
Hands-on
Booting

Learn the Boot Process of Linux,
Windows, and Unix
—
Yogesh Babar

Hands-on Booting
Learn the Boot Process of Linux,

Windows, and Unix

Yogesh Babar

Hands-on Booting

ISBN-13 (pbk): 978-1-4842-5889-7 ISBN-13 (electronic): 978-1-4842-5890-3
https://doi.org/10.1007/978-1-4842-5890-3

Copyright © 2020 by Yogesh Babar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5889-7. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Yogesh Babar
Pune, India

https://doi.org/10.1007/978-1-4842-5890-3

This book is dedicated to Red Hat. Its amazing work culture
has proved that sharing is caring.

v

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

Table of Contents

Chapter 1: Introduction��� 1

Why? ��� 1

What? �� 2

The Focus of This Book ��� 3

Power Supply �� 3

CPU ��� 3

Chapter 2: Multiboot ��� 5

List of Operating Systems ��� 5

Installing the Operating Systems �� 7

Primary/Logical Partitions ��� 7

Partitioning �� 7

First OS Installation: XP ��� 10

Boot Sector �� 12

Unified Extensible Firmware Interface (UEFI) �� 96

Chapter 3: GRUB Bootloader ��� 133

GRUB 2 Implementation �� 134

GRUB 2 on BIOS-Based Systems ��� 134

GRUB 2 on UEFI-Based System ��� 148

Boot Loader Specification (BLS) �� 149

vi

Common Bootloader Issues �� 153

“Can’t Boot” Issue 1 (Bootloader) �� 153

“Can’t Boot” Issue 2 (Bootloader) �� 162

“Can’t Boot” Issue 3 (Bootloader + Kernel) ��� 164

Secure Boot Feature of UEFI ��� 167

100 OS Multiboot Project �� 169

A Dummy Small Bootloader �� 176

GRUB 2 at a Low level ��� 177

Chapter 4: Kernel �� 183

Loading the Kernel in Memory �� 183

After Loading the Kernel in Memory ��� 185

Protected Mode ��� 190

Long Mode ��� 191

What Extracts vmlinuz? ��� 193

extract_kernel ��� 195

Inside the Kernel ��� 200

Chapter 5: initramfs �� 207

Why initramfs? �� 207

Infrastructure �� 209

ramfs ��� 210

tmpfs ��� 210

rootfs ��� 210

initramfs Implementation �� 215

bin ��� 215

Normal Binaries ��� 215

Special Binaries ��� 217

Networking Binaries �� 217

Hooks ��� 218

Systemd Binaries��� 218

Table of ConTenTs

vii

Sbin ��� 218

Filesystem and Storage-Related Binaries ��� 218

Networking Binaries �� 219

Special Binaries ��� 219

Basic Binaries �� 220

etc ��� 221

Virtual Filesystems �� 223

dev ��� 223

proc and sys �� 224

usr, var �� 224

lib, lib64 ��� 225

initramfs Booting��� 226

How Does the Kernel Extract initramfs from Memory? ��� 230

How Does the Kernel Mount initramfs as Root? �� 234

Chapter 6: dracut �� 235

Getting Started �� 235

Making an initramfs Image ��� 239

Dracut and Modules �� 244

How Does dracut Select Modules? �� 244

Customizing initramfs�� 254

dracut Module or Kernel Module? ��� 261

“Can’t Boot” Issue 4 (initramfs) ��� 262

“Can’t Boot” Issue 5 (initramfs) ��� 266

Kernel Command-Line Options ��� 266

root �� 267

init ��� 267

ro ��� 269

rhgb and quite ��� 269

selinux ��� 271

dracut Command-Line Options ��� 271

rd�auto (rd�auto=1) �� 271

Table of ConTenTs

viii

rd�hostonly=0 �� 271

rd�fstab = 0 �� 272

rd�skipfsck ��� 272

rd�driver�blacklist, rd�driver�pre, and rd�driver�post �� 276

rd�debug �� 280

rd�memdebug= [0-4] ��� 280

lvm, raid, and Multipath-Related dracut Command-Line Parameters ��������������������������������� 281

rd�break and rd�shell ��� 283

Chapter 7: systemd (Part I) �� 285

Structure ��� 286

How Does systemd Reduce Boot Time? �� 290

systemd-analyze ��� 294

“Can’t Boot” Issue 6 (systemd) ��� 298

Flow of systemd Inside initramfs �� 304

systemd-journal�socket ��� 307

dracut-cmdline�service �� 309

dracut-pre-udev�service �� 326

dracut-pre-trigger�service ��� 331

systemd-udev-trigger�service ��� 334

local-fs�target �� 338

swap�target �� 353

dracut-initqueue�service ��� 353

plymouth �� 363

Sysinit�target ��� 373

basic�target �� 391

dracut-pre-mount�service ��� 391

Chapter 8: Debugging Shells �� 393

The Shell ��� 393

How Does systemd Drop Us to an Emergency Shell? ��� 395

rescue�service and emergency�service ��� 406

Table of ConTenTs

ix

Chapter 9: systemd (Part II) ��� 413

sysroot�mount ��� 413

initrd�target ��� 417

switch_root/pivot_root �� 421

Switching to the New Root Filesystem on an init-Based System �� 421

Switching to a New Root Filesystem on a systemd-Based System ������������������������������������ 426

Chapter 10: Rescue Mode and Live Images �� 435

Rescue Mode �� 435

Rescue Mode initramfs �� 440

“Can’t Boot” Issue 9 (chroot) ��� 443

Rescue Mode of Enterprise Linux Distributions ��� 449

Live Images ��� 454

SquashFS �� 456

rootfs�img �� 457

Booting Sequence of a Live Image �� 457

 Index ��� 459

Table of ConTenTs

xi

About the Author

Yogesh Babar has been with Red Hat for the past ten years.

Currently he is a principal technical support engineer in the

Linux kernel domain. He specializes in the troubleshooting

and performance tuning of Linux enterprise servers. The

Linux boot process is his forte, and he regularly speaks at

open source conferences and forums. He also conducts

workshops on operating systems for engineering students.

xiii

About the Technical Reviewer

Marc Sandusky is an embedded software engineer with

28 years’ experience in low-level programming. He has

worked in industries such as PC BIOS, medical devices,

and defense. He is experienced in embedded OSs (Linux,

Windows Embedded Compact), RTOS (uCOS/II, FreeRTOS),

and bare-metal systems. He currently lives in southern

California with his wife and three children. You can reach

him at marc_sandusky@outlook.com or www.linkedin.com/

in/marc-sandusky- 67852b2/.

http://www.linkedin.com/in/marc-sandusky-67852b2/
http://www.linkedin.com/in/marc-sandusky-67852b2/

xv

Acknowledgments

I would like to thank Harald Hoyer for writing dracut and Lennart Poettering for writing

systemd. Harald, you had tremendous patience when answering my back-to-back

questions.

Thanks also to: Sheetal, Rama and Shoumik, who encouraged me to document the

booting procedure; Parth Goswami, who helped me write a brief article about it; Rangan

and Raghvendra Pai for asking for regular updates on it; and Gokhale Sir for igniting a

spark in me and also for showing me what I am really good at.

To the entire Apress team, especially acquisitions editor Celestine John, project

coordinator Aditee Mirashi, and development editor Matthew Moodie who put

tremendous efforts into developing this book. Special thanks to Marc Sandusky for

technically reviewing the book. With it being my first book, I made a lot of mistakes, but

the entire Apress team stood behind me throughout the process.

Last but not the least, thanks to my beautiful, strong, and amazing wife. Darshana,

what patience you have shown! Sometimes I wonder how you managed to stay with

someone like me who is always chasing some project.

xvii

Introduction

I was in the first week at a new job, and I saw one of our customers asking for assistance

on a “can’t boot” issue. I was new and inexperienced. I wanted to assist, but I could

not. The customer was panicked since it brought production down. Every minute was

counting for them, because thousands of users were not able to access that system

since it was unbootable. Everyone was panicking. Eventually some of our most senior

engineers resolved the issue. It took them almost five hours to put the system back

in production. Everything turned out well in the end, but that tense situation created

something in me, which was a desire to learn. I decided to learn the entire booting

sequence.

When I started looking for books and articles on the Internet, I was disappointed.

There are thousands of books and countless articles available on operating systems, but I

could not find a single book that thoroughly explained the entire booting sequence.

There is a saying in the open source world: if there is something you are looking for

and it is not available, then build it. So, I decided to learn the booting sequence on my

own. It took me years to understand the entire booting sequence. The best thing I did on

my journey was to keep notes and also start teaching what I learned to others. After all,

sharing is caring. My booting sessions became popular among engineering students and

system administrators. Some of them really pushed me hard to write a proper book on

the topic. I contacted Apress, and they liked the idea, so today you have the first book of

booting in your hands.

This book has a unique approach. First I discuss why someone should learn about

booting. In other words, why is it important? Next I explain how different bootloaders

work by installing almost 100+ operating systems on one machine. There is a dedicated

chapter on the Linux bootloader. In fact, there are dedicated chapters for every

component involved in the booting sequence. Next, I explain the kernel’s role in the

booting sequence. The kernel plays a vital role along with systemd. Since systemd is the

first process started by kernel, eventually it takes care of the entire booting sequence.

There are several chapters that cover systemd, so this book is a good resource for those

who want to read about systemd. I have also covered the most common “can’t boot”

scenarios of Linux. This makes the book a great resource for system admins as well. It

xviii

does not mean this book is for Linux experts only. If you know basics of Linux, then this

book is for you. The book is a great bridge between the beginners and experts of Linux. I

hope you will like the effort.

There is an old saying: no book is perfect. If you find some bugs in this book or

you simply want to get in touch with me, please feel free to write to me at

yogeshbabar420@gmail.com.

Thank you,

Yogesh Babar

InTroduCTIon

1
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_1

CHAPTER 1

Introduction
Not everyone knows Fedora. One day, someone asked me a question:

Student: What is Fedora?

Me: Fedora is Linux.

Student: What is Linux?

Me: Linux is an operating system.

Student: What is an operating system?

Me: It runs computers.

Student: What is a computer?

Me: Computers help users.

Student: What is a user?

Me: A user is just like me.

Student: Who the hell are you?

Me: Well, my name is Yogesh Babar. I have worked at Red Hat for

the last ten years, and I love talking about how operating systems

boot.

 Why?
Everyone knows that an operating system takes approximately 20 to 30 seconds to boot. So,

why did I write a 486-page book about a 30-second booting sequence? The answer is simple.

• There is no proper document/article/book available that explains the

complete booting sequence. You will find hundreds of good books on

operating systems but none on how a system boots.

https://doi.org/10.1007/978-1-4842-5890-3_1#ESM

2

• You can resolve boot issues only if you know how the system boots.

• If you are a sysadmin and attending an interview, the interviewers

will ask about how Linux boots.

• “Can’t boot” issues are always the highest severity as the entire

production system goes down because of them. If the system is slow,

the production is still up and running; though it is affected, at least it

is still running. A server that has 10,000 users but can’t boot means

the entire production system is down. That’s the importance of

booting, and as I said, you cannot solve boot issues if you don’t know

how a system boots.

• It’s fun to understand the booting procedure.

• While learning all of this, you will gain immense happiness.

 What?
So, what exactly is booting? In technical terms, the process of copying the kernel from

the hard disk to memory and then executing it is called booting. But that definition does

not really inspire us to learn about booting.

I will put it in my own words: A mother is a superset, and her newborn baby is a

subset of her. In the same way, an operating system is a superset, and booting is a subset

of it. A subset belongs to its superset.

Now consider this statement: “A child gives birth to a mother.”

Technically it is wrong, but imagine that until a woman has a baby, she is a woman;

the moment she has a baby, a woman becomes a mother. So, a child gives birth to a

mother.

The same happens in computers. Technically booting is part of an operating system,

and the operating system should give birth to booting, but it’s the other way around. It’s

booting that gives birth to the operating system. Hence, we can say that booting is the

procedure that gives birth to an operating system.

Chapter 1 IntroduCtIon

3

 The Focus of This Book
The book explains the booting procedure of an x86 architecture–based desktop or server

system, and it covers the booting procedure of various operating systems. The primary

focus is on the in-depth analysis of the Linux booting procedure, with a secondary

focus on other popular operating systems such as Windows and UNIX. As you know,

there are a huge number of Linux distributions. Some are for desktop users, some are

for enterprise customers, some are solely for gaming purposes, and some are available

for users who prefer to follow a do-it-yourself approach. It is almost impossible to cover

each and every distribution’s booting sequence. Hence, I have decided to choose the

Linux distribution that is the first choice for enterprise customers, and that is Red Hat

Enterprise Linux (RHEL).

RHEL is based on Fedora Linux. Fedora is fast moving (a six-month release cycle),

whereas RHEL is a slow-moving distribution (a two- to three-year release cycle). This

means Fedora adopts the latest developments as soon as the QE (Quality Engineering)

team gives them the green light. Since Fedora is a testing bed of popular enterprise Linux

distributions, whatever is available in Fedora eventually becomes part of RHEL. systemd

is the best example of this. That’s why I have chosen Fedora Linux to explain the Linux

booting sequence.

 Power Supply
It all starts when you hit the power button. When you press the power button, the power

supply goes to the motherboard. The motherboard sends a signal to your power supply

(SMPS/PSU), which returns a good power supply, and as a result, the motherboard tries

to start the CPU.

 CPU
When the x86 architecture–based CPU starts, it clears the old data from all the registers

and starts with this:

IP 0xfff0

CS selector 0xf000

CS base 0xffff0000

Chapter 1 IntroduCtIon

4

0xffff0000 + 0xfff0 = 0xfffffff0. This is the memory location at which the

CPU expects to find the first instruction to execute. At this location, it contains a jump

instruction that points to a BIOS entry point. In other words, this is how the BIOS starts

or the CPU lands at the BIOS/firmware.

After this, the firmware and bootloader are the next stage of a booting procedure.

It’s the job of the firmware to launch the bootloader of an operating system. In the next

chapter, I will discuss what happens in the firmware and how it executes the bootloader.

Chapter 1 IntroduCtIon

5
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_2

CHAPTER 2

Multiboot
Understanding the bootloader and firmware is complex. It is not necessarily difficult, but

the topic can be complicated. To make it easy to digest for the readers of this book, I will

use three test systems.

System Number System Name Purpose

1 BIOS To demonstrate the BIOS

2 UEFI To demonstrate UEFI

3 Jarvis For a 100+ OS multiboot project

Since the bootloaders and firmware work closely together, I will start by installing

a specific list of operating systems on each system and while doing that explain the

relationship between the bootloader and the firmware. This approach will make complex

topics easier to understand, more interesting, and a lot of fun. In short, I will explain the

bootloader and firmware (BIOS/UEFI) together though they are different concepts.

Note The BIOS-based multiboot part of this chapter was inspired by Mr Vijay
Gokhale Sir’s workshop on the subject. I thank him for the inspiration.

 List of Operating Systems
We will be installing the following operating systems on our first BIOS system, which

means on a system that has the BIOS firmware installed:

• Sun OpenSolaris 2009

• Fedora Linux 15

• PC-BSD 9.0

https://doi.org/10.1007/978-1-4842-5890-3_2#ESM

6

• Windows 7

• Red Hat Enterprise Linux 6.0

• Windows Server 2003 (2k3)

• Windows XP

I know these operating systems are quite old, but I have chosen them for a reason.

See, the BIOS itself is an outdated firmware, so if you want to understand the BIOS,

you have to use old operating systems only. Remember, you can understand UEFI (the

current firmware) only if you understand the BIOS. It’s like you will understand Java

better if you know C well. Also, using these old operating systems will give me a chance

to touch upon the Windows and Unix bootloaders as well. In addition, it will provide me

with the opportunity to explain the GRUB legacy bootloader of Linux.

The idea is to multiboot our BIOS system with all the operating systems mentioned

earlier. To do that, we need to follow every operating system’s rules and regulations.

OS Rules

Unix Unix operating systems (OpenSolaris and BSD) have to be installed on a

primary partition only.

Linux Linux does not have any installation rules. It can be installed on any primary

or logical partition.

Windows The Windows operating system can be installed on any partition (primary or

logical), but the predecessor of the Windows family has to be present on the

first primary. That means you can install Windows 7 on a logical partition, but

its predecessor, which is XP or win2k3, has to be present on the first primary

partition. Also, you cannot break the Windows operating system sequence

of installation. For example, one cannot install Windows 7 first and then the

older win2k3 or XP. It has to be in this sequence: 98, then 2000, and then XP.

Take some time and try to prepare your OS installation sequence. Verify your booting

sequence now.

The final sequence of the operating system is as shown here:

 1) Windows XP

 2) Sun OpenSolaris 2008

ChAPTEr 2 MULTIBOOT

7

 3) PC-BSD 9.0

 4) Windows Server 2003

 5) Windows 7

 6) Red Hat Enterprise Linux 6

 7) Fedora 15

 Installing the Operating Systems
Now we’ll talk about installing the operating systems.

 Primary/Logical Partitions
With the BIOS, we can create only four partitions. But of course you probably have seen

more partitions used than that. So, let me change my statement a bit. On a BIOS-based

system, you can create only four primary partitions on your disk. If you want more than

that, then you need to make the fourth primary partition a secondary (also called an

extended) partition. The extended partition will work as a container, and inside this

container you can create as many logical partitions as you want. Why are these partitions

called logical partitions, because they are not visible to BIOS? Also, why can the BIOS

make only four primary partitions? These questions will be answered when we discuss

the master boot record.

 Partitioning
Let’s partition the BIOS system’s hard disk first. We will use the GParted live CD for this.

GParted is a tool from the GNU community. It’s a free, open source, Debian Linux–based

live ISO image. Figure 2-1 shows our BIOS system’s partition layout.

ChAPTEr 2 MULTIBOOT

8

The GParted operation to partition a hard disk is straightforward. We will create the

partition layout shown in Figure 2-2 on the 75 GB of disk space.

Figure 2-1. The partition layout of the BIOS in GParted

ChAPTEr 2 MULTIBOOT

9

For more information on how to use GParted to partition your hard drive, please

refer to the GParted documentation at https://gparted.org/articles.php.

In Figure 2-3, you can see the disk name, partition size, used filesystem, and

associated flags (if any).

Let’s install our first operating system on our first primary partition.

Figure 2-2. GParted-made partition layout

Figure 2-3. GParted-made filesystem layout

ChAPTEr 2 MULTIBOOT

https://gparted.org/articles.php

10

 First OS Installation: XP
In Figure 2-4, you can see a partition layout shown by the Windows XP installer.

We are installing XP on the first primary partition. In terms of Windows, it is a C:

drive, as shown in Figure 2-4. After finishing the installation and rebooting the system,

we get Windows XP on our screen (Figure 2-5).

Figure 2-4. Partition layout shown by XP’s installer

ChAPTEr 2 MULTIBOOT

11

It’s time to understand how Windows XP has been booted, but before that, we need

to understand the boot sector. The boot sector is every HDD’s first sector (512 bytes)

plus 31 KB of space; in other words, it’s the first 63 sectors on the boot medium (0 to 62).

Or, you can consider under the boot sector that some space (512 bytes + 31 KB) of

every partition will be reserved to store the bootloader-related information. This

space (again, 512 bytes + 31 KB) will not be shown by the OS to users. The actual data

storage in a partition starts after this reserved space. Refer to Figure 2-6 for a better

understanding of this.

Figure 2-5. XP after successful installation

Figure 2-6. The disk layout on a BIOS-based system

ChAPTEr 2 MULTIBOOT

12

 Boot Sector
There is one amazing saying in Sanskrit that goes like this: .

This means there is only one truth but various ways to reach it. As shown in Figure 2-7,

the boot sector is called by different names, but ultimately the concept remains the same.

People refer this structure with the following names:

• Master boot record (MBR)

• Boot record

• Boot sector

• Bootloader

In this book, we’ll call it the boot sector because the hard disk drive (HDD) is always

divided into sectors, and every sector is of either 512 bytes or 4 KB in size. Most HDDs

follow a 512-byte sector size.

On a BIOS-based system, every OS vendor (it does not matter if it is Windows, Unix, or

Linux) has to divide the bootloader into three parts. Part-1 of the bootloader will be kept

at the bootstrap, which is 440 bytes. Part-2 will be kept in the bootloader section, which is

31 KB in size, and the final part-3 will be kept inside the actual partition where a particular

OS has been installed. So, in simple terms, whenever an OS gets installed (in our case it’s

Windows XP), it divides its New Technology Loader (NTLDR) bootloader into three parts.

Figure 2-7. The boot sector

ChAPTEr 2 MULTIBOOT

13

Location Size Part Information

Bootstrap 440 bytes NTLDr part-1 The tiniest part

Bootloader 31 KB NTLDr part-2 Bigger compared to part-1

Inside an actual OS partition No size limitation NTLDr part-3 The biggest part

But why is the bootloader divided into three parts?

It is because of historical reasons. The BIOS has technical limitations in that it cannot

access more than 512 bytes or cannot read beyond the first sector. So, it is obvious that

when BIOS finishes its task, it jumps on the entire HDD’s first 512 bytes and whoever

is there simply runs that program. Fortunately, that program will be our bootstrap (440

bytes). Since the bootstrap is tiny in size, it does only one thing, which is to jump on a

bigger space, which is the part-2 bootloader. It is 31 KB in size. This 31 KB is again very tiny,

and it has to find an even bigger size. This bootloader will jump to part-3, which is inside a

partition. This part-3 file will be at the C: drive with the file name NTLDR. The part-3 file of

XP’s bootloader is visible in Figure 2-8.

Figure 2-8. The part-3 file of XP’s bootloader

ChAPTEr 2 MULTIBOOT

14

As you can see, the file is much bigger in size (245 KB). This file will do the heavy

lifting of the bootloader’s actual job, which is copying the kernel of Windows XP called

winload.exe (this file knows where XP’s kernel is) from C:\windows in memory. Once

the kernel is copied into memory, the bootloader’s job is done, and it goes away.

Remember, OS==kernel==OS. Once the kernel is in memory, it will take care of the rest of

the booting sequence. You can see XP’s boot sequence in Figure 2-9.

I know there are probably a lot of questions in your mind. But keep reading, and

all of your questions will be answered. Let’s go ahead and discuss the fields of the boot

sector that I have not explained yet. You can refer to Figure 2-10 for this.

Figure 2-10. The boot sector

Figure 2-9. The boot sequence of Windows XP

ChAPTEr 2 MULTIBOOT

15

The vendor signature field is for HDD vendors. The data that is mentioned here

tells us which vendor has manufactured this HDD, such as Seagate, Western Digital,

Samsung, etc. So, basically it holds the HDD manufacturer information.

NULL has only 2 bytes of space. The NULL means NULL. If this is not NULL, then

the BIOS will consider this HDD as faulty/corrupted at the time of the POST routine, and

booting will be halted. So, it has to be NULL. Whenever the OS abruptly reboots or when

the OS or HDD itself detects the bad sector or some sort of serious corruption, this field

will be marked as non-NULL.

The MBR field could be the most popular section of all of these fields. MBR stands for

“master boot record,” and it is 64 bytes in size. The MBR is further divided into four parts.

Each part is 16 bytes in size, and every part holds one partition’s information.

Size Parts Stores

16 bytes Part-1 First partition’s information

16 bytes Part-2 Second partition’s information

16 bytes Part-3 Third partition’s information

16 bytes Part-4 Fourth partition’s information

This means 64 bytes of the MBR can hold only four entries of the partition, and

this is the reason why you can make only four primary partitions on a BIOS-based

system.

The fdisk signature is also called the boot flag; some people simply call it *, or in

Windows style, it is also called an active/inactive flag. The fdisk is important in the case

of multibooting different operating systems, which we will not talk about now. For now, I

want you to remember these two rules:

• The logical partition cannot be active.

• The OS cannot boot from the logical partition.

ChAPTEr 2 MULTIBOOT

16

As of now, these two rules will not make any sense to you, but we will discuss them at

the right time. Figure 2-11 shows the complete booting sequence of Windows XP.

We will install and boot a new OS now, namely, OpenSolaris 2008.

Figure 2-11. The boot sequence of Windows XP

ChAPTEr 2 MULTIBOOT

17

 OpenSolaris 2008

Figure 2-12 shows the screen when booting with an OpenSolaris 2008 installation

medium.

Figure 2-12. The welcome screen of the OpenSolaris 2008 installation medium

ChAPTEr 2 MULTIBOOT

18

We need to install OpenSolaris on the second partition. You can see in Figure 2-13

that we have chosen the second primary partition for the installation.

Figure 2-13. Disk layout shown by the OpenSolaris 2008 installer

ChAPTEr 2 MULTIBOOT

19

But as you can see in Figure 2-14, the installation fails with some error messages.

The error messages are related to the filesystem. So, we will prepare the filesystem

manually by using the fdisk utility; however, before that, you should know what hard disk

name has been assigned by OpenSolaris. The pfexec format command output (shown

in Figure 2-15) will provide us with the HDD name.

Figure 2-14. The installation fails with some error messages.

ChAPTEr 2 MULTIBOOT

20

So, the assigned hard disk’s name is c4d1. We need to pass this device name to the

fdisk utility. See the complete command in Figure 2-16.

The disk name indicates controller number 4, disk number 1, and partition number 0.

Through the fdisk utility, we first deleted the second partition (which was ext3/Linux native)

and created a new partition with a Solaris2 filesystem. The new partition becomes partition

number 4. Also, it automatically becomes the active partition (refer to Figure 2-17). We have

not yet talked about the “active or fdisk signature” part, but we will talk about it soon.

Figure 2-15. The HDD name assigned by OpenSolaris

Figure 2-16. The fdisk command

ChAPTEr 2 MULTIBOOT

21

Returning to our installation, let’s restart the installation, and as you can see in

Figure 2-18, this time we have chosen the OpenSolaris filesystem–formatted partition to

install our OpenSolaris 2008.

Figure 2-17. The changes made through the fdisk command

ChAPTEr 2 MULTIBOOT

22

This time, the installation will not fail (refer to Figure 2-19), and OpenSolaris 2008

will be installed.

Figure 2-18. Installing OpenSolaris on the OpenSolaris filesystem partition

ChAPTEr 2 MULTIBOOT

23

After the installation, we will reboot our BIOS system. What OS do you think will boot?

 – Windows XP?

 – OpenSolaris?

 – XP and OpenSolaris together?

 – None?

Take a while and think before continuing....

Figure 2-19. The installer will not fail

ChAPTEr 2 MULTIBOOT

24

Figure 2-20 shows what we get on-screen after rebooting.

So, the OS that is booting here is OpenSolaris, and it is giving us an option to boot XP

as well. Let’s shed some light on what happened in the background. OpenSolaris saw that

it was getting installed in its own partition (the second partition), but there is another OS

available in the first partition, which is Windows (or at least a “non-Unix OS”).

But how did OpenSolaris come to know there is another OS installed on the first

primary partition?

When OpenSolaris was installed in its own partition, it saw that the fdisk signature was

set on the first primary partition. (Again, the fdisk signature is also called the active flag or

simply the * flag.) As we saw earlier in our boot sector specification diagram (Figure 2- 21),

every partition has 512 bytes + 31 KB of space reserved for booting purposes, and this space is

hidden from the user.

Figure 2-20. The welcome screen after reboot

ChAPTEr 2 MULTIBOOT

25

In other words, when we created a partition layout through GParted, the tool made

the following compartments for every partition:

 1) Bootstrap

 2) Vendor signature

 3) NULL

 4) MBR

 5) Fdisk signature

 6) Bootloader

But it filled data only in the vendor signature and MBR fields. The vendor signature

field will have data as per the vendor of the HDD, whereas in the case of the MBR field,

the data will be as follows:

• The start and end of the first primary partition

• The start and end of the second primary partition

• The start and end of the third primary partition

• The start and end of the fourth primary partition

Figure 2-21. The boot sector

ChAPTEr 2 MULTIBOOT

26

Basically, there will be four entries, and each entry will consume 16 bytes. Apart

from the vendor signature and MBR, the other fields will be empty. Also, please note

that GParted will prepare all the compartments (512 bytes + 31 KB) but will fill only the

vendor signature and MBR fields for the first primary partition.

Coming back to the fdisk signature field, when Windows XP was installed, it

established the following:

• Part-1 of NTLDR in the bootstrap

• Part-2 of NTLDR in the bootloader

• Part-3 of NTLDR inside the first primary partition

Then it set the fdisk signature in its own partition (2 bytes).

So, the disk layout will be something like shown in Figure 2-22.

OpenSolaris found this disk layout. When the OpenSolaris installation was complete

and it wanted to install its bootloader (GRUB), it saw an asterisk (*) on the first primary

partition, and that is when it realized there is a Windows OS already installed. Now

GRUB (the OpenSolaris bootloader) has two options.

• Install part-1 (bootstrap) and part-2 (bootloader) of Grand Unified

Bootloader (GRUB) in the first primary partition, and install part-3 of

GRUB in its own partition (the second partition where OpenSolaris

has been installed).

• Or install part-1 (bootloader) in its own partition’s first 512 bytes,

part-2 in its own partition’s 31 KB, and part-3 also in its own partition;

then put * on its own second partition (refer to Figure 2-23).

Figure 2-22. The disk layout after XP’s installation

ChAPTEr 2 MULTIBOOT

27

Please note that the boot flag is back to the OpenSolaris partition. Also, GParted does

not understand the Solaris2 partition; hence, it shows ext3 as a filesystem name.

If OpenSolaris chooses option 1, then OpenSolaris has to clear Windows XP’s part-1

and part-2 of the bootloader. It also means only OpenSolaris will boot, and XP will never

be able to boot. Hence, OpenSolaris chooses option-2, giving equal opportunity to boot

Windows XP. OpenSolaris also makes a Windows XP entry in one of its own files (we will

talk about this file later in the chapter). Whenever OpenSolaris starts booting up, GRUB

will refer to that file, and it will find the Windows entry in it, which will be shown

on-screen. Figure 2-24 shows the OpenSolaris welcome screen.

Figure 2-23. The disk layout in GParted after OpenSolaris installation

ChAPTEr 2 MULTIBOOT

28

So, the complete booting sequence of OpenSolaris is as follows:

 1. Power on the system.

 2. The CPU jumps to the BIOS.

 3. The BIOS runs the POST routine.

 4. We go back to the BIOS.

 5. The BIOS is kind of dumb; it will check the boot priority set by

the user.

• When I say boot priority, I means the device through which

system will boot.

• It could be CDROM, USB, HDD, PXE, etc.

 6. The BIOS will jump to the entire HDD’s first 512 bytes or on the

first sector of the boot device.

• The boot device could be anything, but as of now we are

considering an HDD.

Figure 2-24. The OpenSolaris welcome screen

ChAPTEr 2 MULTIBOOT

29

 7. The BIOS will hand over control to whichever binary is present in

the bootstrap.

• Who do you think is there? The Windows bootloader (NTLDR) or

OpenSolaris (GRUB)? Think for a while and then continue.

• The boot sector stored in the first 512 bytes is NTLDR of

Windows XP.

• You must have noticed the 440 bytes of the bootstrap space is

very tiny, and no code can boot an OS from it. Hence, part-1

of NTLDR (bootstrap) just jumps to the bigger space, which is

part- 2 (bootloader/31 KB/virtual boot record). Part-2 checks

the MBR (64 bytes) and finds four entries in it. This means the

disk has four primary partitions. But there is an issue here: out

of four primary partitions, which partition has the OS? You

might say, of course, it’s the first and second partitions, but

how will the bootloader know where the OS is? And which one

should it boot? This is a genuine question, and to solve this

problem, the fdisk signature field has been created. Whichever

partition has these 2 bytes filled or set, that partition has an

OS. So, when Windows XP or OpenSolaris was getting installed,

it’s a duty of that OS to fill the 2 bytes of the fdisk signature field

or set the * on its own partition so that the bootloader will know

which partition has the OS. In our case, the * is on its second

partition (OpenSolaris kept it while it was getting installed).

This is how part-2 of NTLDR will know that it has to jump to the

second partition.

 8. Part-2 of NTLDR jumps to the second partition, which means

it simply jumps to part-1 of the GRUB bootloader in the second

partition (bootstrap).

 9. Part-1 of GRUB (bootstrap/440 bytes) is again tiny, so it will again

jump to a bigger space, which is part-2 of GRUB (bootloader).

ChAPTEr 2 MULTIBOOT

30

 10. Part-2 knows where part-3 is. The location of part-3 will be hard-

coded in part-2, so it will simply jump to part-3. Part-3 will read

the text file /rpool/boot/grub/menu.lst (see Figure 2-25); this is

the same file that was created by OpenSolaris when it detected XP

on the first primary.

Figure 2-25. The OpenSolaris menu.lst file

ChAPTEr 2 MULTIBOOT

31

 11. Part-3 of GRUB will read this text file and print whatever is written

after the 'title variable, and that is how we reach the screen

shown in Figure 2-26.

Figure 2-27 shows the complete booting sequence of OpenSolaris.

Figure 2-26. The OpenSolaris welcome screen

ChAPTEr 2 MULTIBOOT

32

If a user chooses the OpenSolaris option to boot, then part-3 of the OpenSolaris

GRUB knows where the kernel of OpenSolaris is, which is in the /boot directory.

GRUB will copy the kernel from /boot to memory and give control to the kernel.

This is where the GRUB bootloader’s task ends, and it goes away. Now the kernel

of OpenSolaris will take care of the rest of the booting sequence. We will talk about

the kernel in Chapter 4.

If a user chooses the Windows XP option to boot, then part-3 of the OpenSolaris

GRUB will jump back to part-1 of NTLDR (bootstrap). Part-1 of NTLDR will jump to

part-2 of NTLDR. Part-2 will jump to part-3. Part-3 of NTLDR will load winload.exe in

memory. The winload.exe file knows where the kernel of XP is. It will eventually be

copied or loaded into memory by NTLDR. Once the kernel is in memory, NTLDR’s job is

done (remember, kernel=OS=kernel). Since XP’s kernel is in memory, it will take care of

the rest of the booting sequence.

Figure 2-27. The OpenSolaris booting sequence

ChAPTEr 2 MULTIBOOT

33

 PC-BSD 9.0

The * or the boot flag is on the OpenSolaris partition, so now we will install PC-BSD 9.0.

In Figure 2-28, the installer of PC-BSD shows the number of partitions on which PC-BSD

9.0 can be installed.

As you can see, the hard disk naming convention is different in BSD compared to

earlier OSs. We need to install BSD on the third partition, which is ada0s2. It stands for

“Adapter number zero and slice number 2.” The slice can be considered as a partition.

Figure 2-29 shows the disk layout and disk naming conventions.

Figure 2-28. The number of partitions

ChAPTEr 2 MULTIBOOT

34

Assign the ada0s2 space to / (the root filesystem). Figure 2-30 shows the partition

layout of PC-BSD 9.0. You will also notice that the filesystem of BSD is UFS, which is the

Unix File System.

Figure 2-29. The disk layout and disk naming conventions

ChAPTEr 2 MULTIBOOT

35

After the installation, the system will restart. Now take some time and think about

which OS will boot.

Which of the following will it be?

• OpenSolaris, which would give it a chance to boot Windows and BSD

• Will it be PC-BSD, which would give it chance to boot the other two

OSs?

• Will it be PC-BSD alone?

• Will it be Windows XP alone?

• Will it be OpenSolaris alone?

• Or will none of the OSs boot?

Figure 2-30. The partition layout of PC-BSD 9.0

ChAPTEr 2 MULTIBOOT

36

Please visit the booting flowcharts of earlier operating systems and try to come up

with your own booting sequence.

As you can see in Figure 2-31, the OS that will boot is OpenSolaris, which will create a

chance to boot Windows only.

PC-BSD is not booting. Before going to the next page, again take some time and think

about what happened

Figure 2-31. PC-BSD is not booting.

ChAPTEr 2 MULTIBOOT

37

You are right—there is a chance that PC-BSD might have not kept the */boot flag/

fdisk signature on its own partition. Let’s see if that is the case. We will boot with GParted

(Figure 2-32) and verify our theory.

Figure 2-32. The GParted welcome screen

ChAPTEr 2 MULTIBOOT

38

As you can see in Figure 2-33, PC-BSD does not have * set on its own partition.

Figure 2-33. The disk layout on GParted

ChAPTEr 2 MULTIBOOT

39

So, the booting sequence looks like Figure 2-34.

This means OpenSolaris does not know BSD is installed on the third partition.

Hence, the PC-BSD entry is not with OpenSolaris. What if we keep the boot flag on

BSD’s partition? Will it boot? But how do we keep the boot flag on the third partition? It’s

simple—GParted gives us that option. Right-click the third partition and select the boot

flag, as shown in Figure 2-35.

Figure 2-34. The boot sequence and why PC-BSD is not able to boot

ChAPTEr 2 MULTIBOOT

40

Figure 2-36 shows how the disk layout looks after setting the boot flag on BSD’s third

partition.

Figure 2-35. Setting the boot flag on PC-BSD

ChAPTEr 2 MULTIBOOT

41

Now which OS do you think will boot?

• PC-BSD alone?

• PC-BSD, which would give the chance to boot every other OS?

• Again OpenSolaris, which would create an option to boot Windows?

• OpenSolaris alone?

• Windows XP alone?

Figure 2-37 shows the answer; after reboot, it’s only PC-BSD that is booting, and it is

not giving an option to boot any other OS.

Figure 2-36. The disk layout

ChAPTEr 2 MULTIBOOT

42

Let’s try to understand how PC-BSD managed to boot.

 1. Power on the system.

 2. The BIOS executes the POST routine. The POST checks the

hardware health and gives a healthy beep if everything is good

and goes back to the BIOS.

 3. The BIOS is dumb, and it simply jumps to the first sector of the

entire HDD, which is a bootstrap of Windows XP.

 4. XP’s part-1 (NTLDR) jumps to a bigger space, which is part-2 of

NTLDR (the bootloader). The bootloader checks the MBR and

finds there are four primary partitions, but which one is active? To

check that, the bootloader checks the first primary partition’s fdisk

signature, which is not set, so it checks the second partition’s boot

Figure 2-37. The welcome screen of PC-BSD

ChAPTEr 2 MULTIBOOT

43

flag, which is also not set. Hence, it jumps to the third partition

where it finds the boot flag set. The bootloader (part-2) of NTLDR

jumps to BSD’s partition and runs the bootstrap of BSD’s bootloader.

The bootloader of BSD is BTX, which stands for Boot Extended.

BTX jumps to its second part and eventually to the third part. The

third part of BTX knows where the kernel of BSD is. Part-3 of BTX

copies the kernel image of BSD in memory, and this is where BTX

stops and PC-BSD starts booting and shows us a welcome screen.

Figure 2-38 shows the flowchart of the booting sequence of PC- BSD.

The interesting part of BSD booting is that when PC-BSD was getting installed, it

found the boot flag on the second partition, which is the OpenSolaris partition. Now BSD

has three options.

 a. Keep the boot flag on its own third partition.

 b. Keep the boot flag on its own third partition and make a

OpenSolaris entry in some of its files.

 c. Keep the boot flag as it is on the second partition.

Figure 2-38. The boot sequence of PC-BSD

ChAPTEr 2 MULTIBOOT

44

If BSD chooses the first option (a), then only BSD would be able to boot, and that

would be an injustice to the other installed operating systems. We want BSD to choose

the second option (b) since it gives justice to boot every other OS, but BTX is an old

bootloader, and it does not have the ability to multiboot other operating systems. Hence,

BSD chooses the third option (c). Therefore, it’s only OpenSolaris that is booting, and it

provides the option to boot XP. Remember, XP is not booting. It’s only OpenSolaris that is

booting, and by reading the menu.lst file, it is giving the option to boot XP. It also means

BSD itself chose not to boot.

What if we go back and keep the boot flag on the first partition of Windows XP? Then

which OS will boot? In Figure 2-39, we have achieved this.

Figure 2-39. The boot sequence of PC-BSD

ChAPTEr 2 MULTIBOOT

45

It’s Windows XP alone that will boot, and the booting sequence is simple. Figure 2-40

explains how Windows XP is able to boot.

Before installing the new OS, we need to move the boot flag from BSD’s third

partition to OpenSolaris’ second partition. Figure 2-41 shows the changed boot flag from

XP’s partition to the OpenSolaris partition.

Figure 2-40. The boot sequence of Windows XP

ChAPTEr 2 MULTIBOOT

46

With this change, OpenSolaris will start booting, and along with that, Windows XP

will also boot, but BSD will not be able to boot. So, does this mean that every time we

boot BSD we have to put the boot flag back to BSD’s partition? As of now, yes, but we will

automate all of this with the help of bootloaders.

 Windows Server 2003

As you can see in Figure 2-42, we will install Windows Server 2003 (win2k3) on the first

logical partition. For win2k3, it is a D: drive.

Figure 2-41. The disk layout from GParted

ChAPTEr 2 MULTIBOOT

47

After the installation, which OS do you think will boot?

• win2k3 alone?

• Will win2k3 provide an option to boot every other OS?

• win2k3 and OpenSolaris together?

• PC-BSD?

• XP alone?

• win2k3 and XP?

Before continuing, think for a while and come up with your own answer.

As you can see in Figure 2-43, the OS that will boot is win2k3.

Figure 2-42. The disk layout shown by the win2k3 installer

Figure 2-43. win2k3’s welcome screen after reboot

ChAPTEr 2 MULTIBOOT

48

And win2k3 is giving the option to boot Windows XP. This means only the Windows

family of operating systems is booting. Also, here are some questions that we should

consider:

• Where is the boot flag now?

• Which OS will boot if we keep the boot flag on the second partition?

• Which OS will boot if we keep the boot flag on the third partition?

• Which OS will boot if we keep the boot flag on the logical partition

(win2k3’s partition)?

• Is there any way to boot only Windows XP?

You will receive all the answers to these questions in the following discussion.

One thing is clear here: win2k3 is the only OS that is booting. Before discussing

how it is able to boot, we need to check what scenario it has created on the disk to boot

successfully.

When win2k3 was getting installed, it saw that it was getting installed on a logical

partition and that the boot flag is on the OpenSolaris partition (refer to Figure 2-44).

To boot, win2k3 has to put the boot flag on its own partition by installing its

bootloader’s (again, NTLDR’s) part-1 and part-2 in its own 512 bytes + 31 KB. But there

is a problem here. Do you remember the rules we saw at the time of Windows XP’s

installation?

• The logical partition cannot be active.

• The OS cannot boot from the logical partition.

Because of these two rules, win2k3 cannot keep the boot flag on its own partition, and

ultimately it cannot boot from the logical partition. Figure 2-45 shows the boot sequence of

why win2k3 cannot boot from the logical partition. But what is the reason for such rules?

Figure 2-44. The disk layout when win2k3 was getting installed

ChAPTEr 2 MULTIBOOT

49

It’s simple: MBR has only four entries, which are as follows:

• First primary = sda1

• Second primary = sda2

• Third primary = sda3

• Fourth primary = extended partition (not logical partition) = sda4

The win2k3 partition is sda5. In other words, it is SATA disk a (first) and partition

number 5. Since the MBR does not have an entry for a logical partition, part-2 of XP’s

NTLDR does not know that there is a fifth partition available. So, even if win2k3 keeps

the boot flag on its own partition, XP’s NTLDR cannot see it. Hence, win2k3 will never

boot. Now, why can the MBR not have more than five entries? It’s because 64 bytes

can store only four entries. Why not increase the size of the MBR? Actually, even if the

developers want to increase the size of the MBR, they simply can’t. You will understand

the reason when we talk about the UEFI firmware later in this chapter.

Now this has become a chicken-and-egg problem for win2k3. It wants to boot, but

for that it has to keep the boot flag on its own partition, but if it does that, then the BIOS

cannot see that partition. How do we resolve this problem?

Some amazing developers have resolved this problem, and whoever came up with

this idea is simply a legend. win2k3 transfers its NTLDR bootloader on the first primary,

which means part-1, part-2, and part-3. It also means win2k3 will delete all the XP

NTLDR’s parts since the space (512 bytes + 31 KB) is tiny and both the bootloaders can’t

fit there. (There is one sweet spot here, which is called VBR, which is beyond the scope

Figure 2-45. win2k3’s boot sequence if it tries to boot from the logical partition

ChAPTEr 2 MULTIBOOT

50

of this book.) However, while deleting, XP’s bootloader win2k3 makes XP’s entry in one

of its text files and keeps it at the first primary partition. The file is called boot.ini, as

shown in Figure 2-46.

While doing this, win2k3 keeps the boot flag on the first primary partition only. So,

this is how win2k3 is booting:

 1. Power on the system.

 2. The CPU goes to the BIOS. The BIOS runs the POST.

 3. POST checks, and the hardware gives the healthy beep and goes

back to the BIOS.

 4. The BIOS jumps to the first primary partition’s first 512 bytes.

Figure 2-46. The boot.ini file

ChAPTEr 2 MULTIBOOT

51

 5. The bootstrap will start, which is win2k3’s part-1 of NTLDR.

 6. Part-1 will look for part-2 of NTLDR.

 7. Part-2 will check the MBR and check the fdisk signature.

 8. The fdisk signature is set on the first primary, which means part-2

will jump inside XP’s first primary partition and will run part-3 of

win2k3’s NTLDR. To just give you an idea, part-3 is new and not

XP’s old NTLDR. Here I provide two images.

• Note the size of NTLDR (part-3) in Figure 2-47. This is when we

installed Windows XP.

• In Figure 2-48, note the size of NTLDR (part-3) after the

installation of win2k3.

Figure 2-47. The size of NTLDR’s part-3 file of Windows XP

ChAPTEr 2 MULTIBOOT

52

As you can see, part-3 of NTLDR of Windows XP was 245 KB, but now with win2k3

it’s 291 KB.

 9. Part-3 of NTLDR (win2k3) will read the boot.ini file from the same

partition (the first primary) and will print whatever is written in

quotes. Figure 2-49 shows what will be printed on the screen.

Figure 2-48. The size of NTLDR’s part-3 file of win2k3

Figure 2-49. The welcome screen shown by win2k3

ChAPTEr 2 MULTIBOOT

53

 10. If a user chooses the Windows Server 2003, Enterprise option,

then part-3 of win2k3’s NTLDR knows where the kernel of win2k3

is. This is in the fifth partition where win2k3 has been installed. It

copies the kernel in memory, and NTLDR of win2k3 goes away.

 11. If a user chooses the Microsoft Windows XP Professional option,

then part-3 of NTLDR also knows where the kernel of Windows

XP is. This is in the first primary partition. First it starts winload.

exe; eventually winload.exe copies XP’s kernel in memory, and

NTLDR goes away. Figure 2-50 shows the complete boot sequence

of Windows XP.

So, this is how Windows XP and win2k3 are able to boot. Let’s return to our fdisk

signatures discussion; since only win2k3 is booting and the other OSs are not able to

boot, I have some questions to ask:

• Can we boot only Windows XP?

• What if we keep the boot flag on OpenSolaris?

• What if we keep the boot flag on PC-BSD?

• What if we don’t keep the boot flag anywhere?

Figure 2-50. The boot sequence of Windows XP

ChAPTEr 2 MULTIBOOT

54

Take your time, think, revisit the flowcharts, and come up with your answer.

Ready? We cannot boot only Windows XP. It’s just not possible since in the Windows

XP bootloaders all the parts have been replaced by win2k’s NTLDR. Also, only win2k3

knows now where XP is, and only win2k3 can boot Windows XP. This also means if

win2k3’s bootloader’s part-1 is corrupted or deleted, we will lose XP forever. But if we

keep the boot flag on PC-BSD, then it will boot as usual. Figure 2-51 shows the boot

sequence of PC-BSD.

If we don’t keep the boot flag on any of the partitions, then it simply won’t boot. This

is similar to the situation that we discussed when talking about what would happen if the

boot flag was set on the logical partition. Figure 2-52 shows the boot sequence to explain

why none of the OSs is able to boot.

Figure 2-51. The boot sequence of PC-BSD

ChAPTEr 2 MULTIBOOT

55

Setting up a boot flag on the logical partition is as good as not setting up a boot

flag anywhere.

Now, the main question is, what if we keep the boot flag on the OpenSolaris partition?

OpenSolaris will fail to boot. The OpenSolaris bootloader, which is GRUB, will throw the

error message shown in Figure 2-53.

But why? It should boot, right? Nothing has been changed in OpenSolaris (512 bytes +

31 KB). It’s just that win2k3 has moved the boot flag from the OpenSolaris partition

to the first primary. So, ideally, it should boot, but it won’t, and the reason is win2k3’s

behavior. When win2k3 was getting installed, it faced a similar situation that OpenSolaris

and PC-BSD faced. In other words, the boot flag is on a different partition, and that

partition has another OS. What OpenSolaris did in that situation was move the boot flag

from XP’s partition to its own second partition, but since this will make XP unbootable,

it generously made an entry for XP in its own file (menu.lst). OpenSolaris reads this file

every time and gives an equal chance to XP to boot.

Figure 2-52. The boot sequence to show why none of the OSs is able to boot

Figure 2-53. GRUB dropped on prompt

ChAPTEr 2 MULTIBOOT

56

In the case of PC-BSD, it detects that the boot flag is on OpenSolaris, and if it

is moved to its own partition, it would make OpenSolaris unbootable. Hence, BSD

generously chose not to put the boot flag on its own partition so that another OS would

not become unbootable. But win2k3 does not have that generosity. When win2k3 was

getting installed, it saw that the boot flag is on a non-Windows-based OS. So, it moved

the boot flag of OpenSolaris, but since that is a non-Windows-based OS, it did not create

an entry in boot.ini. Going further, win2k3 even corrupted/removed part-1 of the

OpenSolaris GRUB. Hence, OpenSolaris is not able to boot now.
Later, win2k3 went ahead and cleared XP’s bootloader, but it made the entry for

XP in boot.ini since it is a Windows operating system. That’s why I said win2k3 does
not have the same generosity that is shown by OpenSolaris and PC-BSD. But we will fix
OpenSolaris in the “Tweaking GRUB” section of this chapter.

 Windows 7

As you can see in Figure 2-54, we are installing Windows 7 in the fifth partition.

Figure 2-54. The disk layout shown by the Windows 7 installer

ChAPTEr 2 MULTIBOOT

57

Windows does not show an extended partition to avoid confusion for simple desktop

users.

1st = XP 2nd = Solaris 3rd = PC-BSD 4th = win2k3 5th = 7

After the installation, which OS do you think will boot? As usual, take your time and

come up with your answer before continuing to Figure 2-55.

Figure 2-55. The welcome screen shown by Windows 7

ChAPTEr 2 MULTIBOOT

58

You guessed right: Windows 7 will boot. The following is the complete booting

sequence of Windows 7:

 1. Power on the system.

 2. The CPU will jump to the BIOS.

 3. After the POST routine, the BIOS will jump to the entire HDD’s

first sector.

 4. When Windows 7 was getting installed, the * was on the first

primary, and Windows 7 was getting installed in a logical

partition. So, Windows 7 is facing the same problems that

win2k3 faced.

 5. To make itself bootable, Windows 7 will follow the same path,

which is followed by win2k3. Windows 7 will install its part-1, part-

2, and part-3 on the first primary partition. Part-3 is not necessary

to install on the first primary since part-2 has a hard- coded

location for part-3, but this is how the Windows family works.

 6. When part-1 and part-2 of Windows 7 were getting installed on

the first primary, obviously Windows 7 has to delete the win2k3

NTLDR (part-1 and part-2), but while deleting the files, Windows

7 recognizes that win2k3 is a Windows family OS; hence, Windows

7’s bootloader called Boot Configuration Data (BCD) makes an

entry for win2k3 in its own file, which can be seen in bcdedit.

exe. Check Figure 2-56 to see the output of bcdedit.exe.

“Windows Legacy OS Loader” in Figure 2-56 means win2k3.

ChAPTEr 2 MULTIBOOT

59

 7. So, coming back to booting sequence, it looks like this: BIOS ➤

POST ➤ BIOS ➤ first sector of HDD.

 8. The first 440 bytes of the bootstrap is part-1 of Window 7’s BCD

bootloader. It will look for a bigger space, which is part-2 of BCD.

 9. Part-2 of BCD will read the MBR and will come to know that on

this HDD there are four primary partitions, but to check which

one is active, it will start checking the fdisk signature of every

partition, but it will find the first primary itself is active.

Figure 2-56. The output of bcdedit.exe

ChAPTEr 2 MULTIBOOT

60

 10. Part-2 will jump inside the first primary where part-3 of Window

7’s BCD bootloader is stored. Part-3 will read its bootloader

configuration file through bcdedit.exe and will list the entries

that are mentioned in front of the description variable.

Figure 2- 57 shows what will appear on-screen.

 11. If a user chooses Windows 7, then as you can see in bcdedit.exe,

part-3 of BCD will call winload.exe from C:\windows\systemd32.

Remember, here C: means Windows 7’s partition, which is the

sixth logical partition.

Figure 2-57. Welcome screen shown by Windows 7

ChAPTEr 2 MULTIBOOT

61

 12. The winload.exe file knows the location of Windows 7’s kernel.

It will start loading the kernel in memory, and once it is done,

Windows 7’s kernel will take care of the rest of the booting

sequence. You can see the animation shown by Windows 7 once it

starts its booting sequence in Figure 2-58.

Figure 2-58. The animation shown by Windows 7 during the booting sequence

ChAPTEr 2 MULTIBOOT

62

Figure 2-59 shows the complete flowchart of Windows 7’s booting sequence.

Figure 2-59. The booting sequence of Windows 7

ChAPTEr 2 MULTIBOOT

63

Figure 2-60. The boot sequence of win2k3 and XP

 13. If the user chooses Earlier Version of Windows, then BCD’s part-3

will call part-3 of NTLDR, which is on the first primary partition

only, and the booting sequence will continue, which we saw with

win2k3. Figure 2-60 explains the boot sequence of win2k3 and XP.

ChAPTEr 2 MULTIBOOT

64

 Red Hat Enterprise Linux 6 (RHEL 6)

The RHEL installer’s name is Anaconda. The Anaconda installer is used by all the

Fedora-based distributions. In Figure 2-61, we have started installing RHEL 6.

Figure 2-61. The welcome screen of RHEL 6’s boot medium

ChAPTEr 2 MULTIBOOT

65

Figure 2-62 shows our current partition layout.

Figure 2-62. Partition layout shown by the Anaconda installer

ChAPTEr 2 MULTIBOOT

66

As shown in Figure 2-63, we need to assign root (/) to the sda7 partition and reformat

it with ext4, which is the default filesystem choice of RHEL 6.

Figure 2-63. The partition scheme that Anaconda will implement

ChAPTEr 2 MULTIBOOT

67

As visible in Figure 2-64, RHEL 6 (or Anaconda) has detected some OS, and it is

trying to give equal opportunity to the other OS to boot (specified as Other). There are

two OS entries, which RHEL 6’s bootloader (GRUB) will show at the time of the boot.

As per RHEL 6, the other OS will boot from sda5. This means the following:

sda1 = XP

sda2 = Solaris

sda3 = PC BSD

sda4 = Extended partition

sda5 = Win win2k3 <<<-----------

Figure 2-64. Anaconda detecting another OS

ChAPTEr 2 MULTIBOOT

68

At the time of the boot, if a user chooses the Other option, win2k3 is supposed to

boot. Which OS will boot after choosing the Other option? Take your time and come up

with your own booting sequence.

Let’s reboot the system and see which OS is booting. As you can see in Figure 2-65,

it’s RHEL 6 that is booting and giving you a chance to boot the other OS.

This is how RHEL 6 boots:

 1. When the system is powered on, it goes to the BIOS, then from the

BIOS to POST, and from POST back to the BIOS.

 2. The BIOS ultimately lands in the entire HDD’s first sector and runs

the bootstrap.

 3. When RHEL 6 was getting installed, the * was on the first primary

partition.

 4. The problem that was faced by win2k3 and Windows 7 is faced by

RHEL 6 also. RHEL 6 is getting installed in a logical partition that

the BIOS cannot reach or see. So, to tackle this issue, RHEL 6 has

to shift its part-1 and part-2 of the bootloader (GRUB) to the first

Figure 2-65. The RHEL 6 welcome screen

ChAPTEr 2 MULTIBOOT

69

primary partition. Remember, Windows shifted part-3 as well to

the first primary, but RHEL (and in general any Linux OS) will shift

only the first two parts to the first primary partition, and part-3 of

GRUB will be kept in its own partition; in our case, this is sda-7.

 5. While replacing the first primary partition’s part-1 and part-2,

RHEL noticed that there is already some other OS installed, and

to give it an equal chance to boot, it made an entry for it in its

own partition’s /boot/grub/grub.conf named configuration file.

Figure 2-66 shows the grub.conf file.

As you can see, whatever is written after the title variable will be printed on the

screen.

 6. Returning to the boot sequence, the bootstrap that is in the first

primary partition is from RHEL.

 7. Part-1 of RHEL’s GRUB will jump to part-2.

Figure 2-66. The grub.conf file

ChAPTEr 2 MULTIBOOT

70

 8. Part-2 of GRUB has a hard-coded location for part-3 of

GRUB. Part-3 of GRUB is on RHEL’s partition, which is sda7.

 9. Part-3 of GRUB will read the grub.conf file from the /boot/grub

directory, and whatever is written after title will be printed on

the screen. Figure 2-67 shows this.

 10. If a user chooses the first entry, which is Red Hat Enterprise

Linux 6, then part-3 of GRUB knows where the kernel of RHEL is.

Figure 2-68 shows the grub.conf file.

Figure 2-67. The welcome screen shown by RHEL 6’s GRUB

ChAPTEr 2 MULTIBOOT

71

 11. The kernel binary file will be at /boot/vmlinuz. (Notice the

kernel variable from Figure 2-68.) Basically, the same grub.conf

file will tell the location of the kernel to part-3 of GRUB. It will

copy the kernel (vmlinuz) in memory, and the GRUB bootloader’s

job is done. RHEL’s kernel will take care of the rest of the booting

sequence. Meanwhile, when the system is booting, a nice

animation, as shown in Figure 2-69, will appear on the screen.

Figure 2-70 shows the flowchart of the complete booting sequence of RHEL 6.

Figure 2-68. The grub.conf file of RHEL 6

Figure 2-69. The animation to hide the complicated log messages

ChAPTEr 2 MULTIBOOT

72

 12. If a user chooses Other instead, then it will call whatever is present

on the sda5 partition. As you can see in Figure 2-71, sda5 is on

win2k3’s partition.

Figure 2-71. The other OS is on partition 5

Figure 2-70. The boot sequence of RHEL 6

 13. When win2k3 was installed, it shifted all of its bootloader’s parts

to the first primary. This means win2k3’s partition does not have

a bootloader present, so of course no OS will boot. Figure 2-72

shows the error message thrown on-screen if you try to boot the

other OS.

ChAPTEr 2 MULTIBOOT

73

Now, I have a couple of questions to ask:

• Where is the * now?

• If I keep the * on the second partition, which OS will boot?

• If I keep the * on the third partition, which OS will boot?

• If I keep the * on the fifth (logical) partition, which OS will boot?

• If I do not keep the * on any of the partition, which OS will boot?

In all of these scenarios, only one OS will boot, and that will be RHEL 6 (Figure 2-73).

Figure 2-72. The error message

Figure 2-73. The RHEL 6 desktop screen

No matter where you keep the * or even if you don’t keep the * on any partition, it’s
only the RHEL that will be booting all the time. The reason is simple, but it changes the

booting sequence altogether. The Red Hat Enterprise Linux bootloader, which is GRUB,

ChAPTEr 2 MULTIBOOT

74

does not follow the *, and it does not check which partition is active before calling part-3

of its bootloader. In fact, none of the Linux OSs bothers to check the active partition.

They simply skip that step. So, the booting sequence becomes the following:

 1. First the system goes to the BIOS, then POST, then back to the

BIOS, and finally to the first primary partition’s bootstrap.

 2. RHEL’s part-1 of GRUB jumps to part-2 of GRUB, which (after

skipping the fdisk signature part) jumps to part-3 of GRUB.

 3. Part-3 of GRUB goes to /boot/grub.conf, which prints the OS

entries.

 4. If a user chooses RHEL, then the kernel loads from /boot/vmlinuz

in memory.

 5. The kernel will take care of the rest of the OS booting, which has

been extensively explained in the rest of the book.

This also means there is only one OS currently booting, and that is RHEL 6. That’s

bad! Hence, we need to tweak GRUB to boot the rest of the operating systems.

 Tweaking GRUB

The best feature of GRUB is that it can boot any other OS, regardless of whether it is

Linux based or not. The trick to boot another OS used by GRUB is simple but amazing.

For any bootloader to boot OS, you need to do nothing more than load the respective

OS’s kernel in memory. GRUB knows where the kernel of a Linux OS is (/boot/vmlinuz).

But GRUB does not know where the kernel of Windows or PC-BSD is. The trick is that

these operating systems’ respective bootloaders know the location of their respective

kernels. So, GRUB just calls their respective bootloaders; for example, if GRUB wants

to boot BSD, it is at the third primary partition. Refer to Figure 2-74, which shows the

partition layout, for a better understanding of this.

Figure 2-74. The partition layout of the BIOS

ChAPTEr 2 MULTIBOOT

75

BSD installed its bootloader on its own partition’s reserved 512 bytes + 31 KB. So,

GRUB will call part-1 of BTX. This is called chainloading. The GRUB bootloader’s part- 3

will chainload part-1 of BTX. BTX’s part-1 knows what to do next, which is to look for

part-2. Part-2 will jump to part-3, and it will load BSD’s kernel in memory so BSD will

start booting up. To achieve this chainloading, we need to tell GRUB the location of

part- 1 of BTX through the grub.conf file. The location will be hard disk number 1 and

partition number 3, but GRUB starts its count from 0 so the location will be hard disk

number 0 and partition number 2. The entry in /boot/grub.conf is as follows:

 title pc-bsd <<<---- the os entry title

 rootnoverify (hd0,2) <<<---- location of BTX

 chainloader +1 <<<---- grub will chainload the BTX

As you can see in Figure 2-75, the other operating system entries are similar to BSD;

only the partition number will change.

Figure 2-75. The tweaked grub.conf file of RHEL 6

ChAPTEr 2 MULTIBOOT

76

After rebooting, GRUB will show the mentioned title entries. See Figure 2-76.

If a user chooses Windows, it will call part-2 of BCD, which is in the 31 KB space

of the first primary. This 31 KB space is also called the volume boot record (VBR). I

deliberately skipped the VBR explanation since it will unnecessarily create confusion. So,

in the case of Windows chainloading, just keep in mind that instead of part-1, part-2 will

be called. For those who want a bit more information about VBR, MBR is the master boot

record for the hard drive, located at the first sector of the hard drive. Each volume (think

partition) has its own boot record called the VBR as the first sector of the partition. Two

names for two similar things.

So, BCD’s part-2 will call part-3 of BCD, which is in the first primary partition. It will

read the BCD OS entries (bcdedit.exe), as shown in Figure 2-77, and will print them

on- screen.

