
Learn Windows
Subsystem for
Linux

A Practical Guide for Developers and
IT Professionals
—
Prateek Singh

Learn Windows
Subsystem for Linux

A Practical Guide for Developers
and IT Professionals

Prateek Singh

Learn Windows Subsystem for Linux: A Practical Guide for Developers and
IT Professionals

ISBN-13 (pbk): 978-1-4842-6037-1			 ISBN-13 (electronic): 978-1-4842-6038-8
https://doi.org/10.1007/978-1-4842-6038-8

Copyright © 2020 by Prateek Singh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260371. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Prateek Singh
Bangalore, India

https://doi.org/10.1007/978-1-4842-6038-8

Dedicated in memory of my beloved grandfather Ram Naresh Singh,
1935–2017.

The only hero I’ve ever had or needed. You are still an inspiration and
motivation behind every effort we put in to see a positive impact in our

life and society.

v

Chapter 1: ��Getting Started with WSL��� 1

History of Windows Subsystems�� 1

WSL at a Glance��� 2

Advantages of WSL1�� 3

Architecture and Components of WSL1��� 4

Disadvantages of WSL1��� 7

Keywords and Concepts�� 9

Distro�� 10

Subsystems�� 10

Kernel��� 10

Kernel Mode��� 12

User Mode�� 12

System Calls��� 13

Windows NT Kernel�� 14

Linux Kernel�� 15

ELF�� 16

PICO Process�� 16

Summary��� 17

Chapter 2: ��Downloading, Installation, and Setup�� 19

Enabling the WSL Feature�� 19

GUI Approach�� 20

PowerShell Approach��� 22

Table of Contents

About the Author�� ix

About the Technical Reviewer�� xi

vi

Download and Install Linux Distributions (Distros)�� 22

Downloading from Microsoft Store��� 23

Downloading a Distro Manually�� 24

Downloading Using PowerShell�� 26

Downloading Using curl.exe��� 29

Setting Up and Configuring WSL�� 30

Launching the Distro�� 31

Setting Up and Managing User Account��� 35

Permission Model��� 37

Updating and Upgrading the Distro�� 38

Installing Additional Tools and Packages��� 40

Summary��� 42

Chapter 3: ��Building Mixed Experiences��� 43

WSL Launch Configuration – wsl.conf��� 43

[automount] Section��� 44

[network] Section��� 47

[interop] Section��� 51

Windows-Linux Path Translation – wslpath��� 54

Shared Environment Variables – WSLENV�� 56

Summary��� 61

Chapter 4: ��Managing WSL Distributions�� 63

List Distributions�� 63

Set Default Distro��� 65

Back Up or Export a WSL Distro��� 66

Restore or Import WSL Distro��� 68

Unregister and Uninstall WSL Distros�� 69

Creating a Custom WSL Distro��� 72

Summary��� 74

Table of Contents

vii

Chapter 5: ��Exploring WSL2�� 75

New Features in WSL2��� 75

Architecture of WSL2��� 78

Installation and Setup�� 84

Enable Windows Subsystem for Linux 1��� 84

Enable “Virtual Machine Platform”��� 86

Enable Windows Subsystem for Linux 2��� 86

Verifying the Linux Distribution Subsystem Platform and Rolling Back to WSL1������������������� 88

Running WSL2 in a Virtual Machine��� 89

What User Experience Changed from WSL1 to WSL2?�� 90

Faster File Performance��� 90

WSL2 Now Uses Virtual Hardware Disks (VHD)�� 92

Networking Changes and Considerations��� 94

Summary��� 97

Chapter 6: ��File System��� 99

File System Components��� 99

VFS��� 100

volfs�� 100

drvfs��� 103

tmpfs�� 104

procfs, sysfs��� 105

Multiple UNC Provider (MUP)�� 106

9�P (Plan 9 Protocol)�� 107

WSL File System Architecture�� 107

Windows-Linux Case Sensitivity��� 109

Windows and Linux Interoperability��� 114

Accessing Windows Files from Linux��� 115

Accessing Linux Files from Windows��� 119

Summary��� 122

Table of Contents

viii

Chapter 7: ��Networking��� 123

WSL Networking Overview�� 123

Network Interfaces and DNS�� 123

Sockets��� 126

WSL vs. WSL2 Networking��� 129

Summary��� 130

Chapter 8: ��Linux Development on WSL�� 131

Source Control��� 131

Installing Git�� 131

Setting Up and Configuring�� 133

Sharing Git Credentials Between Windows and WSL��� 135

Windows Terminal�� 136

Installing Windows Terminal from the Microsoft Store��� 137

Installing Windows Terminal Using Chocolatey�� 139

Setting Up WSL in Windows Terminal��� 141

Visual Studio Code (VSCode)�� 144

Installing the Remote - WSL Extension��� 145

WSL Linux Distribution Support�� 146

Integrated Terminal and Default Shell�� 149

Installing VSCode Extensions on WSL��� 152

Editing WSL Files and File Explorer�� 155

Running and Debugging Programs��� 156

Docker Containers on WSL2��� 158

Develop Web Application with Docker and WSL2��� 161

Summary��� 168

Chapter 9: ��Linux Desktop on WSL�� 169

Xfce�� 169

xRDP�� 171

Setup and Configuration�� 174

Summary��� 179

Index�� 181

Table of Contents

ix

About the Author

Prateek Singh is an IT Infrastructure and cloud developer,

an avid PowerShell blogger, and an open source community

contributor. His blog www.ridicurious.com has been

recognized as among the “Top 50 PowerShell blogs in the

world” in the last three consecutive years. 

Prateek has extensive experience in technical writing

and has written more than 250 articles on his blog and

several other websites such as 4SysOps.com, IPSwitch.com,

and TechTarget.com and also runs a YouTube channel on

PowerShell Scripting and Azure. He has written few other

technology books on PowerShell and Python and is writing a

new one PowerShell to C# and Back, on C# and .Net.

When he is not in front of a computer, Prateek loves reading his humongous

collection of compulsively bought books with a warm cup of coffee and really enjoys

long-distance running.

https://www.ridicurious.com/

xi

About the Technical Reviewer

Nathan Haines first started using Linux in 1994, when a

new BBS had a menu option for “command prompt,” and it

wasn’t quite the DOS he was familiar with. He and a couple

friends started exploring, and it’s been love ever since.

Today he’s equally at home with the command line as he is

with a graphical interface. 

Nathan loves computers and video games and spends a

lot of time reminiscing about old ones he’s owned. He can

often be found typing on an Alphasmart Neo so that he will

not be tempted by those old computers or video games.

Nathan writes sci-fi and fantasy and sometimes just writes stories set on Earth that

remind him of growing up. He translated the beloved novels from Egosoft’s X-Universe

game series into English. He has written a friendly guide to the Ubuntu operating system,

Beginning Ubuntu for Windows and Mac Users (Apress, 2017).

A hybrid author who enjoys stiff drinks, moonlit walks on the beach, and five-star

reviews on his books, he can be found on the Web at www.nhaines.com.

https://www.nhaines.com/

1
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_1

CHAPTER 1

Getting Started with WSL
Windows Subsystem for Linux (WSL) is not the first subsystem that has ever existed in

the Windows operating system; instead, it is a more refined product of years of research

in developing isolated subsystems for application sandboxing that are decoupled from

the host operating system.

Before we deep dive into setup, configuration, and workings of Windows Subsystem

for Linux, let’s first look into how it all started and then quickly go through some

keywords and definitions that will bring us on the same page and help us across the

chapters in this book.

This chapter’s WSL primer will certainly help, but feel free to skip it for now if you

want to get straight into the setup and hands-on workings.

�History of Windows Subsystems
Since the initial releases of Microsoft Windows NT, the operating system was designed

to allow coexistence of one or more subsystems within the operating system which were

independent of implementation inside the kernel. This allowed us to run Windows

32-bit applications on Windows 64-bit operating systems in the Win32 subsystem and

support other subsystems like POSIX and OS/2.

These subsystems were accessible through the API they offered to the applications

running on them, and when the application made a call to the API, it was translated to

an appropriate Windows NT system call to facilitate the action requested. But, over time,

these initial subsystems were retired, and research was led to develop and expand the

capabilities of the Windows Subsystem for Linux.

Initial concepts that led to the Windows Subsystem for Linux originated from a

project called “Project Astoria,” a Universal Windows Platform Bridge toolkit that would

have allowed developers to build Windows apps for phones by reusing their Android

code or run native Android applications on Windows. This was made possible by

https://doi.org/10.1007/978-1-4842-6038-8_1#DOI

2

allowing Android apps to run in an emulated environment with minimal changes and

access to Microsoft platform APIs. But, on February 25, 2016, Microsoft made an official

announcement that “Project Astoria” would be discontinued and an argument was given

that such an emulator was ultimately redundant to the native, Objective-C toolchain.

Later on, insight and research from “Project Astoria” and another research project

known as “Project Drawbridge” (both outlined later in the chapter) was developed into a

compatibility service called Windows Subsystem for Linux version 1. Microsoft released

the initial version for the Windows Subsystem for Linux, which is also known as WSL1 in

the same year 2016.

�WSL at a Glance
The Windows Subsystem for Linux is a new Windows operating system compatibility

layer feature that allows users to run Linux command-line tools, utilities, and

unmodified ELF64 binaries in Windows natively without actually running a full Linux

virtual machine. The Windows Subsystem for Linux was developed as a tool for

developers, but it is also seeing a great adoption rate among system administrators and

in the cybersecurity space.

WSL goes far beyond just a Linux “bash” shell on Windows; in fact, it is a whole

compatibility layer for running an environment that looks and behaves just like the

Linux operating system. It has enabled Windows users to run common free command-

line software such as “grep,” “sed,” and “awk” or any other ELF64 binaries in Linux

distribution of choice which can be downloaded from Microsoft Store usually for free.

This means now we can use Linux tools such as bash, vim, and Emacs with Linux-like

user experience on Windows operating systems without using any third-party POSIX-

compatible environment like Cygwin.

Microsoft has been definitely pushing the boundaries of operating system research

with the initial version of WSL, that is, version 1 or wsl.exe. Now it is no longer about the

operating system or taking sides as a Windows or a Linux user and basically drills down

to providing the end user the best possible tools in the market to solve their problems

and build applications irrespective of the underlying platform.

Chapter 1 Getting Started with WSL

3

�Advantages of WSL1
Let’s suppose you are a Windows system administrator or a Windows developer and

you are going through some how-to article on the Internet to set up a web server or

something and all of a sudden you see a dollar sign ($) prompt for a bash shell in the

instructions. Immediately this internal monologue will start:

Oh no! I am not used to this; I don’t have this on my system. I

probably have to spin up a virtual machine and run Linux on it

before I can follow these instructions in the how-to article. But that

is a lot of work! I’m not doing this.

This is one of the problems that became the genesis for the Windows Subsystem

for Linux. In simpler terms, it was a necessity to have a subsystem which can provide

seamless ability to developers and system administrators to run Linux binaries like bash,

natively on Windows in no time. That can eliminate worry, hassle, and time spent in

spinning up a virtual machine and installing a Linux operating system to perform some

basic tasks.

The following bullet points further emphasize gaps and areas that are filled by the

Windows Subsystem for Linux:

•	 Resource consumption – Virtual machines have served us well

and are not going anywhere, but there is definitely some resource

overhead in terms of memory, CPU, and storage that comes with

it, whereas with the Windows Subsystem for Linux, resource

consumption on the underlying host operating system is minimal.

To be honest, it doesn’t make any sense to spin up a virtual machine

just to check a few Linux commands, if we have a bash shell running

inside the Windows Subsystem for Linux.

•	 Access to Linux tools – Running Linux binaries on Windows

operating systems opens a whole new window of opportunities for

Windows users to the Linux world by making most of the powerful

Linux applications and tools available to them.

Chapter 1 Getting Started with WSL

4

•	 Cross-platform development – Developers and system

administrators both can utilize the Windows Subsystem for Linux to

work on cross-platform products and tools, like .Net Core. That being

said, I can easily test a project on Windows and then in the Windows

Subsystem for Linux without even spinning up a Linux virtual

machine.

•	 Right tool for the right job – The idea is to use the best tools

irrespective of the underlying platform. That means if I am

comfortable in deploying a nginx web server on Linux, then I could

do that on the Windows operating system inside a subsystem that

allows you to run nginx like you are running natively on a Linux

machine.

•	 Same user experience – WSL offers not just integration; it provides

a seamless experience for Linux developers. Most of the time, a

developer won’t even realize that they are not working on a Linux

operating system but instead a translation layer running native Linux

binaries on top of the Windows operating system.

•	 Secure isolation – Since WSL is a subsystem, the applications

running on it are actually running in a secure, isolated container,

which can’t compromise other applications on the host operating

system.

Now let us look into the architecture and some internal components of WSL that

make it work so seamlessly.

�Architecture and Components of WSL1
WSL is a collection of software components and drivers implemented by Microsoft that

act as a translation layer between the Linux user space and underlying Windows NT

kernel, to translate system calls, virtual files, and the file system. WSL is comprised of

both user- and kernel-mode components, and this translation service from Linux user

space to the Windows NT kernel emulates a Linux kernel, such that Linux applications

don’t even realize that they are not interacting with Linux kernel but with Windows NT

kernel. Let’s try to understand this from Figure 1-1.

Chapter 1 Getting Started with WSL

5

When “bash.exe” is launched from the host Windows operating system, it goes

ahead and launches a Linux process: /bin/bash in a Linux instance that is holding a

data structure to keep track of all processes, threads, and runtime state. A “LX Session

Manager Service” handles the life cycle of such Linux instances. The role of this service

is to act as a broker to the Linux subsystem driver, and this service also helps in case of

installations and uninstallations in order to synchronize operations to allow only one

process to perform these actions one at a time.

In 2011, a Microsoft Research team started a project called “Drawbridge,” which

later introduced a concept known as PICO process that was implemented in Windows. A

PICO process is a process-based isolation container with a small kernel API surface that

Figure 1-1.  Architecture of WSL1

Chapter 1 Getting Started with WSL

https://www.microsoft.com/en-us/research/project/drawbridge

6

allows a subsystem to hold Linux binaries inside it. When you perform any operation

on these Linux binaries, the container or the PICO processes in combination with lxss.

sys and lxcore.sys, also known as PICO provider drivers, perform the translation of Linux

system calls into NT APIs to emulate a Linux kernel. In simple terms, PICO providers

issue equivalent system calls to the Windows NT kernel for the Linux system calls and

vice versa.

As demonstrated in Figure 1-2, these PICO processes are a trimmed down version

of normal host processes, with an isolated address space where user-mode binary ntdll.

dll is not mapped and Process Environment Block (PEB) is not created as a differentiator

so that the host understands that these processes are not actively managed by the

host. The host still provides an underlying OS support like thread scheduling, memory

management, and so on to these processes.

The kernel-mode drivers do not contain any code from the Linux kernel, so when

a Linux system call is made from an executable, then the Windows NT kernel forwards

the request to lxcore.sys, which does all the heavy lifting of translating the Linux system

Figure 1-2.  NT process, minimal process, and PICO process

Chapter 1 Getting Started with WSL

7

calls to an equivalent Windows NT call. But there are some Linux system calls like fork()

that have no equivalent call in Windows NT. So lxcore.sys has to copy and create a new

process with correct data using the internal Windows NT kernel API to facilitate any such

request from the Windows Subsystem for Linux.

�Disadvantages of WSL1
Just like any software or tool, Windows Subsystem for Linux version 1 also has limitations

and disadvantages, and we would be discussing some of these in the following pointers.

To be fair, WSL is a continuously evolving product, and some of these limitations would

be mitigated as the product will evolve over time:

•	 Linux is a rapidly evolving open source operating system, and there

are new releases every now and then, but the translation service

implemented in WSL is fully managed by Microsoft, and they have to

update it as soon as a new release is out. This introduces a delay in

new features of the current Linux release, until Microsoft goes ahead

and implements them.

•	 The Windows NT and Linux kernels have very different file systems,

permission models, and memory management, and even though

everything works in the best case scenario in the Windows Subsystem

for Linux, there are a few things which WSL cannot translate to the

Windows NT kernel because that is not supported by the Windows

kernel in worst cases.

•	 WSL v1 is not capable of running all Linux software, such as

32-bit binaries, and you may run into software that doesn’t work

on WSL because those require specific Linux kernel services which

are not implemented by Microsoft yet. Here is the link for a list

of community-backed programs that run and don’t run on WSL:

https://github.com/ethanhs/WSL-Programs. WSL2 solves a lot of

these problems by running a Linux kernel on a lightweight utility

virtual machine using Hyper-V.

Chapter 1 Getting Started with WSL

https://github.com/ethanhs/WSL-Programs

8

Note T he aforementioned list of supported and unsupported software is
maintained by Windows Subsystem for Linux user community and independent
contributors not by Microsoft.

•	 The Windows Subsystem for Linux supports graphical user interface

(GUI) applications and full desktop experience by installing Linux

desktop environments using Xfce and xRDP, but it still lacks audio

support and provides poor graphical performance. These might be

fixed in future releases of WSL1 if any active development continues

on WSL1. More than that, Microsoft has been now putting all

the wood in one arrow behind WSL2 which is targeting the same

problems using a different approach, and a lot of these issues will be

automatically fixed.

Note W SL2 is only supported on Windows 10, version 2004 (build 19041), and
you will have to join the “Windows Insider Program” and select the “Release
Preview” ring. This might be generally available by the end of May or by the time
this book is released.

•	 Microsoft suggests that the Windows Subsystem for Linux is

designed for the development of applications and enhancing the

user experience of developers and not for desktop computers

and production servers, which excludes a lot of use cases and

applications.

•	 The introduction of a new executable file format into Microsoft

Windows, along with a very large number of new Linux applications,

provides an immense challenge for endpoint software security

vendors. In 2017, Check Point, the endpoint security company,

published a research where they coined the term bashware (bash +

malware), which utilized and exploited underlying mechanisms of

WSL to run ELF64 binaries on Windows.

Chapter 1 Getting Started with WSL

9

Here is the research quoted earlier:

https://research.checkpoint.com/2017/beware-bashware-new-method-malware-

bypass-security-solutions/

In this study, the researchers are trying to make a point that they can run malware

that attacks on Windows from the Linux subsystem, using WSL as a tool, but to be fair,

Microsoft is already working to provide firewall and antivirus compatibility on WSL.

�Keywords and Concepts
In this section, we’ll review some key terms and important concepts that make up WSL.

Table 1-1 provides some abbreviations we’ll be using in the coming chapters of this book.

Now we will quickly go through some essential keywords, concepts, and definitions

to bootstrap your understanding of the Windows Subsystem for Linux and build some

base for you before we begin learning. You may not be familiar with some of these

concepts if you are not a Linux user, and coming from the Windows side, these will speed

up your learning.

Table 1-1.  Important abbreviations

Abbreviation Expansion

NT New Technology

Distro Distribution Package

OS Operating System

VM Virtual Machine

WSL Windows Subsystem for Linux

ELF Executable and Linking Format

PE Portable Executable

API Application Programming Interface

PEB Process Environment Block

Chapter 1 Getting Started with WSL

https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/
https://research.checkpoint.com/2017/beware-bashware-new-method-malware-bypass-security-solutions/

10

�Distro
Distro is an abbreviation for a Linux distribution, which is just an operating system that

consists of a collection of open source software packages, tools, and libraries. Linux

users can basically download and install a Linux distribution of their choice from a wide

variety of distros available online, and that is how they get their operating system. Linux

distributions for WSL can be downloaded either from the Microsoft Store or manually,

which we will cover later in this book. These distros are shipped by the partners, not by

Microsoft. While there are more than 500 Linux distributions available today and most

of them are also actively developed, there are some commercial distributions such as

Fedora, openSUSE, and Ubuntu. Ubuntu is in fact one of the most popular desktop Linux

distributions. Moreover, some Linux distributions are entirely community-driven, such

as Debian, Slackware, Gentoo, and Arch Linux.

�Subsystems
Since the very beginning, Windows NT has a history of allowing subsystems such as

Win32 subsystem to coexist with the NT kernel. In the context of an operating system, a

subsystem is a self-contained system within a larger piece of software, like an operating

system.

In Windows NT, these subsystems act as an interface between the user-mode

applications and the operating system kernel functions, and more than one subsystem

exists, implementing a totally different API set to support applications written for many

different types of operating systems. On Windows 10 operating systems, only the Win32

subsystem that can run 32-bit Windows applications exists, whereas an OS/2 subsystem

and a POSIX subsystem no longer exist and have been discontinued.

�Kernel
Modern operating systems are built into multiple layers, and a kernel is the central

component of an operating system as demonstrated in Figure 1-3. A kernel is named so

because just like a seed inside a hard shell, Linux kernel exists within the Linux operating

system as a core component. The kernel primarily acts as an interface between the user

applications and the hardware.

Chapter 1 Getting Started with WSL

11

In Figure 1-3, the outermost ring in “green” color represents the least privileged;

that means applications in Ring 3 are least trusted and will require higher privileges

to perform critical actions, whereas the kernel is the innermost ring in “red” color

representing the most privileged or most trusted, which is Ring 0.

