
The Linux
Philosophy for
SysAdmins

And Everyone Who Wants To Be One
—
David Both

The Linux Philosophy
for SysAdmins

And Everyone Who Wants To Be One

David Both

David Both
Raleigh, North Carolina, USA

The Linux Philosophy for SysAdmins

ISBN-13 (pbk): 978-1-4842-3729-8 ISBN-13 (electronic): 978-1-4842-3730-4
https://doi.org/10.1007/978-1-4842-3730-4

Library of Congress Control Number: 2018952337

Copyright © 2018 by David Both

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237298. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3730-4

This book is dedicated to all of the amazing and hard-working
“lazy Admins” who take the young SysAdmins under your wings.

It is your work as mentors that make it possible for us to learn and
grow into our full potential.

I had some amazing mentors who understood what it takes to learn.
You are my heroes. Here’s to you, Alyce, BRuce, Vern, Dan, Chris,

Heather, Ron, Don, Dave, Earl, and Pam. And to all of you unsung
mentors out there – You rock! Thanks for your support and guidance.

v

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Table of Contents

Part I: Introduction �� 1

Chapter 1: Introduction to the Linux Philosophy �� 3

Am I a SysAdmin? ��� 5

The Structure of the Philosophy �� 7

Who Should Read This Book ��� 9

But I Don’t Meet Those Requirements ��� 10

Who Should Not Read This Book ��� 11

The Linux Truth �� 11

Restrictive Operating Systems �� 12

Linux Is Open and Free ��� 12

Real Knowledge �� 13

Enlightenment ��� 14

Chapter 2: Getting Ready �� 15

The Experiments ��� 15

System Requirements ��� 17

How to Access the Command Line �� 18

Create the Student User ��� 19

Preparing the USB Thumb Drive �� 19

What to Do if the Experiments Do Not Work �� 21

vi

Part II: Foundation ��� 23

Chapter 3: Data Streams��� 27

Text Streams – A Universal Interface �� 27

STDIO File Handles �� 28

Generating Data Streams �� 29

Test a Theory with Yes �� 31

Exploring the USB Drive �� 33

Streams of Randomness ��� 39

Summary��� 41

Chapter 4: Transforming Data Streams �� 43

Data Streams as Raw Materials �� 44

Pipe Dreams �� 44

Building Pipelines ��� 46

Redirection �� 47

Redirecting STDERR �� 50

The Pipeline Challenge �� 52

The Problem �� 52

The Solutions ��� 54

Thoughts on the Solutions ��� 57

Summary��� 58

Chapter 5: Everything Is a File�� 59

What Is a File? �� 59

Device Files ��� 60

Device File Creation ��� 60

udev Simplification ��� 61

Naming Rules �� 62

Device Data Flow �� 63

Device File Classification �� 64

Fun with Device Files �� 66

Table of ConTenTs

vii

Randomness, Zero, and More ��� 71

Back Up the Master Boot Record �� 74

Implications of Everything Is a File ��� 79

Summary��� 79

Chapter 6: Using the Linux FHS �� 81

Definitions ��� 81

The Standard ��� 82

Using a Well-Defined filesystem Structure ��� 85

Linux Unified Directory Structure �� 86

Special filesystems ��� 87

The /proc filesystem �� 88

The /sys filesystem �� 94

SELinux �� 99

Problem Solving �� 101

Using the filesystem Incorrectly �� 102

Email Inboxes �� 103

Adhering to the Standard �� 103

Where Does This File Go? �� 104

Summary��� 105

Part III: Function �� 107

Chapter 7: Embrace the CLI �� 109

Defining the Command Line �� 110

CLI Terminology ��� 110

Command Prompt �� 110

Command Line ��� 111

Command-Line Interface ��� 111

Terminal ��� 111

Console �� 113

Virtual Console��� 114

Terminal Emulator ��� 115

Table of ConTenTs

viii

Pseudo Terminal �� 117

Session �� 117

Shell��� 118

Secure Shell (SSH)��� 121

Screen ��� 121

The GUI and the CLI ��� 124

Non-Restrictive Interface �� 125

The Mailing List ��� 125

Baffle Them with Big Data ��� 128

CLI Power �� 130

Chapter 8: Be a Lazy SysAdmin �� 131

Preparation ��� 131

True Productivity ��� 132

Preventative Maintenance �� 133

Minimize Typing �� 134

Aliases ��� 134

Other Typing Shortcuts �� 136

File Naming ��� 136

BASH Efficiency ��� 136

Completion Facility �� 136

Command-Line Recall and Editing �� 139

History ��� 139

Using the History ��� 140

Logs Are Your Friend ��� 146

SAR �� 146

Mail Logs ��� 149

messages �� 150

dmesg �� 151

secure �� 152

Following Log Files �� 155

Table of ConTenTs

ix

systemd Logs �� 156

logwatch ��� 160

Success as a Lazy SysAdmin �� 163

Chapter 9: Automate Everything ��� 165

Why I Use Scripts �� 165

How I Got Here �� 166

Scripting Repetitive Tasks ��� 167

Making It Easier ��� 167

From Desirable to Necessity �� 168

Updates ��� 169

Additional Levels of Automation �� 181

Using cron for Timely Automation ��� 183

crontab �� 183

cron�d �� 186

anacron ��� 188

Scheduling Tips ��� 190

Thoughts About cron ��� 190

cron Resources �� 191

Other Automation Possibilities �� 191

Some Alt Ideas ��� 192

Deepening the Philosophy �� 192

Chapter 10: Always Use Shell Scripts ��� 195

Definition ��� 195

The SysAdmin Context �� 197

Requirements �� 197

Development Speed �� 198

Performance Speed ��� 199

Variables �� 200

Testing ��� 200

Open and Open Source �� 201

Table of ConTenTs

x

Shell Scripts as Prototypes ��� 201

Process ��� 202

Quick and Dirty �� 202

Planning and Foresight �� 203

Final Thoughts ��� 215

Chapter 11: Test Early, Test Often ��� 217

Procedures �� 218

Create a Test Plan �� 218

Start Testing at the Beginning ��� 220

Final Testing �� 220

Testing in Production ��� 221

Fuzzy Testing ��� 222

Automated Testing �� 223

Trying It Out ��� 224

Requirements for MOTD Script �� 225

Test Plan for MOTD Script �� 226

Developing the Script �� 227

Add Sanity Checks ��� 231

Fixing a Script ��� 245

Summary��� 246

Chapter 12: Use Commonsense Naming ��� 247

Script and Program Names ��� 247

Variables ��� 250

Naming Variables ��� 250

Make Everything a Variable ��� 251

Procedures �� 255

Hosts ��� 255

Organizational Naming �� 256

Summary��� 256

Table of ConTenTs

xi

Chapter 13: Store Data in Open Formats �� 257

Closed Is Impenetrable ��� 257

Open Is Knowable ��� 258

Flat ASCII Text�� 259

System Configuration Files �� 260

Global Bash Configuration ��� 265

User Configuration Files �� 268

ASCII Rocks ��� 270

Final Thoughts ��� 272

Chapter 14: Use Separate filesystems for Data �� 273

Why We Need Separate filesystems�� 273

Hard Drive Crashes �� 274

Full filesystems ��� 274

Laptop Lament �� 275

Data Security �� 278

Recommendations �� 279

/boot �� 280

/home �� 281

/usr �� 282

/opt �� 283

/var �� 283

/tmp ��� 284

The Other Branches ��� 284

Starting with Separate filesystems ��� 285

Adding Separate filesystems Later ��� 285

Final Thoughts ��� 292

Table of ConTenTs

xii

Chapter 15: Make Programs Portable �� 293

Intel PC to Mainframe ��� 293

Architectures ��� 294

Portability Restrictions �� 295

Licensing ��� 295

Technology��� 295

LibreOffice ��� 297

Shell Scripts �� 297

Portability with Windows ��� 298

The Internet and Portability ��� 300

Creating Web Pages �� 300

Static Content �� 301

Dynamic Web Pages for a New Job ��� 302

CGI – Open and Portable �� 307

WordPress ��� 308

Final Thoughts ��� 309

Chapter 16: Use Open Source Software �� 311

Definition of Open Source ��� 311

The Open Source Definition (Annotated) ��� 312

Introduction ��� 312

Why This Is Important ��� 315

Coining the Term ��� 316

Licensing Our Own Code ��� 316

Organizational Code Sharing ��� 318

Silos Suck �� 318

Open Organizations and Code Sharing �� 319

Things to Avoid �� 320

Code Availability �� 321

How Do I Share My Code? ��� 321

Code Sharing Considerations �� 322

Parting Thoughts ��� 324

Table of ConTenTs

xiii

Part IV: Becoming Zen ��� 325

Chapter 17: Strive for Elegance �� 327

Hardware Elegance ��� 327

The PCB ��� 328

Motherboards �� 328

Computers ��� 329

Data Centers �� 329

Power and Grounding �� 330

Software Elegance �� 331

Fixing My Web Site �� 336

Removing Cruft ��� 338

Old or Unused Programs �� 338

Old Code in Scripts �� 342

Old Files ��� 343

A Final Word �� 350

Chapter 18: Find the Simplicity �� 353

Complexity in Numbers ��� 353

Simplicity in Basics ��� 355

The Never-Ending Process of Simplification ��� 356

Simple Programs Do One Thing �� 356

Simple Programs Are Small �� 359

Simplicity and the Philosophy ��� 361

Simplifying My Own Programs �� 361

Simplifying Others’ Programs ��� 362

Uncommented Code �� 362

Hardware �� 367

Linux and Hardware �� 368

The Quandary �� 369

The Last Word ��� 370

Table of ConTenTs

xiv

Chapter 19: Use Your Favorite Editor �� 371

More Than Editors ��� 372

Linux Startup ��� 372

Why I Prefer SystemV �� 373

Why I Prefer systemd �� 373

The Real Issue ��� 374

Desktop ��� 374

sudo or Not sudo ��� 375

Bypass sudo �� 376

Valid Uses for sudo �� 378

A Few Closing Words �� 379

Chapter 20: Document Everything �� 381

The Red Baron �� 382

My Documentation Philosophy �� 383

The Help Option ��� 383

Comment Code Liberally�� 384

My Code Documentation Process �� 387

Man Pages �� 388

Systems Documentation ��� 388

System Documentation Template �� 389

Document Existing Code ��� 392

Keep Docs Updated ��� 393

File Compatibility ��� 393

A Few Thoughts �� 394

Chapter 21: Back Up Everything – Frequently �� 395

Data Loss �� 395

Backups to the Rescue ��� 397

The Problem �� 397

Recovery �� 404

Table of ConTenTs

xv

Doing It My Way �� 405

Backup Options ��� 405

Off-Site Backups ��� 413

Disaster Recovery Services �� 414

Other Options �� 415

What About the “Frequently” Part? ��� 415

Summary��� 415

Chapter 22: Follow Your Curiosity �� 417

Charlie ��� 417

Curiosity Led Me to Linux �� 418

Curiosity Solves Problems �� 423

Securiosity ��� 423

Follow Your Own Curiosity �� 440

Be an Author �� 441

Failure Is an Option �� 441

Just Do It ��� 442

Summary��� 443

Chapter 23: There Is No Should �� 445

There Are Always Possibilities �� 445

Unleashing the Power ��� 446

Problem Solving �� 447

Critical Thinking ��� 449

Reasoning to Solve Problems �� 450

Integrated Reason ��� 453

Self-Knowledge ��� 455

Finding Your Center ��� 455

The Implications of Diversity ��� 456

Measurement Mania ��� 457

The Good Manager �� 458

Table of ConTenTs

xvi

Working Together �� 458

Silo City ��� 460

The Easy Way��� 461

Thoughts ��� 462

Chapter 24: Mentor the Young SysAdmins ��� 463

Hiring the Right People ��� 464

Mentoring �� 465

BRuce the Mentor �� 466

The Art of Problem Solving�� 467

The Five Steps of Problem Solving �� 467

Knowledge ��� 469

Observation ��� 469

Reasoning �� 472

Action �� 473

Test �� 473

Example �� 474

Iteration ��� 475

Concluding Thoughts �� 475

Chapter 25: Support Your Favorite Open Source Project �������������������������������������� 477

Project Selection ��� 477

Code �� 478

Test ��� 479

Submit Bug Reports �� 479

Documentation �� 480

Assist �� 481

Teach ��� 482

Write�� 482

Donate ��� 483

Thoughts ��� 484

Table of ConTenTs

xvii

Chapter 26: Reality Bytes ��� 485

People ��� 485

The Micromanager �� 486

More Is Less �� 487

Tech Support Terror ��� 488

You Should Do It My Way��� 489

It’s OK to Say No ��� 490

The Scientific Method ��� 490

Understanding the Past ��� 491

Final Thoughts ��� 492

 Bibliography ��� 493

 Books �� 493

 Web sites �� 494

 Index ��� 501

Table of ConTenTs

xix

About the Author

David Both is an Open Source Software and GNU/Linux

advocate, trainer, writer, and speaker. He has been working

with Linux and Open Source Software for more than 20 years

and has been working with computers for over 45 years. He

worked for IBM for 21 years and, while working as a Course

Development Representative in Boca Raton, Florida, in 1981,

wrote the training course for the first IBM PC. He has taught

RHCE classes for Red Hat and has worked at MCI Worldcom,

Cisco, and the State of North Carolina. In most of the places

he has worked since leaving IBM, he has taught classes on

Linux ranging from Lunch'n'Learns to full five-day courses.

David prefers to purchase the components and build his own computers from

scratch to ensure that each new computer meets his exacting specifications. His latest

build is an ASUS TUF X299 motherboard and an Intel i9 CPU with 16 processors (32

threads) and 64GB of RAM in a ThermalTake Core X9 case.

He has written articles for magazines including, Linux Magazine and Linux Journal.

He currently writes prolifically and is a volunteer Community Moderator for OpenSource.

com. He particularly enjoys learning new things while researching his articles.

David currently lives in Raleigh, North Carolina, with his very supportive wife, Alice,

and a strange rescue dog that is mostly Jack Russell. David also likes reading, travel, the

beach, and spending time with his two children, their spouses, and four grandchildren.

xxi

About the Technical Reviewer

Ben Cotton is a meteorologist by training and a

high-performance computing engineer by trade. Ben has

over a decade of experience supporting Linux, Windows,

and macOS systems for academia and high-performance

computing. Ben co-founded a local tech meetup group and

is a member of the Open Source Initiative and supporter

of the Software Freedom Conservancy. He has written for

Sysadvent, Opensource.com, The Next Platform, as well as

his blog at funnelfiasco.com.

xxiii

Acknowledgments

Writing a book is not a solitary activity and The Linux Philosophy for System

Administrators is no exception. It takes a team to produce a book as well as some

personal cheerleaders. The most important person in this effort has been my awesome

wife, Alice, who has been my head cheerleader throughout this process. I could not have

done this without the support of you gave me, my best friend, my sweetheart.

Many times the hardest part of publishing a book of any kind is selling it to a

publisher. I already had about 20,000 words written when I went to All Things Open

(ATO) in Raleigh, North Carolina, in October of 2017 with the intent of picking people's

brains for publishers that they would recommend. I had already asked the smart and

talented Rikki Endsley, community manager and editor at Opensource.com for whom I

write frequent articles, if she could help me out. Rikki gave me a short list of people she

knew from her years in technical publishing and two of the publishers on the list were

at ATO. I owe many thanks to Rikki for her support over the time I have been writing

for Opensource.com, for pointing me to Apress, and for being an understanding friend.

Thanks also for being a fantastic cheerleader, not just for me, but also for many of the

authors who write for Opensource.com.

On the first day of ATO in 2017, I was browsing through the vendors' exhibits and ran

across one of the names on the list that Rikki had given me, Louise Corrigan, a senior

editor for open source at Apress. She was staffing the Apress both and when I picked up

her card I said to her, "I have a book for you." She expressed immediate interest and as

I told her of my vision for this book, she became quite enthusiastic about it. It was her

enthusiasm and the fact that she liked my vision without suggesting any changes to it

that sold me on Apress. Thank you, Louise, for believing in me and my vision.

To Nancy Chen and James Markham, the editors at Apress who shepherded the

creation of this book from beginning to end, have provided guidance, answered my

questions, and just been there for me. Thanks to both of you for helping me through the

process of writing my first book.

Despite the fact that this is a book about a philosophy, it is also a very technical

book. Ben Cotton has done a fantastic job as my technical reviewer. He has ensured the

technical accuracy of the experiments and other technical sections of this book. Ben also

xxiv

made some excellent suggestions about the content where it needed further clarification

and when I had simply forgotten or missed covering some salient points. This book is

much better for your contributions, Ben. Thank you very much for your splendid work.

I want to thank all the editors at Opensource.com for the work they do on the articles

I submit there and also for the gentle way they helped me learn about the editorial

process. They also helped me earn my chops as a writer. Thanks to you all, Jason Hibbits,

Rikki Endsley, Jen Wike Huger, Jason Baker, Bryan Behrenshausen, and Alex Sanchez.

I also need to thank all the volunteer community moderators who contribute so

much to Opensource.com. One of the highlights of my year is always at ATO when as

many of us as possible manage to get together from all over the world. I am honored to be

a member of such a community of brilliant people and I always learn so much from you.

aCknowledgmenTs

PART I

Introduction

Part 1 of The Linux Philosophy for System Administrators introduces you to the Unix

Philosophy and the original Linux Philosophy, which was derived directly from the Unix

Philosophy. You will learn a little about the history and participants in the development

of Unix and Linux and how they brought first the Unix Philosophy and then the Linux

Philosophy into being.

You will also learn about my reasons and motivation for setting down my own

Philosophy. In large part this is due to the inadequacy of the original Linux Philosophy

when it is applied to the System Administrator.

Throughout this book you will find hands-on experiments to enable the type of

learning that most SysAdmins like best – learning by doing. In Part 1, you will prepare for

those experiments. You will be provided with a set of minimum specifications for a Linux

computer on which the experiments should be run, and you will prepare a USB memory

stick that will be used in some of the experiments.

The experiments in this book are intended to be short and simple. Their main

purpose is to help you understand the Linux Philosophy for System Administrators.

3
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_1

CHAPTER 1

Introduction to the Linux
Philosophy
The Unix Philosophy is an important part of what makes Unix1 unique and powerful.

Much has been written about the Unix Philosophy. And the Linux philosophy is

essentially the same as the Unix philosophy because of its direct line of descent from

Unix.

The original Unix Philosophy was intended primarily for system developers. In fact,

the developers of Unix, led by Ken Thompson2 and Dennis Ritchie,3 designed Unix in

a way that made sense to them, creating rules, guidelines, and procedural methods,

then designing them into the structure of the operating system. That worked well for

system developers and that also – partly, at least – worked for SysAdmins (System

Administrators). That collection of guidance from the originators of the Unix operating

system was codified in the excellent book, The Unix Philosophy, by Mike Gancarz, and

then later updated by Mr. Gancarz as Linux and the Unix Philosophy.4

Another fine book, The Art of Unix Programming,5 by Eric S. Raymond, provides the

author’s philosophical view of programming in a Unix environment. It is also somewhat

of a history of the development of Unix as it was experienced and recalled by the author.

This book is also available in its entirety at no charge on the Internet.6

1 https://en.wikipedia.org/wiki/Unix
2 https://en.wikipedia.org/wiki/Ken_Thompson
3 https://en.wikipedia.org/wiki/Dennis_Ritchie
4 Mike Gancarz, Linux and the Unix Philosophy, Digital Press – an imprint of Elsevier Science,
2003, ISBN 1-55558-273-7

5 Eric S. Raymond, The Art of Unix Programming, Addison-Wesley, September 17, 2003,
ISBN 0-13-142901-9

6 Eric S. Raymond, “The Art of Unix Programming,” http://www.catb.org/esr/writings/
taoup/html/

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
http://www.catb.org/esr/writings/taoup/html/
http://www.catb.org/esr/writings/taoup/html/

4

I learned a lot from all three of those books. They all have great value for Unix

and Linux programmers. In my opinion, Linux and the Unix Philosophy and The Art

of Unix Programming” should be required reading for Linux programmers, System

Administrators, and DevOps personnel.

I have been working with computers for over 45 years in total. Holy cow – that is a

long time! It was not until I started working with Unix and Linux and started reading

some of the articles and books about Unix, Linux, and the common philosophy they

share that I understood the reasons why many things in the Linux and Unix worlds are

done as they are.

Having worked with Unix and Linux for over 20 years as of this writing, I have found

that the Linux philosophy has contributed greatly to my own efficiency and effectiveness

as a SysAdmin. I have always tried to follow the Linux philosophy because my experience

has been that a rigorous adherence to it, regardless of the pressure applied by a legion of

Pointy-Haired-Bosses (PHB), will always pay dividends in the long run.

The original Unix and Linux philosophy was intended for the developers of those

operating systems. Although System Administrators could apply many of the tenets to

their daily work, many important tenets that address things unique to SysAdmins were

missing.

I was very fortunate to have had a couple excellent mentors during my Unix and

Linux careers. They helped me to gain the confidence to fail. When I failed, I learned far

more than when things went right because they made me fix the problems I had inflicted

on myself. These experts, people who had many years more experience than I at being

a SysAdmin, never berated me or punished me for failing – their credo was, “if you fail

you learn.” And I learned a lot. A significant part of what they taught me was the Linux

philosophy, but they also taught me their own philosophies, ones that helped to fill in

the missing sections of the original.

So, over the years I have been working with Linux and Unix, I have formulated my

own philosophy – one which applies more directly to the everyday life and tasks of the

System Administrator. My Philosophy is based in part upon the original Unix and Linux

Philosophy, as well as the philosophies of my mentors. When I decided to write my own

book, one that is aimed at and that addresses the needs of today’s System Administrator,

I started with those tenets, but as I progressed and the structure of this book revealed

itself to me, the structure and nature of the Philosophy became clearer than ever. As it

turns out, this Philosophy is significantly different from the original Linux Philosophy. It

was only then that I realized just how much a new philosophy was needed, one that was

Chapter 1 IntroduCtIon to the LInux phILosophy

5

intended specifically for the SysAdmin. Naturally I call this new philosophy, “The Linux

Philosophy for the System Administrator.”

This book is the result of my creation of the new philosophy – it provides a unique

hands-on approach to becoming a better SysAdmin. This book and the philosophy it

reveals is my attempt to give back to the community that nurtured me as I grew and

helped me to became more confident.

Because the name “Linux Philosophy for System Administrators” is a bit long, most

of the time I will refer to it in this book as the “Philosophy” for simplicity.

 Am I a SysAdmin?
Since this book is intended for SysAdmins it would be helpful for you to know whether

you are one or not. Wikipedia7 defines a System Administrator as “a person who is

responsible for the upkeep, configuration, and reliable operation of computer systems;

especially multi-user computers, such as servers.” In my experience, this can include

computer and network hardware, software, racks and enclosures, computer rooms or

space, and much more.

The typical SysAdmin’s job can include a very large number of tasks. In a small

business a SysAdmin may be responsible for doing everything computer related. In

larger environments, multiple SysAdmins may share responsibility for all of the tasks

required to keep things running. In some cases, you may not even know you are a

SysAdmin; your manager may have simply told you to start maintaining one or more

computers in your office – that makes you a SysAdmin, like it or not.

There is also a term, “DevOps,” that is used to describe the intersection of the

formerly separate development and operations organizations. In the past, this has

been primarily about teaching SysAdmins to write code, but the focus is now shifting to

teaching programmers how to perform operational tasks.8 Attending to SysAdmin tasks

makes these folks SysAdmins, too, at least for part of the time. While I was working at

Cisco, I had a DevOps type of job. Part of the time I wrote code to test Linux appliances

and the rest of the time I was a SysAdmin in the lab where those appliances were tested.

It was a very interesting and rewarding time in my career.

7 https://en.wikipedia.org/wiki/System_administrator

8 Charity, “Ops: It’s everyone’s job now,” https://opensource.com/article/17/7/
state-systems-administration

Chapter 1 IntroduCtIon to the LInux phILosophy

https://en.wikipedia.org/wiki/System_administrator
https://opensource.com/article/17/7/state-systems-administration
https://opensource.com/article/17/7/state-systems-administration

6

I have created this short list to help you determine whether you are a SysAdmin.

You know you are a SysAdmin if…

 1. You think this book might be a fun read.

 2. People frequently ask you to help them with their computers.

 3. You check the servers every morning before you do anything else.

 4. You write shell scripts to automate even simple tasks.

 5. You share your shell scripts.

 6. Your shell scripts are licensed with an Open Source license.

 7. You know what Open Source means.

 8. You document everything you do.

 9. You have hacked the wireless router to install Linux software.

 10. You find computers easier to interact with than most humans.

 11. You understand :(){ :|:& };:

 12. You think the command line is fun.

 13. You like to be in complete control.

 14. You are root.

 15. You understand the difference between “free as in beer,” and

“free as in speech,” when applied to software.

 16. You have installed a computer in a rack enclosure.

 17. You have replaced the standard CPU cooling fan with one that

dissipates more heat.

 18. You purchase the parts and build your own computers.

 19. You use liquid cooling for your CPU.

 20. You install Linux on everything you can.

 21. You have a Raspberry Pi connected to your television.

 22. You use a Raspberry Pi as a firewall for your home network.

 23. You run your own Email, DHCP, NTP, NFS, DNS, and/or SSH servers.

Chapter 1 IntroduCtIon to the LInux phILosophy

7

 24. You have hacked your home computer to replace the processor

with a faster one.

 25. You have upgraded the BIOS in a computer.

 26. You leave the covers off your computer because you replace

components frequently.

 27. The router provided by your ISP is in “pass through” mode.

 28. You use a Linux computer as a router.

 29. …etc…

You get the idea. I could list a lot more things that might make you a SysAdmin,

but there would be hundreds of items. I am sure you can think of plenty more that

apply to you.

 The Structure of the Philosophy
There are three layers to the Linux Philosophy for System Administrators in a way that

is similar to Maslow’s hierarchy of needs.9 These layers are also symbolic of our growth

through progressively higher levels of enlightenment.

The bottom layer is the foundation – the basic commands and knowledge that we

as SysAdmins need to know in order to perform the lowest level of our jobs. The middle

layer consists of those practical tenets that build on the foundation and inform the daily

tasks of the SysAdmin. The top layer contains the tenets that fulfill our higher needs as

SysAdmins and which encourage and enable us to share our knowledge.

This book is structured in three parts that correspond to the layers of the Philosophy

as shown in Figure 1-1. In the first and most basic layer of the Philosophy, the foundation

is laid. We will be introduced to “The Linux Truth,” data streams, Standard IO (STDIO),

transforming data streams, and the meaning of “everything is a file.” As enlightenment

begins to dawn in our work life, we find ourselves learning many new commands, how to

use them effectively in simple command-line programs, and how to make use of the fact

that everything is a file. This foundational layer of our Philosophy is explored in Part 2 of

this book.

9 Wikipedia, “Maslow’s hierarchy of needs,” https://en.wikipedia.org/wiki/
Maslow%27s_hierarchy_of_needs

Chapter 1 IntroduCtIon to the LInux phILosophy

https://en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs

8

Our journey then extends beyond simply pounding out commands at the keyboard,

and we begin to explore the middle layer where the functional aspects of the Philosophy

become our guides. Embracing the command line to better advantage, we begin to

expand our command-line programs to create tested and maintainable shell programs

that we save and can use repeatedly, and even share. We become the “lazy admin” and

begin to automate everything. We use the Linux filesystem hierarchy appropriately and

store data in open formats. The functional portions of the Philosophy are found in Part 3.

At the top layer of the Philosophy, which is covered in Part 4, we move into

enlightenment. As we begin to progress beyond merely performing our SysAdmin tasks

and just getting the job done, our understanding of the elegance and simplicity in the

design of Linux is perfected. We begin striving for doing our own work elegantly, keeping

solutions simple, simplifying existing but complex solutions, and creating usable and

complete documentation. We begin to explore and experiment simply for the sake of

gaining new knowledge. At this stage of enlightenment, we begin to pass our knowledge

and methods to those new to the profession and we actively support our favorite open

source projects.

As in real life, the layers of the Philosophy are seldom clear-cut. How we work and

apply the tenets of the Philosophy may vary depending upon circumstances, Pointy-

Haired- Bosses, our level of training, and our current understanding of the Philosophy.

Enlightenment

Functional Tenets

Foundational Tenets

Figure 1-1. The hierarchy of the Linux Philosophy for SysAdmins

Chapter 1 IntroduCtIon to the LInux phILosophy

9

 Who Should Read This Book
If you are or want to be a SysAdmin, you should read this book. If you are performing

at least some of the duties of a SysAdmin even if that is not your job title, you should

read this book. If you work in DevOps you should read this book. If you are root on one

or more Linux computers, you should read this book. If you regularly use and like the

command line, you should read this book. If you think that the command line is fun and

powerful, you should read this book. And check out the cow in the following figure who

also wants you to read this book.

/ If you want to know why there \
| is a cow in a book about the |
| Linux Philosophy for System |
| Administrators, you should |
\ read this book. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

If you want to learn the secrets that make the best Linux SysAdmins powerful far

beyond that of mere mortals; if you want to understand the concepts that unlock those

secrets; if you want to be the SysAdmin that everyone else turns to when the bytes hit the

CPU cooling fan – then this book is for you.

This book is not about learning new commands. Rather, it is about using the

common and well-known commands with which you should already be familiar to

illuminate the underlying structure of Linux at the command line. Think of this book

and the commands you will use in the exercises like the X-rays, CT scans, and MRI’s that

a doctor uses to reveal the inside of a human body. This book will show you how to use

some simple Linux commands to reveal the underlying structure of GNU/Linux.

Chapter 1 IntroduCtIon to the LInux phILosophy

10

The Linux Philosophy for System Administrators is intended to reveal and illustrate

the awesome power and flexibility of the command line along with the design and usage

philosophies that support those traits. This understanding of how to extract the most

from the Linux command line can help you become a better SysAdmin.

I assume that readers of this book have at least a full year of constant experience with

the Linux command-line interface, preferably with the bash shell but any shell will do.

You should be comfortable with many Linux commands.

My expectation is that you already know how to perform a large part of the

SysAdmin’s job using the appropriate commands and making adjustments for use of

the proper devices. So when I tell you, for example, to “mount the USB device on /mnt,”

you will know what I mean and be able to determine which device file to mount, use the

mount command to perform the mount, and access the mounted device as needed to

create or view the contents.

You should also have root access on one or more Linux computers and have

performed at least some SysAdmin duties for at least six months. If you have installed

Linux on one or more computers at home, you meet this requirement and should read

this book.

 But I Don’t Meet Those Requirements
Perhaps you do not meet any of the previously stated requirements but would like to

read this book anyway. Whether you want to become a SysAdmin or just because you

think it might be interesting, if you still want to read this book, then do so.

If you have the kind of interest in learning about the Linux Philosophy for System

Administrators that you want to continue with this book despite what I have just said

above, well – just do it. In that case I have tried to provide enough information to make it

possible for you to perform most of these experiments. If you do get stuck, contact your

local Linux users group. There are many of these around the world and I have found that

the members of these LUGs tend to be very helpful.

There are three books I recommend if you are interested in learning more about

working on the Linux command line and learning System Administration skills. They will

make good references as you proceed through the experiments in this book.

Chapter 1 IntroduCtIon to the LInux phILosophy

11

 1. Pro Linux System Administration; Matotek, Dennis, Turnbull,

James, LIEVERDINK, PETER; Apress; ISBN 978-1-4842-2008-5

 2. Beginning the Linux Command Line; van Vugt, Sander; Apress;

ISBN 978-1-4302- 6829-1

 3. A Practical Guide to Linux Commands, Editors, and Shell

Programming Third Edition; Sobell, Prentice Hall;

ISBN 978-0-13-308504-4

These three books should get you started on the Linux command line and help you

learn system administration. But the best way is to just get as much hands-on as you can.

 Who Should Not Read This Book
If you just want to use your web browser, send email, and perhaps use the LibréOffice

Writer program to create a few documents, if you do not care about what happens

behind the scenes with Linux, if you rely on someone else to fix problems with your

computer, this book is not for you. Read no further.

If your sole purpose is that you want to learn about advanced commands and how to

use them – an admirable goal itself – this is not the book for you.

 The Linux Truth
The amazing power of the Linux command line is hinted at in the following quote that

originally referenced Unix. It also applies to Linux.

Unix was not designed to stop its users from doing stupid things, as that
would also stop them from doing clever things.

—Doug Gwyn

This quote summarizes the overriding truth of Unix and Linux – that the operating

system must trust the user. It is only by extending this full measure of trust that allows the

user to access the full power made possible by the operating system. This truth applies to

Linux because of its heritage as a direct descendant of Unix.

Chapter 1 IntroduCtIon to the LInux phILosophy

12

 Restrictive Operating Systems
Operating systems that shield their users from the power they possess were developed

starting with the basic assumption that the users are not smart or knowledgeable enough

to be trusted with the full power that computers can actually provide. These operating

systems are restrictive and have user interfaces – both command line and graphical –

that enforce those restrictions by design. These restrictive user interfaces force regular

users and SysAdmins alike into an enclosed room with no windows and then slam the

door shut and triple lock it. That locked room prevents them from doing any of those

clever things alluded to by Mr. Gwyn.

The command-line interfaces of such limiting operating systems offer a relatively few

commands, providing a de facto limit on the possible activities in which anyone might

engage. Some users find this a comfort. I do not and, apparently, neither do you to judge

from the fact that you are reading this book.

 Linux Is Open and Free
Linux was designed from the beginning as open and free in the sense that users and

SysAdmins should have full access within their own realm to all aspects of the operating

system. The result is that we can do those very clever things with Linux. There are other

meanings to open and free, such as Free Libré Open Source Software (FLOSS), and free

beer, but that discussion is one for other books.

Even the most experienced users can do “stupid things” using Linux. My experience

has been that recovery from my own not-so-infrequent stupidity has been made much

easier by the open access to the full power of the operating system. I find that most times

a few commands can resolve the problem without even a reboot. On a few occasions,

I have had to switch to a lower runlevel to fix a problem. I have only very Infrequently

needed to boot to recovery mode in order to edit a configuration file that I managed

to damage so badly, it caused serious problems including failure to boot. It takes

knowledge of the underlying philosophy, the structure, and the technology of Linux to

be able to fully unleash its power, especially when things are broken. Linux just requires

a bit of understanding and knowledge on the part of the SysAdmin to fully unlock its

potential.

Chapter 1 IntroduCtIon to the LInux phILosophy

13

 Real Knowledge
Anyone can memorize or learn commands and procedures but rote memorization is not

true knowledge. Without the knowledge of the philosophy and how that is embodied in

the elegant structure and implementation of Linux, applying the correct commands as

tools to resolve complex problems is not possible. I have seen smart people who had a

vast knowledge of Linux be unable to resolve a relatively simple problem because they

were unaware of the elegance of the structure beneath the surface.

As a SysAdmin, part of my responsibility in many of my jobs has been to assist with

hiring new employees. I participated in many technical interviews of people who had

passed many Microsoft certifications and who had fine resumes. I also participated

in many interviews in which we were looking for Linux skills but very few of those

applicants had certifications. This was at a time when Microsoft certifications were the

big thing but during the early days of Linux in the data center and few applicants were

yet certified.

We usually started these interviews with questions designed to determine the limits

of the applicant’s knowledge. Then we would get into the more interesting questions,

ones that would test their ability to reason through a problem to find a solution. I noticed

some very interesting results. Few of the Windows certificate owners could reason their

way through the scenarios we presented while a very large percentage of the Linux

applicants were able to do so.

I think that result was due in part to the fact that obtaining the Windows certificates

relied upon memorization rather than actual hands-on experience, and the fact that

Windows is a closed system that prevents SysAdmins from truly understanding how it

works. I think that the Linux applicants did so much better because Linux is open on

multiple levels, and logic and reason can be used to identify and resolve any problem.

Any SysAdmin who has been using Linux for some time has had to learn about the

architecture of Linux and has had a decent amount of experience with the application of

knowledge, logic, and reason to the solution of problems.

Chapter 1 IntroduCtIon to the LInux phILosophy

14

 Enlightenment
Much of this book takes place on the Linux command line, but it is not about the

commands themselves. In this book the commands are the tools through which the

beauty of the underlying structure of Linux shines if you know how to illuminate it. This

book will help you to achieve enlightenment by showing you how to use those common

commands to explore that beauty.

You should already be familiar with all except perhaps one or two of the commands

that appear in this book. This book will enable you to use those common commands to

explore the underlying layers of Linux and discover for yourself the Linux Truth.

Don’t forget – It should be FUN!

Chapter 1 IntroduCtIon to the LInux phILosophy

15
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_2

CHAPTER 2

Getting Ready
This book defines a philosophy, but it is also intended to illuminate the practical aspects

of that philosophy with experiments that you can perform. Because we SysAdmins are

a hands-on group of individuals, this book provides a number of simple experiments

that you can perform in order to more fully appreciate and understand the tenets of

the philosophy. Most experiments usually consist of a one-line bash shell command or

program. Some of the experiments do use more than one line.

This chapter will tell you more about what to expect from the experiments. It will

describe the optimum configuration for the Linux computer on which to apply these

experiments, and it will give you an opportunity to prepare a USB thumb drive for use in

some of the experiments.

 The Experiments
As a hands-on SysAdmin, I like to experiment with the command line in order to learn

new commands and new ways to perform tasks. Most of the experiments I have devised

for this book are ones that I have performed in my own explorations with perhaps some

minor changes to accommodate their use here.

Please note that some of the tenets do not lend themselves to experiments; so not

every tenet you read about in this book will be illustrated with an experiment, but as

many as possible have experiments. Many of the experiments are illustrative of more

tenets than just the one in which they appear.

All SysAdmins are hands-on people even though we have different ways of learning.

I think it is helpful for SysAdmins to have hands-on experience with these tenets in order

to fully visualize and appreciate the truths they embody. That is what the experiments

are for – to provide an opportunity to go beyond the theoretical and apply the tenets in a

practical way. Although some of the experiments are a bit contrived in order to illustrate

a particular point, they are nevertheless valid.

16

These enlightening experiments are not tucked away at the end of each chapter, or

the book, where they can be easily ignored – they are embedded in the text and are an

integral part of the flow of this book. I recommend that you perform the experiments as

you proceed through the book.

The commands and sometimes the results for each experiment will appear in

“experiment” sections as shown below. Many experiments need only a single command,

and so will have only one “experiment” section. Other experiments may be more

complex and so split among two to more experiment sections.

EXPERIMENT EXAMPLE

This is an example of an experiment. Each experiment will have instructions and code for you

to enter end run on your computer.

Many experiments will have a series of instructions in a prose format like this paragraph. Just

follow the instructions and the experiments will work just fine.

 1. Some experiments will have a list of steps to perform.

 2. Step 2.

 3. etc…

Code that you are to enter for the experiments will look like this.

This is the end of the experiment.

Most of these experiments can be performed as a non-root user; that is much safer

than doing everything as root. However you will need to be root for some of these

experiments.

These experiments are considered safe for use on a computer or VM designated for

training. Regardless of how benign they may seem, you should not perform any of these

experiments on a production system.

Warning! You should not use a production computer for these experiments. You
should use a computer or virtual machine that is designated for training.

ChapTEr 2 GETTinG rEadY

17

There are times when I want to present code that is interesting but which you should

not run as part of one of the experiments. For such situations I will place the code and

any supporting text in a CODE SAMPLE section as shown below.

CODE SAMPLE

Code that is intended to illustrate a point but which you should not even think about running

on any computer will be contained in a section like this one.

echo "This is sample code which you should never run."

 System Requirements
You will need a computer with Linux installed on it to perform these experiments. The

specifications of this computer are relatively unimportant because even the smallest

Linux computers provide terminal emulators or console sessions to access the command

line. For best results, the minimum you might consider is Intel or AMD hardware with

at least 2GB of RAM and an i3 processor or the equivalent. In a pinch a Raspberry Pi 3B

with the latest version of Raspbian installed will work, too.

The computer you use for the experiments in this book should have a recent,

mainstream distribution such as Fedora, Ubuntu, Mint, RHEL, or CentOS. Whichever

distro that you use should have a GUI desktop installed and available for use. Some

experiments require having multiple terminal emulation sessions open on the desktop.

You will also need a USB thumb drive on which to perform some of the more

dangerous experiments that involve reading and writing data on hard drives. A USB

thumb drive is a suitable replacement for, and will work exactly the same way, as a real

hard drive with a spinning disk and moving heads and all.

I strongly suggest that you use a host computer that is not being used for anything

else, such as a system designated for training, or a virtual machine running on free open

source software like VirtualBox to install Linux and perform these experiments. That will

significantly reduce the possibility of damage to a production computer.

You should have root access on the computer or VM you are using for these

experiments. If you do not have root on any computer, you will be unable to perform

some of these experiments. You will be informed for the experiments in which root

access is required.

ChapTEr 2 GETTinG rEadY

18

You should use an account such as a “student” account to try most of these

experiments. That further reduces the danger of damaging your own files. In fact, most of

these experiments assume that you are logged in as the non-privileged user, student.

Warning! do not perform the experiments presented in this book on a production
system.

 How to Access the Command Line
All of the modern mainstream Linux distributions provide at least three ways to access

the command line.

If you use a graphical desktop, most distributions come with multiple terminal

emulators from which to choose. I prefer Krusader and Tilix but you can use any

terminal emulator that you like.

Linux also provides the capability for multiple virtual consoles to allow for multiple

logins from a single keyboard and monitor. Virtual consoles can be used on systems that

don’t have a GUI desktop, but they can be used even on systems that do have one.

Each virtual console is assigned to a Function Key corresponding to the console

number. So vc1 would be assigned to function key F1, and so on. It is easy to switch to

and from these sessions. On your computer you can hold down the Ctrl and Alt keys and

press F2 to switch to vc2. Then hold down the Ctrl and Alt keys and press F1 to switch to

vc1 and the graphical interface.

The last method to access the command line on a Linux computer is via a remote

login. Secure Shell (SSH) is the most common method of remote access.

If the computer to which you have local access is not acceptable on which to run

these experiments but you have access to a remote computer that is, you can SSH into

that computer to run the experiments. For some of the experiments you will need to log

in more than once.

We will go into much more detail about terminal emulators and console sessions in

Chapter 7.

ChapTEr 2 GETTinG rEadY

19

 Create the Student User
As root, you should go ahead right now and create a new user on the computer you will

be using for these experiments with the user ID of "student" – without the quotes. Set the

password to anything reasonably secure that you can remember.

PREPARATION 2-1

Enter the commands below to create the student user and assign a password.

[root@testvm1 ~]# useradd -c "Student User" student

[root@testvm1 ~]# passwd student

Changing password for user student.

New password: <Enter password>

Retype new password: <Enter password again>

passwd: all authentication tokens updated successfully.

 Preparing the USB Thumb Drive
You can perform many of the experiments safely with a USB thumb drive that is not

being used for anything else. Of course, you will have to re-create the partition and

filesystem on it in order to make it usable again when we are finished.

I found an old USB 2.0 64MB – yes MB – thumb drive that I have no other current use

for, so I set it up to use with these experiments. You can use any size USB stick that you

have on hand, but a small one is perfectly fine.

ChapTEr 2 GETTinG rEadY

20

PREPARATION 2-2

prepare the USB device for use with these experiments.

 1. Open a terminal session on the computer you will be using for this

experimentation and log in as root.

 2. insert the USB device in a USB slot on your Linux computer.

 3. Use the dmesg command to determine which device file the kernel has

assigned to the USB drive. it will probably be something like /dev/sdb. The

dmesg output should show at least one partition /dev/sdb1. The drive letter – b

in this example – may be a different letter on your Linux computer.

Caution The following steps may cause the complete destruction of data on a
production system if the wrong device is specified in the commands. Be sure to
use a non-production system for this experiment.

 4. Mount the drive’s partition on /mnt.

 5. Change the pWd to /mnt.

 6. delete any preexisting files.

 7. Enter and run the following command to create some files with content on the

drive.

for I in 0 1 2 3 4 5 6 7 8 9 ; do dmesg > file$I.txt;done

 8. Verify that there are now at least 10 files on the drive with the names file0.txt

through file9.txt.

 9. Change the pWd to root's home directory.

 10. Unmount the USB drive and remove it from the computer until it is needed.

The USB drive is now ready for use in our experiments.

ChapTEr 2 GETTinG rEadY

21

 What to Do if the Experiments Do Not Work
These experiments are intended to be self-contained and not dependent upon

any setup, except for the USB thumb drive, or the results of previously performed

experiments. Certain Linux utilities and tools must be present, but these should all be

available on a standard Fedora Linux workstation installation or any other mainstream

general use distribution.

Therefore, all of these experiments should “just work.” We all know how that goes,

right? So when something does fail, the first things to do are the obvious.

 1. Verify that the commands were entered correctly. This is the most

common problem I encounter for myself.

 2. You may see an error message indicating that the command was

not found. The bash shell shows the bad command; in this case

I made up badcommand. It then gives a brief description of the

problem. This error message is displayed for both missing and

misspelled commands. Check the command spelling and syntax

multiple times to verify that it is correct.

[student@testvm1 ~]$ badcommand

bash: badcommand: command not found...

 3. Use the man command to view the manual pages (man pages) in

order to verify the correct syntax and spelling of commands.

 4. Ensure that the required command is, in fact, installed. Install

them if they are not already installed.

 5. For experiments that require you to be logged in as root, ensure

that you have done so. There should be only a few of these, but

performing them as a non-root user will not work.

There is not much else that should go wrong – but if you encounter a problem that

you cannot make work using these tips, contact me at LinuxGeek46@both.org and I will

do my best to help figure out the problem.

ChapTEr 2 GETTinG rEadY

PART II

Foundation

There is a great deal of power in the Linux command line that can be tapped to great

advantage by its users. The graphical user interfaces (GUI) of today make using the

command line unnecessary for many people who just want to use a few relatively simple

tools to browse the Web, use email, and perhaps read or write documents. Most Linux

users cannot conceive of the power hidden behind the GUI. However, the GUI that

allows easy access to computer power for many more users than would otherwise be the

case hides a large portion of the power that those same computers put into our hands.

One group of people in particular tend to be the main users of the command line:

System Administrators, aka SysAdmins. SysAdmins are the ultimate power users of the

command line because it provides direct access to the full extent of the available power.

That is not to say that regular, non-root users do not use the command line.

Many do, but usually for those times when a GUI does not have the capability

to meet their needs. Most Linux distributions have graphical tools for installing

programs; managing users and groups and their permissions; moving and managing

files; handling email; browsing the Web; managing processes and CPU functions;

limiting access to system resources for some users; and much more. But if the casual

users of the Command-Line Interface (CLI) were to explore deeply enough, they

would find that Linux provides many text- mode and command-line tools to perform

every task that can be performed in a GUI – and many tasks that cannot – usually

faster and with more features and functions.

24

My needs as a SysAdmin include power, speed, flexibility, and total control over the

operating system. The only means of meeting all of those needs is to have unfettered

access to the Linux command line where all of that power and speed are exposed. As a

SysAdmin, I find myself using the CLI far more often than I use the GUI for administrative

tasks. In large part this is because I prefer the CLI, but there are also many Linux

computers that do not have any type of GUI installed, and even those that do can be

very slow when attempting to perform remote administration through any of the remote

desktop tools. Those remote GUI tools can be useful if you have a very fast Internet

connection to the remote computer, but they will never be as fast as a good old- fashioned

terminal session because the network overhead for the GUI data just sucks up bandwidth.

I am not saying that I don’t use a GUI desktop and that they are "bad." In fact, I find

that the GUI desktop can improve my productivity on the CLI. I use the GUI to leverage

my CLI access by opening multiple terminal sessions simultaneously, thus providing me

with simultaneous access to the CLI for multiple users on multiple Linux hosts.

I use graphical tools on my GUI desktop. I am using LibreOffice Writer, a powerful,

graphical, free, open source word processing program to write this book. I appreciate

and use the CLI and the GUI for their respective strengths. However, the Linux Truth is

that the CLI offers the most power to those willing to use it.

This section of The Linux Philosophy for System Administrators will introduce

you to the foundational tenets of the philosophy. These tenets are the developmental

embodiment of those tenets of the Unix/Linux Philosophy recorded in the Gancarz book

that we will see more of in this part. That philosophical approach to the basic design of

Unix, and thus to Linux, contributed to the stability, elegance, simplicity, and the power

intrinsic to both operating systems.

This is no accident. Linus Torvalds first developed Linux as a hobby but intentionally

based it on Unix. He took the freely available GNU Utilities, recompiled then for Linux,

and added them to his operating system, which, when taken together in combination, is

known by purists as GNU/Linux.

The personality and usability of any operating system is a function of the

assumptions made by the designers. Linux is no exception. It was designed from the

beginning to be Unix-like and the Unix developers had decided that Unix would allow

its users to access every bit of the power that was designed into it. Not only that, they

provided users with the tools needed to access that power. After all, what good is it to

design an operating system – or anything else for that matter – and then limit access to

it? GNU/Linux is Free Libre Open Source Software – FLOSS – that is much like Unix in its

philosophy and implementation.

Part II FoundatIon

25

Because of their importance and far-ranging impact on the personality of Linux, I

spend a great deal of space in this book explaining these Foundational tenets in words

and illustrating them with hands-on experiments. I believe that it is only with a firm

understanding of these tenets that the Functional tenets can be appreciated and their

applicability to the daily tasks of the SysAdmin more completely realized.

In Part 2 of this book, our enlightenment begins with the most basic layer of the

Philosophy. We will be introduced to “The Linux Truth,” data streams, Standard IO

(STDIO), transforming data streams, and the meaning of “everything is a file.” As

enlightenment begins to dawn in our work life, we find ourselves learning many new

commands, how to use them effectively in simple command-line programs, and how to

make use of the fact that everything is a file.

Part II FoundatIon

27
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_3

CHAPTER 3

Data Streams
Everything in Linux revolves around streams of data – particularly text streams.

I recently Googled “data stream” and most of the top hits are concerned with

processing huge amounts of streaming data in single entities such as streaming video

and audio, or financial institutions processing streams consisting of huge numbers

of individual transactions. This is not what we are talking about here although the

concept is the same, and a case could be made that current applications use the stream

processing functions of Linux as the model for processing many types of data.

In the Unix and Linux worlds, a stream is a flow text data that originates at some

source; the stream may flow to one or more programs that transform it in some way, and

then it may be stored in a file or displayed in a terminal session. As a SysAdmin your job

is intimately associated with manipulating the creation and flow of these data streams. In

this chapter we will explore data streams – what they are, how to create them, and a little

bit about how to use them.

 Text Streams – A Universal Interface
The use of Standard Input/Output (STDIO) for program input and output is a key foundation

of the Linux way of doing things. STDIO was first developed for Unix and has found its way

into most other operating systems since then, including DOS, Windows, and Linux.

This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together. Write programs to handle text
streams, because that is a universal interface.

— Doug McIlroy, Basics of the Unix Philosophy1,2

1 Eric S. Raymond, The Art of Unix Programming, http://www.catb.org/esr/writings/taoup/
html/ch01s06.html

2 Linuxtopia, Basics of the Unix Philosophy, http://www.linuxtopia.org/online_books/
programming_books/art_of_unix_programming/ch01s06.html

http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html

28

STDIO was developed by Ken Thompson3 as a part of the infrastructure required

to implement pipes on early versions of Unix. Programs that implement STDIO use

standardized file handles for input and output rather than files that are stored on a disk

or other recording media. STDIO is best described as a buffered data stream, and its

primary function is to stream data from the output of one program, file, or device to the

input of another program, file, or device.

 STDIO File Handles
There are three STDIO data streams, each of which is automatically opened as a file at

the startup of a program – well those programs that use STDIO. Each STDIO data stream

is associated with a file handle that is just a set of metadata that describes the attributes

of the file. File handles 0, 1, and 2 are explicitly defined by convention and long practice

as STDIN, STDOUT, and STDERR, respectively.

STDIN, File handle 0, is standard input that is usually input from the keyboard.

STDIN can be redirected from any file including device files instead of the keyboard. It

is less common to redirect STDIN than STDOUT or STDERR, but it can be done just as

easily.

STDOUT, File handle 1, is standard output that sends the data stream to the display

by default. It is common to redirect STDOUT to a file or to pipe it to another program for

further processing.

STDERR is associated with File handle 2. The data stream for STDERR is also usually

sent to the display.

If STDOUT is redirected to a file, STDERR continues to be displayed on the screen.

This ensures that when the data stream itself is not displayed on the terminal, that

STDERR is, thus ensuring that the user will see any errors resulting from execution

of the program. STDERR can also be redirected to the same or passed on to the next

transformer program in a pipeline.

STDIO is implemented as a C library, stdio.h, which can be included in the source

code of programs so that it can be compiled into the resulting executable.

3 Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson

Chapter 3 Data StreamS

https://en.wikipedia.org/wiki/Ken_Thompson

29

 Generating Data Streams
Most of the Core Utilities use STDIO as their output stream and those that generate

data streams, rather than acting to transform the data stream in some way, can be used

to create the data streams that we will use for our experiments. Data streams can be as

short as one line or even a single character, and as long as needed.4

Let’s try our first experiment and create a short data stream.

EXPERIMENT 3-1

If you have not done so already, log in to the host you are using for these experiments as the

user “student.” If you have logged in to a GUI desktop session, start your favorite terminal

emulator; if you have logged in to one of the virtual consoles or a terminal emulator you are

ready to go.

Use the command shown below to generate a stream of data. the command is in boldface.

[student@f26vm ~]$ ls -la

total 28

drwx------ 3 student student 4096 Oct 20 01:25 .

drwxr-xr-x. 10 root root 4096 Sep 21 10:06 ..

-rw------- 1 student student 1218 Oct 20 20:26 .bash_history

-rw-r--r-- 1 student student 18 Jun 30 11:57 .bash_logout

-rw-r--r-- 1 student student 193 Jun 30 11:57 .bash_profile

-rw-r--r-- 1 student student 231 Jun 30 11:57 .bashrc

drwxr-xr-x 4 student student 4096 Jul 5 18:00 .mozilla

the output from this command is a short data stream that is displayed on StDOUt, the console

or terminal session that you are logged in to.

In Chapter 4, “Transforming Data Streams,” we will pipe the STDOUT data streams

like this one to STDIN of some transformer programs in order to perform some

manipulation of the data in the stream. For now, we are just generating streams of data.

Some GNU core utilities are designed specifically to produce streams of data.

4 A data stream taken from special device files random, urandom, and zero, for example, can
continue forever without some form of external termination such as the user entering Ctrl-C, a
limiting argument to the command or a system failure.

Chapter 3 Data StreamS

30

EXPERIMENT 3-2

the yes command produces a continuous data stream that consists of repetitions of the data

string provided as the argument. the generated data stream will continue until it is interrupted

with a Ctrl-C, which is displayed on the screen as ^C.

enter the command as shown and let it run for a few seconds. press Ctrl-C when you get tired

of watching the same string of data scroll by.

[student@f26vm ~]$ yes 123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

1234^C

“What does this prove?,” you ask. Just that there are many ways to create a data stream

that might be useful. For example, you might wish to automate the process of responding

to the seemingly interminable requests for “y” input to from the fsck program to fix a

problem on the hard drive. This solution can result in saving a lot of presses on the “y” key.

EXPERIMENT 3-3

to see how the yes generates a string of “y” characters, try the yes command again without

a string argument as in experiment 3-2, and you get a string of “y” characters as output.

[student@f26vm ~]$ yes

y

y

y

y

y

y

y

^C

Chapter 3 Data StreamS

31

And now, here is something that you should most definitely not try. When run as

root, the rm * command will erase every file in the present working directory (pwd) – but

it asks you to enter “y” for each file to verify that you actually want to delete that file. This

means more typing.

CODE SAMPLE 3-1

I haven’t talked about pipes yet but as a Sysadmin, or someone who wants to become one,

you should already know how to use them. the CLI program below will supply the response of

“y” to each request by the rm command and will delete all of the files.

yes | rm *

Warning! Do not run this command because it will delete all of the files in the
present working directory.

Of course you could also use rm -f *, which would also forcibly delete all of the files in the

pWD. the -f means “force” the deletions. that is also something you should not do.

 Test a Theory with Yes
Another option for using the yes command is to fill a directory with a file containing some

arbitrary and pretty much irrelevant data in order to – well – fill up the directory. I have

used this technique to test what happens to a Linux host when a particular directory

becomes full. In the specific instance where I used this technique, I was testing a theory

because a customer was having problems and could not log in to their computer.

Note I assume in this series of experiments that the USB drive is on /dev/sdb
and its partition is /dev/sdb1 – as it is on my Vm – be sure you verify the device it
has been assigned on your computer as it might – and probably will – be different.
Use the correct device file5 for your situation.

5 We will learn more about device files and the /dev directory in Chapter 5, “Everything Is a File.”

Chapter 3 Data StreamS

32

EXPERIMENT 3-4

this experiment should be performed as root.

In order to prevent filling your root filesystem, this experiment will use the USB device that

you should have prepared in advance. this experiment will not affect the existing files on the

device.

You did prepare that USB drive, did you not? If not, then go back to Chapter 1 and do so now. I

will wait…

ready? Great!

 1. Now insert the USB drive into one of the USB slots on your computer.

 2. Use the dmesg command to view the information about the USB drive and

determine its assigned device file. It should be /dev/sdb or something similar to

that. Be sure to use the correct device file for your device.

 3. mount the USB devices filesystem partition, /dev/sdb1, on my system, on /mnt.

 4. run the commands shown below in bold. Some of the results shown here have

wrapped due to the limited width of the page, but you get the idea.

Depending upon the size of your USB filesystem, the time to fill it may vary but it should be

quite fast.

[root@testvm1 ~]# yes 123456789-abcdefgh >> /mnt/testfile.txt

yes: standard output: No space left on device

[root@testvm1 ~]# df -h /mnt

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 62M 62M 2.0K 100% /mnt

[root@testvm1 ~]# ls -l /mnt

total 62832

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file0.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file1.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file2.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file3.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file4.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file5.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file6.txt

Chapter 3 Data StreamS

33

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file7.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file8.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file9.txt

-rwxr-xr-x 1 root root 63950848 Dec 7 13:16 testfile.txt

Your results will look somewhat different but they should definitely be similar to mine.

Be sure to look at the line from the df output that refers to the /dev/sdb1 device. this shows

that 100% of the space on that filesystem is used.

Now delete testfile.txt from /mnt and unmount that filesystem.

I used the simple test in Experiment 3-4 on the /tmp directory of one of my own

computers as part of my testing to assist me in determining my customer’s problem.

After /tmp filled up users were no longer able to log in to a GUI desktop, but they could

still log in using the consoles. That is because logging into a GUI desktop creates files in

the /tmp directory and there was no room left so the login failed. The console login does

not create new files in /tmp so they succeeded. My customer had not tried logging into

the console because they were not familiar with the CLI.

After testing this on my own system as verification, I used the console to login to the

customer host and found a number of large files taking up all of the space in the /tmp

directory. I deleted those and helped the customer determine how the files were being

created, and we were able to put a stop to that.

 Exploring the USB Drive
It is now time to do a little exploring, and to be as safe as possible you will use the USB

thumb drive that you prepared earlier. In this experiment we will look at some of the

filesystem structures.

Let’s start with something simple. You should be at least somewhat familiar with the

dd command. Officially known as “disk dump,” many SysAdmins call it “disk destroyer”

for good reason. Many of us have inadvertently destroyed the contents of an entire

hard drive or partition using the dd command. That is why we will use the USB drive to

perform some of these Experiments.

