramfs contents, you will be surprised to know that it
looks just like the user’s root filesystem. Please note that we have extracted initramfs into
the /root/boot directory.

1s -1lh /root/boot/

total 44K

lrwxrwxrwx. 1 root root 7 Mar 26 18:03 bin -> usr/bin
drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 dev

drwxr-xr-x. 11 root root 4.0K Mar 26 18:03 etc

lrwxrwxrwx. 1 root root 23 Mar 26 18:03 init -> usr/lib/systemd/systemd
lrwxrwxrwx. 1 root root 7 Mar 26 18:03 1lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Mar 26 18:03 1ib64 -> usr/1lib64
drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 proc

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 root

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 run

lrwxrwxrwx. 1 root root 8 Mar 26 18:03 sbin -> usr/sbin
-TWXT-XT-X. 1 root root 3.1K Mar 26 18:03 shutdown
drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 sys

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 sysroot
drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 tmp

drwxr-xr-x. 8 root root 4.0K Mar 26 18:03 usr

drwxr-xr-x. 3 root root 4.0K Mar 26 18:03 var

214

CHAPTER 5 INITRAMFS

You will find bin, sbin, usr, etc, var, 1ib, and 1ib64-like directories that we used
to see in our user’s root filesystem. Along with that, you will notice the virtual filesystem
directories such as dev, run, proc, sys, etc. So, initramfs is just like the user’s root
filesystem. Let’s explore each directory for the better understanding of the initramfs
implementation.

initramfs Implementation

Now we will look as the contents of initramfs and how exactly initramfs is organized.
Through this section, you will realize that initramfs is nothing but a small root filesystem.

bin
Normal Binaries

We can use all the following binaries on a system that has finished its booting procedure.
Since all these binaries are available inside initramfs, when the system is still booting, we
will be able to use all these commands at the time of the boot.

cat, chown, cp, dmesg, echo, grep, gzip, less, 1ln, mkdir, mv, ps, rm, sed,
sleep, umount, uname, vi, loadkeys, kbd mode, flock, tr, true, stty, mount,
sort etc.

[root@fedorab boot]# 1s -la bin/

total 7208

drwxr-xr-x. 2 root root 4096 Jan 10 12:01 .

drwxr-xr-x. 8 root root 4096 Dec 19 14:30 ..

-TWXT-XT-X. 1 root root 1237376 Dec 19 14:30 bash

-IWXT-XT-X. 1 root root 50160 Dec 19 14:30 cat

-IWXT-Xr-X. 1 root root 82688 Dec 19 14:30 chown
-IWXr-xr-x. 1 root root 177144 Dec 19 14:30 cp

-TWXr-xr-x. 1 root root 89344 Dec 19 14:30 dmesg
-IWXT-Xr-X. 1 root root 2666 Dec 19 14:30 dracut-cmdline
-IWXT-XI-X. 1 root root 422 Dec 19 14:30 dracut-cmdline-ask
-IWXr-Xr-x. 1 root root 1386 Dec 19 14:30 dracut-emergency
-TWXr-xr-x. 1 root root 2151 Dec 19 14:30 dracut-initqueue

215

CHAPTER 5 INITRAMFS

root root 1056 Jan 10 12:01 dracut-mount
root root 517 Dec 19 14:30 dracut-pre-mount
root root 928 Dec 19 14:30 dracut-pre-pivot
root root 482 Dec 19 14:30 dracut-pre-trigger
root root 1417 Dec 19 14:30 dracut-pre-udev
root root 45112 Dec 19 14:30 echo

root root 76768 Dec 19 14:30 findmnt

root root 38472 Dec 19 14:30 flock

root root 173656 Dec 19 14:30 grep

root root 107768 Dec 19 14:30 gzip

root root 78112 Dec 19 14:30 journalctl

root root 17248 Dec 19 14:30 kbd mode

root root 387504 Dec 19 14:30 kmod

root root 192512 Dec 19 14:30 less

root root 85992 Dec 19 14:30 1n

root root 222616 Dec 19 14:30 loadkeys
Irwxrwxrwx. 1 root root 4 Dec 19 14:30 loginctl -> true

-TWXT-XT-X. 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-TWXT-XT-X. 1 root root 158056 Dec 19 14:30 1ls
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-ITWXY-XTI-X.
-ITWXTY-XTI-X.
-ITWXT-XT-X.
-ITWXT-XT-X.
-ITWXTY-XT-X.
-ITWXT-XT-X.
-ITWXT-XT-X.
-ITWXY-XI-X.
-ITWXT-XT-X.
-ITWXT-XT-X.
-ITWXTY-XTI-X.
-ITWXY-XT-X.
-IWXT-XT-X.
-ITWXTY-XI-X.
-ITWXY-XT-X.

root root 99080 Dec 19 14:30 mkdir
root root 80264 Dec 19 14:30 mkfifo
root root 84560 Dec 19 14:30 mknod
root root 58984 Dec 19 14:30 mount
root root 169400 Dec 19 14:30 mv

root root 50416 Dec 19 14:30 plymouth
root root 143408 Dec 19 14:30 ps

root root 60376 Dec 19 14:30 readlink
root root 83856 Dec 19 14:30 Im

root root 127192 Dec 19 14:30 sed

root root 52272 Dec 19 14:30 setfont
root root 16568 Dec 19 14:30 setsid
root root 4 Dec 19 14:30 sh -> bash
root root 46608 Dec 19 14:30 sleep
root root 140672 Dec 19 14:30 sort
root root 96312 Dec 19 14:30 stat

-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWST-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
-TWXT-XT-X.
Lrwxrwxrwx.
-TWXY-Xr-X.
-TWXT-XT-X.
-TWXT-XT-X.

216

CHAPTER 5 INITRAMFS

-IWXr-xr-x. 1 root root 92576 Dec 19 14:30 stty
-TWXr-Xr-X. 1 root root 240384 Dec 19 14:30 systemctl
-IWXr-Xr-x. 1 root root 20792 Dec 19 14:30 systemd-cgls
-TwXr-xr-x. 1 root root 19704 Dec 19 14:30 systemd-escape
-IWXr-XI-X. 1 root root 62008 Dec 19 14:30 systemd-run
-TWXr-xr-x. 1 root root 95168 Dec 19 14:30 systemd-tmpfiles
-TWXr-Xr-x. 1 root root 173752 Dec 19 14:30 teamd
-IWXr-Xr-X. 1 root root 58400 Dec 19 14:30 tr

-YWXr-Xr-x. 1 root root 45112 Dec 19 14:30 true
-IWXT-Xr-X. 1 root root 442552 Dec 19 14:30 udevadm
-IWSr-xr-x. 1 root root 41912 Dec 19 14:30 umount
-IWXr-xr-x. 1 root root 45120 Dec 19 14:30 uname
-IWXY-Xr-X. 1 root root 1353704 Dec 19 14:30 vi

Special Binaries

Special Binary Purpose

bash initramfs will provide us with a shell at the time of boot.
mknod We will be able to create devices.
udevadm We will be able to manage devices. dracut uses udev, an event-driven tool,

which will launch certain programs such as 1vm, mdadm, etc., when certain udev
rules are matched. For example, whenever certain udev rules are matched,
storage volumes and network card device files will appear under /dev.

kmod A tool to manage the kernel modules.

Networking Binaries

There is only one network related binary available under bin and that is teamd (initramfs
can handle the teaming network devices).

217

CHAPTER 5 INITRAMFS

Hooks

We will discuss hooks in Chapters 7 and 9.
dracut-cmdline dracut-cmdline-ask
dracut-emergency dracut -initqueue
dracut-mount dracut -pre-pivot
dracut - pre-trigger dracut -pre-udev

Systemd Binaries

Binary Purpose

systemd This is the parent of every process that is a replacement of init. This is the
first process, which runs the moment we enter initramfs.

systemctl Systemd’s service manager.

systemd-cgls This will list the existing control groups (cgroups).

systemd-escape This will convert the string in systemd unit format, also called escaping.
systemd-run This can run the programs as a service but in transient scope.
systemd-tmpfiles This creates, deletes, and cleans up volatile and temporary files and directories.

journalctl Atool to deal with systemd journal.

Shin
Filesystem and Storage-Related Binaries

Binary Purpose

blkid To read device attributes

chroot To change the root filesystem device
e2fsck To check ext2/3/4 filesystems

fsck, fsck.ext4 To check and repair the filesystem

swapoff In case you want to stop the swap device

(continued)

218

CHAPTER 5 INITRAMFS

Binary Purpose

dmsetup A device mapper tool for LVM management

dmeventd A device mapper event daemon

1vm An LVM management tool that will provide 1vscan, vgscan, vgchange,
pvs, etc., commands

lvm_scan A script to find the LVM devices

Networking Binaries

Binaries Purpose

dhclient To get the IP from the DHCP server
losetup To set the 1oop device

Netroot A support for a root over the network

NetworkManager A tool to manage the network devices

Special Binaries

Binaries Purpose

depmod To generate modules . dep (symlink of kmod)
1smod To list the loaded modules (symlink of kmod)
modinfo To print the module’s information (symlink of kmod)
modprobe To load or insert the modules (symlink of kmod)
rmmod To remove the loaded module (symlink of kmod)

init / systemd
kexec

udevadm

Afirst process
A kexec kernel that is used by the Kdump

Udev manager

219

CHAPTER 5 INITRAMFS

Basic Binaries
Finally, here are the basic binaries:
Halt, poweroff, reboot

[root@fedorab boot]# 1s -lah sbin/

total 13M

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 8 root root 4.0K Dec 19 14:30 ..

-TWXr-Xr-X. 1 root root 126K Dec 19 14:30 blkid

-TWXT-Xr-X. 1 root root 50K Dec 19 14:30 chroot

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 depmod -> ../bin/kmod
-IWXr-Xr-X. 1 root root 2.9M Dec 19 14:30 dhclient

-Y-Xr-xr-x. 1 root root 45K Dec 19 14:30 dmeventd

-r-Xr-Xr-x. 1 root root 159K Dec 19 14:30 dmsetup

-IWXT-XT-X. 2 root root 340K Dec 19 14:30 e2fsck

-YWXr-Xr-X. 1 root root 58K Dec 19 14:30 fsck

-TWXT-XT-X. 2 root root 340K Dec 19 14:30 fsck.ext4

lrwxrwxrwx. 1 root root 16 Dec 19 14:30 halt -> ../bin/systemctl
lrwxrwxrwx. 1 root root 22 Dec 19 14:30 init -> ../lib/systemd/systemd
-YWXT-Xr-X. 1 root root 1.2K Dec 19 14:30 initqueue

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 insmod -> ../bin/kmod
-TWXr-xr-x. 1 root root 197 Dec 19 14:30 insmodpost.sh
-TWXT-XT-X. 1 root root 203K Dec 19 14:30 kexec

-IWXIr-Xr-X. 1 root root 496 Dec 19 14:30 loginit

-TWXr-Xr-x. 1 root root 117K Dec 19 14:30 losetup

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 lsmod -> ../bin/kmod
-T-Xr-Xr-X. 1 root root 2.4M Dec 19 14:30 lvm

-TwXr-xr-x. 1 root root 3.5K Dec 19 14:30 lvm scan

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 modinfo -> ../bin/kmod
lrwxrwxrwx. 1 root root 11 Dec 19 14:30 modprobe -> ../bin/kmod
-IWXr-xr-X. 1 root root 2.7K Dec 19 14:30 netroot

-TwXr-xr-x. 1 root root 5.3M Dec 19 14:30 NetworkManager
-TWXr-Xr-X. 1 root root 16K Dec 19 14:30 nologin

-TWXr-xr-x. 1 root root 150K Dec 19 14:30 plymouthd

lrwxrwxrwx. 1 root root 16 Dec 19 14:30 poweroff -> ../bin/systemctl

220

CHAPTER 5 INITRAMFS

-YWXI-Xr-X. 1 root root 1.4K Dec 19 14:30 rdsosreport

lrwxrwxrwx. 1 root root 16 Dec 19 14:30 reboot -> ../bin/systemctl
lrwxrwxrwx. 1 root root 11 Dec 19 14:30 rmmod -> ../bin/kmod
-TwWXr-Xr-x. 1 root root 25K Dec 19 14:30 swapoff

-TWXT-XT-X. 1 root root 6.0K Dec 19 14:30 tracekomem

lrwxrwxrwx. 1 root root 14 Dec 19 14:30 udevadm -> ../bin/udevadm

Isn’t it amazing to see that without having an actual user’s root filesystem we will be
able to use and manage the shell, network, modules, devices, etc.? In other words, you
do not really need a user’s root filesystem, unless a user wants to access their private
files, that is. Just kidding.

Now a question comes to mind: where and how can we use all of these commands?
These binaries or commands will be automatically used by initramfs. Or, to say it
correctly, these binaries or commands will be used by the systemd of initramfs to mount
the user’s actual root filesystem, but if systemd fails to do so, it will provide us with a
shell, and we will be able to use these commands and troubleshoot further. We will
discuss this in Chapters 7, 8, and 9.

etc

The binaries from the bin and sbin directories will have their own configuration files,
and they will be stored in the etc directory of initramfs.

[root@fedorab boot]# tree etc/
etc/

F— cmdline.d

— conf.d

| L— systemd.conf

— fstab.empty

— group

F— hostname

— initrd-release -> ../usr/lib/initrd-release
— 1d.so.cache

— 1d.so.conf

— 1d.so.conf.d
| L— libiscsi-x86_64.conf

221

CHAPTER 5 INITRAMFS

|— locale.conf

F— 1vm
| — lvm.conf
| L— lvmlocal.conf
— machine-id
— modprobe.d
— firewalld-sysctls.conf

|— kvm.conf

|
|
| — lockd.conf

| — mlx4.conf

| — nvdimm-security.conf

| L— truescale.conf

— mtab -> /proc/self/mounts
— os-release -> initrd-release

F— passwd

— plymouth

| L— plymouthd.conf

F— sysctl.conf

— sysctl.d

| L— 99-sysctl.conf -> ../sysctl.conf

F— systemd

| F— journald.conf

| L— system.conf

— system-release -> ../usr/lib/fedora-release

F— udev
— rules.d
| |— 11-dm.rules

| — 59-persistent-storage-dm.rules
| I— 59-persistent-storage.rules

| |— 61-persistent-storage.rules

| L— 64-1lvm.rules

L— udev.conf

|— vconsole.conf
L— virc

10 directories, 35 files

222

CHAPTER 5 INITRAMFS

Virtual Filesystems

Virtual filesystems are the kind of filesystems whose files are not really present on disk;
rather, the entire filesystem is available in memory. This has its own advantages and
disadvantages; for example, you get a very high throughput, but the filesystem cannot
store the data permanently. There are three virtual filesystems available inside initramfs,
which are dev, proc, and sys. Here I have given a brief introduction to the filesystems,
but we will talk about them in detail in the next chapters:

[root@fedorab boot]# 1ls -lah dev

total 8.0K

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .
drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

Crw-r--r--. 1 root root 5, 1 Dec 19 14:30 console
CIw-r--r--. 1 root root 1, 11 Dec 19 14:30 kmsg
CIw-r--r--. 1 root root 1, 3 Dec 19 14:30 null
Crw-r--r--. 1 root root 1, 8 Dec 19 14:30 random
Crw-r--r--. 1 root root 1, 9 Dec 19 14:30 urandom

[root@fedorab boot]# 1s -lah proc/

total 8.0K

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .
drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

[root@fedorab boot]# 1s -lah sys/

total 8.0K

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .
drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

dev

As of now, there are only five default device files, but as the system boots up, udev will
fully populate this directory. The console, kmsg, null, random, and urandom devices files
will be created by the kernel itself, or in other words, these device files are handcrafted
by using the mknod command, but the rest of the device files will be populated by udev.

223

CHAPTER 5 INITRAMFS

proc and sys

As soon as the kernel takes control of the booting procedure, the kernel will create
and populate these directories. The proc filesystem will hold all the processes’ related
information such as /proc/1/status, whereas sys will hold the device and its driver-
related information such as /sys/fs/ext4/sda5/errors_count.

usr, var

As we all know, these days usr is a separate filesystem hierarchy in the root filesystem.
Our /bin, /sbin, /1ib, and /1ib64 are nothing but symlinks to usr/bin, usr/sbin, usr/
1lib, and usr/1ib64.

1s -1 bin
lrwxrwxrwx. 1 root root 7 Dec 21 12:19 bin -> usr/bin

1s -1 sbin
lrwxrwxrwx. 1 root root 8 Dec 21 12:19 sbin -> usr/sbin

1s -la usr

total 40

drwxr-xr-x. 8 root root 4096 Dec 21 12:19 .
drwxr-xr-x. 12 root root 4096 Dec 21 12:19 ..
drwxr-xr-x. 2 root root 4096 Dec 21 12:19 bin
drwxr-xr-x. 12 root root 4096 Dec 21 12:19 lib
root root 12288 Dec 21 12:19 1ib64
root root 4096 Dec 21 12:19 libexec
root root 4096 Dec 21 12:19 sbin
root root 4096 Dec 21 12:19 share

drwxr-Xxr-X.
drwxr-xr-X.
drwxr-Xr-X.

Ui NN D

drwxr-Xxr-X.

1s -la var

total 12

drwxr-xr-x. 3 root root 4096 Dec 21 12:19 .

drwxr-xr-x. 12 root root 4096 Dec 21 12:19 ..

lrwxrwxrwx. 1 root root 11 Dec 21 12:19 lock -> ../run/lock
lrwxrwxrwx. 1 root root 6 Dec 21 12:19 run -> ../run
drwxr-xr-x. 2 root root 4096 Dec 21 12:19 tmp

224

lib, lib64

CHAPTER 5 INITRAMFS

There are almost 200 libraries, and almost all of them are provided by glibc, such as

libc.so.6.

The 1ib and 1ib64 directories are the symlinks of usr/1ib and usr/1ib64.

#1s -1 lib

lrwxrwxrwx. 1 root root 7 Dec 21 12:19 1lib -> usr/1ib

1s -1 1lib64

lrwxrwxrwx. 1 root root 9 Dec 21 12:19 1ib64 -> usr/1lib64

1s -la lib/
total 128
drwxr-xr-x. 12 root root 4096

root root 4096
root root 4096
root root 4096
root root 4096

drwxr-xr-X.
drwxr-xr-X.
drwxr-Xxr-X.

drwxr-xr-x. 8 root root 4096
drwxr-xr-x. 3 root root 4096
-IWXT-Xr-X. 1 root root 34169
-IW-r--r--. 1 root root 31
drwxr-xr-x. 6 root root 4096
-IWXT-Xr-X. 1 root root 6400
-IW-r--r--. 1 root root 238
drwxr-xr-x. 6 root root 4096
drwxr-xr-x. 2 root root 4096
drwxr-xr-x. 3 root root 4096
drwxr-xr-x. 2 root root 4096
-IWXr-Xr-x. 1 root root 25295
lrwxrwxrwx. 1 root root 14

2

5

2

3

drwxr-xr-X.

1s -la 1ib64/libc.so0.6
lrwxrwxrwx. 1 root root 12 Dec

Dec 21 12:19 .

Dec 21 12:19 ..

Dec 21 12:19 dracut

Dec 21 12:19 dracut-lib.sh
Dec 21 12:19 fedora-release
Dec 21 12:19 firmware

Dec 21 12:19 fs-1ib.sh

Dec 21 12:19 initrd-release
Dec 21 12:19 kbd

Dec 21 12:19 modprobe.d

Dec 21 12:19 modules

Dec 21 12:19 modules-load.d
Dec 21 12:19 net-1lib.sh

Dec 21 12:19 os-release -> initrd-release
Dec 21 12:19 sysctl.d

Dec 21 12:19 systemd

Dec 21 12:19 tmpfiles.d

Dec 21 12:19 udev

21 12:19 1ib64/libc.so.6 -> libc-2.30.s0

225

CHAPTER 5 INITRAMFS

dnf whatprovides 1ib64/libc.so.6
glibc-2.30-5.fc31.x86_64 : The GNU libc libraries

Repo : @System
Matched from:
Filename : /1ib64/1ibc.so0.6

initramfs Booting

The basic flow of booting sequence inside initramfs is easy to understand:

1) Since initramfs is a root filesystem (temporary), it will create the
environment that is necessary to run the processes. initramfs will
be mounted as a root filesystem (temporary /), and programs like
systemd will be started from it.

2) Afterward, a new user’s root filesystem from your HDD or network
will be mounted on a temporary directory inside initramfs.

3) Once the user’s root filesystem is mounted inside initramfs, the
kernel will start the init binary, which is a symlink to systemd, the
first process of the operating system.

1s init -1
lrwxrwxrwx. 1 root root 23 Dec 21 12:19 init -> usr/lib/systemd/systemd

4) Once everything is good, the temporary root filesystem (initramfs
root filesystem) will be unmounted, and systemd will take care
of the rest of the booting sequence. Chapter 7 will cover systemd
booting.

We can cross-verify whether the kernel really launches the init/systemd process as
soon as it extracts initramfs. We can modify the init script for this, but the hurdle is that
systemd is a binary, whereas init used to be a script. We can edit init easily since it is a
script file, but we cannot edit the systemd binary. However, to have good understanding
and to verify our booting sequence to see whether systemd is getting called as soon as
the kernel extracts initramfs, we will use an init-based system. This would be a fair
example since systemd is here to replace the init system. Also, init is still a symlink to
systemd. We will use a Centos 6 system, which is an init-based Linux distribution.

226

CHAPTER 5 INITRAMFS
First extract initramfs.
zcat initramfs-2.6.32-573.e16.x86_64.img | cpio -idv

[root@localhost initramfs|# 1ls -lah
total 120K

drwxr-xr-X. root root

drwxr-xr-x. 26 root root 4.0K Mar 27 12:56 .
drwxr-xr-x. 3 root root 4.0K Mar 27 12:56 ..
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 bin
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 cmdline
drwxr-xr-x. 3 root root 4.0K Mar 27 12:56 dev
-Tw-r--r--. 1 root root 19 Mar 27 12:56 dracut-004-388.el6
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 emergency
drwxr-xr-x. 8 root root 4.0K Mar 27 12:56 etc
-YWXr-Xr-x. 1 root root 8.8K Mar 27 12:56 init
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue-finished
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue-settled
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue-timeout
drwxr-xr-x. 7 root root 4.0K Mar 27 12:56 lib
drwxr-xr-x. 3 root root 4.0K Mar 27 12:56 1ib64
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 mount
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 netroot
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-mount
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-pivot
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-trigger
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-udev
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 proc
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 sbin
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 sys
drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 sysroot
drwxrwxrwt. 2 root root 4.0K Mar 27 12:56 tmp
drwxr-xr-x. 8 root root 4.0K Mar 27 12:56 usr

4 4

.0K Mar 27 12:56 var

227

CHAPTER 5 INITRAMFS
Open an init file and add the following banner in it:

#vim init
"We are inside the init process. Init is replaced by Systemd"
<snip>
#!1/bin/sh
#
Licensed under the GPLv2
#
Copyright 2008-2009, Red Hat, Inc.
Harald Hoyer <harald@redhat.com>
Jeremy Katz <katzj@redhat.com>
echo "we are inside the init process. Init is replaced by Systemd"
wait for loginit()
{
if getarg rdinitdebug; then
set +x
exec 0<>/dev/console 1<>/dev/console 2<>/dev/console
wait for loginit
i=0
while [$i -1t 10]; do

</snip>

Repack initramfs with the test.img name.

[root@localhost initramfs]# find . | cpio -0 -c | gzip -9 » /boot/test.img

163584 blocks

1s -1lh /boot/
total 66M

-Tw-r--r--. 1 root root 105K Jul 23 2015 config-2.6.32-573.el6.x86 64

drwxr-xr-x. 3 root root 1.0K Aug 7 2015 efi
-Iw-r--I--. 1 root root 163K Jul 20 2011 elf-memtest86+-4.10
drwxr-xr-x. 2 root root 1.0K Dec 21 16:12 grub

228

-IW------- 1 root
x86_64.1img
“IW-=-==-=-- . 1 root

drwx------ . 2 root
root
root

1

1
-IW-r--r--. 1 root

1 root

1

-TWXT-XY-X. root

root 27M

root 5.3M

root 12K
root 162K
root 202K
root 2.5M
root 27M
root 4.1M

Dec

Dec

Dec
Jul
Jul
Jul
Mar
Jul

21 15:55

21 16:03

21 15:54
20 2011
23 2015
23 2015
27 13:16
23 2015

CHAPTER 5 INITRAMFS

initramfs-2.6.32-573.el6.
initrd-2.6.32-573.el6.

lost+found

memtest86+-4.10
symvers-2.6.32-573.e16.x86_64.gz
System.map-2.6.32-573.e16.x86_64
test.img
vmlinuz-2.6.32-573.el16.x86 64

Boot with the new test. img initramfs, and you will notice right after unpacking

initramfs that our banner is getting printed.

<snip>

cpuidle: using governor ladder

cpuidle: using governor menu
EFI Variables Facility v0.08 2004-May-17
usbcore: registered new interface driver hiddev
usbcore: registered new interface driver usbhid
usbhid: v2.6:USB HID core driver
GRE over IPv4 demultiplexor driver
TCP cubic registered
Initializing XFRM netlink socket

NET: Registered protocol family 17
registered taskstats version 1
rtc_cmos 00:01: setting system clock to 2020-03-27 07:53:44 UTC (1585295624)
Initalizing network drop monitor service
Freeing unused kernel memory: 1296k freed
Write protecting the kernel read-only data: 10240k

Freeing unused kernel memory: 732k freed
Freeing unused kernel memory: 1576k freed
we are inside the init process. Init is replaced by Systemd
dracut: dracut-004-388.el6

229

CHAPTER 5 INITRAMFS

dracut: rd_NO_LUKS: removing cryptoluks activation
device-mapper: uevent: version 1.0.3

device-mapper: ioctl: 4.29.0-ioctl (2014-10-28) initialised:
dm-devel@redhat.com

udev: starting version 147

dracut: Starting plymouth daemon

</snip>

How Does the Kernel Extract initramfs from Memory?

Let’s take a minute and try to recall whatever we have learned so far.
1) The bootloader runs first.
2) The bootloader copies the kernel and initramfs in memory.
3) The kernel extracts itself.
4) The bootloader passes on the location of initramfs to the kernel.
5) The kernel extracts initramfs in memory.
6) The kernel runs systemd from the extracted initramfs.

The extraction takes place in the kernel’s init/initramfs.c file. The populate_
rootfs function is responsible for the extraction.
populate_rootfs function:

<snip>

646 static int __init populate_rootfs(void)

647 {

648 /* Load the built in initramfs */

649 char *err = unpack to rootfs(_ _initramfs start, initramfs_
size);

650 if (err)

230

651

652
653
654
655
656
657

658
659
660
661

662
663
664
665
666
667 done:
668
669

670
671
672
673
674
675
676
677
678
679 }

</snip>

CHAPTER 5 INITRAMFS

panic("%s", err); /* Failed to decompress INTERNAL
initramfs */

if (linitrd start || IS_ENABLED(CONFIG_INITRAMFS FORCE))
goto done;

if (IS_ENABLED(CONFIG BLK DEV_RAM))
printk (KERN_INFO "Trying to unpack rootfs image as
initramfs...\n");

else
printk (KERN_INFO "Unpacking initramfs...\n");

err = unpack to rootfs((char *)initrd start, initrd end -
initrd start);
if (err) {

clean_rootfs();

populate initrd image(err);

/*

* If the initrd region is overlapped with crashkernel reserved

region,

* free only memory that is not part of crashkernel region.

*/

if (!do_retain initrd && initrd start &% !kexec free initrd())
free initrd mem(initrd start, initrd end);

initrd start = o;

initrd_end = 0;

flush_delayed fput();
return 0;

231

CHAPTER 5 INITRAMFS
unpack_to_rootfs function:

<snip>

443 static char * __init unpack_to_rootfs(char *buf, unsigned long len)
444 |

445 long written;

446 decompress_fn decompress;

447 const char *compress_name;

448 static _ initdata char msg buf[64];

449

450 header buf = kmalloc(110, GFP_KERNEL);

451 symlink buf = kmalloc(PATH MAX + N_ALIGN(PATH MAX) + 1,
GFP_KERNEL);

452 name_buf = kmalloc(N_ALIGN(PATH MAX), GFP_KERNEL);

453

454 if ('header buf || !symlink buf || !name_buf)

455 panic("can't allocate buffers");

456

457 state = Start;

458 this_header = 0;

459 message = NULL;

460 while (!message && len) {

461 loff t saved offset = this_header;

462 if (*buf == '0' && !(this_header & 3)) {

463 state = Start;

464 written = write buffer(buf, len);

465 buf += written;

466 len -= written;

467 continue;

468 }

232

469
470
471
472
473
474
475
476

477

478
479

480
481
482
483
484
485
486

487
488
489
490
491

492
493
494
495
496
497

CHAPTER 5 INITRAMFS

if (M*buf) {
buf++;
len--;
this_header++;
continue;
}
this_header = 0;
decompress = decompress method(buf, len, &compress
name);
pr_debug("Detected %s compressed data\n", compress
name);
if (decompress) {
int res = decompress(buf, len, NULL, flush_
buffer, NULL,
&my inptr, error);
if (res)
error("decompressor failed");
} else if (compress name) {
if (!message) {
snprintf(msg_buf, sizeof msg_buf,
"compression method %s not
configured"”,
compress_name);
message = msg_buf;

} else
error("invalid magic at start of compressed
archive");
if (state != Reset)
error("junk at the end of compressed archive");
this _header = saved offset + my inptr;
buf += my_inptr;
len -= my_inptr;

233

CHAPTER 5 INITRAMFS

498 dir utime();

499 kfree(name_buf);
500 kfree(symlink buf);
501 kfree(header_buf);
502 return message;

503 }

</snip>

Inside the populate_rootfs function there is a unpack to_rootfs function. This is
the worker function that unpacks initramfs and returns 0 for failure and 1 for success.
Also note the interesting function parameters.

o __initramfs_start: Thisis the exactlocation/address of a
loaded initramfs (initramfs will be loaded by the bootloader, so
obviously the address location is also provided by the bootloader
through boot_protocol).

o _ initramfs_size: This is the size of the initramfs image.

How Does the Kernel Mount initramfs as Root?

The initramfs blob is just an (optionally compressed) cpio file. The kernel extracts it by
creating a tmpfs/ramfs filesystem in memory as the root filesystem. So, there’s not really
a fixed location; the kernel just allocates memory for the extracted files as it goes along.
We have already seen that GRUB 2/the bootloader places the kernel at a specific location
that will be architecture dependent, but initramfs image extraction does not take place at
any specific location.

Now before we proceed further with our booting sequence, we need to understand
the dracut tool, which generates initramfs. This tool will provide us with a better
understanding of initramfs and systemd.

234

CHAPTER 6

dracut

Put simply, dracut is a tool that creates the initramfs filesystem on Fedora-based
systems. Debian- and Ubuntu-based systems use a similar tool called update-initramfs.
If you want to generate, regenerate, or customize the existing initramfs, then you should
know how to use the dracut tool. This chapter will explain how dracut works along with
how to generate and customize initramfs. Also, you will learn some of the most common

“can’t boot” issues related to initramfs.

Getting Started

Every kernel has its own initramfs file, but you might be wondering why you never had to
use the dracut command to create initramfs while installing a new kernel. Instead, you
just found the respective initramfs in the /boot location. Well, when you install a new
kernel, the post-scripts command of the kernel’s rpm package calls dracut and makes
initramfs for you. Let’s see how it works on a Fedora-based system:

rpm -q --scripts kernel-core-5.3.7-301.fc31.x86_64
postinstall scriptlet (using /bin/sh):

if [“uname -i° == "x86 64" -0 “uname -i’ == "i386"] &&
[-f /etc/sysconfig/kernel]; then
/bin/sed -r -i -e 's/"DEFAULTKERNEL=kernel-smp$/DEFAULTKERNEL=kernel/" /
etc/sysconfig/kernel || exit $?
fi
preuninstall scriptlet (using /bin/sh):
/bin/kernel-install remove 5.3.7-301.fc31.x86 64 /lib/modules/5.3.7-301.
fc31.x86_64/vmlinuz || exit $?
posttrans scriptlet (using /bin/sh):
/bin/kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.fc31.
x86_64/vmlinuz || exit $?

235
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_6

https://doi.org/10.1007/978-1-4842-5890-3_6#ESM

CHAPTER6 DRACUT

Asyou can see, the post-scripts command of the kernel package calls the kernel -

install script. The kernel-install script executes all the scripts that are available at
/usr/lib/kernel/install.d.

vim /bin/kernel-install

94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

236

if 1 [[$MACHINE_ID]]; then
ENTRY_DIR _ABS=$(mktemp -d /tmp/kernel-install.XXXXX) || exit 1
trap "rm -rf '$ENTRY _DIR ABS'" EXIT INT QUIT PIPE

elif [[-d /efi/loader/entries]] || [[-d /efi/$MACHINE ID]]; then
ENTRY DIR_ABS="/efi/$MACHINE_ID/$KERNEL VERSION"

elif [[-d /boot/loader/entries]] || [[-d /boot/$MACHINE ID]]; then
ENTRY DIR ABS="/boot/$MACHINE ID/$KERNEL VERSION"

elif [[-d /boot/efi/loader/entries]] || [[-d /boot/efi/$MACHINE ID]];

then
ENTRY DIR ABS="/boot/efi/$MACHINE ID/$KERNEL VERSION"

elif mountpoint -q /efi; then
ENTRY_DIR_ABS="/efi/$MACHINE ID/$KERNEL VERSION"

elif mountpoint -q /boot/efi; then
ENTRY DIR ABS="/boot/efi/$MACHINE ID/$KERNEL VERSION"

else
ENTRY DIR ABS="/boot/$MACHINE ID/$KERNEL VERSION"

fi

export KERNEL_INSTALL MACHINE ID=$MACHINE_ ID
ret=0
readarray -t PLUGINS <<<"$(

dropindirs_sort ".install" \

"/etc/kernel/install.d" \
"/usx/lib/kernel/install.d"

CHAPTER6 DRACUT

Here you can see the scripts executed by kernel-install:

1s /usx/lib/kernel/install.d/ -1h
total 36K
-TWXT-Xr-X. 1 root root 744 Oct 10 18:26 00-entry-directory.install
root root 1.9K Oct 19 07:46 20-grubby.install

root root 6.6K Oct 10 13:05 20-grub.install
-TwXr-xr-x. 1 root root 829 Oct 10 18:26 50-depmod.install

1
-YWXT-XT-X. 1
1
1

-YWXr-Xr-X. 1 root root 1.7K Jul 25 2019 50-dracut.install
1
1
1

-ITWXT-XT-X.

-YWXX-Xr-X. 1 root root 3.4K Jul 25 2019 51-dracut-rescue.install
root root 3.4K Oct 10 18:26 90-loaderentry.install
root root 1.1K Oct 10 13:05 99-grub-mkconfig.install

-ITWXY-XTI-X.
-ITWXY-XT-X.

Asyou can see, this executes the 50-dracut.install script. This particular script
executes the dracut command and makes initramfs for a particular kernel.

46 for ((i=0; i < "${#BOOT OPTIONS[@]}"; i++)); do

47 if [[${BOOT OPTIONS[$i]} == root\=PARTUUID\=*]]; then

48 noimageifnotneeded="yes"

49 break

50 fi

51 done

52 dracut -f ${noimageifnotneeded:+--noimageifnotneeded}
"$BOOT_DIR_ABS/$INITRD" "$KERNEL_VERSION"

53 ret=%?

54 55

55 remove)

56 rm -f -- "$BOOT_DIR_ABS/$INITRD"

57 ret=$?

58 H

59 esac

60 exit $ret

Similarly, there is the script 51-dracut-rescue.install, which will make initramfs
for the rescue kernel.

237

CHAPTER 6

100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

DRACUT

if [[! -f "$BOOT DIR_ABS/$INITRD"]]; then
dracut -f --no-hostonly -a "rescue" "$BOOT_DIR_ABS/$INITRD"
"$KERNEL_VERSION"
((ret+=$?))

fi

if [["${BOOT DIR ABS}" != "/boot"]]; then
{
echo "title $PRETTY_NAME - Rescue Image"
echo "version $KERNEL_VERSION"
echo "machine-id $MACHINE ID"
echo "options ${BOOT_OPTIONS[@]} rd.auto=1"
echo "linux $BOOT_DIR/1inux"
echo "initrd $BOOT_DIR/initrd"
} > $LOADER_ENTRY
else
cp -aT "${KERNEL IMAGE%/*}/bls.conf" $LOADER ENTRY
sed -i "s/"'$KERNEL VERSION'/0-rescue-'${MACHINE ID}'/'
$LOADER_ENTRY
fi

Hence, every kernel will have its own initramfs file.

1s -1h /boot | grep -e vmlinuz -e initramfs

-IW------ . 1 root root 80M Dec 2 18:32 initramfs-0-rescue-280526b3bc5e4c49a
c83c8e5fbdfdb2e.img

-IW------ . 1 root root 28M Dec 23 06:37 initramfs-5.3.16-300.fc31.x86 64.img
-IW------ . 1 root root 30M Dec 2 18:33 initramfs-5.3.7-301.fc31.x86 64.img

-TWXr-Xr-X. 1 root root 8.9M Dec 2 18:32 vmlinuz-0-rescue-280526b3bc5e4c49ac8
3c8e5fbdfdb2e

-IWXI-Xr-X. 1 root root 8.9M Dec 13 23:51 vmlinuz-5.3.16-300.fc31.x86 64
-IWXT-XI-X. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

Note the size of the kernel (vmlinuz) file and its associated initramfs file size. The

initramfs file is much bigger than the kernel.

238

CHAPTER6 DRACUT

Making an initramfs Image

First check which kernel has been installed on your system with this command:
xrpm -qa | grep -i kernel-5

kernel-5.3.16-300.fc31.x86_64
kernel-5.3.7-301.fc31.x86_64

Choose the kernel version for which you want to generate a new initramfs image and
pass it to dracut.

dracut /boot/new.img 5.3.7-301.fc31.x86_64 -v

<snip>

dracut: Executing: /usr/bin/dracut /boot/new.img 5.3.7-301.fc31.x86 64 -v
dracut: dracut module 'busybox' will not be installed, because command
"busybox' could not be found!

dracut: dracut module 'stratis' will not be installed, because command
'stratisd-init' could not be found!

dracut: dracut module 'biosdevname' will not be installed, because command
'biosdevname’ could not be found!

dracut: dracut module 'busybox' will not be installed, because command
"busybox' could not be found!

dracut: dracut module 'stratis' will not be installed, because command
'stratisd-init' could not be found!

dracut: *** Including module: bash ***

dracut: *** Including module: systemd ***

dracut: *** Including module: systemd-initrd ***

dracut: *** Including module: nss-softokn ***

dracut: *** Including module: i18n ***

dracut: *** Including module: network-manager ***

dracut: *** Including module: network ***

dracut: *** Including module: ifcfg ***

dracut: *** Including module: drm ***

dracut: *** Including module: plymouth ***

</snip>

239

CHAPTER6 DRACUT

In the previous code, dracut will create an initramfs file called new. img in the current
directory for the 64-bit Fedora kernel, Kernel-5.3.7-301.fc31.x86_64

1s -1h new.img
-IW------- . 1 root root 28M Dec 23 08:16 new.img

If the kernel version is not provided, then dracut will make initramfs for the kernel
through which the system has been booted. The kernel version that has been passed to
dracut must match the kernel directory present in the /1ib/modules/ location.

1s /lib/modules/ -1
total 4
drwxr-xr-x. 6 root root 4096 Dec 9 10:18 5.3.7-301.fc31.x86_64

1s /lib/modules/5.3.7-301.fc31.x86_64/ -1

total 18084

-IwW-r--1r--. 1 root root 249 Oct 22 01:04 bls.conf
lrwxrwxrwx. 1 root root 38 Oct 22 01:04 build -> /usr/sxrc/
kernels/5.3.7-301.fc31.x86_64

-Tw-r--r--. 1 root root 213315 Oct 22 01:03 config

drwxr-xr-x. 5 root root 4096 Oct 24 04:44 extra

drwxr-xr-x. 13 root root 4096 Oct 24 04:43 kernel

-IW-T--1--. 1 root root 1127438 Dec 9 10:18 modules.alias
-IW-r--r--. 1 root root 1101059 Dec 9 10:18 modules.alias.bin
-IwW-r--r--. 1 root root 1688 Oct 22 01:04 modules.block
-TwW-1--1--. 1 root root 8324 Oct 22 01:04 modules.builtin
-IW-r--r--. 1 root root 10669 Dec 9 10:18 modules.builtin.bin
-Yw-r--r--. 1 root root 60853 Oct 22 01:04 modules.builtin.modinfo
-IW-r--I--. 1 root root 415475 Dec 9 10:18 modules.dep
-IW-r--r--. 1 root root 574502 Dec 9 10:18 modules.dep.bin
-IW-r--r--. 1 root root 381 Dec 9 10:18 modules.devname
-IwW-1--1--. 1 root root 153 Oct 22 01:04 modules.drm
-TW-r--r--. 1 root root 59 Oct 22 01:04 modules.modesetting
-Tw-r--r--. 1 root root 2697 Oct 22 01:04 modules.networking
-IW-T--1--. 1 root root 139947 Oct 22 01:04 modules.order

240

-IW-T--T--.
-ITW-T--T--.
-ITW-T--T--.
Lrwxrwxrwx.
CTWemmmm e
drwxr-XTr-X.

drwxr-xr-X.
-TWXT-XY-X.

L N = =Y

N N

1

root
root
root
root
root
root
root
root

CHAPTER 6

root 700 Dec 9 10:18 modules.softdep
root 468520 Dec 9 10:18 modules.symbols
root 572778 Dec 9 10:18 modules.symbols.bin
root 5 Oct 22 01:04 source -> build
root 4426726 Oct 22 01:03 System.map

root 4096 Oct 22 01:02 updates

root 4096 Oct 24 04:43 vdso

root 9323208 Oct 22 01:04 vmlinuz

DRACUT

As we know, initramfs is a temporary root filesystem, and its main purpose is to

provide an environment that will help mount the user’s root filesystem. The user’s root

filesystem could be a local to a system, or it could be a network device, and to use that

device, the kernel should have drivers (modules) for that hardware and, while booting,

get these modules from initramfs.

For example, say the user’s root filesystem is a locally connected hard disk, and the
HDD is a SCSI device. So, initramfs has to have the SCSI drivers added in its archive.

lsinitrd | grep -i scsi | awk '{ print $9 }'
etc/ld.so.conf.d/1libiscsi-x86_64.conf

usr/lib/modules/5.3.7-301.

ko.xz

usr/lib/modules/5.3
usr/lib/modules/5.3

ko.xz

usr/lib/modules/5.3
usr/lib/modules/5.3
usr/lib/modules/5.3

ko.xz

usr/lib/modules/5.

iscsi.ko.xz

usr/1lib/modules/5.

srp.ko.xz

usr/lib/modules/5.3.7-301.
usr/lib/udev/scsi_id

.7-301.
.7-301.

.7-301.

.7-301.

.7-301.

.7-301.

.7-301.

fc31.

fc31.
fc31.

fc31.
fc31.
fc31.
fc31.

fc31.

fc31.

x86_64/kernel/drivers/firmware/iscsi_ibft.

x86_64/kernel/drivers/scsi
x86_64/kernel/drivers/scsi/iscsi_boot_sysfs.

x86_64/kernel/drivers/scsi/libiscsi.ko.xz
x86_64/kernel/drivers/scsi/qladxxx
x86_64/kernel/drivers/scsi/qladxxx/qlagxxx.
x86_64/kernel/drivers/scsi/scsi_transport_

x86_64/kernel/drivers/scsi/scsi_transport_

x86_64/kernel/drivers/scsi/virtio_scsi.ko.xz

241

CHAPTER6 DRACUT

On top of the SCSI device, users might have configured a RAID device. If they have,
then the kernel needs to have RAID device drivers to identify and assemble the RAID
device. Similarly, some of the users’ HDDs could be connected through an HBA card. In
such situations, the kernel needs a qlaXxxx-like modules.

lsinitrd | grep -i qla

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qladxxx
usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qlagxxx/
glagxxx.ko.xz

Please note that these days '/1ib"' is a symlink to '/usr/1ib/".

In the case of some users, the HDD could be coming from Fiber Channel over
Ethernet. Then the kernel needs FCOE modules. In a virtualized environment, the HDD
could be a virtual disk exposed by a hypervisor. In that case, to mount the user’s root
filesystem, the virtI0 module is necessary. This way, the list of hardware and their
respective modules goes on.

Obviously, the kernel cannot store all of these necessary module files (. ko) in its own
binary (vmlinuz). Hence, one of the main jobs of initramfs is to store all the modules that
are necessary to mount the user’s root filesystem. This is also one of the reasons why the
initramfs file size is much bigger compared to the kernel file. But remember, initramfs is
not the source of the modules. The modules will always be provided by the kernel and
archived in initramfs by dracut. The kernel (vmlinuz) is the source of all the modules, but
as you can rightly guess, the kernel size will be huge if the kernel stores all the modules in
its vmlinuz binary. Hence, along with a kernel package, a new package named kernel-
modules has been introduced, and this package provides all the modules that are present
atthe /1ib/modules/<kernel-version-arch> location; dracut pulls only those modules
(.ko files) that are necessary for mounting the user’s root filesystem.

xrpm -qa | grep -i kernel

Kernel-headers-5.3.6-300.fc31.x86_64
kernel-modules-extra-5.3.7-301.fc31.x86 64
kernel-modules-5.3.7-301.fc31.x86_64
kernel-core-5.3.16-300.fc31.x86 64
kernel-core-5.3.7-301.fc31.x86_64

242

CHAPTER6 DRACUT

kernel-5.3.16-300.fc31.x86_64
abrt-addon-kerneloops-2.12.2-1.fc31.x86_64
kernel-5.3.7-301.fc31.x86_64
libreport-plugin-kerneloops-2.10.1-2.fc31.x86_64
Kernel-modules-5.3.16-300.fc31.x86_64

rpm -ql kernel-modules-5.3.7-301.fc31.x86_64 | wc -1
1698

xpm -ql kernel-modules-5.3.7-301.fc31.x86_64
<snip>
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/s5.
ko.xz
/1ib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/cfag12864bfb.
ko.xz
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
/1ib/modules/5.
cs.ko.xz
/1ib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bpa10x.ko.xz

.7-301.1c31.x86_64/kernel/drivers/atm/atmtcp.ko.xz
.7-301.fc31.x86_64/kernel/drivers/atm/eni.ko.xz
.7-301.fc31.x86_64/kernel/drivers/atm/firestream.ko.xz
.7-301.1c31.x86_64/kernel/drivers/atm/he.ko.xz
.7-301.1c31.x86_64/kernel/drivers/atm/nicstar.ko.xz
.7-301.fc31.x86_64/kernel/drivers/atm/solos-pci.ko.xz
.7-301.fc31.x86_64/kernel/drivers/atm/suni.ko.xz
.7-301.fc31.x86_64/kernel/drivers/auxdisplay/cfag12864b.

w W w w w w w w

.7-301.fc31.x86_64/kernel/drivers/auxdisplay/charlcd.ko.xz
.7-301.fc31.x86_64/kernel/drivers/auxdisplay/hd44780.ko.xz
.7-301.1c31.x86_64/kernel/drivers/auxdisplay/ks0108.ko.xz
.7-301.fc31.x86_64/kernel/drivers/bcma/bcma.ko.xz
.7-301.fc31.x86_64/kernel/drivers/bluetooth/ath3k.ko.xz
.7-301.1c31.x86_64/kernel/drivers/bluetooth/bcm203x.ko.xz
.7-301.fc31.x86_64/kernel/drivers/bluetooth/bfusb.ko.xz
.7-301.fc31.x86_64/kernel/drivers/bluetooth/bluecard

w W w w w w w w

</snip>

243

CHAPTER6 DRACUT

Asyou can see, the kernel-modules package that came with kernel-5.3.7-301
provides almost 1,698 modules. Also, the kernel-module package will be a dependency
of the kernel package; hence, whenever kernel is installed, kernel-modules will be
pulled and installed by a Fedora-based operating system.

Dracut and Modules

We'll now review the dracut modules.

How Does dracut Select Modules?

To understand how dracut pulls the modules in initramfs, first we need to understand
the depmod command. depmod analyzes all the kernel modules in the /1ib/
modules/<kernel-version-arch> location and makes a list of all the modules along
with their dependency modules. It keeps this list in the modules . dep file. (Note that
on Fedora-based systems, it is good to refer to the module’s location as /usr/1ib/
modules/<kernel version>/*.) Here’s an example:

vim /1lib/modules/5.3.7-301.fc31.x86_64/modules.dep
<snip>

kernel/arch/x86/kernel/cpu/mce/mce-inject.ko.xz:
kernel/arch/x86/crypto/des3_ede-x86_64.ko.xz: kernel/crypto/des_generic.ko.xz
kernel/arch/x86/crypto/camellia-x86 64.ko.xz:
kernel/arch/x86/crypto/blowfish-x86_64.ko.xz: kernel/crypto/blowfish_
common. ko.xz

kernel/arch/x86/crypto/twofish-x86_64.ko.xz: kernel/crypto/twofish_common.
ko.xz

</snip>

In this code, you can see that the module named des3_ede needs the module des_
generic to work properly. In another example, you can see that the blowfish modules

244

CHAPTER6 DRACUT

have a blowfish comman module as a dependency. So, dracut reads the modules.
dep file and starts pulling the kernel modules in the initramfs image from the /1ib/
modules/5.3.7-301.fc31.x86_64/kernel/ location.