The main purpose of this is to facilitate hardware-software communication and

perform other low-level operations like

•	 Process management

•	 Interrupt handling

•	 Memory management

•	 Device management

•	 I/O communication

•	 File system

When a computer system starts, the bootloader loads a kernel into the main memory

first. It is important to have a small kernel, because it stays in the memory to perform the

aforementioned essential services, and it should run in protected mode in memory so

that it is not overwritten by other running programs, which can be catastrophic.

Figure 1-3.  Kernel is innermost layer/ring of an operating system

Chapter 1 Getting Started with WSL

12

�Kernel Mode
In simpler words, programs or instructions running in kernel mode have complete and

unrestricted access to the underlying hardware. Generally, kernel mode is reserved for

the low-level, most critical functions of the operating system, where any crashes can

be catastrophic and may disrupt the entire system. All the user processes will execute

in user mode until they get a system call. Any system call is executed in kernel mode

where a system trap is generated and the mode bit is set to zero (0). Once the execution

is complete, another system trap is generated to set the mode bit to one (1). Figure 1-4

shows the relationship between kernel mode and user mode.

�User Mode
Most of the programs and code running on a computer system execute in user mode,

which has no direct access to system hardware and can only access resources through

system APIs. This isolation is by design and safeguarded using the protection rings,

which is one of two or more hierarchical permission levels within the computer system

architecture. This is so that any crashes in user mode (typically outermost protection

ring) don’t impact anything else on the system due to permission-level restrictions, and

such crashes are always recoverable. The whole purpose is to prevent a user program

from accidentally wiping out the critical operating system files by overwriting it with user

data or maybe more than one process attempting to write or act upon the same files and

end up failing disastrously.

Chapter 1 Getting Started with WSL

13

�System Calls
Simply speaking, a system call or a syscall is a service provided by the kernel that

can be called from user-mode programs to interact with the underlying operating

system. In terms of computing, a system call is a way in which a computer program

programmatically requests a service from the kernel of the operating system it is running

on through APIs (Application Program Interfaces). System calls are the entry points into

the kernel system to access the resources of a system like memory, process, file access,

and so on.

Table 1-2 provides some Windows and Unix system calls just to give you an

understanding of the kind of services provided by system calls and what types are

available.

Figure 1-4.  User mode and Kernel mode

Chapter 1 Getting Started with WSL

14

�Windows NT Kernel
Computer systems with Microsoft Windows operating system consist of the Windows

kernel, which is also called the Windows NT kernel. The early version of Windows NT

was developed into two variants, first for workstations and second of server computers. It

was the successor based on MS-DOS and later on developed into Windows 10 operating

system we use today.

Table 1-2.  Windows and Unix system call mapping for translation

Category Windows Sys Calls Unix Sys Calls

Process Management CreateProcess( ) fork( )

ExitProcess( ) exit( )

WaitForSingleObject( ) wait( )

File Handling CreateFile( ) open( )

ReadFile( ) read( )

WriteFile( ) write( )

CloseHandle( ) close( )

Device Manipulation SetConsoleMode( ) ioctl( )

ReadConsole( ) read( )

WriteConsole( ) write( )

Communication CreatePipe( ) pipe( )

CreateFileMapping( ) shmget( )

MapViewOfFile( ) mmap( )

Access and Protection SetFileSecurity( ) chmod( )

InitlializeSecurityDescriptor( ) umask( )

SetSecurityDescriptorGroup( ) chown( )

Miscellaneous GetCurrentProcessID( ) getpid( )

SetTimer( ) alarm( )

Sleep( ) sleep( )

Chapter 1 Getting Started with WSL

15

Windows OS architecture is composed of the components and is roughly separated

into user and kernel modes:

•	 Hardware Abstraction Layer (HAL) which is a software layer acting as

an interface between the underlying hardware and the higher layers

of the operating system

•	 Windows kernel

•	 Kernel-mode drivers

•	 Kernel Mode Executive Services that serve the following purposes:

•	 Object management

•	 Memory management

•	 Process and thread management

•	 Input/output management

•	 Configuration management drivers and other supporting services

that operate in the kernel mode

•	 User-mode drivers

•	 User-mode environment subsystems

Note  Most of the drivers operate in user mode for stability, but still with some
exceptions like video drivers are segmented in both user and kernel mode for
performance improvements, which was again changed after Windows Vista
performance issue outcry. There are still no clear boundaries where to keep these
drivers and is a matter of discussion and experimentation.

�Linux Kernel
The Linux kernel is the core component of a Linux operating system, which acts as the

interface between a system’s hardware and its processes. One of the major reasons for its

popularity is that it is free and open source, which has attracted contributors from every

part of the world. The main difference between the Windows NT kernel and the Linux

kernel is that the Windows kernel is shipped with a commercial software (operating

system) while the Linux kernel is open source and available free to download.

Chapter 1 Getting Started with WSL

16

Once the Windows Subsystem for Linux version 2 (WSL2) is generally available,

Microsoft will start shipping a full Linux kernel with Windows operating system that will

be fully managed by Microsoft and would update through Windows updates.

�ELF
ELF stands for Executable and Linking Format, which is a common standard file format

for executable files, object code, shared libraries, and core dumps. ELF is designed to

be flexible, extensible, and cross-platform, which means it was designed to not limit

to a specific processor, instruction set, or hardware architecture. This has allowed ELF

format to be adopted by many different operating systems on many different hardware

platforms.

An executable file using the ELF file format consists of an ELF header, followed by file

data, which can include

•	 Program header table – That lists 0 or more memory segments;

these memory segments contain information that is needed for

runtime execution of the file.

•	 Section header table – That lists 0 or more sections; that contain

important data for linking and relocation.

•	 File data – Data referred in the program header or section header

table.

�PICO Process
In traditional use cases to run applications in an isolated environment, we use virtual

machines installed with specific operating systems to decouple the application from

any underlying host operating system dependencies. This has worked for us and has

delivered the purpose, by providing a secure isolation for applications independent

of the underlying operating system, meanwhile allowing compatibility and execution

continuity, which gives us an ability to even move the applications to other operating

systems or computers.

Despite these advantages, virtual machines have large resource overheads in terms

of disk, memory, CPU, and so on. So, Microsoft started researching on a project called

Drawbridge with a purpose of developing a new way of computing, with the goal of

Chapter 1 Getting Started with WSL

https://www.microsoft.com/en-us/research/project/drawbridge

17

implementing a lightweight approach to run an application in an isolated environment,

with the application’s OS dependencies decoupled from the underlying host OS. Project

Drawbridge combines two core technologies:

	 1.	 PICO process – Process-based Isolation COntainer

	 2.	 Library OS – The target operating system for application

workloads, running independent of the underlying OS. This is

where WSL distribution packages come into place to make the

Windows Subsystem for Linux work.

PICO processes were coined to restrict the underlying operating system to manage

the user-mode address space inside this process, which are just a smaller version of a

normal host process that work with the kernel-mode driver acting as the broker between

the host OS kernel and the library OS in user mode.

To stop the underlying operating system from managing these PICO processes,

these were marked as a minimal process that tells the rest of the host to not manage

these processes. Unlike traditional NT processes, when spawning a minimal process,

no threads are created to run in that process, and the user-mode address space is left

untouched. In simpler terms, a PICO process is a minimal process associated with a

kernel-mode driver.

�Summary
In the previous subsections, we learned the architectural overview and components of

the Windows Subsystem for Linux and its advantages and disadvantages. We also looked

into some important keywords and concepts related to Windows and Linux operating

systems and some core ideas and concepts like the PICO process that will help you

understand the internal workings of WSL.

In the next chapter, we are going to learn to install and set up WSL on Windows 10

operating system.

Chapter 1 Getting Started with WSL

19
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_2

CHAPTER 2

Downloading, Installation,
and Setup
The Windows Subsystem for Linux is a compatibility feature that acts as a translation

layer, but is a Windows feature that has to be enabled before use. Then we need to install

a Linux distribution from the Microsoft Store and finally set it up before first use. Let’s get

started with each of these steps one by one.

�Enabling the WSL Feature
The Windows Subsystem for Linux needs to be enabled at the host operating system

level, and there are two ways to achieve this: first using the graphical user interface (GUI)

and second using PowerShell. Unless you enable the Windows Subsystem for Linux

feature, you can't run WSL on your system and you will receive the following error as

demonstrated in Figure 2-1. This image was captured on my system by installing Linux

distribution without enabling the WSL feature, hence the error.

Let’s start with the first approach.

Figure 2-1.  WSL feature is not enabled

https://doi.org/10.1007/978-1-4842-6038-8_2#DOI

20

�GUI Approach
To enable WSL from GUI, follow these steps:

	 1.	 Press Windows + R key to launch Run dialog.

	 2.	 Now type appwiz.cpl and hit the Enter button or click OK, like in

Figure 2-2.

	 3.	 This will pop up the “Program and Features” window, where you

have to select “Turn Windows features on or off” from the top-left

corner as highlighted in Figure 2-3.

Figure 2-2.  Launch “Program and Features”

Chapter 2 Downloading, Installation, and Setup

21

	 4.	 A new “Windows Features” window will pop up on your screen.

Please scroll down and left-click to select the check box next to

“Windows Subsystem for Linux” (Figure 2-4).

Figure 2-3.  Select “Turn Windows features on or off”

Figure 2-4.  Click the “Windows Subsystem for Linux” feature check box

Chapter 2 Downloading, Installation, and Setup

22

	 5.	 This will enable the Windows feature, but it will be still required

to reboot your system to see the configuration and changes to

take effect. Once the system is rebooted, you can now run WSL on

without observing any error like we saw in Figure 2-1.

Now let’s look at the second approach using PowerShell.

�PowerShell Approach
Enabling the Windows Subsystem for Linux using PowerShell is a simple process:

	 1.	 Running the following cmdlet is probably the easiest way:

Enable-WindowsOptionalFeature -Online -FeatureName

 Microsoft-Windows-Subsystem-Linux

	 2.	 Once you run that, it will prompt to restart your system as shown

in Figure 2-5. Press “Y” and hit Enter to enable the Windows

feature.

�Download and Install Linux Distributions (Distros)
After enabling the Windows feature to support the Windows Subsystem for Linux, you

have to then install a Linux distribution package from one of the Microsoft partners like

Ubuntu, Debian, Kali Linux, and so on to run an instance of WSL. There are multiple

ways to download distribution packages (distros), some of which are listed as follows

with the exact steps you need to perform.

Figure 2-5.  Press “Y” to confirm enabling the feature

Chapter 2 Downloading, Installation, and Setup

23

�Downloading from Microsoft Store
Linux distributions can be directly downloaded from the Microsoft Store with help of the

following instructions:

	 1.	 Click the Start menu, and search for “Microsoft Store”. Then click it

to launch the Microsoft Store.

	 2.	 In the top-right corner, there is a search box (step 1); type “Linux”

and hit Enter. You will see some Linux distribution packages in the

search results.

	 3.	 Just for the sake of an example, we will download Ubuntu 18.04

LTS (distro) from the Microsoft Store, by clicking it (step 2) as

demonstrated in Figure 2-6.

	 4.	 This will open the distribution page, where you will find an

“Install” button in the top-right corner as shown in Figure 2-7, and

once you click this button, it will begin installing the distribution

on your system, which will be available as an application on

Windows.

Figure 2-6.  Search the distribution and click it

Chapter 2 Downloading, Installation, and Setup

24

�Downloading a Distro Manually
Microsoft has created direct links to download a lot of popular Linux distributions

through https://aka.ms/ styled short URLs, as listed in Table 2-1. That means you

can go to one of these URLs and download a Linux distribution, and this approach can

be very useful if Microsoft Store has been disabled/blocked on your system through a

Group Policy.

Figure 2-7.  Click the “Install” button

Chapter 2 Downloading, Installation, and Setup

https://aka.ms/

25

Once the download is complete, please double-click the application package

(*.appx) file to install the Linux distribution as demonstrated in Figure 2-8.

Figure 2-8.  Installing the distro application package (*.appx) after download

Table 2-1.  Linux distributions and direct download URLs

Distribution Name Download URL

Ubuntu 18.04 https://aka.ms/wsl-ubuntu-1804

Ubuntu 18.04 ARM https://aka.ms/wsl-ubuntu-1804-arm

Ubuntu 16.04 https://aka.ms/wsl-ubuntu-1604

Debian GNU/Linux https://aka.ms/wsl-debian-gnulinux

Kali Linux https://aka.ms/wsl-kali-linux

OpenSUSE Leap 42 https://aka.ms/wsl-opensuse-42

SUSE Linux Enterprise 12 https://aka.ms/wsl-sles-12

Fedora Remix for WSL https://github.com/WhitewaterFoundry/

WSLFedoraRemix/releases/

Chapter 2 Downloading, Installation, and Setup

https://aka.ms/wsl-ubuntu-1804
https://aka.ms/wsl-ubuntu-1804-arm
https://aka.ms/wsl-ubuntu-1604
https://aka.ms/wsl-debian-gnulinux
https://aka.ms/wsl-kali-linux
https://aka.ms/wsl-opensuse-42
https://aka.ms/wsl-sles-12
https://github.com/WhitewaterFoundry/WSLFedoraRemix/releases/
https://github.com/WhitewaterFoundry/WSLFedoraRemix/releases/

26

�Downloading Using PowerShell
WSL distribution packages can be easily downloaded with PowerShell, using the

Invoke-WebRequest cmdlet and passing the direct download URL as an argument to

the “-URI” parameter. PowerShell code in Listing 2-1 demonstrates how to download

the Ubuntu 18.04 application package. Similarly, other URLs mentioned in the previous

sections can be used to download various distributions for WSL. The progress bar

can be muted by changing the progress preference variable $ProgressPreference =

'SilentlyContinue'; this will download the package quicker without any progress bar

pop ups on your console, and in PowerShell v5.1 and lower, this can improve the speed

of downloads.

Launch a PowerShell console with administrative privileges and copy-paste the

following code snippet, and then hit Enter to execute it.

Listing 2-1.  Downloading Linux (Ubuntu 18.04) distribution using PowerShell

$URL = 'https://aka.ms/wsl-ubuntu-1804'

$Filename = "$(Split-Path $URL -Leaf).appx"

$ProgressPreference = 'SilentlyContinue'

starts download from the URL

$Params = @{

 URI = $URL

 OutFile = $Filename

 UseBasicParsing = $true

}

Invoke-WebRequest @Params

invoking the application package

to start the installation

Invoke-Item $FileName

Running this code will download the Ubuntu 18.04 LTS application as a file: wsl-

ubuntu-1804.appx. Once the download is complete, you can use Invoke-Item Cmdlet

on the .appx file in the current working directory to run the application installation GUI,

and then click next to install as shown in Figure 2-9.

Chapter 2 Downloading, Installation, and Setup

27

Alternatively, all of the web URLs can be iterated and downloaded one by one using

the PowerShell cmdlet Add-AppxPackage to add each application package (*.appx) to the

user account (Listing 2-2).

Listing 2-2.  Adding all Linux distribution packages to user account

$URLs = @(

 "https://aka.ms/wsl-ubuntu-1804",

 "https://aka.ms/wsl-ubuntu-1804-arm",

 "https://aka.ms/wsl-ubuntu-1604",

 "https://aka.ms/wsl-debian-gnulinux",

 "https://aka.ms/wsl-kali-linux",

 "https://aka.ms/wsl-opensuse-42",

 "https://aka.ms/wsl-sles-12"

)

$ProgressPreference = 'SilentlyContinue'

$ErrorActionPreference = 'Stop'

Figure 2-9.  Click next to begin distro installation

Chapter 2 Downloading, Installation, and Setup

28

Foreach($URL in $URLs){

 $Filename = "$(Split-Path $URL -Leaf).appx"

 Write-Host "Downloading: $Filename" -Foreground Yellow -NoNewline

 try{

 $params = @{

 Uri = $URL

 Outfile = $Filename

 UseBasicParsing = $true

 }

 Invoke-WebRequest @params

 Add-AppxPackage -Path $Filename

 if($?){

 Write-Host " Done" -Foreground Green

 }

 }

 catch{

 Write-Host " Failed" -Foreground Red

 }

}

If the PowerShell code is executed, it will install all the Linux distributions one by

one as shown in Figure 2-10, and you can also verify that by going to the Start menu and

checking the recently added applications.

Chapter 2 Downloading, Installation, and Setup

29

�Downloading Using curl.exe
curl.exe pronounced “curl” is a very popular open source command-line utility

that is used to perform web requests and transfer data from the command line.

curl.exe can be used with a URL to download the WSL distribution package to the

local machine:

curl.exe -L -o wsl-kali-linux.appx https://aka.ms/wsl-kali-linux

Figure 2-10.  Linux distributions will appear in the Start menu

Chapter 2 Downloading, Installation, and Setup

30

Figure 2-11 demonstrates that once we run curl.exe with a direct URL to a Linux

distribution package, it will download the package and save it on the local path which is

passed an argument to “-o” parameter like wsl-kali-linux.appx in our example; this

output file name can be customized if required, and the output would be written to a

new file. Using curl.exe is beneficial when you are using download and setup of WSL in

a bash script, where PowerShell cmdlets we used in previous subsections won’t work.

Note W e are running curl.exe, not curl, because in PowerShell, curl is also an
alias of the Invoke-WebRequest cmdlet, which are altogether different things.

�Setting Up and Configuring WSL
In the previous section, we learned various approaches to downloading and installing

the Windows Subsystem for Linux on our system. The next thing is to learn how to

prepare and configure WSL for first-time use, but before that, let’s look into various

methods to launch a Linux distribution running in the Windows Subsystem for Linux.

Figure 2-11.  Using curl to download Linux distribution packages

Chapter 2 Downloading, Installation, and Setup

31

�Launching the Distro
A Linux distro can be launched as an installed application or by running the Linux

distribution-specific executable and even using wsl.exe. Let’s look into each of these

approaches one at a time.

�Using the Application

So, to begin with, go to the Start menu and type the name of the distribution like

“Ubuntu” as shown in Figure 2-12.

Figure 2-12.  Go to the Start menu and search for name of Linux distribution

Chapter 2 Downloading, Installation, and Setup

32

Now, double-click the Ubuntu application like the one highlighted in Figure 2-12 to

launch the Windows Subsystem for Linux for the first time. It will prompt you to wait for

a few minutes while it prepares and initializes the distro for the first use.

�Using wsl.exe

WSL distributions can also be launched though wsl.exe; if you run this executable

without any parameters, then it will launch the default distribution package as

demonstrated in Figure 2-13.

To list all the distribution packages installed on your system and identify the default

distribution, run the wsl executable with --list or –l:

wsl.exe –list

wsl.exe –l

Often it will be required to run a specific distribution package; in such scenarios, we

can utilize the --distribution or -d parameters as shown in Figure 2-14 with the wsl.

exe and pass the name of distro as an argument, as demonstrated in Listing 2-3.

Figure 2-13.  Launching the default Linux distribution using wsl.exe

Chapter 2 Downloading, Installation, and Setup

33

Listing 2-3.  Running a specific Linux distribution

C:\>wsl.exe –l

Windows Subsystem for Linux Distributions:

Ubuntu-18.04 (Default)

openSUSE-42

SLES-12

kali-linux

C:\>wsl.exe --distribution kali-linux

C:\>wsl.exe -d sles-12

Figure 2-14.  Launching a specific Linux distribution using wsl.exe

Chapter 2 Downloading, Installation, and Setup

34

We will look into other capabilities and command-line arguments that wsl.exe

accepts in detail later in this book; for now, let’s just understand a few important

pointers about invoking a Linux distro using wsl.exe like this:

	 1.	 WSL launches the distro in the current working directory of the

CMD or PowerShell prompt.

	 2.	 A Linux distribution invoked through wsl.exe will run as the

default user of that distro, but you can change that behavior

using –user or -u parameter by passing the name of specific user

as an argument:

wsl.exe --distribution Ubuntu-18.04 --user prateek

	 3.	 The Linux distribution invoked through wsl.exe will have the same

Windows administrative rights as the calling process and terminal.

�Using the Executable

All the Linux distributions can also be easily launched directly using their respective

executables as demonstrated in Figure 2-15, which are all placed in the folder

“C:\Users\{username}\AppData\Local\Microsoft\WindowsApps\” and here are few

examples in Listing 2-4 which you can try yourself.

Listing 2-4.  Running a Linux distribution through its executable

launching ubuntu 18.04

ubuntu1804.exe

launching kali linux

kali.exe

launching openSUSE 42

openSUSE-42.exe

Chapter 2 Downloading, Installation, and Setup

35

In this subsection, we learned various approaches to run a Linux distribution in

WSL, but when a Linux distribution is invoked for the first time, the first setup prompts

the user to create a user account; let’s look into it and learn how to manage user

accounts in WSL.

�Setting Up and Managing User Account
The creation of a user is the first step in setting up a new Linux distribution on WSL, so

as soon the initialization is complete as seen in Figure 2-16, it will prompt you to create a

new user account with a password. This user account is automatically configured as the

default user of the distribution and added to the “sudo” group as a Linux administrator.

The user configuration is required every time you install, reinstall, or reset a distribution.

Figure 2-15.  Launching distros using executables

Chapter 2 Downloading, Installation, and Setup

36

Note W hen the password is entered, it is not echoed to the console for security
reasons, and this doesn’t mean the system is not receiving the keystrokes.