Figure 2-76. The GRUB welcome screen shown by RHEL 6

ChAPTEr 2 MULTIBOOT

77

If a user chooses the Earlier Version of Windows, as we saw earlier (during Windows

7’s booting sequence), it will run part-3 of NTLDR, which is again on the first primary

partition. As shown in Figure 2-78, NTLDR will read the boot.ini file from the C drive

and will print the OS entries.

Figure 2-77. The OS entries shown by the BCD bootloader

Figure 2-78. The OS entries shown by win2k3’s NTLDR

ChAPTEr 2 MULTIBOOT

78

If a user chooses XP, part-3 of NTLDR knows where the kernel of XP is. Instead,

the user chooses win2k3, and then the same NTLDR will load the kernel of win2k3 in

 memory.

Refer to Figure 2-79, which is the main boot screen provided by RHEL, if the user

chooses OpenSolaris.

The following are the instructions that will be followed by GRUB:

title Solaris

 rootnoverify (hd0,1)

 chainloader +1

So, RHEL GRUB’s part-3 will hand over control to the bootstrap of the second

primary partition, but remember that win2k3 has cleared part-1 of OpenSolaris GRUB.

Hence, as visible in Figure 2-80, it will fail to boot.

Figure 2-79. The OS entries shown by RHEL

Figure 2-80. OpenSolaris failed to boot

ChAPTEr 2 MULTIBOOT

79

This means we need to fix the OpenSolaris bootloader first. To fix it, we need to boot

from the OpenSolaris live CD image, which we used to install OpenSolaris and, once it

was booted, installed part-1 and part-2 (part-2 is not necessary but good to reinstall) of

GRUB from the live CD to the OpenSolaris partition’s reserved 512 bytes + 31 KB. The

command that we will use is installgrub. As the name suggests, the command will copy

part-1 (stage1) and part-2 (stage2) of GRUB from the live image and place them in the

OpenSolaris partition’s 512 bytes + 31 KB space. Figure 2-81 shows the command in action.

#installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c4d1s0

After rebooting, RHEL will again show the same OS entries (Figure 2-82) since for

RHEL nothing has changed.

Figure 2-81. The installgrub command

ChAPTEr 2 MULTIBOOT

80

If this time we choose OpenSolaris, then RHEL GRUB’s part-3 will chainload part-1

of OpenSolaris GRUB from the second partition. Part-1 will call part-2, and eventually it

will call part-3 from the actual OpenSolaris partition. Part-3 of OpenSolaris GRUB will

read /rpool/boot/grub/menu.lst, and as shown in Figure 2-83, it will print the titles on

the screen.

Figure 2-83. The OS entries shown by OpenSolaris

Figure 2-82. The OS entries shown by RHEL

ChAPTEr 2 MULTIBOOT

81

If a user chooses OpenSolaris, then part-3 of OpenSolaris GRUB will load the kernel

from /boot. If the user chooses Windows, then part-3 of OpenSolaris GRUB will follow

these instructions from /rpool/boot/grub/menu.lst:

title Solaris

 rootnoverify (hd0,1)

 chainloader +1

We know now what is going to appear on-screen (refer to Figure 2-84).

The story will continue if the user chooses Earlier Version of Windows, which we

have already discussed. Going back to the original OS list, Figure 2-85 shows what is

presented by RHEL’s GRUB.

Figure 2-84. The OS entries shown by BCD

ChAPTEr 2 MULTIBOOT

82

If the user chooses to boot BSD, you know exactly what is going to happen. Part-3

of RHEL’s GRUB will chainload part-1 of BTX from the third primary partition. Part-1

of BTX will call part-2, and part-2 will call part-3 of BTX. Part-3 of BTX will show the

welcome screen, as shown in Figure 2-86.

Figure 2-85. The OS entries shown by RHEL

ChAPTEr 2 MULTIBOOT

83

Figure 2-86. PC-BSD’s welcome screen

Once chosen to boot, part-3 of BTX will load the kernel of BSD Unix in memory. So,

all the operating systems, whichever we installed so far, are able to boot now, and it does

not matter which partition is active. But can we hack the Windows bootloaders and force

them to boot the Linux and Unix operating systems from our list? We can, and that’s

what we will do now.

 Hacking the Windows Bootloaders

It’s actually pretty easy to trick the Windows bootloaders. As we saw earlier, bootloaders

do chainloading; for example, part-1 calls part-2 of its bootloader and so on. To

understand the trick, let’s take BSD as an example. Part-1 of BCD is calling its part-2 of

BCD, but if we tell BCD’s part-1 to chainload part-1 of RHEL, then part-1 of RHEL will

run, and it will eventually follow its own booting sequence. Part-1 of GRUB (RHEL) will

ChAPTEr 2 MULTIBOOT

84

call part-2 of GRUB, and it will eventually chainload part-3 of GRUB since part-3’s block

address is hard-coded in part-2. This means once part-1 of any bootloader runs, it will

start following its own boot sequence, and we will take advantage of this behavior.

To achieve this, we need to get part-1 of every non-Windows-based bootloader

and place it into the Windows filesystem. So, the filesystem could be FAT32 or

NTFS. Obviously, placing part-1 of every non-Windows-based bootloader on the

first primary has the most advantages since every Windows operating system has

installed their respective bootloaders on the first primary partition. So, through the dd

command, we will copy the first 512 bytes (even the first 440 bytes is enough) of every

non-Windows-based OS and place them in XP’s partition. Let’s mount the first primary

partition, as shown in Figure 2-87.

Let’s copy the first 512 bytes and place them on the sda1 partition. Refer to Figure 2- 88

for this.

Figure 2-87. The mount command

ChAPTEr 2 MULTIBOOT

85

Now we will boot back in XP, and as shown in Figure 2-89, we will add the part-1

files entries in the boot.ini file. The boot.ini file is read by both Windows bootloaders,

which are BCD and win2k3’s NTLDR.

Figure 2-88. Transferring the first 512 bytes to the first primary

ChAPTEr 2 MULTIBOOT

86

The following are the entries that we have added:

c:\RHEL.out="RHEL"

c:\SOLARIS.out = "SOLARIS"

c:\BSD.out="BSD"

Just like the grub.conf file, whatever is written in double quotes in boot.ini will be

considered the title of the OS entry. Now let’s reboot the system and choose the Windows

OS entry from the RHEL OS list (refer to Figure 2-90).

Figure 2-89. Adding the entries in the boot.ini file

ChAPTEr 2 MULTIBOOT

87

Figure 2-90. The OS list shown by RHEL

How we reached this screen is easy to understand.

 1. The system goes first to the BIOS, then to POST, then to the BIOS,

then to the first 512 bytes, and then to the bootstrap (part-1) of

RHEL (GRUB).

 2. Then comes part-1 of GRUB, which jumps to part-2 of GRUB,

which jumps to part-3 of GRUB, which goes to /boot/grub.conf,

which prints the OS titles.

 3. The user has chosen Windows, so next comes part-1 of BCD from

the first primary partition and then part-2 of BCD.

 4. Finally, it goes to part-3, then bcd.exe, and it will read the boot.ini

file and whatever is written into the double quotes will be printed

on screen.

The OS list is visible in Figure 2-91.

ChAPTEr 2 MULTIBOOT

88

If the user chooses Earlier Version of Windows, then BCD’s part-3 will call part-3 of

win2k3’s NTLDR. NTLDR will again read the boot.ini file and print the OS list, as shown

in Figure 2-92.

If a user chooses OpenSolaris, then part-3 of NTLDR will run the Solaris.out file

from C: (the first primary partition). The Solaris.out file is nothing but part-1 of the

OpenSolaris bootloader from the second partition. Part-1 of the OpenSolaris bootloader

will call part-2 and eventually part-3 of GRUB. It will read the menu.lst file and will print

the OS list (Figure 2-93).

Figure 2-91. The OS entries shown by Windows 7 (BCD)

Figure 2-92. The OS entries shown by win2k3’s NTLDR

ChAPTEr 2 MULTIBOOT

89

If the user again chooses Windows, then part-3 of OpenSolaris will call part-2 of BCD

from the first primary partition (rootnoverify (hd0,0)). (Part-2 of BCD will be in the

VBR section of the first primary partition. We will not cover the VBR in this book.) BCD’s

part- 2 will call part-3 of BCD. It will read the OS entries through bcdedit.exe and from

boot.ini and print the OS entries. The OS entries printed on the screen are visible in

Figure 2- 94.

Figure 2-93. The OS entries shown by OpenSolaris GRUB

Figure 2-94. The OS entries shown by Windows 7 (BCD)

ChAPTEr 2 MULTIBOOT

90

This is how we have created a bootloader’s loop (refer to Figure 2-95 and Figure 2- 96).

As you can see, Linux is booting Windows, Linux is booting Unix, Unix is booting

Windows, Windows is booting Windows, and Windows is booting Linux, but one thing is

still missing, and that is Linux is booting Linux. For that, we will install the final OS from

our list, and that is Fedora 15.

 Fedora 15

As shown in Figure 2-97, we are installing Fedora 15 on sda8.

Figure 2-95. The RHEL entry has been chosen to boot

Figure 2-96. The OS entries shown by RHEL’s GRUB

ChAPTEr 2 MULTIBOOT

91

By default Fedora will try to install its bootloader on the first primary, but if we allow

that, then again we need to add the entry of every other OS in its grub.conf. Instead, we

will follow a different approach. We will install the bootloader of Fedora (GRUB) on its

own partition (sda8) instead of sda1. See Figure 2-98.

Figure 2-97. The Fedora installer

ChAPTEr 2 MULTIBOOT

92

This means after rebooting Fedora will never be able to boot since RHEL’s GRUB

does not know about this new OS, so we need to add Fedora’s entry into grub.conf of

RHEL. To do that, let’s mount sda8, as shown in Figure 2-99.

Copy Fedora’s entries (see Figure 2-100) from Fedora GRUB’s grub.conf file: /mnt/

boot/grub.conf.

Figure 2-98. The bootloader device selection

Figure 2-99. The mounting of Fedora’s partition

ChAPTEr 2 MULTIBOOT

93

The entries are simple. Whenever part-3 of Fedora is called, it will load the kernel

of Fedora from /boot/vmlinuz-2.6.38.6-26.rc1.fc15.x86_64 into the memory. After

that, it will load initramfs from /boot/initramfs-2.6.38.6-26.rc1.fc15.x86_64.img

into the memory.

Figure 2-101 shows RHEL’s /etc/grub.conf file after copying the entry of Fedora

from /mnt/etc/grub.conf.

Figure 2-100. The grub.conf file of Fedora 15

ChAPTEr 2 MULTIBOOT

94

After reboot, we will get the Fedora entry (Figure 2-102).

When the user chooses Fedora to boot, as per the entry in RHEL’s grub.conf file,

part-3 of RHEL’s GRUB will load the kernel from the eighth partition (sda8 of Fedora) and

will also load initramfs from the same location (we will talk about initramfs in Chapter 5),

and the bootloader will go away.

Figure 2-101. The grub.conf file of RHEL

Figure 2-102. The OS entries shown by RHEL

ChAPTEr 2 MULTIBOOT

95

 Complete Flowchart

Figure 2-103 shows the complete flowchart of every OS that we have installed so far.

I hope you now understand the way bootloaders boot the operating systems on a

BIOS-based system. Now it’s time to understand the new firmware, which is Unified

Extensible Firmware Interface (UEFI).

Figure 2-103. The complete flowchart of all the operating systems

ChAPTEr 2 MULTIBOOT

96

 Unified Extensible Firmware Interface (UEFI)
Here are the BIOS limitations you have observed so far:

• You can have only four primary partitions.

• The BIOS cannot read the logical partitions.

• The BIOS is kind of dumb; it just jumps to the first sector

of your HDD.

• The maximum partition size with a BIOS-based system is 2.2 TB.

Why does it have such limitations? The BIOS firmware was designed in 1982 for IBM

PC-5150 (Figure 2-104), which used to have this configuration:

CPU = 8088 - 16bit x86 processor

Memory = upto 256KB max

OS = MS-DOS

As you can see, the BIOS was designed for this PC 38 years ago. In these three

decades, operating systems grew from floppy disks to NVME disks and from text mode

to shiny GUIs. The hardware devices went from drivers to plug and play, but the BIOS

remained the same, which initially had a 16-bit instruction set, and in later stages it

started using a 32-bit instruction set. Nowadays we have 64-bit CPUs, but the BIOS is

still made from 32-bit instructions. The reason we did not upgrade the BIOS to 64-bit

Figure 2-104. IBM PC-5150

ChAPTEr 2 MULTIBOOT

97

is because of historical reasons. When everything is working, why rewrite something?

That’s the philosophy the computer industry has adopted anyway. When the CPU went

from 16-bit (8088) to 64-bit (i9), the BIOS remained either on 16-bit or on 32-bit, because

at the time of the early stages of booting, it was not necessary to have a 64-bit CPU, and

this is the reason we have CPU modes (real, protected, and long).

In real mode, the CPU will be restricted to 16 bits. In this mode, programs like the

old BIOS that have 16-bit instructions will run. These programs cannot run in any other

mode. Later, the CPU will switch from real mode to protected mode. The protected

mode is 32 bits, and programs these days, like the BIOS, that have 32-bit instructions

sets will run under this mode, and later the CPU will be placed in long mode, which

is 64 bits. Remember, these modes are not implemented by the CPU; rather, they are

implemented by firmware like the BIOS. This means if we remove the same CPU from a

real mode- enabled system and place it on a system that does not have real mode, then

the same CPU will directly start in protected mode. We will talk about these modes again

in Chapter 4.

Since the BIOS runs in protected mode, the address space that is available for the

BIOS is only 4 GB. If the system has 20 GB of memory, the BIOS will only be able to

address up to 4 GB. Though the system has a 64-bit I9 processor, the BIOS will still

be able to use only 32 bits of it. Because of these hardware challenges, the BIOS has

limitations.

 BIOS Limitations

These are some limitations of the BIOS:

• BIOS will only be able to jump to the first sector, which is 512 bytes.

• The MBR, which is 64 bytes in size, is part of the first boot sector.

If we increase the size of the MBR, it will go beyond the 512 bytes;

hence, we cannot increase the size of the MBR, which is the

reason why the BIOS can provide only four primary partitions.

• BIOS cannot generate good graphics/GUIs.

• Now this is a generic statement, and it is used in comparison with

UEFI. There are some BIOS vendors that have implemented web

browsers outside of the OS, but such implementations are rare to

see on normal desktop hardware.

ChAPTEr 2 MULTIBOOT

98

• Also, at Phoenix, some of the BIOS implementations has a FAT32

driver in it through which it manages to show icons inside a

setup.

• You cannot use a mouse in the BIOS.

• There are many BIOS vendors that have mouse support, but again

it is rare to find in normal desktop systems.

• The maximum partition size is 2.2 TB.

• The BIOS uses and supports an MS-DOS partition table, which is

quite old, and it has its own drawbacks like 2.2 TB of maximum

partition size.

• The BIOS is dumb because it does not understand the bootloader

or the OS.

• It is slow because of the hardware limitations.

• In terms of booting speed, the BIOS is slow since it takes time to

initialize the hardware.

• The BIOS takes almost 30 seconds to start the actual OS-level

booting.

• It struggles to initialize the new-generation hardware devices.

• BIOS has limited preboot tools.

• Compared to the UEFI firmware, the BIOS has very few preboot

tools such as remote hardware diagnostics, etc.

So, to overcome all these BIOS limitations, Intel started an initiative in 1998 called

Intel Boot Initiative (IBI); later it became Extensible Firmware Interface (EFI). Intel was

joined by every other possible OS and hardware vendor (HP/Apple/Dell/Microsoft/

IBM/Asus/AMD/American Megatrends /Phoenix Technologies). They made an open

source forum for this project, and finally it became Unified Extensible Interface (UEFI).

The open source code is signed under the BSD license, but Intel’s base code is

still proprietary. UEFI is basically an open source framework, and vendors build their

applications on top of it based on the specification provided by UEFI.org. For example,

American Megatrends built APTIO, and Phoenix Technologies built the SecureCore UEFI

firmware. Apple was the first that dared to launch systems with UEFI firmware in it. All

ChAPTEr 2 MULTIBOOT

http://uefi.org

99

the drawbacks that the BIOS has are because of its 16-bit instruction set. Since this 16-bit

instruction set limits BIOS hardware usage to 1 MB of address space, UEFI targeted and

resolved that limitation.

 UEFI Advantages

UEFI supports 64-bit processors; hence, it does not face any of the hardware limitations

that the BIOS faces.

• UEFI can use the full CPU. Unlike the BIOS (which is stuck with 16

bits of processor), UEFI can access up to 64 bits.

• UEFI can use a full RAM module. Unlike 1 MB of address space of the

BIOS, UEFI can support and use terabytes of RAM.

• Instead of 64 bytes of a tiny MBR, UEFI uses the GPT (GUID) partition

table, which will provide an infinite number of partitions, and all

will be primary partitions. In fact, there is no concept of primary and

logical partitions.

• A maximum partition size is 8 zettabytes.

• UEFI has enterprise management tools.

 a) You will be able to fix the computer remotely.

 b) You will be able to browse the Internet inside the UEFI

firmware.

 c) You will be able to change the UEFI firmware behavior/

settings from OS.

i) To change the settings of BIOS, we have to reboot the

system since OS runs in long mode, whereas BIOS runs in

real mode, and real mode can only be possible at the time

of boot.

• UEFI is a small OS.

 a) You will have full access to audio and video devices.

 b) You will be able to connect to WiFi.

 c) You will be able to use the mouse.

ChAPTEr 2 MULTIBOOT

100

 d) In terms of the GUI, UEFI will provide a rich graphics

interface.

 e) UEFI will have its own app store like we have for Android and

Apple phones.

 f) You will be able to download and use the applications from

the UEFI app store, just like with Android and Apple phones.

Hundreds of apps are available such as calendars, email

clients, browser, games, shells, etc.

 g) UEFI is able to run any binary that has an EFI executable

format.

 h) It boots operating systems securely with the help of the Secure

Boot feature. We will discuss the Secure Boot feature in depth

later in this book.

 i) UEFI is backward compatible, meaning it will support the

“BIOS way” of booting. In other words, operating systems that

do not have UEFI support will also be able to boot with UEFI.

 The GUI of UEFI

Figure 2-105 shows the GUI implementation of ASUS.

ChAPTEr 2 MULTIBOOT

101

Here are some things to notice:

• The rich GUI

• Mouse pointer

• Icons, buttons, scroll options, animations, graphs, drop-down

options, etc.

Of course, you need to get an expensive motherboard to get such a rich UEFI

implementation, but even the basic UEFI implementations are much better than the

BIOS implementations.

Figure 2-105. ASUS UEFI implementation

ChAPTEr 2 MULTIBOOT

102

 UEFI Implementation

The UEFI forum releases the UEFI specification. The current UEFI specification when

writing this book was 2.8 and can be downloaded from https://uefi.org/specifications.

The current specification is 2,551 pages long, and every vendor (motherboard, OS, UEFI

developer, etc.) has to agree to it. The specification forces regulations that every vendor has

to follow. The following are some of the major UEFI regulations.

EFI System Partition (ESP)

Every OS vendor has to create one EPS partition, and the bootloader has to be installed

in this partition only. It is not necessary to create ESP as a first partition; it could be

created anywhere, but the ESP should have the FAT16/32 (preferably FAT32) filesystem.

The recommended ESP size is a minimum of 256 MB. The OS vendor has to create the

following directory structure in ESP:

EFI System Partition

 ├── EFI
 │ ├── <OS_vendor_name>
 │ │ ├── <boot_loader_files>

Once this structure is created, the OS has to install the bootloader inside the

/EFI/<os_vendor_name>/ location only. Figure 2-106 shows you the UEFI structure.

Figure 2-106. The UEFI structure

ChAPTEr 2 MULTIBOOT

https://uefi.org/specifications

103

This means, like the 512 bytes + 31 KB space reserved for bootloaders, in the same

way we have a 256 MB minimum dedicated space for bootloaders in UEFI. The ESP

partition will be mounted in Linux under the mount point /boot/efi.

EFI

It’s compulsory for every OS vendor to write bootloader files in the EFI executable

format. Also, the files should have the .efi extension.

Secure Boot

One of the best features UEFI provides is Secure Boot. The feature was proposed by

Microsoft and later added in the UEFI specification. Microsoft first used the Secure Boot

feature in Windows 8. We will talk about Secure Boot in detail once we get familiarized

with how UEFI works.

Partition Table

The recommended partition table is GPT, which is a GUID partition table, whereas the

BIOS uses an MS-DOS partition table.

For a better understanding of UEFI, we will use the same approach that we used with

the BIOS. We will use a new system named UEFI, which has the UEFI firmware on it, and

we will install a couple of OSs in it.

 List of Operating Systems

As you know, UEFI uses a GPT partition table; hence, there is no primary or secondary/

logical partition concept. This also means there is no particular priority to the

installations of operating systems. You can install operating systems in any way you

want. We will install the OSs in this order:

 1) Ubuntu 18

 2) Windows 10

 3) Fedora 31

ChAPTEr 2 MULTIBOOT

104

 Ubuntu 18.04 LTS

We have almost 64.4 GB of HDD. It is not necessary to use a GParted-like tool to create

the partition layout like we used with the BIOS. We will use a Ubuntu-provided default

disk utility instead. See Figure 2-107.

As shown in Figure 2-108, we will create a 3 GB ESP partition first.

Figure 2-107. The disk layout provided by Ubuntu

ChAPTEr 2 MULTIBOOT

105

Once ESP is created, we will make one more partition (10 GB) for Ubuntu’s root

filesystem. Figure 2-109 shows the final partition layout of Ubuntu.

Figure 2-108. Creating the ESP partition

Figure 2-109. The partition layout of Ubuntu

ChAPTEr 2 MULTIBOOT

106

After the installation, you can see in Figure 2-110 that ESP is mounted on /boot/efi

and the root filesystem is mounted on sda2.

Also, as per the UEFI specification, Ubuntu has created a directory structure of

/EFI/ubuntu in the /boot/efi (sda1) mount point and installed the GRUB bootloader

in it. See Figure 2-111.

Also notice the .efi extensions to the bootloader files. The following is the Ubuntu

booting sequence on a UEFI system:

 1) Power on the system.

 2) It goes to the UEFI firmware. UEFI launches POST.

Figure 2-110. The mount points

Figure 2-111. The EFI directory of Ubuntu

ChAPTEr 2 MULTIBOOT

107

 3) POST checks the hardware and gives a healthy beep if everything

is good.

 4) POST goes back to UEFI.

 5) UEFI is smart; instead of jumping to the first 512 bytes, UEFI finds

the ESP partition.

 6) It jumps inside ESP. Again, UEFI is smart, and it understands

the bootloader. It lists the bootloader’s name on the screen.

In Ubuntu’s case, it sees the grubx64.efi file; hence, it lists

the Ubuntu name in the boot priority of UEFI. Please refer to

Figure 2- 112, where you can see the ubuntu entry inside UEFI’s

boot priority menu.

Figure 2-112. The boot priority window of UEFI

ChAPTEr 2 MULTIBOOT

108

 7) Remember, the bootloader has not yet been called or started by

UEFI. The BIOS used to show you only the available boot device

names like CD-ROM, HDD, and PXE, but UEFI goes inside the

device to check for the ESP partition and shows the OS name

directly.

 8) The moment the user chooses the Ubuntu option, UEFI will run

grubx64.efi from the ESP partition. The absolute path will be /

boot/efi/EFI/ubuntu/grubx64.efi Next, grubx64.efi will read

grub.cfg, which is present in the same directory, and as shown in

Figure 2-113, it will print the title entries.

With the BIOS, there used to be jumps like this:

 a) Go to the fdisk signature, go to part-1 of the bootloader, and go to part-2 of

the bootloader.

 b) Go to part-3 of the bootloader and then go to the bootloader configuration

file like menu.lst or grub.cfg.

 c) Print the titles.

With UEFI, the (a) jump is skipped. UEFI directly jumps to (b). The BIOS used to

have a bootloader divided into three parts because of space constraints, but UEFI does

not have any space limitations. Hence, the entire bootloader is available in just one

single binary. For example, in the case of Ubuntu, grubx64.efi has one, two, and three

parts all added in a single binary, which is grubx64.efi.

Figure 2-113. The welcome screen of Ubuntu

ChAPTEr 2 MULTIBOOT

109

The grubx64.efi file will eventually load the kernel (vmlinuz) and initramfs from /

boot into the memory, and then Ubuntu’s GRUB bootloaders job is done. Figure 2-114

shows the flowchart of Ubuntu’s boot sequence.

 Windows 10

As you can see in Figure 2-115, partition 1 is ESP, and partition 2 is the root (/) of Ubuntu.

Figure 2-114. Ubuntu’s boot sequence

ChAPTEr 2 MULTIBOOT

110

Now we will create a new partition for Windows. While creating a new partition,

Windows will reserve some space for the Windows recovery tool called MSR (Microsoft

Recovery, partition 3). See Figure 2-116.

Figure 2-115. The partition layout shown by Windows 10

Figure 2-116. The MSR space reservation

ChAPTEr 2 MULTIBOOT

111

As shown in Figure 2-117, on the newly created partition 4, we will install Windows 10.

Windows will by default detect the ESP partition, and by following the UEFI

specification, it will create a directory named Microsoft in it and will install its

bootloader (BCD) in it. If Windows does not find ESP, then it will create one for us.

Since Windows is mainly for desktop users, it will not show us the ESP partition (refer to

Figure 2-118) the way Ubuntu shows it.

Figure 2-117. Installing Windows 10 on partition 4

ChAPTEr 2 MULTIBOOT

112

This is how Windows 10 will boot on a UEFI-based system:

 1) Power on the system: first UEFI, then POST, then UEFI,

and then ESP.

 2) As visible in Figure 2-119, print the OS entries as per the

directories found in ESP (/boot/efi/EFI).

Figure 2-118. ESP is hidden

ChAPTEr 2 MULTIBOOT

113

 3) The moment the user chooses Windows Boot Manager, UEFI will

launch the bootmgfw.efi file from the EFI/Microsoft directory.

On a Linux-based system, the same file’s absolute path will be /

boot/efi/EFI/Microsoft/bootmgfw.efi.

 4) bootmgfw.efi will eventually load the kernel of Windows from

C:\windows\system32\.

 5) The Windows kernel will take care of the rest of the booting, and

while doing that, a famous animation, shown in Figure 2-120, will

be shown to users.

Figure 2-119. The OS entries inside UEFI

ChAPTEr 2 MULTIBOOT

114

 6) As you can see from Figure 2-121, as of now, only one OS is

booting, and that is Windows 10. But don’t worry, because

Windows 10 is bound to follow the UEFI specification, so it has not

touched Ubuntu’s directory and of course has not added Ubuntu’s

entry in its own bootloader file.

Figure 2-120. The famous Windows loading screen

Figure 2-121. The boot sequence of Windows 10

ChAPTEr 2 MULTIBOOT

115

 Fedora 31

The final OS that we will install is Fedora 31. As shown in Figure 2-122, we will again

create a standard partition, which is sda5, and we will mount /dev/sda1 (ESP) on /

boot/efi.

Remember, do not format sda1, which is ESP. Losing ESP means losing the

bootloaders of Windows and Ubuntu. After installation, Fedora’s GRUB will present us

with the OS list (Figure 2-123).

Figure 2-122. The Fedora installation

Figure 2-123. The OS entries shown by Fedora

ChAPTEr 2 MULTIBOOT

116

While installing GRUB, the Fedora installer Anaconda detected other operating

systems from ESP. To give them an equal chance to boot, Fedora added Ubuntu and

Windows entries in grub.cfg. The following is the booting sequence of Fedora:

 1) Power on the system: first UEFI, then POST, then UEFI.

 2) UEFI will jump inside ESP.

 3) It will go inside an ESP directory and choose the OS to boot by

checking the boot priority. As of now, the boot priority is set to

Fedora. Check out Figure 2-124.

 4) Since the boot priority is set to Fedora, UEFI will go inside the /

boot/efi/EFI/fedora directory (refer Figure 2-125) and will

launch the file grubx64.efi.

Figure 2-124. The Fedora entry inside UEFI

ChAPTEr 2 MULTIBOOT

117

 5) grubx64.efi will read the file grub.cfg and print the OS entries

on-screen. Figure 2- 126 shows this.

 6) The moment the user chooses Fedora, the same grubx64.efi

will load vmlinuz and initramfs of Fedora from /boot (sda4)

into memory. The Fedora kernel will take care of the rest of the

booting sequence. Check out Figure 2-127 for the flowchart. The

steps taken by the kernel will be discussed in much more detail in

Chapter 4.

Figure 2-125. The Fedora EFI directory

Figure 2-126. The OS entries shown by Fedora

ChAPTEr 2 MULTIBOOT

118

 UEFI Shell

UEFI is a small operating system. Like normal operating systems, UEFI provides a

required environment to run the applications. Of course, UEFI will not be able to run

every binary, but the binaries that are built in the EFI executable format will easily be

able to run. One of the best apps (application/binary) provided by UEFI is the shell. As

shown in Figure 2-128, you can find it mostly in boot priority settings of UEFI.

Figure 2-127. The boot sequence of Fedora

ChAPTEr 2 MULTIBOOT

119

If your system’s UEFI implementation does not provide the shell, then you can

download the shell app from the TianoCore project site or from its EDK-II GitHub page.

https://www.tianocore.org/

https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/

X64/Shell.efi

Format the USB device with the FAT32 filesystem and place the downloaded Shell.

efi file in it. Boot back with the same USB device, and UEFI will present you a UEFI shell

through its boot priority window. See Figure 2-129.

Figure 2-128. The built-in UEFI shell

ChAPTEr 2 MULTIBOOT

https://www.tianocore.org/
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi
https://github.com/tianocore/edk2/blob/UDK2018/ShellBinPkg/UefiShell/X64/Shell.efi

120

The amazing thing to notice here is that UEFI did not show that the system has a

USB device connected. Rather, UEFI went inside the USB device and saw the FAT32

filesystem. It saw the shell.efi file and realized this is not a normal EFI app; rather, it

will provide the shell to the user. If it had been a BIOS, it would have only shown that

system as USB disk connected, but here UEFI is showing you have a shell inside a USB-

connected disk.

The moment you choose the option Launch EFI Shell from USB drives, it will execute

the shell.efi file and will present you with a shell (Figure 2-130) when an OS is not

present. That is remarkable.

Figure 2-129. The UEFI shell loaded from USB

ChAPTEr 2 MULTIBOOT

121

The blk* entries are the device names, whereas fs* is a filesystem naming

convention. Since the UEFI shell is able to read the FAT32 filesystem (ESP partition), we

can browse the ESP directory, as shown in Figure 2-131.

Figure 2-130. The UEFI shell

ChAPTEr 2 MULTIBOOT

122

The fs0 stands for file system number 0. It is shell’s internal command that we can

use to change the partition. As you can see in Figure 2-132 and in Figure 2-133, fs2 is

our ESP.

Figure 2-131. Browsing the EFI directory

ChAPTEr 2 MULTIBOOT

123

Figure 2-132. The EFI directory

We can simply run the grubx64.efi file through the shell, and GRUB will appear

on- screen. See Figure 2-134.

Figure 2-133. Ubuntu’s bootloader directory

Figure 2-134. The GRUB of Ubuntu

ChAPTEr 2 MULTIBOOT

124

For a UEFI shell, grubx64.efi is a simple app. In a similar way, as shown in

Figure 2- 135 we can launch the Windows bootloader too. See also Figure 2-136.

The shell can be useful in resolving the “can’t boot” scenarios. Consider the scenario

shown in Figure 2-137 where the system is throwing an error on a GRUB prompt.

Figure 2-136. The famous Windows animation

Figure 2-137. The system is unable to boot

Figure 2-135. Launching the Windows bootloader from the UEFI shell

ChAPTEr 2 MULTIBOOT

125

By using a UEFI shell, we are able to check whether GRUB-related files are

present or not.

 Misconceptions About UEFI

The following are some misconceptions about UEFI.

Misconception 1: UEFI Is a New BIOS or UEFI Is a BIOS

People keep saying that UEFI is a new BIOS. In fact, when you go inside the UEFI

firmware, the firmware itself says it is a UEFI BIOS. Check out Figure 2-138.

No, UEFI is not a BIOS nor is it a new BIOS. UEFI is here to replace the BIOS. UEFI is

a completely new firmware, and you cannot have a BIOS and UEFI on the same system.

You have either UEFI or a BIOS.

Figure 2-138. The UEFI is not a BIOS

ChAPTEr 2 MULTIBOOT

126

It is pretty simple to identify whether you have a BIOS or UEFI. If you can use a

mouse inside the firmware, then you have UEFI, and if you see a rich GUI, then you have

UEFI. The correct way to check is by using an efibootmgr-like command.

efibootmgr -v

Fatal: Couldn't open either sysfs or procfs directories for accessing EFI

variables.

Try 'modprobe efivars' as root.

If you get output like this from the efibootmgr command on a Linux system, then

you have a BIOS. If you get something like this, then you have UEFI:

efibootmgr -v

BootCurrent: 0005

Timeout: 2 seconds

BootOrder: 0005,0004,0003,0000,0001,0002,0006,0007,000A

Boot0000* EFI VMware Virtual SCSI Hard Drive (0.0)

 PciRoot(0x0)/Pci(0x15,0x0)/Pci(0x0,0x0)/SCSI(0,0)

Boot0001* EFI VMware Virtual SATA CDROM Drive (1.0)

 PciRoot(0x0)/Pci(0x11,0x0)/Pci(0x4,0x0)/Sata(1,0,0)

This is the correct way of identifying what firmware your system has. Returning to

our UEFI BIOS discussion, the vendors are using the UEFI and BIOS terms together

because most users will not understand the term UEFI. For example, an article saying

“change the parameters in your UEFI” might be confusing for most users, but saying

“change the parameters in your BIOS” will be well understood by everyone. Hence,

vendors are using the term UEFI/BIOS just for the sake of understanding, but remember

you can have only one firmware at a time, not both.

Misconception 2: Microsoft Is Evil

As we have seen, UEFI is a forum, and operating system vendors are part of it, including

Microsoft. To make the booting more secure, Microsoft proposed a Secure Boot feature

in UEFI. Secure Boot will stop the execution of unauthorized or compromised binaries at

the time of the boot. This solves these three problems:

ChAPTEr 2 MULTIBOOT

127

• It guarantees that grubx64.efi, which is about to run, is from an

authentic source.

• It guarantees that BCD does not have any backdoor in it.

• It stops something from executing if it is unauthorized.

This is how Secure Boot works:

 1) Microsoft will generate a key pair (public and private key).

 2) Microsoft will digitally sign its bootloader or its files with the

private key.

 3) The public key of Microsoft will be kept inside the UEFI firmware.

 4) The digital signature that was generated in step 2 will be

regenerated by the public key of Microsoft, which is present inside

the UEFI.

 5) If the digital signature matches, then only UEFI will allow the

*.efi file’s execution.

 6) If the digital signature does not match, then UEFI will consider

that a harmful program, or at least it is not shipped by Microsoft,

UEFI will halt the execution.

Pretty nice implementation by Microsoft, right? Yes, it is. But the problem

will arise when the Secure Boot feature is enabled and you choose Linux to boot.

UEFI will take out Microsoft’s public key and will generate the digital signature

of grubx64.efi. The generated digital signature will not, of course, match with

Microsoft’s bootloader files, so it will be considered an unauthorized program, and

UEFI will stop the execution. In other words, Linux or any non-Windows OS will

never be able to boot. So, what’s the resolution to this? Simple: UEFI should provide

an option to disable the Secure Boot feature, which it does. See Figure 2-139. In fact,

the option to disable the Secure Boot feature has to be present in UEFI firmware.

This is imposed in the UEFI specification.

ChAPTEr 2 MULTIBOOT

128

But Microsoft has clearly called out that the only systems that will be certified are

ones that have Secure Boot enabled. This means if you are hardware vendor and want

your system to be certified for Windows, then it has to have Secure Boot enabled. This

move was considered “evil” by some of industry leaders since non-Windows-based

operating systems will not be able to boot on the same hardware. We will return to the

discussion of whether Microsoft is evil or not later, but first let’s see what options non-

Windows OSs have.

Figure 2-139. Disabling the Secure Boot feature

ChAPTEr 2 MULTIBOOT

129

Linux Vendors Should Make Their Own Key Pair

Yes, every Linux OS vendor should make their own key pair and then sign their

bootloaders with their private key and keep the public key in the UEFI firmware.

Whenever a user chooses Windows to boot, UEFI will use the Windows public key,

and whenever the user chooses Linux to boot, UEFI will use the Linux public key to

regenerate the digital signature of the Linux bootloader’s files. This seems to be an

easy resolution, but this will not work. There are almost 200+ active Linux distributions

on the market, and they generally have new versions released every six months. This

means almost every six months you will have a newer version of Linux distro on the

market. This means roughly that Linux vendors will have almost 400 keys a year, so

obviously you cannot fit this many keys in UEFI. Even if you could, this will hamper

one of the main mottos of UEFI design, which is speedy booting. So, in short, this

cannot be a resolution.

All Linux Vendors Should Make Only One Key Pair

This also cannot be a resolution. There are 200+ active Linux distributions, and their

offices are spread over the world. If all Linux vendors came together and made only

one key pair, then this key pair would have to be shipped throughout the internet to the

developers throughout the world. It would be a security nightmare. So in short, it would

be difficult to maintain; hence, this is not a resolution.

Disable UEFI’s Secure Boot Feature

This seems to be the only workable approach. UEFI does provide a facility to disable

the Secure Boot feature, and Microsoft has no objection on providing such a facility.

For example, say you have a dual-boot system, which has Windows 10 and Fedora 31

installed. If you want to boot Windows, then Secure Boot has to be enabled in UEFI, and

if next time you want to boot Linux, then you have to go inside UEFI and change the

enabled Secure Boot to a disabled state. You can consider this a workaround, but this is

not practical; hence, it cannot be considered as a resolution.

So, how can Linux take advantage of Secure Boot? There is only one resolution, and

that is to use Microsoft’s private key to digitally sign the Linux bootloader files, and guess

what, Microsoft has agreed to this. So, at this stage, Linux is able to secure boot by using

Microsoft’s key pair, and hence Microsoft is certainly not evil. It just wanted to make its

boot sequence secure.

ChAPTEr 2 MULTIBOOT

130

But there is one problem in this arrangement; GRUB development will be dependent

on Microsoft’s key pair. If any new change is committed to GRUB, we need to re-sign it

by using Microsoft’s key. Ubuntu resolved this problem first by introducing a smaller

bootloader called shim. This bootloader is supposed to get signed by Microsoft’s key,

and then this bootloader’s job is to call the actual bootloader, which is GRUB. With this

approach, the Linux world has broken Microsoft’s signing dependency. Since shim will

never change (at least it would be rare), GRUB development will continue the way it has.

So, if Secure Boot is enabled, then the boot sequence of Linux will be as follows:

 1. Power on the system: first UEFI, then POST, and then UEFI.

 2. ESP lists the operating systems and available bootable devices.

 3. If the user chooses Linux, the boot process regenerates the digital

signature of the shim.efi file by using Microsoft’s public key.

 4. If the digital signature matches, then allow execution of shim.efi.

 5. shim.efi will call the original bootloader, which is grubx64.efi.

 6. grubx64.efi will read the grub.cfg file from ESP and will present

the available OS list.

 7. If the user again chooses Linux, then the same grubx64.efi file

will start loading the kernel and initramfs in memory.

Refer to Figure 2-140 to see the list of files involved in this boot sequence.

ChAPTEr 2 MULTIBOOT

131

Misconception 3: Disable the UEFI

One of the biggest misconceptions is that you can disable UEFI and start the BIOS. No,

you cannot disable the firmware of your system; also, you cannot have two firmware on

one system. You have either UEFI or the BIOS. When people say “disable UEFI,” it means

they would like to say, let UEFI boot with the BIOS or in a legacy way. One of the biggest

features of UEFI is that it is backward compatible, meaning it does understand the BIOS

way of booting, which is the 512 bytes + 31KB approach. So, when you change the UEFI

settings from the UEFI way to the legacy way, it only means that UEFI will not follow the

ESP way of booting. Rather, the firmware will follow the BIOS way of booting, but this

does not mean you are disabling the UEFI firmware. When you boot a UEFI system the

BIOS way, then you lose all the features that UEFI provides.

Since you now have a better understanding of firmware and the way bootloaders

work, it is the right time to dive deeper into the GRUB bootloader.

Figure 2-140. The files involved in the described boot sequence

ChAPTEr 2 MULTIBOOT

133
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_3

CHAPTER 3

GRUB Bootloader
The bootloader that Linux systems use these days is GRUB version 2. The first stable

release of GRUB 2 was in 2012, but it started appearing in enterprise-level Linux in 2014

with Centos 7 and RHEL 7. After 2015, it saw wide adoption in almost every popular

Linux distribution. Usually when users file bugs or ask for new features, developers

listen to the feedback, prioritize the work, and eventually launch a new version of code.

However, in the case of GRUB, it worked another way. The developers decided to change

the entire structure of GRUB 2 when users were happy with GRUB Legacy (version 1).

“GRUB Legacy has become unmaintainable, due to messy code

and design failures. We received many feature requests, and

extended GRUB beyond the original scope, without redesigning

the framework. This resulted in the state that it was impossible to

extend GRUB any further without rethinking everything from the

ground.”

—GNU GRUB FAQ (https://www.gnu.org/software/grub/grub-

faq.html)

Here are some of the features that GRUB 2 provides or are in development:

• Full USB support.

• Linux Unified Setup Key (LUKS) support. LUKS is the standard for

Linux hard disk encryption.

• A fancy menu implementation that will have animations, colorful

effects, style sheets, etc.

• A “parted” tool will be added inside the bootloader. When this is

added, users will be able to edit the disk configuration at the time of

boot.

https://doi.org/10.1007/978-1-4842-5890-3_3#ESM
https://www.gnu.org/software/grub/grub-faq.html
https://www.gnu.org/software/grub/grub-faq.html

134

This chapter will cover the following:

 – How GRUB 2 is implemented for the BIOS and UEFI firmware

 – The firmware-specific structural changes in GRUB 2

 – The Bootloader Specification feature of GRUB 2

 – The Secure Boot feature of UEFI and how it is implemented in GRUB 2

 – Several bootloader-related issues and how we can fix them

 GRUB 2 Implementation
As we have seen so far, GRUB takes control of the firmware. This means it has to deal

with UEFI as well as the BIOS. Let’s see how GRUB 2 has been implemented on BIOS-

based systems first.

 GRUB 2 on BIOS-Based Systems
GRUB 2 on a BIOS-based system keeps all of its files in three different locations.

• /boot/grub2/

• /etc/default/grub

• /etc/grub.d/

In the case of Ubuntu, version 2 is not used in GRUB’s name, so it will be /boot/

grub/ instead of /boot/grub2/, grub-install instead of grub2-install, or grub-

mkconfig instead of grub2-mkconfig.

Let’s discuss the locations and their contents.

 /boot/grub2

This is the location where GRUB 2 will be installed. As you can see in Figure 3-1, the

directory holds the bootloader’s core files.

Chapter 3 GrUB Bootloader

135

Device.map

GRUB does not understand disk names like sda or vda since these disk naming

conventions were created by the SCSI drivers of operating systems. It is obvious that

GRUB runs when the OS is not present, so it has its own disk naming convention.

The following are GRUB’s disk naming conventions:

GRUB Version Disk Naming Convention Meaning

2 hd0, msdos1 hard disk number 0 and partition number 1,

which has an MS-doS partition table

2 hd1, msdos3 hard disk number 2 and partition number 3,

which has an MS-doS partition table

2 hd2, gpt1 hard disk number 3 and partition number 1,

which has a Gpt partition table

1 hd0, 0 hard disk number 0 and partition number 1

In GRUB, the hard disk starts at 0, and the partition numbers start at 1, whereas the

OS naming conventions of disks and partitions start at 1. Since the OS and GRUB disk

naming conventions are different, there has to be a mapping for the users, and that is

why the device.map file was created.

cat /boot/grub2/device.map

 # this device map was generated by anaconda

 (hd0) /dev/sda

Figure 3-1. The files present in /boot/grub2

Chapter 3 GrUB Bootloader

136

The device.map file will be used by the grub2-install like commands to

understand on which disk GRUB’s core files are installed. Here’s an example of this file:

strace -o delete_it.txt grub2-install /dev/sda

 Installing for i386-pc platform.

 Installation finished. No error reported.

cat delete_it.txt | grep -i 'device.map'

 openat(AT_FDCWD, "/boot/grub2/device.map", O_RDONLY) = 3

 read(3, "# this device map was generated "..., 4096) = 64

 openat(AT_FDCWD, "/boot/grub2/device.map", O_RDONLY) = 3

 read(3, "# this device map was generated "..., 4096) = 64

The grub2-install command will take input in the form of the OS disk naming

conventions since users are not aware of the GRUB disk naming conventions. During the

execution, grub2-install will convert the SCSI disk naming conventions to the GRUB

disk naming conventions by reading the device.map file.

grub.cfg

This is the main configuration file of GRUB. As you can see in Figure 3-2, it’s a huge script

file that is generated by referring to some other script files, which we will discuss soon. It

is highly advisable not to change the contents of grub.cfg as doing so might make your

Linux version unbootable. This is the file from which GRUB part-3 takes instructions like

the following:

• Location of the kernel and initramfs

• /boot/vmlinuz-<version>

• /boot/initramfs-<version>

• Kernel command-line parameters

• Root filesystem name and its location, etc.

Chapter 3 GrUB Bootloader

137

GRUB has its own set of commands, as you can see here:

GRUB Command Purpose

menuentry this will print the title on-screen.

set root this will provide the disk and partition names where the kernel and initramfs

are stored.

linux the absolute path of the linux kernel file

initrd the absolute path of the initramfs file of linux

So, the booting sequence of GRUB 2 on a BIOS-based system of Fedora is as follows:

 1. Power on a system: first BIOS, then POST, then BIOS, and then the

first sector.

 2. First is the bootstrap (part-1 of GRUB), then part-2 of GRUB, and

then part-3 of GRUB.

 3. Part-3 of GRUB will read the previously shown grub.cfg from /

boot/grub2/ (in the case of Ubuntu, it will be /boot/grub/) and

will print the welcome screen, as shown in Figure 3-3.

Figure 3-2. The grub.cfg file

Chapter 3 GrUB Bootloader

138

 4. The moment the user chooses the Ubuntu menuentry, it will run

the set root, linux, and initrd commands and will start loading

the kernel and initramfs in memory.

 5. In Fedora-like Linux distributions, you will find a different

approach. There will be a grub.cfg file, but the menuentry, set

root, linux, and initrd commands will not be available in grub.

cfg. There has been a new development in a GRUB upstream

project called BLS. We will cover that later in this chapter.

i386-pc

This directory has all the GRUB-supported filesystem modules (drivers) in it (please refer

to Figure 3-4). All the *.mod files are the modules. By using these modules, GRUB can

load the kernel and initramfs files in memory. For example, the /boot of this system has

an ext4 filesystem, so obviously when exploring and loading the vmlinuz and initramfs

files from /boot, GRUB needs the ext4 module, which it gets from the ext4.mod file. It’s

similar to /boot on the XFS or UFS filesystem; hence, the xfs.mod and ufs.mod files are

present in /boot/grub2/i386-pc. At the same time, you will find modules like http.mod

and pxe.mod. This means GRUB 2’s part-3 can load the kernel and initramfs files from

the http and pxe devices. In general, the *.mod files add features, not just devices. The

features may include device support, filesystem support, or protocol support.

Earlier, /boot under LVM was not possible, and the reason was simple. GRUB had

to understand the LVM devices. To understand and assemble the LVM device, GRUB

would need the LVM module as well as LVM binaries such as vgscan, vgchange, pvs,

lvscan, etc. It would increase the size of GRUB as a package; hence, the enterprise Linux

system vendors have always avoided /boot under LVM devices. But since UEFI has been

introduced, GRUB has started supporting /boot on LVM devices.

Figure 3-3. The welcome screen

Chapter 3 GrUB Bootloader

139

Figure 3-4. The .mod* files from /boot/grub2/i386-pc

Chapter 3 GrUB Bootloader

140

Figure 3-4. (continued)

Chapter 3 GrUB Bootloader

141

As you can see in Figure 3-5, along with these *.mod files, you will find a couple of

other files in the /boot/grub2/i386-pc/ location.

The core.img file is part-3 of GRUB 2. So, the Linux booting sequence becomes as

follows:

-> Power on -> BIOS -> POST -> BIOS ->

-> part-1 of GRUB2 -> Part-2 of GRUB2 -> core3.img -> grub.cfg ->

-> if /boot is on an xfs filesystem -> /boot/grub2/i386-pc/xfs.mod ->

-> load vmlinuz & initramfs in main memory.

Once the kernel is in memory, GRUB 2’s job is done. The rest of the booting

sequence will be carried out by the kernel, which we will discuss in Chapter 4.

 /etc/default/grub

Another important file is, of course, /etc/default/grub. Please see Figure 3-6.

Figure 3-4. (continued)

Figure 3-5. The files in addition to *.mod

Chapter 3 GrUB Bootloader

142

This file is used by GRUB to accept the cosmetic and kernel command-line changes

from the user.

$ cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/root_vg-swap rd.lvm.lv=root_vg/root

rd.lvm.lv=root_vg/swap console=ttyS0,115200 console=tty0"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

As you can see, in this file, we can change the default timeout of the GRUB welcome

screen, the font, the submenus, and the default kernel command-line parameters like

the root device name, the swap device name, etc.

 /etc/grub.d/

Now this is where things get really interesting about GRUB 2.

GRUB 2 has a command called grub2-mkconfig. The name of command suggests

that it will make the GRUB configuration file grub.cfg, which will be referred by

part-3 of GRUB to show the welcome screen. The grub2-mkconfig file will first take the

cosmetic and kernel command-line parameter inputs from /etc/default/grub and run

the script files listed in Figure 3-7 from the /etc/grub.d/ directory.

Figure 3-6. The contents of the /etc/default directory

Chapter 3 GrUB Bootloader

143

As you can see, the files have numbers assigned with them. This means they will run

in order.

The 00_header, 01_users, 08_fallback_counting, 10_reset_boot_success, and

12_menu_auto_hide script files do the housekeeping work. For instance, the 00_header

script file is responsible for adding a header to the grub.cfg file. For example, on

Fedora Linux, the following header will be added in grub.cfg after running the grub2-

mkconfig file:

BEGIN /etc/grub.d/00_header

set pager=1

if [-f ${config_directory}/grubenv]; then

 load_env -f ${config_directory}/grubenv

elif [-s $prefix/grubenv]; then

 load_env

fi

if ["${next_entry}"] ; then

 set default="${next_entry}"

 set next_entry=

Figure 3-7. The contents of the /etc/grub.d/ directory

Chapter 3 GrUB Bootloader

144

 save_env next_entry

 set boot_once=true

else

 set default="${saved_entry}"

fi

if [x"${feature_menuentry_id}" = xy]; then

 menuentry_id_option="--id"

else

 menuentry_id_option=""

fi

export menuentry_id_option

if ["${prev_saved_entry}"]; then

 set saved_entry="${prev_saved_entry}"

 save_env saved_entry

 set prev_saved_entry=

 save_env prev_saved_entry

 set boot_once=true

fi

function savedefault {

 if [-z "${boot_once}"]; then

 saved_entry="${chosen}"

 save_env saved_entry

 fi

}

function load_video {

 if [x$feature_all_video_module = xy]; then

 insmod all_video

 else

 insmod efi_gop

 insmod efi_uga

 insmod ieee1275_fb

 insmod vbe

 insmod vga

Chapter 3 GrUB Bootloader

145

 insmod video_bochs

 insmod video_cirrus

 fi

}

terminal_output console

if [x$feature_timeout_style = xy] ; then

 set timeout_style=menu

 set timeout=5

Fallback normal timeout code in case the timeout_style feature is

unavailable.

else

 set timeout=5

fi

END /etc/grub.d/00_header

The 08_fallback_counting script file will add the following contents in grub.cfg:

BEGIN /etc/grub.d/08_fallback_counting

insmod increment

Check if boot_counter exists and boot_success=0 to activate this

behaviour.

if [-n "${boot_counter}" -a "${boot_success}" = "0"]; then

 # if countdown has ended, choose to boot rollback deployment,

 # i.e. default=1 on OSTree-based systems.

 if ["${boot_counter}" = "0" -o "${boot_counter}" = "-1"]; then

 set default=1

 set boot_counter=-1

 # otherwise decrement boot_counter

 else

 decrement boot_counter

 fi

 save_env boot_counter

fi

END /etc/grub.d/08_fallback_counting

Chapter 3 GrUB Bootloader

146

As you can see, the file adds the code that will watch the default timeout value of a

GRUB’s welcome screen, the same way the rest of the files (10_reset_boot_success and

menu_auto_hide) will do the housekeeping work for GRUB. Let’s look at the script files

that make GRUB 2 one of the best bootloaders for multibooting.

10_linux

This file contains almost 500 lines of a bash script file. Whenever a user executes the

grub2-mkconfig command, it will run this script. The 10_linux file will find out what

other Linux distributions you have installed on your system. It will literally go partition

by partition and find all the other Linux versions that have been installed on your system.

If there are any others, then it will make a menuentry of it in grub.cfg. Along with

menuentry, it will add the respective kernel and initramfs entries. Isn’t that amazing?

Consider you installed Ubuntu first and then Fedora; now you don’t have to add

the entries of Ubuntu manually into Fedora’s grub.cfg. You have to just run grub2-

mkconfig. The command will run 10_linux for us, and it will eventually find out that

Ubuntu is installed and will add the appropriate entry for it.

20_linux_xen

After grub2-mkconfig, this script file will find out whether your system has the XEN

kernel installed. If it does, then it will add the appropriate entry for it in grub.cfg. Most

of the Linux distributors ship XEN as a separate kernel package. XEN is mostly used by

hypervisors.

20_ppc_terminfo

If your system has PPC or a PowerPC architecture from IBM, then this script file will find

the respective kernel for it and will add the appropriate entry into grub.cfg.

Chapter 3 GrUB Bootloader

147

30_os_prober

If you have any non-Linux-based OS installed on your HDD, then this script file will find

that OS and will make the appropriate entry for it. In other words, if you have Windows

installed on your system, it will automatically find that out and will make an appropriate

entry for it in grub.cfg. This is the reason that, after installing our third OS (Fedora 31)

on a UEFI system, we got the list of operating systems without doing anything. You can

see the welcome screen presented by Fedora 31 in Figure 3-8.

After the Fedora installation, Anaconda ran grub2-mkconfig in the background,

which eventually ran 30_os_prober, and it found the Windows installation and made the

appropriate entry for it in grub.cfg.

30_uefi-firmware

This script will run successfully only if you have a UEFI system. The job of this script

file is to add the appropriate entries of UEFI firmware in grub.cfg. As you can see in

Figure 3-8, the System setup entry has been added by the 30_uefi-firmware script file.

BEGIN /etc/grub.d/30_uefi-firmware

menuentry 'System setup' $menuentry_id_option 'uefi-firmware' {

 fwsetup

}

END /etc/grub.d/30_uefi-firmware

If the user chooses the “System setup” option, then it will boot back to the UEFI

firmware. You can see the UEFI firmware interface in Figure 3-9.

Figure 3-8. The welcome screen

Chapter 3 GrUB Bootloader

148

40_custom and 41_custom

These are given to the user in case the user wants to add some custom entries to grub.

cfg. For example, if grub2-mkconfig fails to add any of the installed OS as entries, then

users can add a custom entry to these two custom files. You can make your own custom

files, but you need to make sure each has a number assigned to it and has executable

permission.

 GRUB 2 on UEFI-Based System
Again, there are three locations where GRUB 2 stores its files. Figure 3-10 shows the

directories and its files.

Figure 3-9. The UEFI firmware

Chapter 3 GrUB Bootloader

149

The grub.cfg file that was shown earlier in /boot/grub2/ has been shifted inside

ESP (/boot/efi/EFI/fedora/). Also, as you can see, there is no i386-pc directory.

This is because of the rich device and filesystem support provided by EFI. Inside ESP,

you will find a couple of *.efi files, including our shim.efi and grubx64.efi binaries.

The etc/default/grub file, which is responsible for GRUB’s cosmetic changes and for

kernel command-line parameters, is still at the same location. The device.map file is

not available since the grub2-install command does not have significance on a UEFI

system. We will talk about this command later in the chapter.

 Boot Loader Specification (BLS)
The BLS is a new development on GRUB upstream projects that hasn’t been adopted

by many mainstream distributions yet. Specifically, this scheme has been adopted by

Fedora-based operating systems such as RHEL, Fedora, Centos, Oracle Linux, etc., but

not by Debian-based distributions such as Ubuntu, Mint, etc.

On BIOS-based systems, whichever OS has control of the first 512 bytes has control

of all the operating systems’ booting sequences, which is why every OS tries to get hold

of the first 512 bytes. This situation arises because the BIOS always lands in the first 512

bytes of the HDD and calls part-1 of the bootloader (bootstrap). The part-1 to part-2 and

part-2 to part-3 transitions happen later, and then at the end part-3 reads the bootloader-

specific configuration file (bcdedit in the case of Windows, grub.cfg in the case of

Linux). If that configuration file has the entries for other installed OSs, then they will get

a chance to boot. So, long story short: whoever has control of the first 512 bytes controls

the entire booting sequence. But with ESP, every OS gets an equal chance to boot

because UEFI checks the ESP directories and lists all the available OS entries. Developers

started wondering if they could get something like this in a BIOS-based system, and they

came up with BLS.

Figure 3-10. The GRUB 2 locations on a UEFI-based system

Chapter 3 GrUB Bootloader

150

In BLS, a new location (the fifth one) has been introduced to store the bootloader-

related files, and that is /boot/loader/. So, we have now five locations where GRUB will

store its files.

• /boot/grub2/

• /etc/default/grub

• /etc/grub.d

• /boot/efi/EFI/<OS_vendor>/ (in the case of UEFI only)

• /boot/loader/ (BLS files will be stored here)

The idea is that after the new kernel installation, the kernel itself with its post-scripts

(something like the kernel-core package in the case of Fedora) will create an entry for

a new kernel in the /boot/loader/ directory. For example, we have this kernel package

installed:

rpm -q kernel

Kernel-5.3.7-301.fc31.x86_64

This is the same package that will provide the /boot/vmlinuz and /boot/initramfs

files. Once this kernel is installed, it prepares the following file:

cat /boot/loader/entries/36543031048348f9965e3e12e48bd2b1-5.3.7-301.fc31.

x86_64.conf

title Fedora (5.3.7-301.fc31.x86_64) 31 (Thirty One)

version 5.3.7-301.fc31.x86_64

linux /vmlinuz-5.3.7-301.fc31.x86_64

initrd /initramfs-5.3.7-301.fc31.x86_64.img

options $kernelopts

grub_users $grub_users

grub_arg --unrestricted

grub_class kernel

As you can see, the file has four entries.

• The title that will be printed by part-3 of GRUB

• The location and name of the kernel file

Chapter 3 GrUB Bootloader

151

• The location and name of the initramfs file

• The $kernelopts variable that has been declared in the /boot/

grub2/grubenv file

cat /boot/grub2/grubenv

GRUB Environment Block

saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64

menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/mapper/fedora_localhost--live-root ro resume=/dev/

mapper/fedora_localhost--live-swap rd.lvm.lv=fedora_localhost-live/root

rd.lvm.lv=fedora_localhost-live/swap rhgb quiet

boot_indeterminate=0

Basically, kernelopts provides the kernel command-line parameters like the name

of the root filesystem (/dev/mapper/fedora_localhost--live-root) and in which

mode it has to be mounted (ro - read only).

So, the booting sequence becomes like this:

 1) BIOS -> POST -> BIOS

 2) Part-1 of GRUB -> part-2 of GRUB -> part-3 of GRUB

 3) Part-3 of GRUB -> read grub.cfg

 4) Part-3 of GRUB -> reads /boot/loader/entries/*

 5) Prints all the file titles that are present in /boot/loader/entries

For an example, consider a new OS has been installed or a new kernel has been

installed. It has to generate its own entry file and place it in the first primary partition’s

/boot/loader/entries/ directory. This way, every time the first primary OS’s GRUB

part- 3 reads the entry, the other OS will have a chance to boot. The entry file can be

created by using Fedora’s kernel-install command.

#kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.fc31.

x86_64/vmlinuz

Chapter 3 GrUB Bootloader

152

The command will make the appropriate entry for kernel-5.3.7-301.fc31.x86_64

in /boot/loader/entries/, as shown here:

ls /boot/loader/entries/ -l

total 8

-rw-r--r--. 1 root root 329 Dec 9 10:18 2058a9f13f9e489dba29c477a8ae2493-

0- rescue.conf

-rw-r--r--. 1 root root 249 Oct 22 01:04

2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64.conf

The number associated with the *.conf file is unique. The BLS has its own

advantages and disadvantages.

Here are the advantages:

• Every OS will get an equal chance to boot.

• It works irrespective of the BIOS and UEFI firmware.

• In the case of the BIOS, the latest Linux installation removes part- 1

and part-2 of the earlier installed operating system, which has

become obsolete since the latest Linux installation will make its own

entry through the kernel-install command on earlier OSs.

Here are the disadvantages:

• The BLS is not completely implemented yet. If the second OS wants

to make its entry in the first OS, then /boot of the first OS has to be

shared. That is not the case as of now. So, I consider this as a half-

implementation.

• The BLS unnecessarily complicates the booting sequence since

we have two configuration files to refer to: grub.conf and <uniq_

no><kernel_version>.conf from /boot/loader/entries/. The BLS

especially makes life difficult in the case of resolving the “can’t boot”

issues.

• Except Fedora-based distros, no one has adopted the BLS yet,

which seems to be a wise decision. It looks like Fedora is the most

committed to the upstream project; hence, the BLS has been

implemented in Fedora.

Chapter 3 GrUB Bootloader

153

 Common Bootloader Issues
Based on this knowledge, let’s try to resolve some of the most common bootloader-

related “can’t boot” issues.

 “Can’t Boot” Issue 1 (Bootloader)
Issue: After powering up the system, it is dropping you on the GRUB prompt, as shown

in Figure 3-11.

This is what you see on your screen. You must have encountered this error at least

once in your life. Let’s try to resolve it.

 1) You will be able to resolve the issue only if you know what the

issue is all about. Right now, though, we have no idea what the

problem is since we just started the system and this is what we get.

 2) The screen is called a GRUB prompt. When this is called a prompt,

it means you can execute commands at it. Remember, this is a

GRUB command prompt, which means it can accept only GRUB

commands.

 3) By looking at Figure 3-11, out of three parts of GRUB, which part of

GRUB has provided us with the GRUB prompt?

 4) Of course, it must be part-3 because part-1 and part-2 have very

little space, so they cannot fit such functionality. So, we have

successfully reached part-3 of GRUB, and most important, it

does not matter whether this system has UEFI or the BIOS. Since

we have reached part-3, it means we have left the firmware

environment. That’s the crucial input. Now we cannot concentrate

on part-3 only.