1s /1lib/modules/5.3.7-301.fc31.x86_64/kernel/ -1
total 44

drwxr-xr-x. 3 root root 4096 Oct 24 04:43 arch
drwxr-xr-x. 4 root root 4096 Oct 24 04:43 crypto
drwxr-xr-x. 80 root root 4096 Oct 24 04:43 drivers
drwxr-xr-x. 43 root root 4096 Oct 24 04:43 fs
drwxr-xr-x. 4 root root 4096 Oct 24 04:43 kernel
drwxr-xr-x. 8 root root 4096 Oct 24 04:43 lib
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 mm
drwxr-xr-x. 51 root root 4096 Oct 24 04:43 net
drwxr-xr-x. 3 root root 4096 Oct 24 04:43 security
drwxr-xr-x. 13 root root 4096 Oct 24 04:43 sound
drwxr-xr-x. 3 root root 4096 Oct 24 04:43 virt

The kernel provides thousands of modules, but every module does not need to
be added in initramfs. Hence, while collecting the modules, dracut pulls very specific
modules.

find /lib/modules/5.3.7-301.fc31.x86_64/ -name '*.ko.xz' | wc -1
3539

If dracut pulled every module, then the size of initramfs would be large. Also, why
pull every module when it is not necessary? So, dracut pulls only those modules that are
necessary to mount the user’s root filesystem on that system.

lsinitrd | grep -i '.ko.xz' | wc -1
221

As you can see, initramfs has only 221 modules, whereas the kernel has almost 3,539
modules in it.

If we include 3,539 modules in initramfs, it would make initramfs huge, which will
eventually slow down the booting performance because the initramfs archive loading
and decompression time will be high. Also, we need to understand that initramfs’
main task is to mount the user’s root filesystem. Therefore, it makes sense to include

245

CHAPTER6 DRACUT

only those modules that are necessary to mount the root filesystem. For example, the
Bluetooth-related modules are not necessary to add in initramfs since the root filesystem
will never be coming from a Bluetooth-connected device. So, you will not find any
Bluetooth-related modules in initramfs, even though there are a couple of bluetooth
modules provided by the kernel (kernel-modules).

find /lib/modules/5.3.7-301.fc31.x86_64/ -name 'bluetooth’
/1ib/modules/5.3.7-301.fc31.x86_64/kernel/net/bluetooth
/1ib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth

lsinitrd | grep -i blue
<no_output>

By default, dracut will add only host-specific modules in initramfs. It does this by
inspecting the current system state and the modules that are currently used by the
system. Being host-specific is the default approach of every leading Linux distribution.
Fedora and Ubuntu-like systems also create a generic initramfs image, called a rescue
initramfs image. The rescue initramfs includes all possible modules for devices on which
users can possibly make a root filesystem. The idea is that the generic initramfs should
be applicable to all the systems. Therefore, the rescue initramfs will always be bigger in
size compared to the host-specific initramfs. dracut has a bunch of logic to decide which
modules are needed to mount the root filesystem. This is what man page of dracut says,
but remember in Fedora-based Linux, --hostonly is the default.

“If you want to create lighter, smaller initramfs images, you may want to
specify the --hostonly or -H option. Using this option, the resulting image
will contain only those dracut modules, kernel modules and filesystems,
which are needed to boot this specific machine. This has the drawback, that
you can't put the disk on another controller or machine, and that you can’t
switch to another root filesystem, without recreating the initramfs image.
The usage of the --hostonly option is only for experts and you will have to
keep the broken pieces. At least keep a copy of a general purpose image (and
corresponding kernel) as a fallback to rescue your system.”

In the Chapter 5 we saw that there are a number of binaries, modules, and
configuration files that were chosen by dracut and added in initramfs, but how does
dracut choose files from the user’s large root filesystem?

246

CHAPTER6 DRACUT

The files are chosen by running the scripts in the location /usr/1lib/dracut/
modules.d. This is the place where all the scripts of dracut are stored. dracut runs these
scripts while generating initramfs, as shown here:

1s /usx/lib/dracut/modules.d/ -1
total 288
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 0Obash

root root 4096 Oct 24 04:43 00systemd

root root 4096 Oct 24 04:43 OOwarpclock

root root 4096 Oct 24 04:43 01fips

root root 4096 Oct 24 04:43 0O1systemd-initrd
root root 4096 Oct 24 04:43 02systemd-networkd
root root 4096 Oct 24 04:43 03modsign

root root 4096 Oct 24 04:43 03rescue

dYwXT-XT-X.
drwxr-Xr-X.
drwxr-Xr-X.
dYwXT-XT-X.
dYwxT-XTr-X.
drwXr-Xr-X.
dYwXT-XT-X.

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 O4watchdog
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 05busybox
drwxr-xr-x. 2 root root 4096 Oct 24 04:42 05nss-softokn
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 0O5rdma
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 10i18n
drwxr-Xr-X. root root 4096 Oct 24 04:43 30convertfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 35network-legacy
root root 4096 Oct 24 04:43 35network-manager
root root 4096 Oct 24 04:43 40network

root root 4096 Oct 24 04:43 45ifcfg

root root 4096 Oct 24 04:43 45url-lib

root root 4096 Oct 24 04:43 50drm

root root 4096 Oct 24 04:43 50plymouth

root root 4096 Oct 24 04:43 80lvmmerge

root root 4096 Oct 24 04:42 90bcache

root root 4096 Oct 24 04:43 90btrfs

drwXr-Xr-X.
drwXr-Xr-X.
dYwXT-XT-X.
drwxr-Xr-X.
drwxr-Xr-X.
dYwXT-XT-X.
dYwxT-XTr-X.
drwxXr-Xr-X.
dYwXT-XT-X.

N N N N N N N N N DN DNDNDNDNDNDNDNDNDNDDNDNDNDNDNNDNDNDNNDNNDNDNDNDNDNNDNNDNNDN

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90crypt

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90dm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90dmraid

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90dmsquash-live
drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90dmsquash-live-ntfs
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-modules

247

CHAPTER6 DRACUT

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-modules-extra
root root 4096 Oct 24 04:43 90kernel-network-modules
root root 4096 Oct 24 04:44 90livenet

root root 4096 Oct 24 04:43 90lvm

root root 4096 Oct 24 04:43 90mdraid

root root 4096 Oct 24 04:43 90multipath

root root 4096 Oct 24 04:43 90gemu

root root 4096 Oct 24 04:43 90gemu-net

root root 4096 Oct 24 04:43 90stratis

root root 4096 Oct 24 04:43 9icrypt-gpg

root root 4096 Oct 24 04:43 9icrypt-loop

root root 4096 Oct 24 04:43 95cifs

root root 4096 Oct 24 04:43 95debug

root root 4096 Oct 24 04:43 95fcoe

root root 4096 Oct 24 04:43 95fcoe-uefi

root root 4096 Oct 24 04:43 95fstab-sys
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95iscsi

2
drwxr-xr-x. 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95lunmask

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

dYwxr-Xr-X.
drwXr-Xr-X.
dYwXT-XT-X.
drwxr-Xr-X.
drwXr-Xr-X.
dYwXT-XT-X.
dYwxT-XTr-X.
drwXr-Xr-X.
dYwXT-XT-X.
dYwxT-XTr-X.
drwXr-Xr-X.
dYwxXT-XT-X.
dYwxT-XTr-X.
drwXr-Xr-X.

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95nbd

root root 4096 Oct 24 04:43 95nfs

root root 4096 Oct 24 04:43 95resume

root root 4096 Oct 24 04:43 95rootfs-block
root root 4096 Oct 24 04:43 95ssh-client
root root 4096 Oct 24 04:43 95terminfo
root root 4096 Oct 24 04:43 95udev-rules
root root 4096 Oct 24 04:43 95virtfs

root root 4096 Oct 24 04:43 97biosdevname
root root 4096 Jan 6 12:42 98dracut-systemd
root root 4096 Oct 24 04:43 98ecryptfs
root root 4096 Oct 24 04:44 98ostree

root root 4096 Oct 24 04:43 98pollcdrom
root root 4096 Oct 24 04:43 98selinux

root root 4096 Oct 24 04:43 98syslog

root root 4096 Oct 24 04:43 98usrmount
root root 4096 Oct 24 04:43 99base

drwXr-Xr-X.
dYwXT-XT-X.
drwxr-Xr-X.
drwXr-Xr-X.
dYwXT-XT-X.
dYwxT-XTr-X.
drwXr-Xr-X.
dYwXT-XT-X.
dYwxT-XTr-X.
drWXr-Xr-X.
dYwxXT-XT-X.
dYwxT-XTr-X.
drwXr-Xr-X.
drwXr-Xr-X.
dYwxXT-XT-X.
dYwxr-Xr-X.

248

drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root
drwxr-xr-x. 2 root root

CHAPTER 6

Oct
Oct
Oct
Oct
Oct
Oct
Oct

4096
4096
4096
4096
4096
4096
4096

24
24
24
24
24
24
24

04:43
04:43
04:44
04:43
04:43
04:43
04:43

99earlykdump
99fs-1ib
99img-1ib
99kdumpbase
99shutdown
99squash
99uefi-lib

The same output can be viewed by using #dracut --list-modules.

Whenever we try to make an initramfs filesystem, dracut starts executing the
module-setup.sh script files in each directory in /usr/1ib/dracut/modules.d/.

find /usr/lib/dracut/modules.d/ -name 'module-setup.sh’

/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.

/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.
/usr/lib/dracut/modules.

d/95iscsi/module-setup.sh
d/98ecryptfs/module-setup.sh
d/30convertfs/module-setup.sh
d/90crypt/module-setup.sh
d/10118n/module-setup.sh
d/99earlykdump/module-setup.sh
d/95nbd/module-setup.sh

d/04watchdog/module-setup.sh
d/90lvm/module-setup.sh
d/35network-legacy/module-setup.sh
d/01systemd-initrd/module-setup.sh
d/99squash/module-setup.sh
d/05busybox/module-setup.sh
d/50drm/module-setup.sh

DRACUT

This module-setup. sh script will pick the module, binary, and configuration files

that are specific to that host. For example, the first module-setup. sh script, which will

run from the 00bash directory, will include the bash binary in initramfs.

249

CHAPTER6 DRACUT

vim /usx/lib/dracut/modules.d/00bash/module-setup.sh

#!/usr/bin/bash

called by dracut

1
2
3
4 check() {

5 require_binaries /bin/bash
6

7

8

9

called by dracut
depends() {
10 return 0
11 }
12
13 # called by dracut
14 install() {
15 # If another shell is already installed, do not use bash
16 [[-x $initdir/bin/sh]] && return

17

18 # Prefer bash as /bin/sh if it is available.

19 inst /bin/bash 8& 1n -sf bash "${initdir}/bin/sh"
20 }

21

Asyou can see, the script file is adding the /bin/bash binary in initramfs. Let’s look
at another example, this one of plymouth.

wvim /usx/lib/dracut/modules.d/50plymouth/module-setup.sh
1 #!/usr/bin/bash

3 pkglib dir() {

4 local _dirs="/usr/lib/plymouth /usr/libexec/plymouth/"

5 if type -P dpkg-architecture &>/dev/null; then

6 _dirs+=" /usr/1lib/$(dpkg-architecture -qDEB_HOST MULTIARCH)/
plymouth”

7 fi

8 for _dir in $_dirs; do

250

CHAPTER6 DRACUT

9 if [-x $_dir/plymouth-populate-initrd]; then
10 echo $ dir

11 return

12 fi

13 done

14 }

15

16 # called by dracut

17 check() {

18 [["$mount needs"]] && return 1

19 [-z $(pkglib dir)] && return 1

20

21 require_binaries plymouthd plymouth plymouth-set-default-theme
22 }

23

24 # called by dracut

25 depends() {

26 echo drm

27 }

28

29 # called by dracut

30 install() {

31 PKGLIBDIR=$(pkglib_dir)

32 if grep -q nash ${PKGLIBDIR}/plymouth-populate-initrd \

33 [| [! -x ${PKGLIBDIR}/plymouth-populate-initrd]; then
34 . "$moddir"/plymouth-populate-initrd.sh

35 else

36 PLYMOUTH_POPULATE_SOURCE_FUNCTIONS="$dracutfunctions" \
37 ${PKGLIBDIR}/plymouth-populate-initrd -t "$initdir"
38 fi

39

40 inst_hook emergency 50 "$moddir"/plymouth-emergency.sh
41

42 inst multiple readlink

43

251

CHAPTER6 DRACUT

44 if ! dracut_module included "systemd"; then

45 inst_hook pre-trigger 10 "$moddir"/plymouth-pretrigger.sh
46 inst_hook pre-pivot 90 "$moddir"/plymouth-newroot.sh

47 fi

48 }

Simply grepping require_binaries will show all the binaries that dracut will add in
the generic initramfs.

grep -ir "require_binaries" /usr/lib/dracut/modules.d/
/usr/lib/dracut/modules.d/90mdraid/module-setup.sh: require binaries
mdadm expr || return 1
/usr/lib/dracut/modules.d/801lvmmerge/module-setup.sh: require binaries
lvm dd swapoff || return 1
/usr/lib/dracut/modules.d/95cifs/module-setup.sh: require binaries
mount.cifs || return 1
/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require binaries
gpg || return 1

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require
binaries gpg-agent &&
/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require_
binaries gpg-connect-agent &&
/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require
binaries /usr/libexec/scdaemon &&
/usr/lib/dracut/modules.d/45url-1ib/module-setup.sh: require binaries
curl || return 1

/usr/lib/dracut/modules.d/90stratis/module-setup.sh: require binaries

stratisd-init thin_check thin_repair mkfs.xfs xfs_admin xfs_growfs ||
return 1

/usr/lib/dracut/modules.d/90multipath/module-setup.sh: require binaries
multipath || return 1

/usr/lib/dracut/modules.d/95iscsi/module-setup.sh: require binaries
iscsi-iname iscsiadm iscsid || return 1
/usr/lib/dracut/modules.d/95ssh-client/module-setup.sh: require binaries
ssh scp || return 1

252

CHAPTER6 DRACUT

/usr/lib/dracut/modules.d/35network-manager/module-setup.sh: require_
binaries sed grep || return 1
/usr/lib/dracut/modules.d/90dmsquash-1live-ntfs/module-setup.sh: require_
binaries ntfs-3g || return 1

/usr/lib/dracut/modules.d/91crypt-loop/module-setup.sh: require binaries
losetup || return 1
/usr/lib/dracut/modules.d/05busybox/module-setup.sh: require binaries

busybox || return 1
/usr/lib/dracut/modules.d/99img-1ib/module-setup.sh: require binaries
tar gzip dd bash || return 1

/usr/lib/dracut/modules.d/90dm/module-setup.sh: require binaries dmsetup
|| return 1
/usr/lib/dracut/modules.d/03modsign/module-setup.sh: require binaries

keyctl || return 1
/usr/lib/dracut/modules.d/97biosdevname/module-setup.sh: require
binaries biosdevname || return 1

/usr/lib/dracut/modules.d/95nfs/module-setup.sh: require binaries rpc.
statd mount.nfs mount.nfs4 umount || return 1
/usr/lib/dracut/modules.d/90dmraid/module-setup.sh: require binaries
dmraid || return 1

/usr/lib/dracut/modules.d/95fcoe/module-setup.sh: require binaries
dcbtool fipvlan lldpad ip readlink fcoemon fcoeadm || return 1
/usr/lib/dracut/modules.d/0owarpclock/module-setup.sh: require binaries

/sbin/hwclock || return 1
/usr/lib/dracut/modules.d/35network-legacy/module-setup.sh: require
binaries ip dhclient sed awk grep || return 1
/usr/lib/dracut/modules.d/00bash/module-setup.sh: require_binaries /bin/
bash

/usr/lib/dracut/modules.d/95nbd/module-setup.sh: require binaries nbd-
client || return 1

/usr/lib/dracut/modules.d/90btrfs/module-setup.sh: require binaries
btrfs || return 1
/usr/lib/dracut/modules.d/00systemd/module-setup.sh: if require binaries

$systemdutildir/systemd; then

253

CHAPTER6 DRACUT

/usr/lib/dracut/modules.d/10i18n/module-setup.sh: require binaries
setfont loadkeys kbd mode || return 1
/usr/lib/dracut/modules.d/901lvm/module-setup.sh: require binaries lvm ||
return 1

/usr/lib/dracut/modules.d/50plymouth/module-setup.sh: require binaries
plymouthd plymouth plymouth-set-default-theme
/usr/lib/dracut/modules.d/95fcoe-uefi/module-setup.sh: require binaries

dcbtool fipvlan 1lldpad ip readlink || return 1

Once again, dracut does not include every module from /usr/1lib/dracut/
modules.d. It includes only host-specific modules. In the following section, you will learn

how to add or omit specific modules from initramfs.

Customizing initramfs

Dracut also has its own modules. The kernel modules and dracut modules are different.
Dracut collects the host-specific binaries, the associated libraries, the configuration files,
and the hardware device modules and groups them under the name dracut modules.
The kernel modules consist of the . ko files of the hardware device. You can see the
dracut modules list either from /usr/1ib/dracut/modules.d/ or from the dracut
--list-modules command.

dracut --list-modules | xargs -né

bash systemd warpclock fips systemd-initrd systemd-networkd
modsign rescue watchdog busybox nss-softokn rdma

i18n convertfs network-legacy network-manager network ifcfg
url-lib drm plymouth lvmmerge bcache btrfs

crypt dm dmraid dmsquash-live dmsquash-live-ntfs kernel-modules
kernel-modules-extra kernel-network-modules livenet lvm mdraid multipath
gemu gemu-net stratis crypt-gpg crypt-loop cifs

debug fcoe fcoe-uefi fstab-sys iscsi lunmask

nbd nfs resume rootfs-block ssh-client terminfo

udev-rules virtfs biosdevname dracut-systemd ecryptfs ostree
pollcdrom selinux syslog usrmount base earlykdump

fs-1ib img-1ib kdumpbase shutdown squash uefi-lib

254

CHAPTER6 DRACUT

If you want to add or omit specific dracut modules (not the hardware device
module) from initramfs, then dracut. conf plays a vital role here. Note that dracut.conf
is a configuration file of dracut, not of initramfs; hence, it will not be available inside

initramfs.

lsinitrd | grep -i 'dracut.conf’
<no output>

dracut will refer to the dracut.conf file while generating initramfs. By default it
will be an empty file.

cat /etc/dracut.conf
PUT YOUR CONFIG IN separate files
in /etc/dracut.conf.d named "<name>.conf"
SEE man dracut.conf(5) for options

There are various options provided by dracut.conf that you can use to add or omit
the module.

Suppose you want to omit the plymouth-related files (binaries, configuration
files, modules, etc.) from initramfs; then you can either add a omit_
dracutmodules+=plymouth in dracut.conf or use the omit (-0) switch of the dracut
binary. Here’s an example:

lsinitrd | grep -i plymouth | wc -1
118

There are almost 118 plymouth-related files present in the currently booted kernel.
Let’s try to omit plymouth-related files now.

dracut -o plymouth /root/new.img

lsinitrd /root/new.img | grep -i plymouth | wc -1
4

Asyou can clearly see, all plymouth-related dracut modules have been eliminated
from our newly built initramfs. Therefore, the plymouth-related binaries, configuration
files, libraries, and hardware device modules (if available) will not be captured by dracut
in initramfs. The same result can be achieved by adding omit_dracutmodules+=
plymouth in dracut.conf.

255

CHAPTER6 DRACUT

cat /etc/dracut.conf | grep -v '#'
omit_dracutmodules+=plymouth

dracut /root/new.img --force

lsinitrd /root/new.img | grep -i plymouth

-Tw-r--r-- 1 root root 454 Jul 25 2019 usr/lib/systemd/
system/systemd-ask-password-plymouth.path

-rw-r--r-- 1 root root 435 Jul 25 2019 usr/lib/systemd/
system/systemd-ask-password-plymouth.service

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib/systemd/
system/systemd-ask-password-plymouth.service.wants

lrwxrwxrwx 1 root root 33 Jul 25 2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service.wants/systemd-vconsole-setup.
service -> ../systemd-vconsole-setup.service

The following comes from the man page:
Omitting dracut Modules

Sometimes you don’t want a dracut module to be included for reasons of
speed, size or functionality. To do this, either specify the omit_dracutmod-
ules variable in the dracut.conf or /etc/dracut.conf.d/myconf.conf configu-
ration file (see dracut.conf(5)), or use the -0 or --omit option on the
command line: # dracut -o “multipath lvm” no-multipath-lvm.img

Like when we omitted the dracut module, we can add any module that is available
in /usr/lib/dracut/modules.d. We can use the --add switch of dracut or can use add_
dracutmodules+= in dracut.conf. For example, you can see that we do not have NFS
modules/files/binaries added in our new. img initramfs because my test system is not
booting from NFS and not using any NFS mount point in it. Obviously, dracut will skip
the nfs module from /usr/1lib/dracut/modules.d. So, let’s add it in our initramfs.

#lsinitrd | grep -i nfs
<no_output>

cat /etc/dracut.conf
PUT YOUR CONFIG IN separate files
in /etc/dracut.conf.d named "<name>.conf"
SEE man dracut.conf(5) for options

256

CHAPTER6 DRACUT

#omit_dracutmodules+=plymouth
add_dracutmodules+=nfs

dracut /root/new.img --force
1lsinitrd /root/new.img | grep -i nfs | wc -1
33

We can also achieve this by using the dracut command with the --add switch.

1sinitrd /root/new.img | grep -i nfs
dracut --add nfs /root/new.img --force
1sinitxd /root/new.img | grep -i nfs

Arguments: --add 'nfs' --force

nfs

-Iw-r--r-- 1 root root 15 Jul 25 2019 etc/modprobe.d/nfs.conf
drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib64/libnfsidmap
-TWXr-Xr-x 1 root root 50416 Jul 25 2019 usr/lib64/
libnfsidmap/nsswitch.so

-TWXY-Xr-x 1 root root 54584 Jul 25 2019 usr/lib64/
libnfsidmap.so.1.0.0

lrwxrwxrwx 1 root root 20 Jul 25 2019 usr/1ib64/
libnfsidmap.so.1 -> libnfsidmap.so0.1.0.0

-TwXr-xr-x 1 root root 42744 Jul 25 2019 usr/lib64/
libnfsidmap/sss.so

-TWXY-Xr-x 1 root root 46088 Jul 25 2019 usr/lib64/
libnfsidmap/static.so

-TWXr-Xr-x 1 root root 62600 Jul 25 2019 usr/lib64/
libnfsidmap/umich_ldap.so

-IWXY-Xr-x 1 root root 849 Oct 8 2018 usr/lib/dracut/hooks/
cleanup/99-nfsroot-cleanup.sh

-TWXr-Xr-x 1 root root 3337 Oct 8 2018 usr/lib/dracut/hooks/
cmdline/90-parse-nfsroot.sh

-TWXr-Xr-x 1 root root 874 Oct 8 2018 usr/lib/dracut/hooks/
pre-udev/99-nfs-start-rpc.sh

drwxr-xr-x 5 root root 0 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs

257

CHAPTER6 DRACUT

0 Jul 25 2019 usr/lib/

16488 Jul 25 2019 usr/lib/modules/

0 Jul 25 2019 usr/lib/

2584 Jul 25 2019 usr/lib/

3160 Jul 25 2019 usr/lib/

0 Jul 25 2019 usr/lib/

11220 Jul 25 2019 usr/lib/modules/

0 Jul 25 2019 usr/lib/

20872 Jul 25 2019 usr/lib/

109684 Jul 25 2019 usr/lib/

2019 usr/1ib/

ko.xz

2019 usr/1ib/

ko.xz

2018 usr/lib/nfs-1ib.sh
2019 usr/sbin/mount.nfs
2019 usr/sbin/mount.nfs4

2018 usr/sbin/nfsroot

2019 var/lib/nfs

2019 var/lib/nfs/rpc_pipefs
2019 var/lib/nfs/statd

drwxr-xr-x 2 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/blocklayout
-Iw-r--r-- 1 root root
5.3.7-301.fc31.x86_64/kernel/fs/nfs/blocklayout/blocklayoutdriver.ko.xz
drwxr-xr-x 2 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common

-rw-r--r-- 1 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common/grace.ko.xz
-Iw-r--r-- 1 root root
modules/5.3.7-301.1c31.x86_64/kernel/fs/nfs_common/nfs acl.ko.xz
drwxr-xr-x 2 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/filelayout
-Irw-r--r-- 1 root root
5.3.7-301.fc31.x86_64/kernel/fs/nfs/filelayout/nfs_layout nfsv41l files.ko.xz
drwxr-xr-x 2 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/flexfilelayout
-rw-r--r-- 1 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/flexfilelayout/nfs_layout_
flexfiles.ko.xz

-rw-r--r-- 1 root root
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfs.ko.xz

-Iw-r--r-- 1 root root 18028 Jul 25
modules/5.3.7-301.Tc31.x86_64/kernel/fs/nfs/nfsv3.

-Tw-r--r-- 1 root root 182756 Jul 25
modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfsv4.

-TWXr-xr-x 1 root root 4648 Oct 8

-IwSr-xr-x 1 root root 187680 Jul 25

lrwxrwxrwx 1 root root 9 Jul 25

-> mount.nfs

-IWXr-xr-x 1 root root 719 Oct 8

drwxr-xr-x 4 root root 0 Jul 25

drwxr-xr-x 2 root root 0 Jul 25

drwxr-xr-x 3 root root 0 Jul 25

drwxr-xr-x 2 root root 0 Jul 25

258

2019 var/lib/nfs/statd/sm

CHAPTER6 DRACUT

Like we added the extra nfs dracut module in our initramfs, the same way we can
have only the nfs module in our initramfs with the help of adding dracutmodules+=in
dracut.conf. This means the resultant initramfs will have only the nfs module in it. The
rest of the modules from /usr/1ib/dracut/modules.d/ will be discarded.

cat /etc/dracut.conf
#omit_dracutmodules+=plymouth
#add_dracutmodules+=nfs
dracutmodules+=nfs

dracut /root/new.img —force
1sinitxd /root/new.img

Image: /root/new.img: 20M

drwxr-xr-x 3 root root 0 Jul 25 2019 .

-Tw-r-r-- 1 root root 2 Jul 25 2019 early cpio

drwxr-xr-x 3 root root 0 Jul 25 2019 kernel

drwxr-xr-x 3 root root 0 Jul 25 2019 kernel/x86

drwxr-xr-x 2 root root 0 Jul 25 2019 kernel/x86/microcode
-TW-r-r-- 1 root root 100352 Jul 25 2019 kernel/x86/microcode/
GenuinelIntel.bin

Version:

Arguments: --force

dracut modules:
nss-softokn
network-manager
network
kernel-network-modules
nfs

259

CHAPTER6 DRACUT

Asyou can see, only the nfs module has been added along with its dependencies like the
network dracut module. Also, notice the size difference between both versions of initramfs.

1s -1h initramfs-5.3.16-300.fc31.x86_64.img
-YW------- . 1 root root 28M Dec 23 06:37 initramfs-5.3.16-300.fc31.
x86_64.1img

1s -lh /root/new.img
-IW------- . 1 root root 20M Dec 24 11:05 /root/new.img

The same can be achieved by using the -m or --modules switch of dracut.
dracut -m nfs /root/new.img --force

If you want to add only the hardware device module, then please note that hardware
device module means the *. ko files provided by the kernel-modules package at /1ib/
modules/<kernel-version>/drivers/<module-name>. Then the - -add switch of dracut
or add_dracutmodules+= will not help because these two switches add the dracut
modules and not the kernel module (. ko) file. So, to add the kernel module, we need to
use either a --add-drivers switch of dracut or drivers+=or add_drivers+=indracut.
conf. Here’s an example:

lsinitrd /root/new.img | grep -i ath3k

The Bluetooth-related module named ath3k is not present in our initramfs, but it is
one of the modules provided by the kernel.

#1s -1h /lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/bluetooth/ath3k.
ko.xz

Let’s add it, as shown here:
dracut --add-drivers ath3k /root/new.img --force
Now it has been added, as shown here:

1sinitrd /root/new.img | grep -i ath3k

Arguments: --add-drivers 'ath3k' --force

-YW-r--1r-- 1 root root 246804 Jul 25 03:54 usr/lib/firmware/ath3k-1.fw
-YW-r--r-- 1 root root 5652 Jul 25 03:54 usr/lib/modules/5.3.7-301.fc31.
x86_64/kernel/drivers/bluetooth/ath3k.ko.xz

Asyou can see, the ath3k.ko module has been added in initramfs.

260

CHAPTER6 DRACUT

dracut Module or Kernel Module?

Let’s examine when to add a dracut module and when to add a kernel module. Here’s
a scenario: your host root filesystem is on a normal SCSI device. So, obviously, your
initramfs has neither amultipath.ko kernel module nor amultipath.conf-like
configuration file for it.

1) All of sudden you decide to shift your root filesystem from the
normal local disk to a SAN (I would never recommend such
change on a production system), and the SAN is connected
through a multipath device.

2) To get the entire environment of the multipath device, you need
to add the multipath dracut module here so that the entire

environment of multipath will be pulled into initramfs.

3) After a few days, you add a new NIC card on the same system, and
the NIC card vendor has provided drivers for it. A driver is nothing
but a . ko file (kernel object). To add this module in your initramfs,
you have to choose to add the kernel module option. This will
add the driver of only the NIC card, not the entire environment.

But what if you want to add some specific file to the initramfs, which is neither
a kernel module nor a dracut module? dracut provides the install items+= and
--include variables of dracut. conf through which we can add specific files. The files
could be anything from a normal text to a binary file, etc.

#lsinitxd /root/new.img | grep -i date
<no_output>

The date binary is not by default present in initramfs. But to add a binary, we can use
an install itsems+ switch.

cat /etc/dracut.conf
PUT YOUR CONFIG IN separate files
in /etc/dracut.conf.d named "<name>.conf"
SEE man dracut.conf(5) for options

261

CHAPTER6 DRACUT

#omit_dracutmodules+=plymouth
#add_dracutmodules+=nfs
#dracutmodules+=nfs

install items+=date

dracut /root/new.img --force

1sinitrd /root/new.img | grep -i date
-TWXr-xr-x 1 root root 122456 Jul 25 02:36 usr/bin/date

Asyou can see, the date binary has been added, but the most important thing is it
does not only add the binary; rather, it also adds the library that is necessary to run the
date command. The same can be achieved with the --install switch of the dracut
command. But this has a limitation; it cannot add the user-made custom binaries. To do
that, we need to use the --include switch of dracut. With --include, you can include
the normal files, directories, or even a binary in initramfs. In the case of the binary, if
your binary needs a supporting library, then you have to specify that library name with
its absolute path.

“Can’t Boot” Issue 4 (initramfs)

Issue: A Linux production system has been rebooted after four months for regular
maintenance, and it has stopped booting. It keeps throwing this error message on the
screen:

<snip>

dracut-initqueue[444]: warning: dracut-initqueue timeout
scripts

starting timeout

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout
scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout
scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout
scripts

starting timeout

</snip>

262

CHAPTER6 DRACUT

Resolution: Here are the steps to resolve the issue:

1. The error message starts by saying it is not able to reach the swap
device, and then the process times out.

[TIME] Timed out waiting for device /dev/mapper/fedora localhost--live-swap

This is a crucial piece of information since this tells you that
something is wrong with this system’s filesystems.

2. The swap device is based on an HDD, and the swap filesystem
has been created on it. Now the swap device itself is missing.
So, either the underlying disk itself is not accessible or the swap
filesystem is corrupted. With this understanding, we can now
concentrate on the storage side only. The isolation of the issue is
important since the “can’t boot” issue has thousands of situations
that could cause the system to stop booting.

3. Either we will boot with rescue mode or we can use a live image of
the same distribution and version. This is a Fedora 31 system, and
as shown in Figure 6-1, I will use the rescue option from GRUB.

Fedora (5.3.7-301.fc31.x86_64) 31 (Thirty One)

Fedora (O-rescue-Z058a9f13f9%e489dbaZ29c4?7aB8ae2493) 31 (Thirty One)

Use the T and 1 keys to change the selection.

Press e’ to edit the selected item, or "¢’ for a command prompt.

Figure 6-1. The GRUB splash screen

263

CHAPTER6 DRACUT

4. Once we boot into rescue mode, we will mount the user’s root
filesystem and chroot into it. Now why is rescue mode able to boot
when the normal kernel is not able to boot on the same system? This
is a valid question, and the answer will be covered in Chapter 10.

5. Since we are able to mount the root filesystem in a rescue kernel but
not able to mount the root filesystem with the normal kernel, that
means something is wrong with the initramfs image. Maybe some
module that is necessary to handle the HDD is missing. Let’s verify
this theory.

6. This is a virtualized system, which means it has a virtual disk. This
can be seen from the /dev directory.

#ls /dev/vd*
vda vdal vda2

7. To handle the virtualized disks, we need to have a virtio blk
module present in initramfs.

#lsinitxd /boot/new.img | grep -i virt

Arguments: --omit-drivers virtio blk

-IW-1--r-- 1 root root 14132 Jul 25 03:54
usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/char/
virtio_console.ko.xz

-Iw-r--r-- 1 root root 25028 Jul 25 03:54
usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/net/
virtio_net.ko.xz

-Tw-r--r-- 1 root root 7780 Jul 25 03:54
usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/
virtio scsi.ko.xz

-IW-r--r-- 1 root root 499 Feb 26 2018 usr/lib/sysctl.d/60-

libvirtd.conf

Asyou can see, the virtio blk module is missing.

8. Sincevirtio_blk is missing, obviously the kernel cannot detect
and access the vda disk, which is where the user has the root
filesystem as well as the swap filesystem.

264

10.

11.

CHAPTER6 DRACUT

To fix this issue, we need to add the missing virtio blk module
in initramfs.

#dracut --add-drivers=virtio_blk /boot/new.img --force

1sinitrd | grep -i virtio_blk
-IW-r--r-- 1 root root 8356 Jul 25 03:54 usr/
lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/block/virtio_
blk.ko.xz

We will boot by using our new. img initramfs. How to boot the
system manually with the help of the GRUB command prompt
was already discussed in “can’t boot” issue 1.

After adding the missing virtio blk module, the “can’t boot”
issue has been fixed. You can see the successfully booted system
in Figure 6-2.

Dec24 14:50 O~ SO~

Figure 6-2. The login screen of Fedora

265

CHAPTER6 DRACUT

“Can’t Boot” Issue 5 (initramfs)

Issue: Figure 6-3 shows what is visible on-screen.

error: ../../grub-core/fs/fshelp.c:257:file
“/boot/initranfs-5.3.16-300.fc31.ing” not found.

Press any key to continue..._

Figure 6-3. The console messages

Resolution: Here are the steps to resolve the issue:
1) Now this is easy to understand and to resolve.
2) The error message is self-explanatory; the initramfs file itself is
missing.

3) Either the initramfs itself is missing or it’s just that the /boot/
loader/entries/* file has a wrong entry in it. In this case,
initramfs itself is missing.

4) So, we need to boot in rescue mode and mount the user’s root
filesystem.

5) Either reinstall the kernel’s rpm package so that the postscripts
part of the package will regenerate the missing initramfs and will
also update the BLS entries accordingly.

6) Or you can regenerate initramfs with the help of the dracut
command.

Kernel Command-Line Options

As we have already seen, GRUB accepts kernel command-line parameters and passes
them to the kernel. The kernel has hundreds of command-line parameters, and it is
almost impossible for anyone to cover each and every parameter. So, we will focus only
on those parameters that are necessary while booting the operating system. If you are

266

CHAPTER6 DRACUT

interested in all of the kernel command-line parameters, then visit the following page:
https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html.

The list of parameters on that page are of the series 4 of kernels, but most of the
parameter explanations are applicable to series 5 kernels as well. The best option is to
always look at the kernel documentation at /usr/share/doc/.

root

e Thisis one of the main kernel’s command-line parameters.
The ultimate aim of booting is to mount the user’s root filesystem.
The root kernel command-line parameter provides the name of the
user’s root filesystem, which the kernel is supposed to mount.

e On behalf of the kernel, systemd, which ran from initramfs, mounts
the user’s root filesystem.

o Ifthe user’s root filesystem is not available or if the kernel is not able
to mount it, then it will be considered a panic situation for the kernel.

init
e The kernel runs systemd from initramfs, and that becomes the first
process. It’s also called PID-1 and is the parent of every process.

e Butifyou are a developer and you want to run your own binary
instead of systemd, then you can use the init kernel command-line
parameter. Here’s an example:

init=/sbin/yogesh

Asyou can see in Figure 6-4, this will run the yogesh binary instead of systemd.

load_video

set gfx_payload=keep

insmod gzio

linux (Sroot) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-B8f99%eacdf32e ro init=/sbin/yogesh_

initrd (Sroot) /boot/initramfs-5.3.16-300.fc31.x86_64. ing

Figure 6-4. The kernel command-line parameters

267

https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html

CHAPTER6 DRACUT

But yogesh is not available on the actual root filesystem; hence, as shown in
Figure 6-5, it will fail to boot.

Starting File System Check on sdeuwsdisk by-uuid-6588bEf 1-7f37-4162-968c-8f I9eacdi32e . . .
[0K 1 Started File System Check on sdevsdisk/by-uunid-6588b8I 1-7737-4162-9%68c -8B 99eacdf 3Ze .
[4.918348) audit: type=1138 audit(1577216447.844:18): pid=1 wid=8 anid=4294967295 ses=4294967295 sub j=kernel meg="unit=syste
md-fsck-root comm="systemd" exe="susr/libssystemd/systemd” hostname=7 addr=7 terminal=7 res=success’
Mounting ~ssysroot...
[4.929126) EXT4-fs (sda5): mounted filesystem with ordered data mode. Opts: Coull)
OK Mounted ~sysroot.
0K 1 Reached target Initrd Root File System.
Starting Reload Configuration from the Real Root. ..
Started Reload Configuration from the Real Root.
Reached target Initrd File Systems.
Reached target Imitrd Default Target.
Starting dracut pre-pivot and cleanup hook. ..
Started dracut pre-pivot and cleanup hook.
Starting Cleaning Up and Shutting Down Daemons. ..
Stopped target Timers,
Stopped dracut pre-pivot and cleanup hook.
Stopped target Initrd Default Target.
Stopped target Basic System.
Stopped target Initrd Root Device.
Stopped target Paths.
Stopped target Remote File Systems.
Stopped targel Remote File Systems (Pre).
Stopped target Slices.
Stopped target Sockets.
Stopped target System Initialization.
Stopped target Swap.
Stopped dracut initgueue hook.
Starting Plymouth switch root service...
Stopped Apply Kernel Uariables.
Stopped Load Kernel Modules.
Stopped Create Uolatile Files and Directories.
Stopped target Local File Systems.
Stopped udev Coldplug all Devices.
Stopping udev Kernel Device Mamager. ..
Starting Setup Virtual Console...
Started Cleaning Up and Shutting Down Daemons.

0K
0K
OK

[OK

113
[1] 4
1] 4
14
OK
1] 4
1] 4
113
OK
0K
13
0K
0K

OK
0K
0K
OK
113

[Ok

Generating "/runsinitramfs-rdsosreport.txt”

Entering emergency mode. Exit the shell to continue.

Type " journalctl™ to view system logs.

You might want to save “srunsinitramfs/rdsosreport.txt™ to a USB stick or sboot
after mounting them and attach it to a bug report.

Figure 6-5. The emergency shell
e The system has dropped us in the emergency shell. Refer to Chapter 8
for a detailed discussion about debugging shells.

o Thereason for dropping us in the emergency shell and the reason
for the “can’t boot” issue is mentioned in /run/initramfs/
rdsosreport.txt. Figure 6-6 shows a snippet of the rdsosreport.
txt file.

268

CHAPTER6 DRACUT

[5.639115] localhost.localdomain systemd(1]1: Reached target Switch Root.

[5.639788]1 localhost.localdomain systemd(1]1: Starting Switch Root...

[5.653897]1 localhost. localdomain systemct1[(7261: Failed to switch root: Could not resolue init executable ssbinryogesh: No s
uch file or directory

L 5.b54863] localhost. localdomain systemdl1l: initrd-switch-root.SErvice: MaIn process exited, codesexited, Status=L FAILUKE
[5.655847] localhost.localdomain systemd(1]: initrd-switch-root.service: Failed with result 'exit-code'.

[5.655396]1 localhost.localdomain systemd[1]: Failed to start Switch Root.

[5.655589]1 localhost. localdomain systemd[1]: Startup finished in 3.468s (kernel) + B (inited) + 2.195s (userspace) = 5.655s.
[5.655664] localhost.localdomain systemd(1]: initrd-switch-root.service: Triggering OnFailure= dependencies.

[5.655952] localhost. localdomain auditf1]: SERVICE_START pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg="unit=in
itrd-switch-root comm="systemd" exe="+usr/lib-systemd-systemd” hostname=7 addr=7 terminal=7 res=failed’

[5.656754] localhost.localdomain systemd[1]1: Starting Setup UVirtual Console...

[5.739335] localhost.localdomain systemd[1]: systemd-uconsole-setup.service: Succeeded.

[5.739735] localhost. localdomain systemd[1]: Started Setup Virtual Console.

[5.748882]1 localhost.localdomain auditf1]: SERVICE_START pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg="unit=sy
stemd -vconsole-setup comm="systemd” exe="susr/lib/systemd systemd” hostname=7 addr=7 terminal=7 res=success'

[5.748886] localhost.localdomain audit(1]: SERVICE_STOF pid=1 uid=8# aunid=4294967295 ses=4Z294967295 subj=kernel msg='unit=sys
temd-vconsole-setup comm="systemd" exe="susrslib-systemd systemd” hostname=7 addr=7 terminal=7 res=success’'

[5.741638]1 localhost.localdomain systemd[11: Started Emergency Shell.

[5.711‘333‘]' lo:olhgsl.loﬁaldmin auditl1]: SEHJIEE_STRRT pid=1 uid=8 auid=4294967295 ses=1?‘3‘l‘3672‘35 subj=kernel msg='unit=em

Figure 6-6. The rdsosreport.txt file

o The interesting part to note here is that our /sbin/yogesh binary will
be called at the time of the chroot’ing to the actual root filesystem.
We have not discussed chroot yet; you can find a detailed discussion
in Chapter 10.

ro

o Thisis a supporting parameter to the root kernel command-line
parameter. ro stands for “read-only” file system. The user’s root
filesystem will be mounted inside initramfs, and it will be mounted
in read-only mode if the ro kernel command-line parameter has
been passed. The ro is the default choice of every major Linunx
distribution.

rhgb and quite

e Almost every Linux distribution shows the animation at the time
of booting to make the booting procedure more exciting, but
the important console messages that are required to analyze the
booting sequence will be hidden behind the animation. To stop
the animation and to see the verbose console messages on-screen,

remove the rhgb and quite parameters.

o When rhgb and quite are passed, as you can see in Figure 6-7, the
plymouth animation will be shown.

269

CHAPTER6 DRACUT

¥

fedora

Figure 6-7. The plymouth screen

e When rhgb and quite are removed, as you can see in Figure 6-8, the
console messages will be exposed to the user.

Mounted Huge Pages File System.

Mounted POSIX Message Queue File System.

Mounted Kernel Debug File System.

Mounted Temporary Directory (stmp).

Started Create list of static device nodes for the current kernel.
Started Preprocess NFS configuration convertion.

Started Load Kernel Modules.

Started Remount Root and Kernel File Systems.

Mounting FUSE Conmtrol File System...

Starting Load-Save Random Seed...

Starting Apply Kernel Variables. ..

Starting Create Static Device Nodes in sdewv...

Mounted FUSE Control File System.

Started Apply Kernel Variables.

Started LoadrsSave Random Seed.

Started Create Static Device Nodes in sdev.

Starting udev Kernel Device Manager...

Started Setup Virtual Console.

Started udev Coldplug all Devices.

Starting udev Wait for Complete Device Initializationm...
Started Journal Service.

Starting Flush Journal to Persistent Storage...

Started Flush Journal to Persistent Storage.

Started udev Kermel Device Manager.

Listening on Load-sSave RF Kill Switch Status ~sdev/rfkill Watch.
Started Monitoring of LUMZ mirrors, snapshots etc. using dmeventd or progress polling.
Starting Load-Save RF Kill Switch Status...

Started Load-sSave RF Kill Switch Status.

e B B B B B M|

—r—— -

——

- —_

—

Figure 6-8. The console messages

e You can also press Escape at the animation (plymouth) screen and
can see the console messages, but for that, you have to be physically
present in front of the production system, which is unlikely.

270

CHAPTER6 DRACUT

selinux

e Sometimes to resolve the “can’t boot” issues, you want to completely
get rid of SELinux. You can pass selinux=0 kernel command line
parameter at that time. This will disable SELinux altogether.

These were some of the kernel command-line parameters that directly affect the
booting sequence. Like with the kernel command-line parameters, GRUB can accept
dracut command-line parameters too, which will be accepted by initramfs or more
precisely by systemd of initramfs.

dracut Command-Line Options

In layperson’s terms, you can consider command-line parameters starting with rd. to be
dracut command-line parameters that will be understood by initramfs.

rd.auto (rd.auto=1)

e According to the man page, this enables auto assembly of special
devices such as cryptoLUKS, dmraid, mdraid, or lvm. The default
is off.

o Consider a scenario like earlier where your system did not have
mdraid (s/w raid) configured, but now you have recently
implemented it, and you want that device to be activated at the
time of the boot. In other words, the storage state of the machine
is changed at the time of the initramfs creation. Now, without
regenerating the new initramfs, you want the new configuration
(LVM or LUKS) to be activated at the time of the boot.

rd.hostonly=0

e According to the man page, this removes all compiled in the
configuration of the host system that the initramfs image was built
on. This helps booting, if any disk layout has changed, especially in
combination with rd. auto or other parameters specifying the layout.

271

CHAPTER6 DRACUT

Say that your graphics card provider (such as Nvidia) has given you
special drivers/modules that are present in your initramfs, but the
modules have started creating a problem. Since the graphics driver
will be loaded at an early stage of booting, you want to avoid the

use of that module; instead, you want to use a generic driver (vesa).
In that scenario, you can use rd.hostonly=0. With this parameter,
initramfs will load the generic driver and will avoid the host-specific
Nvidia driver.

rd.fstab =0

According to the man page, use this parameter if you do not want to
honor special mount options for the root filesystem found in /etc/
fstab of the real root.

rd.skipfsck

272

According to the man page, this skips fsck for rootfs and /usr. If
you’'re mounting /usr to be read-only and the init system performs
fsck before the remount, you might want to use this option to avoid
duplication.

Most Linux administrators have a misconception about fsck and
how it is combined with the ro kernel command-line parameter.
Most of us think that the kernel first mounts the actual root filesystem
in ro mode and then performs an fsck on it so that the fsck
operation will not corrupt the root filesystem data. Once the fsck is
successful, it will remount the root filesystem in read-write mode by
referring to /etc/fstab.

But this understanding has a basic flaw, which is that fsck cannot be
performed on a mounted filesystem irrespective of ro or rw mode.

CHAPTER6 DRACUT

The following Fedora system’s user root filesystem is on the sda5 device, and it
is currently mounted in read-only mode, so fsck would fail since the filesystem is
mounted:

fsck.extq /dev/sdas
e2fsck 1.45.3 (14-Jul-2019)
/dev/sda5 is mounted.
e2fsck: Cannot continue, aborting.

Hence, it is proved that the purpose of the user’s root filesystem getting mounted in
ro mode is not to perform a fsck. Then what is the reason to pass the ro command-line
parameter to the kernel? Let’s discuss it through the booting sequence.

o The kernel extracts initramfs and passes command-line parameters
like root and ro to systemd, which will start from initramfs.

o systemd will find the actual root filesystem.

e Once the root filesystem (device) is identified, systemd will perform
the fsck oniit.

o Ifthe fsckis successful, then systemd will mount the root filesystem
as ro (as per the passed kernel command-line parameter) inside
initramfs itself. It will be mounted as read-only in the /sysroot

directory of initramfs.

e Asyou can see in Figure 6-9, the kernel has extracted initramfs
and started systemd from it (I have removed the rhgb and quite
parameters).

273

CHAPTER6 DRACUT

0K
OK
0K

i‘.DK

$=4294967295 subj=kernel msg='unit=systemd-hibernate-resume@dev-mapper-fedora_localhost\x2d\x2
dlive\x2dswap comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=s

ucces

®m] Started Resume from hibernation using device /dev/mapper/fedora_localhost--live-swap.
] Reached target Local File Systems (Pre).

0K
[OK

0K
0K
0K
0K
0K
0K

——————

[OK

[OK
I OK

3.438934] [drm] Initialized gx1 0.1.0 20120117 for 0000:00:01.0 on minor ©
3.440303] fbcon: gxldrmfb (fb®) is primary device

3.442409] Console: switching to colour frame buffer device 128x48
3.449070] gx1 0000:00:01.0: fb®: gxldrmfb frame buffer device

]
]
]

s’

]

]
]
]
]
]
1

3.799893] pcieport 0000:00:02.6: pciehp: Failed to check link status

]

3.811283] EXT4-fs (dm-0): mounted filesystem with ordered data mode. Opts: (null)

]
]

Found device /dev/mapper/fedora_localhost--live-root.

Reached target Initrd Root Device.

Found device /dev/mapper/fedora_localhost--live-swap.

Starting Resume from hibernation using device /dev/mapper/fedora_localhost--live-swap

3.751667] audit: type=1130 audit(1577266230.433:10): pid=1 uid=0 auid=4294967295 se

Reached target Local File Systems.

Starting Create Volatile Files and Directories...

Started Create Volatile Files and Directories.

Reached target System Initialization.

Reached target Basic System.

Started dracut initqueue hook.

Reached target Remote File Systems (Pre).

Reached taraet Remote File Svstems.

Starting File System Check on /dev/mapper/fedora_localhost--live-root...

Started File System Check on /dev/mapper/fedora_localhost--live-root.
Mounting /sysroot...

Mounted /sysroot.
Reached target Initrd Root File System.

Figure 6-9. The console messages

Systemd then scanned the connected storage devices for the root filesystem and

found one. Before mounting the user’s root filesystem, it first performed the fsck on it

and later mounted it inside initramfs on the directory sysroot. The user’s root filesystem

will be mounted in read-only mode.