By default, the password is not required when you launch the distro, but it will be

required when you are elevating the privilege of any process using the “sudo” command.

To change your current user password in Linux, open your Linux distribution (e.g.,

Ubuntu) and enter the command passwd, and as shown in Figure 2-17, you will be prompted

to enter your current password, and once you supply that, it will again ask for confirmation.

Figure 2-16.  User account setup during distro initialization

Figure 2-17.  Resetting a password

Chapter 2 Downloading, Installation, and Setup

https://www.linux.com/blog/how-use-sudo-and-su-commands-linux-introduction

37

In case you’ve forgotten your password for any specific Linux distributions, open

PowerShell or the “Command Prompt” from the Start menu and run it as the root on the

target WSL distribution using the following command:

wsl -u root -d <name of distribution>

Once your WSL distribution has been run with the root user, go ahead and use the

passwd command with the name of the user for whom you want to reset the password,

like in the following example:

passwd prateek

If you don’t use the root user, you won’t have enough privileges to reset the password

for any other user, without entering their current password which we forgot in the first

place.

�Permission Model
Unix users in the Windows Subsystem for Linux are non-Windows user accounts that are

independent of the Windows permission model that will be required to elevate privileges

in your Linux distribution. There are two separate permission models in WSL for Linux

and Windows, and they are independent of each other. That means an admin Linux user

will only have elevated privileges in the Linux environment and permissions in Linux

will not work in Windows.

The catch is since the WSL is launched and initialized by a Windows user account,

any Windows resources on which this Windows user account has access to will be also

accessible from inside the Windows Subsystem for Linux.

As demonstrated in Figure 2-18, we can easily access the mount points in the

Linux environment, which are nothing but Windows drives mounted on the Windows

Subsystem for Linux. When the current Windows user runs “ls” command on a directory

which is accessible to them and then pipes the result to the “wc -l” command to get the

number of lines returned, we observe that the count is more than zero, but if the current

user attempts to access any other directory where they don’t have proper permissions,

then zero results will be returned. This proves the preceding point that even though

you are working in the Linux subsystem, the Windows permissions are applied on the

Windows resources you are accessing.

Chapter 2 Downloading, Installation, and Setup

38

But when I try to access a Windows directory I don’t have permissions for, it fails with

“Permission denied” error. This happens because the Windows user “Prateek” through

which WSL is launched has access to its user profile folder C:\Users\Prateek.THINKPAD

but has no privileges for the user profile folder of “Administrator”.

�Updating and Upgrading the Distro
Now we know how to install WSL and initialize it for first use, but even though you did a

fresh install, it is highly likely that some of the default packages and tools that come with

your Linux distribution are a little outdated and new versions of these exist. So, we need

a mechanism to update them to the latest versions, because those are most stable and

come bug fixes and security improvements.

Note  For the sake of simplicity to the readers, we are working under an
assumption that you are using Ubuntu or Debian Linux distributions, which are two
most popular distributions. If you are using any other Linux distributions, then the
following commands to update/upgrade may not apply for you.

Figure 2-18.  Permission model restrictions

Chapter 2 Downloading, Installation, and Setup

39

First things first, before jumping into how to do that, let’s first understand the general

difference between update and upgrade. An upgrade is the act of replacing the current

product with a newer and more superior version of the product, whereas an update

modifies your current product. In Linux terms, more specifically to Ubuntu and Debian,

“update” means to refresh the list of packages installed, like bumping up the versions

and so on without modifying anything else, and “upgrade” means to install any updates

to the list of installed packages.

Almost all distros are lightweight minimal software packages that can be quickly

downloaded and initialized; they have only the necessary tools and libraries shipped

with them. It is a good idea to update and upgrade your distro using the following

command in Listing 2-5; please note that this step may take a while to finish, and you will

see packages getting downloaded like in Figure 2-19.

Listing 2-5.  Updating and upgrading the Windows Subsystem for Linux

sudo apt update && sudo apt upgrade

In Figure 2-19, apt stands for “Advanced Package Tool,” and apt is a command-

line tool which helps in handling packages on Ubuntu, Debian, and related Linux

distributions. apt interacts with Ubuntu and Debian packaging systems to find and

install new packages and to upgrade or remove packages. But there is a common

misconception that apt update installs the new version updates of software packages

on Linux, which is not the case. Instead, it updates the database called the apt package

index, which keeps a list of available packages from the distro’s software repositories in

the ‘/etc/apt/sources.list’ file.

Figure 2-19.  Update/upgrade WSL distro

Chapter 2 Downloading, Installation, and Setup

40

For example, if you have Python v3.5 installed then after apt update, the

aforementioned database will be aware that a newer version of Python exists, version 3.6,

and is available. Now when you run apt upgrade, it will upgrade Python v3.5 to the

newer version.

But the story doesn’t end here, and as a developer, you will still need other tools

and packages in your Linux distribution for various reasons; so now we will look

into installing additional software on your Windows Subsystem for Linux in the next

subsection.

�Installing Additional Tools and Packages
The real purpose of having a Windows Subsystem for Linux is to enable developers to use

their favorite Linux tools in Windows to enhance their overall development experience.

Just like any flavor of the Linux operating system, on the Windows Subsystem for Linux,

most of these Linux utilities, tools, and packages can be easily installed using a package

manager like apt which is a collection of tools to manage packages. In the following

example, we are installing nodejs, git, and nmap on our Linux distribution using the apt

install command:

sudo apt install nodejs git nmap

APT is a collection of tools like apt, apt-get, and apt-cache which brings a little

more to the table, like the ability to search for packages using the apt-cache search by

specifying a search keyword, and it can even check the detailed information of the

package like Architecture, Size, MD5 checksum, and so on using the apt-cache show

command as demonstrated in Figure 2-20:

apt-cache search aws-cli

apt-cache show python3-botocore

Chapter 2 Downloading, Installation, and Setup

41

Figure 2-20.  Search and install packages using apt

Chapter 2 Downloading, Installation, and Setup

42

�Summary
In this chapter, we learned how to enable the Windows Subsystem for Linux on Windows

10 systems and various methods to download and install the Linux distribution. Once

that was done, we launched the Windows Subsystem for Linux for first use, followed by

setup, configuration, and user management. Going forward in the next chapter, we are

going to learn to build mixed experience between Windows and Linux environments

by bridging the gap between the two operating systems and providing the best of two

worlds to developers and system administrators.

Chapter 2 Downloading, Installation, and Setup

43
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_3

CHAPTER 3

Building Mixed
Experiences
The most powerful use case of the Windows Subsystem for Linux is the ability to build

mixed experiences between Windows and Linux operating systems, which are so

seamless that it feels like there is no friction at all. After all, the whole idea was to cherry-

pick the best of both worlds by providing tools and configurations to bridge the gap

between the two operating systems.

In this chapter, we are going to cover WSL’s launch configurations to mount Windows

file systems automatically, setting up entries in the host file and running Windows

processes and executables from WSL. Later in this chapter, we will also cover how to

translate Windows path to Linux path and vice versa and finally learn about shared

environment variables.

Let’s start with launch configurations of the Windows Subsystem for Linux.

�WSL Launch Configuration – wsl.conf
WSL allows you to set launch configurations for all distribution packages independently

using a file located at /etc/wsl.conf, and whenever WSL is launched, the configuration

is applied automatically. This configuration file follows the INI file format, which is a

standard file format for configuration files for software, with a basic structure composed

of [sections], properties, and values (key=value pair) saved in a text file. This file is not

created by default, and if this file doesn’t exist in your WSL environment, you can also

create one yourself.

https://doi.org/10.1007/978-1-4842-6038-8_3#DOI

44

The Windows Subsystem for Linux will detect and parse this file at launch to obtain

the configuration settings, which come under the three following sections:

	 1.	 [automount]

	 2.	 [network]

	 3.	 [interop]

We will start with the [automount] section first and will look at some examples to

understand this better.

�[automount] Section
As the name suggests, this section controls how you mount various file systems in the

Linux distribution automatically at the launch. These settings can control how and

where your Windows file system fixed drives are mounted on WSL.

Table 3-1 provides a list of properties and their respective values that are allowed in

this section.

By default, WSL mounts your Windows file system drives in the /mnt/ folder in the

Linux distribution, like /mnt/c/ for the C:\ drive and /mnt/d/ for the D:\ drive using a

WSL file system plug-in known as drvfs. We will deep dive into drvfs and file systems

Table 3-1.  List of optional properties under [automount] section

Property Value Default Description

enabled boolean true When set to true, auto mounts fixed drives such as C:\ or

D:\ with drvfs under directory /mnt.

mountFsTab boolean true When set to true, auto mounts other file systems, like SMB

shares, that are declared in the /etc/fstab file.

root String /mnt/ Specify the default mount location of your fixed drives; that

means if we declare /test/ as value of root property, then my

fixed drive would be mounted as /test/c, /test/d, and so on.

options comma

separated

list

empty

string

This value is appended to the default drvfs mount options

string.

Chapter 3 Building Mixed Experiences

45

later in the book. For now, let’s suppose that we want to mount our fixed drives with

drvfs on a folder other than /mnt/ folder, and then we can define that under the root

property of the [automount] section as a value.

As demonstrated in Figure 3-1, once we have configured /test/ folder under the root

property in the /etc/wsl.conf file as the default folder to mount Windows drives and

restarted WSL, then it will automatically mount fixed drives; in my case, C:\ and D:\

drives on the /test/ folder in the Linux distribution at its next launch.

Note  For the changes to take effect, you have to restart the LxssManager service
on Windows or terminate and relaunch the Windows Subsystem for Linux. Unless
you do that, you may not see your Windows drives mounted on your root folder.

Now, if I check the mounted drives on my WSL and only select the ones with keyword

drvfs as demonstrated in Figure 3-2, then it will show drives that are getting mounted

through the [automount] section of wsl.conf file. The grep command we used in our

example filters/searches for a particular pattern of characters (drvfs in our case) and

displays all output lines that are piped from the mount command containing that pattern.

Figure 3-1.  Root folder to mount Windows drives

Chapter 3 Building Mixed Experiences

46

There is another property known as options under this subsection that will

automatically append values to drvfs mount options, which is a way to control

permissions for Windows files without Linux metadata. The mount options under this

property can include the following items:

	 1.	 uid – The user ID used by the owner of all files

	 2.	 gid – The group ID used by the owner of all files

	 3.	 umask – An octal mask of permissions to exclude all files and

directories

	 4.	 fmask – An octal mask of permissions to exclude all regular files

	 5.	 dmask – An octal mask of permissions to exclude all directories

As demonstrated in Figure 3-3, once we have configured this property in the wsl.conf

file and have restarted our WSL distro, it will then append the mount options we have

provided to the mounted folders.

Figure 3-2.  Verifying the drives and the file system

Chapter 3 Building Mixed Experiences

47

Now let’s look at the [network] section and understand how we can utilize this to set

up DNS entries and host-to-IP-address mapping in a WSL environment.

�[network] Section
The [network] section of the WSL configuration file provides two important properties as

listed in Table 3-2, which can be used to tweak and control the domain name resolution

and the way in which your host file (host-to-IP-address mapping) is configured on your

Windows Subsystem for Linux.

Figure 3-3.  Setting drvfs mount options through wsl.conf file

Chapter 3 Building Mixed Experiences

48

The first property under the [network] subsection is generateHosts, and the purpose

of this property is to automatically generate a hosts file: /etc/hosts on WSL with host-to-

IP-address mappings, based on the Windows hosts file: %WINDIR%\System32\drivers\

etc\hosts.

Figure 3-4 shows that once I have deleted the host file on WSL and restarted it

and then if the generateHosts property is set to true in the /etc/wsl/conf file, it will

regenerate the host file automatically according to the Windows hosts file.

Table 3-2.  List of optional properties under [network] section

Property Value Default Description

generateHosts boolean true If set to true, WSL automatically generates /etc/hosts

with host-to-IP-address mappings from the Windows

hosts file: %WINDIR%\System32\drivers\etc\hosts.

generateResolvConf boolean true When set to true, WSL automatically generates

/etc/resolv.conf file with a list of domain name

servers for name resolution in WSL.

Chapter 3 Building Mixed Experiences

49

Figure 3-4.  Automatically generating /etc/hosts file from Windows host file

Chapter 3 Building Mixed Experiences

50

The second property under this subsection is generateResolvConf, which when set

to true creates a list of domain name servers that the Windows Subsystem for Linux will

use. In the following example, as demonstrated in step 1 of Figure 3-5, I have disabled

the generateResolvConf property by setting it to false in the wsl.conf file. Now, if I

try to ping any website (step 2), it fails to resolve any hostnames to their respective IP

addresses, because no name server is there to facilitate the name resolution. Let’s go

back and revert the setting again like in step 3 and terminate my WSL distro (step 4) for

configuration changes to take effect.

After making the changes, when the WSL distro is relaunched, you will observe that

/etc/resolv.conf is automatically generated with name servers. Let’s attempt to send

ICMP requests to a website, just to check if the name resolution works or not; then you

will observe that in Figure 3-6 we were able to resolve google.com and hit their target

server IP address to start receiving a ping response.

Figure 3-5.  Automatically generating domain name servers in WSL

Chapter 3 Building Mixed Experiences

51

Let’s look into the third and final subsection of wsl.conf file known as [interop]

which further defines whether a Windows process can be launched from WSL and

sharing of the Windows PATH variables across both operating systems.

�[interop] Section
This section of the wsl.conf file deals with two important settings for Windows-Linux

interoperability, which are mentioned in the following Table 3-3.

The first property under this subsection is enabled, as demonstrated in Figure 3-7.

If the enabled property is set to false, then WSL will not support running any Windows

processes, like notepad.exe, from Linux. Step 1 in the figure shows that when we

attempted to run notepad.exe from bash, it can’t execute the Windows format program

and throws an error. To resolve this, change the value of property enabled to true and

restart your distro to make Windows processes work again.

Figure 3-6.  Name resolution works after “resolv.conf” file is generated

Table 3-3.  List of optional properties under [interop] section

Property Value Default Description

enabled boolean true When set to True, WSL distros will launch Windows

processes like notepad.exe; otherwise, this feature

is disabled.

appendWindowsPath boolean true When set to True, WSL will append the Windows path

to the Distribution’s environment variable $PATH.

Chapter 3 Building Mixed Experiences

52

Another property under this subsection is appendWindowsPath, and as the name

suggests, when this property is set to “true,” this will append folders from the Windows

PATH variable to the Linux $PATH environment variable as demonstrated in Figure 3-8.

Likewise, when appendWindowsPath is disabled by setting it to false, then elements of the

Windows PATH variable are not appended to the Linux $PATH environment variable.

Please make sure to terminate and relaunch Linux distributions for these changes to take

effect.

Figure 3-7.  Name resolution works after resolv.conf file is generated

Chapter 3 Building Mixed Experiences

53

Figure 3-8.  Appending paths from the Windows PATH variable to the Linux
$PATH environment variable

This completes the three subsections of a /etc/wsl.conf file, and the whole

underlying purpose of this file is to enable power users to tweak the [interop],

[automount], and [network] settings, which allow them to build better mixed

experiences. That helps bridging both the worlds of Windows and Linux, so that we

can move things across easily and work with the best tool for a specific task irrespective

of underlying platform and a lot of other capabilities which were earlier trapped into

Windows and Linux ecosystems separately.

Now we’ll learn to take these mixed experiences between Windows and WSL to

another level through the ability to share environment variables with configurable values

across operating systems that can exist on both sides and translation of file system paths

from Linux to Windows and vice versa. Let’s start with the path translation first.

Chapter 3 Building Mixed Experiences

54

�Windows-Linux Path Translation – wslpath
wslpath is a utility that performs translation from WSL path to Windows path and

vice versa. Following is the syntax to use this utility and Table 3-4 lists all the output

parameters that can be used with wslpath.

Syntax:

wslpath [-m|-u|-w|-h] NAME[:line[:col]]

To understand this tool better, Listing 3-1 and Figure 3-9 demonstrated some

examples to perform path translations.

Listing 3-1.  Using wslpath utility to translate the paths

by default translates Windows path to WSL path, equivalent to `-u`

wslpath 'C:\Users'

you can also use '-a' to translate Windows path to Absolute WSL path

format

wslpath -a 'temfile.txt'

translates WSL path to Windows path using '-w'

wslpath -w '/mnt/c/Users'

translates WSL path to Windows path using '-m'

but with forward slash '/' instead of backward slash '\'

wslpath -m '/mnt/c/Users'

Table 3-4.  Lists of the output type options

Parameter Description

-a Prints Windows to Unix absolute path format

-w Prints Windows form of Unix path

-m Prints Windows form of Unix path, but with forward slashes /

-u Prints Unix form of Windows path; is the default parameter

Chapter 3 Building Mixed Experiences

55

Figure 3-10.  Using wslpath utility to launch a Windows PowerShell script file

This utility can come very handy when we want to run files on Windows operating

system from WSL, like in the following example in Figure 3-10, I am running a

PowerShell script placed on my Windows file system, and using wslpath, I was able

to translate it to the Unix path and launch this PowerShell script file through pwsh

(that is the open source version of PowerShell that runs on Linux) inside the Windows

Subsystem for Linux. If we look closely in the following example, we are using wslpath

command inside a $(); this is known as command substitution and allows the output

of a command to replace the command itself, which in our example is a Linux path

of PowerShell script file on Windows. Bash performs the expansion by executing

the command in $(<command>) in a subshell environment and then replacing the

command substitution with the output of the command.

Figure 3-9.  Using wslpath utility to translate paths

Chapter 3 Building Mixed Experiences

56

Now that we understand how path translation works, let’s look into how WSL enables

us to share environment variables in Windows and Linux.

�Shared Environment Variables – WSLENV
Since Windows Insider build 17063 and later, WSLENV is a special environment variable

that allows environment variables to be shared between Windows and Linux distro

when one is invoked by the other in earlier versions of Windows 10; the only Windows

environment variable accessible in WSL was PATH. WSLENV is shared between the

Windows and WSL environments and contains a list of shared environment variables.

Any changes made to the WSLENV variable will not be saved once the WSL session

is closed. To make changes persistent, you will have to modify the appropriate config file,

like .profile, .bash_rc, and so on, which will set WSLENV to the desired value every

time a new WSL session starts.

The translation of environment variables between WSL and Windows can be

controlled by one of the following WSLENV flags listed in Table 3-5, and these flags can

be combined together as needed.

Note  You can set the value of WSLENV to whatever you’d like. Although, if
you were to set a file system path directly, instead of the names of environment
variables, then the path translation will not work. Hence, it is recommended to set
WSLENV to the environment variable containing the path with the right translation
flags.

Table 3-5.  List of WSLENV flags and their descriptions

Flag Description

/p Indication to translate the path from WSL to Windows and vice versa

/l Indication that the environment variable is a list of paths

/u Environment variables should only be created for WSL from Windows.

/w Environment variables should only be created for Windows from WSL.

Chapter 3 Building Mixed Experiences

57

Figure 3-11.  Setting up an environment variable in Windows from WSL

For example, let’s create a variable in WSL and then add it to WSLENV with /p flag

like in Figure 3-11; now when we try to read the value of this variable from cmd.exe, it

will show you the translated path now accessible on Windows as well. Please note that if

you don’t have administrative privileges on your Windows account, you might not see an

environment variable created by WSLENV:

$ export MYPATH=/mnt/c/Users

$ export WSLENV=MYPATH/p

$

$ cmd.exe

Microsoft Windows [Version 10.0.17763.348]

 (c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\admin> echo %MYPATH%

C:\Users

Let’s take another example to show how a list of colon-separated (:) values can

be assigned to WSLENV with the flag /l, which translates these paths to semicolon-

separated values when the environment variable is accessed from Windows as

demonstrated in Figure 3-12:

Chapter 3 Building Mixed Experiences

58

$ export MYPATHLIST=/mnt/c/Users:/mnt/c/temp

$ export WSLENV=MYPATHLIST/l

$

$ echo $MYPATHLIST

/mnt/c/Users:/mnt/c/temp

$

$ cmd.exe

Microsoft Windows [Version 10.0.17763.348]

 (c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\admin>echo %MYPATHLIST%

C:\Users;C:\Temp

WSLENV flag /u can be used to indicate that the environment variables are only

created on WSL from Windows. This can also work in combination with the /p flag

(and both can be combined as /up) to translate the path to Linux-specific format as

demonstrated in Figure 3-13. On the other hand, the WSLENV flag /w works in the exact

opposite way and creates an environment variable when running Windows from WSL.

Figure 3-12.  Setting up an environment variable with more than one value

Chapter 3 Building Mixed Experiences

59

WSLENV variable also enables us to define multiple shared environment variables

with the various flag options available. Let’s see how that works.