Figure 3-11. The GRUB 2 prompt

Chapter 3 GrUB Bootloader

154

 5) What is the purpose of part-3 of GRUB? Simple. It reads grub.cfg,

and from there it gets the kernel and initramfs locations. If it is a

BLS-enabled system, then it gets the kernel and initramfs names

from the /boot/loader/entries/ directories. For this example,

we will assume this system is not BLS-aware. Part-3 then loads

vmlinuz and initramfs in memory.

 6) Since part-3 has provided us with the GRUB prompt but failed to

load the OS, it means either the kernel and initramfs files are not

present or the grub.cfg file is not pointing out the correct location

of these files.

 7) So, in such a situation we can try to boot Fedora manually.

Manually means we will provide the kernel and initramfs files with

absolute paths by using the GRUB prompt. This is how it can be

done.

 8) linux is a GRUB command through which we need to give

the absolute path of the kernel (vmlinuz) file. As we know, the

vmlinuz file is at /boot, and GRUB follows its own disk naming

convention. So, the path of /boot will be hard disk number 0 and

partition number 1. Of course, you might not be aware on which

HDD or partition /boot has been stored. In that case, you can get

the help of the autocomplete feature of GRUB. You can press Tab

twice, and GRUB will prompt you for the available options. Let’s

find out the HDD and partition number of /boot. Please refer to

Figure 3-12.

Figure 3-12. The available partitions on hard disk number 0

Chapter 3 GrUB Bootloader

155

The first tab after hd0 showed us that there are two partitions

available under the hard disk number 0. The second partition is

not readable to GRUB, so of course the second partition cannot

be /boot. Hence, we will choose the msdos1 partition. Then, as

shown in Figure 3-13, we will start looking for the vmlinuz file in it

with the help of autocomplete.

As you can see inside HDD number 0 and partition number 1, we

found two vmlinuz files; one is of a rescue kernel, and another one

is the normal kernel file of Fedora 31. As shown in Figure 3-14, we

will choose the normal kernel and will provide the root filesystem

name to it. If you are unaware of the root filesystem name of your

system, then you can boot the system with the rescue or live image

and check the /etc/fstab entries. We will talk about the rescue

mode in Chapter 10.

Figure 3-13. The vmlinuz file

Chapter 3 GrUB Bootloader

156

The absolute path of the vmlinuz file is (hd0,msdos1)/

vmlinuz-5.3.7-301.fc31.x86_64. Next to it is the ro kernel

command- line parameter, which stands for “read-only.” After ro,

we have a root kernel command-line parameter to which we have

passed our system’s root filesystem name, which is - /dev/mapper/

fedora_localhost--live-root. It’s an lvm device.

grub> linux (hd0,msdos1)/vmlinuz-5.3.7-301.fc31.x86_64 ro

 root=/dev/mapper/fedora_localhost--live-root

After successfully executing the linux command, we need to pass

on the initramfs name. We have two commands available that we

can use: initrd and initrd16. Please refer to Figure 3-15.

grub> initrd (hd0,msdos1)/initramfs-5.3.7-301.fc31.x86_64.img

Figure 3-14. The root filesystem name and the ro flag

Chapter 3 GrUB Bootloader

157

 9) The moment you execute the boot command, as shown

in Figure 3- 16 and in Figure 3-17, GRUB’s part-3 will take

these inputs and load /boot/vmlinuz-5.3.7-301.fc31.

x86_64 from sda1 (hd0,msdos1). Then it will load /boot/

initramfs-5.3.7-301.fc31.x86_64.img and give control to the

kernel. The kernel will eventually mount the root (/) filesystem

from /dev/mapper/fedora_locahost--live-root on the

/ directory and will show the login screen.

Figure 3-15. The linux, initrd, and boot commands in action

Chapter 3 GrUB Bootloader

158

Figure 3-16. The console messages while booting

Chapter 3 GrUB Bootloader

159

 10) In the case of Ubuntu 18, the commands are slightly different. On

Fedora 31, we gave the /boot partition’s address directly to the

linux command, whereas in Ubuntu we have a separate GRUB

command called set root for it.

As you can see in Figure 3-18, the root filesystem name of the Ubuntu 18 system is /

dev/sda1. It’s a standard partition unlike the lvm device of Fedora 31.

As soon as we provide the proper inputs to GRUB 2, it leads us to the login screen.

You can see the login screen of Ubuntu in Figure 3-19.

Figure 3-17. The login screen

Figure 3-18. Ubuntu has a slightly different approach

Chapter 3 GrUB Bootloader

160

 11) Coming back to our Fedora system, since it has been booted now,

we can regenerate the grub.cfg file by using the grub2-mkconfig

command, as shown in Figure 3-20.

We can execute grub-mkconfig in case of Ubuntu. Please refer to Figure 3-21.

Figure 3-19. The login screen presented by Ubuntu

Figure 3-20. grub2-mkconfig command

Chapter 3 GrUB Bootloader

161

But if it is a UEFI system and you want to regenerate grub.cfg, then, as shown

in Figure 3-22, the location of grub.cfg would be ESP.

 12) Once grub.cfg is generated, we need to regenerate the BLS

entries for Fedora.

#kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.

fc31.x86_64/vmlinuz

The command will make the appropriate entry for kernel-5.3.7-301.fc31.

x86_64 in /boot/loader/entries/.

ls /boot/loader/entries/ -l

total 8

-rw-r--r--. 1 root root 329 Dec 9 10:18

2058a9f13f9e489dba29c477a8ae2493- 0- rescue.conf

-rw-r--r--. 1 root root 249 Oct 22 01:04

2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64.conf

Figure 3-21. The grub-mkconfig command of Ubuntu

Figure 3-22. grub2-mkconfig on a UEFI-based system

Chapter 3 GrUB Bootloader

162

 13) If Fedora is on a UEFI system, then the BLS step remains the same.

 14) After rebooting, Fedora is able to boot smoothly, and the “can’t

boot” issue has been fixed.

 “Can’t Boot” Issue 2 (Bootloader)
Issue: After powering on the system, it passes the firmware stage, but after that, as you

can see in Figure 3-23, there is nothing on the screen.

 Resolution for a BIOS-Based System

Here are the steps to solve this:

 1. Since the BIOS firmware stage has been passed, it means

something is wrong at the bootloader level.

 2. Since we are not getting anything on the screen, it means part-1 or

part-2 of GRUB is missing or at least they are corrupted (512 bytes

+ 31 KB). If it had reached part-3, then we would have gotten at

least the GRUB prompt. So, the issue has been isolated, and the

plan of action is to replace part-1 and part-2 of GRUB.

 3. This can be done with the grub2-install command. First either

boot with live medium of the same Linux distro or, if available,

boot in rescue mode. The live image and rescue mode will be

explained in Chapter 10.

Figure 3-23. The blank screen

Chapter 3 GrUB Bootloader

163

Figure 3-24. The grub2-install command

Figure 3-25. Installing grub2 in a temporary directory

As you can see in Figure 3-24, grub2-install takes the device name as an input.

Please note that the device name should not be a partition number; rather, it should

be a disk name. This is because part-1 and part-2 of GRUB has to be installed on the

first 512 bytes + 31 KB of a disk, not inside a partition. You need to replace sda with

your disk name.

Along with part-1 and part-2 of the bootloader files, grub2-install repairs or re-

installs the i386-pc directory, which has all the modules of the GRUB 2 bootloader.

We can cross-verify this by installing the modules in a custom directory. Please see

Figure 3- 25.

You can see that all the GRUB 2 files have been restored along with GRUB’s module

files.

ls temp/grub2/

 fonts grubenv i386-pc

ls -l temp/grub2/i386-pc/ | wc -l

 279

After rebooting, Fedora should boot normally, and the “can’t boot” issue should

have been fixed. If GRUB drops you on a command prompt, then you need to follow the

steps mentioned for issue 1 since grub2-install repairs the binaries, but it does not

regenerate the grub.cfg file.

But what if you face a similar problem on a UEFI-based system?

Chapter 3 GrUB Bootloader

164

 Resolution for a UEFI-Based System

Here are the steps:

 1. As you might have guessed, we have to just change the passed

device name of the grub2-install command, as shown in

Figure 3-26. The device name should be ESP.

 “Can’t Boot” Issue 3 (Bootloader + Kernel)
Issue: The complete /boot is missing.

 Resolution for BIOS-Based Systems

Here are the steps:

 1. Recovering the lost /boot is not possible (or at least it’s outside the

scope of this book).

 2. Boot in rescue mode or boot with a live image and mount our “can’t

boot” system’s root filesystem. The rescue mode and how it works are

discussed in Chapter 10.

 3. First make a new /boot directory and set the proper permissions on it.

• #mkdir /boot

• #chmod 555 /boot

• #chown root:root /boot

• If /boot is supposed to be a separate partition, then mount it with

the correct partition.

Figure 3-26. The grub-install command on a UEFI-based system

Chapter 3 GrUB Bootloader

165

 4. As we know, /boot is where we store the files of the bootloader,

kernel, and initramfs. Since /boot is missing, we need to create

every file for it.

• #dnf reinstall kernel

• This is for a Fedora-based system. If it is a Debian-based

system, then you can use the apt-get command and can

reinstall the kernel.

• This will install the vmlinuz file and will also regenerate the

initramfs file for it.

 5. Now we need to install GRUB.

• #grub2-install /dev/<disk_name>

• In our case, the command is #grub2-install /dev/sda.

• This will repair GRUB’s part-1 , part-2, and i386-pc directory

from /boot/grub2.

• To repair part-3 of GRUB and to have some GRUB-provided tools,

we need to install two packages on a Fedora-based system.

• #dnf reinstall grub2 grub2-tools

• As the name suggests, the grub2 package will provide part-3

of GRUB, and grub2-tools will provide some of the tools like

grub2-install.

• Now it’s time to regenerate the GRUB configuration file.

• #grub2-mkconfig -o /boot/grub2/grub.cfg

• Finally, fix the BLS.

• #kernel-install add 5.3.7-301.fc31.x86_64 /lib/

modules/5.3.7-301.fc31.x86_64/vmlinuz

Chapter 3 GrUB Bootloader

166

 Resolution for UEFI-Based Systems

Here are the steps:

• /boot and /boot/efi/ are separate mount points.

• # mkdir /boot

• # chmod 555 /boot

• # chown root:root /boot

• # yum reinstall kernel

• Now we need to create an ESP partition, and as we know, it has to be

a VFAT partition. Then assign an ESP partition type to it.

• #mkdir /boot/efi

• #mount /dev/sda2 /boot/efi

• In our case, the partition that I have created for ESP is sda2.

• #grub2-install --efi-directory=/boot/efi

• This will install the grubx64.efi file in ESP.

• The rest of the required files are provided by the grub2-efi, shim,

and grub2-tools packages.

• #yum reinstall grub2-efi shim grub2-tools

• Regenerate the configuration files.

• #grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

• #kernel-install add 5.3.7-301.fc31.x86_64 /lib/

modules/5.3.7-301.fc31.x86_64/vmlinuz

After rebooting the system, it is able to boot without any issue.

Now it’s time to shed some more light on UEFI’s Secure Boot environment.

Chapter 3 GrUB Bootloader

167

 Secure Boot Feature of UEFI
Secure Boot is an amazing feature of UEFI. It makes sure no untrusted binary will run

while booting. So far, we have seen the following:

• The digital signature is a unique string.

• The digital signature of any file will be generated from

a private key.

• The same digital signature can be regenerated from

the public key.

• If the file is not altered, then the digital signature should match.

• Microsoft made its key pair (public and private keys).

• Microsoft digitally signed its bootloader-related files (BCD) with its

private key.

• Microsoft’s public key is present inside UEFI.

• While booting, UEFI will regenerate the digital signature of the

bootloader by using the available public key. If the digital signatures

do not match, then UEFI will discard the execution of .efi files.

• To use this feature in the Linux environment, a new bootloader

has been created called shim, and it has been signed by Microsoft’s

private key so that UEFI will allow the shim.efi execution.

• Shim.efi’s job is to call the actual GRUB file, which is grubx64.efi.

But Secure Boot does not stop here. Because there is a possibility that grubx64.efi

itself has been compromised, or in fact any code that runs after the bootloader could

have been compromised, securing the booting environment up to the bootloader

level only is not sufficient; hence, these days the Secure Boot feature secures the entire

booting procedure of Linux. This is how it works:

 1. Fedora will prepare its own key pair and will sign the GRUB files

with Fedora’s private key.

 2. The public key of Fedora will be kept inside the shim.efi file.

Chapter 3 GrUB Bootloader

168

 3. As the booting sequence continues, GRUB’s digital signature will

be regenerated by using the public key that is inside shim.efi.

 4. If the signature matches then grubx64.efi and other bootloader

files will be allowed to run by UEFI.

 5. GRUB’s ultimate job is to load the kernel (/boot/vmlinuz).

 6. This vmlinuz file can also be compromised, so to avoid that, the

kernel will be signed by the same private key that was used to sign

GRUB.

 7. Vmlinuz's digital signature will be regenerated by using the public

key that is inside shim.efi.

 8. Once the digital signature matches, the kernel takes control of the

booting sequence.

 9. But the kernel uses a lot of modules/drivers that are eventually

inserted inside the kernel. So, these modules that are again

binaries could be compromised, and since they are going to

become part of kernel/vmlinuz, then eventually the kernel itself

will be compromised.

 10. So, the kernel as a package will prepare its own key pair. All the

modules will be signed by this kernel’s private key, and the public

key will be shipped with the kernel package itself. The private key

of a kernel package will be destroyed later.

 11. At the time of the booting, while inserting the modules in the

kernel, the digital signature of the module will be regenerated by

using the public key, which is with the kernel.

 12. By following the steps mentioned, the Secure Boot feature makes

sure that only binaries from trusted parties are executed.

The block diagrams shown Figure 3-27 will simplify the booting procedure even

more.

Chapter 3 GrUB Bootloader

169

 100 OS Multiboot Project
One of my students asked me a question: how many operating systems can we install

on one system and multiboot them with one bootloader? I didn’t know the answer,

but I decided to try to find out. I decided that I would use a GRUB 2 bootloader to boot

every operating system that I have installed. I have been installing and multibooting the

operating systems for almost two years now. I have installed 106 operating systems so

far. This is our third system, which I named Jarvis. Here are the hardware and software

details of Jarvis:

• UEFI firmware.

• Two disks attached (sda and sdb).

• The booting method is UEFI.

• sda is formatted with an MS-DOS partition table.

• sdb is formatted with a GPT partition table.

• All the operating systems are identified and booted by the GRUB 2

bootloader.

The operating systems that are installed on the sda disk were installed by setting the

booting method to UEFI, and it has all the new operating systems. The operating systems

that are on sdb were installed by setting the booting method of the firmware to legacy.

sdb hosts most of the old-generation operating systems or at least those operating

systems that do not have UEFI support. Here are the details:

Figure 3-27. The Secure Boot procedure

Chapter 3 GrUB Bootloader

170

Partition Operating System Filesystem Size

sda-1 eSp (eFI System partition) Fat32 20 GB

sda-2 MSr (Microsoft recovery) MSr 16 MB

sda-3 Windows 10 NtFS 9.7 GB

sda-4 Swap Swap 2.01 GB

sda-5 openSUSe linux 13.2 eXt4 10 GB

sda-6 Mint linux 17.2 eXt4 10 GB

sda-7 oracle openSolaris 11.2 ZFS 10 GB

sda-8 Sabayon linux 15.06 eXt4 10 GB

sda-9 Some random free space N/a 8.4 MB

sda-10 Kali linux 2.0 eXt4 10 GB

sda-11 arch linux 2015-8.1 eXt4 10 GB

sda-12 debian linux 8.1 eXt4 10 GB

sda-13 Semplice linux 7.0.1 eXt4 10 GB

sda-14 Slackware 14.1 linux eXt4 10 GB

sda-15 openmandriva 2014.2 eXt4 10 GB

sda-16 Mate Ubuntu linux15.04 eXt4 10 GB

sda-17 Steam oS beta eXt4 10 GB

sda-18 Manjaro linux 0.8.13.1 eXt4 10 GB

sda-19 Netrunner linux 16 eXt4 10 GB

sda-20 Windows 8 NtFS 10 GB

sda-21 Korora linux 22 eXt4 10 GB

sda-22 KaoS linux 2015.08 eXt4 10 GB

sda-23 lubuntu linux 15.04 eXt4 10 GB

sda-24 Sonar linux 2015.2 eXt4 10 GB

sda-25 antergos linux 2015.08.18 eXt4 10 GB

sda-26 Mythbuntu linux 14.04.2 eXt4 10 GB

(continued)

Chapter 3 GrUB Bootloader

171

Partition Operating System Filesystem Size

sda-27 rosa linux fresh r5 eXt4 10 GB

sda-28 Sparkylinux 4.0 eXt4 10 GB

sda-29 Vinux linux 4.0 eXt4 10 GB

sda-30 Xubuntu linux 14.04.3 eXt4 10 GB

sda-31 Ubuntu Studio 14.04.3 eXt4 10 GB

sda-32 Suse enterprise 12 eXt4 10 GB

sda-33 Ubuntu linux 14.04 eXt4 10 GB

sda-34 Ubuntu linux 15.04 eXt4 10 GB

sda-35 Scientific linux 7 eXt4 10 GB

sda-36 CentoS linux 7 eXt4 10 GB

sda-37 Solus linux daily eXt4 10 GB

sda-38 Ubuntu Server 14 linux eXt4 10 GB

sda-39 Fedora 21 linux eXt4 10 GB

sda-40 Fedora 22 linux eXt4 10 GB

sda-41 Blackarch 2015.07.31 eXt4 10 GB

sda-42 Gentoo linux multilib 20140826 eXt4 10 GB

sda-43 Calculate linux 14.16.2 eXt4 10 GB

sda-44 Fedora 20 linux eXt4 10 GB

sda-45 Fedora 23 linux eXt4 10 GB

sda-46 Manjaro linux 15-0.9 eXt4 10 GB

sda-47 Ubuntu linux 16.04 eXt4 10 GB

sda-48 chapeau linux 23 eXt4 10 GB

sda-49 arquetype linux 22 eXt4 10 GB

sda-50 Fx64 linux 22 eXt4 10 GB

sda-51 Viperr linux 7 eXt4 10 GB

sda-52 hanthana linux 21 eXt4 10 GB

(continued)

Chapter 3 GrUB Bootloader

172

Partition Operating System Filesystem Size

sda-53 Qubes r3.1 linux eXt4 10 GB

sda-54 Fedora 24 eXt4 10 GB

sda-55 Korora-23 eXt4 10 GB

sda-56 sabayon-16 eXt4 10 GB

sda-57 Korora-24 eXt4 10 GB

sda-58 Sonar 16 linux eXt4 10 GB

sda-59 Viper 9 linux eXt4 10 GB

sda-60 arquetype linux 23 eXt4 10 GB

sda-61 Manjaro linux 16 eXt4 10 GB

sda-62 Manjaro linux Gaming 16 eXt4 10 GB

sda-63 Calculate linux 15 eXt4 10 GB

So, the total number of UEFI OS installations on the sda disk is 59 since four

partitions are reserved for ESP- and MSR-like stuff. The following are the sdb disk

installations details:

Partition Operating System Filesystem Size

sdb-1 pCBSd 10.1.2 ZFS 10 GB

sdb-2 Magia 2 linux eXt4 10 GB

sdb-3 Magia 3 linux eXt4 10 GB

sdb-4 extended/secondary N/a 970 GB approximately

sdb-5 Q4oS linux 1.2.8 eXt4 10 GB

sdb-6 Qubes r2 linux eXt4 10 GB

sdb-7 pardus linux 2013 eXt4 10 GB

sdb-8 Gobolinux 015 eXt4 10 GB

sdb-9 Crux linux 3.1 eXt4 10 GB

sdb-10 point linux 3.0 eXt4 10 GB

(continued)

Chapter 3 GrUB Bootloader

173

Partition Operating System Filesystem Size

sdb-11 extix linux 15.3 eXt4 10 GB

sdb-12 Bodhi linux 3.0 eXt4 10 GB

sdb-13 debian linux 7.0 eXt4 10 GB

sdb-14 debian linux 6.0 eXt4 10 GB

sdb-15 BoSS linux 6.1 eXt4 10 GB

sdb-16 CrunchBang rc1 linux eXt4 10 GB

sdb-17 handy linux 2.1 eXt4 10 GB

sdb-18 lite linux 2.4 eXt4 10 GB

sdb-19 WattoS linux r9 eXt4 10 GB

sdb-20 pinGuy oS 14.04.3 linux eXt4 10 GB

sdb-21 SuperX 3.0 linux eXt4 10 GB

sdb-22 Julinux 10X rev 3.1 linux eXt4 10 GB

sdb-23 Black lab linux 2015.7 eXt4 10 GB

sdb-24 hamara linux 1.0.3 eXt4 10 GB

sdb-25 peppermint lInux 20150518 eXt4 10 GB

sdb-26 Ubuntu 13.10 linux eXt4 10 GB

sdb-27 linuxMint 13 mate eXt4 10 GB

sdb-28 linux Mint 14.1 cinnamon eXt4 10 GB

sdb-29 linuxMint 15 xfce eXt4 10 GB

sdb-30 linuxMint 16 Kde eXt4 10 GB

sdb-31 peppermint 4 20131113 eXt4 10 GB

sdb-32 peppermint 5 20140623 eXt4 10 GB

sdb-33 Fedora 12 eXt4 10 GB

sdb-34 trisquel 7 linux eXt4 10 GB

sdb-35 oracle linux 7.1 eXt4 10 GB

sdb-36 Fedora 14 linux eXt4 10 GB

(continued)

Chapter 3 GrUB Bootloader

174

Partition Operating System Filesystem Size

sdb-37 Fedora 15 linux eXt4 10 GB

sdb-38 Fedora 17 linux eXt4 10 GB

sdb-39 Fedora 19 linux eXt4 10 GB

sdb-40 rhel 6.5 linux eXt4 10 GB

sdb-41 SolydX 201506 eXt4 10 GB

sdb-42 oracle linux 6.7 eXt4 10 GB

sdb-43 openSuse 11.3 eXt4 10 GB

sdb-44 lMde (linux Mint 2 debian edition) eXt4 10 GB

sdb-45 Centrych linux 12.04 eXt4 10 GB

sdb-46 elementary oS 2013 eXt4 10 GB

sdb-47 elementary oS 2015 eXt4 10 GB

sdb-48 Sabayon 13.08 linux eXt4 10 GB

sdb-49 deepin 2013 linux eXt4 10 GB

sdb-50 deepin 15.1 linux eXt4 10 GB

The total number of operating systems booting the BIOS way on the sdb disks is

50 – 2 = 48.

Two partitions are reserved for swap and the extended partition.

So, the total number of installations on the Jarvis system is 106, and as you can see in

Figure 3-28, all of these OSs are multibooted by using the GRUB 2 bootloader. With this

project I have realized that there is no end to this. The GRUB 2 and UEFI combination

can handle n number of operating systems.

Chapter 3 GrUB Bootloader

175

Figure 3-29. The time taken by the grub-mkconfig command

How did I manage to install this many operating systems? Simple. I fired the grub-

mkconfig command after every new OS installation, which found all the operating

systems from all the attached disks.

time grub-mkconfig -o multiboot_grub.cfg

The previous command is used after installing Ubuntu 18, which was the 106th OS in

the list.

As you can see in Figure 3-29, when I installed the 106th OS, grub-mkconfig took

almost one hour to complete, and the resulting GRUB configuration file had 5,500 lines

in it.

Figure 3-28. The 106 operating systems listed by GRUB 2

Chapter 3 GrUB Bootloader

176

 A Dummy Small Bootloader
We know that the BIOS jumps to the first 512 bytes and calls the GRUB 2 bootloader. To

understand how exactly BIOS calls the bootloader, we will make our own bootloader.

Our bootloader will be very tiny compared to GRUB 2. Our bootloader will just print ! on

the screen. But with this example, you will be able to understand how the BIOS jumps to

the bootloaders as with GRUB 2, as shown here:

#cat boot.nasm

 ;

 ; Note: this example is written in Intel Assembly syntax

 ;

 [BITS 16]

 [ORG 0x7c00]

 boot:

 mov al, '!' <<-- Character for interrupt

 mov ah, 0x0e <<-- Display character

 mov bh, 0x00 <<-- Set video mode

 mov bl, 0x07 <<-- Clear/Scroll screen down

 int 0x10 <<--- BIOS interrupt 10 which is taking inputs

from al, ah, bh, bl

 jmp $

 times 510-($-$$) db 0 <<--- Out of 512 bytes first 510 bytes

are filled with 0's.

 In the real world it will be filled with

grub's boot strap.

 db 0x55 <<-- &

 db 0xaa <<-- | tells BIOS that this is the device which

is active/fdisk sign/boot flag.

 #nasm -f bin boot.nasm && qemu-system-x86_64 boot

This will make a boot disk (disk image) from the boot.nasm file, and it will be an

input to qemu, which will execute it. As you can see in Figure 3-30, you will see ! printed

on the screen.

Chapter 3 GrUB Bootloader

177

Basically, the qemu machine is considering boot as a disk, and whenever the qemu

machine finishes its BIOS stage, the BIOS drops at the first 512 bytes of the boot disk.

Here you will find that the first 510 bytes are written as 0 and the in last 2 bytes we have !

(the bootloader), and it will be printed on our screen.

So far, we have gotten a good overview of GRUB 2; now going further in the next

section, we will discuss what really happens inside GRUB 2.

 GRUB 2 at a Low level
While writing this book, the latest available source code of GRUB was GRUB 2.04, which

I have been using here. The bootstrap binary (if the system is BIOS based) from the first

440 bytes of 512 bytes is called boot.img, which is available at /usr/lib/grub/i386-pc/

boot.img.

ls -lh /usr/lib/grub/i386-pc/boot.img

-rw-r--r--. 1 root root 512 Mar 28 2019 /usr/lib/grub/i386-pc/boot.img

file /usr/lib/grub/i386-pc/boot.img

/usr/lib/grub/i386-pc/boot.img: DOS/MBR boot sector

The boot.img file is created from the source code written in the file /GRUB 2.04/

grub-core/boot/i386/pc/boot.S.

Figure 3-30. Our small tiny bootloader

Chapter 3 GrUB Bootloader

178

The following is a snippet of it:

<snip>

1 /* -*-Asm-*- */

 2 /*

 3 * GRUB -- GRand Unified Bootloader

 4 * Copyright (C) 1999,2000,2001,2002,2005,2006,2007,2008,2009 Free

Software Foundation, Inc.

 5 *

 6 * GRUB is free software: you can redistribute it and/or modify

 7 * it under the terms of the GNU General Public License as published by

 8 * the Free Software Foundation, either version 3 of the License, or

 9 * (at your option) any later version.

 10 *

 11 * GRUB is distributed in the hope that it will be useful,

 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 14 * GNU General Public License for more details.

 15 *

 16 * You should have received a copy of the GNU General Public License

 17 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.

 18 */

 19

 20 #include <grub/symbol.h>

 21 #include <grub/machine/boot.h>

 22

 23 /*

 24 * defines for the code go here

 25 */

 26

 27 /* Print message string */

 28 #define MSG(x) movw $x, %si; call LOCAL(message)

 29 #define ERR(x) movw $x, %si; jmp LOCAL(error_message)

 30

Chapter 3 GrUB Bootloader

179

 31 .macro floppy

 32 part_start:

 33

 34 LOCAL(probe_values):

 35 .byte 36, 18, 15, 9, 0

 36

 37 LOCAL(floppy_probe):

 38 pushw %dx

 39 /*

 40 * Perform floppy probe.

 41 */

 42 #ifdef __APPLE__

 43 LOCAL(probe_values_minus_one) = LOCAL(probe_values) - 1

 44 movw MACRO_DOLLAR(LOCAL(probe_values_minus_one)), %si

 45 #else

 46 movw MACRO_DOLLAR(LOCAL(probe_values)) - 1, %si

 47 #endif

 48

 49 LOCAL(probe_loop):

 50 /* reset floppy controller INT 13h AH=0 */

 51 xorw %ax, %ax

 52 int MACRO_DOLLAR(0x13)

 </snip>

You can consider boot.img as a first stage of the bootloader or part-1 of GRUB. This

boot.img file transfers control to diskboot.img, which is part-2 of GRUB.

ls -lh /usr/lib/grub/i386-pc/diskboot.img

-rw-r--r--. 1 root root 512 Mar 28 2019 /usr/lib/grub/i386-pc/diskboot.img

file /usr/lib/grub/i386-pc/diskboot.img

/usr/lib/grub/i386-pc/diskboot.img: data

Chapter 3 GrUB Bootloader

180

The diskboot.img file is made from the source code of grub-2.04/grub-core/boot/

i386/pc/diskboot.S. The following is a snippet of it:

<snip>

1 /*

 2 * GRUB -- GRand Unified Bootloader

 3 * Copyright (C) 1999,2000,2001,2002,2006,2007,2009,2010 Free Software

Foundation, Inc.

 4 *

 5 * GRUB is free software: you can redistribute it and/or modify

 6 * it under the terms of the GNU General Public License as published by

 7 * the Free Software Foundation, either version 3 of the License, or

 8 * (at your option) any later version.

 9 *

 10 * GRUB is distributed in the hope that it will be useful,

 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 13 * GNU General Public License for more details.

 14 *

 15 * You should have received a copy of the GNU General Public License

 16 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.

 17 */

 18

 19 #include <grub/symbol.h>

 20 #include <grub/machine/boot.h>

 21

 22 /*

 23 * defines for the code go here

 24 */

 25

 26 #define MSG(x) movw $x, %si; call LOCAL(message)

 27

 28 .file "diskboot.S"

 29

 30 .text

 31

Chapter 3 GrUB Bootloader

181

 32 /* Tell GAS to generate 16-bit instructions so that this code

works

 33 in real mode. */

 34 .code16

 35

 36 .globl start, _start

 37 start:

 38 _start:

 39 /*

 40 * _start is loaded at 0x8000 and is jumped to with

 41 * CS:IP 0:0x8000 in kernel.

 42 */

 </snip>

The diskboot.img file then loads the actual core part of GRUB 2, which is part-3 of

GRUB. You can also consider that part-3 of GRUB is a kernel of the bootloader. At this

stage, GRUB 2 will be capable of reading the filesystem.

ls /boot/grub2/i386-pc/core.img -lh

-rw-r--r--. 1 root root 30K Dec 9 10:18 /boot/grub2/i386-pc/core.img

From /GRUB 2.00/grub-core/kern/main.c, GRUB 2 sets the root device name,

reads grub.cfg, and at the end shows the operating system list to choose.

I hope you understand how GRUB 2 works now. The following is a quick summary of

what we have discussed so far:

 a. The bootloader is the first code that runs after the firmware.

 b. The bootloader/GRUB copies the kernel in memory.

 c. The bootloader loads the initramfs image in memory and gives

the kernel a pointer to it.

 d. The bootloader hand overs control to the kernel.

Chapter 3 GrUB Bootloader

183
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_4

CHAPTER 4

Kernel
This chapter will cover the kernel.

 Loading the Kernel in Memory
This is an interesting chapter. So far, we have seen that up to this stage GRUB 2 had full

control of the booting procedure. Now it has to hand over control to the kernel. In this

chapter, we will see how and where the bootloader loads the kernel. In other words, how

is the kernel extracted? Then we will see the booting-related tasks achieved by the Linux

kernel and at the end how the kernel starts systemd.

Note The source code of the kernel that is used in this chapter is version
kernel-5.4.4. When I was writing this book, that was the latest stable code
available; see https://www.kernel.org/. An excellent resource on this
subject is the Inside Linux book, written by 0xAX. I have learned a lot from it, and
I’m sure you will too. You can find the book at https://0xax.gitbooks.io/
linux-insides/.

To hand over the control to the kernel, the bootloader has to achieve two major things.

• Load the kernel into memory

• Set some of the fields of the kernel as per the boot protocol

https://doi.org/10.1007/978-1-4842-5890-3_4#ESM
https://www.kernel.org/
https://0xax.gitbooks.io/linux-insides/
https://0xax.gitbooks.io/linux-insides/

184

The complete boot protocol is available at https://www.kernel.org/doc/

Documentation/x86/boot.txt. The original boot protocol was defined by none other

than Linus Torvalds.

 ~ ~

 | Protected-mode kernel |

 100000 +-------------------------------+

 | I/O memory hole |

 0A0000 +-------------------------------+

 | Reserved for BIOS | Leave as much as possible unused

 ~ ~

 | Command line | (Can also be below the X+10000

mark)

X+10000 +-------------------------------+

 | Stack/heap | For use by the kernel real-mode

code.

X+08000 +-------------------------------+

 | Kernel setup | The kernel real-mode code.

 | Kernel boot sector | The kernel legacy boot sector.

 X +-------------------------------+

 | Boot loader | <- Boot sector entry point

0000:7C00. You will see the same

 | | address location at our boot.asm

file which we created above.

 001000 +-------------------------------+

 | Reserved for MBR/BIOS |

 000800 +-------------------------------+

 | Typically used by MBR |

 000600 +-------------------------------+

 | BIOS use only |

 000000 +-------------------------------+

ChApTer 4 Kernel

https://www.kernel.org/doc/Documentation/x86/boot.txt
https://www.kernel.org/doc/Documentation/x86/boot.txt

185

As per the boot protocol, it’s the duty of a bootloader to pass on or set some of

the fields of the kernel header. The fields are the root device name, mount options

like ro or rw, the initramfs name, the initramfs size, etc. These same fields are called

kernel command- line parameters, and we already know that the kernel command-line

parameters are passed by GRUB/the bootloader to the kernel.

GRUB will not load the kernel (/boot/vmlinuz) at any random location; it will

always be loaded at a special location. The special location will vary as per the Linux

distribution and version you are using and as per the CPU architecture of the system.

vmlinuz is an archive file, and the archive is made from three parts.

Vmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual

compressed kernel)

 (part-1) (part-2) (part-3)

 After Loading the Kernel in Memory
We need to imagine here that GRUB 2 has loaded the kernel in memory at the special

location. Here are the initial-level steps carried out by the kernel archive file vmlinuz as

soon as it loaded in memory:

 1) As soon as the bootloader loads the kernel in memory at a specific

location, the binary made from the file arch/x86/boot/header.S

runs.

 2) Confusion occurs if vmlinuz is an archive and the bootloader has

not extracted it yet. The bootloader has just loaded the kernel at a

specific location. Then why is the code that is inside the vmlinuz

archive file able to run?

 3) We will see the short answer first, and the long answer will be

discussed in the “What Extracts vmlinuz?” section of this chapter.

So, the short answer is a binary made from the arch/x86/boot/

header.S file is not in the archive; rather, it is part of a header that

does a kernel_setup task. The header is outside of an archive.

Vmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual compressed kernel)

 --->Outside of archive<--- + -------->Inside archive<----

--->header.s file is here<---

ChApTer 4 Kernel

186

 4) Let’s consider for now that vmlinuz has been extracted, and let’s

continue our booting sequence. So far, we have seen that GRUB

has loaded the kernel in memory at a special location and runs

the binary made from arch/x86/boot/header.S. This binary is

responsible for the Kernel_setup part. The kernel_setup file

does the following tasks:

 a) Align the segment registers

 b) Set up the stack and BSS

In every chapter, a flowchart will give us a clear idea about what

we have learned and, in terms of booting, where we have reached.

Figure 4-1 shows the start of the flowchart that we will build in

this chapter as we progress. It shows the actions performed by the

kernel_setup code of header.s.

Figure 4-1. Steps taken by kernel_setup

ChApTer 4 Kernel

187

 5) Then it jumps to the main() function at arch/x86/boot/main.c.

The main.c file is also part of a kernel header, and the header is

outside the actual archive.

Vmlinuz (bZimage) = Header + kernel setup code + vmlinux (actual compressed kernel)

 --->Outside of archive<--- + -------->Inside archive<---------

 --->main.c file is here<---

#vim arch/x86/boot/main.c

<snip>

134 void main(void)

135 {

136 /* First, copy the boot header into the "zeropage" */

137 copy_boot_params();

138

139 /* Initialize the early-boot console */

140 console_init();

141 if (cmdline_find_option_bool("debug"))

142 puts("early console in setup code\n");

143

144 /* End of heap check */

145 init_heap();

146

147 /* Make sure we have all the proper CPU support */

148 if (validate_cpu()) {

149 puts(" Unable to boot - please use a kernel

appropriate "

150 "for your CPU.\n");

151 die();

152 }

153

154 /* Tell the BIOS what CPU mode we intend to run in. */

155 set_bios_mode();

156

ChApTer 4 Kernel

188

157 /* Detect memory layout */

158 detect_memory();

159

160 /* Set keyboard repeat rate (why?) and query the lock

flags */

161 keyboard_init();

162

163 /* Query Intel SpeedStep (IST) information */

164 query_ist();

165

166 /* Query APM information */

167 #if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)

168 query_apm_bios();

169 #endif

170

171 /* Query EDD information */

172 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)

173 query_edd();

174 #endif

175

176 /* Set the video mode */

177 set_video();

178

179 /* Do the last things and invoke protected mode */

180 go_to_protected_mode();

181 }

</snip>

As you can see, the main.c source code is responsible for the following:

 1) It copies the boot parameters (the kernel command-line

parameters) from the bootloader. The copy_boot_params function

will be used to copy the following boot parameters passed by the

bootloader:

debug, earlyprintk, ro, root, ramdisk_image, ramdisk_size etc.

ChApTer 4 Kernel

189

 2) It initializes the console and checks whether the debug-like kernel

command-line parameter has been passed by the user. If it has,

the kernel will show the verbose-level messages on the screen.

 3) It initializes the heap.

 4) If the CPU cannot be validated, then it throws an error message

through the validate_cpu() function. Distributions like Fedora

and Ubuntu customize the error message, from 'unable to

boot - please use the kernel appropriate for your cpu' to

something like 'The CPU is not supported'. The customization

will also panic the kernel, and the booting will be halted.

 5) Then it detects the memory layout and prints it on-screen at an

early stage of booting. The same memory layout messages can be

seen after the boot by using the 'dmesg' command, as shown here:

[0.000000] BIOS-provided physical RAM map:

[0.000000] BIOS-e820: [mem 0x0000000000000000-0x0000000000057fff] usable

[0.000000] BIOS-e820: [mem 0x0000000000058000-0x0000000000058fff] reserved

[0.000000] BIOS-e820: [mem 0x0000000000059000-0x000000000009cfff] usable

[0.000000] BIOS-e820: [mem 0x000000000009d000-0x00000000000fffff] reserved

[0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000007e5f7fff] usable

[0.000000] BIOS-e820: [mem 0x000000007e5f8000-0x000000007e5f8fff] ACPI NVS

[0.000000] BIOS-e820: [mem 0x000000007e5f9000-0x000000007e5f9fff] reserved

[0.000000] BIOS-e820: [mem 0x000000007e5fa000-0x0000000087f62fff] usable

[0.000000] BIOS-e820: [mem 0x0000000087f63000-0x000000008952bfff] reserved

[0.000000] BIOS-e820: [mem 0x000000008952c000-0x0000000089599fff] ACPI NVS

[0.000000] BIOS-e820: [mem 0x000000008959a000-0x00000000895fefff] ACPI data

[0.000000] BIOS-e820: [mem 0x00000000895ff000-0x00000000895fffff] usable

[0.000000] BIOS-e820: [mem 0x0000000089600000-0x000000008f7fffff] reserved

[0.000000] BIOS-e820: [mem 0x00000000f0000000-0x00000000f7ffffff] reserved

[0.000000] BIOS-e820: [mem 0x00000000fe010000-0x00000000fe010fff] reserved

[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000086e7fffff] usable

 6) Initialize the keyboard and its layout.

 7) Set the basic video mode.

ChApTer 4 Kernel

190

 8) Jump to the protected mode through the go_to_protected_

mode() function. Please refer to Figure 4-2 for a better

understanding.

 Protected Mode
Up to this point, we have worked in real mode, which has 20-bit address limitations

because of that we can access up to 1 MB of memory. With the go_to_protected_mode()

function, the kernel has switched the CPU from real mode to the protected mode.

Protected mode has a 32-bit address limitation, so the CPU can access up to 4 GB of

memory. In simple terms, in real mode only those programs will run that have a 16-bit

instruction set, for example, the BIOS. In protected mode, only the 32-bit programs will

run. The kernel does some hardware-related tasks in protected mode and then launches

a CPU in long mode.

Figure 4-2. The flowchart

ChApTer 4 Kernel

191

Please note that this book follows Intel’s X86 architecture, and the real, protected,

and long mode discussions are based on Intel’s 64-bit architecture.

 Long Mode
Long mode does not put any memory restrictions on the CPU. It can use all the installed

memory. Placing the CPU in long mode will be achieved by the head_64.S file from

arch/x86/boot/compressed/head_64.S. It is responsible for the following:

 1) Preparing for long mode means it will check whether it supports

long mode or not.

 2) Enter into long mode.

 3) Decompress the kernel.

The following are functions that get called from the head_64.S assembly file:

$ cat arch/x86/boot/compressed/head_64.S | grep -i call

 call 1f

 call verify_cpu

 call get_sev_encryption_bit

 call 1f

 call 1f

 call .Ladjust_got

 * this function call.

 call paging_prepare

 * this function call.

 call cleanup_trampoline

 call 1f

 call .Ladjust_got

 call 1f

 * Relocate efi_config->call().

 call make_boot_params

 call 1f

 * Relocate efi_config->call().

 call efi_main

 call extract_kernel /* returns kernel location in %rax */

 .quad efi_call

ChApTer 4 Kernel

192

Function Working

verify_cpu This will make sure the CpU has a long mode.

make_boot_params This will take care of the bootloader-passed boot-time parameters.

efi_main UeFI firmware-related stuff.

extract_kernel The function is defined in arch/x86/boot/compressed_misc.c.

This is the function that will decompress vmlinux from vmlinuz.

For a better understanding, please refer to the flowchart shown in Figure 4-3.

Figure 4-3. The flowchart, updated

ChApTer 4 Kernel

193

Wait a minute: if the kernel is not yet decompressed, then how come we proceed at

this point? Here comes the long answer.

 What Extracts vmlinuz?
So far, we understand that it’s GRUB that loads the kernel in memory, but at the same

time, we noticed that the vmlinuz image is an archive. So, what extracts this image? Is it

GRUB?

No, it is not GRUB. Rather, it’s the kernel that extracts itself. Yes, I said it’s the kernel

that extracts the kernel. The vmlinuz could be the operating system world’s only file that

extracts itself. But how is it possible to extract yourself? To understand this, let’s get some

more insight about vmlinuz first.

The “vm” of vmlinuz stands for “virtual memory.” In the earlier stages of Linux

development, the virtual memory concept was not yet developed, so when it was added,

the “vm” characters were added to the name of the Linux kernel. The “z” stands for a

zipped file.

$ file vmlinuz-5.0.9-301.fc30.x86_64

vmlinuz-5.0.9-301.fc30.x86_64: Linux kernel x86 boot executable bzImage,

version 5.0.9-301.fc30.x86_64 (mockbuild@bkernel04.phx2.fedoraproject.org)

#1 SMP Tue Apr 23 23:57:35 U, RO-rootFS, swap_dev 0x8, Normal VGA

As you can see, vmlinuz is bzImage (bzImage stands for “big zimage”). vmlinuz is

a compressed file of the actual kernel’s binary vmlinux. You cannot decompress this

file with gunzip/bunzip or even with tar. The easiest way to extract vmlinuz and to get

the vmlinux file is to use the extract-vmlinux script file provided by the kernel-devel

package (in the case of Fedora). The file will be present at /usr/src/kernels/<kernel_

version>/scripts/extract-vmlinux.

. /extract-vmlinux /boot/vmlinuz-5.3.7-301.fc31.x86_64 >> /boot/temp/

vmlinux

file /boot/temp/*

/boot/temp/vmlinux: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),

statically linked, BuildID[sha1]=ec96b29d8e4079950644230c0b7868942bb70366,

stripped

ChApTer 4 Kernel

194

There are various ways to open the vmlinux and vmlinuz kernel files.

 $ xxd vmlinux | less

 $ objdump vmlinux | less

 $ objdump vmlinux -D | less

 $ hexdump vmlinux | less

 $ od vmlinux | less

We will use the od command with some of the switches to open the vmlinuz file.

 $ od -A d -t x1 vmlinuz-5.0.9-301.fc30.x86_64 | less

<snip>

0000000 4d 5a ea 07 00 c0 07 8c c8 8e d8 8e c0 8e d0 31

0000016 e4 fb fc be 40 00 ac 20 c0 74 09 b4 0e bb 07 00

0000032 cd 10 eb f2 31 c0 cd 16 cd 19 ea f0 ff 00 f0 00

0000048 00 00 00 00 00 00 00 00 00 00 00 00 82 00 00 00

0000064 55 73 65 20 61 20 62 6f 6f 74 20 6c 6f 61 64 65

0000080 72 2e 0d 0a 0a 52 65 6d 6f 76 65 20 64 69 73 6b

0000096 20 61 6e 64 20 70 72 65 73 73 20 61 6e 79 20 6b

0000112 65 79 20 74 6f 20 72 65 62 6f 6f 74 2e 2e 2e 0d

0000128 0a 00 50 45 00 00 64 86 04 00 00 00 00 00 00 00

0000144 00 00 01 00 00 00 a0 00 06 02 0b 02 02 14 80 37

0000160 8e 00 00 00 00 00 80 86 26 02 f0 48 00 00 00 02

0000176 00 00 00 00 00 00 00 00 00 00 20 00 00 00 20 00

0000192 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000208 00 00 00 c0 b4 02 00 02 00 00 00 00 00 00 0a 00

0000224 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

*

0000256 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00 00

0000272 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000288 00 00 00 00 00 00 00 00 00 00 80 39 8e 00 48 09

0000304 00 00 00 00 00 00 00 00 00 00 2e 73 65 74 75 70

0000320 00 00 e0 43 00 00 00 02 00 00 e0 43 00 00 00 02

0000336 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00

0000352 50 60 2e 72 65 6c 6f 63 00 00 20 00 00 00 e0 45

0000368 00 00 20 00 00 00 e0 45 00 00 00 00 00 00 00 00

0000384 00 00 00 00 00 00 40 00 10 42 2e 74 65 78 74 00

ChApTer 4 Kernel

195

0000400 00 00 80 f3 8d 00 00 46 00 00 80 f3 8d 00 00 46

0000416 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00

0000432 50 60 2e 62 73 73 00 00 00 00 80 86 26 02 80 39

0000448 8e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000464 00 00 00 00 00 00 80 00 00 c8 00 00 00 00 00 00

0000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff

0000496 ff 22 01 00 38 df 08 00 00 00 ff ff 00 00 55 aa

0000512 eb 66 48 64 72 53 0d 02 00 00 00 00 00 10 c0 37

0000528 00 01 00 80 00 00 10 00 00 00 00 00 00 00 00 00

0000544 00 00 00 00 50 5a 00 00 00 00 00 00 ff ff ff 7f

0000560 00 00 00 01 01 15 3f 00 ff 07 00 00 00 00 00 00

0000576 00 00 00 00 00 00 00 00 b1 03 00 00 11 f3 89 00

0000592 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00

0000608 00 c0 b4 02 90 01 00 00 8c d8 8e c0 fc 8c d2 39

0000624 c2 89 e2 74 16 ba 50 58 f6 06 11 02 80 74 04 8b

</snip>

od -A d -t x1 /boot/vmlinuz-5.3.7-301.fc31.x86_64 | grep -i '1f 8b 08 00'

0018864 8f 1f 8b 08 00 00 00 00 00 02 03 ec fd 79 7c 54

So, on 0018864, the actual kernel (vmlinux) starts, whereas the vmlinuz file starts

at 0000000. This means from 0000000 to 0018864, what we have is the header of the

file, such as header.S, misc.c, etc. This will extract the actual kernel (vmlinux) from

vmlinuz. You can consider a header to be like a cap on a vmlinux binary, and when this

cap is available, it becomes vmlinuz. In the following sections, we will see how the kernel

routine extracts vmlinuz.

 extract_kernel
Let’s get back to the extract_kernel function from arch/x86/boot/compressed/misc.c.

asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,

 unsigned char *input_data,

 unsigned long input_len,

 unsigned char *output,

 unsigned long output_len)

ChApTer 4 Kernel

196

As you can see, the function will accept seven arguments.

Argument Purpose

rmode A pointer to the boot_params structure that is filled by the bootloader

heap A pointer to the boot_heap file that represents the start address of the early

boot heap

input_data A pointer to the start of the compressed kernel or in other words a pointer to

arch/x86/boot/compressed/vmlinux.bin.bz2

input_len The size of the compressed kernel

output The start address of the future decompressed kernel

output_len The size of decompressed kernel

run_size The amount of space needed to run the kernel including .bss and .brk sections

Along with the kernel, the bootloader will also load initramfs in memory. We will

talk about initramfs in Chapter 5. So, before extracting the kernel image, the header

or the kernel routine has to take care that the vmlinuz extraction will not overwrite or

overlap the already loaded initramfs image. So, the extract_kernel function will also

take care of calculating the initramfs address space and will adjust the kernel image

decompression accordingly. Once we get the correct address where the header can

decompress vmlinuz, it will extract the kernel there.

340 asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,

341 unsigned char *input_data,

342 unsigned long input_len,

343 unsigned char *output,

344 unsigned long output_len)

345 {

346 const unsigned long kernel_total_size = VO__end - VO__text;

347 unsigned long virt_addr = LOAD_PHYSICAL_ADDR;

348 unsigned long needed_size;

349

350 /* Retain x86 boot parameters pointer passed from

startup_32/64. */

351 boot_params = rmode;

ChApTer 4 Kernel

197

352

353 /* Clear flags intended for solely in-kernel use. */

354 boot_params->hdr.loadflags &= ~KASLR_FLAG;

355

356 sanitize_boot_params(boot_params);

357

358 if (boot_params->screen_info.orig_video_mode == 7) {

359 vidmem = (char *) 0xb0000;

360 vidport = 0x3b4;

361 } else {

362 vidmem = (char *) 0xb8000;

363 vidport = 0x3d4;

364 }

365

366 lines = boot_params->screen_info.orig_video_lines;

367 cols = boot_params->screen_info.orig_video_cols;

368

369 console_init();

370

371 /*

372 * Save RSDP address for later use. Have this after console_

init()

373 * so that early debugging output from the RSDP parsing code

can be

374 * collected.

375 */

376 boot_params->acpi_rsdp_addr = get_rsdp_addr();

377

378 debug_putstr("early console in extract_kernel\n");

379

380 free_mem_ptr = heap; /* Heap */

381 free_mem_end_ptr = heap + BOOT_HEAP_SIZE;

382

383 /*

ChApTer 4 Kernel

198

384 * The memory hole needed for the kernel is the larger of

either

385 * the entire decompressed kernel plus relocation table, or the

386 * entire decompressed kernel plus .bss and .brk sections.

387 *

388 * On X86_64, the memory is mapped with PMD pages. Round the

389 * size up so that the full extent of PMD pages mapped is

390 * included in the check against the valid memory table

391 * entries. This ensures the full mapped area is usable RAM

392 * and doesnt include any reserved areas.

393 */

394 needed_size = max(output_len, kernel_total_size);

395 #ifdef CONFIG_X86_64

396 needed_size = ALIGN(needed_size, MIN_KERNEL_ALIGN);

397 #endif

398

399 /* Report initial kernel position details. */

400 debug_putaddr(input_data);

401 debug_putaddr(input_len);

402 debug_putaddr(output);

403 debug_putaddr(output_len);

404 debug_putaddr(kernel_total_size);

405 debug_putaddr(needed_size);

406

407 #ifdef CONFIG_X86_64

408 /* Report address of 32-bit trampoline */

409 debug_putaddr(trampoline_32bit);

410 #endif

411

412 choose_random_location((unsigned long)input_data, input_len,

413 (unsigned long *)&output,

414 needed_size,

415 &virt_addr);

416

417 /* Validate memory location choices. */

ChApTer 4 Kernel

199

418 if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))

419 error("Destination physical address inappropriately

aligned");

420 if (virt_addr & (MIN_KERNEL_ALIGN - 1))

421 error("Destination virtual address inappropriately

aligned");

422 #ifdef CONFIG_X86_64

423 if (heap > 0x3fffffffffffUL)

424 error("Destination address too large");

425 if (virt_addr + max(output_len, kernel_total_size) > KERNEL_

IMAGE_SIZE)

426 error("Destination virtual address is beyond the kernel

mapping area");

427 #else

428 if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))

429 error("Destination address too large");

430 #endif

431 #ifndef CONFIG_RELOCATABLE

432 if ((unsigned long)output != LOAD_PHYSICAL_ADDR)

433 error("Destination address does not match LOAD_

PHYSICAL_ADDR");

434 if (virt_addr != LOAD_PHYSICAL_ADDR)

435 error("Destination virtual address changed when not

relocatable");

436 #endif

437

438 debug_putstr("\nDecompressing Linux... ");

439 __decompress(input_data, input_len, NULL, NULL, output, output_len,

440 NULL, error);

441 parse_elf(output);

442 handle_relocations(output, output_len, virt_addr);

443 debug_putstr("done.\nBooting the kernel.\n");

444 return output;

445 }

ChApTer 4 Kernel

200

The decompression method will be chosen according to the compression algorithm

used at the time of kernel compilation. The decompression methods can be seen in the

same misc.c file.

 <snip from misc.c>

 57 #ifdef CONFIG_KERNEL_GZIP

 58 #include "../../../../lib/decompress_inflate.c"

 59 #endif

 60

 61 #ifdef CONFIG_KERNEL_BZIP2

 62 #include "../../../../lib/decompress_bunzip2.c"

 63 #endif

 64

 65 #ifdef CONFIG_KERNEL_LZMA

 66 #include "../../../../lib/decompress_unlzma.c"

 67 #endif

 68

 69 #ifdef CONFIG_KERNEL_XZ

 70 #include "../../../../lib/decompress_unxz.c"

 71 #endif

 72

 73 #ifdef CONFIG_KERNEL_LZO

 74 #include "../../../../lib/decompress_unlzo.c"

 75 #endif

 </snip>

Once the kernel is decompressed in memory, the entry point of the extracted kernel

will be obtained from the extract_kernel function, and the CPU will jump inside a kernel.

 Inside the Kernel
The kernel does numerous things, but I will list what is of most interest to you as

someone learning about booting.

• The kernel will set the kernel stack size to 16 KB if the architecture

is 64-bit. This means every new process will get its own kernel stack

which will be 16 KB in size.

ChApTer 4 Kernel

201

• page_size will be set to 4 KB, which is the default page size on an

Intel 64-bit architecture.

• The kernel will prepare the interrupt and exception handling

mechanism also called the interrupt descriptor table (IDT).

• The kernel will set the page fault handling mechanism.

• The kernel will collect the initramfs file details such as file name, size,

address, relocation address, major and minor numbers of a new root

device, etc., from /arch/x86/kernel/setup.c.

• Then it extracts initramfs from the source code file init/

initramfs.c.

• Finally, it launches systemd by using the start_kernel function of

init/main.c.

You will notice that this is the first time we came outside of the arch directory.

That means we can consider this code as architecture independent. Once the kernel is

launched, it does numerous things, and it is almost impossible to cover all of it in this

book. In terms of booting, the kernel’s motto is to launch systemd from initramfs. Since

initramfs has already been loaded in memory by the bootloader, extracting the initramfs

kernel requires the initramfs file details, which the kernel will get from /arch/x86/

kernel/setup.c.

 Initramfs file name,

 Initramfs file size,

 Initramfs files address,

 Initramfs files relocation address,

 Major and minor numbers on which initramfs will be mounted.

Once the kernel receives the details of the initramfs file, it will extract the initramfs

archive from the init/initramfs.c file. We will discuss how exactly the kernel extracts

initramfs in memory in Chapter 5. To mount initramfs as a root device, it needs virtual

filesystems like proc, sys, dev, etc., so the kernel accordingly prepares them.

 err = register_filesystem(&proc_fs_type);

 if (err)

 return;

ChApTer 4 Kernel

202

The kernel will later mount the extracted initramfs as a root with the help of the do_

mount_root function of init/do_mounts.c. Once the initramfs is mounted in memory,

the kernel will launch systemd from it. systemd will be launched through the same

start_kernel function of an init/main.c file.

 asmlinkage void __init start_kernel(void)

Basically, once the root filesystem is ready, it will get inside the root filesystem and

will create two threads: PID 1 is a systemd process, and PID 2 is a kthread. For better

understanding, please refer to the flowchart shown in Figure 4-4.

Figure 4-4. The flowchart, updated again

ChApTer 4 Kernel

203

Figure 4.4. (continued)

Figure 4-5 shows the complete boot sequence that we have discussed so far.

ChApTer 4 Kernel

204

Figure 4-5. The boot sequence in a block diagram

ChApTer 4 Kernel

205

Before we continue and look at how the kernel extracts initramfs and runs systemd

from it, we need to understand the basics of initramfs such as why we need it, what its

structure is, etc. Once we understand the importance and basics of initramfs, we will

continue our booting sequence with systemd’s role in the boot sequence.

ChApTer 4 Kernel

207
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_5

CHAPTER 5

initramfs
In this chapter, we will discuss why we really need initramfs and why it’s important in the

booting procedure. We know that initramfs is loaded into memory by the bootloader, but

we haven’t discussed yet how initramfs is extracted. This chapter will address that. We

will also see the steps to extract, rebuild, and customize initramfs. Later, we will see the

structure of initramfs as well as the booting sequence of a system inside initramfs.

 Why initramfs?
The aim of the booting procedure is to present the user with their own files that reside in

the root filesystem. In other words, it is the kernel’s duty to find, mount, and present the

user’s root filesystem to the user. To achieve this goal, the kernel has to run the systemd

binary, which again resides in the user’s root filesystem. Now this has become a chicken-

and- egg problem. To run a systemd process, first we have to mount the root filesystem,

and to mount the root filesystem, we have to run systemd from the root filesystem. Also,

along with the actual root filesystem, users might have files on some other filesystems

such as NFS, CIFS, etc., and that list of other filesystems is also inside the root filesystem

(/etc/fstab).

So, to solve this chicken-and-egg problem, the developers came up with a resolution

called initramfs (which means “initial RAM filesystem”). initramfs is a temporary

root filesystem (inside the main memory) that will be used to mount the actual root

filesystem (from the hard disk or network). So, the whole purpose of initramfs is to

mount the user’s root filesystem from the HDD/network. Ideally, the kernel is capable

enough to mount the root filesystem from disk on its own without initramfs, but these

days a user’s root filesystem could be anywhere. It could be on RAID, on an LVM, or on

a multipath device. It could be on n number of filesystem types like XFS, BTRFS, ext4,

ext3, NFS, etc. It could even be on an encrypted filesystem like LUKS. So, it is almost

https://doi.org/10.1007/978-1-4842-5890-3_5#ESM

208

impossible for a kernel to incorporate all these scenarios in its own vmlinux binary. Let

me provide some real-life scenarios in this section.

Let’s say the root file system is on NFS and there is no initramfs concept. That means

the kernel has to mount the user’s root filesystem from NFS on its own. In such a case,

the kernel has to achieve the following tasks:

 1. Bring up the primary network interface.

 2. Invoke a DHCP client and get an IP address from the DHCP server.

 3. Find the NFS share and associated NFS server.

 4. Mount the NFS share (the root filesystem).

To achieve these steps, the kernel needs to have the following binaries:

NetworkManager, dhclient, mount, etc.

Now let’s say the root filesystem is on a software RAID device. Then the kernel has to

do the following tasks:

 1. Find the RAID disks first with mdadm --examine --scan.

 2. Once the underlying disks on which the software RAID is spanned

are identified, it has to assemble the RAID with mdadm --assemble

--scan.

 3. To achieve this, the kernel needs to have the mount and mdadm

binaries and some configuration files of the software RAID

devices.

Now let’s say the root file system is on a logical volume. Then the kernel has to finish

the following tasks on its own:

 1. Find the physical volumes with pvs.

 2. Find the volume group with vgscan and then activate it with

vgchange.

 3. Scan the LVS with lvscan.

 4. Finally, once the root lv is populated, mount it as a root

filesystem.

 5. To achieve this, the kernel needs to have pvscan, pvs, lvscan,

vgscan, lvs, and vgchange-like binaries.

Chapter 5 initramfs

209

Let’s say the root filesystem is on an encrypted block device. Then the kernel has to

complete the following tasks:

 1. Collect a password from the user and/or insert a hardware token

(such as a smart card or a USB security dongle).

 2. Create a decryption target with the device mapper.

To achieve all of this, the kernel needs LUKS-related binaries.

For a kernel, it is not possible to incorporate all of these root filesystem possibilities;

hence, developers have come up with the initramfs concept whose sole purpose is to

mount the root filesystem.

The kernel can still perform all of the steps we have discussed. For example, if you

build a simple command-line Linux system from LFS (www.linuxfromscratch.org/),

you don’t need initramfs to mount a root filesystem, as the kernel itself is capable

enough to mount the root filesystem. But the moment you try to add a GUI into it

through BLFS, you need initramfs.

So, the conclusion is that the kernel can mount the root filesystem on its own,

but for that, the kernel has to keep all of the discussed binaries, supportive libraries,

configuration files, etc., in the vmlinuz file. This will create a lot of issues.

• It will spoil the main motive of the kernel binary.

• The kernel binary will be huge in size. The bigger size of the binary

will be difficult to maintain.

• The huge binary is difficult to manage, upgrade, share, and handle on

servers (in terms of RPM packages).

• The approach won’t be as per the KISS rule (keep it simple, stupid).

 Infrastructure
To understand the initramfs structure, we need to first understand three different

filesystems.

Chapter 5 initramfs

http://www.linuxfromscratch.org/

210

 ramfs
For ease of understanding, we will compare ramfs to the kernel’s caching mechanism.

Linux has a unique feature called a page cache. Whenever you perform any I/O

transactions, it caches those transactions in pages. Caching pages in memory is always

good. This will save our future I/O transactions. And whenever the system encounters

a low-memory situation, the kernel just discards these cached pages from memory.

ramfs is just like our cache memory. But the issue with ramfs is that it does not have

backing storage; hence, it cannot swap out the pages (swap is again a storage device).

So, obviously, the kernel will not be able to free this memory as there is no place to save

these pages. Hence, ramfs will keep growing, and you cannot really put a limit on its size.

What we can do is allow only root users to write into ramfs to ease the situation.

 tmpfs
tmpfs is just like ramfs but with a few additions. We can put a limit on the size of tmpfs,

which we were not able to do in ramfs. Also, tmpfs pages can use swap space.

 rootfs
rootfs is a tmpfs that is an instance of ramfs. The advantage of rootfs is you cannot

unmount it. This is because of the same reason you can’t kill the systemd process.

initramfs uses ramfs as a filesystem, and the space occupied by initramfs in memory

will be released once the user’s root filesystem has been mounted.

dmesg | grep Free

[0.813330] Freeing SMP alternatives memory: 36K

[3.675187] Freeing initrd memory: 32548K <<<=======<<<<<<===== NOTE

[5.762702] Freeing unused decrypted memory: 2040K

[5.767001] Freeing unused kernel image memory: 2272K

[5.776841] Freeing unused kernel image memory: 2016K

[5.783116] Freeing unused kernel image memory: 1580K

Chapter 5 initramfs

211

Earlier, instead of initramfs, Linux used to use initrd (initial RAM disk), but initrd

is deprecated now, and hence we will list only a few important points for comparison

with initramfs.

initrd

• Being formatted/treated as a block device means initrd cannot

scale. That means once you bring initrd in memory and consider it

as a block device, you cannot increase or decrease its size.