Chapter 3 Data StreamS

34

The dd command is a powerful tool that allows us to generate data streams using any

file or device like a hard drive, disk partitions, RAM memory, virtual consoles, terminal

emulation sessions, STDIO, and much more as both a source and target. Because the dd

command does not modify these data streams, it gives us access to the raw data so we

can view and analyze it.

Data streams generated by dd can be used for many different purposes as you will

see as we progress through this series of experiments. It is one of my favorite tools for

exploring files and devices.

EXPERIMENT 3-5

It is not necessary to mount the USB drive for this experiment; in fact this experiment is more

impressive if you do not mount the device. If the USB device is currently mounted, unmount it.

Log in to a terminal session as root.

as root in a terminal session, use the dd command to view the boot record of the USB drive,

assuming it is assigned to the /dev/sdb device. the bs= argument is not what you might think;

it simply specifies the block size, and the count= argument specifies the number of blocks to

dump to StDIO. the of= argument specifies the source of the data stream, in this case, the

USB device.

[root@f26vm ~]# dd if=/dev/sdb bs=512 count=1

•>•MSWIN4.1P•} •••)L•0NO NAME FAT16 •}•3•••{••x•vVU•"•~•N•
•••|•E••F•E••8f$|•r<•F••fFVF•PR•F•V•• •v••^
•H••F•N•ZX••••rG8-t•
V•v>•^tJNt
••F•V••S••[r•?MZu•••BJu••pPRQ••3••v••vB•••v••V$•••••••t<•t •••••}•
•}••3••^••D•••}•}••r••HH•N ̸
•YZXr @uB^
•••'
Invalid system disk•
Disk I/O error•
Replace the disk,!••U•

1+0 records in

1+0 records out

512 bytes copied, 0.0116131 s, 44.1 kB/s

Chapter 3 Data StreamS

35

this prints the text of the boot record, which is the first block on the disk – any disk. In this

case, there is information about the filesystem and, although it is unreadable because it is

stored in binary format, the partition table. If this were a bootable device, stage 1 of GrUB

or some other boot loader would be located in this sector. I have added a couple of line

feeds after the boot record itself in order to clarify the end of the data in the sector and the

information printed by the dd command itself. the last three lines contain data about the

number of records and bytes processed.

Now let’s do the same Experiment, but on the first record of the first partition.

EXPERIMENT 3-6

the USB device should still be inserted and unmounted, and you should still be logged in as

root.

 1. run the following command.

[root@f26vm ~]# dd if=/dev/sdb1 bs=512 count=1

•<•mkfs.fat•|••)•GR•NO NAME FAT16 •[|•"•t
 V•••^••2•••••This is not
a bootable disk. Please insert a bootable floppy and

press any key to try again ...

U•1+0 records in
1+0 records out

512 bytes copied, 0.0113664 s, 45.0 kB/s

this experiment shows the that there are differences between a boot record and the first

record of a partition. It also shows that the dd command can be used to view data in the

partitions as well as for the disk itself.

Let’s see what else is out there on the USB drive. Depending upon the specifics of

the USB device you are using for these Experiments, you may have different results from

mine. I will show you what I did and you can modify that if necessary to achieve the

desired result.

Chapter 3 Data StreamS

36

What we are attempting to do is use the dd command to locate the directory entries

for the files we created on the USB drive and then some of the data. If we had enough

knowledge of the metadata structures, we could interpret them directly to find the

locations of this data on the drive, but we don’t so we will have to do this the hard way –

print out data until we find what we want.

So let’s start with what we do know and proceed with a little finesse. We know that the

data files we created during the USB device preparation were in the first partition on the

device. Therefore, we don’t need to search the space between the boot record and the first

partition, which contains lots of emptiness. At least that is what it should contain.

Starting with the beginning of /dev/sdb1, let’s look at a few blocks of data at a time

to find what we want. The command in Experiment 3-7 is similar to the previous one

except that we have specified a few more blocks of data to view. You may have to specify

fewer blocks if your terminal is not large enough to display all of the data at one time,

or you can pipe the data through the less utility and use that to page through the data.

Either way works. Remember we are doing all of this as root user because non-root users

do not have the required permissions.

EXPERIMENT 3-7

enter the same command as you did in the previous experiment, but Increase the block count

to be displayed to 10 as shown below in order to show more data.

[root@f26vm ~]# dd if=/dev/sdb1 bs=512 count=10

•<•mkfs.fat•|••)•GR•NO NAME FAT16 •[|•"•t
 V•••^••2•••••This is not a
bootable disk. Please insert a bootable floppy and

press any key to try again ...

U•••••

•• !"#$%&'(••*+,-./0123456789:;••=>?@ABCDEFGHIJKLMN••PQRSTUVWXYZ[\]
^_`a••cdefghijklmnopqrst••vwxyz{|}~•••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••10+0 records in
10+0 records out

5120 bytes (5.1 kB, 5.0 KiB) copied, 0.019035 s, 269 kB/s

there is not a lot different here, but let's look a little further.

Chapter 3 Data StreamS

37

Let’s look at a new option for the dd command, one which gives us a little more

flexibility.

EXPERIMENT 3-8

We still want to display about 10 blocks of data at a time, but we don't want to start at the

beginning of the partition, we want to skip the blocks we have already looked at.

enter the following command and add the skip=10 argument, which skips the first 10 blocks

of data and displays the next 10.

[root@f26vm ~]# dd if=/dev/sdb1 bs=512 count=10 skip=10

10+0 records in

10+0 records out

5120 bytes (5.1 kB, 5.0 KiB) copied, 0.01786 s, 287 kB/s

We see in Experiment 3-8 that the second 10 blocks of the partition are empty; that

is. they contain nulls, which do not print because they are null – nothing. We could

continue to skip more and more blocks at the beginning of the partition or use larger

increments in the count and the skip arguments, such as 20 and 20. But I will hopefully

save you some time. I have found that the directory entries are displayed if I skip

250 blocks. This may not be the case for you if your USB drive is a different size or is

formatted differently but it should be a good place to start.

EXPERIMENT 3-9

Now enter the dd command and skip 250 blocks.

[root@f26vm ~]# dd if=/dev/sdb1 bs=512 count=10 skip=250

Afile0•.txt••••••FILE0 TXT •jgKgK•jgK••Afile1•.txt••••••FILE1TXT
•jgKgK•jgK••Afile2•.txt••••••FILE2 TXT •jgKgK•jgK)••Afile3•.txt••••••FILE3
TXT •jgKgK•jgK<••Afile4•.txt••••••FILE4 TXT •jgKgK•jgKO••Afile5•.txt••••••FILE5
TXT •jgKgK•jgKb••Afile6A.txt••••••FILE6 TXT •jgKgK•jgKu••Afile7E.txt••••••FILE7
TXT •jgKgK•jgK•••Afile8•.txt••••••FILE8 TXT •jgKgK•jgK•••Afile9M.txt••••••FILE9
TXT •jgKgK•jgK•••10+0 records in
10+0 records out

5120 bytes (5.1 kB, 5.0 KiB) copied, 0.0165904 s, 309 kB/s

Chapter 3 Data StreamS

38

If you do not see the directory similar to that shown above on the first attempt, try changing

the number of blocks to skip and run the experiment again. Our technical reviewer did locate

the directory but using a much different skip count.

the output from this command shows the data contained in the directory of the /dev/sdb1

partition. this shows that directories are just data on the partition just like any other data.

I also found that skipping 500 blocks displays the data from one of the files as shown

in Experiment 3-10, below.

EXPERIMENT 3-10

this time enter the dd command and skip 500 blocks with a count of 5 to display only 5

blocks. Note that these results are line-wrapped but each line in dmesg starts with the

timestamp.

[root@f26vm ~]# dd if=/dev/sdb1 bs=512 count=5 skip=500

msg='unit=systemd-journald comm="systemd" exe="/usr/lib/systemd/systemd"

hostname=? addr=? terminal=? res=success'

[6.430317] audit: type=1131 audit(1509824958.916:49): pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=systemd- journald comm="systemd"

exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'

[6.517686] audit: type=1305 audit(1509824959.007:50): audit_enabled=1

old=1 auid=4294967295 ses=4294967295 res=1

[6.665314] audit: type=1130 audit(1509824959.154:51): pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=systemd- journald comm="systemd"

exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'

[6.671171] audit: type=1130 audit(1509824959.160:52): pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=kmod-static- nodes

comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=?

terminal=? res=success'

[6.755493] audit: type=1130 audit(1509824959.244:53): pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=systemd- sysctl comm="systemd"

exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'

[9.782860] RAPL PMU: hw unit of domain pp0-core 2^-0 Joules

[9.783651] RAPL PMU: hw unit of domain package 2^-0 Joules

[9.784427] RAPL PMU: hw unit of domain pp1-gpu 2^-0 Joules

Chapter 3 Data StreamS

39

[9.785611] ppdev: user-space parallel port driver

[9.948408] Adding 4177916k swap on /dev/mapper/fedora_f26vm-

swap. Priority:-1 extents:1 across:4177916k FS

[10.082485] snd_intel8x0 0000:00:05.0: white list rate for 1028:0177 is 48000

[10.441113] EXT4-fs (sda1): mounted filesystem with ordered data mode.

Opts: (null)

[11.456654] kauditd_printk_skb: 15 callbacks suppressed

[11.457548] audit: type=1130 audit(1509824963.942:69): pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=lvm2-pvscan@8:2 comm="systemd"

exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=? res=success'

[11.523286] audit: type=1130 audit(1509824964.012:70): pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=systemd-fsck@dev-mapper- fedora_

f26vm\x2dhome co5+0 records in

5+0 records out

2560 bytes (2.6 kB, 2.5 KiB) copied, 0.0223881 s, 114 kB/s

I have no idea which file the data is from. We could figure it out if we really wanted to, but that

is not necessary for the purposes of this book. Note that the locations of the directory and the

files themselves may be different on your drive. You may have to search a bit in order to find

them, but this is where they were on my device.

You should definitely take some time on your own to explore the contents of the USB

drive. You might be surprised at what you find.

 Streams of Randomness
It turns out that randomness is a desirable thing in computers. Who knew. There are a

number of reasons that SysAdmins might want to generate a stream of random data.

Data streams generated from other sources such as a file or device like a hard drive

partition should be expected to contain non-random data that could be used by black-

hat hackers to obtain private or classified data. Using a stream of data that is guaranteed

to be random provides a safer alternative.

A stream of random data is sometimes useful to overwrite the contents of a complete

partition, such as /dev/sda1, or even the entire hard drive as in /dev/sda.

Chapter 3 Data StreamS

40

Although deleting files may seem permanent, it is not. Many forensic tools are

available and can be used by trained forensic specialists to easily recover files that

have supposedly been deleted. It is much more difficult to recover files that have been

overwritten by random data. I have frequently needed not just to delete all of the data

on a hard drive but to overwrite it so it cannot be recovered. I do this for customers and

friends who have “gifted” me with their old computers for reuse or recycling.

Regardless of what ultimately happens to the computers, I promise the persons who

donate the computers that I will scrub all of the data from the hard drive. I remove the

drives from the computer, put them in my plug-in hard drive docking station, and used a

command similar to the one in Experiment 3-11 to overwrite all of the data, but instead

of just spewing the random data to STDOUT as in this Experiment. I redirect it to the

device file for the hard drive that needs to be overwritten – but don’t do that.

EXPERIMENT 3-11

enter this command to print an unending stream of random data to StDOUt.

[student@testvm1 ~]$ cat /dev/urandom

Use Ctrl-C to break out and stop the stream of data.

If you are extremely paranoid, the shred command can be used to overwrite

individual files as well as partitions and complete drives. It can write over the device as

many times as needed for you to feel secure, with multiple passes using both random

data as well as specifically sequenced patterns of data designed to prevent even the most

sensitive equipment from recovering any data from the hard drive. As with other utilities

that use random data, the random stream is supplied by the /dev/urandom device.

Random data is also used as the input seed to programs that generate random

passwords and random data and numbers for use in scientific and statistical

calculations. I will cover randomness and other interesting data sources in a bit more

detail in Chapter 4: “Everything Is a File.”

Chapter 3 Data StreamS

41

 Summary
In this chapter you learned that STDIO is nothing more than streams of data. This data

can be almost anything from the output of a command to list the files in a directory, or

an unending stream of data from a special device like /dev/urandom, or even a stream

that contains all of the raw data from a hard drive or a partition. You learned some

different and interesting methods to generate different types of data streams and how to

use the dd command to explore the contents of a hard drive.

Any device on a Linux computer can be treated like a data stream. You can use

ordinary tools like dd and cat to dump data from a device into a STDIO data stream that

can be processed using other ordinary Linux tools.

So far we have not done anything with these data streams except to look at them. But

wait – there’s more! Read on.

Chapter 3 Data StreamS

43
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_4

CHAPTER 4

Transforming Data
Streams
This chapter introduces the use of pipes to connect streams of data from one utility

program to another using STDIO. You will learn that the function of these programs is

to transform the data in some manner. You will also learn about the use of redirection to

redirect the data to a file.

I use the term “transform” in conjunction with these programs because the primary

task of each is to transform the incoming data from STDIN in a specific way as intended

by the SysAdmin and to send the transformed data to STDOUT for possible use by

another transformer program or redirection to a file.

The standard term, “filters,” implies something with which I don't agree. By

definition, a filter is a device or a tool that removes something, such as an air filter

removes airborne contaminants so that the internal combustion engine of your

automobile does not grind itself to death on those particulates. In my high school and

college chemistry classes, filter paper was used to remove particulates from a liquid. The

air filter in my home HVAC system removes particulates that I don't want to breathe.

Although they do sometimes filter out unwanted data from a stream, I much prefer

the term “transformers” because these utilities do much more. They can add data to a

stream, modify the data in some amazing ways, sort it, rearrange the data in each line,

perform operations based on the contents of the data stream, and so much more.

Feel free to use whichever term you prefer, but I prefer transformers.

44

 Data Streams as Raw Materials
Data streams are the raw materials upon which the Core Utilities and many other CLI

tools perform their work. As its name implies, a data stream is a stream of data being

passed from one file, device, or program to another using STDIO.

Data streams can be manipulated by inserting transformers into the stream using

pipes. Each transformer program is used by the SysAdmin to perform some operation on

the data in the stream, thus changing its contents in some manner. Redirection can then

be used at the end of the pipeline to direct the data stream to a file. As has already been

mentioned, that file could be an actual data file on the hard drive, or a device file such as

a drive partition, a printer, a terminal, a pseudo-terminal, or any other device1 connected

to a computer.

The ability to manipulate these data streams using these small yet powerful

transformer programs is central to the power of the Linux command line interface. Many

of the Core Utilities are transformer programs and use STDIO.

 Pipe Dreams
Pipes are critical to our ability to do the amazing things on the command line, so much

so that I think it is important to recognize that they were invented by Douglas McIlroy2

during the early days of Unix. Thanks, Doug! The Princeton University web site has a

fragment of an interview3 with McIlroy in which he discusses the creation of the pipe and

the beginnings of the Unix Philosophy.

Notice the use of pipes in the simple command-line program shown in Experiment 4-1

that lists each logged-in user a single time no matter how many logins they have active.

1 In Linux systems, all hardware devices are treated as files. More about this in Chapter 5,
“Everything Is a File.”

2 Wikipedia, Biography of Douglas McIlroy, http://www.cs.dartmouth.edu/~doug/biography
3 Princeton University, Interview with Douglas McIlroy, https://www.princeton.edu/~hos/
frs122/precis/mcilroy.htm

Chapter 4 transforming Data streams

http://www.cs.dartmouth.edu/~doug/biography
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm

45

EXPERIMENT 4-1

if you have not done so already, open one terminal session and log in as the student user and

a second terminal session as root.

enter the command shown below on one line.

[student@testvm1 ~]$ w | tail -n +3 | awk '{print $1}' | sort | uniq

root

student

You could also use sort -u instead of the uniq transformer to ensure that only one instance

of each logon iD is printed. try it by entering the command below.

[student@testvm1 ~]$ w | tail -n +3 | awk '{print $1}' | sort -u

root

student

the results from these commands produce two lines of data that show that the users root and

student are both logged in. it does not show how many times each user is logged in.

Both of the command pipelines in Experiment 4-1 produce the same result. There

is at least one other way of changing the command pipeline in this experiment while

still generating the same result. Can you find it? There can be many ways to accomplish

the same task. None are right or wrong – just different. Using the second form is, in my

opinion, both simpler and more elegant. We will cover those attributes in Chapter 17,

Strive for elegance,” and Chapter 18, “Find the Simplicity.”

Pipes – represented by the vertical bar (|) – are the syntactical glue, the operator, that

connects these command line utilities together Pipes allow the Standard Output from

one command to be “piped”, that is, streamed from Standard Output of one command to

the Standard Input of the next command.

Chapter 4 transforming Data streams

46

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

A string of programs connected with pipes is called a pipeline, and the programs that

use STDIO are referred to officially as filters, but I prefer the term transformers.

Think about how this program would have to work if we could not pipe the data

stream from one command to the next. The first command would perform its task on the

data and then the output from that command would have to be saved in a file. The next

command would have to read the stream of data from the intermediate file and perform

its modification of the data stream, sending its own output to a new, temporary data

file. The third command would have to take its data from the second temporary data file

and perform its own manipulation of the data stream and then store the resulting data

stream in yet another temporary file. At each step the data file names would have to be

transferred from one command to the next in some way.

I cannot even stand to think about that because it is so complex. Remember that

simplicity rocks!

 Building Pipelines
When I am doing something new, solving a new problem, I usually do not just type in

a complete bash command pipeline from scratch, as in Experiment 4-1 off the top of

my head. I usually start with just one or two commands in the pipeline and build from

there by adding more commands to further process the data stream. This allows me to

view the state of the data stream after each of the commands in the pipeline and make

corrections as they are needed.

In Experiment 4-2 you should enter the command shown on each line and run it

as shown to see the results. This will give you a feel for how you can build up complex

pipelines in stages.

Chapter 4 transforming Data streams

47

EXPERIMENT 4-2

enter the commands as shown on each line. observe the changes in the data stream as

each new transformer utility is appended to the data stream using the pipe. for the first pass

at this, use the uniq tool. the final result of this experiment will be the same as that from

experiment 4-1.

[student@f26vm ~]$ w

[student@f26vm ~]$ w | tail -n +3

[student@f26vm ~]$ w | tail -n +3 | awk '{print $1}'

[student@f26vm ~]$ w | tail -n +3 | awk '{print $1}' | sort

[student@f26vm ~]$ w | tail -n +3 | awk '{print $1}' | sort | uniq

now let’s also use the alternate form of this last command.

[student@f26vm ~]$ w | tail -n +3 | awk '{print $1}' | sort -n

the results of this experiment illustrate the changes to the data stream performed by each of

the transformer utility programs in the pipeline.

It is possible to build up very complex pipelines that can transform the data stream

using many different utilities that work with STDIO.

 Redirection
Redirection is the capability to redirect the STDOUT data stream of a program to a file

instead of to the default target of the display. The “greater than” (>) character, aka “gt,” is

the syntactical symbol for redirection. Experiment 4-3 shows how to redirect the output

data stream of the df -h command to the file diskusage.txt.

Chapter 4 transforming Data streams

48

EXPERIMENT 4-3

redirecting the stDoUt of a command can be used to create a file containing the results from

that command.

[student@f26vm ~]$ df -h > diskusage.txt

there is no output to the terminal from this command unless there is an error. this is because

the stDoUt data stream is redirected to the file and stDerr is still directed to the stDoUt

device, which is the display. You can view the contents of the file you just created using this

next command.

[student@f26vm ~]$ cat diskusage.txt

Filesystem Size Used Avail Use% Mounted on

devtmpfs 2.0G 0 2.0G 0% /dev

tmpfs 2.0G 0 2.0G 0% /dev/shm

tmpfs 2.0G 988K 2.0G 1% /run

tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup

/dev/mapper/fedora_f26vm-root 49G 11G 36G 24% /

tmpfs 2.0G 0 2.0G 0% /tmp

/dev/sda1 976M 158M 752M 18% /boot

/dev/mapper/fedora_f26vm-home 25G 45M 24G 1% /home

tmpfs 396M 0 396M 0% /run/user/991

tmpfs 396M 0 396M 0% /run/user/1001

When using the > symbol for redirection, the specified file is created if it does not

already exist. If it already does exist, the contents are overwritten by the data stream from

the command. You can use double greater than symbols, >>, to append the new data

stream to any existing content in the file as illustrated in Experiment 4-4.

Chapter 4 transforming Data streams

49

EXPERIMENT 4-4

this command appends the new data stream to the end of the existing file.

[student@f26vm ~]$ df -h >> diskusage.txt

You can use cat and/or less to view the diskusage.txt file in order to verify that the new data

was appended to the end of the file.

The < (less than) symbol redirects data to the STDIN of the program. You might

want to use this method to input data from a file to STDIN of a command that does not

take a filename as an argument but that does use STDIN. Although input sources can

be redirected to STDIN, such as a file that is used as input to grep, it is generally not

necessary as grep also takes a filename as an argument to specify the input source. Most

other commands also take a filename as an argument for their input source.

One example of using redirection to STDIN is with the od command as shown in

Experiment 4-5. The -N 50 option prevents the output from continuing forever. You

could use Ctrl-C to terminate the output data stream if you don't use the -N option to

limit it.

EXPERIMENT 4-5

this experiment illustrates the use of redirection as input to stDin.

[student@f26vm ~]$ od -c -N 50 < /dev/urandom

0000000 331 203 _ 307] { 335 337 6 257 347 $ J Z U

0000020 245 \0 ` \b 8 307 261 207 K : } S \ 276 344 ;

0000040 336 256 221 317 314 241 352 ` 253 333 367 003 374 264 335 4

0000060 U \n 347 (h 263 354 251 u H] 315 376 W 205 \0

0000100 323 263 024 % 355 003 214 354 343 \ a 254 # ` { _

0000120 b 201 222 2 265 [372 215 334 253 273 250 L c 241 233

<snip>

the size of the font for this experiment has been reduced so that the lines would fit without

wrapping. it is much easier to understand the nature of the results.

Chapter 4 transforming Data streams

50

Redirection can be the source or the termination of a pipeline. Because it is so

seldom needed as input, redirection is usually used as termination of a pipeline.

 Redirecting STDERR
STDERR is designed to be printed on the STDERR device – usually the same terminal

session as STDOUT – in order to ensure that error messages are displayed and can be

viewed by the SysAdmin rather than being passed through the pipeline and possibly

lost. Even when STDOUT is redirected or piped to the next stage of a pipeine, STDERR is

normally displayed on the terminal.

Experiment 4-6 illustrates the default behavior for the STDERR data stream and then

moves on to show how to create alternative behaviors.

EXPERIMENT 4-6

Let’s start this experiment by creating some test files in your home directory. enter the

following command on a single line.

[student@testvm1 ~]$ for I in 0 1 2 3 4 5 6 7 8 9;do echo "This is file $I" >

file$I.txt;done

now use the cat command to concatenate the content of three of these files. at this point we

are still not expecting any errors, just setting the stage.

[student@testvm1 ~]$ cat file0.txt file4.txt file7.txt > test1.txt

[student@testvm1 ~]$ cat test1.txt

This is file 0

This is file 4

This is file 7

so far everything is working as it should. now let’s change the command to generate a simple

error by specifying a nonexistent file. instead of file4.txt, we specify filex.txt, which does not exist.

[student@testvm1 ~]$ cat file0.txt filex.txt file7.txt > test1.txt

cat: filex.txt: No such file or directory

[student@testvm1 ~]$ cat test1.txt

This is file 0

This is file 7

Chapter 4 transforming Data streams

51

the error message generated by the cat command appears on the terminal while the data is

still redirected to test1.txt. We can redirect stDerr data to the file, too.

[student@testvm1 ~]$ cat file0.txt filex.txt file7.txt &> test1.txt

[student@testvm1 ~]$ cat test1.txt

This is file 0

cat: filex.txt: No such file or directory

This is file 7

in the command above, both stDoUt and stDerr are redirected to the file test1.txt. now let’s

make an assumption that we want the stDoUt to continue to be sent to the terminal while we

do not care about the error messages. to do this we redirect stDerr to /dev/null.4 first we

ensure that test1.txt is empty so that there is no data stored in it to confuse the results.

[student@testvm1 ~]$ echo "" > test1.txt

[student@testvm1 ~]$ cat test1.txt

[student@testvm1 ~]$ cat file0.txt filex.txt file7.txt 2> /dev/null

This is file 0

This is file 7

[student@testvm1 ~]$ cat test1.txt

[student@testvm1 ~]$

We can also redirect stDerr to the test1.txt file while still sending stDoUt to the terminal.

[student@testvm1 ~]$ cat file0.txt filex.txt file7.txt 2> test1.txt

This is file 0

This is file 7

[student@testvm1 ~]$ cat test1.txt

cat: filex.txt: No such file or directory

[student@testvm1 ~]$

We may also find it useful to redirect stDoUt to one file and stDerr to a different file. that

looks like the command below.

4 We will learn more about device special files like /dev/null in Chapter 5, “Everything is a File.”

Chapter 4 transforming Data streams

52

[student@testvm1 ~]$ cat file0.txt filex.txt file7.txt 1> good.txt 2> error.txt

[student@testvm1 ~]$ cat good.txt

This is file 0

This is file 7

[student@testvm1 ~]$ cat error.txt

cat: filex.txt: No such file or directory

[student@testvm1 ~]$

The flexibility offered by redirection makes it possible for us to perform some

amazing things in a very elegant way. For example, I have some scripts that spew large

amounts of output that make it difficult to determine whether any errors have occurred.

By redirecting STDOUT to one log file and STDERR to a different log file, I can readily

determine whether there were any errors or not without having to search nearly a

megabyte of data.

 The Pipeline Challenge
I write prolifically for Opensource.com5 and a couple of years ago I posed a challenge

for our readers, one that involves pipes as a required component of the solution. It is a

simple problem with a solution that I use frequently.

 The Problem
I have a number of computers configured to send administrative emails to my own

email account. I have configured procmail on my email server to move most of these

administrative emails into a single folder to make it easy to find them all. Over the

previous couple of years, I had collected over 50,000 emails in that folder. Those emails

consisted of output from rkhunter (Rootkit hunter), logwatch, cron jobs, and Fail2Ban,

among others.

5 http://opensource.com

Chapter 4 transforming Data streams

http://opensource.com/

53

The messages I am interested in are from Fail2Ban, which is Free Open Source

Software that dynamically bans IP addresses of hosts that attempt to maliciously access

my own hosts, primarily the firewalls on the Internet. Fail2Ban does this by adding rules

to IPTables. Each time an IP address is banned for multiple failure attempts at SSH login,

Fail2Ban sends an email.

The objective of the challenge was to create a single command-line program to count

the number of emails from each IP Address that has attempted to access my hosts using

SSH. Entrants would download the admin.index file containing CSV data exported from

my email client with more than 50,000 subject lines extracted from the emails. All of the

subject lines were included in the data available to the entrants, so part of the task would

be to extract only the subject lines pertaining to banned SSH connections. A tiny sample

of the data that entrants had available to work with is shown in Figure 4-1. Note that

some lines are wrapped in the figure, but you get the idea.

"[Fail2Ban] SSH: banned 186.101.2.130 from wally2.","Fail2Ban
<fail2ban@example.com>","root@wally2.example.org",06/11/2015 14:59, ,
<fail2ban@example.com>","root@wally2.example.org",06/12/2015 0:10, ,
"[Fail2Ban] SSH: banned 91.200.12.21 from smwally","Fail2Ban
<fail2ban@church-ral.org>","root@smwally.church-ral.org",06/12/2015 0:31, ,
"Cron <root@david> time /usr/local/bin/rsbu -vubd1","(Cron Daemon)
<root@david1.example.org>","david@example.org",06/12/2015 1:01, ,
"Cron <root@office1> /usr/local/bin/dbu -bu","root@office1.church-ral.org
(Cron Daemon)","david@example.org",06/12/2015 1:07, ,
"Logwatch for wally1.example.org
(Linux)","logwatch@wally1.example.org","root@wally1.example.org",06/12/2015 3:11, ,
"rkhunter Daily Run on david.example.org","root
<root@david1.example.org>","root@david1.example.org",06/12/2015 3:12, ,
"rkhunter Daily Run on office1.church-ral.org","root <root@office1.church-
ral.org>","root@office1.church-ral.org",06/12/2015 3:12, ,
"Logwatch for alice1.example.org
(Linux)","logwatch@alice1.example.org","root@alice1.example.org",06/12/2015 3:48, ,
"[Fail2Ban] SSH: banned 212.118.132.162 from smwal","Fail2Ban
<fail2ban@church-ral.org>","root@smwally.church-ral.org",06/12/2015 5:04, ,
"[Fail2Ban] SSH: banned 82.187.240.70 from smwally","Fail2Ban
<fail2ban@church-ral.org>","root@smwally.church-ral.org",06/12/2015 5:12, ,
"[Fail2Ban] SSH: banned 132.248.173.10 from smwall","Fail2Ban
<fail2ban@church-ral.org>","root@smwally.church-ral.org",06/12/2015 5:22, ,

Figure 4-1. A sample of the CSV data used in the challenge

Chapter 4 transforming Data streams

54

The rules stated that the command-line program should be only one line long and

must use pipes to channel the flow of data from one command to the next. For extra

credit the results could include the name of the country of each IP address.

 The Solutions
We received entries from Opensource.com readers residing in many countries around

the world. Some people submitted multiple solutions but the contest rules stated that

only the entrant's first solution would be considered. So some good entries had to be

disqualified because they were a second or third entry by the same person.

I have my own very simple solution shown in Figure 4-2. It would not have been a

winner, however, even if I had been eligible. In fact, many of the contest entries provided

much better solutions than my own.

My own solution provides a list sorted in ascending order of IP Addresses with the

most entries with the source data taken from the admin.index file. That last sort in my

solution was not a requirement to win the contest, but it is something I like to do to see

from where the most attacks are emanating.

My solution produced 5,377 lines of output, so there are about that number of

unique IP addresses. However, my solution does not take into account some anomalous

entries that have no IP addresses in them. As I was thinking about the objectives for

the command-line program in this challenge, I decided not to specify the number of

lines that should be produced as I felt that might be too restrictive and would place an

unnecessary constraint on the entries. I think that was a good idea because many of the

entries we received produce somewhat different numbers. So a winning solution need

not produce the same number of lines of data as my solution.

grep -i banned admin.index | grep SSH | awk '{print $4}' | sort
-n | uniq -c | sort -n

Figure 4-2. My own solution to the problem

Chapter 4 transforming Data streams

55

 First Entry with Solution

Michael DiDomenico of Hamilton, NJ, USA, submitted the very first entry of the contest

and it was also a working one. I particularly like Michael's use of the sort command to

ensure that the output is sorted in order by IP Address.

Michael’s entry, shown in Figure 4-3, produces 5,295 lines of output, which is not

very different from my own result. This is also the number of lines of output that many of

the other entries produced.

 Shortest Solutions

The shortest solution that was eligible to win a prize was submitted by Víctor Ochoa

Rodríguez of Madrid, España. His 65-character solution in Figure 4-4 is very elegant and

uses egrep to select only the lines that contain SSH along with an IP address while only

printing that portion of each line that matches the expression. I learned about the -o

option from this entry, so thanks to Víctor for that bit of new knowledge.

Figure 4-5 shows another entry that was actually shorter than Víctor's. Teresa e

Junior submitted an entry that is 58 characters in length. She was not eligible to win a

prize in the contest, but her solution deserved to be recognized at least informally in this

category.

Both of these solutions also produce 5,295 lines of output.

grep "SSH: banned" admin.index | sed 's/","/ /g'| cut -f4 -d" " | grep "^[0-9]"
| sort -k1,1n -k2,2 -k3,3n -k4,4n -t. | uniq -c

Figure 4-3. Michael DiDomenico submitted the first entry with a correct solution

egrep -o '".F.*H.*\.[0-9]+' admin.index|cut -d\ -f4|sort|uniq -c

Figure 4-4. Víctor Ochoa Rodríguez submitted this solution, which is the shortest
one that was eligible for a prize

grep SSH admin.index|grep -Po '(\d+\.){3}\d+'|sort|uniq -c

Figure 4-5. This submission by Teresa e Junior was the shortest of all

Chapter 4 transforming Data streams

56

 Most Creative Solution

The first two categories can be judged on purely objective criteria so I wanted to have

this category to provide an additional opportunity to recognize folks who came up with

more creative answers. The results in this category were based on my purely subjective

opinion, and in my opinion there was a tie in this category.

Przemo Firszt of Co. Cork, Ireland, submitted the entry in Figure 4-6, which is very

interesting and creative for its use of the tee and xargs commands. It is also unique

because, in addition to using pipes, it also stores intermediate data in a file using the tee

command, which also passes the data on to STDOUT, and the final output is redirected

to another file rather than being allowed to go to STDOUT. It even cleans up at the end

by deleting the temporary file.

This solution produces 7,403 lines of output. That appears to be because there are

multiple lines for many of the IP addresses. So although this is not a perfect solution,

it would take very little modification to produce only a single line of output for each IP

Address.

Tim Chase of Frisco, TX, US., was the other winner in this category. Tim's entry, seen

in Figure 4-7, is unique in its use of the curl command to download the file from the

server, and then it uses the awk command to both select the desired lines in the file and

select only the IP Address from each line. Tim's solution is the only one that included

code to perform the file download. It results in 5,295 lines of output.

grep SSH admin.index | awk '{print $4}' | grep -E '[0-9]{1,3}\.[0-9]{1,3}\.[0-
9]{1,3}\.[0-9]{1,3}' | sed 's/\".*//' | tee ips | xargs -I % sh -c "echo -ne
'%\t' ; grep -o % ips | wc -w" | sort | uniq > results ; rm ips

Figure 4-6. Przemo Firszt submitted this creative entry that uses tee and xargs

curl -s http://www.millennium-technology.com/downloads/admin.index|awk -F,
'$1~/SSH: banned/{print $1}'|grep -o '[0-9]\+\.[0-9]\+\.[0-9]\+\.[0-
9]\+'|sort|uniq -c

Figure 4-7. Tim Chase's solution is creative in its use of curl to download the file

Chapter 4 transforming Data streams

57

 Extra Credit Solution

A number of entries were aimed at the extra credit solution requirement to provide the

country names for each IP Address. I found two of the entries that especially piqued

my interest. Both of these entries use the GeoIP package to provide a local database for

obtaining the country information. A couple of other entries used the whois command

but, among other issues, whois uses a remote database and, when accessed too rapidly

from a single IP address, is subject to blocking. The GeoIP package is available in the

standard Fedora repository and the EPEL repository for CentOS.

Gustavo Yzaguirre, from Argentina, submitted the entry in Figure 4-8, which I like

because it gives first a bare-bones listing of IP addresses with a count and then lists the

countries. It produces 16,419 lines of output, many of which are duplicates. Gustavo says

it is not optimized, but that was not one of the requirements.

Dejan Bogdanovic, of Belgrade, Serbia, also submitted a very interesting entry for the

extra credit solution. His entry in Figure 4-9 lists the IP addresses in descending order of

frequency along with the country information. Dejan's entry produces 5,764 lines of output.

 Thoughts on the Solutions
I was amazed at the many different solutions to this problem that Opensource.com

readers were able to come up with. In part, I think that this is because many of the

entrants interpreted the desired results with a bit of freedom, in many cases adding more

information than was asked for in the original specifications.

awk '/SSH: banned/ && $4 ~ /^[0-9]/ {print $4}' admin.index | sed 's/[^0-9.]*//g'
| sort | uniq -c | awk '{printf $1 " " $2 " "; system("geoiplookup "$2)};' | sort
-gr | sed 's/ GeoIP Country Edition: / /g'

Figure 4-8. Gustavo Yzaguirre submitted this entry that lists the country name for
each IP address

cat admin.index | egrep -o '([0-9]*\.){3}[0-9]*' | sort -n | uniq -c | sort -nr |
awk '{ORS=" "} {print $1} {print $2} {system("geoiplookup " $2 "| cut -d: -f 2 |
xargs")}'

Figure 4-9. This extra credit entry was submitted by Dejan Bogdanovic

Chapter 4 transforming Data streams

58

There was also a good bit of creativity in all of the solutions. No two solutions were

alike, which underscores the fact that everyone approaches problem solving differently.

And even when some solutions appeared to start out from the same perspective, each

had its own personality and bit of flair that can only be the product of the unique

perspectives brought to the table by SysAdmins who are diverse, smart, knowledgeable,

and very creative.

Let's take this contest as a metaphor for the real world. The contest rules are the

specifications for this project. Each SysAdmin, even the ones that were not winners in

the contest, took those specifications and crafted solutions that met the requirements

and which were also insanely creative. Each solution illustrates the use of transformer

programs and the use of STDIO to transform a data stream in a manner that ultimately

provides meaningful information to the SysAdmin.

This contest also beautifully illustrates that “There is no should.” There is no one way

in which you “should” do anything. It is the results that count. You know, this sounds

so good that I should make it one of the tenets. I had not up to this point in my writing

thought of this as a tenet, but it is and so I will create that chapter right now.

 Summary
It is only with the use of pipes and redirection that many of the tenets of the Linux

Philosophy for SysAdmins make sense. It is the pipes that transport STDIO data streams

from one program or file to another. In this chapter you have learned that the use of

piping streams of data through one or more transformer programs supports powerful

and flexible manipulation of data in those streams.

Each of the programs in the pipeline demonstrated in the Experiments, and in all of

the contest entries showcased here, is small and each does one thing well. They are also

transformers, that is. they take Standard Input, process it in some way, and then send the

output to Standard Output. Implementation of these programs as transformers to send

processed data streams from their own Standard Output to the Standard Input of the

other programs is complementary to and necessary for the implementation of pipes as a

Linux tool.

Chapter 4 transforming Data streams

59
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_5

CHAPTER 5

Everything Is a File
This is one of the most important concepts that makes Linux especially flexible and

powerful: Everything is a file. That is, everything can be the source of a data stream,

the target of a data stream, or in many cases both. In this chapter you will explore what

“everything is a file” really means and learn to use that to your advantage as a SysAdmin.

The whole point with “everything is a file” is … the fact that you can use
common tools to operate on different things.

—Linus Torvalds in an email

 What Is a File?
Here is a trick question for you. Which of the following are files?

• Directories

• Shell scripts

• Running terminal emulators

• LibreOffice documents

• Serial ports

• Kernel data structures

• Kernel tuning parameters

• Hard drives - /dev/sda

• /dev/null

• Partitions - /dev/sda1

60

• Logical Volumes (LVM) - /dev/mapper/volume1-tmp

• Printers

• Sockets

To Unix and Linux, they are all files and that is one of the most amazing concepts

in the history of computing. It makes possible some very simple yet powerful methods

for performing many administrative tasks that might otherwise be extremely difficult or

impossible.

Linux handles almost everything as a file. This has some interesting and amazing

implications. This concept makes it possible to copy an entire hard drive, boot record

included, because the entire hard drive is a file, just as are the individual partitions.

“Everything is a file” is possible because all devices are implemented by Linux

as these things called device files. Device files are not device drivers; rather they are

gateways to devices that are exposed to the user.

 Device Files
Device files are technically known as device special files.1 Device files are employed to

provide the operating system and, even more importantly in an open operating system,

the users, an interface to the devices that they represent. All Linux device files are located

in the /dev directory, which is an integral part of the root (/) filesystem because they

must be available to the operating system during early stages of the boot process – before

other filesystems are mounted.

 Device File Creation
The udev daemon is designed to simplify the chaos that has overtaken the /dev directory

with huge numbers of mostly unneeded devices. Understanding how udev works is key

to dealing with devices, especially hotplug devices and how they can be managed.

The /dev/directory has always been the location for the device files in all Unix and

Linux operating systems. In the past, device files were created at the time the operating

system was created. This meant that all possible devices that might ever be used on a

1 Wikipedia, Device File, https://en.wikipedia.org/wiki/Device_file

Chapter 5 everything is a File

https://en.wikipedia.org/wiki/Device_file

61

system needed to be created in advance. In fact, tens of thousands of device files needed

to be created to handle all of the possibilities. It became very difficult to determine which

device file actually related to a specific physical device, or if one was missing.

 udev Simplification
udev is designed to simplify this problem by creating entries in /dev only for those devices

that actually currently exist at boot time or which have a high probability of actually

existing on the host. This significantly reduces the total number of device files required.

In addition, udev assigns names to devices when they are plugged into the system,

such as USB storage and printers, and other non-USB types of devices as well. In fact,

udev treats all devices as plug and play, or plug’n’pray as some like to say, even at boot

time. This makes dealing with devices consistent at all times, whether at boot time or

when they are hot-plugged later.

Let’s use an experiment to see how this works.

EXPERIMENT 5-1

perform this experiment as root.

plug in the UsB thumb drive you prepared earlier. if you are using a vM you may also have to

make the device available to the vM.

enter these commands.

[root@testvm1 dev]# cd /dev ; ls -l sd*

brw-rw---- 1 root disk 8, 0 Nov 22 03:50 sda

brw-rw---- 1 root disk 8, 1 Nov 22 03:50 sda1

brw-rw---- 1 root disk 8, 2 Nov 22 03:50 sda2

brw-rw---- 1 root disk 8, 16 Nov 28 14:02 sdb

brw-rw---- 1 root disk 8, 17 Nov 28 14:02 sdb1

look at the date and time on the UsB device, which in my host is /dev/sdb and /dev/sdb1,

respectively. the creation date and time of the device files for the UsB drive and partitions on

that drive should be just at the time the device was inserted into the UsB port, and different

from the timestamp on the other devices that would have been created at boot time. the

specific results you see will be different from mine.

Chapter 5 everything is a File

62

It is not necessary for us as SysAdmins to do anything else for the device files to

be created. The Linux kernel takes care of everything. It is only possible to mount the

partition in order to access its contents after the device file /dev/sdb1 has been created.

Greg Kroah-Hartman, one of the creators of udev, has written a paper2 that provides

some insight into the details of udev and how it is supposed to work. Note that udev has

matured since the article was written and some things have changed, such as the udev

rule locations and structure. Regardless, this paper provides some deep and important

insight into udev and current device naming strategies.

 Naming Rules
In modern versions of Fedora and CentOS, udev stores its default naming rules in files in

the /usr/lib/udev/rules.d directory, and its local rules and configuration files in the /etc/

udev/rules.d directory. Each file contains a set of rules for a specific device type. CentOS

6 and earlier stored the global rules in /lib/udev/rules.d/. The location of the udev rules

files may be different on your distribution.

In earlier versions of udev, there were many local rulesets created, including a set

for network interface card (NIC) naming. As each NIC was discovered by the kernel and

renamed by udev for the very first time, a rule was added to the ruleset for the network

device type. This was initially done to ensure consistency before names had changed

from “ethX” to more consistent ones.

RULE CHANGE BLUES

One of the main consequences of using udev for persistent plug’n’play naming is that it makes

things much easier for the average nontechnical user. this is a good thing in the long run;

however there have been migration problems and many sysadmins were – and still are – not

happy with these changes.

the rules changed over time, and there were at least three significantly different naming

conventions for network interfaces cards. that naming disparity caused a great deal of

confusion and many configuration files and scripts had to be rewritten multiple times during

the period of these changes.

2 Greg Kroah-Hartman, Linux Journal, Kernel Korner – udev – Persistent Naming in User Space,
http://www.linuxjournal.com/article/7316

Chapter 5 everything is a File

http://www.linuxjournal.com/article/7316

63

For example, the name of a niC that was originally eth0 would have changed from that to em1

or p1p2, and finally to eno1. i wrote an article3 on my technical web site that goes into some

detail about these naming schemes and the reasons behind them.

now that udev has multiple consistent default rules for determining device names, especially

for niCs, storing the specific rules for each device in local configuration files is no longer

required to maintain that consistency.

 Device Data Flow
Let’s look at the data flow of a typical command to visualize how device special files

work. Figure 5-1 illustrates a simplified data flow for a simple command. Issuing the

cat /etc/resolv.conf command from a GUI terminal emulator such as Konsole or xterm

causes the resolv.conf file to be read from the disk with the disk device driver handling

the device specific functions such as locating the file on the hard drive and reading it. The

data is passed through the device file and then from the command to the device file and

device driver for pseudo-terminal 6 where it is displayed in the terminal session.

Figure 5-1. Simplified data flow with device special files

3 David Both, Network Interface Card (NIC) name assignments, http://www.linux-databook.
info/?page_id=4243

Chapter 5 everything is a File

http://www.linux-databook.info/?page_id=4243
http://www.linux-databook.info/?page_id=4243

64

Of course the output of the cat command could have been redirected to a file in

the following manner, cat /etc/resolv.conf > /etc/resolv.bak in order to create a

backup of the file. In that case the data flow on the left side of Figure 5-1 would remain

the same while the data flow on the right would be through the /dev/sda2 device file, the

hard drive device driver, and then back onto the hard drive in the /etc directory as the

new file, resolv.bak.

These device special files make it very easy to use Standard Streams (STDIO) and

redirection to access any and every device on a Linux or Unix computer. They provide a

consistent and easy to access interface to every device. Simply directing a data stream to

a device file sends the data to that device.

One of the most important things to remember about these device special files is that

they are not device drivers. They are most accurately described as portals or gateways

to the device drivers. Data is passed from an application or the operating system to the

device file, which then passes it to the device driver, which then sends it to the physical

device.

By using these device files that are separate from the device drivers, it is possible for

users and programs to have a consistent interface to every device on the host computer.

This is how common tools can be used to operate on different things as Linus says.

The device drivers are still responsible for dealing with the unique requirements of

each physical device. That is, however, outside the scope of this book.

 Device File Classification
Device files can be classified in at least two ways. The first and most commonly used

classification is that of the type of data stream commonly associated with the device. For

example, tty and serial devices are considered to be character based because the data

stream is transferred and handled one character or byte at a time. Block type devices

such as hard drives transfer data in blocks, typically a multiple of 256 bytes.

Let’s take a look at the /dev/directory and some of the devices in it.

Chapter 5 everything is a File

65

EXPERIMENT 5-2

this experiment should be performed as the user student.

Open a terminal session and display a long listing of the /dev/directory.

[student@f26vm ~]$ ls -l /dev | less

<snip>

brw-rw---- 1 root disk 8, 0 Nov 7 07:06 sda

brw-rw---- 1 root disk 8, 1 Nov 7 07:06 sda1

brw-rw---- 1 root disk 8, 16 Nov 7 07:06 sdb

brw-rw---- 1 root disk 8, 17 Nov 7 07:06 sdb1

brw-rw---- 1 root disk 8, 18 Nov 7 07:06 sdb2

<snip>

crw--w---- 1 root tty 4, 0 Nov 7 07:06 tty0

crw--w---- 1 root tty 4, 1 Nov 7 07:06 tty1

crw--w---- 1 root tty 4, 10 Nov 7 07:06 tty10

crw--w---- 1 root tty 4, 11 Nov 7 07:06 tty11

<snip>

the results from this command are too long to show here in full, but you will see a list of

device files with their file permissions and their major and minor identification numbers.

the voluminous output of the ls -l command is piped through the less transformer utility to

allow you to page through the results; use the page Up, page Down, and up and down arrow

keys to move around. type q to quit and get out of the less display.

The pruned listing of device files shown in experiment 5-1 are just a few of the ones

in the /dev/directory on my Fedora workstation. They represent disk and tty type devices

among many others. Notice the leftmost character of each line in the output. The ones that

have a “b” are block type devices and the ones that begin with “c” are character devices.

The more detailed and explicit way to identify device files is by using the device

major and minor numbers. The disk devices have a major number of 8 that designates

them as SCSI block devices. Note that all PATA and SATA hard drives have been managed

by the SCSI subsystem because the old ATA subsystem was many years ago deemed as

not maintainable due to the poor quality of its code. As a result, hard drives that would

previously been designated as “hd[a-z]” are now referred to as “sd[a-z]”.

Chapter 5 everything is a File

66

You can probably infer the pattern of disk drive minor numbers in the small sample

shown above. Minor numbers 0, 16, 32, and so on up through 240 are the whole disk

numbers. So major/minor 8/16 represents the whole disk /dev/sdb and 8/17 is the

device file for the first partition, /dev/sdb1. Numbers 8/34 would be /dev/sdc2.

The tty device files in the list above are numbered a bit more simply from tty0

through tty63. I find the number of tty devices a little incongruous because the whole

point of the new udev system is to create device files for only those devices that actually

exist; I am not sure why it is being done this way. However you can also see from the

listing in Figure 5-2 that all of these device files were created at the 07:06 on November 7,

which was when the host was booted. The device files on your host should also have a

timestamp that is the same as the last boot time.

The Linux Allocated Devices4 file at Kernel.org is the official registry of device types

and major and minor number allocations. It can help you understand the major/ minor

numbers for all currently defined devices.

 Fun with Device Files
Let’s take a few minutes now and have some fun with some of these device files. We will

perform a couple of fun experiments that illustrate the power and flexibility of the Linux

device files.

Most Linux distributions have multiple virtual consoles, 1 through 7, that can be

used to log in to a local console session with a shell interface. These can be accessed

using the key combinations Ctrl-Alt-F1 for console 1, Ctrl-Alt-F2 for console 2, and so on.

EXPERIMENT 5-3

in this experiment we will show that simple commands can be used to send data between

devices, in this case, different console and terminal devices. perform this experiment as the

student user.

press Ctrl-Alt-F2 to switch to console 2. On some distributions, the login information includes

the tty (teletype) device associated with this console, but many do not. it should be tty2

because you are in console 2. you might need to use a different key combination if you are

using a local instance of a vM.

4 https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html

Chapter 5 everything is a File

https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html

67

log in to console 2 as student. then use the who am i command—yes, just like that, with

spaces—to determine which tty device is connected to this console.

[student@f26vm ~]$ who am i

student tty2 2017-10-05 13:12

this command also shows the date and time that the user on the console logged in.

Before we proceed any further with this experiment, let’s look at a listing of the tty2 and tty3

devices in /dev. We do that by using a set [23] so that only those two devices are listed.

[student@f26vm ~]$ ls -l /dev/tty[23]

crw--w---- 1 root tty 4, 2 Oct 5 08:50 /dev/tty2

crw--w---- 1 root tty 4, 3 Oct 5 08:50 /dev/tty3

there are a large number of tty devices defined at boot time, but we do not care about most of

them for this experiment, just the tty2 and tty3 devices. as device files, there is nothing special

about them, they are simply character type devices; note the “c” in the first column of the

results. We will use these two tty devices for this experiment. the tty2 device is attached to

virtual console 2 and the tty3 device is attached to virtual console 3.

press Ctrl-Alt-F3 to switch to console 3 and log in again as the student user. Use the who am

i command again to verify that you really are on console 3 and then enter the echo command.

[student@f26vm ~]$ who am i

student tty3 2017-10-05 13:18

[student@f26vm ~]$ echo "Hello world" > /dev/tty2

press Ctrl-Alt-F2 to return to console 2. the string "hello world" (without quotes) should

displayed on console 2.

this experiment can also be performed with terminal emulators on the gUi desktop. terminal

sessions on the desktop use pseudo terminal devices in the /dev tree, such as /dev/pts/1,

where pts stands for “pseudo terminal session.”

Open at least two terminal sessions on the gUi desktop using Konsole, tilix, Xterm or your

other favorite graphical terminal emulator. you may open several if you wish. Determine which

pseudo-terminal device files they are connected to with the who am i command and then

choose one pair of terminal emulators to work with for this experiment. Use one to send a

message to the another with the echo command.

Chapter 5 everything is a File

68

[student@f26vm ~]$ who am i

student pts/9 2017-10-19 13:21 (192.168.0.1)

[student@f26vm ~]$ w

13:23:06 up 14 days, 4:32, 9 users, load average: 0.03, 0.08, 0.09

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

student pts/1 05Oct17 4:48m 0.04s 0.04s -bash

student pts/2 06Oct17 2:16 2.08s 2.01s screen

student pts/3 07Oct17 12days 0.04s 0.00s less

student pts/4 07Oct17 2:16 0.10s 0.10s /bin/bash

root pts/5 08:35 4:08m 0.05s 0.05s /bin/bash

root pts/6 08:35 4:47m 1:19 1:19 htop

root pts/7 08:35 4:40m 0.05s 0.05s /bin/bash

root pts/8 08:50 4:32m 0.03s 0.03s /bin/bash

student pts/9 13:21 0.00s 0.04s 0.00s w

[student@f26vm ~]$ echo "Hello world" > /dev/pts/4

On my test host, i sent the text “hello world” from /dev/pts/9 to /dev/pts/4. your terminal

devices will be different from the ones i have used on my test vM. Be sure to use the correct

devices for your environment for this experiment.

Another interesting experiment is to print a file directly to the printer using the cat

command.

EXPERIMENT 5-4

this experiment should be performed as the student user.

you may need to determine which device is your printer. if your printer is a UsB printer, which

almost all are these days, look in the /dev/usb directory for lp0, which is usually the default

printer. you may find other printer device files in that directory as well.

i used libreOffice Writer to create a short document that i then exported as a pDF file, test.pdf.

any linux word processor will do so long as it can export to the pDF format.

Chapter 5 everything is a File

69

We will assume that your printer device is /dev/usb/lp0, and that your printer can print pDF

files directly, as most can. Be sure to use a pDF file and change the name test.pdf in the

command to the name of your own file.

[student@f26vm ~]$ cat test.pdf > /dev/usb/lp0

this command should print the pDF file test.pdf on your printer.

The /dev directory contains some very interesting device files that are portals to

hardware that one does not normally think of as a device like a hard drive or display. For

one example, system memory – RAM – is not something that is normally considered as a

“device,” yet /dev/mem is the device special file through which direct access to memory

can be achieved.

EXPERIMENT 5-5

this experiment must be run as the root user. Because you are only reading the contents of

memory, this experiment poses little danger.

Note some testers have reported that this experiment does not work for them.
i have not found any problems on several physical and virtual hosts. Just be aware
that this experiment may produce a permissions error instead of the desired output.

if a root terminal session is not already available, open a terminal emulator session and log in

as root. the next command will dump the first 200K of raM to stDOUt.

[root@f26vm ~]# dd if=/dev/mem bs=2048 count=100

it may not look like that much and what you do see will be unintelligible. to make it a bit more

intelligible – to at least display the data in a decent format that might be interpreted by an

expert – pipe the output of the previous command through the od utility.

[root@f26vm ~]# dd if=/dev/mem bs=2048 count=100 | od -c

root has more access to read memory than a non-root user, but most memory is protected

from being written by any user, including root.

Chapter 5 everything is a File

70

The dd command provides significantly more control than simply using the cat

command to dump all of memory, which I have also tried. The dd command provides

the ability to specify how much data is read from /dev/mem and would also allow me to

specify the point at which to start reading data from memory. Although some memory

was read using the cat command, the kernel eventually responded with the error in

Figure 5-2.

You can also login as a non-root user, student, and try this command. You will get

an error message because the memory you are trying to access does not belong to your

user. This is a memory protection feature of Linux that keeps other users from reading or

writing memory that does not belong to them.

These memory errors mean that the kernel is doing its job by protecting memory

that belongs to other processes, which is exactly how it should work. So, although you

can use /dev/mem to display data stored in RAM memory, access to most memory space

is protected and will result in errors. Only that virtual memory that is assigned by the

kernel memory manager to the bash shell running the dd command should be accessible

without causing an error. Sorry, but you cannot snoop in memory that does not belong

to you unless you find a vulnerability to exploit.

Many types of malware depend upon privilege escalation to allow them to read the

contents of memory that they would not normally be able to access. This allows the

malware to find and steal personal data such as account numbers, user ID, and stored

passwords. Fortunately Linux protects against memory access by non-root users. It also

protects against privilege escalation.

Figure 5-2. The error on the last line was displayed when the cat command
attempted to dump protected memory to STDOUT

Chapter 5 everything is a File

71

But even Linux security is not perfect. It is important to install security patches to

protect against vulnerabilities that allow privilege escalation. You should also be aware

of human factors such as the tendency people have to write down their passwords, but

that is all another book.5

You can now see that memory is also considered to be a file and can be treated as

such using the memory device file.

 Randomness, Zero, and More
There are some other very interesting device files in /dev. The device special files null,

zero, random, and urandom are not associated with any physical devices. These device

files provide sources of zeros, nulls, and random numbers.

The null device /dev/null can be used as a target for the redirection of output from

shell commands or programs so that they are not displayed on the terminal.

EXPERIMENT 5-6

i frequently use /dev/null in my bash scripts to prevent users from being presented with output

that might be confusing to them. enter the command below to redirect the output to the null

device. nothing will be displayed on the terminal. the data is just dumped into the big bit

bucket in the sky.

[student@f26vm ~]$ echo "Hello world" > /dev/null

look at /dev/null as a source for “null” characters.

[student@testvm1 ~]$ cat /dev/null

[student@testvm1 ~]$ dd if=/dev/null

0+0 records in

0+0 records out

0 bytes copied, 5.2305e-05 s, 0.0 kB/s

there is really no visible output from the /dev/null because the null device simply returns an

end of file (eOF) character. note that the byte count is zero. the null device is much more

useful as a place to redirect unwanted output so that it is removed from the data stream.

5 Apress has a number of good books on security at https://www.apress.com/us/security

Chapter 5 everything is a File

https://www.apress.com/us/security

72

The /dev/random and /dev/urandom devices are both useful as data stream

sources. As their names imply, they both produce random output – not just numbers

but any and all byte combinations. The /dev/urandom device produces deterministic6

random output and is very fast.

EXPERIMENT 5-7

Use this command to view typical output from /dev/urandom. you can use Ctrl-c to break out.

[student@f26vm ~]$ cat /dev/urandom

,3••VwM
N•g•/•l•ۑ•!••'۩'•:••|R••[•t••Z••F.:H•7•,••
••z/••|•7q•Sp•"•(l_c••π••-•••••••ś•Y•••D^5•i8••"%•••&ŋ|C9!y•••f•5bPp;••C
••x••1•••U••3~•••
<snip>

i have shown only a part of the data stream from the command but it should give you a sense

for what you should see on your system.

You could also pipe the output of experiment 5-6 through the od command to make

it a little more human readable just for this experiment. That makes little sense for most

real-world applications because it is, after all, random data.

The man page for od shows that it can be used to obtain data directly from a file as

well as specify the amount of data to be read.

6 Deterministic means the output is determined by a known algorithm and uses a seed string as
a starting point. Each unit of output is dependent upon the previous output and the algorithm,
so if you know both the seed and the algorithm, the entire data stream can be reproduced. As a
result it is possible, although difficult, for a hacker to reproduce the output if the original seed is
known.

Chapter 5 everything is a File

73

EXPERIMENT 5-8

in this case i have used -n 128 to limit the output to 128 Bytes.

[student@f26vm ~]$ od /dev/urandom -N 128

0000000 043514 022412 112660 052071 161447 057027 114243 061412

0000020 154627 105675 154470 110352 135013 127206 103057 136555

0000040 033417 011054 014334 040457 157056 165542 027255 121710

0000060 125334 065600 165447 165245 020756 101514 042377 132156

0000100 116024 027770 000537 014743 170561 011122 173454 102163

0000120 074301 104771 123476 054643 105211 151753 166617 154313

0000140 103720 147660 012644 037363 077661 076453 104161 033220

0000160 056501 001771 113557 075046 102700 043405 132046 045263

0000200

the dd command could also be used to specify a limit to the amount of data taken from the

[u]random devices but it cannot directly format the data.

The /dev/random device file produces non-deterministic7 random output but it

produces output more slowly. This output is not determined by an algorithm that is

dependent only upon the previous number that was generated, but it is generated in

response to keystrokes and mouse movements. This method makes it far more difficult

to duplicate a specific series of random numbers. Use the cat command to view some of

the output from the /dev/random device file. Try moving the mouse to see how it affects

the output.