Syntax:

WSLENV=FORWSL/u:FORWIN/w:MYPATHLIST/l:TEMPDIR/p

Here, WSLENV is defined with a list of multiple environment variables followed by

their respective WSLENV flags and separated by colons. This is ideal in scenarios where

we want to share multiple shared environment variables in different ways. For example,

we can run the following commands in WSL and see the output in Figure 3-14:

$ # creating environment variables and sharing with Windows using WSLENV

$ export FORWSL=/mnt/c

$ export FORWIN=/mnt/c/Data

Figure 3-13.  Setting up an environment variable from Windows for WSL

Chapter 3 Building Mixed Experiences

60

$ export MYPATHLIST=/mnt/c/Users:/mnt/c/Data

$ export TEMPDIR=/mnt/c/temp

$ export WSLENV=FORWSL/u:FORWIN/w:MYPATHLIST/l:TEMPDIR/p

$ # checking the environment variables on Windows

$ cmd.exe # launch cmd prompt from WSL

C:\WINDOWS\system32> echo %FORWSL%

%FORWSL%

C:\WINDOWS\system32> echo %FORWIN%

/mnt/c/Data

C:\WINDOWS\system32> echo %MYPATHLIST%

C:\Users;C:\Data

C:\WINDOWS\system32> echo %TEMPDIR%

C:\Temp

Figure 3-14.  Setting up more than one environment variable at a time

Chapter 3 Building Mixed Experiences

61

�Summary
In this chapter, we learned various WSL launch configurations using the wsl.conf

configuration file and the three sections and optional settings allowed under this file:

[automount], [network], and [interop]. A combination of these launch configurations can

mount drives, set up name resolution, generate hosts files, and enable interoperability

by giving you the ability to launch Windows applications from WSL. Later in this

chapter, we also covered Windows-Linux path translation utility “wslpath” and sharing

environment variables across Windows and Linux operating systems using WSLENV. In

the next chapter, we will look at the management of Windows Subsystem for Linux

distributions, like setup, backup, restore, and distro customizations.

Chapter 3 Building Mixed Experiences

63
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_4

CHAPTER 4

Managing WSL
Distributions
In this chapter, we are going to learn to manage our Linux distributions on WSL,

which can be anything from setting a default distribution, backing up configurations

and settings using the export feature, or restoring the distro with the import feature.

More than that, we will also look into ways to unregister, uninstall, and reinstall

a Linux distribution and, toward the end of this chapter, create a custom Linux

distribution for WSL.

Let’s start with getting a list of the Linux distributions on your system.

�List Distributions
First thing first, before we can even manage our WSL distributions, we have to determine

the Linux distributions installed on our machine. In order to achieve that on Windows 10

version 1903 or later, we can use wsl.exe with “-l” or “--list”; this will list all the available

Linux distributions. Please note in Figure 4-1, one of the distributions is highlighted as

the “default” distribution. That means this will be launched when we run wsl.exe and

any command-line arguments are passed to this distribution:

wsl -l

wsl --list

https://doi.org/10.1007/978-1-4842-6038-8_4#DOI

64

There is another parameter --running that will only list the Linux distributions that

are currently running, but you can only use this along with the --list parameter switch:

wsl –list --running

As you can see in Figure 4-2, once we launch a Linux distribution in step 2, it appears

in the list of running distributions.

Figure 4-1.  List of installed Linux distributions

Figure 4-2.  List all the running Linux distributions

Chapter 4 Managing WSL Distributions

65

Now that we know how to list our Linux distributions, let’s figure out how to set one

of these Linux distributions as the default distribution for WSL.

�Set Default Distro
To set a default distribution, we use the --setdefault or -s command-line parameter

of wsl.exe, followed by the target distribution name as an argument as demonstrated in

Figure 4-3.

That also means that any command you pass to wsl.exe will, by default, be executed

in your default Linux distribution as demonstrated in Figure 4-4, and simply running

wsl.exe will launch a session of the default Linux distribution.

Figure 4-3.  Setting up the default Linux distributions in WSL

Chapter 4 Managing WSL Distributions

66

Now let’s take a look into exporting your Linux distribution package. The whole

purpose of a backup is to save the setup and configuration in a distributable file that can

be easily shared with anyone.

�Back Up or Export a WSL Distro
Distribution packages running on the Windows Subsystem for Linux can be backed up

by simply exporting it as a tar file, short for “Tape ARchive.” These files have “.tar” file

extension as a collection of multiple files in the Consolidated Unix Archive format. It’s a

popular method for both archiving purposes and sending multiple files over the Internet.

To export your Linux distribution, first launch a Command Prompt with

administrative privileges. Then list all the existing distribution environments you have

installed using “wsl.exe”:

wsl --list –all

Figure 4-4.  Running a command in the default Linux distributions

Chapter 4 Managing WSL Distributions

67

Now that you know names of the Linux distribution environments on your system,

you can again use the wsl.exe to target and export one of these as demonstrated in

Figure 4-5, by passing the distro name and path to export this file:

wsl --export Ubuntu-18.04 c:\temp\ubuntu1804.tar

wsl --export SLES-12 SLES.tar

This can take several minutes to finish depending upon the size of your Linux

distribution and the software or packages installed on it. Once it is complete, you

will find the root file system of your distro backed up as a “.tar” file at the location you

specified while exporting.

Figure 4-5.  Exporting Linux distributions

Chapter 4 Managing WSL Distributions

68

�Restore or Import WSL Distro
In the previous subsection, we exported our distribution package into an archive “.tar”

file. Now this archive can be moved, shared, and then restored on a computer with

the Windows Subsystem for Linux. All you have to do is launch a Windows command

prompt with administrative privileges and use the --import parameter with wsl.exe.

Pass a name for the distribution as an argument to import the root file system to this

distribution from the “.tar” file specified:

wsl --import SLES-Imported c:\temp\ c:\temp\SLES.tar

In Figure 4-6, we have imported a backup copy of “SUSE Linux Enterprise Server

(SLES),” with the custom name “SLES-Imported” into the directory location “c:\temp\”.

Figure 4-6.  Importing Linux distributions

Chapter 4 Managing WSL Distributions

69

Now, you can see the imported Linux distribution in the list and a rootfs folder

for the root file system with all the files, folders, and packages of the imported distro

(Figure 4-7). This is located in the directory where it was imported.

�Unregister and Uninstall WSL Distros
Unregistration of a distribution means disassociating any data, settings, and installed

software in a distribution from the Windows Subsystem for Linux. When initiated, it will

destroy any data permanently. But this also enables reinstallation of a clean copy of a

distribution from the Microsoft Store:

wsl --unregister kali-linux

As you can see in Figure 4-8, after unregistering the “kali-linux” distribution, it

doesn’t appear in my WSL list.

Figure 4-7.  Root file system of the imported Linux distribution

Chapter 4 Managing WSL Distributions

70

Now if you go to the Microsoft Store page for Kali Linux and click “Install”, it will start

installing the distribution once again. That means when you run the WSL distro the next

time, a clean copy of the distro will be installed (Figure 4-9), allowing you to set up the

distro with a new Unix username and password again.

Another way to uninstall a distro on Windows 10 is to click the Start menu, search for

the name of distribution, and simply click the Uninstall option as in Figure 4-10.

Figure 4-9.  Fresh install after unregistration of Linux distribution

Figure 4-8.  Unregistration of Linux distribution

Chapter 4 Managing WSL Distributions

https://www.tenforums.com/tutorials/127608-run-windows-subsystem-linux-wsl-distro-windows-10-a.html

71

Alternatively, as demonstrated in Figure 4-11, you can also go to the Start menu, run

Settings, click Apps, search for your Linux distribution, and click the Uninstall button.

There is a setting available under the “Advanced Options” section like “repair” your Linux

distributions, if something goes wrong with your distribution and if you want to fix it.

Figure 4-10.  Uninstalling Linux distribution from the Start menu

Chapter 4 Managing WSL Distributions

72

�Creating a Custom WSL Distro
Recently, Microsoft has open sourced the tooling and a sample Linux distribution with

the purpose of enabling developers and Linux distribution maintainers to create custom

distribution packages for the Windows Subsystem for Linux. This further adds to the ability

of the distribution maintainers to reach and deliver the Linux distributions to a bigger

audience through the Microsoft Store, where these distros can be published for download.

This project is called WSL-DistroLauncher and has been open sourced on GitHub:

https://github.com/Microsoft/WSL-DistroLauncher. It is a C++ implementation

reference of the Linux distribution installer/launcher.exe for the Windows Subsystem

for Linux. These distribution packages include the launcher application that takes care

of the registration and installation of the distro in WSL. Behind the scenes, to develop

a custom Windows Subsystem for Linux distro, you need a header file wslapi.h that

provides a bunch of enumerations and functions to configure, register, and launch the

custom distribution.

Figure 4-11.  Uninstalling Linux distribution from “Apps & features”

Chapter 4 Managing WSL Distributions

https://github.com/Microsoft/WSL-DistroLauncher

73

Table 4-1 lists some functions provided by the aforementioned header file, and

you can read more about the functions here: https://docs.microsoft.com/en-us/

windows/win32/api/wslapi/.

Once the distro launcher is built and packaged with the required assets such as icon

files, manifests, certificates, and so on, then it can be loaded on top of the Windows

Subsystem for Linux as a custom Linux distribution. The output of the build will replace

“launcher.exe” with a custom distribution-specific name like MyCustomDistro.exe

that will launch your custom distribution, just like Ubuntu1804.exe or any other distro

launcher. Using this project, you can also control the command-line arguments this

distro launcher can accept and even write your own help documentation as highlighted

in Figure 4-12.

Table 4-1.  Functions in WSL API’s (wslapi.h) header file

Function Description

WslConfigureDistribution() Modifies the behavior of a distribution registered with WSL

WslGetDistributionConfiguration() Retrieves the current configuration of a distribution registered

with WSL

WslIsDistributionRegistered() Determines if a distribution is registered with WSL

WslLaunch() Launches a WSL process in the context of a particular

distribution

WslLaunchInteractive() Launches an interactive WSL process in the context of a

particular distribution

WslRegisterDistribution() Registers a new distribution with WSL

WslUnregisterDistribution() Unregisters a distribution from the WSL

Chapter 4 Managing WSL Distributions

https://docs.microsoft.com/en-us/windows/win32/api/wslapi/
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/nf-wslapi-wslgetdistributionconfiguration
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/nf-wslapi-wslisdistributionregistered
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/nf-wslapi-wsllaunch
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/nf-wslapi-wsllaunchinteractive
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/nf-wslapi-wslregisterdistribution
https://docs.microsoft.com/en-us/windows/win32/api/wslapi/nf-wslapi-wslunregisterdistribution

74

�Summary
In this chapter, we learned to manage Linux distributions of the Windows Subsystem

for Linux, and we started with listing all Linux distributions and filtered them based on

their running status and then looked into setting up default distribution for WSL. Later

we learned to back up Linux distributions by exporting it as a file backup and then

importing it on another computer to restore the Linux distribution in WSL. Finally, we

covered a few approaches to unregister and uninstall Linux distros when they are not

required and concluded the chapter with a tooling that helps create a custom Linux

distribution for WSL.

In the next chapter, we are going to learn about Windows Subsystem for Linux

version 2 (WSL2) and cover architectural changes and functional differences between

the two versions.

Figure 4-12.  Distro launcher command-line options

Chapter 4 Managing WSL Distributions

75
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_5

CHAPTER 5

Exploring WSL2
In this chapter, we are going to learn about Windows Subsystem for Linux version 2,

the new features it brings to the table, and the difference between versions 1 and 2.

We will also learn how to install WSL2 on our machine and enable Linux distributions

to use WSL2. Finally, we will understand its architecture and functionalities. The

whole idea behind this chapter is to give readers a brief overview of the architectural

changes in WSL2 and then build the remaining chapters on this knowledge, which

will make it easier for readers to understand the purpose behind this new version of

WSL. Let’s get started.

�New Features in WSL2
WSL2 is the latest and greatest release of the Windows Subsystem for Linux. This

new version was built, keeping in mind the two main objectives and most frequent

community requests:

	 1.	 Better file IO performance – Increase in IO performance means

faster reads and writes to a file, and the speed totally depends on

how intensive a file access operation is. Tasks such as “git clone,”

“npm install,” “apt update,” or “apt upgrade” may see 2–3 times

faster operation, whereas tasks like unpacking a zipped tarball

file on WSL2 may see 20 times faster performance as compared

to WSL1.

https://doi.org/10.1007/978-1-4842-6038-8_5#DOI

76

	 2.	 Full system call support – Any system calls generated from Linux

binaries running on Windows Subsystem for Linux version 1 for

performing functions like accessing files, requesting memory,

spawning processes, and so on were translated to the respective

Windows system calls for the underlying operating system. This

was made possible through a translation layer developed by the

WSL team, but it has its own challenges and it was not possible

to translate every Linux system call to Windows. More than that,

the WSL team at Microsoft had to implement and adapt this

translation layer for any changes to the Linux kernel.

So, Microsoft decided that WSL2 will include its own Linux

kernel to fully support system call compatibility and make it

easy to deliver kernel updates. This opened the window for more

applications like Docker and other systems to seamlessly run

inside WSL2. Additionally, Microsoft maintains a fork of Linux

kernel; that means any updates to the Linux kernel don’t have

to wait for a longer time to come to Windows and can be rapidly

updated, published, and distributed to the end user faster. All

kernel improvements and security fixes are available through

Windows updates.

While keeping in mind these objectives, it was also important to maintain the same

user experience without changing a lot of things that WSL1 users are already used to.

WSL1 enabled users to run ELF64 Linux binaries on the Windows Subsystem for

Linux, but there are changes in version 2 in terms of how the Linux binaries interact

with Windows operating system and the system hardware, mainly because now with

WSL2 Microsoft ships a Linux kernel to Windows with a more advanced virtualization

technology. Since a full kernel is available now, WSL2 also adds ELF32 binary support or

any other feature that is supported by the Linux kernel.

Before you can even start using WSL2, there are two main prerequisites to be met;

first thing first, WSL2 is only available in Windows 10 build 18917 or later. Secondly,

please join the “Windows Insider Program” as demonstrated in Figure 5-1, and select

either the Fast or the Slow ring (which offers more stable updates) to get the preview

release of the Windows build that comes with WSL2. Please ignore the second setup if

you are already running Windows 10 version 2004.

Chapter 5 Exploring WSL2

77

WSL2 will soon (or already as you read this) be part of Windows 10 version 2004,

once it is generally available. This is Microsoft’s step toward improving the service model

for the Linux kernel by streamlining the install experience through Windows Update

instead of shipping it with an OS image. This means all your Linux kernel updates will

be seamlessly delivered to your system through Windows Update, just like any software,

patches, and drivers. All you have to do is click the “Check for updates” button in

Windows updates settings and install this update like in Figure 5-2.

Figure 5-1.  Opt for Windows Insider Program

Chapter 5 Exploring WSL2

78

At this point in this chapter, you must be thinking: What will happen to WSL1 and the

Linux distributions I’ve been configuring on it? Will Microsoft discontinue or deprecate

WSL1? To answer that, there is nothing to worry about as Microsoft neither has any

intention nor plans to deprecate WSL1 and these two versions are designed to run in

parallel. That means WSL1 and WSL2 Linux environments can run side by side, and you

can upgrade and downgrade any distro whenever required. Later in this chapter, we will

look into how this is done.

�Architecture of WSL2
The Linux kernel that is shipped with Windows Subsystem for Linux 2 runs on a

lightweight utility virtual machine that was originally developed for server scenarios to

run a lot of Hyper-V-based, isolated containers on a single host machine and to support

faster boot times.

Figure 5-2.  Update to Windows 10 version 2004

Chapter 5 Exploring WSL2

79

This is not a traditional virtual machine experience, but the latest and greatest in

virtualization (Hyper-V-based) technology built to reduce resource footprints, boot

times, and the amount of time spent on creating, configuring, and managing traditional

virtual machines. Table 5-1 provides a few differences to make this distinction further

clear.

Let’s dig a little deeper and understand what is happening under the hood when a

WSL2 Linux distribution is launched. First thing first, make sure all WSL instances are

terminated:

wsl --shutdown

Then we attempt to execute a command on our default WSL2 distribution that

will change to the “Running” state once the command executes. Now to verify that,

launch a PowerShell console with administrative privileges and list all the running

Hyper-V containers using the hcsdiag.exe list command, which is a diagnostic tool

to check Windows containers managed by the Host Compute Service, and then this will

demonstrate the lightweight VM container which was created instantly in less than a

second as demonstrated in Figure 5-3.

Table 5-1.  Comparison between traditional VM and lightweight utility VM used

by WSL

Traditional VM WSL2 Lightweight Utility VM

The guest operating system is isolated from

the host operating system.

The guest operating system is very much integrated

with the host operating system.

Slower boot times Faster boot times, that is, less than 1 second

Larger memory consumption Lower memory consumption

Create and manage these VMs. Automatic setup and runs only when needed

Chapter 5 Exploring WSL2

80

The other two containers are nothing but Hyper-V virtual machines that are already

created on my host machine and are in the running state. As demonstrated in Figure 5-4,

you can observe that the GUID from the hcsdag.exe list and results from the Get-VM

cmdlets match.

Figure 5-3.  Host Compute Service creates a lightweight VM

Chapter 5 Exploring WSL2

81

Figure 5-4.  Other Hyper-V virtual machines

But if we shut down all WSL2 instances again and rerun a command on my WSL2

Linux distribution, then it will launch in a new container for the lightweight utility VM

with a new GUID as seen in Figure 5-5.

Figure 5-5.  A new lightweight VM starts every time you a run a command

Chapter 5 Exploring WSL2

82

Now that we understand that the Linux kernel runs in this lightweight VM, let’s take a

look further into the actual architecture of WSL2 as demonstrated in Figure 5-6 and the steps

involved when a Linux application is launched from the Windows operating system and how

it integrates with the Linux VM to give us a seamless and best of both worlds experience.

The following are the components that demonstrate this workflow, which you can

follow along with the preceding image:

	 1.	 The “wsl.exe” is used for listing distributions and launching

and interacting with the subsystem that is enabled through the

LxssManager service.

	 2.	 LXSS Manager keeps lists of which distributions are installed and

which are running and then calls the Host Compute Service.

	 3.	 The Host Compute Service is part of the Hyper-V virtualization

technology that makes the WSL2 possible; this will launch a

lightweight utility VM using the Linux kernel.

Figure 5-6.  WSL2 architecture diagram and workflow

Chapter 5 Exploring WSL2

83

	 4.	 The VM is then mapped with your Linux distribution’s file

system, and an init process is called to initialize and run your

application.

	 5.	 After this, a relay is set up from standard input from the Windows

side to your application, bash in our case, so that communication

is set up between the Linux and Windows sides, so that we can see

what is happening inside our Linux application when a command

is run from the Windows side.

Basically, Windows standard input sends commands to the socket,

then these commands are read from the socket in the lightweight

guest operating system, and finally this socket is standard input

for the Linux application such as “bash.”

This virtual machine only runs while you are running your Linux applications, and

if you kill your Linux application or terminate wsl.exe, this lightweight virtual machine

will go away. If you relaunch a Linux application, this VM will start fresh and will be

started again.

Please note no matter how many WSL2 Linux distributions are running on your

machine, they all will be launched within a single lightweight utility VM. That means

only one Linux utility VM per user will be created to facilitate running multiple

distributions using WSL2. Each distribution is running in an isolated container so that

shouldn't be a problem. This is achieved using the Linux Namespaces API http://man7.

org/linux/man-pages/man7/namespaces.7.html with the goal to reduce the memory

and resource footprint by making all distributions run on a single VM.

On the other hand, for accessing files in WSL2, mount points like /mnt/c use a 9P

protocol file server to handle such requests. The Linux kernel acts as the 9P protocol

client running on the lightweight virtual machine, that is, on the guest operating

system, which then makes a request to a 9P server running on the host operating system

(Windows 10) to access the Linux files from Windows.

Chapter 5 Exploring WSL2

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html

84

�Installation and Setup
The Windows Subsystem for Linux comes as a feature in Windows 10, but there are

certain steps involved to enable that feature for WSL1 which we have already discussed

in a previous chapter; apart from that, the requirement to enable the “Virtual Machine

Platform” feature was also discussed. Once these two prerequisites are met, only then

can we proceed with converting our WSL1 Linux distributions to WSL2 or choosing

WSL2 as the default for all future installed Linux distributions.

Let’s do this one step at a time.

�Enable Windows Subsystem for Linux 1
If you have not been using Linux on Windows 10, this is the right time. You can start by

first enabling the Windows Subsystem for Linux from Windows Features, as mentioned

in the following steps:

	 1.	 On the Windows taskbar, at the bottom left of your screen, click

the “Start” button.

	 2.	 Now search for “Turn Windows Features” in the search box and

then click the result at the top as shown in Figure 5-7.

Chapter 5 Exploring WSL2

85

	 3.	 This will open a “Windows Features” dialog box. Scroll to the

bottom and make sure that the “Windows Subsystem for Linux”

feature box is checked. Click OK and exit this dialog box.

	 4.	 Save any open work, as you may be prompted to restart your

system. Follow any necessary prompts to close running

applications.

Once WSL1 is enabled and your system has restarted, we now need to enable the

“Virtual Machine Platform.” To do that, perform the following steps. Please note these

steps can only be performed if your computer supports hardware virtualization and it is

enabled in the BIOS or UEFI.

Figure 5-7.  Search “Windows Features”

Chapter 5 Exploring WSL2

86

�Enable “Virtual Machine Platform”
	 1.	 Launch a PowerShell session with administrative privileges.

	 2.	 Run the following command in PowerShell, and if you see the

results shown in Figure 5-8, then the feature has been enabled

successfully.