• We will waste some of the memory in cache as initrd is considered

as a block device, because the Linux kernel is designed to keep the

block device contents in cache to reduce I/O transactions. In short,

unnecessarily the kernel will cache the initrd contents, which are

already in memory.

Initramfs

• In initrd, there will always be the overhead of the filesystem driver

and its binaries like mke2fs. The mke2fs command is used to create

ext2/3/4 filesystems. This means some of the RAM area will first be

formatted, with the ext2/3/4 filesystem by mke2fs, and then initrd

will be extracted on it, whereas initramfs is just like tmpfs, which you

can grow or shrink any time on the fly.

• There is no duplication of data between block devices and cache.

• To use initramfs as the root filesystem, the kernel does not need any

driver or binary like mke2fs as the initramfs archive will be extracted

in main memory as it is.

ls -lh /boot/initramfs-5.3.7-301.fc31.x86_64.img

-rw-------. 1 root root 32M Dec 9 10:19 /boot/initramfs-5.3.7-301.fc31.

x86_64.img

Chapter 5 initramfs

212

We can use the lsinitrd tool to see the contents of initramfs, or we can extract

initramfs with the help of the skipcpio tool.

#lsinitrd

<snip>

Image: /boot/initramfs-5.3.7-301.fc31.x86_64.img: 32M

==

Early CPIO image

==

drwxr-xr-x 3 root root 0 Jul 25 2019 .

-rw-r--r-- 1 root root 2 Jul 25 2019 early_cpio

drwxr-xr-x 3 root root 0 Jul 25 2019 kernel

drwxr-xr-x 3 root root 0 Jul 25 2019 kernel/x86

drwxr-xr-x 2 root root 0 Jul 25 2019 kernel/x86/microcode

-rw-r--r-- 1 root root 100352 Jul 25 2019 kernel/x86/

microcode/GenuineIntel.bin

==

Version: dracut-049-27.git20181204.fc31.1

Arguments: -f

dracut modules:

bash

systemd

systemd-initrd

nss-softokn

i18n

network-manager

network

ifcfg

drm

plymouth

dm

kernel-modules

kernel-modules-extra

kernel-network-modules

lvm

Chapter 5 initramfs

213

qemu

qemu-net

resume

rootfs-block

terminfo

udev-rules

dracut-systemd

usrmount

base

fs-lib

shutdown

==

drwxr-xr-x 12 root root 0 Jul 25 2019 .

crw-r--r-- 1 root root 5, 1 Jul 25 2019 dev/console

crw-r--r-- 1 root root 1, 11 Jul 25 2019 dev/kmsg

crw-r--r-- 1 root root 1, 3 Jul 25 2019 dev/null

crw-r--r-- 1 root root 1, 8 Jul 25 2019 dev/random

crw-r--r-- 1 root root 1, 9 Jul 25 2019 dev/urandom

lrwxrwxrwx 1 root root 7 Jul 25 2019 bin -> usr/bin

drwxr-xr-x 2 root root 0 Jul 25 2019 dev

drwxr-xr-x 11 root root 0 Jul 25 2019 etc

drwxr-xr-x 2 root root 0 Jul 25 2019 etc/cmdline.d

drwxr-xr-x 2 root root 0 Jul 25 2019 etc/conf.d

-rw-r--r-- 1 root root 124 Jul 25 2019 etc/conf.d/systemd.

conf

-rw-r--r-- 1 root root 0 Jul 25 2019 etc/fstab.empty

-rw-r--r-- 1 root root 240 Jul 25 2019 etc/group

-rw-r--r-- 1 root root 22 Jul 25 2019 etc/hostname

lrwxrwxrwx 1 root root 25 Jul 25 2019 etc/initrd-release

-> ../usr/lib/initrd-release

-rw-r--r-- 1 root root 8581 Jul 25 2019 etc/ld.so.cache

-rw-r--r-- 1 root root 28 Jul 25 2019 etc/ld.so.conf

drwxr-xr-x 2 root root 0 Jul 25 2019 etc/ld.so.conf.d

-rw-r--r-- 1 root root 17 Jul 25 2019 etc/ld.so.conf.d/

libiscsi-x86_64.conf

Chapter 5 initramfs

214

-rw-rw-r-- 1 root root 19 Jul 25 2019 etc/locale.conf

drwxr-xr-x 2 root root 0 Jul 25 2019 etc/lvm

-rw-r--r-- 1 root root 102256 Jul 25 2019 etc/lvm/lvm.conf

-rw-r--r-- 1 root root 2301 Jul 25 2019 etc/lvm/lvmlocal.conf

-r--r--r-- 1 root root 33 Jul 25 2019 etc/machine-id

drwxr-xr-x 2 root root 0 Jul 25 2019 etc/modprobe.d

</snip>

To extract the contents of initramfs, use the skipcpio binary from /usr/lib/

dracut/skipcpio/. The skipcpio is provided by the dracut tool. We will cover dracut in

Chapter 6.

#/usr/lib/dracut/skipcpio initramfs-5.3.7-301.fc31.x86_64.img | gunzip -c |

cpio -idv

If you look at the extracted initramfs contents, you will be surprised to know that it

looks just like the user’s root filesystem. Please note that we have extracted initramfs into

the /root/boot directory.

ls -lh /root/boot/

total 44K

lrwxrwxrwx. 1 root root 7 Mar 26 18:03 bin -> usr/bin

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 dev

drwxr-xr-x. 11 root root 4.0K Mar 26 18:03 etc

lrwxrwxrwx. 1 root root 23 Mar 26 18:03 init -> usr/lib/systemd/systemd

lrwxrwxrwx. 1 root root 7 Mar 26 18:03 lib -> usr/lib

lrwxrwxrwx. 1 root root 9 Mar 26 18:03 lib64 -> usr/lib64

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 proc

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 root

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 run

lrwxrwxrwx. 1 root root 8 Mar 26 18:03 sbin -> usr/sbin

-rwxr-xr-x. 1 root root 3.1K Mar 26 18:03 shutdown

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 sys

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 sysroot

drwxr-xr-x. 2 root root 4.0K Mar 26 18:03 tmp

drwxr-xr-x. 8 root root 4.0K Mar 26 18:03 usr

drwxr-xr-x. 3 root root 4.0K Mar 26 18:03 var

Chapter 5 initramfs

215

You will find bin, sbin, usr, etc, var, lib, and lib64-like directories that we used

to see in our user’s root filesystem. Along with that, you will notice the virtual filesystem

directories such as dev, run, proc, sys, etc. So, initramfs is just like the user’s root

filesystem. Let’s explore each directory for the better understanding of the initramfs

implementation.

 initramfs Implementation
Now we will look as the contents of initramfs and how exactly initramfs is organized.

Through this section, you will realize that initramfs is nothing but a small root filesystem.

bin
 Normal Binaries
We can use all the following binaries on a system that has finished its booting procedure.

Since all these binaries are available inside initramfs, when the system is still booting, we

will be able to use all these commands at the time of the boot.

cat, chown, cp, dmesg, echo, grep, gzip, less, ln, mkdir, mv, ps, rm, sed,

sleep, umount, uname, vi, loadkeys, kbd_mode, flock, tr, true, stty, mount,

sort etc.

[root@fedorab boot]# ls -la bin/

total 7208

drwxr-xr-x. 2 root root 4096 Jan 10 12:01 .

drwxr-xr-x. 8 root root 4096 Dec 19 14:30 ..

-rwxr-xr-x. 1 root root 1237376 Dec 19 14:30 bash

-rwxr-xr-x. 1 root root 50160 Dec 19 14:30 cat

-rwxr-xr-x. 1 root root 82688 Dec 19 14:30 chown

-rwxr-xr-x. 1 root root 177144 Dec 19 14:30 cp

-rwxr-xr-x. 1 root root 89344 Dec 19 14:30 dmesg

-rwxr-xr-x. 1 root root 2666 Dec 19 14:30 dracut-cmdline

-rwxr-xr-x. 1 root root 422 Dec 19 14:30 dracut-cmdline-ask

-rwxr-xr-x. 1 root root 1386 Dec 19 14:30 dracut-emergency

-rwxr-xr-x. 1 root root 2151 Dec 19 14:30 dracut-initqueue

Chapter 5 initramfs

216

-rwxr-xr-x. 1 root root 1056 Jan 10 12:01 dracut-mount

-rwxr-xr-x. 1 root root 517 Dec 19 14:30 dracut-pre-mount

-rwxr-xr-x. 1 root root 928 Dec 19 14:30 dracut-pre-pivot

-rwxr-xr-x. 1 root root 482 Dec 19 14:30 dracut-pre-trigger

-rwxr-xr-x. 1 root root 1417 Dec 19 14:30 dracut-pre-udev

-rwxr-xr-x. 1 root root 45112 Dec 19 14:30 echo

-rwxr-xr-x. 1 root root 76768 Dec 19 14:30 findmnt

-rwxr-xr-x. 1 root root 38472 Dec 19 14:30 flock

-rwxr-xr-x. 1 root root 173656 Dec 19 14:30 grep

-rwxr-xr-x. 1 root root 107768 Dec 19 14:30 gzip

-rwxr-xr-x. 1 root root 78112 Dec 19 14:30 journalctl

-rwxr-xr-x. 1 root root 17248 Dec 19 14:30 kbd_mode

-rwxr-xr-x. 1 root root 387504 Dec 19 14:30 kmod

-rwxr-xr-x. 1 root root 192512 Dec 19 14:30 less

-rwxr-xr-x. 1 root root 85992 Dec 19 14:30 ln

-rwxr-xr-x. 1 root root 222616 Dec 19 14:30 loadkeys

lrwxrwxrwx. 1 root root 4 Dec 19 14:30 loginctl -> true

-rwxr-xr-x. 1 root root 158056 Dec 19 14:30 ls

-rwxr-xr-x. 1 root root 99080 Dec 19 14:30 mkdir

-rwxr-xr-x. 1 root root 80264 Dec 19 14:30 mkfifo

-rwxr-xr-x. 1 root root 84560 Dec 19 14:30 mknod

-rwsr-xr-x. 1 root root 58984 Dec 19 14:30 mount

-rwxr-xr-x. 1 root root 169400 Dec 19 14:30 mv

-rwxr-xr-x. 1 root root 50416 Dec 19 14:30 plymouth

-rwxr-xr-x. 1 root root 143408 Dec 19 14:30 ps

-rwxr-xr-x. 1 root root 60376 Dec 19 14:30 readlink

-rwxr-xr-x. 1 root root 83856 Dec 19 14:30 rm

-rwxr-xr-x. 1 root root 127192 Dec 19 14:30 sed

-rwxr-xr-x. 1 root root 52272 Dec 19 14:30 setfont

-rwxr-xr-x. 1 root root 16568 Dec 19 14:30 setsid

lrwxrwxrwx. 1 root root 4 Dec 19 14:30 sh -> bash

-rwxr-xr-x. 1 root root 46608 Dec 19 14:30 sleep

-rwxr-xr-x. 1 root root 140672 Dec 19 14:30 sort

-rwxr-xr-x. 1 root root 96312 Dec 19 14:30 stat

Chapter 5 initramfs

217

-rwxr-xr-x. 1 root root 92576 Dec 19 14:30 stty

-rwxr-xr-x. 1 root root 240384 Dec 19 14:30 systemctl

-rwxr-xr-x. 1 root root 20792 Dec 19 14:30 systemd-cgls

-rwxr-xr-x. 1 root root 19704 Dec 19 14:30 systemd-escape

-rwxr-xr-x. 1 root root 62008 Dec 19 14:30 systemd-run

-rwxr-xr-x. 1 root root 95168 Dec 19 14:30 systemd-tmpfiles

-rwxr-xr-x. 1 root root 173752 Dec 19 14:30 teamd

-rwxr-xr-x. 1 root root 58400 Dec 19 14:30 tr

-rwxr-xr-x. 1 root root 45112 Dec 19 14:30 true

-rwxr-xr-x. 1 root root 442552 Dec 19 14:30 udevadm

-rwsr-xr-x. 1 root root 41912 Dec 19 14:30 umount

-rwxr-xr-x. 1 root root 45120 Dec 19 14:30 uname

-rwxr-xr-x. 1 root root 1353704 Dec 19 14:30 vi

 Special Binaries

Special Binary Purpose

bash initramfs will provide us with a shell at the time of boot.

mknod We will be able to create devices.

udevadm We will be able to manage devices. dracut uses udev, an event-driven tool,

which will launch certain programs such as lvm, mdadm, etc., when certain udev

rules are matched. for example, whenever certain udev rules are matched,

storage volumes and network card device files will appear under /dev.

kmod a tool to manage the kernel modules.

 Networking Binaries
There is only one network related binary available under bin and that is teamd (initramfs

can handle the teaming network devices).

Chapter 5 initramfs

218

 Hooks
We will discuss hooks in Chapters 7 and 9.

dracut-cmdline dracut-cmdline-ask

dracut-emergency dracut -initqueue

dracut-mount dracut -pre-pivot

dracut - pre-trigger dracut -pre-udev

 Systemd Binaries

Binary Purpose

systemd this is the parent of every process that is a replacement of init. this is the

first process, which runs the moment we enter initramfs.

systemctl systemd’s service manager.

systemd- cgls this will list the existing control groups (cgroups).

systemd- escape this will convert the string in systemd unit format, also called escaping.

systemd- run this can run the programs as a service but in transient scope.

systemd- tmpfiles this creates, deletes, and cleans up volatile and temporary files and directories.

journalctl a tool to deal with systemd journal.

 Sbin
 Filesystem and Storage-Related Binaries

Binary Purpose

blkid to read device attributes

chroot to change the root filesystem device

e2fsck to check ext2/3/4 filesystems

fsck, fsck.ext4 to check and repair the filesystem

swapoff in case you want to stop the swap device
(continued)

Chapter 5 initramfs

219

Binary Purpose

dmsetup a device mapper tool for LVm management

dmeventd a device mapper event daemon

lvm an LVm management tool that will provide lvscan, vgscan, vgchange,

pvs, etc., commands

lvm_scan a script to find the LVm devices

 Networking Binaries

Binaries Purpose

dhclient to get the ip from the DhCp server

losetup to set the loop device

Netroot a support for a root over the network

NetworkManager a tool to manage the network devices

 Special Binaries

Binaries Purpose

depmod to generate modules.dep (symlink of kmod)

lsmod to list the loaded modules (symlink of kmod)

modinfo to print the module’s information (symlink of kmod)

modprobe to load or insert the modules (symlink of kmod)

rmmod to remove the loaded module (symlink of kmod)

init / systemd a first process

kexec a kexec kernel that is used by the Kdump

udevadm Udev manager

Chapter 5 initramfs

220

 Basic Binaries
Finally, here are the basic binaries:

Halt, poweroff, reboot

 [root@fedorab boot]# ls -lah sbin/

total 13M

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 8 root root 4.0K Dec 19 14:30 ..

-rwxr-xr-x. 1 root root 126K Dec 19 14:30 blkid

-rwxr-xr-x. 1 root root 50K Dec 19 14:30 chroot

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 depmod -> ../bin/kmod

-rwxr-xr-x. 1 root root 2.9M Dec 19 14:30 dhclient

-r-xr-xr-x. 1 root root 45K Dec 19 14:30 dmeventd

-r-xr-xr-x. 1 root root 159K Dec 19 14:30 dmsetup

-rwxr-xr-x. 2 root root 340K Dec 19 14:30 e2fsck

-rwxr-xr-x. 1 root root 58K Dec 19 14:30 fsck

-rwxr-xr-x. 2 root root 340K Dec 19 14:30 fsck.ext4

lrwxrwxrwx. 1 root root 16 Dec 19 14:30 halt -> ../bin/systemctl

lrwxrwxrwx. 1 root root 22 Dec 19 14:30 init -> ../lib/systemd/systemd

-rwxr-xr-x. 1 root root 1.2K Dec 19 14:30 initqueue

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 insmod -> ../bin/kmod

-rwxr-xr-x. 1 root root 197 Dec 19 14:30 insmodpost.sh

-rwxr-xr-x. 1 root root 203K Dec 19 14:30 kexec

-rwxr-xr-x. 1 root root 496 Dec 19 14:30 loginit

-rwxr-xr-x. 1 root root 117K Dec 19 14:30 losetup

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 lsmod -> ../bin/kmod

-r-xr-xr-x. 1 root root 2.4M Dec 19 14:30 lvm

-rwxr-xr-x. 1 root root 3.5K Dec 19 14:30 lvm_scan

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 modinfo -> ../bin/kmod

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 modprobe -> ../bin/kmod

-rwxr-xr-x. 1 root root 2.7K Dec 19 14:30 netroot

-rwxr-xr-x. 1 root root 5.3M Dec 19 14:30 NetworkManager

-rwxr-xr-x. 1 root root 16K Dec 19 14:30 nologin

-rwxr-xr-x. 1 root root 150K Dec 19 14:30 plymouthd

lrwxrwxrwx. 1 root root 16 Dec 19 14:30 poweroff -> ../bin/systemctl

Chapter 5 initramfs

221

-rwxr-xr-x. 1 root root 1.4K Dec 19 14:30 rdsosreport

lrwxrwxrwx. 1 root root 16 Dec 19 14:30 reboot -> ../bin/systemctl

lrwxrwxrwx. 1 root root 11 Dec 19 14:30 rmmod -> ../bin/kmod

-rwxr-xr-x. 1 root root 25K Dec 19 14:30 swapoff

-rwxr-xr-x. 1 root root 6.0K Dec 19 14:30 tracekomem

lrwxrwxrwx. 1 root root 14 Dec 19 14:30 udevadm -> ../bin/udevadm

Isn’t it amazing to see that without having an actual user’s root filesystem we will be

able to use and manage the shell, network, modules, devices, etc.? In other words, you

do not really need a user’s root filesystem, unless a user wants to access their private

files, that is. Just kidding.

Now a question comes to mind: where and how can we use all of these commands?

These binaries or commands will be automatically used by initramfs. Or, to say it

correctly, these binaries or commands will be used by the systemd of initramfs to mount

the user’s actual root filesystem, but if systemd fails to do so, it will provide us with a

shell, and we will be able to use these commands and troubleshoot further. We will

discuss this in Chapters 7, 8, and 9.

 etc
The binaries from the bin and sbin directories will have their own configuration files,

and they will be stored in the etc directory of initramfs.

 [root@fedorab boot]# tree etc/

etc/

├── cmdline.d
├── conf.d
│ └── systemd.conf
├── fstab.empty
├── group
├── hostname
├── initrd-release -> ../usr/lib/initrd-release
├── ld.so.cache
├── ld.so.conf
├── ld.so.conf.d
│ └── libiscsi-x86_64.conf

Chapter 5 initramfs

222

├── locale.conf
├── lvm
│ ├── lvm.conf
│ └── lvmlocal.conf
├── machine-id
├── modprobe.d
│ ├── firewalld-sysctls.conf
│ ├── kvm.conf
│ ├── lockd.conf
│ ├── mlx4.conf
│ ├── nvdimm-security.conf
│ └── truescale.conf
├── mtab -> /proc/self/mounts
├── os-release -> initrd-release
├── passwd
├── plymouth
│ └── plymouthd.conf
├── sysctl.conf
├── sysctl.d
│ └── 99-sysctl.conf -> ../sysctl.conf
├── systemd
│ ├── journald.conf
│ └── system.conf
├── system-release -> ../usr/lib/fedora-release
├── udev
│ ├── rules.d
│ │ ├── 11-dm.rules
│ │ ├── 59-persistent-storage-dm.rules
│ │ ├── 59-persistent-storage.rules
│ │ ├── 61-persistent-storage.rules
│ │ └── 64-lvm.rules
│ └── udev.conf
├── vconsole.conf
└── virc

10 directories, 35 files

Chapter 5 initramfs

223

 Virtual Filesystems
Virtual filesystems are the kind of filesystems whose files are not really present on disk;

rather, the entire filesystem is available in memory. This has its own advantages and

disadvantages; for example, you get a very high throughput, but the filesystem cannot

store the data permanently. There are three virtual filesystems available inside initramfs,

which are dev, proc, and sys. Here I have given a brief introduction to the filesystems,

but we will talk about them in detail in the next chapters:

[root@fedorab boot]# ls -lah dev

total 8.0K

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

crw-r--r--. 1 root root 5, 1 Dec 19 14:30 console

crw-r--r--. 1 root root 1, 11 Dec 19 14:30 kmsg

crw-r--r--. 1 root root 1, 3 Dec 19 14:30 null

crw-r--r--. 1 root root 1, 8 Dec 19 14:30 random

crw-r--r--. 1 root root 1, 9 Dec 19 14:30 urandom

[root@fedorab boot]# ls -lah proc/

total 8.0K

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

[root@fedorab boot]# ls -lah sys/

total 8.0K

drwxr-xr-x. 2 root root 4.0K Dec 19 14:30 .

drwxr-xr-x. 12 root root 4.0K Dec 19 14:33 ..

 dev
As of now, there are only five default device files, but as the system boots up, udev will

fully populate this directory. The console, kmsg, null, random, and urandom devices files

will be created by the kernel itself, or in other words, these device files are handcrafted

by using the mknod command, but the rest of the device files will be populated by udev.

Chapter 5 initramfs

224

 proc and sys
As soon as the kernel takes control of the booting procedure, the kernel will create

and populate these directories. The proc filesystem will hold all the processes’ related

information such as /proc/1/status, whereas sys will hold the device and its driver-

related information such as /sys/fs/ext4/sda5/errors_count.

 usr, var
As we all know, these days usr is a separate filesystem hierarchy in the root filesystem.

Our /bin, /sbin, /lib, and /lib64 are nothing but symlinks to usr/bin, usr/sbin, usr/

lib, and usr/lib64.

ls -l bin

lrwxrwxrwx. 1 root root 7 Dec 21 12:19 bin -> usr/bin

ls -l sbin

lrwxrwxrwx. 1 root root 8 Dec 21 12:19 sbin -> usr/sbin

ls -la usr

total 40

drwxr-xr-x. 8 root root 4096 Dec 21 12:19 .

drwxr-xr-x. 12 root root 4096 Dec 21 12:19 ..

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 bin

drwxr-xr-x. 12 root root 4096 Dec 21 12:19 lib

drwxr-xr-x. 4 root root 12288 Dec 21 12:19 lib64

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 libexec

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 sbin

drwxr-xr-x. 5 root root 4096 Dec 21 12:19 share

ls -la var

total 12

drwxr-xr-x. 3 root root 4096 Dec 21 12:19 .

drwxr-xr-x. 12 root root 4096 Dec 21 12:19 ..

lrwxrwxrwx. 1 root root 11 Dec 21 12:19 lock -> ../run/lock

lrwxrwxrwx. 1 root root 6 Dec 21 12:19 run -> ../run

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 tmp

Chapter 5 initramfs

225

 lib, lib64
There are almost 200 libraries, and almost all of them are provided by glibc, such as

libc.so.6.

The lib and lib64 directories are the symlinks of usr/lib and usr/lib64.

ls -l lib

lrwxrwxrwx. 1 root root 7 Dec 21 12:19 lib -> usr/lib

ls -l lib64

lrwxrwxrwx. 1 root root 9 Dec 21 12:19 lib64 -> usr/lib64

ls -la lib/

total 128

drwxr-xr-x. 12 root root 4096 Dec 21 12:19 .

drwxr-xr-x. 8 root root 4096 Dec 21 12:19 ..

drwxr-xr-x. 3 root root 4096 Dec 21 12:19 dracut

-rwxr-xr-x. 1 root root 34169 Dec 21 12:19 dracut-lib.sh

-rw-r--r--. 1 root root 31 Dec 21 12:19 fedora-release

drwxr-xr-x. 6 root root 4096 Dec 21 12:19 firmware

-rwxr-xr-x. 1 root root 6400 Dec 21 12:19 fs-lib.sh

-rw-r--r--. 1 root root 238 Dec 21 12:19 initrd-release

drwxr-xr-x. 6 root root 4096 Dec 21 12:19 kbd

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 modprobe.d

drwxr-xr-x. 3 root root 4096 Dec 21 12:19 modules

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 modules-load.d

-rwxr-xr-x. 1 root root 25295 Dec 21 12:19 net-lib.sh

lrwxrwxrwx. 1 root root 14 Dec 21 12:19 os-release -> initrd-release

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 sysctl.d

drwxr-xr-x. 5 root root 4096 Dec 21 12:19 systemd

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 tmpfiles.d

drwxr-xr-x. 3 root root 4096 Dec 21 12:19 udev

ls -la lib64/libc.so.6

lrwxrwxrwx. 1 root root 12 Dec 21 12:19 lib64/libc.so.6 -> libc-2.30.so

Chapter 5 initramfs

226

dnf whatprovides lib64/libc.so.6

glibc-2.30-5.fc31.x86_64 : The GNU libc libraries

Repo : @System

Matched from:

Filename : /lib64/libc.so.6

 initramfs Booting
The basic flow of booting sequence inside initramfs is easy to understand:

 1) Since initramfs is a root filesystem (temporary), it will create the

environment that is necessary to run the processes. initramfs will

be mounted as a root filesystem (temporary /), and programs like

systemd will be started from it.

 2) Afterward, a new user’s root filesystem from your HDD or network

will be mounted on a temporary directory inside initramfs.

 3) Once the user’s root filesystem is mounted inside initramfs, the

kernel will start the init binary, which is a symlink to systemd, the

first process of the operating system.

ls init -l

 lrwxrwxrwx. 1 root root 23 Dec 21 12:19 init -> usr/lib/systemd/systemd

 4) Once everything is good, the temporary root filesystem (initramfs

root filesystem) will be unmounted, and systemd will take care

of the rest of the booting sequence. Chapter 7 will cover systemd

booting.

We can cross-verify whether the kernel really launches the init/systemd process as

soon as it extracts initramfs. We can modify the init script for this, but the hurdle is that

systemd is a binary, whereas init used to be a script. We can edit init easily since it is a

script file, but we cannot edit the systemd binary. However, to have good understanding

and to verify our booting sequence to see whether systemd is getting called as soon as

the kernel extracts initramfs, we will use an init-based system. This would be a fair

example since systemd is here to replace the init system. Also, init is still a symlink to

systemd. We will use a Centos 6 system, which is an init-based Linux distribution.

Chapter 5 initramfs

227

First extract initramfs.

zcat initramfs-2.6.32-573.el6.x86_64.img | cpio –idv

[root@localhost initramfs]# ls -lah

total 120K

drwxr-xr-x. 26 root root 4.0K Mar 27 12:56 .

drwxr-xr-x. 3 root root 4.0K Mar 27 12:56 ..

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 bin

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 cmdline

drwxr-xr-x. 3 root root 4.0K Mar 27 12:56 dev

-rw-r--r--. 1 root root 19 Mar 27 12:56 dracut-004-388.el6

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 emergency

drwxr-xr-x. 8 root root 4.0K Mar 27 12:56 etc

-rwxr-xr-x. 1 root root 8.8K Mar 27 12:56 init

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue-finished

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue-settled

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 initqueue-timeout

drwxr-xr-x. 7 root root 4.0K Mar 27 12:56 lib

drwxr-xr-x. 3 root root 4.0K Mar 27 12:56 lib64

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 mount

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 netroot

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-mount

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-pivot

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-trigger

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 pre-udev

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 proc

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 sbin

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 sys

drwxr-xr-x. 2 root root 4.0K Mar 27 12:56 sysroot

drwxrwxrwt. 2 root root 4.0K Mar 27 12:56 tmp

drwxr-xr-x. 8 root root 4.0K Mar 27 12:56 usr

drwxr-xr-x. 4 root root 4.0K Mar 27 12:56 var

Chapter 5 initramfs

228

Open an init file and add the following banner in it:

#vim init

 "We are inside the init process. Init is replaced by Systemd"

<snip>

#!/bin/sh

#

Licensed under the GPLv2

#

Copyright 2008-2009, Red Hat, Inc.

Harald Hoyer <harald@redhat.com>

Jeremy Katz <katzj@redhat.com>

echo "we are inside the init process. Init is replaced by Systemd"

wait_for_loginit()

{

 if getarg rdinitdebug; then

 set +x

 exec 0<>/dev/console 1<>/dev/console 2<>/dev/console

 # wait for loginit

 i=0

 while [$i -lt 10]; do

.

.

.

</snip>

Repack initramfs with the test.img name.

[root@localhost initramfs]# find . | cpio -o -c | gzip -9 > /boot/test.img

163584 blocks

ls -lh /boot/

total 66M

-rw-r--r--. 1 root root 105K Jul 23 2015 config-2.6.32-573.el6.x86_64

drwxr-xr-x. 3 root root 1.0K Aug 7 2015 efi

-rw-r--r--. 1 root root 163K Jul 20 2011 elf-memtest86+-4.10

drwxr-xr-x. 2 root root 1.0K Dec 21 16:12 grub

Chapter 5 initramfs

229

-rw-------. 1 root root 27M Dec 21 15:55 initramfs-2.6.32-573.el6.

x86_64.img

-rw-------. 1 root root 5.3M Dec 21 16:03 initrd-2.6.32-573.el6.

x86_64kdump.img

drwx------. 2 root root 12K Dec 21 15:54 lost+found

-rw-r--r--. 1 root root 162K Jul 20 2011 memtest86+-4.10

-rw-r--r--. 1 root root 202K Jul 23 2015 symvers-2.6.32-573.el6.x86_64.gz

-rw-r--r--. 1 root root 2.5M Jul 23 2015 System.map-2.6.32-573.el6.x86_64

-rw-r--r--. 1 root root 27M Mar 27 13:16 test.img

-rwxr-xr-x. 1 root root 4.1M Jul 23 2015 vmlinuz-2.6.32-573.el6.x86_64

Boot with the new test.img initramfs, and you will notice right after unpacking

initramfs that our banner is getting printed.

<snip>

.

.

.

cpuidle: using governor ladder

cpuidle: using governor menu

EFI Variables Facility v0.08 2004-May-17

usbcore: registered new interface driver hiddev

usbcore: registered new interface driver usbhid

usbhid: v2.6:USB HID core driver

GRE over IPv4 demultiplexor driver

TCP cubic registered

Initializing XFRM netlink socket

NET: Registered protocol family 17

registered taskstats version 1

rtc_cmos 00:01: setting system clock to 2020-03-27 07:53:44 UTC (1585295624)

Initalizing network drop monitor service

Freeing unused kernel memory: 1296k freed

Write protecting the kernel read-only data: 10240k

Freeing unused kernel memory: 732k freed

Freeing unused kernel memory: 1576k freed

we are inside the init process. Init is replaced by Systemd

dracut: dracut-004-388.el6

Chapter 5 initramfs

230

dracut: rd_NO_LUKS: removing cryptoluks activation

device-mapper: uevent: version 1.0.3

device-mapper: ioctl: 4.29.0-ioctl (2014-10-28) initialised:

dm-devel@redhat.com

udev: starting version 147

dracut: Starting plymouth daemon

.

.

</snip>

 How Does the Kernel Extract initramfs from Memory?
Let’s take a minute and try to recall whatever we have learned so far.

 1) The bootloader runs first.

 2) The bootloader copies the kernel and initramfs in memory.

 3) The kernel extracts itself.

 4) The bootloader passes on the location of initramfs to the kernel.

 5) The kernel extracts initramfs in memory.

 6) The kernel runs systemd from the extracted initramfs.

The extraction takes place in the kernel’s init/initramfs.c file. The populate_

rootfs function is responsible for the extraction.

populate_rootfs function:

<snip>

.

.

646 static int __init populate_rootfs(void)

647 {

648 /* Load the built in initramfs */

649 char *err = unpack_to_rootfs(__initramfs_start, __initramfs_

size);

650 if (err)

Chapter 5 initramfs

231

651 panic("%s", err); /* Failed to decompress INTERNAL

initramfs */

652

653 if (!initrd_start || IS_ENABLED(CONFIG_INITRAMFS_FORCE))

654 goto done;

655

656 if (IS_ENABLED(CONFIG_BLK_DEV_RAM))

657 printk(KERN_INFO "Trying to unpack rootfs image as

initramfs...\n");

658 else

659 printk(KERN_INFO "Unpacking initramfs...\n");

660

661 err = unpack_to_rootfs((char *)initrd_start, initrd_end -

initrd_start);

662 if (err) {

663 clean_rootfs();

664 populate_initrd_image(err);

665 }

666

667 done:

668 /*

669 * If the initrd region is overlapped with crashkernel reserved

region,

670 * free only memory that is not part of crashkernel region.

671 */

672 if (!do_retain_initrd && initrd_start && !kexec_free_initrd())

673 free_initrd_mem(initrd_start, initrd_end);

674 initrd_start = 0;

675 initrd_end = 0;

676

677 flush_delayed_fput();

678 return 0;

679 }

.

.

</snip>

Chapter 5 initramfs

232

unpack_to_rootfs function:

<snip>

.

.

443 static char * __init unpack_to_rootfs(char *buf, unsigned long len)

444 {

445 long written;

446 decompress_fn decompress;

447 const char *compress_name;

448 static __initdata char msg_buf[64];

449

450 header_buf = kmalloc(110, GFP_KERNEL);

451 symlink_buf = kmalloc(PATH_MAX + N_ALIGN(PATH_MAX) + 1,

GFP_KERNEL);

452 name_buf = kmalloc(N_ALIGN(PATH_MAX), GFP_KERNEL);

453

454 if (!header_buf || !symlink_buf || !name_buf)

455 panic("can't allocate buffers");

456

457 state = Start;

458 this_header = 0;

459 message = NULL;

460 while (!message && len) {

461 loff_t saved_offset = this_header;

462 if (*buf == '0' && !(this_header & 3)) {

463 state = Start;

464 written = write_buffer(buf, len);

465 buf += written;

466 len -= written;

467 continue;

468 }

Chapter 5 initramfs

233

469 if (!*buf) {

470 buf++;

471 len--;

472 this_header++;

473 continue;

474 }

475 this_header = 0;

476 decompress = decompress_method(buf, len, &compress_

name);

477 pr_debug("Detected %s compressed data\n", compress_

name);

478 if (decompress) {

479 int res = decompress(buf, len, NULL, flush_

buffer, NULL,

480 &my_inptr, error);

481 if (res)

482 error("decompressor failed");

483 } else if (compress_name) {

484 if (!message) {

485 snprintf(msg_buf, sizeof msg_buf,

486 "compression method %s not

configured",

487 compress_name);

488 message = msg_buf;

489 }

490 } else

491 error("invalid magic at start of compressed

archive");

492 if (state != Reset)

493 error("junk at the end of compressed archive");

494 this_header = saved_offset + my_inptr;

495 buf += my_inptr;

496 len -= my_inptr;

497 }

Chapter 5 initramfs

234

498 dir_utime();

499 kfree(name_buf);

500 kfree(symlink_buf);

501 kfree(header_buf);

502 return message;

503 }

.

.

</snip>

Inside the populate_rootfs function there is a unpack_to_rootfs function. This is

the worker function that unpacks initramfs and returns 0 for failure and 1 for success.

Also note the interesting function parameters.

• __initramfs_start: This is the exact location/address of a

loaded initramfs (initramfs will be loaded by the bootloader, so

obviously the address location is also provided by the bootloader

through boot_protocol).

• __initramfs_size: This is the size of the initramfs image.

 How Does the Kernel Mount initramfs as Root?
The initramfs blob is just an (optionally compressed) cpio file. The kernel extracts it by

creating a tmpfs/ramfs filesystem in memory as the root filesystem. So, there’s not really

a fixed location; the kernel just allocates memory for the extracted files as it goes along.

We have already seen that GRUB 2/the bootloader places the kernel at a specific location

that will be architecture dependent, but initramfs image extraction does not take place at

any specific location.

Now before we proceed further with our booting sequence, we need to understand

the dracut tool, which generates initramfs. This tool will provide us with a better

understanding of initramfs and systemd.

Chapter 5 initramfs

235
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_6

CHAPTER 6

dracut
Put simply, dracut is a tool that creates the initramfs filesystem on Fedora-based

systems. Debian- and Ubuntu-based systems use a similar tool called update-initramfs.

If you want to generate, regenerate, or customize the existing initramfs, then you should

know how to use the dracut tool. This chapter will explain how dracut works along with

how to generate and customize initramfs. Also, you will learn some of the most common

“can’t boot” issues related to initramfs.

 Getting Started
Every kernel has its own initramfs file, but you might be wondering why you never had to

use the dracut command to create initramfs while installing a new kernel. Instead, you

just found the respective initramfs in the /boot location. Well, when you install a new

kernel, the post-scripts command of the kernel’s rpm package calls dracut and makes

initramfs for you. Let’s see how it works on a Fedora-based system:

rpm -q --scripts kernel-core-5.3.7-301.fc31.x86_64

postinstall scriptlet (using /bin/sh):

if [`uname -i` == "x86_64" -o `uname -i` == "i386"] &&

 [-f /etc/sysconfig/kernel]; then

 /bin/sed -r -i -e 's/^DEFAULTKERNEL=kernel-smp$/DEFAULTKERNEL=kernel/' /

etc/sysconfig/kernel || exit $?

fi

preuninstall scriptlet (using /bin/sh):

/bin/kernel-install remove 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.

fc31.x86_64/vmlinuz || exit $?

posttrans scriptlet (using /bin/sh):

/bin/kernel-install add 5.3.7-301.fc31.x86_64 /lib/modules/5.3.7-301.fc31.

x86_64/vmlinuz || exit $?

https://doi.org/10.1007/978-1-4842-5890-3_6#ESM

236

As you can see, the post-scripts command of the kernel package calls the kernel-

install script. The kernel-install script executes all the scripts that are available at

/usr/lib/kernel/install.d.

vim /bin/kernel-install

 94 if ! [[$MACHINE_ID]]; then

 95 ENTRY_DIR_ABS=$(mktemp -d /tmp/kernel-install.XXXXX) || exit 1

 96 trap "rm -rf '$ENTRY_DIR_ABS'" EXIT INT QUIT PIPE

 97 elif [[-d /efi/loader/entries]] || [[-d /efi/$MACHINE_ID]]; then

 98 ENTRY_DIR_ABS="/efi/$MACHINE_ID/$KERNEL_VERSION"

 99 elif [[-d /boot/loader/entries]] || [[-d /boot/$MACHINE_ID]]; then

100 ENTRY_DIR_ABS="/boot/$MACHINE_ID/$KERNEL_VERSION"

101 elif [[-d /boot/efi/loader/entries]] || [[-d /boot/efi/$MACHINE_ID]];

then

102 ENTRY_DIR_ABS="/boot/efi/$MACHINE_ID/$KERNEL_VERSION"

103 elif mountpoint -q /efi; then

104 ENTRY_DIR_ABS="/efi/$MACHINE_ID/$KERNEL_VERSION"

105 elif mountpoint -q /boot/efi; then

106 ENTRY_DIR_ABS="/boot/efi/$MACHINE_ID/$KERNEL_VERSION"

107 else

108 ENTRY_DIR_ABS="/boot/$MACHINE_ID/$KERNEL_VERSION"

109 fi

110

111 export KERNEL_INSTALL_MACHINE_ID=$MACHINE_ID

112

113 ret=0

114

115 readarray -t PLUGINS <<<"$(

116 dropindirs_sort ".install" \

117 "/etc/kernel/install.d" \

118 "/usr/lib/kernel/install.d"

119)"

Chapter 6 draCut

237

Here you can see the scripts executed by kernel-install:

ls /usr/lib/kernel/install.d/ -lh

total 36K

-rwxr-xr-x. 1 root root 744 Oct 10 18:26 00-entry-directory.install

-rwxr-xr-x. 1 root root 1.9K Oct 19 07:46 20-grubby.install

-rwxr-xr-x. 1 root root 6.6K Oct 10 13:05 20-grub.install

-rwxr-xr-x. 1 root root 829 Oct 10 18:26 50-depmod.install

-rwxr-xr-x. 1 root root 1.7K Jul 25 2019 50-dracut.install

-rwxr-xr-x. 1 root root 3.4K Jul 25 2019 51-dracut-rescue.install

-rwxr-xr-x. 1 root root 3.4K Oct 10 18:26 90-loaderentry.install

-rwxr-xr-x. 1 root root 1.1K Oct 10 13:05 99-grub-mkconfig.install

As you can see, this executes the 50-dracut.install script. This particular script

executes the dracut command and makes initramfs for a particular kernel.

 46 for ((i=0; i < "${#BOOT_OPTIONS[@]}"; i++)); do

 47 if [[${BOOT_OPTIONS[$i]} == root\=PARTUUID\=*]]; then

 48 noimageifnotneeded="yes"

 49 break

 50 fi

 51 done

 52 dracut -f ${noimageifnotneeded:+--noimageifnotneeded}

"$BOOT_DIR_ABS/$INITRD" "$KERNEL_VERSION"

 53 ret=$?

 54 ;;

 55 remove)

 56 rm -f -- "$BOOT_DIR_ABS/$INITRD"

 57 ret=$?

 58 ;;

 59 esac

 60 exit $ret

Similarly, there is the script 51-dracut-rescue.install, which will make initramfs

for the rescue kernel.

Chapter 6 draCut

238

100 if [[! -f "$BOOT_DIR_ABS/$INITRD"]]; then

101 dracut -f --no-hostonly -a "rescue" "$BOOT_DIR_ABS/$INITRD"

"$KERNEL_VERSION"

102 ((ret+=$?))

103 fi

104

105 if [["${BOOT_DIR_ABS}" != "/boot"]]; then

106 {

107 echo "title $PRETTY_NAME - Rescue Image"

108 echo "version $KERNEL_VERSION"

109 echo "machine-id $MACHINE_ID"

110 echo "options ${BOOT_OPTIONS[@]} rd.auto=1"

111 echo "linux $BOOT_DIR/linux"

112 echo "initrd $BOOT_DIR/initrd"

113 } > $LOADER_ENTRY

114 else

115 cp -aT "${KERNEL_IMAGE%/*}/bls.conf" $LOADER_ENTRY

116 sed -i 's/'$KERNEL_VERSION'/0-rescue-'${MACHINE_ID}'/'

$LOADER_ENTRY

117 fi

Hence, every kernel will have its own initramfs file.

ls -lh /boot | grep -e vmlinuz -e initramfs

-rw-------. 1 root root 80M Dec 2 18:32 initramfs-0-rescue- 280526b3bc5e4c49a

c83c8e5fbdfdb2e.img

-rw-------. 1 root root 28M Dec 23 06:37 initramfs-5.3.16-300.fc31.x86_64.img

-rw-------. 1 root root 30M Dec 2 18:33 initramfs-5.3.7-301.fc31.x86_64.img

-rwxr-xr-x. 1 root root 8.9M Dec 2 18:32 vmlinuz-0-rescue- 280526b3bc5e4c49ac8

3c8e5fbdfdb2e

-rwxr-xr-x. 1 root root 8.9M Dec 13 23:51 vmlinuz-5.3.16-300.fc31.x86_64

-rwxr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

Note the size of the kernel (vmlinuz) file and its associated initramfs file size. The

initramfs file is much bigger than the kernel.

Chapter 6 draCut

239

 Making an initramfs Image
First check which kernel has been installed on your system with this command:

rpm -qa | grep -i kernel-5

kernel-5.3.16-300.fc31.x86_64

kernel-5.3.7-301.fc31.x86_64

Choose the kernel version for which you want to generate a new initramfs image and

pass it to dracut.

dracut /boot/new.img 5.3.7-301.fc31.x86_64 -v

<snip>

dracut: Executing: /usr/bin/dracut /boot/new.img 5.3.7-301.fc31.x86_64 -v

dracut: dracut module 'busybox' will not be installed, because command

'busybox' could not be found!

dracut: dracut module 'stratis' will not be installed, because command

'stratisd-init' could not be found!

dracut: dracut module 'biosdevname' will not be installed, because command

'biosdevname' could not be found!

dracut: dracut module 'busybox' will not be installed, because command

'busybox' could not be found!

dracut: dracut module 'stratis' will not be installed, because command

'stratisd-init' could not be found!

dracut: *** Including module: bash ***

dracut: *** Including module: systemd ***

dracut: *** Including module: systemd-initrd ***

dracut: *** Including module: nss-softokn ***

dracut: *** Including module: i18n ***

dracut: *** Including module: network-manager ***

dracut: *** Including module: network ***

dracut: *** Including module: ifcfg ***

dracut: *** Including module: drm ***

dracut: *** Including module: plymouth ***

.

.

</snip>

Chapter 6 draCut

240

In the previous code, dracut will create an initramfs file called new.img in the current

directory for the 64-bit Fedora kernel, Kernel-5.3.7-301.fc31.x86_64.

ls -lh new.img

-rw-------. 1 root root 28M Dec 23 08:16 new.img

If the kernel version is not provided, then dracut will make initramfs for the kernel

through which the system has been booted. The kernel version that has been passed to

dracut must match the kernel directory present in the /lib/modules/ location.

ls /lib/modules/ -l

total 4

drwxr-xr-x. 6 root root 4096 Dec 9 10:18 5.3.7-301.fc31.x86_64

ls /lib/modules/5.3.7-301.fc31.x86_64/ -l

total 18084

-rw-r--r--. 1 root root 249 Oct 22 01:04 bls.conf

lrwxrwxrwx. 1 root root 38 Oct 22 01:04 build -> /usr/src/

kernels/5.3.7-301.fc31.x86_64

-rw-r--r--. 1 root root 213315 Oct 22 01:03 config

drwxr-xr-x. 5 root root 4096 Oct 24 04:44 extra

drwxr-xr-x. 13 root root 4096 Oct 24 04:43 kernel

-rw-r--r--. 1 root root 1127438 Dec 9 10:18 modules.alias

-rw-r--r--. 1 root root 1101059 Dec 9 10:18 modules.alias.bin

-rw-r--r--. 1 root root 1688 Oct 22 01:04 modules.block

-rw-r--r--. 1 root root 8324 Oct 22 01:04 modules.builtin

-rw-r--r--. 1 root root 10669 Dec 9 10:18 modules.builtin.bin

-rw-r--r--. 1 root root 60853 Oct 22 01:04 modules.builtin.modinfo

-rw-r--r--. 1 root root 415475 Dec 9 10:18 modules.dep

-rw-r--r--. 1 root root 574502 Dec 9 10:18 modules.dep.bin

-rw-r--r--. 1 root root 381 Dec 9 10:18 modules.devname

-rw-r--r--. 1 root root 153 Oct 22 01:04 modules.drm

-rw-r--r--. 1 root root 59 Oct 22 01:04 modules.modesetting

-rw-r--r--. 1 root root 2697 Oct 22 01:04 modules.networking

-rw-r--r--. 1 root root 139947 Oct 22 01:04 modules.order

Chapter 6 draCut

241

-rw-r--r--. 1 root root 700 Dec 9 10:18 modules.softdep

-rw-r--r--. 1 root root 468520 Dec 9 10:18 modules.symbols

-rw-r--r--. 1 root root 572778 Dec 9 10:18 modules.symbols.bin

lrwxrwxrwx. 1 root root 5 Oct 22 01:04 source -> build

-rw-------. 1 root root 4426726 Oct 22 01:03 System.map

drwxr-xr-x. 2 root root 4096 Oct 22 01:02 updates

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 vdso

-rwxr-xr-x. 1 root root 9323208 Oct 22 01:04 vmlinuz

As we know, initramfs is a temporary root filesystem, and its main purpose is to

provide an environment that will help mount the user’s root filesystem. The user’s root

filesystem could be a local to a system, or it could be a network device, and to use that

device, the kernel should have drivers (modules) for that hardware and, while booting,

get these modules from initramfs.

For example, say the user’s root filesystem is a locally connected hard disk, and the

HDD is a SCSI device. So, initramfs has to have the SCSI drivers added in its archive.

lsinitrd | grep -i scsi | awk '{ print $9 }'

etc/ld.so.conf.d/libiscsi-x86_64.conf

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/firmware/iscsi_ibft.

ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/iscsi_boot_sysfs.

ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/libiscsi.ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx/qla4xxx.

ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/scsi_transport_

iscsi.ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/scsi_transport_

srp.ko.xz

usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/virtio_scsi.ko.xz

usr/lib/udev/scsi_id

Chapter 6 draCut

242

On top of the SCSI device, users might have configured a RAID device. If they have,

then the kernel needs to have RAID device drivers to identify and assemble the RAID

device. Similarly, some of the users’ HDDs could be connected through an HBA card. In

such situations, the kernel needs a qlaXxxx-like modules.

lsinitrd | grep -i qla

 usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx

 usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/qla4xxx/

qla4xxx.ko.xz

Please note that these days '/lib' is a symlink to '/usr/lib/'.

In the case of some users, the HDD could be coming from Fiber Channel over

Ethernet. Then the kernel needs FCOE modules. In a virtualized environment, the HDD

could be a virtual disk exposed by a hypervisor. In that case, to mount the user’s root

filesystem, the virtIO module is necessary. This way, the list of hardware and their

respective modules goes on.

Obviously, the kernel cannot store all of these necessary module files (.ko) in its own

binary (vmlinuz). Hence, one of the main jobs of initramfs is to store all the modules that

are necessary to mount the user’s root filesystem. This is also one of the reasons why the

initramfs file size is much bigger compared to the kernel file. But remember, initramfs is

not the source of the modules. The modules will always be provided by the kernel and

archived in initramfs by dracut. The kernel (vmlinuz) is the source of all the modules, but

as you can rightly guess, the kernel size will be huge if the kernel stores all the modules in

its vmlinuz binary. Hence, along with a kernel package, a new package named kernel-

modules has been introduced, and this package provides all the modules that are present

at the /lib/modules/<kernel-version-arch> location; dracut pulls only those modules

(.ko files) that are necessary for mounting the user’s root filesystem.

rpm -qa | grep -i kernel

 Kernel-headers-5.3.6-300.fc31.x86_64

 kernel-modules-extra-5.3.7-301.fc31.x86_64

 kernel-modules-5.3.7-301.fc31.x86_64

 kernel-core-5.3.16-300.fc31.x86_64

 kernel-core-5.3.7-301.fc31.x86_64

Chapter 6 draCut

243

 kernel-5.3.16-300.fc31.x86_64

 abrt-addon-kerneloops-2.12.2-1.fc31.x86_64

 kernel-5.3.7-301.fc31.x86_64

 libreport-plugin-kerneloops-2.10.1-2.fc31.x86_64

 Kernel-modules-5.3.16-300.fc31.x86_64

rpm -ql kernel-modules-5.3.7-301.fc31.x86_64 | wc -l

 1698

 # rpm -ql kernel-modules-5.3.7-301.fc31.x86_64

 <snip>

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/atmtcp.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/eni.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/firestream.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/he.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/nicstar.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/solos-pci.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/atm/suni.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/cfag12864b.

ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/cfag12864bfb.

ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/charlcd.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/hd44780.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/auxdisplay/ks0108.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bcma/bcma.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/ath3k.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bcm203x.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bfusb.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bluecard_

cs.ko.xz

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth/bpa10x.ko.xz

 .

 .

 </snip>

Chapter 6 draCut

244

As you can see, the kernel-modules package that came with kernel-5.3.7-301

provides almost 1,698 modules. Also, the kernel-module package will be a dependency

of the kernel package; hence, whenever kernel is installed, kernel-modules will be

pulled and installed by a Fedora-based operating system.

 Dracut and Modules
We’ll now review the dracut modules.

 How Does dracut Select Modules?
To understand how dracut pulls the modules in initramfs, first we need to understand

the depmod command. depmod analyzes all the kernel modules in the /lib/

modules/<kernel-version-arch> location and makes a list of all the modules along

with their dependency modules. It keeps this list in the modules.dep file. (Note that

on Fedora-based systems, it is good to refer to the module’s location as /usr/lib/

modules/<kernel_version>/*.) Here’s an example:

vim /lib/modules/5.3.7-301.fc31.x86_64/modules.dep

<snip>

.

.

kernel/arch/x86/kernel/cpu/mce/mce-inject.ko.xz:

kernel/arch/x86/crypto/des3_ede-x86_64.ko.xz: kernel/crypto/des_generic.ko.xz

kernel/arch/x86/crypto/camellia-x86_64.ko.xz:

kernel/arch/x86/crypto/blowfish-x86_64.ko.xz: kernel/crypto/blowfish_

common.ko.xz

kernel/arch/x86/crypto/twofish-x86_64.ko.xz: kernel/crypto/twofish_common.

ko.xz

.

.

</snip>

In this code, you can see that the module named des3_ede needs the module des_

generic to work properly. In another example, you can see that the blowfish modules

Chapter 6 draCut

245

have a blowfish_comman module as a dependency. So, dracut reads the modules.

dep file and starts pulling the kernel modules in the initramfs image from the /lib/

modules/5.3.7-301.fc31.x86_64/kernel/ location.

ls /lib/modules/5.3.7-301.fc31.x86_64/kernel/ -l

total 44

drwxr-xr-x. 3 root root 4096 Oct 24 04:43 arch

drwxr-xr-x. 4 root root 4096 Oct 24 04:43 crypto

drwxr-xr-x. 80 root root 4096 Oct 24 04:43 drivers

drwxr-xr-x. 43 root root 4096 Oct 24 04:43 fs

drwxr-xr-x. 4 root root 4096 Oct 24 04:43 kernel

drwxr-xr-x. 8 root root 4096 Oct 24 04:43 lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 mm

drwxr-xr-x. 51 root root 4096 Oct 24 04:43 net

drwxr-xr-x. 3 root root 4096 Oct 24 04:43 security

drwxr-xr-x. 13 root root 4096 Oct 24 04:43 sound

drwxr-xr-x. 3 root root 4096 Oct 24 04:43 virt

The kernel provides thousands of modules, but every module does not need to

be added in initramfs. Hence, while collecting the modules, dracut pulls very specific

modules.

find /lib/modules/5.3.7-301.fc31.x86_64/ -name '*.ko.xz' | wc -l

3539

If dracut pulled every module, then the size of initramfs would be large. Also, why

pull every module when it is not necessary? So, dracut pulls only those modules that are

necessary to mount the user’s root filesystem on that system.

lsinitrd | grep -i '.ko.xz' | wc -l

221

As you can see, initramfs has only 221 modules, whereas the kernel has almost 3,539

modules in it.

If we include 3,539 modules in initramfs, it would make initramfs huge, which will

eventually slow down the booting performance because the initramfs archive loading

and decompression time will be high. Also, we need to understand that initramfs’

main task is to mount the user’s root filesystem. Therefore, it makes sense to include

Chapter 6 draCut

246

only those modules that are necessary to mount the root filesystem. For example, the

Bluetooth-related modules are not necessary to add in initramfs since the root filesystem

will never be coming from a Bluetooth-connected device. So, you will not find any

Bluetooth-related modules in initramfs, even though there are a couple of bluetooth

modules provided by the kernel (kernel-modules).

find /lib/modules/5.3.7-301.fc31.x86_64/ -name 'bluetooth'

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/net/bluetooth

 /lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/bluetooth

lsinitrd | grep -i blue

 <no_output>

By default, dracut will add only host-specific modules in initramfs. It does this by

inspecting the current system state and the modules that are currently used by the

system. Being host-specific is the default approach of every leading Linux distribution.

Fedora and Ubuntu-like systems also create a generic initramfs image, called a rescue

initramfs image. The rescue initramfs includes all possible modules for devices on which

users can possibly make a root filesystem. The idea is that the generic initramfs should

be applicable to all the systems. Therefore, the rescue initramfs will always be bigger in

size compared to the host-specific initramfs. dracut has a bunch of logic to decide which

modules are needed to mount the root filesystem. This is what man page of dracut says,

but remember in Fedora-based Linux, --hostonly is the default.

“If you want to create lighter, smaller initramfs images, you may want to
specify the --hostonly or -H option. Using this option, the resulting image
will contain only those dracut modules, kernel modules and filesystems,
which are needed to boot this specific machine. This has the drawback, that
you can’t put the disk on another controller or machine, and that you can’t
switch to another root filesystem, without recreating the initramfs image.
The usage of the --hostonly option is only for experts and you will have to
keep the broken pieces. At least keep a copy of a general purpose image (and
corresponding kernel) as a fallback to rescue your system.”

In the Chapter 5 we saw that there are a number of binaries, modules, and

configuration files that were chosen by dracut and added in initramfs, but how does

dracut choose files from the user’s large root filesystem?

Chapter 6 draCut

247

The files are chosen by running the scripts in the location /usr/lib/dracut/

modules.d. This is the place where all the scripts of dracut are stored. dracut runs these

scripts while generating initramfs, as shown here:

ls /usr/lib/dracut/modules.d/ -l

total 288

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 00bash

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 00systemd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 00warpclock

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 01fips

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 01systemd-initrd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 02systemd-networkd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 03modsign

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 03rescue

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 04watchdog

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 05busybox

drwxr-xr-x. 2 root root 4096 Oct 24 04:42 05nss-softokn

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 05rdma

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 10i18n

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 30convertfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 35network-legacy

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 35network-manager

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 40network

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 45ifcfg

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 45url-lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 50drm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 50plymouth

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 80lvmmerge

drwxr-xr-x. 2 root root 4096 Oct 24 04:42 90bcache

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90btrfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90crypt

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90dm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90dmraid

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90dmsquash-live

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90dmsquash-live-ntfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-modules

Chapter 6 draCut

248

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-modules-extra

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90kernel-network-modules

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 90livenet

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90lvm

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90mdraid

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90multipath

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90qemu

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90qemu-net

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 90stratis

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 91crypt-gpg

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 91crypt-loop

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95cifs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95debug

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95fcoe

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95fcoe-uefi

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95fstab-sys

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95iscsi

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95lunmask

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95nbd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95nfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95resume

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95rootfs-block

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95ssh-client

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95terminfo

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95udev-rules

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 95virtfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 97biosdevname

drwxr-xr-x. 2 root root 4096 Jan 6 12:42 98dracut-systemd

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98ecryptfs

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 98ostree

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98pollcdrom

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98selinux

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98syslog

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 98usrmount

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99base

Chapter 6 draCut

249

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99earlykdump

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99fs-lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:44 99img-lib

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99kdumpbase

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99shutdown

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99squash

drwxr-xr-x. 2 root root 4096 Oct 24 04:43 99uefi-lib

The same output can be viewed by using #dracut --list-modules.

Whenever we try to make an initramfs filesystem, dracut starts executing the

module- setup.sh script files in each directory in /usr/lib/dracut/modules.d/.

find /usr/lib/dracut/modules.d/ -name 'module-setup.sh'

/usr/lib/dracut/modules.d/95iscsi/module-setup.sh

/usr/lib/dracut/modules.d/98ecryptfs/module-setup.sh

/usr/lib/dracut/modules.d/30convertfs/module-setup.sh

/usr/lib/dracut/modules.d/90crypt/module-setup.sh

/usr/lib/dracut/modules.d/10i18n/module-setup.sh

/usr/lib/dracut/modules.d/99earlykdump/module-setup.sh

/usr/lib/dracut/modules.d/95nbd/module-setup.sh

.

.

.

/usr/lib/dracut/modules.d/04watchdog/module-setup.sh

/usr/lib/dracut/modules.d/90lvm/module-setup.sh

/usr/lib/dracut/modules.d/35network-legacy/module-setup.sh

/usr/lib/dracut/modules.d/01systemd-initrd/module-setup.sh

/usr/lib/dracut/modules.d/99squash/module-setup.sh

/usr/lib/dracut/modules.d/05busybox/module-setup.sh

/usr/lib/dracut/modules.d/50drm/module-setup.sh

This module-setup.sh script will pick the module, binary, and configuration files

that are specific to that host. For example, the first module-setup.sh script, which will

run from the 00bash directory, will include the bash binary in initramfs.

Chapter 6 draCut

250

vim /usr/lib/dracut/modules.d/00bash/module-setup.sh

 1 #!/usr/bin/bash

 2

 3 # called by dracut

 4 check() {

 5 require_binaries /bin/bash

 6 }

 7

 8 # called by dracut

 9 depends() {

 10 return 0

 11 }

 12

 13 # called by dracut

 14 install() {

 15 # If another shell is already installed, do not use bash

 16 [[-x $initdir/bin/sh]] && return

 17

 18 # Prefer bash as /bin/sh if it is available.