274

The reason for mounting it in read-only mode is simple to
understand. Suppose the system fails to boot, but it has managed to
mount the user’s root filesystem on sysroot and has provided us with
a shell to fix the “can’t boot” issue. Users might accidentally corrupt
or even delete the user’s root filesystem that is mounted under
sysroot. So, to prevent the user’s root filesystem from such accidents,
itis preferred to mount it in read-only mode.

#switch_root:/# 1s -1d /sysroot/
dr-xr-xr-x 19 root 0 4096 Sep 10 2017 /sysroot/

How to use the debugging shells and how initramfs provides them
will be discussed in Chapter 8.

CHAPTER6 DRACUT

Figure 6-10 shows systemd continuing its booting sequence and
leaving the initramfs environment.

OK
0K
0K
0K

+SELINUX +IMA

S
[
[
[

F N N N N N N N N

Stopped Create list of static device nodes for the current kernel.
Started Cleanup udevd DB.

Started Setup Virtual Console.

Reached target Switch Root.

Starting Switch Root...

.113676] systemd-journald[317]: Received SIGTERM from PID 1 (systemd).

.131928] printk: systemd: 20 output lines suppressed due to ratelimiting

.345867] IPv6: ADDRCONF(NETDEV_CHANGE): enpls®: link becomes ready

.553209] SELinux: policy capability network_peer controls=1l

.554336] SELinux: policy capability open_perms=1

.555321] SELinux: policy capability extended socket class=1

.556442] SELinux: policy capability always check network=0

.557533] SELinux: policy capability cgroup_seclabel=1l

.558563] SELinux: policy capability nnp_nosuid_transition=1

.577426] systemd[1]: Successfully loaded SELinux policy in 419.553ms.

.619094] systemd[1]: Relabelled /dev, /dev/shm, /run, /sys/fs/cgroup in 23.614ms.
.623723] systemd[l]: systemd v243-4.gitef67743.fc31 running in system mode. (+PAM +AUDIT

4.628180] systemd[1]: Detected virtualization kvm.
4.629988] systemd[1l]: Detected architecture x86-64.
4.633597] systemd[1]: Set hostname to <localhost.localdomain=.

Welcome to Fedora 31 (Workstation Edition)!

-APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4 +
ECCOMP +BLKID +ELFUTILS +KMOD +IDN2 -IDN +PCRE2 default-hierarchy=unified)

4.740509] systemd[1]: fusr/lib/systemd/system/sssd.service:12: PIDFile= references a path
below legacy directory /var/run/, updating /var/run/sssd.pid - /run/sssd.pid; please update t
he unit file accordingly.

Figure 6-10. The console messages

As you can see Figure 6-10, the switch root leaves the current
initramfs environment and changes the root from initramfs’
temporary root filesystem to /sysroot, which has the user’s root
filesystem mounted. (The switch root process will be discussed in
Chapter 9.)

Right after entering into the user’s root filesystem, systemd of the
user’s root filesystem reads /etc/fstab and takes the appropriate
action on mount points. For example, on this Fedora system, there is
the user’s root filesystem entry as well as the /boot entry (boot is on
separate partition):

#cat /etc/fstab

/dev/mapper/fedora_localhost--live-root / ext4 defaults
UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4 defaults
/dev/mapper/fedora_localhost--live-swap none swap defaults

11
12
00

275

CHAPTER6 DRACUT

e Asyou can see in Figure 6-11, at this stage, systemd will perform fsck
only on the boot device before mounting it. Please note that it is not
performing fsck on the user’s root filesystem since it has already
been performed inside an initramfs environment. Also the user’s
root filesystem is currently mounted, and we all know that it does not
make sense to do an fsck on the swap device.

[OK] Started Activation of DM RAID sets.
[5.939178] audit: type=1131 audit(1577266232.607:63): pid=1 uid=0 auid=4294967295 ses=4294
967295 subj=system u:system_r:init t:s® msg="unit=dmraid-activation comm="systemd" exe="/usr/1
ib/systemd/systemd" hostname=? addr=7 terminal=? res=success’
[OK] Reached target Local Encrypted Volumes.
[OK 1 Reached taraget Local File Systems (Pre).
Starting File System Check on /dev/disk/by-uuid/eea3d947-0618-4d8c-b883-87daf15b2679.
[0K] Started File System Check on /dev/disk/by-uuid/eea3d947-0618-4d8c-b0883-87dafl5b2679.
[6.036310] audit: type=1130 audit(1577266232.718:64): pid=1 uid=0 auid=4294967295 ses=4294
967295 subj=system_u:system_r:init_t:s@ msg='unit=systemd-fsck@dev-disk-by\x2duuid-eea3d947\x2
d0618\x2d4d8c\x2db083\x2d87daf1l5b2679 comm="systemd" exe="/usr/lib/systemd/systemd" hostname=?
addr=? terminal=? res=success’
[6.066303] EXT4-fs (vdal): mounted filesystem with ordered data mode. Opts: (null)
Mounting /boot...
[OK] Mounted /boot.
| OK] Reached target Local File Systems.

Figure 6-11. The fsck console messages
o Ifthere had been any other extra mount points like /usr, it would
have performed fsck on that device too.

o fsck depends on the fifth parameter of /etc/fstab. Ifitis 1, then
fsck will be performed at the time of boot. This fstab setting is not
applicable to the user’s root filesystem since fsck will be compulsory
performed on user’s root filesystem inside initramfs, which is before
reading the /etc/fstab file.

o rd.skipfsckis applicable only to root and the user’s root filesystem.
It is not applicable to any other filesystem like /boot.

rd.driver.blacklist, rd.driver.pre, and rd.driver.post

This is from the man page of rd.driver.blacklist:

rd.driver.blacklist=<drivernames[,<drivexrnamey,...]

do not load kernel module <drivername>. This parameter can be specified
multiple times.

276

CHAPTER6 DRACUT

rd.driver.blacklist is one of the most important dracut command-line
parameters. As the name suggests, it will blacklist the specified modules. Let’s try to
blacklist the virtio-related drivers that are quite important for virtual guest systems.

lsmod | grep -i virt

virtio_balloon 24576 0
virtio net 57344 0
virtio console 40960 2
virtio_blk 20480 3
net failover 20480 1 virtio_net

It is available in initramfs as well.

lsinitrd | grep -i virtio

-Tw-r--I-- 1 root root 8356 Jul 25 03:54 usr/lib/modules/5.3.7-301.fc31.
x86_64/kernel/drivers/block/virtio blk.ko.xz

-Tw-r--r-- 1 root root 14132 Jul 25 03:54 usr/lib/
modules/5.3.7-301.fc31.x86_64/kernel/drivers/char/virtio_console.ko.xz
-Tw-r--r-- 1 root root 25028 Jul 25 03:54 usr/lib/
modules/5.3.7-301.fc31.x86_64/kernel/drivers/net/virtio net.ko.xz
-Iw-r--r-- 1 root root 7780 Jul 25 03:54 usr/lib/
modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/virtio_scsi.ko.xz

Remember, to blacklist the module, as you can see in Figure 6-12, you need to
make sure that every other dependent module also has to be blacklisted; otherwise, the
dependent modules would pull the blacklisted module. For example, in this case, the
virtio balloon, virtio net,virtio console, virtio blk, and virtio pci modules
are dependent on each other. That means if we blacklist only virtio_blk, the other
dependent modules will still load the virtio blk module.

277

CHAPTER6 DRACUT

load_video

set gfx_payload=keep

insnod gzio

linux ($root) /umlinuz-5.3.7-301.fc31.x86_64 root=/dev/mapper/fedora_localhost-\
-live-root ro resume=/dev/mapper/fedora_localhost--live-swap rd.lun.lv=fedora_\
localhost-live/root rd.lum.lv=fedora_localhost-live/swap rd.driver.blacklist=u\
irtio_balloon,virtio_net,virtio_console,virtio_blk.net_failover_

initrd (Sroot)/initramfs-5.3.7-301.fc31.x86_64.ing

Figure 6-12. The kernel command-line parameter

The virtio-related drivers are important. This is the same driver through which
virtual disks and networks of hypervisors get exposed to the guest operating system.
Since we blacklisted them, the guest OS will stop booting. You can see the “can’t boot”
console messages in Figure 6-13.

[2.2781511 [drm] gxl: 64M of Surface memory size
[£.294789]1 [drm] zlot B (main): base Bxc4680888, size B:B3ffeBBB, gpu_offset
8x280686688068
[£.2918861 [drm] slot 1 (surfaces): base BxcBBBBBAB, size B:B41888888, gpu_of
fzet BxJHH0BHBEEEE
[2.2953421 [drm] Initialized qx1 B.1.8 28120117 for AABA:BA:A1.8 on minor B
[£.296838]1 fbcon: gxldrmfb (FbB) is primary device
[2.297488]1 Console: switching to colour frame buffer device 128x48
[£.384178]1 ¢x] BEB0:80:81.8: fbB: gxldrmfb Frame buffer device
[3.888212] pcieport BBB8:88:BZ.6: pciehp: Failed to check link status
[TIME 1 Timed out waiting for device sdevwmapper-sfedora_localhost--1ive-swap.
[DEFEND] Dependency failed For Resume from hibernation using device sdewmapper-fedora_localhost--live-swap.
[0OFE 1 Reached target Local File Systems (Pre).
[0K] Reached target Local File Systems.
Starting Create Uolatile Files and Directories...
[92.873428] audit: type=1138 audit(1577343768.641:6): pid=1 uid=0 auid=4294967295 ses=4291967295 subj=kernel msg="unit=system
d-tmpf iles-setup comm="systemd" exe="susr/libssystemd systemd” hostname=7 addr=7 terminal=7 res=success’

UK 1 Reached target System Initializatiom.

0K 1 Reached target Basic System.

146.178623] dracut-initqueuel449]: Warning: dracut-initqueue timeout - starting timeout scripts
146.869519] dracut-initquenel449]1: Warning: dracut-initgqueue timeout - starting timeout scripts
147.532546] dracut-initquenel4491: Warning: dracut-initgueue timeout - starting timeout scripts

Figure 6-13. The console messages
So, the blacklisting of the virtio modules is successful, but there are two issues in
this approach.

o rd.driver.blacklist will only block the modules that are loading
from initramfs.

e We need to manually provide the list of modules to rd.driver.
blacklist every time.

278

CHAPTER6 DRACUT

If the module is not in initramfs, then you cannot really block it from loading. For
example, the bluetooth module is not loaded from initramfs, but the kernel loads it after
the initramfs environment.

1lsmod | grep -i bluetooth

bluetooth 626688 37 btrtl,btintel,btbcm,bnep,btusb,rfcomm
ecdh_generic 16384 1 bluetooth
rfkill 28672 5 bluetooth

1sinitrd | grep -i bluetooth
<no_output>

To block the kernel from loading the bluetooth module, we need to tell the modprobe
command to block the module from loading. modprobe is a binary that loads or removes
modules on behalf of the kernel.

Make a new blacklist.conf file. (You can choose any name, but it has to have a
.conf suffix) and blacklist the module.

#icat /etc/modprobe.d/blacklist.conf
blacklist bluetooth

But after reboot, you will find that bluetooth is again loaded by kernel.

#lsmod | grep -i bluetooth

bluetooth 626688 37 btrtl,btintel,btbcm,bnep,btusb,rfcomm
ecdh_generic 16384 1 bluetooth
rfkill 28672 5 bluetooth

This is because the bluetooth module is a dependency of multiple other modules
such as btrtl, btintel, btbcm, bnep, btusb, rfcomm, and rfkill. Hence, modprobe has
loaded bluetooth as a dependency of other modules. In such situations, we need to
fool the modprobe command by adding the install bluetooth /bin/true linein the
blacklist.conf file, as shown here:

cat /etc/modprobe.d/blacklist.conf
install bluetooth /bin/true

279

CHAPTER6 DRACUT

After rebooting, you will find the bluetooth module has been blocked.

1smod | grep -i bluetooth
<no_output>

You can also use /bin/false instead of /bin/true.

After the explanation of rd.driver.blacklist, the rd.driver.pre and rd.driver.
post dracut command-line parameters are easier to understand, and the man pages are
self-explanatory, shown here:

rd.driver.pre=<drivernames[,<drivernamej,...]

force loading kernel module <drivername>. This parameter can be specified
multiple times.

rd.driver.post=<drivernames[,<drivernamej,...]

force loading kernel module <drivername> after all automatic loading
modules have been loaded. This parameter can be specified multiple times.

rd.debug

This comes from the man page:

set -x for the dracut shell. If systemd is active in the initramfs, all output is
logged to the systemd journal, which you can inspect with “journalctl -ab”
If systemd is not active, the logs are written to dmesg and /run/initramfs/
init.log. If “quiet” is set, it also logs to the console.

rd.debug will enable the debug logging of systemd, which will log huge messages
on the console as well as in the systemd journals. The detailed messages provided by
rd.debug will be helpful in identifying systemd-related “can’t boot” issues.

rd.memdebug= [0-4]

This comes from the man page:

Print memory usage info at various points, set the verbose level from 0 to 4.
Higher level means more debugging output:

0 - no output
1 - partial /proc/meminfo

280

CHAPTER6 DRACUT

2 - /proc/meminfo
3 - /proc/meminfo + /proc/slabinfo
4 - /proc/meminfo + /proc/slabinfo + tracekomem

e This will print all the memory subsystem-related information on-
screen, such as the meminfo and slabinfo file contents.

Ilvm, raid, and Multipath-Related dracut Command-Line
Parameters

This comes from the man pages:

rd.1lvm=0

disable LVM detection

rd.lvm.vg=<volume group name>

only activate the volume groups with the given name. rd.lvm.vg can be
specified multiple times on the kernel command line.

rd.lvm.lv=¢logical volume name>

only activate the logical volumes with the given name. rd.lvm.lv can be
specified multiple times on the kernel command line.

rd.1lvm.conf=0
remove any /etc/lvm/lvm.conf, which may exist in the initramfs

e Out of these parameters, you must have at least observed the rd.lvm.1lv
option passed by GRUB. The purpose of rd. lvm.lv is to activate the
given LVM device at an early stage of booting. By default, the major
Linux distributors activate only root and swap (if configured) LV
devices. Activating only the root filesystem at the time of the boot
speeds up the booting procedure. After switching the root from
initramfs to the actual root filesystem, systemd can activate the
remaining volume groups as per the list at /etc/fstab.

e Similarly, dracut provides multipath and RAID-related command-
line parameters, which are again self-explanatory.

281

CHAPTER6 DRACUT

MD RAID
I'd .md=0

disable MD RAID detection

rd.md.imsm=0

disable MD RAID for imsm/isw raids, use DM RAID instead

I'd ° md ° ddf:O
disable MD RAID for SNIA ddf raids, use DM RAID instead

rd.md.conf=0

ignore mdadm.conf included in initramfs
rd.md.waitclean=1

wait for any resync, recovery, or reshape activity to finish before continuing
rd.md.uuid=<md raid uuid»

only activate the raid sets with the given UUID. This parameter can be
specified multiple times.

DM RAID
rd.dm=0

disable DM RAID detection
rd.dm.uuid=<dm raid uuid>

only activate the raid sets with the given UUID. This parameter can be
specified multiple times.

MULTIPATH
rd.multipath=0

disable multipath detection

282

CHAPTER6 DRACUT

o dracut provides n number of command-line parameters for
networks, NFS, CIFS, iSCSI, FCoE, etc. It also means these are the
various options on which you can put your root filesystem, but it is
almost impossible to cover each and every dracut command-line
parameter. Also, I am not in favor of booting the system from all these
complex structures. I believe in keeping the user’s root filesystem
always on the local disk so that the booting procedure will be easy
and mainly because the simpler booting sequence is quicker to fix in
the case of a “can’t boot” situation.

rd.break and rd.shell

rd.shell will provide us with the shell at the end of the booting sequence, and with rd.break,

we can break the booting sequence. But to understand these parameters, we need to have a good
understanding of systemd. Hence, before discussing rd.break and the dracut hooks, we will discuss
systemd first in our next chapter. The following are the parameters accepted by rd.break:

Parameters Purpose
cmdline This hook collects the kernel command-line parameters.
pre-udev This hook starts before starting the udev handler.

pre-trigger In this hook, you can set udev environment variables with 'udevadm'
control --property=KEY=value or control the further execution of udev.

pre-mount This hook starts before mounting the user’s root filesystem at /sysroot.
mount The hook will be started after mounting the root filesystem at /sysroot.
pre-pivot The hook will be executed just before switching to actual root filesystem.

283

CHAPTER 7

systemd (Part)

Here is what we know about the booting sequence so far:
1) The bootloader loads the kernel and initramfs in memory.

2) The kernel will be loaded at a specific location (an architecture-
specific location), whereas initramfs will be loaded at any
available location.

3) The kernel extracts itself with the help of the header of the
vmlinuz file.

4) The kernel extracts initramfs in main memory
(init/initramfs.c) and mounts it as a temporary root filesystem
(/) in main memory.

5) The kernel launches (init/main.c) the systemd as a first process
with PID-1 from a temporary root filesystem.

6) systemd will find the user’s root filesystem and will chroot into it.

This chapter will address how systemd, which is forked from initramfs, manages to
mount the user’s root filesystem, and we will also see the detailed booting sequence of
systemd inside initramfs. But before that, we need to understand systemd as a process.

I will let systemd’s man page do the talking here:

“After the root file system is found and mounted, the initrd hands
over control to the host’s system manager (such as systemd(1))
stored in the root file system, which is then responsible for probing
all remaining hardware, mounting all necessary file systems and
spawning all configured services.”

285
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_7

https://doi.org/10.1007/978-1-4842-5890-3_7#ESM

CHAPTER 7 SYSTEMD (PART)

Structure

systemd was first introduced in Fedora 15. We all know that systemd is a replacement
for init scripts (quite literally, /sbin/init is now a symlink to /usr/1ib/systemd/
systemd), and it amazingly reduces the boot time. However, in reality, systemd is much

bigger than just a replacement for init. This is what systemd does:

1) It maintains logs with journalctl.

2) Itextensively uses cgroups version 1 and 2.

3) Itreduces boot time.

4) It manages units. service is just one type of unit that systemd
handles. The following are the units that systemd provides and

manages:
Unit Purpose
systemd.service To manage the services
systemd.socket To create and manage the sockets
systemd.device To create and use devices based on udev’s inputs
systemd.mount To mount the filesystem
systemd.automount To automount the filesystem
systemd.swap To make and manage swap devices
systemd.target Group of services instead of runlevels
systemd.path Information about a path monitored by systemd, for path-based activation
systemd.timer For time-based activation
systemd.slice Resource management such as CPU, memory, I/0 for service units

Unit files will be stored and loaded from these three locations:

Path Description
/etc/systemd/system Local configuration
/Tun/systemd/system Runtime units

/usr/1ib/systemd/system Units of installed packages

286

CHAPTER 7 SYSTEMD (PART)

/etc/systemd/systemis an admin location, whereas /usr/1ib/systemd/system

is an application vendor location. This means the admin’s location will get precedence

over the application vendor’s location if the same unit file is present at both locations.

Please note that in this chapter all the commands are executed from the directory in

which initramfs has been extracted.

tree etc/systemd/
etc/systemd/
— journald.conf
L— system.conf

0 directories, 2 files

#ls usr/lib/systemd/system | column

basic.target
cryptsetup.target
ctrl-alt-del.target
default.target
dracut-cmdline-ask.service
dracut-cmdline.service
dracut-emergency.service
dracut-initqueue.service
dracut-mount.service
dracut-pre-mount.service
dracut-pre-pivot.service
dracut-pre-trigger.service
dracut-pre-udev.service
emergency.service
emergency.target
emergency.target.wants
final.target

halt.target
halt.target.wants
initrd-cleanup.service
initrd-fs.target
initrd-parse-etc.service
initrd-root-device.target

plymouth-switch-root.service
poweroff.target
poweroff.target.wants
reboot.target
reboot.target.wants
remote-fs-pre.target
remote-fs.target
rescue.service

rescue.target
rescue.target.wants
rpcbind.target
shutdown.target
sigpwr.target

slices.target

sockets.target
sockets.target.wants
swap.target

sysinit.target
sysinit.target.wants
sys-kernel-config.mount
syslog.socket
systemd-ask-password-console.path
systemd-ask-password-console.service

287

CHAPTER 7 SYSTEMD (PART)

initrd-root-fs.target
initrd-switch-root.service
initrd-switch-root.target
initrd-switch-root.target.wants
initrd.target
initrd.target.wants
initrd-udevadm-cleanup-db.service
kexec.target
kexec.target.wants
kmod-static-nodes.service
local-fs-pre.target
local-fs.target
multi-user.target
multi-user.target.wants
network-online.target
network-pre.target
network.target
nss-lookup.target
nss-user-lookup.target
paths.target
plymouth-halt.service
plymouth-kexec.service
plymouth-poweroff.service
plymouth-quit.service
plymouth-quit-wait.service
plymouth-reboot.service
plymouth-start.service

systemd-ask-password-console.service.wants

systemd-ask-password-plymouth.path
systemd-ask-password-plymouth.service

systemd-ask-password-plymouth.service.wants

systemd-fsck@.service
systemd-halt.service
systemd-journald-audit.socket
systemd-journald-dev-log.socket
systemd-journald.service
systemd-journald.socket
systemd-kexec.service
systemd-modules-load.service
systemd-poweroff.service
systemd-random-seed.service
systemd-reboot.service
systemd-sysctl.service
systemd-tmpfiles-setup-dev.service
systemd-tmpfiles-setup.service
systemd-udevd-control.socket
systemd-udevd-kernel.socket
systemd-udevd.service
systemd-udev-settle.service
systemd-udev-trigger.service
systemd-vconsole-setup.service
timers.target

umount.target

The third location, /run/systemd/system, is a temporary location and will be used
internally by systemd to manage units. For example, it will be used extensively while
creating the sockets. In fact, /run is a separate filesystem introduced with systemd to
store runtime data. As of now, the /run directory of initramfs is empty, which is obvious

because initramfs is not in use.

#ls xrun/
<no_output>

288

CHAPTER 7 SYSTEMD (PART)

Also, itis expected that there are fewer unit files that are present in initramfs than the

ones that are available on the user’s root filesystem. dracut will collect only those systemd

unit files that are necessary to mount the user’s root filesystem. For example, it does not

make sense to add the httpd or mysql related systemd unit files in initramfs. Let’s try to

understand one of the service unit files of systemd, as shown here:

cat /usr/lib/systemd/system/sshd.service

[Unit]

Description=OpenSSH server daemon
Documentation=man:sshd(8) man:sshd_config(5s)

After=network.target sshd-keygen.target
Wants=sshd-keygen.target

[Service]
Type=notify

EnvironmentFile=-/etc/crypto-policies/back-ends/opensshserver.config
EnvironmentFile=-/etc/sysconfig/sshd-permitrootlogin
EnvironmentFile=-/etc/sysconfig/sshd

ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO POLICY $PERMITROOTLOGIN
ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure
RestartSec=42s

[Install]
WantedBy=multi-user.target

This sshd service unit file will not be part of initramfs since you do not need an ssh

service to mount the user’s root filesystem. The service unit file is divided into three

parts: [unit], [service], [install].

[unit]:

After=network.target sshd-keygen.target

The sshd service will start only if network. target (listed units) and
sshd-keygen (listed units) have successfully started. If either of them
fails, then the sshd service will also fail.

289

CHAPTER 7 SYSTEMD (PART)

Wants=sshd-keygen.target

This is a less severe version of Requires. If any of the units that
are mentioned in wants fails, then also the sshd service (or that
particular service) will start, whereas in Requires the sshd service
will start only if the units mentioned under Requires have been
successfully started. Before is the opposite of After The Wants,
After, Before, and Requires all work independently of each
other. It is a common practice to use Wants and After together.

Conflicts=

This can be used to list the units that are conflicting with the
current unit. Starting this unit might stop the listed conflicting
units.

OnFailure=
OnFailure units will start when any given unit reaches the failed
state.

e [Service]:

ExecStart=/usr/sbin/sshd
Starting an sshd service unit just starts the binary mentioned after
ExecStart.

o [Install]:

The Install section of a unit file is not used by systemd. Rather, it
is used by the systemctl enable, or disable command. It will be
used by systemctl to create or destroy the symlinks.

How Does systemd Reduce Boot Time?

Lennart Poettering, the creator of systemd, gives a classic example of how systemd reduces
the boot time in his blog at http://0pointer.de/blog/projects/systemd.html. This blog
is one of the best resources if you really want to deep dive into the systemd world.

There are four daemons: syslog, dbus, avahi, and bluetooth.

290

http://0pointer.de/blog/projects/systemd.html

CHAPTER 7 SYSTEMD (PART)

syslog is necessary for every daemon to log the messages. So, syslog is a requirement for
every other daemon. avahi needs syslog and dbus to run. bluetooth needs dbus and syslog
but does not need avahi to be running. With the Sysv/init script model, this happens:

1) syslogwill start first.
2) When it is completely ready, the dbus service will be started.
3) After dbus, avahi will be started.

4) Finally, the bluetooth service will be started. See Figure 7-1.

Syslog

D-Bus

Avahi

\

Bluetooth

\/

SysV/initscripts/
Traditional *nix systems

Figure 7-1. The init model

bluetooth and avahi are not dependent on each other, but bluetooth has to
wait until avahi starts. Ubuntu-like distributions use upstart instead of init, which
improves the boot time to some extent. In upstart, the services that are not dependent
on each other will start in parallel, meaning avahi and bluetooth will start together.
Please see Figure 7-2 for reference.

291

CHAPTER 7 SYSTEMD (PART)

Syslog
Syslog

D-Bus D-Bus

Y Y

Avahi Avahi Bluetooth

Y \ 4
Suse/Ubuntu
Parallelization

Bluetooth

\4

SysV/initscripts/
Traditional *nix systems

Figure 7-2. The upstart model

In systemd, all the services are started at the same time with the help of sockets.

Here’s an example:

1) systemd will create a socket for syslog (which has been replaced
with journald).

2) Asocket /dev/log is a symlink to /run/systemd/journal/dev-log

file /dev/log
/dev/log: symbolic link to /run/systemd/journal/dev-log

file /run/systemd/journal/dev-log
/run/systemd/journal/dev-log: socket

292

CHAPTER 7 SYSTEMD (PART)

As mentioned earlier, the run filesystem will be used by systemd for socket file creation.

3) Fordbus, the socket is created at /run/dbus/system bus_socket. To
run, dbus needs journald to be running, but since the system is still
booting and journald/syslog is not fully started yet, dbus will log its
messages to journald’s socket /dev/log, and whenever the journald
service is fully ready, it will fetch the messages from the socket.

4) It’s the same for the bluetooth service; it needs the dbus service to
be running to start. So, systemd will create a /run/dbus/system_
bus_socket socket before the dbus service starts. The bluetooth
service will not wait for dbus to start. You can refer to Figure 7-3 for

a better understanding.
»
Syslog
Syslog
V v Syslog D-Bus Avahi Bldetooth
Systemd
D-Bus D-Bus
Avahi Avahi Bluetooth
* M
Suse/Ubuntu
Parallelization
Bluetooth
SysV/initscripts/

Traditional *nix systems

Figure 7-3. The systemd model

293

CHAPTER 7 SYSTEMD (PART)

5) Ifthe systemd created socket runs out of buffer, then the
bluetooth service will be blocked until the socket is available.
This socket approach will drastically reduce the boot time.

This socket-based approach was originally tried in macOS. It was called launchd at
that time. Lennart Poettering took inspiration from it.

systemd-analyze

systemd provides the systemd-analyze tool to check the time taken by the system to boot.

systemd-analyze

Startup finished in 1.576s (kernel) + 1.653s (initrd) + 11.574s (userspace)
= 14.805s

graphical.target reached after 11.561s in userspace

As you can see, my Fedora system took 1.5 seconds to initialize the kernel; then it
spent 1.6 seconds inside initramfs and took almost 11 seconds to start the services or
initialize the user space. The total time taken was almost 15 seconds. The total time is
calculated right from the bootloader to the graphical target.

Here are some important notes:

e The total time does not include the time taken by desktop
environments like GNOME, KDE, Cinnamon, etc. This also makes
sense since the desktop environments are not handled by systemd,
so a systemd tool cannot calculate the time taken by desktop
environments.

e Also, there is a possibility that because of systemd’s socket approach,
services were still starting even after the total time (14.805 seconds).

So, to give more insight and clean data, systemd-analyse provides a blame tool.

systemd-analyze blame
31.202s dnf-makecache.service
10.517s pmlogger.service
9.264s NetworkManager-wait-online.service
4.977s plymouth-switch-root.service
2.994s plymouth-quit-wait.service
1.674s systemd-udev-settle.service

294

1.606s
1.297s
938ms
894ms
599ms
590ms
568ms
482ms
461ms
430ms
352ms
307ms
290ms
288ms
282ms
269ms
255ms
209ms
183ms
180ms
169ms
156ms

CHAPTER 7

lightdm.service

pmlogger check.service
docker.service
dracut-initqueue.service
pmcd.service
lvm2-monitor.service
abrtd.service
firewalld.service
systemd-logind.service
lvm2-pvscan@259:3.service
initrd-switch-root.service
bolt.service
systemd-machined.service
registries.service
udisks2.service
libvirtd.service
sssd.service
systemd-udevd.service
systemd-journal-flush.service
docker-storage-setup.service
systemd-journald.service
polkit.service

</snip>

SYSTEMD (PART I)

The blame output could easily be misunderstood; i.e., two services might be

initializing at the same time, and thus the time spent to initialize both services is much

less than the sum of both individual times combined. For more precise data, you can use

the plot tool of systemd-analyse, which will generate the graph and provide many more

details about the boot time. You can see the generated plot image in Figure 7-4.

systemd-analyze plot » plot.svg

eog plot.svg

295

CHAPTER 7 SYSTEMD (PART)

Fedora 31 (Workstation Edition) localhost.locakiomain (Linux 5.3.16-300.fc31.xB6_64 #1 SMPFri Dec 13 17:39:04 UTC 2019) x86-64 vmware
Startup finished in 1.576s (kemel) + 1,653s (initrd) + 11.574s (userspace) = 14.805s graphical target reached after 11.561s in userspace

Figure 7-4. The generated plot image

296

CHAPTER 7 SYSTEMD (PART)

The following are some of the other tools that systemd-analyse provides that can be

used to identify the boot time.

systemd-analyze <tool>

Description

time

blame
critical-chain
[UNIT...]

plot

dot [UNIT...]
log-level [LEVEL]
log-target [TARGET]
dump

cat-config

unit-files
units-paths
exit-status [STATUS...]

syscall-filter
[NAME...]

condition...

verify FILE...

Prints time spent in the kernel

Prints list of running units
ordered by time to init

Prints a tree of the time-critical
chain of units

Outputs SVG graphic showing
service initialization

Outputs dependency graph in
dot (1) format

Gets/sets logging threshold for
manager

Gets/sets logging target for
manager

Output state serialization of
service manager

Shows configuration file and
drop-ins

Lists files and symlinks for units
Lists load directories for units
Lists exit status definitions

Prints list of syscalls in
seccomp filter

Evaluates conditions and
asserts

Checks unit files for
correctness

(continued)

297

CHAPTER 7 SYSTEMD (PART)

systemd-analyze <tool> Description
service-watchdogs Gets/sets service watchdog
[BOOL] state
calendar SPEC... Validates repetitive calendar
time events
timestamp... Validates a timestamp
timespan SPAN... Validates a time span
security [UNIT...] Analyzes security of unit

“Can’t Boot” Issue 6 (systemd)

Issue: The system successfully boots, but the nagios service fails to start at the time of
the boot.
Here are the steps to resolve this issue:

298

1) We need to isolate the issue first. Remove the rhgb quiet kernel

command-line parameters when GRUB appears on the screen.

2) The verbose logs show that the system is able to boot, but the

nagios service fails to start while booting. As you can see, the

NetworkManager service of systemd which is responsible for the

network has successfully started. This means it is not a network

communication issue.

13:23:52
13:23:52

13:23:52
13:23:52
13:23:52
13:23:52
13:23:53

systemd: Starting Network Manager...

systemd: Started Kernel Samepage Merging (KSM)
Tuning Daemon.

systemd: Started Install ABRT coredump hook.
abrtd: Init complete, entering main loop

systemd: Started Load CPU microcode update.
systemd: Started Authorization Manager.
NetworkManager[1356]: <info> [1534389833.1078]
NetworkManager is starting... (for the first time)

13:23:53

13:23:53

13:23:53

13:23:53

CHAPTER 7 SYSTEMD (PART)

NetworkManager[1356]: <info> [1534389833.1079] Read
config: /etc/NetworkManager/NetworkManager.conf (1ib:
00-server.conf, 10-slaves-order.conf)
NetworkManager[1356]: <info> [1534389833.1924]
manager [0x558b0496a0c0]: monitoring kernel firmware
directory '/lib/firmware’.

NetworkManager[1356]: <info> [1534389833.2051] dns-
mgr[0x558b04971150]: init: dns=default, rc-manager=file
systemd: Started Network Manager.

3) The nagios service tries to execute right after the NetworkManager

service. This means nagios must have mentioned after=Network.

target in its service unit file. But the nagios service fails to start.

13:
13:
13:
13:

13:
13:

13:

13:

13:

13:

24:
24:
24:
24:

24:
24:

24:

24:

24:

24:

03
03
03
03

03
03

03

03

03

04

nagios: Nagios 4.2.4 starting... (PID=5006)

nagios: Local time is Thu 13:24:03 AEST 2018

nagios: LOG VERSION: 2.0

nagios: gh: Socket '/usr/local/nagios/var/rw/nagios.gh’
successfully initialized

nagios: gh: core query handler registered

nagios: nerd: Channel hostchecks registered
successfully

nagios: nerd: Channel servicechecks registered
successfully

nagios: nerd: Channel opathchecks registered
successfully

nagios: nerd: Fully initialized and ready to

rock! Nagios Can't ping devices (not 100% packet loss
at the end of each line)

nagios: HOST ALERT: X ;DOWN;SOFT;1;CRITICAL - X: Host
unreachable @ X. rta nan, lost 100%

Resolution: The strange thing is that the nagios error message says it failed to

start because it is not able to connect to the network, but as per NetworkManager, it has

successfully started, and the system has already been placed in network.

299

CHAPTER 7 SYSTEMD (PART)

The issue is clearly created by systemd’s “speeding up the booting procedure”
approach. To place the system in the network, systemd has to do a lot of work: initialize
the network cards, activate the link, put the IP on the NIC card, check if any duplicate IPs
are already available, start communicating on the network, etc. Obviously, to finish every
bit of this, systemd will take some time. On my test system, it took almost 20 seconds to
fully populate the network. Of course, systemd cannot pause the booting sequence for
that whole time. If systemd waits until the network fully populates, then one of the main
aspects of systemd’s innovation to speed up the booting process will be ruined.

systemd with the help of NetworkManager will give its best shot to make sure we are
on the network, but it will not wait for the user-specified network spawning and will not
wait until every rule of topology is achieved.

In some situations like this “can’t boot” issue, it is possible that NetworkManager has
told systemd to initialize nagios, which was dependent on network.target, but the
network is not yet fully up, so nagios might not be able to contact its servers.

1) To solve such issues, systemd suggests enabling NetworkManager -
wait-online.service. This service will make NetworkManager
wait until the network fully comes up. Once the network is fully
populated, NetworkManager will signal to systemd to start the
services that are dependent on network.target.

cat /usr/lib/systemd/system/NetworkManager-wait-online.service
[Unit]

Description=Network Manager Wait Online
Documentation=man:nm-online(1)

Requires=NetworkManager.service

After=NetworkManager.service

Before=network-online.target

[Service]

Type=oneshot

ExecStart=/usr/bin/nm-online -s -q --timeout=30
RemainAfterExit=yes

[Install]
WantedBy=network-online.target

This simply calls the nm-online binary and passes the -s switch to it. The service will
hold NetworkManager for a maximum of 30 seconds.

300

CHAPTER 7 SYSTEMD (PART)

This is what the man page has to say about the nm-online:

“Wait for NetworkManager startup to complete, rather than waiting for network
connectivity specifically. Startup is considered complete once NetworkManager
has activated (or attempted to activate) every auto-activate connection which is
available given the current network state. (This is generally only useful at boot
time; after startup has completed, nm-online -s will just return immediately,
regardless of the current network state.) ”

2) After enabling NetworkManager-wait-online-service, the issue
has been resolved, but the boot time has been reduced slightly. As
you can see in Figure 7-5, most of the boot time has been eaten up
by NetworkManager-wait-online-service, which is expected.

Figure 7-5. The plot after enabling NetworkManager-wait-online-service

301

CHAPTER 7 SYSTEMD (PART)

systemd provides one more tool, bootchart, which is basically a daemon through which
you can conduct a performance analysis of the Linux boot process. It will collect the data at
boot time and make a graph out of it. You can consider bootchart to be an advanced version
of a systemd-analyze plot. To use this tool, as shown in Figure 7-6, you need to pass the full
path of the systemd-bootchart binary to the init kernel command-line parameter.

load_video

set gfx_payload=keep

insmod gzio

linux (Sroot) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-8f9%acdf32e ro init=/usr/1lib/systemd/systemd-bootchart_

initrd (Sroot) /boot/initramis-5.3.1b-3U0.1c31.x8b_ba. img

Figure 7-6. The kernel command-line parameters

After the successful boot process, as you can see in Figure 7-7, the tool will create a detailed
graph image at /run/log/bootchart*. Once the image is generated, systemd-bootchart will
hand over control to the systemd, and systemd will continue the booting procedure.

302

CHAPTER 7 SYSTEMD (PART)

Bootchart for localhost localdomain - Sat, 28 Dec 2009 14:53:24 +0530

System: Linux 5.3.16-300.fc31.x86_64 #1 SMP Fri Dec 13 17:59:04 UTC 2019 xB6_64
CPU: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

Boot options: BOOT_IMAGE =(hd0,gptS)/boat/vmlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7137-4162-968¢ df32e ro init=fusr/iib d-bootchart
Build: Fedora 31 (Workstation Edition)

Log start time: 5.605s

Idle time: Not detected

Graph data: 73000 sampies/sec. recorded %00 totsl, dropped 1 samples. 319 processes. 164 fitered

Top CPU consumers:

327,3ms - systemd-joumal [482)
166.1ms - systemd-bootcha [725]
76.3ms - plymouthd [601]
61.5ms - kthreadd [2]

47.8ms - kworker/2:1 [132]
36.6ms - kworker[2:2 [365]
35.3ms - kworker/u32:0 (9]
19.1ms - kauditd [94]

19.0ms - scsi_eh 25 [320]
17.7ms - scsi_ch_26[222)

10 utilization - read
L Lo

208 10s 405 5.0 s
110 23nbrset
10 utilization - write
oo) 208 10 a0 508 [
CPU[overall] utilization
L 1 208 165 4.0 5.0 wos
u._l
CPU[overall] wait
[L8 208 1es 405 5.0 s
Processes
1os 2.08 108 a0 308 o
.. kthweadd [2}s1_sms
kworker/0:0 [8110 ans
kworker/ttl [7]7.0ms
kworker/u33:0 [8]s. 7ms
kworker/u32:0 [9]38, Jes
ksoftirgd/0 [11]1.5ms
reu_sched [12110.6ms

Figure 7-7. The bootchart graph

Since we now understand the basics of systemd, we can continue our paused
booting sequence. So far, we have reached the stage where the kernel has extracted
initramfs in RAM and started the systemd binary from it. Once the systemd process
starts, it will follow the regular booting sequence.

303

CHAPTER 7 SYSTEMD (PART)

Flow of systemd Inside initramfs

systemd will be launched from initramfs and will follow the booting sequence shown
in Figure 7-8. Harald Hoyer (who created dracut initramfs and is the lead systemd
developer) created this flowchart, which is also available in the systemd man pages.

systemd-journal.socket
|
v
dracut-cmdline.service
|
v
dracut-pre-udev.service

v
systemd-udevd. service

v
local-fs-pre.target dracut-pre-trigger.service
| |
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
| | | | I
\ | | | /
\|/

v
sysinit.target

|
/1IN
/ | \
I | |
v | v
(various | rescue.service
sockets...) |
| | v
v | rescue.target
sockets.target |
| |
\ | emergency.service
\| |
v v
basic.target emergency.target

Figure 7-8. The booting flowchart

304

CHAPTER 7 SYSTEMD (PART)

/|

|

v
dracut-pre-mount.service

v
sysroot.mount
|
v
initrd-root-fs.target

—— i —

(custom initrd services)

v
dracut-mount.service

|

v
initrd-parse-etc.service

v
(sysroot-usr.mount and
various mounts marked
with fstab option
x-initrd.mount)
|

v
initrd-fs.target

e S . S S

A
v
initrd.target

v
dracut-pre-pivot.service

v
initrd-cleanup.service
isolates to
initrd-switch-root.target

v
/|

/
| initrd-udevadm-cleanup-db.service
(custom initrd services)

\

\

O o o s s

initrd-switch-root.target
|

v
initrd-switch-root.service

v
switch-root

Figure 7-8. (continued)

305

CHAPTER 7 SYSTEMD (PART)

This flowchart comes from the man page of dracut. The ultimate aim of systemd in

the booting procedure is to mount the user’s root filesystem inside initramfs (sysroot)

and then switch into it. Once systemd has switch_rooted into the new (user’s) root

filesystem, it will leave the initramfs environment and continue the booting procedure

by starting the userspace services such as httpd, mysql, etc. It will also draw a desktop/

GUI if the user is booting the system in graphical mode. This book’s scope is to cover the

booting sequence until systemd mounts the user’s root filesystem and then switches into

it. There are a few reasons for not covering the booting sequence after switch_root.I

will mention the reasons here, which are very important:

The ultimate goal of booting is to mount the user’s root filesystem
and present it to the user, which this book is covering in detail.

The activities performed by systemd after initramfs are easy to
understand since systemd performs similar activities but under the

new root filesystem environment.
Production systems generally do not run in graphical mode.

Linux has a couple of desktops such as GNOME, KDE, Cinnamon,
Unity, etc. Every user has their own favorite desktop, and it is almost
impossible to document every step taken by every desktop while
booting.

So, with this understanding, in this chapter we will cover the booting sequence up to

basic.target. Please refer to Figure 7-9.

306

CHAPTER 7 SYSTEMD (PART)

systemd-journal.socket
|
v
dracut-cmdline.service
|
v
dracut-pre-udev.service
|
v
systemd-udevd.service

v

local-fs-pre.target dracut-pre-trigger.service
| |
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v \ v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
| | | | |
\ I I | /
A/

v
sysinit.target

|
71\
/ | \
I | |
v | v
(various | rescue.service
sockets...) |
I | v
v | rescue.target
sockets.target |
| |
L W | emergency.service
A |
v v
basic.target emergency.target

Figure 7-9. The boot sequence up to basic.target

systemd-journal.socket

Every process has to log its messages. In fact, a process, service, or daemon will start only
ifitis able to log its messages in the OS logging mechanism. These days, the OS logging
mechanism is journald. So, it is obvious that the journald service has to be started

first, but as we know, systemd won’t wait until the services fully start. To speed up the
procedure, it uses the socket approach. Hence, systemd has to start the journald sockets
first. The journald service creates the following four sockets and listens for messages:

o systemd-journald.socket

o systemd-journald-dev-log.socket

307

CHAPTER 7 SYSTEMD (PART)

o systemd-journald-audit.socket
o syslog.socket

These sockets will be used by daemons, applications, and every process to log their
messages.

vim usr/1ib/systemd/system/systemd-journald.socket
SPDX-License-Identifier: LGPL-2.1+
This file is part of systemd.
systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or

HOoH HF OH = H O H

(at your option) any later version.

[Unit]

Description=Journal Socket
Documentation=man:systemd-journald.service(8) man:journald.conf(5)
DefaultDependencies=no

Before=sockets.target

Mount and swap units need this. If this socket unit is removed by an
isolate request the mount and swap units would be removed too,

hence let's exclude this from isolate requests.

IgnoreOnIsolate=yes

[Socket]
ListenStream=/run/systemd/journal/stdout
ListenDatagram=/run/systemd/journal/socket
SocketMode=0666

PassCredentials=yes

PassSecurity=yes

ReceiveBuffer=8M
Service=systemd-journald.service

cat usr/lib/systemd/system/systemd-journald-dev-log.socket | grep -v '#'

308

CHAPTER 7 SYSTEMD (PART)

[Unit]

Description=Journal Socket (/dev/log)
Documentation=man:systemd-journald.service(8) man:journald.conf(5)
DefaultDependencies=no

Before=sockets.target

IgnoreOnIsolate=yes

[Socket]

Service=systemd-journald.service
ListenDatagram=/run/systemd/journal/dev-log
Symlinks=/dev/log

SocketMode=0666

PassCredentials=yes

PassSecurity=yes

ReceiveBuffer=8M
SendBuffer=8M

We have already discussed the way sockets work, especially the /dev/log socket. The
next step in the booting sequence is dracut-cmdline.service.

dracut-cmdline.service

After initializing journald sockets, systemd collects the kernel command-line
parameters such as the root, rflags, and fstype variables through usr/1ib/systemd/
system/dracut-cmdline.service. This is also called a cmdline hook of initramfs, which
we mentioned at the end of Chapter 6. The hook can be called by passing the cmdline
value to rd.break (a dracut command-line parameter). We will explore this stage of
the booting process by using the cmdline hook. We need to pass the rd.break=cmdline
dracut command-line parameter to the kernel at the time of the boot.

Inside initramfs, systemd calls this hook from usr/1ib/systemd/system/dracut-
cmdline.service.

309

CHAPTER 7 SYSTEMD (PART)

cat usr/lib/systemd/system/dracut-cmdline.service

This file is part of dracut.
#
See dracut.bootup(7) for details

[Unit]

Description=dracut cmdline hook
Documentation=man:dracut-cmdline.service(8)
DefaultDependencies=no
Before=dracut-pre-udev.service
After=systemd-journald.socket
Wants=systemd-journald.socket
ConditionPathExists=/usr/lib/initrd-release
ConditionPathExistsGlob=|/etc/cmdline.d/*.conf
ConditionDirectoryNotEmpty=|/1ib/dracut/hooks/cmdline
ConditionKernelCommandLine=|rd.break=cmdline
ConditionKernelCommandLine=|resume
ConditionKernelCommandLine=|noresume
Conflicts=shutdown.target emergency.target
[Service]

Environment=DRACUT_SYSTEMD=1
Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-cmdline
StandardInput=null

StandardOutput=syslog
StandardError=syslog+console
KillMode=process

RemainAfterExit=yes

Bash ignores SIGTERM, so we send SICHUP instead, to ensure that bash
terminates cleanly.
KillSignal=SIGHUP

As you can see, systemd has called a dracut-cmdline script. The script is available in
initramfs itself, which will collect the kernel command-line parameters.

310

vim bin/dracut-cmdline

CHAPTER 7 SYSTEMD (PART)

24 # Get the "root=" parameter from the kernel command line, but

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

differentiate
between the case where it wa
where it
wasn't specified at all.
if | root="¢(getarg roots)"; t
root_unset="UNSET'
fi

rflags-"s (EESEEINOOERIEES)"

s set to the empty string and the case

hen

getargbool 0 ro 83 rflags="${rflags},ro"
getargbool 0 rw 88 rflags="${rflags},w"

rflags="${rflags#,}"

Fstype-" (EEREIGDEISEIREY)
if [-z "$fstype"]; then
fstype="auto"

make trace mem "hook cmdline
run scriptlets to parse the
getarg 'rd.break=cmdline' -d '
cmdline "Break before cmdline"
source_hook cmdline

[-f /1lib/dracut/parse-resume.
case "${root}${root unset}" in

block:LABEL=* | LABEL=*)
root="${root#block:}"

1+:mem' '1+:iomem’ '3+:slab' '4+:komem'
command line
rdbreak=cmdline' && emergency shell -n

sh] & . /lib/dracut/parse-resume.sh

311

CHAPTER 7 SYSTEMD (PART)

55 root="$(echo $root | sed 's,/,\\x2f,g")"

56 root="block:/dev/disk/by-label/${root#LABEL=}"

57 rootok=1 ;;

58 block:UUID=* |UUID=*)

59 root="${root#block:}"

60 root="block:/dev/disk/by-uuid/${root#UUID=}"

61 rootok=1 ;;

62 block:PARTUUID=* | PARTUUID=*)

63 root="${root#block:}"

64 root="block:/dev/disk/by-partuuid/${root#PARTUUID=}"
65 rootok=1 ;;

66 block:PARTLABEL=*|PARTLABEL=*)

67 root="${root#block:}"

68 root="block:/dev/disk/by-partlabel/${root#PARTLABEL=}"
69 rootok=1 ;;

70 /dev/*)

71 root="block:${root}"

72 rootok=1 ;;

73 UNSET | gpt-auto)

74 # systemd's gpt-auto-generator handles this case.
75 rootok=1 ;;

76 esac

77

78 [-z "${root}${root unset}"] && die "Empty root= argument"

79 [-z "$rootok"] && die "Don't know how to handle 'root=$root'"
80

81 export root rflags fstype netroot NEWROOT

82

83 export -p > /dracut-state.sh

84

85 exit 0

Basically, there are three parameters (kernel command-line parameters) that will be
exported in this hook:

e root = User’s root file system name

312

CHAPTER 7 SYSTEMD (PART)

rflags = User’s root filesystem flags (1o or rw)

fstype = Auto (auto mounting or not)

Let’s see how these parameters are discovered by initramfs (or in the cmdline

hook of initramfs). The getarg named function will be used to get these three kernel

command-line parameters.

root="$(getarg root=)
rflags="$(getarg rootflags=)
fstype="$(getarg rootfstype=)"

export root

export rflags
export fstype

The getarg function is defined in the usr/1ib/dracut-1ib. sh file of initramfs.