Enable-WindowsOptionalFeature -Online -FeatureName

VirtualMachinePlatform

	 3.	 Restart your system, if prompted.

After completing these steps, we can now convert our Linux distributions to

Windows Subsystem for Linux 2 or choose WSL2 as the default architecture to run these

distros.

�Enable Windows Subsystem for Linux 2
Before we can enable WSL2, there are some temporary steps we need to follow, wherein

we need to install a Linux kernel update manually. In the near future, when WSL updates

begin to be delivered through Windows Update, these manual steps won’t be required:

	 1.	 Download the WSL2 Linux kernel update from the following URL:

https://wslstorestorage.blob.core.windows.net/wslblob/

wsl_update_x64.msi

	 2.	 Once the download is complete, double-click the “wsl_update_x64.

msi” file at your download location to run and apply this update.

Figure 5-8.  Enable Virtual Machine Platform

Chapter 5 Exploring WSL2

https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

87

	 3.	 Once the update has been applied, go to the Start menu and

launch PowerShell.exe with administrative privileges.

	 4.	 Now run the following command as demonstrated in Figure 5-9 to

make WSL2 the default architecture for all new Linux distributions

you will install on your system going forward. This will not change

any existing Linux distribution running on WSL1, and both can

coexist together.

wsl --set-default-version 2

	 5.	 To configure any existing Linux distributions to use the WSL2

architecture, you can achieve that by running wsl --set-version

and the Linux distribution name, followed by “2”, as demonstrated

in the Figure 5-10:

wsl --set-version kali-linux 2

Figure 5-9.  Setting WSL2 as default architecture for new Linux distros

Figure 5-10.  Converting a WSL1 Linux distro to WSL2

Chapter 5 Exploring WSL2

88

�Verifying the Linux Distribution Subsystem Platform
and Rolling Back to WSL1
It is very easy to verify the architecture that your Linux distributions are using with the

following command:

wsl --list --verbose

This will list all the Linux distributions with their version information, and as we

can see in Figure 5-11, our conversion of the kali-linux distro from the previous step is

reflected here.

If we want to use the old WSL1 architecture, we can very easily convert our

distribution to use WSL1 as shown in Figure 5-12 and the following example:

wsl --set-version kali-linux 1

Figure 5-11.  Verifying Linux distribution WSL versions

Chapter 5 Exploring WSL2

89

If you feel that WSL2 is still experimental software, you may not want to run this on

your primary computer system and instead evaluate this software on a virtual machine.

But before you can use WSL on a virtual machine, there are few things which you may

want to understand and few configurations which are required.

�Running WSL2 in a Virtual Machine
You can run the Windows Subsystem for Linux on Hyper-V-based virtual machines as

well. All you must do is make sure that the virtual machine has nested virtualization

enabled on it as shown in Figure 5-13.

We can use PowerShell to enable that setting. To do so, run the following command

from a PowerShell console with administrative privileges. Just make sure to provide the

name of the target virtual machine. This setting can only be applied if the machine is in a

stopped state, as you cannot change the processor configuration while it is running.

Get-VM 'Name' | Set-VMProcessor -ExposeVirtualizationExtensions $true

Figure 5-12.  Rolling back Linux distribution platform to WSL1

Chapter 5 Exploring WSL2

90

Some of the major third-party virtualization applications cannot work when Hyper-V

is in use on your system. This means you may not be able to run WSL alongside VMware

and VirtualBox. However, these major virtualization technology providers have recently

released versions of their software that supports WSL2 and Hyper-V. Here are the links to

their release pages for your reference:

•	 www.virtualbox.org/wiki/Changelog-6.0

•	 https://blogs.vmware.com/workstation/2020/01/vmware-

workstation-tech-preview-20h1.html

�What User Experience Changed from WSL1
to WSL2?
Microsoft has tried their best to keep the user experience consistent across the two

architectures, but despite that, WSL2 users will observe three major changes in the

overall user experience when switching from WSL1 to WSL2.

�Faster File Performance
Experience faster file performance, but in order to get this, it is recommended to keep

all your files under the Linux distribution’s root file system, because now we have a

full Linux kernel on Windows Subsystem for Linux 2 that can easily process these file-

intensive operations, and compared to WSL1, it is several times faster.

Figure 5-13.  Enable WSL on Hyper-V virtual machines

Chapter 5 Exploring WSL2

http://www.virtualbox.org/wiki/Changelog-6.0
https://blogs.vmware.com/workstation/2020/01/vmware-workstation-tech-preview-20h1.html
https://blogs.vmware.com/workstation/2020/01/vmware-workstation-tech-preview-20h1.html

91

Figure 5-14.  File and web socket performance on WSL1

To benchmark the performance, we would test a software installation using a

package manager and test web sockets using a curl request on both WSL1 and WSL2:

time sudo apt install ruby –y

time curl google.com

Figure 5-14 demonstrates the installation of “ruby” to about 30 seconds to complete

on WSL1 and a web request to google.com returned results in 5 seconds. Now let’s try

the same test on WSL2, but please make sure you're running this on the same Linux

distribution. This test is on the Ubuntu 18.04 LTS Linux distribution, so I must change

the WSL architecture version from WSL1 to WSL2 and remove the installed “ruby”

software from the distribution to perform a fresh test.

Chapter 5 Exploring WSL2

92

Our tests on WSL2 demonstrate that the installation was completed in less than

5 seconds (6 times faster than WSL1) and web request took 1/10th of a second (50

times faster than WSL2) to complete the request and get the results as highlighted

in Figure 5-15. This is a significant performance increase compared to Windows

Subsystem for Linux version 1 architecture.

�WSL2 Now Uses Virtual Hardware Disks (VHD)
Since WSL2 runs on a lightweight utility VM, like any other virtual machines, it stores all

your Linux files inside of a virtual hardware disk (VHD) which uses the ext4 file system.

The VHD is initially set to a maximum size of 256GB, and depending upon your usage,

this VHD automatically grows and shrinks to fulfill your storage requirements until it

Figure 5-15.  File and web socket performance on WSL2

Chapter 5 Exploring WSL2

93

Figure 5-16.  Resizing WSL2 virtual hardware disks

hits this maximum limit. Once the limit is reached, you start getting “out of disk space”

errors. In order to fix these errors, you have to expand the VHD size by performing the

following steps:

	 1.	 Kill all running WSL instances using the following command:

wsl --shutdown

	 2.	 Use PowerShell to find your Linux distribution’s installation

package name PackageFamilyName and the full path to its ext4.

vhdx file:

$pkgFamilyName = (Get-AppxPackage -Name "*ubuntu*").

PackageFamilyName

$Path = "$env:LOCALAPPDATA\Packages\$pkgFamilyName\LocalState*.

vhdx"

$vhd = Get-ChildItem $Path

Finally, we use the Resize-VHD cmdlet from the Hyper-V module

to expand this virtual hardware disk to the size we want as shown

in Figure 5-16:

Resize-VHD -Path $VHD.FullName -SizeBytes <size>

	 3.	 Once the resize is complete and you don’t get any errors, as in the

preceding image, then relaunch your WSL2 Linux distribution.

	 4.	 Now we have to expand the file system's size from within WSL

and make it aware of changes we performed in the previous step.

For that, we have to run the following command in your WSL

distribution to make sure the file system is mounted:

sudo mount -t devtmpfs none /dev

Chapter 5 Exploring WSL2

94

Once that is done, then we have to find the root file system in

use by filtering out file system of type ext4 using the following

command, which will highlight the mount point we want to target

as demonstrated in Figure 5-17:

mount | grep ext4

	 5.	 Please copy the name of this entry such as /dev/sdb from the

following example and run the following command:

sudo resize2fs /dev/sd**

Make sure to replace the asterisk (*) in the preceding command

with the correct characters in your command, and if this runs

successfully without errors, then the VHD expansion is complete.

It may be required to install resize2fs if it has not been installed

with on the Linux distribution.

�Networking Changes and Considerations
When using a WSL1 Linux distribution, all the Linux calls are getting translated to

Windows system calls, and if your system is using the LAN, then any application running

on WSL will use the LAN directly as well. But this behavior changes in WSL2, as WSL2

runs on a lightweight utility VM and has a virtualized Ethernet adapter with its own IP

address allotted to it as demonstrated in Figure 5-18.

Figure 5-17.  Expanding VHD within WSL2

Chapter 5 Exploring WSL2

95

In addition to that, since WSL2 is still a new product and work in progress, you will

observe that in early releases of WSL2 you will have to access the Windows operating

system from Linux using the IP address of your host machine, but this experience will be

much smoother with later releases.

�Accessing Windows Applications from Linux

For example, my computer is on Windows 10 version 2004 (OS build 19041.172), and

I have a simple Node.js server running on Windows 10 side and I can easily access the

server using the loopback address from inside WSL2 with a simple “curl” command as

shown in Figure 5-19.

Figure 5-18.  WSL2 has a dedicated virtual Ethernet adapter

Chapter 5 Exploring WSL2

96

�Accessing Linux Applications from Windows

Just like we accessed a Windows application from Linux in the previous example,

similarly we can also access a Linux application, a Node.js server running in a WSL Linux

distribution, on http://localhost from Windows 10 side. Figure 5-20 demonstrates a

PowerShell Invoke-WebRequest command to access the endpoint running on WSL.

Figure 5-19.  Accessing a Node.js server on Windows from WSL2

Chapter 5 Exploring WSL2

97

�Summary
In this chapter, we learned new features and improvements in WSL2 and the purpose

behind shipping a full Linux kernel to Windows 10 to support a new version of the

Windows Subsystem for Linux. We enabled and performed the installation of WSL2

and learned to run WSL1 and WSL2 subsystem platforms in parallel. Later, we also

looked into converting a WSL1 Linux distribution to WSL2-compatible distro and then

Figure 5-20.  Accessing a Node.js server on WSL2 from Windows

Chapter 5 Exploring WSL2

98

benchmarked the file system and network performance improvements in WSL2. Toward

the end of the chapter, we performed resize operation on WSL2 virtual hard disk and

concluded the chapter with the networking changes in WSL2. In the next chapter, we are

going to learn about Windows Subsystem for Linux file system, its architecture, and how

WSL file system enables interoperability between Linux and Windows.

Chapter 5 Exploring WSL2

99
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_6

CHAPTER 6

File System
In this chapter, we are going to learn about how file systems work seamlessly as if you

are working on a Linux file in the Linux operating system and additionally enables

developers and power users to use full Windows and Linux interoperability to enhance

their productivity. Since its inception, one of the purposes of the Windows Subsystem

for Linux was to bring the best of both worlds together and not isolate the Windows and

Linux operating system from each other like a traditional virtual machine where you

can only use network shares and some other solutions to access files between the host

and guest operating systems. Instead, the goal was to integrate these in such a way that

WSL can directly access Windows files and Windows can access files within a Linux

distribution running on WSL.

Before we can dive further into file systems, let us first understand some basic

components that make the Windows Subsystem for Linux’s file systems work.

�File System Components
To support a Linux file system running on top of Windows, the Windows Subsystem

for Linux has to translate all the user operations performed on Linux file systems to

NT kernel operations. Moreover, users should be able to access Windows files from the

Linux distribution running on top of WSL.

https://doi.org/10.1007/978-1-4842-6038-8_6#DOI

100

�VFS
In order to provide this, WSL has a VFS component built into lxcore.sys that is modeled

to emulate the Linux operating system’s Virtual File System (VFS). The role of VFS in the

Linux operating system is to provide an abstraction layer to manage all the file systems

mounted at any moment on Linux. This abstraction facilitates common operations (like

open, read, chmod, stat) and implementations irrespective of the underlying file systems

that can coexist. Some of these file systems are as follows:

•	 volfs

•	 drvfs

•	 tmpfs

•	 procfs

•	 sysfs

Let’s look into each of these separately.

�volfs
This is the primary file system on WSL that is used to store all Linux system files and

your home directory and almost has feature parity with the Linux Virtual File System

(VFS). Technically, all files are on Windows, and WSL provides full access to these

files by emulating the Linux behavior for internal Linux file systems, like the following

directories which are added to each Linux distribution:

•	 /

•	 /root

•	 /home

But the purpose of this file system is not interoperability, but more of providing

the Linux experience to the user which they are familiar with, like the /home or /root

directories. That being mentioned, if a new file is added from the Windows side, it doesn’t

have the right extended attributes that are understood by volfs and they are simply ignored,

and such files become unusable for the Linux distribution in the Windows Subsystem for

Linux.

Chapter 6 File System

101

Let’s take an example of file creation from Windows to this file system to understand

it better. In the first approach, we attempt to create a file in the /home/prateek directory

in the %LocalAppData%\ folder on my Windows 10 machine where all the package files

for my Ubuntu 18.04 Linux distribution are placed.

Please note that the first approach is not a recommended way to add a file to your

Linux distribution on WSL and may lead to file corruption and discrepancies. It is

advised to not touch this folder from the Windows side:

$rootFS = "Packages\<package name>\LocalState\rootfs\home\<username>"

$param1 = @{

 ItemType = 'File'

 Path = "$env:LOCALAPPDATA\$rootFS\file1.txt"

}

New-Item @param1 -Verbose

When we run the preceding command from a PowerShell console on the Windows

side, we see the file file1.txt has been created from the PowerShell console. The same can

be verified from the %LocalAppData% folder. But if you closely observe in Figure 6-1,

file1.txt is missing from the Ubuntu distro running on WSL.

Figure 6-1.  Accessing Linux files from %LocalAppData% folder, not recommended

Chapter 6 File System

102

On the other hand, when we create a file named “file2.txt” using the second

approach, which is through the UNC path \\wsl$\ as demonstrated in Figure 6-2, using

the following code sample, this not only creates the file but this file is now also available

in the Windows Subsystem for Linux, unlike the first approach. Just to reemphasize,

the second approach is the recommended method to create WSL files from Windows,

and it is not a best practice to create or edit files from Linux packages placed in

%LocalAppData% folder:

$param2 = @{

 ItemType = 'File'

 Path = \\wsl$\Ubuntu-18.04\home\prateek\file2.txt

}

New-Item @param2 -Verbose

Figure 6-2.  Accessing Linux files using \\wsl$\, recommended approach

The creation of files using the UNC path \\WSL$\<package>\ works because the

Windows Subsystem for Linux adds some extended attributes using this method on the

files created, and Figure 6-3 demonstrates this extended attribute (EA) being slapped on

“file2.txt” but is missing from the “file1.txt” when examined through “fsutil.exe”.

Chapter 6 File System

103

�drvfs
This file system is automatically mounted on Linux distributions to provide

interoperability with Windows, so that drives mounted on the NT file system are

accessible from the Windows Subsystem for Linux as shown in Figure 6-4. drvfs currently

only supports New Technology File System (NTFS) and Microsoft’s newest file system,

the Resilient File System (ReFS). The Windows Subsystem for Linux will automatically

mount fixed drives under the /mnt folder as

•	 /mnt/c

•	 /mnt/d

Figure 6-3.  Extended attributes added to NTFS files to appear in WSL

Chapter 6 File System

104

When we open a file in drvfs Windows, file permissions are applicable through

access control lists (ACL), which means even if you are using sudo for root privileges in

a WSL environment, even then it doesn’t mean you can access files under every NTFS

folder mapped through drvfs. For example, if you try to access /mnt/c/Windows, sudo

permissions alone won’t be enough and you may have to launch the WSL instance with

elevated permissions.

�tmpfs
Everything in tmpfs is temporary in the sense that no files are created on your persistent

storage such as your hard drive. Instead, all files are kept in volatile storage such as virtual

memory. That means if you unmount a tmpfs, then everything stored inside it will be lost.

tmpfs uses a combination of memory (RAM) and disk-based swap space to create

a file system, and since it uses RAM, it is very fast to read and write data compared to

writing to a disk. There are multiple directories that are mounted using this file system

like /dev and /run as seen in Figure 6-5.

Figure 6-5.  tmpfs is a temporary file system

Figure 6-4.  Windows NTFS drives mounted on WSL as drvfs file system

Chapter 6 File System

105

�procfs, sysfs
procfs and sysfs are special file systems that represent system information like CPU,

processes, drivers, devices, and configurations that are mostly dynamically generated

when it is read. In the background WSL queries this information from the Windows NT

kernel without any interaction with NTFS.

procfs is the earlier implementation where most of the system-related information

can be found at the directory /proc, as shown in Figure 6-6 and the following examples

where we can check the system uptime using

cat /proc/uptime

and verify the Linux kernel version:

cat /proc/version

Figure 6-6.  Accessing system information through /proc file system

Since Linux kernel version 2.6, a new file system was implemented called sysfs that

represents information at /sys in a more structured and easily searchable manner.

/sys can be utilized to get information like power settings or the physical address of an

Ethernet port as demonstrated in Figure 6-7.

Chapter 6 File System

106

�Multiple UNC Provider (MUP)
The multiple UNC provider (MUP) is a kernel-mode component part of the mup.sys

binary that is responsible for redirecting any UNC-based remote file system access to a

network redirector (the UNC provider) that can fulfill such file system requests.

Basically, the MUP determines which provider can handle a UNC path in a name-

based operation, and this is also known as “prefix resolution.” As shown in Figure 6-8,

the order in which these network providers are queried for prefix resolution is based on

the comma-separated value for the following registry entry:

$path = 'HKLM:\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order\'

(Get-ItemProperty $path).ProviderOrder -split ','

Figure 6-8.  List of network providers for prefix resolution of UNC paths

Figure 6-7.  Accessing system information through the /sys file system

Chapter 6 File System

107

When a WSL instance is launched, an init process is initiated that sets up a 9P server

on WSL and a Unix socket for communication, which then uses the LXSS Manager

service to register the WSL package name, and a Unix socket to the 9P file server to the

9P redirector used by MUP.

So when a user from Windows attempts to access the \\wsl$\<packagename> UNC

path for WSL file system, then under the hood MUP is working for prefix resolution and

finally uses the P9NP (Plan 9 Network Provider) to connect to a 9P file server running on

WSL to enable file operations and interoperability between the two systems.

�9P (Plan 9 Protocol)
9P (or the Plan 9 File System Protocol) is a network protocol that is used to set up a 9 file

server (on WSL) and a client (on Windows) to bridge the Windows and Linux file systems

and provide seamless interoperability. There are various reasons why this protocol was

used instead of using the SMB protocol, which is already very popular on the Windows

operating system. Some of the reasons follow:

•	 There is the possibility that SMB may not be installed by default on

your system.

•	 And it may already be configured and it is not very wise to run

multiple SMB instances and overwrite the configuration.

•	 If a Linux distribution doesn’t have Samba, it cannot be shipped

by Microsoft as it is GNU GPL licensed and can’t be shipped with

Windows 10 operating system.

•	 SMB is complex and difficult to implement under the Windows

Subsystem for Linux, compared to 9P which is simpler and

straightforward.

�WSL File System Architecture
Before we understand the file system architecture of WSL and how files are accessed
from Windows to Linux and vice versa, let’s first understand the setup workflow that
is a requirement to make the interoperability between the file systems work through
the following steps, and these steps are highlighted with light blue numbered labels in

Figure 6-9:

Chapter 6 File System

108

	 1.	 The moment a WSL.exe instance is launched, it interacts with the

LXSS Manager service.

	 2.	 LXSS.sys then communicates with the Windows Subsystem for

Linux to run the init process.

	 3.	 This init process is also responsible to initialize the subsystem

and set up a Plan 9 protocol file server in WSL.

	 4.	 This server will then coordinate with the LXSS Manager service to

set up a Unix socket for the file system communication.

	 5.	 Once that is done, the Linux distribution’s name and Unix socket

is then registered to the 9P redirector to make it aware where to

connect for any request resolving to UNC path

\\wsl$\<packagename>.

Figure 6-9.  WSL1 file system architecture

Once this initial setup is complete, then the following steps are involved in order to

access a file from Windows to Linux operating system running over WSL:

Chapter 6 File System

109

	 1.	 A Windows process like CMD.exe or PowerShell.exe attempts to

access Linux file on WSL using the UNC path

\\wsl$\<packagename>.

	 2.	 This request is transferred to MUP (multiple UNC provider) which

attempts to resolve this path and connect to the appropriate

remote file system.

	 3.	 MUP achieves this by finding the network provider or the

redirector that has been registered for such a type of request.

	 4.	 Since in the previous subsection a Unix socket was registered for

WSL on 9P redirector to handle such requests, this socket will be

utilized by MUP to create a 9P file server connection to the Linux

file system on WSL.

	 5.	 Now this 9P server can communicate with lxcore.sys to facilitate

any file system access or operations from Windows using the

Virtual File System (VFS) and emulating the Windows system calls

to Linux system calls.

Note T here is one major difference between the file system architecture of WSL1
and WSL2, and that is on WSL1 all the files are stored on Windows drives using
NTFS, on contrary to that of WSL2 in which the Linux files are stored in a virtual
hardware disk (VHD) using the ext4 file system.

�Windows-Linux Case Sensitivity
Windows applications while creating files using the CreateFile API have the ability to

pass a flag FILE_FLAG_POSIX_SEMANTICS which is an indication that case sensitivity

is enabled for the file path. You can read more about this API and flag here: https://

docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea.

The Windows operating system has had this capability since Windows XP, but this is

overridden by default through a global registry.