The random data generated from /dev/random and /dev/urandom, regardless of

how it is read from those devices, is usually redirected to a file on some storage media

or to STDIN of another program. Random data seldom needs to be viewed by the

SysAdmin, developer, or the end user. But it does make a good demonstration for this

experiment.

As its name implies, the /dev/zero device file produces an unending string of zeroes

as output. Note that these are Octal zeroes and not the ASCII character zero (0).

7 Non-deterministic results are not dependent upon the previous data in the random data stream.
Thus they are more truly random than if they were deterministic.

Chapter 5 everything is a File

74

EXPERIMENT 5-9

Use the dd command to view some output from the /dev/zero device file. note that the byte

count for this command is non-zero.

[student@f26vm ~]$ dd if=/dev/zero bs=512 count=500 | od -c

0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

*

500+0 records in

500+0 records out

256000 bytes (256 kB, 250 KiB) copied, 0.00126996 s, 202 MB/s

0764000

 Back Up the Master Boot Record
Consider, for example, the simple task of making a backup of the Master Boot Record

(MBR) of a hard drive. I have had, on occasion, needed to restore or re-create my MBR,

particularly the partition table. Re-creating it from scratch is very difficult. Restoring it

from a saved file is easy. So let’s back up the boot record of the hard drive.

Note that all of the experiments in this section must be performed as root.

EXPERIMENT 5-10

We are going to create a backup of your master boot recod (MBr), but we will not attempt to

restore it.

the dd command must be run as root because for security reasons non-root users do not

have access to the hard drive device files in the /dev directory. the bs value is not what

you might think; it stands for Block size. Count is the number of blocks to read from the

source file.

[root@f26vm ~]# dd if=/dev/sda of=/tmp/myMBR.bak bs=512 count=1

this command creates a file, myMBr.bak in the /tmp directory. the file is 512 bytes in size

and contains the contents of the MBr including the bootstrap code and partition table.

Chapter 5 everything is a File

75

now look at the contents of the file you just created.

[root@testvm1 ~]# cat /tmp/myMBR.bak

•c•••••••••|••••!••8u
Z••••••}•f••d•@f•D•••••••@•••••f•f•`|fL••uNf•\|f1•f•4••1•f•t;}7•••0••••Z••p
••1••r••`•••1••••••a•&Z|••}•••}•4••}•.•••GRUB GeomHard DiskRead Error
••••<u••}•••• !••(•)•••• ••U•[root@testvm1 ~]#

Because there is no end-of-line character at the end of the boot sector, the command prompt

is on the same line as the end of the boot record.

If the MBR were damaged, it would be necessary to boot to a rescue disk and use

the command in Code Sample 5-1 that would perform the reverse operation of the one

above. Notice that it is not necessary to specify the block size and block count as in the

first command because the dd command will simply copy the backup file to the first

sector of the hard drive and stop when it reaches the end of the source file.

CODE SAMPLE 5-1

the following code would restore the backup master boot record to the first sector on the

hard drive.

[root@testvm1 ~]# dd if=/tmp/myMBR.bak of=/dev/sda

Do not run this code because it may damage your system if entered improperly.

So now that you have performed a backup of the boot record of your hard drive and

verified the contents of that backup, let’s move to a safer environment to destroy the boot

record and then restore it.

Chapter 5 everything is a File

76

EXPERIMENT 5-11

this is a rather long experiment and it must be performed as root. you are going to make a

backup of the MBr for the UsB device, damage the MBr on the device, try to read the device,

and then restore the MBr. Do not mount the UsB drive.

ensure that the UsB drive is inserted in your computer and verify the device file name. in my

case it is still /dev/sdb.

First we look at the partition table with fdisk to provide a basis for later comparison, and

then we back up the MBr of the UsB device and verify the content of the backup file. as in

previous similar experiments, the warning messages are part of the content of the MBr.

[root@testvm1 ~]# fdisk -l /dev/sdb

Disk /dev/sdb: 62.5 MiB, 65536000 bytes, 128000 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x73696420

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 127999 125952 61.5M c W95 FAT32 (LBA)

[root@f26vm ~]# dd if=/dev/sdb of=/tmp/myMBR.bak bs=512 count=1

1+0 records in

1+0 records out

512 bytes copied, 0.012374 s, 41.4 kB/s

[root@f26vm ~]# cat /tmp/myMBR.bak

•>•MSWIN4.1P•} •••)L•0NO NAME FAT16 •}•3•••{•x•vVU•"•~•N•
•••|•E••F•E••8f$|•r<•F••fFVF•PR•F•V•• •v••^
•H••F•N•ZX••••rG8-t• V•v>•^tJNt
••F•V••S••[r•?MZu•••BJu••pPRQ••3••v••vB•••v••V$•••••••t<•t
 •••••}••}••3••^••D•••}•}••r••HH•N ••YZXr @uB^
 •••'
Invalid system disk•
Disk I/O error•
Replace the disk,!••U•

Chapter 5 everything is a File

77

so now comes the fun part in which we overwrite the MBr of the UsB device with one 512

Byte block of random data, then view the new content of the MBr to verify the change. notice

that the warning messages are no longer there because they have been overwritten.

[root@f26vm ~]# dd if=/dev/urandom of=/dev/sdb bs=512 count=1

1+0 records in

1+0 records out

512 bytes copied, 0.0195473 s, 26.2 kB/s

[root@f26vm ~]# dd if=/dev/sdb bs=512 count=1

6••••%•w••pI!8k•••••$••Q••¯••••gO••\••AT••KQ••••• ••"5•oW-•••;••
 '•r3••oiP•d•q••••a••%••••N••#••&F•_•••y••?•\•••)••K••?•fa••+.••••Fٹ•••
F••~•H•••XbS•••BA•V•^••z[S•jy••••••=aPs:••N_[ڶ••••b••#%•;/•••,4•}9
 F85••L•g••\•R4••••q••Kn|M••cy••ʗ••m•\••••yi{_o^•i•jٯ•••7••0
K•nry2MMSeA•••p•^E•n•v•u2•/•A•Zb•••1••Ì•K5•3•x•K•ia•K?•Iw••••^•1f•••
{3•p&E•••M••rbɠ••••••••• p••K•1+0 records in
1+0 records out

512 bytes copied, 0.0137811 s, 37.2 kB/s

let’s try a couple more things to test out this state of affairs before we move on to restoring

this MBr First we use fdisk to verify that the UsB drive no longer has a partition table, which

means that the MBr has been overwritten.

[root@f26vm ~]# fdisk -l /dev/sdb

Disk /dev/sdb: 62.5 MiB, 65536000 bytes, 128000 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

an attempt to mount the original partition will fail. the error message indicates that the

special device does not exist. this shows that most of the special device files are created and

removed as necessary, on demand.

[root@f26vm ~]# mount /dev/sdb1 /mnt

mount: /mnt: special device /dev/sdb1 does not exist.

it is time to restore the boot record you backed up earlier. Because you used the dd command

to carefully overwrite with random data only the MBr that contains the partition table for the

drive, all of the other data remains intact. restoring the MBr will make it available again.

restore the MBr, view the MBr on the device, then mount the partition and list the contents.

Chapter 5 everything is a File

78

[root@f26vm ~]# dd if=/tmp/myMBR.bak of=/dev/sdb

1+0 records in

1+0 records out

512 bytes copied, 0.0738375 s, 6.9 kB/s

[root@testvm1 ~]# fdisk -l /dev/sdb

Disk /dev/sdb: 62.5 MiB, 65536000 bytes, 128000 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x73696420

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 127999 125952 61.5M c W95 FAT32 (LBA)

[root@f26vm ~]# mount /dev/sdb1 /mnt

[root@f26vm ~]# ls -l /mnt

total 380

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file0.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file1.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file2.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file3.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file4.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file5.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file6.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file7.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file8.txt

-rwxr-xr-x 1 root root 37001 Nov 7 08:23 file9.txt

Wow – how cool is that! this series of experiments is designed to illustrate that you can use

the fact that all devices can be treated like files and therefore use some very common but

powerful Cli tools in some very interesting ways.

it is not necessary to specify the amount of data to be copied with the sb= and count=

parameters because the dd command only copies the amount of data available, in this case a

single 512 Byte sector.

Unmount the UsB device because we are finished with it for now.

Chapter 5 everything is a File

79

 Implications of Everything Is a File
The implications of “Everything is a file” are far-reaching and much greater than can be

listed here. You have already seen some examples in the preceding experiments. But

here is a short list that encompasses those and more.

• Clone hard drives.

• Back up partitions.

• Back up the master boot record (MBR).

• Install ISO images onto USB thumb drives.

• Communicate with users on other terminals.

• Print files to a printer.

• Change the contents of certain files in the /proc pseudo filesystem to

modify configuration parameters of the running kernel.

• Overwrite files, partitions, or entire hard drives with random data or

zeros.

• Redirect unwanted output from commands to a null device where it

disappears forever.

• etc., etc., etc.

There are so many possibilities here that any list can really only scratch the surface. I

am sure that you have – or will – figure out many ways to use this tenet of the Philosophy

far more creatively than I have discussed here.

 Summary
It is all part of the filesystem. Everything on a Linux computer is accessible as a file in the

filesystem space. The whole point of this is to be able to use common tools to operate

on different things – common tools such as the standard GNU/Linux utilities and

commands that work on files will also work on devices – because, in Linux, they are files.

Chapter 5 everything is a File

81
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_6

CHAPTER 6

Using the Linux FHS
The Linux Filesystem Hierarchical Standard (FHS) defines the structure of the Linux

directory tree. It names a set of standard directories and designates their purposes.

This standard has been put in place to ensure that all distributions of Linux are

consistent in their directory usage. Such consistency makes writing and maintaining

shell and compiled programs easier for SysAdmins because the programs, their

configuration files, and their data, if any, should be located in the standard directories.

This chapter is about storing programs and data in the standard and recommended

locations in the directory tree and the advantages of doing so. You will learn how to refer

to the Linux FHS documentation and use that knowledge in problem solving.

 Definitions
Before we get too deep into this subject, let’s put some definitions of the word

“filesystem” in place to try and sort some of the confusion you are likely to find about

terminology. You may hear people talk about filesystems in a number of different and

confusing ways. The word itself can have multiple meanings, and you may have to

discern the correct meaning from the context of a discussion or document.

I will attempt to define the various meanings of the word “filesystem” based on how

I have observed it being used in different circumstances. Note that, while attempting

to conform to standard “official” meanings, my intent is to define the term based on its

various usages.

82

 1. The entire Linux directory structure starting at the top (/) root

directory.

 2. A specific type of data storage format such as EXT3, EXT4, BTRFS,

XFS, and so on. Linux supports almost 100 types of filesystems

including some very old ones, as well as some of the newest.

Each of these filesystem types uses its own metadata structures to

define how the data is stored and accessed.

 3. A partition or logical volume formatted with a specific type of

filesystem that can be mounted on a specified mount point – a

directory – on a Linux filesystem.

I will be using the term “filesystem” in the context of all of these definitions at some

point in this chapter.

 The Standard
As SysAdmins our tasks include everything from fixing problems to writing CLI programs

to perform many of our tasks for us and for others. Knowing where data of various types

are intended to be stored on a Linux system can be very helpful in resolving problems as

well as preventing them.

The latest Filesystem Hierarchical Standard (3.0)1 is defined in a document

maintained by the Linux Foundation.2 The document is available in multiple formats

from their web site as are historical versions of the FHS.

Table 6-1 provides a brief list of the standard, well known, and defined top-level

Linux directories and their purposes. These directories are listed in alphabetical order. I

suggest that you read the entire document in order to understand the roles played by the

many subdirectories of these top-level ones.

1 http://refspecs.linuxfoundation.org/fhs.shtml
2 The Linux Foundation maintains documents defining many Linux standards. It also sponsors the
work of Linus Torvalds.

Chapter 6 Using the LinUx Fhs

http://refspecs.linuxfoundation.org/fhs.shtml

83

Note column 2, the middle column, in Table 6-1. All of the directories with a “Yes” in

this column must be an integral part of the root (/) filesystem. None of these directories

can be located on separate partitions or logical volumes; they must all be located in the

same partition or logical volume as the root filesystem because they are an integral part

of it. These directories must all be mounted at the beginning of the boot process as a

single unit with the root filesystem.

The directories that have a “No” in column 2 can be created on separate partitions

or logical volumes – they do not have to be separate, but they can be. These filesystems,

when they are separate from the root filesystem, are mounted later in the startup

sequence based on the information contained in the /etc/fstab file. There are some very

good reasons for mounting these directories as separate filesystems and I will discuss

those later in this chapter.

Table 6-1. The Top Level of the Linux Filesystem Hierarchical Standard

Directory Part of / Description

/ (root

filesystem)

Yes the root filesystem is the top-level directory of the filesystem. it must contain

all of the files required to boot the Linux system before other filesystems are

mounted. after the system is booted, all other filesystems are mounted on

standard, well-defined, mount points as subdirectories of the root filesystem.

/bin Yes the /bin directory contains user executable files.

/boot no Contains the static bootloader and kernel executable and configuration files

required to boot a Linux computer.

/dev Yes this directory contains the device files for every hardware device attached to

the system. these are not device drivers, rather they are files that represent

each device on the computer and facilitate access to those devices.

/etc Yes Contains a wide variety of system configuration files for the host computer.

/home no home directory storage for user files. each human user usually has a

subdirectory in /home. some organizations may choose other locations for

the users’ home directories. some service or sever applications may also use

different locations for home directories. For example, the apache web server

uses /var/www. You can look at the /etc/passwd file to view the home directory

locations for those users. installations that use a central file server may also

have those remote home directories located on mount points other than /home.

(continued)

Chapter 6 Using the LinUx Fhs

84

Table 6-1. (continued)

Directory Part of / Description

/lib Yes Contains shared library files that are required to boot the system.

/media no a place to mount external removable media devices such as UsB thumb

drives that may be connected to the host.

/mnt no a temporary mountpoint for regular filesystems (as in not removable media)

that can be used while the administrator is repairing or working on a

filesystem.

/opt no Optional files such as vendor-supplied application programs should be

located here.

/proc Virtual Virtual filesystem used to expose access to internal kernel information and

editable tuning parameters.

/root Yes this is not the root (/) filesystem. it is the home directory for the root user.

/sbin Yes system binary files. these are executables used for system administration.

/selinux Virtual this pseudo filesystem is only used when seLinux is enabled. When

activated, this filesystem contains critical seLinux tools and files.

/sys Virtual this virtual filesystem contains information about the UsB and pCi buses and

the devices attached to each.

/tmp no temporary directory. Used by the operating system and many programs to

store temporary files. Users may also store files here temporarily. note that

files stored here may be deleted at any time without prior notice.

/usr no these are shareable, read-only files including executable binaries and

libraries, man[ual] files, and other types of documentation.

/usr/local no these are typically shell programs or compiled programs and their

supporting configuration files that are written locally and used by the

sysadmin or other users of the host.

/var no Variable data files are stored here. this can include things like log files, MysQL

and other database files, web server data files, email inboxes, and much more.

Chapter 6 Using the LinUx Fhs

85

The /media and /mnt directories are mount points for temporary filesystem

maintenance or for external devices such as USB thumb drives that contain filesystems.

There is actually one exception to the “top level” statement about Table 6-1. That

is the /usr/local directory. I will discuss that directory in more detail a bit later in this

chapter.

 Using a Well-Defined filesystem Structure
There are some excellent reasons for following the Linux Filesystem Hierarchical

Standard. All of them make our lives as SysAdmins easier. Don’t worry, I am not going

to discuss the functions of each of the directories defined in the standard – after all, you

can read what I have written and the more detailed online version just as easily as I can.

What I am going to do is discuss how a couple of specific features of this FHS affect how I

do my work.

The purpose of the Linux FHS is to provide a well-defined structure in which to

store files, whether executables, data, or configuration files. The structure defined in

the document, Filesystem Hierarchical Standard (3.0), and previously referenced, sets

forth guidelines for file locations in Linux that are based in historical context dating

back to the early days of Unix, as well as new, updated, and changing standards and

conventions.

The fact is that usages do change. It is also true that the Filesystem Hierarchical

Standard has changed with the times. Even further, not all distributions and software

vendors interpret the FHS in the same way and some software vendors may just be

ignorant of the standard.

Regardless of these facts, it is incumbent upon us as SysAdmins to adhere to the

current standard in all the ways that are under our control. We cannot always control

the usage by vendors, but we can certainly have our say. Don’t misunderstand me – I

see no widespread problems here, but if there is a problem I believe that as responsible

SysAdmins we should report those issues to the proper vendor.

We should also adhere to these standards ourselves when we write code even when

it seems to be just a small, insignificant bit of CLI programming.

Chapter 6 Using the LinUx Fhs

86

 Linux Unified Directory Structure
The Linux filesystem directory structure consists of a hierarchy of mountable filesystems,

item number 3 on the list at the beginning of this chapter. This results in easier and more

consistent access to all of the directories in the hierarchy. It also provides some very

useful side effects.

In some non-Linux PC operating systems, if there are multiple physical hard drives

or multiple partitions, each disk or partition is assigned a drive letter. It is necessary to

know on which hard drive a file or program is located, such as C: or D:. Then you issue

the drive letter as a command, D:, for example to change to the D: drive, and then you

use the cd command to change to the correct directory to locate the desired file. Each

hard drive has its own separate and complete directory tree.

The Linux filesystem unifies all physical hard drives, partitions, and logical volumes

into a single directory structure. It all starts at the top – the root (/) directory. All other

directories and their subdirectories are located under the single Linux root directory.

This means that there is only one single directory tree in which to search for files and

programs.

This can work only because a filesystem, such as /home, /tmp, /var, /opt, or /usr can

be created on separate physical hard drives, a different partition, or a different logical

volume from the / (root) filesystem and then be mounted on a mountpoint as part of

the root filesystem directory tree. Mountpoints are just empty directories with nothing

special about them. Even removable drives such as a USB thumb drive, an external USB

or an ESATA hard drive will be mounted onto the root filesystem and become an integral

part of that directory tree.

One good reason to do this is apparent during an upgrade from one version of a

Linux distribution to another, or changing from one distribution to another. In general,

and aside from any upgrade utilities like dnf-upgrade in Fedora, it is wise to occasionally

reformat the root and other partitions containing the operating system during an

upgrade to positively remove any cruft that has accumulated over time. If /home is

part of the root filesystem, it will be reformatted as well and would then have to be

restored from a backup. By having /home as a separate filesystem, it will be known to

the installation program as a separate filesystem and formatting of that filesystem can be

skipped. This can also apply to /var where database, email inboxes, web site, and other

variable user and system data are stored, and the /opt filesystem where commercial

applications are intended to be stored. Thus none of that data is lost, and the applications

should not require reinstallation unless the vendor is incredibly stupid.

Chapter 6 Using the LinUx Fhs

87

There are other reasons for maintaining certain parts of the Linux directory tree

as separate filesystems. For example, a long time ago, when I was not yet aware of the

potential issues surrounding having all of the required Linux directories as part of the /

(root) filesystem, I managed to fill up my home directory with a large number of very big

files. Since neither the /home directory nor the /tmp directory were separate filesystems

but simply subdirectories of the root filesystem, the entire root filesystem filled up. There

was no room left for the operating system to create temporary files or to expand existing

data files. At first the application programs started complaining that there was no room

to save files, and then the OS itself started to act very strangely. Booting to single user

mode and clearing out the offending files in my home directory allowed me to get going

again; I then reinstalled Linux using a pretty standard multi-filesystem setup and was

able to prevent complete system crashes from occurring again.

I once had a situation where a Linux host continued to run, but prevented the user

from logging in using the GUI desktop. I was able to log in using the command-line

interface (CLI) locally using one of the virtual consoles, and remotely using SSH. The

problem was that the /tmp filesystem had filled up and some temporary files required by

the GUI desktop could not be created at login time. Because the CLI login did not require

files to be created in /tmp, the lack of space there did not prevent me from logging in

using the CLI. In this case the /tmp directory was a separate filesystem and there was

plenty of space available in the volume group of which the /tmp logical volume was

a part. I simply expanded the /tmp logical volume to a size that accommodated my

fresh understanding of the amount of temporary file space needed on that host and the

problem was solved. Note that this solution did not require a reboot and as soon as

the /tmp filesystem was enlarged, the user was able to log in to the desktop.

 Special filesystems
Linux has some special filesystems when running, two of which are particularly

interesting to SysAdmins, /proc and /sys. These are virtual filesystems that exist only in

RAM while the Linux host is running; they do not exist on any physical disk. Because

they exist only in RAM these filesystems are not persistent like filesystems that are stored

on the hard drive. They disappear when the computer is turned off and are re-created

anew each time Linux starts up.

Chapter 6 Using the LinUx Fhs

88

Each of the special filesystems has a unique role to play in a Linux host. The /proc

filesystem is most likely the one with which you will become well acquainted as a

SysAdmin, so we are going to explore it just a bit.

 The /proc filesystem
The /proc filesystem is defined by the FHS as the location for Linux to store information

about the system, the kernel, and all processes running on the host. It is intended to be

a place for the kernel to expose information about itself in order to facilitate access to

data about the system. It is also intended to provide access to view kernel configuration

parameters and to modify many of them when necessary.

When used as a window into the state of the operating system and its view of the

system and hardware, it provides easy access to virtually every bit of information you

might want as a SysAdmin.

EXPERIMENT 6-1

For best results with this experiment it must be performed as root.

Let’s first look at the top-level contents of the /proc filesystem of a running Linux host. On your

host you may see color coding to differentiate files from directories.

First, look at the numeric entries. the names of these directories are piDs, or process iD

numbers. each of those piD directories contains information about the running process that it

represents.

[root@testvm1 proc]# cd /proc ; ls

1 26533 666 828 cpuinfo modules

10 26561 669 83 crypto mounts

11 27 680 84 devices mtrr

12 29356 681 85 diskstats net

13 30 685 86 dma pagetypeinfo

14 30234 686 87 driver partitions

15 31 692 9 execdomains sched_debug

16 333 694 90 fb schedstat

17 361 695 91 filesystems scsi

18 4 697 927 fs self

19 401 7 928 interrupts slabinfo

Chapter 6 Using the LinUx Fhs

89

2 402 707 929 iomem softirqs

20 412 708 934 ioports stat

21 413 740 937 irq swaps

22 433 741 940 kallsyms sys

23 434 749 941 kcore sysrq-trigger

24 517 756 942 keys sysvipc

25 543 764 947 key-users thread-self

26 6 765 948 kmsg timer_list

26465 615 766 966 kpagecgroup tty

26511 616 771 990 kpagecount uptime

26514 636 778 acpi kpageflags version

26521 637 780 asound latency_stats vmallocinfo

26522 639 783 buddyinfo loadavg vmstat

26524 641 8 bus locks zoneinfo

26526 647 80 cgroups mdstat

26527 661 81 cmdline meminfo

26532 664 82 consoles misc

each of the files in the /proc directory contains information about some part of the kernel. Let’s

take a look at a couple of these files, cpuinfo and meminfo.

the cpuinfo file is mostly static. it contains the specifications for all installed CpUs.

[root@testvm1 proc]# cat cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 58

model name : Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

stepping : 9

microcode : 0x19

cpu MHz : 3392.345

cache size : 8192 KB

physical id : 0

siblings : 1

core id : 0

cpu cores : 1

apicid : 0

initial apicid : 0

fpu : yes

Chapter 6 Using the LinUx Fhs

90

fpu_exception : yes

cpuid level : 13

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp

lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid

pni pclmulqdq monitor ssse3 cx16 sse4_1 sse4_2 popcnt aes

xsave avx rdrand lahf_lm

bugs :

bogomips : 6784.69

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual power management:

the data from the cpuinfo file includes the processor iD and model, its current speed in Mhz,

and the flags that can be used to determine the CpU features. if you run the command ls -la

cpuinfo, you will see that the timestamp on the file is continuously changing. that indicates

the file is being updated.

now let’s look at memory. First cat the meminfo file and then use the free command to do a

comparison.

[root@testvm1 proc]# cat meminfo

MemTotal: 4044740 kB

MemFree: 2936368 kB

MemAvailable: 3484704 kB

Buffers: 108740 kB

Cached: 615616 kB

SwapCached: 0 kB

Active: 676432 kB

Inactive: 310016 kB

Active(anon): 266916 kB

Inactive(anon): 316 kB

Active(file): 409516 kB

Inactive(file): 309700 kB

Unevictable: 8100 kB

Mlocked: 8100 kB

SwapTotal: 4182012 kB

SwapFree: 4182012 kB

Chapter 6 Using the LinUx Fhs

91

Dirty: 0 kB

Writeback: 0 kB

AnonPages: 270212 kB

Mapped: 148088 kB

Shmem: 988 kB

Slab: 80128 kB

SReclaimable: 64500 kB

SUnreclaim: 15628 kB

KernelStack: 2272 kB

PageTables: 11300 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 6204380 kB

Committed_AS: 753260 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

HardwareCorrupted: 0 kB

AnonHugePages: 0 kB

ShmemHugePages: 0 kB

ShmemPmdMapped: 0 kB

CmaTotal: 0 kB

CmaFree: 0 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 73664 kB

DirectMap2M: 4120576 kB

[root@testvm1 proc]# free

 total used free shared buff/cache available

Mem: 4044740 304492 2935748 988 804500 3484100

Swap: 4182012 0 4182012

Chapter 6 Using the LinUx Fhs

92

there is a lot of information in the /proc/meminfo file. a few bits of that data are used by

programs like the free command. if you want the complete picture of memory usage, look in

/proc/meminfo. the free command, like many other core utilities, gets its data from the /proc

filesystem.

Because the data in /proc is a nearly instantaneous picture of the state of the Linux kernel and

the computer hardware, the data may change rapidly. Look at the interrupts file several times

in a row.

I suggest you spend a little time to compare the data in the /proc/meminfo file

against the information you get when using commands like free and top. Where do you

think these utility tools and many others get their information? Right here in the /proc

filesystem, that’s where.

Let’s look a little bit deeper into PID 1. Like all of the process directories, it contains

information about the process with that ID. So let’s look at some of that information.

EXPERIMENT 6-2

Let’s enter and look at the contents of the /proc/1 directory. then use the cat command to

view the contents of the cmdline file.

[root@testvm1 proc]# cd 1 ; cat cmdline

/usr/lib/systemd/systemd--switched-root--system--deserialize24

We can see from the contents of the cmdline that this is systemd, the mother of all programs.

On all older and some current versions of Linux, piD 1 will be the init program. take some time

to explore the contents of some of the other files and directories for this process.

also take some time to explore a few of the other piD directories.

There is a huge amount of information available in the /proc filesystem, and it can be

used to good advantage to solve problems. In fact, making changes to the running kernel

on the fly and without a reboot is a powerful tool that allows you to make instant changes

to the Linux kernel to resolve a problem, enable a function, or tune performance. Let’s

look at one example.

Chapter 6 Using the LinUx Fhs

93

Linux is very flexible and can do many interesting things. One of those cool things is

that any Linux host with multiple network interface cards (NICs) can act as a router. All it

takes is a little knowledge, a simple command, and some changes to the iptables firewall.

Routing is a task managed by the kernel. So turning it on (or off) requires that we

change a kernel configuration parameter. Fortunately we do not need to recompile the

kernel, and that is one of the benefits of exposing the kernel configuration in the /proc

filesystem. We are going to turn on IP forwarding, which provides the kernel’s basic

routing functionality.

EXPERIMENT 6-3

this little command line program makes the /proc/sys/net/ipv4 directory the pWD, prints the current

state of the ip_forward file that should be zero (0); sets it to “1”; and then prints its new state, which

should be 1. routing is now turned on. Be sure to enter the command on a single line.

[root@testvm1 ipv4]# cd /proc/sys/net/ipv4 ; cat ip_forward ;

echo 1 > ip_forward ; cat ip_forward

0

1

Congratulations! You have just altered the configuration of the running kernel.

In order to complete the configuration of a Linux host to full function as a router,

additional changes would need to be made to the iptables firewall, or to whatever

firewall software you may be using, and to the routing table. Those changes will define

the specifics of the routing such as which packets get routed where. Although beyond

the scope of this book, I have written an article3 with some detail about configuring the

routing table to which you can refer if you want more information. I also wrote an article4

that briefly covers all of the steps required to turn a Linux host into a router, including

making IP forwarding persistent after a reboot.

While you are here in the /proc filesystem look around some more – follow your own

curiosity to explore different areas of this important filesystem.

3 David Both, “An introduction to Linux network routing,” https://opensource.com/
business/16/8/introduction-linux-network-routing

4 David Both, “Making your Linux Box Into a Router,” http://www.linux-databook.
info/?page_id=697

Chapter 6 Using the LinUx Fhs

https://opensource.com/business/16/8/introduction-linux-network-routing
https://opensource.com/business/16/8/introduction-linux-network-routing
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=697

94

Warning i intentionally chose to modify a kernel parameter that i am familiar
with and that won’t cause any harm to your Linux host. as you explore the /proc
filesystem, you should not make any further changes.

 The /sys filesystem
The /sys directory is another virtual filesystem that is used by Linux to maintain specific

data for use by the kernel and SysAdmins. The /sys directory maintains the list of

hardware hierarchically for each bus type in the computer hardware.

A quick look at the /sys filesystem shows us its basic structure.

EXPERIMENT 6-4

in this experiment we look briefly at the contents of the /sys directory and then one of its

subdirectories, /sys/block.

[root@testvm1 sys]# cd /sys ; ls

block bus class dev devices firmware fs hypervisor kernel

module power

[root@testvm1 sys]# ls block

dm-0 dm-1 sda sr0

there are different types of disk (block) devices in /sys/block and the sda device is one of

them. this is usually the first, and in this case the only, hard drive in this VM. Let’s take a quick

look at some of the contents of the sda directory.

[root@testvm1 sys]# ls block/sda
alignment_offset events_async queue slaves

bdi events_poll_msecs range stat

capability ext_range removable subsystem

dev holders ro trace

Chapter 6 Using the LinUx Fhs

95

device inflight sda1 uevent

discard_alignment integrity sda2

events power size

[root@testvm1 sys]# cat block/sda/dev

8:0

[root@testvm1 sys]# ls block/sda/device

block ncq_prio_enable

bsg power

delete queue_depth

device_blocked queue_ramp_up_period

device_busy queue_type

dh_state rescan

driver rev

eh_timeout scsi_device

evt_capacity_change_reported scsi_disk

evt_inquiry_change_reported scsi_generic

evt_lun_change_reported scsi_level

evt_media_change state

evt_mode_parameter_change_reported subsystem

evt_soft_threshold_reached sw_activity

generic timeout

inquiry type

iocounterbits uevent

iodone_cnt unload_heads

ioerr_cnt vendor

iorequest_cnt vpd_pg80

modalias vpd_pg83

model wwid

[root@testvm1 sys]# cat block/sda/device/model

VBOX HARDDISK

For a bit more realistic information from this last command, i also performed this on my own

physical hard drive rather than the VM i have been using for these experiments and that looks

like this.

[root@david proc]# cat /sys/block/sda/device/model

ST320DM000-1BD14

Chapter 6 Using the LinUx Fhs

96

this information is more like what you would see on one of your own hardware hosts rather

than a VM. now let’s use the smartctl command to show that same bit of information and

more. i used my physical host for this due to the more realistic data. i have also trimmed a

large amount of output from the end of the results.

[root@david proc]# smartctl -x /dev/sda

smartctl 6.5 2016-05-07 r4318 [x86_64-linux-4.13.16-302.fc27.x86_64]

(local build)

Copyright (C) 2002-16, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: Seagate Barracuda 7200.14 (AF)

Device Model: ST320DM000-1BD14C

Serial Number: Z3TT43ZK

LU WWN Device Id: 5 000c50 065371517

Firmware Version: KC48

User Capacity: 320,072,933,376 bytes [320 GB]

Sector Sizes: 512 bytes logical, 4096 bytes physical

Rotation Rate: 7200 rpm

Device is: In smartctl database [for details use: -P show]

ATA Version is: ATA8-ACS T13/1699-D revision 4

SATA Version is: SATA 3.0, 6.0 Gb/s (current: 6.0 Gb/s)

Local Time is: Wed Dec 13 13:31:36 2017 EST

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

AAM level is: 208 (intermediate), recommended: 208

APM feature is: Unavailable

Rd look-ahead is: Enabled

Write cache is: Enabled

ATA Security is: Disabled, frozen [SEC2]

Wt Cache Reorder: Enabled

=== START OF READ SMART DATA SECTION ===

SMART overall-health self-assessment test result: PASSED

General SMART Values:

<snip>

Chapter 6 Using the LinUx Fhs

97

had i not cut off the end of the results from this last command, it would also show things like

failure indicators a temperature history, which can be helpful in determining the source of hard

drive problems.

the smartctl utility obtains the data it uses from the /sys filesystem, just as other utility

programs obtain their data from the /proc filesystem.

as you can see, the data in this directory contains a great deal of information about the device.

The /sys filesystem contains data about the PCI and USB system bus hardware and

any attached devices. The kernel can use this information to determine which device

drivers to use, for one example.

EXPERIMENT 6-5

Let’s look at some information about one of the buses on the computer, the UsB bus. i am

going to skip right to the locations of the devices in the /sys filesystem; you may need to do a

little exploring on your own to find the items that interest you.

[root@testvm1 ~]# ls /sys/bus/usb/devices/usb2

2-0:1.0 bMaxPacketSize0 driver quirks

authorized bMaxPower ep_00 removable

authorized_default bNumConfigurations idProduct remove

avoid_reset_quirk bNumInterfaces idVendor serial

bcdDevice busnum interface_authorized speed

_default

bConfigurationValue configuration ltm_capable subsystem

bDeviceClass descriptors manufacturer uevent

bDeviceProtocol dev maxchild urbnum

bDeviceSubClass devnum power version

bmAttributes devpath product

the above results show some of the files and directories that provide data about that

particular device. But there is an easier way by using the core utilities so that we don’t have to

do all that exploration on our own.

[root@david ~]# lsusb

Bus 002 Device 005: ID 1058:070a Western Digital Technologies, Inc. My

Passport Essential (WDBAAA), My Passport for Mac (WDBAAB), My Passport

Essential SE (WDBABM), My Passport SE for Mac (WDBABW

Chapter 6 Using the LinUx Fhs

98

Bus 002 Device 004: ID 05e3:0745 Genesys Logic, Inc. Logilink CR0012

Bus 002 Device 003: ID 1a40:0201 Terminus Technology Inc. FE 2.1 7-port Hub

Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 006 Device 005: ID 0bc2:ab1e Seagate RSS LLC Backup Plus Portable Drive

Bus 006 Device 003: ID 2109:0812 VIA Labs, Inc. VL812 Hub

Bus 006 Device 002: ID 2109:0812 VIA Labs, Inc. VL812 Hub

Bus 006 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 005 Device 007: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 005 Device 004: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 005 Device 006: ID 04f9:0042 Brother Industries, Ltd HL-2270DW Laser

Printer

Bus 005 Device 005: ID 04f9:02b0 Brother Industries, Ltd MFC-9340CDW

Bus 005 Device 003: ID 050d:0234 Belkin Components F5U234 USB 2.0 4-Port Hub

Bus 005 Device 002: ID 2109:3431 VIA Labs, Inc. Hub

Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 005: ID 046d:c52b Logitech, Inc. Unifying Receiver

Bus 001 Device 006: ID 17f6:0822 Unicomp, Inc

Bus 001 Device 003: ID 051d:0002 American Power Conversion Uninterruptible

Power Supply

Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 003 Device 010: ID 0424:4063 Standard Microsystems Corp.

Bus 003 Device 009: ID 0424:2640 Standard Microsystems Corp. USB 2.0 Hub

Bus 003 Device 008: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub

Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Once again i ran this last command on my own physical host because it produces more

interesting results.

the lspci command performs the same function as lsusb, but for the pCi bus. go ahead

and try the lspci command on your own.

I sometimes find it helpful to find specific hardware devices, especially newly added

ones. As with the /proc directory, there are some core utilities like lsusb and lspci that

make it easy for us to view information about the devices connected to the host.

Chapter 6 Using the LinUx Fhs

99

 SELinux
The selinux pseudo filesystem is similar to other pseudo filesystems such as /proc. It

can be located at either /selinux or at /sys/fs/selinux. This filesystem is only created and

present when SELinux is enabled.

When present, the /selinux filesystem contains files that are closely related to the

kernel in the same way that files in /proc are. This filesystem provides a window into the

security functions of the running kernel when SELinux is enabled.

Fedora and other Red Hat-related distributions have SELinux enabled in Targeted

mode by default. Your distribution may have it off or it may have been turned off as

many SysAdmins do, including me. This next experiment helps us explore the selinux

filesystem but we need to get to a known state first.

EXPERIMENT 6-6

Caution Only perform this experiment on a host or VM designated for training
purposes. Do not under any circumstances perform this experiment on a
production host.

if your host has seLinux enabled, we will disable it before proceeding. First let’s see if it is

disabled or not.

[root@testvm1 ~]# sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 31

seLinux is enabled in targeted mode on my Fedora host. if this is the case on your host, note

the location specified for the seLinuxfs mount point. also make a note of the current mode,

which should be enforcing or permissive.

Chapter 6 Using the LinUx Fhs

100

Disable seLinux. Open the /etc/sysconfig/selinux file with your favorite editor. Change the

seLinUx= line to disabled. the file should look like the one below when you are finished.

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - No SELinux policy is loaded.

SELINUX=disabled

SELINUXTYPE= can take one of these three values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy. Only selected processes are

protected.

mls - Multi Level Security protection.

SELINUXTYPE=targeted

now reboot the host. it will take some time to reboot because seLinux must remove its labels

from the files in the filesystem(s) it is protecting. after those labels are removed, the host will

reboot again.

after your host has rebooted, log in as root. You can do this in one of the virtual consoles

because there is no need for a gUi for this part of the experiment.

everyone should perform the rest of this experiment, whether seLinux was enabled or disabled.

try to locate the selinux filesystem in the location you noted above. it should not be present.

[root@testvm1 ~]# ls -l /sys/fs/selinux

ls: cannot access '/sys/fs/selinux': No such file or directory

now reenable seLinux by using your editor to change the seLinUx line back to enforcing or

permissive, whichever it was before we changed it the first time. then reboot the system and

wait until it has completed the second reboot.

Log in to a virtual console as root, or to the desktop whichever you prefer. if you log in to the

desktop, open a terminal emulator window as root. now try to view the selinux directory.

[root@testvm1 ~]# ls -l /sys/fs/selinux/

total 0

-rw-rw-rw-. 1 root root 0 Feb 3 2018 access

dr-xr-xr-x. 2 root root 0 Feb 3 2018 avc

dr-xr-xr-x. 2 root root 0 Feb 3 2018 booleans

Chapter 6 Using the LinUx Fhs

101

-rw-r--r--. 1 root root 0 Feb 3 2018 checkreqprot

dr-xr-xr-x. 99 root root 0 Feb 3 2018 class

--w-------. 1 root root 0 Feb 3 2018 commit_pending_bools

-rw-rw-rw-. 1 root root 0 Feb 3 2018 context

-rw-rw-rw-. 1 root root 0 Feb 3 2018 create

-r--r--r--. 1 root root 0 Feb 3 2018 deny_unknown

--w-------. 1 root root 0 Feb 3 2018 disable

-rw-r--r--. 1 root root 0 Feb 3 2018 enforce

dr-xr-xr-x. 2 root root 0 Feb 3 2018 initial_contexts

-rw-------. 1 root root 0 Feb 3 2018 load

-rw-rw-rw-. 1 root root 0 Feb 3 2018 member

-r--r--r--. 1 root root 0 Feb 3 2018 mls

crw-rw-rw-. 1 root root 1, 3 Feb 3 2018 null

-r--r--r--. 1 root root 0 Feb 3 2018 policy

dr-xr-xr-x. 2 root root 0 Feb 3 2018 policy_capabilities

-r--r--r--. 1 root root 0 Feb 3 2018 policyvers

-r--r--r--. 1 root root 0 Feb 3 2018 reject_unknown

-rw-rw-rw-. 1 root root 0 Feb 3 2018 relabel

-r--r--r--. 1 root root 0 Feb 3 2018 status

-rw-rw-rw-. 1 root root 0 Feb 3 2018 user

--w--w--w-. 1 root root 0 Feb 3 2018 validatetrans

if you don’t see the contents of the selinux directory, verify the correct location and try again.

 Problem Solving
One of the best reasons I can think of for adhering to the Linux FHS is that of making

the task of problem solving as easy as possible. Using the Linux Filesystem Hierarchical

Standard promotes consistency and simplicity, which makes problem solving easier.

Knowing where to find things in the Linux filesystem directory structure has saved me

from endless flailing about on more than just a few occasions.

I find that most of the Core Utilities, Linux services, and servers provided with

the distributions I use are consistent in their usage of the /etc directory and its

subdirectories for configuration files. This means that finding a configuration file for a

misbehaving program or service supplied by the distribution should be easy to find.

Chapter 6 Using the LinUx Fhs

102

I typically use a number of the ASCII text files in /etc to configure SendMail, Apache,

DHCP, NFS, NTP, DNS, and more. I always know where to find the files I need to modify

for those services, and they are all open and accessible because they are in ASCII text,

which makes them readable to both computers and humans.

Note there would appear to be an inconsistency with BinD Dns because its zone,
reverse, and the root hints file, named.ca, are located in /var/named. this is not
inconsistent because those are not configuration files, they are database files, which,
as you can see in table 6-1, is one of the functions of /var. also, those “variable” files
may be modified by external servers such as when a primary5 name server updates
the database of a secondary name server. Keeping those external servers out of the
main configuration directory, /etc, on our computer is a really good idea.

the location of the BinD database files is consistent with the Fhs. But it did take
me a while to figure that out and why it is so, not to mention extensive research
into the Fhs. sometimes my curiosity can take me on long detours, but i have
always learned a great deal from those journeys that has been useful later on.

 Using the filesystem Incorrectly
One situation involving the incorrect usage of the filesystem occurred while I was

working as a lab administrator at a large technology company in Research Triangle Park.

One of our developers had installed an application in the wrong location, /var.

The application was crashing because the /var filesystem was full, and the log files,

which are stored in /var/log on that filesystem, could not be appended with new

messages that would indicate that the /var filesystem was full because due to the lack of

space in /var. However the system remained up and running because the critical / (root)

and /tmp filesystems did not fill up. Removing the offending application and reinstalling

it in the /opt filesystem, where it was supposed to be, resolved that problem. I also had a

little discussion with the developer who did the original installation.

5 I dislike the official names for the primary and secondary servers so won’t use them. I think
primary and secondary are more descriptive in any event.

Chapter 6 Using the LinUx Fhs

103

 Email Inboxes
There have been a number of times when I needed to fix a problem with an email inbox.

I have found that some spam email does not conform to proper email standards and at

least some email clients have problems viewing and managing those spam emails as well

as some of the ones that come after in the email inbox file.

Do you know where the email inbox is located on an email server? It is in /var/spool/

mail, and each of the inbox files there has the name of the email user ID. With a little luck

and a good bit of research I was able to repair the inbox by removing the offending spam

email.

Even if I have never needed to make changes to the configuration file for a particular

service, I know that it can almost always be found in the /etc directory. This significantly

reduces the amount of searching I need to do.

 Adhering to the Standard
So how do we as SysAdmins adhere to the Linux FHS? It is actually pretty easy, and

there is a hint way back in Table 6-1. The /usr/local directory is where locally created

executables and their configuration files should be stored.

By local programs, the FHS means those that we create ourselves as SysAdmins to

make our work or the work of other users easier. This includes all of those powerful and

versatile shell programs we write.

The programs should be located in /usr/local/bin, and the configuration files, if any,

in /usr/local/etc. There is also a /var/local directory in which local programs can store

their own database files.

I have written a fair number of shell programs over the years and it took me at least

five years before I understood the appropriate places to install my own software on host

computers. In some cases I had even forgotten where I installed them. In other cases, I

installed the configuration files in /etc instead of /usr/local/etc, and my file was overwritten

during an upgrade. It took a few hours to track that down the first time it happened.

By adhering to these standards when writing shell programs, it is easier for me to

remember where I have installed them. It is also easier for other SysAdmins to find

things by searching only the directories that we as SysAdmins would have installed those

programs and their files.

Chapter 6 Using the LinUx Fhs

104

/ I have trouble remembering \

| where to put files, too. |

\ The FHS can help. /

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

 Where Does This File Go?
I used to install my simple Bash programs by simply copying the files to their appropriate

locations on the hosts I was working on. Sometimes I forgot where they were supposed

to go. And as the number of programs increased, it took ever more time to perform all of

the tasks I needed to do to install the growing number of my own time-saving tools.

I found an excellent way to facilitate installation of my shell programs when I install

a new computer, as well as upgrades when they need to be disseminated. I created an

RPM that contains my programs and all of their configuration and other ancillary files,

along with instructions for where to place each file. The RPM also contains a small Bash

script that runs post-installation in order to perform certain configuration tasks, install

the latest updates, and install some applications and utilities that I always like to have on

my Linux hosts but that do not usually get installed by the installation program.

In one sense, creating this RPM was an act of the Lazy SysAdmin, automating the

installation of a large number of programs, fonts, configuration files, and more. At

one time I had so much stuff I was doing manually – by individual commands at the

terminal – that I would spend three or four hours of my own time performing those tasks.

After creating the RPM it now takes a couple minutes to run dnf to install the RPM. Then

it takes a minute to enter the command to run a large Bash program that I have written

to perform all of the other installations, modifications, and so on that I previously

performed by hand. The shell program can take from 20 minutes to an hour or so to run

through to completion, but I no longer need to monitor each and every command so I

can be ready to run the next one by hand. I do not need to hover over the computer; I

can go do other, more productive things while the automation does the work for me.

Chapter 6 Using the LinUx Fhs

105

 Summary
This chapter has explored the Linux filesystems. You have learned that the hierarchical

directory structure has standards applied to the usage of the directories in that structure.

Adhering to the standard usage conventions as outlined in the Linux Filesystem

Hierarchical Standard as maintained by the Linux Foundation provides some significant

benefits to SysAdmins. This can be especially true when portions of the directory tree

containing data are created as independent filesystems and mounted separately.

The Linux filesystem is not simply a place to store programs and data. It is a place

where data and statistics about the operating system, running programs, and even the

hardware can be found and put to good use. The Linux FHS defines the directories where

this information can be found so we know it will always be there for us when we need it.

Knowledge of what is contained in the Linux filesystem and where it is located can

be an indispensable tool in performing problem determination.

Chapter 6 Using the LinUx Fhs

PART III

Function

In Part 3, our enlightenment extends beyond simply pounding out commands at the

keyboard, and we begin to apply the basics in more advanced ways. Embracing the

command line to better advantage, we begin to expand our command-line programs

and create tested, portable, and maintainable shell programs that we save and can

use repeatedly, and even share. We become the “lazy admin” and begin to automate

everything. We use the Linux filesystem hierarchy to store data in open formats.

This part of the Linux Philosophy for System Administrators is about making our

jobs easier. We use the functionality of the command line and apply some new tenets

to leverage the things we have learned in Part 2 to automate as much as possible and to

create programs that work for us.

Automation for SysAdmins is not about compiled programs as those take too much

time and effort to create, test, release, and maintain. Programming for SysAdmins is

about shell programs such as BASH programming, which is fast, open, and portable.

Some people in the industry would consider shell programming to be a lesser

endeavor than writing programs in a compiled language. This is just not true, and

although I use the terms script and scripting in places, writing shell scripts is just as

much programming as is using C. The advantages of shell programming are manifold

and we will discuss those in detail in this section.

Let us agree that the words “script” and “program” are interchangeable. So when

I say “programs,” you can take that to mean shell scripts, particularly BASH scripts

because BASH is the default shell in almost every Linux distribution.

109
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_7

CHAPTER 7

Embrace the CLI
The Force is with Linux and the Force is the Command-Line Interface – the CLI. The vast

power of the Linux CLI lies in its complete lack of restrictions. In this chapter we will

begin to explore the command line in ways that will illuminate the power that it literally

places at your fingertips.

There are many options for accessing the command line such as virtual consoles,

many different terminal emulators, and other related software that can enhance your

flexibility and productivity. All those possibilities will be covered in this chapter as well

as some specific examples of how the command line can perform seemingly impossible

tasks – or just satisfy the Pointy-Haired-Boss.

Before we get any further into our discussion about the command line, there is a

little preparation we need to take care of.

PREPARATION

Not all distributions install several software packages we will need during this chapter so

we will install them now. If one or more of these packages are already installed, a message

will be displayed to indicate that, but the rest of the packages will still install correctly. Some

additional packages will be installed to meet the prerequisites of the ones we are installing.

My package manager is dnf, but you should use the package manager supplied by your

distribution. Do this as root.

[root@testvm1 ~]# dnf -y install konsole tilix screen ksh tcsh zsh

On my test, VM Konsole and screen were already installed, but the command installed ksh,

csh, zsh, tilix, and three other packages to meet dependencies.

110

 Defining the Command Line
The command line is a tool that provides a text mode interface between the user and

the operating system. The command line allows the user to type commands into the

computer for processing and to see the results.

The Linux command-line interface is implemented with shells such as bash (Bourne

again shell), csh (C shell), and ksh (Korn shell) to name just three of the many that

are available. The function of any shell is to pass commands typed by the user to the

operating system that executes the commands and returns the results to the shell.

Access to the command line is through a terminal interface of some type. There are

three primary types of terminal interfaces that are common in modern Linux computers,

but the terminology can be confusing. So indulge me while I define those terms as well

as some other terms that relate to the command line – in some detail.

 CLI Terminology
There are several terms relating to the command line that are often used

interchangeably. This indiscriminate usage of the terms caused me a good bit of

confusion when I first started working with Unix and Linux. I think it is important for

SysAdmins to understand the differences between the terms console, virtual console,

terminal, terminal emulator, terminal session, and shell.

Of course you can use whatever terminology works for you so long as you get your

point across. Within the pages of this book, I will try to be as precise as possible because

the reality is that there are significant differences in the meanings of these terms and it

sometimes matters.

 Command Prompt
The command prompt is a string of characters like this one that sits there with a flashing

cursor, waiting – prompting – you to enter a command.

[student@testvm1 ~]$ ◾

The typical command prompt in a modern Linux installation consists of the user

name; the host name; and the present working directory (PWD), also known as the

“current” directory, all enclosed in square braces. The tilde (~) character indicates the

home directory.

Chapter 7 eMbraCe the CLI

111

 Command Line
The command line is the line on the terminal that contains the command prompts and

any command you enter.

 Command-Line Interface
The Command-Line Interface is a text mode user interface to the Linux operating system

that allows the user to type commands and see the results as textual output.

 Terminal
A terminal is an old bit of hardware that provides a means of interacting with a

mainframe or Unix computer host. The terminal is not the computer; the terminals

merely connect to the mainframes and Unix systems. Terminals – the hardware type –

are usually connected to their host computer through a long serial cable. Terminals

such as the DEC VT100 shown in Figure 7-1 are usually called “dumb terminals” to

differentiate them from a PC or other small computer that may act as a terminal when

connecting to a mainframe or Unix host. Dumb terminals have just enough logic in

them to display data from the host and to transfer keystrokes back to the host. All of the

processing and computing is performed on the host to which the terminal is connected.

Figure 7-1. A DEC VT100 dumb terminal. This file is licensed under the Creative

Commons Attribution 2.0 Generic license. Author: Jason Scott

Chapter 7 eMbraCe the CLI

112

Terminals that are even older, such as mechanical teletype machines (TTY) predate

the common use of CRT displays. They used rolls of newsprint-quality paper to provide

a record of both the input and results of commands. The first college course I took on

computer programming used these TTY devices, which were connected by telephone line

at 300 bits per second to a GE (yes, General Electric) time-sharing computer a couple of

hundred miles away. Our university could not afford a computer of their own at that time.

Much of the terminology pertaining to the command line is rooted by historical

usage in these dumb terminals of both types. For example, the term TTY is still in

common use but I have net seen an actual TTY device in a many years. Look again in the

/dev directory of your Linux or Unix computer. and you will find a large number of TTY

device files.

Note We covered device files in Chapter 5.

Terminals were designed with the singular purpose of allowing users to interact with

the computer to which they were attached by typing commands and viewing the results

on the roll of paper or the screen. The term, “terminal,” tends to imply a hardware device

that is separate from the computer while being used to communicate and interact with it

(Figure 7-2).

Figure 7-2. Unix developers Ken Thompson and Dennis Ritchie. Thompson is
sitting at a teletype terminal used to interface with the Unix computer. Peter

Hamer – Uploaded by Magnus Manske

Chapter 7 eMbraCe the CLI

113

 Console
A console is a special terminal because it is the primary terminal connected to a host. It

is the terminal at which the system operator would sit to enter commands and perform

tasks that were not allowed at other terminals connected the host. The console is also

the only terminal on which the host would display system-level error messages when

problems occurred.

There can be many terminals connected to mainframe and Unix hosts, but only

one is or can act as a console. On most mainframes and Unix hosts, the console was

connected through a dedicated connection that was designated specifically for the

console.

Like Unix, Linux has runlevels and some of the runlevels such as runlevel 1, single

user mode, and recovery mode are used only for maintenance. In these runlevels only

the console is functional to allow the SysAdmin to interact with the system and perform

maintenance.

Note KVM stands for Keyboard, Video, and Mouse, the three devices that most
people use to interact with their computers.

On a PC the physical console is usually the keyboard, monitor, and sometimes the

mouse (KVM) that are directly attached to the computer. These are the physical devices

used to interact with BIOS during the BIOS boot sequence, and can be used during

the early stages of the Linux boot process to interact with GRUB and choose a different

kernel to boot or modify the boot command to boot into a different run level.

Because of the close physical connection to the computer of the KVM devices, the

SysAdmin must be physically present at this console during the boot process in order to

interact with the computer. Remote access is not available to the SysAdmin during the

boot process and only becomes available when the SSHD service is up and running.

Chapter 7 eMbraCe the CLI

114

 Virtual Console
Modern personal computers and servers that run Linux do not usually have dumb

terminals that can be used as a console. Linux typically provides the capability for

multiple virtual consoles to allow for multiple logins from a single keyboard and monitor.

Red Hat Linux, CentOS, and Fedora Linux usually provide for six or seven virtual

consoles for text mode logins. If a graphical interface is used, the first Virtual console,

vc1, becomes the first graphical (GUI) session after the X Window System (X) starts, and

vc7 becomes the second GUI session. See Figure 7-3.

Each virtual console is assigned to a Function Key corresponding to the console

number. So vc1 would be assigned to function key F1, and so on. It is easy to switch to

and from these sessions. On your computer you can hold down the Ctrl-Alt keys and

press F2 to switch to vc2. Then hold down the Ctrl-Alt keys and press F1 to switch to vc1

and what is usually the graphical desktop interface. If there is no GUI running, vc1 will

be simply another text console.

Virtual consoles provide a means to access multiple consoles using a single

physical system console, the keyboard, video display, and mouse (KVM). This gives

administrators more flexibility to perform system maintenance and problem solving.

There are some other means for additional flexibility, but Virtual Consoles are always

available if you have physical access to the system or directly attached KVM device or

some logical KVM extension such as Integrated Lights Out, or iLO. Other means such

as the screen command might not be available in some environments and a GUI will

probably not be available on most servers.

Figure 7-3. Login prompt for virtual console 2

Chapter 7 eMbraCe the CLI

115

 Terminal Emulator
A terminal emulator is a software program that emulates a hardware terminal such as

the VT100. Most of the current terminal emulators can emulate several different types of

hardware terminals (Figure 7-4). Most terminal emulators are graphical programs that

run on any Linux graphical desktop environment like KDE, Cinnamon, LXDE, GNOME,

and others. The Linux Console1 is the terminal emulator for the Linux virtual consoles.

1 Wikipedia, Konsole, https://en.wikipedia.org/wiki/Linux_console

Figure 7-4. The Konsole terminal emulator window with two tabs open

Chapter 7 eMbraCe the CLI

https://en.wikipedia.org/wiki/Linux_console

116

The first terminal emulator was Xterm,2 which was originally developed in 1984

by Thomas Dickey.3 Xterm is still maintained and is packaged as part of many modern

Linux distributions.

Other terminal emulators include Konsole,4 Tilix,5 (Figure 7-5), rxvt,6 gnome-

terminal,7 Terminator,8 and many more. Each of these terminal emulators has a set of

interesting features that appeal to specific groups of users. Some have the capability to

open multiple tabs or terminals in a single window. Others provide just the minimum set

of features required to perform their function and are typically used when small size and

efficiency are called for.

2 Wikipedia, Xterm, https://en.wikipedia.org/wiki/Xterm
3 Wikipedia, Thomas Dickey, https://en.wikipedia.org/wiki/Thomas_Dickey
4 Wikipedia, Konsole, https://en.wikipedia.org/wiki/Konsole
5 Fedora Magazine, Tilix, https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
6 Wikipedia, Rxvt, https://en.wikipedia.org/wiki/Rxvt
7 Wikipedia, Gnome-terminal, https://en.wikipedia.org/wiki/Gnome-terminal
8 Wikipedia, Terminator, https://en.wikipedia.org/wiki/Terminator_(terminal_emulator)

Figure 7-5. A Tilix instance with several sessions open

Chapter 7 eMbraCe the CLI

https://en.wikipedia.org/wiki/Xterm
https://en.wikipedia.org/wiki/Thomas_Dickey
https://en.wikipedia.org/wiki/Konsole
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://en.wikipedia.org/wiki/Rxvt
https://en.wikipedia.org/wiki/Gnome-terminal
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator

117

My favorite terminal emulators are Konsole and Tilix because they offer the ability

to have many terminal emulator sessions in a single window. Konsole does this using

multiple tabs that I can switch between.

Tilix offers the ability to tile multiple emulator sessions in a window session as well

as providing multiple sessions. Figure 7-5 shows an instance of Tilix with two sessions

displayed in the left sidebar. The visible session, though partially covered by the sidebar

has three terminals running. The sidebar allows switching between sessions.

Other terminal emulator software provides these features but not as adroitly and

seamlessly as Konsole and Tilix.

 Pseudo Terminal
A pseudo terminal is a Linux device file to which a terminal emulator is logically

attached in order to interface with the operating system. The device files for pseudo

terminals are located in the /dev/pts directory and are created only when a new terminal

emulator session is launched. That can be a new terminal emulator window or a new tab

or panel in an existing window of one of the terminal emulators, such as Konsole, that

supports multiple sessions in a single window.

The device files in /dev/pts are simply a number for each emulator session that is

opened. The first emulator would be /dev/pts/1, for example.

 Session
Session is another of those terms that can apply to different things and yet it retains

essentially the same meaning.

The most basic application is a to terminal session. That is a single terminal emulator

connected to a single user login and shell. So in its most basic sense a session is a single

window or virtual console logged into a local or remote host with a command-line shell

running in it.

The Tilix terminal emulator uses the term session to mean a window pane with one

or more terminals open in it. The pane is the session in this case, and each of the sub-

windows is a terminal. You can see this in Figure 7-5.

Chapter 7 eMbraCe the CLI

118

 Shell
A shell is the command interpreter for the operating system. Each of the many shells

available for Linux interprets the commands typed by the user or SysAdmin into a form

usable by the operating system. When the results are returned to the shell program, it

displays them on the terminal.

The default shell for most Linux distributions is the bash shell. bash stands for

Bourne Again Shell because the bash shell is based upon the older Bourne shell, which

was written by Steven Bourne in 1977. Many other shells are available. The four I list here

are the ones I encounter most frequently but many others exist.9

• csh – the C shell for programmers who like the syntax of the C

language.