 19 inst /bin/bash && ln -sf bash "${initdir}/bin/sh"

 20 }

 21

As you can see, the script file is adding the /bin/bash binary in initramfs. Let’s look

at another example, this one of plymouth.

vim /usr/lib/dracut/modules.d/50plymouth/module-setup.sh

 1 #!/usr/bin/bash

 2

 3 pkglib_dir() {

 4 local _dirs="/usr/lib/plymouth /usr/libexec/plymouth/"

 5 if type -P dpkg-architecture &>/dev/null; then

 6 _dirs+=" /usr/lib/$(dpkg-architecture -qDEB_HOST_MULTIARCH)/

plymouth"

 7 fi

 8 for _dir in $_dirs; do

Chapter 6 draCut

251

 9 if [-x $_dir/plymouth-populate-initrd]; then

 10 echo $_dir

 11 return

 12 fi

 13 done

 14 }

 15

 16 # called by dracut

 17 check() {

 18 [["$mount_needs"]] && return 1

 19 [-z $(pkglib_dir)] && return 1

 20

 21 require_binaries plymouthd plymouth plymouth-set-default-theme

 22 }

 23

 24 # called by dracut

 25 depends() {

 26 echo drm

 27 }

 28

 29 # called by dracut

 30 install() {

 31 PKGLIBDIR=$(pkglib_dir)

 32 if grep -q nash ${PKGLIBDIR}/plymouth-populate-initrd \

 33 || [! -x ${PKGLIBDIR}/plymouth-populate-initrd]; then

 34 . "$moddir"/plymouth-populate-initrd.sh

 35 else

 36 PLYMOUTH_POPULATE_SOURCE_FUNCTIONS="$dracutfunctions" \

 37 ${PKGLIBDIR}/plymouth-populate-initrd -t "$initdir"

 38 fi

 39

 40 inst_hook emergency 50 "$moddir"/plymouth-emergency.sh

 41

 42 inst_multiple readlink

 43

Chapter 6 draCut

252

 44 if ! dracut_module_included "systemd"; then

 45 inst_hook pre-trigger 10 "$moddir"/plymouth-pretrigger.sh

 46 inst_hook pre-pivot 90 "$moddir"/plymouth-newroot.sh

 47 fi

 48 }

Simply grepping require_binaries will show all the binaries that dracut will add in

the generic initramfs.

grep -ir "require_binaries" /usr/lib/dracut/modules.d/

/usr/lib/dracut/modules.d/90mdraid/module-setup.sh: require_binaries

mdadm expr || return 1

/usr/lib/dracut/modules.d/80lvmmerge/module-setup.sh: require_binaries

lvm dd swapoff || return 1

/usr/lib/dracut/modules.d/95cifs/module-setup.sh: require_binaries

mount.cifs || return 1

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require_binaries

gpg || return 1

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require_

binaries gpg-agent &&

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require_

binaries gpg-connect-agent &&

/usr/lib/dracut/modules.d/91crypt-gpg/module-setup.sh: require_

binaries /usr/libexec/scdaemon &&

/usr/lib/dracut/modules.d/45url-lib/module-setup.sh: require_binaries

curl || return 1

/usr/lib/dracut/modules.d/90stratis/module-setup.sh: require_binaries

stratisd-init thin_check thin_repair mkfs.xfs xfs_admin xfs_growfs ||

return 1

/usr/lib/dracut/modules.d/90multipath/module-setup.sh: require_binaries

multipath || return 1

/usr/lib/dracut/modules.d/95iscsi/module-setup.sh: require_binaries

iscsi-iname iscsiadm iscsid || return 1

/usr/lib/dracut/modules.d/95ssh-client/module-setup.sh: require_binaries

ssh scp || return 1

Chapter 6 draCut

253

/usr/lib/dracut/modules.d/35network-manager/module-setup.sh: require_

binaries sed grep || return 1

/usr/lib/dracut/modules.d/90dmsquash-live-ntfs/module-setup.sh: require_

binaries ntfs-3g || return 1

/usr/lib/dracut/modules.d/91crypt-loop/module-setup.sh: require_binaries

losetup || return 1

/usr/lib/dracut/modules.d/05busybox/module-setup.sh: require_binaries

busybox || return 1

/usr/lib/dracut/modules.d/99img-lib/module-setup.sh: require_binaries

tar gzip dd bash || return 1

/usr/lib/dracut/modules.d/90dm/module-setup.sh: require_binaries dmsetup

|| return 1

/usr/lib/dracut/modules.d/03modsign/module-setup.sh: require_binaries

keyctl || return 1

/usr/lib/dracut/modules.d/97biosdevname/module-setup.sh: require_

binaries biosdevname || return 1

/usr/lib/dracut/modules.d/95nfs/module-setup.sh: require_binaries rpc.

statd mount.nfs mount.nfs4 umount || return 1

/usr/lib/dracut/modules.d/90dmraid/module-setup.sh: require_binaries

dmraid || return 1

/usr/lib/dracut/modules.d/95fcoe/module-setup.sh: require_binaries

dcbtool fipvlan lldpad ip readlink fcoemon fcoeadm || return 1

/usr/lib/dracut/modules.d/00warpclock/module-setup.sh: require_binaries

/sbin/hwclock || return 1

/usr/lib/dracut/modules.d/35network-legacy/module-setup.sh: require_

binaries ip dhclient sed awk grep || return 1

/usr/lib/dracut/modules.d/00bash/module-setup.sh: require_binaries /bin/

bash

/usr/lib/dracut/modules.d/95nbd/module-setup.sh: require_binaries nbd-

client || return 1

/usr/lib/dracut/modules.d/90btrfs/module-setup.sh: require_binaries

btrfs || return 1

/usr/lib/dracut/modules.d/00systemd/module-setup.sh: if require_binaries

$systemdutildir/systemd; then

Chapter 6 draCut

254

/usr/lib/dracut/modules.d/10i18n/module-setup.sh: require_binaries

setfont loadkeys kbd_mode || return 1

/usr/lib/dracut/modules.d/90lvm/module-setup.sh: require_binaries lvm ||

return 1

/usr/lib/dracut/modules.d/50plymouth/module-setup.sh: require_binaries

plymouthd plymouth plymouth-set-default-theme

/usr/lib/dracut/modules.d/95fcoe-uefi/module-setup.sh: require_binaries

dcbtool fipvlan lldpad ip readlink || return 1

Once again, dracut does not include every module from /usr/lib/dracut/

modules.d. It includes only host-specific modules. In the following section, you will learn

how to add or omit specific modules from initramfs.

 Customizing initramfs
Dracut also has its own modules. The kernel modules and dracut modules are different.

Dracut collects the host-specific binaries, the associated libraries, the configuration files,

and the hardware device modules and groups them under the name dracut modules.

The kernel modules consist of the .ko files of the hardware device. You can see the

dracut modules list either from /usr/lib/dracut/modules.d/ or from the dracut

--list-modules command.

dracut --list-modules | xargs -n6

bash systemd warpclock fips systemd-initrd systemd-networkd

modsign rescue watchdog busybox nss-softokn rdma

i18n convertfs network-legacy network-manager network ifcfg

url-lib drm plymouth lvmmerge bcache btrfs

crypt dm dmraid dmsquash-live dmsquash-live-ntfs kernel-modules

kernel-modules-extra kernel-network-modules livenet lvm mdraid multipath

qemu qemu-net stratis crypt-gpg crypt-loop cifs

debug fcoe fcoe-uefi fstab-sys iscsi lunmask

nbd nfs resume rootfs-block ssh-client terminfo

udev-rules virtfs biosdevname dracut-systemd ecryptfs ostree

pollcdrom selinux syslog usrmount base earlykdump

fs-lib img-lib kdumpbase shutdown squash uefi-lib

Chapter 6 draCut

255

If you want to add or omit specific dracut modules (not the hardware device

module) from initramfs, then dracut.conf plays a vital role here. Note that dracut.conf

is a configuration file of dracut, not of initramfs; hence, it will not be available inside

initramfs.

lsinitrd | grep -i 'dracut.conf'

 <no output>

dracut will refer to the dracut.conf file while generating initramfs. By default it

will be an empty file.

cat /etc/dracut.conf

 # PUT YOUR CONFIG IN separate files

 # in /etc/dracut.conf.d named "<name>.conf"

 # SEE man dracut.conf(5) for options

There are various options provided by dracut.conf that you can use to add or omit

the module.

Suppose you want to omit the plymouth-related files (binaries, configuration

files, modules, etc.) from initramfs; then you can either add a omit_

dracutmodules+=plymouth in dracut.conf or use the omit (-o) switch of the dracut

binary. Here’s an example:

lsinitrd | grep -i plymouth | wc -l

 118

There are almost 118 plymouth-related files present in the currently booted kernel.

Let’s try to omit plymouth-related files now.

dracut -o plymouth /root/new.img

lsinitrd /root/new.img | grep -i plymouth | wc -l

 4

As you can clearly see, all plymouth-related dracut modules have been eliminated

from our newly built initramfs. Therefore, the plymouth-related binaries, configuration

files, libraries, and hardware device modules (if available) will not be captured by dracut

in initramfs. The same result can be achieved by adding omit_dracutmodules+=

plymouth in dracut.conf.

Chapter 6 draCut

256

cat /etc/dracut.conf | grep -v '#'

 omit_dracutmodules+=plymouth

dracut /root/new.img --force

lsinitrd /root/new.img | grep -i plymouth

-rw-r--r-- 1 root root 454 Jul 25 2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.path

-rw-r--r-- 1 root root 435 Jul 25 2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service.wants

lrwxrwxrwx 1 root root 33 Jul 25 2019 usr/lib/systemd/

system/systemd-ask-password-plymouth.service.wants/systemd-vconsole-setup.

service -> ../systemd-vconsole-setup.service

The following comes from the man page:

Omitting dracut Modules

Sometimes you don’t want a dracut module to be included for reasons of
speed, size or functionality. To do this, either specify the omit_dracutmod-
ules variable in the dracut.conf or /etc/dracut.conf.d/myconf.conf configu-
ration file (see dracut.conf(5)), or use the -o or --omit option on the
command line: # dracut -o “multipath lvm” no-multipath-lvm.img

Like when we omitted the dracut module, we can add any module that is available

in /usr/lib/dracut/modules.d. We can use the --add switch of dracut or can use add_

dracutmodules+= in dracut.conf. For example, you can see that we do not have NFS

modules/files/binaries added in our new.img initramfs because my test system is not

booting from NFS and not using any NFS mount point in it. Obviously, dracut will skip

the nfs module from /usr/lib/dracut/modules.d. So, let’s add it in our initramfs.

#lsinitrd | grep -i nfs

<no_output>

cat /etc/dracut.conf

 # PUT YOUR CONFIG IN separate files

 # in /etc/dracut.conf.d named "<name>.conf"

 # SEE man dracut.conf(5) for options

Chapter 6 draCut

257

 #omit_dracutmodules+=plymouth

 add_dracutmodules+=nfs

dracut /root/new.img --force

lsinitrd /root/new.img | grep -i nfs | wc -l

 33

We can also achieve this by using the dracut command with the --add switch.

lsinitrd /root/new.img | grep -i nfs

dracut --add nfs /root/new.img --force

lsinitrd /root/new.img | grep -i nfs

Arguments: --add 'nfs' --force

nfs

-rw-r--r-- 1 root root 15 Jul 25 2019 etc/modprobe.d/nfs.conf

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib64/libnfsidmap

-rwxr-xr-x 1 root root 50416 Jul 25 2019 usr/lib64/

libnfsidmap/nsswitch.so

-rwxr-xr-x 1 root root 54584 Jul 25 2019 usr/lib64/

libnfsidmap.so.1.0.0

lrwxrwxrwx 1 root root 20 Jul 25 2019 usr/lib64/

libnfsidmap.so.1 -> libnfsidmap.so.1.0.0

-rwxr-xr-x 1 root root 42744 Jul 25 2019 usr/lib64/

libnfsidmap/sss.so

-rwxr-xr-x 1 root root 46088 Jul 25 2019 usr/lib64/

libnfsidmap/static.so

-rwxr-xr-x 1 root root 62600 Jul 25 2019 usr/lib64/

libnfsidmap/umich_ldap.so

-rwxr-xr-x 1 root root 849 Oct 8 2018 usr/lib/dracut/hooks/

cleanup/99-nfsroot-cleanup.sh

-rwxr-xr-x 1 root root 3337 Oct 8 2018 usr/lib/dracut/hooks/

cmdline/90-parse-nfsroot.sh

-rwxr-xr-x 1 root root 874 Oct 8 2018 usr/lib/dracut/hooks/

pre-udev/99-nfs-start-rpc.sh

drwxr-xr-x 5 root root 0 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs

Chapter 6 draCut

258

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/blocklayout

-rw-r--r-- 1 root root 16488 Jul 25 2019 usr/lib/modules/

5.3.7-301.fc31.x86_64/kernel/fs/nfs/blocklayout/blocklayoutdriver.ko.xz

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common

-rw-r--r-- 1 root root 2584 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common/grace.ko.xz

-rw-r--r-- 1 root root 3160 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs_common/nfs_acl.ko.xz

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/filelayout

-rw-r--r-- 1 root root 11220 Jul 25 2019 usr/lib/modules/

5.3.7-301.fc31.x86_64/kernel/fs/nfs/filelayout/nfs_layout_nfsv41_files.ko.xz

drwxr-xr-x 2 root root 0 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/flexfilelayout

-rw-r--r-- 1 root root 20872 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/flexfilelayout/nfs_layout_

flexfiles.ko.xz

-rw-r--r-- 1 root root 109684 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfs.ko.xz

-rw-r--r-- 1 root root 18028 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfsv3.ko.xz

-rw-r--r-- 1 root root 182756 Jul 25 2019 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/fs/nfs/nfsv4.ko.xz

-rwxr-xr-x 1 root root 4648 Oct 8 2018 usr/lib/nfs-lib.sh

-rwsr-xr-x 1 root root 187680 Jul 25 2019 usr/sbin/mount.nfs

lrwxrwxrwx 1 root root 9 Jul 25 2019 usr/sbin/mount.nfs4

-> mount.nfs

-rwxr-xr-x 1 root root 719 Oct 8 2018 usr/sbin/nfsroot

drwxr-xr-x 4 root root 0 Jul 25 2019 var/lib/nfs

drwxr-xr-x 2 root root 0 Jul 25 2019 var/lib/nfs/rpc_pipefs

drwxr-xr-x 3 root root 0 Jul 25 2019 var/lib/nfs/statd

drwxr-xr-x 2 root root 0 Jul 25 2019 var/lib/nfs/statd/sm

Chapter 6 draCut

259

Like we added the extra nfs dracut module in our initramfs, the same way we can

have only the nfs module in our initramfs with the help of adding dracutmodules+= in

dracut.conf. This means the resultant initramfs will have only the nfs module in it. The

rest of the modules from /usr/lib/dracut/modules.d/ will be discarded.

cat /etc/dracut.conf

 #omit_dracutmodules+=plymouth

 #add_dracutmodules+=nfs

 dracutmodules+=nfs

dracut /root/new.img —force

lsinitrd /root/new.img

Image: /root/new.img: 20M

==

Early CPIO image

==

drwxr-xr-x 3 root root 0 Jul 25 2019 .

-rw-r—r-- 1 root root 2 Jul 25 2019 early_cpio

drwxr-xr-x 3 root root 0 Jul 25 2019 kernel

drwxr-xr-x 3 root root 0 Jul 25 2019 kernel/x86

drwxr-xr-x 2 root root 0 Jul 25 2019 kernel/x86/microcode

-rw-r—r-- 1 root root 100352 Jul 25 2019 kernel/x86/microcode/

GenuineIntel.bin

==

Version:

Arguments: --force

dracut modules:

nss-softokn

network-manager

network

kernel-network-modules

nfs

===

Chapter 6 draCut

260

As you can see, only the nfs module has been added along with its dependencies like the

network dracut module. Also, notice the size difference between both versions of initramfs.

ls -lh initramfs-5.3.16-300.fc31.x86_64.img

 -rw-------. 1 root root 28M Dec 23 06:37 initramfs-5.3.16-300.fc31.

x86_64.img

ls -lh /root/new.img

 -rw-------. 1 root root 20M Dec 24 11:05 /root/new.img

The same can be achieved by using the -m or --modules switch of dracut.

dracut -m nfs /root/new.img --force

If you want to add only the hardware device module, then please note that hardware

device module means the *.ko files provided by the kernel-modules package at /lib/

modules/<kernel-version>/drivers/<module-name>. Then the --add switch of dracut

or add_dracutmodules+= will not help because these two switches add the dracut

modules and not the kernel module (.ko) file. So, to add the kernel module, we need to

use either a --add-drivers switch of dracut or drivers+= or add_drivers+= in dracut.

conf. Here’s an example:

lsinitrd /root/new.img | grep -i ath3k

The Bluetooth-related module named ath3k is not present in our initramfs, but it is

one of the modules provided by the kernel.

#ls -lh /lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/bluetooth/ath3k.

ko.xz

Let’s add it, as shown here:

dracut --add-drivers ath3k /root/new.img --force

Now it has been added, as shown here:

lsinitrd /root/new.img | grep -i ath3k

Arguments: --add-drivers 'ath3k' --force

-rw-r--r-- 1 root root 246804 Jul 25 03:54 usr/lib/firmware/ath3k-1.fw

-rw-r--r-- 1 root root 5652 Jul 25 03:54 usr/lib/modules/5.3.7-301.fc31.

x86_64/kernel/drivers/bluetooth/ath3k.ko.xz

As you can see, the ath3k.ko module has been added in initramfs.

Chapter 6 draCut

261

 dracut Module or Kernel Module?
Let’s examine when to add a dracut module and when to add a kernel module. Here’s

a scenario: your host root filesystem is on a normal SCSI device. So, obviously, your

initramfs has neither a multipath.ko kernel module nor a multipath.conf-like

configuration file for it.

 1) All of sudden you decide to shift your root filesystem from the

normal local disk to a SAN (I would never recommend such

change on a production system), and the SAN is connected

through a multipath device.

 2) To get the entire environment of the multipath device, you need

to add the multipath dracut module here so that the entire

environment of multipath will be pulled into initramfs.

 3) After a few days, you add a new NIC card on the same system, and

the NIC card vendor has provided drivers for it. A driver is nothing

but a .ko file (kernel object). To add this module in your initramfs,

you have to choose to add the kernel module option. This will

add the driver of only the NIC card, not the entire environment.

But what if you want to add some specific file to the initramfs, which is neither

a kernel module nor a dracut module? dracut provides the install_items+= and

--include variables of dracut.conf through which we can add specific files. The files

could be anything from a normal text to a binary file, etc.

#lsinitrd /root/new.img | grep -i date

 <no_output>

The date binary is not by default present in initramfs. But to add a binary, we can use

an install_itsems+ switch.

cat /etc/dracut.conf

 # PUT YOUR CONFIG IN separate files

 # in /etc/dracut.conf.d named "<name>.conf"

 # SEE man dracut.conf(5) for options

Chapter 6 draCut

262

 #omit_dracutmodules+=plymouth

 #add_dracutmodules+=nfs

 #dracutmodules+=nfs

 install_items+=date

dracut /root/new.img --force

lsinitrd /root/new.img | grep -i date

-rwxr-xr-x 1 root root 122456 Jul 25 02:36 usr/bin/date

As you can see, the date binary has been added, but the most important thing is it

does not only add the binary; rather, it also adds the library that is necessary to run the

date command. The same can be achieved with the --install switch of the dracut

command. But this has a limitation; it cannot add the user-made custom binaries. To do

that, we need to use the --include switch of dracut. With --include, you can include

the normal files, directories, or even a binary in initramfs. In the case of the binary, if

your binary needs a supporting library, then you have to specify that library name with

its absolute path.

 “Can’t Boot” Issue 4 (initramfs)
Issue: A Linux production system has been rebooted after four months for regular

maintenance, and it has stopped booting. It keeps throwing this error message on the

screen:

<snip>

.

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout

scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout

scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout

scripts

dracut-initqueue[444]: warning: dracut-initqueue timeout - starting timeout

scripts

.

</snip>

Chapter 6 draCut

263

Resolution: Here are the steps to resolve the issue:

 1. The error message starts by saying it is not able to reach the swap

device, and then the process times out.

[TIME] Timed out waiting for device /dev/mapper/fedora_localhost--live-swap

This is a crucial piece of information since this tells you that

something is wrong with this system’s filesystems.

 2. The swap device is based on an HDD, and the swap filesystem

has been created on it. Now the swap device itself is missing.

So, either the underlying disk itself is not accessible or the swap

filesystem is corrupted. With this understanding, we can now

concentrate on the storage side only. The isolation of the issue is

important since the “can’t boot” issue has thousands of situations

that could cause the system to stop booting.

 3. Either we will boot with rescue mode or we can use a live image of

the same distribution and version. This is a Fedora 31 system, and

as shown in Figure 6-1, I will use the rescue option from GRUB.

Figure 6-1. The GRUB splash screen

Chapter 6 draCut

264

 4. Once we boot into rescue mode, we will mount the user’s root

filesystem and chroot into it. Now why is rescue mode able to boot

when the normal kernel is not able to boot on the same system? This

is a valid question, and the answer will be covered in Chapter 10.

 5. Since we are able to mount the root filesystem in a rescue kernel but

not able to mount the root filesystem with the normal kernel, that

means something is wrong with the initramfs image. Maybe some

module that is necessary to handle the HDD is missing. Let’s verify

this theory.

 6. This is a virtualized system, which means it has a virtual disk. This

can be seen from the /dev directory.

#ls /dev/vd*

vda vda1 vda2

 7. To handle the virtualized disks, we need to have a virtio_blk

module present in initramfs.

#lsinitrd /boot/new.img | grep -i virt

Arguments: --omit-drivers virtio_blk

-rw-r--r-- 1 root root 14132 Jul 25 03:54

 usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/char/

virtio_console.ko.xz

-rw-r--r-- 1 root root 25028 Jul 25 03:54

 usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/net/

virtio_net.ko.xz

-rw-r--r-- 1 root root 7780 Jul 25 03:54

 usr/lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/

virtio_scsi.ko.xz

-rw-r--r-- 1 root root 499 Feb 26 2018 usr/lib/sysctl.d/60-

libvirtd.conf

As you can see, the virtio_blk module is missing.

 8. Since virtio_blk is missing, obviously the kernel cannot detect

and access the vda disk, which is where the user has the root

filesystem as well as the swap filesystem.

Chapter 6 draCut

265

 9. To fix this issue, we need to add the missing virtio_blk module

in initramfs.

#dracut --add-drivers=virtio_blk /boot/new.img --force

lsinitrd | grep -i virtio_blk

 -rw-r--r-- 1 root root 8356 Jul 25 03:54 usr/

lib/modules/5.3.7-301.fc31.x86_64/kernel/drivers/block/virtio_

blk.ko.xz

 10. We will boot by using our new.img initramfs. How to boot the

system manually with the help of the GRUB command prompt

was already discussed in “can’t boot” issue 1.

 11. After adding the missing virtio_blk module, the “can’t boot”

issue has been fixed. You can see the successfully booted system

in Figure 6-2.

Figure 6-2. The login screen of Fedora

Chapter 6 draCut

266

 “Can’t Boot” Issue 5 (initramfs)
Issue: Figure 6-3 shows what is visible on-screen.

Resolution: Here are the steps to resolve the issue:

 1) Now this is easy to understand and to resolve.

 2) The error message is self-explanatory; the initramfs file itself is

missing.

 3) Either the initramfs itself is missing or it’s just that the /boot/

loader/entries/* file has a wrong entry in it. In this case,

initramfs itself is missing.

 4) So, we need to boot in rescue mode and mount the user’s root

filesystem.

 5) Either reinstall the kernel’s rpm package so that the postscripts

part of the package will regenerate the missing initramfs and will

also update the BLS entries accordingly.

 6) Or you can regenerate initramfs with the help of the dracut

command.

 Kernel Command-Line Options
As we have already seen, GRUB accepts kernel command-line parameters and passes

them to the kernel. The kernel has hundreds of command-line parameters, and it is

almost impossible for anyone to cover each and every parameter. So, we will focus only

on those parameters that are necessary while booting the operating system. If you are

Figure 6-3. The console messages

Chapter 6 draCut

267

interested in all of the kernel command-line parameters, then visit the following page:

https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html.

The list of parameters on that page are of the series 4 of kernels, but most of the

parameter explanations are applicable to series 5 kernels as well. The best option is to

always look at the kernel documentation at /usr/share/doc/.

 root
• This is one of the main kernel’s command-line parameters.

The ultimate aim of booting is to mount the user’s root filesystem.

The root kernel command-line parameter provides the name of the

user’s root filesystem, which the kernel is supposed to mount.

• On behalf of the kernel, systemd, which ran from initramfs, mounts

the user’s root filesystem.

• If the user’s root filesystem is not available or if the kernel is not able

to mount it, then it will be considered a panic situation for the kernel.

 init
• The kernel runs systemd from initramfs, and that becomes the first

process. It’s also called PID-1 and is the parent of every process.

• But if you are a developer and you want to run your own binary

instead of systemd, then you can use the init kernel command-line

parameter. Here’s an example:

init=/sbin/yogesh

As you can see in Figure 6-4, this will run the yogesh binary instead of systemd.

Figure 6-4. The kernel command-line parameters

Chapter 6 draCut

https://www.kernel.org/doc/html/v4.14/admin-guide/kernel-parameters.html

268

But yogesh is not available on the actual root filesystem; hence, as shown in

Figure 6- 5, it will fail to boot.

• The system has dropped us in the emergency shell. Refer to Chapter 8

for a detailed discussion about debugging shells.

• The reason for dropping us in the emergency shell and the reason

for the “can’t boot” issue is mentioned in /run/initramfs/

rdsosreport.txt. Figure 6-6 shows a snippet of the rdsosreport.

txt file.

Figure 6-5. The emergency shell

Chapter 6 draCut

269

• The interesting part to note here is that our /sbin/yogesh binary will

be called at the time of the chroot’ing to the actual root filesystem.

We have not discussed chroot yet; you can find a detailed discussion

in Chapter 10.

 ro
• This is a supporting parameter to the root kernel command-line

parameter. ro stands for “read-only” file system. The user’s root

filesystem will be mounted inside initramfs, and it will be mounted

in read-only mode if the ro kernel command-line parameter has

been passed. The ro is the default choice of every major Linunx

distribution.

 rhgb and quite
• Almost every Linux distribution shows the animation at the time

of booting to make the booting procedure more exciting, but

the important console messages that are required to analyze the

booting sequence will be hidden behind the animation. To stop

the animation and to see the verbose console messages on-screen,

remove the rhgb and quite parameters.

• When rhgb and quite are passed, as you can see in Figure 6-7, the

plymouth animation will be shown.

Figure 6-6. The rdsosreport.txt file

Chapter 6 draCut

270

• When rhgb and quite are removed, as you can see in Figure 6-8, the

console messages will be exposed to the user.

• You can also press Escape at the animation (plymouth) screen and

can see the console messages, but for that, you have to be physically

present in front of the production system, which is unlikely.

Figure 6-7. The plymouth screen

Figure 6-8. The console messages

Chapter 6 draCut

271

 selinux
• Sometimes to resolve the “can’t boot” issues, you want to completely

get rid of SELinux. You can pass selinux=0 kernel command line

parameter at that time. This will disable SELinux altogether.

These were some of the kernel command-line parameters that directly affect the

booting sequence. Like with the kernel command-line parameters, GRUB can accept

dracut command-line parameters too, which will be accepted by initramfs or more

precisely by systemd of initramfs.

 dracut Command-Line Options
In layperson’s terms, you can consider command-line parameters starting with rd. to be

dracut command-line parameters that will be understood by initramfs.

 rd.auto (rd.auto=1)
• According to the man page, this enables auto assembly of special

devices such as cryptoLUKS, dmraid, mdraid, or lvm. The default

is off.

• Consider a scenario like earlier where your system did not have

mdraid (s/w raid) configured, but now you have recently

implemented it, and you want that device to be activated at the

time of the boot. In other words, the storage state of the machine

is changed at the time of the initramfs creation. Now, without

regenerating the new initramfs, you want the new configuration

(LVM or LUKS) to be activated at the time of the boot.

 rd.hostonly=0
• According to the man page, this removes all compiled in the

configuration of the host system that the initramfs image was built

on. This helps booting, if any disk layout has changed, especially in

combination with rd.auto or other parameters specifying the layout.

Chapter 6 draCut

272

• Say that your graphics card provider (such as Nvidia) has given you

special drivers/modules that are present in your initramfs, but the

modules have started creating a problem. Since the graphics driver

will be loaded at an early stage of booting, you want to avoid the

use of that module; instead, you want to use a generic driver (vesa).

In that scenario, you can use rd.hostonly=0. With this parameter,

initramfs will load the generic driver and will avoid the host-specific

Nvidia driver.

 rd.fstab = 0
• According to the man page, use this parameter if you do not want to

honor special mount options for the root filesystem found in /etc/

fstab of the real root.

 rd.skipfsck
• According to the man page, this skips fsck for rootfs and /usr. If

you’re mounting /usr to be read-only and the init system performs

fsck before the remount, you might want to use this option to avoid

duplication.

• Most Linux administrators have a misconception about fsck and

how it is combined with the ro kernel command-line parameter.

Most of us think that the kernel first mounts the actual root filesystem

in ro mode and then performs an fsck on it so that the fsck

operation will not corrupt the root filesystem data. Once the fsck is

successful, it will remount the root filesystem in read-write mode by

referring to /etc/fstab.

• But this understanding has a basic flaw, which is that fsck cannot be

performed on a mounted filesystem irrespective of ro or rw mode.

Chapter 6 draCut

273

The following Fedora system’s user root filesystem is on the sda5 device, and it

is currently mounted in read-only mode, so fsck would fail since the filesystem is

mounted:

fsck.ext4 /dev/sda5

 e2fsck 1.45.3 (14-Jul-2019)

 /dev/sda5 is mounted.

 e2fsck: Cannot continue, aborting.

Hence, it is proved that the purpose of the user’s root filesystem getting mounted in

ro mode is not to perform a fsck. Then what is the reason to pass the ro command-line

parameter to the kernel? Let’s discuss it through the booting sequence.

• The kernel extracts initramfs and passes command-line parameters

like root and ro to systemd, which will start from initramfs.

• systemd will find the actual root filesystem.

• Once the root filesystem (device) is identified, systemd will perform

the fsck on it.

• If the fsck is successful, then systemd will mount the root filesystem

as ro (as per the passed kernel command-line parameter) inside

initramfs itself. It will be mounted as read-only in the /sysroot

directory of initramfs.

• As you can see in Figure 6-9, the kernel has extracted initramfs

and started systemd from it (I have removed the rhgb and quite

parameters).

Chapter 6 draCut

274

Systemd then scanned the connected storage devices for the root filesystem and

found one. Before mounting the user’s root filesystem, it first performed the fsck on it

and later mounted it inside initramfs on the directory sysroot. The user’s root filesystem

will be mounted in read-only mode.

• The reason for mounting it in read-only mode is simple to

understand. Suppose the system fails to boot, but it has managed to

mount the user’s root filesystem on sysroot and has provided us with

a shell to fix the “can’t boot” issue. Users might accidentally corrupt

or even delete the user’s root filesystem that is mounted under

sysroot. So, to prevent the user’s root filesystem from such accidents,

it is preferred to mount it in read-only mode.

#switch_root:/# ls -ld /sysroot/

 dr-xr-xr-x 19 root 0 4096 Sep 10 2017 /sysroot/

• How to use the debugging shells and how initramfs provides them

will be discussed in Chapter 8.

Figure 6-9. The console messages

Chapter 6 draCut

275

• Figure 6-10 shows systemd continuing its booting sequence and

leaving the initramfs environment.

• As you can see Figure 6-10, the switch root leaves the current

initramfs environment and changes the root from initramfs’

temporary root filesystem to /sysroot, which has the user’s root

filesystem mounted. (The switch root process will be discussed in

Chapter 9.)

• Right after entering into the user’s root filesystem, systemd of the

user’s root filesystem reads /etc/fstab and takes the appropriate

action on mount points. For example, on this Fedora system, there is

the user’s root filesystem entry as well as the /boot entry (boot is on

separate partition):

#cat /etc/fstab

/dev/mapper/fedora_localhost--live-root / ext4 defaults 1 1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4 defaults 1 2

/dev/mapper/fedora_localhost--live-swap none swap defaults 0 0

Figure 6-10. The console messages

Chapter 6 draCut

276

• As you can see in Figure 6-11, at this stage, systemd will perform fsck

only on the boot device before mounting it. Please note that it is not

performing fsck on the user’s root filesystem since it has already

been performed inside an initramfs environment. Also the user’s

root filesystem is currently mounted, and we all know that it does not

make sense to do an fsck on the swap device.

• If there had been any other extra mount points like /usr, it would

have performed fsck on that device too.

• fsck depends on the fifth parameter of /etc/fstab. If it is 1, then

fsck will be performed at the time of boot. This fstab setting is not

applicable to the user’s root filesystem since fsck will be compulsory

performed on user’s root filesystem inside initramfs, which is before

reading the /etc/fstab file.

• rd.skipfsck is applicable only to root and the user’s root filesystem.

It is not applicable to any other filesystem like /boot.

 rd.driver.blacklist, rd.driver.pre, and rd.driver.post
This is from the man page of rd.driver.blacklist:

rd.driver.blacklist=<drivername>[,<drivername>,...]

do not load kernel module <drivername>. This parameter can be specified
multiple times.

Figure 6-11. The fsck console messages

Chapter 6 draCut

277

rd.driver.blacklist is one of the most important dracut command-line

parameters. As the name suggests, it will blacklist the specified modules. Let’s try to

blacklist the virtio-related drivers that are quite important for virtual guest systems.

lsmod | grep -i virt

 virtio_balloon 24576 0

 virtio_net 57344 0

 virtio_console 40960 2

 virtio_blk 20480 3

 net_failover 20480 1 virtio_net

It is available in initramfs as well.

lsinitrd | grep -i virtio

-rw-r--r-- 1 root root 8356 Jul 25 03:54 usr/lib/modules/5.3.7-301.fc31.

x86_64/kernel/drivers/block/virtio_blk.ko.xz

-rw-r--r-- 1 root root 14132 Jul 25 03:54 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/drivers/char/virtio_console.ko.xz

-rw-r--r-- 1 root root 25028 Jul 25 03:54 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/drivers/net/virtio_net.ko.xz

-rw-r--r-- 1 root root 7780 Jul 25 03:54 usr/lib/

modules/5.3.7-301.fc31.x86_64/kernel/drivers/scsi/virtio_scsi.ko.xz

Remember, to blacklist the module, as you can see in Figure 6-12, you need to

make sure that every other dependent module also has to be blacklisted; otherwise, the

dependent modules would pull the blacklisted module. For example, in this case, the

virtio_balloon, virtio_net, virtio_console, virtio_blk, and virtio_pci modules

are dependent on each other. That means if we blacklist only virtio_blk, the other

dependent modules will still load the virtio_blk module.

Chapter 6 draCut

278

The virtio-related drivers are important. This is the same driver through which

virtual disks and networks of hypervisors get exposed to the guest operating system.

Since we blacklisted them, the guest OS will stop booting. You can see the “can’t boot”

console messages in Figure 6-13.

So, the blacklisting of the virtio modules is successful, but there are two issues in

this approach.

• rd.driver.blacklist will only block the modules that are loading

from initramfs.

• We need to manually provide the list of modules to rd.driver.

blacklist every time.

Figure 6-12. The kernel command-line parameter

Figure 6-13. The console messages

Chapter 6 draCut

279

If the module is not in initramfs, then you cannot really block it from loading. For

example, the bluetooth module is not loaded from initramfs, but the kernel loads it after

the initramfs environment.

lsmod | grep -i bluetooth

 bluetooth 626688 37 btrtl,btintel,btbcm,bnep,btusb,rfcomm

 ecdh_generic 16384 1 bluetooth

 rfkill 28672 5 bluetooth

lsinitrd | grep -i bluetooth

 <no_output>

To block the kernel from loading the bluetooth module, we need to tell the modprobe

command to block the module from loading. modprobe is a binary that loads or removes

modules on behalf of the kernel.

Make a new blacklist.conf file. (You can choose any name, but it has to have a

.conf suffix) and blacklist the module.

#cat /etc/modprobe.d/blacklist.conf

 blacklist bluetooth

But after reboot, you will find that bluetooth is again loaded by kernel.

#lsmod | grep -i bluetooth

 bluetooth 626688 37 btrtl,btintel,btbcm,bnep,btusb,rfcomm

 ecdh_generic 16384 1 bluetooth

 rfkill 28672 5 bluetooth

This is because the bluetooth module is a dependency of multiple other modules

such as btrtl, btintel, btbcm, bnep, btusb, rfcomm, and rfkill. Hence, modprobe has

loaded bluetooth as a dependency of other modules. In such situations, we need to

fool the modprobe command by adding the install bluetooth /bin/true line in the

blacklist.conf file, as shown here:

cat /etc/modprobe.d/blacklist.conf

 install bluetooth /bin/true

Chapter 6 draCut

280

After rebooting, you will find the bluetooth module has been blocked.

lsmod | grep -i bluetooth

 <no_output>

You can also use /bin/false instead of /bin/true.

After the explanation of rd.driver.blacklist, the rd.driver.pre and rd.driver.

post dracut command-line parameters are easier to understand, and the man pages are

self-explanatory, shown here:

rd.driver.pre=<drivername>[,<drivername>,...]

force loading kernel module <drivername>. This parameter can be specified
multiple times.

rd.driver.post=<drivername>[,<drivername>,...]

force loading kernel module <drivername> after all automatic loading
modules have been loaded. This parameter can be specified multiple times.

 rd.debug
This comes from the man page:

set -x for the dracut shell. If systemd is active in the initramfs, all output is
logged to the systemd journal, which you can inspect with “journalctl -ab”.
If systemd is not active, the logs are written to dmesg and /run/initramfs/
init.log. If “quiet” is set, it also logs to the console.

rd.debug will enable the debug logging of systemd, which will log huge messages

on the console as well as in the systemd journals. The detailed messages provided by

rd.debug will be helpful in identifying systemd-related “can’t boot” issues.

 rd.memdebug= [0-4]
This comes from the man page:

Print memory usage info at various points, set the verbose level from 0 to 4.
Higher level means more debugging output:

 0 - no output

 1 - partial /proc/meminfo

Chapter 6 draCut

281

 2 - /proc/meminfo

 3 - /proc/meminfo + /proc/slabinfo

 4 - /proc/meminfo + /proc/slabinfo + tracekomem

• This will print all the memory subsystem–related information on-

screen, such as the meminfo and slabinfo file contents.

 lvm, raid, and Multipath-Related dracut Command-Line
Parameters
This comes from the man pages:

 rd.lvm=0

disable LVM detection

 rd.lvm.vg=<volume group name>

only activate the volume groups with the given name. rd.lvm.vg can be
specified multiple times on the kernel command line.

 rd.lvm.lv=<logical volume name>

only activate the logical volumes with the given name. rd.lvm.lv can be
specified multiple times on the kernel command line.

 rd.lvm.conf=0

remove any /etc/lvm/lvm.conf, which may exist in the initramfs

• Out of these parameters, you must have at least observed the rd.lvm.lv

option passed by GRUB. The purpose of rd.lvm.lv is to activate the

given LVM device at an early stage of booting. By default, the major

Linux distributors activate only root and swap (if configured) LV

devices. Activating only the root filesystem at the time of the boot

speeds up the booting procedure. After switching the root from

initramfs to the actual root filesystem, systemd can activate the

remaining volume groups as per the list at /etc/fstab.

• Similarly, dracut provides multipath and RAID-related command-

line parameters, which are again self-explanatory.

Chapter 6 draCut

282

MD RAID

 rd.md=0

disable MD RAID detection

 rd.md.imsm=0

disable MD RAID for imsm/isw raids, use DM RAID instead

 rd.md.ddf=0

disable MD RAID for SNIA ddf raids, use DM RAID instead

 rd.md.conf=0

ignore mdadm.conf included in initramfs

 rd.md.waitclean=1

wait for any resync, recovery, or reshape activity to finish before continuing

 rd.md.uuid=<md raid uuid>

only activate the raid sets with the given UUID. This parameter can be
specified multiple times.

 DM RAID

 rd.dm=0

disable DM RAID detection

 rd.dm.uuid=<dm raid uuid>

only activate the raid sets with the given UUID. This parameter can be
specified multiple times.

 MULTIPATH

 rd.multipath=0

disable multipath detection

Chapter 6 draCut

283

• dracut provides n number of command-line parameters for

networks, NFS, CIFS, iSCSI, FCoE, etc. It also means these are the

various options on which you can put your root filesystem, but it is

almost impossible to cover each and every dracut command-line

parameter. Also, I am not in favor of booting the system from all these

complex structures. I believe in keeping the user’s root filesystem

always on the local disk so that the booting procedure will be easy

and mainly because the simpler booting sequence is quicker to fix in

the case of a “can’t boot” situation.

 rd.break and rd.shell
rd.shell will provide us with the shell at the end of the booting sequence, and with rd.break,

we can break the booting sequence. But to understand these parameters, we need to have a good

understanding of systemd. hence, before discussing rd.break and the dracut hooks, we will discuss

systemd first in our next chapter. the following are the parameters accepted by rd.break:

Parameters Purpose

cmdline this hook collects the kernel command-line parameters.

pre- udev this hook starts before starting the udev handler.

pre- trigger In this hook, you can set udev environment variables with 'udevadm'

control --property=KEY=value or control the further execution of udev.

pre- mount this hook starts before mounting the user’s root filesystem at /sysroot.

mount the hook will be started after mounting the root filesystem at /sysroot.

pre- pivot the hook will be executed just before switching to actual root filesystem.

Chapter 6 draCut

285
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_7

CHAPTER 7

systemd (Part I)
Here is what we know about the booting sequence so far:

 1) The bootloader loads the kernel and initramfs in memory.

 2) The kernel will be loaded at a specific location (an architecture-

specific location), whereas initramfs will be loaded at any

available location.

 3) The kernel extracts itself with the help of the header of the

vmlinuz file.

 4) The kernel extracts initramfs in main memory

(init/initramfs.c) and mounts it as a temporary root filesystem

(/) in main memory.

 5) The kernel launches (init/main.c) the systemd as a first process

with PID-1 from a temporary root filesystem.

 6) systemd will find the user’s root filesystem and will chroot into it.

This chapter will address how systemd, which is forked from initramfs, manages to

mount the user’s root filesystem, and we will also see the detailed booting sequence of

systemd inside initramfs. But before that, we need to understand systemd as a process.

I will let systemd’s man page do the talking here:

“After the root file system is found and mounted, the initrd hands

over control to the host’s system manager (such as systemd(1))

stored in the root file system, which is then responsible for probing

all remaining hardware, mounting all necessary file systems and

spawning all configured services.”

https://doi.org/10.1007/978-1-4842-5890-3_7#ESM

286

 Structure
systemd was first introduced in Fedora 15. We all know that systemd is a replacement
for init scripts (quite literally, /sbin/init is now a symlink to /usr/lib/systemd/
systemd), and it amazingly reduces the boot time. However, in reality, systemd is much
bigger than just a replacement for init. This is what systemd does:

 1) It maintains logs with journalctl.

 2) It extensively uses cgroups version 1 and 2.

 3) It reduces boot time.

 4) It manages units. service is just one type of unit that systemd
handles. The following are the units that systemd provides and
manages:

Unit Purpose

systemd.service To manage the services

systemd.socket To create and manage the sockets

systemd.device To create and use devices based on udev’s inputs

systemd.mount To mount the filesystem

systemd.automount To automount the filesystem

systemd.swap To make and manage swap devices

systemd.target Group of services instead of runlevels

systemd.path Information about a path monitored by systemd, for path-based activation

systemd.timer For time-based activation

systemd.slice Resource management such as CPU, memory, I/O for service units

Unit files will be stored and loaded from these three locations:

Path Description

/etc/systemd/system Local configuration

/run/systemd/system Runtime units

/usr/lib/systemd/system Units of installed packages

ChaPTeR 7 sysTemd (PaRT I)

287

/etc/systemd/system is an admin location, whereas /usr/lib/systemd/system

is an application vendor location. This means the admin’s location will get precedence

over the application vendor’s location if the same unit file is present at both locations.

Please note that in this chapter all the commands are executed from the directory in

which initramfs has been extracted.

tree etc/systemd/

 etc/systemd/

 ├── journald.conf
 └── system.conf
0 directories, 2 files

#ls usr/lib/systemd/system | column

basic.target plymouth-switch-root.service

cryptsetup.target poweroff.target

ctrl-alt-del.target poweroff.target.wants

default.target reboot.target

dracut-cmdline-ask.service reboot.target.wants

dracut-cmdline.service remote-fs-pre.target

dracut-emergency.service remote-fs.target

dracut-initqueue.service rescue.service

dracut-mount.service rescue.target

dracut-pre-mount.service rescue.target.wants

dracut-pre-pivot.service rpcbind.target

dracut-pre-trigger.service shutdown.target

dracut-pre-udev.service sigpwr.target

emergency.service slices.target

emergency.target sockets.target

emergency.target.wants sockets.target.wants

final.target swap.target

halt.target sysinit.target

halt.target.wants sysinit.target.wants

initrd-cleanup.service sys-kernel-config.mount
initrd-fs.target syslog.socket
initrd-parse-etc.service systemd-ask-password-console.path
initrd-root-device.target systemd-ask-password-console.service

ChaPTeR 7 sysTemd (PaRT I)

288

initrd-root-fs.target systemd-ask-password-console.service.wants
initrd-switch-root.service systemd-ask-password-plymouth.path
initrd-switch-root.target systemd-ask-password-plymouth.service
initrd-switch-root.target.wants systemd-ask-password-plymouth.service.wants
initrd.target systemd-fsck@.service
initrd.target.wants systemd-halt.service
initrd-udevadm-cleanup-db.service systemd-journald-audit.socket
kexec.target systemd-journald-dev-log.socket
kexec.target.wants systemd-journald.service
kmod-static-nodes.service systemd-journald.socket
local-fs-pre.target systemd-kexec.service
local-fs.target systemd-modules-load.service
multi-user.target systemd-poweroff.service
multi-user.target.wants systemd-random-seed.service
network-online.target systemd-reboot.service
network-pre.target systemd-sysctl.service
network.target systemd-tmpfiles-setup-dev.service
nss-lookup.target systemd-tmpfiles-setup.service
nss-user-lookup.target systemd-udevd-control.socket
paths.target systemd-udevd-kernel.socket
plymouth-halt.service systemd-udevd.service
plymouth-kexec.service systemd-udev-settle.service
plymouth-poweroff.service systemd-udev-trigger.service
plymouth-quit.service systemd-vconsole-setup.service
plymouth-quit-wait.service timers.target
plymouth-reboot.service umount.target
plymouth-start.service

The third location, /run/systemd/system, is a temporary location and will be used
internally by systemd to manage units. For example, it will be used extensively while
creating the sockets. In fact, /run is a separate filesystem introduced with systemd to
store runtime data. As of now, the /run directory of initramfs is empty, which is obvious
because initramfs is not in use.

#ls run/

 <no_output>

ChaPTeR 7 sysTemd (PaRT I)

289

Also, it is expected that there are fewer unit files that are present in initramfs than the

ones that are available on the user’s root filesystem. dracut will collect only those systemd

unit files that are necessary to mount the user’s root filesystem. For example, it does not

make sense to add the httpd or mysql related systemd unit files in initramfs. Let’s try to

understand one of the service unit files of systemd, as shown here:

cat /usr/lib/systemd/system/sshd.service

[Unit]

Description=OpenSSH server daemon

Documentation=man:sshd(8) man:sshd_config(5)

After=network.target sshd-keygen.target

Wants=sshd-keygen.target

[Service]

Type=notify

EnvironmentFile=-/etc/crypto-policies/back-ends/opensshserver.config

EnvironmentFile=-/etc/sysconfig/sshd-permitrootlogin

EnvironmentFile=-/etc/sysconfig/sshd

ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO_POLICY $PERMITROOTLOGIN

ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure

RestartSec=42s

[Install]

WantedBy=multi-user.target

This sshd service unit file will not be part of initramfs since you do not need an ssh

service to mount the user’s root filesystem. The service unit file is divided into three

parts: [unit], [service], [install].

• [unit]:

After=network.target sshd-keygen.target

The sshd service will start only if network.target (listed units) and

sshd-keygen (listed units) have successfully started. If either of them

fails, then the sshd service will also fail.

ChaPTeR 7 sysTemd (PaRT I)

290

Wants=sshd-keygen.target

This is a less severe version of Requires. If any of the units that

are mentioned in wants fails, then also the sshd service (or that

particular service) will start, whereas in Requires the sshd service

will start only if the units mentioned under Requires have been

successfully started. Before is the opposite of After The Wants,

After, Before, and Requires all work independently of each

other. It is a common practice to use Wants and After together.

Conflicts=

This can be used to list the units that are conflicting with the

current unit. Starting this unit might stop the listed conflicting

units.

OnFailure=

OnFailure units will start when any given unit reaches the failed

state.

• [Service]:

ExecStart=/usr/sbin/sshd

Starting an sshd service unit just starts the binary mentioned after

ExecStart.

• [Install]:

The Install section of a unit file is not used by systemd. Rather, it

is used by the systemctl enable, or disable command. It will be

used by systemctl to create or destroy the symlinks.

 How Does systemd Reduce Boot Time?
Lennart Poettering, the creator of systemd, gives a classic example of how systemd reduces

the boot time in his blog at http://0pointer.de/blog/projects/systemd.html. This blog

is one of the best resources if you really want to deep dive into the systemd world.

There are four daemons: syslog, dbus, avahi, and bluetooth.

ChaPTeR 7 sysTemd (PaRT I)

http://0pointer.de/blog/projects/systemd.html

291

syslog is necessary for every daemon to log the messages. So, syslog is a requirement for

every other daemon. avahi needs syslog and dbus to run. bluetooth needs dbus and syslog

but does not need avahi to be running. With the Sysv/init script model, this happens:

 1) syslog will start first.

 2) When it is completely ready, the dbus service will be started.

 3) After dbus, avahi will be started.

 4) Finally, the bluetooth service will be started. See Figure 7-1.

Figure 7-1. The init model

bluetooth and avahi are not dependent on each other, but bluetooth has to

wait until avahi starts. Ubuntu-like distributions use upstart instead of init, which

improves the boot time to some extent. In upstart, the services that are not dependent

on each other will start in parallel, meaning avahi and bluetooth will start together.

Please see Figure 7-2 for reference.

ChaPTeR 7 sysTemd (PaRT I)

292

In systemd, all the services are started at the same time with the help of sockets.

Here’s an example:

 1) systemd will create a socket for syslog (which has been replaced

with journald).

 2) A socket /dev/log is a symlink to /run/systemd/journal/dev-log.

file /dev/log

 /dev/log: symbolic link to /run/systemd/journal/dev-log

file /run/systemd/journal/dev-log

 /run/systemd/journal/dev-log: socket

Figure 7-2. The upstart model

ChaPTeR 7 sysTemd (PaRT I)

293

As mentioned earlier, the run filesystem will be used by systemd for socket file creation.

 3) For dbus, the socket is created at /run/dbus/system_bus_socket. To

run, dbus needs journald to be running, but since the system is still

booting and journald/syslog is not fully started yet, dbus will log its

messages to journald’s socket /dev/log, and whenever the journald

service is fully ready, it will fetch the messages from the socket.

 4) It’s the same for the bluetooth service; it needs the dbus service to

be running to start. So, systemd will create a /run/dbus/system_

bus_socket socket before the dbus service starts. The bluetooth

service will not wait for dbus to start. You can refer to Figure 7-3 for

a better understanding.

Figure 7-3. The systemd model

ChaPTeR 7 sysTemd (PaRT I)

294

 5) If the systemd created socket runs out of buffer, then the

bluetooth service will be blocked until the socket is available.

This socket approach will drastically reduce the boot time.

This socket-based approach was originally tried in macOS. It was called launchd at

that time. Lennart Poettering took inspiration from it.

 systemd-analyze
systemd provides the systemd-analyze tool to check the time taken by the system to boot.

systemd-analyze

Startup finished in 1.576s (kernel) + 1.653s (initrd) + 11.574s (userspace)

= 14.805s

graphical.target reached after 11.561s in userspace

As you can see, my Fedora system took 1.5 seconds to initialize the kernel; then it

spent 1.6 seconds inside initramfs and took almost 11 seconds to start the services or

initialize the user space. The total time taken was almost 15 seconds. The total time is

calculated right from the bootloader to the graphical target.

Here are some important notes:

• The total time does not include the time taken by desktop

environments like GNOME, KDE, Cinnamon, etc. This also makes

sense since the desktop environments are not handled by systemd,

so a systemd tool cannot calculate the time taken by desktop

environments.

• Also, there is a possibility that because of systemd’s socket approach,

services were still starting even after the total time (14.805 seconds).

So, to give more insight and clean data, systemd-analyse provides a blame tool.

systemd-analyze blame

 31.202s dnf-makecache.service

 10.517s pmlogger.service

 9.264s NetworkManager-wait-online.service

 4.977s plymouth-switch-root.service

 2.994s plymouth-quit-wait.service

 1.674s systemd-udev-settle.service

ChaPTeR 7 sysTemd (PaRT I)

295

 1.606s lightdm.service

 1.297s pmlogger_check.service

 938ms docker.service

 894ms dracut-initqueue.service

 599ms pmcd.service

 590ms lvm2-monitor.service

 568ms abrtd.service

 482ms firewalld.service

 461ms systemd-logind.service

 430ms lvm2-pvscan@259:3.service

 352ms initrd-switch-root.service

 307ms bolt.service

 290ms systemd-machined.service

 288ms registries.service

 282ms udisks2.service

 269ms libvirtd.service

 255ms sssd.service

 209ms systemd-udevd.service

 183ms systemd-journal-flush.service

 180ms docker-storage-setup.service

 169ms systemd-journald.service

 156ms polkit.service

 .

 .

 </snip>

The blame output could easily be misunderstood; i.e., two services might be

initializing at the same time, and thus the time spent to initialize both services is much

less than the sum of both individual times combined. For more precise data, you can use

the plot tool of systemd-analyse, which will generate the graph and provide many more

details about the boot time. You can see the generated plot image in Figure 7-4.

systemd-analyze plot > plot.svg

eog plot.svg

ChaPTeR 7 sysTemd (PaRT I)

296

Figure 7-4. The generated plot image

ChaPTeR 7 sysTemd (PaRT I)

297

The following are some of the other tools that systemd-analyse provides that can be

used to identify the boot time.

systemd-analyze <tool> Description

time Prints time spent in the kernel

blame Prints list of running units

ordered by time to init

critical-chain

[UNIT...]

Prints a tree of the time-critical

chain of units

plot Outputs sVG graphic showing

service initialization

dot [UNIT...] Outputs dependency graph in

dot(1) format

log-level [LEVEL] Gets/sets logging threshold for

manager

log-target [TARGET] Gets/sets logging target for

manager

dump Output state serialization of

service manager

cat-config shows configuration file and

drop-ins

unit-files Lists files and symlinks for units

units-paths Lists load directories for units

exit-status [STATUS...] Lists exit status definitions

syscall-filter

[NAME...]

Prints list of syscalls in

seccomp filter

condition... evaluates conditions and

asserts

verify FILE... Checks unit files for

correctness

(continued)

ChaPTeR 7 sysTemd (PaRT I)

298

systemd-analyze <tool> Description

service-watchdogs

[BOOL]

Gets/sets service watchdog

state

calendar SPEC... Validates repetitive calendar

time events

 timestamp... Validates a timestamp

timespan SPAN... Validates a time span

security [UNIT...] analyzes security of unit

 “Can’t Boot” Issue 6 (systemd)
Issue: The system successfully boots, but the nagios service fails to start at the time of

the boot.

Here are the steps to resolve this issue:

 1) We need to isolate the issue first. Remove the rhgb quiet kernel

command-line parameters when GRUB appears on the screen.

 2) The verbose logs show that the system is able to boot, but the

nagios service fails to start while booting. As you can see, the

NetworkManager service of systemd which is responsible for the

network has successfully started. This means it is not a network

communication issue.

13:23:52 systemd: Starting Network Manager...

13:23:52 systemd: Started Kernel Samepage Merging (KSM)

Tuning Daemon.

13:23:52 systemd: Started Install ABRT coredump hook.

13:23:52 abrtd: Init complete, entering main loop

13:23:52 systemd: Started Load CPU microcode update.

13:23:52 systemd: Started Authorization Manager.

13:23:53 NetworkManager[1356]: <info> [1534389833.1078]

NetworkManager is starting... (for the first time)

ChaPTeR 7 sysTemd (PaRT I)

299

13:23:53 NetworkManager[1356]: <info> [1534389833.1079] Read

config: /etc/NetworkManager/NetworkManager.conf (lib:

00-server.conf, 10-slaves- order.conf)

13:23:53 NetworkManager[1356]: <info> [1534389833.1924]

manager[0x558b0496a0c0]: monitoring kernel firmware

directory '/lib/firmware'.

13:23:53 NetworkManager[1356]: <info> [1534389833.2051] dns-

mgr[0x558b04971150]: init: dns=default, rc-manager=file

13:23:53 systemd: Started Network Manager.

 3) The nagios service tries to execute right after the NetworkManager

service. This means nagios must have mentioned after=Network.

target in its service unit file. But the nagios service fails to start.

13:24:03 nagios: Nagios 4.2.4 starting... (PID=5006)

13:24:03 nagios: Local time is Thu 13:24:03 AEST 2018

13:24:03 nagios: LOG VERSION: 2.0

13:24:03 nagios: qh: Socket '/usr/local/nagios/var/rw/nagios.qh'

successfully initialized

13:24:03 nagios: qh: core query handler registered

13:24:03 nagios: nerd: Channel hostchecks registered

successfully

13:24:03 nagios: nerd: Channel servicechecks registered

successfully

13:24:03 nagios: nerd: Channel opathchecks registered

successfully

13:24:03 nagios: nerd: Fully initialized and ready to

rock! Nagios Can't ping devices (not 100% packet loss

at the end of each line)

13:24:04 nagios: HOST ALERT: X ;DOWN;SOFT;1;CRITICAL - X: Host

unreachable @ X. rta nan, lost 100%

Resolution: The strange thing is that the nagios error message says it failed to

start because it is not able to connect to the network, but as per NetworkManager, it has

successfully started, and the system has already been placed in network.

ChaPTeR 7 sysTemd (PaRT I)

300

The issue is clearly created by systemd’s “speeding up the booting procedure”
approach. To place the system in the network, systemd has to do a lot of work: initialize
the network cards, activate the link, put the IP on the NIC card, check if any duplicate IPs
are already available, start communicating on the network, etc. Obviously, to finish every
bit of this, systemd will take some time. On my test system, it took almost 20 seconds to
fully populate the network. Of course, systemd cannot pause the booting sequence for
that whole time. If systemd waits until the network fully populates, then one of the main
aspects of systemd’s innovation to speed up the booting process will be ruined.

systemd with the help of NetworkManager will give its best shot to make sure we are
on the network, but it will not wait for the user-specified network spawning and will not
wait until every rule of topology is achieved.

In some situations like this “can’t boot” issue, it is possible that NetworkManager has
told systemd to initialize nagios, which was dependent on network.target, but the
network is not yet fully up, so nagios might not be able to contact its servers.

 1) To solve such issues, systemd suggests enabling NetworkManager-
wait-online.service. This service will make NetworkManager
wait until the network fully comes up. Once the network is fully
populated, NetworkManager will signal to systemd to start the
services that are dependent on network.target.

cat /usr/lib/systemd/system/NetworkManager-wait-online.service
[Unit]
Description=Network Manager Wait Online
Documentation=man:nm-online(1)
Requires=NetworkManager.service
After=NetworkManager.service
Before=network-online.target

[Service]
Type=oneshot
ExecStart=/usr/bin/nm-online -s -q --timeout=30
RemainAfterExit=yes

[Install]
WantedBy=network-online.target

This simply calls the nm-online binary and passes the -s switch to it. The service will
hold NetworkManager for a maximum of 30 seconds.

ChaPTeR 7 sysTemd (PaRT I)

301

This is what the man page has to say about the nm-online:

“Wait for NetworkManager startup to complete, rather than waiting for network
connectivity specifically. Startup is considered complete once NetworkManager
has activated (or attempted to activate) every auto- activate connection which is
available given the current network state. (This is generally only useful at boot
time; after startup has completed, nm- online -s will just return immediately,
regardless of the current network state.) ”

 2) After enabling NetworkManager-wait-online-service, the issue

has been resolved, but the boot time has been reduced slightly. As

you can see in Figure 7-5, most of the boot time has been eaten up

by NetworkManager-wait-online-service, which is expected.

Figure 7-5. The plot after enabling NetworkManager-wait-online-service

ChaPTeR 7 sysTemd (PaRT I)

302

systemd provides one more tool, bootchart, which is basically a daemon through which

you can conduct a performance analysis of the Linux boot process. It will collect the data at

boot time and make a graph out of it. You can consider bootchart to be an advanced version

of a systemd-analyze plot. To use this tool, as shown in Figure 7-6, you need to pass the full

path of the systemd-bootchart binary to the init kernel command- line parameter.

Figure 7-6. The kernel command-line parameters

After the successful boot process, as you can see in Figure 7-7, the tool will create a detailed

graph image at /run/log/bootchart*. Once the image is generated, systemd- bootchart will

hand over control to the systemd, and systemd will continue the booting procedure.

ChaPTeR 7 sysTemd (PaRT I)

303

Since we now understand the basics of systemd, we can continue our paused

booting sequence. So far, we have reached the stage where the kernel has extracted

initramfs in RAM and started the systemd binary from it. Once the systemd process

starts, it will follow the regular booting sequence.

Figure 7-7. The bootchart graph

ChaPTeR 7 sysTemd (PaRT I)

304

Figure 7-8. The booting flowchart

 Flow of systemd Inside initramfs
systemd will be launched from initramfs and will follow the booting sequence shown

in Figure 7-8. Harald Hoyer (who created dracut initramfs and is the lead systemd

developer) created this flowchart, which is also available in the systemd man pages.

ChaPTeR 7 sysTemd (PaRT I)

305

Figure 7-8. (continued)

ChaPTeR 7 sysTemd (PaRT I)

306

This flowchart comes from the man page of dracut. The ultimate aim of systemd in

the booting procedure is to mount the user’s root filesystem inside initramfs (sysroot)

and then switch into it. Once systemd has switch_rooted into the new (user’s) root

filesystem, it will leave the initramfs environment and continue the booting procedure

by starting the userspace services such as httpd, mysql, etc. It will also draw a desktop/

GUI if the user is booting the system in graphical mode. This book’s scope is to cover the

booting sequence until systemd mounts the user’s root filesystem and then switches into

it. There are a few reasons for not covering the booting sequence after switch_root. I

will mention the reasons here, which are very important:

• The ultimate goal of booting is to mount the user’s root filesystem

and present it to the user, which this book is covering in detail.

• The activities performed by systemd after initramfs are easy to

understand since systemd performs similar activities but under the

new root filesystem environment.

• Production systems generally do not run in graphical mode.

• Linux has a couple of desktops such as GNOME, KDE, Cinnamon,

Unity, etc. Every user has their own favorite desktop, and it is almost

impossible to document every step taken by every desktop while

booting.

So, with this understanding, in this chapter we will cover the booting sequence up to

basic.target. Please refer to Figure 7-9.

ChaPTeR 7 sysTemd (PaRT I)

307

 systemd-journal.socket
Every process has to log its messages. In fact, a process, service, or daemon will start only

if it is able to log its messages in the OS logging mechanism. These days, the OS logging

mechanism is journald. So, it is obvious that the journald service has to be started

first, but as we know, systemd won’t wait until the services fully start. To speed up the

procedure, it uses the socket approach. Hence, systemd has to start the journald sockets

first. The journald service creates the following four sockets and listens for messages:

• systemd-journald.socket

• systemd-journald-dev-log.socket

Figure 7-9. The boot sequence up to basic.target

ChaPTeR 7 sysTemd (PaRT I)

308

• systemd-journald-audit.socket

• syslog.socket

These sockets will be used by daemons, applications, and every process to log their

messages.

 # vim usr/lib/systemd/system/systemd-journald.socket

SPDX-License-Identifier: LGPL-2.1+

#

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Journal Socket

Documentation=man:systemd-journald.service(8) man:journald.conf(5)

DefaultDependencies=no

Before=sockets.target

Mount and swap units need this. If this socket unit is removed by an

isolate request the mount and swap units would be removed too,

hence let's exclude this from isolate requests.