#vim usxr/lib/dracut-1lib.sh
201 getarg() {

202
203
204
205
206
207
208
209

210
211
212
213
214
215

debug_off
local deprecated newoption
while [$# -gt 0]; do
case $1 in
-d) _deprecated=1; shift;;
-y) if _dogetarg $2 >/dev/null; then
if ["$_deprecated" = "1"]; then
[-n "$ newoption"] 8& warn "Kernel command
line option '$2' is deprecated, use '$_
newoption' instead." || warn "Option '$2' is
deprecated."
fi
echo 1
debug_on
return 0
fi
_deprecated=0

313

CHAPTER 7 SYSTEMD (PART)

216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241
242
243 }

shift 2;;
-n) if _dogetarg $2 >/dev/null; then
echo 0;

if ["$_deprecated" = "1"]; then
[-n "$ newoption"] 8& warn "Kernel command
line option '$2' is deprecated, use '$_

newoption=0' instead." || warn "Option '$2'
is deprecated."
fi
debug_on
return 1
fi
_deprecated=0
shift 2;;

*¥) if [-z "$ _newoption"]; then
_newoption="$1"
fi
if _dogetarg $1; then
if ["$_deprecated" = "1"]; then
[-n "$_newoption"] && warn "Kernel command
line option '$1' is deprecated, use '$_

newoption' instead." || warn "Option '$1' is
deprecated.”
fi
debug_on
return 0;
fi
_deprecated=0
shift;;
esac
done
debug_on
return 1

The getarg function is calling the _dogetarg function from the same file.

314

CHAPTER 7 SYSTEMD (PART)

165 dogetarg() {

166 local o val _doecho

167 unset _val

168 unset o

169 unset doecho

170 CMDLINE=$(getcmdline)

171

172 for o in $CMDLINE; do

173 if ["${_okk=*}" = "${1%%=*}"]; then
174 if [-n "${a#*=}" -a "${a#*=*}" 1= "${1}"]; then
175 # if $1 has a "=<value>", we want the exact match
176 if ["$_0" = "$1"]; then

177 _val="1";

178 unset _doecho

179 fi

180 continue

181 fi

182

183 if ["${ o#*=}" = "$ 0"]; then
184 # if cmdline argument has no "=<value>", we assume "=1"
185 _val="1";

186 unset doecho

187 continue

188 fi

189

190 _val="${ o#*=}"

191 _doecho=1

192 fi

193 done

194 if [-n "$ val"]; then

195 ["x$_doecho" != "x"] 8& echo "$ val";
196 return 0;

197 fi

198 return 1;

199 }

315

CHAPTER 7 SYSTEMD (PART)

Then the _dogetarg() function calls the getcmdline named function, which collects
the actual kernel command-line parameters from /proc/cmdline.

137 getcmdline() {

138 local line

139 local i

140 local CMDLINE_ETC D
141 local CMDLINE_ETC
142 local CMDLINE_PROC

143 unset line

144

145 if [-e /etc/cmdline]; then

146 while read -r line || [-n "$ line"]; do
147 CMDLINE_ETC="$CMDLINE_ETC $ line";

148 done </etc/cmdline;

149 fi

150 for _i in /etc/cmdline.d/*.conf; do

151 [-e "$ i"] || continue

152 while read -r line || [-n "$ line"]; do
153 CMDLINE_ETC_D="$CMDLINE ETC D $ line";
154 done <"$ i";

155 done

156 if [-e /proc/cmdline]; then

157 while read -r line || [-n "$_line"]; do
158 CMDLINE_PROC="$CMDLINE_PROC $ line"
159 done </proc/cmdline;

160 fi

161 CMDLINE="$CMDLINE ETC D $CMDLINE ETC $CMDLINE_PROC"
162 printf "%s" "$CMDLINE"
163 }

316

CHAPTER 7 SYSTEMD (PART)

Here is the booting sequence so far:

1.

The bootloader collects the kernel command-line parameters from
the user and stores them in its own configuration file (grub. cfg).

It passes those command-line parameters to the kernel by filling
the kernel header.

The kernel extracts itself and copies the kernel command-line
parameters found in the kernel header.

The kernel extracts initramfs in memory and uses it as a
temporary root filesystem.

In the same procedure, the kernel prepares the virtual filesystems
such as proc, sys, dev, devpts, shm, etc.

The kernel stores the command-line parameters in the /proc/
cmdline file

systemd collects the kernel command-line parameters by reading
the /proc/cmdline file and stores them in the root, rootfs, and
fstype variables.

We can verify this procedure by using the cmd1line hook.
Getting back to the /bin/dracut-cmdline script, let’s take a look:

41 export root
42 export rflags
43 export fstype

44

45 make_trace _mem "hook cmdline

1+:mem' '1+:iomem' '3+:slab' '4+:komem'

46 # run scriptlets to parse the command line
47 getarg 'rd.break=cmdline' -d 'rdbreak=cmdline' && emergency_shell -n

cmdline "Break before cmdline"

48 source_hook cmdline

49

50 [-f /1lib/dracut/parse-resume.sh] &% . /lib/dracut/parse-resume.sh

317

CHAPTER 7 SYSTEMD (PART)

The condition says if the user has passed the rd.break=cmdline parameter on the
kernel stanza of GRUB, then execute the emergency shell function. Figure 7-10 shows
the condition.

&& emergency_shell -n cmdline

getarg 'rd.break=cmdline’ -d ‘rdbreak=cmdline’ "Break before cmdline”

If user has passed rd.break=cmdline If emergency_shell function has successfully executed

Then call 'source_hook' function with cmdline' parameter

Figure 7-10. The condition

If the user has passed rd.break=cmdline, then the script calls the function named
emergency shell. Asthe name suggests, it will provide the debugging shell, and if the
debugging shell has successfully launched, then it calls another function named source
hook and passes the cmdline parameter to it. Whoever wrote this code to provide users
with a debugging shell is a genius programmer!

We will not discuss the emergency shell function at this stage since we need to
understand systemd more first. Hence, we will discuss it in much more detail in Chapter 8.

Figure 7-11 shows the flowchart of the dracut-cmdline. service units working.

318

CHAPTER 7 SYSTEMD (PART)

rd.break=cmdline

Y

dracut-cmdline.service

[binfdracut-cmdline

[hin/dracut-cmdline Y

rflags="$(getarg rootflags=)"
rflags="${rflags#,}
fstype="$(getarq rootfstype=)"

getarg()
_dogetarg()
getcmdline)
Iproc/cmdline

Vx

getarg 'rd.break=cmdline' -d rdbreak=cmdline’ && emergency_shell -n cmdline “Break before

[ustflib/dracut-lib.sh

cmdling”
source_hook cmdline

\/_\

Resolved the:
root = root file system name
rflags = root filesystem flags (1o or W)
fstype = Auto (means auto mounting or nof)

Figure 7-11. The flowchart of dracut-cmdline.service

v

emergency_shell_flowchart

319

CHAPTER 7 SYSTEMD (PART)

Going further, a user’s root filesystem name could just be /dev/sda5, but the same
sda5 device might be referred via uuid, partuuid, or 1abel. At the end, every other
reference of sda5 has to reach /dev/sda5; hence, the kernel prepares symlinks files for all
of these different device names under /dev/disk/. Please refer to Figure 7-12.

[root@localhost boot]# tree /dev/disk/
/dev/disk/
— by-1id
L— ata-VMware_Virtual_SATA_CDRW_Drive_01000000000000000001 -> ../../sr0®
— by-label
L— Fedora-wS-Live-31-1-9 -> ../../sr0
— by-partlabel
— Basic\x20data\x20partition -> ../../sda4
— EFI\x20System\x20Partition -> ../../sdal
— Microsoft\x20reserved\x20partition -> ../../sda3
— by-partuuid

— 4fb8ac07-ca42-41c9-910b-e323bcbd82fd -> ../../sda3
—— 557553aa-f11f-4d67-2a4c9-68944e3d3c33 -> ../../sdal
— |3500883e—8702—4(:b6—a80b—85€c28f59f47 -> /sda5|
— b49bd562-70f9-4477-a0d3-0143f07e89%e6 -> ../../sda2
— be7e9e01-b172-42f5-b95d-6e378e6a2¢c93 -> ../../sda4d

[— by-path

— pci-0000:02:04.0-ata-2 -> ../../sr0@

— pci-0000:03:00.0-sas-phy®-lun-0 -> ../../sda

— pci-0000:03:00.0-sas-phy0-lun-0-partl -> /../sdal
— pci-0000:03:00.0-sas-phy®-lun-0-part2 -> ../../sda2
— pci-0000:03:00.0-sas-phy®-lun-0-part3 -> ../../sda3
— pci-0000:03:00.0-sas-phy®-lun-0-part4 -> /../sda4
—| pci-0000:03:00.0-sas-phy0-lun-0-part5 -> ../../sda5]
— by-uuid

— 2019-10-23-23-21-29-00 -> ../../sr0®

— (6588b8f1-7f37-4162-968c-8f99eacdf32e -> ../../sda5|
—— C27C4EOQCT7C4DFC23 -> ../../sda4

— cc6a7fe8-d67a-4793-b9b0-21557732cbe8 -> ../../sda2

— FBCO-BBD6 -> ../../sdal

Figure 7-12. The /dev/disk directory contents

The same /bin/dracut-cmdline script converts the mear sda5 root filesystem name
to /dev/disk/by-uuid/6588b8f1-7f37-4162-968c-8f99eacdf32e.

52 case "${root}${root unset}" in

53 block:LABEL=* | LABEL=*)

54 root="${root#block:}"

55 root="$(echo $root | sed 's,/,\\x2f,g")"

320

CHAPTER 7 SYSTEMD (PART)

56 root="block:/dev/disk/by-label/${root#LABEL=}"

57 rootok=1 ;;

58 block:UUID=*|UUID=*)

59 root="${root#block:}"

60 root="block:/dev/disk/by-uuid/${root#UUID=}"

61 rootok=1 ;;

62 block:PARTUUID=* | PARTUUID=*)

63 root="${root#block:}"

64 root="block:/dev/disk/by-partuuid/${root#PARTUUID=}"
65 rootok=1 ;;

66 block:PARTLABEL=* | PARTLABEL=*)

67 root="${root#block:}"

68 root="block:/dev/disk/by-partlabel/${root#PARTLABEL=}"
69 rootok=1 ;;

70 /dev/*)

71 root="block:${root}"

72 rootok=1 ;;

73 UNSET |gpt-auto)

74 # systemd's gpt-auto-generator handles this case.
75 rootok=1 ;;

76 esac

77

78 [-z "${root}${root unset}"] && die "Empty root= argument"

79 [-z "$rootok"] &8 die "Don't know how to handle 'root=$root'"
80

81 export root rflags fstype netroot NEWROOT

82

83 export -p > /dracut-state.sh

84

85 exit 0

Let’s see the cmdline hook in action. As shown in Figure 7-13, pass rd.
break=cmdline on the kernel stanza of GRUB.

321

CHAPTER 7 SYSTEMD (PART)

load_video

set gfx_payload=keep

insmod gzio

linux ($root) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-8f99%eacdf32e ro rd.break=cmdline_

initrd (Sroot) /boot/initramfs-5.3.16-300.fc31.x86_64. ing

Figure 7-13. The kernel command-line parameter

The kernel will extract initramfs, the systemd process will launch, systemd will
initialize the journald sockets, and as you can see in Figure 7-14, systemd will drop us
on a cmdline shell since we told systemd to break (hook) the booting sequence before
executing the dracut-cmdline hook.

Starting Create Uolatile Files and Directories...
[0K 1 Started Create Uolatile Files and Directories.
[2.148892] audit: type=1130 audit(1577617801.864:5): pid=1 wid=0 auid=4294967295 ses=4294967295 subj=kernel msg='unit=system
d-tmpf i les-setup comm="systemd" exe="susrrslibssystemd-systemd” hostname=? addr=7? terminal=? res=success’
Warning: sdevsdisk- by-uuid 6588b8F 1-7f37-4162-968c -8Bl 9%eacdf 32e does not exist

Generating "srunsinitramfs/rdsosreport. txt”

Entering emergency mode. Exit the shell to continue.

Type “journalctl" to view system logs.

You might want to save “/runsinitramfs/rdsosreport.txt’” to a USB stick or ~boot
after mounting them and attach it to a bug report.

:
1

lalalalalalala e R R R
MNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2.293496] pcieport ABBA:8A:15.1: pciehp: Failed to check link status
3866781 pcieport BBBB:80:15.3: pciehp: Failed check link status
3875711 pcieport B8BB:88:15.4: pciehp: Failed check link status
3876481 pcieport BBBE:88:15.5: pciehp: Failed check link status
3876881 pcieport BBBB:88:15.2: pciehp: Failed check link status
3125661 pcieport B888:88:15.6: pciehp: Failed check link status
3175721 pcieport BEBB:88:15.7: pciehp: Failed check link status
3196581 pcieport B888:88:16.2: pciehp: Failed check link status
3246881 pcieport BBBB:80:16.1: pciehp: Failed check link status
3295881 pcieport BABB:88:16.3: pciehp: Failed check link status
3384821 pcieport BBBE:88:16.5: pciehp: Failed check link status
3316311 pcieport BBBA:88:16.4: pciehp: Failed check link status
33256881 pcieport B8B8:88:17.1: pciehp: Failed check link status
3344631 pcieport BEBB:88:17.2: pciehp: Failed check link status
3353981 pcieport B8BB:88:16.6: pciehp: Failed check link status
3368861 pcieport BBBE:88:17.4: pciehp: Failed check link status
3369811 pcieport pciehp: Failed check link status
3464941 pcieport pciehp: Failed check link status
3585281 pcieport pciehp: Failed check link status
3515461 pcieport pciehp: Failed check link status
3515911 pcieport pciehp: Failed check link status
3524861 pcieport pciehp: Failed check link status
3524441 pcieport pciehp: Failed check link status
3532911 pcieport pciehp: Failed check link status
3533731 pcieport pciehp: Failed check link status
3552881 pcieport pciehp: Failed check link status
3563781 pcieport pciehp: Failed check link status
3788671 pcieport pciehp: Failed check link status
3751531 pcieport : pciehp: Failed check link status

R AR A A R LA A A P A et
gEggggsgsegsegsegeggeggeggegggegs

codline: - _

Figure 7-14. The command-line hook

322

CHAPTER 7 SYSTEMD (PART)

Currently, we are inside initramfs, and we have paused (dracut hooked) systemd’s

booting sequence after systemd-journal.socket. Since dracut-cmdline.service has

not yet started, systemd has not yet collected the kernel command-line parameters such
as root, rsflags, and fstype from /proc/cmdline. Please see Figure 7-15 for a better
understanding. Also, the symlinks under /dev/disk have not yet been created by dracut.

cmdline: #

cmdline:
cmdline:

Iz
Iz

cmdline:
cmdline:

Iz
s

cmdline:/#
cmdline:/#
ls: camot
cmdline:/#

echo $root

echo Srflags

echo $fstype

Is sdevsdisk -1
access 'sdevsdisk’': No such file or directory

Figure 7-15. The command-line hook

Since systemd has not yet collected the name of the user’s root filesystem, there is no

question that you will not find user’s root filesystem mounted inside initramfs. sysroot is a

directory inside initramfs where systemd mounts the user’s root filesystem. Refer to Figure 7-16.

cmdline:/#
total 8

lrunarunaeunx
drusar -xr-x
=-PW=-r=-r--
druwsar -xr-x
Iruwsarunaruix
drupar -xar-x
1 runarunaeinx
lrunarunarux
dr-xr-xr-x
drusar =X -x
druwxar-xr-x
1 runarunaeux
=W =X =X
dr-xr-xr-x
druxe-xr-x
druxae=xr-x
druwsar -xr-x
druar -xr-x
cmdline:/#
cmdline:/#
cmdline:/#
cmdline:/#

Is -1 ~

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

=

[y

™~
= 0
NEOENNWHEHEFONWE=WE DO~

[

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

s ssysroot

exit_

31608

312

0000, OO LIDWEN

Jul
Dec
Jul
Dec
Jul
Jul
Jul
Jul
Dec
Jul
Dec
Jul
Jul
Dec
Jul
Jul
Jul
Dec

Figure 7-16. The sysroot directory

bin -> usr/bin

dev

early_cpio

etc

init -> usr/libs/systemd/systemd

kernel

1lib -> usrr/lib
1ib64 -> usrs1ibb4
proc

root

run

sbin -> usrssbin
shutdouwn

sys

sysroot

tmp

usr

var

323

CHAPTER 7 SYSTEMD (PART)

But if we do not pass any argument to rd.break or simply exit from the current
cmdline shell, we will be dropped at the switch root shell. The switch root shell is the
final stage of systemd’s boot sequence inside initramfs. In Figure 7-17, you can see that
we are passing rd.break without any arguments.

load_video

set gfx_payload=keep

insmod gzio

linux ($root) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-8f99%eacdf32e ro rd.break_

initrd (Sroot) /boot/initramis-5.3.16-300.fc31.x86_64. ing

Figure 7-17. The rd.break kernel command-line parameter

Asyou can see in Figure 7-18, in the switch_root shell since the dracut-cmdline.
service has been executed, you will find the kernel command-line parameters have
been collected by systemd. Also, the user’s root filesystem has been mounted inside
initramfs under sysroot.

[0K 1 Started Setup Virtual Console.
Starting Dracut Emergency Shell...

Generating "srunsinitramfs rdsosreport.txt”

Entering emergency mode. Exit the shell to continue.

Type “ journalctl" to view system logs.

You might want to save “srunsinitramfs-rdsosreport.txt” to a USB stick or -boot
after mounting them and attach it to a bug report.

switch_root:/#t echo $root

block: sdevrsdisk by-uuid,6588b8f 1-7f37-4162-968c -Bf 99eacdf 32e
switch_root:

switch_root:/#t echo Srf lags

ro

switch_root:-#

switch_root:-# echo $fstype

auto

switch_root: 8

switch_root:/#t 1s ssysroots

bin boot dev etc home 1ib 1ib64 lost+found media mmt opt proc root run sbin srv sys tmp usr wvar
switch_root:#

switch_root:/# exit_

Figure 7-18. The switch_root hook
If we exit from this stage, switch root (pivot root) will be performed by systemd,

and it will leave the initramfs environment. Later systemd will carry the remaining
booting procedure, and as shown in Figure 7-19, eventually we will get the desktop.

324

CHAPTER 7 SYSTEMD (PART)

Figure 7-19. The login screen of Fedora

Coming back to our booting sequence so far, we have reached the pre-udev stage.
You can refer to Figure 7-20 for this.

systemd-journal.socket

v
dracut-cmdline.service

Vv
dracut-pre-udev.service

Figure 7-20. The booting sequence covered so far

325

CHAPTER 7 SYSTEMD (PART)

dracut-pre-udev.service

Next systemd will deal with the attached devices. For that, systemd has to start the udev
daemon, but before starting the udev service, it checks whether users want to stop the
booting procedure before udev kicks in. If a user has passed the rd.break=pre-udev
dracut command-line parameter, systemd will stop the booting sequence just before
executing the udev daemon.

cat usr/lib/systemd/system/dracut-pre-udev.service | grep -v '#'

[Unit]

Description=dracut pre-udev hook
Documentation=man:dracut-pre-udev.service(8)
DefaultDependencies=no

Before=systemd-udevd.service dracut-pre-trigger.service
After=dracut-cmdline.service
Wants=dracut-cmdline.service
ConditionPathExists=/usr/lib/initrd-release
ConditionDirectoryNotEmpty=|/1ib/dracut/hooks/pre-udev
ConditionKernelCommandLine=|rd.break=pre-udev
ConditionKernelCommandLine=|rd.driver.blacklist
ConditionKernelCommandLine=|rd.driver.pre
ConditionKernelCommandLine=|rd.driver.post
ConditionPathExistsGlob=|/etc/cmdline.d/*.conf
Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT SYSTEMD=1
Environment=NEWROOT=/sysroot
Type=oneshot
ExecStart=-/bin/dracut-pre-udev
StandardInput=null
StandardOutput=syslog
StandardError=syslog+console
KillMode=process
RemainAfterExit=yes

KillSignal=SIGHUP

326

CHAPTER 7 SYSTEMD (PART)

It will drop us on a pre-udev shell. Notice the after, before, and wants variables.
Executing dracut-pre-udev.service just starts a /bin/dracut-pre-udev binary from
initramfs. In Figure 7-21, we have passed rd.break=pre-udev as a kernel command-line
parameter.

load_video

set gfx_payload=keep

insmod gzio

linux ($root) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-8f99%eacdf32e ro rd.break=pre-udev_

initrd (Sroot) /boot/initramfs-5.3.16-300.{c31.x86_64. ing

Figure 7-21. Passing the pre-udev kernel command-line parameter

To understand the pre-udev hook, you can simply list the contents of /dev, and in
Figure 7-22 you will notice there is no device file named sda. sda is our HDD where we
have our root filesystem.

Entering emergency mode. Exit the shell to continue.

Type "journalctl” to view system logs.

You might want to save “srunsinitramfs/rdsosreport.txt” to a USB stick or sboot
after mounting them and attach it to a bug report.

pre-udew: /#

pre-udev:/i 1s ~dev

agpgart hidrawl nvram stdout tiyld +tty3de ttyd2 tiysS4 ttyd ttysSZ tty331 usbmon3d
autofs hpet port tty tty2 tty31 ttyd43 ttySS ttySe ttyS28 ttysS4 usbmond
bsg Twrng pmex ttub tty28 tty3dZ ttyd4 ttude ttyS1 ttyS21 ttyss uCs

bus input pts ttyl tty2l tty33 +ttyd5 tty5? ttyS18 ttyS22 ttysSe vesl
console kmsg random ttyld tiyZZ tty34 ttyde ttyS8 ttyS11 ttyS23 ttysS? vesa
core log raw ttyll tty23 tty3d5 ttyd? ttyS9 ttyS12 ttyS24 ttyss vesal
cpu mapper rtcl ttylZd tiy24 ttydb ttydd ttyd ttyS513 LtyS25 ttys9 vCsuU
cpu_dma_latency mcelog sg8 ttyl3 tty25 +tty3d? +ttyd9 ttybB ttyS14 ttyS26 udmabuf wesul
fia mem shm ttyld4 tty26 tty38 ttyS ttybl ttyS1S ttyS2? uhid vga_arbiter
fd memory_bandwidth snapshot ttyl5 tty2? +tty3d9 +tty58 ttyb2 ttyS16 ttyS28 uwrandom =zero
full network_latency sré tiyle tiy28 tty4 tiydl tiybd ttyS17 LiyS29 usbmond

fuse network_throughput stderr ttyl? tty2d ttyd4d ttyd2 tty? ttyS168 ttyS3 usbmonl

hidrawd null stdin ttyl8 ttyd tty4l tty5S3 tty8 ttyS19 ttyS38 usbmon2

pre-udev: s _

Figure 7-22. The pre-udev hook

The reason for the absence of sda device files is because the udev daemon has not
started yet. The daemon will be started by the /usr/1ib/systemd/system/systemd-
udevd. service unit file, which will start after the pre-udev hook.

cat usr/lib/systemd/system/systemd-udevd.service | grep -v '#'

327

CHAPTER 7 SYSTEMD (PART)

[Unit]

Description=udev Kernel Device Manager
Documentation=man:systemd-udevd.service(8) man:udev(7)
DefaultDependencies=no

After=systemd-sysusers.service systemd-hwdb-update.service
Before=sysinit.target

ConditionPathIsReadWrite=/sys

[Service]

Type=notify

00MScoreAdjust=-1000
Sockets=systemd-udevd-control.socket systemd-udevd-kernel.socket
Restart=always

RestartSec=0
ExecStart=/usx/lib/systemd/systemd-udevd
KillMode=mixed

WatchdogSec=3min

TasksMax=infinity

PrivateMounts=yes

ProtectHostname=yes

MemoryDenyWriteExecute=yes
RestrictAddressFamilies=AF _UNIX AF NETLINK AF_INET AF_INET6
RestrictRealtime=yes

RestrictSUIDSGID=yes
SystemCallFilter=@system-service @module @raw-io
SystemCallErrorNumber=EPERM
SystemCallArchitectures=native
LockPersonality=yes

IPAddressDeny=any

Let’s try to understand how udev works and how it creates device files under /dev.

It’s the kernel that detects the connected hardware to the system; more precisely, it’s
the drivers that are compiled inside kernels or the modules inserted later that will detect
the hardware and will register their objects with sysfs (/sys mount point). Because of
the /sys mount point, this data becomes available to userspace and to tools like udev.
So, it’s the kernel that detects the hardware through drivers and creates a device file in
/dev, which is a devfs filesystem. After this, the kernel sends a uevent to udevd, and
udevd changes the device file’s name, owner, or group, or it sets the proper permissions
according to the rules defined here:

328

CHAPTER 7 SYSTEMD (PART)

/etc/udev/rules.d,
/1lib/udev/rules.d, and
/run/udev/rules.d

ls etc/udev/rules.d/
59-persistent-storage.rules 61-persistent-storage.rules

1s lib/udev/rules.d/
50-udev-default.rules 70-uaccess.rules 75-net-description.
rules 85-nm-unmanaged.rules
60-block.rules 71-seat.rules 80-drivers.rules
90-vconsole.rules
60-persistent-storage.rules 73-seat-late.rules 80-net-setup-link.
rules 99-systemd.rules

initramfs has few udev rules files compared to the available udev rules present on the
user’s root filesystem. Basically, it has only those rules that are necessary to manage the
user’s root filesystem devices. Once udevd is in control, it will call the respective systemd
units based on 1ib/udev/rules.d/99-systemd.rules. Here’s an example:

cat lib/udev/rules.d/99-systemd.rules

SUBSYSTEM=="net", KERNEL!="1lo", TAG+="systemd", ENV{SYSTEMD ALIAS}+="/sys/
subsystem/net/devices/$name"

SUBSYSTEM=="bluetooth", TAG+="systemd", ENV{SYSTEMD ALIAS}+="/sys/
subsystem/bluetooth/devices/%k"

SUBSYSTEM=="bluetooth", TAG+="systemd", ENV{SYSTEMD_WANTS}+="bluetooth.
target", ENV{SYSTEMD_USER_WANTS}+="bluetooth.target"

ENV{ID SMARTCARD READER}=="?*", TAG+="systemd", ENV{SYSTEMD
WANTS}+="smartcard.target"”, ENV{SYSTEMD USER WANTS}+="smartcard.target"
SUBSYSTEM=="sound", KERNEL=="card*", TAG+="systemd", ENV{SYSTEMD
WANTS}+="sound.target", ENV{SYSTEMD USER WANTS}+="sound.target"

SUBSYSTEM=="printer", TAG+="systemd", ENV{SYSTEMD WANTS}+="printer.target"”,
ENV{SYSTEMD USER_WANTS}+="printer.target"

SUBSYSTEM=="usb", KERNEL=="1p*", TAG+="systemd", ENV{SYSTEMD
WANTS}+="printer.target"”, ENV{SYSTEMD USER WANTS}+="printer.target"

329

CHAPTER 7 SYSTEMD (PART)

SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ENV{ID USB_
INTERFACES}=="*:070122:*", TAG+="systemd", ENV{SYSTEMD WANTS}+="printer.
target"”, ENV{SYSTEMD USER WANTS}+="printer.target"

SUBSYSTEM=="udc", ACTION=="add", TAG+="systemd", ENV{SYSTEMD WANTS}+="usb-
gadget.target"

The rule is tagged with the systemd tag. That means whenever a bluetooth device

is detected, udevd will call systemd’s bluetooth.target. The bluetooth.target will
execute the /usr/libexec/bluetooth/bluetoothd binary, which will take care of the

rest of the bluetooth device handling. So, the complete sequence of udevd handling the

bluetooth device is as follows:

1)

2)

3)

4)

If a user has a bluetooth device connected to the system while
booting, it’s the kernel or drivers compiled in the kernel or
modules inserted later that will detect the bluetooth device and
register its object with /sys.

Later the kernel will create a device file in the /dev mount point.
After the device file creation, the kernel will send a uevent to
udevd.

udevd will refer to 1ib/udev/rules.d/99-systemd.rules
from initramfs and will call systemd. As per the tag, systemd is
supposed to handle the rest of it.

systemd will execute the bluetooth.target, which will execute
the bluetoothd binary, and the bluetooth hardware will be ready
to be used.

Of course, bluetooth is not the kind of hardware that is necessary at the time of the

boot. I have taken this example just for the ease of understanding.

So, we have reached up to systemd-udev.service. systemd will continue its booting

sequence and will execute dracut-pre-trigger.service. You can see the booting

sequence in Figure 7-23.

330

CHAPTER 7 SYSTEMD (PART)

systemd-journal.socket

v
dracut-cmdline.service

v
dracut-pre-udev.service

v
systemd-udevd.service

v
dracut-pre-trigger.service

Figure 7-23. The boot sequence covered so far

dracut-pre-trigger.service

systemd’s initramfs boot sequence will be broken (hooked) if the user has passed the
rd.break=pre-trigger dracut command-line parameter. You can see in Figure 7-24
that we have passed pre-trigger as an argument to the rd.break kernel command-line
parameter.

load_video

set gfx_payload=keep

insmod gzio

linux ($root) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-8f99%eacdf32e ro rd.break=pre-trigger_

initrd (Sroot) /boot/initramfs-5.3.16-300.fc31.x86_64. ing

Figure 7-24. The rd.break=pre-trigger kernel command-line parameter

It will drop us on a pre-trigger shell, which is just after starting the udevd service.
First let’s see how it drops on a pre-trigger shell.

cat usr/lib/systemd/system/dracut-pre-trigger.service | grep -v '#'
[Unit]

Description=dracut pre-trigger hook
Documentation=man:dracut-pre-trigger.service(8)
DefaultDependencies=no

Before=systemd-udev-trigger.service dracut-initqueue.service

331

CHAPTER 7 SYSTEMD (PART)

After=dracut-pre-udev.service systemd-udevd.service systemd-tmpfiles-setup-
dev.service

Wants=dracut-pre-udev.service systemd-udevd.service
ConditionPathExists=/usr/lib/initrd-release
ConditionDirectoryNotEmpty=|/1ib/dracut/hooks/pre-trigger
ConditionKernelCommandLine=|rd.break=pre-trigger

Conflicts=shutdown.target emergency.target

[Service]
Environment=DRACUT_SYSTEMD=1
Environment=NEWROOT=/sysroot
Type=oneshot
ExecStart=-/bin/dracut-pre-trigger
StandardInput=null
StandardOutput=syslog
StandardError=syslog+console
KillMode=process
RemainAfterExit=yes

KillSignal=SIGHUP

Please note the After, Before, and wants sections of the service unit file.
This service file will execute /bin/dracut-pre-trigger from initramfs if this
ConditionDirectoryNotEmpty=|/1lib/dracut/hooks/pre-trigger directory exists and
if the user has passed rd.break=pre-trigger as a command-line parameter.

[root@fedorab boot]# cat bin/dracut-pre-trigger
#!/usr/bin/sh

export DRACUT SYSTEMD=1
if [-f /dracut-state.sh]; then

. /dracut-state.sh 2>/dev/null
fi
type getarg >/dev/null 2>81 || . /lib/dracut-lib.sh
source_conf /etc/conf.d
make_trace_mem "hook pre-trigger
' 4+:komem'

1:shortmem’ '2+:mem' '3+:slab’

source_hook pre-trigger

332

CHAPTER 7 SYSTEMD (PART)

getarg 'rd.break=pre-trigger' 'rdbreak=pre-trigger' && emergency_shell -n
pre-trigger "Break pre-trigger"

udevadm control --reload »/dev/null 281 || :

export -p > /dracut-state.sh

exit 0

As you can see, it is checking the passed dracut command-line parameters
(rd.break=pre-trigger) through the getarg function. We saw how getarg works
earlier in this chapter. If the user has passed rd.break=pre-trigger, then it will call
the emergency_shell function with pre-trigger as a parameter passed to it. The
emergency_shell function is written in the dracut-1ib. sh file. This function will
provide us with the pre-trigger shell. Chapter 8 covers the procedure behind providing
an emergency shell.

As the pre-trigger name suggests, and as you can see in Figure 7-25, we have
stopped the booting sequence just before the udev triggers. Hence, the sda disk is not yet
available under dev.

Starti;“lg Dracut'Emrgencg Shell...
Warning: sdevsdisk/by-uuid- 6588b8f 1-7f37-4162-968c-8f99%eacdf32e does not exist

Generating “/run/initramfs/rdsosreport.txt"

Entering emergency mode. Exit the shell to continue.

Type " journalctl" to view system logs.

You might want to save “/run/initramfs/rdsosreport.txt"” to a USB stick or /boot
after mounting them and attach it to a bug report.

pre-trigger:/# ls sdevssda
1s: canmmot access 'sdevssda’: No such file or directory

Figure 7-25. The pre-trigger hook

This is because the udevadm trigger has not been executed yet. The service dracut-
pre-trigger.service executes only udevadm control --reload, which reloads the
udev rules. As shown in Figure 7-26, the service systemd-udev.service has been
started, but the systemd-udev-trigger service has not yet started.

333

CHAPTER 7 SYSTEMD (PART)

pre-trigger:-#t systemctl status systemd-udewd.service
* systemd-udewd .service - udev Kernel Device Manager
Loaded: loaded (-usr-librssystemd-systemssystemd-udewd.service: static: vendor preset: enabled)
fAictive: active (rumming) since Mon 2819-12-38 B4:48:22 UTC: 1min 3s ago
Docs: man:systemd-udevd.service(8)
man :udev(?)
Main PID: 553 (systemd-udewd)
Status: “Processing with 48 children at max"
Tasks: 1
Memory: 3.2M
CPU: 255ms
CGroup: rssystem.slicessystemd-udewd.service
L553 susr/libssystemd/systemd-udevd

Dec 38 84:48:22 localhost.localdomain systemd[1]: Started udev Kernel Device Manager.
pre-trigger:/#
pre-trigger:/# systemctl status systemd-udev-trigger.service
*» systemd-udev-trigger.service - udev Coldplug all Devices

Loaded: loaded (- usr-slibssystemd-ssystemssystemd-udev-trigger.service; static: vendor preset: enabled)

fAictive: inactive (dead)

Docs: man:udev(?)
man :systemd-udewd . service(8)

pre-trigger:#
pre-trigger:/# exit_

Figure 7-26. The pre-trigger hook

systemd-udev-trigger.service

Figure 7-27 shows the stage of booting we have reached.

systemd-journal.socket
I
v
dracut-cmdline.service

v
dracut-pre-udev.service

v
systemd-udevd.service

)
dracut-pre-trigger.service

v
systemd-udev-trigger.service

Figure 7-27. The booting sequence so far

334

CHAPTER 7 SYSTEMD (PART)

As we have seen, with pre-udev the /dev was not populated since the systemd-udevd.
service itself was not started. With pre-trigger, it's the same: /dev is not populated, but
the udevd service has started. The udevd service will create an environment to start/run the
various udev tools like udevadm. By using the environment provided by the udevd daemon,
as you can see in Figure 7-28, inside pre-trigger we will be able to execute the udevadm,
which we were not able to use at the pre-udev shell.

Startiﬁg Dracut-Energencg Shell...
Warning: sdevrdisk/by-uuid-/6588b8f1-7f37-4162-968c-8f99%eacdf32e does not exist

Generating “/run/initramfs/rdsosreport.txt"

Entering emergency mode. Exit the shell to continue.

Type “journalctl" to view system logs.

You might want to save “/runsinitramfs/rdsosreport.txt” to a USB stick or -boot
after mounting them and attach it to a bug report.

pre-trigger:/# ls sdevssda

Is: cannot access 'sdevssda’: No such file or directory
pre-trigger:/#t

pre-trigger:/# udevadm trigger --type=subsystems --action=add:
pre-trigger:/k Mounting Kermel Configuration File System...
[OK 1 Mounted Kernmel Configuration File System.

pre-trigger:/# ls sdevssda

1s: canmmot access 'sdevssda’: No such file or directory
pre-trigger: /i

pre-trigger:/# udevadm trigger --type=devices --action=add:

Figure 7-28. The pre-trigger hook

Asyou can see inside the pre-trigger switch, the sda device has not been created
yet. But since we have a udevadm environment ready, we can discover the devices
through it. As shown in Figure 7-29, we will first mount the kernel configuration
filesystem.

pre-trigger:/ # udevadm trigger --type=subsystems --action=add
Then we will trigger udevadm to add the devices.

pre-trigger:/ # udevadm trigger --type=devices --action=add

335

CHAPTER 7 SYSTEMD (PART)

:8: Direct-Access UWware, UMware Virtual S 1.8 P
Attached scsi generic sgl type B
[sdal 125829128 512-byte logical blocks: (64.4 GB/6O

175.7674981 scsi 32:
175.7698721 sd 32:8:
175.7784161 sd 32:8:
175.771153]1 e1088c B88B0:8b:088.8 ens192: renamed from eth8
175.7719841 =sd 32:8:8:8: [sdal Write Protect is off

175.7744221 sd 32:8:8:8: [sdal Cache data unavailable

175.7755191 =sd 32:8:8:8: [sdal Assuming drive cache: write through
175.7772791 fbB: switching to svgadrmfb from EFI UGA

[8:8
[8:8
[8:8
[

[

[

[

[

[175.777911]1 Console: switching to colour dummy device 88x25
i

[

[

P

[

[

re-trigger:/# [175.7781421 fbcon: svgadrmfb (fbB) is primary device
175.7852881 sda: sdal sdaZ sda3 sdad sdaS
175.7981281 sd 32:08:8:8: [sdal Attached SCSI disk
175.7924361 Console: switching to colour frame buffer device 128x48
re-trigger:-# [175.798533]1 [drm] Initialized vmugfx 2.15.8 20188784 for B888:80:8f .8 on minor B
0K 1 Found device UMware_Virtual_S 5.
0K 1 Reached target Initrd Root Device.

pre-trigger:/# ls -1 sdevssda

brw-rw---- 1 root disk 8, 8 Dec 38 89:32 rsdevssda
pre-trigger:/#

pre-trigger:/# ls -1 sdevwssda

sda sdal sda2 sda3 sda4 sdaS
pre-trigger:/# _

Figure 7-29. The pre-trigger hook

As you can see in Figure 7-29, the sda devices have been created. The same
commands will be fired by systemd through systemd-udev-trigger.service, which will
discover and create the storage device files under /dev.

cat usr/lib/systemd/system/systemd-udev-trigger.service | grep -v ‘#’

[Unit]

Description=udev Coldplug all Devices
Documentation=man:udev(7) man:systemd-udevd.service(8)
DefaultDependencies=no

Wants=systemd-udevd.service

After=systemd-udevd-kernel.socket systemd-udevd-control.socket
Before=sysinit.target

ConditionPathIsReadWrite=/sys

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/bin/udevadm trigger -type=subsystems -action=add
ExecStart=/usr/bin/udevadm trigger -type=devices -action=add

But as you can see in Figure 7-30, the same udevadm command will not be successful
in the pre-udev hook since the udev environment is missing.

336

CHAPTER 7 SYSTEMD (PART)

pre-udev:/# udevadm trigger --type=subsystems --action=add
pre-udev:/# udevadm trigger --type=devices --action=add
pre-udev:/# ls sdevssda -1

Is: canmmot access 'sdevssda’: No such file or directory

Figure 7-30. The udevadm in pre-udev hook

This is the importance of dracut-pre-trigger.service or of the pre-trigger hook.
The flowchart given in Figure 7-31 will help you understand the steps so far taken by
systemd inside initramfs. The flowchart will be even more understandable after reading

Chapter 8. I highly recommend revisiting this chapter after finishing Chapter 8.

Starts Journald
(systemd-journald.socket)

if

Ibin/dracut-cmdline rd.break=cmdline

Collects the command line parameter
(fusrflib/systemd/system/dracut-cmdline.service)

/oinfdracut-pre-udev

Starts udevd service
(Systemd-udevd.service)
(fusrilib/systemd/systemd-udevd)

U

PS1=#cmdline
PS1=#pre-udev
PS1=#pre-trigger Yes

/

(emergency_shell)
(Mbin/dracut-emergency)
BASH

start udev trigger service
(systemd-udev-trigger.service)
({fusr/binfuevadm trigger)

Yes
PS1=d#iswitch_root

(emergency_shell)
(/bin/dracut-emergency)
BASH

Isysrootto |
(exit the initramfs)

Figure 7-31. The flowchart

337

CHAPTER 7 SYSTEMD (PART)

local-fs.target

Asyou can see in Figure 7-32, we have reached the local-fs-target stage of booting.

systemd-journal.socket

v
dracut-cmdline.service

v
dracut-pre-udev.service

v
systemd-udevd.service

v

local-fs-pre.target dracut-pre-trigger.service
|
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
\ | | | /
A/

v

Figure 7-32. The booting sequence covered so far

So, systemd has reached up to local-fs.target. So far, systemd has been executing
services one after another only because storage devices were not ready. Since the
udevadm trigger was successful and storage devices have been populated, it’s time to
prepare the mount points, which will be achieved by local-fs.target. Before entering
into local-fs.target, it will make sure to run the local-fs.pre.target

cat usr/lib/systemd/system/local-fs-pre.target

[Unit]

Description=Local File Systems (Pre)
Documentation=man:systemd.special(7)
RefuseManualStart=yes

#icat usx/lib/systemd/system/local-fs.target

[Unit]

Description=Local File Systems
Documentation=man:systemd.special(7)
DefaultDependencies=no

338

CHAPTER 7 SYSTEMD (PART)

Conflicts=shutdown.target
After=local-fs-pre.target
OnFailure=emergency.target
OnFailureJobMode=replace-irreversibly

The systemd-fstab-generator will be navigated by local-fs.target.
man page - systemd.special

systemd-fstab-generator(3) automatically adds dependencies of type
Before= to all mount units that refer to local mount points for this target
unit. In addition, it adds dependencies of type Wants= to this target unit for
those mounts listed in /etc/fstab that have the auto mount option set.

The systemd-fstab-generator binary will be called from initramfs.
file usr/lib/systemd/system-generators/systemd-fstab-generator

usr/lib/systemd/system-generators/systemd-fstab-generator: ELF 64-bit LSB
pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /
1ib64/1d-1inux-x86-64.s0.2, BuildID[shal]=e16e9d4188e2cab491f551b5f703a5caa
645764b, for GNU/Linux 3.2.0, stripped

In fact, systemd runs all the generators at an early stage of the booting sequence.

1s -1 usr/lib/systemd/system-generators
total 92
-IWXT-XI-X. 1 root root 3750 Dec 21 12:19 dracut-rootfs-generator
-TWXr-xr-x. 1 root root 45640 Dec 21 12:19 systemd-fstab-generator
-TwXr-xr-x. 1 root root 37032 Dec 21 12:19 systemd-gpt-auto-generator

systemd-fstab-generator is one of them. The main task of systemd-fstab-
generator is to read the kernel command line and create systemd mount unit files under
the /tmp directory or under /run/systemd/generator/ (keep reading, and this all will
make sense). As you can see, it’s a binary, which means we need to check the C source
code of systemd to understand what it does. The systemd-fstab-generator takes either
no input or three inputs.

usr/lib/systemd/system-generators/systemd-fstab-generator /dev/sda5
This program takes zero or three arguments.

339

CHAPTER 7 SYSTEMD (PART)

Of course, the three inputs are the root filesystem name, filesystem type, and root
filesystem flag. While writing this book, the latest version of systemd is version 244, so we
have used this for the explanation here. The previously shown error message comes from
src/shared/generator.h.

vim systemd-244/src/shared/generator.h
57 /* Similar to DEFINE_MAIN_FUNCTION, but initializes logging and assigns
positional arguments. */

58 #define DEFINE MAIN GENERATOR FUNCTION(impl) \

59 _DEFINE_MAIN FUNCTION(\

60 ({ \

61 log setup generator(); \

62 if (argc > 1 8& argc != 4) \

63 return log error errno(SYNTHETIC
ERRNO(EINVAL), \

64 "This program takes zero

or three arguments."); \

65 1)

66 impl(argc > 1 ? argv[1] : "/tmp",

67 argc > 1 ? argv[2] : "/tmp",

The systemd-fstab-generator binary is made from src/fstab-generator/fstab-
generator.c.

vim systemd-244/sxc/fstab-generator/fstab-generator.c

868 static int run(const char *dest, const char *dest early, const char
*dest late) {

869 int r, r2 = 0, r3 = 0;

870

871 assert_se(arg_dest = dest);

872 assert_se(arg_dest late = dest late);

873

874 r = proc_cmdline parse(parse proc_cmdline item, NULL, 0);
875 if (r < 0)

340

876

877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

896
897
898
899
900
901
902
903
904

CHAPTER 7 SYSTEMD (PART)
log warning_errno(r, "Failed to parse kernel command
line, ignoring: %m");

(void) determine_root();

/* Always honour root= and usr= in the kernel command line if
we are in an initrd */
if (in_initrd()) {

r = add_sysroot mount();

12

add_sysroot_usr_mount();

I3
} else
r = add_volatile var();

add_volatile root();

/* Honour /etc/fstab only when that's enabled */

if (arg fstab_enabled) {
/* Parse the local /etc/fstab, possibly from the initrd */
r2 = parse fstab(false);

/* If running in the initrd also parse the /etc/fstab
from the host */
if (in_initrd())

13 = parse fstab(true);

else
13

generator enable remount fs service(arg dest);

return r < 0?2 r : r2 < 0 ? 12 : 13;

905 DEFINE MAIN GENERATOR FUNCTION(run);

341

CHAPTER 7 SYSTEMD (PART)

As you can see, first it parses the command-line parameters through the function
proc_cmdline parse.

root = root filesystem name
rootfstype = root filesystem type
rootflags = ro, rw or auto etc.

systemd-fstab-generator runs twice: when it is inside of initramfs and when it is
outside of initramfs. Once systemd comes out of initramfs (after mounting the user’s
root filesystem in sysroot), systemd-fstab-generator will collect the command-line
parameters for the usr filesystem (if it is a separate partition and if its entry is available in
etc/fstab).

'usr' filesystem name
'usr' filesystem type
'usr' filesystem flags

For ease of understanding, we will consider the following:

Inside of initramfs: Before mounting the user's root filesystem in /sysroot
Outside of initramfs: After mounting the user's root filesystem in /sysroot

So, the systemd-fstab-generator binary will collect the user’s root filesystem-
related command-line parameters when systemd is running inside initramfs, and it will
collect the usr filesystem-related command-line parameters when systemd is running
outside of initramfs. systemd is running inside or outside of initramfs will be checked
through the in_initrd function. The function is written in the file src/basic/util.c.
It’s interesting to check how it verifies whether it is inside or outside the initramfs

environment.

vim systemd-244/sxc/basic/util.c
54 bool in initrd(void) {

55 struct statfs s;

56 int r;

57

58 if (saved _in_initrd >= 0)

59 return saved in initrd;
60

342

CHAPTER 7 SYSTEMD (PART)

61 /* We make two checks here:

62 *

63 * 1. the flag file /etc/initrd-release must exist

64 * 2. the root file system must be a memory file system

65 *

66 * The second check is extra paranoia, since misdetecting an

67 * initrd can have bad consequences due the initrd

68 * emptying when transititioning to the main systemd.

69 */

70

71 r = getenv_bool secure("SYSTEMD IN INITRD");

72 if (r < 0 && r != -ENXIO)

73 log debug errno(r, "Failed to parse $SYSTEMD IN INITRD,
ignoring: %m");

74

75 if (r »= 0)

76 saved in initrd = r > 0;

77 else

78 saved_in_initrd = access("/etc/initrd-release"”, F_OK)
= 0 &&

79 statfs("/", &s) »= 0 &&

80 is_temporary fs(&s);

81

82 return saved_in_initrd;

83 }

It checks whether the /etc/initrd-release file is available. If this file is not present,
it means we are outside of initramfs. This function then calls the statfs function, which
will provide the filesystem details, as shown here:

struct statfs {
__fsword t f_type; /* Type of filesystem (see below) */
__fsword t f bsize; /* Optimal transfer block size */
fsblkent_t f blocks; /* Total data blocks in filesystem */
fsblkent_t f bfree; /* Free blocks in filesystem */
fsblkent_t f bavail; /* Free blocks available to
unprivileged user */

343

CHAPTER 7 SYSTEMD (PART)

fsfilent_t f files; /* Total file nodes in filesystem */
fsfilent_t f ffree; /* Free file nodes in filesystem */
fsid t f fsid; /* Filesystem ID */
__fsword_t f_namelen; /* Maximum length of filenames */
__fsword t f frsize; /* Fragment size (since Linux 2.6) */
_ fsword t f_flags; /* Mount flags of filesystem
(since Linux 2.6.36) */

__fsword t f spare[xxx];

/* Padding bytes reserved for future use */

};

Then it calls the is_temporary fs() function, which is written inside /src/basic/
stat-util.c.

190 bool is temporary fs(const struct statfs *s) {

191 return is fs type(s, TMPFS_MAGIC) |
192 is_fs_type(s, RAMFS_MAGIC);
193 }

As you can see, it checks whether the root filesystem has a ramfs magic number
assigned to it. If yes, then we are inside initramfs. In our case, we are inside the initramfs
environment, so this function will return true and will proceed further from src/fstab-
generator/fstab-generator.c to create only the root filesystem’s - .mount (sysroot.
mount) unit files. If we had been outside of initramfs (after mounting sysroot with the
user’s root filesystem), it would have created a - .mount unit file for the usr filesystem. In
short, first it checks if we are inside initramfs. If we are, then it creates the mount unit file
for the root filesystem, and if we're outside, then it creates it for the usr (if it is a separate
filesystem) filesystem. To see this in action, we will drop ourselves in the switch root
(hook) stage so that we are able to run the systemd-fstab-generator binary manually.

1) FirstIhave deleted the /tmp directory contents. This is because
the fstab generator makes the mount unit files inside /tmp.

2) Runthe systemd-fstab-generator binary, and as you can see in
Figure 7-33, it has created a couple of files in /tmp.