• ksh – the Korn shell, written by David Korn and popular with Unix

users.

• tcsh – a version of csh with more ease of use features.

• zsh – which combines many features of other popular shells.

All shells have some built-in commands that supplement or replace the commands

provided by the core utilities. Open the man page for bash and find the “SHELL BUILTIN

COMMANDS” section to see the list of commands provided by the shell itself.

I have used the C shell, the Korn shell, and the Z shell. I still like the bash shell better

than any of the others I have tried. Each shell has its own personality and syntax. Some

will work better for you and others not so well. Use the one that works best for you, but

that might require that you at least try some of the others.

You can change shells easily.

9 Wikipedia, Comparison of command shells, https://en.wikipedia.org/wiki/
Comparison_of_command_shells

Chapter 7 eMbraCe the CLI

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells

119

EXPERIMENT 7-1

because most Linux distributions use the bash shell as the default, I will assume that is the

one you have been using and that it is your default shell. In our preparation for this chapter we

installed three other shells, ksh, tcsh, and zsh.

Do this experiment as the user student. First, look at your command prompt which should look

like this:

[student@testvm1 ~]$

this is the standard bash prompt for a non-root user. Now let’s change this to the ksh shell.

Just enter the name of the shell.

[student@testvm1 ~]$ ksh

$

You can tell by the difference in the prompt that this is a different shell. run a couple of simple

commands such as ls and free just to see that there is no difference in how the commands

work. this is because most of the commands are separate from the shell, except for the built- ins.

try scrolling up to get a command history like bash. It does not work.

$ zsh

This is the Z Shell configuration function for new users,

zsh-newuser-install.

You are seeing this message because you have no zsh startup files

(the files .zshenv, .zprofile, .zshrc, .zlogin in the directory

~). This function can help you with a few settings that should

make your use of the shell easier.

You can:

(q) Quit and do nothing. The function will be run again next time.

(0) Exit, creating the file ~/.zshrc containing just a comment.

 That will prevent this function being run again.

(1) Continue to the main menu.

--- Type one of the keys in parentheses ---

Chapter 7 eMbraCe the CLI

120

If you continue, you will be taken through a series of menus that will help you configure the Z

shell to suit your needs – as best you might know them at this stage. I chose “Q” to just go on

to the prompt that looks like just a bit different from the bash prompt.

[student@testvm1]~%

run a few simple commands while you are in the Z shell. then type exit twice to get back to

the original bash shell.

[student@testvm1]~% w

 14:30:25 up 3 days, 6:12, 3 users, load average: 0.00, 0.00, 0.02

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

student pts/0 Tue08 0.00s 0.07s 0.00s w

root pts/1 Wed06 18:48 0.26s 0.26s -bash

student pts/2 08:14 6:16m 0.03s 0.03s -bash

[student@testvm1]~% exit

$ exit

[student@testvm1 ~]$

What do you think might happen if you start a bash shell while you are already in a bash shell?

[student@testvm1 ~]$ bash

[student@testvm1 ~]$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos

[student@testvm1 ~]$ exit

exit

[student@testvm1 ~]$

You just get into another bash shell, is what.

This illustrates more than it might appear on the surface. First there is the fact that

each shell is a layer. Starting a new shell does not terminate the previous one. When you

started tcsh from bash, the bash shell remained in place; and when you exited from tcsh,

you were returned to the waiting bash shell.

It turns out that this is exactly what happens when running any command or process

from a shell. The command runs in its own session and the parent shell – process –

waits until that sub-command returns and control is returned to it before being able to

continue processing further commands.

So if you have a script that runs other commands – which is the purpose of a script – the

script runs each command, waiting for it to finish before moving on to run the next command.

Chapter 7 eMbraCe the CLI

121

That behavior can be modified by appending an ampersand (&) to the end of a

command, which places the called command in the background and allows the user

to continue to interact with the shell, or for the script to continue processing more

commands. You would only want to do this with commands that do not require further

human interaction or output to STDOUT. You would also not want to run commands in

the background when the results of that command are needed by other commands that

will be run later, but perhaps before the background task has finished.

You can change your shell with the chsh command so that it will be persistent every

time you log in and start a new terminal session.

 Secure Shell (SSH)
SSH is not really a shell. The ssh command starts a secure communication link between

itself as the client and another host with the SSHD server running on it. The actual

command shell used at the server end is whatever the default shell set for that account

on the server side, such as the bash shell.

 Screen
You might at first think of “screen” as the device on which your Linux desktop is

displayed. That is one meaning.

For geeks like us, screen is a program, a screen manager, that enhances the power

of the command line. The screen utility allows launching multiple shells in a single

terminal session and provides means to navigate between the running shells.

Remember when you had a remote session running a program and the

communications link failed? I have had that happen many times. When that happened,

the running program was terminated as well and I had to restart it from the beginning. It

could get very frustrating.

The screen program can prevent that. A screen session will continue to run even if

the connectivity to the remote host is broken because the network connection fails. It

also allows disconnecting the screen session from the terminal session and reconnecting

later from the same or a different computer. All of the CLI programs running in the

screen terminal sessions will continue to run on the remote host. This means that once

communications are reestablished, one can log back into the remote host and use the

screen -r command at the remote command line to reattach the screen session to the

terminal.

Chapter 7 eMbraCe the CLI

122

So I can start up a bunch of terminal sessions in screen, use Ctrl-a + d to disconnect

from screen, and log out. Then I can go to another location, log in to a host, SSH to

the host running screen, login, and use the screen -r command to reconnect to the

screen session and all of the terminal sessions and their respective programs will still be

running.

The screen command can be useful in some environments where physical access

to a hardware console is not available to provide access to the Virtual Consoles but the

flexibility of multiple shells is needed. You will probably find it convenient to use the

screen program, and in some cases it will be necessary to do so in order to work quickly

and efficiently.

EXPERIMENT 7-2

In this experiment we explore the use of the screen program. perform this experiment in a

terminal session as the student user.

before we begin, let’s discuss how to send commands to the screen program itself in order to

do things like open a new terminal and switch between running terminal sessions.

In this experiment I provide instructions such as “press Ctrl-a + c” to open a new terminal, for

example. that means that you should hold down the Control key while you press the “a” key;

at this point you can release the Control and “a” keys because you have alerted the screen

program that the next keystroke is intended for it; now press the “c” key. this sequence of

keystrokes seems a bit complicated, but I soon learned it as muscle memory and it is quite

natural by now. I’m sure the same will be true for you, too.

For the sequence Ctrl-a + “ (double quote) sequence that shows a list of all open terminals in

that screen session, do Ctrl-a, release those keys and then press shift + “.

the only exception I have found to this procedure is the Ctrl-a + a sequence, which toggles

between the last two terminal sessions. You must continue to hold down the Control key and

press the “a” key twice in a row before releasing the Ctrl key.

 1. enter the screen command that will clear the display and leave you at a

command prompt. You are now in the screen display manager with a single

terminal session open and displayed in the window.

 2. type any command such as ls to have something displayed in the terminal

session besides the command prompt.

Chapter 7 eMbraCe the CLI

123

 3. press Ctrl-a + c to open a new shell within the screen session.

 4. enter a different command, such as df –h in this new terminal.

 5. type Ctrl-a + a to switch between the terminals.

 6. enter Ctrl-a + c to open a third terminal.

 7. type Ctrl-a + “ to list the open terminals. Choose any one except the last one

by using the up/dn arrow keys and hit the Enter key to switch to that terminal.

 8. to close one terminal, type exit and press the Enter key.

 9. type the command Ctrl-a + “ to verify that the terminal is gone. Notice that the

terminal with the number you have chosen to close is no longer there and that

the other terminals have not been renumbered.

 10. to reopen a fresh terminal use Ctrl-a + c.

 11. type Ctrl-a + “ to verify that the new terminal has been created. Notice that it

has been opened in the place of the terminal that was previously closed.

 12. to disconnect from the screen session and all open terminals, press Ctrl-a + d.

Note that this leaves all of the terminals and the programs in them intact and still

running.

 13. enter the command screen -list command on the command line to list all of

the current screen sessions. this can be useful to ensure that you reconnect to

the correct screen session if there are multiple ones.

 14. Use the command screen –r to reconnect to the active screen session. If

multiple active screen sessions are open, then a list of them will be displayed

and you can choose the one to which you wish to connect; you will have to

enter the name of the screen session to which you want to connect.

I recommend that you not open a new screen session inside of an existing screen session. It

can be difficult to switch between the terminals because the screen program does not always

understand which of the embedded sessions to which to send the command.

I use the screen program all the time. It is a powerful tool that provides me with

extreme flexibility for working on the command line.

Chapter 7 eMbraCe the CLI

124

 The GUI and the CLI
You may like and use any of the many graphical user interfaces, that is, desktops, which

are available with almost all Linux distributions; you may even switch between them

because you find one particular desktop such as KDE more usable for certain tasks, and

another like GNOME better suited for other tasks. But you will also find that most of the

graphical tools required to manage a Linux computer are simply wrappers around the

underlying CLI commands that actually perform those functions.

A graphical interface cannot approach the power of the CLI because the GUI is

inherently limited to those functions the programmers have decided you should have

access to. This is how Windows and other restrictive operating systems work. They only

allow you to have access to the functions and power that they decide you should have.

This might be because they think you really do want to be shielded from the full power

of your computer, or it might be due to the fact that they don't think you are capable of

dealing with that level of power.

Just because the GUI is limited in some ways does not mean that good SysAdmins cannot

leverage it to make their jobs easier. I do find that I can leverage the GUI with more flexibility

for my command-line tasks. By allowing multiple terminal windows on the desktop, or by

using advanced terminal emulation programs such as Tilix and Konsole that are designed

for a GUI environment, I can improve my productivity. Having multiple terminals open on

the desktop gives me the capability of being logged into multiple computers simultaneously.

I can also be logged into any one computer multiple times, having open multiple terminal

sessions using my own user ID and more terminal sessions as root.

For me, having multiple terminal sessions available at all times, in multiple ways,

is what the GUI is all about. A GUI can also provide me with access to programs like

LibreOffice, which I am using to write this book, graphical email and web browsing

applications, and much more. But the real power for SysAdmins is in the command line.

Linux uses the GNU Core Utilities, which were written by Richard M. Stallman,10 aka

RMS, and many other contributors, as the free, open source utilities required by any free

version of Unix or Unix-like operating systems. The GNU Core Utilities are the basic file,

shell, and text manipulation utilities of any GNU operating system such as GNU/Linux

and can be counted upon by any SysAdmin to be present on every version of Linux. In

addition, every Linux distribution has an extended set of utilities that provides even

more functions.

10 Wikipedia, Richard M. Stallman, https://en.wikipedia.org/wiki/Richard_Stallman

Chapter 7 eMbraCe the CLI

https://en.wikipedia.org/wiki/Richard_Stallman

125

You can enter the command, info coreutils, to view a list of the GNU Core

Utilities, and select individual commands for more information. You can also use the

man <command> to view the man page for each of these commands and all of the many

hundreds of other Linux commands that are also standard with every distribution.

 Non-Restrictive Interface
The Linux CLI is a non-restrictive interface because it places no limits on how you use it.

A GUI is by definition a very restrictive interface. You can only perform the tasks

you are allowed in a prescribed manner and all of that is chosen by the programmer.

You cannot go beyond the limits of the imagination of the programmer who wrote the

code or – more likely – the restrictions placed on the programmer by the Pointy-Haired

Bosses.

In my opinion, the greatest drawback of any graphical interface is the suppression

of any possibility for automation. No GUI offers any capability to truly automate tasks.

Instead there is only repetitive mouse clicks to perform the same or similar operations

multiple times on slightly different data.

The CLI, on the other hand, allows for great flexibility in performing tasks. The

reason for this is that each Linux command, not just the GNU core utilities but also the

vast majority of the Linux commands, were written using tenets of the Linux Philosophy

such as, “everything is a file,” “Always use STDIO,” “Each program should do one thing

well,” “Avoid captive user interfaces," and so on. You get the idea and I will discuss each

of these tenets later in this book, so don't worry too much if you don't yet understand

what they mean.

The bottom line for the SysAdmin is that when developers follow the tenets, the

power of the command line can be fully exploited.

 The Mailing List
This example highlights the power and flexibility of the CLI for its ability to automate

common tasks.

I have administered several listservs during my career and still do. People send me

lists of email addresses to add to those lists. In one case I received a list of names and

email addresses in a Word document that were to be added to one of my lists.

Chapter 7 eMbraCe the CLI

126

The list itself was not really very long but it was very inconsistent in its formatting. An

abbreviated version of that list, with name and domain changes, is shown in Figure 7-6.

The original list has extra lines, characters like brackets and parentheses that need to

be deleted, and some empty lines. The format required to add these emails to the list is

first last <email@example.com>.

It was obvious that I needed to manipulate the data in order to mangle it into an

acceptable format for inputting to the list. It is possible to use a text editor or a word

processor such as LibreOffice Writer to make the necessary changes to this small file.

However, people send me files like this quite often so it becomes a chore to use a word

processor to make these changes. Despite the fact that Writer has a good search and

replace function, each character or string must be replaced singly and there is no way

to save previous searches. Writer does have a very powerful macro feature, but I am not

familiar with either of its two languages, LibreOffice Basic or Python. I do know bash

shell programming.

Team 1 Apr 3
Leader Virginia Jones vjones88@example.com
Frank Brown FBrown398@example.com
Cindy Williams cinwill@example.com
Marge smith msmith21@example.com
[Fred Mack] edd@example.com

Team 2 March 14
leader Alice Wonder Wonder1@example.com
John broth bros34@example.com
Ray Clarkson Ray.Clarks@example.com
Kim West kimwest@example.com
[JoAnne Blank] jblank@example.com

Team 3 Apr 1
Leader Steve Jones sjones23876@example.com
Bullwinkel Moose bmoose@example.com
Rocket Squirrel RJSquirrel@example.com
Julie Lisbon julielisbon234@example.com
[Mary Lastware) mary@example.com

Figure 7-6. A partial listing of the original document of email addresses to add to
a listserv

Chapter 7 eMbraCe the CLI

127

I did what comes naturally to a SysAdmin – I automated the task. The first thing I did

was to copy the address data to a text file named addresses.txt so I could work on it using

command-line tools. After a few minutes of work, I developed the bash command line

program in Figure 7-7 that produced the desired output as the file, addresses2.txt. This

command would be entered on a single line on the terminal; line wrapping is acceptable,

but don't press the Enter key until the command is completely entered.

cat addresses.txt | grep -v Team | grep -v "^\s$" | sed -e "s/[Ll]eader//"
-e "s/\[//g" -e "s/\]//g" -e "s/)//g" | awk '{print $1" "$2" <"$3">"}' >
addresses2.txt

Figure 7-7. This bash command line program cleans up the email address data in
Figure 7-6 and, if saved as an executable shell script, can be reused many times

I saved the bash program in an executable file and now I can run this program any

time I receive a new list. Some of those lists are fairly short, as is the one in Figure 7-6,

but others have been quite long, sometimes containing up to several hundred addresses

and many lines of “stuff” that do not contain addresses to be added to the list.

It is very important to realize that my solution is not the only one. There are different

methods in bash for producing the same output, there are other languages like Python

and Perl that can also be used. And, of course, there are always LibréOffice Writer

macros. But I can always count on bash as part of any Linux distribution. I can perform

these tasks using bash programs on any Linux computer, even one without a GUI

desktop and that does not have LibréOffice installed.

 Solution Tenets

Using the bash shell for programs that solve problems like this one helps to ensure

that the solution meets other Philosophy tenets. For example, bash shell programs are

portable to other Linux and Unix environments. So here is a list of the tenets met by this

particular solution.

• Embrace the CLI

• Be a Lazy SysAdmin

• Use STDIO and data streams

• Automate everything

Chapter 7 eMbraCe the CLI

128

• Always use shell programs

• Store data in flat text files

• Make programs portable

• Strive for elegance

• Find the simplicity

• Silence is golden

• Test everything

 Baffle Them with Big Data
The value of a program is proportional to the weight of its output.

—Laws of Computer Programming

I saw this quote on a poster in a programmer’s office many years ago. For those of

you who are too young to remember those “good old days,” it refers back to a time

when almost all output from a computer was in the form of printed reports on

wide, fan-fold paper. Some programs would dump huge stacks of 11"x15" fan-fold

continuous form paper11 from the IBM 1403 printer.12 Your rank in the company

hierarchy could be determined by how many stacks of computer paper in your office

and how high they were.

Despite the fact that those days are – mostly – behind us, huge amounts of data

can still be a sign of … something. In my case a way to counter continuous requests for

essentially meaningless data.

Here is another interesting example of using the command line. Some time in mid-

1999 when I was working for the State of North Carolina, one of the PHBs asked me to

create a list for the security people. As is appropriate, they wanted to know every piece

of software on my “non-standard” PC, and its function. At that time I was using Red Hat

Linux 6 rather than the “standard” Windows.

11 Wikipedia, Continuous form paper, https://en.wikipedia.org/wiki/Continuous_stationery
12 Wikipedia, IBM 1403 printer, https://en.wikipedia.org/wiki/IBM_1403

Chapter 7 eMbraCe the CLI

https://en.wikipedia.org/wiki/Continuous_stationery
https://en.wikipedia.org/wiki/IBM_1403

129

My dilemma was to figure out exactly what it was they wanted. Did they simply want

a list like, Red Hat Linux 6.1, OpenOffice, Mozilla? or did they want more. No matter how

much I requested clarification, they just said they wanted a list of “everything” that was

non-standard. Knowing the people in Security, I figured that more is better.

They had said they wanted a list of every bit of software on my Linux computer and

what it did so I accommodated them. I wrote a bash program that determined every

RPM package installed on the computer in question, sorted them into alphabetical

order, then used the RPM database to obtain the basic description of the software. The

little program I wrote to accomplish this is shown in Experiment 7-3. Run it on your own

computer to see the results.

Be sure to use the back-ticks as shown (`rpm -qa | sort`) or this experiment will

not work. Enclosing code in back-ticks (`) is a way to execute that bit of code before

evaluating the rest of the code in the statement. So the enclosed code is evaluated first

and then used as the input list for the for command. This works exactly like parentheses

in a math problem like X=a*3+2*(6-3). The parentheses change the sequence in which

the expression is evaluated.

EXPERIMENT 7-3

perform this experiment as root.

[root@testvm1 ~]# for I in `rpm -qa | sort`;do echo $I; rpm -qi $I | grep

Summary;done

this simple command-line program generates two lines of data for each rpM package that is

installed on your computer. It turned out to be 4,630 lines on my testvm1 virtual machine with

a fairly modest installation.

Once again I could have used the mailx command at the end of this program to send

the data directly to the requesting PHB via email.

Note It has been over 15 years since I had done this, and I did not have a copy
of that bash program. It took me about 5 minutes to re-create it while writing this
chapter.

Chapter 7 eMbraCe the CLI

130

The end result of this was dozens of pages of data, which was exactly what they had

asked for. I knew that most of it would be meaningless to them but that was irrelevant

because I gave them exactly what they wanted. It just turned out to be far more than they

expected and with mostly cryptic descriptions – unless you were deeply familiar with the

guts of Linux. I think they just expected a one-page listing of things like, email, browser,

and office software.

However, despite the fun I used to have providing the PHBs exactly what they asked for,

this experiment does illustrate that the command line can be used in some amazing and

powerful ways. Let’s list our “non-standard” software again but add one more command.

EXPERIMENT 7-4

perform this experiment as root.

[root@testvm1 ~]# for I in `rpm -qa | sort`;do echo $I; rpm -qi $I | grep

Summary;done | text2pdf -o /tmp/non-std-software.pdf

the last command in the pipeline, text2pdf converts the aSCII text data stream directly into

a text file.

 CLI Power
I hope you can see from these simple examples just a little of the vast power available to

the SysAdmin when using the command line.

In this chapter you have discovered that Linux provides a very large number of

methods to access the command line and perform your work as a SysAdmin. You can

use the virtual consoles and any of a number of different terminal emulators. You can

combine those with the screen program in order to further enhance the flexibility you

have at the command line.

The examples in this chapter are informative in themselves, but the real power of

the CLI comes from the fact that I also “Automate everything” using that CLI, which

is another tenet of the philosophy. It is well known by experienced SysAdmins that if

something needs to be done once, it will need to be done again, usually many times. So

to make it easy later I placed those simple lines of bash code in text files and made the

files executable. Whenever I was asked to provide that same information again, all I had

to do was to run the appropriate bash script.

Chapter 7 eMbraCe the CLI

131
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_8

CHAPTER 8

Be a Lazy SysAdmin
Despite everything we were told by our parents, teachers, bosses, well-meaning

authority figures, and hundreds of quotes about hard work that I found with a Google

search, getting your work done well and on time is not the same as working hard. One

does not necessarily imply the other.

I am a lazy SysAdmin. I am also a very productive SysAdmin. Those two seemingly

contradictory statements are not mutually exclusive; rather they are complementary in a

very positive way. Efficiency is the only way to make this possible.

This chapter is about working hard at the right tasks to optimize our own efficiency.

Part of this is about automation, which I will touch on here and discuss in detail in

Chapter 9. But the greater part of this chapter is about finding a few of the myriad ways to

use the shortcuts already built into Linux.

 Preparation
We need to install the logwatch package in preparation for one of the experiments.

PREPARATION

We need to install the logwatch package for one of the experiments in this chapter to work

properly.

Note Be sure to use the correct package manager for your distribution. I use dnf
for Fedora.

[root@testvm1 ~]# dnf -y install logwatch

If logwatch is already installed the preceding command will print a message to that effect.

132

 True Productivity
Typing away at the keyboard all day long every day to perform the tasks required

by the job is probably the least productive that any SysAdmin can be. A SysAdmin

is most productive when thinking – thinking about how to solve existing problems

and about how to avoid future problems; thinking about how to monitor Linux

computers in order to find clues that anticipate and foreshadow those future

problems; thinking about how to make her work more efficient; thinking about how

to automate all of those tasks that need to be performed whether every day or

once a year.

This contemplative aspect of the SysAdmin job is not well known or understood

by those who are not SysAdmins – including many of those who manage the

SysAdmins, the Pointy-Haired-Bosses. SysAdmins all approach the contemplative

parts of their job in different ways. Some of the SysAdmins I have known found

their best ideas at the beach, cycling, participating in marathons, or climbing rock

walls. Others think best when sitting quietly or listening to music. Still others think

best while reading fiction, studying unrelated disciplines, or even while learning

more about Linux. The point is that we all stimulate our creativity in different ways,

and many of those creativity boosters do not involve typing a single keystroke on

a keyboard. Our true productivity may be completely invisible to those around the

SysAdmin.

Many PHBs, being completely ignorant of how to measure SysAdmin productivity –

or anyone else’s productivity for that matter – like to hear those keys being struck. Lots

of keyboard noise is music to their ears. That is the worst possible measurement of a

SysAdmin’s productivity.

Some PHBs go so far as to install keystroke and mouse movement monitoring

software on their employees’ computers as a measurement of how productive

they are. Google it and see for yourself the large number of programs that perform

this type of keystroke counting. The more keystrokes and mouse clicks, the more

productive the user must be, right? Nope! Perhaps that is exciting stuff for bean

counters, but it is a horrible way to measure the productivity of a SysAdmin – or

anyone else for that matter.

Chapter 8 Be a Lazy SySadmIn

133

 Preventative Maintenance
One interesting experience of mine comes to mind. This took place while I was working

for IBM as a Customer Engineer (CE). I was assigned to fixing broken unit record

equipment1 such as keypunches, card sorters, collators, and other devices that used the

now old-fashioned punch cards.

As the new guy in town, I was assigned some of the oldest and least reliable of these

mechanical devices as part of my territory. Because of the fact the person I was replacing

had been gone for some time, most of these devices had been worked on just enough to

fix the immediate problem but not enough to prevent the next one that was just around

the corner. That IBM required preventative maintenance (PM) prescribed for those

devices had been ignored for many months and the machines were wearing out.

The only way to reduce the long-term workload was to perform the required PM,

which would reduce the frequency of calls on each device. So I spent a few minutes

after I fixed each broken machine to perform all of the PM called for at that time. This

included cleaning, lubricating, and replacing worn parts that had not yet failed but

soon would. By performing this PM, I reduced the number of trouble calls on those

devices and saved myself work later on, and saved IBM the cost of me or one of my

coworkers from having to go out and fix a problem that could have been prevented by

performing PM.

Many would say my job was to fix computer equipment. My managers at IBM

understood that was only the tip of the iceberg; they – and I – knew my job was Customer

Satisfaction. Although that usually meant fixing broken hardware, it also meant reducing

the number of times the hardware broke. That was good for the Customer because they

were more productive when their machines were working. It was good for me because

I received far fewer calls from those happier customers. I also got to sleep more due to

the resultant fewer emergency off-hours call-outs. I was being the Lazy CE. By doing the

extra work up front, I had to do far less work in the long run.

This same tenet has become one of the functional tenets of the Linux Philosophy for

SysAdmins. As SysAdmins, our time is best spent doing those tasks that minimize future

workloads.

1 Wikipedia, Unit Record Equipment, https://en.wikipedia.org/wiki/Unit_record_equipment

Chapter 8 Be a Lazy SySadmIn

https://en.wikipedia.org/wiki/Unit_record_equipment

134

Now let’s look at some ways to be lazy. Remember, these strategies are only a few of

the many that can be used to reduce your workload, work more efficiently, and get all of

your work done with as little effort on your part as possible. Every SysAdmin I know has

their own strategies. These are just a few of mine.

 Minimize Typing
One part of being a lazy SysAdmin is the employment of strategies to reduce typing.

Typing takes time and saving time is important.

I am a horrible typist. I went to high school at a time when boys did not take typing.

That was for the women who were going to be secretaries. When I finally did start using a

computer through a real keyboard instead of punched cards, I managed to teach myself

enough to type at a fair speed with a couple fingers on each hand. It works for me but

I have to make a lot of corrections. And making errors when typing a command to a

CLI program is a bad thing. So reducing the amount of typing that needs to be done is

important.

 Aliases
One way to reduce the amount of typing necessary is with aliases. Aliases are a method

for substituting a long command for a shorter one that is easier to type because it has

fewer characters. Aliases are a common way to reduce typing by making it unnecessary

to type in long options that we use constantly by including them in the alias.

EXPERIMENT 8-1

as the student user, enter the alias command to view the current list of aliases.

[student@testvm1 ~]$ alias

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias glances='glances -t1'

alias grep='grep --color=auto'

alias l.='ls -d .* --color=auto'

alias ll='ls -l --color=auto'

alias ls='ls --color=auto'

Chapter 8 Be a Lazy SySadmIn

135

alias lsn='ls --color=no'

alias mc='. /usr/libexec/mc/mc-wrapper.sh'

alias vi='vim'

alias vim='vim -c "colorscheme desert" '

alias which='(alias; declare -f) | /usr/bin/which --tty-only --read-alias --

read-functions --show-tilde --show-dot'

alias xzegrep='xzegrep --color=auto'

alias xzfgrep='xzfgrep --color=auto'

alias xzgrep='xzgrep --color=auto'

alias zegrep='zegrep --color=auto'

alias zfgrep='zfgrep --color=auto'

alias zgrep='zgrep --color=auto'

your results should look similar to mine, but I have added some aliases of my own. One is

for the glances utility, which is not a part of most distributions. another is for vim to use the

“desert” color scheme.

The aliases shown in Experiment 8-1 are primarily intended to set up default

behavior such as color and some standard options. I particularly like the ll alias because

I like the long listing of directory contents and instead of typing ls -l I can just type ll.

I use the ll command a lot and it saves typing three characters every time I use it. For

slow typists like me, that can amount to a lot of time.

I strongly recommend that you do not use aliases to alias Linux commands to those

you used in another operating system like some people have done. You will never learn

Linux that way.

In Experiment 8-1 the alias for the vim editor sets a color scheme, one which is not

the default. I happen to like the desert color scheme better than the default, so aliasing

the vim command to the longer command that also specifies my favorite color scheme is

one way to get what I want with less typing.

You can use the alias command to add your own new aliases to the ~/.bashrc file to

make them permanent between reboots and logout/in. To make the aliases available to

all users on a host, add them to the /etc/bashrc file. The syntax in either case is the same

as from the command line.

Chapter 8 Be a Lazy SySadmIn

136

 Other Typing Shortcuts
Other ways to reduce typing include using short names for programs. Most of the Core

Utilities have very short names – many are only two or three characters in length. This

in itself reduces the amount of typing we have to do. I use short names for the Bash shell

programs I create in order to keep them simple and easy to both remember and type.

 File Naming
I use my own conventions for naming files. In general, short names are good, but

meaningful names that are easy to see in a list are even better.

My naming strategy for files that have similar names but that were created on

different dates is in the form YYYYMMDD-filename.pdf, for example. I download many

financial files from the Internet and they have names like statement.pdf and when

downloaded into a directory I rename them with my own format so they are more easily

discernible in a directory, such as 20170617-visa-statement.pdf. Placing the date first

in YYYYMMDD or YYYY-MM-DD format makes them automatically sort in the correct

date sequence in directory listings, which makes it easy to find a particular file.

This type of naming does require some additional typing up front, but it can save a

lot of time looking for specific files later.

 BASH Efficiency
Bash is only one of many shells available for Linux. Like all shells, Bash has many ways to

help you become more efficient. We have already seen the aliases that can be configured

in the .bashrc file.

Now let’s look at some more of the fun command-line features provided by the Bash

shell.

 Completion Facility
Bash provides a facility for completing a partially typed program and host names, file

names, and directory names. Type the partial command or a file name as an argument

to a command and press the Tab key. If the host, file, directory, or program exists and the

remainder of the name is unique, Bash will complete entry of the name. Because the Tab key

is used to initiate the completion, this feature is sometimes referred to as “Tab completion.”

Chapter 8 Be a Lazy SySadmIn

137

Tab completion is programmable and can be configured to meet many different

needs. However, unless you have specific needs that are not met by the standard

configurations provided by Linux, the Core Utilities, and other CLI applications, there

should never be a reason to change the defaults.

Note the Bash man page has a detailed and mostly unintelligible explanation
of “programmable completion.” the book “Beginning the Linux Command Line”
has a short and more readable description2 and Wikipedia3 has more information,
examples, and an animated GIF to aid in understanding this feature.

Experiment 8-2 provides a very short introduction to command completion if you

are not already familiar with it.

EXPERIMENT 8-2

perform this experiment as the student user. your home directory should have a subdirectory

named documents for this experiment. most Linux distributions create a documents

subdirectory for each user.

We use completion to change into the ~/documents directory. Be sure that your home

directory is the pWd. type the following partial command into the terminal.

[student@testvm1 ~]$ cd D<Tab>

<Tab> means to press the tab key once. nothing happens because there are three directories

that start with “d.” you can see that by pressing the tab key twice in rapid succession, which

lists all of the directories that match what you have already typed.

[student@testvm1 ~]$ cd D<tab><Tab>

Desktop/ Documents/ Downloads/

[student@testvm1 ~]$ cd D

2 Van Vugt, Sander. Beginning the Linux Command Line (Apress, 2015), 22.
3 Wikipedia, Command Line Completion, https://en.wikipedia.org/wiki/
Command-line_completion

Chapter 8 Be a Lazy SySadmIn

https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Command-line_completion

138

now add the “o” to the command and press tab twice more.

[student@testvm1 ~]$ cd Do<tab><Tab>

Documents/ Downloads/

[student@testvm1 ~]$ cd Do

you should see a list of both directories that start with “do.” now add the “c” to the command

and press the tab key once.

[student@testvm1 ~]$ cd Doc<Tab>

[student@testvm1 ~]$ cd Documents/

So if you type cd Doc<Tab> the rest of the directory name is completed in the command.

Let’s take a quick look at completion for commands. In this case the command is relatively

short, but most are. assume we want to determine the current uptime for the host.

[student@testvm1 ~]$ up<Tab><Tab>

update-alternatives updatedb update-mime- database upower

update-ca-trust update-desktop-database update-pciids uptime

update-crypto-policies update-gtk-immodules update-smart-drivedb

[student@testvm1 ~]$ up

We can see several commands that begin with “up” and we can also see that typing one more

letter “t” will complete enough of the uptime command that the rest will be unique.

[student@testvm1 ~]$ upt<Tab>ime

 07:55:05 up 1 day, 10:01, 7 users, load average: 0.00, 0.00, 0.00

the completion facility only completes the command, directory, or file name when the

remaining text string needed is unequivocally unique.

Tab completion works for commands, some subcommands, file names, and directory

names. I find that completion is most useful for completing directory and file names,

which tend to be longer, and a few of the longer commands and some subcommands.

Most Linux commands are so short already that using the completion facility can

actually be less efficient than typing the command. The short Linux command names

are quite in keeping with being a lazy SysAdmin. So it just depends on whether you find

it more efficient or consistent for you to use completion on short commands. Once you

learn which commands are worthwhile for tab completion and how much you need to

type, you can use those that you find helpful.

Chapter 8 Be a Lazy SySadmIn

139

 Command-Line Recall and Editing
Command-line recall and editing are other methods to reduce the total amount of

typing we do. These two features, command line recall and command-line editing, work

together to enhance productivity. I use these features frequently and cannot imagine

using a shell that does not have them. These features would not be possible without the

Bash history feature so we will start there.

 History
Command-line recall uses the Bash history feature to maintain a list of previously

entered shell commands. This feature allows us to use the command history to recall

previous commands for reuse. Prior to pressing the Enter key, the recalled commands

may be edited. Let’s start by looking at the history for our hosts so we can see what that

looks like.

EXPERIMENT 8-3

perform this experiment as the student user. enter the history command and look at the

results.

[student@testvm1 ~]$ history

 1 poweroff

 2 w

 3 who

 4 cd /proc

 5 ls -l

 6 ls

 7 cd 1 ; ls

 8 cd

 9 ls

 10 exit

 11 ls -la

 12 exit

 13 man screen

Chapter 8 Be a Lazy SySadmIn

140

 14 ls -la

 15 badcommand

 16 clear

 17 ls -l /usr/local/bin

 18 clear

 19 screenfetch

 20 zsh

 21 ksh

 22 bash

 23 man chgsh

 24 man chsh

 25 screen

 26 history

[student@testvm1 ~]$

your results will be different from mine, but you should see at least some of the commands

that you entered for previous experiments.

The Bash command history is maintained in the ~/.bash_history file. Other shells

keep their histories in different files. The Korn shell stores its history in .sh_history, for

example. For Bash, at least, the history in the buffer is not written to the .bash_history file

until you exit from the shell.

Each open terminal has its own history so you may not see the command you

want in the listing. If you do not, try another terminal session. The screen program

also maintains its own history buffers in memory for each terminal opened under it.

The shell histories are maintained for a specified number of lines, the Fedora default

being 1,000.

 Using the History
Now let’s discover how we can use this history. There are two ways to access the contents

of the history in order to reuse them. We can use the line number or we can use scroll

back. Experiment 8-4 explores both of these methods.

Chapter 8 Be a Lazy SySadmIn

141

EXPERIMENT 8-4

First clear the existing history, then run a couple commands to add some new data to the

history file and look at it again. By clearing the history file, you should have the same entries

and results as I do for this experiment.

[student@testvm1 ~]$ history -c

[student@testvm1 ~]$ history

 1 history

[student@testvm1 ~]$ echo "This is a way to create a new file using the echo

command and redirection. It can also be used to append text to a file" >>

newfile1.txt

note that I made this command a little long on purpose. now look at the result. Just type the

first part of the file name and press tab to do the completion.

[student@testvm1 ~]$ cat new<Tab>file1.txt

This is a way to create a new file using the echo command and redirection. It

can also be used to append text to a file

now press the Up arrow () key once. you should see the command you just entered. press

the Up arrow key one more time to see the previous command. you should now be looking at

the echo command. press the Enter key to repeat this command and then look at the result

using the Up arrow key to return to the cat command.

[student@testvm1 ~]$ cat newfile1.txt Do not press Enter here!

[student@testvm1 ~]$ echo "This is a way to create a new file using the echo

command and redirection. It can also be used to append text to a file" >>

newfile1.txt Do press Enter here!

[student@testvm1 ~]$ cat newfile1.txt

This is a way to create a new file using the echo command and redirection. It

can also be used to append text to a file

This is a way to create a new file using the echo command and redirection. It

can also be used to append text to a file

[student@testvm1 ~]$

Chapter 8 Be a Lazy SySadmIn

142

there are now two lines of text in the file. now look at the history.

[student@testvm1 ~]$ history

 1 history

 2 echo "This is a way to create a new file using the echo command

and redirection. It can also be used to append text to a file" >>

newfile1.txt

 3 cat newfile1.txt

 4 echo "This is a way to create a new file using the echo command

and redirection. It can also be used to append text to a file" >>

newfile1.txt

 5 cat newfile1.txt

 6 history

[student@testvm1 ~]$

your history should be the same as mine at this point. If it is not, you can adjust the command

number in the following sequence.

In addition to using the arrow keys to scroll through the Bash history, we can simply use the

number of the entry we want to reuse. Let’s add another line to the existing file using the

command on line 4 of the history file.

[student@testvm1 ~]$!4

echo "This is a way to create a new file using the echo command and

redirection. It can also be used to append text to a file" >> newfile1.txt

[student@testvm1 ~]$

notice that the line number is preceded by the bang (exclamation point), which reruns the

command from line 4 in the history. after you press the enter key, Bash also displays the

command that it is being executed. after you press the enter key, though, there is no way to

take it back.

Note Be sure that you use the correct line number after the history buffer gets
full. the default is 1,000 lines and until that number of entries is reached, the line
numbers are constant. after that the line numbers of the historical commands
change every time a new command is run.

Chapter 8 Be a Lazy SySadmIn

143

now we will do a little very simple command-line editing. Using the Up arrow key, scroll back

to the following command but do not press the enter key.

[student@testvm1 ~]$ echo "This is a way to create a new file using the echo

command and redirection. It can also be used to append text to a file" >>

newfile1.txt

press the Left arrow key () until the cursor is on the period in the file name. then press the

Backspace key to erase the “1.” type “2” to create the new filename “newfile2.txt” and press

the Enter key.

List the files beginning with “new” to see the results of the previous command.

[student@testvm1 ~]$ ls -l new*

-rw-rw-r-- 1 student student 360 Dec 21 13:18 newfile1.txt

-rw-rw-r-- 1 student student 120 Dec 21 17:18 newfile2.txt

Command-line history, recall, and are very useful and time-saving tools for SysAdmins.

One of the reasons I like the Bash shell is that it has the most usable history and recall

features of all the shells I have tried. Bash is the default shell for most Linux distributions

so it is probably the shell for your installation also.

By default the Bash shell has access to GNU emacs mode for editing the command

line. Standard emacs commands can be used to move about and perform edits on the

command contents. I prefer the vi mode because I am much more familiar with those

editing keystrokes.

To set vi mode for editing on the Bash command line, add the following line to the

/etc/bashrc configuration file.

set -o vi

By placing it there it becomes system-wide including for root and all other users.

Shells that are currently open are not affected, but all shells opened after making this

change will have vi mode set for editing. You can also enter that command on the

command line for it to set vi mode in that specific instance of the Bash shell.

To enter vi command mode on the command line, press the Esc key just like you do

when you are in vi. Then you can use the standard vi commands to move and edit the

command.

Chapter 8 Be a Lazy SySadmIn

144

EXPERIMENT 8-5

perform this experiment as the student user. to begin, you should open a terminal session if

one is not already open. then view the $SheLLOptS environment variable to verify that emacs

option is currently set. then set vi editing mode and verify that it is set.

[student@testvm1 ~]$ echo $SHELLOPTS

braceexpand:emacs:hashall:histexpand:history:interactive-comments:monitor

[student@testvm1 ~]$ set -o vi

[student@testvm1 ~]$ echo $SHELLOPTS

braceexpand:hashall:histexpand:history:interactive-comments:monitor:vi

[student@testvm1 ~]$

the SheLLOptS environment variable contains all of the options currently in effect for this

instance of the shell. now let’s do something in vi mode.

 1. Scroll back to the long echo command we used in experiment 8-4.

 2. press the Esc key once to enter vi command mode.

 3. type 23b to go back 23 words.

 4. type d18w to delete 18 words.

 5. press the left arrow key once to place the cursor in the space at the end of the

word “file.”

 6. press r to enter single-character replacement mode.

 7. press the period key to replace the space.

 8. press ^ (with the shift key) to move to the beginning of the line. nothing to do

here, just so you see that the cursor moves to the beginning of the line.

 9. press $ to move the cursor to the end of the line.

 10. here is something I discovered by accident. press Esc and then :w<Enter> to

save the line in the history. the line is saved without being executed and the

command prompt is now empty.

 11. now scroll back to the last command, which should look like the line below. do

not press enter.

[student@testvm1 ~]$ echo "This is a way to create a new file."

>> newfile2.txt

Chapter 8 Be a Lazy SySadmIn

145

 12. Use the left arrow key to move the cursor back to the “2.”

 13. press r to enter replace mode and then 3 to replace “2” with “3.” your

command line should now look like this.

[student@testvm1 ~]$ echo "This is a way to create a new file."

>> newfile3.txt

 14. now press Enter.

Verify the existence and content of the new file.

If you are already familiar with vi, the editing commands in Experiment 8-5

will already be familiar. The online Bash Reference Manual4 has a chapter on Bash

command-line editing and how to set and use both emacs and vi editing modes.

If you are not a vi user, you have just had your first lesson. But because emacs editing

is the default, that mode of command-line editing is already available to you just by

pressing the Esc key.

I won’t pretend to know enough about emacs editing to be able to create an

experiment that covers command-line editing in emacs mode for you. I did find an

excellent source of information on the Web, Peter Krumins’s blog, with more information

and downloadable cheat sheets for Bash history,5 Bash emacs editing,6 and Bash vi

editing.7

Many specialized tools also provide tab completion for their command-line

interfaces. The names of those tools and the entries they recognize are maintained in the

/etc/bash_completion.d directory.

4 gnu.org, Bash Reference Manual – Command Line Editing, https://www.gnu.org/software/
bash/manual/html_node/Command-Line-Editing.html

5 Peter Krumins’ Blog, Bash history, http://www.catonmat.net/blog/
the-definitive-guide-to-bash-command-line-history/

6 Peter Krumins’s Blog, Bash emacs editing, http://www.catonmat.net/blog/
bash-emacs-editing-mode-cheat-sheet/

7 Peter Krumins’s Blog, Bash vi editing, http://www.catonmat.net/blog/
bash-vi-editing-mode-cheat-sheet/

Chapter 8 Be a Lazy SySadmIn

https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/

146

 Logs Are Your Friend
Use the log files to help determine the source of problems and performance issues. They

contain large amounts of data that can be used to track down many types of problems.

The most common error I make when troubleshooting is not going to the log files sooner.

Almost all of the log files are located in /var/log and can be accessed either directly

or with simple commands. The most current of each type of log file has no date as part

of its name while older log files names have dates to differentiate them. In general

and by default, the log files are maintained for a period of one month with each log

file containing a maximum of one week of data. If the amount of data in a file passes a

preconfigured threshold, the file may be rotated when it reaches that threshold rather

than waiting for the full seven-day time period to pass.

The logrotate facility manages log rotation and deletion.

 SAR
My long-time favorite is System Activity Report, or SAR. SAR is an excellent place to start

looking for information about a Linux computer’s performance.

SAR has a daemon that runs in the background collecting data. Every 10 minutes the

collected data is stored in the /var/log/sa directory. These logs are in a binary format and

cannot be read directly. The sar command is used to view these records.

One of the advantages of SAR is the fact that it reports historical data for up

to 30 days. This enables us to go back in time and see if we can locate patterns or

specific periods when the load on one or more resources was very high. None of the

other performance monitoring tools available for most distributions provide this

type of historical data. Commands like top, iostat, vmstat, and so on all provide only

instantaneous readings of the data they monitor.

Note Sar is not installed or enabled on some distributions. recent releases of
Fedora do install and enable Sar, but older ones do not even install it.

Chapter 8 Be a Lazy SySadmIn

147

PREPARATION FOR EXPERIMENT 8-6

perform this preparation section as root to install Sar if it is not already installed. the package

we need to install is sysstat. Use dnf or yum for rpm-based distributions or the package

manager for your specific distribution.

[root@testvm1 ~]# dnf -y install sysstat

If you had to install the sysstat package, you may also need to enable and start it.

[root@testvm1 log]# systemctl enable sysstat

Created symlink /etc/systemd/system/multi-user.target.wants/sysstat.service

→ /usr/lib/systemd/system/sysstat.service.

Created symlink /etc/systemd/system/sysstat.service.wants/sysstat-collect.

timer → /usr/lib/systemd/system/sysstat-collect.timer.

Created symlink /etc/systemd/system/sysstat.service.wants/sysstat-summary.

timer → /usr/lib/systemd/system/sysstat-summary.timer.

[root@testvm1 log]# systemctl start sysstat

Sar is now installed and the system data collection processes have been started.

There will not be any data aggregated until after the the next 10-minute time

increment, like on the hour, 10 after, 20 after, and so on. If you had to install the sysstat

package, I suggest you wait for an hour or so to allow some data to accumulate. You can

check the contents of /var/log/sa to verify that data is being collected. You could also

check the messages file to look for entries pertaining to sysstat.

Now that you have the sysstat package installed and have waited for data to be

collected, let’s proceed with the experiment.

EXPERIMENT 8-6

In its simplest form the sar command displays CpU statistics in 10-minute summary

increments since midnight. this task can be performed as the student user.

[student@testvm1 ~]# sar | head -25

Linux 4.14.5-300.fc27.x86_64 (testvm1) 12/23/2017 _x86_64_ (1 CPU)

Chapter 8 Be a Lazy SySadmIn

148

12:00:02 AM CPU %user %nice %system %iowait %steal %idle

12:10:21 AM all 1.09 0.02 0.70 1.72 0.00 96.48

12:20:21 AM all 1.07 0.00 0.51 0.03 0.00 98.39

12:30:21 AM all 1.03 0.00 0.51 0.02 0.00 98.44

12:40:21 AM all 1.12 0.00 0.54 0.02 0.00 98.32

12:50:21 AM all 0.99 0.00 0.52 0.01 0.00 98.48

01:00:21 AM all 1.00 0.00 0.48 0.02 0.00 98.49

01:10:21 AM all 0.90 0.00 0.51 0.11 0.00 98.48

01:20:21 AM all 0.92 0.01 0.54 0.19 0.00 98.33

01:30:21 AM all 0.98 0.00 0.54 0.09 0.00 98.39

01:40:21 AM all 1.00 0.00 0.50 0.23 0.00 98.26

01:50:21 AM all 0.92 0.00 0.46 0.02 0.00 98.60

02:00:21 AM all 0.90 0.00 0.47 0.05 0.00 98.58

02:10:21 AM all 0.97 0.00 0.44 0.23 0.00 98.36

02:20:21 AM all 0.92 0.04 0.51 0.05 0.00 98.48

02:30:21 AM all 0.91 0.00 0.49 0.11 0.00 98.49

02:40:21 AM all 0.88 0.00 0.46 0.11 0.00 98.56

02:50:21 AM all 0.98 0.00 0.48 0.02 0.00 98.53

03:00:21 AM all 0.93 0.00 0.47 0.02 0.00 98.58

03:10:21 AM all 0.94 0.00 0.47 0.08 0.00 98.51

03:20:21 AM all 0.91 0.02 0.45 0.07 0.00 98.55

03:30:21 AM all 1.39 2.19 7.21 5.89 0.00 83.32

03:40:21 AM all 0.94 0.06 0.71 0.07 0.00 98.22

I have used the head utility to truncate the output after 25 lines for this experiment. each line

in the output displays the averages of all the data collected during each 10-minute period. So

that for the period ending at 03:10:21, the idle time for the CpU was 98.51%.

now run the sar command using the -a option to display all of the data types collected by

Sar. run it through the less utility so you can page through the data, which is far to long for

me to reproduce here.

[student@testvm1 ~]$ sar -A | less

By default, the sar command shows the data collected for today, up to the current time. data

for days up to one month in the past can be located in files in the /var/log/sa directory. the

files are named saXX where XX is the day of the month. to see data from a previous day,

use the following command. Be sure to use the name of a file that is present in your own sa

directory.

Chapter 8 Be a Lazy SySadmIn

149

[root@testvm1 sa]# sar -A -f sa07 | less

the preceding command displays all of the data for the 7th day of the month and pipes it to

the less command.

the large amount of data produced by Sar can be daunting to try to interpret, but I have found

it to be very useful in locating various types of problems.

Many distributions still put the sysstat script in /etc/cron.d to run the data

aggregation program, sa1, at specified intervals of 10 minutes. In current versions of

Fedora, the data aggregation is managed by systemd and the several control files are

located in the /usr/lib/systemd/system directory.

I suggest that you spend some time on a regular basis to look through the SAR results.

This will provide you with some knowledge of what your system should look like when it

is running correctly. That will make it easier to spot problems when they do occur.

The SAR man page has a lot of information about the data collected and how to

display specific types of data such as disk, CPU, network, and others. Despite that, many

of the headings in the SAR reports can be difficult to decipher at first. Much googling has

turned up very little in the way of decoding keys for the SAR report column headings,

but I did find one web site that has the best descriptions anywhere.8 The best book I have

found in my own Linux reference collection, one that contains many references to SAR

and its use is The Unix and Linux System Administration Handbook.9 Most other books

that cover SAR stick to CPU statistics but SAR provides far more data than that and this

book covers at least some of that.

 Mail Logs
I run my own personal mail server and frequently use the logs to resolve problems. In

the case of email, problems tend to be related to the non-delivery of mail or blocking

spam and other unwanted email.

I find log entries in the /var/log/maillog files that tell me whether an email was

delivered or not, and sometimes enough information to tell me why it was not delivered.

If you run a mail server, you should become very familiar with the maillog files.

8 Computer Hope website, https://www.computerhope.com/unix/usar.htm
9 Nemeth, Evi [et al.], The Unix and Linux System Administration Handbook, Pearson
Education, Inc., ISBN 978-0-13-148005-6. This title is also available on Amazon in Kindle format.

Chapter 8 Be a Lazy SySadmIn

https://www.computerhope.com/unix/usar.htm

150

 messages
The /var/log/messages log files contain kernel and other system-level messages of

various types. This is another of the files I frequently use to assist me with problem

determination. Entries from the kernel, systemd, and many of the running services are

logged here. Each log entry begins with the date and time to make it easy to determine

the sequence of events and to locate entries made at specific times in the log file.

Because it is so important, let’s take a quick look at the messages file.

EXPERIMENT 8-7

perform this experiment as the root user. make /var/log the pWd. Use the less command to

view the messages log file.

[root@testvm1 log]# less messages

I have not included any output from my test Vm because of the large amount of data that is

displayed. Browse through the contents of the messages file to get a feel for the types of

messages you will typically encounter. Use Ctrl-C to terminate less.

The messages log files are full of interesting and useful information.

• SAR data collection

• DHCP client requests for network configuration

• The resulting DHCP configuration information

• Data logged by systemd during startup and shutdown

• Kernel data about things such as USB memory devices when they are

plugged in

• USB hub information

• And much more

The messages file is usually the first place I look when working on non-performance

issues. It can also be useful for performance issues, but I start with SAR for that.

Chapter 8 Be a Lazy SySadmIn

151

 dmesg
dmesg is not a file, it is a command. There used to be a log file named dmesg that

contained all of the messages generated by the kernel during boot and most messages

generated during startup. The startup process begins when the boot process ends, when

init or systemd take control of the host.

The dmesg command displays all of the messages generated by the kernel including

massive amounts of data about the hardware it discovers during the boot process. I

always start with this command when looking for bootup problems and hardware issues.

Note much of the hardware data found in the output from dmesg can be found in
the /proc filesystem.

Let’s look at a bit of the output from the dmesg command.

EXPERIMENT 8-8

this experiment can be performed as the either the root or the student user.

[root@testvm1 log]# dmesg | less

[0.000000] Linux version 4.14.5-300.fc27.x86_64 (mockbuild@bkernel01.

phx2.fedoraproject.org) (gcc version 7.2.1 20170915 (Red Hat 7.2.1-2) (GCC))

#1 SMP Mon Dec 11 16:00:36 UTC 2017

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-4.14.5-300.fc27.x86_64

root=/dev/mapper/fedora_testvm1-root ro rd.lvm.lv=fedora_testvm1/root rd.lvm.

lv=fedora_testvm1/swap

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point

registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'

[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256

[0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832

bytes, using 'standard' format.

[0.000000] e820: BIOS-provided physical RAM map:

[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable

[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff]

reserved

Chapter 8 Be a Lazy SySadmIn

152

[0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff]

reserved

[0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable

[0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfffffff] ACPI

data

[0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff]

reserved

[0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff]

reserved

[0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff]

reserved

[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000011fffffff] usable

most of the lines in the sample data are wrapped, which makes it a bit more difficult to read.

each line of data starts with a timestamp accurate to within a microsecond. the timestamp

represents the time since the kernel started.

Scroll through the data to familiarize yourself with the many different types of data to be found

here.

The data displayed by the dmesg command is located in RAM rather than on the hard

drive. No matter how much RAM memory you have in your host, the space allocated to the

dmesg buffer is limited. When it fills up, the oldest data is discarded as newer data is added.

 secure
The /var/log/secure log file contains security-related entries. This includes information

about successful and unsuccessful attempt to log in to the system. Let’s look at some of

the entries you might see in this file.

EXPERIMENT 8-9

this experiment must be performed as root. Use the less command to view the contents of

the secure log file.

[root@testvm1 log]# less secure

Dec 24 13:44:25 testvm1 sshd[1001]: pam_systemd(sshd:session): Failed to

release session: Interrupted system call

Chapter 8 Be a Lazy SySadmIn

153

Dec 24 13:44:25 testvm1 sshd[1001]: pam_unix(sshd:session): session closed

for user student

Dec 24 13:44:25 testvm1 systemd[929]: pam_unix(systemd-user:session): session

closed for user sddm

Dec 24 13:44:25 testvm1 sshd[937]: pam_systemd(sshd:session): Failed to

release session: Interrupted system call

Dec 24 13:44:25 testvm1 sshd[937]: pam_unix(sshd:session): session closed for

user root

Dec 24 13:44:25 testvm1 sshd[770]: Received signal 15; terminating.

Dec 24 13:44:25 testvm1 systemd[940]: pam_unix(systemd-user:session): session

closed for user root

Dec 24 13:44:25 testvm1 systemd[1004]: pam_unix(systemd-user:session):

session closed for user student

Dec 24 13:45:03 testvm1 polkitd[756]: Loading rules from directory /etc/

polkit-1/rules.d

Dec 24 13:45:03 testvm1 polkitd[756]: Loading rules from directory /usr/

share/polkit-1/rules.d

Dec 24 13:45:04 testvm1 polkitd[756]: Finished loading, compiling and

executing 9 rules

Dec 24 13:45:04 testvm1 polkitd[756]: Acquired the name org.freedesktop.

PolicyKit1 on the system bus

Dec 24 13:45:04 testvm1 sshd[785]: Server listening on 0.0.0.0 port 22.

Dec 24 13:45:04 testvm1 sshd[785]: Server listening on :: port 22.

Dec 24 13:45:09 testvm1 sddm-helper[938]: PAM unable to dlopen(/usr/lib64/

security/pam_elogind.so): /usr/lib64/security/pam_elogind.so: cannot open

shared object file: No such file or directory

Dec 24 13:45:09 testvm1 sddm-helper[938]: PAM adding faulty module:

/usr/lib64/security/pam_elogind.so

Dec 24 13:45:09 testvm1 sddm-helper[938]: pam_unix(sddm-greeter:session):

session opened for user sddm by (uid=0)

Dec 24 13:45:09 testvm1 systemd[939]: pam_unix(systemd-user:session): session

opened for user sddm by (uid=0)

Dec 24 13:46:18 testvm1 sshd[961]: Accepted publickey for root from

192.168.0.1 port 46764 ssh2: RSA SHA256:4UDdGg3FP5sITB8ydfCb5JDg2QCIrsW4cfoN

gFxhC5A

Dec 24 13:46:18 testvm1 systemd[963]: pam_unix(systemd-user:session): session

opened for user root by (uid=0)

Dec 24 13:46:18 testvm1 sshd[961]: pam_unix(sshd:session): session opened for

user root by (uid=0)

Chapter 8 Be a Lazy SySadmIn

154

Dec 24 15:37:02 testvm1 sshd[1155]: Accepted password for student from

192.168.0.1 port 56530 ssh2

Dec 24 15:37:02 testvm1 systemd[1157]: pam_unix(systemd-user:session):

session opened for user student by (uid=0)

Dec 24 15:37:03 testvm1 sshd[1155]: pam_unix(sshd:session): session opened

for user student by (uid=0)

########################## <snip> ###########################

Dec 26 13:02:39 testvm1 sshd[31135]: Invalid user hacker from 192.168.0.1

port 46046

Dec 26 13:04:21 testvm1 sshd[31135]: pam_unix(sshd:auth): check pass; user

unknown

Dec 26 13:04:21 testvm1 sshd[31135]: pam_unix(sshd:auth): authentication

failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.0.1

Dec 26 13:04:24 testvm1 sshd[31135]: Failed password for invalid user hacker

from 192.168.0.1 port 46046 ssh2

Dec 26 13:04:27 testvm1 sshd[31135]: pam_unix(sshd:auth): check pass; user

unknown

Dec 26 13:04:29 testvm1 sshd[31135]: Failed password for invalid user hacker

from 192.168.0.1 port 46046 ssh2

Dec 26 13:04:30 testvm1 sshd[31135]: pam_unix(sshd:auth): check pass; user

unknown

Dec 26 13:04:32 testvm1 sshd[31135]: Failed password for invalid user hacker

from 192.168.0.1 port 46046 ssh2

Dec 26 13:04:32 testvm1 sshd[31135]: Connection closed by invalid user hacker

192.168.0.1 port 46046 [preauth]

Dec 26 13:04:32 testvm1 sshd[31135]: PAM 2 more authentication failures;

logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.0.1

most of the data in /var/log/secure pertains to records of users’ logins and logouts and

information about whether a password or public key was used for authentication.

this log also contains failed password attempts as shown in the data below the line where

I snipped out some of the data in this file.

My primary use for the secure log file is to identify break-in attempts from hackers. But

I don’t even do that – I use automation tools for that, too. In this case, the logwatch tool.

Chapter 8 Be a Lazy SySadmIn

155

 Following Log Files
Searching through log files can be a time-consuming and cumbersome task even when

using tools like grep to help isolate the desired lines. Many times while troubleshooting,

it can be helpful to continuously view the contents of a text format log file especially

to see the newest entries as they arrive. Using cat or grep to view log files displays the

contents at the moment in time the command was entered.

I like to use the tail command to view the end of the file but it can be time

consuming and disruptive to my problem determination process to rerun the tail

command to see new lines. Use tail -f to enable the tail command to “follow” the file

and immediately display new lines of data as they are added.

EXPERIMENT 8-10

you should be using a non-production host that has little or no activity. that is perfect for

performing most experiments but this one requires some activity so that you can observe the

new log entries as they are added.

perform this experiment as root. We need two terminal sessions with root logins. these

terminal sessions should be in separate windows and arranged so you can see both of them

at the same time. In one root terminal session, make /var/log the pWd and then follow the

messages file.