IgnoreOnIsolate=yes

[Socket]

ListenStream=/run/systemd/journal/stdout

ListenDatagram=/run/systemd/journal/socket

SocketMode=0666

PassCredentials=yes

PassSecurity=yes

ReceiveBuffer=8M

Service=systemd-journald.service

cat usr/lib/systemd/system/systemd-journald-dev-log.socket | grep -v '#'

ChaPTeR 7 sysTemd (PaRT I)

309

[Unit]

Description=Journal Socket (/dev/log)

Documentation=man:systemd-journald.service(8) man:journald.conf(5)

DefaultDependencies=no

Before=sockets.target

IgnoreOnIsolate=yes

[Socket]

Service=systemd-journald.service

ListenDatagram=/run/systemd/journal/dev-log

Symlinks=/dev/log

SocketMode=0666

PassCredentials=yes

PassSecurity=yes

ReceiveBuffer=8M

SendBuffer=8M

We have already discussed the way sockets work, especially the /dev/log socket. The

next step in the booting sequence is dracut-cmdline.service.

 dracut-cmdline.service
After initializing journald sockets, systemd collects the kernel command-line

parameters such as the root, rflags, and fstype variables through usr/lib/systemd/

system/dracut-cmdline.service. This is also called a cmdline hook of initramfs, which

we mentioned at the end of Chapter 6. The hook can be called by passing the cmdline

value to rd.break (a dracut command-line parameter). We will explore this stage of

the booting process by using the cmdline hook. We need to pass the rd.break=cmdline

dracut command-line parameter to the kernel at the time of the boot.

Inside initramfs, systemd calls this hook from usr/lib/systemd/system/dracut-

cmdline.service.

ChaPTeR 7 sysTemd (PaRT I)

310

cat usr/lib/systemd/system/dracut-cmdline.service

This file is part of dracut.

#

See dracut.bootup(7) for details

[Unit]

Description=dracut cmdline hook

Documentation=man:dracut-cmdline.service(8)

DefaultDependencies=no

Before=dracut-pre-udev.service

After=systemd-journald.socket

Wants=systemd-journald.socket

ConditionPathExists=/usr/lib/initrd-release

ConditionPathExistsGlob=|/etc/cmdline.d/*.conf

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/cmdline

ConditionKernelCommandLine=|rd.break=cmdline

ConditionKernelCommandLine=|resume

ConditionKernelCommandLine=|noresume

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-cmdline

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

Bash ignores SIGTERM, so we send SIGHUP instead, to ensure that bash

terminates cleanly.

KillSignal=SIGHUP

As you can see, systemd has called a dracut-cmdline script. The script is available in

initramfs itself, which will collect the kernel command-line parameters.

ChaPTeR 7 sysTemd (PaRT I)

311

vim bin/dracut-cmdline

 24 # Get the "root=" parameter from the kernel command line, but

differentiate

 25 # between the case where it was set to the empty string and the case

where it

 26 # wasn't specified at all.

 27 if ! root="$(getarg root=)"; then

 28 root_unset='UNSET'

 29 fi

 30

 31 rflags="$(getarg rootflags=)"

 32 getargbool 0 ro && rflags="${rflags},ro"

 33 getargbool 0 rw && rflags="${rflags},rw"

 34 rflags="${rflags#,}"

 35

 36 fstype="$(getarg rootfstype=)"

 37 if [-z "$fstype"]; then

 38 fstype="auto"

 39 fi

 40

 41 export root

 42 export rflags

 43 export fstype

 44

 45 make_trace_mem "hook cmdline" '1+:mem' '1+:iomem' '3+:slab' '4+:komem'

 46 # run scriptlets to parse the command line

 47 getarg 'rd.break=cmdline' -d 'rdbreak=cmdline' && emergency_shell -n

cmdline "Break before cmdline"

 48 source_hook cmdline

 49

 50 [-f /lib/dracut/parse-resume.sh] && . /lib/dracut/parse-resume.sh

 51

 52 case "${root}${root_unset}" in

 53 block:LABEL=*|LABEL=*)

 54 root="${root#block:}"

ChaPTeR 7 sysTemd (PaRT I)

312

 55 root="$(echo $root | sed 's,/,\\x2f,g')"

 56 root="block:/dev/disk/by-label/${root#LABEL=}"

 57 rootok=1 ;;

 58 block:UUID=*|UUID=*)

 59 root="${root#block:}"

 60 root="block:/dev/disk/by-uuid/${root#UUID=}"

 61 rootok=1 ;;

 62 block:PARTUUID=*|PARTUUID=*)

 63 root="${root#block:}"

 64 root="block:/dev/disk/by-partuuid/${root#PARTUUID=}"

 65 rootok=1 ;;

 66 block:PARTLABEL=*|PARTLABEL=*)

 67 root="${root#block:}"

 68 root="block:/dev/disk/by-partlabel/${root#PARTLABEL=}"

 69 rootok=1 ;;

 70 /dev/*)

 71 root="block:${root}"

 72 rootok=1 ;;

 73 UNSET|gpt-auto)

 74 # systemd's gpt-auto-generator handles this case.

 75 rootok=1 ;;

 76 esac

 77

 78 [-z "${root}${root_unset}"] && die "Empty root= argument"

 79 [-z "$rootok"] && die "Don't know how to handle 'root=$root'"

 80

 81 export root rflags fstype netroot NEWROOT

 82

 83 export -p > /dracut-state.sh

 84

 85 exit 0

Basically, there are three parameters (kernel command-line parameters) that will be

exported in this hook:

• root = User’s root file system name

ChaPTeR 7 sysTemd (PaRT I)

313

• rflags = User’s root filesystem flags (ro or rw)

• fstype = Auto (auto mounting or not)

Let’s see how these parameters are discovered by initramfs (or in the cmdline

hook of initramfs). The getarg named function will be used to get these three kernel

command- line parameters.

root="$(getarg root=)

rflags="$(getarg rootflags=)

fstype="$(getarg rootfstype=)"

.

.

export root

export rflags

export fstype

The getarg function is defined in the usr/lib/dracut-lib.sh file of initramfs.

#vim usr/lib/dracut-lib.sh

 201 getarg() {

 202 debug_off

 203 local _deprecated _newoption

 204 while [$# -gt 0]; do

 205 case $1 in

 206 -d) _deprecated=1; shift;;

 207 -y) if _dogetarg $2 >/dev/null; then

 208 if ["$_deprecated" = "1"]; then

 209 [-n "$_newoption"] && warn "Kernel command

line option '$2' is deprecated, use '$_

newoption' instead." || warn "Option '$2' is

deprecated."

 210 fi

 211 echo 1

 212 debug_on

 213 return 0

 214 fi

 215 _deprecated=0

ChaPTeR 7 sysTemd (PaRT I)

314

 216 shift 2;;

 217 -n) if _dogetarg $2 >/dev/null; then

 218 echo 0;

 219 if ["$_deprecated" = "1"]; then

 220 [-n "$_newoption"] && warn "Kernel command

line option '$2' is deprecated, use '$_

newoption=0' instead." || warn "Option '$2'

is deprecated."

 221 fi

 222 debug_on

 223 return 1

 224 fi

 225 _deprecated=0

 226 shift 2;;

 227 *) if [-z "$_newoption"]; then

 228 _newoption="$1"

 229 fi

 230 if _dogetarg $1; then

 231 if ["$_deprecated" = "1"]; then

 232 [-n "$_newoption"] && warn "Kernel command

line option '$1' is deprecated, use '$_

newoption' instead." || warn "Option '$1' is

deprecated."

 233 fi

 234 debug_on

 235 return 0;

 236 fi

 237 _deprecated=0

 238 shift;;

 239 esac

 240 done

 241 debug_on

 242 return 1

 243 }

The getarg function is calling the _dogetarg function from the same file.

ChaPTeR 7 sysTemd (PaRT I)

315

 165 _dogetarg() {

 166 local _o _val _doecho

 167 unset _val

 168 unset _o

 169 unset _doecho

 170 CMDLINE=$(getcmdline)

 171

 172 for _o in $CMDLINE; do

 173 if ["${_o%%=*}" = "${1%%=*}"]; then

 174 if [-n "${1#*=}" -a "${1#*=*}" != "${1}"]; then

 175 # if $1 has a "=<value>", we want the exact match

 176 if ["$_o" = "$1"]; then

 177 _val="1";

 178 unset _doecho

 179 fi

 180 continue

 181 fi

 182

 183 if ["${_o#*=}" = "$_o"]; then

 184 # if cmdline argument has no "=<value>", we assume "=1"

 185 _val="1";

 186 unset _doecho

 187 continue

 188 fi

 189

 190 _val="${_o#*=}"

 191 _doecho=1

 192 fi

 193 done

 194 if [-n "$_val"]; then

 195 ["x$_doecho" != "x"] && echo "$_val";

 196 return 0;

 197 fi

 198 return 1;

 199 }

ChaPTeR 7 sysTemd (PaRT I)

316

Then the _dogetarg() function calls the getcmdline named function, which collects

the actual kernel command-line parameters from /proc/cmdline.

 137 getcmdline() {

 138 local _line

 139 local _i

 140 local CMDLINE_ETC_D

 141 local CMDLINE_ETC

 142 local CMDLINE_PROC

 143 unset _line

 144

 145 if [-e /etc/cmdline]; then

 146 while read -r _line || [-n "$_line"]; do

 147 CMDLINE_ETC="$CMDLINE_ETC $_line";

 148 done </etc/cmdline;

 149 fi

 150 for _i in /etc/cmdline.d/*.conf; do

 151 [-e "$_i"] || continue

 152 while read -r _line || [-n "$_line"]; do

 153 CMDLINE_ETC_D="$CMDLINE_ETC_D $_line";

 154 done <"$_i";

 155 done

 156 if [-e /proc/cmdline]; then

 157 while read -r _line || [-n "$_line"]; do

 158 CMDLINE_PROC="$CMDLINE_PROC $_line"

 159 done </proc/cmdline;

 160 fi

 161 CMDLINE="$CMDLINE_ETC_D $CMDLINE_ETC $CMDLINE_PROC"

 162 printf "%s" "$CMDLINE"

 163 }

ChaPTeR 7 sysTemd (PaRT I)

317

Here is the booting sequence so far:

 1. The bootloader collects the kernel command-line parameters from

the user and stores them in its own configuration file (grub.cfg).

 2. It passes those command-line parameters to the kernel by filling

the kernel header.

 3. The kernel extracts itself and copies the kernel command-line

parameters found in the kernel header.

 4. The kernel extracts initramfs in memory and uses it as a

temporary root filesystem.

 5. In the same procedure, the kernel prepares the virtual filesystems

such as proc, sys, dev, devpts, shm, etc.

 6. The kernel stores the command-line parameters in the /proc/

cmdline file.

 7. systemd collects the kernel command-line parameters by reading

the /proc/cmdline file and stores them in the root, rootfs, and

fstype variables.

We can verify this procedure by using the cmdline hook.

Getting back to the /bin/dracut-cmdline script, let’s take a look:

 41 export root

 42 export rflags

 43 export fstype

 44

 45 make_trace_mem "hook cmdline" '1+:mem' '1+:iomem' '3+:slab' '4+:komem'

 46 # run scriptlets to parse the command line

 47 getarg 'rd.break=cmdline' -d 'rdbreak=cmdline' && emergency_shell -n

cmdline "Break before cmdline"

 48 source_hook cmdline

 49

 50 [-f /lib/dracut/parse-resume.sh] && . /lib/dracut/parse-resume.sh

ChaPTeR 7 sysTemd (PaRT I)

318

The condition says if the user has passed the rd.break=cmdline parameter on the

kernel stanza of GRUB, then execute the emergency_shell function. Figure 7-10 shows

the condition.

Figure 7-10. The condition

If the user has passed rd.break=cmdline, then the script calls the function named

emergency_shell. As the name suggests, it will provide the debugging shell, and if the

debugging shell has successfully launched, then it calls another function named source_

hook and passes the cmdline parameter to it. Whoever wrote this code to provide users

with a debugging shell is a genius programmer!

We will not discuss the emergency shell function at this stage since we need to

understand systemd more first. Hence, we will discuss it in much more detail in Chapter 8.

Figure 7-11 shows the flowchart of the dracut-cmdline.service units working.

ChaPTeR 7 sysTemd (PaRT I)

319

Figure 7-11. The flowchart of dracut-cmdline.service

ChaPTeR 7 sysTemd (PaRT I)

320

Going further, a user’s root filesystem name could just be /dev/sda5, but the same

sda5 device might be referred via uuid, partuuid, or label. At the end, every other

reference of sda5 has to reach /dev/sda5; hence, the kernel prepares symlinks files for all

of these different device names under /dev/disk/. Please refer to Figure 7-12.

Figure 7-12. The /dev/disk directory contents

The same /bin/dracut-cmdline script converts the mear sda5 root filesystem name

to /dev/disk/by-uuid/6588b8f1-7f37-4162-968c-8f99eacdf32e.

 52 case "${root}${root_unset}" in

 53 block:LABEL=*|LABEL=*)

 54 root="${root#block:}"

 55 root="$(echo $root | sed 's,/,\\x2f,g')"

ChaPTeR 7 sysTemd (PaRT I)

321

 56 root="block:/dev/disk/by-label/${root#LABEL=}"

 57 rootok=1 ;;

 58 block:UUID=*|UUID=*)

 59 root="${root#block:}"

 60 root="block:/dev/disk/by-uuid/${root#UUID=}"

 61 rootok=1 ;;

 62 block:PARTUUID=*|PARTUUID=*)

 63 root="${root#block:}"

 64 root="block:/dev/disk/by-partuuid/${root#PARTUUID=}"

 65 rootok=1 ;;

 66 block:PARTLABEL=*|PARTLABEL=*)

 67 root="${root#block:}"

 68 root="block:/dev/disk/by-partlabel/${root#PARTLABEL=}"

 69 rootok=1 ;;

 70 /dev/*)

 71 root="block:${root}"

 72 rootok=1 ;;

 73 UNSET|gpt-auto)

 74 # systemd's gpt-auto-generator handles this case.

 75 rootok=1 ;;

 76 esac

 77

 78 [-z "${root}${root_unset}"] && die "Empty root= argument"

 79 [-z "$rootok"] && die "Don't know how to handle 'root=$root'"

 80

 81 export root rflags fstype netroot NEWROOT

 82

 83 export -p > /dracut-state.sh

 84

 85 exit 0

Let’s see the cmdline hook in action. As shown in Figure 7-13, pass rd.

break=cmdline on the kernel stanza of GRUB.

ChaPTeR 7 sysTemd (PaRT I)

322

The kernel will extract initramfs, the systemd process will launch, systemd will

initialize the journald sockets, and as you can see in Figure 7-14, systemd will drop us

on a cmdline shell since we told systemd to break (hook) the booting sequence before

executing the dracut-cmdline hook.

Figure 7-13. The kernel command-line parameter

Figure 7-14. The command-line hook

ChaPTeR 7 sysTemd (PaRT I)

323

Currently, we are inside initramfs, and we have paused (dracut hooked) systemd’s

booting sequence after systemd-journal.socket. Since dracut-cmdline.service has

not yet started, systemd has not yet collected the kernel command-line parameters such

as root, rsflags, and fstype from /proc/cmdline. Please see Figure 7-15 for a better

understanding. Also, the symlinks under /dev/disk have not yet been created by dracut.

Figure 7-15. The command-line hook

Since systemd has not yet collected the name of the user’s root filesystem, there is no

question that you will not find user’s root filesystem mounted inside initramfs. sysroot is a

directory inside initramfs where systemd mounts the user’s root filesystem. Refer to Figure 7-16.

Figure 7-16. The sysroot directory

ChaPTeR 7 sysTemd (PaRT I)

324

But if we do not pass any argument to rd.break or simply exit from the current

cmdline shell, we will be dropped at the switch_root shell. The switch_root shell is the

final stage of systemd’s boot sequence inside initramfs. In Figure 7-17, you can see that

we are passing rd.break without any arguments.

Figure 7-17. The rd.break kernel command-line parameter

As you can see in Figure 7-18, in the switch_root shell since the dracut-cmdline.

service has been executed, you will find the kernel command-line parameters have

been collected by systemd. Also, the user’s root filesystem has been mounted inside

initramfs under sysroot.

Figure 7-18. The switch_root hook

If we exit from this stage, switch_root (pivot_root) will be performed by systemd,

and it will leave the initramfs environment. Later systemd will carry the remaining

booting procedure, and as shown in Figure 7-19, eventually we will get the desktop.

ChaPTeR 7 sysTemd (PaRT I)

325

Coming back to our booting sequence so far, we have reached the pre-udev stage.

You can refer to Figure 7-20 for this.

Figure 7-19. The login screen of Fedora

Figure 7-20. The booting sequence covered so far

ChaPTeR 7 sysTemd (PaRT I)

326

 dracut-pre-udev.service
Next systemd will deal with the attached devices. For that, systemd has to start the udev

daemon, but before starting the udev service, it checks whether users want to stop the

booting procedure before udev kicks in. If a user has passed the rd.break=pre-udev

dracut command-line parameter, systemd will stop the booting sequence just before

executing the udev daemon.

cat usr/lib/systemd/system/dracut-pre-udev.service | grep -v '#'

[Unit]

Description=dracut pre-udev hook

Documentation=man:dracut-pre-udev.service(8)

DefaultDependencies=no

Before=systemd-udevd.service dracut-pre-trigger.service
After=dracut-cmdline.service
Wants=dracut-cmdline.service
ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-udev
ConditionKernelCommandLine=|rd.break=pre-udev
ConditionKernelCommandLine=|rd.driver.blacklist

ConditionKernelCommandLine=|rd.driver.pre

ConditionKernelCommandLine=|rd.driver.post

ConditionPathExistsGlob=|/etc/cmdline.d/*.conf

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot
Type=oneshot

ExecStart=-/bin/dracut-pre-udev
StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

ChaPTeR 7 sysTemd (PaRT I)

327

It will drop us on a pre-udev shell. Notice the after, before, and wants variables.

Executing dracut-pre-udev.service just starts a /bin/dracut-pre-udev binary from

initramfs. In Figure 7-21, we have passed rd.break=pre-udev as a kernel command-line

parameter.

Figure 7-22. The pre-udev hook

Figure 7-21. Passing the pre-udev kernel command-line parameter

To understand the pre-udev hook, you can simply list the contents of /dev, and in

Figure 7-22 you will notice there is no device file named sda. sda is our HDD where we

have our root filesystem.

The reason for the absence of sda device files is because the udev daemon has not

started yet. The daemon will be started by the /usr/lib/systemd/system/systemd-

udevd.service unit file, which will start after the pre-udev hook.

cat usr/lib/systemd/system/systemd-udevd.service | grep -v '#'

ChaPTeR 7 sysTemd (PaRT I)

328

[Unit]
Description=udev Kernel Device Manager
Documentation=man:systemd-udevd.service(8) man:udev(7)
DefaultDependencies=no
After=systemd-sysusers.service systemd-hwdb-update.service
Before=sysinit.target
ConditionPathIsReadWrite=/sys

[Service]
Type=notify
OOMScoreAdjust=-1000
Sockets=systemd-udevd-control.socket systemd-udevd-kernel.socket
Restart=always
RestartSec=0
ExecStart=/usr/lib/systemd/systemd-udevd
KillMode=mixed
WatchdogSec=3min
TasksMax=infinity
PrivateMounts=yes
ProtectHostname=yes
MemoryDenyWriteExecute=yes
RestrictAddressFamilies=AF_UNIX AF_NETLINK AF_INET AF_INET6
RestrictRealtime=yes
RestrictSUIDSGID=yes
SystemCallFilter=@system-service @module @raw-io
SystemCallErrorNumber=EPERM
SystemCallArchitectures=native
LockPersonality=yes
IPAddressDeny=any

Let’s try to understand how udev works and how it creates device files under /dev.
It’s the kernel that detects the connected hardware to the system; more precisely, it’s

the drivers that are compiled inside kernels or the modules inserted later that will detect
the hardware and will register their objects with sysfs (/sys mount point). Because of
the /sys mount point, this data becomes available to userspace and to tools like udev.
So, it’s the kernel that detects the hardware through drivers and creates a device file in
/dev, which is a devfs filesystem. After this, the kernel sends a uevent to udevd, and
udevd changes the device file’s name, owner, or group, or it sets the proper permissions

according to the rules defined here:

ChaPTeR 7 sysTemd (PaRT I)

329

 /etc/udev/rules.d,

 /lib/udev/rules.d, and

 /run/udev/rules.d

ls etc/udev/rules.d/

 59-persistent-storage.rules 61-persistent-storage.rules

ls lib/udev/rules.d/

 50-udev-default.rules 70-uaccess.rules 75-net-description.

rules 85-nm-unmanaged.rules

 60-block.rules 71-seat.rules 80-drivers.rules

90-vconsole.rules

 60-persistent-storage.rules 73-seat-late.rules 80-net-setup-link.

rules 99-systemd.rules

initramfs has few udev rules files compared to the available udev rules present on the

user’s root filesystem. Basically, it has only those rules that are necessary to manage the

user’s root filesystem devices. Once udevd is in control, it will call the respective systemd

units based on lib/udev/rules.d/99-systemd.rules. Here’s an example:

cat lib/udev/rules.d/99-systemd.rules

SUBSYSTEM=="net", KERNEL!="lo", TAG+="systemd", ENV{SYSTEMD_ALIAS}+="/sys/

subsystem/net/devices/$name"

SUBSYSTEM=="bluetooth", TAG+="systemd", ENV{SYSTEMD_ALIAS}+="/sys/

subsystem/bluetooth/devices/%k"

SUBSYSTEM=="bluetooth", TAG+="systemd", ENV{SYSTEMD_WANTS}+="bluetooth.

target", ENV{SYSTEMD_USER_WANTS}+="bluetooth.target"

ENV{ID_SMARTCARD_READER}=="?*", TAG+="systemd", ENV{SYSTEMD_

WANTS}+="smartcard.target", ENV{SYSTEMD_USER_WANTS}+="smartcard.target"

SUBSYSTEM=="sound", KERNEL=="card*", TAG+="systemd", ENV{SYSTEMD_

WANTS}+="sound.target", ENV{SYSTEMD_USER_WANTS}+="sound.target"

SUBSYSTEM=="printer", TAG+="systemd", ENV{SYSTEMD_WANTS}+="printer.target",

ENV{SYSTEMD_USER_WANTS}+="printer.target"

SUBSYSTEM=="usb", KERNEL=="lp*", TAG+="systemd", ENV{SYSTEMD_

WANTS}+="printer.target", ENV{SYSTEMD_USER_WANTS}+="printer.target"

ChaPTeR 7 sysTemd (PaRT I)

330

SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device", ENV{ID_USB_

INTERFACES}=="*:0701??:*", TAG+="systemd", ENV{SYSTEMD_WANTS}+="printer.

target", ENV{SYSTEMD_USER_WANTS}+="printer.target"

SUBSYSTEM=="udc", ACTION=="add", TAG+="systemd", ENV{SYSTEMD_WANTS}+="usb-

gadget.target"

The rule is tagged with the systemd tag. That means whenever a bluetooth device

is detected, udevd will call systemd’s bluetooth.target. The bluetooth.target will

execute the /usr/libexec/bluetooth/bluetoothd binary, which will take care of the

rest of the bluetooth device handling. So, the complete sequence of udevd handling the

bluetooth device is as follows:

 1) If a user has a bluetooth device connected to the system while

booting, it’s the kernel or drivers compiled in the kernel or

modules inserted later that will detect the bluetooth device and

register its object with /sys.

 2) Later the kernel will create a device file in the /dev mount point.

After the device file creation, the kernel will send a uevent to

udevd.

 3) udevd will refer to lib/udev/rules.d/99-systemd.rules

from initramfs and will call systemd. As per the tag, systemd is

supposed to handle the rest of it.

 4) systemd will execute the bluetooth.target, which will execute

the bluetoothd binary, and the bluetooth hardware will be ready

to be used.

Of course, bluetooth is not the kind of hardware that is necessary at the time of the

boot. I have taken this example just for the ease of understanding.

So, we have reached up to systemd-udev.service. systemd will continue its booting

sequence and will execute dracut-pre-trigger.service. You can see the booting

sequence in Figure 7-23.

ChaPTeR 7 sysTemd (PaRT I)

331

 dracut-pre-trigger.service
systemd’s initramfs boot sequence will be broken (hooked) if the user has passed the

rd.break=pre-trigger dracut command-line parameter. You can see in Figure 7-24

that we have passed pre-trigger as an argument to the rd.break kernel command-line

parameter.

Figure 7-23. The boot sequence covered so far

Figure 7-24. The rd.break=pre-trigger kernel command-line parameter

It will drop us on a pre-trigger shell, which is just after starting the udevd service.

First let’s see how it drops on a pre-trigger shell.

cat usr/lib/systemd/system/dracut-pre-trigger.service | grep -v '#'

[Unit]

Description=dracut pre-trigger hook

Documentation=man:dracut-pre-trigger.service(8)

DefaultDependencies=no

Before=systemd-udev-trigger.service dracut-initqueue.service

ChaPTeR 7 sysTemd (PaRT I)

332

After=dracut-pre-udev.service systemd-udevd.service systemd-tmpfiles-setup-

dev.service

Wants=dracut-pre-udev.service systemd-udevd.service

ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-trigger

ConditionKernelCommandLine=|rd.break=pre-trigger

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-pre-trigger

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

Please note the After, Before, and wants sections of the service unit file.

This service file will execute /bin/dracut-pre-trigger from initramfs if this

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-trigger directory exists and

if the user has passed rd.break=pre-trigger as a command-line parameter.

[root@fedorab boot]# cat bin/dracut-pre-trigger

#!/usr/bin/sh

export DRACUT_SYSTEMD=1

if [-f /dracut-state.sh]; then

 . /dracut-state.sh 2>/dev/null

fi

type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

source_conf /etc/conf.d

make_trace_mem "hook pre-trigger" '1:shortmem' '2+:mem' '3+:slab'

'4+:komem'

source_hook pre-trigger

ChaPTeR 7 sysTemd (PaRT I)

333

getarg 'rd.break=pre-trigger' 'rdbreak=pre-trigger' && emergency_shell -n

pre-trigger "Break pre-trigger"

udevadm control --reload >/dev/null 2>&1 || :

export -p > /dracut-state.sh

exit 0

As you can see, it is checking the passed dracut command-line parameters

(rd.break=pre-trigger) through the getarg function. We saw how getarg works

earlier in this chapter. If the user has passed rd.break=pre-trigger, then it will call

the emergency_shell function with pre-trigger as a parameter passed to it. The

emergency_shell function is written in the dracut-lib.sh file. This function will

provide us with the pre- trigger shell. Chapter 8 covers the procedure behind providing

an emergency shell.

As the pre-trigger name suggests, and as you can see in Figure 7-25, we have

stopped the booting sequence just before the udev triggers. Hence, the sda disk is not yet

available under dev.

Figure 7-25. The pre-trigger hook

This is because the udevadm trigger has not been executed yet. The service dracut-

pre- trigger.service executes only udevadm control --reload, which reloads the

udev rules. As shown in Figure 7-26, the service systemd-udev.service has been

started, but the systemd-udev-trigger service has not yet started.

ChaPTeR 7 sysTemd (PaRT I)

334

 systemd-udev-trigger.service
Figure 7-27 shows the stage of booting we have reached.

Figure 7-27. The booting sequence so far

Figure 7-26. The pre-trigger hook

ChaPTeR 7 sysTemd (PaRT I)

335

As we have seen, with pre-udev the /dev was not populated since the systemd- udevd.

service itself was not started. With pre-trigger, it’s the same: /dev is not populated, but

the udevd service has started. The udevd service will create an environment to start/run the

various udev tools like udevadm. By using the environment provided by the udevd daemon,

as you can see in Figure 7-28, inside pre-trigger we will be able to execute the udevadm,

which we were not able to use at the pre-udev shell.

Figure 7-28. The pre-trigger hook

As you can see inside the pre-trigger switch, the sda device has not been created

yet. But since we have a udevadm environment ready, we can discover the devices

through it. As shown in Figure 7-29, we will first mount the kernel configuration

filesystem.

pre-trigger:/ # udevadm trigger --type=subsystems --action=add

Then we will trigger udevadm to add the devices.

pre-trigger:/ # udevadm trigger --type=devices --action=add

ChaPTeR 7 sysTemd (PaRT I)

336

As you can see in Figure 7-29, the sda devices have been created. The same
commands will be fired by systemd through systemd-udev-trigger.service, which will
discover and create the storage device files under /dev.

cat usr/lib/systemd/system/systemd-udev-trigger.service | grep -v ‘#’

[Unit]
Description=udev Coldplug all Devices
Documentation=man:udev(7) man:systemd-udevd.service(8)
DefaultDependencies=no
Wants=systemd-udevd.service
After=systemd-udevd-kernel.socket systemd-udevd-control.socket
Before=sysinit.target
ConditionPathIsReadWrite=/sys

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/bin/udevadm trigger –type=subsystems –action=add
ExecStart=/usr/bin/udevadm trigger –type=devices –action=add

But as you can see in Figure 7-30, the same udevadm command will not be successful

in the pre-udev hook since the udev environment is missing.

Figure 7-29. The pre-trigger hook

ChaPTeR 7 sysTemd (PaRT I)

337

This is the importance of dracut-pre-trigger.service or of the pre-trigger hook.
The flowchart given in Figure 7-31 will help you understand the steps so far taken by

systemd inside initramfs. The flowchart will be even more understandable after reading

Chapter 8. I highly recommend revisiting this chapter after finishing Chapter 8.

Figure 7-31. The flowchart

Figure 7-30. The udevadm in pre-udev hook

ChaPTeR 7 sysTemd (PaRT I)

338

 local-fs.target
As you can see in Figure 7-32, we have reached the local-fs-target stage of booting.

Figure 7-32. The booting sequence covered so far

So, systemd has reached up to local-fs.target. So far, systemd has been executing

services one after another only because storage devices were not ready. Since the

udevadm trigger was successful and storage devices have been populated, it’s time to

prepare the mount points, which will be achieved by local-fs.target. Before entering

into local-fs.target, it will make sure to run the local-fs.pre.target.

cat usr/lib/systemd/system/local-fs-pre.target

[Unit]

Description=Local File Systems (Pre)

Documentation=man:systemd.special(7)

RefuseManualStart=yes

#cat usr/lib/systemd/system/local-fs.target

[Unit]

Description=Local File Systems

Documentation=man:systemd.special(7)

DefaultDependencies=no

ChaPTeR 7 sysTemd (PaRT I)

339

Conflicts=shutdown.target

After=local-fs-pre.target

OnFailure=emergency.target

OnFailureJobMode=replace-irreversibly

The systemd-fstab-generator will be navigated by local-fs.target.

man page - systemd.special

systemd-fstab-generator(3) automatically adds dependencies of type
Before= to all mount units that refer to local mount points for this target
unit. In addition, it adds dependencies of type Wants= to this target unit for
those mounts listed in /etc/fstab that have the auto mount option set.

The systemd-fstab-generator binary will be called from initramfs.

file usr/lib/systemd/system-generators/systemd-fstab-generator

usr/lib/systemd/system-generators/systemd-fstab-generator: ELF 64-bit LSB

pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /

lib64/ld-linux-x86-64.so.2, BuildID[sha1]=e16e9d4188e2cab491f551b5f703a5caa

645764b, for GNU/Linux 3.2.0, stripped

In fact, systemd runs all the generators at an early stage of the booting sequence.

ls -l usr/lib/systemd/system-generators

 total 92

 -rwxr-xr-x. 1 root root 3750 Dec 21 12:19 dracut-rootfs-generator

 -rwxr-xr-x. 1 root root 45640 Dec 21 12:19 systemd-fstab-generator

 -rwxr-xr-x. 1 root root 37032 Dec 21 12:19 systemd-gpt-auto-generator

systemd-fstab-generator is one of them. The main task of systemd-fstab-

generator is to read the kernel command line and create systemd mount unit files under

the /tmp directory or under /run/systemd/generator/ (keep reading, and this all will

make sense). As you can see, it’s a binary, which means we need to check the C source

code of systemd to understand what it does. The systemd-fstab-generator takes either

no input or three inputs.

usr/lib/systemd/system-generators/systemd-fstab-generator /dev/sda5

This program takes zero or three arguments.

ChaPTeR 7 sysTemd (PaRT I)

340

Of course, the three inputs are the root filesystem name, filesystem type, and root

filesystem flag. While writing this book, the latest version of systemd is version 244, so we

have used this for the explanation here. The previously shown error message comes from

src/shared/generator.h.

vim systemd-244/src/shared/generator.h

 57 /* Similar to DEFINE_MAIN_FUNCTION, but initializes logging and assigns

positional arguments. */

 58 #define DEFINE_MAIN_GENERATOR_FUNCTION(impl) \

 59 _DEFINE_MAIN_FUNCTION(\

 60 ({ \

 61 log_setup_generator(); \

 62 if (argc > 1 && argc != 4) \

 63 return log_error_errno(SYNTHETIC_

ERRNO(EINVAL), \

 64 "This program takes zero

or three arguments."); \

 65 }), \

 66 impl(argc > 1 ? argv[1] : "/tmp", \

 67 argc > 1 ? argv[2] : "/tmp", \

The systemd-fstab-generator binary is made from src/fstab-generator/fstab-

generator.c.

vim systemd-244/src/fstab-generator/fstab-generator.c

868 static int run(const char *dest, const char *dest_early, const char

*dest_late) {

869 int r, r2 = 0, r3 = 0;

870

871 assert_se(arg_dest = dest);

872 assert_se(arg_dest_late = dest_late);

873

874 r = proc_cmdline_parse(parse_proc_cmdline_item, NULL, 0);

875 if (r < 0)

ChaPTeR 7 sysTemd (PaRT I)

341

876 log_warning_errno(r, "Failed to parse kernel command

line, ignoring: %m");

877

878 (void) determine_root();

879

880 /* Always honour root= and usr= in the kernel command line if

we are in an initrd */

881 if (in_initrd()) {

882 r = add_sysroot_mount();

883

884 r2 = add_sysroot_usr_mount();

885

886 r3 = add_volatile_root();

887 } else

888 r = add_volatile_var();

889

890 /* Honour /etc/fstab only when that's enabled */

891 if (arg_fstab_enabled) {

892 /* Parse the local /etc/fstab, possibly from the initrd */

893 r2 = parse_fstab(false);

894

895 /* If running in the initrd also parse the /etc/fstab

from the host */

896 if (in_initrd())

897 r3 = parse_fstab(true);

898 else

899 r3 = generator_enable_remount_fs_service(arg_dest);

900 }

901

902 return r < 0 ? r : r2 < 0 ? r2 : r3;

903 }

904

905 DEFINE_MAIN_GENERATOR_FUNCTION(run);

ChaPTeR 7 sysTemd (PaRT I)

342

As you can see, first it parses the command-line parameters through the function

proc_cmdline_parse.

root = root filesystem name

rootfstype = root filesystem type

rootflags = ro, rw or auto etc.

systemd-fstab-generator runs twice: when it is inside of initramfs and when it is

outside of initramfs. Once systemd comes out of initramfs (after mounting the user’s

root filesystem in sysroot), systemd-fstab-generator will collect the command-line

parameters for the usr filesystem (if it is a separate partition and if its entry is available in

etc/fstab).

'usr' filesystem name

'usr' filesystem type

'usr' filesystem flags

For ease of understanding, we will consider the following:

Inside of initramfs: Before mounting the user's root filesystem in /sysroot

Outside of initramfs: After mounting the user's root filesystem in /sysroot

So, the systemd-fstab-generator binary will collect the user’s root filesystem–

related command-line parameters when systemd is running inside initramfs, and it will

collect the usr filesystem-related command-line parameters when systemd is running

outside of initramfs. systemd is running inside or outside of initramfs will be checked

through the in_initrd function. The function is written in the file src/basic/util.c.

It’s interesting to check how it verifies whether it is inside or outside the initramfs

environment.

vim systemd-244/src/basic/util.c

 54 bool in_initrd(void) {

 55 struct statfs s;

 56 int r;

 57

 58 if (saved_in_initrd >= 0)

 59 return saved_in_initrd;

 60

ChaPTeR 7 sysTemd (PaRT I)

343

 61 /* We make two checks here:

 62 *

 63 * 1. the flag file /etc/initrd-release must exist

 64 * 2. the root file system must be a memory file system

 65 *

 66 * The second check is extra paranoia, since misdetecting an

 67 * initrd can have bad consequences due the initrd

 68 * emptying when transititioning to the main systemd.

 69 */

 70

 71 r = getenv_bool_secure("SYSTEMD_IN_INITRD");

 72 if (r < 0 && r != -ENXIO)

 73 log_debug_errno(r, "Failed to parse $SYSTEMD_IN_INITRD,

ignoring: %m");

 74

 75 if (r >= 0)

 76 saved_in_initrd = r > 0;

 77 else

 78 saved_in_initrd = access("/etc/initrd-release", F_OK)

>= 0 &&

 79 statfs("/", &s) >= 0 &&

 80 is_temporary_fs(&s);

 81

 82 return saved_in_initrd;

 83 }

It checks whether the /etc/initrd-release file is available. If this file is not present,

it means we are outside of initramfs. This function then calls the statfs function, which

will provide the filesystem details, as shown here:

struct statfs {

 __fsword_t f_type; /* Type of filesystem (see below) */

 __fsword_t f_bsize; /* Optimal transfer block size */

 fsblkcnt_t f_blocks; /* Total data blocks in filesystem */

 fsblkcnt_t f_bfree; /* Free blocks in filesystem */

 fsblkcnt_t f_bavail; /* Free blocks available to

 unprivileged user */

ChaPTeR 7 sysTemd (PaRT I)

344

 fsfilcnt_t f_files; /* Total file nodes in filesystem */

 fsfilcnt_t f_ffree; /* Free file nodes in filesystem */

 fsid_t f_fsid; /* Filesystem ID */

 __fsword_t f_namelen; /* Maximum length of filenames */

 __fsword_t f_frsize; /* Fragment size (since Linux 2.6) */

 __fsword_t f_flags; /* Mount flags of filesystem

 (since Linux 2.6.36) */

 __fsword_t f_spare[xxx];

 /* Padding bytes reserved for future use */

 };

Then it calls the is_temporary_fs() function, which is written inside /src/basic/

stat-util.c.

190 bool is_temporary_fs(const struct statfs *s) {

191 return is_fs_type(s, TMPFS_MAGIC) ||

192 is_fs_type(s, RAMFS_MAGIC);

193 }

As you can see, it checks whether the root filesystem has a ramfs magic number

assigned to it. If yes, then we are inside initramfs. In our case, we are inside the initramfs

environment, so this function will return true and will proceed further from src/fstab-

generator/fstab-generator.c to create only the root filesystem’s -.mount (sysroot.

mount) unit files. If we had been outside of initramfs (after mounting sysroot with the

user’s root filesystem), it would have created a -.mount unit file for the usr filesystem. In

short, first it checks if we are inside initramfs. If we are, then it creates the mount unit file

for the root filesystem, and if we’re outside, then it creates it for the usr (if it is a separate

filesystem) filesystem. To see this in action, we will drop ourselves in the switch_root

(hook) stage so that we are able to run the systemd-fstab-generator binary manually.

 1) First I have deleted the /tmp directory contents. This is because

the fstab generator makes the mount unit files inside /tmp.

 2) Run the systemd-fstab-generator binary, and as you can see in

Figure 7-33, it has created a couple of files in /tmp.

ChaPTeR 7 sysTemd (PaRT I)

345

 3) It has created a sysroot.mount unit file. As the name suggests,

it has been created to mount the user’s root filesystem. The unit

file has been created by reading /proc/cmdline. Please refer to

Figure 7-34 to see the contents of sysroot.mount file.

The root filesystem will be mounted from sda5 (by using the UUID) to the sysroot

directory.

 4) Check the requires section of the sysroot.mount unit file. It

says systemd-fsck- root.service has to be executed first, before

mounting the root filesystem. Figure 7- 35 shows the systemd-

fsck-root.service file.

Figure 7-34. The sysroot.mount file

Figure 7-33. The systemd-fstab-generato0072

ChaPTeR 7 sysTemd (PaRT I)

346

So while booting, if you are inside initramfs, then systemd-fstab-generator will

generate the mount unit files for the user’s root filesystem, and the respective fsck

service file will also be generated.

At the end of the initramfs booting sequence, systemd will refer to these files from

the /tmp directory, will perform the fsck first on a root device, and will mount the root

filesystem on sysroot (inside initramfs); eventually switch_root will be performed.

Now you must understand that though the binary name is systemd-fstab- generator,

it does not really create the /etc/fstab file. Rather, its job is to create the systemd mount

units for root (when inside initramfs) and usr (when outside of initramfs) at /tmp or inside

the run/systemd/generator/ directories. This system has only the root mount point, so it

created the systemd unit files only for root filesystem. Inside initramfs, it calls add_sysroot_

mount for mounting the user’s root filesystem. Once it is mounted, the root filesystem

systemd calls the add_sysroot_usr_mount function. These functions call the add_mount

named function, which in turn makes the systemd mount unit files. The following is a

snippet of the add_mount function from src/fstab-generator/fstab- generator.c:

vim systemd-244/src/fstab-generator/fstab-generator.c

341 r = unit_name_from_path(where, ".mount", &name);

342 if (r < 0)

343 return log_error_errno(r, "Failed to generate unit

name: %m");

344

345 r = generator_open_unit_file(dest, fstab_path(), name, &f);

346 if (r < 0)

347 return r;

348

349 fprintf(f,

Figure 7-35. The systemd-fsck-root.service file contents

ChaPTeR 7 sysTemd (PaRT I)

347

350 "[Unit]\n"

351 "SourcePath=%s\n"

352 "Documentation=man:fstab(5) man:systemd-fstab-

generator(8)\n",

353 source);

354

355 /* All mounts under /sysroot need to happen later, at initrd-

fs.target time. IOW, it's not

356 * technically part of the basic initrd filesystem itself, and

so shouldn't inherit the default

357 * Before=local-fs.target dependency. */

358 if (in_initrd() && path_startswith(where, "/sysroot"))

359 fprintf(f, "DefaultDependencies=no\n");

The current system has only a root partition. To help you understand this even better,

here I have prepared a test system that has root, boot, usr, var, and opt as separate

filesystems:

UUID = f7ed74b5-9085-4f42-a1c4-a569f790fdad / ext4 defaults 1 1

UUID = 06609f65-5818-4aee-a9c5-710b76b36c68 /boot ext4 defaults 1 2

UUID = 68fa7990-edf9-4a03-9011-21903a676322 /opt ext4 defaults 1 2

UUID = 6fa78ab3-6c05-4a2f-9907-31be6d2a1071 /usr ext4 defaults 1 2

UUID = 9c721a59-b62d-4d60-9988-adc8ed9e8770 /var ext4 defaults 1 2

We will drop ourselves in the pre-pivot shell (which we have not discussed yet) of

initramfs. Figure 7-36 shows that we have passed the rd.break=pre-pivot command-

line parameter to the kernel.

Figure 7-36. The kernel command-line parameter

ChaPTeR 7 sysTemd (PaRT I)

348

As you can see in Figure 7-37, in the pre-pivot hook, the root filesystem will be

mounted along with the usr filesystem since the pre-pivot hook stops the booting

sequence after mounting the user’s root filesystem on sysroot. But opt, var, and boot

will not be mounted.

Even if you run systemd-fstab-generator, you will find that only the usr and root

mount unit files will be created. You can see the systemd-fstab-generator output in

Figure 7-38.

This proves that in an initramfs environment, only root and usr will be mounted.

The rest of the mount points will be mounted after initramfs or after switching to root.

Since the var filesystem is not mounted yet, the journalctl logs will be maintained

Figure 7-37. The pre-pivot hook

Figure 7-38. The systemd-fstab-generator in pre-pivot hook

ChaPTeR 7 sysTemd (PaRT I)

349

from the /run filesystem, and as we know, this is a temporary filesystem. This clearly

says that inside the initramfs environment, you cannot access the permanent logs

of journald, which are at /var/log. Please refer to Figures 7-39, 7-40, and 7-41 to

understand this better.

Figure 7-39. The journalctl command in pre-pivot hook

Figure 7-40. The logs provided by journalctl from /run

ChaPTeR 7 sysTemd (PaRT I)

350

Did you notice one thing? The dracut-cmdline service is reading the kernel

command- line parameters, and the usr-related command-line parameters are not

available in /proc/cmdline. So, how does systemd manage to mount the usr filesystem?

Also, at the time of initramfs generation, dracut does not copy the etc/fstab file in it.

lsinitrd | grep -i fstab

-rw-r--r-- 1 root root 0 Jul 25 03:54 etc/fstab.empty

-rwxr-xr-x 1 root root 45640 Jul 25 03:54 usr/lib/systemd/system-

generators/systemd-fstab-generator

lsinitrd -f etc/fstab.empty

 <no_output>

Then how does systemd manage to mount the usr filesystem inside initramfs when it

does not have an entry of it?

When systemd-fstab-generator runs during local-fs.target, it makes the

mount unit files only for root; then it continues the booting sequence and mounts the

root file system on sysroot. Once the root filesystem is mounted, it reads the usr entry

from /etc/sysroot/etc/fstab and makes a usr.mount unit file and at the end mounts

it. Let’s cross-verify this understanding:

 1) Drop in the pre-pivot hook.

 2) Delete the /etc/fstab from the mounted /sysroot.

 3) Run the systemd-fstab-generator.

 4) Refer to Figure 7-42.

Since the root filesystem name will be fetched by dracut-cmdline from proc/

cmdline, systemd-fstab-generator will make the sysroot.mount. But since the fstab

file is missing inside sysroot, it will consider the usr as an separate partition that is not

available, and it will skip creating the usr.mount unit file even though usr is a separate

mount point.

Figure 7-41. The journalctl behavior in pre-pivot hook

ChaPTeR 7 sysTemd (PaRT I)

351

What if you want to have opt- and var-like separate mount points available inside

/sysroot or you want them in an initramfs environment? systemd’s man page has an

answer for this, shown here:

x-initrd.mount

An additional filesystem to be mounted in the initramfs. See the initrd-
 fs.target description in systemd.special(7).

initrd-fs.target

systemd-fstab-generator(3) automatically adds dependencies of type
Before= to sysroot-usr.mount and all mount points found in /etc/fstab
that have x-initrd.mount and not have the noauto mount options set.

So, we need to use the x-initrd.mount [systemd.mount] option in /etc/fstab. For

example, here I have enabled the var mount point inside initramfs through the same

pre-pivot environment:

pre-pivot:/# vi /sysroot/etc/fstab

UUID=f7ed74b5-9085-4f42-a1c4-a569f790fdad / ext4 defaults 1 1

UUID=06609f65-5818-4aee-a9c5-710b76b36c68 /boot ext4 defaults 1 2

UUID=68fa7990-edf9-4a03-9011-21903a676322 /opt ext4 defaults 1 2

UUID=6fa78ab3-6c05-4a2f-9907-31be6d2a1071 /usr ext4 defaults 1 2

UUID=9c721a59-b62d-4d60-9988-adc8ed9e8770 /var ext4 defaults,x-initrd.

mount 1 2

As you can see in Figure 7-43, the var mount unit file has been created, but fsck is

available only for the root filesystem. Please refer to the flowchart in Figure 7-44 to help

you understand this better.

Figure 7-42. The systemd-fstab-generator behavior

ChaPTeR 7 sysTemd (PaRT I)

352

Figure 7-43. The working of systemd-fstab-generator

Figure 7-44. The flowchart

ChaPTeR 7 sysTemd (PaRT I)

353

 swap.target
As you can see in Figure 7-45, we have reached the swap.target stage of booting.

This will execute parallel to local-fs.target. local-fs-.target makes the mount

points for root and usr, whereas swap.target makes the mount unit files for the swap

device. Once the root filesystem mount file is ready, sysroot is mounted according to it.

systemd-fstab-generator will read the fstab, and if the swap device entry is present,

 it will make the swap.mount unit file. That means the swap.mount file will be created

only after switching into the user’s root filesystem (switch_root into sysroot).

The swap.mount will not be created at this stage.

 dracut-initqueue.service
This service creates the actual root, swap, and usr devices. Let’s understand this with an

example.

With the pre-udev hook, we have seen that sda-like devices are not available.

Neither udevadm command will work as the udevd service itself is not started yet. Refer to

Figure 7-46.

Figure 7-45. The booting sequence so far

ChaPTeR 7 sysTemd (PaRT I)

354

With the pre-trigger hook, the sda device is not created, but the udevd service

has been started; hence, as you can see in Figure 7-47 and Figure 7-48, you can use a

udevadm- like tool, which will create the sda device under /dev, but it will not create lvm

or raid-like devices on it. Such devices are also called dm (device mapper) devices. So,

the pre-trigger service will not be able to make the device files for the root if it is on

lvm, and therefore the devices like /dev/fedora_localhost-live/ will not be created.

Figure 7-46. The working of the pre-udev hook

Figure 7-47. The pre-trigger hook

ChaPTeR 7 sysTemd (PaRT I)

355

The service dracut-initqueue.service has not started yet. Let’s see first what

exactly the unit file says.

cat usr/lib/systemd/system/dracut-initqueue.service | grep -v '#'

[Unit]

Description=dracut initqueue hook

Documentation=man:dracut-initqueue.service(8)

DefaultDependencies=no

Before=remote-fs-pre.target

Wants=remote-fs-pre.target

After=systemd-udev-trigger.service

Wants=systemd-udev-trigger.service

ConditionPathExists=/usr/lib/initrd-release

ConditionPathExists=|/lib/dracut/need-initqueue

ConditionKernelCommandLine=|rd.break=initqueue

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

Figure 7-48. The sda devices have been created under the pre-trigger hook

ChaPTeR 7 sysTemd (PaRT I)

356

ExecStart=-/bin/dracut-initqueue

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

As you can see, this service is simply starting the /bin/dracut-initqueue script, and

if we open this script, you will find it is actually executing the udevadm settle command

with a timeout value of 0.

 # vim bin/dracut-initqueue

 22 while :; do

 23

 24 check_finished && break

 25

 26 udevadm settle --exit-if-exists=$hookdir/initqueue/work

 27

 28 check_finished && break

 29

 30 if [-f $hookdir/initqueue/work]; then

 31 rm -f -- "$hookdir/initqueue/work"

 32 fi

 33

 34 for job in $hookdir/initqueue/*.sh; do

 35 [-e "$job"] || break

 36 job=$job . $job

 37 check_finished && break 2

 38 done

 39

 40 udevadm settle --timeout=0 >/dev/null 2>&1 || continue

 41

 42 for job in $hookdir/initqueue/settled/*.sh; do

 43 [-e "$job"] || break

 44 job=$job . $job

ChaPTeR 7 sysTemd (PaRT I)

357

 45 check_finished && break 2

 46 done

 47

 48 udevadm settle --timeout=0 >/dev/null 2>&1 || continue

 49

 50 # no more udev jobs and queues empty.

 51 sleep 0.5

This will eventually run the lvm_scan command from lib/dracut/hooks/

initqueue/timeout/. Note the root and rd.break kernel command-line parameters

that are passed in Figure 7-49.

As you can see in Figure 7-50, the lvm_scan command is written in one of the files.

So, here we have two options: either we can just execute /bin/dracut-initqueue or,

as shown in Figure 7-51, we can execute the lvm_scan command either from the pre-

trigger hook or from the initqueue hook.

Figure 7-49. The kernel command-line parameters

Figure 7-50. The initqueue hook

ChaPTeR 7 sysTemd (PaRT I)

358

Since we have discussed up to the LVM part of initramfs, it is the right time to see one

of the most common and crucial “can’t boot” issue.

 “Can’t Boot” Issue 7 (systemd + Root LVM)

Issue: We changed the standard root device name from /dev/mapper/fedora_

localhost--live-root to /dev/mapper/root_vg-root. We made the appropriate entry

in /etc/fstab, but after rebooting, the system is not able to boot. Figure 7-52 shows what

is visible on the screen.

Figure 7-51. The lvm_scan command in the initqueue hook

Figure 7-52. The console messages

ChaPTeR 7 sysTemd (PaRT I)

359

Since we have a better understanding of dracut-initqueue now, we can see that the

error messages clearly mean systemd is not able to assemble the root lvm device.

 1. Let’s isolate the issue first by recalling the performed steps. The

original root lv name is as follows:

#cat /etc/fstab

/dev/mapper/fedora_localhost--live-root /

ext4 defaults 1 1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4 defaults 1 2

/dev/mapper/fedora_localhost--live-

swap none ext4 defaults 0 0

 2. The root volume group name has been changed.

vgrename fedora_localhost-live root_vg

The volume group Fedora_localhost-live was successfully renamed to

root_vg.

 3. The /etc/fstab entry of root lvm has been appropriately

changed.

/dev/mapper/root_vg-root / ext4 defaults 1 1

UUID=eea3d947-0618-4d8c-b083-87daf15b2679 /boot ext4 defaults 1 2

/dev/mapper/root_vg-swap none swap defaults 0 0

But after rebooting, systemd starts throwing dracut-initqueue timeout error

messages.

The steps look like they were properly followed, but we need to investigate further to

understand why dracut-initqueue is not able to assemble LVMs.

If we wait for some time on the error screen, as shown in Figure 7-53, systemd will

automatically drop us on an emergency shell. We will see in detail how systemd drops us

in an emergency shell in Chapter 8.

ChaPTeR 7 sysTemd (PaRT I)

360

As shown in Figure 7-54, we will scan the currently available LVs and will mount root

vg to verify its contents.

As you can see, root_vg (the renamed vg) is available, and we are able to activate it

too. It clearly means that the LVM metadata is not corrupted and that the LVM device

Figure 7-53. The emergency shell

Figure 7-54. Activating the LVs

ChaPTeR 7 sysTemd (PaRT I)

361

does not have any integrity issues. As shown in Figure 7-55, we will mount root_vg on a

temporary directory and cross-verify its fstab entries from the emergency shell itself.

vg is intact, the fstab entries are correct, and we are able to mount the root vg. What

is missing then?

The missing part is that the kernel command-line parameters have not been

adjusted in GRUB. See Figure 7-56.

To boot, we need to interrupt the GRUB splash screen and need to change the kernel

command-line parameters from what’s shown in Figure 7-57.

Figure 7-55. Mounting the root filesystem

Figure 7-56. The kernel command-line parameters

Figure 7-57. The old kernel command-line parameters

ChaPTeR 7 sysTemd (PaRT I)

362

See Figure 7-58 for the new ones.

Once the system is booted, change /etc/default/grub from this:

cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_localhost--live-swap rd.lvm.

lv=fedora_localhost-live/root rd.lvm.lv=fedora_localhost-live/swap

console=ttyS0,115200 console=tty0"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

to the following:

cat /etc/default/grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/root_vg-swap rd.lvm.lv=root_vg/root

rd.lvm.lv=root_vg/swap console=ttyS0,115200 console=tty0"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

It is not necessary to change the /etc/default/grub file since Fedora uses the BLS

entries from /boot/loader/entries.

Figure 7-58. The new kernel command-line parameters

ChaPTeR 7 sysTemd (PaRT I)

363

Change /boot/grub2/grubenv from this:

cat /boot/grub2/grubenv

saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64

menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/mapper/fedora_localhost--live-root ro resume=/dev/

mapper/fedora_localhost--live-swap rd.lvm.lv=fedora_localhost-live/root

rd.lvm.lv=fedora_localhost-live/swap console=ttyS0,115200 console=tty0

boot_indeterminate=9

to the following:

cat /boot/grub2/grubenv

saved_entry=2058a9f13f9e489dba29c477a8ae2493-5.3.7-301.fc31.x86_64

menu_auto_hide=1

boot_success=0

kernelopts=root=/dev/root_vg/root ro resume=/dev/mapper/root_vg-swap

rd.lvm.lv=root_vg/root rd.lvm.lv=root_vg/swap console=ttyS0,115200

console=tty0

boot_indeterminate=9

This fixes the “can’t boot” issue.

 plymouth
Now it’s time to talk about one interesting service called plymouth. Earlier Linux would

show boot messages directly on the console, which was kind of boring for desktop users.

Hence, plymouth was introduced, as shown here:

cat usr/lib/systemd/system/plymouth-start.service

[Unit]

Description=Show Plymouth Boot Screen

DefaultDependencies=no

Wants=systemd-ask-password-plymouth.path systemd-vconsole-setup.service

After=systemd-vconsole-setup.service systemd-udev-trigger.service systemd-

udevd.service

Before=systemd-ask-password-plymouth.service

ChaPTeR 7 sysTemd (PaRT I)

364

ConditionKernelCommandLine=!plymouth.enable=0

ConditionVirtualization=!container

[Service]

ExecStart=/usr/sbin/plymouthd --mode=boot --pid-file=/var/run/plymouth/pid

--attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

Type=forking

KillMode=none

SendSIGKILL=no

As you can see, from the /usr/lib/systemd/system/plymouth-start.service unit

file, plymouth starts right after systemd-udev-trigger.service and before dracut-

initqueue.service, as shown in Figure 7-59.

As shown in Figure 7-60, plymouth will be active throughout the booting procedure.

Figure 7-59. The booting sequence

ChaPTeR 7 sysTemd (PaRT I)

365

Figure 7-60. plymouth

ChaPTeR 7 sysTemd (PaRT I)

366

plymouth is a tool that shows you an animation at the time of the boot. For example,

in Fedora, it doesn’t show the console messages shown in Figure 7-61.

plymouth shows you the animation shown in Figure 7-62.

Figure 7-61. When plymouth is not available

ChaPTeR 7 sysTemd (PaRT I)

367

 Installing plymouth

If you want to install the different themes of plymouth, then this is what you can do:

 1. Download plymouth-theme from gnome-look.org, or you can use

the following:

dnf install plymouth-theme*

Figure 7-62. The plymouth screen

ChaPTeR 7 sysTemd (PaRT I)

http://gnome-look.org

368

 2. Extract the downloaded theme to the following location: /usr/

share/plymouth/themes/

ls -l /usr/share/plymouth/themes/

total 52

drwxr-xr-x. 2 root root 4096 Apr 26 2019 bgrt

drwxr-xr-x 3 root root 4096 Mar 30 09:15 breeze

drwxr-xr-x 2 root root 4096 Mar 30 09:15 breeze-text

drwxr-xr-x. 2 root root 4096 Mar 30 09:15 charge

drwxr-xr-x. 2 root root 4096 Apr 26 2019 details

drwxr-xr-x 2 root root 4096 Mar 30 09:15 fade-in

drwxr-xr-x 2 root root 4096 Mar 30 09:15 hot-dog

drwxr-xr-x 2 root root 4096 Mar 30 09:15 script

drwxr-xr-x 2 root root 4096 Mar 30 09:15 solar

drwxr-xr-x 2 root root 4096 Mar 30 09:15 spinfinity

drwxr-xr-x. 2 root root 4096 Apr 26 2019 spinner

drwxr-xr-x. 2 root root 4096 Apr 26 2019 text

drwxr-xr-x. 2 root root 4096 Apr 26 2019 tribar

 3. You need to rebuild initramfs as plymouth runs from the initramfs

environment. For example, its configuration file has to be updated

for the new plymouth theme.

cat /etc/plymouth/plymouthd.conf

Administrator customizations go in this file

#[Daemon]

#Theme=fade-in

[Daemon]

Theme=hot-dog

After rebooting, as shown in Figure 7-63, you will see a new plymouth theme called

hot-dog.

ChaPTeR 7 sysTemd (PaRT I)

369

 Managing plymouth

Since plymouth starts at an early stage, dracut does provide some command-line options

to manage plymouth’s behavior.

 plymouth.enable=0

 disable the plymouth bootsplash completely.

 rd.plymouth=0

 disable the plymouth bootsplash only for the initramfs.

The hot-dog image shown earlier is called a splash screen. To see the installed/

chosen splash screen, you can use the following:

#plymouth --show-splash

Figure 7-63. The hot-dog plymouth theme

ChaPTeR 7 sysTemd (PaRT I)

370

Another main motive of plymouth is to maintain all the boot-time messages in a

simple text file that users can examine after the boot. The logs will be stored at /var/

log/boot.log, but remember that this file is maintained by plymouth. This means you

will find the booting messages only after starting plymouth. But at the same time, we

need to keep in mind that plymouth does start at an early stage of initramfs (right after

udevd kicks in).

less /varlog/boot.log

<snip>

------------ Sat Jul 06 01:43:12 IST 2019 ------------

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mShow Plymouth Boot ScreenESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mPathsESC[0m.

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mForward Password R...s to

Plymouth Directory WatchESC[0m.

[ESC[0;32m OK ESC[0m] Found device ESC[0;1;39m/dev/mapper/fedora_

localhost--live-rootESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mInitrd Root DeviceESC[0m.

[ESC[0;32m OK ESC[0m] Found device ESC[0;1;39m/dev/mapper/fedora_

localhost--live-swapESC[0m.

 Starting ESC[0;1;39mResume from hiber...fedora_localhost--live-

swapESC[0m...

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mResume from hibern...r/fedora_

localhost--live-swapESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mLocal File Systems (Pre)

ESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mLocal File SystemsESC[0m.

 Starting ESC[0;1;39mCreate Volatile Files and DirectoriesESC[0m...

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mCreate Volatile Files and

DirectoriesESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mSystem

InitializationESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mBasic SystemESC[0m.

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mdracut initqueue hookESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mRemote File Systems (Pre)

ESC[0m.

ChaPTeR 7 sysTemd (PaRT I)

371

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mRemote File

SystemsESC[0m.

 Starting ESC[0;1;39mFile System Check...fedora_localhost--live-

rootESC[0m...

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mFile System Check ...r/fedora_

localhost--live-rootESC[0m.

 Mounting ESC[0;1;39m/sysrootESC[0m...

[ESC[0;32m OK ESC[0m] Mounted ESC[0;1;39m/sysrootESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mInitrd Root File

SystemESC[0m.

 Starting ESC[0;1;39mReload Configuration from the Real

RootESC[0m...

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mReload Configuration from the

Real RootESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mInitrd File

SystemsESC[0m.

[ESC[0;32m OK ESC[0m] Reached target ESC[0;1;39mInitrd Default

TargetESC[0m.

 Starting ESC[0;1;39mdracut pre-pivot and cleanup hookESC[0m...

[ESC[0;32m OK ESC[0m] Started ESC[0;1;39mdracut pre-pivot and cleanup

hookESC[0m.

 Starting ESC[0;1;39mCleaning Up and Shutting Down DaemonsESC[0m...

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mTimersESC[0m.

[ESC[0;32m OK ESC[0m] Stopped ESC[0;1;39mdracut pre-pivot and cleanup

hookESC[0m.

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mInitrd Default

TargetESC[0m.

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mRemote File

SystemsESC[0m.

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mRemote File Systems (Pre)

ESC[0m.

[ESC[0;32m OK ESC[0m] Stopped ESC[0;1;39mdracut initqueue hookESC[0m.

 Starting ESC[0;1;39mPlymouth switch root serviceESC[0m...

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mInitrd Root DeviceESC[0m.

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mBasic SystemESC[0m.

ChaPTeR 7 sysTemd (PaRT I)

372

[ESC[0;32m OK ESC[0m] Stopped target ESC[0;1;39mSystem

InitializationESC[0m.

.

.

</snip>

 Structure

plymouth takes inputs from initramfs/systemd to understand what stage of the booting

procedure has been completed (as a percentage of the booting procedure) and

accordingly shows the animation or a progress bar on the screen. There are two binaries

that take care of the plymouth work.