Chapter 6 File System

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

110

To support case-sensitive files used by Linux applications running on WSL, the
Windows Subsystem for Linux has other mechanisms to bypass the global registry
settings to set FILE_FLAG_POSIX_SEMANTICS flag to give users a case-sensitive
experience just like Linux, but also makes the files accessible by Windows applications.

The Windows Subsystem for Linux uses another mechanism, which itself bypasses
that registry key, allowing us to perform case-sensitive file system operations. This is
what allows Linux applications running in WSL to use file names that differ only by case,
just like they can on real Linux, even with that global registry key set. There is always
the option to change the registry setting, but let’s not forget that this is a global setting
and changing it will change the case sensitivity for all drives, which may not be what we
want and can lead to unintended behavior across applications or even break some other
applications.

To overcome this drawback, a new case sensitivity flag was implemented to enable
or disable case sensitivity on a directory level instead of a global setting and irrespective
of the FILE_FLAG_POSIX_SEMANTICS flag on the files in this directory. This new flag
allows two files in a directory to exist with the same name but with different cases still
and be accessible to Windows applications.

Since Windows 10 build 17107, we can use fsutil.exe to view or modify this flag using
the following command syntax:

fsutil.exe file queryCaseSensitiveInfo <directory path>
fsutil.exe file setCaseSensitiveInfo <directory path> <enable\disable>

Follow these steps to enable case-sensitive files using this fsutil.exe:

	 1.	 First thing first, launch a PowerShell console with administrative
privileges and create a new directory, as this flag can be only
applied on a directory level:

mkdir testdir | Out-Null

	 2.	 Let’s test the flag on the directory we just created in the previous
step. By default case sensitivity is “disabled”:

fsutil.exe file QueryCaseSensitiveInfo D:\testdir\

	 3.	 Now, if we try to create two files with the same name but different
cases, then the second command overwrites the first file and
no second file is created, because case sensitivity is still not

supported:

Chapter 6 File System

111

'test1' | Out-File D:\testdir\foo.txt

'test2' | Out-File D:\testdir\FOO.txt

ls D:\testdir\

	 4.	 Now, let’s set the flag using fsutil.exe and re-attempt creating a file

with the same name but different case:

fsutil.exe file setCaseSensitiveInfo D:\testdir\ enable

'test2' | Out-File D:\testdir\FOO.txt

	 5.	 This time a new file will be created as demonstrated in Figure 6-10,

and you will be able to see both “foo.txt” and “FOO.txt” files in the

directory irrespective of the case:

ls D:\testdir\

Figure 6-10.  Query and modifying case sensitivity attribute on NTFS

Chapter 6 File System

112

With Windows 10 build 17692, tweaking case sensitivity was facilitated from within
the Windows Subsystem for Linux through an extended attribute system.wsl_case_
sensitive on a per-directory basis. To view or modify this extended attribute, we can use
the getfattr and setfattr commands on Ubuntu, and you may need to install this using

sudo apt install attr

To enable this attribute, it is set to “1” and “0” disables the attribute.
The Windows Subsystem for Linux allows us to control case sensitivity on drvfs

mount options using the /etc/wsl.conf file’s [automount] section, and by default, these
Windows drives mounted on WSL are case-insensitive. This means when case=off is set,
then any new directories created on “drvfs” mounts will be case-insensitive.

Let’s try this: when I check my mounted drives, I see by default drvfs is set to
case=off:

mount | grep case

And when we create a new directory and check the system.wsl_case_sensitive
extended attribute using getdattr as shown in Figure 6-11, we observe that it is set to “0”
which means this directory is case-insensitive:

mkdir /mnt/d/newdir

cd /mnt/d/

getfattr -n system.wsl_case_sensitive newdir

Figure 6-11.  Query case sensitivity in WSL using “getfattr”

Chapter 6 File System

113

So, if we attempt to create two files with the same name and different cases, then the

first file will be overwritten by the second command and only one file will exist:

touch newdir/file.txt

touch newdir/FILE.txt

ls newdir/

To enable case sensitivity from inside WSL, we enable the extended attribute on the

directory like in the following example:

setfattr --name system.wsl_case_sensitive --value 1 newdir

getfattr -n system.wsl_case_sensitive newdir

Now if we create a file with a different case, then both files will be created with the

same name and different cases “file.txt” and “FILE.txt” as demonstrated in Figure 6-12:

touch newdir/FILE.txt

ls newdir/

Figure 6-12.  Modifying case sensitivity per directory in WSL using “setfattr”

Chapter 6 File System

114

The Windows Subsystem for Linux also allows to set mount options in /etc/wsl.conf

file to case=dir, which means all new directories created will by default have case

sensitivity enabled. This is demonstrated in Figure 6-13.

Figure 6-13.  Using /etc/wsl.conf [automount] section to control case sensitivity

�Windows and Linux Interoperability
Microsoft has made file system interoperability between Linux and Windows smoother

and smoother over time, and sometimes it is hard to realize that these two are different

operating systems which are highly integrated, not isolated, that bridges the gap between

them and enables users to pick the best of both worlds and use what they like, where

they like, and how they like.

Chapter 6 File System

115

�Accessing Windows Files from Linux
The drvfs file system mounted on the Windows Subsystem for Linux serves a major role

to provide access to files on your Windows 10, so any fixed drives mounted on an NT file

system are mounted on WSL. For example, the C:\ drive in NTFS will be available in the

WSL as /mnt/c/ and similarly D:\ as /mnt/d/.

For example, as shown in Figure 6-14, we can list the contents of the directories using

the ls command and the path /mnt/d/<path to directory>, and it will list all Windows

files from the Windows Subsystem for Linux.

Figure 6-14.  Accessing Windows files from WSL using drvfs file system

Additionally, we can also read the contents of these Windows files and even use our

favorite Linux editor, such as nano, to edit files residing on an NT file system on Windows

10 as demonstrated in Figure 6-15.

Chapter 6 File System

116

WSL also enables the use of Windows applications to access files from Linux

distributions. For instance, we can use Windows File Explorer (explorer.exe) to open the

current working directory from a WSL console.

As you can see in the following example, we were able to launch our current working

directory, that is, /home/prateek/, in explorer as a UNC-based shared path \\wsl$\Ubuntu-18.04\

home\prateek\ highlighted in Figure 6-16. Here I can move, edit, and perform all sorts of file

operations, and these changes will reflect back in our Linux distribution running on WSL.

Figure 6-15.  Editing Windows NTFS files from WSL using a Linux editor

Chapter 6 File System

117

Linux commands like cp used to copy files can be used with drvfs mounts to access

Windows NTFS drives and copy files into Linux as demonstrated in Figure 6-17.

Figure 6-17.  Copying Windows files to WSL using drvfs file system

Figure 6-16.  Using Windows Explorer.exe for Linux files from WSL

Chapter 6 File System

118

Or as shown in Figure 6-18, use the mv command to move files or folders from

Windows to the Windows Subsystem for Linux.

Figure 6-18.  Moving Windows files to WSL using drvfs file system

The best part is that WSL gives us the ability to mix and match commands across

operating systems, further bridging the gap between Linux and Windows. In the following

example as demonstrated in Figure 6-19, I used ipconfig.exe, which is a Windows

executable, to get the IP configuration from Windows in WSL, then filtered the output

using the grep command which is a Linux command, and then again saved the file with

the selected result to the Windows NT file system using drvfs mount option /mnt/ on

the Windows Subsystem for Linux. I mean how cool is that and such a level of flexibility

integrating the best of both worlds is hard to find:

ipconfig.exe | grep IPv4 > /mnt/d/ipaddress.txt

cat /mnt/d/ipaddress.txt

Chapter 6 File System

119

�Accessing Linux Files from Windows
Since the Windows Subsystem for Linux file systems are now highly integrated with

Windows File Explorer (explorer.exe), all the Linux distributions are available at a special

UNC path \\wsl$\ as demonstrated in Figure 6-20. I can see all Linux distributions and

the files and folders they contain inside Windows File Explorer.

Figure 6-20.  Accessing Linux distribution file systems on UNC path: \\wsl$\

Figure 6-19.  Using Windows executables with Linux commands

Chapter 6 File System

120

Please note that these paths for individual Linux distribution packages only appear if

the Linux distribution is up and running. If the Linux distribution is not running on WSL,

it won’t appear at the \\wsl$\ UNC path.

So if you want to navigate to the Ubuntu file system from Windows, simply go to the

address bar in File Explorer and type \\wsl$\Ubuntu018.04\ as demonstrated in Figure 6-21

and then hit Enter, and it will take you to the root directory of your Linux file system.

Figure 6-21.  Accessing specific Linux distro files using \\wsl$\

This \\wsl$\<disto-name>\ UNC path can be accessed to modify Linux files residing

in your distro from CMD.exe or PowerShell.exe, and changes will be reflected in your

Linux distribution. As demonstrated in the Figure 6-22, if we will create one file from the

Windows Command Prompt and one from Windows PowerShell and place them both

in my Linux distribution’s home directory using the \\wsl$\ UNC path and then if we list

the items in this folder, we can see both files with the right content from the WSL side.

Chapter 6 File System

121

On top of that, you can also use the Windows Subsystem for Linux to run commands

using wsl.exe and use the results in conjunction with CMD.exe commands like findstr

and PowerShell cmdlets like Select-String to mix both the worlds together as shown in

Figure 6-23 to improve user efficiency and get best of both worlds in one place.

Figure 6-23.  Running WSL and Windows commands in conjunction

Figure 6-22.  Creating files on WSL using \\wsl$\ from Windows

Chapter 6 File System

122

�Summary
In this chapter, we learned file system components like VFS, volfs, drvfs, tmpfs, procfs,

and sysfs that together with 9P server and multiple UNC provider make the file system

of WSL1 possible; later we looked into the file system architecture of WSL1 and how it

differs from WSL2 file system architecture since WSL2 now runs on a lightweight utility

VM with support of a Linux kernel shipped with Windows 10. We also looked in a few

examples to understand how case sensitivity works on WSL with help of extended

attributes and can be tweaked and controlled on a directory or on drvfs mount level.

Finally, we concluded the chapter with Windows and Linux interoperability provided by

WSL that enables users to run Windows executables from Linux and Linux applications

from Windows and allow power users to mix and match best of both worlds with ease. In

the next chapter, we will learn WSl networking and how DNS and network interfaces are

populated on the WSL side and the differences between WSL1 and WSL2 networking.

Chapter 6 File System

123
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_7

CHAPTER 7

Networking
In this chapter, we are going to learn how the Windows Subsystem for Linux configures

networking within the subsystem and how changes or updates in networking propagate

from the Windows side to WSL. In addition, we will look into what Linux sockets are and

how WSL implements them to provide a good Linux experience on top of the Windows

operating system while maintaining interoperability.

Today, our computers are always connected to networks and devices, and we need

constant access to the Internet and other systems through a network stack to exchange

data, move files, and so on, further adding to the importance of networking as one of the

crucial components behind the success of any software application.

�WSL Networking Overview
Let’s start with a small overview of how networking is set up on Linux and its

implementation on WSL, and let us also discuss a little about design choices made to

make a seamless compatibility layer to bridge the gap between Windows and Linux

networking.

�Network Interfaces and DNS
Linux uses generic system calls that can be utilized to control (read and write) any device

like network interfaces, and such calls are also called Input/Output Control (IOCTL) .

IOCTLs make it possible to view the list of all network interfaces connected to Linux,

by making these syscalls to read the network interfaces and keeping this information in

kernel. But WSL1 doesn’t have this capability since there is no kernel available and we are

actually emulating Linux over Windows using syscall translations on a compatibility layer.

https://doi.org/10.1007/978-1-4842-6038-8_7#DOI

124

In order to bridge this gap, as soon as a WSL instance is launched on Windows,

the LXSS Manager service queries the list of the network interfaces on the Windows

operating system and passes this list to the WSL driver (lxcore.sys), and whenever a

system call (IOCTL) is made from a Linux distribution, then the aforementioned cached

information provides the list of network interfaces in WSL.

The same list also gets auto-populated in the /etc/resolv.conf file, which is the

resolver configuration file on Linux that contains the list domain name system servers

configured on Windows. There are lots of configuration options that can be used in this

file, but by default, it creates a common configuration:

nameserver <namer server IP address>

The IP address can be either an IPv4 address in dot notation or an IPv6 address in

dot/colon notation, as demonstrated in Figure 7-1.

Figure 7-1.  Auto-populated resolver file on WSL

Some of this network query information also populates the /etc/hosts file also known
as the host file, which contains a static lookup table of hostnames and their respective IP
addresses as demonstrated in Figure 7-2. The combination of /etc/resolv.conf and /
etc/hosts makes the DNS support possible on the Windows Subsystem for Linux.

Chapter 7 Networking

125

Figure 7-2.  Auto-populated hosts file on WSL

But networking is a very dynamic thing, and things change very quickly, for example,
a user can very easily switch from wired Ethernet to a wireless network. There must
be a mechanism in WSL to support updating these changes from Windows into WSL,
so the LXSS Manager service again comes into the picture by registering itself for any
notifications related to updates in network interfaces on the Windows side. That means
the LxssManager service is listening for any update notifications, and if there is a
change in networks, it will again be auto-populated into WSL using the aforementioned
approach as demonstrated in Figure 7-3. This keeps the /etc/resolv.conf and /etc/

hosts files up to date and synchronized with Windows configurations.

Chapter 7 Networking

126

Figure 7-3 demonstrates that in step 3 when the network interface is disabled on the

Windows side, the Ethernet instantly disappears from the Windows Subsystem for Linux

(verified through the missing MAC address in step 4), and ICMP requests start to fail at step 6.

�Sockets
A socket is an abstract representation of an endpoint of a network communication path.

Sockets can also serve as endpoints for local, non-networked inter-process communication.

In the following subsection, we will cover a brief overview of Linux Berkeley sockets and

similar implementation in Windows operating system called Winsock Kernel (WSK), which

makes it possible for WSL to translate Berkeley socket API calls to Winsock Kernel API calls

and vice versa to make networking possible between Windows and Linux.

�Berkeley Sockets

In Linux, Berkeley sockets (also known as BSD sockets) is an API interface that allows

inter-process communication (IPC). Any two endpoints, to establish communication,

open a socket at each of their ends, which is then bound to a given address so that data

can be sent or received between them.

Here are some of the common BSD socket API functions.

Figure 7-3.  WSL reconfigured by changes in the Windows environment

Chapter 7 Networking

127

socket()

It is used to create a new socket of a specific type and there are three requirements to

open a socket, and they can further be used to categorize the socket:

	 1)	 Address family (AF) or domain – A socket can be one of these

domains or address family.

	 a)	 AF_INET is the Linux implementation of Internet Protocol version 4 (IPv4).

	 b)	 AF_UNIX, also known as AF_LOCAL, is used for inter-process

communication within the system.

	 c)	 AF_NETLINK sockets are used for communicating between user mode

and the kernel as they consist of a standard socket-based interface for user

space processes and an internal kernel API for kernel modules.

	 2)	 Socket type – The socket type defines whether a protocol is

connection-oriented or connectionless.

	 a)	 SOCK_DGRAM for UDP

	 b)	 SOCK_STREAM for TCP

	 c)	 SOCK_RAW for ICMP

	 3)	 Socket protocol – The protocol argument can be set to zero “0” to

request the default implementation of a socket type for the protocol.

Syntax:

socket(AddressFamily, Type, Protocol);

Example:

socket(AF_INET, SOCK_STREAM, 0);

bind()

This function binds a socket with a socket address, that is, a combination of an IP

address and a port number.

Chapter 7 Networking

128

listen()

This function marks the specified socket as a passive socket that will only accept

incoming connections.

connect()

This function is used to establish a connection between the referenced socket and

passed IP address.

send(), recv(), sendto(), and recvfrom()

As the name suggests, these functions are used to send and receive data via sockets.

close()

This function is used to release system resources by terminating a connection

established through sockets.

�Winsock and WSK (Winsock Kernel)

The Windows operating system has a user-mode implementation of the aforementioned

BSD sockets known as “Winsock,” and this implementation is very similar but not

identical, and it couldn’t be utilized in the Windows Subsystem for Linux because WSL’s

socket implementation is in kernel mode, that is within the Linux subsystem’s driver

library (WslSocket.lib).

To solve this challenge, another low-level Windows NT API, also known as Winsock

Kernel (WSK), was used in WSL. WSK is a kernel-mode network programming interface,

and using this, any kernel-mode software can perform network I/O operations just like

user-mode “Winsock.” Basically, Windows Subsystem for Linux drivers translate calls

from BSD socket APIs to WSK APIs and implement whatever else is missing to support

almost the same networking experience as there is on a native Linux distribution.

As demonstrated in Figure 7-4, when an application creates a BSD socket running

in a Linux distribution on top of WSL, then BSD socket syscalls are made to the WSL’s

kernel-mode driver lxcore.sys, which handles the translation. lxcore.sys translates these

BSD socket syscalls to calls that are understood by WSK (Winsock Kernel), which is a

low-level API in the NT kernel to handle any socket-related requests on the Windows

operating system and connect the socket to the underlying TCP/IP stack.

Chapter 7 Networking

129

�WSL vs. WSL2 Networking
How networking is implemented in Windows Subsystem for Linux versions 1 and 2 is

totally different, and it is really important to understand the difference; otherwise, you

will end up stuck with networking issues and unexpected behaviors.

One of the major differences is that in WSL1 the subsystem uses the same physical

network interface used by the underlying Windows operating system, because everything

else is just an emulation or in other words a compatibility layer built to support Linux

distributions on Windows. That means you use the same Network Interface Cards (NICs),

IP addresses, and DNS servers.

Figure 7-4.  WSL networking layout

Chapter 7 Networking

130

But this changed in WSL2 because with version 2 the Windows Subsystem for Linux

now runs on a lightweight utility virtual machine built using Hyper-V, and just like any

virtual machine, WSL2 has its own dedicated, virtualized network interface as shown in

Figure 7-5, which has a different IP address and DNS servers.

Apart from that, WSL1 and WSL2 both still populate /etc/resolv.conf and /etc/

hosts files to make DNS resolution work, unless these files are explicitly overridden.

�Summary
In this chapter, we learned the networking concepts behind the Windows Subsystem

for Linux that makes the seamless experience and interoperability possible between

Windows operating system and Linux subsystem. We covered network interfaces and

how name resolution is set up and configured on WSL, and then we looked into Berkeley

sockets and similar but not identical implementation in Windows called Winsock Kernel,

which makes networking possible in the Windows Subsystem for Linux by translating the

API calls. Finally, we covered the key difference in networking on WSL1 which emulates

a Linux environment on Windows and WSL2 that is a lightweight utility virtual machine

running over Windows operating system with a dedicated network interface.

Figure 7-5.  Virtual network to support lightweight VM for WSL2

Chapter 7 Networking

131
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_8

CHAPTER 8

Linux Development
on WSL
Windows is a great platform and one of the most popular operating systems in the

world, but we can’t deny the sheer number of applications built and the workloads

running on the Linux operating system. Microsoft has embraced this with the Windows

Subsystem for Linux and other open source projects and other areas Microsoft has

been contributing. In this chapter, we are going to learn about tools like VSCode and

WSL remote extensions that enable developers to seamlessly develop Linux-based

applications on the Windows operating system with all the necessary tools and runtime,

in the comfort of your Linux environment running on top of the Windows Subsystem

for Linux without worrying about Windows-Linux path translations, sharing files, or any

other cross-operating system challenges.

�Source Control
Before we can start setting up a Linux development environment on the Windows

Subsystem for Linux, first we need to set up source control or version control to track and

manage changes to our source code. Git is nowadays the most popular source control

tool used by developers worldwide, so let’s get started with setting it up.

�Installing Git
Most of WSL distributions have “Git” pre-installed on them, but if it is missing or not

installed by default like in kali-linux distribution, then you want to explicitly install “Git”

on the Windows Subsystem for Linux by performing the following steps:

https://doi.org/10.1007/978-1-4842-6038-8_8#DOI

132

	 1.	 Launch WSL from the Windows Start menu. For this example, we

are using Ubuntu 18.04.

	 2.	 In WSL, type the following command to install Git from the

Ubuntu software repositories as shown in Figure 8-1:

sudo apt-get install git

Figure 8-1.  Installing Git on WSL

Figure 8-2.  Checking Git version

	 3.	 Now let’s verify the version of the package installed by running

the following command, and if you see version information like in

Figure 8-2, then we are good to go.

Chapter 8 Linux Development on WSL

133

�Setting Up and Configuring
First thing first, you need to set up an identity in Git, so that any change you make in the

code is tagged with your name (Author’s Name) and can be distinguished with any other

code check-ins when you are working on a code repository with a team of developers:

git config --global user.name "Prateek Singh"

git config --global user.email prateek@ridicurious.com

Once the name and email are configured, you can list all the git configurations and

verify them using git config --list as shown in Figure 8-3.

Figure 8-3.  Setting global git configurations

�Resolving End-of-Line Differences in Windows and Linux

Since we are working in both Windows and Linux environments and files or programs you

are editing can be created in Windows while you access them from WSL, some problems

can appear. Because of the mix of these environments and the difference in default text line

endings between Windows and Linux, you may see Git reporting a lot of modified files.