344

CHAPTER 7 SYSTEMD (PART)

switch_root:/# rm -rf /tmp/

switch_root:/#

switch_root:/#t 1ls stmp

switch_root:/#

switch_root:/# usr/libs/systemd/system-generators/systemd-fstab-generator
switch_root:/#

switch_root:/#t ls stmp -1

total 8

druxr-xr-x 2 root root 8 Dec 38 18:55 initrd-root-device.target.d
druwxr-xr-x 2 root root 8 Dec 38 18:55 initrd-root-fs.target.requires
-rw-r--r-- 1 root root 358 Dec 38 18:55 sysroot.mount

-rw-r--r-- 1 root root 632 Dec 38 18:55 systemd-fsck-root.service
switch_root:/#

Figure 7-33. The systemd-fstab-generato0072

3) Ithas created a sysroot.mount unit file. As the name suggests,
it has been created to mount the user’s root filesystem. The unit
file has been created by reading /proc/cmdline. Please refer to
Figure 7-34 to see the contents of sysroot.mount file.

switch_root :/tmpkt cat sysroot.mount
Automatically generated by systemd-fstab-generator

[Unit]

SourcePath=/procscmdline

Documentation=man:fstab(5) man:systemd-fstab-generator(8)
Def aultDependencies=no

Before=initrd-root-fs.target

Requires=systemd-fsck-root .service

Af ter=systemd -f sck-root . service

[Mount 1

Where=ssysroot

What=rsdev.disk -by-uuid-6588h8f 1-7f37-4162-968c-Bf 99eacdf32e

Uptions=ro

switch_root ;- tmph

switch_root:/tmp#t blkid

sdevssrd: UUID="20819-18-23-23-21-29-808" LABEL="Fedora-WS-Live-31-1-9" TYPE="is09668" PTUUID="6f869649" PTTYPE="dos"
sdevssdal: UIID="FECA-BEDA" TYPE="ufat" PARTLABEL="EFI System Partition" PARTUUID="557553aa-f11f -4d67-adc9-68944e3d3c33"”
sdevssdaZ: UUID="ccba?leB-d67a-4793-bIbB-21557732cbeB"” TYPE="ext4" PARTUUID="b49bdS62Z-78F9-4477-a8d3-B143fB7eBIeb"
sdevssdad: UUID="C27C4EBCTCADFC23" TYPE="ntfs" PARTLABEL="Basic data partition" PARTUUID="be?e9e@1-b172-42f5-b95d-he3?8e6a2ca3"
sdevssdaS: UUID="6580bBF 1-7f 37-4162-960c-Bf 99eacdf 32Ze" TYPE="ext4" PARTUUID="a56B8e03e-8702-4cbb-aB8b-B5ec2BISor4?"
sdewssda3d. PARTLABEL="Microsol't reserved partition™ PARTUUID="4fbHacH/-ca4i-41cY-Y1Hb-e3<Ibchdbl d™

switch_root: tmph _

Figure 7-34. The sysroot.mount file
The root filesystem will be mounted from sda5 (by using the UUID) to the sysroot
directory.

4) Check the requires section of the sysroot.mount unit file. It
says systemd-fsck-root.service has to be executed first, before
mounting the root filesystem. Figure 7-35 shows the systemd-
fsck-root.service file.

345

CHAPTER 7 SYSTEMD (PART)

switch_root: tmp# cat systemd-fsck-root.service
Automatically generated by systemd-fstab-generator

[Unit]

Description=File System Check on sdevsdisk by-uuid 6588b8f 1-7737-4162-968c-8f 99eacdf 32e

Documentat ion=man:systemd-fsck-root.service(8)

DefaultDependencies=no

BindsTo=dev-d isk-bysx2duu id-6588b8F 1%\Ed? 372d 416282d 968\ x2dBF I9eacdf 32e . device

Conf licts=shutdown.target

After=initrd-root-device.target local-fs-pre.target dev-disk-bysxZduuid-6580b81 1%Ed 7T IPN=2d416252d968cN\=2d8] 9eacdl Ize . device
Before=shutdown.target

[Servicel

Type=oneshot

Rema inAf terExit-ues

ExecStart=susr/libssystemd systemd-fsck sdevsdisk-by-uuid-6588b81 1-7f37-4162-968c -8 99eacdl I2e
TimeoutSec=8

switch_root: tmpn _

Figure 7-35. The systemd-fsck-root.service file contents

So while booting, if you are inside initramfs, then systemd-fstab-generator will
generate the mount unit files for the user’s root filesystem, and the respective fsck
service file will also be generated.

At the end of the initramfs booting sequence, systemd will refer to these files from
the /tmp directory, will perform the fsck first on a root device, and will mount the root
filesystem on sysroot (inside initramfs); eventually switch root will be performed.

Now you must understand that though the binary name is systemd-fstab-generator,
it does not really create the /etc/fstab file. Rather, its job is to create the systemd mount
units for root (when inside initramfs) and usr (when outside of initramfs) at /tmp or inside
the run/systemd/generator/ directories. This system has only the root mount point, so it
created the systemd unit files only for root filesystem. Inside initramfs, it calls add_sysroot
mount for mounting the user’s root filesystem. Once it is mounted, the root filesystem
systemd calls the add_sysroot_usr_mount function. These functions call the add_mount
named function, which in turn makes the systemd mount unit files. The following is a
snippet of the add_mount function from src/fstab-generator/fstab-generator.c

vim systemd-244/sxc/fstab-generator/fstab-generator.c

341 r = unit_name_from_path(where, ".mount", &name);

342 if (r < 0)

343 return log error errno(r, "Failed to generate unit
name: %m");

344

345 r = generator open_unit file(dest, fstab_path(), name, &f);

346 if (r < 0)

347 return r;

348

349 fprintf(f,

346

CHAPTER 7 SYSTEMD (PART)

350 "[Unit]\n"
351 "SourcePath=%s\n"
352 "Documentation=man:fstab(5) man:systemd-fstab-
generator(8)\n",
353 source);
354
355 /* All mounts under /sysroot need to happen later, at initrd-
fs.target time. IOW, it's not
356 * technically part of the basic initrd filesystem itself, and
so shouldn't inherit the default
357 * Before=local-fs.target dependency. */
358 if (in_initrd() 8& path_startswith(where, "/sysroot"))
359 fprintf(f, "DefaultDependencies=no\n");

The current system has only a root partition. To help you understand this even better,
here I have prepared a test system that has root, boot, usr, var, and opt as separate

filesystems:
UUID = f7ed74b5-9085-4f42-a1c4-a569f790fdad / ext4 defaults
UUID = 06609f65-5818-4aee-a9c5-710b76b36c68 /boot ext4 defaults

I O N =
NN NN R

UUID = 68fa7990-edf9-4a03-9011-21903a676322 /opt ext4 defaults
UUID = 6fa78ab3-6c05-4a2f-9907-31be6d2a1071 /ust ext4 defaults
UUID = 9c721a59-b62d-4d60-9988-adc8ed9e8770 /var ext4 defaults

We will drop ourselves in the pre-pivot shell (which we have not discussed yet) of
initramfs. Figure 7-36 shows that we have passed the rd.break=pre-pivot command-
line parameter to the kernel.

load_video

set gfx_payload=keep

insmod gzio

linux ($root)/umlinuz-5.3.7-3A1.fc31.x86_64 root=UUID=f7ed74b5-9885-4f42-alcd-\
a569f798fdad ro rd.break=pre-pivot_

initrd ($root)/initramfs-5.3.7-3¥1.1c31.xB6_64. img

Figure 7-36. The kernel command-line parameter

347

CHAPTER 7 SYSTEMD (PART)

Asyou can see in Figure 7-37, in the pre-pivot hook, the root filesystem will be
mounted along with the usr filesystem since the pre-pivot hook stops the booting
sequence after mounting the user’s root filesystem on sysroot. But opt, var, and boot
will not be mounted.

pre-pivot:/# ls /sysroot/

@System.solv boot etc lib lost+found mnt proc run srv tmp wvar
bin dev home 1ib64 media opt root sbin sys usr
pre-pivot: 8

pre-pivot:/#t ls /tmp -1

total 8

pre-pivot:/#

pre-pivot:/# 1Is /sysroot/boot/

pre-pivot:/#

pre-pivot:/# 1Is /sysroot/usr/

bin games include 1lib 1ib64 libexec local lost+found sbin share src tmp
pre-pivot:/#

pre-pivot:/# ls ssysroot-opt/

pre-pivot:/#

pre-pivot:/# ls /sysroot- var/

pre-pivot:/#

pre-pivot:/#

Figure 7-37. The pre-pivot hook

Even if you run systemd-fstab-generator, you will find that only the usr and root
mount unit files will be created. You can see the systemd-fstab-generator outputin
Figure 7-38.

pre-pivot:/# usr/libs/systemd/system-generators/systemd-fstab-generator
pre-pivot: ¢

pre-pivot:/# ls /tmps -1

total 12

druxr-xr-x 2 root root 8 Dec 31 B4:53 initrd-fs.target.requires
dria-xr-x 2 root root 8 Dec 31 84:53 initrd-root-device.target.d
driwxe-xr-x 2 root root 8 Dec 31 84:53 initrd-root-fs.target.requires
-rw-r--r-- 1 root root 515 Dec 31 B4:53 sysroot-usr.mount

-rw-r--r-- 1 root root 358 Dec 31 B4:53 sysroot.mount

-rw-r--r-- 1 root root 632 Dec 31 B4:53 systemd-fsck-root.service
pre-pivot:/#

Figure 7-38. The systemd-fstab-generator in pre-pivot hook

This proves that in an initramfs environment, only root and usr will be mounted.
The rest of the mount points will be mounted after initramfs or after switching to root.
Since the var filesystem is not mounted yet, the journalctl logs will be maintained

348

CHAPTER 7 SYSTEMD (PART)

from the /run filesystem, and as we know, this is a temporary filesystem. This clearly

says that inside the initramfs environment, you cannot access the permanent logs

of journald, which are at /var/log. Please refer to Figures 7-39, 7-40, and 7-41 to

understand this better.

pre-pivot:s#t 1s ssysrootsvars
pre-pivot: i

pre-pivot:s# ls /runslog/ journal Beeb43ddc61945cBb5BcZf 15b7?76f 626-system. journal -lh
L S + 1 root systemd- journal 8.8M Dec 31 85:83 /runslogrs journal/Beeb43ddc61945cBb58c2f 15b?76F6

Zbrssystem. journal
pre-pivot: i
pre-pivot:s# journalctl

Figure 7-39. The journalctl command in pre-pivot hook

-- Logs begin at Tue 2H19-12-31 B5:83:

31
31
31

a5
a5
a5

183:29
:83:29
:83:29

localdomain
localdomain
localdomain

localhost.
localhost.
localhost.

Dec
Dec
Dec

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

31
31
31
31
31
31
31
31

a5
a5
a5
a5
a5
a5
A5
85

:a3
183
(B3
H:EH
183
183
:83:
183

:29
:29

23
29

129
129

29

129

localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.

localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain

31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31

a5
as
as
45
B5
a5
a5
a5
a5
a5
85
a5
a5
a5
as
85
a5
as
a5
a5
a5
a5

:B83:
(A3:29
'A3:29
:@3:29
‘B3:29
(A3:29
(A3:29
(A3:29
'A3:29
:@3:29
B3:29
‘A3:29
(A3:29
:@3:29
1A3:29
:83:29
1@3:29
(A3:29
:A3:29
:@3:29
‘B3:29
1@3:29
Dec 31 B5:83:29
Dec 31 B85:83:29
lines 1-36

29 localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain

localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

Figure 7-40.

29 UTC,
kernel:
kernel:
kernel:
kernel:
kernel :
kernel:
kernel:
kernel:
kernel:
kernel :
kernel:
kernel:
kernel :
kernel:
kernel :
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel :
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

end at Tue 2819-12-31 B5:83:31 UTC. --

Linux version 5.3.7-381.7fc31.xB6_64 (mockbuild@bkernek
Command line: BOOT_IMAGE=(hdB,msdosl) umlinuz-5.3.7-3
Disabled fast string operations

xB6/fpu: Supporting XSAVE feature BxBB1: 'xB? floating
xB6-fpu: Supporting XSAVE feature B:xBB2: 'SSE registely
xBb-fpu: Supporting XSAVE feature BxBA4: 'AVX registel
xB6fpu: Supporting XSAVUE feature BxBE8: 'MPX bounds Y
xB6fpu: Supporting XSAVE feature BxB18: 'MPX CSR'
xB6-fpu: Supporting XSAUE feature BxB28: 'AUX-512 opl
xB6/fpu: Supporting XSAVE feature BxB48: 'AUX-512 Hi2
xBb-fpu: Supporting XSAVE feature BxB88: 'AUX-512
x*B6-fpu: xstate_offsetlZ2]: 576, xstate_sizes[Z2]: 256
xBb-fpu: xstate_offsetl3]: 832, xstate_sizes[3]: 64
#*Bofpu: xstate_offsetl4]: 896, xstate_sizes[4]1: 64
»*Bo-fpu: xstate offset(S]1: 968, xstate_sizes[5]1: 64
xBb-fpu: xstate_offsetlbl: 1824, xstate_sizeslbl: 512
xBbfpu: xstate_offset[?1: 1536, xstate_sizes[?7]1: 1824

xB6,fpu: Enabled xstate features Bxff, context size if
BI0S-provided physical RAM map:

BIDS-e8268: [mem BxHABABBRARBABENAAL-BxHBABBABAERBAYeLI I
BI0S-e828: [mem BxHBA0BBABBAB9ecHB-BxHBA00BBBRBAILTT I
BIDS-eB828: Imem BxHHBHBEHABBBdCHEE-BxBHEEBRBBBAATTTT T)
BIDS-e828: [mem BxABABBARABA180BAR-BxABAABABBbI ecl 11}
BI0S-e828: [mem BxHBBA0BBBBLI edBBAB-B:x000008BBbf ef ef £ ¥
BI0S-e828: [mem BxHBHEBBBBBLE ef fBAB-B:HBA088BBbEef £ 111
BIDS-eB28: [mem Bx0ABBBBABLE fOAABA-BxBABABBABLIF {111
BIDS-e828: [mem Bx00006606fABBAEARE-BxB00860BBF 711111
BIDS-e828: [mem BxABHBABABE ecHBBRB-BxBHBBBABBI ecBE £ 1)
BI0S-e828: [mem BxHBABBBERBTecBABAB-BxABAABABBT ceBAf {1
BI0S-e828: [mem BxHBB0B0BBLTfe0BAB-B:x0000008B1 {111
BI0S-e828: [mem BxHBHBBBR186060B08-B:xH80008B14F b F 111 Yy
NX (Execute Disable) protection: active

SMBIOS 2.7 present.

DMI: UMware, Inc. Uware Virtual Platform/448BX Desktf
Hypervisor detected: UWware

The logs provided by journalctl from /run

349

CHAPTER 7 SYSTEMD (PART)

pre-pivot:/#t rm -rf srun/log/ journal- Beeb43ddc61945cBb58cZf 15b776f626-,system. journal
pre-pivot /i

pre-pivot:/#t journalctl

No journal files were found.

-- No entries --

pre-pivot /i

Figure 7-41. The journalctl behavior in pre-pivot hook

Did you notice one thing? The dracut-cmdline service is reading the kernel
command-line parameters, and the usr-related command-line parameters are not
available in /proc/cmdline. So, how does systemd manage to mount the usr filesystem?
Also, at the time of initramfs generation, dracut does not copy the etc/fstab file in it.

lsinitrd | grep -i fstab

-Tw-r--r-- 1 root root 0 Jul 25 03:54 etc/fstab.empty
-TwXr-xr-x 1 root root 45640 Jul 25 03:54 usr/lib/systemd/system-
generators/systemd-fstab-generator

lsinitxd -f etc/fstab.empty
<no_output>

Then how does systemd manage to mount the usr filesystem inside initramfs when it
does not have an entry of it?

When systemd-fstab-generator runs during local-fs.target, it makes the
mount unit files only for root; then it continues the booting sequence and mounts the
root file system on sysroot. Once the root filesystem is mounted, it reads the usr entry
from /etc/sysroot/etc/fstab and makes a usr.mount unit file and at the end mounts
it. Let’s cross-verify this understanding:

1) Drop in the pre-pivot hook.

2) Delete the /etc/fstab from the mounted /sysroot.
3) Runthe systemd-fstab-generator.

4) Refer to Figure 7-42.

Since the root filesystem name will be fetched by dracut-cmdline from proc/
cmdline, systemd-fstab-generator will make the sysroot.mount. But since the fstab
file is missing inside sysroot, it will consider the usr as an separate partition that is not
available, and it will skip creating the usr.mount unit file even though usr is a separate
mount point.

350

CHAPTER 7 SYSTEMD (PART)

pre-pivot:/# mv /sysrootsetc/fstab ~

pre-pivot:/# ls /tmp/

pre-pivot:/## susr/libssystemd/system-generators/systemd-fstab-generator
pre-pivot /4

pre-pivot:/#t Is stmps -1

total 8

druxr-xr-x 2 root root 8 Dec 31 85:59 initrd-root-device.target.d
druxr-xr-x 2 root root 8 Dec 31 85:59 initrd-root-fs.target.requires
-ru-r--r-- 1 root root 358 Dec 31 B5:59 sysroot.mount

-rw-r--r-- 1 root root 632 Dec 31 B5:59 systemd-fsck-root.service
pre-pivot: #

Figure 7-42. The systemd-fstab-generator behavior

What if you want to have opt- and var-like separate mount points available inside
/sysroot or you want them in an initramfs environment? systemd’s man page has an

answer for this, shown here:
Xx-initrd.mount

An additional filesystem to be mounted in the initramfs. See the initrd-
fs.target description in systemd. special(7).

initrd-fs.target

systemd-fstab-generator(3) automatically adds dependencies of type
Before=to sysroot-usr.mount and all mount points found in /etc/fstab
that have x-initrd.mount and not have the noauto mount options set.

So, we need to use the x-initrd.mount [systemd.mount] option in /etc/fstab. For
example, here I have enabled the var mount point inside initramfs through the same
pre-pivot environment:

pre-pivot:/# vi /sysroot/etc/fstab

UUID=f7ed74b5-9085-4f42-a1c4-a569f790fdad / ext4 defaults 1 1
UUID=06609165-5818-4aee-a9c5-710b76b36c68 /boot ext4 defaults 1 2
UUID=68fa7990-edf9-4a03-9011-21903a676322 /opt ext4 defaults 1 2
UUID=6fa78ab3-6c05-4a2f-9907-31be6d2a1071 /usr ext4 defaults 1 2
UUID=9c721a59-b62d-4d60-9988-adc8ed9e8770 /var ext4 defaults,x-initrd.
mount 1 2

Asyou can see in Figure 7-43, the var mount unit file has been created, but fsck is
available only for the root filesystem. Please refer to the flowchart in Figure 7-44 to help
you understand this better.

351

CHAPTER 7 SYSTEMD (PART)

pre-pivot:s# usrslibssystemdssystem-generators/systemd-fstab-generator
pre-pivot:/g

pre-pivot:/# 1s stmps -1

total 16

drwa-xr-x 2 root root 8 Dec 31 88:14 initrd-fs.target.requires
drwxr-xr-x 2 root root 8 Dec 31 88:14 initrd-root-device.target.d
drwa-xr-x 2 root root 8 Dec 31 BB8:14 initrd-root-fs.target.requires
-rw-r--r-- 1 root root 515 Dec 31 B88:14 sysroot-usr.mount

-ru-r--r-- 1 root root 547 Dec 31 B8B8:14 sysroot-var.mount

-rw-r--r-- 1 root root 358 Dec 31 88:14 sysroot.mount

-rw-r--r-- 1 root root 632 Dec 31 B8:14 systemd-fsck-root.service
pre-pivot: #

pre-pivot:/# cat /tmprssysroot-var.mount

Automatically gemerated by systemd-fstab-generator

[Unit]

SourcePath=/sysroot-etc/fstab

Documentation=man:fstab(5) man:systemd-fstab-generator(8)

DefaultDependencies=no

Before=initrd-fs.target
Requires=systemd-fsck@dev-disk-by\»xZduuid-9c?7Z21a59%\>2ZdbbZd\x2d1d68\x2d993BB\ZdadcBedeB?78.service
Af ter=systemd-fsck@dev-disk-by\xZduuid-9c?21a59\x2dbb2d\x2d4d68\x2d998B\x2dadcBed9eB?78 .service

[Mountl

#t Canonicalized from ~var

Where=ssysroot var

What=sdevrdisk by-uuid,9c?21a59-bbZ2d-4d68-9988-adcBed9e8778
Type=ext4

Options=defaults,x-initrd.mount

pre-pivot:/# _

Figure 7-43. The working of systemd-fstab-generator

local-fs-pre.target

{

local-fs.target

!

systemd-fstab-generator

v

fusr/lib/systemd/system-generators/systemd-fstab-generator

srclfstab-generator/fstab-generator.c *
1) parse_proc_cmdline
2)in_initrd() Y
srcibasiclutil.c
fetclinitrd_release

switch_root> Is /tmp
sysroot.mount add_sysroot_mount()
systemd-fsck-root.service d_sysroot_usr_mount()

Figure 7-44. The flowchart

352

CHAPTER 7 SYSTEMD (PART)

swap.target

Asyou can see in Figure 7-45, we have reached the swap.target stage of booting.

systemd-journal.socket

v
dracut-cmdline.service
v
dracut-pre-udev.service
v
systemd-udevd.service

v

local-fs-pre.target dracut-pre-trigger.service
|
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
| | | | |
\ I | | /
A/

v

Figure 7-45. The booting sequence so far

This will execute parallel to local-fs.target. local-fs-.target makes the mount
points for root and usr, whereas swap.target makes the mount unit files for the swap
device. Once the root filesystem mount file is ready, sysroot is mounted according to it.
systemd-fstab-generator will read the fstab, and if the swap device entry is present,
it will make the swap.mount unit file. That means the swap.mount file will be created
only after switching into the user’s root filesystem (switch_root into sysroot).

The swap.mount will not be created at this stage.

dracut-initqueue.service

This service creates the actual root, swap, and usr devices. Let’s understand this with an
example.

With the pre-udev hook, we have seen that sda-like devices are not available.
Neither udevadm command will work as the udevd service itself is not started yet. Refer to
Figure 7-46.

353

CHAPTER 7 SYSTEMD (PART)

pre-udev:/# ls rsdevssda -1

Is: cannot access 'sdevssda': No such file or directory
pre-udev:/#

pre-udev:/# udevadm trigger

pre-udev:/#

pre-udev:/# ls sdevrssda -1

ls: cannot access 'sdevssda’: No such file or directory
pre-udev:/#

pre-udev:/#f _

Figure 7-46. The working of the pre-udev hook

With the pre-trigger hook, the sda device is not created, but the udevd service
has been started; hence, as you can see in Figure 7-47 and Figure 7-48, you can use a
udevadm-like tool, which will create the sda device under /dev, but it will not create 1vm
or raid-like devices on it. Such devices are also called dm (device mapper) devices. So,
the pre-trigger service will not be able to make the device files for the root if it is on
lvm, and therefore the devices like /dev/fedora_localhost-1live/ will not be created.

Startiﬁg Dracut-Emergencg Shell...
Warning: ~devrdisk/by-uuid- 6588b8f1-7f37-4162-968c-8f99%eacdf32e does not exist

Generating “/run/initramfs/rdsosreport.txt”

Entering emergency mode. Exit the shell to continue.

Type “journalctl" to view system logs.

You might want to save “/runsinitramfs/rdsosreport.txt” to a USB stick or ~boot
after mounting them and attach it to a bug report.

pre-trigger:/# ls sdev/sda

Is: cannot access 'sdevssda’: No such file or directory
pre-trigger:/#t

pre-trigger:/# udevadm trigger --type=subsystems --action=add:
pre-trigger:/k Mounting Kermel Configuration File System...
[OK 1 Mounted Kermel Configuration File System.

pre-trigger:/#t ls sdevssda
1s: canmmot access 'sdevrssda’: No such file or directory

pre-trigger:/#
pre-trigger:/# udevadm trigger --type=devices --action=add:

Figure 7-47. The pre-trigger hook

354

CHAPTER 7 SYSTEMD (PART)

[175.7674981 scsi 32:8:8:8: Direct-Access Ware, WUware Virtual 3 1.8 P
[1?75.769872]1 =d 32:8:8:8: Attached scsi generic sgl type B

[175.7784161 sd 32:8:8:8: [sdal 125829128 512-byte logical blocks: (64.4 GB/68
[175.771153] e1888c B8060:8b:88.8 ensl192: renamed from ethd

[175.771984]1 sd 32:8:8:8: [sdal Write Protect is off

[175.774422]1 sd 32:8:8:8: [sdal Cache data unavailable

[175.775519] sd 32:8:8:8: [sdal Assuming drive cache: write through

[1?75.7772791 fbB: switching to svgademfb from EFI UGA

[175.777911]1 Console: switching to colour dummy device BBx25

pre-trigger:-#t [175.7781421 fbcon: svgademfb (fbB) is primary device

[175.785288]1 sda: sdal sdaZ sda3 sdat sda5

[175.798128]1 sd 32:8:8:8: [sdal Attached SCSI disk

[175.7924361 Console: switching to colour frame buffer device 128x48
pre-trigger:/# [175.7985331 [drm] Initialized wwugfx £.15.8 28188784 for B888:88:8f .8 on minor B
[0K 1 Found device Wware_Virtual_S 5.

[OK 1 Reached target Initrd Root Device.

pre-trigger:/# ls -1 sdevrssda

bru-rw---- 1 root disk 8, 8 Dec 38 89:32 ,devrsda

pre-trigger:/#

pre-trigger:/# ls -1 rsdevs/sda

sda sdal sdaZ2 sdad sda4 sdaS

pre-trigger:/# _

Figure 7-48. The sda devices have been created under the pre-trigger hook

The service dracut-initqueue.service has not started yet. Let’s see first what
exactly the unit file says.

cat usr/lib/systemd/system/dracut-initqueue.service | grep -v '#'

[Unit]

Description=dracut initqueue hook
Documentation=man:dracut-initqueue.service(8)
DefaultDependencies=no
Before=remote-fs-pre.target
Wants=remote-fs-pre.target
After=systemd-udev-trigger.service
Wants=systemd-udev-trigger.service
ConditionPathExists=/usr/lib/initrd-release
ConditionPathExists=|/1lib/dracut/need-initqueue
ConditionKernelCommandLine=|rd.break=initqueue
Conflicts=shutdown.target emergency.target

[Service]
Environment=DRACUT_SYSTEMD=1
Environment=NEWROOT=/sysroot
Type=oneshot

355

CHAPTER 7 SYSTEMD (PART)

ExecStart=-/bin/dracut-initqueue
StandardInput=null
StandardOutput=syslog
StandardError=syslog+console
KillMode=process

RemainAfterExit=yes
KillSignal=SIGHUP

Asyou can see, this service is simply starting the /bin/dracut-initqueue script, and

if we open this script, you will find it is actually executing the udevadm settle command

with a timeout value of 0.

vim bin/dracut-initqueue
22 while :; do

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

356

check finished && break
udevadm settle --exit-if-exists=$hookdir/initqueue/work
check _finished && break

if [-f $hookdir/initqueue/work]; then
m -f -- "$hookdir/initqueue/work"
fi

for job in $hookdir/initqueue/*.sh; do
[-e "$job"] || break
job=%$job . $job
check finished && break 2

done

udevadm settle --timeout=0 >/dev/null 2>81 || continue
for job in $hookdir/initqueue/settled/*.sh; do

[-e "$job"] || break
job=$job . $job

CHAPTER 7 SYSTEMD (PART)

45 check finished && break 2

46 done

47

48 udevadm settle --timeout=0 >/dev/null 2581 || continue
49

50 # no more udev jobs and queues empty.

51 sleep 0.5

This will eventually run the 1lvm_scan command from 1ib/dracut/hooks/
initqueue/timeout/. Note the root and rd.break kernel command-line parameters
that are passed in Figure 7-49.

load_video

set gfx_payload=keep

insmod gzio

linux ($root)s/vmlinuz-5.3.7-381.fc31.x86_64 root=/dev/mapper/fedora_localhost-\
-live-root ro resume=/dev/mapper/fedora_localhost--live-swap rd. lvm. lv=fedora_™
localhost-livesroot rd. lum. lu=fedora_localhost-lives/suap rd.break=initqueue
initrd ($root)/initramfs-5.3.7-301.fc31.xB6_64. img

Figure 7-49. The kernel command-line parameters
Asyou can see in Figure 7-50, the 1lvm_scan command is written in one of the files.

initqueue:/# cat /libsdracut/hooks/initqueue/timeout/51-1um_scan.sh
[-e "Sjob" 1 && rm -f -- "§ job"

ssbin/lum_scan --partial

initqueue:/#

initqueue:/#t cat /libsdracut/hooks/initqueuessettled/lum_scan.sh

[-e "Sjob"” 1 && rm -f -- "§ job"

/sbin/lum_scan

initqueue:/#

Figure 7-50. The initqueue hook

So, here we have two options: either we can just execute /bin/dracut-initqueue or,
as shown in Figure 7-51, we can execute the lvm_scan command either from the pre-
trigger hook or from the initqueue hook.

357

CHAPTER 7 SYSTEMD (PART)

initqueue:# 1s sdevssda

sda sdal sda2

initqueue:

initqueue:/# ls sdevsfedora_localhost-live -1

Is: canmmot access 'rsdevsfedora_localhost-live': No such file or directory

initqueue:4#

initqueue:/# lum_scan

Scanning devices sda2 for LUM logical wolumes fedora_localhost-livesroot fedora_localhost-1iversswap
inactive 'sdev/fedora_localhost-livesswap' [2.28 GiB]1 inherit

inactive 'sdewfedora_localhost-livesroot’ [18.79 GiB] inherit

[57.9358981 audit: type=1138 audit(1577811317.568:11): pid=1 uid=B auid=4294967295 ses=4294967295
sub j=kernel msg='unit=systemd-hibernate-resume@dev-mapper-fedora_localhost\x2d\x2dlivesx2dswap comm
="systemd"” exe="susr/librssystemd-/systemd” hostname=7 addr=7 terminal=? res=success’

[57.9368631 audit: type=1131 audit(1577811317.568:12): pid=1 uid=B auid=4294967295 ses=4294967295
sub j=kernel msg="unit=systemd-hibernate-resume@dev-mapper-fedora_localhost\x2d\x2dlive\x2dswap comm
="systemd" exe="susr/librssystemd-/systemd” hostname=7 addr=7 terminal=7 res=success’

[57.9585181 audit: type=1138 audit(1577811317.591:13): pid=1 uwid=B auid=4294967295 ses=4294967295
sub j=kernel msg="unit=systemd-tmpfiles-setup comm="systemd" exe="rusrrlibr/systemd systemd” hostname
=7 addr=7 terminal=7 res=success’

initgueue : #

initqueue:/# ls sdevsfedora_localhost-lives -1

total ¥

Iruwawarwx 1 root root 7 Dec 31 16:55 root -> ...dm-8

Irwxrwxrwx 1 root root ? Dec 31 16:55 swap -> ..sdm-1

initqueue:/#

Figure 7-51. The lvm_scan command in the initqueue hook

Since we have discussed up to the LVM part of initramfs, it is the right time to see one
of the most common and crucial “can’t boot” issue.

“Can’t Boot” Issue 7 (systemd + Root LVM)

Issue: We changed the standard root device name from /dev/mapper/fedora_
localhost--live-root to /dev/mapper/root_vg-root. We made the appropriate entry
in /etc/fstab, but after rebooting, the system is not able to boot. Figure 7-52 shows what
is visible on the screen.

4.185237]1 [drm] Initialized gx]1 8.1.8 28128117 for BB6A:608:81.8 on minor @
4,1881841 fbcon: gxldemfb (FbA) is primary device
4.193643] Console: switching to colour frame buffer device 128x18
4.2686916] gx] BE60:60:61.8: fbO: gxldrmfd frame buffer device
4.222529] pocieport BBAB:BB:BZ.6: pciehp: Failed to check link status
5.817631]1 IPv6: ADDRCONF (NETDEV_CHANGE): enpls8: link becomes ready
[TIME 1 Timed out waiting for device sdev/mapper.fedora_localhost--1ive-swap.
[DEFENDT Dependency failed for Resume from hibernation using device sdevmapper-fedora_localhost--1ive-swap.
[93.485153]1 audit: type=1138 audit(1577942489.698:18): pid=1 uid=0 auid=4294967295 ses=4294967295 subj=kernel msg="unit=syste
md-tmpfl iles-setup comm="systemd" exe="rusrslibssystemdssystemd” hostname=7 addr=7 terminal=7 res=success’
0K Reached target Local File Systems (Pre).
0K Reached target Local File Systems.

Starting Create Ublatile Files and Directories...
OK Started Create Uolatile Files and Directories.
0K Reached target System Initialization.
0K 1 Reached target Basic System.
147.2368113]1 dracut-initquene[4491: Warning: dracut-initqueve timeout - starting timeout scripts
1468.6294371 dracut-initquenel4491: Warning: dracut-initgquene timeout - starting timeout scripts
148.683981] dracut-initqueuel4491: Warning: dracut-initqueve timeout - starting timeout scripts
149.163617]1 dracut-initqueue[4491: Warning: dracut-initqueue timeout - starting timeout scripts
149.738411] dracut-initqueuel449]1: Warning: dracut-initquewe timeout - starting timeout scripts
158.3181621 dracut-initquene(4491: Warning: dracut-initquene timeout - starting timeout scripts
158.919385] dracut-initqueuel4491: Warning: dracut-initqueuwe timeout - starting timeout scripts

-

——— -

Figure 7-52. The console messages

358

CHAPTER 7 SYSTEMD (PART)

Since we have a better understanding of dracut-initqueue now, we can see that the

error messages clearly mean systemd is not able to assemble the root lvm device.

1.

Let’s isolate the issue first by recalling the performed steps. The
original root lv name is as follows:

#icat /etc/fstab

/dev/mapper/fedora_localhost--live-root /

ext4 defaults 1 1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4 defaults 1 2

/dev/mapper/fedora_localhost--live-
swap none ext4 defaults 0 0

The root volume group name has been changed.

vgrename fedora_localhost-live root_vg

The volume group Fedora localhost-live was successfully renamed to
root_vg.

The /etc/fstab entry of root 1lvmhas been appropriately

changed.

/dev/mapper/root_vg-root / ext4 defaults 11
UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4 defaults 1 2
/dev/mapper/root_vg-swap none swap defaults 00

But after rebooting, systemd starts throwing dracut-initqueue timeout error

messages.

The steps look like they were properly followed, but we need to investigate further to

understand why dracut-initqueue is not able to assemble LVMs.

If we wait for some time on the error screen, as shown in Figure 7-53, systemd will

automatically drop us on an emergency shell. We will see in detail how systemd drops us

in an emergency shell in Chapter 8.

359

CHAPTER 7 SYSTEMD (PART)

[TIME] Timed out waiting for device sdevsmapper-fedora_localhost--live-root.
[13.365127] audit: type=1131 audit(1577942648.552:18): pid=1 uid=0 auid=4294967295 =es=4294967295 subj=kernel msg="unit=dracu
t-pre-udev comm="systemd" exe="~ usrrlibssystemd-systemd"” hostname=7 addr=7 terminal=7? res=success'
[DEPEND] Dependency failed for Initrd Root Device.
[DEFEND] Dependency failed for ~sysroot.
[DEPEND] Dependency failed for Initrd Root File System.
[DEFEND] Dependency failed for Reload Configuration from the Real Root.
[DEFEND] Dependency failed for File System Check on ~dewmapper-fedora_localhost--1ive-root.
[0K 1 Reached target Imitrd File Systems.
[OF 1 Stopped dracut pre-udev hook.
[0K 1 Stopped dracut cmdline hook.
[13.374194) audit: type=1131 audit(1577942648.553:11): pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msy='unit=dracu
t-emdline comm="systemd"” exe="susr/lib/systemdssystemd’’ hostname=7 addr=7 terminal=? res=success'
Starting Setup Virtual Console...
[0K 1 Stopped dracut initqueue hook.
[13.394183] audit: type=1138 audit(1577942648.562:12): pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg='unit=dracu
t-initqueve comm="systemd" exe="susr-libssystemd systemd” hostname=7 addr=7 terminal=? res=success’
[13.481837] audit: type=1131 audit(1577942648.562:13): pid=1 uid=8 auid=4291967295 ses=4294967295 subj=kernel msg='unit=dracu
t-initqueue comm="systeml" exe="susr-lib-systemi systemd” hostname=? addr=% terminal=7 res=success’
[0K 1 Reached target Remote File Systems (Pre).
[0K 1 Reached target Remote File Systems.
[0K 1 Started Setup Virtual Console.
[13.489239] audit: type=1138 audit(1577942646.676:14): pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg='unit=syste
md-vconsole-setup comm="systemd" exe="susr-libssystemd-systemd” hostname=7 addr=7 terminal=? res=success’
[13.489246] audit: type=1131 audit(1577942646.676:15): pid=1 uid=B auid=4294967295 ses=4294967295 subj=kernel msg='unit=syste
md-vconsole-setup comm="systemd" exe="susr-libssystemd/systemd” hostname=? addr=? terminal=? res=success’
[13.582917] audit: type=1138 audit(1577942648.691:16): pid=1 uid=0 auid=4294967295 ses=4294967295 subj=kernel msg="unit=emery
ency comm="systemd" exe="susr/libssystemdssystemd” hostname=7 addr=? terminal=7 res=success'
[0K 1] Started Emergency Shell.
[0K 1] Reached target Emergency Mode.
[18.5384151 audit: type=1131 audit(1577942653.726:17): pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg='unit=plymo
uth-start comm="systemd" exe="+susr-libssystemd systemd’’ hostname=7 addr=7 terminal=7 res=success'
Warning: sdevsfedora_localhost-1ivesroot does not exist
Warning: <sdewfedora_localhost-livesswap does not exist
Warning: sdevsmapper/fedora_localhost--1ive-root does not exist

Generating “/runsinitramf s/rdsosreport . txt"

Entering emergency mode. Exit the shell to continue.

Type “journalctl” to view system logs.

You might want to save “srunsinitramfs/rdsosreport.txt’ to a USE stick or boot
after mounting them and attach it to a bug report.

]

Figure 7-53. The emergency shell

As shown in Figure 7-54, we will scan the currently available LVs and will mount root

vg to verify its contents.

7t lum lus

LV ug Attr LSize Pool Origin Datax Metax Move Log Cpy~Sync Convert
root root_vg -wi------- <17 .88y
swap root_vg -wi------- Z2.88y

kg]

i7# lum vgchange -ay root_uvg

2 logical volume(s) in volume group “root_uvg" now active
i
st blkid
rdevrudal: UUID="eea3d947-8618-4d8c-bB83-87daf 15b2679" TYPE="ext4" PARTUUID="6186139%¢-081"
sdevsuda2: UUID="wl}9sz6-hMUI-uf 6N-1Jrn-1CpS-cQd1-CZef4z" TYPE="LUMZ_member" PARTUUID="618613%e-82"
sdevs/mapper/root_vg-swap: UUID="5aeB57b2-aabZ2-4e4e-8125-88d589f28212" TYPE="swap"
sdevsmapper/root_vg-root: UUID="1el1?eccB-d981-4946-aBBe-B6215ach3?4a"” TYPE="ext4"
o

Figure 7-54. Activating the LVs

As you can see, root_vg (the renamed vg) is available, and we are able to activate it
too. It clearly means that the LVM metadata is not corrupted and that the LVM device

360

CHAPTER 7 SYSTEMD (PART)

does not have any integrity issues. As shown in Figure 7-55, we will mount root_vgona
temporary directory and cross-verify its fstab entries from the emergency shell itself.

t/# mount sdevs/mapper/root_uvg-root /tmps
[612.217849]1 EXT4-fs (dm-1): mounted filesystem with ordered data mode. Opts: (null)
g 4

w8 1s stmps

@System.solv boot etc lib lost+found mnt proc run srv tmp wvar
bin dev home 1ib64 media opt root sbhin sys usr

g

/% cat stmpretc/fstab

setcsfstab
Created by anaconda on Mon Dec 9 18:18:85 2819

ccessible filesystems, by reference, are maintained under 'rsdevrdisk/'.

A
See man pages fstab(5), findfs(8), mount(8) andsor blkid(8) for more info.

Erasssas

After editing this file, run 'systemctl daemon-reload' to update systemd
units generated from this file.
i

sdevsmappersroot_uvg-root ~ ext4 defaults 11
UUID=eea3d947-8618-4d8c-bB83-87daf 1562679 ~boot ext4 defaults 12
sdevsmapper/root_uvg-swap none swap defaults aa

%

Figure 7-55. Mounting the root filesystem

vg is intact, the fstab entries are correct, and we are able to mount the root vg. What
is missing then?

The missing part is that the kernel command-line parameters have not been
adjusted in GRUB. See Figure 7-56.

dracut:-# cat /procscmdline

BODT_IMAGE=ChdA ,msdos1) uml inuz-5.3.7-381 .fc31 .86_64 root=rdevsmapper-fedora_localhost--live-root ro resume=sdev mapper-fedora_
localhost=-=live-swap rd.lum. lu=fedora_localhost-1ivesroot rd.lum. lu=fedora_localhost-livesswap console=ttyS8,115288 console=ttyd
dracut ;4

Figure 7-56. The kernel command-line parameters

To boot, we need to interrupt the GRUB splash screen and need to change the kernel
command-line parameters from what’s shown in Figure 7-57.

load_wvideo

set gfx_payload=keep

insmod gzio

linux (Srootdsumlinuz-5.3.7-301.fc31.xB6_64 root=r/devs/mapper-fedora_localhost-\
-live-root ro resume=/dev/mapper/fedora_localhost--live-swap rd.lum.lv=fedora_\
localhost-livesroot rd.lvm.lv=fedora_localhost-lives/swap console=ttysS0,115200 \
console=ttyo®

initrd (Srootd/initramfs-5.3.7-301.fc31.x86_64.img

Figure 7-57. The old kernel command-line parameters

361

CHAPTER 7 SYSTEMD (PART I)
See Figure 7-58 for the new ones.

load_video

set gfx_payload=keep

insmod gzio

linux (Sroot)s/umlinuz-5.3.7-301.fc31.x86_64 root=s/dev/mapper root_vg-root ro r\
d.lum.lv=root_vgs/root console=ttyS0,115200 console=ttyo

initrd (Srootd/initramfs-5.3.7-301.fc31.x86_64.img

Figure 7-58. The new kernel command-line parameters

Once the system is booted, change /etc/default/grub from this:

cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g"' /etc/system-release)"
GRUB_DEFAULT=saved

GRUB_DISABLE_ SUBMENU=true

GRUB_TERMINAL OUTPUT="console"
GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_localhost--live-swap rd.lvm.
lv=fedora_localhost-live/root rd.lvm.lv=fedora_localhost-live/swap
console=ttyS0,115200 console=ttyo"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE BLSCFG=true

to the following:

cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g"' /etc/system-release)"
GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL OUTPUT="console"
GRUB_CMDLINE_LINUX="resume=/dev/mapper/xroot_vg-swap rd.lvm.lv=root_vg/root
rd.lvm.lv=root_vg/swap console=ttyS0,115200 console=ttyo"
GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

It is not necessary to change the /etc/default/grub file since Fedora uses the BLS
entries from /boot/loader/entries.

362

CHAPTER 7 SYSTEMD (PART I)
Change /boot/grub2/grubenv from this:

cat /boot/grub2/grubenv

saved entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86 64
menu_auto _hide=1

boot_success=0

kernelopts=root=/dev/mappexr/fedora_localhost--live-root ro resume=/dev/
mapper/fedora_localhost--live-swap rd.lvm.lv=fedora_localhost-live/root
rd.1lvm.lv=Ffedora_localhost-live/swap console=ttyS0,115200 console=tty0
boot_indeterminate=9

to the following:

cat /boot/grub2/grubenv
saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64
menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/root_vg/root ro resume=/dev/mappexr/root_vg-swap
rd.1lvm.lv=root_vg/root rd.lvm.lv=root_vg/swap console=ttyS0,115200
console=ttyo

boot_indeterminate=9

This fixes the “can’t boot” issue.

plymouth

Now it’s time to talk about one interesting service called plymouth. Earlier Linux would
show boot messages directly on the console, which was kind of boring for desktop users.
Hence, plymouth was introduced, as shown here:

cat usr/lib/systemd/system/plymouth-start.service

[Unit]

Description=Show Plymouth Boot Screen

DefaultDependencies=no

Wants=systemd-ask-password-plymouth.path systemd-vconsole-setup.service
After=systemd-vconsole-setup.service systemd-udev-trigger.service systemd-
udevd.service

Before=systemd-ask-password-plymouth.service

363

CHAPTER 7 SYSTEMD (PART)

ConditionKernelCommandLine=!plymouth.enable=0
ConditionVirtualization=!container

[Service]

ExecStart=/usr/sbin/plymouthd --mode=boot --pid-file=/var/run/plymouth/pid
--attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

Type=forking

KillMode=none

SendSIGKILL=no

As you can see, from the /usr/1ib/systemd/system/plymouth-start.service unit
file, plymouth starts right after systemd-udev-trigger.service and before dracut-
initqueue.service, as shown in Figure 7-59

systemd-journal.socket

v
dracut-cmdline.service
I
v
dracut-pre-udev.service
|
v
systemd-udevd.service

v

local-fs-pre.target dracut-pre-trigger.service
| |
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | |Plymouth services: seed, API VFS mounts:
v v v start tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
| | | | |
\ | I | /
A/

v

Figure 7-59. The booting sequence

As shown in Figure 7-60, plymouth will be active throughout the booting procedure.

364

systerd- journal.socket
I
v
dracut-cadline. service
v
dracut-pre-udev. service
v
systend-udevd. service
I
local-fs-pre. target

v v
(various mownts) (various swap systemd-udev-trigger.service
]

v
dracut-pre-trigger. service
I

CHAPTER 7 SYSTEMD (PART)

| devices...) (various dow-level (various low-level
| 1] services: seed, KPI VES mounts:
v v wmpfiles, random mqueue, configfs,
local-fs.target swap. target dracut-initqueve.service sysctl, ...} debugfs, ...}
| | |
! I | | !
sl
v
sysinit.target
|
/I
! 1 1
I] |
v 1 v
{various] rescue.service
sockets. I
1 1 v
v 1 rescue. target
sockets. target I
I]
| — emergency. service
Al |
v v
basic.target emergency. target
PE— |
’ 1 Y
v
dracut-pre-sount . service Plymouth
Will be
v e
t. It
Sysroat.maun throughout
v this
initrd-root-fs.target period
I

(eustem initrd services)

v
dracut-sount.service
I

v
initrd-parse-etc,service

v

(sysreot-usr.mount and

various mounts marked
with fstab option
x-initrd. mount)

v
initrd-fs.target
]
Al
v
initrd. target
I
v
dracut-pre-pivet.service
v
initrd-cleanup. service
isolates to
initrd-switch-roet.target
I
v
[
I
initrd-udevadn-cleanup-db.service

(custem initrd services)
I

R —
A

€ ————

initrd-switch-root. target
w

initrd-switeh-root. service

v
switch-root

Figure 7-60. plymouth

365

CHAPTER 7 SYSTEMD (PART)

plymouth is a tool that shows you an animation at the time of the boot. For example,
in Fedora, it doesn’t show the console messages shown in Figure 7-61.

Starting Create Static Device Nodes in sdewv...
[OK 1 Started Apply Kernel Variables.
[0K 1 Started Load/Save Random Seed.
[0K 1 Started Create Static Device Nodes in /dev.
Starting udev Kernel Device Manager...
[OE 1 Started Setup Virtual Console.
[OK 1 Started udev Coldplug all Devices.
Starting udev Wait for Complete Device Initializationm...
[DK 1 Started Journal Service.
Starting Flush Journal to Persistent Storage...
[0K 1 Started Flush Journal to Persistent Storage.
[OK 1 Started udev Kernel Device Manager.
[OK 1 Listening on Loads/Save RF Kill Switch Status sdevw/rfkill Watch.
[] Started Monitoring of LUMZ mirrors, snapshots etc. using dmeventd
[1 Started udev Wait for Complete Device Initialization.
Starting Activation of DM RAID sets...
[OKE 1 Started Activation of DM RAID sets.
[OK 1 Reached target Local Encrypted Uolumes.
[0K 1 Reached target Local File Systems (Pre).
Starting File System Check on sdevrsdisk/by-uuid/FBCB-BBD6. ..
[OK 1 Started File System Check on /devsdisk/by-uuid/FBC8-BBD6.
Mounting sbootrefi...
[0K 1 Mounted sbootrefi.
[0K 1 Reached target Local File Systems.
Starting Restore /runs/initramfs on shutdouwnm...
Starting Import network configuration from initramfs...
Starting Tell Plymouth To Write Out Runtime Data...
[OK 1 Started Restore /runsinitramfs on shutdownm.
[0K 1 Started Tell Plymouth To Write Out Runtime Data.

OK

Figure 7-61. When plymouth is not available

plymouth shows you the animation shown in Figure 7-62.

366

CHAPTER 7 SYSTEMD (PART I)

f

fedora

Figure 7-62. The plymouth screen

Installing plymouth

If you want to install the different themes of plymouth, then this is what you can do:

1. Download plymouth-theme from gnome-1look.org, or you can use
the following:

dnf install plymouth-theme*

367

http://gnome-look.org

CHAPTER 7 SYSTEMD (PART)

2. Extract the downloaded theme to the following location: /usr/
share/plymouth/themes/

1s -1 /usr/share/plymouth/themes/
total 52

drwxr-xr-x. 2 root root 4096 Apr 26 2019 text

root root 4096 Apr 26 2019 tribar

drwxr-xr-x. 2 root root 4096 Apr 26 2019 bgrt
drwxr-xr-x 3 root root 4096 Mar 30 09:15 breeze
drwxr-xr-x 2 root root 4096 Mar 30 09:15 breeze-text
drwxr-xr-x. 2 root root 4096 Mar 30 09:15 charge
drwxr-xr-x. 2 root root 4096 Apr 26 2019 details
drwxr-xr-x 2 root root 4096 Mar 30 09:15 fade-in
drwxr-xr-x 2 root root 4096 Mar 30 09:15 hot-dog
drwxr-xr-x 2 root root 4096 Mar 30 09:15 script
drwxr-xr-x 2 root root 4096 Mar 30 09:15 solar
drwxr-xr-x 2 root root 4096 Mar 30 09:15 spinfinity
drwxr-xr-x. 2 root root 4096 Apr 26 2019 spinner

2

2

drwxr-xr-X.