[root@testvm1 ~]# cd /var/log

[root@testvm1 log]# tail -f messages

Dec 24 09:30:21 testvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 msg='unit=sysstat-collect comm="systemd" exe="/usr/lib/

systemd/systemd" hostname=? addr=? terminal=? res=success'

<snip>

Dec 24 09:37:58 testvm1 systemd[1]: Starting dnf makecache...

Dec 24 09:37:59 testvm1 dnf[29405]: Metadata cache refreshed recently.

Dec 24 09:37:59 testvm1 systemd[1]: Started dnf makecache.

Dec 24 09:40:21 testvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 msg='unit=sysstat-collect comm="systemd" exe="/usr/lib/

systemd/systemd" hostname=? addr=? terminal=? res=success'

tail displays the last 10 lines of the log file and then sits there waiting for more data to be

appended. I have deleted some of these lines for brevity.

Chapter 8 Be a Lazy SySadmIn

156

Let’s make some log entries appear. there are several ways to do this, but the easiest is to use

the logger command. In the second window, enter this command as root to log a new entry

to the messages file.

[root@testvm1 ~]# logger "This is test message 1."

the following line should have appeared in the other terminal at the end of the messages log file.

Dec 24 13:51:46 testvm1 root[1048]: This is test message 1.

We can also use StdIO for this.

[root@testvm1 ~]# echo "This is test message 2." | logger

and the results are the same – the message appears in the messages log file.

Dec 24 13:56:41 testvm1 root[1057]: This is test message 2.

Use Ctrl-C to terminate following the log file.

 systemd Logs
The relatively new replacement for the SystemV start scripts, systemd, has its own set of logs,

many of which are replacing the traditional ASCII text files found in the /var/log directory.

The journald daemon collects and manages messages for services managed by systemd. The

journalctl command is used by SysAdmins to view and manipulate the systemd logs.

The intent of using systemd to manage the logs is to provide a central point of control

for all of the log-producing entities in a Linux host.

Let’s explore a few of the basics of using journalctl.

EXPERIMENT 8-11

this experiment must be run as root. First let’s look at the output we get with no options. By

default, the results are piped through the less utility.

[root@testvm1 ~]# journalctl

-- Logs begin at Sat 2017-04-29 18:10:23 EDT, end at Wed 2017-12-27 11:30:07

EST. --

Apr 29 18:10:23 testvm1 systemd-journald[160]: Runtime journal (/run/log/

journal/) is 8.0M, max 197.6M,

Chapter 8 Be a Lazy SySadmIn

157

Apr 29 18:10:23 testvm1 kernel: Linux version 4.8.6-300.fc25.x86_64

(mockbuild@bkernel02.phx2.fedorapro

Apr 29 18:10:23 testvm1 kernel: Command line: BOOT_IMAGE=/vmlinuz-4.8.6-300.

fc25.x86_64 root=/dev/mappe

Apr 29 18:10:23 testvm1 kernel: x86/fpu: Supporting XSAVE feature 0x001: 'x87

floating point registers'

Apr 29 18:10:23 testvm1 kernel: x86/fpu: Supporting XSAVE feature 0x002: 'SSE

registers'

Apr 29 18:10:23 testvm1 kernel: x86/fpu: Supporting XSAVE feature 0x004: 'AVX

registers'

I have only shown a small portion of the output from the journalctl command. It should look

familiar because it is. this is almost the same information as the dmesg command provides.

the main difference is that the timestamp for dmesg is in seconds since boot and the

timestamps for journalctl are in a standard date and time format.

take some time to page through the results and explore the types of log entries located there.

One of the features I learned about while researching this experiment is the ability to define a

specific time frame in which to search for log entries. One example is shown here.

[root@testvm1 ~]# journalctl --since 2017-12-20 --until 2017-12-24

It is also possible to specify times of day and to use fuzzy times like “yesterday” and user

names to further define the results.

[root@testvm1 ~]# journalctl --since yesterday -u NetworkManager

-- Logs begin at Sat 2017-04-29 18:10:23 EDT, end at Wed 2017-12-27 11:50:07

EST. --

Dec 26 00:09:23 testvm1 dhclient[856]: DHCPREQUEST on enp0s3 to 192.168.0.51

port 67 (xid=0xaa5aef49)

Dec 26 00:09:23 testvm1 dhclient[856]: DHCPACK from 192.168.0.51

(xid=0xaa5aef49)

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5813] dhcp4

(enp0s3): address 192.168.0.101

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5819] dhcp4

(enp0s3): plen 24 (255.255.255.0)

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5821] dhcp4

(enp0s3): gateway 192.168.0.254

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5823] dhcp4

(enp0s3): lease time 21600

Chapter 8 Be a Lazy SySadmIn

158

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5825] dhcp4

(enp0s3): nameserver '192.168.0.51'

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5826] dhcp4

(enp0s3): nameserver '8.8.8.8'

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5828] dhcp4

(enp0s3): nameserver '8.8.4.4'

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5830] dhcp4

(enp0s3): domain name 'both.org'

Dec 26 00:09:23 testvm1 NetworkManager[731]: <info> [1514264963.5831] dhcp4

(enp0s3): state changed bound -> bound

Dec 26 00:09:23 testvm1 dhclient[856]: bound to 192.168.0.101 -- renewal in

9790 seconds.

Dec 26 02:52:33 testvm1 dhclient[856]: DHCPREQUEST on enp0s3 to 192.168.0.51

port 67 (xid=0xaa5aef49)

Dec 26 02:52:33 testvm1 dhclient[856]: DHCPACK from 192.168.0.51

(xid=0xaa5aef49)

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4249] dhcp4

(enp0s3): address 192.168.0.101

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4253] dhcp4

(enp0s3): plen 24 (255.255.255.0)

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4255] dhcp4

(enp0s3): gateway 192.168.0.254

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4256] dhcp4

(enp0s3): lease time 21600

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4258] dhcp4

(enp0s3): nameserver '192.168.0.51'

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4260] dhcp4

(enp0s3): nameserver '8.8.8.8'

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4262] dhcp4

(enp0s3): nameserver '8.8.4.4'

Dec 26 02:52:33 testvm1 NetworkManager[731]: <info> [1514274753.4263] dhcp4

(enp0s3): domain name 'both.org'

It is possible to list the previous boots for the system and to view only log entries from the

current or a previous boot.

Chapter 8 Be a Lazy SySadmIn

159

[root@testvm1 ~]# journalctl --list-boots

-24 f5c1c24249df4d589ca8acb07d2edcf8 Sat 2017-04-29 18:10:23 EDT—Sun 2017- 04- 30

07:21:53 EDT

-23 ca4f8a71782246b292920e92bbdf968e Sun 2017-04-30 07:22:13 EDT—Sun 2017- 04- 30

08:41:23 EDT

-22 ca8203a3d32046e9a96e301b4c4b270a Sun 2017-04-30 08:41:38 EDT—Sun 2017- 04- 30

09:21:47 EDT

-21 1e5d609d89a543708a12f91b3e94350f Tue 2017-05-02 04:32:32 EDT—Tue 2017- 05- 02

08:51:42 EDT

-20 74b2554da751454f9f75c541d9390fc0 Sun 2017-05-07 05:35:44 EDT—Sun 2017- 05- 07

09:43:27 EDT

-19 4a6d9f2f34aa49a7bfba31368ce489e5 Fri 2017-05-12 06:11:48 EDT—Fri 2017-05-12

10:14:34 EDT

-18 bf8d02a57d0f4e9b849405ede1ffc80b Sat 2017-05-13 05:42:07 EDT—Sat 2017-05-13

12:20:36 EDT

-17 2463e2f48dd04bbfa03b72df90367990 Wed 2017-11-15 07:41:42 EST—Wed 2017-11-15

12:43:14 EST

-16 7882d4c7ff5c43a7b9404bb5aded31f1 Wed 2017-11-15 07:43:28 EST—Wed 2017-11-15

15:39:07 EST

-15 b19061d077634733b3ef5d54a8034665 Wed 2017-11-15 15:39:25 EST—Wed 2017-11-15

16:44:25 EST

-14 3c3c73161a0540d6b02ac14a3fe96fd2 Wed 2017-11-15 16:44:43 EST—Wed 2017-11-15

18:24:38 EST

-13 5807bb2932794fd18bb5bf74345e6586 Thu 2017-11-16 09:06:49 EST—Thu 2017-11-16

21:46:54 EST

-12 1df2c5a7500844a18c692a00ad834a5e Thu 2017-11-16 21:51:47 EST—Tue 2017-11-21

17:00:22 EST

-11 fe65766e48484d6bb45e450a1e46d257 Wed 2017-11-22 03:50:03 EST—Fri 2017-12-01

06:50:03 EST

-10 d84cf9eb31dc4d0886e1e474e21f7e45 Sat 2017-12-02 11:45:45 EST—Mon 2017-12-04

17:01:53 EST

 -9 d8234499519e4f4689acc326035b5b77 Thu 2017-12-07 07:52:08 EST—Mon 2017-12-11

06:40:44 EST

 -8 ec50e23f7ffb49b0af06fb0a415931c2 Tue 2017-12-12 03:17:36 EST—Fri 2017-12-15

21:42:09 EST

 -7 de72447d9eea4bbe9bdf29df4e4ae79c Sun 2017-12-17 11:13:43 EST—Sun 2017-12-17

21:30:54 EST

Chapter 8 Be a Lazy SySadmIn

160

 -6 a8781fdba6cc417dbde3c35ed1a11cc0 Sun 2017-12-17 21:31:11 EST—Tue 2017-12-19

21:57:23 EST

 -5 6ed3997fc5bf4a99bbab3cc0d3a35d80 Wed 2017-12-20 16:54:01 EST—Fri 2017-12-22

10:48:30 EST

 -4 c96aa6518d6d40df902fb85f0b5a9d5b Fri 2017-12-22 10:48:39 EST—Sun 2017-12-24

13:44:28 EST

 -3 ad6217b027f34b3db6215e9d9eeb9d0b Sun 2017-12-24 13:44:44 EST—Mon 2017-12-25

15:26:28 EST

 -2 aca68c1bae4741de8d38de9a9d28a72e Mon 2017-12-25 15:26:44 EST—Mon 2017-12-25

15:29:39 EST

 -1 23169c91452645418a22c553cc387f99 Mon 2017-12-25 15:29:54 EST—Mon 2017-12-25

15:31:40 EST

 0 3335b2cb0d124ee0a93d2ac64537aa54 Mon 2017-12-25 15:31:55 EST—Wed 2017-12-27

11:50:07 EST

[root@testvm1 ~]# journalctl -b ec50e23f7ffb49b0af06fb0a415931c2

the identifier for the boot that this command would list is from line 8 in the boot list. Be sure

to use an identifier from your own system for this last command.

I don’t show any of the output from the last command because it is long. Be sure to spend

some time looking through the data from this last command.

As you can see in Experiment 8-11, the systemd logging facilities collect data from

the beginning of the boot process to the end of the shutdown. All types of logs are

located in the journal database. You can use the search facility of the less utility to locate

specific entries or you can use the options available within journalctl itself.

If you are interested in finding out more about managing systemd logs, you can start

with the man page for journalctl. Digital Ocean has an excellent discussion of journalctl.10

 logwatch
Using tools like grep and tail to view a few lines from a log file while working on a

problem is fine. But what if you need to search through a large number of log files? That

can be tedious even when using those tools.

10 Digital Ocean, “How To Use Journalctl to View and Manipulate Systemd Logs,”
https://www.digitalocean.com/community/tutorials/
how-to-use-journalctl-to-view-and-manipulate-systemd-logs

Chapter 8 Be a Lazy SySadmIn

https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs

161

Logwatch is a tool that can analyze the system log files and detect anomalous entries

that the SysAdmin should look at. It generates a report every night around midnight. The

daily report is triggered by a file in /etc/cron.daily.

The default configuration is for Logwatch to email a report of what it finds in the log

files to root. There are various methods for ensuring that the email gets sent to someone

and someplace other than root on the local host. One option is to call set the mailto

address in the configuration file in the /etc/logwatch directory.

Logwatch can also be run from the command line and the data is sent to STDOUT.

That sounds like it might be fun to explore.

EXPERIMENT 8-12

this experiment must be performed as root. Our objective is to run Logwatch from the

command line and view the results.

[root@david ~]# logwatch | less

 ################### Logwatch 7.4.3 (04/27/16) ####################

 Processing Initiated: Wed Dec 27 09:43:13 2017

 Date Range Processed: yesterday

 (2017-Dec-26)

 Period is day.

 Detail Level of Output: 10

 Type of Output/Format: stdout / text

 Logfiles for Host: david

 ##

--------------------- Disk Space Begin ------------------------

 Filesystem Size Used Avail Use% Mounted on

 devtmpfs 32G 0 32G 0% /dev

 /dev/mapper/david1-root 9.1G 444M 8.2G 6% /

 /dev/mapper/david1-usr 46G 14G 31G 31% /usr

 /dev/sdc1 1.9G 400M 1.4G 24% /boot

 /dev/mapper/vg_david2-stuff 128G 107G 16G 88% /stuff

 /dev/mapper/david1-var 19G 5.4G 12G 32% /var

 /dev/mapper/david1-tmp 29G 12G 15G 44% /tmp

 /dev/mapper/vg_david2-home 50G 27G 20G 58% /home

 /dev/mapper/vg_david2-Pictures 74G 18G 53G 25% /home/dboth/Pictures

Chapter 8 Be a Lazy SySadmIn

162

 /dev/mapper/vg_david2-Virtual 581G 402G 153G 73% /Virtual

 /dev/mapper/vg_Backups-Backups 3.6T 2.9T 597G 83% /media/Backups

 /dev/sdd1 3.6T 1.6T 1.9T 45% /media/4T-Backup

---------------------- Disk Space End -------------------------

--------------------- Fortune Begin ------------------------

 If we do not change our direction we are likely to end up where we are

headed.

---------------------- Fortune End -------------------------

--------------------- lm_sensors output Begin ------------------------

 coretemp-isa-0000

 Adapter: ISA adapter

 Package id 0: +50.0 C (high = +95.0 C, crit = +105.0 C)

 Core 0: +46.0 C (high = +95.0 C, crit = +105.0 C)

 Core 1: +49.0 C (high = +95.0 C, crit = +105.0 C)

 Core 2: +45.0 C (high = +95.0 C, crit = +105.0 C)

 Core 3: +50.0 C (high = +95.0 C, crit = +105.0 C)

 Core 4: +48.0 C (high = +95.0 C, crit = +105.0 C)

 Core 5: +46.0 C (high = +95.0 C, crit = +105.0 C)

 Core 6: +44.0 C (high = +95.0 C, crit = +105.0 C)

 Core 7: +46.0 C (high = +95.0 C, crit = +105.0 C)

 Core 8: +50.0 C (high = +95.0 C, crit = +105.0 C)

 Core 9: +49.0 C (high = +95.0 C, crit = +105.0 C)

 Core 10: +50.0 C (high = +95.0 C, crit = +105.0 C)

 Core 11: +45.0 C (high = +95.0 C, crit = +105.0 C)

 Core 12: +47.0 C (high = +95.0 C, crit = +105.0 C)

 Core 13: +45.0 C (high = +95.0 C, crit = +105.0 C)

 Core 14: +45.0 C (high = +95.0 C, crit = +105.0 C)

 Core 15: +47.0 C (high = +95.0 C, crit = +105.0 C)

 radeon-pci-6500

 Adapter: PCI adapter

 temp1: +39.0 C (crit = +120.0 C, hyst = +90.0 C)

 asus-isa-0000

 Adapter: ISA adapter

 cpu_fan: 0 RPM

 ---------------------- lm_sensors output End -------------------------

Chapter 8 Be a Lazy SySadmIn

163

page through the data produced by Logwatch and be sure to look for the Kernel, Cron, disk

Space, and Systemd sections. If you have a physical host on which to run this experiment, and

if the lm_sensors package is installed, you may also see a section showing temperatures in

various parts of the hardware, including that for each CpU.

I have only included a few sections of the output because Logwatch produces over 1,400 lines

on my workstation.

The sections that appear in the Logwatch output depends upon the software

packages you have installed on your Linux computer. So if you are looking at the output

from Logwatch for a basic installation rather than a primary workstation or even a server,

you will see far fewer entries.

Since 2014, Logwatch does have the ability to search the journald database for log

entries.11 This compatibility with the systemd logging facility ensures that a major source

of log entries is not ignored.

 Success as a Lazy SysAdmin
By now you have figured out that this chapter is not really about being lazy in the usual

sense of the term. The successful lazy SysAdmin is not lazy – just efficient. As it was

with my time as a CE at IBM, preventing problems by anticipating them and doing the

necessary work to ensure that they do not occur or that they can be resolved efficiently

pays dividends in the long run.

The strategies I have discussed here are not the only ones that can be used to

enhance our own efficiency. I am certain that you already have found many of your own

ways to work smarter.

There is one way to greatly leverage our skill and knowledge that I have not discussed

yet in any detail though I have mentioned it many times. In Chapter 9, we will explore

the tenet “Automate Everything” and what that really means.

11 SourceForge, Logwatch repository, https://sourceforge.net/p/logwatch/patches/34/

Chapter 8 Be a Lazy SySadmIn

https://sourceforge.net/p/logwatch/patches/34/

165
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_9

CHAPTER 9

Automate Everything
My question is, “What is the function of computers?” The right answer is, “to automate

mundane tasks in order to allow us humans to concentrate on the tasks that the

computers cannot – yet – do.” For SysAdmins, those of us who run and manage the

computers most closely, we have direct access to the tools that can help us work more

efficiently. We should use those tools to maximum benefit.

In this chapter, we explore using automation to make our own lives as SysAdmins easier.

 Why I Use Scripts
In Chapter 8, “Be a Lazy SysAdmin”, I state, “A SysAdmin is most productive when

thinking – thinking about how to solve existing problems and about how to avoid future

problems; thinking about how to monitor Linux computers in order to find clues that

anticipate and foreshadow those future problems; thinking about how to make her

job more efficient; thinking about how to automate all of those tasks that need to be

performed whether every day or once a year.”

SysAdmins are next most productive when creating the shell programs that automate

the solutions that they have conceived while appearing to be unproductive. The more

automation we have in place, the more time we have available to fix real problems when

they occur and to contemplate how to automate even more than we already have.

I have learned that, for me at least, writing shell programs – also known as scripts –

provides the best strategy for leveraging my time. Once having written a shell program, it

can be rerun as many times as needed.

I can update my shell scripts as needed to compensate for changes from one release

of Linux to the next. Other factors that might require making these changes are the

installation of new hardware and software, changes in what I want or need to accomplish

with the script, adding new functions, removing functions that are no longer needed,

and fixing the not-so-rare bugs in my scripts. These kinds of changes are just part of the

maintenance cycle for any type of code.

166

Every task performed via the keyboard in a terminal session by entering and

executing shell commands can and should be automated. SysAdmins should automate

everything we are asked to do or that we decide on our own needs to be done. Many

times I have found that doing the automation up front saves time the first time.

One bash script can contain anywhere from a few commands to many thousands. In

fact, I have written bash scripts that have only one or two commands in them. Another

script I have written contains over 2,700 lines, more than half of which are comments.

 How I Got Here
How did I get to the point of “automate everything?”

Have you ever performed a long and complex task at the command line thinking,

“Glad that’s done – I never have to worry about it again.”? I have – very frequently.

I ultimately figured out that almost everything that I ever need to do on a computer,

whether mine or one that belongs to my employer or one of my consulting customers,

will need to be done again sometime in the future.

Of course I always think that I will remember how I did the task in question. But the next

time I need to do it is far enough out into the future that I sometimes even forget that I have

ever done it at all, let alone how to do it. For some tasks I used to do, I started writing down

the steps required on a bit of paper. I thought, “How stupid of me!” So I then transferred

those scribbles to a simple note pad type application on my computer. Suddenly one day I

thought again, “How stupid of me!” If I am going to store this data on my computer, I might

as well create a shell script and store it in a standard location so that I can just type the name

of the shell program and it does all of the tasks I used to do manually.

My personal main reason for automating everything is that any task that must be

performed once will certainly need to be done again. By collecting the commands

required to perform the task into a file to use as a shell program, it becomes easy to run

that exact same set of commands at a later time.

For me automation also means that I don’t have to remember or re-create the details

of how I performed that task in order to do it again. It takes time to remember how to

do things and time to type in all of the commands. This can become a significant time

sink for tasks that require typing large numbers of long commands. Automating tasks by

creating shell scripts reduces the typing necessary to perform my routine tasks.

Shell programs can also be an important aid to newer SysAdmins to enable them to

keep things working while the senior SysAdmin is out on vacation or ill. Because shell

Chapter 9 automate everything

167

programs are inherently open to view and change, they can be an important tool for less

experienced SysAdmins to learn the details of how to perform these tasks when they

need to be responsible for them.

 Scripting Repetitive Tasks
I have always had several – sometimes as many as 14 or 15 – computers at one time,

although I am currently down to 8 or 9, and a similar number of virtual machines that

I use for testing. I also install Linux on customer systems. As a result, I do frequent

installations of Linux. Sometimes several a day. This results in the need to do fast,

repeatable installations.

For example, I have a favorite set of configurations that I do for things like Midnight

Commander (mc), a powerful file manager with a text mode user interface, and other

configurable tools. I also have a number of fonts that I like to install that are not part

of most default installations. I could install each font manually using DNF, and I could

make the configuration changes to Midnight Commander manually each time I do an

install, but that take a lot of time and gets to be very tedious and boring.

When I was doing all of this manually, I forgot things so I started keeping lists of

things to do but that was still very time consuming. So over the years I have developed

a process that ensures that installations are done quickly and reliably, and that I don’t

forget to install or configure anything.

My old process was to first do a pretty basic installation. I would configure the disk

partitioning and logical volumes the way I want. I did not go through the entire list of

available packages or groups and try to remember which ones I wanted to install to get just

exactly the right tools I wanted on my computers. It was very cumbersome to go through

the options offered by the installer and select the ones I wanted and cost a lot of time.

 Making It Easier
I developed what was at first a fairly simple bash script that I ran to do the configurations

and installation of the other RPM packages that I wanted. After performing a basic

installation, I would log in to a terminal session as root and run my script.

As time went on, that simple script evolved to include command-line options that

allow me to tailor that standard installation for differing needs based on whether they

were to be desktops, servers, customer systems, or classroom systems. As I learned about

tools that I found to be helpful, I added them to the list of packages to install.

Chapter 9 automate everything

168

I created various configuration files that needed to be installed and determined that

the best way to do that was to create an RPM package that included those files. Some of

those files were more scripts that I have created over the years to perform various other

repetitive tasks, as well as my post-installation script.

The RPM package is in itself a form of automation because it relieved me of the need

to remember which files to install and where. The RPM package now installs about a

dozen files of my own creation and ensures that certain prerequisite RPM packages are

installed from various Fedora and CentOS repositories. I have been improving the post-

installation script for about 10 years and it is up to over 1,500 lines of code, and more

than 1,100 comment lines for a total of over 2,600 lines.

Even using the RPM and the post-installation script, it can still take more than an hour

to complete all of the work required to get each one of many computers I install up to my

standards. I certainly don’t miss the days of typing all of those instructions by hand and

waiting for each to complete before typing in the next one. All I need to do now is install the

RPM and then type one command to install all of the other packages and configure them.

 From Desirable to Necessity
Everything was going along nicely and although I could have done all of that work

manually, it has been much easier to use my automation. When Fedora 21 appeared on

the scene, the automation I created over the years became a necessity.

For those of you who are not familiar with Fedora 21, the installation program

changed dramatically with that release. Instead of a single ISO image, there were then

three separate installation ISO images: Desktop, Server, and Cloud.

I have used both Desktop and Server ISOs for installation and I dislike them both

intensely. I think the new installations are terribly limiting for the vast majority of Fedora

users. There is no simple install image. The Desktop ISO is a live image. There are no

options for installing any packages during the installation except those that are in the live

image ISO. None. If I want to install the KDE – or any other – desktop instead of GNOME

(which I do), I have to download the KDE spin or install KDE after the initial installation.

I cannot do it from the primary installation medium, the live image.

I cannot even choose to install LibreOffice. There is no way to do that during

installation. I have to install that and many other things after the initial installation. In

my opinion this is a huge stumbling block to many would-be Linux users, especially

the noobs. And, of course I always install updates immediately after performing a new

Fedora installation because there are always updates.

Chapter 9 automate everything

169

Fortunately my post-installation RPM and post-install script allow me to do all of

those things with very little fuss. And, yes, I have had to make a few adjustments to my

script – as I have with every new release – to accommodate some of the changes between

releases.

My penchant for following the Linux Philosophy for SysAdmins has paid off

exceedingly well for me. Because I take the time to “Automate everything,” I have

personally experienced very little disruption due to a major change in the way Fedora

Linux handles installations.

So here is what I have gained by automating my installations.

• Save time on every installation.

• Installations are consistent.

• Updates are always installed.

• Minimal or no disruption when major changes to distribution

installation are introduced.

• Easy to create identical installations.

There are other ways to do the automation of a Linux installation and configuration,

and many tools that can be applied to that task such as Kickstart, Puppet, Satellite Server,

and others. I have used Kickstart extensively. See the article I wrote with a colleague for

Linux Magazine, “Complete Kickstart” – I keep a copy of on my own web site.1

My script works very well for me in my current environment and meets my needs –

and that is the name of the game in Linux.

 Updates
Another task I do frequently is to install updates on all of my computers. In fact I have

been doing updates this morning. This is a task that requires only a couple of decisions

and can be easily automated. “But that is so simple, why automate a task that requires

only a command or two?” It turns out that updates are not so simple. Let’s think about

this for a minute.

1 David Both, Linux DataBook, “Complete Kickstart,” http://www.linux-databook.
info/?page_id=9

Chapter 9 automate everything

http://www.linux-databook.info/?page_id=9
http://www.linux-databook.info/?page_id=9

170

First I must determine whether any updates are available. Then I need to determine

whether a package that requires a reboot is being updated, such as the kernel or glibc. At

this point I can install the update. Before I do a reboot, assuming one is required, I run

the mandb utility to update the man pages; if this is not done, new and replacement man

pages won’t be accessible and old ones that have been removed will appear to be there

even though they are not. Figure 9-1 shows the partial results of the updating the man

database after doing updates this morning. Then, if the kernel has been updated, I need

to rebuild the grub boot loader configuration file so that it will include recovery options

for each installed kernel. Finally, if a reboot is needed, I do that.

That is a non-trivial set of individual tasks and commands that requires some

decisions. Doing those tasks manually requires paying attention and intervention to

enter new commands when the previous ones complete. Because of the need to babysit

while waiting to enter the next command, this would take a great deal of my time to

monitor each computer as it went through the procedures. There was room for error as

I was reminded occasionally when I would enter the wrong command on a host.

Checking for stray cats under /var/cache/man/local...
134 man subdirectories contained newer manual pages.
8908 manual pages were added.
0 stray cats were added.
0 old database entries were purged

Figure 9-1. The partial results of running mandb after performing an
upgrade

Chapter 9 automate everything

171

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Using the statement of requirements I created above, because that is what that

paragraph really is, it was easy to automate this to eliminate all of those issues. I wrote a

little script that I call doUpdates. It is a little over 400 lines in length and provides options

like help, verbose mode, printing the current version number, and an option to reboot

only if the kernel or glibc had been updated.

Over half of the lines in this program are comments so I can remember how the

program works the next time I need to work on it to fix a bug or add a little more

function. Much of the basic function is copied from a template file that maintains all of

the standard components that I use in every script I write. Because the framework for

new scripts is always there, it is easy to start new ones.

Figure 9-2 is a listing of the doUpdates bash script. To prevent most of the longer

lines from wrapping, I have set the font size a bit smaller than usual. Nevertheless, a few

very long lines are wrapped. I apologize if it is too small to read comfortably. I have also

removed some blank lines and empty comment lines to shorten the listing as much as

possible but it remains about 8 pages in length.

Figure 9-2. A listing of the doUpdates script

#!/bin/bash
##
doUpdates
#
This is a simple program to perform updates on a Linux computer. If a new
kernel is installed, it will build a new grub.cfg to create the recovery
mode kernel boot options, and then reboot the computer.
#
Change History

Chapter 9 automate everything

172

04/12/2017 David Both Original code. Suitable only for testing.
04/13/2017 David Both Tested code. V1.0.0.
04/13/2017 David Both Added messages for rebooting or not at end.
Added check for new glibc for doing reboot.
04/14/2017 David Both Completion message includes hostname.
04/28/2017 David Both Add GPL2 statement.
05/12/2017 David Both Added the code I forgot that rebuilds the grub.cfg
file. Duh.
06/30/2017 David Both Test for glibc separately then change the logic so
we only rebuild grub.conf when replacing the
kernel.
08/08/2017 David Both Add -r option so that reboots only occur if -r is
used and the kernel or glibc is updated.
08/11/2017 David Both Redo logic for reboots just a bit. Add message to
manually reboot if kernel or glibc updated but the
-r option was not selected.
Add -c option to check and report on whether
updates are needed and whether reboot is needed.
##
##
Copyright (C) 2007, 2018 David Both
LinuxGeek46@both.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##
##
Help
##
Help()
{

Display Help
echo "doUpdates - Performs all updates, builds new GRUB2, and"
echo "reboots if a new kernel or glibc was installed."
echo
echo "Syntax: doUpdates --[g|h|c|V|rv]"
echo "options:"
echo "g Print the GPL license notification."
echo "c Check to see if updates are available and whether reboot would be

needed."
echo " Does not actually do the update or reboot."

Figure 9-2. (continued)

Chapter 9 automate everything

173

echo "h Print this Help."
echo "r Reboot if the kernel or glibc or both have been updated."
echo "v Verbose mode."
echo "V Print software version and exit."
echo

}

##
Print the GPL license header
##
gpl()
{
echo
echo
"###"
echo "# Copyright (C) 2007, 2016 David Both
#"
echo "# LinuxGeek46@both.org #"
echo "# #"
echo "# This program is free software; you can redistribute it and/or modify #"
echo "# it under the terms of the GNU General Public License as published by #"
echo "# the Free Software Foundation; either version 2 of the License, or #"
echo "# (at your option) any later version. #"
echo "# #"
echo "# This program is distributed in the hope that it will be useful, #"
echo "# but WITHOUT ANY WARRANTY; without even the implied warranty of #"
echo "# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #"
echo "# GNU General Public License for more details. #"
echo "# #"
echo "# You should have received a copy of the GNU General Public License #"
echo "# along with this program; if not, write to the Free Software #"
echo "# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #"
echo "##"
echo
}

##
Quit nicely with messages as appropriate
##
Quit()
{

if [$verbose = 1]
then
if [$error = 0]

then
echo "Program terminated normally"

else
echo "Program terminated with error ID $ErrorMsg";

fi
fi
exit $error

}

Figure 9-2. (continued)

Chapter 9 automate everything

174

##
Display verbose messages in a common format
##
PrintMsg()
{

if [$verbose = 1] && [-n "$Msg"]
then

echo "########## $Msg ##########"
Set the message to null
Msg=""

fi
}

##
Define the $PkgMgr variable based on distro and release
##
SelectPkgMgr()
{

get the Distribution, release and architecture.
GetDistroArch
if [$NAME = "Fedora"] && [$RELEASE -ge 20]
then

PkgMgr="dnf"
elif [$NAME = "Fedora"] && [$RELEASE -lt 20]
then

PkgMgr="yum"
elif [$NAME = "CentOS"]
then

PkgMgr="yum"
else

Msg="Unknown distrubution and release. Unable to define Package Manager."
PrintMsg
error=7
Quit $error

fi
Msg="Using $PkgMgr Package Manager"
PrintMsg

} # End SelectPkgMgr

##
Get Distribution and architecture 64/32 bit
##
GetDistroArch()
{

#---
Get the host physical architecture
HostArch=`echo $HOSTTYPE | tr [:lower:] [:upper:]`
Msg="The host physical architecture is $HostArch"
PrintMsg

Figure 9-2. (continued)

Chapter 9 automate everything

175

#---
Get some information from the *-release file. We care about this to give
us Fedora or CentOS version number and because some group names change between
release levels.
#---
First get the distro info out of the file in a way that produces consistent

results
Due to the different ways distros keep info in the release files we have to do

this
a bit harder than we would otherwise.
Switch to /etc for now
cd /etc
Start by looking for Fedora
if grep -i "NAME=Fedora" os-release > /dev/null
then

This is Fedora
NAME="Fedora"
Define the Distribution
Distro=`grep PRETTY_NAME os-release | awk -F= '{print $2}' | sed -e "s/\"//g"`
Get the full release number
FULL_RELEASE=`grep VERSION_ID os-release | awk -F= '{print $2}'`
The Release version is the same as the full release number, i.e., no minor

versions for Fedora
RELEASE=$FULL_RELEASE
#---
Verify Fedora release $MinFedoraRelease= or above. This is due to the lack
of Fedora and Fusion repositories prior to that release.
#---
if [$RELEASE -lt $MinFedoraRelease]
then

Msg="Release $RELEASE of Fedora is not supported. Only releases
$MinFedoraRelease and above are supported."

PrintMsg
error=2
Quit $error

fi
elif grep -i CentOS centos-release > /dev/null
then

This is CentOS
NAME="CentOS"
Distro=`cat centos-release`
Get the full release number
FULL_RELEASE=`echo $Distro | sed -e "s/[a-zA-Z()]//g"`
Get the CentOS major version number
RELEASE=`echo $FULL_RELEASE | awk -F. '{print $1}'`

#---
Verify CentOS release $MinCentOSRelease= or above. This is due to the lack
of testing for this program prior to that release.
#---
if [$RELEASE -lt $MinCentOSRelease]

Figure 9-2. (continued)

Chapter 9 automate everything

176

then
Msg="Release $RELEASE of CentOS is not supported. Only releases

$MinCentOSRelease and above are supported."
PrintMsg
error=4
Quit $error

fi
else

Msg="Unsupported OS: $NAME"
PrintMsg
error=2
Quit $error

fi

Msg="Distribution = $Distro"
PrintMsg
Msg="Name = $NAME Release = $RELEASE Full Release = $FULL_RELEASE"
PrintMsg
Now lets find whether Distro is 32 or 64 bit
if uname -r | grep -i x86_64 > /dev/null
then

Just the bits
Arch="64"

else
Just the bits
Arch="32"

fi
if [$verbose = 1]
then

Msg="This is a $Arch bit version of the Linux Kernel."
PrintMsg

fi
} # end GetDistroArch

##
##
Main program
##
##
Set initial variables
badoption=0
check=0
doReboot=0
error=0
MinCentOSRelease="6"
MinFedoraRelease="22"
NeedsReboot=0
newKernel=0
newglibc=0
PkgMgr="dnf"
RC=0

Figure 9-2. (continued)

Chapter 9 automate everything

177

UpdatesAvailable=0
verbose=0
version=01.02.03

#---
Check for root

if [`id -u` != 0]
then

echo ""
echo "You must be root user to run this program"
echo ""
Quit 1

fi

##
Process the input options
##
Get the options
while getopts ":gchrvV" option; do

case $option in
g) # display GPL

gpl
Quit;;

v) # Set verbose mode
verbose=1;;

V) # Set verbose mode
echo "Version = $version"
Quit;;

c) # Check option
verbose=1
check=1;;

r) # Reboot option
doReboot=1;;

h) # display Help
Help
Quit;;

\?) # incorrect option
badoption=1;;

esac
done

if [$badoption = 1]
then

echo "ERROR: Invalid option"
Help
verbose=1
error=1
ErrorMsg="10T"
Quit $error

fi

Figure 9-2. (continued)

Chapter 9 automate everything

178

What package manager should we be using?
SelectPkgMgr

Are updates available? Just quit with message if not
RC from dnf check-update = 100 if available and 0 if none available.
$PkgMgr check-update > /dev/null
UpdatesAvailable=$?
if [$UpdatesAvailable = 0]
then

Msg="Updates are NOT available for host $HOSTNAME at this time."
Turn on verbose so message will print
verbose=1
PrintMsg
Quit

else
Msg="Updates ARE available for host $HOSTNAME."
Turn on verbose so message will print
PrintMsg

fi

Does the update include a new kernel
if $PkgMgr check-update | grep ^kernel > /dev/null
then

newKernel=1
NeedsReboot=1

fi
Or is there a new glibc
if $PkgMgr check-update | grep ^glibc > /dev/null
then

newglibc=1
NeedsReboot=1

fi

Are we checking or doing?
if [$check = 1]
then

Checking: Report results and quit
if [$NeedsReboot = 1]
then

Msg="A reboot will be required after these updates are installed."
PrintMsg

else
Msg="A reboot will NOT be required after these updates are installed."
PrintMsg

fi
Quit

else
Do the update
$PkgMgr -y update
Preserve the return code

Figure 9-2. (continued)

Chapter 9 automate everything

179

RC=$?
Message and quit if error =3 occurred
if [$RC -eq 1]
then

Msg="An error ocuurred during the update but it was handled by $PkgMgr."
PrintMsg

elif [$RC -eq 3]
then

Msg="WARNING!!! An uncorrectable error ocuurred during the update."
PrintMsg
Quit

fi
fi

Update man database
mandb

If new kernel rebuild grub.cfg and reboot
if [$newKernel = 1]
then

Generate the new grub.cfg file
Msg="Rebuilding the grub.cfg file on $HOSTNAME."
PrintMsg
grub2-mkconfig > /boot/grub2/grub.cfg

fi

if [$doReboot = 1] && [$NeedsReboot = 1]
then

reboot the computer because the kernel or glibc have been updated
AND the reboot option was specified.
Msg="Rebooting $HOSTNAME."
PrintMsg
reboot
no need to quit in this fork

elif [$doReboot = 0] && [$NeedsReboot = 1]
then

Msg="This system, $HOSTNAME, needs rebooted but you did not choose the -r option
to reboot it."

PrintMsg
Msg="You should reboot $HOSTNAME manually at the earliest opportunity."

else
Msg="NOT rebooting $HOSTNAME."

fi

PrintMsg
Quit

##
End of program
##

Chapter 9 automate everything

180

The doUpdates script should be located in /usr/local/bin in accordance with the

Linux FHS. It can be run with the command doUpdates -r that will cause it to reboot the

host only if one or both of the conditions for that is met.

I won’t deconstruct the entire doUpdates program for you but there are some things

to which I want to call your attention. First notice the number of comments; these are to

help me remember what each section is supposed to do. The first lines of the program

after the she- bang (#!/bin/bash) contain the name of the program, a short description

of its function, and a maintenance or change history. This first section is based on some

practices I was taught and followed while I worked at IBM. Other comments delineate

the various procedures and major sections and provide a short description of each.

Finally, shorter comments embedded in the code describe the function or objective of

shorter bits of code such as flow control structures.

I have a large number of procedures at the beginning of the script. This is where they

go for bash. These procedures are from my template script and I use them whenever

possible in new scripts to save the effort of rewriting them.

The procedure and variable names are meaningful and some use uppercase for one

or two characters. This makes easier reading and helps the programmer (me) and any

future maintainers (also me) understand the functions of the procedures and variables.

Yes, this does seem to be contrary to one of the other tenets of the Philosophy but

making the code more readable saves far more time in the long run. I know this from

several past experiences with code of my own and that of others.

One organization I did some consulting work for started me with the task of fixing

some bugs in a number of scripts. I took one look at the scripts and knew it would take

a lot of work to fix the actual bugs because I first had to fix the readability of the scripts.

I started by adding comments to the scripts because there were none. I then started

renaming variables and procedures so that it was easier to understand the purpose

of those variables and the nature of the data they held. It was only after making those

changes that I could begin to understand the nature of the bugs they were experiencing.

We will see more about this organization in Chapter 18. They really had a lot of

problems with those scripts.

The doUpdates script is available for download at the Apress web site.

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch09

Chapter 9 automate everything

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch09

181

ssh hostname doUpdates -r

Figure 9-3. This command runs the doUpdates program on a remote host using
Public/Private KeyPairs for authentication

 Additional Levels of Automation
Now I have this incredibly wonderful and useful script. I have copied it to /usr/local/bin

on all of my computers. All I have to do now is run it at appropriate times on each of my

Linux hosts to do the updates. I can do this by using SSH to log in to each host and run

the program.

But wait! There’s more! Have I told you yet how absolutely cool SSH is?

The ssh command is a secure terminal emulator that allows one to log in to a remote

computer to access a remote shell session and run commands. So I can log in to a

remote computer and run the doUpdates command on the remote computer. The results

are displayed in the ssh terminal emulator window on my local host. The Standard

Output (STDOUT) from the command is displayed on my terminal window.

That part is trivial and everyone does that. But the next step is a bit more interesting.

Rather than maintain a terminal session on the remote computer, I can simply use a

command on my local computer such as that in Figure 9-3 to run the same command

on the remote computer with the results being displayed on the local host. This

assumes that SSH public/private keypairs2 (PPKP) are in use and I do not have to enter a

password each time I issue a command to the remote host.

So now I run a single command on my local host that sends a command through the

SSH tunnel to the remote host. OK, that is good, but what does it mean?

It means that what I can do for a single computer I can also do for several – or several

hundred. The bash command-line program in Figure 9-4 illustrates the power I now have.

2 How to Forge, https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

for I in host1 host2 host3 ; do ssh $I doUpdates -r ; done

Figure 9-4. This bash command-line program runs the doUpdates program on
three remote hosts

Chapter 9 automate everything

https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

182

Think we’re done? No, we are not! The next step is to create a short bash script of this

CLI program so we don’t have to retype it every time we want to install updates on our

hosts. This does not have to be fancy; the script can be as simple as the one in Figure 9-5.

This script could be named “updates” or something else depending on how you

like to name scripts and what you see as its ultimate function. I think we should call this

script, “doit.” Now we can just type a single command and run a smart update program

on as many hosts as we have in the list of the for statement. Our script should be located

in the /usr/local/bin directory so it can be easily run from the command line.

Our little doit script looks like it could be the basis for more general application. We

could add more code to doit that would enable it to take arguments or options such as

the name of a command to run on all of the hosts in the list. This enables us to run any

command we want on a list of hosts and our command to install updates might be doit

doUpdates -r or doit myprogram to run “myprogram” on each host.

The next step might be to take the list of hosts out of the program itself and place

them in a doit.conf file locate in /usr/local/etc – again in compliance with the Linux FHS.

That command would look like Figure 9-6 for out simple doit script. Notice the back tics

(`) that create the list used by the for structure from the results of the cat command.

By keeping the list of hosts separate, we can allow non-root users to modify the list

of hosts while protecting the program itself against modification. It would also be easy

to add an -f option to the doit program so that the users could specify the name of a file

containing their own list of hosts on which to run the specified program.

#!/bin/bash
for I in host1 host2 host3 ; do ssh $I doUpdates -r ; done

Figure 9-5. This bash script contains the command-line program that runs the
doUpdates program on three remote hosts

#!/bin/bash
for I in `cat /usr/local/etc/doit.conf` ; do ssh $I doUpdates ; done

Figure 9-6. We have now added a simple external list that contains the host
names on which the script will run the specified command

Chapter 9 automate everything

183

Finally, we might want to set this up as a cron job so that we don’t have to remember

to run it on whatever schedule we want. Setting up cron jobs is worthy of its own section

in this chapter so that is coming up next.

 Using cron for Timely Automation
There are many tasks that need to be performed off-hours when no one is expected to

be using the computer or, even more importantly, on a regular basis at specific times.

I don’t want to have to get up at oh-dark-hundred to start a backup or major update,

so I use the cron service to schedule tasks on a repetitive basis, such as daily, weekly,

or monthly. Let’s look at the cron service and how to use it.

I use the cron service to schedule obvious things like regular backups that occur every

day at 2:00 a.m. I also do a couple of less obvious things. All of my many computers have

their system times, that is the operating system time, set using NTP – the Network Time

Protocol. NTP sets the system time; it does not set the hardware time which can drift and

become inaccurate. I use cron to set the hardware time using the system time. I also have a

bash program I run early every morning that creates a new “message of the day” (MOTD)

on each computer that contains information such as disk usage that should be current in

order to be useful. Many system processes use cron to schedule tasks as well. Services like

logwatch, logrotate, and rkhunter all use the cron service to run programs every day.

The crond daemon is the background service that enables cron functionality.

The cron service checks for files in the /var/spool/cron and /etc/cron.d directories

and the /etc/anacrontab file. The contents of these files define cron jobs that are to be

run at various intervals. The individual user cron files are located in /var/spool/cron,

and system services and applications generally add cron job files in the /etc/cron.d

directory. The /etc/anacrontab is a special case that will be covered a bit further on.

 crontab
Each user, including root, can have a cron file. By default no file exists, but using the

crontab -e command as shown in Figure 9-7 to edit a cron file creates them in the /var/

spool/cron directory. I strongly recommend that you not use a standard editor such as vi,

vim, emacs, nano, or any of the many other editors that are available. Using the crontab

command not only allows you to edit the command, it also restarts the crond daemon

when you save and exit from the editor. The crontab command uses vi as its underlying

editor because vi is always present on even the most basic of installations.

Chapter 9 automate everything

184

All cron files are empty the first time you edit it so you must create it from scratch.

I added the job definition example in Figure 9-7 to my own cron files just as a quick

reference. Feel free to copy it for your own use.

In Figure 9-7 the first three lines set up a default environment. Setting the

environment to that necessary for a given user is required because cron does not

provide an environment of any kind. The SHELL variable specifies the shell to use when

commands are executed. In this case it specifies the bash shell. The MAILTO variable

sets the email address to which cron job results will be sent. These emails can provide

the status of backups, updates, or whatever, and consist of the output from the programs

that you would see if you ran them manually from the command line. The last of these

three lines sets up the PATH for this environment. Regardless of the path set here,

however, I always like to prepend the fully qualified path to each executable.

There are several comment lines that detail the syntax required to define a cron job.

I think that they are mostly self-explanatory, so I will use the entries in Figure 9-7 as

examples, then add a few more that will show you some of the more advanced capabilities

of crontab files.

crontab -e
SHELL=/bin/bash
MAILTO=root@example.com
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin

For details see man 4 crontabs
Example of job definition:
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .---- day of week (0-6)(Sunday=0 or 7)(sun,mon,tue,wed,thu,fri,sat)
| | | | |
* * * * * user-name command to be executed

backup using the rsbu program to the internal HDD then the external USB HDD
01 01 * * * /usr/local/bin/rsbu -vbd1 ; /usr/local/bin/rsbu -vbd2
Set the hardware clock to keep it in sync with the more accurate system clock
03 05 * * * /sbin/hwclock --systohc
Perform monthly updates on the first of the month
25 04 1 * * /usr/local/bin/doit

Figure 9-7. The crontab command is used to view or edit the cron files

Chapter 9 automate everything

185

The line shown in Figure 9-8 runs another of my bash shell scripts, rsbu, to perform

backups of all my systems. This job is kicked off at 1 minute after 1 a.m. every day. The

splat/star/asterisks (*) in positions 3, 4, and 5 of the time specification are like file globs

for those time divisions; they match every day of the month, every month, and every day

of the week. This line runs my backups twice; once to backup onto an internal dedicated

backup hard drive, and once to backup onto an external USB hard drive that I can take to

the safe deposit box.

The line shown in Figure 9-9 sets the hardware clock on the computer using the

system clock as the source of an accurate time. This line is set to run at 3 minutes after

5 a.m. every day.

The last cron job, shown in Figure 9-10, is the one we are especially interested in. It is

used to perform our updates at 04:25 a.m. on the first day of each month. This assumes

we are using the very simple doit program from Figure 9-5. The cron service has no

option for “The last day of the month,” so we use the first day of the following month.

So now all of the hosts in our network get updated each month with no intervention

at all from us. This is the ultimate in being the Lazy SysAdmin.

01 01 * * * /usr/local/bin/rsbu -vbd1 ; /usr/local/bin/rsbu -vbd2

Figure 9-8. This line in /etc/crontab runs a script that performs daily backups for
my systems

03 05 * * * /sbin/hwclock --systohc

Figure 9-9. This line sets the hardware clock using the system time as the
source

25 04 1 * * /usr/local/bin/doit

Figure 9-10. The cron job for running the doit command which in turn runs
doUpdates

Chapter 9 automate everything

186

 cron.d
There are some other options provided by the cron service that we can also use to run

our doit program on a regular basis. The directory /etc/cron.d is for system-level jobs

run by various users. It is where some applications install cron files when there are no

users under which the programs would run, these programs need a place to locate cron

files so they are placed in /etc/cron.d. Root can place other cron files in this directory

as well, including cron files for non-root users. Many Linux SysAdmins prefer using

the cron.d directory for cron files over the older crontab system of managing cron files

located in /var/spool/cron.

The cron files located in /etc/cron.d have the same format as a regular cron file. All

of the information about the regular cron files that we covered above is the same for each

file located in the cron.d directory.

Files located in the cron.d directory are run in alphanumeric sort order. That is the

reason that the 0hourly file has a zero at the beginning of its name, so that it runs first.

One of the drawbacks of the crontab system of managing cron jobs is the fact that some

users have used a standard editor to alter the files. This method does not inform the crond

daemon of the changes so the altered cron file is not activated until crond is restarted. This

is not the case with the cron files located in /etc/cron.d as the file modification times are

checked every minute by crond. If a change has been made to the file it is reloaded into

memory by crond. This is a much more positive method for ensuring that changes to cron

files get recognized immediately upon a change having been made.

Let’s create a simple cron job for the /etc/cron.d directory, one that runs every

minute so we don’t need to wait long for the results.

EXPERIMENT 9-1

perform this experiment as root. only root can add files to cron.d.

make /etc/cron.d the pWD and list the files already located there. on a simple training system

or vm there should be three.

[root@david ~]# cd /etc/cron.d ; ls -l

total 12

-rw-r--r-- 1 root root 128 Aug 2 15:32 0hourly

-rw-r--r-- 1 root root 74 Mar 25 2017 atop

-rw-r--r-- 1 root root 108 Aug 3 21:02 raid-check

Chapter 9 automate everything

187

now use your favorite editor to create a new file named myfree in cron.d with the following

content.

Run the free command every minute. The accumulated

data is stored in /tmp/free.log where it can be viewed.

* * * * * root /usr/bin/free >> /tmp/free.log

Save the new file. it should not be made executable. no changes need to be made to its

permissions. in another root terminal session, make /tmp the pWD and list the files. if you do

not see the free.log file, wait until a second or so after the top of the minute and try again.

When the free.log file appears use the tail command to follow the content of the file. it should

look similar to my results.

[root@testvm1 tmp]# tail -f free.log

 total used free shared buff/cache available

Mem: 4042112 271168 2757044 1032 1013900 3484604

Swap: 8388604 0 8388604

 total used free shared buff/cache available

Mem: 4042112 261008 2767212 1032 1013892 3494860

Swap: 8388604 0 8388604

 total used free shared buff/cache available

Mem: 4042112 260856 2767336 1032 1013920 3495012

Swap: 8388604 0 8388604

 total used free shared buff/cache available

Mem: 4042112 260708 2767452 1032 1013952 3495148

Swap: 8388604 0 8388604

 total used free shared buff/cache available

Mem: 4042112 260664 2767468 1032 1013980 3495176

Swap: 8388604 0 8388604

 total used free shared buff/cache available

Mem: 4042112 260772 2767280 1032 1014060 3495040

Swap: 8388604 0 8388604

after a few cycles, delete the /etc/cron.d/myfree file or move it to another location. this will

stop the execution of this job. you can also exit from the tail command using Ctrl-C.

Chapter 9 automate everything

188

There is an important service that is dependent on the 0hourly cron file located in /

etc/cron.d, anacron that we should take a look at. There are others, but this one provides

some interesting options for running scheduled tasks.

 anacron
The crond service assumes that the host computer runs all the time. What that means is that

if the computer is turned off for a period of time and cron jobs were scheduled for that time,

they will be ignored and will not run until the next time they are scheduled. This might

cause problems if the cron jobs that did not run were critical. So there is another option for

running jobs at regular intervals when the computer is not expected to be on all the time.

The anacron program performs the same function as regular cron jobs but it adds

the ability to run jobs that were skipped if the computer was off or otherwise unable to

run the job for one or more cycles. This is very useful for laptops and other computers

that get turned off or put in sleep mode.

Soon after the computer is turned on and booted, anacron checks to see whether

configured jobs have missed their last scheduled run. If they have, those jobs are run

immediately, but only once no matter how many cycles have been missed. For example,

if a weekly job was not run for three weeks because the system was shut down while you

were away on vacation, it would be run soon after you turn the computer on, but it would

be run once not three times.

The anacron program provides some easy options for running regularly scheduled

tasks. Just install your scripts in the /etc/cron.[hourly|daily|weekly|monthly] directories,

depending on how frequently they need to be run.

How does this work? The sequence is simpler than it first appears.

 1. The crond service runs the cron job specified in /

etc/cron.d/0hourly as seen in Figure 9-11.

Run the hourly jobs
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
01 * * * * root run-parts /etc/cron.hourly

Figure 9-11. The contents of /etc/cron.d/0hourly cause the shell scripts located in
/etc/cron.hourly to run

Chapter 9 automate everything

189

 2. The cron job specified in /etc/cron.d/0hourly runs the run-parts

program once per hour. The run-parts program runs all of the

scripts located in the /etc/cron.hourly directory.

 3. The /etc/cron.hourly directory contains the 0anacron script

that runs the anacron program using the /etdc/anacrontab

configuration file shown in Figure 9-12.

 4. The anacron program runs the programs located in /etc/cron.

daily once per day; it runs the jobs located in /etc/cron.weekly

once per week and the jobs in cron.monthly once per month. Note

the specified delay times in each line that helps prevent these jobs

from overlapping themselves and other cron jobs.

Instead of placing complete bash programs in the cron.X directories, I install them in

the /usr/local/bin directory, which allows me to run them easily from the command line.

Then I add a symlink in the appropriate cron directory, such as /etc/cron.daily.

The anacron program is not designed to run programs at specific times. Rather, it is

intended to run programs at intervals that begin at the specified times such as 3 a.m.

(see the START_HOURS_RANGE in Figure 9-12) of each day, on Sunday to begin the

week, and the first day of the month. If any one or more cycles are missed, then anacron

will run the missed jobs one time as soon as possible.

Figure 9-12. The contents of /etc/anacrontab file runs the executable files in the
cron.[daily|weekly|monthly] directories at the appropriate times

Chapter 9 automate everything

190

 Scheduling Tips
Some of the times I have set in the crontab files for my various systems seem rather

random and to some extent they are. Trying to schedule cron jobs can be challenging,

especially as the number of jobs increases. I usually only have a couple tasks to schedule

on each of my own computers so it is a bit easier than some of the production and lab

environments I have worked.

One system for which I was the SysAdmin usually had around a dozen cron jobs

that needed to run every night and an additional three or four that had to run on

weekends or the first of the month. That was a challenge because if too many jobs

ran at the same time, especially the backups and compiles, the system would run out

of RAM and then nearly fill the swap file, which resulted in system thrashing while

performance tanked so that nothing got done. We added more memory and were

able to do a better job of scheduling tasks. Adjusting the task list included removing

one of the tasks that was very poorly written and which used large amounts of

memory.

 Thoughts About cron
I use most of these methods for scheduling tasks to run on my computers. All of those

tasks are ones that need to run with root privileges. I have seen only a few times when

users had a real need for any type of cron job, one of those being for a developer to kick

off a daily compile in a development lab.

It is important to restrict access to cron functions by non-root users. However there

are circumstances when it may be necessary for a user to set tasks to run at pre-specified

times and cron can allow users to do that when necessary. SysAdmins realize that many

users do not understand how to properly configure these tasks using cron and the users

make mistakes in the configuration. Those mistakes may be harmless but they can cause

problems for themselves and other users. By setting procedural policies that cause users

to interact with the SysAdmin, those individual cron jobs are much less likely to interfere

with other users and other system functions.

It is possible to set limits on the total resources that can be allocated to individual

users or groups, but that is an article for another time.

Chapter 9 automate everything

191

 cron Resources
The man pages for cron, crontab, anacron, anacrontab, and run-parts all have excellent

information and descriptions of how the cron system works.

 Other Automation Possibilities
I have automated many other tasks that I need to perform on the Linux computers for

which I am responsible. The short list below is certainly not all-inclusive but is just

intended to give you ideas for some places to start.

• Backups.

• Upgrades (dnf-upgrade).

• Distributing updates to local shell scripts to a list of hosts.

• Finding and deleting very old files.

• Creating a daily message of the day (/etc/motd).

• Checking for viruses, rootkits, and other malware.

• Change/add/delete mailing list subscriber email addresses.

• Regular checks of the host’s health such as temperatures, disk usage,

RAM usage, CPU usage, etc.

• Anything else repetitive.

 Some Alt Ideas
Here are a few unusual automation ideas I found on the Internet that push the boundaries

of both targets for automation and propriety. The original information is from a GitHub

repository and many of the programs have misogynistic and NSFW names. I leave it to you

whether you want to search for this guy on the Internet but I won’t help you find him.

In the references I have found, the creator of these programs would always automate

every task that would take more than 90 seconds. Let’s start with a couple of my favorites.

Chapter 9 automate everything

192

First is the shell script that works with a “smart” office coffee machine that is

connected to the internal network. When this programmer ran the script it would wait

17 seconds, connect to the machine and tell it to start brewing a cup of coffee. It would

wait 24 seconds and pour the coffee into a cup. Apparently this was the time it took the

programmer to walk to the coffee machine.

Next is a script that enables our lazy SysAdmin to sleep late with no worries about

letting the team know he will not be in. If he has not logged in to his development server

by a specific time in the morning, the script sends an email to indicate that he will be

working from home. The program chooses a random excuse from an array and adds it to

the email before sending. This program is triggered from a cron job.

Of course what else would this guy do when he was working late? If he is still logged

in at a specific time in the evening, this script sends an email with an appropriately

random excuse to his wife|girlfriend.

These scripts are not directly related to his programming job. However they would

make him more productive because he does not have to take the time to deal with these

things every day. Personally, I would definitely not automate emails to my wife!

But the ideas here illustrate that nearly anything can be automated. Perhaps these

“Alternate” ideas will give you a few time-saving automation ideas of your own.

 Deepening the Philosophy
Automation of the SysAdmin’s own work is a large part of that work. Because of this,

many tenets of the Linux Philosophy for SysAdmins are related to the tasks and tools that

support automation using shell scripts and ad hoc command-line programming.

Computers are designed to automate various mundane tasks and why should that

not also be applied to the SysAdmin’s work? We lazy SysAdmins use the capabilities of

the computers on which we work to make our jobs easier. Automating everything that

we possibly can means that the time we free up by creating that automation can now be

used to respond to some real or perceived emergency by others, especially by the PHB. It

can also provide us with time to automate even more.

If you reflect on what we have done in this chapter, you can see that automation is

not merely about creating a program to perform every task. It can be about making those

programs flexible so that they can be used in multiple ways such as the ability to be

called from other scripts and to be called as a cron job.

Chapter 9 automate everything

193

My programs almost always use options to provide flexibility. The doit program

used in this chapter could easily be expanded to be more general than it is while still

remaining quite simple. It could still do one thing well if its objective were to run a

specified program on a list of hosts.

My shell scripts did not just spring into existence with hundreds or thousands of

lines. In most cases they start as a single ad hoc command-line program. I create a shell

script from the ad hoc program. Then another command-line program is added to the

short script. Then another. As the short script becomes longer, I add comments, options,

and a help feature.

Then, sometimes, it makes sense to make a script more general so that it can handle

more cases. In this way the doit script becomes capable of “doing it” for more than just a

single program that does updates.

Chapter 9 automate everything

195
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_10

CHAPTER 10

Always Use Shell Scripts
When writing programs to automate – well, everything – always use shell scripts.