 /bin/plymouth (Interface to plymouthd)

 /usr/sbin/plymouthd (main binary which shows splash and logs boot

messages in boot.log file)

There are various plymouth services available inside initramfs on which systemd

relies on.

ls -l usr/lib/systemd/system/ -l | grep -i plymouth

-rw-r--r--. 1 root root 384 Dec 21 12:19 plymouth-halt.service

-rw-r--r--. 1 root root 398 Dec 21 12:19 plymouth-kexec.service

-rw-r--r--. 1 root root 393 Dec 21 12:19 plymouth-poweroff.service

-rw-r--r--. 1 root root 198 Dec 21 12:19 plymouth-quit.service

-rw-r--r--. 1 root root 204 Dec 21 12:19 plymouth-quit-wait.service

-rw-r--r--. 1 root root 386 Dec 21 12:19 plymouth-reboot.service

-rw-r--r--. 1 root root 547 Dec 21 12:19 plymouth-start.service

-rw-r--r--. 1 root root 295 Dec 21 12:19 plymouth-switch-root.service

-rw-r--r--. 1 root root 454 Dec 21 12:19 systemd-ask-password-plymouth.path

-rw-r--r--. 1 root root 435 Dec 21 12:19 systemd-ask-password-plymouth.service

drwxr-xr-x. 2 root root 4096 Dec 21 12:19 systemd-ask-password-plymouth.

service.wants

systemd, when running in initramfs, calls these services from time to time during

the boot phase. As you can see, every service is calling the plymouthd binary and passing

ChaPTeR 7 sysTemd (PaRT I)

373

switches accordingly to the current stage of booting. For example, plymouth-start.

service simply starts the plymouthd binary with mode boot. There are only two modes;

one is boot, and another one is shutdown.

cat usr/lib/systemd/system/plymouth* | grep -i execstart

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=shutdown --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=-/usr/bin/plymouth quit <<---

ExecStart=-/usr/bin/plymouth --wait

ExecStart=/usr/sbin/plymouthd --mode=reboot --attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=/usr/sbin/plymouthd --mode=boot --pid-file=/var/run/plymouth/pid

--attach-to-session

ExecStartPost=-/usr/bin/plymouth show-splash

ExecStart=-/usr/bin/plymouth update-root-fs --new-root-dir=/sysroot <<---

Another example we can consider is that at the time of the switch_root, systemd

simply calls plymouth-switch-root.service, which in turn runs the plymouthd binary

with an updated root filesystem as sysroot. In other words, you can say along with

switch_root that plymouth changes its root directory from initramfs to the actual root

filesystem. Going further, you can see that systemd starts the plymouth service in the

same way that systemd sends a quit message to plymouthd at the end of the booting

sequence. At the same time, you probably noticed that systemd calls plymouth at the

time of the reboot or shutdown too. It is not really a big deal since it just calls the same

plymouthd with the appropriate mode.

 Sysinit.target
So, we have reached the sysinit.target stage. Figure 7-64 shows the booting sequence

we have covered so far.

ChaPTeR 7 sysTemd (PaRT I)

374

Since this is a target unit, its job is to hold or start a bunch of other units (services,

sockets, etc.). The list of units will be available in its wants directory. As you can see, the

available unit files are nothing but symbolic links to the original service unit files.

#ls -l usr/lib/systemd/system/sysinit.target.wants/

total 0

kmod-static-nodes.service -> ../kmod-static-nodes.service

plymouth-start.service -> ../plymouth-start.service

systemd-ask-password-console.path -> ../systemd-ask-password-console.path

systemd-journald.service -> ../systemd-journald.service

systemd-modules-load.service -> ../systemd-modules-load.service

systemd-sysctl.service -> ../systemd-sysctl.service

systemd-tmpfiles-setup-dev.service -> ../systemd-tmpfiles-setup-dev.service

systemd-tmpfiles-setup.service -> ../systemd-tmpfiles-setup.service

systemd-udevd.service -> ../systemd-udevd.service

systemd-udev-trigger.service -> ../systemd-udev-trigger.service

Most of the services have already been started before we reach sysinit.target.

For example, systemd-udevd.service and systemd-udev-trigger.service (after the

pre-trigger service) have already been started, and we have already seen that systemd

-udevd.service will execute the /usr/lib/systemd/systemd-udevd binary, whereas

Figure 7-64. The booting sequence covered so far

ChaPTeR 7 sysTemd (PaRT I)

375

the systemd-udev-trigger service will execute the udevadm binary. Then why are we

starting these services again with sysinit.target? We are not. sysinit.target will

start only the services that have not yet started, and it will ignore taking any action on the

services that are already started. Let’s see the purpose of each of these service unit files.

The kmod-static-nodes systemd unit file executes the kmod binary with the static-

nodes switch. We have already seen in Chapter 5 that lsmod, insmod, modinfo, modprobe,

depmod, etc., are the symlinks to the kmod binary.

#lsinitrd | grep -i kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/depmod -> ../bin/kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/insmod -> ../bin/kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/lsmod -> ../bin/kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/modinfo -> ../bin/kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/modprobe -> ../bin/kmod

lrwxrwxrwx 1 root root 11 Jul 25 03:54 usr/sbin/rmmod -> ../bin/kmod

cat usr/lib/systemd/system/kmod-static-nodes.service | grep -v '#'

[Unit]

Description=Create list of static device nodes for the current kernel

DefaultDependencies=no

Before=sysinit.target systemd-tmpfiles-setup-dev.service

ConditionCapability=CAP_SYS_MODULE

ConditionFileNotEmpty=/lib/modules/%v/modules.devname

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/bin/kmod static-nodes --format=tmpfiles --output=/run/

tmpfiles.d/static-nodes.conf

With the static-nodes switch, systemd is just collecting all of the static nodes

(devices) present in the system. Why do we need static nodes in the age of dynamic

node handling (udev)? There are some modules like fuse or ALSA that need some device

files present in /dev, or they might create them. But it could be dangerous since the

device files are made by kernel or udev. So, to avoid modules from creating device files,

ChaPTeR 7 sysTemd (PaRT I)

376

systemd will create static nodes like /dev/fuse or /dev/snd/seq through the kmod-

static- nodes.service. The following are the static nodes created by kmod-static-

nodes.service on a Fedora system:

kmod static-nodes

Module: fuse

 Device node: /dev/fuse

 Type: character device

 Major: 10

 Minor: 229

Module: btrfs

 Device node: /dev/btrfs-control

 Type: character device

 Major: 10

 Minor: 234

Module: loop

 Device node: /dev/loop-control

 Type: character device

 Major: 10

 Minor: 237

Module: tun

 Device node: /dev/net/tun

 Type: character device

 Major: 10

 Minor: 200

Module: ppp_generic

 Device node: /dev/ppp

 Type: character device

 Major: 108

 Minor: 0

Module: uinput

 Device node: /dev/uinput

 Type: character device

 Major: 10

 Minor: 223

ChaPTeR 7 sysTemd (PaRT I)

377

Module: uhid

 Device node: /dev/uhid

 Type: character device

 Major: 10

 Minor: 239

Module: vfio

 Device node: /dev/vfio/vfio

 Type: character device

 Major: 10

 Minor: 196

Module: hci_vhci

 Device node: /dev/vhci

 Type: character device

 Major: 10

 Minor: 137

Module: vhost_net

 Device node: /dev/vhost-net

 Type: character device

 Major: 10

 Minor: 238

Module: vhost_vsock

 Device node: /dev/vhost-vsock

 Type: character device

 Major: 10

 Minor: 241

Module: snd_timer

 Device node: /dev/snd/timer

 Type: character device

 Major: 116

 Minor: 33

Module: snd_seq

 Device node: /dev/snd/seq

 Type: character device

 Major: 116

 Minor: 1

ChaPTeR 7 sysTemd (PaRT I)

378

Module: cuse

 Device node: /dev/cuse

 Type: character device

 Major: 10

 Minor: 203

Next, we have the plymouth service, which has already been started; then we have

systemd-ask-password-console.path, which is a .path unit file.

cat usr/lib/systemd/system/systemd-ask-password-console.path | grep -v '#'

[Unit]

Description=Dispatch Password Requests to Console Directory Watch

Documentation=man:systemd-ask-password-console.service(8)

DefaultDependencies=no

Conflicts=shutdown.target emergency.service

After=plymouth-start.service

Before=paths.target shutdown.target cryptsetup.target

ConditionPathExists=!/run/plymouth/pid

[Path]

DirectoryNotEmpty=/run/systemd/ask-password

MakeDirectory=yes

The .path unit file is for path-based activation, but since we have not encrypted our

root disk with LUKS, we do not have the actual service file that will accept the password

from the user. If we had configured LUKS, we would have had the /usr/lib/systemd/

system/systemd-ask-password-plymouth.service service unit file, as shown here:

cat usr/lib/systemd/system/systemd-ask-password-plymouth.service

[Unit]

Description=Forward Password Requests to Plymouth

Documentation=http://www.freedesktop.org/wiki/Software/systemd/

PasswordAgents

DefaultDependencies=no

Conflicts=shutdown.target

After=plymouth-start.service

Before=shutdown.target

ChaPTeR 7 sysTemd (PaRT I)

379

ConditionKernelCommandLine=!plymouth.enable=0

ConditionVirtualization=!container

ConditionPathExists=/run/plymouth/pid

[Service]

ExecStart=/usr/bin/systemd-tty-ask-password-agent --watch --plymouth

As you can see, this is executing the systemd-tty-ask-password-agent binary,

which will ask for a password with plymouth instead of a TTY. Next, the service unit file

is systemd-journald.service, which will start the journald daemon for us. Until this

time, all the messages are logged with the journald socket, which systemd started as the

first service of the booting sequence. The journald socket is 8 MB in size. If the socket

runs out of buffer, then the services will be blocked until the socket becomes available.

The 8 MB of buffer space is more than enough for the production systems.

#vim usr/lib/systemd/system/sysinit.target.wants/systemd-journald.service

[Unit]

Description=Journal Service

Documentation=man:systemd-journald.service(8) man:journald.conf(5)

DefaultDependencies=no

Requires=systemd-journald.socket

After=systemd-journald.socket systemd-journald-dev-log.socket systemd-

journald- audit.socket syslog.socket

Before=sysinit.target

[Service]

OOMScoreAdjust=-250

CapabilityBoundingSet=CAP_SYS_ADMIN CAP_DAC_OVERRIDE CAP_SYS_PTRACE CAP_

SYSLOG CAP_AUDIT_CONTROL CAP_AUDIT_READ CAP_CHOWN CAP_DAC_READ_SEARCH CAP_

FOWNER CAP_SETUID CAP_SETGID CAP_MAC_OVERRIDE

DeviceAllow=char-* rw

ExecStart=/usr/lib/systemd/systemd-journald

FileDescriptorStoreMax=4224

IPAddressDeny=any

LockPersonality=yes

MemoryDenyWriteExecute=yes

ChaPTeR 7 sysTemd (PaRT I)

380

Restart=always

RestartSec=0

RestrictAddressFamilies=AF_UNIX AF_NETLINK

RestrictNamespaces=yes

RestrictRealtime=yes

RestrictSUIDSGID=yes

Sockets=systemd-journald.socket systemd-journald-dev-log.socket systemd-

journald- audit.socket

StandardOutput=null

SystemCallArchitectures=native

SystemCallErrorNumber=EPERM

SystemCallFilter=@system-service

Type=notify

WatchdogSec=3min

LimitNOFILE=524288

Next, if you want systemd to load some specific module statically, then you can get

some help from our next service, which is systemd-modules-load.service.

cat usr/lib/systemd/system/systemd-modules-load.service | grep -v '#'

[Unit]

Description=Load Kernel Modules

Documentation=man:systemd-modules-load.service(8) man:modules-load.d(5)

DefaultDependencies=no

Conflicts=shutdown.target

Before=sysinit.target shutdown.target

ConditionCapability=CAP_SYS_MODULE

ConditionDirectoryNotEmpty=|/lib/modules-load.d

ConditionDirectoryNotEmpty=|/usr/lib/modules-load.d

ConditionDirectoryNotEmpty=|/usr/local/lib/modules-load.d

ConditionDirectoryNotEmpty=|/etc/modules-load.d

ConditionDirectoryNotEmpty=|/run/modules-load.d

ConditionKernelCommandLine=|modules-load

ConditionKernelCommandLine=|rd.modules-load

ChaPTeR 7 sysTemd (PaRT I)

381

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/lib/systemd/systemd-modules-load

TimeoutSec=90s

The service executes /usr/lib/systemd/systemd-modules-load. The binary

understands the two command-line parameters.

• module_load: This is a kernel command-line parameter.

• rd.module_load: This is a dracut command-line parameter.

If you pass a dracut command-line parameter, then systemd-modules-load will

statistically load the module in memory, but for that, the module has to be present in

initramfs. If it is not present in initramfs, then first it has to be pulled in initramfs. While

generating initramfs, dracut reads the <module-name>.conf files from here:

/etc/modules-load.d/*.conf

/run/modules-load.d/*.conf

/usr/lib/modules-load.d/*.conf

You need to create the *.conf file and need to mention the module name in it, which

you want to add in initramfs.

For example, here we have created a new initramfs image that does not have the vfio

module in it:

dracut new.img

lsinitrd | grep -i vfio

 <no_output>

To pull the module statistically inside initramfs, here we have created the vfio.conf

file:

cat /usr/lib/modules-load.d/vfio.conf

 vfio

ChaPTeR 7 sysTemd (PaRT I)

382

Here we have rebuilt initramfs:

dracut new.img -f

lsinitrd new.img | grep -i vfio

Jul 25 03:54 usr/lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/vfio

Jul 25 03:54 usr/lib/modules/5.3.16-300.fc31.x86_64/kernel/drivers/vfio/

vfio.ko.xz

Jul 25 03:54 usr/lib/modules-load.d/vfio.conf

As you can see, the module has been pulled inside initramfs, and it will be loaded in

memory as soon as the service systemd-modules-load.service starts.

Loading modules statistically is not really a good idea. These days, modules are

loaded dynamically in memory when it is necessary or on demand, whereas static

modules will always be loaded in memory irrespective of need or demand.

Don’t get confused with the /etc/modprobe.d directory. Its use is to pass the options

to modules. Here’s an example:

#cat /etc/modprobe.d/lockd.conf

 options lockd nlm_timeout=10

nlm_timeour=10 is an option passed to the lockd module. Remember, the .conf file

inside /etc/modprobe.d has to be a module name. Through the same conf file, you can

set an alias for the module name. Here’s an example:

"alias my-mod really_long_modulename"

Next, systemd will set the sysctl kernel parameters with the help of systemd-

sysctl.service.

cat usr/lib/systemd/system/systemd-sysctl.service | grep -v '#'

[Unit]

Description=Apply Kernel Variables

Documentation=man:systemd-sysctl.service(8) man:sysctl.d(5)

DefaultDependencies=no

Conflicts=shutdown.target

After=systemd-modules-load.service

Before=sysinit.target shutdown.target

ConditionPathIsReadWrite=/proc/sys/net/

ChaPTeR 7 sysTemd (PaRT I)

383

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStart=/usr/lib/systemd/systemd-sysctl

TimeoutSec=90s

systemd-sysctl.service will start the /usr/lib/systemd/systemd-sysctl binary,

which will set the kernel tuning parameters by reading the *.conf files from three

different locations.

/etc/sysctl.d/*.conf

 /run/sysctl.d/*.conf

 /usr/lib/sysctl.d/*.conf

Here’s an example:

sysctl -a | grep -i swappiness

 vm.swappiness = 60

The default swappiness kernel parameter value is set to 60. If you want to change

it to 10 and it has to be permanent across reboots, then add it in /etc/sysctl.d/99-

sysctl.conf.

#cat /etc/sysctl.d/99-sysctl.conf

 vm.swappiness = 10

You can reload and set the sysctl parameters by using this:

sysctl -p

vm.swappiness = 10

To make these changes in initramfs, you need to regenerate initramfs. At the time of

the boot, systemd-sysctl.service will read the swappiness value from the 99-sysctl.

conf file and will set it in the initramfs environment.

systemd creates many temporary files for its smooth execution. After setting up the

sysctl parameters, it executes the next service, called systemd-tmpfiles-setup-dev.

service, which will execute the /usr/bin/systemd-tmpfiles --prefix=/dev --create

--boot binary. This will create dev filesystem-related temporary files according to these

rules:

ChaPTeR 7 sysTemd (PaRT I)

384

/etc/tmpfiles.d/*.conf

/run/tmpfiles.d/*.conf

/usr/lib/tmpfiles.d/*.conf

After sysinit.target, systemd will verify if the required sockets are created or not

through sockets.target.

ls usr/lib/systemd/system/sockets.target.wants/ -l

total 0

32 Jan 3 18:05 systemd-journald-audit.socket -> ../systemd-journald-audit.

socket

34 Jan 3 18:05 systemd-journald-dev-log.socket -> ../systemd-journald-dev-

log.socket

26 Jan 3 18:05 systemd-journald.socket -> ../systemd-journald.socket

31 Jan 3 18:05 systemd-udevd-control.socket -> ../systemd-udevd-control.

socket

30 Jan 3 18:05 systemd-udevd-kernel.socket -> ../systemd-udevd-kernel.

socket

So, our boot process has finished the sequence up to sysinit.target. Refer the

flowchart shown in Figure 7-65.

Figure 7-65. The boot sequence covered so far

ChaPTeR 7 sysTemd (PaRT I)

385

 “Can’t Boot” Issue 8 (sysctl.conf)

Issue: After rebooting, the kernel is panicking, and the system is not able to boot. This is

what is visible on the console:

[4.596220] Mem-Info:

[4.597455] active_anon:566 inactive_anon:1 isolated_anon:0

[4.597455] active_file:0 inactive_file:0 isolated_file:0

[4.597455] unevictable:19700 dirty:0 writeback:0 unstable:0

[4.597455] slab_reclaimable:2978 slab_unreclaimable:3180

[4.597455] mapped:2270 shmem:22 pagetables:42 bounce:0

[4.597455] free:23562 free_pcp:1982 free_cma:0

[4.611930] Node 0 active_anon:2264kB inactive_anon:4kB active_file:0kB

inactive_file:0kB unevictable:78800kB isolated(anon):0kB isolated(file):0kB

mapped:9080kB dirty:0kB writeback:0kB shmem:88kB shmem_thp: 0kB

shmem_pmdmapped: 0kB anon_thp: 0kB writeback_tmp:0kB unstable:0kB all_

unreclaimable? yes

[4.621748] Node 0 DMA free:15900kB min:216kB low:268kB high:320kB

active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB

unevictable:0kB writepending:0kB present:15992kB managed:15908kB

mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_

pcp:0kB free_cma:0kB

[4.632561] lowmem_reserve[]: 0 1938 4764 4764 4764

[4.634609] Node 0 DMA32 free:38516kB min:27404kB low:34252kB

high:41100kB active_anon:0kB inactive_anon:0kB active_file:0kB

inactive_file:0kB unevictable:0kB writepending:0kB present:2080628kB

managed:2015092kB mlocked:0kB kernel_stack:0kB pagetables:0kB bounce:0kB

free_pcp:2304kB local_pcp:0kB free_cma:0kB

[4.645636] lowmem_reserve[]: 0 0 2826 2826 2826

[4.647886] Node 0 Normal free:39832kB min:39956kB low:49944kB

high:59932kB active_anon:2264kB inactive_anon:4kB active_file:0kB

inactive_file:0kB unevictable:78800kB writepending:0kB present:3022848kB

managed:2901924kB mlocked:0kB kernel_stack:1776kB pagetables:168kB

bounce:0kB free_pcp:5624kB local_pcp:1444kB free_cma:0kB

[4.659458] lowmem_reserve[]: 0 0 0 0 0

ChaPTeR 7 sysTemd (PaRT I)

386

[4.661319] Node 0 DMA: 1*4kB (U) 1*8kB (U) 1*16kB (U) 0*32kB 2*64kB (U)

1*128kB (U) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (M) 3*4096kB (M) =

15900kB

[4.666730] Node 0 DMA32: 1*4kB (M) 0*8kB 1*16kB (M) 1*32kB (M) 1*64kB

(M) 0*128kB 0*256kB 1*512kB (M) 3*1024kB (M) 1*2048kB (M) 8*4096kB (M) =

38516kB

[4.673247] Node 0 Normal: 69*4kB (UME) 16*8kB (M) 10*16kB (UME) 7*32kB

(ME) 5*64kB (E) 1*128kB (E) 1*256kB (U) 9*512kB (ME) 9*1024kB (UME)

2*2048kB (ME) 5*4096kB (M) = 39892kB

[4.680399] Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0

hugepages_size=1048576kB

[4.683930] Node 0 hugepages_total=2303 hugepages_free=2303 hugepages_

surp=0 hugepages_size=2048kB

[4.687749] 19722 total pagecache pages

[4.689841] 0 pages in swap cache

[4.691580] Swap cache stats: add 0, delete 0, find 0/0

[4.694275] Free swap = 0kB

[4.696039] Total swap = 0kB

[4.697617] 1279867 pages RAM

[4.699229] 0 pages HighMem/MovableOnly

[4.700862] 46636 pages reserved

[4.703868] 0 pages cma reserved

[4.705589] 0 pages hwpoisoned

[4.707435] Tasks state (memory values in pages):

[4.709532] [pid] uid tgid total_vm rss pgtables_bytes

swapents oom_score_adj name

[4.713849] [341] 0 341 5118 1178 77824

0 -1000 (md-udevd)

[4.717805] Out of memory and no killable processes...

[4.719861] Kernel panic - not syncing: System is deadlocked on memory

[4.721926] CPU: 3 PID: 1 Comm: systemd Not tainted 5.3.7-301.fc31.

x86_64 #1

[4.724343] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS

1.12.0-2.fc30 04/01/2014

[4.727959] Call Trace:

ChaPTeR 7 sysTemd (PaRT I)

387

[4.729204] dump_stack+0x5c/0x80

[4.730707] panic+0x101/0x2d7

[4.747357] out_of_memory.cold+0x2f/0x88

[4.749172] __alloc_pages_slowpath+0xb09/0xe00

[4.750890] __alloc_pages_nodemask+0x2ee/0x340

[4.752452] alloc_slab_page+0x19f/0x320

[4.753982] new_slab+0x44f/0x4d0

[4.755317] ? alloc_slab_page+0x194/0x320

[4.757016] ___slab_alloc+0x507/0x6a0

[4.758768] ? copy_verifier_state+0x1f7/0x270

[4.760591] ? ___slab_alloc+0x507/0x6a0

[4.763266] __slab_alloc+0x1c/0x30

[4.764846] kmem_cache_alloc_trace+0x1ee/0x220

[4.766418] ? copy_verifier_state+0x1f7/0x270

[4.768120] copy_verifier_state+0x1f7/0x270

[4.769604] ? kmem_cache_alloc_trace+0x162/0x220

[4.771098] ? push_stack+0x35/0xe0

[4.772367] push_stack+0x66/0xe0

[4.774010] check_cond_jmp_op+0x1fe/0xe60

[4.775644] ? _cond_resched+0x15/0x30

[4.777524] ? _cond_resched+0x15/0x30

[4.779315] ? kmem_cache_alloc_trace+0x162/0x220

[4.780916] ? copy_verifier_state+0x1f7/0x270

[4.782357] ? copy_verifier_state+0x16f/0x270

[4.783785] do_check+0x1c06/0x24e0

[4.785218] bpf_check+0x1aec/0x24d4

[4.786613] ? _cond_resched+0x15/0x30

[4.788073] ? kmem_cache_alloc_trace+0x162/0x220

[4.789672] ? selinux_bpf_prog_alloc+0x1f/0x60

[4.791564] bpf_prog_load+0x3a3/0x670

[4.794915] ? seq_vprintf+0x30/0x50

[4.797085] ? seq_printf+0x53/0x70

[4.799013] __do_sys_bpf+0x7e5/0x17d0

[4.800909] ? __fput+0x168/0x250

[4.802352] do_syscall_64+0x5f/0x1a0

ChaPTeR 7 sysTemd (PaRT I)

388

[4.803826] entry_SYSCALL_64_after_hwframe+0x44/0xa9

[4.805587] RIP: 0033:0x7f471557915d

[4.807638] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48

89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05

<48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d fb 5c 0c 00 f7 d8 64 89 01 48

[4.814732] RSP: 002b:00007fffd36da028 EFLAGS: 00000246 ORIG_RAX:

0000000000000141

[4.818390] RAX: ffffffffffffffda RBX: 000055fb6ad3add0 RCX:

00007f471557915d

[4.820448] RDX: 0000000000000070 RSI: 00007fffd36da030 RDI:

0000000000000005

[4.822536] RBP: 0000000000000002 R08: 0070756f7267632f R09:

000001130000000f

[4.826605] R10: 0000000000000000 R11: 0000000000000246 R12:

0000000000000000

[4.829312] R13: 0000000000000006 R14: 000055fb6ad3add0 R15:

00007fffd36da1e0

[4.831792] Kernel Offset: 0x26000000 from 0xffffffff81000000

(relocation range: 0xffffffff80000000-0xffffffffbfffffff)

[4.835316] ---[end Kernel panic - not syncing: System is deadlocked on

memory]---

So, this is a “kernel panic” issue. We need to isolate the issue first since kernel

panic can occur due to thousands of situations. If you look at the highlighted messages

of kernel panic, it is clear that an “OOM-killer” has been invoked since the system is

running out of memory. The kernel tried to free the memory from cache and even tried

to use the swap space, but eventually it gave up, and the kernel panicked.

So, we have isolated the issue. We need to concentrate on who is eating the memory.

The OS out-of-memory (OOM) mechanism will be invoked when the system has

immense memory pressure.

There are three situations when an OOM-killer can be invoked during the boot

sequence:

• The system has really low physical memory installed.

• The wrong kernel tuning parameters have been set.

• Some modules have a memory leak.

ChaPTeR 7 sysTemd (PaRT I)

389

This system has 4.9 GB of physical memory, which is not big, but it is certainly more

than enough for the Linux kernel to finish the booting sequence.

Some modules might have memory leaks, but identifying that will be a difficult task.

So, we will verify first whether any memory-related kernel tuning parameters have been

set incorrectly.

 1. To do that, we will drop ourselves inside initramfs. In Figure 7-66,

we have passed rd.break as a kernel command-line parameter.

 2. We will remount sysroot in read-write mode and verify the

sysctl parameters.

switch_root:/# cat /proc/sys/vm/nr_hugepages

 2400

 3. The issue is the wrongly reserved number of hugepages. We will

disable the setting as per Figure 7-67.

Figure 7-66. The kernel command-line parameter

Figure 7-67. Disabling the hugepage setting

ChaPTeR 7 sysTemd (PaRT I)

390

After rebooting, the system is able to boot successfully. Let’s try to understand what

went wrong. This system has 4.9 GB of memory, and earlier there were no hugepages

reserved.

cat /proc/meminfo | grep -e MemTotal -e HugePages_Total

MemTotal: 4932916 kB

HugePages_Total: 0

cat /proc/sys/vm/nr_hugepages

0

A normal page is 4 KB in size, whereas a hugepage is 2 MB in size, which is 512 times

bigger than a normal page. Hugepage has its own advantages, but at the same time it has

its own disadvantages too.

• A hugepage cannot be swapped out.

• The kernel don’t use hugepages.

• Only the applications that are hugepage-aware can use the

hugepages.

Someone wrongly set the 2,400 hugepages and rebuilt initramfs.

echo "vm.nr_hugepages = 2400" >> /etc/sysctl.conf

 # sysctl -p

 vm.nr_hugepages = 2400

 # dracut /boot/new.img

 # reboot

So, 2,400 hugepages = 4.9 GB, which is all the installed main memory, and since the

total memory got reserved in hugepages, the kernel cannot use it. So, while booting,

when systemd reached the stage of sysinit.target and executed systemd-sysctl.

service, the service read the sysctl.conf file from initramfs and reserved 4.9 GB of

hugepages, which the kernel cannot use. Therefore, the kernel itself ran out of memory,

and the system panicked.

ChaPTeR 7 sysTemd (PaRT I)

391

 basic.target
So, we have reached basic.target. As we know, targets are for synchronizing or

grouping the units. basic.target is a synchronization point for late boot services.

cat usr/lib/systemd/system/basic.target | grep -v '#'

[Unit]

Description=Basic System

Documentation=man:systemd.special(7)

Requires=sysinit.target

Wants=sockets.target timers.target paths.target slices.target

After=sysinit.target sockets.target paths.target slices.target tmp.mount

RequiresMountsFor=/var /var/tmp

Wants=tmp.mount

So, basic.target will be successful when all the earlier services’ unit files requires,

wants, and after phases are successfully started. In fact, almost all of the services have

After=basic.target added in their unit files.

 dracut-pre-mount.service
systemd will execute the dracut-pre-mount.service service just before mounting

the user’s root filesystem inside initramfs. Since it is a dracut service, it will execute

only if the user has passed the rd.break=pre-mount dracut command-line parameter.

Figure 7-68 shows that we have passed rd.break=pre-mount as a kernel command-line

parameter.

As you can see in Figure 7-69, it has dropped us at the emergency shell, and the

user’s root filesystem is not mounted at sysroot. Yes, I said it has dropped us at the

emergency shell, but you will be surprised to see that the emergency shell is nothing but

a simple bash shell provided by systemd but at the time when booting is not finished

yet. To understand the emergency shell better, we will pause our booting sequence for

a while and discuss the debugging shells of initramfs in Chapter 8. We will resume our

paused systemd’s booting sequence in Chapter 9.

ChaPTeR 7 sysTemd (PaRT I)

392

Figure 7-68. The kernel command-line parameter

Figure 7-69. The pre-mount hook

ChaPTeR 7 sysTemd (PaRT I)

393
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_8

CHAPTER 8

Debugging Shells
As of now, we know that initramfs has bash built in, and we have used it from time to

time through rd.break hooks. This chapter’s aim is to understand how systemd provides

us with a shell inside an initramfs. What are the steps that have to be followed, and how

can one use it more effectively? But before that, let’s recap what we have learned so far

about the debugging and emergency shells of initramfs.

 The Shell
rd.break

 drop to a shell at the end

rd.break drops us inside initramfs, and we can explore the initramfs environment

through it. This initramfs environment is also called the emergency mode. In normal

scenarios, we get dropped in emergency mode when initramfs is not able to mount

the user’s root filesystem. Remember, passing rd.break without any parameters will

drop us at initramfs after mounting the user’s root filesystem under /sysroot but

before performing switch_root on it. You can always find the detailed logs in the /run/

initramfs/rdsosreport.txt file. Figure 8-1 shows the logs from rdsosreport.txt.

https://doi.org/10.1007/978-1-4842-5890-3_8#ESM

394

In the log messages, you can clearly see that it dropped just before performing

pivot_root. pivot_root and switch_root will be discussed in Chapter 9, whereas

chroot will be discussed in Chapter 10. Once you exit from the emergency shell, systemd

will continue the paused booting sequence and will eventually provide the login screen.

Then we discussed how we can use emergency shells to fix some of the “can’t boot”

issues. For example, initramfs is as good as the user’s root filesystem. So, it does have

lvm, raid, and filesystem-related binaries that we can use to find, assemble, diagnose,

and fix the missing user’s root filesystem. Then we discussed how we can mount it under

/sysroot and explore the contents of it to fix grub.cfg’s wrong entries, for example.

Likewise, rd.break does provide us with various options to break the booting

sequence at different stages.

cmdline: This hook gets the kernel command-line parameters.

pre-udev: This breaks the booting sequence before the udev handler.

pre-trigger: You can set udev environment variables with the

udevadm control or can set --property=KEY=value like parameters

or control the further execution of udev with udevadm.

Figure 8-1. The rdsosreport.txt runtime logs

Chapter 8 Debugging ShellS

395

pre-mount: This breaks the booting sequence before mounting the

user’s root filesystem at /sysroot.

mount: This breaks the booting sequence after mounting the root

filesystem at /sysroot.

pre-pivot: This breaks the booting sequence just before

switching to the actual root filesystem.

Now let’s see how exactly systemd manages to provide us with the shells in these

various stages.

 How Does systemd Drop Us to an Emergency Shell?
Let’s consider an example of a pre-mount hook. systemd from initramfs collects the rd.

break=pre-mount command-line parameter from dracut-cmdline.service, and it

runs the systemd service dracut-pre-mount.service from the initramfs location /usr/

lib/systemd/system. The service will run before running initrd-root-fs.target,

sysroot.mount, and systemd-fsck-root.service.

cat usr/lib/systemd/system/dracut-pre-mount.service | grep -v #'

[Unit]

Description=dracut pre-mount hook

Documentation=man:dracut-pre-mount.service(8)

DefaultDependencies=no

Before=initrd-root-fs.target sysroot.mount systemd-fsck-root.service

After=dracut-initqueue.service cryptsetup.target

ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/pre-mount

ConditionKernelCommandLine=|rd.break=pre-mount

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-pre-mount

Chapter 8 Debugging ShellS

396

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

As you can see, it is simply executing the /bin/dracut-pre-mount script from initramfs.

vim bin/dracut-pre-mount

 1 #!/usr/bin/sh

 2

 3 export DRACUT_SYSTEMD=1

 4 if [-f /dracut-state.sh]; then

 5 . /dracut-state.sh 2>/dev/null

 6 fi

 7 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

 8

 9 source_conf /etc/conf.d

 10

 11 make_trace_mem "hook pre-mount" '1:shortmem' '2+:mem' '3+:slab'

'4+:komem'

 12 # pre pivot scripts are sourced just before we doing cleanup and switch over

 13 # to the new root.

 14 getarg 'rd.break=pre-mount' 'rdbreak=pre-mount' && emergency_shell -n

pre-mount "Break pre-mount"

 15 source_hook pre-mount

 16

 17 export -p > /dracut-state.sh

 18

 19 exit 0

Inside the /bin/dracut-pre-mount script, the most important line is the following:

getarg rd.break=pre-mount' rdbreak=pre-mount

 && emergency_shell -n pre-mount "Break pre-mount"

Chapter 8 Debugging ShellS

397

We have already discussed the getarg function, which is used to check what parameter

has been passed to rd.break=. If rd.break=pre-mount has been passed, then only the

emergency-shell() function will be called. The function is defined in /usr/lib/dracut-lib.

sh, and it passes pre-mount as a string parameter to it. -n stands for the following:

[-n STRING] or [STRING]: True if the length of STRING is

nonzero

The emergency_shell function accepts the _rdshell_name variable’s value as pre- mount.

if ["$1" = "-n"]; then

 _rdshell_name=$2

Here, -n is considered as the first argument ($1), and pre-mount is the second

argument ($2). So, the value of _rdshell_name becomes pre-mount.

#vim /usr/lib/dracut-lib.sh

1123 emergency_shell()

1124 {

1125 local _ctty

1126 set +e

1127 local _rdshell_name="dracut" action="Boot" hook="emergency"

1128 local _emergency_action

1129

1130 if ["$1" = "-n"]; then

1131 _rdshell_name=$2

1132 shift 2

1133 elif ["$1" = "--shutdown"]; then

1134 _rdshell_name=$2; action="Shutdown"; hook="shutdown-emergency"

1135 if type plymouth >/dev/null 2>&1; then

1136 plymouth --hide-splash

1137 elif [-x /oldroot/bin/plymouth]; then

1138 /oldroot/bin/plymouth --hide-splash

1139 fi

1140 shift 2

1141 fi

1142

1143 echo ; echo

Chapter 8 Debugging ShellS

398

1144 warn "$*"
1145 echo
1146
1147 _emergency_action=$(getarg rd.emergency)
1148 [-z "$_emergency_action"] \
1149 && [-e /run/initramfs/.die] \
1150 && _emergency_action=halt
1151
1152 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d

rdbreak; then
1153 _emergency_shell $_rdshell_name
1154 else
1155 source_hook "$hook"
1156 warn "$action has failed. To debug this issue add \"rd.shell

rd.debug\" to the kernel command line."
1157 [-z "$_emergency_action"] && _emergency_action=halt
1158 fi
1159
1160 case "$_emergency_action" in
1161 reboot)
1162 reboot || exit 1;;
1163 poweroff)
1164 poweroff || exit 1;;
1165 halt)
1166 halt || exit 1;;
1167 esac
1168 }

Then, at the end, it calls another _emergency_shell function from the same file
(note the underscore before the function name). As you can see, _rdshell_name is the
argument to the _emergency_shell function.

_emergency_shell $_rdshell_name

Inside the _emergency_shell() function, we can see that _name gets the argument,
which is pre-mount.

local _name="$1"

#vim usr/lib/dracut-lib.sh

Chapter 8 Debugging ShellS

399

1081 _emergency_shell()

1082 {

1083 local _name="$1"

1084 if [-n "$DRACUT_SYSTEMD"]; then

1085 > /.console_lock

1086 echo "PS1=\"$_name:\\\${PWD}# \"" >/etc/profile

1087 systemctl start dracut-emergency.service

1088 rm -f -- /etc/profile

1089 rm -f -- /.console_lock

1090 else

1091 debug_off

1092 source_hook "$hook"

1093 echo

1094 /sbin/rdsosreport

1095 echo 'You might want to save "/run/initramfs/rdsosreport.txt" to a

USB stick or /boot'

1096 echo 'after mounting them and attach it to a bug report.'

1097 if ! RD_DEBUG= getargbool 0 rd.debug -d -y rdinitdebug -d -y

rdnetdebug; then

1098 echo

1099 echo 'To get more debug information in the report,'

1100 echo 'reboot with "rd.debug" added to the kernel command line.'

1101 fi

1102 echo

1103 echo 'Dropping to debug shell.'

1104 echo

1105 export PS1="$_name:\${PWD}# "

1106 [-e /.profile] || >/.profile

1107

1108 _ ctty="$(RD_DEBUG= getarg rd.ctty=)" && _ctty="/dev/${_ctty##*/}"

1109 if [-z "$_ctty"]; then

1110 _ctty=console

1111 while [-f /sys/class/tty/$_ctty/active]; do

1112 _ctty=$(cat /sys/class/tty/$_ctty/active)

1113 _ctty=${_ctty##* } # last one in the list

Chapter 8 Debugging ShellS

400

1114 done

1115 _ctty=/dev/$_ctty

1116 fi

1117 [-c "$_ctty"] || _ctty=/dev/tty1

1118 case "$(/usr/bin/setsid --help 2>&1)" in *--ctty*) CTTY="--

ctty";; esac

1119 setsid $CTTY /bin/sh -i -l 0<>$_ctty 1<>$_ctty 2<>$_ctty

1120 fi

The same pre-mount string has been passed to PS1. Let’s see first what exactly PS1 is.

PS1 is called a pseudo variable. This will be shown by bash when the user has

successfully logged in. Here’s an example:

[root@fedora home]#

 | | | |

[username]@[host][CWD][# since it is a root user]

The ideal entries accepted by bash are PS1='\u:\w\$'.

u = This is the username.

w = This is the working directory.

$ = If UID is 0, then #; otherwise $'.

So, in our case, when we get a emergency shell, PS1 will be printed by the shell as follows:

'pre-mount#'

Next in the source code, you can see that the PS1 variable’s new value is also getting

added in /etc/profile. The reason is that bash reads this file every time before

presenting the shell to the user. At the end, we are simply starting the dracut-emergency

service.

systemctl start dracut-emergency.service

The following is the dracut-emergency.service file from usr/lib/systemd/system/

of initramfs:

cat usr/lib/systemd/system/dracut-emergency.service | grep -v #'

Chapter 8 Debugging ShellS

401

[Unit]

Description=Dracut Emergency Shell

DefaultDependencies=no

After=systemd-vconsole-setup.service

Wants=systemd-vconsole-setup.service

Conflicts=shutdown.target emergency.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=-/bin/dracut-emergency

ExecStopPost=-/bin/rm -f -- /.console_lock

Type=oneshot

StandardInput=tty-force

StandardOutput=inherit

StandardError=inherit

KillMode=process

IgnoreSIGPIPE=no

TasksMax=infinity

KillSignal=SIGHUP

The service is simply executing /bin/dracut-emergency. This script first stops the

plymouth service.

type plymouth >/dev/null 2>&1 && plymouth quit

This stores the hook variable’s value as emergency and calls the source_hook function

with the emergency argument.

export _rdshell_name="dracut" action="Boot" hook="emergency"

source_hook "$hook"

vim bin/dracut-emergency

 1 #!/usr/bin/sh

 2

 3 export DRACUT_SYSTEMD=1

Chapter 8 Debugging ShellS

402

 4 if [-f /dracut-state.sh]; then

 5 . /dracut-state.sh 2>/dev/null

 6 fi

 7 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

 8

 9 source_conf /etc/conf.d

 10

 11 type plymouth >/dev/null 2>&1 && plymouth quit

 12

 13 export _rdshell_name="dracut" action="Boot" hook="emergency"

 14 _emergency_action=$(getarg rd.emergency)

 15

 16 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d rdbreak; then

 17 FSTXT="/run/dracut/fsck/fsck_help_$fstype.txt"

 18 source_hook "$hook"

 19 echo

 20 rdsosreport

 21 echo

 22 echo

 23 echo Entering emergency mode. Exit the shell to continue.'

 24 echo Type "journalctl" to view system logs.'

 25 echo You might want to save "/run/initramfs/rdsosreport.txt" to a

USB stick or /boot'

 26 echo after mounting them and attach it to a bug report.'

 27 echo

 28 echo

 29 [-f "$FSTXT"] && cat "$FSTXT"

 30 [-f /etc/profile] && . /etc/profile

 31 [-z "$PS1"] && export PS1="$_name:\${PWD}# "

 32 exec sh -i -l

 33 else

 34 export hook="shutdown-emergency"

 35 warn "$action has failed. To debug this issue add \"rd.shell rd.debug\"

to the kernel command line."

 36 source_hook "$hook"

Chapter 8 Debugging ShellS

403

 37 [-z "$_emergency_action"] && _emergency_action=halt

 38 fi

 39

 40 /bin/rm -f -- /.console_lock

 41

 42 case "$_emergency_action" in

 43 reboot)

 44 reboot || exit 1;;

 45 poweroff)

 46 poweroff || exit 1;;

 47 halt)

 48 halt || exit 1;;

 49 esac

 50

 51 exit 0

The source_hook function is again defined in usr/lib/dracut-lib.sh.

source_hook() {

 local _dir

 _dir=$1; shift

 source_all "/lib/dracut/hooks/$_dir" "$@"

}

The _dir variable has captured the hook name, which is emergency. All the hooks

are nothing but a bunch of scripts, stored and executed from the /lib/dracut/hooks/

directory of initramfs.

tree usr/lib/dracut/hooks/

usr/lib/dracut/hooks/

├── cleanup
├── cmdline
│ ├── 30-parse-lvm.sh
│ ├── 91-dhcp-root.sh
│ └── 99-nm-config.sh
├── emergency
│ └── 50-plymouth-emergency.sh

Chapter 8 Debugging ShellS

404

├── initqueue
│ ├── finished
│ ├── online
│ ├── settled
│ │ └── 99-nm-run.sh
│ └── timeout
│ └── 99-rootfallback.sh
├── mount
├── netroot
├── pre-mount
├── pre-pivot
│ └── 85-write-ifcfg.sh
├── pre-shutdown
├── pre-trigger
├── pre-udev
│ └── 50-ifname-genrules.sh
├── shutdown
│ └── 25-dm-shutdown.sh
└── shutdown-emergency

For an emergency hook, it is executing usr/lib/dracut/hooks/emergency/50-
plymouth- emergency.sh, which is stopping the plymouth service.

#!/usr/bin/sh
plymouth --hide-splash 2>/dev/null || :

Once the emergency hook is executed and plymouth has been stopped, it will go back
to bin/dracut-emergency and print the following banner:

echo Entering emergency mode. Exit the shell to continue.'
echo Type "journalctl" to view system logs.'
echo You might want to save "/run/initramfs/rdsosreport.txt" to a USB stick
or /boot'
echo after mounting them and attach it to a bug report.'

So, it does not matter what the rd.break=hook_name user has passed. systemd will
execute the emergency hook, and once the banner is printed, it will fetch the /etc/
profile directory in which we have added PS1=_rdshell_name/PS1=hook_name, and
then we can simply run the bash shell.

exec sh -i –l

Chapter 8 Debugging ShellS

405

When the shell starts running, it will read /etc/profile, and it will find the PS1=hook_

name variable. In this case, hook_name is pre-mount. That is why pre-mount as a prompt

name of bash has been printed. Refer to the flowchart shown in Figure 8-2 for a better

understanding of this.

Figure 8-2. The flowchart

Chapter 8 Debugging ShellS

406

If a user passes any other parameter to rd.break, for example, initqueue, then it will
be fed into PS1, _rdshell_name, and hook variables. Later, bash will be called through
the emergency service. Bash will read the PS1 value from the /etc/profile file and will

show the initqueue name in the prompt.

The conclusion is that the same bash shell will be provided to the user under various

prompt names (cmdline, pre-mount, switch_root, pre-udev, emergency, etc.) but at

different boot stages of initramfs.

cmdline:/# pre-udev:/#

pre-trigger:/# initqueue:/#

pre-mount:/# pre-pivot:/#

switch_root:/#

Similar to this, rescue.target will be executed by systemd.

 rescue.service and emergency.service
The rescue service is also called single-user mode in the systemd world. So if the user

has requested to boot in single-user mode, then systemd actually drops the user on

the emergency shell at the rescue.service stage. Figure 8-3 shows you the booting

sequence covered so far.

Chapter 8 Debugging ShellS

407

You can either pass rescue.target or pass runlevel1.target or emergency.

service to systemd.unit to boot in single-user mode. As shown in Figure 8-4, we will

use Ubuntu this time to explore the booting stages.

Figure 8-3. The flowchart of the booting sequence

Chapter 8 Debugging ShellS

408

This will drop us on an emergency shell. The single-user mode, rescue service, and

emergency service all launch the dracut-emergency binary. This is the same binary that

we launched in the emergency hook of dracut.

cat usr/lib/systemd/system/emergency.service | grep -v ' #'

[Unit]

Description=Emergency Shell

DefaultDependencies=no

After=systemd-vconsole-setup.service

Wants=systemd-vconsole-setup.service

Conflicts=shutdown.target

Before=shutdown.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=/bin/dracut-emergency

ExecStopPost=-/usr/bin/systemctl --fail --no-block default

Type=idle

StandardInput=tty-force

StandardOutput=inherit

Figure 8-4. The kernel command-line parameter

Chapter 8 Debugging ShellS

409

StandardError=inherit

KillMode=process

IgnoreSIGPIPE=no

TasksMax=infinity

KillSignal=SIGHUP

cat usr/lib/systemd/system/rescue.service | grep -v ' #'

[Unit]

Description=Emergency Shell

DefaultDependencies=no

After=systemd-vconsole-setup.service

Wants=systemd-vconsole-setup.service

Conflicts=shutdown.target

Before=shutdown.target

[Service]

Environment=HOME=/

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

WorkingDirectory=/

ExecStart=/bin/dracut-emergency

ExecStopPost=-/usr/bin/systemctl --fail --no-block default

Type=idle

StandardInput=tty-force

StandardOutput=inherit

StandardError=inherit

KillMode=process

IgnoreSIGPIPE=no

TasksMax=infinity

KillSignal=SIGHUP

And as we all know, the dracut-emergency script executes a bash shell.

Chapter 8 Debugging ShellS

410

vim bin/dracut-emergency

 1 #!/usr/bin/sh

 2

 3 export DRACUT_SYSTEMD=1

 4 if [-f /dracut-state.sh]; then

 5 . /dracut-state.sh 2>/dev/null

 6 fi

 7 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

 8

 9 source_conf /etc/conf.d

 10

 11 type plymouth >/dev/null 2>&1 && plymouth quit

 12

 13 export _rdshell_name="dracut" action="Boot" hook="emergency"

 14 _emergency_action=$(getarg rd.emergency)

 15

 16 if getargbool 1 rd.shell -d -y rdshell || getarg rd.break -d rdbreak; then

 17 FSTXT="/run/dracut/fsck/fsck_help_$fstype.txt"

 18 source_hook "$hook"

 19 echo

 20 rdsosreport

 21 echo

 22 echo

 23 echo 'Entering emergency mode. Exit the shell to continue.'

 24 echo 'Type "journalctl" to view system logs.'

 25 echo 'You might want to save "/run/initramfs/rdsosreport.txt" to a

USB stick or /boot'

 26 echo 'after mounting them and attach it to a bug report.'

 27 echo

 28 echo

 29 [-f "$FSTXT"] && cat "$FSTXT"

 30 [-f /etc/profile] && . /etc/profile

 31 [-z "$PS1"] && export PS1="$_name:\${PWD}# "

 32 exec sh -i -l

 33 else

Chapter 8 Debugging ShellS

411

 34 export hook="shutdown-emergency"

 35 warn "$action has failed. To debug this issue add \"rd.shell

rd.debug\" to the kernel command line."

 36 source_hook "$hook"

 37 [-z "$_emergency_action"] && _emergency_action=halt

 38 fi

 39

 40 /bin/rm -f -- /.console_lock

 41

 42 case "$_emergency_action" in

 43 reboot)

 44 reboot || exit 1;;

 45 poweroff)

 46 poweroff || exit 1;;

 47 halt)

 48 halt || exit 1;;

 49 esac

 50

 51 exit 0

Figure 8-5. The emergency shell

As you can see in Figure 8-5, sysroot is not mounted yet since we have not reached

the mounting stage of booting.

I hope you now understand how systemd presents the emergency shell to users at

various booting stages. In the next chapter, we will resume our paused systemd’s booting

sequence.

Chapter 8 Debugging ShellS

413
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_9

CHAPTER 9

systemd (Part II)
So far, we have reached the service dracut.pre-mount.service where the user’s root

filesystem is not yet mounted inside initramfs. systemd’s next stage of booting will mount

the root filesystem on sysroot.

 sysroot.mount
systemd accepts the mount dracut command-line parameter, which will drop us on a

mount emergency shell. As you can see in Figure 9-1, we have passed the rd.break=mount

kernel command-line parameter.

As you can see in Figure 9-2, sysroot has been mounted with a user’s root filesystem

in read-only mode.

Figure 9-1. The kernel command-line parameter

Figure 9-2. The mount hook

https://doi.org/10.1007/978-1-4842-5890-3_9#ESM

414

The dracut.mount hook (usr/lib/systemd/system/dracut-mount.service) will

run the /bin/dracut-mount script from initramfs, which will do the mounting part.

#vim usr/lib/systemd/system/dracut-mount.service

As you can see, this is executing the dracut-mount script from initramfs and also

exporting the NEWROOT variable with the sysroot value.

Environment=NEWROOT=/sysroot

ExecStart=-/bin/dracut-mount

[Unit]

Description=dracut mount hook

Documentation=man:dracut-mount.service(8)

After=initrd-root-fs.target initrd-parse-etc.service

After=dracut-initqueue.service dracut-pre-mount.service

ConditionPathExists=/usr/lib/initrd-release

ConditionDirectoryNotEmpty=|/lib/dracut/hooks/mount

ConditionKernelCommandLine=|rd.break=mount

DefaultDependencies=no

Conflicts=shutdown.target emergency.target

[Service]

Environment=DRACUT_SYSTEMD=1

Environment=NEWROOT=/sysroot

Type=oneshot

ExecStart=-/bin/dracut-mount

StandardInput=null

StandardOutput=syslog

StandardError=syslog+console

KillMode=process

RemainAfterExit=yes

KillSignal=SIGHUP

#vim bin/dracut-mount

 1 #!/usr/bin/sh

 2 export DRACUT_SYSTEMD=1

 3 if [-f /dracut-state.sh]; then

Chapter 9 systemd (part II)

415

 4 . /dracut-state.sh 2>/dev/null

 5 fi

 6 type getarg >/dev/null 2>&1 || . /lib/dracut-lib.sh

 7

 8 source_conf /etc/conf.d

 9

 10 make_trace_mem "hook mount" '1:shortmem' '2+:mem' '3+:slab'

 11

 12 getarg 'rd.break=mount' -d 'rdbreak=mount' && emergency_shell -n mount

"Break mount"

 13 # mount scripts actually try to mount the root filesystem, and may

 14 # be sourced any number of times. As soon as one suceeds, no more are

sourced.

 15 i=0

 16 while :; do

 17 if ismounted "$NEWROOT"; then

 18 usable_root "$NEWROOT" && break;

 19 umount "$NEWROOT"

 20 fi

 21 for f in $hookdir/mount/*.sh; do

 22 [-f "$f"] && . "$f"

 23 if ismounted "$NEWROOT"; then

 24 usable_root "$NEWROOT" && break;

 25 warn "$NEWROOT has no proper rootfs layout, ignoring and

removing offending mount hook"

 26 umount "$NEWROOT"

 27 rm -f -- "$f"

 28 fi

 29 done

 30

 31 i=$(($i+1))

 32 [$i -gt 20] && emergency_shell "Can't mount root filesystem"

 33 done

 34

Chapter 9 systemd (part II)

416

 35 export -p > /dracut-state.sh

 36

 37 exit 0

We saw in Chapter 8 how exactly it drops us on an emergency shell and the

associated functions of this. Since we stopped the booting sequence after mounting

the user’s root filesystem inside initramfs, as you can see in Figure 9-3, the systemd-

fstab- generator has already been executed, and the -mount unit files have already

been created.

Remember, the user’s root filesystem name added in sysroot.mount has been

taken from the /proc/cmdline file. The sysroot.mount clearly mentions what has to be

mounted and where it has to be mounted.

Figure 9-3. The systemd-fstab-generator behavior

Chapter 9 systemd (part II)

417

 initrd.target
As we have said multiple times, the ultimate aim of the booting sequence is to provide

the user’s root filesystem to the user, and while doing that, the major stages that systemd

achieves are as follows:

 1) Find the user’s root filesystem.

 2) Mount the user’s root filesystem (we have reached this stage of

booting).

 3) Find the other necessary filesystems and mount them

(usr, var, nfs, cifs, etc.).

 4) Switch into the mounted user’s root filesystem.

 5) Start the user space daemons.

 6) Start either multi-user.target or graphical.target (which is

outside the scope of this book).

As you can see, as of now, we have reached step 2, which is mounting the user’s

root filesystem inside initramfs. We all know that systemd has .targets, and target is

nothing but a bunch of unit files. The .target can be successfully started only when all

of its unit files have been successfully started.

There are many targets in the systemd world, such as basic.target, multi-user.

target, graphical.target, default.target, and sysinit.target to name a few. The

ultimate aim of initramfs is to achieve the initrd.target. Once the initrd.target

is successfully started, then systemd will switch_root into it. So, first, let’s look at

initrd.target and where it stands in terms of the booting sequence. Please refer to the

flowchart shown in Figure 9-4.

Chapter 9 systemd (part II)

418

Figure 9-4. The booting sequence

Chapter 9 systemd (part II)

419

When you are outside of initramfs (that means after switch_root), systemd’s default.

target will be either multi-user.target or graphical.target, whereas inside initramfs

(that means before switch_root) after basic.target, systemd’s default.target will be

initrd.target. So, after successfully completing the sysinit.target and basic.target,

systemd’s main task is to achieve the initrd.target. To reach there, systemd will use the

sysroot.mount stage to read the mount unit files created by systemd-fstab-generator. The

service dracut-mount.service will mount the user’s root filesystem to /sysroot, and then

systemd will execute the service initrd-parse- etc.service. It will parse the /sysroot/

etc/fstab file and will make the mount unit files for usr or any other mount points that have

the x-initrd.mount option set. This is how the initrd-parse-etc.service works:

cat usr/lib/systemd/system/initrd-parse-etc.service | grep -v '#'

[Unit]

Description=Reload Configuration from the Real Root

DefaultDependencies=no

Requires=initrd-root-fs.target

After=initrd-root-fs.target

OnFailure=emergency.target

OnFailureJobMode=replace-irreversibly

ConditionPathExists=/etc/initrd-release

[Service]

Type=oneshot

ExecStartPre=-/usr/bin/systemctl daemon-reload

ExecStart=-/usr/bin/systemctl --no-block start initrd-fs.target

ExecStart=/usr/bin/systemctl --no-block start initrd-cleanup.service

Basically, the service is executing systemctl with a daemon-reload switch. This will

reload the systemd manager configuration. This will rerun all generators, reload all unit

files, and re-create the entire dependency tree. While the daemon is being reloaded, all

sockets that systemd listens to on behalf of the user configuration will stay accessible.

The systemd generators, which will be re-executed, are as follows:

ls usr/lib/systemd/system-generators/ -l

 total 92

 -rwxr-xr-x. 1 root root 3750 Jan 10 19:18 dracut-rootfs-generator

 -rwxr-xr-x. 1 root root 45640 Dec 21 12:19 systemd-fstab-generator

 -rwxr-xr-x. 1 root root 37032 Dec 21 12:19 systemd-gpt-auto-generator

Chapter 9 systemd (part II)

420

As you can see, it will execute systemd-fstab-generator, which will read the /sysroot/

etc/fstab entries and create the mount unit files for usr and for devices that have the

x-initrd.mount option set. In short, systemd-fstab-generator has executed twice.

So, when you drop yourself to the mount shell (rd.break=mount), you are actually

interrupting the booting sequence after the target initrd.target. This target just runs

the following services:

ls usr/lib/systemd/system/initrd.target.wants/

 dracut-cmdline-ask.service dracut-mount.service dracut-pre-

trigger.service

 dracut-cmdline.service dracut-pre-mount.service dracut-pre-udev.

service

 dracut-initqueue.service dracut-pre-pivot.service

Please refer to Figure 9-5 for a better understanding of this.

Figure 9-5. The overall execution of initrd.target

Chapter 9 systemd (part II)

421

 switch_root/pivot_root
Now we have reached the final stage of systemd’s booting, which is switch_root.

systemd switches the root filesystem from initramfs (/) to the user’s root filesystem

(/sysroot). systemd achieves this by taking the following steps:

 1. Mounting the new root filesystem (/sysroot)

 2. Turning it into the root filesystem (/)

 3. Removing all accesses to the old (initramfs) root filesystem

 4. Unmounting the initramfs filesystem and de-allocating the ramfs

filesystem

There are three major points that will be discussed in this chapter.

• switch_root: We will explain this the old init way.

• pivot_root: We will explain this the systemd way.

• chroot: We will explain this in Chapter 10.

 Switching to the New Root Filesystem on an init-Based
System
An init-based system uses switch_root to switch to a new root filesystem (sysroot).

The purpose of switch_root is explained well on its man page, as shown here:

#man switch_root

NAME

 switch_root - switch to another filesystem as the root of the mount tree

SYNOPSIS

 switch_root [-hV]

 switch_root newroot init [arg...]

DESCRIPTION

 switch_root moves already mounted /proc, /dev, /sys and /run to

newroot and makes newroot the new root filesystem and starts init

process.

Chapter 9 systemd (part II)

422

 WARNING: switch_root removes recursively all files and directories

on the current root filesystem.

OPTIONS

 -h, --help

 Display help text and exit.

 -V, --version

 Display version information and exit.

RETURN VALUE

 switch_root returns 0 on success and 1 on failure.

NOTES

 switch_root will fail to function if newroot is not the root of a

mount. If you want to switch root into a directory that does not

meet this requirement then you can first use a bind-mounting trick

to turn any directory into a mount point:

 mount --bind $DIR $DIR

So, it switches to a new root filesystem (sysroot), and along with the root, it moves

the old root filesystem’s virtual file systems (proc, dev, sys, etc.) to the new root. The

best feature of switch_root is that after mounting the new root filesystem, it starts the

init process on its own. Switching to a new root filesystem takes place in dracut’s source

code. The latest version of dracut while writing this book was 049. The switch_root

function is defined in the dracut-049/modules.d/99base/init.sh file.

387 unset PS4

388

389 CAPSH=$(command -v capsh)

390 SWITCH_ROOT=$(command -v switch_root)

391 PATH=$OLDPATH

392 export PATH

393

394 if [-f /etc/capsdrop]; then

395 . /etc/capsdrop

396 info "Calling $INIT with capabilities $CAPS_INIT_DROP dropped."

397 unset RD_DEBUG

Chapter 9 systemd (part II)

423

398 exec $CAPSH --drop="$CAPS_INIT_DROP" -- \

399 -c "exec switch_root \"$NEWROOT\" \"$INIT\" $initargs" || \

400 {

401 warn "Command:"

402 warn capsh --drop=$CAPS_INIT_DROP -- -c exec switch_root

"$NEWROOT" "$INIT" $initargs

403 warn "failed."

404 emergency_shell

405 }

406 else

407 unset RD_DEBUG

408 exec $SWITCH_ROOT "$NEWROOT" "$INIT" $initargs || {

409 warn "Something went very badly wrong in the initramfs. Please "

410 warn "file a bug against dracut."

411 emergency_shell

412 }

413 fi

In the previous code, you can see that exec switch_root has been called just like it

was described on the man page of switch_root. The defined variable values of NEWROOT

and INIT are as follows:

NEWROOT = "/sysroot"

INIT = 'init' or 'sbin/init'

Just for your information, these days the init file is a symlink to systemd.

ls -l sbin/init

lrwxrwxrwx. 1 root root 22 Dec 21 12:19 sbin/init -> ../lib/systemd/systemd

To successfully switch_root the virtual filesystems, they have to be mounted first.

This will be achieved through dracut-049/modules.d/99base/init.sh. These are the

steps that will be followed:

 1. Mount the proc filesystem.

 2. Mount the sys filesystem.

 3. Mount the /dev directory with devtmpfs.

Chapter 9 systemd (part II)

424

 4. Create the stdin, stdout, stderr, pts, and shm device files

manually.

 5. Make the /run mount point with tmpfs in it. (The /run mount

point is not available on init-based systems.)

#vim dracut-049/modules.d/99base/init.sh

 11 NEWROOT="/sysroot"

 12 [-d $NEWROOT] || mkdir -p -m 0755 $NEWROOT

 13

 14 OLDPATH=$PATH

 15 PATH=/usr/sbin:/usr/bin:/sbin:/bin

 16 export PATH

 17

 18 # mount some important things

 19 [! -d /proc/self] && \

 20 mount -t proc -o nosuid,noexec,nodev proc /proc >/dev/null

 21

 22 if ["$?" != "0"]; then

 23 echo "Cannot mount proc on /proc! Compile the kernel with

CONFIG_PROC_FS!"

 24 exit 1

 25 fi

 26

 27 [! -d /sys/kernel] && \

 28 mount -t sysfs -o nosuid,noexec,nodev sysfs /sys >/dev/null

 29

 30 if ["$?" != "0"]; then

 31 echo "Cannot mount sysfs on /sys! Compile the kernel with

CONFIG_SYSFS!"

 32 exit 1

 33 fi

 34

 35 RD_DEBUG=""

 36 . /lib/dracut-lib.sh

 37

Chapter 9 systemd (part II)

425

 38 setdebug

 39

 40 if ! ismounted /dev; then

 41 mount -t devtmpfs -o mode=0755,noexec,nosuid,strictatime devtmpfs

/dev >/dev/null

 42 fi

 43

 44 if ! ismounted /dev; then

 45 echo "Cannot mount devtmpfs on /dev! Compile the kernel with

CONFIG_DEVTMPFS!"