3. Youneed to rebuild initramfs as plymouth runs from the initramfs
environment. For example, its configuration file has to be updated
for the new plymouth theme.

cat /etc/plymouth/plymouthd.conf

Administrator customizations go in this file
#[Daemon |

#Theme=fade-1in

[Daemon]

Theme=hot-dog

After rebooting, as shown in Figure 7-63, you will see a new plymouth theme called
hot-dog.

368

CHAPTER 7 SYSTEMD (PART)

Figure 7-63. The hot-dog plymouth theme

Managing plymouth

Since plymouth starts at an early stage, dracut does provide some command-line options
to manage plymouth’s behavior.

plymouth.enable=0
disable the plymouth bootsplash completely.

rd.plymouth=0
disable the plymouth bootsplash only for the initramfs.

The hot-dog image shown earlier is called a splash screen. To see the installed/
chosen splash screen, you can use the following:

#plymouth --show-splash

369

CHAPTER 7 SYSTEMD (PART)

Another main motive of plymouth is to maintain all the boot-time messages in a
simple text file that users can examine after the boot. The logs will be stored at /var/
log/boot.log, but remember that this file is maintained by plymouth. This means you
will find the booting messages only after starting plymouth. But at the same time, we
need to keep in mind that plymouth does start at an early stage of initramfs (right after
udevd kicks in).

less /varlog/boot.log
<snip>
------------ Sat Jul 06 01:43:12 IST 2019 ------------
[ESC[0;32m OK ESC[om] Started ESC[0;1;39mShow Plymouth Boot ScreenESC[Om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mPathsESC[Om.
[ESC[0;32m OK ESC[om] Started ESC[0;1;39mForward Password R...s to
Plymouth Directory WatchESC[om.
[ESC[0;32m OK ESC[om] Found device ESC[0;1;39m/dev/mapper/fedora
localhost--1live-rootESC[Om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mInitrd Root DeviceESC[om.
[ESC[0;32m OK ESC[om] Found device ESC[0;1;39m/dev/mapper/fedora
localhost--1live-swapESC[Om.
Starting ESC[0;1;39mResume from hiber...fedora localhost--live-
swapESC[om. ..
[ESC[0;32m OK ESC[om] Started ESC[0;1;39mResume from hibern...r/fedora_
localhost--1ive-swapESC[om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mLocal File Systems (Pre)
ESC[om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mLocal File SystemsESC[Om.
Starting ESC[0;1;39mCreate Volatile Files and DirectoriestSC[om...
[ESC[0;32m OK ESC[om] Started ESC[0;1;39mCreate Volatile Files and
DirectoriesESC[Om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mSystem
InitializationESC[oOm.
[ESC[0;32m OK ESC[Om] Reached target ESC[0;1;39mBasic SystemESC[Om.
[ESC[0;32m OK ESC[om] Started ESC[0;1;39mdracut initqueue hookESC[Om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mRemote File Systems (Pre)
ESC[om.

370

CHAPTER 7 SYSTEMD (PART)

[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mRemote File
SystemsESC[om.

Starting ESC[0;1;39mFile System Check...fedora localhost--live-

rootESC[om...

[ESC[0;32m OK ESC[om] Started ESC[0;1;39mFile System Check ...r/fedora_
localhost--1live-rootESC[Om.

Mounting ESC[0;1;39m/sysrootESC[om. ..

[ESC[0;32m OK ESC[om] Mounted ESC[0;1;39m/sysrootESC[Om.
[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mInitrd Root File
SystemESC[om.

Starting ESC[0;1;39mReload Configuration from the Real

RootESC[om...

[ESC[0;32m OK ESC[om] Started ESC[0;1;39mReload Configuration from the
Real RootESC[om.

[ESC[0;32m OK ESC[om] Reached target ESC[0;1;39mInitrd File
SystemsESC[om.

[ESC[0;32m OK ESC[Om] Reached target ESC[0;1;39mInitrd Default
TargetESC[om.

Starting ESC[0;1;39mdracut pre-pivot and cleanup hookESC[Om...
[ESC[0;32m OK ESC[om] Started ESC[0;1;39mdracut pre-pivot and cleanup
hookESC[om.

Starting ESC[0;1;39mCleaning Up and Shutting Down DaemonsESC[oOm...
[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mTimersESC[Om.
[ESC[0;32m OK ESC[om] Stopped ESC[0;1;39mdracut pre-pivot and cleanup
hookESC[om.

[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mInitrd Default
TargetESC[Om.

[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mRemote File
SystemsESC[om.

[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mRemote File Systems (Pre)
ESC[om.

[ESC[0;32m OK ESC[om] Stopped ESC[0;1;39mdracut initqueue hookESC[Om.

Starting ESC[0;1;39mPlymouth switch root serviceESC[oOm...
[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mInitrd Root DeviceESC[om.
[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mBasic SystemESC[Om.

371

CHAPTER 7 SYSTEMD (PART)

[ESC[0;32m OK ESC[om] Stopped target ESC[0;1;39mSystem
InitializationESC[om.

</snip>

Structure

plymouth takes inputs from initramfs/systemd to understand what stage of the booting
procedure has been completed (as a percentage of the booting procedure) and
accordingly shows the animation or a progress bar on the screen. There are two binaries
that take care of the plymouth work.

/bin/plymouth (Interface to plymouthd)
/usr/sbin/plymouthd (main binary which shows splash and logs boot
messages in boot.log file)

There are various plymouth services available inside initramfs on which systemd

relies on.

1s -1 usr/lib/systemd/system/ -1 | grep -i plymouth
-IW-T--r--. 1 root root 384 Dec 21 12:19 plymouth-halt.service
-IW-T--r--. 1 root root 398 Dec 21 12:19 plymouth-kexec.service
-IW-T--r--. 1 root root 393 Dec 21 12:19 plymouth-poweroff.service
root root 198 Dec 21 12:19 plymouth-quit.service

root root 204 Dec 21 12:19 plymouth-quit-wait.service

-IW-I--T--.
-IW-T--T--.
-IW-T--r--. 1 root root 547 Dec 21 12:19 plymouth-start.service
-IW-T--r--. 1 root root 295 Dec 21 12:19 plymouth-switch-root.service
-IW-I--r--. 1 root root 454 Dec 21 12:19 systemd-ask-password-plymouth.path
-IW-T--r--. 1 root root 435 Dec 21 12:19 systemd-ask-password-plymouth.service

1
1
1
1
1
-Iw-I--r--. 1 root root 386 Dec 21 12:19 plymouth-reboot.service
1
1
1
1
2 root root 4096 Dec 21 12:19 systemd-ask-password-plymouth.

dYwxr-Xr-X.
service.wants

systemd, when running in initramfs, calls these services from time to time during
the boot phase. As you can see, every service is calling the plymouthd binary and passing

372

CHAPTER 7 SYSTEMD (PART)

switches accordingly to the current stage of booting. For example, plymouth-start.
service simply starts the plymouthd binary with mode boot. There are only two modes;
one is boot, and another one is shutdown.

cat usr/lib/systemd/system/plymouth* | grep -i execstart

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session
ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session
ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session
ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=-/usr/bin/plymouth quit <LK---
ExecStart=-/usr/bin/plymouth --wait

ExecStart=/usr/sbin/plymouthd --mode=reboot --attach-to-session
ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=boot --pid-file=/var/run/plymouth/pid
--attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=-/usr/bin/plymouth update-root-fs --new-root-dir=/sysroot <<---

Another example we can consider is that at the time of the switch_root, systemd
simply calls plymouth-switch-root.service, which in turn runs the plymouthd binary
with an updated root filesystem as sysroot. In other words, you can say along with
switch _root that plymouth changes its root directory from initramfs to the actual root
filesystem. Going further, you can see that systemd starts the plymouth service in the
same way that systemd sends a quit message to plymouthd at the end of the booting
sequence. At the same time, you probably noticed that systemd calls plymouth at the
time of the reboot or shutdown too. It is not really a big deal since it just calls the same
plymouthd with the appropriate mode.

Sysinit.target

So, we have reached the sysinit.target stage. Figure 7-64 shows the booting sequence
we have covered so far.

373

CHAPTER 7 SYSTEMD (PART)

systemd-journal.socket

v
dracut-cmdline.service

v
dracut-pre-udev.service
v
systemd-udevd.service

v

local-fs-pre.target dracut-pre-trigger.service
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
|
\ | | | /
A/

v
sysinit.target

Figure 7-64. The booting sequence covered so far

Since this is a target unit, its job is to hold or start a bunch of other units (services,
sockets, etc.). The list of units will be available in its wants directory. As you can see, the
available unit files are nothing but symbolic links to the original service unit files.

#ls -1 usr/lib/systemd/system/sysinit.target.wants/

total o

kmod-static-nodes.service -> ../kmod-static-nodes.service
plymouth-start.service -> ../plymouth-start.service
systemd-ask-password-console.path -> ../systemd-ask-password-console.path
systemd-journald.service -> ../systemd-journald.service
systemd-modules-load.service -> ../systemd-modules-load.service
systemd-sysctl.service -> ../systemd-sysctl.service
systemd-tmpfiles-setup-dev.service -> ../systemd-tmpfiles-setup-dev.service
systemd-tmpfiles-setup.service -> ../systemd-tmpfiles-setup.service
systemd-udevd.service -> ../systemd-udevd.service
systemd-udev-trigger.service -> ../systemd-udev-trigger.service

Most of the services have already been started before we reach sysinit.target.
For example, systemd-udevd.service and systemd-udev-trigger.service (after the
pre-trigger service) have already been started, and we have already seen that systemd
-udevd. service will execute the /usr/1ib/systemd/systemd-udevd binary, whereas

374

CHAPTER 7 SYSTEMD (PART)

the systemd-udev-trigger service will execute the udevadm binary. Then why are we
starting these services again with sysinit.target? We are not. sysinit.target will
start only the services that have not yet started, and it will ignore taking any action on the
services that are already started. Let’s see the purpose of each of these service unit files.

The kmod-static-nodes systemd unit file executes the kmod binary with the static-
nodes switch. We have already seen in Chapter 5 that 1smod, insmod, modinfo, modprobe,
depmod, etc., are the symlinks to the kmod binary.

#lsinitrd | grep -i kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/depmod -> ../bin/kmod
lrwxrwxrwx 1 root zroot 211 Jul 25 03:54 usr/sbin/insmod -> ../bin/kmod
lrwxrwxrwx 1 root 7root 41 Jul 25 03:54 usr/sbin/lsmod -> ../bin/kmod
lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/modinfo -> ../bin/kmod
lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/modprobe -> ../bin/kmod
lrwxrwxrwx 1 root 7root 41 Jul 25 03:54 usr/sbin/rmmod -> ../bin/kmod

cat usr/lib/systemd/system/kmod-static-nodes.service | grep -v '#'
[Unit]

Description=Create list of static device nodes for the current kernel
DefaultDependencies=no

Before=sysinit.target systemd-tmpfiles-setup-dev.service
ConditionCapability=CAP_SYS MODULE
ConditionFileNotEmpty=/1ib/modules/%v/modules.devname

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/bin/kmod static-nodes --format=tmpfiles --output=/run/
tmpfiles.d/static-nodes.conf

With the static-nodes switch, systemd is just collecting all of the static nodes
(devices) present in the system. Why do we need static nodes in the age of dynamic
node handling (udev)? There are some modules like fuse or ALSA that need some device
files present in /dev, or they might create them. But it could be dangerous since the
device files are made by kernel or udev. So, to avoid modules from creating device files,

375

CHAPTER 7 SYSTEMD (PART)

systemd will create static nodes like /dev/fuse or /dev/snd/seq through the kmod-
static-nodes.service. The following are the static nodes created by kmod-static-

nodes.service on a Fedora system:

kmod static-nodes

Module: fuse

Device node:

Type:

Major:
Minor:

Module: btrfs

Device node:

Type:

Major:
Minor:

Module: loop

Device node:

Type:

Major:
Minor:

Module: tun

Device node:

Type:

Major:
Minor:

/dev/fuse
character device
10

229

/dev/btrfs-control
character device
10
234

/dev/loop-control
character device
10

237

/dev/net/tun
character device
10

200

Module: ppp_generic

Device node:

Type:

Major:
Minor:

Module: uinput

Device node:

Type:

Major:
Minor:

376

/dev/ppp
character device
108

0

/dev/uinput
character device
10

223

Module: uhid
Device node

Type:

Major:
Minor:

Module: vfio

Device node:

Type:

Major:
Minor:

Module: hci vhci

Device node:

Type:

Major:
Minor:

Module: vhost net

Device node:

Type:

Major:
Minor:

CHAPTER 7

: /dev/uhid
character device
10

239

/dev/vfio/vfio
character device
10
196

/dev/vhci
character device
10

137

/dev/vhost-net
character device
10
238

Module: vhost vsock

Device node
Type:

Major:
Minor:

Module: snd_timer

Device node:

Type:

Major:
Minor:

Module: snd_seq

Device node:

Type:

Major:
Minor:

: /dev/vhost-vsock
character device
10

241

/dev/snd/timer
character device
116
33

/dev/snd/seq
character device
116

1

SYSTEMD (PART I)

377

CHAPTER 7 SYSTEMD (PART)

Module: cuse
Device node: /dev/cuse
Type: character device
Major: 10
Minor: 203

Next, we have the plymouth service, which has already been started; then we have
systemd-ask-password-console.path, which is a . path unit file.

cat usr/lib/systemd/system/systemd-ask-password-console.path | grep -v '#'

[Unit]

Description=Dispatch Password Requests to Console Directory Watch
Documentation=man:systemd-ask-password-console.service(8)
DefaultDependencies=no

Conflicts=shutdown.target emergency.service
After=plymouth-start.service

Before=paths.target shutdown.target cryptsetup.target
ConditionPathExists=!/run/plymouth/pid

[Path]
DirectoryNotEmpty=/run/systemd/ask-password
MakeDirectory=yes

The . path unit file is for path-based activation, but since we have not encrypted our
root disk with LUKS, we do not have the actual service file that will accept the password
from the user. If we had configured LUKS, we would have had the /usr/1ib/systemd/
system/systemd-ask-password-plymouth.service service unit file, as shown here:

cat usx/lib/systemd/system/systemd-ask-password-plymouth.service
[Unit]

Description=Forward Password Requests to Plymouth
Documentation=http://www.freedesktop.org/wiki/Software/systemd/
PasswordAgents

DefaultDependencies=no

Conflicts=shutdown.target

After=plymouth-start.service

Before=shutdown.target

378

CHAPTER 7 SYSTEMD (PART)

ConditionKernelCommandLine=!plymouth.enable=0
ConditionVirtualization=!container
ConditionPathExists=/run/plymouth/pid

[Service]
ExecStart=/usr/bin/systemd-tty-ask-password-agent --watch --plymouth

Asyou can see, this is executing the systemd-tty-ask-password-agent binary,
which will ask for a password with plymouth instead of a TTY. Next, the service unit file
is systemd-journald.service, which will start the journald daemon for us. Until this
time, all the messages are logged with the journald socket, which systemd started as the
first service of the booting sequence. The journald socket is 8 MB in size. If the socket
runs out of buffer, then the services will be blocked until the socket becomes available.
The 8 MB of buffer space is more than enough for the production systems.

#vim usx/lib/systemd/system/sysinit.target.wants/systemd-journald.service
[Unit]

Description=Journal Service

Documentation=man:systemd-journald.service(8) man:journald.conf(5)
DefaultDependencies=no

Requires=systemd-journald.socket

After=systemd-journald.socket systemd-journald-dev-log.socket systemd-
journald-audit.socket syslog.socket

Before=sysinit.target

[Service]

00MScoreAdjust=-250

CapabilityBoundingSet=CAP_SYS ADMIN CAP_DAC OVERRIDE CAP_SYS PTRACE CAP_
SYSLOG CAP_AUDIT CONTROL CAP AUDIT READ CAP_CHOWN CAP DAC_READ SEARCH CAP_
FOWNER CAP_SETUID CAP_SETGID CAP_MAC_OVERRIDE

DeviceAllow=char-* rw

ExecStart=/usr/lib/systemd/systemd-journald

FileDescriptorStoreMax=4224

IPAddressDeny=any

LockPersonality=yes

MemoryDenyWriteExecute=yes

379

CHAPTER 7 SYSTEMD (PART)

Restart=always

RestartSec=0
RestrictAddressFamilies=AF _UNIX AF_NETLINK
RestrictNamespaces=yes
RestrictRealtime=yes

RestrictSUIDSGID=yes
Sockets=systemd-journald.socket systemd-journald-dev-log.socket systemd-
journald-audit.socket

StandardOutput=null
SystemCallArchitectures=native
SystemCallErrorNumber=EPERM
SystemCallFilter=@system-service
Type=notify

WatchdogSec=3min

LimitNOFILE=524288

Next, if you want systemd to load some specific module statically, then you can get
some help from our next service, which is systemd-modules-load.service

cat usr/lib/systemd/system/systemd-modules-load.sexvice | grep -v '#'

[Unit]

Description=Load Kernel Modules
Documentation=man:systemd-modules-load.service(8) man:modules-load.d(5)
DefaultDependencies=no

Conflicts=shutdown.target

Before=sysinit.target shutdown.target
ConditionCapability=CAP_SYS_MODULE
ConditionDirectoryNotEmpty=|/1lib/modules-1load.d
ConditionDirectoryNotEmpty=|/usr/lib/modules-load.d
ConditionDirectoryNotEmpty=|/usr/local/lib/modules-1load.d
ConditionDirectoryNotEmpty=|/etc/modules-1load.d
ConditionDirectoryNotEmpty=|/run/modules-load.d
ConditionKernelCommandLine=|modules-load
ConditionKernelCommandLine=|rd.modules-load

380

CHAPTER 7 SYSTEMD (PART)

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=/usr/lib/systemd/systemd-modules-load
TimeoutSec=90s

The service executes /usr/1ib/systemd/systemd-modules-1load. The binary
understands the two command-line parameters.

o module_load: This is a kernel command-line parameter.
e rd.module load: This is a dracut command-line parameter.

If you pass a dracut command-line parameter, then systemd-modules-1load will
statistically load the module in memory, but for that, the module has to be present in
initramfs. If it is not present in initramfs, then first it has to be pulled in initramfs. While
generating initramfs, dracut reads the <module-name>. conf files from here:

/etc/modules-load.d/*.conf
/run/modules-load.d/*.conf
/usr/1ib/modules-load.d/*.conf

You need to create the *. conf file and need to mention the module name in it, which
you want to add in initramfs.

For example, here we have created a new initramfs image that does not have the vfio
module in it:

dracut new.img
lsinitrd | grep -i vfio
<no_output>

To pull the module statistically inside initramfs, here we have created the vfio.conf
file:

cat /usr/lib/modules-load.d/vfio.conf
vfio

381

CHAPTER 7 SYSTEMD (PART I)
Here we have rebuilt initramfs:

dracut new.img -f
lsinitrd new.img | grep -i vfio

Jul 25 03:54 usr/lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/vfio
Jul 25 03:54 usr/lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/vfio/
vfio.ko.xz

Jul 25 03:54 usr/lib/modules-load.d/vfio.conf

As you can see, the module has been pulled inside initramfs, and it will be loaded in
memory as soon as the service systemd-modules-load.service starts.

Loading modules statistically is not really a good idea. These days, modules are
loaded dynamically in memory when it is necessary or on demand, whereas static
modules will always be loaded in memory irrespective of need or demand.

Don’t get confused with the /etc/modprobe.d directory. Its use is to pass the options
to modules. Here’s an example:

#cat /etc/modprobe.d/lockd.conf
options lockd nlm timeout=10

nlm timeour=10 is an option passed to the lockd module. Remember, the . conf file
inside /etc/modprobe.d has to be a module name. Through the same conf file, you can
set an alias for the module name. Here’s an example:

"alias my-mod really long modulename"

Next, systemd will set the sysctl kernel parameters with the help of systemd-
sysctl.service.

cat usr/lib/systemd/system/systemd-sysctl.service | grep -v '#'

[Unit]

Description=Apply Kernel Variables
Documentation=man:systemd-sysctl.service(8) man:sysctl.d(5)
DefaultDependencies=no

Conflicts=shutdown.target
After=systemd-modules-load.service

Before=sysinit.target shutdown.target
ConditionPathIsReadWrite=/proc/sys/net/

382

CHAPTER 7 SYSTEMD (PART)

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=/usr/lib/systemd/systemd-sysctl
TimeoutSec=90s

systemd-sysctl.service will start the /usr/1ib/systemd/systemd-sysctl binary,
which will set the kernel tuning parameters by reading the *. conf files from three
different locations.

/etc/sysctl.d/*.conf
/run/sysctl.d/*.conf
/usr/lib/sysctl.d/*.conf

Here’s an example:

sysctl -a | grep -i swappiness
vm.swappiness = 60

The default swappiness kernel parameter value is set to 60. If you want to change
it to 10 and it has to be permanent across reboots, then add itin /etc/sysctl.d/99-
sysctl.conf.

#icat /etc/sysctl.d/99-sysctl.conf

vm.swappiness = 10
You can reload and set the sysctl parameters by using this:

sysctl -p
vm.swappiness = 10

To make these changes in initramfs, you need to regenerate initramfs. At the time of
the boot, systemd-sysctl.service will read the swappiness value from the 99-sysctl.
conf file and will set it in the initramfs environment.

systemd creates many temporary files for its smooth execution. After setting up the
sysctl parameters, it executes the next service, called systemd-tmpfiles-setup-dev.
service, which will execute the /usr/bin/systemd-tmpfiles --prefix=/dev --create
--boot binary. This will create dev filesystem-related temporary files according to these
rules:

383

CHAPTER 7 SYSTEMD (PART)

/etc/tmpfiles.d/*.conf
/Tun/tmpfiles.d/*.conf
/usr/lib/tmpfiles.d/*.conf

After sysinit.target, systemd will verify if the required sockets are created or not
through sockets.target.

1s usx/lib/systemd/system/sockets.target.wants/ -1

total o

32 Jan 3 18:05 systemd-journald-audit.socket -> ../systemd-journald-audit.
socket

34 Jan 3 18:05 systemd-journald-dev-log.socket -> ../systemd-journald-dev-
log.socket

26 Jan 3 18:05 systemd-journald.socket -> ../systemd-journald.socket

31 Jan 3 18:05 systemd-udevd-control.socket -> ../systemd-udevd-control.
socket

30 Jan 3 18:05 systemd-udevd-kernel.socket -> ../systemd-udevd-kernel.
socket

So, our boot process has finished the sequence up to sysinit.target. Refer the
flowchart shown in Figure 7-65.

systemd-journal.socket

v
dracut-cmdline.service

v
dracut-pre-udev.service
v
systemd-udevd.service

v

local-fs-pre.target dracut-pre-trigger.service
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
|
\ | | | /
A/

v
sysinit.target

Figure 7-65. The boot sequence covered so far

384

CHAPTER 7 SYSTEMD (PART)

“Can’t Boot” Issue 8 (sysctl.conf)

Issue: After rebooting, the kernel is panicking, and the system is not able to boot. This is
what is visible on the console:

4.596220] Mem-Info:

4.597455] active anon:566 inactive anon:1 isolated anon:0

4.597455] active file:0 inactive file:0 isolated file:0

4.597455] unevictable:19700 dirty:0 writeback:0 unstable:0

4.597455] slab_reclaimable:2978 slab _unreclaimable:3180

4.597455] mapped:2270 shmem:22 pagetables:42 bounce:0

4.597455] free:23562 free pcp:1982 free cma:0

4.611930] Node 0 active anon:2264kB inactive anon:4kB active file:0kB
inactive file:0kB unevictable:78800kB isolated(anon):0kB isolated(file):0kB
mapped:9080kB dirty:0kB writeback:0kB shmem:88kB shmem thp: 0kB
shmem_pmdmapped: OkB anon_thp: 0kB writeback tmp:0kB unstable:0kB all _
unreclaimable? yes

[4.621748] Node 0 DMA free:15900kB min:216kB low:268kB high:320kB
active_anon:0kB inactive anon:0kB active file:0kB inactive file:0kB
unevictable:0kB writepending:0kB present:15992kB managed:15908kB
mlocked:0kB kernel stack:0kB pagetables:0kB bounce:0kB free pcp:0kB local
pcp:0kB free cma:0kB

[4.632561] lowmem reserve[]: O 1938 4764 4764 4764

[4.634609] Node 0 DMA32 free:38516kB min:27404kB low:34252kB
high:41100kB active_anon:0kB inactive anon:0kB active_file:0kB

inactive file:0kB unevictable:0kB writepending:0kB present:2080628kB
managed:2015092kB mlocked:0kB kernel stack:0kB pagetables:0kB bounce:0kB
free pcp:2304kB local pcp:0kB free cma:0kB

[4.645636] lowmem reserve[]: 0 0 2826 2826 2826

[4.647886] Node 0 Normal free:39832kB min:39956kB low:49944kB
high:59932kB active_anon:2264kB inactive_anon:4kB active file:0kB

inactive file:0kB unevictable:78800kB writepending:0kB present:3022848kB
managed:2901924kB mlocked:0kB kernel stack:1776kB pagetables:168kB
bounce:0kB free pcp:5624kB local pcp:1444kB free cma:0kB

[4.659458] lowmem reserve[]: 0 0 0 0 O

[T s T s T s T s T e B i B |

385

CHAPTER 7 SYSTEMD (PART)

[4.661319] Node 0 DMA: 1*4kB (U) 1*8kB (U) 1*16kB (U) 0*32kB 2*64kB (U)
1*128kB (U) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (M) 3*4096kB (M) =
15900kB

[4.666730] Node 0 DMA32: 1*4kB (M) 0*8kB 1*16kB (M) 1*32kB (M) 1*64kB
(M) 0*128kB 0*256kB 1*512kB (M) 3*1024kB (M) 1*2048kB (M) 8*4096kB (M) =
38516kB

[4.673247] Node 0 Normal: 69*4kB (UME) 16*8kB (M) 10*16kB (UME) 7*32kB
(ME) 5*64kB (E) 1*128kB (E) 1*256kB (U) 9*512kB (ME) 9*1024kB (UME)
2%2048kB (ME) 5*4096kB (M) = 39892kB

[4.680399] Node 0 hugepages total=0 hugepages free=0 hugepages surp=0
hugepages_size=1048576kB

[4.683930] Node 0 hugepages_total=2303 hugepages_free=2303 hugepages_
surp=0 hugepages_size=2048kB

4.687749] 19722 total pagecache pages

.689841] 0 pages in swap cache

.691580] Swap cache stats: add 0, delete 0, find 0/0

.694275] Free swap = OkB

.696039] Total swap = OkB

.697617] 1279867 pages RAM

.699229] 0 pages HighMem/MovableOnly

.700862] 46636 pages reserved

.703868] 0 pages cma reserved

.705589] 0 pages hwpoisoned

.707435] Tasks state (memory values in pages):

4.709532] [pid] uid tgid total vm rss pgtables bytes
swapents oom_score adj name

[4.713849] [341] 0 341 5118 1178 77824

0 -1000 (md-udevd)

[4.717805] Out of memory and no killable processes...

[

[

4
4
4
4
4
4
4
4
4
4

L T s T s T s T s T s T s B e B e B e B s Y ey |

4.719861] Kernel panic - not syncing: System is deadlocked on memory
4.721926] CPU: 3 PID: 1 Comm: systemd Not tainted 5.3.7-301.fc31.
x86_64 #1
[4.724343] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.12.0-2.fc30 04/01/2014
[4.727959] Call Trace:

386

L B e T s T s T e, T s TR e T s B s T e B e B i e B e T e B s B e B e B e T s B B B B B B B B B B B B B B]

4.729204]
4.730707]
4.747357]
4.749172]
4.750890]
4.752452]
4.753982]
4.755317]
4.757016]
4.758768]
4.760591]
4.763266]
4.764846]
4.766418]
4.768120]
4.769604]
4.771098]
.772367]
.774010]
.775644]
.777524]
.779315]
.780916]
.782357]
.783785]
.785218]
.786613]
.788073]
.789672]
.791564]
.794915]
.797085]
.799013]
.800909]
.802352]

B S G i i s i ST T T~ R R R~

CHAPTER 7

dump_stack+0x5c/0x80
panic+0x101/0x2d7
out_of_memory.cold+0x2f/0x88
__alloc_pages_slowpath+0xb09/0xe00
__alloc_pages_nodemask+0x2ee/0x340
alloc_slab_page+0x19f/0x320
new_slab+0x44f/0x4do

? alloc_slab_page+0x194/0x320
___slab_alloc+0x507/0x6a0

? copy_verifier_state+0x1f7/0x270
? __slab_alloc+0x507/0x6a0
__slab_alloc+0x1c/0x30
kmem_cache_alloc_trace+0Oxiee/0x220
? copy_verifier_state+0x1f7/0x270
copy_verifier_state+ox1f7/0x270

? kmem_cache_alloc_trace+0x162/0x220
? push_stack+0x35/0xe0
push_stack+0x66/0xe0
check_cond_jmp_op+0x1fe/0xe60

? _cond_resched+0x15/0x30

? _cond_resched+0x15/0x30

? kmem cache_alloc_trace+0x162/0x220
? copy verifier state+0x1f7/0x270
? copy verifier state+0x16f/0x270
do_check+0x1c06/0x24e0
bpf_check+0x1aec/0x24d4

? _cond_resched+0x15/0x30

? kmem cache_alloc_trace+0x162/0x220
? selinux_bpf prog alloc+0x1f/0x60
bpf prog load+0x3a3/0x670

? seq_vprintf+0x30/0x50

? seq_printf+0x53/0x70

__do_sys bpf+0x7e5/0x17do

? _ fput+0x168/0x250

do_syscall 64+0x5f/0x1a0

SYSTEMD (PART I)

387

CHAPTER 7 SYSTEMD (PART)

[4.803826] entry SYSCALL 64 after hwframe+0x44/0xa9

[4.805587] RIP: 0033:0x7f471557915d

[4.807638] Code: 00 c3 66 2e Of 1f 84 00 00 00 00 00 90 f3 Of 1e fa 48
89 8 48 89 7 48 89 db6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 of 05
<48> 3d 01 fo ff ff 73 01 c3 48 8b 0od fb 5c Oc 00 f7 d8 64 89 01 48

[4.814732] RSP: 002b:00007fffd36da028 EFLAGS: 00000246 ORIG RAX:
0000000000000141

[4.818390] RAX: ffffffffffffffda RBX: 000055fb6ad3addo RCX:
00007f471557915d

[4.820448] RDX: 0000000000000070 RSI: 00007fffd36da030 RDI:
0000000000000005

[4.822536] RBP: 0000000000000002 R08: 007075617267632F R09:
000001130000000F

[4.826605] R10: 0000000000000000 R11: 0000000000000246 R12:
0000000000000000

[4.829312] R13: 0000000000000006 R14: 000055fb6ad3addo Ri5:
00007fffd36dale0

[4.831792] Kernel Offset: 0x26000000 from Oxffffffff81000000
(relocation range: oxffffffff80000000-oxffffffffbfffffff)

[4.835316] ---[end Kernel panic - not syncing: System is deadlocked on
memory]---

So, this is a “kernel panic” issue. We need to isolate the issue first since kernel
panic can occur due to thousands of situations. If you look at the highlighted messages
of kernel panic, it is clear that an “OOM-killer” has been invoked since the system is
running out of memory. The kernel tried to free the memory from cache and even tried
to use the swap space, but eventually it gave up, and the kernel panicked.

So, we have isolated the issue. We need to concentrate on who is eating the memory.
The OS out-of-memory (OOM) mechanism will be invoked when the system has
immense memory pressure.

There are three situations when an OOM-killer can be invoked during the boot

sequence:
e The system has really low physical memory installed.
o The wrong kernel tuning parameters have been set.

e Some modules have a memory leak.

388

CHAPTER 7 SYSTEMD (PART)

This system has 4.9 GB of physical memory, which is not big, but it is certainly more
than enough for the Linux kernel to finish the booting sequence.

Some modules might have memory leaks, but identifying that will be a difficult task.
So, we will verify first whether any memory-related kernel tuning parameters have been
setincorrectly.

1. To do that, we will drop ourselves inside initramfs. In Figure 7-66,
we have passed rd.break as a kernel command-line parameter.

load_video

set gfx_payload=keep

insmod gzio

linux (§rootd)rsumlinuz-5.3.7-301.fc31.x86_64 root=rdevs/mapper-root_vg-root ro r\
esume=s/dev/mapper/root_vg-swap rd.lum.lu=root_vgsroot rd.lum.lv=root_vg/swap c\
onsole=ttys0,115200 console=tty® rd.break

initrd (Sroot)/initramfs-5.3.7-301.fc31.x86_64.img

Figure 7-66. The kernel command-line parameter

2. We will remount sysroot in read-write mode and verify the
sysctl parameters.

switch _root:/# cat /proc/sys/wvm/nx_hugepages
2400

3. Theissue is the wrongly reserved number of hugepages. We will
disable the setting as per Figure 7-67.

switch_root:/# mount -o remount,rw /sysroot/

[183.8888361 EXT4-fs (dm-8): re-mounted. Opts: (null)
switch_root :/#

switch_root:/# cat /sysrootsetc/sysctl.conf

sysctl settings are defined through files in
susrslibssysctl.d/, srunssysctl.ds, and setcs/sysctl.d-.

Uendors settings live in susr/libs/sysctl.d-.

To override a whole file, create a new file with the same in
setcrssysctl.ds and put new settings there. To override

only specific settings, add a file with a lexically later
name in setcssysctl.ds and put new settings there.

g R

For_more_informatinn. see sysctl.conf (5) and sysctl.d(5).
#um.nr_hugepages = 2468

switch_root:/#

switch_root:/# reboot

Figure 7-67. Disabling the hugepage setting
389

CHAPTER 7 SYSTEMD (PART)

After rebooting, the system is able to boot successfully. Let’s try to understand what
went wrong. This system has 4.9 GB of memory, and earlier there were no hugepages
reserved.

cat /proc/meminfo | grep -e MemTotal -e HugePages_Total

MemTotal: 4932916 kB
HugePages Total: 0

cat /proc/sys/vm/nx_hugepages
0

A normal page is 4 KB in size, whereas a hugepage is 2 MB in size, which is 512 times
bigger than a normal page. Hugepage has its own advantages, but at the same time it has
its own disadvantages too.

e A hugepage cannot be swapped out.
e The kernel don’t use hugepages.

e Only the applications that are hugepage-aware can use the
hugepages.

Someone wrongly set the 2,400 hugepages and rebuilt initramfs.
echo "vm.nr_hugepages = 2400" »> /etc/sysctl.conf

sysctl -p
vm.nr_hugepages = 2400

dracut /boot/new.img
reboot

So, 2,400 hugepages = 4.9 GB, which is all the installed main memory, and since the
total memory got reserved in hugepages, the kernel cannot use it. So, while booting,
when systemd reached the stage of sysinit.target and executed systemd-sysctl.
service, the service read the sysctl. conf file from initramfs and reserved 4.9 GB of
hugepages, which the kernel cannot use. Therefore, the kernel itself ran out of memory,
and the system panicked.

390

CHAPTER 7 SYSTEMD (PART)

basic.target

So, we have reached basic.target. As we know, targets are for synchronizing or
grouping the units. basic.target is a synchronization point for late boot services.

cat usr/lib/systemd/system/basic.target | grep -v '#'

[Unit]

Description=Basic System

Documentation=man:systemd.special(7)

Requires=sysinit.target

Wants=sockets.target timers.target paths.target slices.target
After=sysinit.target sockets.target paths.target slices.target tmp.mount

RequiresMountsFor=/var /var/tmp
Wants=tmp.mount

So, basic.target will be successful when all the earlier services’ unit files requires,
wants, and after phases are successfully started. In fact, almost all of the services have
After=basic.target added in their unit files.

dracut-pre-mount.service

systemd will execute the dracut-pre-mount.service service just before mounting

the user’s root filesystem inside initramfs. Since it is a dracut service, it will execute
only if the user has passed the rd.break=pre-mount dracut command-line parameter.
Figure 7-68 shows that we have passed rd.break=pre-mount as a kernel command-line
parameter.

As you can see in Figure 7-69, it has dropped us at the emergency shell, and the
user’s root filesystem is not mounted at sysroot. Yes, I said it has dropped us at the
emergency shell, but you will be surprised to see that the emergency shell is nothing but
a simple bash shell provided by systemd but at the time when booting is not finished
yet. To understand the emergency shell better, we will pause our booting sequence for
a while and discuss the debugging shells of initramfs in Chapter 8. We will resume our
paused systemd’s booting sequence in Chapter 9.

391

CHAPTER 7 SYSTEMD (PART)

load_video

set gfx_payload=keep

insmod gzio

linux (Sroot) /boot/umlinuz-5.3.16-300.fc31.x86_64 root=UUID=6588b8f1-7f37-4162\
-968c-8f99eacdf32e ro rd.break=pre-mount_

initrd (Sroot) /boot/initramfs-5.3.16-300.{c31.x86_64. ing

Figure 7-68. The kernel command-line parameter

[0K 1 Reached target Initrd Root Device
[4.822084] audit: tgpe =1138 aud1t(15?8222358 898:9): pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg="unit=dracut
—initquene comm="systemd" exe="susr-/libssystemd-systemd” hostname=7 addr=7 terminal=7 res=success’
[0K 1 Started dracut initgueue hook
[0K 1 Reached target Remote File Systems (Pre).
[0K 1 Reached target Remote File Systems.
Starting dracut pre-moumt hook...
[4.829539] dracut-pre-mountl653]1: Warning: Break pre-mount
Starting Setup Virtual Console...
[0K 1 Started Setup Uirtual Console.
L 4,918583]1 audit: type=1138 audit(1578222858.994:18): pid=1 wid=0 auid=4294967295 ses=4294967295 subj=kernel msg="unit=syste
md-veonsole-setup comm="systeml” exe=",susr-libssystemd systemd” hostname=7 addr=7 terminal=? res=success’
Starting Dracut Emergency Shell...

Generating “srunsinitramfs-/rdsosreport.txt”
Entering emergency mode. Exit the shell to continue.
Type “jourmalctl" to view system logs.

You might want to save “/runsinitramfs-rdsosreport.txt” to a USB stick or ~boot
after mounting them and attach it to a bug report.

pre-mount ;- 1s sysroot -1
total B
pre-mount ;4

Figure 7-69. The pre-mount hook

392

CHAPTER 8

Debugging Shells

As of now, we know that initramfs has bash built in, and we have used it from time to
time through rd.break hooks. This chapter’s aim is to understand how systemd provides
us with a shell inside an initramfs. What are the steps that have to be followed, and how
can one use it more effectively? But before that, let’s recap what we have learned so far
about the debugging and emergency shells of initramfs.

The Shell

rd.break
drop to a shell at the end

rd.break drops us inside initramfs, and we can explore the initramfs environment
through it. This initramfs environment is also called the emergency mode. In normal
scenarios, we get dropped in emergency mode when initramfs is not able to mount
the user’s root filesystem. Remember, passing rd.break without any parameters will
drop us at initramfs after mounting the user’s root filesystem under /sysroot but
before performing switch_root on it. You can always find the detailed logs in the /run/
initramfs/rdsosreport.txt file. Figure 8-1 shows the logs from rdsosreport. txt.

393
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_8

https://doi.org/10.1007/978-1-4842-5890-3_8#ESM

CHAPTER 8 DEBUGGING SHELLS

[5.8216V8] localhost.localdomain systemd[1]: Mounting ~sysroot...
[5.637869] localhost.localdomain kernel: EXT4-fs (sdaS5): mounted filesystem with ordered data mode. Opts: (null)
L 5.836148] localhost.localdomain systemd(11: Mounted ~sysroot.
[5.836562] localhost.localdomain systemd[1]: Reached target Initrd Root File System.
L 5.839821]1 localhost.localdomain systemd[11: Starting Reload Configuration from the Real Root...
[5.854518] localhost.localdomain systemd(1]: Reloading.
[5.262476]1 localhost.localdomain systemdl11: initrd-parse-etc.service: Succeeded.
[5.2b63832]1 localhost.localdomain systemdl1]: Started Reload Configuration from the Real Root.
[5.2633681 lumlhust.lucaldmin auditl1]: SERVICE_START pid=1 uid=A auid=4294967295 ses= 123496?295 subj=kernel msg="unit=in
itrd-parse-etc comm=""systemd” exe="susr-/libssystemd-systemd” hostname=7 addr=7 terminal=7 res=success’
5.2634421 localhost.localdomain audit[1]: SERVICE_STOP pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg='unit=ini
d-parse-etc comm="systemd" exe="susr-/libssystemd/systemd” hostname=? addr=? terminal=? res=success’
5.263488]1 localhost.localdomain systemdl[1]: Reached target Initrd File Systems.
5.2651621 localhost.localdomain systemd(11: Reached target Initrd Default Target.
5.265567]1 localhost.localdomain systemdl1]: Condition check resulted in dracut mouwt hook being skipped.
5.267323]1 localhost.localdomain systemd[1]: Starting dracut pre-pivot and cleanup hook. ..
5.338352] localhost.localdomain dracut-pre-pivotl633]1: Warning: Break before switch_root
5.379468]1 localhost.localdomain systemd[1]: Starting Setup Virtual Console...
5.441189]1 localhost.localdomain systemd[11: systemd-uconsole-setup.service: Succeeded.
5.441585] localhost.localdomain systemdl1]: Started Setup Virtual Console.
5.441831]1 localhost.localdomain auditl1]: SERVICE_START pid=1 uid=0 auid=4294967295 ses=4294967295 su'hj =kernel msg='unit=sy
emd-veconsole-setup comm="systemd"” exe="rusr-libssystemd- systemd” hostname=7 addr=7 terminal=7 res=success’
5.441934] localhost.localdomain audit{1]: SERVICE_STOP pid=1 uid=8 auid=4294967295 ses=4294967295 sub j=kernel msg='unit=sys
emd-vconsole-setup comm="systemd"” exe=",usr-libssystemd sustemd” hostwame=7? addr=7 terminal=7 res=success’
5.443893]1 localhost.localdomain systemd[1]: Starting Dracut Emergency Shell...
5.469385]1 localhost.localdomain systemd(1]1: Received SIGRTMIN+Z1 from PID 689 (plymouthd).
5.479533] localhost.localdomain systemdl[1]: Received SIGRTMIN+Z1 from FPID 689 (plymouthd).
5.4881481 localhost.localdomain systemd[11: plymouth-start.service: Succeeded.
5.488811] localhost.localdomain audit[1]: SERVICE_STOP pid=1 uid=8 auid=4294967295 ses=4294967295 subj=kernel msg="unit=ply
mouth-start comm="systemd" exe="rsusrslibssystemd systemd” hostname=? addr=7 terminal=? res=success'
switch_root:-#
switch_root: /8
switch_root: 8t
switch_root:/#t
switch_root :/#
switch_root:/#t
switch_root: 8 exit _

itk et e TR T ¥. STt

el lal -2l

Figure 8-1. The rdsosreport.txt runtime logs

In the log messages, you can clearly see that it dropped just before performing
pivot_root. pivot_root and switch_root will be discussed in Chapter 9, whereas
chroot will be discussed in Chapter 10. Once you exit from the emergency shell, systemd
will continue the paused booting sequence and will eventually provide the login screen.

Then we discussed how we can use emergency shells to fix some of the “can’t boot”
issues. For example, initramfs is as good as the user’s root filesystem. So, it does have
lvm, raid, and filesystem-related binaries that we can use to find, assemble, diagnose,
and fix the missing user’s root filesystem. Then we discussed how we can mount it under
/sysroot and explore the contents of it to fix grub. cfg’s wrong entries, for example.

Likewise, rd.break does provide us with various options to break the booting
sequence at different stages.

cmdline: This hook gets the kernel command-line parameters.
pre-udev: This breaks the booting sequence before the udev handler.

pre-trigger: You can set udev environment variables with the
udevadm control or can set --property=KEY=value like parameters
or control the further execution of udev with udevadm.

394

CHAPTER 8 DEBUGGING SHELLS

pre-mount: This breaks the booting sequence before mounting the
user’s root filesystem at /sysroot.

mount: This breaks the booting sequence after mounting the root
filesystem at /sysroot.

pre-pivot: This breaks the booting sequence just before
switching to the actual root filesystem.

Now let’s see how exactly systemd manages to provide us with the shells in these
various stages.

How Does systemd Drop Us to an Emergency Shell?

Let’s consider an example of a pre-mount hook. systemd from initramfs collects the rd.
break=pre-mount command-line parameter from dracut-cmdline.service, and it
runs the systemd service dracut-pre-mount.service from the initramfs location /usr/
lib/systemd/system. The service will run before running initrd-root-fs.target,
sysroot.mount, and systemd-fsck-root.service.

cat usr/lib/systemd/system/dracut-pre-mount.service | grep -v #'

[Unit]

Description=dracut pre-mount hook
Documentation=man:dracut-pre-mount.service(8)

DefaultDependencies=no

Before=initrd-root-fs.target sysroot.mount systemd-fsck-root.service
After=dracut-initqueue.service cryptsetup.target
ConditionPathExists=/usr/lib/initrd-release
ConditionDirectoryNotEmpty=|/1ib/dracut/hooks/pre-mount
ConditionKernelCommandLine=|rd.break=pre-mount
Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT SYSTEMD=1
Environment=NEWROOT=/sysroot
Type=oneshot
ExecStart=-/bin/dracut-pre-mount

395

CHAPTER 8 DEBUGGING SHELLS

StandardInput=null
StandardOutput=syslog
StandardError=syslog+console
KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

Asyou can see, it is simply executing the /bin/dracut-pre-mount script from initramfs.

vim bin/dracut-pre-mount

[N [ENN
N R O W ~N O U A WN P

[N
N ow

15
16
17
18
19

#!/usxr/bin/sh

export DRACUT SYSTEMD=1
if [-f /dracut-state.sh]; then
. /dracut-state.sh 2>/dev/null
fi
type getarg >/dev/null 2>&1 || . /lib/dracut-1lib.sh

source_conf /etc/conf.d

make_trace_mem "hook pre-mount" '1:shortmem' ‘2+:mem' '3+:slab’

"4+ :komem'

pre pivot scripts are sourced just before we doing cleanup and switch over
to the new root.

getarg 'rd.break=pre-mount' 'rdbreak=pre-mount' && emergency_shell -n
pre-mount "Break pre-mount”

source_hook pre-mount
export -p > /dracut-state.sh

exit 0

Inside the /bin/dracut-pre-mount script, the most important line is the following:

getarg rd.break=pre-mount’' rdbreak=pre-mount

396

&% emergency_shell -n pre-mount "Break pre-mount”

CHAPTER 8 DEBUGGING SHELLS

We have already discussed the getarg function, which is used to check what parameter
has been passed to rd.break=. If rd.break=pre-mount has been passed, then only the
emergency-shell() function will be called. The function is defined in /usr/1ib/dracut-1ib.
sh, and it passes pre-mount as a string parameter to it. -n stands for the following:

[-n STRING] or [STRING]:True if the length of STRING is
nonzero

The emergency_shell function accepts the _rdshell name variable’s value as pre-mount.

if [II$1II = ll-nll]; the“
_rdshell_name=$2

Here, -n is considered as the first argument ($1), and pre-mount is the second
argument ($2). So, the value of rdshell name becomes pre-mount.

#vim /usr/lib/dracut-lib.sh
1123 emergency_shell()

1124 {

1125 local ctty

1126 set +e

1127 local rdshell name="dracut" action="Boot" hook="emergency"
1128 local emergency action

1129

1130 if ["$1" = "-n"]; then

1131 _rdshell_name=$2

1132 shift 2

1133 elif ["$1" = "--shutdown"]; then

1134 _rdshell name=$2; action="Shutdown"; hook="shutdown-emergency"
1135 if type plymouth >/dev/null 2>&1; then

1136 plymouth --hide-splash

1137 elif [-x /oldroot/bin/plymouth]; then

1138 /oldroot/bin/plymouth --hide-splash

1139 fi

1140 shift 2

1141 fi

1142

1143 echo ; echo

397

CHAPTER 8 DEBUGGING SHELLS

1144 warn "$*"

1145 echo

1146

1147 _emergency_action=$(getarg rd.emergency)
1148 [-z "$ _emergency action"] \

1149 8% [-e /run/initramfs/.die] \

1150 &&% _emergency action=halt

1151

1152 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d
rdbreak; then

1153 _emergency_shell $_rdshell_name

1154 else

1155 source_hook "$hook"

1156 warn "$action has failed. To debug this issue add \"rd.shell
rd.debug\" to the kernel command line."

1157 [-z "$ _emergency action”] &% _emergency action=halt

1158 fi

1159

1160 case "$_emergency action" in

1161 reboot)

1162 reboot || exit 1;;

1163 poweroff)

1164 poweroff || exit 1;;

1165 halt)

1166 halt || exit 1;;

1167 esac

1168 }

Then, at the end, it calls another emergency shell function from the same file
(note the underscore before the function name). As you can see, rdshell name is the
argument to the _emergency_shell function.