Because shell scripts are stored in ASCII text format, they can be easily viewed and

modified by humans just as easily as they can by computers. You can examine a shell

program and see exactly what it does and whether there are any obvious errors in the

syntax or logic. This is a powerful example of what it means to be open.

I know some developers tend to consider shell scripts something less than true

programming. This marginalization of shell scripts and those who write them seems to

be predicated on the idea that the only true programming language is one that must be

compiled from source code to produce executable code. I can tell you from experience

that this is categorically untrue.

I have used many languages including BASIC, C, C++, Pascal, Perl, Tcl/Expect, REXX,

and some of its variations including Object REXX, many shell languages including

Korn and Bash, and even some assembly language. Every computer language ever

devised has had one purpose – to allow humans to tell computers what to do. When you

write a program, regardless of the language you choose, you are giving the computer

instructions to perform specific tasks in a specific sequence.

 Definition
A shell script or program is an executable file that contains at least one shell command.

They usually have more than a single command and some shell scripts have thousands

of lines of code. When taken together, these commands are the ones necessary to

perform a desired task with a specifically defined result.

Although an executable file containing a single line with a shell command can be run

with the current shell, it is good practice to add a line called the “shebang” that defines

the shell under which the program is to run. Let’s try it both ways.

196

EXPERIMENT 10-1

This experiment should be performed as the student user. We create a minimal script in your

home directory, make it executable, and run it.

First open a new file in your home directory with vim.

[student@testvm1 ~]$ vim test1

Add one line at the beginning of the file and save the file. Do not exit from vim because we will

be making more changes to the test1 script.

echo "Hello world!"

In another terminal session, do a long listing of the new program.

[student@testvm1 ~]$ ls -l test1

-rw-rw-r-- 1 student student 20 Dec 31 15:27 test1

The file permissions show that it is not executable. Make it executable for the user and the

group and list it again.

[student@testvm1 ~]$ chmod ug+x test1

[student@testvm1 ~]$ ls -l test1

-rwxrwxr-- 1 student student 20 Dec 31 15:38 test1

Now let’s run the program. We use ./ before the name of the file to specify that the program

file is located in the current directory. Home directories are not part of the path so we must

specify the path to the executable file.

[student@testvm1 ~]$./test1

Hello world!

Now let’s add the shebang line before the echo command. This specifies that no matter which

shell we are running under, the program will always run under the bash shell.

Now our program as two lines and looks like this.

#!/bin/bash

echo "Hello world!"

Run the program again. The results should not change. Exit from vim.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

197

For a simple shell script like this one, it does not matter whether we add the shebang

line. All of the shells in which I experimented with this script produced the same results.

But there are some built-in shell commands that may not exist in other shells, or some

commands may be implemented differently and the different results may affect the

outcome of the program when run.

Regardless, it is always good practice to include the shebang line.

 The SysAdmin Context
Context is important and this tenet, “Always use shell scripts,” should be considered in

the context of our jobs as SysAdmins.

The SysAdmin’s job differs significantly from those of developers and testers. In

addition to resolving both hardware and software problems, we manage the day-to-

day operation of the systems under our care. We monitor those systems for potential

problems and make all possible efforts to prevent those problems before they impact our

users. We install updates and perform full release level upgrades to the operating system.

We resolve problems caused by our users. SysAdmins develop code to do all of those

things and more; then we test that code; and then we support that code in a production

environment.

Many of us also manage and maintain the networks to which our systems are

connected. In other cases we tell the network guys where the problems are located and

how to fix them because we find and diagnose them first.

We SysAdmins have been devops far longer than that term has been around. In fact,

the SysAdmin job is more like dev-test-ops-net than just devops. Our knowledge and

daily task lists cover all of those areas of expertise.

In this context the requirements for creating shell scripts are complex, interrelated,

and many times contradictory. Let’s look at some of the typical factors SysAdmins must

consider when writing shell scripts.

 Requirements
This redundancy means that one requirement for creating a shell script is to obtain a set

of requirements from the end user who is requesting the script. Even if we happen to be

both developer and user, we should sit down and create a set of requirements before we

begin to write code.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

198

Even a short list of two or three objectives for the program will suffice as a set of

requirements. The minimum I will accept is a description and sample of the input data;

any formulas, logic, or other processing required; and a description of the required

outputs or functional results. Of course, more is better, but with these things as a starting

point, I can begin work.

Naturally the requirements will become more explicit as the project continues.

Things that were not considered initially will arise. Assumptions will be changed.

 Development Speed
Programs usually must be written quickly to meet time constraints imposed by

circumstances or the PHB. Most of the scripts we write are to fix a problem, to clean up

the aftermath of a problem, or to deliver a program that must be operational long before

a compiled program could be written and tested.

Writing a program quickly requires shell programming because it allows quick

response to the needs of the customer whether that be ourselves or someone else. If

there are problems with the logic or bugs in the code, they can be corrected and retested

almost immediately. If the original set of requirements was flawed or incomplete, shell

scripts can be altered very quickly to meet the new requirements. So, in general, we can

say that the need for speed of development in the SysAdmin’s job overrides the need

to make the program run as fast as possible or to use as little as possible in the way of

system resources like RAM.

Let’s look at the BASH command-line program in Figure 10-1. It is designed to list

each user ID that is currently logged into the system. We saw this program previously,

but let’s look at it from a different viewpoint.

Because users may be logged in multiple times, this one-line program only displays

each ID once and separates the IDs with commas. To program this in the C language

would require a significant amount of single-purpose code. Table 10-1 shows the

number of lines of code in each of the CLI commands used in the above BASH program.

These numbers were accurate when I found them several years ago. If they have changed

since then, it would not be significant.

echo `who | awk '{print $1}' | sort | uniq` | sed "s/ /, /g"

Figure 10-1. Revisiting our CLI program to list logged-in users

CHApTER 10 AlWAys UsE sHEll sCRIpTs

199

You can see that the BASH script above uses programs that together contain over

9,000 lines of C code. All of these programs contain far more functionality than that

which we actually use in our script. Yet we combine these programs that have already

been written and use the parts we need.

It takes far less time to write and test the resulting BASH script than it would a

compiled program to do the same thing.

 Performance Speed
Script performance in terms of speed of execution is much less relevant now than in the

past. Today’s CPUs are blazing fast and most computers have multiple processors. Most

of my own computers have 4 cores with Hyperthreading and run at 3GHz or higher. My

main workstation has an Intel Core i9 with 16 cores and 32 CPUs. I tend to have a large

number of virtual machines open simultaneously while working on various projects,

including research for this book.

/ The Lazy SysAdmin uses the \
\ tools already at hand. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Table 10-1. The Power of the CLI Comes

from These Individual Programs

Command Source Lines of Code

echo 177

who 755

awk 3412

sort 2614

uniq 302

sed 2093

TOTAl 9353

CHApTER 10 AlWAys UsE sHEll sCRIpTs

200

In general, the only question to ask is whether the job gets done in time. If it does,

then no worries. If it does not, the time required to write and test the same program in a

compiled language would most likely have made it even later. The time saved when the

compiled program runs is less than the time saved in development when using a shell

program. Remember we are considering the context of the SysAdmin’s job.

Consider the example program in Figure 10-1 and the amount of C code in

Table 10- 1. The fact is that our example CLI program is still using large amounts of

C code that has already been written and extensively tested. As lazy SysAdmins we

have lots of C code already available in the form of the Linux Core Utilities and other

command-line utilities. We should always use that which is already there.

This does not mean that some performance tuning might not be called for on the

rare occasion. I have found the need to improve the performance of a shell script. The

problems I discovered were usually more about dealing with large amounts of data than

about the functional logic of the program.

Besides, the hardware will be faster next week.

 Variables
Use variables instead of hard-coded values for almost everything. Even if you think you

will only use a particular value once, such as a directory name or a file name, create a

variable and use the variable where you would have placed the hard-coded name.

Many times I have needed a particular value in more places in the scripts so I am

already prepared if it is accessed as a variable. It can take less time to type a variable

name than a complete directory name, especially if it is a long one. It is also easier to

change a script if the value changes. Fixing the value of the variable in one location is

much easier than replacing it in several locations.

I always have a single location in my scripts to set initial values for variables. Keeping

the initial variable settings in the same place helps make them easy to find.

 Testing
Interactive testing of shell scripts can be accomplished as soon as the most basic code

structure is complete, at all stages during development, when the code is complete, and

when any needed changes have been made.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

201

The test plan should be created from the requirements statements. The test plan will

have lists of the requirements to test, such as, “for input X the output should be Y,” and

“for bad input error message X should be displayed.”

Having a test plan enables me to test each new feature as it is added to the program.

It helps to ensure that testing is consistent as program development proceeds from start

to finish.

In Chapter 11, “Test Early, Test Often,” we will explore testing in some detail but, for

now, the importance of testing cannot be understated. Testing must take place right from

the very start.

 Open and Open Source
By their very nature, shell scripts are open because we can read them. They are written

in ASCII text format and are never compiled or altered into a binary or other format that

is unreadable to humans. The bash shell, for example, reads the contents of the shell

programs and interprets them on the fly. Their existence as ASCII text files also means

that shell scripts can be easily modified and run immediately without having to wait

through a recompile.

This open access to the code also means that we can explore shell scripts in aid of

understanding their functional logic. This can be useful when writing our own scripts

because we can easily include this existing code in our own scripts instead of writing our

own code to perform the same task.

Of course this code sharing depends upon the open source licensing of the original

code. I always include within the code itself an explicit statement of the license under

which I share the code I write, usually the GPL V2. Many times I even have an option in

the program to display the GPL license statement.

Making all of the code I write Open Source and properly licensed as such is just

another basic requirement as far as I am concerned.

 Shell Scripts as Prototypes
I have seen a number of articles and books about the Unix philosophy in which they

discuss shell scripts as a tool for prototyping large and complex programs. I think there

may be some value in that for application developers rather than SysAdmins. That

approach can allow for fast prototyping and early testing to ensure that the program is

exactly what the customer wants.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

202

As a SysAdmin I find that shell scripts are perfect for both prototype and the

completed program. I mean, why take the extra time to translate something that is

already working well into another language? Hey – we are trying to be lazy here!

 Process
We all have our own processes – ways of working that enable us to work our way

through projects to completion. We are all different and our processes are different. And

sometimes we have more than one process depending upon our starting point. I want to

describe to you a couple of methods that work for me.

 Quick and Dirty
Most of my programming projects start as quick and dirty command-line programs that

I use to perform a specific task. The doUpdates program back in Figure 9-2 is a good

example. After all, installing updates is a simple yum or dnf command, right? Not so much.

For a long time, I would log in to each host, run the dnf -y update command, and

then manually reboot if the kernel had been updated. The next step occurred when

I determined in advance that the kernel was being updated. I used the compound

command dnf -y update && reboot that rebooted the computer if the update was

successful. But I was still typing the commands on the command line.

As the number of computers in my home network grew, I realized that I was also

updating the man database; making a decision; and, if there was a kernel update,

 updating the GRUB configuration file and running the reboot command. At that point I

wrote a simple script with no frills to perform those tasks.

But that script needed a couple decisions of its own and some direction from me.

I did not want to have the script arbitrarily reboot the host every time it was run. So I

added an option to reboot only if the kernel or glibc were updated. Well, that required

that I add the case command to interpret the options. I also added a variable that

contained the current version of the program and an option to display the version. A

bit later I added a “verbose” option so I could get more debugging information if the

program encountered problems.

With the addition of options I needed a Help facility, so I added that. Then I added

an option to display the GPL statement.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

203

A lot of that work was already done because I had included those features in my

other programs and in the template I use for new programs. It was a simple matter to

copy those features I needed out of the template, paste them in the doUpdates program,

and modify them to meet the needs of this particular program.

Many large programs grow from those little, everyday command-line programs

and become indispensable to our daily working lives. Sometimes the process is not

noticeable until you realize you have a fully working script on your hands.

 Planning and Foresight
Some programs written by SysAdmins are actually planned in advance. Once again I

start with a set of requirements although I try to spend a bit more time formulating them

than with the quick and dirty programs.

To start coding, I make a copy of the script template and name it appropriately. The

template contains all of the standard procedures and basic structure that I need to begin

any project. This template includes a skeletal help facility, a procedure for ending the

program with an appropriate return code (RC), and a case statement to enable use of

options.

So the first thing I do with this template is code the help facility. Then I test to see if

that is working and looks as I intend. Coding the Help facility first also begins the process

of documentation. It helps me to define the function of the script as well as some of the

features.

At this point I like to add comments that define specific functionality and create

execution sequences within the script. If I need to write a new procedure, I create a

small skeleton for that procedure with comments that contain a short description of its

function. By adding these comments first, I have embedded the set of requirements I

created earlier into the very fabric of the code. This makes it easy to follow and ensure

that I have translated all of those requirements into code.

I then begin to add code to each section of comments. And then I test each new

section to ensure that it meets the requirements stated in the comments.

Then I add a bit more and test. And add a bit more and test. Every time I test, I test

everything, even the features and code segments I have tested before because new code

can break existing code, too. I follow this procedure until the shell script is complete.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

204

 Template

I have mentioned a number of times that I have a template from I like to create my

programs. Let’s look at that template and experiment with it. You can download

the script.template.sh template file at https://github.com/Apress/linux-philo-

sysadmins/tree/master/Ch10.

The Code

Now that you have downloaded the template, let’s look at Figure 10-2 and I will point out

some of its key features. Then we will do an experiment to see how it works. Note that

the font size is somewhat reduced in Figure 10-2 in an effort to reduce the number of line

wraps and improve its readability.

Of course all scripts should begin with the shebang and this one is no different. Then

I add a couple sections of comments.

The first comment section is the program name and description and a change

history. This is a format I learned while working at IBM, and it provides a means of

documenting the long-term development of the program and any fixes applied to it. This

is an important start to documenting your program.

The second comment section is a copyright and license statement. I use the GPL2

and this seems to be a standard statement for programs licensed under the GPL2. If you

choose to use a different open source license, that is fine, but I do suggest adding an

explicit statement like this to the code in order to eliminate any possible confusion about

licensing. I read an interesting article recently, “The source code is the license,1” that

helps to explain the reasoning behind this.

The procedures section begins after these two comment sections. This is the required

location for procedures in Bash. They must appear before the body of the program. As part

of my own need to document everything, I place a comment before each procedure that

contains a short description of what it is intended to do. I also include comments inside

the procedure to provide further elaboration. Your own procedures can be added here.

I won’t dissect the function of each of these procedures. Between the comments

and your ability to read the code, they should be understandable. However, at the end of

Figure 10-2, I will discuss some other aspects of this template.

1 Scott K Peterson, “The source code is the license,” Opensource.com, https://opensource.com/
article/17/12/source-code-license

CHApTER 10 AlWAys UsE sHEll sCRIpTs

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch10
https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch10
https://opensource.com/article/17/12/source-code-license
https://opensource.com/article/17/12/source-code-license

205

Figure 10-2. The script.template.sh template file I use as a starting point for new
programs

#!/bin/bash
##
script.template.sh
#
Use this template as the beginning of a new program. Place a short
description of the script here.
#
Change History
04/12/2017 David Both Original code. This is a template for creating
new Bash shell scripts.
Add new history entries as needed.
#
##
##
#
Copyright (C) 2007, 2016 David Both
LinuxGeek46@both.org
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
##
##
Help
##
Help()
{

Display Help
echo "Add description of the script functions here."
echo

CHApTER 10 AlWAys UsE sHEll sCRIpTs

206

echo "Syntax: template <option list here>"
echo "options:"
echo "g Print the GPL license notification."
echo "h Print this Help."
echo "v Verbose mode."
echo "V Print software version and exit."
echo

}

##
Print the GPL license header
##
gpl()
{

echo
echo "##"
echo "# Copyright (C) 2007, 2016 David Both #"
echo "# Millennium Technology Consulting LLC #"
echo "# http://www.millennium-technology.com #"
echo "# #"
echo "# This program is free software; you can redistribute it and/or modify #"
echo "# it under the terms of the GNU General Public License as published by #"
echo "# the Free Software Foundation; either version 2 of the License, or #"
echo "# (at your option) any later version. #"
echo "# #"
echo "# This program is distributed in the hope that it will be useful, #"
echo "# but WITHOUT ANY WARRANTY; without even the implied warranty of #"
echo "# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #"
echo "# GNU General Public License for more details. #"
echo "# #"
echo "# You should have received a copy of the GNU General Public License #"
echo "# along with this program; if not, write to the Free Software #"
echo "# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #"
echo "##"
echo

}

##
Quit nicely with messages as appropriate
##
Quit()
{

if [$verbose = 1]
then
if [$error = 0]

then
echo "Program terminated normally"

else
echo "Program terminated with error ID $ErrorMsg";

fi
fi
exit $error

}

##
Display verbose messages in a common format
##
PrintMsg()

Figure 10-2. (continued)

CHApTER 10 AlWAys UsE sHEll sCRIpTs

207

{
if [$verbose = 1] && [-n "$Msg"]
then

echo "########## $Msg ##########"
Set the message to null
Msg=""

fi
}

##
##
Main program
##
##
Set initial variables
badoption=0
error=0
RC=0
verbose=0
version=01.02.03

#---
Check for root. Delete if necessary.

if [`id -u` != 0]
then

echo ""
echo "You must be root user to run this program"
echo ""
Quit 1

fi

##
Process the input options. Add options as needed.
##
Get the options
while getopts ":gchrvV" option; do

case $option in
g) # display GPL

gpl
Quit;;

v) # Set verbose mode
verbose=1;;

V) # Set verbose mode
echo "Version = $version"
Quit;;

h) # display Help
Help
Quit;;

\?) # incorrect option
badoption=1;;

esac
done

if [$badoption = 1]
then

echo "ERROR: Invalid option"
Help

Figure 10-2. (continued)

CHApTER 10 AlWAys UsE sHEll sCRIpTs

208

The main part of the program begins after the end of the procedures section.

I usually start this section with a section to set the initial values of all the variables used

in the program. This ensures that all of the variables I use have been set to some default

initial value. It also provides a list of all of the variables used in the program.

Next I have a check to see if root is running this program and, if not, display a

message and exit. If your program can be run by non-root users, you can delete this

section.

Then I have getops and case statements that check the command line to determine

whether any options have been entered. For each option the case statement sets

specified variables or calls procedures like Help() and Quit(). If an invalid option is

entered, the last case stanza sets a variable to indicate that and the next bit of code

throws an error message and quits.

Finally the main body of the program is where most of your code will go. This

program is executable as it is without errors. But because there is no functional code, all

you can do is display the help and the GPL license statement and generate an error for

using an invalid option. Until you add some functional code to the program, it will do

nothing else at all.

Let’s explore this template code with Experiment 10-2.

verbose=1
error=1
ErrorMsg="10T"
Quit $error

fi

##
##
The main body of your program goes here.
##
##

Quit

##
End of program
##

Figure 10-2. (continued)

CHApTER 10 AlWAys UsE sHEll sCRIpTs

209

EXPERIMENT 10-2

perform this experiment as the student user. If you have not done so already, download the

file script.template.sh from https://github.com/Apress/linux-philo-sysadmins/

tree/master/Ch10 into the home directory for the student user. set the permissions to

executable for user, and group, and set the ownership to student.student.

In a terminal session as the user student, ensure the pWD is your home directory. Before

proceeding any further, make a working copy named test1.sh of the template.

[student@testvm1 ~]$ cp script.template.sh test1.sh

Display the help information.

[student@testvm1 ~]$ cd

[student@testvm1 ~]$./test1.sh -h

You must be root user to run this program

That is the bit of code telling you that you must be root. you can bypass that by using your

favorite editor to comment out those lines of code. That part of the code now looks like this. Be

sure to save the changes you have made.

#---

Check for root. Delete if necessary.

if [`id -u` != 0]

then

echo ""

echo "You must be root user to run this program"

echo ""

Quit 1

fi

Now run the script again using the -h option to view the help.

[student@testvm1 ~]$./test1.sh -h

Add description of the script functions here.

Syntax: template <option list here>

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch10
https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch10

210

It seems that the name of the script is not correct. Edit the test1.sh script to change the name

at the top of the first comment section and in the help procedure to the new name of the

script. While we are working on the help procedure, add the options list. The “syntax” line in

help should look like this.

echo "Syntax: test1.sh -ghvV"

save the changes and run the script again using the -h option.

[student@testvm1 ~]$./test1.sh -h

Add description of the script functions here.

Syntax: test1.sh -ghvV

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

let’s see what happens when you give the program an option it does not recognize.

[student@testvm1 ~]$./test1.sh -a

ERROR: Invalid option

Add description of the script functions here.

Syntax: test1.sh -ghvV

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

Program terminated with error ID 10T

That’s good – it displays the help and terminates with an error message. Most people will not

understand the humor of the error message ID – it is not one I would leave in any production

script.

so let’s at least make our little test script perform some useful work. Add the following line

after the massive comment, indicating the beginning of the main body of the code, but before

the Quit function call.

free

CHApTER 10 AlWAys UsE sHEll sCRIpTs

211

yup – that’s all, just the free command. It should look like this.

###

###

###

###

The main body of your program goes here.

###

###

###

###

free

Quit

###

End of program

###

save the script and run the it again without any options.

[student@testvm1 ~]$./test1.sh

 total used free shared buff/cache available

Mem: 4046060 248256 3384972 988 412832 3566296

Swap: 4182012 0 4182012

[student@testvm1 ~]$

so now you have created a working script from a fairly simple template. you have performed

some simple tests to verify that the script is performing as expected.

One of the options that I like to have is a “test” mode in which the program runs

and describes what it will do or prints some debugging data to STDOUT so that I can

visualize how it is working. Let’s add that option to our template.

The getopts statement (get options) allows us to specify option inputs to a bash

script. We then use the case statement to sort through any and all of the options and set

values, perform small tasks, or call longer procedures. The while statement loops until

all options have been processed, unless one of the options takes a path that exits from

the loop in some manner.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

212

EXPERIMENT 10-3

First, let’s add a new variable, Test, and set an initial value of 0 (zero). Add the following line of

code in the variable initialization section of the template.

Test=0

Now let’s add the new option character (t) to the getopts statement.

while getopts ":gchrtvV" option; do

Now we add a new stanza to the case statement. The finished options processing code looks like this.

while getopts ":gchrtvV" option; do

 case $option in

 g) # display GPL

 gpl

 Quit;;

 t) # Set test mode

 test=1;;

 v) # Set verbose mode

 verbose=1;;

 V) # Set verbose mode

 echo "Version = $version"

 Quit;;

 h) # display Help

 Help

 Quit;;

 \?) # incorrect option

 badoption=1;;

 esac

done

Depending upon how you write the code in the case statement stanzas, the sequence in

which they appear can affect the results.

We are not yet done. you should add a line to the Help() procedure. Add the following line to

the help procedure. Any place that makes sense to you is fine, but I like to place the options in

alphabetical order.

echo "t Set test mode. The program runs but does not perform any actions."

CHApTER 10 AlWAys UsE sHEll sCRIpTs

213

you should also add a line to the change history.

01/30/2018 David Both Add an option for setting test mode.

Now we need to test. First let’s ensure we have not broken anything, then we can add code

to “test” by circumventing our free statement. I have only shown a few possible test modes

here, but you should test every possible option and combination of options to ensure that

nothing is broken.

[root@david development]# ./script.template.sh

 total used free shared buff/cache

available

Mem: 65626576 8896704 48397920 159924 8331952 55963460

Swap: 15626236 0 15626236

[root@david development]# ./script.template.sh -x

ERROR: Invalid option

Add description of the script functions here.

Syntax: template <option list here>

options:

g Print the GPL license notification.

h Print this Help.

t Set test mode. The program runs but does not perform any actions.

v Verbose mode.

V Print software version and exit.

Program terminated with error ID 10T

[root@david development]# ./script.template.sh -t

 total used free shared buff/cache available

Mem: 65626576 8895716 48399104 159924 8331756 55964424

Swap: 15626236 0 15626236

[root@david development]# ./script.template.sh -h

Add description of the script functions here.

Syntax: template <option list here>

options:

g Print the GPL license notification.

h Print this Help.

t Set test mode. The program runs but does not perform any actions.

v Verbose mode.

V Print software version and exit.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

214

Now let’s add some code that prevents execution of the free statement if we set test mode.

Execute the code only if this is not test mode

if [$test]

then

 Msg="Test mode. No action taken."

 PrintMsg

else

 free

fi

And we test some more.

[root@david development]# ./script.template.sh -t

[root@david development]# ./script.template.sh

 total used free shared buff/cache available

Mem: 65626576 8904512 48395196 159924 8326868 55955156

Swap: 15626236 0 15626236

[root@david development]#

Again I only show a couple results here, but you can see there is a problem. Can you see what

it is? The message does not print when we are in test mode. Can you see why? If you look at

the printMsg() procedure, you see that the message is only printed if verbose mode is set.

There are a number of ways to fix this. One is to remove the verbose requirement from the

printMsg() procedure. Another is to set verbose mode in the test path of the if statement. you

could set verbose mode in the -t case stanza. Another choice is just to use the -v option when

you run the program. The latter result looks like this.

[root@david development]# ./script.template.sh -tv

########## Test mode. No action taken. ##########

Program terminated normally

Which choice would you make to display the test message when in test mode? My preference

is to set verbose mode in the case stanza so that it looks like this.

 t) # Set test mode

 verbose=1

 test=1;;

Go ahead and make whatever change you choose to ensure that test mode messages are

displayed, and then test extensively until you know everything is working properly.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

215

Remember that this is a template, a starting point for scripts that have a specific and

useful purpose. Code that is not necessary, such as the bit we added in Experiment 10-3,

can be safely ignored or removed.

We will use this script template as the basis for a more useful script in Chapter 11,

“Test Early, Test Often.”

Feel free to use this template and alter it to meet your own requirements. Because

the template is open source under the GPL2, you can share it and modify it. My intention

is for it to be used by you if you so choose. Remember that the Lazy Admin always uses

freely available code to prevent having to duplicate the effort of writing code that already

does what you need. I hope you find it useful.

 Final Thoughts
Compiled programs are necessary and fill a very important need. But for SysAdmins,

there is always a better way. We should always use shell scripts to meet the automation

needs of our jobs.

Shell scripts are open; their content and purpose are knowable. They can be readily

modified to meet differing requirements. Personally, I have found nothing that I have ever

needed to do in my SysAdmin role that could not be accomplished with a shell script.

In the very rare event that you find something a shell script cannot do, don’t write the

whole program in a compiled language. Write as much as possible as a shell script. Then,

if – and only if – there is no possible way to do that little bit that is left by using a shell

command or a series of shell commands in a pipeline, write a little program that does

one thing well – that one little bit that cannot be found anywhere else.

CHApTER 10 AlWAys UsE sHEll sCRIpTs

217
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_11

CHAPTER 11

Test Early, Test Often
You know, I almost forgot to include this chapter. It was as easy to forget to write about

testing the programs I write as it is to overlook testing the programs themselves.

Why is that?

I wish I had a definitive answer. In some ways it is like documentation. Once the

program seems to work, we just want to get on with doing whatever task caused us to

write the program in the first place.

There is always one more bug.

—Lubarskyʼs Law of Cybernetic Entomology

Lubarsky – whoever he might be – is correct. We can never find all of the bugs in our

code. For every one I find there always seems to be another that crops up, usually at a

very inopportune time.

In Chapter 10, “Always Use Shell Scripts,” we started to talk about testing and the

process I use for testing. This chapter covers testing in more detail. You will learn about

how testing affects the ultimate outcome of the many tasks that SysAdmins do. You will

also learn that testing is an integral part of the Philosophy.

However, testing is not just about programs. It is also about verification that

problems – whether caused by hardware, software, or the seemingly endless ways that

users can find to break things – that we are supposed to have resolved actually have

been. These problems can be with application or utility software we wrote, system

software, applications, and hardware. Just as importantly, testing is also about ensuring

that the code is easy to use and the interface makes sense to the user.

218

 Procedures
One of the jobs I had in a previous life was as a tester for Linux-based appliances at

Cisco. I developed test plans, wrote Tcl/Expect code to implement the test plan, and

helped trace the root cause of the failures. I enjoyed that job and learned a lot from it.

I referred to testing briefly in Chapter 10 but more detail about my procedures is

necessary here. Following a well-defined procedure when writing and testing shell

scripts can contribute to consistent and high-quality results. My procedures are simple.

 1. Create the test plan, at least a simple one.

 2. Start testing right at the beginning of development.

 3. Perform a final test when the code is complete.

 4. Move to production and test more.

 Create a Test Plan
Testing is hard work and it requires a well-designed test plan based on the requirements

statements. Regardless of the circumstances, start with a test plan. Even a very basic

test plan provides some assurance that testing will be consistent and cover the required

functionality of the code.

Any good plan includes tests to verify that the code does everything it is supposed to.

That is, if you enter X and click on button Y, you should get Z as the result. So you write a

test that creates those conditions and then verify that Z is the result.

The best plans include tests to determine how well the code fails. I found this out the

hard way back when I got my first IBM PC in 1982.

The PC had just been announced in August of 1981 and employee purchases were

not begun until early 1982. There were not a lot of programs out there, especially for

kids. I wanted to introduce my young son to the PC but could find nothing appropriate

so I wrote a little program in BASIC that I thought he would enjoy. Frankly, I don’t even

remember what it was supposed to do.

I tested that program every way I could think of. It did everything it was supposed

to do. Then I turned the computer over to my son and walked out of the room. I had not

gone very far when he yelled, “Dad! Is it supposed to do this?” It wasn’t. I asked him what

he did and he described some very strange set of keystrokes and I said, “You are not

supposed to do that,” and immediately realized how silly that would have sounded to him.

Chapter 11 teSt earLY, teSt OFteN

219

My problem was that I had not tested how the program would react to unexpected

input. That does seem to be a common problem with programs of all kinds. But I never

forgot that particular lesson. As a result, I always try to include code that tests for unexpected

input and then I test to ensure that the program detects it and fails gracefully.

There are lots of different formats for test plans. I have worked with the full range

from having it all in my head, to a few notes jotted down on a sheet of paper, to a

complex set of forms that required a full description of each test, which functional code

it would test, what the test would accomplish, and what the inputs and results should be.

Speaking as a SysAdmin who has been but is not now a tester, I try to take the middle

ground. Having at least a short, written test plan will ensure consistency from one test

run to the next. How much detail you need depends upon how formal your development

and test procedures are.

 Test Plan Content

All of the sample test plan documents I found using Google were complex and intended

for large organizations with a very formal development and test process. Although those

test plans would be good for those with “Test” in their job title, they really do not apply

well to System Administrators and our more chaotic and fast time-dependent working

conditions. As in most other aspects of our jobs, we need to be creative. So here is a short

list of things that you would want to consider including in your test plan. Modify it to suit

your needs.

• The name and a short description of the software being tested.

• A description software features to be tested.

• The starting conditions for each test.

• The procedures to follow for each test.

• A description of the desired outcome for each test.

• Include specific tests designed to test for negative outcomes.

• Tests for how the program handles unexpected input.

• A clear description of what constitutes pass or fail for each test.

• Fuzzy testing, which will be described below.

This short list should give you some ideas for creating your own test plans. For most

SysAdmins, this should be kept simple and fairly informal.

Chapter 11 teSt earLY, teSt OFteN

220

 Start Testing at the Beginning
I always start testing my shell scripts as soon as I complete the first portion that is

executable. This is true whether I am writing a short command-line program or a script

that is an executable file.

I usually start creating new programs with the shell script template that you had an

opportunity to explore in Experiment 10-2. I write the code for the Help procedure and

test it. This is usually a trivial part of the process, but it helps me get started and ensures

that things in the template are working properly at the outset. At this point it is easy to fix

problems with the template portions of the script, or to modify it to meet specific needs

that the standard template cannot.

When the template and Help procedure are working, I move on to creating the body

of the program by adding comments to document the programming steps required to

meet the program specifications. Now I start adding code to meet the requirements

stated in each comment. This code will probably require adding variables that are

initialized in that section of the template – which is now becoming our shell script.

This is where testing is more than just entering data and verifying the results. It takes

a bit of extra work. Sometimes I add a command that simply prints the intermediate

result of the code I just wrote and verify that. Other times, for more complex scripts, I add

a -t option for “test mode.” In this case the internal test code is only executed when the

-t option is entered at the command line.

 Final Testing
After the code is complete, I go back through a complete test of all the features and

functions using known inputs to produce specific outputs. I also test for some random

inputs to see if the program can handle unexpected input now that it is complete.

Final testing is intended to verify that the program is functioning essentially as

intended now that it is complete. A large part of the final test is to ensure that functions

that worked earlier in the development cycle have not been broken by code added or

changed later in the cycle.

If you have been testing the script as you added new code to it, there should be no

surprises during this final test. Wrong! There are always surprises during final testing.

Always. Expect those surprises and be ready to spend some time fixing them. If there

were never any bugs discovered during final testing, there would be no point in doing a

final test, would there.

Chapter 11 teSt earLY, teSt OFteN

221

 Testing in Production
Huh – what?

Not until a program has been in production for at least six months will the
most harmful error be discovered.

—Troutman’s Programming Postulates

Yes, testing in production is now considered normal and desirable. Having been a

tester myself, this actually does seem reasonable. “But wait! That’s dangerous,” you say.

My experience is that it is no more dangerous than extensive and rigorous testing in a

dedicated test environment. In some cases there is no choice because there is no test

environment – only production.

This was the case in one of my jobs, the one where I was responsible for maintenance

of a large number of Perl CGI scripts that generated dynamic pages for a web site. The

entire web site for this huge organization’s email management interface was run on a

single, very old even then, Dell desktop system. That was our critical server. I had an

even older Dell desktop from which I would log in to the server to do my programming.

Both of these computers ran an early version of Red Hat Linux.

The only option we had to work with was to make many critical changes on the fly in

the middle of the day and then test in production. What fun that was!

Eventually we obtained a couple of additional old desktops to use as development

and test environments but it was a nail biting challenge until we did. Part of the reason

for lack of equipment on which to run this large email system was that it started out as a

small pilot test for one department. It grew rapidly out of control with more departments

asking to join as soon as they heard about it. Pilot tests are never funded and are usually

lucky to be gifted with another department’s old and unwanted equipment.

So SysAdmins are no strangers to the need to test new or revised scripts in

production. Any time a script is moved into production, that becomes the ultimate test.

The production environment itself constitutes the most critical part of that test. Nothing

that can be dreamed up by testers in a test environment can fully replicate the true

production environment.

The allegedly new practice of testing in production is just the recognition of what we

SysAdmins have known all along. The best test is production – so long as it is not the only

test.

Chapter 11 teSt earLY, teSt OFteN

222

After the final test, the program can move into production. Production is always a

test of its own. Writing code in an isolated development and test environment is in no

way representative of the conditions encountered in a true production environment.

Always expect new bugs to surface in production no matter how well the script

was written and tested. As Troutman’s postulate says, the most harmful error won’t be

discovered for quite some time after a program has been put in production and everyone

has come to assume that the results are always correct. The most harmful bugs are

not the ones that cause the programs to crash; they are the ones that quietly result in

incorrect results.

Continue checking the results the script produces even after it has gone into

production. Look for the next bug and you will eventually find it.

 Fuzzy Testing
This is another of those buzzwords that caused me to roll my eyes when I first heard it.

I learned that its essential meaning is simple – have someone bang on the keys until

something happens and see how well the program handles it. But there really is more to

it than that.

Fuzzy testing is a bit like the time my son broke my code in less than a minute with

his random input. Most test plans utilize very specific input that generates a specific

result or output. Regardless of whether the test is for a positive or negative outcome as

success, it is still controlled and the inputs and results are specified and expected, such

as a specific error message for a specific failure mode.

Fuzzy testing is about dealing with randomness in all aspects of the test such as

starting conditions, very random and unexpected input, random combinations of

options selected, low memory, high levels of CPU contention with other programs,

multiple instances of the program under test, and any other random conditions that you

can think of to be applied to the tests.

I try to do some fuzzy testing right from the beginning. If the bash script cannot deal

with significant randomness in its very early stages, then it is unlikely to get better as we

add more code. This is also a good time to catch these problems and fix them while the

code is relatively simple. A bit of fuzzy testing at each stage of completion is also useful

in locating problems before they get masked by even more code.

Chapter 11 teSt earLY, teSt OFteN

223

After the code is completed I like to do some more extensive fuzzy testing. Always

do some fuzzy testing. I have certainly been surprised by some of the results I have

encountered. It is easy to test for the expected things, but users do not usually do the

expected things with a script.

 Automated Testing
Testing can be automated, but most of the work we do as SysAdmins comes with

intrinsic time pressures that preclude taking the time to write code to test our code.

Those pressures are the reason most code we write is quick and dirty. So we write code

and test it in a hurry.

It is possible to use tools like Tcl/Expect to write a complex test suite for our shell

scripts. I never had time to do anything that formal as a SysAdmin. The most automation

I have ever done in my role as a SysAdmin is to write a very short script to sequence

through a set of commands to verify a few critical aspects of the script under test. Most

of the time, I test manually at each step of the way and when the program is complete.

Using bash history can be a reasonable substitute and provides at least some semi-

automated testing.

In my role as a tester at Cisco, I wrote a lot of tests using Tcl/Expect. My task was to

write the modules that would be called by the previously written test bed. The Tcl/Expect

code I wrote could have been run as stand-alone tests, but the test bed provided a

framework that aggregated all of the results from the individual tests and generated

a nice set of reports that enabled us to see how far along we were in getting bug fixes

applied to the code.

There are a lot of commercial test suites available. Many are very expensive and are

not especially suitable for use by SysAdmins because of the effort required to learn them

and the time necessary to prepare for the tests.

Writing Tcl/Expect programs is very time consuming, but when developing a large

code base it can be quite useful. My favorite book for Tcl/Expect is Exploring Expect,1

which includes plenty of information about Tcl. Wikipedia has an excellent article on

software testing2 with many links to more in-depth material.

1 Libes, Don, Exploring Expect, O’Reilly, 2010, ISBN 978-1565920903
2 Wikipedia, Software testing, https://en.wikipedia.org/wiki/Software_testing

Chapter 11 teSt earLY, teSt OFteN

https://en.wikipedia.org/wiki/Software_testing

224

 Trying It Out
In Experiment 10-2 you made some modifications to a copy of the shell script template.

At each step in that experiment you tested the results of the changes you had made so

you are already familiar with the basic SysAdmin development process. The experiments

in this chapter will use that process to develop and test a program that will list some

interesting information and statistics about your Linux host. In the end we will have a

fairly long script that will have been well tested. Typical output from this script is shown

in Figure 11-1.

Figure 11-1. A sample of the MOTD generated by the shell script you will create in
the experiments in this chapter

Chapter 11 teSt earLY, teSt OFteN

225

I run this script as a cron job to generate a report every day that I store as /etc/motd,

which is the message-of-the-day file. Whenever anyone logs in using a remote terminal

or one of the virtual consoles, the MOTD is displayed.

Before we start coding we need to create first a set of requirements and then a simple

test plan.

 Requirements for MOTD Script
A simple set of requirements will help us design the program and keep on point for the

specific features we want to include. These requirements should work just fine yet leave

leeway for creativity.

• All output goes to STDOUT and STDERR so that it can be redirected

as desired.

• Provide an option to print the script release version.

• Print the following data in a pleasing format.

• A header with the current date

• The host name

• Machine type – VM or physical

• Host hardware architecture X86_64 or i386

• Motherboard vendor and model

• CPU model and hyperthreading status

• The amount of RAM (GB)

• The amount of Swap space (GB)

• The date Linux was installed

• The Linux distribution

• The kernel version

• Disk partition information

• LVM physical volume information

• Include comments to describe the code.

• Options should not be required to produce the desired output.

Chapter 11 teSt earLY, teSt OFteN

226

This seems like a long list, but it is quite short compared to some sets of

requirements I have seen. I created the original bash script from a similar set of

requirements. The script template we created in Chapter 10, “Always Use scripts,” already

has code that can help to meet some of these requirements.

The only issue someone might have with this list is the term “pleasing.” Who knows

what might be pleasing versus displeasing for whoever is going to be using this script.

So for this experiment, pleasing will be what I say it is. In other environments, many

pages of requirements might be needed to define the explicit format of the output. In the

SysAdmin environment, pleasing is usually what works for us or for whoever asked for

the program to be written.

 Test Plan for MOTD Script
Our test plan is simple and straightforward.

• Verify that the help (-h) option displays the correct help information.

• Verify that the GPL (-g) option displays the GPL license statement.

• Verify that all output data specified in the requirements are

produced.

• Verify that all of the printed output is correct for the system on which

testing is performed.

• Verify that the values for numeric output are correct by comparison

with other sources. It is probable that some of these numbers will

change between runs and when compared with other sources due

to the dynamic nature of any running computer, but they should be

reasonably close.

• Ensure that incorrect option selections produce an appropriate error

code.

• If possible, test on multiple systems, including physical hardware and

VMs to verify correct results for different conditions. Include Intel,

AMD, and ARM hardware.

• If possible, test with multiple Linux distributions.

Chapter 11 teSt earLY, teSt OFteN

227

This simple test plan is everything we need to know when testing our script. We

know the outputs that we need to check because they are defined in the program

requirements.

The last two items may not be possible within the context of a learning environment,

but it is always something to consider. Differing environments should produce different

results with this script. It is helpful to test outside our actual dev/test environment to

ensure that the logic and results are accurate for those other environments. Testing in

production can help with this.

 Developing the Script
Remember that for SysAdmins development also means testing. Because of the

amount of work required to create the complete script, I have divided it into a series of

experiments in which each experiment will develop and test a section of code to meet

part or all of a specific requirement.

Note If you are not clear about how some of the commands work, and especially
what the stages of pipelines do, you should research them. First look at the man
pages for each command in the pipeline to understand what it does. then build up
the pipeline – one command stage – at a time to see the results. this was a very
helpful way for me to figure out complicated-looking code when I was just starting
as a Sysadmin. I still depend upon this approach to help me understand how some
code works.

 The Basics

Let’s start with the basics – copy the script from the revised template, change the script

name internally, add a short description, and change the help procedure to match the

features of our program.

Chapter 11 teSt earLY, teSt OFteN

228

EXPERIMENT 11-1

Make a copy of test1.sh with the new name of mymotd. You can edit this new script, mymotd,

as root or as the student user but it must be run as root when testing. I do recommend editing

shell scripts as a non-root user. Open two terminal sessions and su – to root in one of them.

Open the mymotd script in your favorite editor in the terminal session as user student.

Be sure to save your work frequently as we edit the script.

First, let’s change the script name in the header comments and add a short description of the

script. the results should look like this.

#!/bin/bash

###

mymotd

#

This bash shell extracts various interesting bits of information about

the Linux host and the operating system itself. It prints this data to

STDOUT in a nice looking format. The results can also be redirected to

the/etc/motd file to create an informational message of the day.

#

Change History

01/08/2018 David Both Original code.

#

#

###

Be sure to set the first line in the change history to the current date and your name.

Next let’s work on the help procedure. all that is needed here is to add a short description,

a line to describe the syntax of the command, and a list of the possible options.

Chapter 11 teSt earLY, teSt OFteN

229

##

Help

##

Help()

{

 # Display Help

 echo " mymotd"

 echo "Generate an MOTD that contains information about the system"

 echo " hardware and the installed version of Linux."

 echo

 echo "Syntax: mymotd [-g|h|v|V]"

 echo "options:"

 echo "g Print the GPL license notification."

 echo "h Print this Help."

 echo "v Verbose mode."

 echo "V Print software version and exit."

 echo

}

Let’s do our first testing. In the terminal session as root, make /home/student the pWD, which

is where the new code is located. Now run the program using one of three options for each

run; -h to test the help facility, -g to test printing the GpL statement, and -x to test for an

invalid option.

[root@testvm1 student]# ./mymotd -h

 mymotd

Generate an MOTD that contains information about the system

 hardware and the installed version of Linux.

Syntax: mymotd [-g|h|v|V]

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

Chapter 11 teSt earLY, teSt OFteN

230

[root@testvm1 student]# ./mymotd -g

###

Copyright (C) 2007, 2016 David Both

Millennium Technology Consulting LLC

http://www.millennium-technology.com

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

##

[root@testvm1 student]# ./mymotd -x

ERROR: Invalid option

 mymotd

Generate an MOTD that contains information about the system

 hardware and the installed version of Linux.

Syntax: Syntax: mymotd [-g|h|v|V]

options:

g Print the GPL license notification.

h Print this Help.

v Verbose mode.

V Print software version and exit.

Program terminated with error ID 10T

If you can think of any more tests to perform, such as fuzzy testing, do that now. If you see any

problems while you are testing, fix them now, then test again.

Chapter 11 teSt earLY, teSt OFteN

231

 Add Sanity Checks
In Chapter 10 we commented out the sanity check to ensure that the script is being run

by root so we need to restore that. We will also add a check to ensure that the script is

running on a Linux host. As a bash script, it would be compatible with various Unix

systems, but several of the Linux specific functions would fail.

EXPERIMENT 11-2

First remove the comment hashes from the root check. that now looks like this.

#---

Check for root.

if [`id -u` != 0]

then

 echo ""

 echo "You must be root user to run this program"

 echo ""

 Quit 1

fi

Now run two quick tests. run the program as root to ensure that root can still use the program.

[root@testvm1 student]# ./mymotd

 total used free shared buff/cache available

Mem: 4046060 254392 2947324 984 844344 3532200

Swap: 4182012 0 4182012

run the program as the student user to verify that non-root users get an error.

[student@testvm1 ~]$./mymotd

You must be root user to run this program

If you discover any errors, fix them now before we continue.

Let’s add our second sanity check to ensure that this program is run on a Linux system. this

test uses the uname command to return the operating system name.

Chapter 11 teSt earLY, teSt OFteN

232

add the following code just below the code that checks for root user.

#---

Check for Linux

if [["$(uname -s)" != "Linux"]]

then

 echo ""

 echo "This script runs on Linux only -- OS detected: $(uname -s)."

 echo ""

 Quit 1

fi

#---

We can test this only for a positive outcome – that is that we are running on Linux – but not

for a negative outcome, unless we test it on a non-Linux host. But let’s at least do our positive

test. Just run the command and verify that you get no errors.

 Version Number

All programs should have a version number. This script already has a variable that

specifies a version number, but it is the version of the script template rather than that of

the new program on which we are working. Let’s set our version number. Since this is

early in the development process, it will not be a full version level.

I like to use three double-digit parts for my version number to allow for flexibility. So

let’s start with version 00.01.00 because it indicates code that is far from ready. As we get

closer to releasing into the wild, that number will go up and the first full release will be

01.00.00.

EXPERIMENT 11-3

First set the version number in the variables section of the code. Let’s also delete the rC

(return code) line in this section. this is what we have in the variables section for now, but

more variables will be added here as we move through the rest of the experiments in this

chapter.

Chapter 11 teSt earLY, teSt OFteN

233

/ That little bit of new code \
\ won't break anything. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

Set initial variables

badoption=0

error=0

verbose=0

Version=00.01.00

Now we test even this tiny bit of new code despite the fact that it looks simple and innocuous.

[root@testvm1 student]# ./mymotd -V

Version = 00.01.00

But you are not really done with testing. You should do some additional testing of the

previously coded functions to ensure that they have not been broken by this new code.

At this point the basics are complete. We have a partial script that displays help, the

GNU license statement, performs a couple of sanity checks, and displays the version

number. We do not need to add any options to the case statement because everything we

need is already there.

 Main Body

Now we can add the main body of the code to gather the data we want and to display it.

We will gather the data in the sequence we want it and print it to STDOUT as we go. This

will make early testing easy.

Chapter 11 teSt earLY, teSt OFteN

234

EXPERIMENT 11-4

First, delete the free command that we used to provide some output from the script.

Now let’s add some code to our program. In the main body of the program and before the

Quit function call, add the code to perform these functions. We also add some code that will

print the data we have collected. this provides a simple test while also producing the desired

results.

this section of code now looks like this.

##

##

The main body of your program goes here.

##

##

Get the date

Date=`date`

Get the hostname

host=`hostname`

##

Start printing the data using printf to make it pretty

##

printf "###\n"

printf "# MOTD for $Date\n"

printf "# HOST NAME: \t\t$host \n"

In the printf statement, \t inserts a tab into the output and \n is a newline character. It took me

a while to get the entire output formatted properly when I first wrote this script. You have the

advantage of my knowledge that I gained from doing this first.

add the following variables to the initialization section.

host=""

Date=""

Now let’s run the program to test just these results.

Chapter 11 teSt earLY, teSt OFteN

235

[root@testvm1 student]# ./mymotd

##

MOTD for Sat Jan 13 12:14:34 EST 2018

HOST NAME: testvm1

that looks correct for my virtual machine host. So in five lines of active code – not counting

the comment lines – we have the beginnings of our script written and tested.

The code so far lends itself well to a dev/test cycle like this. We add code to obtain

some data and some more code to print that data. Things are about to get more complex.

EXPERIMENT 11-5

Now we want to add some code to determine whether the host is a physical or virtual machine

and we also want some information about the motherboard. the Linux command we need to do

this, dmidecode, is not always installed so we need to ensure that it is present on our host. the

easy way to do this is to try to install it. If it is not present, it will be installed. Do this as root.

[root@testvm1 ~]# dnf install -y dmidecode

the dmidecode utility, where dmi stands for Desktop Management Interface, can access a

table of hardware data maintained by the system management BIOS (SMBIOS). For example,

use the following command to retrieve data about the motherboard. “-t” means “type” and

type 2 is the motherboard. the dmidecode man page lists all of the data types available.

[root@david ~]# dmidecode -t 2

dmidecode 3.1

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0002, DMI type 2, 15 bytes

Base Board Information

 Manufacturer: ASUSTeK COMPUTER INC.

 Product Name: TUF X299 MARK 2

 Version: Rev 1.xx

 Serial Number: 170807951700403

 Asset Tag: Default string

 Features:

Chapter 11 teSt earLY, teSt OFteN

236

 Board is a hosting board

 Board is replaceable

 Location In Chassis: Default string

 Chassis Handle: 0x0003

 Type: Motherboard

 Contained Object Handles: 0

the results of the dmidecode command above are from my main workstation rather than a test VM.

Note this mymotd script is written for Intel processors and Fedora Linux. It will
work with other chips and distributions, but the results of some sections of code
may not be correct. You may want to do some experimentation on your own to
make those sections work in your environment.

Now we have the dmidecode tool installed and we can continue adding to our

program. First we want to know if the host is a VM or physical machine.

EXPERIMENT 11-6

Now let’s add some code to tell us whether the host is a physical machine of a VM. the

information we need for this is part of the dmesg log buffer that is started at each boot. We

just need to grep for the appropriate text strings. add the code below immediately after the

date and hostname from the previous experiment.

##

Is this a VirtualBox, VMWare, or Physical Machine.

##

if dmesg | grep -i "VBOX HARDDISK" > /dev/null

then

 MachineType="VM running under VirtualBox."

elif dmesg | grep -i "vmware" > /dev/null

then

 MachineType="VM running under VMWare."

else

 MachineType="physical machine."

fi

printf "# Machine Type: \t$MachineType\n"

Chapter 11 teSt earLY, teSt OFteN

237

add the Machinetype variable to the variables section of the script. and then test this new code.

[root@testvm1 student]# ./mymotd

###

MOTD for Sun Jan 14 09:49:29 EST 2018

HOST NAME: testvm1

Machine Type: VM running under VirtualBox.

this is again correct for my test VM. Your results may differ.

It it often helpful to know the architecture of the host computer, that is, whether it is

32- or 64-bit. This next experiment adds some code to determine that.

EXPERIMENT 11-7

add the three lines of code below to determine the architecture of the host as 32 or 64 bits.

Get the host physical architecture

HostArch=`echo $HOSTTYPE | tr [:lower:] [:upper:]`

printf "# Host architecture: \t$HostArch\n"

add hostarch to the variables section and test.

[root@testvm1 student]# ./mymotd

###

MOTD for Sun Jan 14 10:43:05 EST 2018

HOST NAME: testvm1

Machine Type: VM running under VirtualBox.

Host architecture: X86_64

and this shows that our VM is 64-bit, which is correct. Most hosts today are 64-bit and only a

few 32-bit ones are still around, such as my aSUS eeepC. however some of the small, single

board computers (SBC) are still 32-bit.

Even in a VM the motherboard information is interesting, so let’s get that data now.

The ability to get this information without taking the computer apart is very useful.

Chapter 11 teSt earLY, teSt OFteN

238

EXPERIMENT 11-8

the following code is added after the host architecture code and uses dmidecode to extract

information about the motherboard.

##

Get the motherboard information

##

MotherboardMfr=`dmidecode -t 2 | grep Manufacturer | awk -F: '{print $2}' |

sed -e "s/^ //"`

MotherboardModel=`dmidecode -t 2 | grep Name | awk -F: '{print $2}' |

sed -e "s/^ //"`

printf "# Motherboard Mfr: \t$MotherboardMfr\n"

printf "# Motherboard Model: \t$MotherboardModel\n"

printf "#--\n"

Note that the lines of code that obtain the motherboard information are both wrapped in the

listing above. Be sure to enter them on a single line. I also added a line to print a separator in

order to set it apart from the next section of data.

add the two new variables to the variable initialization section.

MotherboardMfr=""

MotherboardModel=""

Now test the program to verify the results.

[root@testvm1 student]# ./mymotd

###

MOTD for Sun Jan 14 10:57:05 EST 2018

HOST NAME: testvm1

Machine Type: VM running under VirtualBox.

Host architecture: X86_64

Motherboard Mfr: Oracle Corporation

Motherboard Model: VirtualBox

#--

this first section of the results is excellent and correct for the virtual machine. It looks nice and

is easy to read.

Chapter 11 teSt earLY, teSt OFteN

239

Up to this point we have extracted and printed some general information about the

host. Now we want to add a section that will show us some information about the CPU

itself. Much of this information is located in the /proc filesystem. Many times it is not

available as a single, well-formatted data point, so we need to use our Linux tools to

extract what we want and format it appropriately.

EXPERIMENT 11-9

We start obtaining CpU information by getting the CpU model information from the /proc

filesystem. these lines of code do that so add them to the end of the program just above the

Quit function call.

##

Get the CPU information

##

Starting with the specific hardware model

CPUModel=`grep "^model name" /proc/cpuinfo | head -n 1 | cut -d : -f 2 |

sed -e "s/^ //"`CPUModel

printf "# CPU Model:\t\t$CPUModel\n"

the line that assigns the value to the CpUModel variable is wrapped so be sure to enter in on

one line in your program. add the CpUModel variable to the variables section and test.

[root@testvm1 student]# ./mymotd

###

MOTD for Sun Jan 14 15:54:24 EST 2018

HOST NAME: testvm1

Machine Type: VM running under VirtualBox.

Host architecture: X86_64

Motherboard Mfr: Oracle Corporation

Motherboard Model: VirtualBox

#--

CPU Model: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

this latest addition to our code produces good information about the CpU installed in our

system.

Chapter 11 teSt earLY, teSt OFteN

240

Let’s locate some additional CPU information, such as the number of CPUs and the

packaging info – how many cores per chip – and whether we have hyperthreading.

EXPERIMENT 11-10

this experiment collects some CpU data and then makes some educated determinations of

how the CpUs are packaged and whether the CpUs are capable of hyperthreading.

First, let’s add a bunch of new variables to the initialization section.

PhysicalChips=0

Siblings=0

HyperThreading="No"

CPUSpeed=""

NumCores=0

Package=0

Arch=""

CPUdata=""

CPUArch=""

there is a lot of code here because it is all related and needs to be complete for the test to

succeed. Be careful as you enter it. especially be careful of the lines that are wrapped in the

listing below.

###

Get some CPU details.

###

Get number of actual physical chips

PhysicalChips=`grep "^physical id" /proc/cpuinfo | sort | uniq | wc | awk

'{print $1}'`

if [$PhysicalChips -eq 0]

then

 let PhysicalChips=1

fi

Get the total number of cores

CPUs=`cat /proc/cpuinfo | grep "cpu cores" | head -n 1 | cut -d : -f 2 |

sed -e "s/^ //"`

Do we have HyperThreading

Chapter 11 teSt earLY, teSt OFteN

241

Siblings=`grep "^siblings" /proc/cpuinfo | head -n 1 | cut -d : -f 2 |

sed -e "s/^ //"`

if [$Siblings -gt $CPUs]

then

 # Yes we have HyperThreading

 HyperThreading="Yes"

fi

Now Cores per CPU

We are assuming each package has the same number of cores – the next line

is wrapped

NumCores=`grep "^cpu cores" /proc/cpuinfo | sort | uniq | awk -F: '{print $2}' |

sed -e "s/^ //"`

case "$NumCores" in

 1) Package="Single Core";;

 2) Package="Dual Core";;

 4) Package="Quad Core";;

 6) Package="Six Core";;

 8) Package="Eight Core";;

 12) Package="Twelve Core";;

 16) Package="Sixteen Core";;

 18) Package="Eighteen Core";;

 20) Package="Twenty Core";;

 24) Package="Twenty-four Core";;

 26) Package="Twenty-six Core";;

 28) Package="Twenty-eight Core";;

 30) Package="Thirty Core";;

 32) Package="Thirty-two Core";;

 *) Package="Single Core"

 NumCores=1;;

esac

Get the CPU architecture which can be different from the host architecture

CPUArch=`arch`

Now lets put some of this together to make printing easy

CPUdata="$PhysicalChips $Package $CPUArch"

Get the CPU speed – The next line is wrapped

CPUSpeed=`grep "model name" /proc/cpuinfo | sed -e 's/.*\([0-9]*.[0-9]*[GM]

Hz\)/\1/' -e 's/^ *//g' | uniq`

Chapter 11 teSt earLY, teSt OFteN

242

Let's print what we have

printf "# CPU Data:\t\t$CPUdata\n"

printf "# HyperThreading:\t$HyperThreading\n"

printf "#---\n"

Be sure to check this code over carefully as you enter it. and then we test again.

[root@david development]# ./mymotd

###

MOTD for Mon Jan 15 15:35:09 EST 2018

HOST NAME: david

Machine Type: physical machine.

Host architecture: X86_64

Motherboard Mfr: ASUSTeK COMPUTER INC.

Motherboard Model: TUF X299 MARK 2

#--

CPU Model: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

CPU Data: 1 Sixteen Core x86_64

HyperThreading: Yes

#--

Our first two sections are complete. The next section that details the system memory

is a little easier.

EXPERIMENT 11-11

this experiment adds code to display a few memory statistics. here again we use resources

readily available.

the /proc/meminfo file has the data we need but it is in KB and we want it in GB for the sake

of clarity. to do this we add the following procedure to the procedure section of the script.

Bash does not have decent math capability, so this code uses the bc calculator command,

which has its own unique syntax.

##

Convert KB to GB

##

kb2gb()

{

Chapter 11 teSt earLY, teSt OFteN

243

 # Convert KBytes to Giga using 1024

 # first convert the input to MB

 echo "scale=3;$number/1024/1024" | bc

}

the following code, which should be added just before the final Quit procedure call at the end

of the script, gets the data from the /proc/meminfo file and then converts the numbers to GB. It

then prints the results.

##

Memory and Swap data

##

Get memory size in KB.

number=`grep MemTotal /proc/meminfo | awk '{print $2}'`

Convert to GB

mem=`kb2gb`

Get swap size in KB

number=`grep SwapTotal /proc/meminfo | awk '{print $2}'`

Convert to GB

swap=`kb2gb`

printf "# RAM:\t\t\t$mem GB\n"

printf "# SWAP:\t\t\t$swap GB\n"

printf "#---\n"

and we need to add the new variables to the variable section.

number=0

mem=0

swap=0

Now it is once again time to test.