 46 exit 1

 47 fi

 48

 49 # prepare the /dev directory

 50 [! -h /dev/fd] && ln -s /proc/self/fd /dev/fd >/dev/null 2>&1

 51 [! -h /dev/stdin] && ln -s /proc/self/fd/0 /dev/stdin >/dev/null 2>&1

 52 [! -h /dev/stdout] && ln -s /proc/self/fd/1 /dev/stdout >/dev/null 2>&1

 53 [! -h /dev/stderr] && ln -s /proc/self/fd/2 /dev/stderr >/dev/null 2>&1

 54

 55 if ! ismounted /dev/pts; then

 56 mkdir -m 0755 /dev/pts

 57 mount -t devpts -o gid=5,mode=620,noexec,nosuid devpts /dev/pts >/

dev/null

 58 fi

 59

 60 if ! ismounted /dev/shm; then

 61 mkdir -m 0755 /dev/shm

 62 mount -t tmpfs -o mode=1777,noexec,nosuid,nodev,strictatime tmpfs

/dev/shm >/dev/null

 63 fi

 64

 65 if ! ismounted /run; then

 66 mkdir -m 0755 /newrun

 67 if ! str_starts "$(readlink -f /bin/sh)" "/run/"; then

Chapter 9 systemd (part II)

426

 68 mount -t tmpfs -o mode=0755,noexec,nosuid,nodev,strictatime

tmpfs /newrun >/dev/null

 69 else

 70 # the initramfs binaries are located in /run, so don't mount it

with noexec

 71 mount -t tmpfs -o mode=0755,nosuid,nodev,strictatime tmpfs /

newrun >/dev/null

 72 fi

 73 cp -a /run/* /newrun >/dev/null 2>&1

 74 mount --move /newrun /run

 75 rm -fr -- /newrun

 76 fi

 Switching to a New Root Filesystem on a
systemd-Based System
The steps are almost similar to what we discussed for an init-based system. The only

difference for systemd is a binary made from C code. So, obviously, switching the

root will take place in systemd’s C source code, as shown here:

src/shared/switch-root.c:

First, consider the following:

new_root = sysroot

old_root = /

This will move the virtual filesystems that are already populated in initramfs’ root

filesystem; then the path_equal function checks whether the new_root path is available.

if (path_equal(new_root, "/"))

 return 0;

Later it calls a pivot_root syscall (init uses switch_root) and changes the root

from / (the initramfs root filesystem) to sysroot (the user’s root filesystem).

pivot_root(new_root, resolved_old_root_after) >= 0)

Chapter 9 systemd (part II)

427

Before we go further, we need to understand what pivot_root is and what it does.

man pivot_root

NAME

 pivot_root - change the root filesystem

SYNOPSIS

 pivot_root new_root put_old

DESCRIPTION

 pivot_root moves the root file system of the current process to

the directory put_old and makes new_root the new root file system.

Since pivot_root(8) simply calls pivot_root(2), we refer to the man

page of the latter for further details:

Note that, depending on the implementation of pivot_root, root and cwd of
the caller may or may not change. The following is a sequence for invoking
pivot_root that works in either case, assuming that pivot_root and chroot
are in the current PATH:

cd new_root

pivot_root . put_old

exec chroot . command

Note that chroot must be available under the old root and under the new
root, because pivot_root may or may not have implicitly changed the root
directory of the shell.

Note that exec chroot changes the running executable, which is necessary if
the old root directory should be unmounted afterwards. Also note that
standard input, output, and error may still point to a device on the old root
file system, keeping it busy. They can easily be changed when invoking
chroot (see below; note the absence of leading slashes to make it work
whether pivot_root has changed the shell’s root or not).

pivot_root changes the root filesystem (the initramfs root filesystem) of the

current process (systemd) to the new root filesystem (sysroot), and it also changes the

running executable (systemd from initramfs) to a new one (systemd from the user’s root

filesystem).

Chapter 9 systemd (part II)

428

After pivot_root, it detaches the old root device of initramfs (src/shared/switch-

root.c).

vim src/shared/switch-root.c

96 /* We first try a pivot_root() so that we can umount the old

root dir. In many cases (i.e. where rootfs is /),

 97 * that's not possible however, and hence we simply overmount

root */

 98 if (pivot_root(new_root, resolved_old_root_after) >= 0) {

 99

100 /* Immediately get rid of the old root, if detach_

oldroot is set.

101 * Since we are running off it we need to do this

lazily. */

102 if (unmount_old_root) {

103 r = umount_recursive(old_root_after,

MNT_DETACH);

104 if (r < 0)

105 log_warning_errno(r, "Failed to unmount

old root directory tree, ignoring: %m");

106 }

107

108 } else if (mount(new_root, "/", NULL, MS_MOVE, NULL) < 0)

109 return log_error_errno(errno, "Failed to move %s

to /: %m", new_root);

110

After a successful pivot_root, this is the current state:

• sysroot has become root (/).

• The current working directory has become root (/).

• chroot will be executed so that bash changes its root directory from

the old root (initramfs) to the new (user’s) root filesystem. chroot will

be discussed in the next chapter.

Finally, delete the old_root device (rm -rf).

Chapter 9 systemd (part II)

429

110

111 if (chroot(".") < 0)

112 return log_error_errno(errno, "Failed to change root: %m");

113

114 if (chdir("/") < 0)

115 return log_error_errno(errno, "Failed to change

directory: %m");

116

117 if (old_root_fd >= 0) {

118 struct stat rb;

119

120 if (fstat(old_root_fd, &rb) < 0)

121 log_warning_errno(errno, "Failed to stat old

root directory, leaving: %m");

122 else

123 (void) rm_rf_children(TAKE_FD(old_root_fd), 0,

&rb); /* takes possession of the dir fd, even

on failure */

124 }

For a better understanding, I highly recommend reading the entire src/shared/

switch-root.c source code shown here:

 1 /* SPDX-License-Identifier: LGPL-2.1+ */

 2

 3 #include <errno.h>

 4 #include <fcntl.h>

 5 #include <limits.h>

 6 #include <stdbool.h>

 7 #include <sys/mount.h>

 8 #include <sys/stat.h>

 9 #include <unistd.h>

 10

 11 #include "base-filesystem.h"

 12 #include "fd-util.h"

 13 #include "fs-util.h"

Chapter 9 systemd (part II)

430

 14 #include "log.h"

 15 #include "missing_syscall.h"

 16 #include "mkdir.h"

 17 #include "mount-util.h"

 18 #include "mountpoint-util.h"

 19 #include "path-util.h"

 20 #include "rm-rf.h"

 21 #include "stdio-util.h"

 22 #include "string-util.h"

 23 #include "strv.h"

 24 #include "switch-root.h"

 25 #include "user-util.h"

 26 #include "util.h"

 27

 28 int switch_root(const char *new_root,

 29 const char *old_root_after, /* path below the new root,

where to place the old root after the transition */

 30 bool unmount_old_root,

 31 unsigned long mount_flags) { /* MS_MOVE or MS_BIND */

 32

 33 _cleanup_free_ char *resolved_old_root_after = NULL;

 34 _cleanup_close_ int old_root_fd = -1;

 35 bool old_root_remove;

 36 const char *i;

 37 int r;

 38

 39 assert(new_root);

 40 assert(old_root_after);

 41

 42 if (path_equal(new_root, "/"))

 43 return 0;

 44

 45 /* Check if we shall remove the contents of the old root */

 46 old_root_remove = in_initrd();

 47 if (old_root_remove) {

Chapter 9 systemd (part II)

431

 48 old_root_fd = open("/", O_RDONLY|O_NONBLOCK|

O_CLOEXEC|O_NOCTTY|O_DIRECTORY);

 49 if (old_root_fd < 0)

 50 return log_error_errno(errno, "Failed to open

root directory: %m");

 51 }

 52

 53 /* Determine where we shall place the old root after the

transition */

 54 r = chase_symlinks(old_root_after, new_root, CHASE_PREFIX_

ROOT|CHASE_NONEXISTENT, &resolved_old_root_after, NULL);

 55 if (r < 0)

 56 return log_error_errno(r, "Failed to resolve %s/%s:

%m", new_root, old_root_after);

 57 if (r == 0) /* Doesn't exist yet. Let's create it */

 58 (void) mkdir_p_label(resolved_old_root_after, 0755);

 59

 60 /* Work-around for kernel design: the kernel refuses MS_MOVE if

any file systems are mounted MS_SHARED. Hence

 61 * remount them MS_PRIVATE here as a work-around.

 62 *

 63 * https://bugzilla.redhat.com/show_bug.cgi?id=847418 */

 64 if (mount(NULL, "/", NULL, MS_REC|MS_PRIVATE, NULL) < 0)

 65 return log_error_errno(errno, "Failed to set \"/\"

mount propagation to private: %m");

 66

 67 FOREACH_STRING(i, "/sys", "/dev", "/run", "/proc") {

 68 _cleanup_free_ char *chased = NULL;

 69

 70 r = chase_symlinks(i, new_root, CHASE_PREFIX_

ROOT|CHASE_NONEXISTENT, &chased, NULL);

 71 if (r < 0)

 72 return log_error_errno(r, "Failed to resolve

%s/%s: %m", new_root, i);

 73 if (r > 0) {

Chapter 9 systemd (part II)

432

 74 /* Already exists. Let's see if it is a mount

point already. */

 75 r = path_is_mount_point(chased, NULL, 0);

 76 if (r < 0)

 77 return log_error_errno(r, "Failed to

determine whether %s is a mount

point: %m", chased);

 78 if (r > 0) /* If it is already mounted, then do

nothing */

 79 continue;

 80 } else

 81 /* Doesn't exist yet? */

 82 (void) mkdir_p_label(chased, 0755);

 83

 84 if (mount(i, chased, NULL, mount_flags, NULL) < 0)

 85 return log_error_errno(errno, "Failed to

mount %s to %s: %m", i, chased);

 86 }

 87

 88 /* Do not fail if base_filesystem_create() fails. Not all

switch roots are like base_filesystem_create() wants

 89 * them to look like. They might even boot, if they are RO and

don't have the FS layout. Just ignore the error

 90 * and switch_root() nevertheless. */

 91 (void) base_filesystem_create(new_root, UID_INVALID,

GID_INVALID);

 92

 93 if (chdir(new_root) < 0)

 94 return log_error_errno(errno, "Failed to change

directory to %s: %m", new_root);

 95

 96 /* We first try a pivot_root() so that we can umount the old

root dir. In many cases (i.e. where rootfs is /),

 97 * that's not possible however, and hence we simply overmount

root */

Chapter 9 systemd (part II)

433

 98 if (pivot_root(new_root, resolved_old_root_after) >= 0) {

 99

100 /* Immediately get rid of the old root, if detach_

oldroot is set.

101 * Since we are running off it we need to do this

lazily. */

102 if (unmount_old_root) {

103 r = umount_recursive(old_root_after, MNT_DETACH);

104 if (r < 0)

105 log_warning_errno(r, "Failed to unmount

old root directory tree, ignoring: %m");

106 }

107

108 } else if (mount(new_root, "/", NULL, MS_MOVE, NULL) < 0)

109 return log_error_errno(errno, "Failed to move %s to

/: %m", new_root);

110

111 if (chroot(".") < 0)

112 return log_error_errno(errno, "Failed to change root: %m");

113

114 if (chdir("/") < 0)

115 return log_error_errno(errno, "Failed to change

directory: %m");

116

117 if (old_root_fd >= 0) {

118 struct stat rb;

119

120 if (fstat(old_root_fd, &rb) < 0)

121 log_warning_errno(errno, "Failed to stat old

root directory, leaving: %m");

122 else

123 (void) rm_rf_children(TAKE_FD(old_root_fd),

0, &rb); /* takes possession of the dir fd,

even on failure */

124 }

Chapter 9 systemd (part II)

434

125

126 return 0;

127 }

Here we have successfully switched to the user’s root filesystem and left the initramfs

environment. Now systemd from the user’s root filesystem with PID 1 will start running

and take care of the rest of the booting procedure, which is as follows:

 – systemd will start the user space services such as httpd, mysql,

postfix, network services, etc.

 – Ultimately, the goal will be to reach default.target. As we discussed

earlier, before switch_root, the target called default.target of

systemd will be initrd.target, and after switch_root, it will be

either multi-user.target or graphical.target.

But what happens to the existing systemd process, which started from initramfs (the

root filesystem)? Is it getting killed after switch_root or pivot_root? Is the new systemd

process starting from the user’s root filesystem?

The answer is simple.

 1) systemd of initramfs creates a pipe.

 2) systemd forks.

 3) The original PID 1 chroots into /systemd and executes /sysroot/

usr/lib/systemd/systemd.

 4) The forked systemd serializes its state over the pipe to PID 1

and exits.

 5) PID 1 deserializes the data from the pipe and continues with the

fresh configuration in / (formerly /sysroot).

I hope you have enjoyed the journey of systemd inside initramfs. As we mentioned

earlier, the rest of the systemd booting sequence, which will take place outside of

initramfs, will be more or less similar to what we have discussed so far.

How GUI is started is beyond the scope of this book. In our next chapter, we will

discuss the live ISO images and about the rescue mode.

Chapter 9 systemd (part II)

435
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3_10

CHAPTER 10

Rescue Mode and
Live Images
In this final chapter, we’ll cover rescue mode and live images. During our rescue mode

discussion, we’ll cover the rescue initramfs, as well as some “can’t boot” issues. The

live images discussion covers Squashfs, rootfs.img, and the booting sequence of live

images.

 Rescue Mode
There are two ways to boot in rescue mode.

• Through the built-in GRUB menuentry. Refer to Figure 10-1.

Figure 10-1. The rescue mode entry from GRUB

• Through a live ISO image. Refer to Figure 10-2.

https://doi.org/10.1007/978-1-4842-5890-3_10#ESM

436

As the name suggests, this mode is designed to rescue the systems that are stuck in

“can’t boot” issues. Imagine a situation where the system is not able to mount the root

filesystem and you are getting this never-ending generic message:

‘dracut-initqueue: warning dracut-initqueue timeout - starting timeout

scripts’.

And say you have only one kernel installed, as shown here:

<snip>

.

.

[OK] Started Show Plymouth Boot Screen.

[OK] Started Forward Password R...s to Plymouth Directory Watch.

[OK] Reached target Paths.

[OK] Reached target Basic System.

[145.832487] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

[146.541525] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

[147.130873] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

[147.703069] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

Figure 10-2. The rescue mode entry from a live image

Chapter 10 resCue Mode and Live iMages

437

[148.267123] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

[148.852865] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

[149.430171] dracut-initqueue[437]: Warning: dracut-initqueue timeout -

starting timeout scripts

.

.

</snip>

Since this system has only one kernel (which can’t boot), how would you fix the

“can’t boot” issue without an environment? Rescue mode was created for this sole

purpose. Let’s first choose the default rescue mode, which comes pre-installed with

Linux and can be chosen from the GRUB menu. Please see Figure 10-3.

The rescue mode will boot normally, and as you can see in Figure 10-4, if everything

is good, it will present the user with its root filesystem.

Figure 10-3. The GRUB screen

Chapter 10 resCue Mode and Live iMages

438

But a question comes to mind: when the normal kernel is not able to boot, then how

come the same system is able to boot in rescue mode?

This is because when you install Fedora or any Linux distribution, the installer of

Linux, called Anaconda, installs two kernels inside /boot.

ls -lh /boot/

total 164M

-rw-r--r--. 1 root root 209K Oct 22 01:03 config-5.3.7-301.fc31.x86_64

drwx------. 4 root root 4.0K Oct 24 04:44 efi

-rw-r--r--. 1 root root 181K Aug 2 2019 elf-memtest86+-5.01

drwxr-xr-x. 2 root root 4.0K Oct 24 04:42 extlinux

drwx------. 5 root root 4.0K Mar 28 13:37 grub2

-rw-------. 1 root root 80M Dec 9 10:18 initramfs-0-rescue- 2058a9f13f9e48

9dba29c477a8ae2493.img

-rw-------. 1 root root 32M Dec 9 10:19 initramfs-5.3.7-301.fc31.x86_64.img

drwxr-xr-x. 3 root root 4.0K Dec 9 10:18 loader

drwx------. 2 root root 16K Dec 9 10:12 lost+found

-rw-r--r--. 1 root root 179K Aug 2 2019 memtest86+-5.01

-rw-------. 1 root root 30M Jan 6 09:37 new.img

-rw-------. 1 root root 4.3M Oct 22 01:03 System.map-5.3.7-301.fc31.x86_64

Figure 10-4. The root filesystem mounted under rescue mode

Chapter 10 resCue Mode and Live iMages

439

-rwxr-xr-x. 1 root root 8.9M Dec 9 10:18 vmlinuz-0-rescue- 2058a9f13f9e489d

ba29c477a8ae2493

-rwxr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

As you can see, vmlinuz-5.3.7-301.fc31.x86_64 is a normal kernel, whereas

vmlinuz-0-rescue-19a08a3e86c24b459999fbac68e42c05 is the rescue kernel, which is a

separate kernel with its own initramfs file, called initramfs-0-rescue- 19a08a3e86c24b

459999fbac68e42c05.img.

Let’s say you installed a new package (.rpm or .deb) provided by nvidia, which

has new graphics drivers in it. Since the graphics drivers have to be added in initramfs,

the nvidia package rebuilt the original kernel initramfs (initramfs-5.3.7-301.fc31.

x86_64.img). So, the original kernel has the newly added graphics driver, but the rescue

initramfs does not have that driver added. When the user tries to boot, the system fails

to boot with the original kernel (vmlinuz-5.3.7-301.fc31.x86_64) since the installed

graphics driver is not compatible with the attached graphics card, but at the same time

the system will successfully boot with the rescue mode because the noncompatible

drivers are not present in the rescue initramfs. The rescue mode kernel will have the

same command-line parameters as the normal kernel has, and therefore the installed

rescue kernel knows the name of the user’s root filesystem.

Figure 10-5 shows the normal kernel’s command-line parameters.

Figure 10-5. The normal kernel’s command-line parameters

Figure 10-6 shows the rescue kernel’s command-line parameters.

Figure 10-6. The rescue kernel’s command-line parameters

Chapter 10 resCue Mode and Live iMages

440

 Rescue Mode initramfs
The rescue mode initramfs (initramfs-0-rescue- 2058a9f13f9e489dba29c

477a8ae2493.img) is much bigger in size than the original kernel’s initramfs

(initramfs-5.3.7-301.fc31.x86_64.img).

ls -lh /boot/

total 164M

-rw-r--r--. 1 root root 209K Oct 22 01:03 config-5.3.7-301.fc31.x86_64

drwx------. 4 root root 4.0K Oct 24 04:44 efi

-rw-r--r--. 1 root root 181K Aug 2 2019 elf-memtest86+-5.01

drwxr-xr-x. 2 root root 4.0K Oct 24 04:42 extlinux

drwx------. 5 root root 4.0K Mar 28 13:37 grub2

-rw-------. 1 root root 80M Dec 9 10:18 initramfs-0-rescue- 2058a9f13f9e48

9dba29c477a8ae2493.img

-rw-------. 1 root root 32M Dec 9 10:19 initramfs-5.3.7-301.fc31.x86_64.img

drwxr-xr-x. 3 root root 4.0K Dec 9 10:18 loader

drwx------. 2 root root 16K Dec 9 10:12 lost+found

-rw-r--r--. 1 root root 179K Aug 2 2019 memtest86+-5.01

-rw-------. 1 root root 30M Jan 6 09:37 new.img

-rw-------. 1 root root 4.3M Oct 22 01:03 System.map-5.3.7-301.fc31.x86_64

-rwxr-xr-x. 1 root root 8.9M Dec 9 10:18 vmlinuz-0-rescue- 2058a9f13f9e489d

ba29c477a8ae2493

-rwxr-xr-x. 1 root root 8.9M Oct 22 01:04 vmlinuz-5.3.7-301.fc31.x86_64

Why is this? It’s because the rescue initramfs is not host-specific the way a normal

kernel’s initramfs is. The rescue initramfs is a generic initramfs that is prepared by

considering all the possible devices on which a user can create a root filesystem. Let’s

compare both the initramfs systems.

tree

.

├── normal_kernel
│ └── initramfs-5.3.7-301.fc31.x86_64.img
└── rescue_kernel
 └── initramfs-0-rescue-2058a9f13f9e489dba29c477a8ae2493.img

2 directories, 2 files

Chapter 10 resCue Mode and Live iMages

441

We will extract them in their respective directories.

#/usr/lib/dracut/skipcpio

 initramfs-5.3.7-301.fc31.x86_64.img | gunzip -c | cpio -idv

#/usr/lib/dracut/skipcpio

 initramfs-0-rescue-2058a9f13f9e489dba29c477a8ae2493.img | gunzip -c |

cpio -idv

We will make the list of files from the extracted initramfs.

tree normal_kernel/ > normal.txt

tree rescue_kernel/ > rescue.txt

The following are the differences among both the initramfs systems. The rescue

initramfs system has almost 2,189 extra files compared to the normal initramfs. Also,

almost 719 extra modules have been added in the rescue initramfs.

diff -yt rescue.txt normal.txt | grep '<' | wc -l

 2186

diff -yt rescue.txt normal.txt | grep '<' | grep -i '.ko' | wc -l

 719

<skip>

.

.

│ │ ├── lspci <
│ │ ├── mdadm <
│ │ ├── mdmon <
│ │ ├── mdraid-cleanup <
│ │ ├── mdraid_start <
│ │ ├── mount.cifs <
│ │ ├── mount.nfs <
│ │ ├── mount.nfs4 -> mount.nfs <
│ │ ├── mpathpersist <
│ │ ├── multipath <
│ │ ├── multipathd <
│ │ ├── nfsroot <
│ │ ├── partx <

Chapter 10 resCue Mode and Live iMages

442

│ │ ├── pdata_tools <
│ │ ├── ping -> ../bin/ping <
│ │ ├── ping6 -> ../bin/ping <
│ │ ├── rpcbind -> ../bin/rpcbind <
│ │ ├── rpc.idmapd <
│ │ ├── rpcinfo -> ../bin/rpcinfo <
│ │ ├── rpc.statd <
│ │ ├── setpci <
│ │ ├── showmount <
│ │ ├── thin_check -> pdata_tools <
│ │ ├── thin_dump -> pdata_tools <
│ │ ├── thin_repair -> pdata_tools <
│ │ ├── thin_restore -> pdata_tools <
│ │ ├── xfs_db <
│ │ ├── xfs_metadump <
│ │ └── xfs_repair <
 ├── lib <
 │ ├── iscsi <
 │ ├── lldpad <
 │ ├── nfs <
 │ │ ├── rpc_pipefs <
 │ │ └── statd <
 │ │ └── sm <
</skip>

The rescue initramfs will have almost all the modules and supported files for the

device on which the user can make a root filesystem, whereas the normal initramfs will

be host-specific. It will have only those modules and supported files of the device on

which the user has made the root filesystem. If you want to make a rescue initramfs on

your own, then you can install a dracut-config-generic package on Fedora-based

systems. The package provides only one file, and it has the configuration to turn off the

host- specific initramfs generation.

rpm -ql dracut-config-generic

 /usr/lib/dracut/dracut.conf.d/02-generic-image.conf

Chapter 10 resCue Mode and Live iMages

443

cat /usr/lib/dracut/dracut.conf.d/02-generic-image.conf

 hostonly="no"

As you can see, the file will restrict dracut from creating a host-specific initramfs.

 “Can’t Boot” Issue 9 (chroot)
Issue: Both the normal and rescue kernels are failing to boot. Figure 10-7 shows the

normal kernel panic messages.

The thrown kernel panic messages are complaining that the kernel is not able to

mount the root filesystem. We saw earlier that whenever the kernel is not able to mount

the user’s root filesystem, it throws the dracut-initqueue timeout messages.

'dracut-initqueue: warning dracut-initqueue timeout - starting timeout

scripts'

However, this time, the panic messages are different. So, it looks like the issue is not

related to the user’s root filesystem. One more clue is that it mentions the VFS filesystem;

VFS stands for “virtual file system,” so this indicates that the panic messages are not

able to mount the root filesystem from initramfs. Based on these clues, I guess we have

isolated the issue, and we should concentrate on initramfs of both the kernels.

Figure 10-7. The kernel panic messages

Chapter 10 resCue Mode and Live iMages

444

As you can see in Figure 10-8, the rescue mode kernel panic messages are also similar.

Resolution: Here are the steps to resolve the issue:

 1) Since the installed rescue kernel is also panicking, we need to use

the live image of Fedora or of any Linux distribution to boot. As

shown in Figure 10-9 and Figure 10-10, we are using a live image

of Fedora.

Figure 10-8. The rescue mode kernel panic messages

Figure 10-9. The live image welcome screen

Chapter 10 resCue Mode and Live iMages

445

 2) The system has booted in rescue mode. The live image booting

sequence will be discussed in the “Live Images” section of this

chapter. Let’s become a sudo user first.

$ sudo su

We trust you have received the usual lecture from your local

system administrator. It usually boils down to these three things:

#1) Respect the privacy of others.

#2) Think before you type.

#3) With great power comes great responsibility.

[root@localhost-live liveuser] #

 3) The root directory that we are seeing here is from a live image.

Since the live image kernel does not know the name of the user’s

root filesystem, it cannot mount it like a rescue kernel.

[root@localhost-live liveuser]# ls /

 bin boot dev etc home lib lib64 lost+found media mnt

 opt proc root run sbin srv sys tmp usr var

 4) Let’s find out what is wrong with the initramfs of the normal

and rescue kernels. To do that, we need to mount the user’s root

filesystem first.

Figure 10-10. Booting with a live image

Chapter 10 resCue Mode and Live iMages

446

vgscan -v
 Found volume group "fedora_localhost-live" using metadata type lvm2

lvscan -v
 ACTIVE '/dev/fedora_localhost-live/swap' [2.20 GiB] inherit
 ACTIVE '/dev/fedora_localhost-live/root' [18.79 GiB]
inherit

pvscan -v
 PV /dev/sda2 VG fedora_localhost-live lvm2 [<21.00 GiB / 0 free]
 Total: 1 [<21.00 GiB] / in use: 1 [<21.00 GiB] / in no VG: 0 [0]

As you can see, this system has a user’s root filesystem based on LVM. The physical
volume is on the sda device. Next we will mount the user’s root filesystem on a
temporary directory.

mkdir temp_root
mount /dev/fedora_localhost-live/root temp_root/
ls temp_root/
 bin dev home lib64 media opt root sbin sys
 tmp usr boot etc lib lost+found mnt proc run
 srv @System.solv user_root_fs.txt var

 5) Let’s check the initramfs file’s status.

ls temp_root/boot/ -l
 total 0

The boot directory of the user’s root filesystem is empty. That is because on
this system, the boot is a separate partition.

mount /dev/sda1 temp_root/boot/
#ls temp_root/boot/
Config-5.3.7-301.fc31.x86_64 efi elf-memtest86+-5.01
extlinux grub2 loader lost+found
Memtest86+-5.01 System.map-5.3.7-301.fc31.x86_64
vmlinuz-0-rescue-19a08a3e86c24b459999fbac68e42c05
vmlinuz-5.3.7-301.fc31.x86_64

Surprisingly, as you can see, there are no initramfs files available on the user’s root

filesystem, and this is the reason why both the kernels were panicking.

Chapter 10 resCue Mode and Live iMages

447

So, the issue has been identified, and we need to regenerate the initramfs. To make

the new initramfs, we need to use the dracut command, but there are some problems.

• Whichever binary or command we execute, that binary will be from

the live image root filesystem. For example, the dracut command

will run from /usr/bin/dracut, whereas the user’s root filesystem’s

binary is in temp_root/usr/bin/dracut.

• To run any binary, it needs supporting libraries like libc.so, which

will again be used from the root filesystem of a live image. This

means the entire environment that we are using now is from the live

image, and it can create serious issues. For example, we can install

any package, and it will be installed in the live image root filesystem,

not in the user’s root filesystem.

In short, we need to change our current root (/) from the live image root filesystem

to the user’s root filesystem (temp_root). chroot is the command that we need to use for

this.

 6) The name itself suggests it will change the root of bash from the

current root to the new root. chroot will be successful only if the

virtual filesystems are already mounted on the new root.

root@localhost-live liveuser]# ls /

 bin boot dev etc home lib lib64 lost+found media mnt

 opt proc root run sbin srv sys tmp usr var

Our current root is the live image root filesystem. Before chroot, we will mount the

proc, dev, devpts, sys, and run virtual filesystems.

mount -v --bind /dev/ temp_root/dev

mount: /dev bound on /home/liveuser/temp_root/dev.

mount -vt devpts devpts temp_root/dev/pts -o gid=5,mode=620

mount: devpts mounted on /home/liveuser/temp_root/dev/pts.

mount -vt proc proc temp_root/proc

mount: proc mounted on /home/liveuser/temp_root/proc.

mount -vt sysfs sysfs temp_root/sys

mount: sysfs mounted on /home/liveuser/temp_root/sys.

Chapter 10 resCue Mode and Live iMages

448

mount -vt tmpfs tmpfs temp_root/run

mount: tmpfs mounted on /home/liveuser/temp_root/run.

 7) We are all set to chroot into a user’s root filesystem.

chroot temp_root/

ls

 bin dev home lib64

media opt root sbin sys tmp

 usr boot etc lib lost+found mnt proc run srv

 @System.solv user_root_fs.txt var

So, temp_root became the root filesystem of bash now. If you exit from this shell,

bash will change its root directory from the user’s root filesystem to a live image root

filesystem. So, as long as we are in the same shell instance, our root directory is temp_

root. Now, no matter what command or binary we execute, it will run inside the user’s

root filesystem environment. Hence, it is completely safe to execute the processes in this

environment now.

 8) To fix this “can’t boot” issue, we need to regenerate initramfs.

root@localhost-live /]# ls /lib/modules

5.3.7-301.fc31.x86_64

[root@localhost-live /]# cd /boot/

[root@localhost-live boot]# rpm -qa | grep -i 'kernel-5'

kernel-5.3.7-301.fc31.x86_64

[root@localhost-live boot]# dracut initramfs-5.3.7-301.fc31.

x86_64.img 5.3.7-301.fc31.x86_64

 9) If you want to regenerate the rescue kernel initramfs, then you

need to install a dracut-config-generic package.

 10) After rebooting, the system is able to boot, and the “can’t boot”

issue has been fixed.

Chapter 10 resCue Mode and Live iMages

449

 Rescue Mode of Enterprise Linux Distributions
In some of the Linux distributions such as CentOS, the rescue image approach is a bit

different. The enterprise edition of Linux will try to find the user’s root filesystem on

its own. Let’s see this in action. Figure 10-11 and Figure 10-12 show the rescue mode

selection procedure of CentOS.

Figure 10-11. The CentOS welcome screen

Figure 10-12. The rescue mode selection

Chapter 10 resCue Mode and Live iMages

450

If we choose option 1, continue, then the rescue mode will search the disk and will

find the root filesystem on its own. Once the user’s root filesystem has been identified, it

will mount it under the /mnt/sysimage directory. Please refer to Figure 10-14.

Figure 10-13. The informative message

It will boot, and as you can see in Figure 10-13, it will display some messages on

the screen.

Chapter 10 resCue Mode and Live iMages

451

Figure 10-14. The root filesystem is mounted under /mnt/sysimage

Figure 10-15. chroot

As you can see, it has mounted the user’s root filesystem in /mnt/sysimage; we just

need to chroot into it. But the beauty is we don’t need to mount the virtual filesystems

beforehand. This is because, as you can see in Figure 10-15, the chroot binary used in

CentOS has been customized, and it will mount the virtual filesystems on its own.

Chapter 10 resCue Mode and Live iMages

452

If we had chosen option 2, Read-Only Mount, then the rescue scripts would have

mounted the user’s root filesystem in read-only mode but in /mnt/sysimage. If we had

chosen the third option of Skip, the rescue system would not have attempted to find and

mount the user’s root filesystem on its own; it would have simply provided us

with a shell.

But how does it manage to find out the root filesystem when the rescue kernel of the

CentOS ISO does not have a user’s root filesystem name with it?

There is no trick here that Anaconda can do to find out the user’s root filesystem

name. Anaconda will mount each and every disk connected to the system and check

whether /etc/fstab is present on it or not. If /etc/fstab is found, then it will fetch

the user’s root filesystem name from it. If your system has a huge number of disks

attached, then there is a high chance that Anaconda might take a long time to mount the

user’s root filesystem. It is better to manually mount the user’s root filesystem in such

a scenario. The source code to find the user’s root filesystem is present in Anaconda’s

source tarball, as shown here:

#vim pyanaconda/storage/root.py

 91 def _find_existing_installations(devicetree):

 92 """ Find existing GNU/Linux installations on devices from the

device tree.

 93

 94 :param devicetree: a device tree to find existing installations in

 95 :return: roots of all found installations

 96 """

 97 if not os.path.exists(conf.target.physical_root):

 98 blivet_util.makedirs(conf.target.physical_root)

 99

100 sysroot = conf.target.physical_root

101 roots = []

102 direct_devices = (dev for dev in devicetree.devices if dev.direct)

103 for device in direct_devices:

104 if not device.format.linux_native or not device.format.

mountable or \

105 not device.controllable or not device.format.exists:

106 continue

Chapter 10 resCue Mode and Live iMages

453

107

108 try:

109 device.setup()

110 except Exception: # pylint: disable=broad-except

111 log_exception_info(log.warning, "setup of %s failed",

[device.name])

112 continue

113

114 options = device.format.options + ",ro"

115 try:

116 device.format.mount(options=options, mountpoint=sysroot)

117 except Exception: # pylint: disable=broad-except

118 log_exception_info(log.warning, "mount of %s as %s failed",

[device.name, device.format.type])

119 blivet_util.umount(mountpoint=sysroot)

120 continue

121

122 if not os.access(sysroot + "/etc/fstab", os.R_OK):

123 blivet_util.umount(mountpoint=sysroot)

124 device.teardown()

125 continue

126

127 try:

128 (architecture, product, version) = get_release_

string(chroot=sysroot)

129 except ValueError:

130 name = _("Linux on %s") % device.name

131 else:

132 # I'd like to make this finer grained, but it'd be very

difficult

133 # to translate.

134 if not product or not version or not architecture:

135 name = _("Unknown Linux")

136 elif "linux" in product.lower():

137 name = _("%(product)s %(version)s for %(arch)s") % \

Chapter 10 resCue Mode and Live iMages

454

138 {"product": product, "version": version, "arch":

architecture}

139 else:

140 name = _("%(product)s Linux %(version)s for %(arch)s") % \

141 {"product": product, "version": version, "arch":

architecture}

142

143 (mounts, swaps) = _parse_fstab(devicetree, chroot=sysroot)

144 blivet_util.umount(mountpoint=sysroot)

145 if not mounts and not swaps:

146 # empty /etc/fstab. weird, but I've seen it happen.

147 continue

148 roots.append(Root(mounts=mounts, swaps=swaps, name=name))

149

 Live Images
Live images are one of the best features of Linux systems. This book wouldn’t be

complete if we just stuck to the normal hard disk booting part. Let’s see how a live image

of Linux boots. First let’s mount the ISO image and see what it holds.

mkdir live_image

mount /dev/cdrom live_image/

mount: /home/yogesh/live_image: WARNING: device write-protected, mounted

read-only.

tree live_image/

live_image/

├── EFI
│ └── BOOT
│ ├── BOOT.conf
│ ├── BOOTIA32.EFI
│ ├── BOOTX64.EFI
│ ├── fonts
│ │ └── unicode.pf2
│ ├── grub.cfg

Chapter 10 resCue Mode and Live iMages

455

│ ├── grubia32.efi
│ ├── grubx64.efi
│ ├── mmia32.efi
│ └── mmx64.efi
├── images
│ ├── efiboot.img
│ ├── macboot.img
│ └── pxeboot
│ ├── initrd.img
│ └── vmlinuz
├── isolinux
│ ├── boot.cat
│ ├── boot.msg
│ ├── grub.conf
│ ├── initrd.img
│ ├── isolinux.bin
│ ├── isolinux.cfg
│ ├── ldlinux.c32
│ ├── libcom32.c32
│ ├── libutil.c32
│ ├── memtest
│ ├── splash.png
│ ├── vesamenu.c32
│ └── vmlinuz
└── LiveOS
 └── squashfs.img

The live image is divided into four directories: EFI, images, isolinux, and LiveOS.

• EFI:

We have already discussed this directory when talking about the

bootloader. The UEFI firmware will jump into this directory and

will run the grubx64.efi file. The grubx64.efi file will read the

grub.cfg file and will pull the initrd.img and vmlinuz files from

the isolinux directory.

Chapter 10 resCue Mode and Live iMages

456

• images:

This will be used mainly if we are booting through PXE. A network

boot is out of the scope of this book.

• isolinux:
If UEFI is booting the BIOS way, then it will read the grub.conf

file from here. This directory is mainly for storing the initrd and

vmlinuz files. In other words, this directory is /boot for a normal

root filesystem.

• liveOS:

This is where the magic happens. This directory has a file named

squashfs.img. Once you mount that, you will find rootfs.img

in it.

mkdir live_image_extract_1

mount live_image/LiveOS/squashfs.img live_image_extract_1/

ls live_image_extract_1/

 LiveOS

ls live_image_extract_1/LiveOS/

 rootfs.img

mkdir live_image_extract_2

mount live_image_extract_1/LiveOS/rootfs.img live_image_extract_2/

ls live_image_extract_2/

 bin boot dev etc home lib lib64 lost+found media

mnt opt proc root run sbin srv sys tmp usr var

 SquashFS
Squashfs is a small, compressed, read-only filesystem. This filesystem is generally used

for embedded systems where every byte of storage is precious. Squashfs gives us more

flexibility and performance over tarball archives. Squashfs stores a live Fedora’s root

filesystem (rootfs.img) in it, and it will be mounted as read-only.

Chapter 10 resCue Mode and Live iMages

457

mount | grep -i rootfs

/home/yogesh/live_image_extract_1/LiveOS/rootfs.img on /home/yogesh/

live_image_extract_2 type ext4 (ro,relatime,seclabel)

You can use the mksquashfs command provided by squashfs-tool to make the

Squashfs image/archive.

 rootfs.img
rootfs.img is an ext4 filesystem with a typical root filesystem in it. Some distros create

a guest user or a user named live for a live image, but in Fedora it’s the root user who

does everything.

file live_image_extract_1/LiveOS/rootfs.img

live_image_extract_1/LiveOS/rootfs.img: Linux rev 1.0 ext4 filesystem data,

UUID=849bdfdc-c8a9-4fed-a727-de52e24d981f, volume name "Anaconda" (extents)

(64bit) (large files) (huge files)

 Booting Sequence of a Live Image
Here is the sequence:

 1) The firmware will call the bootloader (grubx64.efi). It will read

the grub.cfg file and copy the vmlinuz and initrd files from the

isolinux directory.

 2) The kernel will extract itself at a specific location and will extract

initramfs at any available location.

 3) systemd, started from initramfs, will extract the rootfs.img file to

the device-mapper target device at /dev/mapper/live-rw, mount

it on the root (/) filesystem, and switch_root into it.

 4) Once the root filesystem is available, you can consider it as a

normal operating that is installed in a CD, DVD, or .iso file.

Also, it is obvious that the live-image initramfs will be much bigger in size compared

to the host-specific initramfs.

Chapter 10 resCue Mode and Live iMages

459
© Yogesh Babar 2020
Y. Babar, Hands-on Booting, https://doi.org/10.1007/978-1-4842-5890-3

Index

A
Active/inactive flag, 15
Actual root filesystem, 207, 268, 272
Anaconda installer, see Red Hat Enterprise

Linux 6 (RHEL 6)

B
/bin/dracut-emergency, 401
/bin/dracut-pre-mount

script, 396
BIOS, See also Boot Sector

firmware, 96
limitations, 96–98

blacklist.conf file, 279
blowfish_comman module, 245
blowfish modules, 244
bluetooth modules, 246, 279
bootchart, 302
Boot flag, 15
/boot/grub2

Device.map, 135, 136
files, 135
grub.cfg, 136–138
i386-pc, 138–141

boot.img file, 178
boot.ini file, 50
/boot/loader/ directory, 150
Bootloader

file of XP’s, 13

GRUB 2 (see GRUB 2)
types, 12

Bootloader + Kernel
BIOS-based systems

resolution, 164, 165
UEFI-based systems resolution, 166

Boot Loader Specification (BLS), 149–152
Boot sector, 12

Fedora 15 (see Fedora 15 installation)
OpenSolaris 2008 (see OpenSolaris

2008 installation)
PC-BSD 9.0 (see PC-BSD 9.0

installation)
RHEL 6, 64–74
vendor signature field, 15
Windows 7, 56–64
Windows Server 2003, 46–56

Boot sequence
PC-BSD, 44
Solaris, 28–32
win2k3, 49
Windows 7, 61, 62
Windows XP, 14, 16

C
Can’t Boot issue (Bootloader)

console messages while booting, 158
grub2-mkconfig, UEFI-based

system, 161
GRUB 2 prompt, 153

https://doi.org/10.1007/978-1-4842-5890-3#ESM

460

linux, initrd, and boot commands, 157
login screen, 159, 160
resolution

BIOS-based system, 162, 163
UEFI-based system, 164

root filesystem name and ro flag, 156
Ubuntu, 159
vmlinuz file, 155

Chainloading, 75
cmdline hook, 309
Command-line options

lvm, raid, and Multipath-Related
dracut, 281, 283

rd.auto (rd.auto=1), 271
rd.break and rd.shell, 283
rd.debug, 280
rd.driver.blacklist, rd.driver.pre, and

rd.driver.post, 276, 278–280
rd.fstab = 0, 272
rd.skipfsck, 272–276

copy_boot_params function, 188
core.img file, 141

D
daemon-reload switch, 419
Daemons, 290
Debian Linux–based live ISO image, 7
Debug-like kernel command-line

parameter, 189
Decompression methods, 200
depmod command, 244
device.map file, 135, 136
/dev/log socket, 309
Digital signature, 167
_dir variable, 403
diskboot.img file, 180, 181

Disk layout
BIOS-based system, 11
OpenSolaris 2008 installer, 18
PC-BSD 9.0, 34
Ubuntu, 104
win2k3, 47, 48
Windows 7, 56

dmesg command, 189
_dogetarg() function, 315, 316
do_mount_root function, 202
dracut

--add switch, 256
--add-drivers switch, 260
command-line option (see Command-

line options)
50-dracut.install script, 237
initramfs file, 238
initramfs image, 239–244
--include switch, 262
kernel-install script, 236
module (see Modules)
-m or--modules switch, 260
nfs module, 256

dracut-cmdline.service
/bin/dracut-cmdline script, 320
booting sequence, 317, 325
cmdline hook, 317, 321
cmdline parameter, 318
_dogetarg() function, 315, 316
/dev/disk directory contents, 320
dracut-cmdline script, 310–312
kernel command-line parameters, 310,

322, 323
login screen, Fedora, 325
parameters, 312
rd.break kernel command-line

parameter, 324
switch_root hook, 324

Can’t Boot issue (Bootloader) (cont.)

Index

461

sysroot directory, 323
rd.break=cmdline parameter, 309, 318
switch_root shell, 324
sysroot directory, 323

dracut.conf file, 255
dracut-emergency binary, 408
dracut-emergency service, 400
dracut-initqueue.service

“Can’t Boot” issue (systemd + Root
LVM) console messages, 358

emergency shell, 360
kernel command-line

parameters, 361
LVs, 360
root filesystem, mounting, 361

Can’t Boot issue (systemd + Root LVM)
dracut-initqueue timeout error
messages, 359

/etc/default/grub, 362
root lvm device, 359

root and rd.break kernel
command- line parameters, 357

initqueue hook, 357
pre-trigger hook, 354
pre-udev hook, 354
sda devices, 355
unit file, 355

dracut--list-modules command, 254
dracut-mount script, 414, 415
dracut-pre-mount.service, 391, 392
dracut-pre-trigger.service, 331–334
dracut-pre-udev.service, 326–331

E
EFI System Partition (ESP), 102, 103
emergency.service, 406–409, 411

_emergency_shell() function, 318, 333,
397, 398

etc directory, 221, 222
/etc/grub.d/ directory

contents, 143
40_custom and 41_custom, 148
08_fallback_counting script file, 145
grub.cfg file, 143–145
20_linux_xen, 146
30_os_prober, 147
20_ppc_terminfo, 146
30_uefi-firmware script file, 147, 148

/etc/systemd/system, 287
Extensible Firmware Interface (EFI), 98
extract_kernel function, 195–196, 200

F
fdisk command, 19, 20
fdisk signature, 15, 24
Fedora 15 installation

bootloader, 91, 92
grub.conf file, 93
mounting of Fedora’s partition, 92
OS entries, RHEL, 94
RHEL, grub.conf file, 94

Fedora 31
booting sequence, 118

boot priority, 116
EFI directory, 117
OS entries, 117

installation, 115
OS entries, 115

Fedora-based distributions, 64
Fedora-based system, 235
Filesystem, 207
Firmware, 4

Index

462

G
getarg function, 313, 314
getcmdline named function, 316
go_to_protected_mode() function, 190
GParted

disk layout, Solaris installation, 27
made filesystem layout, 9
partition layout, BIOS, 8
PC-BSD 9.0, 37

GParted-made partition layout, 9
GRUB Legacy, 133
GRUB’s disk naming conventions, 135
GRUB 2

low level, 177–181
BIOS-based systems

/boot/grub2 (see /boot/grub2)
/etc/grub.d (see /etc/grub.d/

directory)
Fedora, booting sequence, 137, 138

BLS, 149–152
common bootloader issues (see Can’t

Boot issue (Bootloader))
features, 133, 134
106 operating systems multiboot, 169–175
UEFI-based system, locations, 149

grub2-mkconfig command, 160
grub-mkconfig command, 175
grub2-install command, 136, 162, 163
grub2-mkconfig command, 142, 143, 146,

147, 160
grub-mkconfig command, 175
GUID partition table, 103

H
Hard disk drive (HDD), 12
Hard disk naming convention, 33
httpd-or mysql-related systemd unit files, 289

I
IBM PC-5150, 96
in_initrd function, 342
init-based Linux distribution, 227
init kernel command-line parameter, 302
initramfs, 196, 201, 211

bash’ binary, 249
/bin/bash binary, 250
booting sequence, 226–230
Can’t Boot” issue

console messages, 266
error message, 262
GRUB splash screen, 263
resolving steps, 263, 265, 266

contents, extract, 214
dracut tool, 214
etc directory, 222
filesystems, 209–211
implementation, 215–218
vs. initrd, 211
lsinitrd tool, 212
root/boot directory, 214
Kernel extract from memory, 230, 231,

233, 234
lib, lib64, 225
root filesystem, 209
sbin, 218–221
SCSI drivers, 241
structure, 210–215
temporary root filesystem, 207
user’s root filesystem, 207, 241
virtual filesystems, 223–225

initramfs image, 239–244
initrd.target

booting sequence, 418
execution, 420
initrd-parse-etc.service, 419

Index

463

systemd generators, 419
user’s root filesystem, 417

init/systemd process, 226
install_itsems+ switch, 261
Intel Boot Initiative (IBI), 98
is_temporary_fs() function, 344

J
Jarvis

hardware and software details, 169
106 operating systems

multiboot, 174–180
journalctl logs, 349

K
Kernel

arch directory, 201
booting, 200
bootloader, 183
boot sequence, 203, 204
extracted initramfs, 202
FCOE modules, 242
initramfs, 201
kthread, 202
loading in memory, 183, 185

archive file vmlinuz, 185, 186, 188
extract_kernel function, 195–198, 200
kernel_setup, 186
main.c source code, 188–190
misc.c file, 200
vmlinuz extracts, 193, 195

long mode, 191, 192
LUKS-related binaries, 209
modules, 242, 244, 254, 261
protected mode, 190, 191
root filesystem, 202
systemd, 183, 202

Kernel command-line options
init, 267–269
parameters, 267
rhgb and quite, 269, 270
ro, 269
root, 267
selinux, 271

kmod-static-nodes systemd unit file, 375
kmod-static-nodes.service, 376, 378

L
Linux booting procedure, 3
Live images

booting sequence, 457
directories, 455
Linux systems, 454
rootfs.img, 457
SquashFS, 456

local-fs.target
booting sequence, 338
dracut-cmdline service, 350
flowchart, 352
journalctl command, 349, 350
kernel command-line parameter, 347
logs, 349
pre-pivot hook, 348
proc_cmdline_parse, 342
src/basic/util.c, 342
src/fstab-generator/fstab-

generator.c, 346
statfs function, 343
sysroot.mount file, 345
systemd-fsck-root.service file

contents, 346
systemd-fstab-generator, 339, 340, 342,

345, 348, 350–352
usr.mount unit file, 350

Index

464

x-initrd.mount [systemd.mount]
option, 351

Logical partitions, 7
Long mode, 191, 192
lsinitrd tool, 212
lvm_scan command, 357

M
main() function, 187
Master boot record (MBR), 15
MBR fields, 15, 25
*.mod files, 138, 139
Modules, 254, 261

bluetooth-related, 246
customizing initramfs, 254–260
des3_ede, 244
host-specific modules in initramfs, 246
initramfs, 245
kernel modules, 245
/lib/modules/ location, 244
module-setup.sh script, 249
plymouth, 251, 252
require_binaries, 254
scripts, 247, 249

multipath.conf-like configuration file, 261
multipath.ko kernel module, 261

N
nagios error message, 299
network dracut module, 260
NetworkManager service of

systemd, 298
NetworkManager-wait-online-service, 301
New Technology Loader (NTLDR)

bootloader, 12

nfs dracut module, 259
nvidia package, 439

O
OnFailure units, 290
OpenSolaris 2008 installation

booting sequence, 28–32
bootloader (GRUB), 26
boot sector, 25
changes made, fdisk command, 21
disk layout, 18, 26
fails with error messages, 19
HDD name assigned, 20
partition layout, creation, 25
reboot, BIOS system, 23
Solaris filesystem partition, 22
vendor signature and MBR fields, 25
welcome screen, 17, 24

106 operating systems
multiboot, 169–175

Operating systems (OS)
flowchart, 95
installation

Boot Sector (see Boot sector)
partitioning, 7–9
primary/logical partitions, 7
sequence, 6
Windows XP, 10, 11

rules and regulations, 6
types, 5

30_os_prober 147

P
Page cache, 210
Partition layout

Anaconda installer, 65
PC-BSD 9.0, 35

local-fs.target (cont.)

Index

465

Ubuntu, 105
Windows 10, 110
XP’s installer, 10

path_equal function, 426
PC-BSD 9.0, installation

boot flag, setting, 40
boot management, 42, 43
boot sequence, 39, 43, 44
boot with GParted, 37

disk layout, 38, 41, 46
welcome screen, 37

BSD options, 43
disk layout, 41
disk layout and disk naming

conventions, 33
not booting, 36
number of partitions, 33
OS, boot, 35
partition layout, 35
welcome screen, 42
Windows XP, boot sequence, 45

pfexec format command, 19
plymouth-related dracut modules, 255
plymouth

booting procedure, 365, 366
booting sequence, 364
installation, 367–369
managing, 369, 371, 372
plymouth screen, 367
structure, 372, 373

populate_rootfs function, 234
post-scripts command, 235
pre-pivot shell, 347
pre-trigger shell, 333
pre-trigger switch, 335
pre-trigger hook, 333
Primary partition, 7
Pseudo variable, 400

Q
qemu machine, 177

R
rd.break, 283, 393, 394, 406
rd.break kernel command-line

parameter, 331
rd.break=cmdline parameter, 318
rd.break=pre-trigger dracut

command- line parameter, 331
rd.driver.blacklist, 277, 278
_rdshell_name, 397
rdsosreport.txt file, 269
Red Hat Enterprise Linux 6 (RHEL 6)

bootloader, 73
bootloader (GRUB), 67
boots sequence, 74

error message, 73
flowchart, 72
grub.conf file, 69, 71
log messages, 71
other OS is on partition 5, 72
welcome screen, 70

desktop screen, 73
Fedora-based distributions, 64
partition layout, 65
partition scheme, 66
welcome screen, 64, 68

Rescue mode
boot, 435, 438
can’t boot issue (chroot)

booting, live image, 445
kernel panic messages, 443, 444
live image welcome screen, 444
resolving issue, 444–448

enterprise linux distributions, 449–454

Index

466

entry, live image, 436
GRUB menu entry, 435
GRUB screen, 437
initramfs, 439–442
kernel’s command-line

parameters, 439
root filesystem mounted, 438

rescue.service, 406–409, 411
rhgb quiet kernel command-line

parameters, 298
root kernel command-line

parameter, 269
Root file system, 208, 209
rootfs.img, 457
/run directory, 288
/run/systemd/system, 288

S
Secure Boot, UEFI, 103, 129, 167–169
SecureCore UEFI firmware, 98
selinux, 271
Shell, 393–395
Single-user mode, 406
skipcpio tool, 212
Small tiny bootloader, 176, 177
Socket-based approach, 294
Solaris booting sequence, 32
Solaris filesystem partition, 22
Solaris menu.lst file, 30
source_hook function, 401, 403
SquashFS, 456
sshd service unit file, 289
start_kernel function, 201, 202
switch_root shell, 324
switch_root/pivot_root

init-based system, 421–425

systemd-based system, 426, 428, 430,
431, 433, 434

sysinit.target
booting sequence, 373
can’t Boot issue (sysctl.conf), 385–390
dev filesystem-related temporary

files, 383
directory, 373
journald socket, 379
kmod binary, 375
kmod-static-nodes.service, 376
sockets.target, 384
static-nodes switch, 375
swappiness kernel parameter value, 383
systemd-ask-password-console.path, 378
systemd-journald.service, 379
systemd-modules-load.service, 380, 382
systemd-sysctl.service, 382
/usr/lib/systemd/systemd-

modules- load, 381
syslog, 291
sysroot, 274, 323
sysroot.mount, 350

dracut-mount script, 414
kernel command-line parameter, 413
mount hook, 413
systemd-fstab-generator behavior, 416

systemd
boot sequence up to basic.target, 307
boot time

can’t Boot” issue, 298–303
dracut-initqueue.service

(see dracut-initqueue.service)
dracut-pre-mount.service, 390, 391
dracut-pre-trigger.service, 331–334
dracut-pre-udev.service, 326–331
init model, 291
local-fs.target (see local-fs.target)

Rescue mode (cont.)

Index

467

plymouth (see plymouth)
sockets, 292
systemd-analyze tool, 294, 297, 298
swap.target, 353
sysinit.target (see sysinit.target)
systemd-analyze tool, 295
systemd model, 293
systemd-udev-trigger.service,

335–338
upstart model, 292

booting flowchart, 304
booting sequence, 285
dracut-cmdline.service

(see dracut-cmdline.service)
initrd.target, 417–421
structure, 286–290
switch_root/pivot_root

(see switch_root/pivot_root)
sysroot.mount (see sysroot.mount)

systemd-analyze tool
blame tool, 294
boot time, 297, 298
generated plot image, 296
plot tool, 295

Systemd binaries, 218
systemd-fstab-generator, 339, 342, 416, 420
Sysv/init script model, 291

T
tmpfs, 210
Tweaking GRUB

chainloading, 75
installgrub command, 79
OS entries

BCD, 81
BCD bootloader, 77
RHEL, 78, 80, 82

Solaris, 80
win2k3’s NTLDR, 77

partition layout, BIOS, 74
PC-BSD’s welcome screen, 83
RHEL 6, 75
Solaris failed to boot, 78
welcome screen, 76

U
Ubuntu 18.04 LTS

booting sequence, UEFI system, 106
boot priority window, 107
flowchart, 109
welcome screen, 108

disk layout, 104
EFI directory, 106
ESP partition, creation, 105
grubx64.efi file, 109
mount points, 106
partition layout, 105

udevadm settle command, 355
udevadm trigger, 333
Unified Extensible Firmware

Interface (UEFI)
advantages, 99, 100
Apple, 98
GUI implementation of ASUS, 100, 101
implementation, 102, 103

misconceptions
disable UEFI, 131
Microsoft is evil, 126–131
UEFI is new BIOS, 125, 126

open source framework, 98
OS installation

Fedora 31, 115–118
Ubuntu 18.04 LTS, 104–109
Windows 10, 109–114

Index

468

Secure Boot feature, 167–169
shell, 118–125

Unit files, 286
Unix bootloaders, 6
unpack_to_rootfs function, 234
User’s root filesystem, 207, 242, 245
/usr/lib/systemd/system, 287

V
validate_cpu() function, 189
Vendor signature field, 15, 25
virtio modules, 278
Virtual file system (VFS), 443
vmlinux and vmlinuz kernel files, 194, 195
Volume boot record (VBR), 76

W
Windows 7 installation

bcdedit.exe, 59
booting sequence, 58–63
disk layout, 56
welcome screen, 57, 60
win2k3 and XP, boot sequence, 63

Windows 10 installation
boot sequence, 114
ESP partition, 111
loading screen, 114
MSR space reservation, 110
OS entries, 113
partition 4, 111
partition layout, 110
UEFI-based system, 112–114

Windows bootloaders, hacking
chainloading, 83
entries adding, boot.ini file, 86
first 512 bytes to first

primary, 85
mount command, 84
OS entries

RHEL’s GRUB, 90
Solaris GRUB, 89
win2k3’s NTLDR, 88
Windows 7 (BCD), 88, 89

OS list, 87
respective bootloaders, 84
RHEL entry, 90

Windows chainloading, 76
Windows Legacy OS Loader, 58
Windows Server 2003 (win2k3)

installation
boot flag, 49, 50
booting sequence, 50–52

PC-BSD, 54
Windows XP, 53

boot.ini file, 50
boot sequence, 49
disk layout, 47, 48
GRUB dropped on prompt, 55
MBR, 49
NTLDR bootloader, 49
rules, Windows XP’s installation, 48
size of NTLDR’s part-3 file, 52
welcome screen, 47, 52

Windows XP installer, 10, 11

X, Y, Z
x-initrd.mount option set, 420

Unified Extensible Firmware
Interface (UEFI) (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Why?
	What?
	The Focus of This Book
	Power Supply
	CPU

	Chapter 2: Multiboot
	List of Operating Systems
	Installing the Operating Systems
	Primary/Logical Partitions
	Partitioning
	First OS Installation: XP
	Boot Sector
	OpenSolaris 2008
	PC-BSD 9.0
	Windows Server 2003
	Windows 7
	Red Hat Enterprise Linux 6 (RHEL 6)
	Tweaking GRUB
	Hacking the Windows Bootloaders
	Fedora 15
	Complete Flowchart

	Unified Extensible Firmware Interface (UEFI)
	BIOS Limitations
	UEFI Advantages
	The GUI of UEFI
	UEFI Implementation
	EFI System Partition (ESP)
	EFI
	Secure Boot
	Partition Table

	List of Operating Systems
	Ubuntu 18.04 LTS
	Windows 10
	Fedora 31
	UEFI Shell
	Misconceptions About UEFI
	Misconception 1: UEFI Is a New BIOS or UEFI Is a BIOS
	Misconception 2: Microsoft Is Evil
	Linux Vendors Should Make Their Own Key Pair
	All Linux Vendors Should Make Only One Key Pair
	Disable UEFI’s Secure Boot Feature

	Misconception 3: Disable the UEFI

	Chapter 3: GRUB Bootloader
	GRUB 2 Implementation
	GRUB 2 on BIOS-Based Systems
	/boot/grub2
	Device.map
	grub.cfg
	i386-pc

	/etc/default/grub
	/etc/grub.d/
	10_linux
	20_linux_xen
	20_ppc_terminfo
	30_os_prober
	30_uefi-firmware
	40_custom and 41_custom

	GRUB 2 on UEFI-Based System

	Boot Loader Specification (BLS)
	Common Bootloader Issues
	“Can’t Boot” Issue 1 (Bootloader)
	“Can’t Boot” Issue 2 (Bootloader)
	Resolution for a BIOS-Based System
	Resolution for a UEFI-Based System

	“Can’t Boot” Issue 3 (Bootloader + Kernel)
	Resolution for BIOS-Based Systems
	Resolution for UEFI-Based Systems

	Secure Boot Feature of UEFI
	100 OS Multiboot Project
	A Dummy Small Bootloader
	GRUB 2 at a Low level

	Chapter 4: Kernel
	Loading the Kernel in Memory
	After Loading the Kernel in Memory
	Protected Mode
	Long Mode
	What Extracts vmlinuz?
	extract_kernel

	Inside the Kernel

	Chapter 5: initramfs
	Why initramfs?
	Infrastructure
	ramfs
	tmpfs
	rootfs

	initramfs Implementation
	bin
	Normal Binaries
	Special Binaries
	Networking Binaries
	Hooks
	Systemd Binaries

	Sbin
	Filesystem and Storage-Related Binaries
	Networking Binaries
	Special Binaries
	Basic Binaries

	etc
	Virtual Filesystems
	dev
	proc and sys

	usr, var
	lib, lib64
	initramfs Booting
	How Does the Kernel Extract initramfs from Memory?
	How Does the Kernel Mount initramfs as Root?

	Chapter 6: dracut
	Getting Started
	Making an initramfs Image
	Dracut and Modules
	How Does dracut Select Modules?
	Customizing initramfs
	dracut Module or Kernel Module?
	“Can’t Boot” Issue 4 (initramfs)
	“Can’t Boot” Issue 5 (initramfs)

	Kernel Command-Line Options
	root
	init
	ro
	rhgb and quite
	selinux

	dracut Command-Line Options
	rd.auto (rd.auto=1)
	rd.hostonly=0
	rd.fstab = 0
	rd.skipfsck
	rd.driver.blacklist, rd.driver.pre, and rd.driver.post
	rd.debug
	rd.memdebug= [0-4]
	lvm, raid, and Multipath-Related dracut Command-Line Parameters
	rd.break and rd.shell

	Chapter 7: systemd (Part I)
	Structure
	How Does systemd Reduce Boot Time?
	systemd-analyze
	“Can’t Boot” Issue 6 (systemd)

	Flow of systemd Inside initramfs
	systemd-journal.socket
	dracut-cmdline.service
	dracut-pre-udev.service
	dracut-pre-trigger.service
	systemd-udev-trigger.service
	local-fs.target
	swap.target
	dracut-initqueue.service
	“Can’t Boot” Issue 7 (systemd + Root LVM)

	plymouth
	Installing plymouth
	Managing plymouth
	Structure

	Sysinit.target
	“Can’t Boot” Issue 8 (sysctl.conf)

	basic.target
	dracut-pre-mount.service

	Chapter 8: Debugging Shells
	The Shell
	How Does systemd Drop Us to an Emergency Shell?
	rescue.service and emergency.service

	Chapter 9: systemd (Part II)
	sysroot.mount
	initrd.target
	switch_root/pivot_root
	Switching to the New Root Filesystem on an init-Based System
	Switching to a New Root Filesystem on a systemd-Based System

	Chapter 10: Rescue Mode and Live Images
	Rescue Mode
	Rescue Mode initramfs
	“Can’t Boot” Issue 9 (chroot)
	Rescue Mode of Enterprise Linux Distributions

	Live Images
	SquashFS
	rootfs.img
	Booting Sequence of a Live Image

	Index