In order to demonstrate this, we checked in a Python file main.py in Windows using

git commit. After that is done, there is nothing else to commit as we can determine

from the result of command git status. Now when we open the same folder where the

Python file was committed in the Windows Subsystem for Linux and run git status, it

still shows uncommitted files. Upon checking the file difference using git diff, we see

a strange character (^m) added at the end of the line as demonstrated in Figure 8-4; this

is due to the line endings. Windows uses a carriage return and line feed (\r\n or CRLF)

Chapter 8 Linux Development on WSL

134

as a line ending, whereas on Unix the ends of lines are represented with just a line feed

(\n or LF). The character ^M is the representation of a “carriage return” or CR so we

need to be very careful when transferring files between WSL (Unix) and Windows to

make sure the line endings are translated properly.

Figure 8-4.  End-of-line differences in Windows and Linux

Chapter 8 Linux Development on WSL

135

In order to resolve the line-ending issues using the following command on Windows,

you can simply set the global git configurations to ensure the line endings in files you

check out are correct for Windows and are also converted to Unix style when the files are

committed:

git config --global core.autocrlf true

After making this global configuration change as demonstrated in Figure 8-5, the special

character introduced because of “carriage return” appears to disappear on the Linux side

while we are using the same Windows file. The file still contains the CR/LF characters, but

now git understands to convert it to only LF end-of-line characters.

Figure 8-5.  Forcing CRLF end-of-line on WSL

�Sharing Git Credentials Between Windows and WSL
When you are working on both Windows and Linux, you also want your credentials to

sync up; that means any credentials stored on Windows must be available to Git in the

Windows Subsystem for Linux and vice versa.

If code repositories are cloned through HTTPS and you want credentials to persist

between both Windows and WSL, then we need to perform the following steps to

configure the Windows credential helper:

Chapter 8 Linux Development on WSL

136

	 1.	 On Windows, open a PowerShell console and type the following

command and hit Enter:

git config --global cretential.helper wincred

	 2.	 Now, we need to perform the same configuration on WSL, so we

will launch a WSL instance and run the following command as

shown in Figure 8-6, to point to the credential helper on Windows

which we just configured, using the mounted drive at /mnt/c/:

�git config --global credential.helper "/mnt/c/Program\ Files/Git/

mingw64/libexec/git-core/git-redential-wincred.exe"

Figure 8-6.  Sharing git credentials with Windows Credential Manager

When we use wincred as the credential.helper, git utilizes Windows Credential

Manager to store your credentials, and with this configuration, it is accessible from both

Windows and WSL.

�Windows Terminal
Windows Terminal is an open source project by Microsoft that aims to deliver rich text-

editing features, tab support, background, themes, and font styles. More than that, the

new terminal provides key bindings and is highly configurable as settings are available in

the form of a JSON file named settings.json.

Chapter 8 Linux Development on WSL

137

The main purpose of the project was to provide an enhanced experience to

developers on Windows, and it works very well with the Windows Subsystem for Linux

by enabling developers to configure Linux distribution’s command-line arguments to

launch custom sessions. Before we jump into configuring WSL, let’s quickly learn how to

install Windows Terminal first, and there are two ways to achieve that.

�Installing Windows Terminal from the Microsoft Store
Follow these steps to install Microsoft Terminal from the Microsoft Store:

	 1.	 Go to the Start menu at the bottom left of your Windows 10

screen and search for “Microsoft Store” and launch it as shown in

Figure 8-7.

Figure 8-7.  Launch Microsoft Store

Chapter 8 Linux Development on WSL

138

	 2.	 Now in the Microsoft Store, search for “Windows Terminal”, and

from the results, click “Windows Terminal (Preview)”, the one

highlighted in Figure 8-8.

Figure 8-8.  Search for Windows Terminal in the Microsoft Store

	 3.	 Then click the “Install” button as highlighted in Figure 8-9, which

will start the download and installation.

Chapter 8 Linux Development on WSL

139

	 4.	 Once the installation is complete, you can launch Windows

Terminal from the Start menu.

�Installing Windows Terminal Using Chocolatey
The second method is using the “Chocolatey” tool, which is a command-line installer for

Windows applications. Chocolatey uses the NuGet packaging format to package software

and applications by making them super easy to install on Windows.

Perform the following steps to install Chocolatey on Windows 10 and then install

Windows Terminal using that:

	 1.	 Launch a PowerShell console with administrative privileges.

	 2.	 Run the following command to make sure execution policies set

on PowerShell don’t hinder our installation:

Set-ExecutionPolicy Bypass -Scope Process -Force

Figure 8-9.  Install Windows Terminal from the Microsoft Store

Chapter 8 Linux Development on WSL

140

	 3.	 Now using the following commands, we’ll download the

installation script and then use the Invoke-Expression cmdlet to

run the script as demonstrated in Figure 8-10:

$URL = 'https://chocolatey.org/install.ps1'

$Script = (New-Object System.Net.WebClient).DownloadString($URL)

Invoke-Expression -Command $String

Figure 8-10.  Download Chocolatey Software

	 4.	 Once the installation is complete, relaunch the PowerShell

console and type choco --version. If you see version

information, then we have a successful installation of Chocolatey.

Chapter 8 Linux Development on WSL

141

After the installation of Chocolatey is complete on your machine,

as demonstrated in Figure 8-11, we can proceed with installing

Windows Terminal using the following command:

choco install microsoft-windows-terminal

Figure 8-11.  Install Windows Terminal using Chocolatey

�Setting Up WSL in Windows Terminal
Now that we have installed Windows Terminal, let us go ahead and configure that

with available Linux distributions for WSL. By default, all the Linux distributions

are automatically populated under the down arrow sign in Windows Terminal as

demonstrated in Figure 8-12.

Chapter 8 Linux Development on WSL

142

These are dynamic profiles that are created at runtime and are added to the settings.

json file. Each dynamic profile is uniquely identified by a system-created GUID and

a source property: Windows.Terminal.Wsl, Windows.Terminal.Azure, or Windows.

Terminal.PowershellCore, something like the following sample:

{

 "guid": "{46ca431a-3a87-5fb3-83cd-11ececc031d2}",

 "hidden": false,

 "name": "Ubuntu-18.04",

 "source": "Windows.Terminal.Wsl"

}

We can also configure the settings.json file to run a custom-defined command-line

argument with WSL, for example, one that launches Ubuntu 18.04 in WSL as the “root”

user, as demonstrated in Figure 8-13. Windows Terminal settings are stored in settings.

json file which can be found at

%LOCALAPPDATA%\Packages\Microsoft.WindowsTerminal_8wekyb3d8bbwe\

LocalState\settings.json

Figure 8-12.  Launch WSL from Windows Terminal

Chapter 8 Linux Development on WSL

143

{
 "guid": "{c6eaf9f4-32a7-5fdc-b5cf-066e8a4b1e40}",
 "hidden": false,
 "name": "Ubuntu-18.04",
 "commandline": "wsl.exe -u root -d ubuntu-18.04"
}

This setting can be also accessed from the Windows Terminal ➤ drop-down menu
next to plus sign (+) for “New Tab” ➤ Settings. Or simply press keys Ctrl + to launch the

settings.json file in the text editor.

Figure 8-13.  Adding WSL command line in Windows Terminal launch settings

Figure 8-14 shows that you can also set the start directory of the Linux distribution
and the session icon by providing paths as in the following example:

{
 "guid": "{c6eaf9f4-32a7-5fdc-b5cf-066e8a4b1e40}",
 "hidden": false,
 "name": "Ubuntu-18.04",
 "commandline": "wsl.exe -d ubuntu-18.04",
 "startingDirectory" : "D:\\Workspace\\",
 "icon" : "D:\\icon.jpg"

}

Chapter 8 Linux Development on WSL

144

Note I n the preceding example, we escaped the backslashes in Windows file
path, as backslash in Linux is used to mark the special characters.

Figure 8-14.  Adding icons and start directory for WSL in Windows Terminal

There are lots of other configurations and settings available and can be found

documented on GitHub where the Windows Terminal source code is available:

https://github.com/microsoft/terminal.

�Visual Studio Code (VSCode)
Visual Studio Code is a lightweight, powerful, and cross-platform code editor which can

run on Windows, macOS, and Linux. VSCode supports a vast variety of programming

languages like Python, C#, C++, PHP, and Java and is extensible through extensions that

can be installed to extend the capabilities of the code editor.

The first step is to download and install Visual Studio Code from the following URL:

https://code.visualstudio.com/download. This only takes a few minutes because of

its lightweight nature. Once Visual Studio Code is installed, then we need to install the

“Remote – WSL” extension.

The “Remote – WSL” extension enables developers to use the Windows Subsystem

for Linux as the development environment for Visual Studio Code. That means WSL files

Chapter 8 Linux Development on WSL

https://github.com/microsoft/terminal
https://code.visualstudio.com/download

145

are accessible to edit, and you can debug your Linux applications from Windows. This

extension also takes care of a lot of path translations and compatibility issues between

Windows and Linux.

VSCode sets up a VSCode server inside the Windows Subsystem for Linux, through

which the tooling and frameworks running on Windows can be executed on WSL and

a communication channel is set up that can take commands from Windows, and then

execute them on WSL and return the output back to Windows.

Figure 8-15 demonstrates how Windows and WSL interact using Visual Studio Code.

Figure 8-15.  Visual Studio Code remote server in the Windows Subsystem for Linux

�Installing the Remote - WSL Extension

	 1.	 Launch Visual Studio Code.

	 2.	 On the left sidebar, click the extensions icon and search for

“Remote - WSL”.

	 3.	 Now click “Install” on Remote – WSL extension by Microsoft as

highlighted in Figure 8-16, and this will install the extension in

VSCode.

Chapter 8 Linux Development on WSL

146

�WSL Linux Distribution Support
Once the extension is installed, a new status bar item appears that can connect VSCode

to the Windows Subsystem for Linux and also shows the current Linux distro to which

Visual Studio Code is connected.

If we click this, it will launch a command palette with options to launch WSL

instances in VSCode. If I choose the command “Remote-WSL : New Window”, a new

instance of Visual Studio Code will be launched and with the context of my default WSL

Linux distribution, as can be seen in Figure 8-17.

Figure 8-16.  Installing “Remote – WSL” extension for Visual Studio Code

Chapter 8 Linux Development on WSL

147

Since WSL supports more than one Linux distribution, we have another option

from VSCode to support multiple Linux distributions; all you have to do is bring up the

command palette (F1), search for “distro,” and choose the command “Remote-WSL:

New Window using Distro” as demonstrated in Figure 8-18.

Figure 8-18.  Launching a WSL distro from Visual Studio Code

Figure 8-17.  VSCode launched in context of WSL distro as seen from the bottom-
left corner of IDE

This will then list all the current Linux distributions installed via the Windows

Subsystem for Linux as shown in Figure 8-19 and lets you choose one to use with VSCode.

Chapter 8 Linux Development on WSL

148

Let’s suppose we choose Kali-Linux; it will launch a new VSCode instance with

context of Kali-Linux. You can verify the context from the bottom-left corner of the Visual

Studio Code highlighted in Figure 8-20.

Figure 8-20.  Visual Studio Code launched in context of chosen distribution

Figure 8-19.  Selecting a WSL distro from Visual Studio Code

Chapter 8 Linux Development on WSL

149

�Integrated Terminal and Default Shell
Once you are in the context of the Windows Subsystem for Linux, you can launch a

new terminal from the menu bar, by left-clicking Terminal ▶ New Terminal as shown in

Figure 8-21. Alternatively, you can also press Ctrl + to launch a new terminal.

Figure 8-21.  Launching integrated terminal from VSCode’s menu bar

When the terminal is launched, it will automatically open the default shell in the

Linux distribution we are working with as shown in Figure 8-22.

Chapter 8 Linux Development on WSL

150

Now that we are in the terminal with a bash shell inside a Windows Subsystem for

Linux instance, we can set the default shell we want to launch every time the terminal

instance is run. The following steps set up a default shell for WSL from VSCode running

on Windows:

	 1.	 In the Visual Studio Code terminal launched in a WSL context,

click the drop-down button on the right-hand side as shown in

Figure 8-23.

Figure 8-22.  Terminal launches default shell of WSL distribution

Chapter 8 Linux Development on WSL

151

	 2.	 From the drop-down menu, click “Select Default Shell” as

demonstrated in Figure 8-24. A command palette with a drop-down

list of shell applications on your Linux distribution will pop up.

Figure 8-23.  Changing the default shell

Figure 8-24.  Selecting the default shell for the VSCode terminal

Chapter 8 Linux Development on WSL

152

	 3.	 Choose your favorite shell and kill the terminal by clicking the “bin”

icon on the top-right corner of the terminal in Visual Studio Code.

	 4.	 Figure 8-25 demonstrates that when you relaunch your terminal, it

will open the default shell you selected in the previous step.

Figure 8-25.  New default shell setup in terminal

�Installing VSCode Extensions on WSL
Visual Studio Code makes it super simple and intuitive for developers to install

extensions and tooling on the Windows Subsystem for Linux. For example, when an

instance of Visual Studio Code is running in the context of a Remote - WSL instance, and

if we click the Extensions view on the left sidebar, then search for an extension like in

Figure 8-26.

Chapter 8 Linux Development on WSL

153

As we can see, some of these extensions on Windows are compatible with WSL and

show an “Install in WSL: <Distro Name>” button highlighted in green. If we click a button,

it will install the extension on WSL. Let’s install the Python extension just for sake of an

example as demonstrated in Figure 8-27.

Figure 8-27.  Installation of VSCode extensions in progress on WSL

Figure 8-26.  Installing VSCode extensions in WSL

Chapter 8 Linux Development on WSL

154

Once the installation completes, you need to restart VSCode, and now the Python

extension appears under the “WSL: UBUNTU-18.04 - Installed” section as demonstrated

in Figure 8-28. If you are performing this setup for the first time, you will observe

few other pop-ups on your screen, like VSCode extension will prompt you to select a

Python interpreter; once the interpreter is chosen, the extension enables features like

IntelliSense and debugging. You would be also prompted to select and install a linter,

where various linters can be used like Pylint, pycodestyle, Flake8, mypy, pydocstyle,

prospector, and pylama. Linting is a process that automatically analyzes your Python

programs for errors and simplifies fixing them; the purpose of linting is to accelerate the

development process and improve code quality.

Figure 8-28.  VSCode extension installed on WSL

Chapter 8 Linux Development on WSL

155

�Editing WSL Files and File Explorer
So now that we have the Python extension installed in WSL, we can run the following

command in WSL’s bash terminal to open a Python program from WSL in Visual Studio Code:

Code script.py

Additionally, a remote folder on WSL can be accessed within Visual Studio Code

from the left sidebar by clicking the file explorer icon and then the “Open Folder” button

as demonstrated in Figure 8-29.

Figure 8-29.  File explorer in Visual Studio Code

As highlighted in Figure 8-30, this will give access to all the files in the directory and

the ability to create files and folders in WSL using Visual Studio Code.

Chapter 8 Linux Development on WSL

156

�Running and Debugging Programs
Once we have the tooling set up and the ability to edit and create files and programs

in WSL from Visual Studio Code, next comes running and debugging a program. For

example, we have the following simple Python program created at my home folder /

home/prateek to parse a JSON string and iterate over and print items. You can create a

file named script.py at your current working directory using “touch script.py” from the

terminal in WSL context and open this file in VSCode by running the command “code

script.py” as shown as step 1 in Figure 8-31, then copy and paste the following code

sample in the file, and finally save it by pressing Ctrl + S:

import json

json_string = '{ "name":"Prateek", "age":29, "city":"Bengaluru"}'

data = json.loads(json_string)

for key, value in data.items():

 print(f"{key} is {value}")

Figure 8-30.  Accessing WSL files and folders from file explorer in VSCode

Chapter 8 Linux Development on WSL

157

After creating the script.py file and opening it in Visual Studio Code, now we will set

a breakpoint at line 7, by clicking in the far left margin next to a line of code in the editor

window, which will set a red dot for a breakpoint as demonstrated in step 2 of Figure 8-31.

Once that is done, click the “RUN” icon on the left sidebar highlighted as step 3 in

Figure 8-31, which will open a debug console, then click the “Run and Debug” button

in the debug console, and choose the debug configuration “Python File Debug the

currently active Python file”, which will run our program.

Figure 8-31.  Run and debug code on WSL in VSCode on Windows

Since we have set up a breakpoint at line 7, the code execution pauses at that line

and now you can see the value of runtime variables like “key” and “value” as highlighted

in Figure 8-32, and we can keep stepping over these breakpoints by hitting F10 key, when

the flow of control is in the “for” loop just to inspect how the values of runtime variables

change as the program continues to execute. Additionally, we can also create watches

and navigate the call stack of the program running on WSL from Windows.

Chapter 8 Linux Development on WSL

158

This debugging experience from a program running on WSL is made possible

because of the VSCode Python extension that sets up a communication channel through

the Visual Studio Code Server running on the Windows Subsystem for Linux.

�Docker Containers on WSL2
The community version of Docker for Windows, also known as Docker Desktop, can

download for Windows 10 64-bit Professional or Enterprise version from the Docker hub.

Docker Desktop after recent architectural changes for Windows 10 now has the capacity

to run with Windows Subsystem for Linux version 2 (WSL2) which is deployed with

lightweight utility virtual machines (VMs). The new architecture works exactly like the

Remote - WSL extension we discussed in the previous section. A server is set up on WSL2

to access and manage container life cycle from Windows 10. That means all Docker CLI

commands executed on Windows 10 (host) machines are forwarded to WSL2 (VM) and

run on the Docker integration package.

Figure 8-32.  Inspecting variables and values of Python program on WSL

Chapter 8 Linux Development on WSL

159

Download Docker Desktop from Docker Hub and follow the instructions on the

official website for Docker to install it on Windows 10 machine; once the installation is

complete, make sure to reboot the system for changes to take effect.

Download - https://hub.docker.com/editions/community/docker-ce-desktop-

windows/

Installation - https://docs.docker.com/docker-for-windows/install/

Before we can use Docker Desktop with the Windows Subsystem for Linux, first we

need to check the Linux distros that are running on WSL2 using “wsl --list –verbose” and

let’s make sure that at least one of your WSL Linux distributions is set to use version 2.

wsl --set-version <distro name> 2

Example:

wsl --set-version ubuntu-18.04 2

Once this prerequisite and Docker Desktop is installed on your Windows 10

machine, please follow these steps to set up WSL2 integration:

	 1.	 Go to Start menu and search “Docker”, and click the “Docker

Desktop” as shown in Figure 8-33.

Figure 8-33.  Launch Docker Desktop from Windows 10 Start menu

Chapter 8 Linux Development on WSL

https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://docs.docker.com/docker-for-windows/install/

160

	 2.	 This will start Docker Desktop in the background if it isn’t already

running, and now at the bottom-right corner of the taskbar, right-

click the Docker tray icon, which will pop up a menu, and click

“Settings” as highlighted in Figure 8-34.

Figure 8-35.  Enable WSL2 engine for Docker

Figure 8-34.  Open Docker Settings

	 3.	 Under the Settings window, go to “General”, highlighted as

step 1 in Figure 8-35, and check the box next to “Enable the

experimental WSL2 based engine” which is step 2 in Figure 8-35.

Chapter 8 Linux Development on WSL

161

	 4.	 Now go to Settings ➤ Resources ➤ WSL Integration and enable

all the WSL2 distribution packages you want to allow Docker

containers to access.

Figure 8-36.  Choose WSL distros to access Docker Desktop for Windows

	 5.	 Finish the setup by clicking “Apply & Restart” as demonstrated in

Figure 8-36.

�Develop Web Application with Docker and WSL2
Once we have installed Docker Desktop and set it up to use WSL2 and Visual Studio Code

is installed on your Windows machine, then developing with Docker on WSL2 is pretty

straightforward and you can start working with your code inside the Linux distributions.

It is recommended to install the Docker extension from Microsoft on Visual Studio

Code on both Windows 10 and WSL sides, so that you can see Docker containers, images,

registries, networks, and volumes when connected to a WSL context using “Remote – WSL”

extension and then you can even connect to interactive shells in the container.

Chapter 8 Linux Development on WSL

162

Let’s start with a simple ASP.Net Core web application, and then we will put web

application code inside Docker containers; only prerequisite is to download and install

.Net Core SDK from the official download page https://dotnet.microsoft.com/

download and follow these instructions to complete the installation: https://docs.

microsoft.com/en-us/dotnet/core/install/sdk.

After the installation is complete, open a PowerShell console with administrative

privileges and run the command “dotnet --version”, and if you get the version .Net Core

you just installed, the installation was successful. Now, the next step is creating a new

.Net web application using the following command, which will create all the required

files and scaffold folders in a new directory named “docker-app” at the current working

directory as shown in Figure 8-37:

dotnet new webapp -o docker-app

Figure 8-37.  Create a simple .Net web application

Chapter 8 Linux Development on WSL

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://docs.microsoft.com/en-us/dotnet/core/install/sdk
https://docs.microsoft.com/en-us/dotnet/core/install/sdk

163

Now create a directory with the same name “docker-app” on WSL distro and copy all

files/folders of ASP.Net Core application to your Linux distribution running on WSL2 as

shown in Figure 8-38, under the new directory using the following PowerShell command:

Copy-Item D:\docker-app* \\wsl$\Ubuntu-18.04\home\prateek\docker-app\

-Recurse

Figure 8-38.  Copy .Net application files from Windows to WSL

Once we have copied all the required files into WSL under the “docker-app” folder,

we need to create a file named “Dockerfile” inside the “docker-app” folder with the

following content. A Dockerfile is a simple text document with all the commands and

instructions required in order to automatically build or assemble a container image:

FROM mcr.microsoft.com/dotnet/core/sdk:3.1 AS build-env

WORKDIR /app

Copy csproj and restore as distinct layers

COPY *.csproj ./

RUN dotnet restore

Copy everything else and build

COPY . ./

RUN dotnet publish -c Release -o out

Chapter 8 Linux Development on WSL

164

Build runtime image

FROM mcr.microsoft.com/dotnet/core/aspnet:3.1

WORKDIR /app

COPY --from=build-env /app/out .