_emergency_shell $_rdshell_name

Inside the _emergency shell() function, we can see that _name gets the argument,
which is pre-mount.

local _name="$1"

#vim usx/lib/dracut-lib.sh
398

CHAPTER 8 DEBUGGING SHELLS

1081 _emergency_shell()

1082 {
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

1096
1097

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

local _name="$1"
if [-n "$DRACUT_SYSTEMD"]; then

» /.console_lock

echo "PS1=\"$_name:\\\${PuD}# \"" »>/etc/profile
systemctl start dracut-emergency.service

xm -f -- /etc/profile

mm -f -- /.console_lock

debug_off
source_hook "$hook"
echo
/sbin/rdsosreport
echo 'You might want to save "/run/initramfs/rdsosreport.txt" to a
USB stick or /boot’
echo 'after mounting them and attach it to a bug report.'
if ! RD_DEBUG= getargbool 0 rd.debug -d -y rdinitdebug -d -y
rdnetdebug; then
echo
echo 'To get more debug information in the report,’
echo 'reboot with "rd.debug" added to the kernel command line.'
fi
echo
echo 'Dropping to debug shell.'
echo
export PS1="$ name:\${PWD}# "
[-e /.profile] || >/.profile

_ctty="$(RD_DEBUG= getarg rd.ctty=)" 8& _ctty="/dev/${ cttys#*/}"
if [-z "$ ctty" 1; then
_ctty=console
while [-f /sys/class/tty/$ ctty/active]; do
_ctty=$(cat /sys/class/tty/$ ctty/active)
_ctty=${ ctty##* } # last one in the list

399

CHAPTER 8 DEBUGGING SHELLS

1114 done

1115 _ctty=/dev/$_ctty

1116 fi

1117 [-c "$_ctty"] || _ctty=/dev/tty1

1118 case "$(/usr/bin/setsid --help 2>&1)" in *--ctty*) CTTY="--
ctty";; esac

1119 setsid $CTTY /bin/sh -i -1 0<>$_ctty 1<>$ ctty 2<>$ ctty

1120 fi

The same pre-mount string has been passed to PS1. Let’s see first what exactly PS1 is.
PS1 is called a pseudo variable. This will be shown by bash when the user has
successfully logged in. Here’s an example:

[root@fedora home]#

[username]@[host][CWD][# since it is a root user]

The ideal entries accepted by bash are PS1="\u:\w\$".
u = This is the username.
w = This is the working directory.
$ =IfUID is 0, then #; otherwise $'.
So, in our case, when we get a emergency shell, PS1 will be printed by the shell as follows:

'pre-mount#’

Next in the source code, you can see that the PS1 variable’s new value is also getting
added in /etc/profile. The reason is that bash reads this file every time before
presenting the shell to the user. At the end, we are simply starting the dracut-emergency

service.
systemctl start dracut-emergency.service

The following is the dracut-emergency.service file from usr/1ib/systemd/system/
of initramfs:

cat usr/lib/systemd/system/dracut-emergency.service | grep -v #'

400

CHAPTER 8

[Unit]

Description=Dracut Emergency Shell
DefaultDependencies=no
After=systemd-vconsole-setup.service
Wants=systemd-vconsole-setup.service
Conflicts=shutdown.target emergency.target

[Service]

Environment=HOME=/
Environment=DRACUT SYSTEMD=1
Environment=NEWROOT=/sysroot
WorkingDirectory=/
ExecStart=-/bin/dracut-emergency
ExecStopPost=-/bin/rm -f -- /.console_lock
Type=oneshot
StandardInput=tty-force
StandardOutput=inherit
StandardError=inherit
KillMode=process
IgnoreSIGPIPE=no
TasksMax=infinity

KillSignal=SIGHUP

DEBUGGING SHELLS

The service is simply executing /bin/dracut-emergency. This script first stops the

plymouth service.

type plymouth »>/dev/null 2>&1 && plymouth quit

This stores the hook variable’s value as emergency and calls the source_hook function

with the emergency argument.

export _rdshell_name="dracut" action="Boot" hook="emergency"
source_hook "$hook"

vim bin/dracut-emergency
1 #!/usx/bin/sh
2
3 export DRACUT_SYSTEMD=1

401

CHAPTER 8 DEBUGGING SHELLS

4 if [-f /dracut-state.sh]; then

5 . /dracut-state.sh 2>/dev/null

6 fi

7 type getarg >/dev/null 2>&1 || . /lib/dracut-1ib.sh

8
9 source_conf /etc/conf.d

10

11 type plymouth >/dev/null 2>&1 && plymouth quit

12

13 export _rdshell_name="dracut" action="Boot" hook="emergency"

14 _emergency action=$(getarg rd.emergency)

15

16 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d rdbreak; then
17 FSTXT="/run/dracut/fsck/fsck_help $fstype.txt"

18 source_hook "$hook"

19 echo

20 rdsosreport

21 echo

22 echo

23 echo Entering emergency mode. Exit the shell to continue.'

24 echo Type "journalctl" to view system logs.'

25 echo You might want to save "/run/initramfs/rdsosreport.txt” to a
USB stick or /boot’

26 echo after mounting them and attach it to a bug report.'

27 echo

28 echo

29 [-f "$FSTXT"] && cat "$FSTXT"
30 [-f /etc/profile] & . /etc/profile
31 [-z "$PS1"] 8& export PS1="$ name:\${PWD}# "

32 exec sh -i -1
33 else
34 export hook="shutdown-emergency"

35 warn "$action has failed. To debug this issue add \"rd.shell rd.debug\"
to the kernel command line."
36 source_hook "$hook"

402

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

CHAPTER 8 DEBUGGING SHELLS

[-z "$_emergency action"] &% _emergency action=halt

fi
/bin/rm -f -- /.console_lock
case "$ emergency action" in
reboot)
reboot || exit 1;;
poweroff)
poweroff || exit 1;;
halt)
halt || exit 1;;
esac
exit 0

source_hook() {

local _dir
_dir=$1; shift

source_all "/lib/dracut/hooks/$_dir" "$@"

The source_hook function is again defined in usr/1ib/dracut-1ib.sh.

The _dir variable has captured the hook name, which is emergency. All the hooks

are nothing but a bunch of scripts, stored and executed from the /1ib/dracut/hooks/

directory of initramfs.

tree usr/lib/dracut/hooks/
usr/lib/dracut/hooks/

— cleanup
— cmdline

— 30-parse-lvm.sh
— 91-dhcp-root.sh
L— 99-nm-config.sh

— emergency

L— 50-plymouth-emergency.sh

403

CHAPTER 8 DEBUGGING SHELLS

F— initqueue

| |F— finished
|— online
— settled

|
|
| | L— 99-nm-run.sh
| L— timeout

| L— 99-rootfallback.sh

— mount

F— netroot

F— pre-mount

F— pre-pivot

| L— 85-write-ifcfg.sh
— pre-shutdown

F— pre-trigger

— pre-udev

| L— 50-ifname-genrules.sh
— shutdown

| L— 25-dm-shutdown. sh
L— shutdown-emergency

For an emergency hook, it is executing usr/1ib/dracut/hooks/emergency/50-
plymouth-emergency.sh, which is stopping the plymouth service.

#!/usx/bin/sh
plymouth --hide-splash 2»/dev/null || :

Once the emergency hook is executed and plymouth has been stopped, it will go back
to bin/dracut-emergency and print the following banner:

echo Entering emergency mode. Exit the shell to continue.'

echo Type "journalctl" to view system logs.'

echo You might want to save "/run/initramfs/rdsosreport.txt" to a USB stick
or /boot’

echo after mounting them and attach it to a bug report.'

So, it does not matter what the rd.break=hook name user has passed. systemd will
execute the emergency hook, and once the banner is printed, it will fetch the /etc/
profile directory in which we have added PS1=_rdshell name/PSi=hook name, and
then we can simply run the bash shell.

exec sh -i -1

404

CHAPTER 8 DEBUGGING SHELLS

When the shell starts running, it will read /etc/profile, and it will find the PS1=hook _
name variable. In this case, hook name is pre-mount. That is why pre-mount as a prompt
name of bash has been printed. Refer to the flowchart shown in Figure 8-2 for a better
understanding of this.

rd.break=pre-mount

!

dracut=pre-mount.service

/binf/dracut-pre-mount

emergency_shell -n pre-mount

Y
lusrflib/dracut-lib.sh

emergency_shell()

I
_rdshell_name=%$2
_rdshell_name=pre-mount
* _emergency_shell $_rdshell_name
_emergency_shell()

_name=$_rdshell_name
PS1=_name > /etc/profile
systemctl start dracut-emergency.service
|
Y

dracut-emergency.service

{bin/dracut-emergency

1) hook=emergency --> usr/lib/dracut/hooks/emergency/ --> stop plymouth
2)Print banner

3) run bash

4) Bash will read /etc/profile

5) will get pre-mount>

Figure 8-2. The flowchart

405

CHAPTER 8 DEBUGGING SHELLS

If a user passes any other parameter to rd.break, for example, initqueue, then it will
be fed into PS1, rdshell name, and hook variables. Later, bash will be called through
the emergency service. Bash will read the PS1 value from the /etc/profile file and will
show the initqueue name in the prompt.

The conclusion is that the same bash shell will be provided to the user under various
prompt names (cmdline, pre-mount, switch_root, pre-udev, emergency, etc.) but at
different boot stages of initramfs.

cmdline:/# pre-udev:/#
pre-trigger:/# initqueue:/#
pre-mount:/# pre-pivot:/#
switch_root:/#

Similar to this, rescue.target will be executed by systemd.

rescue.service and emergency.service

The rescue service is also called single-user mode in the systemd world. So if the user
has requested to boot in single-user mode, then systemd actually drops the user on
the emergency shell at the rescue. service stage. Figure 8-3 shows you the booting
sequence covered so far.

406

CHAPTER 8 DEBUGGING SHELLS

systemd-journal.socket
|
v
dracut-cmdline.service
|
v
dracut-pre-udev.service
|
v
systemd-udevd.service

v
local-fs-pre.target dracut-pre-trigger.service
| |
v v
(various mounts) (various swap systemd-udev-trigger.service
| devices...) | (various low-level (various low-level
| | | services: seed, API VFS mounts:
v v v tmpfiles, random mqueue, configfs,
local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
I | | I |
\ I I I /
\\Vi
v
sysinit.target
|
/1N
/ | \
I | I
v | v
(various | rescue,.service
sockets...) | |
I | v
v | rescue.target
sockets.target |
| |
A W | emergency.service
\ |
v v
basic.target emergency.target
|
/1
|
v

dracut-pre-mount.service

v

—_—_—-

Figure 8-3. The flowchart of the booting sequence
You can either pass rescue.target or pass runlevell.target or emergency.

service to systemd.unit to boot in single-user mode. As shown in Figure 8-4, we will
use Ubuntu this time to explore the booting stages.

407

CHAPTER 8 DEBUGGING SHELLS

setparams 'Ubuntu’

recordfail

load_video

gfxmode $linux_gfx_mode

insmod gzio

if [x$grub_platform = xxen 1; then insmod xzio; insmod lzopio; fi

insmod part_gpt

insmod ext2

set root="hde,gpt2’

if [x$feature_platform_search_hint = xy 1; then

search --no-floppy --fs-uuid --set=root --hint-bios=hd@,gpt2 --hint-efi=hde,gpt2 --hint-baremetal=ahcie,gpt2

c1420089-3h06-4e83-aeb3-6ch1c 7583576

else

H.'se:ar-::h --no-floppy --fs-uuid --set=root c1426089-3b0e-4e83-aeb3-6chb1c7583576

linux /hoot/vmlinuz-5.9.8-37-generic root=UUID=c1420089-3bea-4e83-aeb3-6cb1c7583576 ro quiet splash $wi_\
handoff systemd.unit=runlevell.target_
nitrd /boot/initrd, img-5.0,8-37-generic

Figure 8-4. The kernel command-line parameter

This will drop us on an emergency shell. The single-user mode, rescue service, and
emergency service all launch the dracut-emergency binary. This is the same binary that
we launched in the emergency hook of dracut.

cat usr/lib/systemd/system/emergency.service | grep -v ' #'

[Unit]

Description=Emergency Shell
DefaultDependencies=no
After=systemd-vconsole-setup.service
Wants=systemd-vconsole-setup.service
Conflicts=shutdown.target
Before=shutdown.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=/bin/dracut-emergency
ExecStopPost=-/usr/bin/systemctl --fail --no-block default
Type=idle

StandardInput=tty-force

StandardOutput=inherit

408

CHAPTER 8

StandardError=inherit
KillMode=process
IgnoreSIGPIPE=no
TasksMax=infinity

KillSignal=SIGHUP
cat usr/lib/systemd/system/rescue.service | grep -v ' #'

[Unit]

Description=Emergency Shell
DefaultDependencies=no
After=systemd-vconsole-setup.service
Wants=systemd-vconsole-setup.service
Conflicts=shutdown.target
Before=shutdown.target

[Service]

Environment=HOME=/
Environment=DRACUT_SYSTEMD=1
Environment=NEWROOT=/sysroot
WorkingDirectory=/
ExecStart=/bin/dracut-emergency
ExecStopPost=-/usr/bin/systemctl --fail --no-block default
Type=idle
StandardInput=tty-force
StandardOutput=inherit
StandardError=inherit
KillMode=process
IgnoreSIGPIPE=no
TasksMax=infinity

KillSignal=SIGHUP

DEBUGGING SHELLS

And as we all know, the dracut-emergency script executes a bash shell.

409

CHAPTER 8 DEBUGGING SHELLS

vim bin/dracut-emergency
1 #!/usx/bin/sh

export DRACUT_SYSTEMD=1
if [-f /dracut-state.sh]; then
. /dracut-state.sh 2>/dev/null
fi
type getarg >/dev/null 2>81 || . /lib/dracut-lib.sh

W 00N O U1 B W N

source_conf /etc/conf.d

[N
[)

type plymouth »/dev/null 2>&1 && plymouth quit

[N
w N

export _rdshell_name="dracut" action="Boot" hook="emergency"

14 _emergency action=$(getarg rd.emergency)

15

16 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d rdbreak; then

17 FSTXT="/run/dracut/fsck/fsck_help $fstype.txt"

18 source_hook "$hook"

19 echo

20 rdsosreport

21 echo

22 echo

23 echo 'Entering emergency mode. Exit the shell to continue.'

24 echo 'Type "journalctl" to view system logs.'

25 echo 'You might want to save "/run/initramfs/rdsosreport.txt” to a
USB stick or /boot'

26 echo 'after mounting them and attach it to a bug report.'

27 echo

28 echo

29 [-f "$FSTXT"] && cat "$FSTXT"

30 [-f /etc/profile] & . /etc/profile

31 [-z "$PS1"] 8& export PS1="$ name:\${PWD}# "
32 exec sh -i -1

33 else

410

CHAPTER 8 DEBUGGING SHELLS

34 export hook="shutdown-emergency"
35 warn "$action has failed. To debug this issue add \"rd.shell
rd.debug\" to the kernel command line."

36 source_hook "$hook"

37 [-z "$_emergency action"”] &% _emergency action=halt
38 fi

39

40 /bin/xm -f -- /.console lock
41

42 case "$_emergency action" in
43 reboot)

44 reboot || exit 1;;
45 poweroff)

46 poweroff || exit 1;;
47 halt)

48 halt || exit 1;;

49 esac

50

51 exit 0

[2.749129] Couldn't get size: 0x800000000000000e

[4.437146] sd 32:0:0:0: [sda] Assuming drive cache: write through

[5.797837] piixd_smbus 0000:00:07.3: SMBus base address uninitialized - upgr

You are in rescue mode. After logging in, type “journalctl -xb" to view

system logs, "systemctl reboot” to reboot, "suystemctl default™ or "exit"

to boot into default mode.

Press Enter for maintenance

(or press Control-D to continue):

root@yogesh: “#

root@yogesh:“# 1s /
initrd. img swapfile
initrd.img.old vmlinuz

root@yogesh: “#

root@yogesh:™# _

Figure 8-5. The emergency shell

As you can see in Figure 8-5, sysroot is not mounted yet since we have not reached
the mounting stage of booting.

I hope you now understand how systemd presents the emergency shell to users at
various booting stages. In the next chapter, we will resume our paused systemd’s booting
sequence.

411

CHAPTER 9

systemd (Part)

So far, we have reached the service dracut.pre-mount.service where the user’s root
filesystem is not yet mounted inside initramfs. systemd’s next stage of booting will mount
the root filesystem on sysroot.

sysroot.mount

systemd accepts the mount dracut command-line parameter, which will drop us on a
mount emergency shell. As you can see in Figure 9-1, we have passed the rd.break=mount

kernel command-line parameter.

load_video

set gfx_payload=keep

insmod gzio

linux (Sroot)s/umlinuz-5.3.7-301.fc31.x86_64 root=rdevs/mapper/root_vg-root ro r\
esume=/dev/mapper/root_vg-swap rd.lum.lv=root_vg-/root rd.lum.lv=root_vg-/swap c\
onsole=ttysS0, 115200 console=ttyd rd.break=mount

initrd (Sroot)/initramfs-5.3.7-301.fc31.x86_64.img

Figure 9-1. The kernel command-line parameter

Asyou can see in Figure 9-2, sysroot has been mounted with a user’s root filesystem

in read-only mode.

mount:/# ls ssysroot

@System.solv boot etc lib lost+found mnt proc run srv tmp wvar
bin dev home 1ibb4 media opt root sbin sys usr
mount : /4

mount:/# echo quer >> sysroot-etc/fstab

sh: sysrootsetc/fstab: Read-only file system
mount : /#

mount : /%

Figure 9-2. The mount hook

413
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_9

https://doi.org/10.1007/978-1-4842-5890-3_9#ESM

CHAPTER9 SYSTEMD (PART II)

The dracut.mount hook (usr/1ib/systemd/system/dracut-mount.service) will
run the /bin/dracut-mount script from initramfs, which will do the mounting part.

#vim usx/lib/systemd/system/dracut-mount.service

As you can see, this is executing the dracut-mount script from initramfs and also
exporting the NEWROOT variable with the sysroot value.

Environment=NEWROOT=/sysroot
ExecStart=-/bin/dracut-mount

[Unit]

Description=dracut mount hook
Documentation=man:dracut-mount.service(8)
After=initrd-root-fs.target initrd-parse-etc.service
After=dracut-initqueue.service dracut-pre-mount.service
ConditionPathExists=/usr/lib/initrd-release
ConditionDirectoryNotEmpty=|/1ib/dracut/hooks/mount
ConditionKernelCommandLine=|xd.break=mount
DefaultDependencies=no

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT SYSTEMD=1
Environment=NEWROOT=/sysroot
Type=oneshot
ExecStart=-/bin/dracut-mount
StandardInput=null
StandardOutput=syslog
StandardError=syslog+console
KillMode=process
RemainAfterExit=yes

KillSignal=SIGHUP
#vim bin/dracut-mount
1 #!/usr/bin/sh
2 export DRACUT SYSTEMD=1
3 if [-f /dracut-state.sh]; then

414

O 00 N O U1 B

10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

33
34

CHAPTER9 SYSTEMD (PART i)

. /dracut-state.sh 2>/dev/null
fi
type getarg >/dev/null 2>&1 || . /lib/dracut-1lib.sh
source_conf /etc/conf.d

make_trace_mem "hook mount" '1:shortmem' '2+:mem' '3+:slab’

getarg 'rd.break=mount' -d 'rdbreak=mount' && emergency_shell -n mount
"Break mount”

mount scripts actually try to mount the root filesystem, and may

be sourced any number of times. As soon as one suceeds, no more are
sourced.
i=0
while :; do
if ismounted "$NEWROOT"; then
usable root "$NEWROOT" && break;
umount "$NEWROOT"
fi
for £ in $hookdir/mount/*.sh; do
[-f "$f"] 8& . "$f"
if ismounted "$NEWROOT"; then
usable root "$NEWROOT" && break;
warn "$NEWROOT has no proper rootfs layout, ignoring and
removing offending mount hook"
umount "$NEWROOT"
m -f -- "$f"
fi
done
i=$(($i+1))
[$i -gt 20] && emergency shell "Can't mount root filesystem"
done

415

CHAPTER9 SYSTEMD (PART II)

35 export -p > /dracut-state.sh
36
37 exit 0

We saw in Chapter 8 how exactly it drops us on an emergency shell and the
associated functions of this. Since we stopped the booting sequence after mounting
the user’s root filesystem inside initramfs, as you can see in Figure 9-3, the systemd-
fstab-generator has already been executed, and the -mount unit files have already
been created.

unt:/# ls -1 /runs/systemd/generators

root root 68 Jan 18 86:57 'dev-mapper-root_uvg\x2droot.device.d'

root root 68 Jan 18 86:57 initrd-root-device.target.d

root root 68 Jan 18 86:57 initrd-root-fs.target.requires

root root 68 Jan 18 86:57 initrd.target.wants

root root 68 Jan 18 86:57 sysinit.target.wants

root root 328 Jan 18 86:57 sysroot.mount

root root 488 Jan 18 86:57 systemd-fsck-root.service

root root 68 Jan 18 86:57 'systemd-fsck@dev-mapper-root_uvg\x2droot.service.d'

g

¥

I

X
NErERPNNNDNN

unt:/# cat srunssystemd/generator/sysroot.mount
Automatically generated by systemd-fstab-generator

[Unitl

ourcePath=/proc/cmdline

ocumentation=man:fstab(5) man:systemd-fstab-generator(8)
efaultDependencies=no

efore=initrd-root-fs.target
equires=systemd-fsck-root.service
fter=systemd-fsck-root.service

[Mount]

ere=/sysroot
at=sdev/mapper/root_vg-root

ﬁgtians=rn
unt /4

Figure 9-3. The systemd-fstab-generator behavior

Remember, the user’s root filesystem name added in sysroot.mount has been
taken from the /proc/cmdline file. The sysroot.mount clearly mentions what has to be
mounted and where it has to be mounted.

416

CHAPTER9 SYSTEMD (PART i)

initrd.target

As we have said multiple times, the ultimate aim of the booting sequence is to provide
the user’s root filesystem to the user, and while doing that, the major stages that systemd
achieves are as follows:

1) Find the user’s root filesystem.

2) Mount the user’s root filesystem (we have reached this stage of
booting).

3) Find the other necessary filesystems and mount them
(usrt, var, nfs, cifs, etc.).

4) Switch into the mounted user’s root filesystem.
5) Start the user space daemons.

6) Starteithermulti-user.target or graphical.target (whichis
outside the scope of this book).

As you can see, as of now, we have reached step 2, which is mounting the user’s
root filesystem inside initramfs. We all know that systemd has .targets, and target is
nothing but a bunch of unit files. The . target can be successfully started only when all
of its unit files have been successfully started.

There are many targets in the systemd world, such as basic.target, multi-user.
target, graphical.target, default.target, and sysinit.target to name a few. The
ultimate aim of initramfs is to achieve the initrd.target. Once the initrd.target
is successfully started, then systemd will switch_root into it. So, first, let’s look at
initrd.target and where it stands in terms of the booting sequence. Please refer to the
flowchart shown in Figure 9-4.

417

CHAPTER9 SYSTEMD (PART II)

local-fs-pre.target

v
(various mounts)
| devices...)

v v

systemd-journal.socket

v
dracut-cmdline.service

v
dracut-pre-udev.service
|
v
systemd-udevd.service

v

dracut-pre-trigger.service

v

(various swap systemd-udev-trigger.service

(various low-level
| services: seed,
v tmpfiles, random

(various low-level
API VFS mounts:
mqueue, configfs,

local-fs.target swap.target dracut-initqueue.service sysctl, ...) debugfs, ...)
|
\ | | | /
A/
v
sysinit.target
/N
/ \
| |
v | v
(various | rescue.service
sockets...) | |
v
v rescue.target
sockets.target
\ emergency.service
Al
v v
basic.target emergency.target
/
v

e e e e e e e e

(custom initrd services)

e

dracut-pre-mount.service

v
sysroot.mount

v
initrd-root-fs.target

v
dracut-mount.service

|

v
initrd-parse-etc.service

|

v
(sysroot-usr.mount and
various mounts marked

with fstab option
x-initrd.mount)

v
initrd-fs.target

A
v
initrd.target

Figure 9-4. The booting sequence

418

CHAPTER9 SYSTEMD (PART i)

When you are outside of initramfs (that means after switch_root), systemd’s default.
target will be either multi-user.target or graphical.target, whereas inside initramfs
(that means before switch root) after basic.target, systemd’s default.target will be
initrd.target. So, after successfully completing the sysinit.target and basic.target,
systemd’s main task is to achieve the initrd.target. To reach there, systemd will use the
sysroot.mount stage to read the mount unit files created by systemd-fstab-generator. The
service dracut-mount. service will mount the user’s root filesystem to /sysroot, and then
systemd will execute the service initrd-parse-etc.service. It will parse the /sysroot/
etc/fstab file and will make the mount unit files for usr or any other mount points that have
the x-initrd.mount option set. This is how the initrd-parse-etc.service works:

cat usr/lib/systemd/system/initrd-parse-etc.service | grep -v '#'

[Unit]

Description=Reload Configuration from the Real Root
DefaultDependencies=no
Requires=initrd-root-fs.target
After=initrd-root-fs.target
OnFailure=emergency.target
OnFailureJobMode=replace-irreversibly
ConditionPathExists=/etc/initrd-release

[Service]

Type=oneshot

ExecStartPre=-/usr/bin/systemctl daemon-reload
ExecStart=-/usr/bin/systemctl --no-block start initrd-fs.target
ExecStart=/usr/bin/systemctl --no-block start initrd-cleanup.service

Basically, the service is executing systemctl with a daemon-reload switch. This will
reload the systemd manager configuration. This will rerun all generators, reload all unit
files, and re-create the entire dependency tree. While the daemon is being reloaded, all
sockets that systemd listens to on behalf of the user configuration will stay accessible.
The systemd generators, which will be re-executed, are as follows:

1s usr/lib/systemd/system-generators/ -1
total 92
-Twxr-xr-x. 1 root root 3750 Jan 10 19:18 dracut-rootfs-generator
-IWXT-XI-X. 1 root root 45640 Dec 21 12:19 systemd-fstab-generator
-TwXr-xr-x. 1 root root 37032 Dec 21 12:19 systemd-gpt-auto-generator

419

CHAPTER9 SYSTEMD (PART II)

Asyou can see, it will execute systemd-fstab-generator, which will read the /sysroot/

etc/fstab entries and create the mount unit files for usr and for devices that have the

x-initrd.mount option set. In short, systemd-fstab-generator has executed twice.

So, when you drop yourself to the mount shell (rd.break=mount), you are actually

interrupting the booting sequence after the target initrd.target. This target just runs

the following services:

1s usr/lib/systemd/system/initrd.target.wants/

dracut-cmdline-ask.service
dracut-cmdline.service

dracut-initqueue.service

dracut-mount.service

dracut-pre-pivot.service

Please refer to Figure 9-5 for a better understanding of this.

pre-mount
hook

mount hook

local-fs.target

systemd-fstab-generator

v
I sysroot.mount
v by reading the
/proc/cmdline
Mounts the root filesystem on
Isysroot

\ 4

Initrd-parse-etc.service
parse the ‘usr’ &
‘x-initrd.mount’ entries
from /sysroot/etc/fstab

systemd-fstab-generator

Y

Mounts the usr and other
‘x-initrd.mount’ filesystems on
/sysroot

Y

switch_root / pivot_root

usr.mount & other
‘%-initrd.mount’
*.mount’ mount unit files

Figure 9-5. The overall execution of initrd.target

420

dracut-pre-
trigger.service
dracut-pre-mount.service dracut-pre-udev.
service

~——— initrd.target

CHAPTER9 SYSTEMD (PART i)

switch_root/pivot_root

Now we have reached the final stage of systemd’s booting, which is switch_root.
systemd switches the root filesystem from initramfs (/) to the user’s root filesystem
(/sysroot). systemd achieves this by taking the following steps:

1. Mounting the new root filesystem (/sysroot)
2. Turning it into the root filesystem (/)
3. Removing all accesses to the old (initramfs) root filesystem

4. Unmounting the initramfs filesystem and de-allocating the ramfs
filesystem

There are three major points that will be discussed in this chapter.
o switch root: We will explain this the old init way.
o pivot_root: We will explain this the systemd way.

e chroot: We will explain this in Chapter 10.

Switching to the New Root Filesystem on an init-Based
System

An init-based system uses switch root to switch to a new root filesystem (sysroot).
The purpose of switch_root is explained well on its man page, as shown here:

#man switch_root
NAME
switch root - switch to another filesystem as the root of the mount tree

SYNOPSIS
switch root [-hV]

switch_root newroot init [arg...]

DESCRIPTION
switch_root moves already mounted /proc, /dev, /sys and /run to
newroot and makes newroot the new root filesystem and starts init
process.

421

CHAPTER9 SYSTEMD (PART II)

WARNING: switch_root removes recursively all files and directories
on the current root filesystem.

OPTIONS
-h, --help
Display help text and exit.

-V, --version
Display version information and exit.

RETURN VALUE
switch root returns 0 on success and 1 on failure.

NOTES
switch root will fail to function if newroot is not the root of a
mount. If you want to switch root into a directory that does not
meet this requirement then you can first use a bind-mounting trick
to turn any directory into a mount point:

mount --bind $DIR $DIR

So, it switches to a new root filesystem (sysroot), and along with the root, it moves
the old root filesystem’s virtual file systems (proc, dev, sys, etc.) to the new root. The
best feature of switch_root is that after mounting the new root filesystem, it starts the
init process on its own. Switching to a new root filesystem takes place in dracut’s source
code. The latest version of dracut while writing this book was 049. The switch_root
function is defined in the dracut-049/modules.d/99base/init.sh file.

387 unset PS4

388

389 CAPSH=$(command -v capsh)

390 SWITCH ROOT=$(command -v switch root)
391 PATH=$0LDPATH

392 export PATH

393
394 if [-f /etc/capsdrop]; then
395 . /etc/capsdrop

396 info "Calling $INIT with capabilities $CAPS_INIT DROP dropped."
397 unset RD DEBUG

422

CHAPTER9 SYSTEMD (PART i)

398 exec $CAPSH --drop="$CAPS_INIT DROP" -- \

399 -c "exec switch_root \"$NEWROOT\" \"$INIT\" $initargs" || \

400 {

401 warn "Command:"

402 warn capsh --drop=$CAPS INIT DROP -- -c exec switch root
"$NEWROOT" "$INIT" $initargs

403 warn "failed."

404 emergency_shell

405 }

406 else

407 unset RD DEBUG
408 exec $SWITCH ROOT "$NEWROOT" "$INIT" $initargs || {

409 warn "Something went very badly wrong in the initramfs. Please "
410 warn "file a bug against dracut.”

411 emergency shell

412 }

413 fi

In the previous code, you can see that exec switch root has been called just like it
was described on the man page of switch _root. The defined variable values of NEWROOT
and INIT are as follows:

NEWROOT = "/sysroot"
INIT = 'init' or ‘'sbin/init'

Just for your information, these days the init file is a symlink to systemd.

1s -1 sbin/init
lrwxrwxrwx. 1 root root 22 Dec 21 12:19 sbin/init -> ../lib/systemd/systemd

To successfully switch_root the virtual filesystems, they have to be mounted first.
This will be achieved through dracut-049/modules.d/99base/init.sh. These are the
steps that will be followed:

1. Mount the proc filesystem.
2. Mount the sys filesystem.

3. Mount the /dev directory with devtmpfs.

423

CHAPTER9 SYSTEMD (PART II)

4. Create the stdin, stdout, stderr, pts, and shm device files
manually.

5. Make the /run mount point with tmpfs in it. (The /run mount
point is not available on init-based systems.)

#ivim dracut-049/modules.d/99base/init.sh

11 NEWROOT="/sysroot"

12 [-d $NEWROOT] || mkdir -p -m 0755 $NEWROOT
13

14 OLDPATH=$PATH

15 PATH=/usx/sbin:/usr/bin:/sbin:/bin

16 export PATH

17

18 # mount some important things

19 [! -d /proc/self] && \

20 mount -t proc -o nosuid,noexec,nodev proc /proc »/dev/null

21

22 if ["$2" I= "0"]; then

23 echo "Cannot mount proc on /proc! Compile the kernel with
CONFIG_PROC_FS!"

24 exit 1

25 fi

26

27 [! -d /sys/kernel] && \

28 mount -t sysfs -o nosuid,noexec,nodev sysfs /sys »/dev/null

29

30 if ["$2" I= "0"]; then

31 echo "Cannot mount sysfs on /sys! Compile the kernel with
CONFIG_SYSFS!"

32 exit 1

33 fi

34

35 RD_DEBUG=""

36 . /lib/dracut-1ib.sh

37

424

38
39
40
41

42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62

63
64
65
66
67

CHAPTER9 SYSTEMD (PART i)

setdebug

if ! ismounted /dev; then
mount -t devtmpfs -o mode=0755,noexec,nosuid,strictatime devtmpfs
/dev »/dev/null

fi

if ! ismounted /dev; then
echo "Cannot mount devtmpfs on /dev! Compile the kernel with
CONFIG_DEVTMPFS!"
exit 1

fi

prepare the /dev directory

[! -h /dev/fd] && 1n -s /proc/self/fd /dev/fd >/dev/null 2>&1

[! -h /dev/stdin] && 1n -s /proc/self/fd/0 /dev/stdin >/dev/null 2>&1
[! -h /dev/stdout] & 1n -s /proc/self/fd/1 /dev/stdout »/dev/null 2581
[! -h /dev/stderr]| & 1n -s /proc/self/fd/2 /dev/stderr »/dev/null 2581

if ! ismounted /dev/pts; then
mkdir -m 0755 /dev/pts
mount -t devpts -o gid=5,mode=620,noexec,nosuid devpts /dev/pts >/
dev/null

fi

if | ismounted /dev/shm; then
mkdir -m 0755 /dev/shm
mount -t tmpfs -o mode=1777,noexec,nosuid,nodev,strictatime tmpfs
/dev/shm »/dev/null

fi

if ! ismounted /run; then
mkdir -m 0755 /newrun
if | str starts "$(readlink -f /bin/sh)" "/run/"; then

425

CHAPTER9 SYSTEMD (PART II)

68 mount -t tmpfs -o mode=0755,noexec,nosuid,nodev,strictatime
tmpfs /newrun »/dev/null

69 else

70 # the initramfs binaries are located in /run, so don't mount it

with noexec

71 mount -t tmpfs -o mode=0755,nosuid,nodev,strictatime tmpfs /
newrun >/dev/null

72 fi

73 cp -a /run/* /newrun >/dev/null 2>81

74 mount --move /newrun /run

75 rm -fr -- /newrun

76 fi

Switching to a New Root Filesystem on a
systemd-Based System

The steps are almost similar to what we discussed for an init-based system. The only
difference for systemd is a binary made from C code. So, obviously, switching the
root will take place in systemd’s C source code, as shown here:

src/shared/switch-root.c:
First, consider the following:

new_root = sysroot
old_root = /

This will move the virtual filesystems that are already populated in initramfs’ root
filesystem; then the path_equal function checks whether the new_root path is available.

if (path_equal(new_root, "/"))
return 0;

Later it calls a pivot_root syscall (init uses switch_root) and changes the root
from / (the initramfs root filesystem) to sysroot (the user’s root filesystem).

pivot root(new root, resolved old root after) >= 0)

426

CHAPTER9 SYSTEMD (PART I)
Before we go further, we need to understand what pivot_root is and what it does.

man pivot_root

NAME

pivot root - change the root filesystem
SYNOPSIS

pivot _root new root put old
DESCRIPTION

pivot_root moves the root file system of the current process to
the directory put_old and makes new_root the new root file system.
Since pivot root(8) simply calls pivot root(2), we refer to the man
page of the latter for further details:

Note that, depending on the implementation of pivot_root, root and cwd of
the caller may or may not change. The following is a sequence for invoking
pivot_root that works in either case, assuming that pivot_root and chroot
are in the current PATH:

cd new_root
pivot_root . put_old
exec chroot. command

Note that chroot must be available under the old root and under the new
root, because pivot_root may or may not have implicitly changed the root
directory of the shell.

Note that exec chroot changes the running executable, which is necessary if
the old root directory should be unmounted afterwards. Also note that
standard input, output, and error may still point to a device on the old root
file system, keeping it busy. They can easily be changed when invoking
chroot (see below; note the absence of leading slashes to make it work
whether pivot_root has changed the shell’s root or not).

pivot_root changes the root filesystem (the initramfs root filesystem) of the
current process (systemd) to the new root filesystem (sysroot), and it also changes the
running executable (systemd from initramfs) to a new one (systemd from the user’s root
filesystem).

427

CHAPTER9 SYSTEMD (PART II)

After pivot_root, it detaches the old root device of initramfs (src/shared/switch-
root.c).

vim src/shared/switch-root.c

96 /* We first try a pivot root() so that we can umount the old
root dir. In many cases (i.e. where rootfs is /),
97 * that's not possible however, and hence we simply overmount
root */
98 if (pivot_root(new_root, resolved_old_root_after) >= 0) {
99
100 /* Immediately get rid of the old root, if detach_
oldroot is set.
101 * Since we are running off it we need to do this
lazily. */
102 if (unmount_old_root) {
103 r = umount recursive(old root after,
MNT _DETACH);
104 if (r < 0)
105 log warning errno(r, "Failed to unmount
old root directory tree, ignoring: %m");
106 }
107
108 } else if (mount(new_root, "/", NULL, MS_MOVE, NULL) < 0)
109 return log error errno(errno, "Failed to move %s

to /: %m", new_root);
110

After a successful pivot_root, this is the current state:
o sysroot has become root (/).
e The current working directory has become root (/).

e chroot will be executed so that bash changes its root directory from
the old root (initramfs) to the new (user’s) root filesystem. chroot will
be discussed in the next chapter.

Finally, delete the old_root device (rm -1f).

428

CHAPTER9 SYSTEMD (PART i)

110

111 if (chroot(".") < 0)

112 return log error errno(errno, "Failed to change root: %m");

113

114 if (chdir("/") < o)

115 return log error errno(errno, "Failed to change

directory: %m");

116

117 if (old_root_fd »= 0) {

118 struct stat rb;

119

120 if (fstat(old root fd, &rb) < 0)

121 log warning_errno(errno, "Failed to stat old
root directory, leaving: %m");

122 else

123 (void) rm rf children(TAKE_FD(old root fd), O,
8rb); /* takes possession of the dir fd, even
on failure */

124 }

For a better understanding, I highly recommend reading the entire src/shared/
switch-root.c source code shown here:

/* SPDX-License-Identifier: LGPL-2.1+4 */

#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdbool.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <unistd.h>

W 00N OO U1 B W N -

[N
[)

#include "base-filesystem.h"
#include "fd-util.h"
#include "fs-util.h"

[N
w N

429

CHAPTER9 SYSTEMD (PART II)

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

430

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

int swit

"log.h"
"missing_syscall.h"
"mkdir.h"
"mount-util.h"
"mountpoint-util.h"
"path-util.h"
"rm-rf.h"
"stdio-util.h"
"string-util.h"
"strv.h"
"switch-root.h"
"user-util.h"
"util.h"

ch_root(const char *new root,
const char *old root after, /* path below the new root,
where to place the old root after the transition */
bool unmount old root,
unsigned long mount _flags) { /* MS_MOVE or MS_BIND */

_cleanup free char *resolved old root after = NULL;
cleanup close int old root fd = -1;

bool old root remove;

const char *i;

int r;

assert(new_root);
assert(old root after);

if (path_equal(new_root, "/"))
return O;

/* Check if we shall remove the contents of the old root */
old root remove = in_initrd();
if (old_root remove) {

48

49
50

51
52
53

54

55
56

57
58
59
60

61
62
63
64
65

66
67
68
69
70

71
72

73

CHAPTER9 SYSTEMD (PART i)

old root fd = open("/", O RDONLY|O NONBLOCK|
0_CLOEXEC|0_NOCTTY|0 DIRECTORY);
if (old_root fd < 0)

return log error errno(errno, "Failed to open

root directory: %m");

/* Determine where we shall place the old root after the
transition */
r = chase_symlinks(old_root after, new_root, CHASE_PREFIX_
ROOT | CHASE_NONEXISTENT, &resolved old root after, NULL);
if (r < 0)
return log error errno(r, "Failed to resolve %s/%s:
%m", new_root, old root after);
if (r == 0) /* Doesn't exist yet. Let's create it */
(void) mkdir p label(resolved old root after, 0755);

/* Work-around for kernel design: the kernel refuses MS_MOVE
any file systems are mounted MS_SHARED. Hence

* remount them MS_PRIVATE here as a work-around.

*

* https://bugzilla.redhat.com/show_bug.cgi?id=847418 */

if (mount(NULL, "/", NULL, MS_REC|MS_PRIVATE, NULL) < 0)
return log error errno(errno, "Failed to set \"/\"
mount propagation to private: %m");

FOREACH_STRING(i, "/sys", "/dev", "/run", "/proc") {
_cleanup free char *chased = NULL;

r = chase_symlinks(i, new root, CHASE PREFIX
ROOT |CHASE_NONEXISTENT, &chased, NULL);
if (r < 0)
return log error errno(r, "Failed to resolve
%s/%s: %m", new root, i);
if (r > 0) {

if

431

CHAPTER9 SYSTEMD (PART II)

74 /* Already exists. Let's see if it is a mount
point already. */

75 r = path_is mount point(chased, NULL, 0);

76 if (r < 0)

77 return log error errno(r, "Failed to

determine whether %s is a mount
point: %m", chased);

78 if (r » 0) /* If it is already mounted, then do
nothing */

79 continue;

80 } else

81 /* Doesn't exist yet? */

82 (void) mkdir p label(chased, 0755);

83

84 if (mount(i, chased, NULL, mount flags, NULL) < 0)

85 return log error errno(errno, "Failed to

mount %s to %s: %m", i, chased);

86 }

87

88 /* Do not fail if base filesystem create() fails. Not all
switch roots are like base filesystem create() wants

89 * them to look like. They might even boot, if they are RO and
don't have the FS layout. Just ignore the error

90 * and switch root() nevertheless. */

91 (void) base filesystem create(new_root, UID INVALID,

GID INVALID);

92

93 if (chdir(new root) < 0)

94 return log error errno(errno, "Failed to change

directory to %s: %m", new root);

95

96 /* We first try a pivot root() so that we can umount the old
root dir. In many cases (i.e. where rootfs is /),

97 * that's not possible however, and hence we simply overmount

root */

432

98
99
100

101

102
103
104
105

106
107
108
109

110
111
112
113
114
115

116
117
118
119
120
121

122
123

124

CHAPTER9 SYSTEMD (PART i)

if (pivot_root(new_root, resolved old root after) >= 0) {

/* Immediately get rid of the old root, if detach_
oldroot is set.
* Since we are running off it we need to do this
lazily. */
if (unmount_old root) {
T = umount recursive(old root after, MNT DETACH);
if (r < 0)
log warning_errno(r, "Failed to unmount
old root directory tree, ignoring: %m");

} else if (mount(new root, "/", NULL, MS MOVE, NULL) < 0)
return log error errno(errno, "Failed to move %s to
/: %m", new root);

if (chroot(".") < 0)
return log error errno(errno, "Failed to change root: %m");

if (chdiz("/") < 0)
return log error errno(errno, "Failed to change
directory: %m");

if (old _root fd >= 0) {
struct stat rb;

if (fstat(old root fd, &rb) < 0)
log warning_errno(errno, "Failed to stat old
root directory, leaving: %m");

else
(void) rm rf children(TAKE_FD(old root fd),
0, &rb); /* takes possession of the dir fd,
even on failure */

433

CHAPTER9 SYSTEMD (PART II)

125
126 return 0;
127 }

Here we have successfully switched to the user’s root filesystem and left the initramfs
environment. Now systemd from the user’s root filesystem with PID 1 will start running
and take care of the rest of the booting procedure, which is as follows:

— systemd will start the user space services such as httpd, mysql,
postfix, network services, etc.

— Ultimately, the goal will be to reach default.target. As we discussed
earlier, before switch root, the target called default.target of
systemd will be initrd.target, and after switch_root, it will be
eithermulti-user.target or graphical.target.

But what happens to the existing systemd process, which started from initramfs (the
root filesystem)? Is it getting killed after switch_root or pivot root? Is the new systemd
process starting from the user’s root filesystem?

The answer is simple.

1) systemd of initramfs creates a pipe.
2) systemd forks.

3) The original PID 1 chroots into /systemd and executes /sysroot/
usr/lib/systemd/systemd.

4) The forked systemd serializes its state over the pipe to PID 1
and exits.

5) PID 1 deserializes the data from the pipe and continues with the
fresh configuration in / (formerly /sysroot).

I hope you have enjoyed the journey of systemd inside initramfs. As we mentioned
earlier, the rest of the systemd booting sequence, which will take place outside of
initramfs, will be more or less similar to what we have discussed so far.

How GUI is started is beyond the scope of this book. In our next chapter, we will
discuss the live ISO images and about the rescue mode.

434

CHAPTER 10

Rescue Mode and
Live Images

In this final chapter, we’ll cover rescue mode and live images. During our rescue mode
discussion, we'll cover the rescue initramfs, as well as some “can’t boot” issues. The
live images discussion covers Squashfs, rootfs.img, and the booting sequence of live
images.

Rescue Mode

There are two ways to boot in rescue mode.

e Through the built-in GRUB menuentry. Refer to Figure 10-1.

Cent0S Linux (4.18.8-868.e18.x86_64) 8 (Core)

CentDS Linux (B-rescue-53dc2e297cd34e949a66B88edb6f494333) 8 (Core)
Figure 10-1. The rescue mode entry from GRUB

o Through alive ISO image. Refer to Figure 10-2.

435
© Yogesh Babar 2020

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_10

https://doi.org/10.1007/978-1-4842-5890-3_10#ESM

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

Troubleshoot ing

Install Cent0S Linux 8.8.1985 in basic graphics mode

Rescue a Cent0S Linux system

Run a memory test

Boot from local drive

Return to main menu

Press Tab for full configuration options on menu itenms.

If the system will not boot, this lets you access files
and edit config files to try to get it booting again.

Figure 10-2. The rescue mode entry from a live image

As the name suggests, this mode is designed to rescue the systems that are stuck in

“can’t boot” issues. Imagine a situation where the system is not able to mount the root

filesystem and you are getting this never-ending generic message:

‘dracut-initqueue: warning dracut-initqueue timeout - starting timeout

scripts’

And say you have only one kernel installed, as shown here:

<snip>

[
[
[
[
[

0K

04 Reached target Paths.

OK] Reached target Basic System.
145.832487] dracut-initqueue[437]:

starting timeout scripts

[

146.541525] dracut-initqueue[437]:

starting timeout scripts

[

147.130873] dracut-initqueue[437]:

starting timeout scripts

[

147.703069] dracut-initqueue[437]:

starting timeout scripts

436

] Started Show Plymouth Boot Screen.
OK] Started Forward Password R...s to Plymouth Directory Watch.
]

Warning
Warning
Warning

Warning

: dracut-initqueue timeout
: dracut-initqueue timeout
: dracut-initqueue timeout

: dracut-initqueue timeout

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

[148.267123] dracut-initqueue[437]: Warning: dracut-initqueue timeout -
starting timeout scripts
[148.852865] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts
[149.430171] dracut-initqueue[437]: Warning: dracut-initqueue timeout -
starting timeout scripts

</snip>

Since this system has only one kernel (which can’t boot), how would you fix the
“can’t boot” issue without an environment? Rescue mode was created for this sole
purpose. Let’s first choose the default rescue mode, which comes pre-installed with
Linux and can be chosen from the GRUB menu. Please see Figure 10-3.

Fedora (5.3.7-381.f1c31.x86_64) 31 (Thirty One)

Fedora (B-rescue-19aBB8a3e86c24b459999fbacb68e42cB5) 31 (Thirty 0One)

Use the T and J keys to change the selection.
Press 'e’ to edit the selected item, or 'c’ for a command prompt.

Figure 10-3. The GRUB screen

The rescue mode will boot normally, and as you can see in Figure 10-4, if everything

is good, it will present the user with its root filesystem.

437

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

user_root_fs.txt
g5

fedor 4

Figure 10-4. The root filesystem mounted under rescue mode

But a question comes to mind: when the normal kernel is not able to boot, then how

come the same system is able to boot in rescue mode?

This is because when you install Fedora or any Linux distribution, the installer of

Linugx, called Anaconda, installs two kernels inside /boot.

1s -1h /boot/

total 164M
-TW-1--r--. 1 root root
drwx------ . 4 root root

-IW-1--r--. 1 root root
drwxr-xr-x. 2 root root

drwx------ . 5 root root
“YW======= . 1 root root
~YW======= « 1 root root

drwxr-xr-x. 3 root root
drwx------ . 2 root root
-IW-r--r--. 1 root root
-IW------- . 1 root root
-IW------- . 1 root root

438

209K Oct
4.0K Oct
181K Aug
4.0K Oct
4.0K Mar
80M Dec

32M Dec
4.0K Dec
16K Dec
179K Aug
30M Jan
4.3M Oct

22 01:03 config-5.3.7-301.fc31.x86_64

24 04:44 efi

2 2019 elf-memtest86+-5.01

24 04:42 extlinux
28 13:37 grub2

9 10:18 initramfs-0-rescue-2058a9f13f9e48

9dba29c477a8ae2493.img

9 10:19 initramfs-5.3.7-301.fc31.x86_64.img
9 10:18 loader

9 10:12 lost+found

2 2019 memtest86+-5.01

6 09:37 new.img
22 01:03 System.map-5.3.7-301.fc31.x86_64

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

-YWXY-Xr-X. 1 root root 8.9M Dec 9 10:18 vmlinuz-0-rescue-2058a9f13f9e489d
ba29c477a8ae2493
-YWXr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

Asyou can see, vmlinuz-5.3.7-301.fc31.x86 64 is a normal kernel, whereas
vmlinuz-0-rescue-19a08a3e86c24b459999fbac68e42c05 is the rescue kernel, which is a
separate kernel with its own initramfs file, called initramfs-0-rescue-19a08a3e86c24b
459999fbac68e42c05.img.

Let’s say you installed a new package (.rpm or .deb) provided by nvidia, which
has new graphics drivers in it. Since the graphics drivers have to be added in initramfs,
the nvidia package rebuilt the original kernel initramfs (initramfs-5.3.7-301.fc31.
x86_64.img). So, the original kernel has the newly added graphics driver, but the rescue
initramfs does not have that driver added. When the user tries to boot, the system fails
to boot with the original kernel (vmlinuz-5.3.7-301.fc31.x86_64) since the installed
graphics driver is not compatible with the attached graphics card, but at the same time
the system will successfully boot with the rescue mode because the noncompatible
drivers are not present in the rescue initramfs. The rescue mode kernel will have the
same command-line parameters as the normal kernel has, and therefore the installed
rescue kernel knows the name of the user’s root filesystem.