[root@david development]# ./mymotd

###

MOTD for Mon Jan 15 21:56:40 EST 2018

HOST NAME: david

Machine Type: physical machine.

Host architecture: X86_64

Motherboard Mfr: ASUSTeK COMPUTER INC.

Motherboard Model: TUF X299 MARK 2

Chapter 11 teSt earLY, teSt OFteN

244

#--

CPU Model: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

CPU Data: 1 Sixteen Core x86_64

HyperThreading: Yes

#--

RAM: 62.586 GB

SWAP: 14.902 GB

#--

On the testvm1 host the results of the test look like this.

[root@testvm1 student]# ./mymotd

###

MOTD for Mon Jan 15 21:57:32 EST 2018

HOST NAME: testvm1

Machine Type: VM running under VirtualBox.

Host architecture: X86_64

Motherboard Mfr: Oracle Corporation

Motherboard Model: VirtualBox

#--

CPU Model: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

CPU Data: 1 Quad Core x86_64

HyperThreading: No

#--

RAM: 3.854 GB

SWAP: 7.999 GB

#--

If you have other hosts on which to test, you should do that to verify that the results are

correct for other circumstances.

Although this script is not yet complete based on the set of requirements I created for

it at the beginning of this chapter, I think we have gone far enough that you can finish on

your own. So I leave the completion of this script as an exercise for you, the SysAdmins of

the world.

Just in case you like this code but need some additional guidance or just don’t care

about finishing it, the completed code for this bash script can be downloaded from:

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch11

Chapter 11 teSt earLY, teSt OFteN

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch11

245

Regardless of which method you choose, you should feel free to make any

modifications to this code that you like in order to meet your own requirements.

 Fixing a Script
Many times we need to repair existing scripts. I recently had a problem with a script that

I had written. Fortunately I was made aware of the issue before any damage was done. As

you can see from the mymotd script, I like to provide a moderate number of comments

to help me figure things out later. It makes it so much easier if I do not have to determine

how the code works every time I need to modify it to either fix it or add new function.

As I mentioned in the “Test in Production” section of this chapter, sometimes fixing

a script needs to start with the very basics. In that case I added comments to make the

code easier to read and resolved any obvious bugs as I came upon them. Because of the

circumstances mentioned earlier, the only environment we had was production. Every

time I made even a minor change to the code, I had to test ensure that the change worked

as expected and that nothing else that might depend on the altered code had been broken.

In a more recent case, it was my own reasonably well-commented code that did

not work quite correctly. In this situation an MP3 file was created on a USB stick with a

filename that included the date in MMDDYYYY-X format where X is a sequence number.

My program changed the name of the file to be something that included that date as

taken directly from the filename but rearranged to YYYYMMDD-X, and then copied the

file to the server. If the recording device created two files in a single day, they both had

the same date but the files were differentiated by the sequence number. My script was

designed to keep them sequential so they would be sorted in the order of their creation.

The problem arose when a file was created and then transferred and then another

file was created the same day. It would have the same filename as the first file and

overwrite it on the server.

To fix this I decided to use the files’ timestamps to create my own in the format

YYYYMMDD-HHMMSS and to eliminate the use of the sequence number in the new

filenames.

This particular fix was a simple matter of making a single minor change that

corrected for an edge condition that I had not previously considered. Testing was easy;

just create the edge conditions and run the program while ensuring that it still ran

correctly when the edge conditions were not present. I keep a couple of sample MP3 files

on hand for testing and just copy them to the USB memory stick.

Chapter 11 teSt earLY, teSt OFteN

246

 Summary
Testing code for a SysAdmin is much like writing it – fast and less than rigorous. I

hope that last bit sounds better than “fast and loose.” Writing code quickly usually

means testing it quickly as well. That does not mean that testing shell scripts needs to

be haphazard. “Test early, test often” is a good mantra for making the testing part of

the coding. With the application of this tenet, the task of testing shell scripts becomes

second nature and an integral part of the act of writing the script in the first place.

I found the mymotd script in this chapter to be a good excuse for rewriting my

original version. I wrote the script in 2007 and my better understanding of hardware

architecture and reporting in Linux has helped me with this version. My knowledge of

Linux tools, whether new or not, has also improved and given me more flexibility to

simplify this new script.

Notice that the variable names are all ones that make sense in terms of the task being

performed. It is possible to look at the variable name and get an idea of the kind of data it

is supposed to contain. This also helps make testing easier.

Chapter 11 teSt earLY, teSt OFteN

247
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_12

CHAPTER 12

Use Commonsense
Naming
I have mentioned in several places in this book that typing is not my forte and that the

Lazy SysAdmin does everything possible to reduce typing. I take that seriously. This

tenet expands on that, but there is much more to it than just reducing the amount of

typing I need to do. It is also about the readability of scripts and naming things so that

they are more understandable.

One of the original Unix philosophy tenets – although one of the lesser ones – was to

always use lowercase and keep names short. An admirable goal but not one so easily met

in the world of the SysAdmin. In many respects my own tenet would seem a complete

refutation of the original. However, the original was intended for a different audience,

and this one is intended for SysAdmins with a different set of needs.

I think the ultimate goal is to create scripts that are readable and easily understood in

order to make them easily maintainable. And then to use other, simple scripts and cron

jobs to automate running those scripts. Keeping the script names reasonably short also

reduces typing when executing those scripts from the command line, but that is mostly

irrelevant when starting them from another script or as cron jobs.

 Script and Program Names
Does the program name dbu mean anything to you? Did the program name dd mean

anything to you before you became a Linux geek? The answer to both is probably “no.”

While dd is a common GNU utility, “disk dump,” dbu is a shell script of my own creation.

The name will still mean nothing to you, but to me it means David’s backup. It is easy to

type, and once you know what it means the name will stick with you.

248

If you explore all of the original GNU core utilities, you find that their names are quite

short – many of them being two or three letters. This is great but there are thousands

of Linux commands overall and only so many meaningful short combinations. One

property of any name should be that it has some meaningful connection to the purpose

of the program or script.

The name we used for our script in Chapter 11, mymotd, is a little longer but is also is

a bit more meaningful than might be the case with a shorter name. We could have used

davesmotd, dmotd, mmotd, davesMOTD, dMOTD, or any other relatively meaningful

name. The capital letters in some of the names do help make it easier to discern the

function of the script, but they do make it just a bit harder to type the names on the

command line.

As with my “dbu” program, there is still some room for very short names. For

example, there is a very nice program called “mtr” that is an interactive replacement

for the old traceroute program. The mtr program maintains an active and continuous

traceroute with a dynamic display that shows the number of packets lost at each hop

and can show multiple routes for if the packets are being rerouted for some reason. Very

interesting and useful.

The mtr program was originally named that because a person named Matt Kimball

wrote and maintained it. Therefore, it was “Matt’s traceroute.” After Matt stopped

supporting it, Roger Wolff took over. It is still named mtr but that now stands for “my

traceroute.”

Naming scripts with very short names can be a challenge because many of the

existing short letter combinations are already taken. I always try to do some research

when naming a script to ensure it won’t cause a problem with an executable already

installed on my computer. I usually do a quick check with the which command as shown

in Experiment 12-1.

EXPERIMENT 12-1

Since we have not copied the mymotd script to any of the standard executable path locations,

it should not appear when we use the command below.

[root@david ~]# which mymotd

/usr/bin/which: no mymotd in (/usr/lib64/qt-3.3/bin:/usr/local/sbin:/usr/

local/bin:/usr/sbin:/usr/bin:/root/bin)

Chapter 12 USe CommonSenSe naming

249

the which command displays the paths it searched in its attempt to locate the specified

executable file.

regardless of its state of completion, copy the mymotd script to /usr/local/bin, which is the

correct location in the Linux FhS to store locally created executable files. then run the which

command again.

[root@testvm1 student]# cp mymotd /usr/local/bin

[root@testvm1 student]# which mymotd

/usr/local/bin/mymotd

We have determined that there is currently no executable file installed that might cause a

problem with the name we have chosen for our file and then we copied our executable to the

appropriate location.

Not all conflicts will arise when you first write a new script. After checking the

installed programs, I also do a Google search. I try to find any information out there

about programs that might have a naming conflict with mine. Longer names are much

less likely to conflict, but they don’t really need to be too long.

I once had a situation where the problem occurred much later. I was attempting

to install a new program using yum, which, like its successor, dnf, is a wrapper around

the rpm command. I received an error indicating that one of the files that needed to be

installed from the new RPM package was in conflict with a file with the same name from

another package.

This was not one of my scripts but another pair of RPMs that were in conflict. I was

able to remove the conflict by removing the RPM that was already installed because it

was no longer needed.

This type of conflict should be very rare. Even when files have the same names –

which is unlikely in the first place – so long as they are located in different directories,

they do not conflict during installation. If they are both executables and located in

different directories in the $PATH, however, the one located on the first directory listed in

$PATH is the one that will be run by the command. To run the other, you would need to

use the fully qualified path name to ensure that the correct program is run.

Naming scripts can be a bit tricky with potential conflicts like this. One reason I like

to use script names that are a bit longer, say four to eight or ten characters, is to help

prevent naming conflicts. I sometimes add an uppercase letter to my script names to

help it stand out and help to clarify the name a bit in a long list.

Chapter 12 USe CommonSenSe naming

250

The bottom line here is that the name should be memorable and meaningful – to

you as well as well as other SysAdmins, easy to type, and easy to spot in a list. Those are

my personal criteria. You may have others and that is perfectly fine. Just remember that

other SysAdmins may someday need to work with the hosts on which your scripts are

located.

 Variables
Back when I purchased my first IBM PC in 1981, I ordered it with the maximum of 64KB

on the motherboard1 while the cheapest model had only 16K. That was not a lot of space

in which to work. BASIC was included with the PC in an on-board ROM and made a

good choice for many people learning to program in those days.

Because of the limited space it was important to be frugal with memory usage when

writing programs in BASIC. I did not do things to make it look pretty like indent loops

and subroutines because each tab or space took up one Byte of memory that might be

needed for something important. I kept variable names as short as possible. I typically

used single letters or two-character variable names with a letter and a number such as

A7. Comments were nonexistent if we wrote fairly large programs because there was not

space for them. I did all of this to save memory. but it made my programs very difficult to

read.

I wish I had saved some of the really horrible code I have either written myself or that

I had to fix that was written by someone else. And there has been a lot of both.

 Naming Variables
I tend to make my script variables long enough to be indicative of their content as you

could see in the project in Chapter 11. Those variable names were lengths ranging from

fairly short to moderate. All of them were designed to make it easy for myself and future

script maintainers to read and understand the code.

The variable names in my scripts tend to reflect their content. Thus, you should

be able to deduce that a variable named $CPUArch probably contains information

pertaining to the architecture of the CPU. You might not know the exact type of data,

1 It was possible to add more memory to the PC with add-in boards that plugged directly into the
system bus. I later added a 256KB memory adapter that I built from parts.

Chapter 12 USe CommonSenSe naming

251

but you should have a general idea what to expect when you view the contents of that

variable. You would probably expect to see something like “X86_64” or just “64” for the

value of this variable. At least in my scripts, that would be the case.

The thing to keep in mind is that variable names are only typed while writing and

maintaining the script. The script can then be run as many times as needed, and I never

need to type any of those variable names.

 Make Everything a Variable
This is a pretty common best practice. Even if you need to use “constants” like Pi, or

Euler’s constant, or constants related to a specific field of endeavor, they should be

declared as variables and then the variable used in calculations. Of course, bash itself

does only integer arithmetic, but there are other types of variables.

I like to use variables for paths and file names used in my scripts. I also use variables

for data that will be printed such as in the mymotd script in the previous chapter.

Using variables like $Date, $host, $MachineType, $MotherboardModel, and so on, as

we did in that script makes it easier to read and understand the functionality. When I

see a statement like the one in Figure 12-1, I understand immediately what the code is

supposed to accomplish – even when it is out of context as it is here. The type value we

would expect to find assigned to the variable is clear.

You should be able to deduce from the variable name a bit about how this

code works. Clearly the dmidecode utility is used to obtain information about the

motherboard which and that “type” 2 is motherboard information. It also tells us the line

of output containing the string, “Name,” contains the specific information we are looking

for. The rest of the code is to extract the data string containing the model information

and clean it up for use by our script.

So let’s try this little experiment to illustrate.

MotherboardModel=`dmidecode -t 2 | grep Name | awk -F: '{print $2}' | sed -e "s/^
//"`

Figure 12-1. The desired content of the variable is obvious from the variable name

Chapter 12 USe CommonSenSe naming

252

EXPERIMENT 12-2

enter the following intentionally incorrect command-line program on a single line.

[root@david ~]# MotherboardModel=`dmidecode -t 2 | grep Version | awk -F:

'{print $2}' | sed -e "s/^ //"`;echo $MotherboardModel

Rev 1.xx

the value of the variable is clearly wrong because the data does not match what would be

expected from the name of the variable. this is clearly not the model of the motherboard – it is

a revision number.

now use the following corrected code. again on a single line.

[root@david ~]# MotherboardModel=`dmidecode -t 2 | grep Name | awk -F:

'{print $2}' | sed -e "s/^ //"`;echo $MotherboardModel

TUF X299 MARK 2

the result is clearly more appropriate for the variable even if we don’t know exactly what the

motherboard model is before we run the code.

Even if the variables are used only once after they are assigned, it makes sense to do

so. I have found on several occasions that in later script maintenance, I added more code

that also used that variable. This has saved typing long path names a second or third

time in my scripts.

For example, if I have the path name for customer invoices, ~/Documents/business/

Customer/invoices in my script, it is easy to set a variable such as $Invoices and use that

in my script rather than the full path. This makes it easy to refer to that variable in other

places in the script as well. By not having to type the long path name again, I also prevent

possible typing errors in the path name, which would lead to errors during execution.

Many times I build up path names from multiple variables because I need that extra

flexibility and it also reduces typing. For example, my rsbu backup program uses a new

directory every day for a new set of backups. The tree is structured like this.

Chapter 12 USe CommonSenSe naming

253

/-

 |

 \-path to backup media

 |

 \Backups

 |

 |--host1

 | |--2018-01-01

 | | \--data

 | |--2018-01-02

 | | \--data

 | |--2018-01-03

 | | \--data

 | etc

 --host2

 | |--2018-01-01

 | | \--data

 | |--2018-01-02

 | | \--data

 | |--2018-01-03

 | | \--data

 etc etc

A new date subdirectory is added for each host, each day. So we need to create

a series of variables to use in the code that can generate this directory structure.

Experiment 12-3 shows one method for accomplishing this.

EXPERIMENT 12-3

We do not need to create a script for this experiment. enter the commands below to begin the

setup. these variables, once defined at the command line, remain part of the environment until

they are unset using the unset command or set to null.

[student@testvm1 ~]$ BasePath="/media/Backup-Drive/Backups"

[student@testvm1 ~]$ BackupDate=`date +%Y-%m-%d`

[student@testvm1 ~]$ YesterdaysDate=`date -d "now-1days" "+%Y-%m-%d"`

Chapter 12 USe CommonSenSe naming

254

now verify the values of the variables we just set.

[student@testvm1 ~]$ echo $BasePath;echo $BackupDate;echo

$YesterdaysDate;echo $HOSTNAME

/media/Backup-Drive/Backups

2018-01-22

2018-01-21

testvm1

note that the $hoStname variable is a BaSh built-in variable so we do not need to set it. now

set the main backup path for this host. i use this program to back up multiple hosts so i keep

the backups for each host in a separate directory. this won’t work for remote hosts, but it is a

nice shortcut for use in this experiment.

[student@testvm1 ~]$ BackupPath="$BasePath/$HOSTNAME/"

[student@testvm1 ~]$ echo $BackupPath

/media/Backup-Drive/Backups/testvm1/

all that is left in order to complete the current backup path is to add today’s date.

[student@testvm1 ~]$ TodaysBackupPath="$BackupPath$BackupDate"

[student@testvm1 ~]$ echo $TodaysBackupPath

/media/Backup-Drive/Backups/testvm1/2018-01-22

But since i use rsync and some of its most interesting – and fun – features,2 i need to

generate the path for yesterday’s backups as well.

[student@testvm1 ~]$ YesterdaysBackupPath="$BackupPath$YesterdaysDate"

[student@testvm1 ~]$ echo $YesterdaysBackupPath

/media/Backup-Drive/Backups/testvm1/2018-01-21

i have generated the path for the backup from yesterday so that rsync can simply create hard

links from yesterday’s backup files to today’s directory and only perform a backup on the files

that have changed.

I use this series of variables containing elements of the paths I need in various parts

of the script in order to generate multiple paths for multiple hosts. A modification to the

$BasePath variable can also be used to mount the external hard drives I use for backup.

2 Here is a link to an article I wrote about using rsync for backups: https://opensource.com/
article/17/1/rsync-backup-linux

Chapter 12 USe CommonSenSe naming

https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/article/17/1/rsync-backup-linux

255

Even though the variable names are fairly long, they are reasonably easy to type

within the script. These names make it easy to understand the function of each variable

and how they fit into the whole. The names could undoubtedly be made shorter and still

be understandable, but I like them this way.

Of course there are some edge cases that this code does not directly address, but I

have more complex code in my script to deal with that. I did not want to cloud the basics

with edge cases like what happens when there are no previous backups, and how to deal

with the possibility that a previous backup exists but it is not from yesterday. Many of the

variables defined in Experiment 12-3 are also used to help deal with those edge cases.

 Procedures
Bash is a command-line language that supports the use of procedures. Procedures in

scripts need names just as variables do. The script we created in Chapter 11 contains a

few procedures that are named to provide an insight into their function.

For example, the Help() procedure is obviously intended to print help information

and the GPL() procedure prints the GPL license statement. The kb2gb() procedure is a

bit more obscure, but with only a little consideration it should be clear that it converts

Kilobytes to Gigabytes.

 Hosts
Yes, hosts – computers on a network – need naming. Most organizations have some sort

of convention for naming hosts. Most of the SysAdmins I know have established some

sort of conventions even if their organization has not imposed one.

One place I worked used the major Greek and Roman gods to name their Linux

servers while their Unix and Linux workstations received the names of lesser gods and

mythological personages. Other places have used names from Star Trek or Star Wars for

their hosts.

Most SysAdmins have home networks and we all have some sort of naming

convention that we use. Whether based on gaming, mythological gods and characters,

kids and grandkids, birds, pets, ships, movies, states, minerals, subatomic particles,

chemicals, the names of scientists, or whatever, I have seen many different conventions

used. Ben Cotton, my technical reviewer, uses the town names of places where he has

been storm chasing.

Chapter 12 USe CommonSenSe naming

256

I use the names of Essex class aircraft carriers for most of the hosts in my home

network as a tribute to my father who was on one of them, the Bunker Hill, in the Pacific

during WWII. For a two-word name like that, I just run the words together to create

“bunkerhill.” By convention, host names are always in lowercase. A little testing will

reveal that the Internet DNS system ignores case when performing lookups, but I do like

to go with convention for things like this.

 Organizational Naming
Many organizations have well-defined naming conventions while others leave those

details up to the System Administrators.

A couple of the organizations I have worked for had conventions for naming hosts,

other network nodes, programs, and scripts. I think this is a bit overkill, but it is better to

have an extensive and well-documented convention than none at all.

Most of the places I have worked had naming conventions for network hosts and

nodes, but most of the lower-level naming such as scripts was left to the SysAdmins.

This is my preferred situation. Most organizations do not need to deal in such detail with

naming conventions.

Whatever conventions you have at the SysAdmin level should be well documented.

 Summary
As with other tenets of the Linux Philosophy for System Administrators, there is not one

particular “right” way to do things when creating names for files, procedures, scripts,

variables, and anything else. It really is about what works best for you. You should feel

no pressure to name things in any particular way other than what makes sense and is

meaningful to you.

Common sense in naming is the real key here. The main criteria I use is, “will this

name be meaningful to me or another SysAdmin in a few years when the script needs to

be maintained?”

The use of common sense by SysAdmins when naming things contributes to our

objective of being the Lazy SysAdmin. Code that is easy to read takes far less time

to maintain than code that is not. Having to maintain poorly written code that is

unintelligible until it has been completely rewritten sucks up huge amounts of time and

effort that would be better spent elsewhere.

Chapter 12 USe CommonSenSe naming

257
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_13

CHAPTER 13

Store Data in Open
Formats
The reason we use computers is to manipulate data. It used to be called “Data

Processing” for a reason and that was an accurate description. We still process data

although it may be in the form of video and audio streams, network and wireless

streams, word processing data, spreadsheets, images, and more. It is all still just data.

We work with and manipulate text data streams with the tools we have available to us

in Linux. That data usually needs to be stored, and when there is a need to store data, it is

always better to store it in open file formats than closed ones.

Although many user application programs store data in ASCII formats, including

simple flat ASCII and XML, this chapter is about configuration data and scripts that

relate directly to Linux. The files we will consider in this chapter are about system

configuration.

 Closed Is Impenetrable
Way back before the Registry1 was introduced with Windows 3.1, most utilities and

applications stored their configuration data in .ini files. These .ini files were stored as

ASCII text and were easy to access, read, and even to modify. All it took was a simple text

editor to make changes to these .ini configuration files.

The registry changed all that by storing configuration data in a single, large, and

impenetrable binary data file. Although individual programs could store configuration

data in .ini files, the Registry was touted as a way to centralize control over program

configuration, and its binary format was allegedly faster to parse than ASCII text files.

1 Wikipedia, Windows Registry, https://en.wikipedia.org/wiki/Windows_Registry

https://en.wikipedia.org/wiki/Windows_Registry

258

As System Administrators we have need to use many different types of data. Binary

formats are by their very nature obscure and require special tools and knowledge to

manipulate. There is a plethora of tools available that provide registry viewing and

editing capability. These tools range from so-called freeware to expensive commercial

programs. The necessity to use special tools that are themselves closed in order to

manage a computer is a further step into impenetrability.

Part of the problem with all this is that the writers of these tools need to have

information about the contents of registry entries that are being viewed or edited.

Without that inside knowledge from the vendors of the proprietary software these tools

are also useless. And one reason that proprietary software stores configuration data in a

binary and proprietary format is to hide things from users.

This all stems from the closed and proprietary philosophy adhered to by these

vendors. It appears on the surface to be about protecting the users from doing “stupid

things,” but it is also a good way to obscure information.

I did try to locate a binary format Linux system configuration file in /etc but was

unable to. Not one of the hundreds of configuration files in that directory was in a

binary format. That is a really good thing, but it leaves me without a sample of a binary

configuration file that I can use to show you what one is like.

One of the issues with binary formats is that there would have been no reason to

create the many powerful tools we have in Linux. None of the data streams that could be

generated from binary format files would be usable for tools like grep, awk, sed, cat, vim,

emacs, or any of the hundreds of other text-based tools we take for granted every day

while we administer the systems for which we are responsible.

 Open Is Knowable
“Open source” is about the code and making the source code available to any and all

who want to view or modify it. “Open data2” is about the openness of the data itself.

The term open data does not mean just having access to the data itself, it also means

that the data can be viewed, used in some manner, and shared with others. The exact

manner in which those goals are achieved may be subject to some sort of attribution and

open licensing. As with open source software, such licensing is intended to ensure the

continued open availability of the data and not to restrict it any manner.

2 Wikipedia, Open Data, https://en.wikipedia.org/wiki/Open_data

Chapter 13 Store Data in open FormatS

https://en.wikipedia.org/wiki/Open_data

259

Open data is knowable. That means that access to it is unfettered. Truly open

data can be read freely and understood without the need for further interpretation

or decryption. In the SysAdmin world, open means that the data we use to configure,

monitor, and manage our Linux hosts is easy to find, read, and modify when necessary.

It is stored in formats that permit that ease of access, such as ASCII text. When a system

is open the data and software can all be managed by open tools – tools that work with

ASCII text.

 Flat ASCII Text
Flat text files are open and knowable. They are easy to read by both programs and

SysAdmins so it is easy to see when things are working – or not. Most Linux configuration

files are simple flat ASCII text files, which make them easy to view and modify with the

simple Linux text manipulation tools that are already at our disposal.

So we can use cat and less to view the Linux configuration files, and grep to extract

and view lines containing specified strings. We can use vi, vim, emacs, or any other text

editor to modify configuration files that are ASCII text format.

In one of my jobs – the one where we used Perl CGI scripts to manage the email

system – we used flat text files to store all of our data. This data included departmental

information such as who was authorized to access the data for that department. It also

contained the ID and login information for the email users for each department.

We wrote some Perl programs to manage access to this data, both for us as the

overall email SysAdmins, as well as for the departmental administrators. The data was

still flat ASCII text files, so we could use basic Linux command-line tools to access and

modify the data, especially when making mass changes to the files. At the same time we

were also able to use our web-based Perl CGI scripts to work with individual personnel

and departmental records.

We did think about using MySQL for record management but we decided that ACII

files made more sense for their ease of access. One of our SysAdmins wrote a series of

Perl scripts in about a week that allowed us to use SQL-like function calls from within the

Perl scripts so we had the best of both worlds.

Chapter 13 Store Data in open FormatS

260

 System Configuration Files
Most of the system-wide configuration files are located in the /etc directory and its

subdirectories. The files in /etc provide configuration data for many of the system

services and servers such as email (SMTP, POP, IMAP), web (HTTP), time (NTP or

chrony), SSH, network adapters and routing, the GRUB boot loader, display screen, and

printer configuration, and much more.

You can also find configuration files that provide system-wide configuration that

affects all users, such as /etc/bashrc. The /etc/bashrc file provides initial setup and

configuration for all users when they open a bash shell. Figure 13-1 shows the content of

the/etc/bashrc file on my Fedora VM.

Figure 13-1. The /etc/bashrc file provides configuration for all bash shell sessions
when they are opened

/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

It's NOT a good idea to change this file unless you know what you
are doing. It's much better to create a custom.sh shell script in
/etc/profile.d/ to make custom changes to your environment, as this
will prevent the need for merging in future updates.

Prevent doublesourcing
if [-z "$BASHRCSOURCED"]; then
BASHRCSOURCED="Y"

are we an interactive shell?
if ["$PS1"]; then
if [-z "$PROMPT_COMMAND"]; then
case $TERM in
xterm*|vte*)
if [-e /etc/sysconfig/bash-prompt-xterm]; then

PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm
elif ["${VTE_VERSION:-0}" -ge 3405]; then

PROMPT_COMMAND="__vte_prompt_command"
else

PROMPT_COMMAND='printf "\033]0;%s@%s:%s\007" "${USER}"
"${HOSTNAME%%.*}" "${PWD/#$HOME/\~}"'

fi
;;

screen*)

Chapter 13 Store Data in open FormatS

261

if [-e /etc/sysconfig/bash-prompt-screen]; then
PROMPT_COMMAND=/etc/sysconfig/bash-prompt-screen

else
PROMPT_COMMAND='printf "\033k%s@%s:%s\033\\" "${USER}"

"${HOSTNAME%%.*}" "${PWD/#$HOME/\~}"'
fi
;;

*)
[-e /etc/sysconfig/bash-prompt-default] &&

PROMPT_COMMAND=/etc/sysconfig/bash-prompt-default
;;

esac
fi
Turn on parallel history
shopt -s histappend
history -a
Turn on checkwinsize
shopt -s checkwinsize
["$PS1" = "\\s-\\v\\\$ "] && PS1="[\u@\h \W]\\$ "
You might want to have e.g. tty in prompt (e.g. more virtual machines)
and console windows
If you want to do so, just add e.g.
if ["$PS1"]; then
PS1="[\u@\h:\l \W]\\$ "
fi
to your custom modification shell script in /etc/profile.d/ directory

fi

if ! shopt -q login_shell ; then # We're not a login shell
Need to redefine pathmunge, it gets undefined at the end of /etc/profile
pathmunge () {

case ":${PATH}:" in
:"$1":)

;;
*)

if ["$2" = "after"] ; then
PATH=$PATH:$1

else
PATH=$1:$PATH

fi
esac

}

By default, we want umask to get set. This sets it for non-login shell.
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && ["`id -gn`" = "`id -un`"]; then

umask 002
else

umask 022
fi

Figure 13-1. (continued)

Chapter 13 Store Data in open FormatS

262

Relax – we are not going to examine every line of the /etc/bashrc file in Figure 13-1.

However, there are a few things that we should observe in this file.

First, just look at all of the comments. This file is meant to be read by users.

We SysAdmins are, after all, advanced users. One thing I like about Red Hat-based

distributions is that most of the configuration files and scripts are well commented.

One of the functions of this script is to set the shell command prompt. The script

determines whether the shell is a standard xterm or vte terminal session, or if it is in a

screen session. It sets the prompt string differently depending upon that condition. It

also uses external files such as /etc/sysconfig/bash-prompt-xterm, which contains the

prompt configuration in a file and location easily managed by the SysAdmin.

Up near the top of the file is a series of comments that briefly describe the function

of the script along with an admonishment not to change this particular file. The

comments also tell you where your own modifications should go. We will look at that a

little further on.

Notice how the indents make the structure of this script fragment easier to read than

if everything were jammed up against the left margin.

Did you catch that as we went by? This configuration file is an executable program.

It is a bash script that contains program logic that can determine which execution path

to take depending upon outside conditions. This script is not complete in itself; it is

actually a fragment that can be sourced – imported – into other scripts as necessary.

SHELL=/bin/bash
Only display echos from profile.d scripts if we are no login shell
and interactive - otherwise just process them to set envvars
for i in /etc/profile.d/*.sh; do

if [-r "$i"]; then
if ["$PS1"]; then

. "$i"
else

. "$i" >/dev/null
fi

fi
done

unset i
unset -f pathmunge

fi

fi
vim:ts=4:sw=4

Figure 13-1. (continued)

Chapter 13 Store Data in open FormatS

263

Sourcing is a bash shell method for including the content of other bash scripts or

fragments into a script. This allows the contents of the fragment being sourced to be

used by multiple scripts. You can think of it like function libraries used by compiled

programs. The sourced file is loaded into the calling script at the location of the source

command. It is then immediately executed.

Sourcing can be accomplished by using the source command. The period (.) is an

alias for the source command. This is illustrated in Figure 13-2, which is a fragment of

the code in Figure 13-1.

The lines highlighted in Figure 13-2 source the code from all of the *.sh files in /etc/

profile.d into this code fragment.

So how does the program fragment in Figure 13-1 get executed? Where is the code

or trigger that imports – sources – this code into it so it can be executed. Good questions.

The /etc/profile script in Figure 13-3 sources the /etc/bashrc file.

Only display echos from profile.d scripts if we are no login shell
and interactive - otherwise just process them to set envvars
for i in /etc/profile.d/*.sh; do

if [-r "$i"]; then
if ["$PS1"]; then

. "$i"
else

. "$i" >/dev/null
fi

fi
done

Figure 13-2. This code fragment sources the *.sh files located /etc/profile.d. Other
files in that directory are ignored

Figure 13-3. The /etc/profile script sets the global environment for all shells on the
system when they are launched. It also sources the bash script fragments in /etc/
profile.d and /etc/bashrc.

/etc/profile

System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

It's NOT a good idea to change this file unless you know what you
are doing. It's much better to create a custom.sh shell script in
/etc/profile.d/ to make custom changes to your environment, as this
will prevent the need for merging in future updates.

Chapter 13 Store Data in open FormatS

264

pathmunge () {
case ":${PATH}:" in

:"$1":)
;;

*)
if ["$2" = "after"] ; then

PATH=$PATH:$1
else

PATH=$1:$PATH
fi

esac
}

if [-x /usr/bin/id]; then
if [-z "$EUID"]; then

ksh workaround
EUID=`id -u`
UID=`id -ru`

fi
USER="`id -un`"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

fi

Path manipulation
if ["$EUID" = "0"]; then

pathmunge /usr/sbin
pathmunge /usr/local/sbin

else
pathmunge /usr/local/sbin after
pathmunge /usr/sbin after

fi

HOSTNAME=`/usr/bin/hostname 2>/dev/null`
HISTSIZE=1000
if ["$HISTCONTROL" = "ignorespace"] ; then

export HISTCONTROL=ignoreboth
else

export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

By default, we want umask to get set. This sets it for login shell
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && ["`id -gn`" = "`id -un`"]; then

umask 002

Figure 13-3. (continued)

Chapter 13 Store Data in open FormatS

265

umask 022
fi

for i in /etc/profile.d/*.sh ; do
if [-r "$i"]; then

if ["${-#*i}" != "$-"]; then
. "$i"

else
. "$i" >/dev/null

fi
fi

done

unset i
unset -f pathmunge

if [-n "${BASH_VERSION-}"] ; then
if [-f /etc/bashrc] ; then

Bash login shells run only /etc/profile
Bash non-login shells run only /etc/bashrc
Check for double sourcing is done in /etc/bashrc.
. /etc/bashrc

fi
fi

else

Figure 13-3. (continued)

The /etc/profile file is also a script fragment. We could spend some time here to

locate the manner in which /etc/profile is launched, but that would take us in the wrong

direction for what we are trying to accomplish here. Suffice it to say that when called

from a bash itself, it is invoked as a login shell, it reads /etc/profile first (if it exists) and

then ~/.bash_profile, ~/.bash_login, and ~/.profile, in that order (if they exist3).

 Global Bash Configuration
Now, let’s make some global configuration changes to bash.

The /etc/bashrc file mentions the /etc/profile.d directory. Let’s look at that directory

and its files in Experiment 13-1. While we are at it, we will add some global bash

configuration of our own.

3 See the bash man page for this and much more detail.

Chapter 13 Store Data in open FormatS

266

EXPERIMENT 13-1

this experiment should be performed as root. our objective is to make some additions to the

global configuration for the bash shell.

make /etc/profile.d the pWD and list the contents.

[root@testvm1 ~]# cd /etc/profile.d/ ; ls -l

total 100

-rw-r--r--. 1 root root 664 Jul 25 2017 bash_completion.sh

-rw-r--r--. 1 root root 196 Aug 3 04:18 colorgrep.csh

-rw-r--r--. 1 root root 201 Aug 3 04:18 colorgrep.sh

-rw-r--r--. 1 root root 1741 Nov 10 12:53 colorls.csh

-rw-r--r--. 1 root root 1606 Nov 10 12:53 colorls.sh

-rw-r--r--. 1 root root 69 Aug 4 19:53 colorsysstat.csh

-rw-r--r--. 1 root root 56 Aug 4 19:53 colorsysstat.sh

-rw-r--r--. 1 root root 162 Aug 5 02:00 colorxzgrep.csh

-rw-r--r--. 1 root root 183 Aug 5 02:00 colorxzgrep.sh

-rw-r--r--. 1 root root 216 Aug 3 04:57 colorzgrep.csh

-rw-r--r--. 1 root root 220 Aug 3 04:57 colorzgrep.sh

-rwxr-xr-x. 1 root root 249 Sep 21 03:40 kde.csh

-rwxr-xr-x. 1 root root 288 Sep 21 03:40 kde.sh

-rw-r--r--. 1 root root 1706 Jan 2 10:36 lang.csh

-rw-r--r--. 1 root root 2703 Jan 2 10:36 lang.sh

-rw-r--r--. 1 root root 500 Aug 3 11:02 less.csh

-rw-r--r--. 1 root root 253 Aug 3 11:02 less.sh

-rwxr-xr-x. 1 root root 49 Aug 3 21:06 mc.csh

-rwxr-xr-x. 1 root root 153 Aug 3 21:06 mc.sh

-rw-r--r--. 1 root root 106 Jan 2 07:21 vim.csh

-rw-r--r--. 1 root root 248 Jan 2 07:21 vim.sh

-rw-r--r--. 1 root root 2092 Nov 2 10:21 vte.sh

-rw-r--r--. 1 root root 120 Aug 4 23:29 which2.csh

-rw-r--r--. 1 root root 157 Aug 4 23:29 which2.sh

all of the files with *.sh extensions are executed by the code in /etc/bashrc or .etc/profile.

the ones with other extensions are not executed. We will make our additions to the bash

configuration by creating a new file in this directory.

Chapter 13 Store Data in open FormatS

267

Use your favorite editor to create a new file named “mybash.sh” in this directory. add the

following content to the file.

##

The following are global changes to BASH configuration

##

alias lsn='ls --color=no'

alias vim='vim -c "colorscheme desert" '

TestVariable="Hello World"

set -o vi

Before we test this, let’s ensure that the aliases are not already there and that the testVariable

is null.

[root@testvm1 profile.d]# alias

alias cp='cp -i'

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias l.='ls -d .* --color=auto'

alias ll='ls -l --color=auto'

alias ls='ls --color=auto'

alias mc='. /usr/libexec/mc/mc-wrapper.sh'

alias mv='mv -i'

alias rm='rm -i'

alias which='(alias; declare -f) | /usr/bin/which --tty-only --read-alias --

read-functions --show-tilde --show-dot'

alias xzegrep='xzegrep --color=auto'

alias xzfgrep='xzfgrep --color=auto'

alias xzgrep='xzgrep --color=auto'

alias zegrep='zegrep --color=auto'

alias zfgrep='zfgrep --color=auto'

alias zgrep='zgrep --color=auto'

[root@testvm1 profile.d]# echo $TestVariable

[root@testvm1 profile.d]#

now test the results. this change will not affect bash sessions that are already open. new

sessions will reflect the changes. So open a new terminal session. as the student user, run the

following commands to verify the results.

Chapter 13 Store Data in open FormatS

268

[root@testvm1 profile.d]# echo $TestVariable

Hello World

[root@testvm1 profile.d]# alias

alias cp='cp -i'

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias l.='ls -d .* --color=auto'

alias ll='ls -l --color=auto'

alias ls='ls --color=auto'

alias lsn='ls --color=no'

alias mc='. /usr/libexec/mc/mc-wrapper.sh'

alias mv='mv -i'

alias rm='rm -i'

alias vim='vim -c "colorscheme desert" '

alias which='(alias; declare -f) | /usr/bin/which --tty-only --read-alias --

read-functions --show-tilde --show-dot'

alias xzegrep='xzegrep --color=auto'

alias xzfgrep='xzfgrep --color=auto'

alias xzgrep='xzgrep --color=auto'

alias zegrep='zegrep --color=auto'

alias zfgrep='zfgrep --color=auto'

alias zgrep='zgrep --color=auto

it is easy to make changes to aSCii files as this experiment shows. notice that a reboot was

not required to make these changes take effect – they were in effect immediately for new

bash terminal sessions.

 User Configuration Files
Let’s look at the so-called hidden files in your own home directory – those whose names

begin with a period (.). These are user-specific configuration files that you can change

to meet your own needs and preferences. Let’s look at the .bashrc file, which is the

configuration file in which individual users can set their own bash configuration such as

aliases, functions, and environment variables that are unique to them.

Chapter 13 Store Data in open FormatS

269

EXPERIMENT 13-2

perform this experiment as the student user.

the .bashrc file is short so we can view it with cat. Let’s be sure we are in the home directory

for the student user and then display the file.

[student@testvm1 ~]$ cd ; cat .bashrc

.bashrc

Source global definitions

if [-f /etc/bashrc]; then

 . /etc/bashrc

fi

Uncomment the following line if you don't like systemctl's auto-paging

feature:

export SYSTEMD_PAGER=

User specific aliases and functions

this file is well commented also and even tells us where to add our own configuration. So let’s

add something innocuous that will allow us to test this local configuration. Use your favorite

editor to add the following line to the end of the file.

StudentVariable="This is a local variable."

View the variable.

[student@testvm1 ~]$ echo $StudentVariable

[student@testvm1 ~]$

the variable has not been added to the environment. it will now be part of the environment

for bash terminal sessions opened from now on. it can be added to existing bash terminal

sessions by sourcing the .bashrc file like this.

[student@testvm1 ~]$. .bashrc

[student@testvm1 ~]$ echo $StudentVariable

This is a local variable.

Chapter 13 Store Data in open FormatS

270

These are trivial examples, but they should give you some idea of how flexible having

open format configuration files can be. It is easy to follow the logic of the files and easy to

modify them when needed. Although each distribution varies in how it adds comments

to these files, all of the ones I have used have enough information in the comments to

enable me to figure out the appropriate location for me to alter the configuration. They

also contain enough information to allow me to follow the logic. That doesn’t mean I

don’t have to work a bit to understand it all, but I can do it if I need to or am just curious.

Be aware that the local user bash configuration overrides the global configuration.

So if a user has the knowledge and wants to alter a global configuration parameter for

themselves, they can do that by setting it in the ~/.bashrc file.

 ASCII Rocks
Now we can see how the openness created by using ASCII text files for configuration

allows us to explore and understand many of the processes of our Linux operating

system. ASCII is the go-to format for configuration files and for shell scripts.

Many system-level executables are also bash scripts that set configurations and

launch the binaries. Let’s check out the /bin directory to verify this.

EXPERIMENT 13-3

perform this experiment as the root user.

make /bin the pWD and count the number of files just to see how many executables there are

altogether.

[root@testvm1 ~]# cd /bin/ ; ls | wc -l

2605

Let’s figure out how many are aSCii text files.

[root@testvm1 bin]# for I in `ls`;do file $I;done | grep ASCII | wc -l

355

over 13% of the executable files in /bin are aSCii shell scripts. now view the list of files that

are aSCii scripts. the specific results from your host will almost certainly differ from mine.

[root@testvm1 bin]# for I in `ls`;do file $I;done | grep ASCII | less

Chapter 13 Store Data in open FormatS

271

i won’t list those files here, but you should look through them a bit just to see what is there.

now let’s look at one of these scripts. i chose the ps2ascii script, which is used as a wrapper

around the ghostscript program.

Note if the host you are using does not have the ps2ascii program installed, you
can either install it or choose a different aSCii file to explore for the rest of this
experiment.

[root@testvm1 bin]# cat ps2ascii

#!/bin/sh

Extract ASCII text from a PostScript file. Usage:

ps2ascii [infile.ps [outfile.txt]]

If outfile is omitted, output goes to stdout.

If both infile and outfile are omitted, ps2ascii acts as a filter,

reading from stdin and writing on stdout.

This definition is changed on install to match the

executable name set in the makefile

GS_EXECUTABLE=gs

trap "rm -f _temp_.err _temp_.out" 0 1 2 15

OPTIONS="-q -dSAFER -sDEVICE=txtwrite"

if (test $# -eq 0) then

 $GS_EXECUTABLE $OPTIONS -o - -

elif (test $# -eq 1) then

 $GS_EXECUTABLE $OPTIONS -o - "$1"

else

 $GS_EXECUTABLE $OPTIONS -o "$2" "$1"

fi

the ghostscript program converts postscript and pDF files to aSCii text files by extracting the

text out of the originals. this wrapper has comments that tell us what the program does. it

sets some variables and then runs the program with options for different conditions.

Scripts like ps2ascii allow a great deal of flexibility when launching programs. They

make life easier for users because the scripts can manage the task of setting up options

and arguments that are passed to the main program.

Chapter 13 Store Data in open FormatS

272

 Final Thoughts
Open data in Linux enables us as SysAdmins to explore everything in order to satisfy

our curiosity about how Linux works. The use of ASCII text files for scripting and

configuration files allows us access to the inner workings of the environment in which

we work every day.

We were able to use that openness to trace our way through some related bash

configuration programs and files. We discovered how to make global and local changes.

We added some configuration of our own so that bash is now configured more to our

own liking.

And, if we want or need to, we can download the source code used to compile the

executable code for the kernel and all of the open source programs and utilities available

with our Linux distribution. I have done that on a couple of occasions because I wanted

to know more. You can, too, if your curiosity takes you there.

All of this is only possible in an open operating system.

Chapter 13 Store Data in open FormatS

273
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_14

CHAPTER 14

Use Separate filesystems
for Data
There is a lot to this particular tenet, and it requires understanding the nature of Linux

filesystems and mount points. If you skipped Chapter 6, “Use the Linux FHS,” you should

go back and read it now.

Note The primary meaning for the term “filesystem” in this chapter is a segment
of the directory tree that is located on a separate partition or logical volume that
must be mounted on a specified mount point of the root filesystem to enable
access to it. We also use the term to describe the structure of the metadata on the
partition or volume such as, EXT4, XFS, or other structure. These different usages
should be clear from their context.

 Why We Need Separate filesystems
There are at least three excellent reasons for maintaining separate filesystems on our

Linux hosts. First, when hard drives crash, we may lose some or all of the data on a

damaged filesystem, but, as we will see, data on other filesystems on the crashed hard

drive may still be salvageable.

Second, despite having access to huge amounts of hard drive space, it is possible

to fill up a filesystem. When that happens, separate filesystems can minimize the

immediate effects and make recovery easier.

274

Third, upgrades can be made easier when certain filesystems such as /home are

located on separate filesystems. This makes it easy to upgrade without needing to restore

that data from a backup.

I have frequently encountered all three of these situations in my career. In some

instances, there was only a single partition and so recovery was quite difficult. Recovery

from these situations was always much easier and faster when the host was configured

with separate filesystems.

Keeping data of all types safe is part of the SysAdmin’s job. Using separate filesystems

for storing that data can help us accomplish that. This practice can also help us achieve

our objective to be a Lazy Admin. Backups do allow us to recover most of the data that

would otherwise be lost in a crash scenario, but using separate filesystem may allow

us to recover all of the data up to the moment of a crash. Restoring from backups takes

much longer.

 Hard Drive Crashes
Has your computer hard drive ever crashed leaving your Linux computer unable to boot;

with all of your data on the on the crashed hard drive; with no recent backups? Most of

us have. And our friends, coworkers, or customers have all experienced this as well.

Having separate filesystems makes it possible in some – but not all – hard drive

crashes to recover data from potentially untouched filesystems. When a single filesystem

is used for the entire directory tree, it is far more likely that any type of hard drive crash

will result in the loss of all data.

Unfortunately there are hard drive failure modes that can prevent the drive from

working at all and all of the data on the drive will be lost.

 Full filesystems
Despite having huge amounts of hard drive space available to us, filesystems can fill

up. Runaway programs can very quickly fill up a filesystem. If there is only a single

filesystem, it is likely that the host will crash and much valuable data will be lost.

I have seen filesystems fill up in moments. In a host with a single filesystem the

results can be catastrophic. The specific symptoms may vary but can range from users

not being able to create new files, save modified ones, or log in to the desktop, to a host

that is completely unresponsive and not even accessible remotely via SSH. In some

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

275

cases the only way to regain control is to power the system down and boot to a recovery

mode. Then it is possible to locate and delete the file or files filling the disk and to try and

understand what caused that to happen. The worst case I encountered was testing a VM

for this book and the VM would not terminate.

In a host that is configured with separate filesystems, any effects from filling one

filesystem will be minimized and the symptoms will likely be less damaging. Recovery

from the condition will usually be faster and easier.

 Laptop Lament
This happened today.

Today – yes, really, today as I write this on December 26, 2017 – a friend of mine sent

me a text to let me know that the laptop computer I have been supporting for her would

not boot.

A few years ago my friend, Cyndi, who is also my Yoga instructor, was becoming

unhappy because her computer was constantly slowing down due to malware

infestations. She asked me to help and I agreed. I told her about Linux, and she decided

to try it.

Over the years, I have helped Cyndi keep her computer running with hardware

repairs, software updates, and upgrades to newer releases of Fedora, which is what

I started her out with. She always calls me first when she has a computer problem that

she cannot figure out on her own. Today was no exception.

The first text came as I was working on Chapter 8 of this book. It said that her

computer would not boot and it was printing a repeating series of messages on the

screen. After a couple text exchanges I determined that I should look at the laptop and

she brought it to my home office. Based on the messages that showed a long series of I/O

errors on /dev/sda, I determined that the hard drive was failing. I also told her that I was

not sure I could salvage the data from the hard drive but would try.

At this point I checked her external USB backup drive and determined that the

latest backups were several months old. That part is my fault and I have since fixed it.

We discussed the situation and she told me to do what I could. After she left, I removed

the 320GB hard drive from the laptop and inserted it in one of the slots in my hard drive

docking station for exploration.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

276

Here is what I already knew. When I installed Linux on the laptop, I used separate

filesystems for /usr, /var, /tmp, /swap, and /home, like I always do when I install Linux.

That meant that the /home filesystem was on a different logical volume than the root

(/) filesystem. Because the problem was during the startup sequence – technically after

boot and during startup while systemd was starting various services – there was a good

possibility that the other logical volumes were unaffected, including the volume on

which I had installed her home directory, /home.

After the hard drive spun up, I used the lvscan tool to locate all of the logical

volumes on my main workstation. The results included the logical volumes on the

defective hard drive as shown in Figure 14-1.

The results from the lvscan command also lists the device files assigned to the

logical volumes on the laptop hard drive. These device files were created by udev1 as

soon as the hard drive was up to speed and could be read. As I mentioned in Chapter 5,

“Everything Is a File,” udev is responsible for detecting when new devices are plugged

into the system, and creating device files for them in /dev.

1 Unnikrishnan A, Linux.com, Udev: Introduction to Device Management In Modern Linux System,
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system

[root@david ~]# lvscan
ACTIVE '/dev/fedora_mobilemantra/home' [<48.83 GiB] inherit
ACTIVE '/dev/fedora_mobilemantra/root' [<29.30 GiB] inherit
ACTIVE '/dev/fedora_mobilemantra/tmp' [19.53 GiB] inherit
ACTIVE '/dev/fedora_mobilemantra/var' [19.53 GiB] inherit
ACTIVE '/dev/fedora_mobilemantra/usr' [<34.18 GiB] inherit
ACTIVE '/dev/fedora_mobilemantra/swap' [7.81 GiB] inherit
ACTIVE '/dev/vg_david2/home' [50.00 GiB] inherit
ACTIVE '/dev/vg_david2/stuff' [130.00 GiB] inherit
ACTIVE '/dev/vg_david2/Virtual' [590.00 GiB] inherit
ACTIVE '/dev/vg_david2/Pictures' [75.00 GiB] inherit
ACTIVE '/dev/david1/root' [9.31 GiB] inherit
ACTIVE '/dev/david1/tmp' [<28.63 GiB] inherit
ACTIVE '/dev/david1/var' [<18.63 GiB] inherit
ACTIVE '/dev/david1/usr' [<46.57 GiB] inherit
ACTIVE '/dev/david1/swap' [14.90 GiB] inherit
ACTIVE '/dev/vg_Backups/Backups' [3.63 TiB] inherit

Figure 14-1. lvscan displays the logical volumes including those on the defective
hard drive

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

https://www.linux.com/news/udev-introduction-device-management-modern-linux-system

277

Among the listed logical volumes is /dev/fedora_mobilemantra/home, which is the

home directory for my friend’s hard drive. At this point I knew all I needed in order to

mount the home directory on /mnt on my workstation. I did that and started exploring

the home directory. Everything looked good and I was able to read several of the files

without a problem.

Note i was fortunate that the hard drive had not failed catastrophically. in this
case the errors were apparently bad sectors on the / (root) partition that left the
other partitions intact so they could be recovered.

The simplest way to both create a backup of the home directory and discover if any

of the many files located there have errors is to use the tar command. No errors occurred

during the creation of the tarball so I was able to retrieve all of the data from the home

directory.

Cyndi was very happy when I called her with this news of the continued digital

existence of her data.

I used the dd command, as shown in Figure 14-2, to perform a quick test of the entire

hard drive. An I/O error occurred after reading only 115GB out of a total of 320GB.

I could have continued to focus in on the location of the error, but it is enough to know at

this time that the errors caused problems with startup, which indicates they are located

in the / (root) filesystem.

[root@david ~]# dd if=/dev/sdi of=/dev/null
dd: error reading '/dev/sdi': Input/output error
224078480+0 records in
224078480+0 records out
114728181760 bytes (115 GB, 107 GiB) copied, 1551.07 s, 74.0 MB/s

Figure 14-2. Using the dd command to test the hard drive. This also shows the I/O
error that occurred

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

278

Sending the “outfile” data to /dev/null prevents it from being displayed in the

terminal session as STDOUT. Displaying STDOUT to the terminal also significantly slows

down the entire process. However any STDERR messages indicating I/O errors will still

display on the terminal. Neither the hard drive nor any of its partitions were mounted

while running this command.

I ordered a new hard drive for her laptop and installed that. I then installed

Fedora 27, the most current release at this time, and restored the saved data to her home

directory. Everything worked fine and all her data proved to be intact.

This story is a perfect illustration of one reason to use separate filesystems for data. It

also shows quite nicely that understanding the Linux Filesystem Hierarchical Structure

can be important to us as SysAdmins. It shows an appropriate use for the /mnt mount

point and the /dev/null device. It is also a nice example of the fact that everything is a file

and the device special files in /dev can be used with simple tools.

 Data Security
This tenet is about data security as much as anything else. In this context, I mean

security in the sense of maintaining the continued existence and integrity of the data.

Today’s hard drives are huge, with some running into multiple terabytes. And hard drives

are one of the most common devices to fail in a computer, along with others that have

mechanical moving parts such as fans. So the larger the hard drive is, the more data that

could be lost when it fails.

Of course one part of securing your data is to make backups. Another very important

part is ensuring that the data – the actual data like documents, project files, financial

files, graphics, video, audio, user configuration files, and more, is as safe from the results

of corruption as possible. Because backup systems fail, too.

According to the Linux Filesystem Hierarchical Standard, “Disk errors that corrupt

data on the root filesystem are a greater problem than errors on any other partition. A

small root filesystem is less prone to corruption as the result of a system crash.2” The

reasoning behind this is that in most systems the greatest number of disk writes takes

place in the root partition so it is most likely to be corrupted by a problem. This seems to

be the case in the previous example.

2 LSB Work group - The Linux Foundation, Filesystem Hierarchical Standard V3.0, 3,
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

279

The corollary to that is that directories that are part of the root filesystem are more

likely to suffer from the side effects of those system crashes than directories that are

not. This is demonstrably the case because I was unable to mount the root filesystem so

could not recover any of the files on it. I was able to mount the /home filesystem.

And that leads us to the conclusion that maintaining separate filesystems for

directory trees that contain user data is a good idea. It also reinforces the statement in

the above quote that the root filesystem should be as small as reasonably possible. The

amount of used space in the root filesystem of my primary workstation is only 444MB,

which is not a lot. Nevertheless, I do recommend, considering the huge size of current

hard drives, that the root filesystem be allocated about 5GB of disk space to allow for

unexpected occurrences.

 Recommendations
There are some specific parts of the Linux directory tree that I recommend being placed

on separate filesystems. Sometimes I even recommend placing them on a separate hard

drive to further ensure their safety and to facilitate recovery because the data on the

filesystems maintained on a separate drive would not need to be restored from backup if

the drive containing the root filesystem needs to be replaced.

All that is required to mount the preexisting filesystems as part of the reinstalled

directory tree is to add appropriate entries in the /etc/fstab file. This enables them to be

mounted when the system is rebooted after the installation of the operating system in a

new drive. Configuring this can be accomplished during the Linux installation using a

“custom” disk configuration. The details of that procedure are outside the scope of this

book.

Current Red Hat-based installations like Fedora and CentOS use a default disk

configuration that can be far from ideal. CentOS 7 puts everything in the root (/)

partition except for /boot and a separate volume for swap.

Fedora 27 puts 1GB in /boot, 50GB in /root, a few GB in swap – the actual amount

depends upon the amount of RAM in the system, and all the rest is placed in /home.

On my test VM this is 195GB. That is really way too much for my needs on most of the

systems I use. I have found with a good deal of experimentation that the actual numbers

vary depending upon the size of the hard drive. But the result is still the same.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

280

Those defaults can result in suboptimal disk usage and lead to problems later in the

life of the host. Even though /home is a separate filesystem on its own logical volume in

these default installations, its size is far too large for many environments. For example,

the home directory on my main workstation has only about 30GB of data including this

book and lots of photos, all going back over 20 years. There are others filesystems that

need to be considered as well.

Three of the main branches of the Linux filesystem hierarchy are specifically

designed to be located on separate partitions or volumes as a separate filesystem.3 This

is possible because conforming to the Linux FHS makes it so. These three branches

are /usr, /opt, and /var. I have also found other branches that work well as separate

filesystems, /home, /tmp, and /opt.

Let’s look at the branches of the directory tree that I recommend as being separate

filesystems. All of these filesystems can be placed on one or more hard drives separate

from the drive that contains the root filesystem. This helps to ensure the overall

survivability of those directory branches that are not located on the failing drive.

You can refer back to Table 6-1 for a brief description of these branches of the Linux

FHS, or you can refer to the Filesystem Hierarchical Standard V3.04.

 /boot
The /boot directory tree is an interesting one because it cannot be part of a logical

volume configuration. It must be a separate disk partition with a Linux EXT2, EXT3,

EXT4, VFAT, or XFS filesystem. These are the only filesystems supported by current

versions of the Fedora and CentOS6 and CentOS7 installation program, Anaconda.

Because most modern distributions use logical volume management, this directory

must be a separate filesystem. If this is the case, you won’t have a choice. However if

you do not use logical volume management and use filesystems such as EXT4 that

are directly created on the raw partitions, you could make /boot part of the root (/)

filesystem.

I recommend that /boot always be a separate filesystem even if logical volumes are

not used for other filesystems on the host.

3 Ibid., 3.
4 Ibid.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

https://doi.org/10.1007/978-1-4842-3730-4_6#Tab1

281

 /home
Clearly /home should be a separate filesystem. The experience I discussed above, as well

as others like it over the years, have made it abundantly clear to me that /home should

always be a separate filesystem from the rest of the directory tree. The default filesystem

configurations of the distributions with which I am familiar make it clear that this is a

best practice aside from any size issues.

When upgrading from one version of Fedora to the next, for example, having my

data, especially /home on a separate filesystem has made release level upgrading easy

even when I choose not to use the provided upgrade tools and simply install a new

release of Fedora over an old one. This requires the same procedure as recovery from

root filesystem corruption; it would be necessary to perform a custom configuration of

the filesystem and choose to keep the existing home directory without formatting it.

/home is also one of the filesystems I recommend be placed on a hard drive separate

from the one on which the operating system is located. This helps to ensure that the data

on /home is safe if the primary drive fails. It also improved performance by spreading

disk access over more than one hard drive so that the operating system does not have to

wait for user data access and vice-versa.

Although the FHS specifies /home as the “home” directory, it also recognizes that

the location of the home directories in the directory tree has typically been subject to

the standards of the organizations and the discretion of the SysAdmins managing the

systems. I have encountered /var/home, /opt/home, /homedirs, and others. I like to

follow the standard in this.

Having the home directory as a separate filesystem enables it to be moved to a

different mount point if the need arises. Other things may need to be changes as well in

order to make this work, such as default paths.

The root user’s home directory is /root and this directory should remain part of the

root filesystem. The reason for this is to ensure that the tools and files that we store in

the root home directory for convenience will still be available in recovery modes and

runlevels that don’t mount the other filesystems.

Many non-login accounts related to system services also have home directories in

other locations. The specific location varies by service but is generally a directory that is

part of the service itself.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

282

 /usr
The /usr branch contains nonessential commands, that is, user commands and not

system administration commands that would be required during boot and startup or

when running in recovery mode.

Although the preceding statement is that found in the FHS documentation, it is

no longer strictly true in practice on Fedora and CentOS 7. In efforts to simplify the

filesystem hierarchy, these distributions are using symbolic links to mount points in

/usr for /bin, /sbin, /lib, and /lib64. The /bin directory is a symlink to /usr/bin, /sbin is a

symlink to /usr/sbin, /lib is a symlink to /usr/lib, and /lib64 is a symlink to /usr/lib64.

The files required for boot are now part of the Linux initial RAM filesystem,

initramfs.5 So the directories that are now symlinks no longer need to be available at boot

time.