ENTRYPOINT ["dotnet", "docker-app.dll"]

To limit the build context, create another file named “.dockerignore” to the “docker-

app” directory with the following content:

/bin

/obj

Then we will do a little customization and edit our docker-app ➤ Pages ➤ index.

cshtml file in our ASP.Net Core web application by modifying a heading <h1>..</h1> on

the home page as highlighted in the text editor window of Figure 8-39 and then saving

the changes.

Figure 8-39.  Edit the ASP.Net Core web application on WSL from VSCode

Chapter 8 Linux Development on WSL

165

Once the Dockerfile and .dockerignore files are created and you are finished with
you customizations, now it is time to build the Docker containers using the “docker
build” command from bash shell in WSL, which will execute the instructions under
Dockerfile and build the containers as shown in Figure 8-40.

docker build -t docker-app .

Figure 8-40.  Build docker image with ASP.Net Core web application

Once the build is complete and you see success messages like the ones in Figure 8-40, we

are good to run the Dockerized ASP.Net Core web application using the following command,

which will run a container process and connect the ASP.Net Core web application listening

on port 80 in docker container backed on WSL to localhost port 8080 of Windows 10 machine

as shown in Figure 8-41:

Chapter 8 Linux Development on WSL

166

docker run -d -p 8080:80 --name mywebapp docker-app

Figure 8-41.  Run docker container in WSL

Now if you launch your web browser and navigate to http://localhost:8080, you can

access your ASP.Net Core web application with the modifications we did on the index

HTML page in one of the previous steps. This will run a web application hosted on

docker container inside WSL2 backed as highlighted in Figure 8-42.

Figure 8-42.  Accessing dockerized ASP.Net Core web application

If you have the Docker extension installed, then you can click the “Docker” icon

on the left sidebar to open an Explorer window, where you can find the container and

images which we just created and Docker registries and networking components. This

extension gives you a graphical way to manage and inspect your Docker resources from

the comfort in your Visual Studio Code IDE as demonstrated in Figure 8-43, where you

develop the application that has been containerized in Docker.

Chapter 8 Linux Development on WSL

167

Note P lease install the Docker extension from Visual Studio Marketplace using
the following link, or directly search it from the extensions on the left sidebar of
Visual Studio Code:

https://marketplace.visualstudio.com/items?itemName=ms-
azuretools.vscode-docker

Figure 8-43.  Inspecting WSL-based Docker containers using Docker VSCode
extension

Chapter 8 Linux Development on WSL

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker

168

�Summary
In this chapter, we focused on development tools that can work with WSL and

enhance the overall developer experience with WSL by providing a seamless Linux

environment for developers to write code and develop applications with the minimum

friction possible. We started the chapter by learning the version control tool Git and

some caveats and workarounds that we need to perform to overcome text line-ending

differences between the Windows and Linux environments, sharing credentials

between environments, and more. Next, we looked into downloading, installation, and

setup of Windows Terminal and customizing it to use Windows Subsystem for Linux

distros. Later we learned to install, set up, and configure Visual Studio Code, which is

a Microsoft open source, cross-platform editor, with the Windows Subsystem for Linux

and also performed step-by-step debugging of a Python program residing on WSL file

system from the Windows side. Finally, we concluded the chapter by developing an

ASP.Net Core web application in a docker container with WSL2 as a back end in Visual

Studio Code. In the next and final chapter, we will learn step by step how to deploy a full

desktop experience on WSL.

Chapter 8 Linux Development on WSL

169
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8_9

CHAPTER 9

Linux Desktop on WSL
In this chapter, we are going to learn about the tools and services that are required to

enable a desktop experience on the Windows Subsystem for Linux and a step-by-step

configuration and setup process. To provide a full desktop experience on the Windows

Subsystem for Linux, there are two important requirements. Firstly, we need a desktop

environment that lets users interact with Linux with menus and multiple windowed

applications using a graphical user interface. Secondly, we need a service that can

connect the Windows user to the Linux desktop environment running on WSL.

We will learn how to use “Xfce” as the desktop environment and “xRDP” as a

service to run a Remote Desktop Protocol (RDP) Server on a Linux distribution that can

understand the incoming RDP connection requests from Windows.

Let’s look into the steps involved in configuring a Linux desktop one by one.

�Xfce
Xfce is a free and open source desktop environment for Unix-like operating systems,

which is visually appealing and user-friendly compared to a command-line interface

as shown in Figure 9-1. Xfce is very thin and lightweight, so it has a minimal resource

(memory and CPU) footprint on the system.

Like the GNOME desktop, Xfce is also based on GTK, which is a popular toolkit for

creating graphical user interface (GUI) programs that works with the X Window System.

Toolkits like GTK enable developers to create windows, menus, and pop-up dialogs for

interaction with users and other GUI programs.

Multiple packages and components come together to provide the full functionality

of a desktop environment which is highly configurable, which means users can opt in or

out from all available packages to build a desktop experience suitable to their own needs.

Some of the core components of Xfce are these:

https://doi.org/10.1007/978-1-4842-6038-8_9#DOI

170

•	 Window Manager – Controls and manages the placement of

windows on the screen

•	 Desktop Manager – Handles background image, menus, and the desktop

•	 Panel – Provides ability to switch between windows and applications

•	 Session Manager – Manages user login sessions

•	 Application Finder – Categorizes and displays installed applications

so that they are easily accessible to the user

•	 File Manager – Provides file management capabilities in a graphical

user interface

•	 Setting Manager – Controls all the settings of the desktop experience

such as themes and display settings

Figure 9-1.  Desktop environment using Xfce

Chapter 9 Linux Desktop on WSL

171

�xRDP
xRDP is an open source tool which allows Windows users to access the Linux desktop

remotely through Windows Remote Desktop Protocol (RDP) by providing a graphical

interface to log in and connect to the remote machine. Supported RDP clients (such

as MSTSC.exe) can send connection requests to the xRDP server running on the Linux

distribution. Some of the supported RDP clients are

•	 Microsoft Terminal Services Client (MSTSC)

•	 FreeRDP

•	 Rdesktop

•	 NeutrinoRDP

In other words, xRDP is an open source implementation of the proprietary Microsoft

RDP protocol that can bridge connectivity for Windows users to a Linux system over a

network connection. xRDP now supports Transport Layer Security (TLS) protocol, which

makes it more secure.

All xRDP configuration settings are stored in the file /etc/xrdp/xrdp.ini where you

can find settings like the port number on which users can connect to the Linux desktop

or the protocol settings used to secure the connection, like RDP, TLS, or Negotiate as

shown in Figure 9-2.

Chapter 9 Linux Desktop on WSL

172

The xRDP server also maintains a log of all the incoming connections port binding,

enabling a security layer, and so on in the log file /var/log/xrdp.log as demonstrated in

Figure 9-3.

Figure 9-2.  xRDP server configuration through the /etc/xrdp/xrdp.ini config file

Chapter 9 Linux Desktop on WSL

173

Now that we understand what Xfce and xRDP do, let’s set up a desktop environment

on the Windows Subsystem for Linux, which will provide a full graphical user interface

(GUI) and enhance the overall development experience.

Note  We have been using the Ubuntu 18.04 distributions in all the examples
of the book, but since April 2020, Ubuntu 20.04 LTS Linux distribution has been
released for WSL, so we will base all our examples in this last chapter on the latest
release of Ubuntu. Before we can proceed with the examples, please go to the
Microsoft Store and download the “Ubuntu 20.04 LTS” Linux distribution package
on your machine.

Figure 9-3.  xRDP server logs stored in /var/log/xrdp.log

Chapter 9 Linux Desktop on WSL

174

�Setup and Configuration
In order to achieve the desktop experience on the Windows Subsystem for Linux

	 1.	 Open the Ubuntu 20.04 LTS distribution on the Windows

Subsystem for Linux, and fully update the distro by running the

following command. This step may take some time to finish

updating, depending upon your Internet speed, so please allow it

to complete as shown in Figure 9-4.

sudo apt update && sudo apt upgrade –y

Figure 9-4.  Update and upgrade a Linux distro

	 2.	 Once the preceding step is complete, install both the Xfce and

xRDP servers using the following commands. If this triggers a

Windows Defender Firewall warning, then please go ahead and

click “Allow access” for the private networks.

sudo apt install xfce4 xrdp

Chapter 9 Linux Desktop on WSL

175

	 3.	 Once the installation from the previous step is complete, we need

to make sure xRDP is not using port 3389 as shown in Figure 9-5,

or it will conflict with any RDP server that might be running on the

Windows host.

Figure 9-5.  By default, the xRDP server listens on RDP port 3389

	 4.	 Change the settings in /etc/xrdp/xrdp.ini so that the xRDP server

listens on port 5000 for Ubuntu 18.04 running over WSL using any

text editor (e.g., nano), and it should look like Figure 9-6.

sudo nano /etc/xrdp/xrdp.ini

Chapter 9 Linux Desktop on WSL

176

	 5.	 Start the xRDP service on the Linux distribution using the following
command, and as shown in Figure 9-7, you will see that the Remote
Desktop Protocol Server will begin listening on the designated port,
which will be used by Microsoft RDP client (mstsc.exe) to connect
to Ubuntu 18.04 and provide a full desktop experience.

sudo service xrdp start

It is required to run “xrdp” service every time you want to establish a remote
session, but you can also create a startup script to run this every time you start the Linux

distribution, which will make sure the service is running when you want it.

Figure 9-6.  Configure the xRDP server to listen on port 5000

Figure 9-7.  Start xRDP service

Chapter 9 Linux Desktop on WSL

177

	 6.	 If the previous step was successful without any errors as

demonstrated in Figure 9-7, then you are pretty much done with

the setup and configuration.

	 7.	 Now, launch the Windows Remote Desktop Connection Manager

(mstsc.exe) and connect to “localhost” on port 5000 as shown in

Figure 9-8. Please note that this only works for WSL1, and since

WSL2 runs on lightweight utility VM with a dedicated network

interface, you may need to obtain the IP address in order to

establish a remote desktop connection to a WSL2 instance.

Figure 9-8.  Connect xRDP server using a remote desktop client

	 8.	 If the preceding step fails, launch a PowerShell console with

administrative privileges and run the following command that will

restart the Linux instance, and then launch the WSL again. Now,

start the “xrdp” service as mentioned in step 5 and try step 7 again.

Get-Service LxssManager | Restart-Service

	 9.	 This will establish an RDP connection to the Linux distro running

on WSL, which we just configured with Xfce and xRDP.

	 10.	 Now simply supply the user credentials for Ubuntu 18.04 and hit OK

button as shown in the Figure 9-9.

Chapter 9 Linux Desktop on WSL

178

	 11.	 Once the credentials are provided xRDP will launch a full desktop

experience as shown in Figure 9-10 running on WSL.

Figure 9-9.  Provide Linux credentials

Chapter 9 Linux Desktop on WSL

179

�Summary
In this chapter, we learned step-by-step installation and configuration of Xfce and xRDP

that enable a full desktop experience on the Windows Subsystem for Linux. Once the

setup is complete, it lets users interact with the Windows Subsystem for Linux instance

using a graphical user interface. Xfce creates a desktop environment for the users, and

xRDP is the service that allows Windows users to connect to Linux instances through the

RDP protocol.

Figure 9-10.  Linux desktop on the Windows Subsystem for Linux

Chapter 9 Linux Desktop on WSL

181
© Prateek Singh 2020
P. Singh, Learn Windows Subsystem for Linux, https://doi.org/10.1007/978-1-4842-6038-8

Index

A
Access control lists (ACL), 104
[automount] section

optional properties, 44
options, 46
root folder, 45
verifying drives/file system, 46
wsl.conf file, 47

B
Berkeley sockets (BSD), 126

bind(), 127
close(), 128
connect(), 128
listen(), 128
socket(), 127

C
“Chocolatey” tool, 139

D
Default distribution

running command, 66
--setdefault/-s command-line

parameter, 65
set up, 65

Distro, 10
backup/export, 66, 67
custom creation, 72–74
restore/import, 68, 69
unregistration/uninstall, 69–72
updating/upgrading, 38–40

Docker Desktop, 158
Download/install Linux distributions

curl.exe, 29, 30
Distro, 24, 25
Microsoft Store, 23, 24
PowerShell, 26–28

DrvFs, 44

E
Executable and Linking Format (ELF), 16
Extended attribute (EA), 102

F
FILE_FLAG_POSIX_SEMANTICS flag, 110
File systems

architecture, 107–109
MUP, 106, 107
ProcFs, 105
SysFs, 105
tmfs, 104
traditional virtual machine, 99
VFS, 100

https://doi.org/10.1007/978-1-4842-6038-8#DOI

182

G
Graphical user interface (GUI), 8, 19, 169

H
Hardware Abstraction Layer (HAL), 15

I, J
Input/Output Control (IOCTL), 123
[interop] section, 51, 53
Inter-process communication (IPC), 126

K
Kernel

hardware-software communication, 11
innermost layer/ring, 11
mode, 12
operating system, 10

L
Launch configurations

INI file format, 43
settings, 44

Launching, distro
Ubuntu application, 32
using executable, 34, 35
wsl.exe, 31–34

Linux desktop
setup and configuration, 174, 176,

177, 179
Xfce, 169, 170
xRDP, 171, 172

Linux development, WSL
Docker container, WSL2, 158, 160, 161
Docker web application, WSL2, 161–167

source control, 131
end-of-line difference, 133, 135
Git credential, 135, 136
installing Git, 131, 132
setting up/configurattion, 133

Linux distributions
command-line arguments, 63
installation, 64
running, 64

Linux interoperability
drvfs file system, 115, 118
NTFS files, 116, 117
operating systems, 114, 115
windows executables, 119
Windows File Explorer, 119

conjunction, 121
creating files, WSL, 121
distro files, 120
UNC path, 119

Linux kernel, 15

M
Minimal process, 17
Multiple UNC provider

(MUP), 106, 107

N, O
Network Interface Cards (NICs, 129
[network] section

generateResolvConf property, 50
name resolution, 51
optional properties, 48
Windows host file, 49

New Technology File System
(NTFS), 103

9P (Plan 9 Protocol), 107

Index

183

P, Q
PICO process, 5
Prefix resolution, 106
Process Environment Block (PEB), 6

R
Remote Desktop Protocol (RDP), 169
Resilient File System (ReFS), 103

S
Shared Environment Variables (WSLENV)

config file, 56
flag, 59
flags, 56
semicolon-separated values, 57
setting-up, 58, 60

T, U
Transport Layer Security (TLS)

protocol, 171

V
Virtual File System (VFS), 100
Visual Studio Code (VSCode)

definition, 144
integrated terminal/default shell, 149,

150, 152, 154
remote–WSL extension, 144
running and debugging programs,

156–158
Windows and WSL, 145
WSL files/file explorer, 154, 156
WSL Linux distribution support, 146–148
WSL remote extension, 145, 146

VolF
DrvFs, 103
EA, 102, 103
file creation, 101
Linux distribution, 100
%LocalAppData% folder, 102
PowerShell console, 101

W
Windows-linux case sensitivity

attribute, 113
[automount] section, 114
case-sensitive files, 110
directory, 112
flag, 109
fsutil.exe, 110, 111
getfattr/setfattr commands, 112
global registry, 110
modifying case sensitivity, 113
NTFS, 111

Windows-Linux path translation/
wslpath, 61

output type options, 54
PowerShell script file, 55
syntax, 54
utility, 55

Windows Subsystem for
Linux (WSL)

abbreviations, 9
additional tools/features, 40, 41
applications/tools, 3
architecture, 5, 6
bash shell, 3
compatibility service, 2
cross-platform development, 4
distro, 10
ELF, 16

Index

184

ELF64 binaries, 2
features, 19
GUI approach, 20–22
limitations, 7, 8
minimal process, 17
nginx web server, 4
NT process, 7
permission model, 37, 38
PICO process, 5, 6, 16, 17
PowerShell approach, 22
resource consumption, 3
sandboxing, 1
secure isolation, 4
setting up/managing user

account, 35–37
subsystems, 10
system call/syscall, 13, 14
user mode, 12, 13
Win32 subsystem, 1
Windows NT kernel, 14, 15

Windows Terminal
“Chocolatey” tool, 139, 142–144
definition, 136, 137
Microsoft Store, installation, 137, 138

Winsock Kernel (WSK), 126
DNS, 123
host file, 125
resolver file, 124
sockets, 126
virtual network, 130
Windows environment, 126
WSL, 128

WSL2
architecture, 78
architecture diagram/workflow, 82, 83
compatibility, 76
ELF32 binary support, 76
Host Compute Service, 80
Hyper-V containers, 79, 81
IO performance, 75
9P protocol, 83
system calls, 76
traditional vs. lightweight utility VM, 79
update, 78
Windows Insider Program, 77

wsl.conf configuration file, 61

X, Y, Z
Xfce, 169

Windows Subsystem for Linux
(WSL) (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Getting Started with WSL
	History of Windows Subsystems
	WSL at a Glance
	Advantages of WSL1
	Architecture and Components of WSL1
	Disadvantages of WSL1
	Keywords and Concepts
	Distro
	Subsystems
	Kernel
	Kernel Mode
	User Mode
	System Calls
	Windows NT Kernel
	Linux Kernel
	ELF
	PICO Process

	Summary

	Chapter 2: Downloading, Installation, and Setup
	Enabling the WSL Feature
	GUI Approach
	PowerShell Approach

	Download and Install Linux Distributions (Distros)
	Downloading from Microsoft Store
	Downloading a Distro Manually
	Downloading Using PowerShell
	Downloading Using curl.exe

	Setting Up and Configuring WSL
	Launching the Distro
	Using the Application
	Using wsl.exe
	Using the Executable

	Setting Up and Managing User Account
	Permission Model

	Updating and Upgrading the Distro
	Installing Additional Tools and Packages
	Summary

	Chapter 3: Building Mixed Experiences
	WSL Launch Configuration – wsl.conf
	[automount] Section
	[network] Section
	[interop] Section

	Windows-Linux Path Translation – wslpath
	Shared Environment Variables – WSLENV
	Summary

	Chapter 4: Managing WSL Distributions
	List Distributions
	Set Default Distro
	Back Up or Export a WSL Distro
	Restore or Import WSL Distro
	Unregister and Uninstall WSL Distros
	Creating a Custom WSL Distro
	Summary

	Chapter 5: Exploring WSL2
	New Features in WSL2
	Architecture of WSL2
	Installation and Setup
	Enable Windows Subsystem for Linux 1
	Enable “Virtual Machine Platform”
	Enable Windows Subsystem for Linux 2
	Verifying the Linux Distribution Subsystem Platform and Rolling Back to WSL1

	Running WSL2 in a Virtual Machine
	What User Experience Changed from WSL1 to WSL2?
	Faster File Performance

	WSL2 Now Uses Virtual Hardware Disks (VHD)
	Networking Changes and Considerations
	Accessing Windows Applications from Linux
	Accessing Linux Applications from Windows

	Summary

	Chapter 6: File System
	File System Components
	VFS
	volfs
	drvfs
	tmpfs
	procfs, sysfs
	Multiple UNC Provider (MUP)
	9P (Plan 9 Protocol)

	WSL File System Architecture
	Windows-Linux Case Sensitivity

	Windows and Linux Interoperability
	Accessing Windows Files from Linux
	Accessing Linux Files from Windows

	Summary

	Chapter 7: Networking
	WSL Networking Overview
	Network Interfaces and DNS
	Sockets
	Berkeley Sockets
	socket()
	bind()
	listen()
	connect()
	send(), recv(), sendto(), and recvfrom()
	close()

	Winsock and WSK (Winsock Kernel)

	WSL vs. WSL2 Networking
	Summary

	Chapter 8: Linux Development on WSL
	Source Control
	Installing Git
	Setting Up and Configuring
	Resolving End-of-Line Differences in Windows and Linux

	Sharing Git Credentials Between Windows and WSL

	Windows Terminal
	Installing Windows Terminal from the Microsoft Store
	Installing Windows Terminal Using Chocolatey
	Setting Up WSL in Windows Terminal

	Visual Studio Code (VSCode)
	Installing the Remote - WSL Extension
	WSL Linux Distribution Support
	Integrated Terminal and Default Shell
	Installing VSCode Extensions on WSL
	Editing WSL Files and File Explorer
	Running and Debugging Programs

	Docker Containers on WSL2
	Develop Web Application with Docker and WSL2

	Summary

	Chapter 9: Linux Desktop on WSL
	Xfce
	xRDP
	Setup and Configuration
	Summary

	Index