Figure 10-5 shows the normal kernel’s command-line parameters.

load_video

set gfx_payload=keep

insmod gzio

linux ($rootl/vmlinuz-5.3.16-308. fc31.x86_64 root=UUID=f7ed?74b5-9885-4f42-alcd™
-a569f798fdad ro rhgb quiet

initrd ($root)-/initramfs-5.3.16-3008. fc31.xB6_64. imMg

Figure 10-5. The normal kernel’s command-line parameters
Figure 10-6 shows the rescue kernel’'s command-line parameters.

load_video

set gfx_payload=keep

insmod gzio

linux ($root)/vmlinuz-B-rescue-Beeb43ddc61945cBb58c2f15b776f626 root=UUID=f7ed™\
74b5-9885-4f42-alc4-a569f798fdad ro rhgb quiet

initrd ($root)/initramfs-B-rescue-Beebd43ddc61945cBb58c2f15b776f626. imy

Figure 10-6. The rescue kernel’s command-line parameters

439

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

Rescue Mode initramfs

The rescue mode initramfs (initramfs-0-rescue-2058a9f13f9e489dba29c
477a8ae2493.1img) is much bigger in size than the original kernel’s initramfs
(initramfs-5.3.7-301.fc31.x86_64.1img).

1s -1lh /boot/

total 164M
-Tw-r--r--. 1 root root 209K Oct 22 01:03 config-5.3.7-301.fc31.x86 64
drwx------ . 4 root root 4.0K Oct 24 04:44 efi

-TW-r--r--. 1 root root 181K Aug 2 2019 elf-memtest86+-5.01
drwxr-xr-x. 2 root root 4.0K Oct 24 04:42 extlinux

drwx------ . 5 root root 4.0K Mar 28 13:37 grub2

~YW-====== . 1 root root 80M Dec 9 10:18 initramfs-0-rescue-2058a9f13f9e48
9dba29c477a8ae2493.img

~YW-======- . 1 root root 32M Dec 9 10:19 initramfs-5.3.7-301.fc31.x86_64.img

drwxr-xr-x. 3 root root 4.0K Dec 9 10:18 loader

drwx------ . 2 root root 16K Dec 9 10:12 lost+found

-Yw-r--r--. 1 root root 179K Aug 2 2019 memtest86+-5.01

-IW------- . 1 root root 30M Jan 6 09:37 new.img

“IW-=-=-===-- . 1 root root 4.3M Oct 22 01:03 System.map-5.3.7-301.fc31.x86 64

-TWXT-Xr-X. 1 root root 8.9M Dec 9 10:18 vmlinuz-0-rescue-2058a9f13f9e489d
ba29c477a8ae2493
-TwXr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86 64

Why is this? It’s because the rescue initramfs is not host-specific the way a normal
kernel’s initramfs is. The rescue initramfs is a generic initramfs that is prepared by
considering all the possible devices on which a user can create a root filesystem. Let’s
compare both the initramfs systems.

tree

F——— normal_kernel
| L— initramfs-5.3.7-301.fc31.x86_64.img
L— rescue_kernel
L— initramfs-0-rescue-2058a9f13f9e489dba29c477a8ae2493.img

2 directories, 2 files

440

CHAPTER 10 RESCUE MODE AND LIVE IMAGES
We will extract them in their respective directories.

#/usx/1ib/dracut/skipcpio
initramfs-5.3.7-301.fc31.x86_64.img | gunzip -c | cpio -idv

#/usxr/1ib/dracut/skipcpio
initramfs-0-rescue-2058a9f13f9e489dba29c477a8ae2493.img | gunzip -c |
cpio -idv

We will make the list of files from the extracted initramfs.

tree normal_kernel/ » normal.txt
tree rescue_kernel/ » rescue.txt

The following are the differences among both the initramfs systems. The rescue
initramfs system has almost 2,189 extra files compared to the normal initramfs. Also,
almost 719 extra modules have been added in the rescue initramfs.

diff -yt rescue.txt normal.txt | grep '<' | wc -1
2186

diff -yt rescue.txt normal.txt | grep '<' | grep -i '.ko' | wc -1
719

<skip>

F— 1spci
— mdadm
— mdmon

— mdraid-cleanup
— mdraid_start

— mount.cifs

— mount.nfs

— mount.nfs4 -> mount.nfs
— mpathpersist

— multipath

F— multipathd

— nfsroot

|— partx

AN AN A A AN AN AN AN AN AN AN AN

441

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

|— pdata_tools

— ping -> ../bin/ping

— ping6 -> ../bin/ping

— rpcbind -> ../bin/rpcbind
— rpc.idmapd

F— rpcinfo -> ../bin/rpcinfo
— rpc.statd

|— setpci

— showmount

— thin_check -> pdata_tools
— thin_dump -> pdata_tools
— thin_repair -> pdata_tools
— thin_restore -> pdata_tools
— xfs_db

— xfs_metadump

L— xfs_repair

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
— 1lib
|
|
|
|
|

A A A A AN A AN AN AN NN N NN NN

F— iscsi
— 11dpad
F— nfs

| — rpc_pipefs
| L — statd

| L— sm

A
A A AN AN

</skip>

The rescue initramfs will have almost all the modules and supported files for the
device on which the user can make a root filesystem, whereas the normal initramfs will
be host-specific. It will have only those modules and supported files of the device on
which the user has made the root filesystem. If you want to make a rescue initramfs on
your own, then you can install a dracut-config-generic package on Fedora-based
systems. The package provides only one file, and it has the configuration to turn off the
host-specific initramfs generation.

rpm -ql dracut-config-generic
/usr/lib/dracut/dracut.conf.d/02-generic-image.conf

442

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

cat /usr/lib/dracut/dracut.conf.d/02-generic-image.conf
hostonly="no"

As you can see, the file will restrict dracut from creating a host-specific initramfs.

“Can’t Boot” Issue 9 (chroot)

Issue: Both the normal and rescue kernels are failing to boot. Figure 10-7 shows the

normal kernel panic messages.

Press any key to continue...
[2.8588861 Kernel panic - not syncing: UFS: Unable to mount root fs on unkno
wn-block(8,8)
[2.858145]1 CPU: 2 PID: 1 ComMM: swappers8 Not tainted 5.3.7-381.fc31.x86_61 #
1
[2.8582481 Hardware name: UMware, Inc. UMware Virtual Platforms448BX Desk:op
Reference Platform, BIODS 6.88 B7-29-2819
.858348]1 Call Trace:
.B58373]1 dump_stack+8x5c-8x88
.8584871 panic+Bx181-8x2d7
.B584481 mMount_block_root+Bx25h/8x386
.858477]1 prepare_namespace+Bx13bs8x171
.8585141 kernmel_init_freeable+8x228-8x248
.858554]1 7 rest_init+Bxaas/Bxaa
.B585861 kermel_init+Bxa-Bx186
.B858619]1 ret_from_fork+Bx35-8x48
.8518271 Rernel Offset: 8x21888088 from Bxffffffff81888888 (relocation ran
e: Bxffffffffea0000080-Bxffffffffbfffffff)
2.8511491 ---[end Kermel panic - not syncing: UFS: Unable to mount root fs
on unknown-block(B,8) 1---

MNMMNMNMNNNNNNRK

Figure 10-7. The kernel panic messages

The thrown kernel panic messages are complaining that the kernel is not able to
mount the root filesystem. We saw earlier that whenever the kernel is not able to mount
the user’s root filesystem, it throws the dracut-initqueue timeout messages.

"dracut-initqueue: warning dracut-initqueue timeout - starting timeout
scripts’

However, this time, the panic messages are different. So, it looks like the issue is not
related to the user’s root filesystem. One more clue is that it mentions the VFS filesystem;
VFS stands for “virtual file system,” so this indicates that the panic messages are not
able to mount the root filesystem from initramfs. Based on these clues, I guess we have
isolated the issue, and we should concentrate on initramfs of both the kernels.

443

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

Asyou can see in Figure 10-8, the rescue mode kernel panic messages are also similar.

Press any key to continue...

L 1.9921681 Kernel panic - not symncing: UFS: Unable to mount root fs on unkno
wn-block(B,8)

[1.9922711 CPU: 3 PID: 1 Comm: swappersB Not tainted 5.3.7-381.fc31.xB6_64 #

1
[1.9923411 Hardware name: UMware, Inc. UMware Virtual Platform/448BX Desktop
Reference Platform, BIOS 6.88 B7-/29-2819
.9924121 Call Trace:
.992437]1 dump_stack+B8x5c-/8x808
.992463]1 panic+8x181/8x2d7
.9924881 mount_block_root+Bx25bs8x386
.9925161 prepare_namespace+Bx13bs/8x171
.992544]1 kernel_init_freeable+8x228-8x248
.9925751 7 rest_init+BxaasBxaa
.9926181 kermel_init+BxasBx186
.9926361 ret_from_fork+8x35/8x48
.9929921 Rernel Offset: 8x2e888888 from Bxffffffff81808088 (relocation ran
e: BxffffffffoABORBBB-B<ffffffffbfffffff)
1.9938921 ---[end Kernel panic - not syncing: UFS: Unable to mount root fs
on unknown-block(8,8) 1-—-

el el e el

[
[
[
[
[
[
[
[
L
L
g
[

Figure 10-8. The rescue mode kernel panic messages

Resolution: Here are the steps to resolve the issue:

1) Since the installed rescue kernel is also panicking, we need to use
the live image of Fedora or of any Linux distribution to boot. As
shown in Figure 10-9 and Figure 10-10, we are using a live image
of Fedora.

Fedora-Horkstation-Live 31

Start Fedora-Horkstation-Live 31
Test this media & start Fedora-Horkstation-Live 31

Troubleshoot ing >

Pre Tab for full configuration options on menu items.

Figure 10-9. The live image welcome screen

444

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

Troubleshoot ing

Start Fedora-Horkstation-Live 31 in basic graphics mode
Run a memory test

Boot from local drive

Return to main menu <

Press xb for full conf i-!iil_".l. ion opt ions on menu items.
Try this option out if you’re having trouble starting
Fedora-Horkstation-Live 31.

Figure 10-10. Booting with a live image

2)

3)

4)

The system has booted in rescue mode. The live image booting
sequence will be discussed in the “Live Images” section of this
chapter. Let’s become a sudo user first.

$ sudo su

We trust you have received the usual lecture from your local
system administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[root@localhost-live liveuser] #

The root directory that we are seeing here is from a live image.
Since the live image kernel does not know the name of the user’s
root filesystem, it cannot mount it like a rescue kernel.

[root@localhost-live liveuser]# 1s /
bin boot dev etc home lib 1ib64 lost+found media mnt
opt proc root run sbin srv sys tmp usr var

Let’s find out what is wrong with the initramfs of the normal
and rescue kernels. To do that, we need to mount the user’s root
filesystem first.

445

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

vgscan -v
Found volume group "fedora localhost-live" using metadata type lvm2

lvscan -v

ACTIVE '/dev/fedora localhost-live/swap' [2.20 GiB] inherit
ACTIVE '/dev/fedora localhost-live/root' [18.79 GiB]
inherit

pvscan -v
PV /dev/sda2 VG fedora localhost-live 1vm2 [<21.00 GiB / 0 free]
Total: 1 [<21.00 GiB] / in use: 1 [<21.00 GiB] / in no VG: 0 [0]

As you can see, this system has a user’s root filesystem based on LVM. The physical
volume is on the sda device. Next we will mount the user’s root filesystem on a
temporary directory.

mkdir temp_root

mount /dev/fedora_localhost-live/root temp_root/

1s temp_root/
bin dev home 1ib64 media opt root sbin sys
tmp usr boot etc 1lib lost+found mnt proc run
stv @System.solv user root fs.txt var

5) Let’s check the initramfs file’s status.

1s temp_root/boot/ -1
total 0

The boot directory of the user’s root filesystem is empty. That is because on
this system, the boot is a separate partition.

mount /dev/sda1 temp_root/boot/

#1s temp_root/boot/

Config-5.3.7-301.fc31.x86 64 efi elf-memtest86+-5.01
extlinux grub2 loader lost+found

Memtest86+-5.01 System.map-5.3.7-301.fc31.x86 64
vmlinuz-0-rescue-19a08a3e86c24b459999fbac68e42c05
vmlinuz-5.3.7-301.fc31.x86_64

Surprisingly, as you can see, there are no initramfs files available on the user’s root
filesystem, and this is the reason why both the kernels were panicking.

446

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

So, the issue has been identified, and we need to regenerate the initramfs. To make
the new initramfs, we need to use the dracut command, but there are some problems.

e Whichever binary or command we execute, that binary will be from
the live image root filesystem. For example, the dracut command
will run from /usr/bin/dracut, whereas the user’s root filesystem’s
binary is in temp_root/usr/bin/dracut.

o Torun any binary, it needs supporting libraries like 1ibc. so, which
will again be used from the root filesystem of a live image. This
means the entire environment that we are using now is from the live
image, and it can create serious issues. For example, we can install
any package, and it will be installed in the live image root filesystem,
not in the user’s root filesystem.

In short, we need to change our current root (/) from the live image root filesystem
to the user’s root filesystem (temp_root). chroot is the command that we need to use for
this.

6) The name itself suggests it will change the root of bash from the
current root to the new root. chroot will be successful only if the
virtual filesystems are already mounted on the new root.

root@localhost-1ive liveuser]# 1s /
bin boot dev etc home 1ib 1ib64 lost+found media mnt
opt proc root run sbin srv sys tmp usr var

Our current root is the live image root filesystem. Before chroot, we will mount the
proc, dev, devpts, sys, and run virtual filesystems.

mount -v --bind /dev/ temp_root/dev
mount: /dev bound on /home/liveuser/temp_root/dev.

mount -vt devpts devpts temp_root/dev/pts -o gid=5,mode=620
mount: devpts mounted on /home/liveuser/temp root/dev/pts.

mount -vt proc proc temp_root/proc
mount: proc mounted on /home/liveuser/temp root/proc.

mount -vt sysfs sysfs temp_root/sys
mount: sysfs mounted on /home/liveuser/temp _root/sys.

447

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

mount -vt tmpfs tmpfs temp_root/run
mount: tmpfs mounted on /home/liveuser/temp root/run.

7) We are all set to chroot into a user’s root filesystem.

chroot temp_root/

#1s
bin dev home 1ib64

media opt root sbin sys tmp
usr boot etc 1lib lost+found mnt proc run SIV
@System.solv user root fs.txt var

So, temp_root became the root filesystem of bash now. If you exit from this shell,
bash will change its root directory from the user’s root filesystem to a live image root
filesystem. So, as long as we are in the same shell instance, our root directory is temp_
root. Now, no matter what command or binary we execute, it will run inside the user’s
root filesystem environment. Hence, it is completely safe to execute the processes in this
environment now.

8) To fix this “can’t boot” issue, we need to regenerate initramfs.

root@localhost-live /]# 1s /lib/modules
5.3.7-301.fc31.x86_64

[root@localhost-live /]# cd /boot/

[root@localhost-live boot]# rpm -qa | grep -i 'kernel-5'
kernel-5.3.7-301.fc31.x86_64

[root@localhost-live boot]# dracut initramfs-5.3.7-301.fc31.
9) Ifyou want to regenerate the rescue kernel initramfs, then you
need to install a dracut-config-generic package.

10) After rebooting, the system is able to boot, and the “can’t boot”
issue has been fixed.

448

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

Rescue Mode of Enterprise Linux Distributions

In some of the Linux distributions such as CentOS, the rescue image approach is a bit
different. The enterprise edition of Linux will try to find the user’s root filesystem on
its own. Let’s see this in action. Figure 10-11 and Figure 10-12 show the rescue mode

selection procedure of CentOS.

Cent0S Linux 8.8.1985

Install Cent0OS Linux 8.8. 1985
Test this media & install Cent0S Linux 8.8. 1985

Troubleshoot ing
Press Tab for full configuration options on menu items.

Figure 10-11. The CentOS welcome screen

Troubleshoot ing

Install CentO0S Linux 8.8.1985 in basic graphics mode
Rescue a Cent0S Linux systen
Run a memory test

Boot from local drive

Return to main menu

Press Tab for full configuration options on menu items.

If the system will not boot, this lets you access files
and edit config files to try to get it booting again.

Figure 10-12. The rescue mode selection

449

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

It will boot, and as you can see in Figure 10-13, it will display some messages on
the screen.

Starting installer, one moment...
anaconda 29.19.8.48-1.el18 for Cent0S Linux 8.8.1985 started.
» installation log files are stored in /tmp during the installation
» shell is available on TTYZ2
» when reporting a bug add logs from /tmp as separate text/plain attachments

Rescue

The rescue environment will now attempt to find your Linux installation and
mount it under the directory : /mnt/sysimage. You can then make any changes
required to your system. Choose '1l' to proceed with this step.

You can choose to mount your file systems read-only instead of read-write by
choosing '2".

If for some reason this process does not work choose '3' to skip directly to a
shell.

1) Continue

2) Read-only mount
3) Skip to shell
4) Quit (Reboot)

Please make a selection from the above: 1

Figure 10-13. The informative message

If we choose option 1, continue, then the rescue mode will search the disk and will
find the root filesystem on its own. Once the user’s root filesystem has been identified, it
will mount it under the /mnt/sysimage directory. Please refer to Figure 10-14.

450

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

1) Continue

2) Read-only mount
3) Skip to shell
4) Quit (Reboot)

Please make a selection from the above: 1

Rescue Shell

Your system has been mounted under /mnt/sysimage.

If you would like to make the root of your system the root of the active system,
run the command:

chroot /mnt/sysimage
When finished, please exit from the shell and your system will reboot.
Please press ENTER to get a shell:
sh-4.41
sh-4.4#
sh-4.4t
sh-4.4#%

[anacondall:main* Z2:shell 3:log 4:storage-log 5:program-log Switch tab: Al

Figure 10-14. The root filesystem is mounted under /mnt/sysimage

Asyou can see, it has mounted the user’s root filesystem in /mnt/sysimage; we just
need to chroot into it. But the beauty is we don’t need to mount the virtual filesystems
beforehand. This is because, as you can see in Figure 10-15, the chroot binary used in
CentOS has been customized, and it will mount the virtual filesystems on its own.

sh-4.4u

sh-4.4#

sh-4.4%

sh-4.4#t 1Is /mnt/sysimage/

bin dev home 1ib64 mmt proc run srv tmp wvar
boot etc 1lib media opt root sbin sys usr
sh-4.41

sh-4.4# chroot ~/mnt/sysimage/

bash-4.4#

bash-4.4# 1s

bin dev home 1ib64 mmt proc run srv tmp wvar
boot etc 1lib media opt root sbin sys usr
bash-4.4#

hash-4_4#t

[anacondall:main* Z:shell 3:log 4:storage-log 5:program-log

Figure 10-15. chroot

451

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

If we had chosen option 2, Read-Only Mount, then the rescue scripts would have
mounted the user’s root filesystem in read-only mode but in /mnt/sysimage. If we had
chosen the third option of Skip, the rescue system would not have attempted to find and
mount the user’s root filesystem on its own; it would have simply provided us
with a shell.

But how does it manage to find out the root filesystem when the rescue kernel of the
CentOS ISO does not have a user’s root filesystem name with it?

There is no trick here that Anaconda can do to find out the user’s root filesystem
name. Anaconda will mount each and every disk connected to the system and check
whether /etc/fstab is present on it or not. If /etc/fstab is found, then it will fetch
the user’s root filesystem name from it. If your system has a huge number of disks
attached, then there is a high chance that Anaconda might take a long time to mount the
user’s root filesystem. It is better to manually mount the user’s root filesystem in such
a scenario. The source code to find the user’s root filesystem is present in Anaconda’s
source tarball, as shown here:

#ivim pyanaconda/storage/root.py

91 def find existing installations(devicetree):

92 """Find existing GNU/Linux installations on devices from the
device tree.

93

94 :param devicetree: a device tree to find existing installations in

95 :return: roots of all found installations

96 e

97 if not os.path.exists(conf.target.physical root):

98 blivet util.makedirs(conf.target.physical root)

99

100 sysroot = conf.target.physical root

101 roots = []

102 direct devices = (dev for dev in devicetree.devices if dev.direct)

103 for device in direct devices:

104 if not device.format.linux_native or not device.format.
mountable or \

105 not device.controllable or not device.format.exists:

106 continue

452

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

107

108 try:

109 device.setup()

110 except Exception: # pylint: disable=broad-except

111 log exception info(log.warning, "setup of %s failed",
[device.name])

112 continue

113

114 options = device.format.options + ",ro"

115 try:

116 device.format.mount(options=options, mountpoint=sysroot)

117 except Exception: # pylint: disable=broad-except

118 log exception_info(log.warning, "mount of %s as %s failed",
[device.name, device.format.type])

119 blivet util.umount(mountpoint=sysroot)

120 continue

121

122 if not os.access(sysroot + "/etc/fstab", os.R_OK):

123 blivet util.umount(mountpoint=sysroot)

124 device.teardown()

125 continue

126

127 try:

128 (architecture, product, version) = get release_
string(chroot=sysroot)

129 except ValueError:

130 name = ("Linux on %s") % device.name

131 else:

132 # I'd like to make this finer grained, but it'd be very
difficult

133 # to translate.

134 if not product or not version or not architecture:

135 name = _("Unknown Linux")

136 elif "linux" in product.lower():

137 name = ("%(product)s %(version)s for %(arch)s") % \

453

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

138 {"product": product, "version": version, "arch":
architecture}

139 else:

140 name = ("%(product)s Linux %(version)s for %(arch)s") % \

141 {"product": product, "version": version, "arch":
architecture}

142

143 (mounts, swaps) = parse fstab(devicetree, chroot=sysroot)

144 blivet util.umount(mountpoint=sysroot)

145 if not mounts and not swaps:

146 # empty /etc/fstab. weird, but I've seen it happen.

147 continue

148 roots.append(Root (mounts=mounts, swaps=swaps, name=name))

149

Live Images

Live images are one of the best features of Linux systems. This book wouldn’t be
complete if we just stuck to the normal hard disk booting part. Let’s see how a live image
of Linux boots. First let’s mount the ISO image and see what it holds.

mkdir live_image

mount /dev/cdrom live_image/

mount: /home/yogesh/live image: WARNING: device write-protected, mounted
read-only.

tree live_image/
live_image/

F— EFI

L— BoOT

— BOOT. conf

|

|

| — BOOTIA32.EFI
| — BOOTX64.EFI
| — fonts

|

|

| L— unicode.pf2

— grub.cfg

454

CHAPTER 10

F— grubia32.efi
— grubx64.efi

F— mmia32.efi

L— mmx64.efi

— efiboot.img
— macboot . img
L— pxeboot
F— initrd.img
L— vmlinuz
isolinux

| |— boot.cat
| |— boot.msg
| — grub.conf
| |— initrd.img
| — isolinux.bin
| — isolinux.cfg
| — 1dlinux.c32
| — libcom32.c32
| |— libutil.c32
| |— memtest
| | splash.png
| |— vesamenu.c32
| L— vmlinuz
L— Live0S

L— squashfs.img

RESCUE MODE AND LIVE IMAGES

The live image is divided into four directories: EFI, images, isolinux, and LiveO0S.

o EFIL

We have already discussed this directory when talking about the

bootloader. The UEFI firmware will jump into this directory and
will run the grubx64.ef1i file. The grubx64. ef1i file will read the
grub.cfg file and will pull the initrd.img and vmlinuz files from

the isolinux directory.

455

CHAPTER 10 RESCUE MODE AND LIVE IMAGES
e images:

This will be used mainly if we are booting through PXE. A network
boot is out of the scope of this book.

e isolinux:
If UEFI is booting the BIOS way, then it will read the grub.conf
file from here. This directory is mainly for storing the initrd and
vmlinuz files. In other words, this directory is /boot for a normal
root filesystem.

o liveOS:

This is where the magic happens. This directory has a file named
squashfs.img. Once you mount that, you will find rootfs. img
init.

mkdir live_image_extract_1
mount live_image/Live0S/squashfs.img live_image_extract_1/

1s live_image_extract_1/
Live0S

1s live_image_extract_1/Live0S/
rootfs.img

mkdir live_image_extract_2
mount live_ image_extract_1/Live0S/rootfs.img live_image_ extract_2/

1s live_image_extract_2/
bin boot dev etc home 1lib 1ib64 lost+found media
mnt opt proc root run sbin srv sys tmp usr var

SquashFS

Squashfs is a small, compressed, read-only filesystem. This filesystem is generally used
for embedded systems where every byte of storage is precious. Squashfs gives us more
flexibility and performance over tarball archives. Squashfs stores a live Fedora’s root
filesystem (rootfs.img) in it, and it will be mounted as read-only.

456

CHAPTER 10 RESCUE MODE AND LIVE IMAGES

mount | grep -i rootfs
/home/yogesh/live image extract 1/Live0S/rootfs.img on /home/yogesh/
live image extract 2 type ext4 (ro,relatime,seclabel)

You can use the mksquashfs command provided by squashfs-tool to make the
Squashfs image/archive.

rootfs.img

rootfs.imgis an ext4 filesystem with a typical root filesystem in it. Some distros create
a guest user or a user named live for a live image, but in Fedora it’s the root user who
does everything.

file live_image_extract_1/Live0S/rootfs.img

live image extract 1/Live0S/rootfs.img: Linux rev 1.0 ext4 filesystem data,
UUID=849bdfdc-c8a9-4fed-a727-de52€24d981f, volume name "Anaconda" (extents)
(64bit) (large files) (huge files)

Booting Sequence of a Live Image

Here is the sequence:

1) The firmware will call the bootloader (grubx64.ef1i). It will read
the grub. cfg file and copy the vmlinuz and initrd files from the
isolinux directory.

2) The kernel will extract itself at a specific location and will extract

initramfs at any available location.

3) systemd, started from initramfs, will extract the rootfs.img file to
the device-mapper target device at /dev/mapper/live-rw, mount
it on the root (/) filesystem, and switch_root into it.

4) Once the root filesystem is available, you can consider it as a
normal operating that is installed in a CD, DVD, or .1so file.

Also, it is obvious that the live-image initramfs will be much bigger in size compared
to the host-specific initramfs.

457

Index

A

Active/inactive flag, 15

Actual root filesystem, 207, 268, 272

Anaconda installer, see Red Hat Enterprise
Linux 6 (RHEL 6)

B

/bin/dracut-emergency, 401
/bin/dracut-pre-mount
script, 396
BIOS, See also Boot Sector
firmware, 96
limitations, 96-98
blacklist.conf file, 279
blowfish_comman module, 245
blowfish modules, 244
bluetooth modules, 246, 279
bootchart, 302
Boot flag, 15
/boot/grub2
Device.map, 135, 136
files, 135
grub.cfg, 136-138
i386-pc, 138-141
boot.img file, 178
boot.ini file, 50
/boot/loader/ directory, 150
Bootloader
file of XP’s, 13

© Yogesh Babar 2020

GRUB 2 (see GRUB 2)
types, 12
Bootloader + Kernel
BIOS-based systems
resolution, 164, 165
UEFI-based systems resolution, 166
Boot Loader Specification (BLS), 149-152
Boot sector, 12
Fedora 15 (see Fedora 15 installation)
OpenSolaris 2008 (see OpenSolaris
2008 installation)
PC-BSD 9.0 (see PC-BSD 9.0
installation)
RHEL 6, 64-74
vendor signature field, 15
Windows 7, 56-64
Windows Server 2003, 46-56
Boot sequence
PC-BSD, 44
Solaris, 28-32
win2k3, 49
Windows 7, 61, 62
Windows XP, 14, 16

C

Can’t Boot issue (Bootloader)
console messages while booting, 158
grub2-mkconfig, UEFI-based
system, 161
GRUB 2 prompt, 153

459

Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3

https://doi.org/10.1007/978-1-4842-5890-3#ESM

INDEX

Can’t Boot issue (Bootloader) (cont.)

linux, initrd, and boot commands, 157

login screen, 159, 160
resolution
BIOS-based system, 162, 163
UEFI-based system, 164

root filesystem name and ro flag, 156

Ubuntu, 159
vmlinuz file, 155

Chainloading, 75

cmdline hook, 309

Command-line options
Ivm, raid, and Multipath-Related

dracut, 281, 283

rd.auto (rd.auto=1), 271
rd.break and rd.shell, 283
rd.debug, 280

rd.driver.blacklist, rd.driver.pre, and

rd.driver.post, 276, 278-280
rd.fstab =0, 272
rd.skipfsck, 272-276
copy_boot_params function, 188
core.img file, 141

D

daemon-reload switch, 419

Daemons, 290

Debian Linux-based live ISO image, 7

Debug-like kernel command-line
parameter, 189

Decompression methods, 200

depmod command, 244

device.map file, 135, 136

/dev/log socket, 309

Digital signature, 167

_dir variable, 403

diskboot.img file, 180, 181

460

Disk layout

BIOS-based system, 11
OpenSolaris 2008 installer, 18
PC-BSD 9.0, 34

Ubuntu, 104

win2k3, 47, 48

Windows 7, 56

dmesg command, 189
_dogetarg() function, 315, 316
do_mount_root function, 202
dracut

--add switch, 256
--add-drivers switch, 260
command-line option (see Command-
line options)
50-dracut.install script, 237
initramfs file, 238
initramfs image, 239-244
--include switch, 262
kernel-install script, 236
module (see Modules)
-m or--modules switch, 260
nfs module, 256

dracut-cmdline.service

/bin/dracut-cmdline script, 320

booting sequence, 317, 325

cmdline hook, 317, 321

cmdline parameter, 318

_dogetarg() function, 315, 316

/dev/disk directory contents, 320

dracut-cmdline script, 310-312

kernel command-line parameters, 310,
322,323

login screen, Fedora, 325

parameters, 312

rd.break kernel command-line
parameter, 324

switch_root hook, 324

sysroot directory, 323
rd.break=cmdline parameter, 309, 318
switch_root shell, 324
sysroot directory, 323
dracut.conf file, 255
dracut-emergency binary, 408
dracut-emergency service, 400
dracut-initqueue.service
“Can’t Boot” issue (systemd + Root
LVM) console messages, 358
emergency shell, 360
kernel command-line
parameters, 361
LVs, 360
root filesystem, mounting, 361

Can’t Boot issue (systemd + Root LVM)

dracut-initqueue timeout error
messages, 359
/etc/default/grub, 362
root Ilvm device, 359
root and rd.break kernel
command-line parameters, 357
initqueue hook, 357
pre-trigger hook, 354
pre-udev hook, 354
sda devices, 355
unit file, 355
dracut--list-modules command, 254
dracut-mount script, 414, 415
dracut-pre-mount.service, 391, 392
dracut-pre-trigger.service, 331-334
dracut-pre-udev.service, 326-331

E

EFI System Partition (ESP), 102, 103
emergency.service, 406-409, 411

INDEX

_emergency_shell() function, 318, 333,
397, 398
etc directory, 221, 222
/etc/grub.d/ directory
contents, 143
40_custom and 41_custom, 148
08_fallback_counting script file, 145
grub.cfg file, 143-145
20 _linux_xen, 146
30_os_prober, 147
20_ppc_terminfo, 146
30_uefi-firmware script file, 147, 148
/etc/systemd/system, 287
Extensible Firmware Interface (EFI), 98
extract_kernel function, 195-196, 200

F

fdisk command, 19, 20
fdisk signature, 15, 24
Fedora 15 installation
bootloader, 91, 92
grub.conf file, 93
mounting of Fedora’s partition, 92
OS entries, RHEL, 94
RHEL, grub.conf file, 94
Fedora 31
booting sequence, 118
boot priority, 116
EFI directory, 117
OS entries, 117
installation, 115
OS entries, 115
Fedora-based distributions, 64
Fedora-based system, 235
Filesystem, 207
Firmware, 4

461

INDEX

G

getarg function, 313, 314
getcmdline named function, 316
go_to_protected_mode() function, 190
GParted
disk layout, Solaris installation, 27
made filesystem layout, 9
partition layout, BIOS, 8
PC-BSD 9.0, 37
GParted-made partition layout, 9
GRUB Legacy, 133
GRUB's disk naming conventions, 135
GRUB 2
low level, 177-181
BIOS-based systems
/boot/grub2 (see /boot/grub2)
/etc/grub.d (see /etc/grub.d/
directory)
Fedora, booting sequence, 137, 138
BLS, 149-152
common bootloader issues (see Can't
Boot issue (Bootloader))
features, 133, 134
106 operating systems multiboot, 169-175
UEFI-based system, locations, 149
grub2-mkconfig command, 160
grub-mkconfig command, 175
grub2-install command, 136, 162, 163
grub2-mkconfig command, 142, 143, 146,
147, 160
grub-mkconfig command, 175
GUID partition table, 103

H

Hard disk drive (HDD), 12
Hard disk naming convention, 33
httpd-or mysql-related systemd unit files, 289

462

IBM PC-5150, 96
in_initrd function, 342
init-based Linux distribution, 227
init kernel command-line parameter, 302
initramfs, 196, 201, 211
bash’ binary, 249
/bin/bash binary, 250
booting sequence, 226-230
Can’t Boot” issue
console messages, 266
error message, 262
GRUB splash screen, 263
resolving steps, 263, 265, 266
contents, extract, 214
dracut tool, 214
etc directory, 222
filesystems, 209-211
implementation, 215-218
vs. initrd, 211
Isinitrd tool, 212
root/boot directory, 214
Kernel extract from memory, 230, 231,
233,234
lib, lib64, 225
root filesystem, 209
sbin, 218-221
SCSI drivers, 241
structure, 210-215
temporary root filesystem, 207
user’s root filesystem, 207, 241
virtual filesystems, 223-225
initramfs image, 239-244
initrd.target
booting sequence, 418
execution, 420
initrd-parse-etc.service, 419

systemd generators, 419

user’s root filesystem, 417
init/systemd process, 226
install_itsems+ switch, 261
Intel Boot Initiative (IBI), 98
is_temporary_fs() function, 344

J

Jarvis
hardware and software details, 169
106 operating systems
multiboot, 174-180
journalctl logs, 349

K

Kernel

arch directory, 201

booting, 200

bootloader, 183

boot sequence, 203, 204

extracted initramfs, 202

FCOE modules, 242

initramfs, 201

kthread, 202

loading in memory, 183, 185
archive file vimlinuz, 185, 186, 188
extract_kernel function, 195-198, 200
kernel_setup, 186
main.c source code, 188-190
misc.c file, 200
vmlinuz extracts, 193, 195

long mode, 191, 192

LUKS-related binaries, 209

modules, 242, 244, 254, 261

protected mode, 190, 191

root filesystem, 202

systemd, 183, 202

INDEX

Kernel command-line options

init, 267-269

parameters, 267

rhgb and quite, 269, 270

1o, 269

root, 267

selinux, 271
kmod-static-nodes systemd unit file, 375
kmod-static-nodes.service, 376, 378

L

Linux booting procedure, 3
Live images
booting sequence, 457
directories, 455
Linux systems, 454
rootfs.img, 457
SquashFS, 456
local-fs.target
booting sequence, 338
dracut-cmdline service, 350
flowchart, 352
journalctl command, 349, 350
kernel command-line parameter, 347
logs, 349
pre-pivot hook, 348
proc_cmdline_parse, 342
src/basic/util.c, 342
src/fstab-generator/fstab-
generator.c, 346
statfs function, 343
sysroot.mount file, 345
systemd-fsck-root.service file
contents, 346
systemd-fstab-generator, 339, 340, 342,
345, 348, 350-352
usr.mount unit file, 350

463

INDEX

local-fs.target (cont.)
x-initrd.mount [systemd.mount]
option, 351
Logical partitions, 7
Long mode, 191, 192
Isinitrd tool, 212
Ivm_scan command, 357

main() function, 187
Master boot record (MBR), 15
MBR fields, 15, 25
*.mod files, 138, 139
Modules, 254, 261
bluetooth-related, 246
customizing initramfs, 254-260
des3 _ede, 244
host-specific modules in initramfs, 246
initramfs, 245
kernel modules, 245
/lib/modules/ location, 244
module-setup.sh script, 249
plymouth, 251, 252
require_binaries, 254
scripts, 247, 249
multipath.conf-like configuration file, 261
multipath.ko kernel module, 261

N

nagios error message, 299
network dracut module, 260
NetworkManager service of
systemd, 298
NetworkManager-wait-online-service, 301
New Technology Loader (NTLDR)
bootloader, 12

464

nfs dracut module, 259
nvidia package, 439

O

OnFailure units, 290
OpenSolaris 2008 installation
booting sequence, 28-32
bootloader (GRUB), 26
boot sector, 25
changes made, fdisk command, 21
disk layout, 18, 26
fails with error messages, 19
HDD name assigned, 20
partition layout, creation, 25
reboot, BIOS system, 23
Solaris filesystem partition, 22
vendor signature and MBR fields, 25
welcome screen, 17, 24
106 operating systems
multiboot, 169-175
Operating systems (OS)
flowchart, 95
installation
Boot Sector (see Boot sector)
partitioning, 7-9
primary/logical partitions, 7
sequence, 6
Windows XP, 10, 11
rules and regulations, 6
types, 5
30_os_prober 147

P

Page cache, 210

Partition layout
Anaconda installer, 65
PC-BSD 9.0, 35

Ubuntu, 105
Windows 10, 110
XP’s installer, 10
path_equal function, 426
PC-BSD 9.0, installation
boot flag, setting, 40
boot management, 42, 43
boot sequence, 39, 43, 44
boot with GParted, 37
disk layout, 38, 41, 46
welcome screen, 37
BSD options, 43
disk layout, 41
disk layout and disk naming
conventions, 33
not booting, 36
number of partitions, 33
OS, boot, 35
partition layout, 35
welcome screen, 42
Windows XP, boot sequence, 45
pfexec format command, 19
plymouth-related dracut modules, 255
plymouth
booting procedure, 365, 366
booting sequence, 364
installation, 367-369
managing, 369, 371, 372
plymouth screen, 367
structure, 372, 373
populate_rootfs function, 234
post-scripts command, 235
pre-pivot shell, 347
pre-trigger shell, 333
pre-trigger switch, 335
pre-trigger hook, 333
Primary partition, 7
Pseudo variable, 400

INDEX

Q

gemu machine, 177

R

rd.break, 283, 393, 394, 406
rd.break kernel command-line
parameter, 331
rd.break=cmdline parameter, 318
rd.break=pre-trigger dracut
command-line parameter, 331
rd.driver.blacklist, 277, 278
_rdshell_name, 397
rdsosreport.txt file, 269
Red Hat Enterprise Linux 6 (RHEL 6)
bootloader, 73
bootloader (GRUB), 67
boots sequence, 74
error message, 73
flowchart, 72
grub.conffile, 69, 71
log messages, 71
other OS is on partition 5, 72
welcome screen, 70
desktop screen, 73
Fedora-based distributions, 64
partition layout, 65
partition scheme, 66
welcome screen, 64, 68
Rescue mode
boot, 435, 438
can’t boot issue (chroot)
booting, live image, 445
kernel panic messages, 443, 444
live image welcome screen, 444
resolving issue, 444-448
enterprise linux distributions, 449-454

465

INDEX

Rescue mode (cont.)
entry, live image, 436
GRUB menu entry, 435
GRUB screen, 437
initramfs, 439-442
kernel’s command-line
parameters, 439
root filesystem mounted, 438
rescue.service, 406-409, 411
rhgb quiet kernel command-line
parameters, 298
root kernel command-line
parameter, 269
Root file system, 208, 209
rootfs.img, 457
/run directory, 288
/run/systemd/system, 288

S

Secure Boot, UEFI, 103, 129, 167-169
SecureCore UEFI firmware, 98
selinux, 271
Shell, 393-395
Single-user mode, 406
skipcpio tool, 212
Small tiny bootloader, 176, 177
Socket-based approach, 294
Solaris booting sequence, 32
Solaris filesystem partition, 22
Solaris menu.lst file, 30
source_hook function, 401, 403
SquashFS, 456
sshd service unit file, 289
start_kernel function, 201, 202
switch_root shell, 324
switch_root/pivot_root
init-based system, 421-425

466

systemd-based system, 426, 428, 430,
431,433,434

sysinit.target

booting sequence, 373
can’t Boot issue (sysctl.conf), 385-390
dev filesystem-related temporary
files, 383
directory, 373
journald socket, 379
kmod binary, 375
kmod-static-nodes.service, 376
sockets.target, 384
static-nodes switch, 375
swappiness kernel parameter value, 383
systemd-ask-password-console.path, 378
systemd-journald.service, 379
systemd-modules-load.service, 380, 382
systemd-sysctl.service, 382
/usr/lib/systemd/systemd-
modules-load, 381

syslog, 291
sysroot, 274, 323
sysroot.mount, 350

dracut-mount script, 414

kernel command-line parameter, 413
mount hook, 413
systemd-fstab-generator behavior, 416

systemd

boot sequence up to basic.target, 307
boot time
can’t Boot” issue, 298-303
dracut-initqueue.service
(see dracut-initqueue.service)
dracut-pre-mount.service, 390, 391
dracut-pre-trigger.service, 331-334
dracut-pre-udev.service, 326-331
init model, 291
local-fs.target (see local-fs.target)

plymouth (see plymouth)
sockets, 292
systemd-analyze tool, 294, 297, 298
swap.target, 353
sysinit.target (see sysinit.target)
systemd-analyze tool, 295
systemd model, 293
systemd-udev-trigger.service,
335-338
upstart model, 292
booting flowchart, 304
booting sequence, 285
dracut-cmdline.service
(see dracut-cmdline.service)
initrd.target, 417-421
structure, 286-290
switch_root/pivot_root
(see switch_root/pivot_root)
sysroot.mount (see sysroot.mount)
systemd-analyze tool
blame tool, 294
boot time, 297, 298
generated plot image, 296
plot tool, 295
Systemd binaries, 218
systemd-fstab-generator, 339, 342, 416, 420
Sysv/init script model, 291

T

tmpfs, 210
Tweaking GRUB
chainloading, 75
installgrub command, 79
OS entries
BCD, 81
BCD bootloader, 77
RHEL, 78, 80, 82

INDEX

Solaris, 80

win2k3’s NTLDR, 77
partition layout, BIOS, 74
PC-BSD’s welcome screen, 83
RHEL 6, 75
Solaris failed to boot, 78
welcome screen, 76

U

Ubuntu 18.04 LTS
booting sequence, UEFI system, 106
boot priority window, 107
flowchart, 109
welcome screen, 108
disk layout, 104
EFI directory, 106
ESP partition, creation, 105
grubx64.efi file, 109
mount points, 106
partition layout, 105
udevadm settle command, 355
udevadm trigger, 333
Unified Extensible Firmware
Interface (UEFI)
advantages, 99, 100
Apple, 98
GUI implementation of ASUS, 100, 101
implementation, 102, 103
misconceptions
disable UEFI, 131
Microsoft is evil, 126-131
UEFI is new BIOS, 125, 126
open source framework, 98
OS installation
Fedora 31, 115-118
Ubuntu 18.04 LTS, 104-109
Windows 10, 109-114

467

INDEX

Unified Extensible Firmware
Interface (UEFI) (cont.)

Secure Boot feature, 167-169
shell, 118-125
Unit files, 286
Unix bootloaders, 6
unpack_to_rootfs function, 234
User’s root filesystem, 207, 242, 245
/usr/lib/systemd/system, 287

\'

validate_cpu() function, 189
Vendor signature field, 15, 25
virtio modules, 278

Virtual file system (VFS), 443

vmlinux and vmlinuz kernel files, 194, 195

Volume boot record (VBR), 76

w

Windows 7 installation
bcdedit.exe, 59
booting sequence, 58-63
disk layout, 56
welcome screen, 57, 60
win2k3 and XP, boot sequence, 63
Windows 10 installation
boot sequence, 114
ESP partition, 111
loading screen, 114
MSR space reservation, 110
OS entries, 113
partition 4, 111
partition layout, 110
UEFI-based system, 112-114

468

Windows bootloaders, hacking

chainloading, 83
entries adding, boot.ini file, 86
first 512 bytes to first
primary, 85
mount command, 84
OS entries
RHEL's GRUB, 90
Solaris GRUB, 89
win2k3’s NTLDR, 88
Windows 7 (BCD), 88, 89
OS list, 87
respective bootloaders, 84
RHEL entry, 90

Windows chainloading, 76
Windows Legacy OS Loader, 58
Windows Server 2003 (win2k3)

installation
boot flag, 49, 50
booting sequence, 50-52
PC-BSD, 54
Windows XP, 53
boot.ini file, 50
boot sequence, 49
disk layout, 47, 48
GRUB dropped on prompt, 55
MBR, 49
NTLDR bootloader, 49
rules, Windows XP’s installation, 48
size of NTLDR'’s part-3 file, 52
welcome screen, 47, 52

Windows XP installer, 10, 11

XY, Z

x-initrd.mount option set, 420

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Why?
	What?
	The Focus of This Book
	Power Supply
	CPU

	Chapter 2: Multiboot
	List of Operating Systems
	Installing the Operating Systems
	Primary/Logical Partitions
	Partitioning
	First OS Installation: XP
	Boot Sector
	OpenSolaris 2008
	PC-BSD 9.0
	Windows Server 2003
	Windows 7
	Red Hat Enterprise Linux 6 (RHEL 6)
	Tweaking GRUB
	Hacking the Windows Bootloaders
	Fedora 15
	Complete Flowchart

	Unified Extensible Firmware Interface (UEFI)
	BIOS Limitations
	UEFI Advantages
	The GUI of UEFI
	UEFI Implementation
	EFI System Partition (ESP)
	EFI
	Secure Boot
	Partition Table

	List of Operating Systems
	Ubuntu 18.04 LTS
	Windows 10
	Fedora 31
	UEFI Shell
	Misconceptions About UEFI
	Misconception 1: UEFI Is a New BIOS or UEFI Is a BIOS
	Misconception 2: Microsoft Is Evil
	Linux Vendors Should Make Their Own Key Pair
	All Linux Vendors Should Make Only One Key Pair
	Disable UEFI’s Secure Boot Feature

	Misconception 3: Disable the UEFI

	Chapter 3: GRUB Bootloader
	GRUB 2 Implementation
	GRUB 2 on BIOS-Based Systems
	/boot/grub2
	Device.map
	grub.cfg
	i386-pc

	/etc/default/grub
	/etc/grub.d/
	10_linux
	20_linux_xen
	20_ppc_terminfo
	30_os_prober
	30_uefi-firmware
	40_custom and 41_custom

	GRUB 2 on UEFI-Based System

	Boot Loader Specification (BLS)
	Common Bootloader Issues
	“Can’t Boot” Issue 1 (Bootloader)
	“Can’t Boot” Issue 2 (Bootloader)
	Resolution for a BIOS-Based System
	Resolution for a UEFI-Based System

	“Can’t Boot” Issue 3 (Bootloader + Kernel)
	Resolution for BIOS-Based Systems
	Resolution for UEFI-Based Systems

	Secure Boot Feature of UEFI
	100 OS Multiboot Project
	A Dummy Small Bootloader
	GRUB 2 at a Low level

	Chapter 4: Kernel
	Loading the Kernel in Memory
	After Loading the Kernel in Memory
	Protected Mode
	Long Mode
	What Extracts vmlinuz?
	extract_kernel

	Inside the Kernel

	Chapter 5: initramfs
	Why initramfs?
	Infrastructure
	ramfs
	tmpfs
	rootfs

	initramfs Implementation
	bin
	Normal Binaries
	Special Binaries
	Networking Binaries
	Hooks
	Systemd Binaries

	Sbin
	Filesystem and Storage-Related Binaries
	Networking Binaries
	Special Binaries
	Basic Binaries

	etc
	Virtual Filesystems
	dev
	proc and sys

	usr, var
	lib, lib64
	initramfs Booting
	How Does the Kernel Extract initramfs from Memory?
	How Does the Kernel Mount initramfs as Root?

	Chapter 6: dracut
	Getting Started
	Making an initramfs Image
	Dracut and Modules
	How Does dracut Select Modules?
	Customizing initramfs
	dracut Module or Kernel Module?
	“Can’t Boot” Issue 4 (initramfs)
	“Can’t Boot” Issue 5 (initramfs)

	Kernel Command-Line Options
	root
	init
	ro
	rhgb and quite
	selinux

	dracut Command-Line Options
	rd.auto (rd.auto=1)
	rd.hostonly=0
	rd.fstab = 0
	rd.skipfsck
	rd.driver.blacklist, rd.driver.pre, and rd.driver.post
	rd.debug
	rd.memdebug= [0-4]
	lvm, raid, and Multipath-Related dracut Command-Line Parameters
	rd.break and rd.shell

	Chapter 7: systemd (Part I)
	Structure
	How Does systemd Reduce Boot Time?
	systemd-analyze
	“Can’t Boot” Issue 6 (systemd)

	Flow of systemd Inside initramfs
	systemd-journal.socket
	dracut-cmdline.service
	dracut-pre-udev.service
	dracut-pre-trigger.service
	systemd-udev-trigger.service
	local-fs.target
	swap.target
	dracut-initqueue.service
	“Can’t Boot” Issue 7 (systemd + Root LVM)

	plymouth
	Installing plymouth
	Managing plymouth
	Structure

	Sysinit.target
	“Can’t Boot” Issue 8 (sysctl.conf)

	basic.target
	dracut-pre-mount.service

	Chapter 8: Debugging Shells
	The Shell
	How Does systemd Drop Us to an Emergency Shell?
	rescue.service and emergency.service

	Chapter 9: systemd (Part II)
	sysroot.mount
	initrd.target
	switch_root/pivot_root
	Switching to the New Root Filesystem on an init-Based System
	Switching to a New Root Filesystem on a systemd-Based System

	Chapter 10: Rescue Mode and Live Images
	Rescue Mode
	Rescue Mode initramfs
	“Can’t Boot” Issue 9 (chroot)
	Rescue Mode of Enterprise Linux Distributions

	Live Images
	SquashFS
	rootfs.img
	Booting Sequence of a Live Image

	Index