I typically make /usr a separate filesystem as much to prevent problems with it being

part of the root filesystem as to ensure the security of the data here. Most user-level

commands and libraries are located here. This is considered to be a directory tree with

static files – ones that typically do not change in the course of the host’s operation.

One of the reasons this tree is called the “secondary hierarchy” is that in many ways

it has a structure similar to the main tree starting with the root directory. There is one

subdirectory tree that is for local files, /usr/local.

The /usr/local directory tree contains subdirectories etc, bin, sbin, include, lib, lib64,

share, and more. The purpose of the /usr/local tree is to be a place where local programs

and configuration files can be stored.

This is where I place all of my locally written scripts and any configuration files they

require. The scripts themselves are located in /usr/local/bin and the configuration files

are placed in /usr/local/etc. Documentation such as man pages written for these scripts

would be located in /usr/local/share.

Another option would be to make /usr part of the root filesystem but to make

/usr/local a separate filesystem. I only back up /usr/local anyway and since I never do

a bare metal recovery of the entire system, this makes some sense. If I have an issue

with the operating system or the hard drive on which it is installed, that would require a

complete reinstallation, everything except for the /usr/local tree is re-created during the

installation.

5 Wikipedia, initial ramdisk, https://en.wikipedia.org/wiki/Initial_ramdisk

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

https://en.wikipedia.org/wiki/Initial_ramdisk

283

It is also possible for both /usr and /usr/local to be separate filesystems. The /usr

filesystem would be mounted on the /usr mount point and then the local branch would

be mounted on the /usr/local mount point.

The /user tree is explicitly not for large programs such as commercial software or

large open source applications. It is for small to moderately sized locally coded programs

to meet the needs of SysAdmins or local regular users.

Large software applications should be installed in another location. The /opt

directory tree is recommended.

 /opt
Large programs should be installed in the /opt directory tree. This directory should be

created as a separate filesystem so that it can be easily expanded in size if that should

become necessary.

The /opt branch supports a complete hierarchy of subdirectories for multiple

vendors to install their software as well as a complete set of directories reserved for local

SysAdmin use, /opt/bin, /opt/doc, /opt/include, /opt/info, /opt/lib, and /opt/man.6

 /var
The /var branch of the Linux filesystem hierarchy is an interesting combination of – well,

stuff. It is intended to contain “variable” data – data that can change, but that is not

configuration data. Because the data in /var is not needed by the operating system in any

type of recovery or maintenance mode, or during the initial boot-up sequence, it can be

safely created as a separate filesystem.

The data located in /var is user data and databases. We find many different types

of data in /var. For example /www would contain the files required for a web site if the

host were a web server. In fact, I have multiple sites running on my web server and they

each have a directory of their own such as, /var/wwwboth, /var/wwwlinuxdatabook,

and so on. This makes it easy to determine which directory branch contains the data

for each web site. The only configuration needed to accomplish this is in the web site

configuration files. I use the Apache web server so that would be /etc/httpd/conf/httpd.

conf.

6 Ibid., 13.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

284

MariaDB – a fork of MySQL – maintains its databases in /var/lib/mysql. SendMail

stores user inboxes in /var/spool/mail. BIND provides name services with the databases

located in /var/named. And there is much more data stored there as well.

 /tmp
The /tmp directory is a place where users and services can store files temporarily.

Think of /tmp a place where data of any type can be stored by any user or process –

temporarily. There is a strong likelihood that files stored in /tmp will be deleted, usually

at the next boot.

I use /tmp for downloading large files such as ISO images like the installation images

for various distributions. These can be quite large and, along with files created by various

system processes can fill a small /tmp filesystem. Because of this I like to make my

/tmp filesystem very large, usually 10GB or more. For my main workstation I currently

have 30GB allocated to /tmp. In these days of multi-terabyte hard drives 30GB is a very

reasonable size.

If the /tmp filesystem does fill up, strange things can happen. I mentioned in

Chapter 6, “Use the Linux FHS,” the problems that occurred when I managed to fill up

the /tmp filesystem. GUI desktop logins failed because the desktop could not create new

files in /tmp, but the console and remote SSH logins continued to work.

However, the problem would be worse if /tmp were part of the root filesystem. In that

case, many other symptoms would be likely as various additional services were unable to

find sufficient disk space in which to work.

 The Other Branches
All of the other branches of the Linux filesystem hierarchy must be an atomic part of

the root filesystem. They cannot be created as separate filesystems and mounted to the

directory tree at the appropriate mount point. The programs and data stored in these

other branches of the directory tree are required to be available during early stages of

boot and when running in low-level recovery or maintenance modes.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

285

 Starting with Separate filesystems
The best time to set up separate filesystems for one or more components of the Linux

filesystem hierarchy is when the operating system is first installed. Most Linux installers,

such as Red Hat’s Anaconda, provide the ability to do a custom disk configuration during

the installation. At this time you can specify separate logical volumes to contain one

or more of the filesystems we have discussed in this chapter that are capable of being

mounted separately.

The installers – at least the ones with which I am familiar – also have the ability

to recognize existing partitions, volumes, and filesystems and display identifying

information about them. This makes it easy to reinstall Linux after the hard drive

containing the OS crashes and needs to be replaced. It also enables easy release

upgrades – from Fedora 27 to Fedora 28, for example – when a complete reinstallation

is desirable. The OS can be installed and the root filesystem can be reformatted without

touching the /home, /usr, and /var filesystems. This would keep intact all of my personal

data, email inbox, and my web site data, for example.

 Adding Separate filesystems Later
It is not particularly difficult to convert one or more of the directories discussed here to

a separate filesystem to a system well after the original installation. It just requires some

foresight and planning.

The basic process is simple. In fact there are multiple ways to do this. Here is what

one process would look like for the /home directory. This procedure assumes that

/home is not currently on a separate filesystem from the root filesystem.

 1. Install a new hard drive, if necessary.

 2. Create a partition or logical volume on the drive.

 3. Add a filesystem label to the new partition or volume. This makes

the new filesystem easily identifiable when it is not mounted and

allows mounting by label.

 4. Back up the data in the current home directory. If there is room,

store the backup in /tmp. This is one good reason to make /tmp

large.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

286

 5. Delete the data from the current /home directory. This step frees

up that space that would not be accessible after the new filesystem

is mounted at /home on the main trunk of the filesystem hierarchy.

 6. Add an entry in /etc/fstab that specifies the mount for the new

filesystem on /home.

 7. Mount the new volume on /home.

 8. Restore the data to /home.

 9. Test and verify that all data was correctly restored.

Let’s do a version of this in Experiment 14-1.

EXPERIMENT 14-1

This experiment should be performed as root. after making a backup of the existing /home

directory, we will delete the existing partition on the USB device and create a linux partition,

format the new partition as EXT4, mount is as /home, then restore the backed-up data.

Note Unexpected results may occur if you do not log out of all of the student user
sessions.

if you are logged in as the student user, log out of all student login sessions.

Warning! This experiment may cause loss of data in your home directory. you
should only perform this experiment on a virtual machine or host that is intended
for training and is not in use for production.

We will use the USB drive as the location of our new home drive. if the USB device is already

inserted in your system, unmount it and remove it.

Warning! This experiment will destroy all of the existing data on the USB
device. Ensure you are using the one designated for these experiments before you
continue.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

287

insert the USB drive in a USB port. Do not mount it. Use dmesg to determine the device special

file assigned to the device. in my Vm this is /dev/sdb.

We will use fdisk to delete the existing partition and create a new linus partition. Use fdisk

to view the existing partition.

[root@testvm1 ~]# fdisk /dev/sdb

Welcome to fdisk (util-linux 2.30.2).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help): p

Disk /dev/sdb: 62.5 MiB, 65536000 bytes, 128000 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x73696420

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 127999 125952 61.5M c W95 FAT32 (LBA)

Command (m for help):

Notice that the existing partition is probably a FaT32 (VFaT) one. We want to use EXT4 for our

/home filesystem. Delete the existing partition, and then print the results to verify that the

partition has been deleted.

/ Linux never asks permission. \
| It assumes you know what you |
\ are doing. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

288

Command (m for help): d

Selected partition 1

Partition 1 has been deleted.

Command (m for help): p

Disk /dev/sdb: 62.5 MiB, 65536000 bytes, 128000 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x73696420

Create the new partition using all of the space on the device. Take the defaults for partition

type and number. answer yes when asked if you want to remove the VFaT signature. Then take

the defaults for starting and ending sectors.

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

Select (default p):

Using default response p.

Partition number (1-4, default 1):

First sector (2048-127999, default 2048):

Last sector, +sectors or +size{K,M,G,T,P} (2048-127999, default 127999):

Created a new partition 1 of type 'Linux' and of size 61.5 MiB.

Partition #1 contains a vfat signature.

Do you want to remove the signature? [Y]es/[N]o: y

The signature will be removed by a write command.

Verify that the new partition is a linux type 83 partition.

Command (m for help): p

Disk /dev/sdb: 62.5 MiB, 65536000 bytes, 128000 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x73696420

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

289

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 127999 125952 61.5M 83 Linux

Filesystem/RAID signature on partition 1 will be wiped.

Command (m for help):

Now write the new partition table to the USB device.

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks

[root@testvm1 ~]#

Create an EXT4 filesystem. Notice that we are adding the filesystem to the sdb1 partition, not

the disk itself, sdb. on a small device, this will not take long.

[root@testvm1 ~]# mkfs -t ext4 /dev/sdb1

mke2fs 1.43.5 (04-Aug-2017)

Creating filesystem with 62976 1k blocks and 15744 inodes

Filesystem UUID: 915c4857-cc81-4637-80ac-5e69d40329df

Superblock backups stored on blocks:

 8193, 24577, 40961, 57345

Allocating group tables: done

Writing inode tables: done

Creating journal (4096 blocks): done

Writing superblocks and filesystem accounting information: done

Create a label for the partition and then verify that it was created.

[root@testvm1 ~]# e2label /dev/sdb1 home

[root@testvm1 ~]# e2label /dev/sdb1

home

[root@testvm1 ~]#

it is time to back up the current home directory. Since the host on which you are performing

these experiments is designated for training, there should not be very much to back up so this

should not take long. We will create a simple tarball as our backup.

[root@testvm1 ~]# tar -cvf /tmp/home.tar /home

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

290

Now we need to be a little careful. We will not add an entry to /etc/fstab for this experiment.

and we will not delete any of the current content of /home.

Tip mounting the home filesystem located on the USB device on the /home
mount point does not delete or damage the existing data in the current home
directory. The new filesystem is mounted over the existing data, which can no
longer be accessed. after the home filesystem on the USB device is unmounted,
the original home directory and its data will again be accessible.

Now let’s mount the newly created home filesystem on /home. We will use the device special

file to explicitly specify the device we want to mount. This prevents any potential conflict with

any other home filesystem that might have the label of “home.” We also take a quick look at

the contents that should be empty except for the lost+found directory.

[root@testvm1 ~]# mount /dev/sdb1 /home ; ls -lR /home

/home:

total 12

drwx------. 2 root root 12288 Feb 2 14:49 lost+found

/home/lost+found:

total 0

[root@testvm1 ~]#

remember that the original data in /home is still there, it is just masked by the empty

filesystem that is mounted on the /home mount point.

Now we can restore the backup data to the home directory. When extracting data from a

tarball, it is always restored into the current directory. So if we want to restore /home, we need

to make the root directory (/) the pWD before performing the extraction, which we do in the

following command.

[root@testvm1 ~]# cd / ; tar -xf /tmp/home.tar

[root@testvm1 /]#

let’s verify that the extraction worked properly.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

291

[root@testvm1 /]# ls -l /home

total 16

drwx------. 2 root root 12288 Jan 15 10:04 lost+found

drwx------. 6 student student 1024 Jan 31 09:03 student

[root@testvm1 /]# ls -l /home/student/

total 37

-rw-rw-r--. 1 student student 84 Jan 27 15:28 error.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file0.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file1.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file2.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file3.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file4.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file5.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file6.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file7.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file8.txt

-rw-rw-r--. 1 student student 15 Jan 27 11:41 file9.txt

-rw-rw-r--. 1 student student 60 Jan 27 15:28 good.txt

-rwxr-xr--. 1 student student 9830 Jan 30 09:28 script.template.sh

-rw-rw-r--. 1 student student 42 Jan 27 15:16 test1.txt

you can also do this.

[root@testvm1 /]# df -h /home

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 56M 36M 16M 70% /home

Note the small amount of available space that is due to the very small size of the USB device

i am using.

at this point the new /home filesystem is in use for the user student. log back in as the

student user and verify that everything works as it should. Then log out as the student user.

Now we need to unmount the /home filesystem.

[root@testvm1 /]# umount /home

it is now safe to remove the USB device from the host. The original home directory is now

unmasked and is in use.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

292

 Final Thoughts
Separate filesystems make our jobs as SysAdmins easier. Maintaining parts of the

directory tree in separate filesystems, we provide more flexibility in the case of drive

crashes, enable flexibility in moving filesystems to different mount points, and make it

easier to perform complete operating system reinstallations when they are needed. It

also improves the survivability of other parts of the directory structure in case one hard

drive crashes.

It did take me a while to figure out what a good idea this is, but since that time I have

always maintained separate filesystems for the directories discussed here. That has

saved my data more than once.

ChapTEr 14 USE SEparaTE FilESySTEmS For DaTa

293
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_15

CHAPTER 15

Make Programs Portable
Portable programs make life much easier for the lazy SysAdmin. Portability is an

important consideration because it allows programs to be used on a wide range of

operating system and hardware platforms. Using interpretive languages such as bash

and Perl that can run on many types of systems can save loads of work.

Programs written in compiled languages such as C must be recompiled at the very

least when porting from one platform to another. In many cases, platform-specific code

must be maintained in the sources in order to support the different hardware platforms

that the binaries are expected to run on. This generates a lot of extra work, both writing

and testing the programs.

Perl, bash, and many other scripting languages are available in most environments.

With very few exceptions programs, written in Perl, bash, Python, PHP, and other

languages can run unchanged on many different platforms.

 Intel PC to Mainframe
At one place I worked I was responsible for one Intel host that ran Linux and a fairly large

Apache web site with an internally built database engine. We wrote a large number of

Perl and bash programs that were used as CGI to generate web pages based on the data

retrieved from the database. Even the database software was written in Perl by one of our

SysAdmins.

As part of our disaster recovery plan, all of the mainframe and Unix programs that

we were running – our entire inventory of software – was supposed to be migrated to a

recovery service with a location in Philadelphia. The service did not provide Intel-based

computers, so our web site could not be directly supported with identical hardware.

However, part of the hardware we had at my organization, and which was also

replicated at the disaster recovery site, was an IBM Z series mainframe that could

support a large number of Red Hat instances. We decided it would be wise to test our

294

software and see if it could be migrated to an IBM Z series box. We were hoping that we

would not need to make too many changes to make it work. I was provided with access

to a dedicated Red Hat instance on the Z series mainframe and told to report my results.

I started by identifying the software and related data that would have to be moved.

This was easy because we used standard directory locations for files and data as defined

by the Linux Filesystem Hierarchical Standard.

It took less than five minutes to create a tarball of the files we needed to transfer,

and a few seconds to scp (secure copy) the tarball to the mainframe. I extracted the files

from the tarball, started the various servers using a startup shell program, “automate

everything,” and started testing. Everything worked flawlessly. Total time from start to

finish to transfer and up and running – except the testing itself – twelve minutes.

This was in part due to the fact that our database was in fact a flat ASCII text file, in

accordance with the tenet in Chapter 13: “Store data in open format files.” No magical

incantations were required to modify it, convert from one binary format to another, or

ASCII to EBCDIC, or export it from one system and import it on another. It just worked.

But this easy migration was also made possible by the fact that we used Perl and

bash, which made for portable programs.

 Architectures
Linux runs on a number of architectures. Actually, quite a lot of hardware architectures.1

Wikipedia maintains a long list of hardware architectures supported by Linux, but here

are just a few.

Of course Linux supports Intel and AMD.

It also supports 32- and 64-bit ARM architectures that are found in practically every

mobile phone on the planet and devices such as the Raspberry Pi.2 Most mobile phones

use a form of Linux called Android.

Freescale (formerly Motorola) 68K architecture; Texas Instruments 320 family,

Qualcomm Hexagon; Hewlett Packard’s PA-RISC; IBM’s S390 and Z series; MIPS; IBM’s

Power, PowerPC, SPARC, and many more.

1 Wikipedia, List of Linux-supported computer architectures, https://en.wikipedia.org/wiki/
List_of_Linux-supported_computer_architectures

2 Raspberry Pi Foundation, https://www.raspberrypi.org/

Chapter 15 Make prograMs portable

https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://www.raspberrypi.org/

295

Each of these architectures is different at the hardware instruction set3 level.

Each architecture needs different compilers, or at least a compiler that is capable of

supporting their respective instruction sets. This in turn means that any programs

using a compiled language for any of these many architectures must be recompiled

when migrated from one to another. This is a form of portability despite the fact that the

programs need to be recompiled.

The sense that I mean in this chapter is that programs should just work when moved

from one architecture to another. No recompiling or rewriting should be required. Only

shell and other interpretive scripting languages can do that.

 Portability Restrictions
When I first heard the term portable in connection with software, it was in the sense of

making a copy of a program that could be moved from one computer to another of the

same architecture and operating system and run it there. Searching Google results in a

large number of hits that all relate to moving software from one Windows computer to

another using various techniques including things like running the program from a USB

drive that can be inserted into any computer. Other techniques were described a little

less clearly.

 Licensing
Other results referred to simply installing programs on more than one hard drive. Vendors

can attempt to prevent this for various reasons, and in some cases it is quite illegal. End user

license agreements (EULA) may explicitly state that you have the right to install and use a

program on only one computer. More lenient ones may allow you to install it on multiple

computers – with some specified limit – but to only use it on one computer at a time.

I do not intend to become embroiled in a discussion about licensing agreements.

But true portability is affected by licensing, so some consideration of it is necessary.

Sometimes technology is not the restrictive factor in portability.

 Technology
However, sometimes technology is the limiting factor in software is portability.

3 Free On-Line Dictionary of Computing, Instruction Set, http://foldoc.org/instruction+set

Chapter 15 Make prograMs portable

http://foldoc.org/instruction+set

296

 Compilers and Code

We have already looked at portability with respect to supported platforms. For compiled

programs, this means that compilers must be available to create binaries compatible

with the supported platforms. We have already seen that Linux is supported on a wide

range of hardware platforms so there are clearly compilers that support those platforms.

We can say that there is a certain level of compatibility with these platforms, and

that code will be semi-portable between them. That basically means that the code can

be placed in a single code base, if desired, but that considerations need to be made

within the code in order to support targeted platforms. These differences are due to the

inherent differences in the hardware instruction sets of each platform.

The good news is that the GNU Compiler Collection4 (GCC) used by Linux contains

compilers for the C, C++, Objective C, Fortran, Java, and Ada programming languages.

GCC can run on more than sixty operating system platforms including Linux, DOS,

Windows, many Unix variants, MIPS, NeXT, and a bunch I never heard of before finding

the GCC Definition referenced in footnote 4. We can also see in that document that GCC

supports a wide range of processors for which it can compile binary code.

This all means that we have some level of portability in the compiled binary world.

The drawback is that code compiled for one hardware platform will not run on a

different hardware platform so it must be recompiled. Sometimes significant changes

must be made to the code in order to get it to compile. This takes a lot of effort and most

developers won’t bother with trying to make their code compile on all or even most of

the hardware platforms that they could. They usually pick one or two that together have

the most potential customers and don’t go beyond that.

If that source code is open source, then some programmer with a need or desire to

make this code run on one of the less common hardware platforms can do that. If they

do, it will certainly take a good bit of work and knowledge to make it happen.

This is definitely not the appropriate choice for us lazy admins. Let’s make our code

much more portable right from the start and eliminate most of this extra work. Compiled

code rates low on my portability scale because of the amount of work required to move it

from one platform to another. It can be done, but I don’t want to do it myself.

4 The Linux Information Project, GCC Definition, http://www.linfo.org/gcc.html

Chapter 15 Make prograMs portable

http://www.linfo.org/gcc.html

297

 LibreOffice
LibreOffice5 is a good example of compiled code that is portable. I use LibreOffice

extensively for various projects, including writing this book. LibreOffice is available

for many operating system platforms including Linux, various Windows releases, Mac

OS, and Android. There is even a “Portable”6 version packaged using PortableApps.

com.7 This packaging enables the application to be used from one’s own USB stick, for

example, on any Windows computer.

So LibreOffice is portable in multiple senses. It is also open source so that you can

download the source code from the LibreOffice web site and modify it to suit your

own needs. Most of us would never do that, but the code is available so we can view it

or change it if we need or want to. LibreOffice is distributed under the Mozilla Public

License Version 2.0.8

 Shell Scripts
Here we are, back at shell scripts. Why? Because the vast majority of shell scripts work on

any hardware platform under Linux. In most cases, they will also work on other Unix and

Unix-like operating systems.

The shell is actually a programming language: it has variables, loops,
decision- making, and so on.

—The Unix Programming Environment9

This statement applies to every shell I have ever used. In previous chapters you

have already seen how short shell programs can be written directly at the command

line in order to facilitate the rapid solution to a problem. We have also covered creating

executable files in which to store these ad hoc programs so they will be available in the

future and for other SysAdmins who might need the same solution.

5 LibreOffice, Home page, https://www.libreoffice.org/
6 LibreOffice, Portable Versions, https://www.libreoffice.org/download/portable-versions/
7 PortableApps.com, Home page, https://portableapps.com/
8 LibreOffice, Licenses, https://www.libreoffice.org/about-us/licenses/
9 Kernighan, Brian W.; Pike, Rob (1984), “3. Using the Shell,” The UNIX Programming
Environment, Prentice Hall, Inc., ISBN 0-13-937699-2, 94

Chapter 15 Make prograMs portable

https://www.libreoffice.org/
https://www.libreoffice.org/download/portable-versions/
https://portableapps.com/
https://www.libreoffice.org/about-us/licenses/

298

I prefer to use bash because it is the default shell for all Linux distributions, and it is

available for Unix as well. Other shells are also widespread, like ksh, csh, tcsh, and zsh,

but they may need to be installed because they may not be by default.

The fact that the bash shell is nearly 100% compliant10 with the Portable Operating

System Interface (POSIX11) standard means that you can expect bash shell scripts

that run on one operating system and hardware platform to also run on all others on

which bash is supported. That does not mean that you might not run into some issues.

For example, the mymotd script that we wrote in Chapter 11 looks for some specific

hardware data that might not be available or might be available but in a different manner

than our script assumes. The script will run, but you might encounter some anomalous

results.

 Portability with Windows
So far, we have concentrated on compatibility within Linux and Unix operating systems.

But what about Windows? Although this book and the Linux Philosophy for SysAdmins

is about the Linux environment, this chapter would not be complete if we did not look,

however briefly, at Windows, too.

As discussed above, it is possible to create source code that can be compiled on

Linux, various versions of Unix, Windows, and other operating systems. It takes a lot of

work to do this, but it can and has been done. The real question is how we can run our

shell scripts on both Linux and Windows.

There are a couple ways to provide script portability between Linux and Windows.

 Cygwin

Cygwin is a free open source product that can be downloaded and installed on your

Windows computer. Cygwin supports Windows Vista and later and installs a very

flexible Linux environment and a nearly complete set of programs, utilities, and desktop

environments that have been ported from Linux and the GNU Utilities.

It is possible to use Cygwin to install bash, tcsh, other shells, the KDE and other

Linux desktops, and many Linux utilities that we SysAdmins have become accustomed

to. Not only is it possible to have a Linux experience on Windows, but also our bash and

10 Newham and Rosenblatt, Learning the Bash Shell (O’Reilly 1998), ISBN 1-56592-347-2, 248.
11 Wikipedia, POSIX, https://en.wikipedia.org/wiki/POSIX

Chapter 15 Make prograMs portable

https://en.wikipedia.org/wiki/POSIX

299

other scripts are now portable to Windows. The Cygwin environment even extends to

imposing the /dev directory and the usual device special files that we expect to find on

any Linux host.

This portability does have its limits, though. For example, hardware and operating

system specific functions may not work correctly. Therefore, it may be necessary to

add some code to shell scripts to determine the operating system environment and act

accordingly to allow for the differences. This is nothing new and has been done between

different Linux distributions and between Linux and various versions of Unix. Adding a

little bit of additional code to a script to allow it to run on multiple operating systems is a

very easy way to ensure a higher level of portability.

In other cases, bash scripts may port in the sense that they will run, but it would

make no sense to so-so. For example, the post-installation script I have written to handle

all of tasks that the Fedora Linux installation does not would run but it would generate

many errors.

I have spent a little time to install and learn a bit about Cygwin, but I don’t normally

use Windows except for a few tests like this. The Cygwin bash shell is familiar and offers

a good opportunity to use Linux commands and scripts that are not operating-system

dependent.

 PowerShell

Microsoft released the first version of their PowerShell12 in 2006. In January of 2018, they

made PowerShell available under the MIT license.13 The code itself is now available for

many platforms, including Linux. PowerShell is an object oriented scripting language

and shell that is – among other things – intended to provide script portability between

the Windows and Linux platforms.

I have not used PowerShell although I have played with it just a bit to see what it is

about. It is very different from any of the Linux and Unix shells I have used. I suspect

if I spent some time with it, I could learn to use it as well as I use the bash shell. With

all I still have to learn about Linux, I am probably not going to use PowerShell myself.

However, if you need script portability between Linux and Windows operating systems,

you should definitely check it out.

12 Opensource.com, February 6, 2018, Power(Shell) to the people, https://opensource.com/
article/18/2/powershell-people

13 Linux Foundation, MIT License, https://spdx.org/licenses/MIT

Chapter 15 Make prograMs portable

https://opensource.com/article/18/2/powershell-people
https://opensource.com/article/18/2/powershell-people
https://spdx.org/licenses/MIT

300

 Windows Subsystem for Linux

The Windows Subsystem for Linux14 (WSL) allows Linux ELF binaries to run on an X64

version of Windows 10 hosts. This compatibility layer enables Windows users to install

and run a number of different Linux distributions from the Windows store.

WSL has its limits, but it provides another option for users needing cross-platform

compatibility.

 The Internet and Portability
We have been looking at shell scripts in terms of running them from the command

line. What happens when we use other programs to run our scripts? For example, one

method for making our scripts portable is to run them as CGI programs on a web server

and deliver the results to the requesting web browser.

The advantage of this approach to portability is that the user needs no special tools,

virtual machines, or compatibility layers. There is no need to download and install

software on the client, the user’s host. The script is run and the work is done on the web

server. Only a stream of data that is used by a browser to generate and display a page

containing the information that resulted from the work done by the web server is sent to

the requesting client.

Let’s take a quick look at creating scripts for this type of environment.

 Creating Web Pages
Back in the stone age of the Internet when I first created my first business web site, life

was good. I installed the Apache HTTP server and created a few simple HTML pages

that stated a few important things about my business and provided information like

an overview of my product and how to contact me. It was a static web site because the

content seldom changed. Maintenance was simple because of the unchanging nature of

my site.

14 Microsoft, The Windows Subsystem for Linux, https://docs.microsoft.com/en-us/windows/
wsl/about

Chapter 15 Make prograMs portable

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

301

 Static Content
Static content is easy and still common. Let’s take a quick look at a couple of sample

static web pages. You don't need a working web site to perform these little experiments.

Just place the files in your home directory and open them with your browser. You will see

exactly what you would if the file were served to your browser via a web server.

The sole function of a web server is to send the text data to create a web page from

the server to the browser. In the experiments in this chapter we will simply create the text

data streams as files in your /home/~ directory.

The first thing we need on a static web site is the index.html file, which is usually

located in the /var/www/html directory. This file can be as simple as a text phrase such

as “Hello world” without any HTML markup at all. This would simply display the text

string without any formatting.

EXPERIMENT 15-1

all of the experiments in this chapter can be performed as the student user.

Create index.html in your home directory and add the text “hello world” without the quotes or

any htMl markup as it's only content.

open the index.html in your browser with the following Url.

file:///home/<yourhomedirectory>/index.html

the results are pretty unimpressive. Just a bit of text on your browser window.

So HTML markup is not required, but if you had a large amount of text that needed

formatting, the results of a web page with no HTML coding would be incomprehensible

with everything running together.

So the next step is to make the content more readable by using a bit of HTML coding

to provide some formatting.

Chapter 15 Make prograMs portable

302

EXPERIMENT 15-2

the following data creates a page with the absolute minimum markup required for a static

web page with htMl. add the h1 markup to the text in your index.html file.

<h1>Hello World</h1>

Now view index.html and see the difference.

of course you can put a lot of additional htMl around the actual content line to make a more

complete and standard web page. that more complete version as shown below will still

display the same results in the browser. It also forms the basis for a more standardized

web site. go ahead and use this content for your index.html file and display it in your browser.

<!DOCTYPE HTML PUBLIC "-//w3c//DD HTML 4.0//EN">

<html>

<head>

<title>My Web Page</title>

</head>

<body>

<h1>Hello World</h1>

</body>

</html>

the results using the more complex form do not change much, but it makes for a complete

htMl coded web page. the one thing the above htMl code does change is that we now have

a title, “My Web page,” which appears in the browser tab or title bar.

I built a couple of static web sites using these techniques, but my life was about to

change.

 Dynamic Web Pages for a New Job
I once took a new job in which my primary task was to create and maintain the CGI

(Common Gateway Interface) code for a very dynamic web site. In this context, dynamic

means that the HTML needed to produce the web page on a browser was generated from

data that could be different every time the page was accessed. This includes input from

the user on a web form that is used to look up data in a database. The resulting data is

Chapter 15 Make prograMs portable

303

surrounded by appropriate HTML and displayed on the requesting browser. But it does

not need to be that complex.

Using CGI scripts for a web site allows you to create simple or complex interactive

programs that can be run to provide a dynamic web page that can change based

on input, calculations, current conditions in the server, and so on. There are many

languages that can be used for CGI scripts. We will look at two of them, Perl and BASH.

Other popular CGI languages are PHP and Python.

This chapter does not cover installation and setup of Apache or any other web server.

If you have access to a web server that you can experiment with, you can directly view

the results as they would appear in a browser. Otherwise, you can still run the programs

from the command line and view the HTML that would be created. You can also redirect

that HTML output to a file and then display the resulting file in your browser.

 Using Perl

Perl is a very popular language for CGI scripts. Its strength is that it is a very powerful

language for the manipulation of text.

To get CGI scripts to execute, you need the following line in the in httpd.conf for the

web site you are using.

ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

This tells the web server where your executable CGI files are located. For this

experiment, let's not worry about the server side of things. We can still do everything we

need without a web server.

EXPERIMENT 15-3

Create a new file, index.cgi, and add the following perl code to it. this file should also be

located in your home directory for this experiment.

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print "<html><body>\n";

print "<h1>Hello World</h1>\n";

print "Using Perl<p>\n";

print "</body></html>\n";

Chapter 15 Make prograMs portable

304

set the permissions on index.cgi to 755 because it must be executable.

[student@testvm1 ~]$ chmod 755 index.cgi

run this program from the command line and view the results. It should display the htMl

code it will generate.

[student@testvm1 ~]$./index.cgi

Content-type: text/html

<html><body>

<h1>Hello World</h1>

Using Perl<p>

</body></html>

[student@testvm1 ~]$

We now have a perl program that can generate htMl for viewing in a web browser.

When using a web server, you would set the ownership of the file to apache.apache. the file

would also be located in /var/www/cgi-bin.

Now view the index.cgi in your browser. all you get from this is the contents of the file.

browsers really need to have this delivered as CgI content. It does not really know how to do

that unless the server tells it that the directory in which the program is located is specified as

shown above in httpd.conf. but you get the idea.

to see what this would look like in your browser, run the program again and redirect the

output to a new file, test1.html.

[student@testvm1 ~]$./index.cgi > test1.html

[student@testvm1 ~]$ cat test1.html

Content-type: text/html

<html><body>

<h1>Hello World</h1>

Using Perl<p>

</body></html>

[student@testvm1 ~]$

Now use your browser to view the file you just created that contains the generated content.

You should see a nicely formatted web page.

Chapter 15 Make prograMs portable

305

The CGI program in Experiment 15-3 still generates static content because it always

displays the same output. In Experiment 15-4 we use the Perl “system” command to

execute the Linux command following it in a system shell. The result is returned to the

program. In this case we simply grep the current RAM usage out of the results from the

free command.

EXPERIMENT 15-4

add the following line to your index.cgi program.

system "free | grep Mem\n";

Your program should now look like this.

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print "<html><body>\n";

print "<h1>Hello World</h1>\n";

print "Using Perl<p>\n";

system "free | grep Mem\n";

print "</body></html>\n";

run the program two or three times from the command line to see that the free command

returns different numbers almost every time.

[student@testvm1 ~]$./index.cgi

Content-type: text/html

<html><body>

<h1>Hello World</h1>

Using Perl<p>

Mem: 4042112 300892 637628 1040 3103592 3396832

</body></html>

[student@testvm1 ~]$./index.cgi

Content-type: text/html

<html><body>

<h1>Hello World</h1>

Using Perl<p>

Mem: 4042112 300712 637784 1040 3103616 3396996

Chapter 15 Make prograMs portable

306

</body></html>

[student@testvm1 ~]$./index.cgi

Content-type: text/html

<html><body>

<h1>Hello World</h1>

Using Perl<p>

Mem: 4042112 300960 637528 1040 3103624 3396756

</body></html>

[student@testvm1 ~]$

run the program again and redirect the output to the results file.

[student@testvm1 ~]$./index.cgi > test1.html

reload the ~/test1.html file in your browser. You should see the additional line that displays

the system memory statistics. run the program while redirecting the output to this file and

refresh the browser a couple of more times and notice that the memory usage should change

occasionally.

 Using BASH

Bash is probably the simplest language of all for use in CGI scripts. Its primary strengths

for CGI programming are that it has direct access to all of the standard GNU utilities and

system programs and that SysAdmins should be familiar with it.

EXPERIMENT 15-5

rename the existing index.cgi to perl.index.cgi and create a new index.cgi with the following

content.

#!/bin/bash

echo "Content-type: text/html"

echo ""

echo '<html>'

echo '<head>'

echo '<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">'

echo '<title>Hello World</title>'

echo '</head>'

Chapter 15 Make prograMs portable

307

echo '<body>'

echo '<h1>Hello World</h1><p>'

echo 'Using BASH<p>'

free | grep Mem

echo '</body>'

echo '</html>'

exit 0

remember to set the permissions to executable. run this program from the command line and

view the output.

[student@testvm1 ~]$ chmod 755 index.cgi

[student@testvm1 ~]$./index.cgi

Content-type: text/html

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Hello World</title>

</head>

<body>

Hello World</h1><p>

Using BASH<p>

Mem: 4042112 290076 647716 1040 3104320 3407516

</body>

</html>

run this program again and redirect the output to the temporary results file you created before.

then refresh the browser to view what it looks like displayed as a web page. the results should

be the same with the exception that some of the memory numbers will be a bit different.

 CGI – Open and Portable
You can see from these experiments that it is easy to create open and portable CGI

programs that can be used to generate a wide range of dynamic web pages. These are

trivial examples but you should now see some of the possibilities.

Although the most common way we think about scripts is in terms of running them

from the command line, they can also be used with other software to perform some very

interesting tasks. CGI scripts written in common languages are a fine example of this.

Chapter 15 Make prograMs portable

308

Because the languages used to create our CGI programs are supported on many

operating systems, these programs are portable. You may need to install bash on a

Windows web server, but that too is possible. Other languages like Python and PHP,

for example, can also be used to generate dynamic web pages and, along with Perl, are

easily available on most platforms, both operating system and hardware.

 WordPress
WordPress15 is a powerful open source program that allows creation and management of

web pages. It is a great example of writing a complete program in a scripting language to

generate and deliver web-based dynamic content. WordPress itself is just the code that

generates web pages; a web server such as the Apache HTTP server is still required to

deliver the data from the server to the client web browser.

WordPress is written in PHP so is easily portable to any platform that runs PHP.16

PHP is a programming language especially well-suited to writing dynamic web pages. I

sometimes forgot to install PHP because it is not always installed by default. I added the

PHP installation to my post-installation script so it will always be there. But if you have

trouble running WordPress, check to ensure PHP is installed.

WordPress is extremely flexible because it uses themes to generate the look and

feel of a web site. By changing themes it is possible to change how a web site looks in

a few seconds with a few mouse clicks. I use WordPress on all of my web sites because

it is so easy and flexible. I have even taught nontechnical people how to use the word

processing-like interface to create new web pages and posts.

Although many aspects of WordPress themes can be altered through its own web-

based administration interface, some things require working directly with the CSS style

sheets that, along with theme specific PHP code, define the look and feel of each theme.

It is possible to work with the CSS through the WordPress interface, but I find using Vi or

Vim in a terminal session works best for me.

Before I modify anything, however, I always make a new copy and leave the

original intact. I usually rename the copy to something like, “my-wordpress-theme” to

differentiate it from the original. Then I use the WordPress admin interface to switch

to my new theme. Now I can modify the new theme and not need to be concerned that

updates to the original theme will wipe out my changes.

15 WordPress, Home page, https://wordpress.org/
16 Wikipedia, PHP, https://en.wikipedia.org/wiki/PHP

Chapter 15 Make prograMs portable

https://wordpress.org/
https://en.wikipedia.org/wiki/PHP

309

Of course I can modify the CSS to change things like colors and fonts. I can also

modify the PHP code for the themes, as well, in order to change the page structure a bit.

I have done this on a few occasions when the theme needed a bit of tweaking. I have also

modified the PHP code for a theme when installing some of the many plug-ins available

for WordPress.

The only reason that all of this is possible – in terms of both portability and the

ability to change anything about it – is that WordPress and the themes available for it are

all open and accessible. The files that make up this application are all stored as ASCII

text files. And it is open source, which means that the GPLv217 license under which

WordPress is distributed allows all of this.

 Final Thoughts
I was going to try to define portability in this chapter. As I progressed in my writing,

however, I began to realize that portability is a range of values and not just a binary

response – yes, it is portable or no, it is not portable. And portable as they are, shell

scripts still may need to be tweaked in order to produce the desired results when run on

different operating system and hardware platforms.

Portability is a key ingredient in reducing our workload. Writing code that is

portable – or at least as portable as possible – is an excellent method for only needing to

do a job once. Why write code for several different platforms when it can be done once to

run on all of those platforms with shell scripts?

Command-line scripts are where we spend most of our time as SysAdmins and

making these portable is important. Fortunately most shell scripts, especially those

written in bash, are high on the portability scale. Writing portable CGI code for web sites

we manage is another good step, where it is applicable.

More time saving comes from using open source code that is portable and has been

tested and created for many environments. We looked at WordPress as one example of

this. Just because we can write our own amazing CGI scripts to drive a web site does not

mean that it is efficient to do so. WordPress is already written, it is open source, and it does

a great job. And if you don’t like WordPress there are many other options available as well.

Portability rocks!

17 Free Software Foundation, Free Software Licensing Resources, https://www.fsf.org/
licensing/education

Chapter 15 Make prograMs portable

https://www.fsf.org/licensing/education
https://www.fsf.org/licensing/education

311
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_16

CHAPTER 16

Use Open Source
Software
This tenet may not mean exactly what you think it does. Most times we think of open

source software as something like the Linux kernel, LibreOffice, or any of the thousands

of open source software packages that make up our favorite distribution. In the context of

system administration, open source means the scripts that we write to automate our work.

Open source software is software with source code that anyone can inspect,
modify, and enhance.1

— Opensource.com

The web page from which the quote above was taken contains a well-written

discussion of open source software, including some of the advantages of open source.

I suggest you read that article and consider how it applies to the code we write – our

scripts. The implications are there if we look for them. This chapter will hopefully help

you to achieve some insight just as writing it enlightened me.

 Definition of Open Source
The official definition of open source is quite terse. The annotated version of the open

source definition2 at opensource.org contains ten sections that explicitly and succinctly

define the conditions that must be met for software to be considered truly open source.

1 Opensource.com, What is open source?, https://opensource.com/resources/
what-open-source

2 opensource.org, The Open Source Definition (Annotated), https://opensource.org/
osd-annotated

https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated

312

This definition is important to the Linux Philosophy for SysAdmins, so I include

the text of that annotated definition here. You do not have to read this definition, but I

suggest you do so in order to gain a more complete understanding of what the term open

source really means.

Note The Open Source Definition is not a license. It describes the conditions that
any license must meet in order to be considered an open source license.

 The Open Source Definition (Annotated)
Version 1.9

The indented, italicized sections below appear as annotations to the Open Source

Definition (OSD) and are not a part of the OSD. A plain version of the OSD without

annotations can be found here.

 Introduction
Open source doesn't just mean access to the source code. The distribution terms of

open-source software must comply with the following criteria:

 1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a

component of an aggregate software distribution containing programs from several

different sources. The license shall not require a royalty or other fee for such sale.

Rationale: By constraining the license to require free redistribution, we eliminate the

temptation for licensors to throw away many long-term gains to make short-term gains. If

we didn't do this, there would be lots of pressure for cooperators to defect.

 2. Source Code

The program must include source code, and must allow distribution in source code as

well as compiled form. Where some form of a product is not distributed with source

code, there must be a well-publicized means of obtaining the source code for no more

than a reasonable reproduction cost, preferably downloading via the Internet without

charge. The source code must be the preferred form in which a programmer would

ChapTer 16 USe Open SOUrCe SOfTware

http://www.opensource.org/docs/osd

313

modify the program. Deliberately obfuscated source code is not allowed. Intermediate

forms such as the output of a preprocessor or translator are not allowed.

Rationale: We require access to un-obfuscated source code because you can't evolve

programs without modifying them. Since our purpose is to make evolution easy, we

require that modification be made easy.

 3. Derived Works

The license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software.

Rationale: The mere ability to read source isn't enough to support independent peer

review and rapid evolutionary selection. For rapid evolution to happen, people need to be

able to experiment with and redistribute modifications.

 4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if

the license allows the distribution of "patch files" with the source code for the purpose

of modifying the program at build time. The license must explicitly permit distribution

of software built from modified source code. The license may require derived works to

carry a different name or version number from the original software.

Rationale: Encouraging lots of improvement is a good thing, but users have a right

to know who is responsible for the software they are using. Authors and maintainers have

reciprocal right to know what they're being asked to support and protect their reputations.

Accordingly, an open-source license must guarantee that source be readily available,

but may require that it be distributed as pristine base sources plus patches. In this way,

"unofficial" changes can be made available but readily distinguished from the base source.

 5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

Rationale: In order to get the maximum benefit from the process, the maximum

diversity of persons and groups should be equally eligible to contribute to open sources.

Therefore we forbid any open-source license from locking anybody out of the process.

Some countries, including the United States, have export restrictions for certain types

of software. An OSD-conformant license may warn licensees of applicable restrictions and

remind them that they are obliged to obey the law; however, it may not incorporate such

restrictions itself.

ChapTer 16 USe Open SOUrCe SOfTware

314

 6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of

endeavor. For example, it may not restrict the program from being used in a business, or

from being used for genetic research.

Rationale: The major intention of this clause is to prohibit license traps that prevent

open source from being used commercially. We want commercial users to join our

community, not feel excluded from it.

 7. Distribution of License

The rights attached to the program must apply to all to whom the program is

redistributed without the need for execution of an additional license by those parties.

Rationale: This clause is intended to forbid closing up software by indirect means such

as requiring a non-disclosure agreement.

 8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of

a particular software distribution. If the program is extracted from that distribution

and used or distributed within the terms of the program's license, all parties to whom

the program is redistributed should have the same rights as those that are granted in

conjunction with the original software distribution.

Rationale: This clause forecloses yet another class of license traps.

 9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with

the licensed software. For example, the license must not insist that all other programs

distributed on the same medium must be open-source software.

Rationale: Distributors of open-source software have the right to make their own

choices about their own software.

Yes, the GPL v2 and v3 are conformant with this requirement. Software linked with

GPLed libraries only inherits the GPL if it forms a single work, not any software with

which they are merely distributed.

ChapTer 16 USe Open SOUrCe SOfTware

315

 10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of

interface.

Rationale: This provision is aimed specifically at licenses which require an explicit

gesture of assent in order to establish a contract between licensor and licensee. Provisions

mandating so-called "click-wrap" may conflict with important methods of software

distribution such as FTP download, CD-ROM anthologies, and web mirroring; such

provisions may also hinder code re-use. Conformant licenses must allow for the possibility

that (a) redistribution of the software will take place over non-Web channels that do

not support click-wrapping of the download, and that (b) the covered code (or re-used

portions of covered code) may run in a non-GUI environment that cannot support popup

dialogues.

The Open Source Definition was originally derived from the Debian Free Software

Guidelines (DFSG).

Opensource.org site content is licensed under a Creative Commons Attribution 4.0

International License

 Why This Is Important
The definition of open source is important to us as SysAdmins for several reasons. First,

this definition provides us with a framework for evaluating the many licenses that are out

there. Some of them are truly open source licenses while others only feign being open

source.

True open source licenses allow us to easily and legally find, download, and use

code that is open sourced. Without the assurance that the code we use is open sourced,

we would be unable to use huge amounts of existing code that already meets many of

the needs we have. Code that is distributed under any of the licenses recognized to be

open source is free of any encumbrances. Understanding the requirements for true open

source licensing allows us to ensure that the code we are using is properly licensed.

Properly licensed open source code is freely available, and we can use it on as many

computers as we like and copy it to give to others. There are no restrictions on how we

can use or share it. There are a number of good yet different open source licenses.

ChapTer 16 USe Open SOUrCe SOfTware

https://www.debian.org/social_contract#guidelines
https://www.debian.org/social_contract#guidelines
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

316

The Open Source Initiative is the recognized authority for approving open source

licenses. Their web site has a current list of approved open source licenses.3 We should

apply one of these approved licenses when we make our code open source. We should

also ensure that the software we obtain from others for our own use is distributed under

one of these approved licenses.

 Coining the Term
I enjoy learning about the history of Unix, Linux, and open source and so I think it

important to acknowledge that Christine Peterson4 coined the term “open source.”

In February of 1998, Peterson was in a series of meetings with Eric S. Raymond, Jon

“maddog” Hall, and many other leaders to discuss licensing Netscape as free software.

A number of people, especially Peterson, did not think that “free software” properly

defined what they were trying to accomplish.

She came up with the term “open source” and approached some of the other

attendees with the idea. In a meeting on February 5, some of the attendees started

using “open source” to describe software that was free of restrictions and for which

the source code was readily available. This story is really hers to tell so please read her

article5 at Opensource.com. In a comment at the end of the article on Opensource.

com, Eric Raymond validates and supports Peterson's account of the birth of this now

ubiquitous term.

 Licensing Our Own Code
One of the best ways I know to give back to the open source community that provides us

with all of these incredible programs like the GNU Utilities, the Linux kernel, LibreOffice,

WordPress, and thousands more, is to open source our own programs and scripts with

an appropriate license.

3 Open Source Initiative, Licenses, https://opensource.org/licenses
4 Wikipedia, Christine Peterson, https://en.wikipedia.org/wiki/Christine_Peterson
5 Peterson, Christine, Opensource.com, How I coined the term ‘open source,’ https://opensource.
com/article/18/2/coining-term-open-source-software

ChapTer 16 USe Open SOUrCe SOfTware

https://opensource.org/licenses
https://en.wikipedia.org/wiki/Christine_Peterson
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software

317

Just because we write a program and we believe in open source and agree that our

programs should be open source code, does not make it so. As SysAdmins we do write

a lot of code, but how many of us ever consider the issue of licensing our own code? We

must make the choice and explicitly state that the code is open source and under which

license it is being distributed. Without this critical step, the code we create is subject

to becoming fettered with proprietary licenses so that the community cannot take

advantage of our work.

Remember the bash shell template we created back in Chapter 10? We included

the GPL V2 license header statement as comments in the code, and we even provided

a command-line option that would print the license header on the terminal. When

distributing code, I also recommend that we make it practice to include a text copy of the

entire license with the code.

I find it very interesting that in all of the books I have read and all of the classes I have

attended, not once did any of them tell me to be sure to license any code I wrote in my

tasks as a SysAdmin. All of these sources completely ignored the fact that SysAdmins

write code, too. Even in the conference sessions on licensing that I have attended, the

focus was on application code, kernel code, or even GNU-type utilities. None of the

presentations even so much as hinted at the fact that we SysAdmins write huge amounts

of code to automate our work or that we should even consider licensing it in any way.

Perhaps you have had a different experience, but this has been mine. At the very least,

this frustrates me; at the most it angers me.

We devalue our code when we neglect to license it. Most of us SysAdmins don’t even

think about licensing, but it is important if we want our code to be available to the entire

community. This is neither about credit nor is it about money. This is about ensuring

that our code is now and always will be available to others in the best sense of free and

open source.

Eric Raymond writes that in the early days of computer programming and especially

in the early life of Unix, sharing code was a way of life.6 In the beginning this was simply

reusing existing code. With the advent of Linux and the open source licensing, this

became much easier. It feeds the needs of System Administrators to be able to legally

share and reuse open source code.

6 Raymond, Eric S., The Art of Unix Programming, Addison-Wesley (2004), 380,
ISBN 0-13-13-142901-9.

ChapTer 16 USe Open SOUrCe SOfTware

318

Raymond states, “Software developers want their code to be transparent,

Furthermore they don’t want to lose their toolkits and their expertise when they

change jobs. They get tired of being victims, fed up with being frustrated by blunt tools

and intellectual-property fences and having to repeatedly reinvent the wheel.”7 This

statement also applies to SysAdmins.

This leads us to the problems associated with organizational code sharing and open

source.

 Organizational Code Sharing
As SysAdmins our natural inclination is to share code. We like to help people, which is

why we are SysAdmins in the first place. Yes, some of us just prefer computers to people

but we all like to share our code.

Many organizations have no idea how to share code or the advantages of doing so.

Others have figured this out and some even pay employees to write open source code.

 Silos Suck
Having worked at a good number of different organizations as a SysAdmin, I have found

that many suck at sharing code both externally and internally. Most of the places I have

worked at have never even thought about sharing code internally let alone externally.

Every development project was isolated from every other one. Departments were like

silos, tall and narrow with lots of silage inside, self-enclosed fiefdoms eschewing contact

with the outside world. In many ways they acted like rivals instead of teams working for

the same organization.

I always found it difficult to obtain code from other departments in these

organizations. The PHBs of other internal organizations always seemed to think that we

were in some sort of competition with them and that sharing code was a zero sum game in

which the one sharing the code was the loser. At the very least it took weeks of discussion

and sometimes some sort of written legal forms that included a non- disclosure agreement.

I am not talking about two departments writing commercial code that might overlap or

compete in some way in the external marketplace; I am talking about two internal lab

organizations, for example, that perform essentially the same tasks every day. Sharing code

would have made so much sense, saved so much work, and been so easy to do.

7 Ibid.

ChapTer 16 USe Open SOUrCe SOfTware

319

In some cases it was just easier to write our own code than it was to struggle through

the bureaucratic nonsense to obtain code we already knew would solve a problem for us.

What a waste of time!

 Open Organizations and Code Sharing
That type of internal organization that results in uncommunicative silos needs to be

replaced by an open organization8 that will encourage code sharing at least internally.

Jim Whitehurst, CEO of Red Hat, has written a book, The Open Organization,9 which

discusses the advantages and qualities of the open organization and how to make the

transition. Whitehurst has also written a very interesting article, “Appreciating the full

power of open,”10 for Opensource.com in which he discusses the concept of sharing,

“Sharing something often increases its value, because sharing allows more and more

smart, creative people to get their hands on it. The value actually increases as you

remove restrictions to sharing—if you share as much as you can with as many people

as you can. That means sharing your instructions, your recipe, your source code, and

opening it up to everyone, not limiting access to certain persons, groups, or ‘fields of

endeavor,’ as the Open Source Initiative11 puts it.”

In 2005, Karl Fogel wrote an interesting book, Producing Open Source Software – How

to Run a Successful Free Software Project,12 and followed up with a second edition in

2017. Fogel covers in detail the techniques, technology, legal issues, and the social and

political infrastructure of creating open source software. This is an interesting book that

details many practical aspects of creating software that is truly open source. It discusses

the advantages of sharing code internally as well as externally using open source

licensing.

8 Opensource.com, What is The Open Organization, https://opensource.com/
open-organization/resources/what-open-organization

9 Whitehurst, Jim, The Open Organization, Harvard Business Review Press (June 2, 2015),
ISBN 978-1625275271

10 Opensource.com, Appreciating the full power of open, https://opensource.com/
open-organization/16/5/appreciating-full-power-open

11 See the Annotated Open Source Definition in this chapter.
12 Fogel, Kark, Producing Open Source Software, https://producingoss.com/en/index.html

ChapTer 16 USe Open SOUrCe SOfTware

https://opensource.com/open-organization/resources/what-open-organization
https://opensource.com/open-organization/resources/what-open-organization
https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://producingoss.com/en/index.html

320

Some organizations pay their employees to write open source code. For example,

many companies pay some of their employees to write code for the kernel, which

ultimately, if approved by Linus Torvalds, will be shared with programmers throughout

the world. This is not always purely altruistic because many companies that do this wish

to make the kernel work better for their own software. In many cases this new or revised

code will make Linux work better for everyone and Torvalds may accept it into the kernel

source code tree.

Many open source projects besides the kernel are supported by organizations that

understand the value proposition of supporting open source software both monetarily

and with code.

 Things to Avoid
This chapter is about using open source software but that means that we also need to

distinguish true open source software from that which has hidden restrictions or simply

does not comply with the licensing under which they claim their software is distributed.

It is a sad thing that we need to discuss companies that falsely claim their software to be

open source.

This is one of the reasons I have included the Open Source Definition in this chapter.

Understanding the objectives of open source can help you to understand when a license

does not meet the requirements. But there are other things to beware of also.

If a software vendor states that their software is open source, then the source

code should be easily available for download from the Internet. In some cases I have

been interested in software and in viewing the web site found no indication that the

source code was available. In those cases, no one responded to my queries about

that issue.

If in order to download some software, you are required to provide your name,

email address, and other identifying information, the software is definitely not from a

reputable company even if they claim to use an open source license. I have seen many

alleged “free white paper” downloads that would actually interest me if they did not

require “registration” of some sort. I recommend giving these companies a wide berth.

They are probably using the false or misleading promise of open source software to build

a spammer’s list of email addresses.

ChapTer 16 USe Open SOUrCe SOfTware

321

 Code Availability
It is one thing to license code with an open source license; it is quite another to actually

make it available to others. The definition of open source code that I quoted at the

beginning of this chapter implies that our code must be made available is some way so

that anyone who has the inclination can download and view the source code. And in

just the previous section of this chapter, I mention that requirements such as filling out

a registration form are indicative that the code is being illegally restricted if it is truly

distributed under an open source license.

How do we make our code freely available under an open source license? There are a

number of good ways to share our code. Let’s look at some.

 How Do I Share My Code?
Now that our code can be distributed under an approved open source license, how

do we actually distribute it and make it available to others? Note that the open source

definition at the beginning of this chapter does not specify how the open source software

should be delivered.

Nothing I have ever read defines an approved mechanism for distributing open

source software. The licenses I have read as well as the legal opinions I have read that

refer to distribution of open source software are all about making the source code

available along with the executables. For scripts the executable is the source.

Sharing our open source code can be trivially easy. For me it started when I installed

some of the scripts I had written to ease my tasks of system management on the computers

I built or repaired for customers and friends. I then started putting a few of my scripts onto

USB thumb drives so I could give them to people. Not that I did any of that very much.

I had a few customers and not a lot of folks are interested in a few bash scripts. More

people were interested in a live DVD or USB drive of Fedora than my scripts.

The next step is to make the scripts available for download from the Internet and

I have done this with mine. In order to make these scripts more widely available, I have

posted them on my technical web site, The DataBook for Linux,13 at http://www.linux-

databook.info/?page_id=5245. You can download them and use them as you see fit

within the terms of the licenses. The code is all distributed under the GPL V2 and the PDF

documents are published under a Creative Commons Attribution-ShareAlike license.

13 Both, David, The DataBook for Linux, http://www.linux-databook.info

ChapTer 16 USe Open SOUrCe SOfTware

http://www.linux-databook.info/?page_id=5245
http://www.linux-databook.info/?page_id=5245
http://www.linux-databook.info/

322

It is also appropriate to use developer collaboration sites such as SourceForge14 and

GitHub.15 These sites allow others to easily download a copy of your code in order to

participate in development. They provide version management and allow you as the

primary developer to merge only that code which you deem appropriate.

I used SourceForge on one of my projects for a while, but that project is long dead

and has been superseded by another. One of the advantages of sites like SourceForge and

GitHub are that they make it easy for others to take over a project when the current lead

developer decides to move on. That is what happened with the project I became the lead

on. I took it over from another developer who needed to spend his time on other projects.

 Code Sharing Considerations
There are a couple of important things to consider about sharing your code. I will touch

on them only briefly here. The important thing is that you are aware of them and can get

more information of you need it.

 Confidentiality

Confidentiality is a concern for many and rightly so. Data or code that is intended to be

confidential may be exposed in open source software.

Of course hiding the code that is allegedly confidential or a trade secret makes the

program as a whole proprietary. If you remove the guts of your code from a program and

hide it, then the entire program is useless from an open source standpoint. To be truly

open source you have to go all the way. All the code is open or it is not.

Data is another beast altogether. Eric Raymond’s Rule of Separation16 discusses the

separation of policy from implementation. This means that the user interface for a program,

which is where policy is implemented, should be separate from the parts of the program that

implement the mechanics. This makes it possible to use a text mode or GUI interface and to

alter those interfaces without changing the underlying logic of the program.

We can also apply this rule of separation to the data used by a program. Data should

never be stored as part of the program although I have seen that done. I have made that

mistake myself.

14 https://sourceforge.net/
15 https://github.com/
16 Raymond, The Art of Unix Programming, 15–16.

ChapTer 16 USe Open SOUrCe SOfTware

https://sourceforge.net/
https://github.com/

323

The data used by a program must be separate from the program code as a matter

of good programming form. This ensures that the data itself is easily altered when the

externals that the data refer to change. Even with scripts, configuration data should be

maintained separately from the code that makes up the program’s logic. Using separate

configuration files makes it possible for a non-sophisticated user to make changes

without worry of damaging the code itself.

The separation of data from the program also means that it is not necessary to

distribute any data that might be confidential with the code itself.

 Providing Support

What happens when I distribute my code and someone finds a bug? Am I obligated to fix

it? Is it necessary for me to answer questions from the people who use my software?

The answer to these questions is “no.” We are not under any obligation to support the

open source code we make available. Why? Because the open source licenses – at least

the GPL V217 that I use – specifically state that there is no warranty.

17 Open Source Initiative, Licenses – GPL V2, https://opensource.org/licenses/GPL-2.0,
Section 11.

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Figure 16-1. The GPL V3 under which I make my scripts available contains
this clause that makes it clear that the code has no warranty whether implied or
explicit (The original is in uppercase.)

ChapTer 16 USe Open SOUrCe SOfTware

https://opensource.org/licenses/GPL-2.0

324

If you read the various approved licenses at opensource.org you will find they all

have similar wording. However, despite the statements in the licenses, most of us want

our code to work for anyone who obtains it – as well as ourselves. So we fix any problems

that arise because it will work better for our users as well as for us.

Companies such as Red Hat, and organizations like The Document Foundation,18 the

entity responsible for the LibreOffice suite of office programs, all have support structures,

bug and problem reporting procedures, and volunteers to assist with usage problems

and to provide guidance and support.

 Parting Thoughts
Using the open source software created by others is important but I am not suggesting

that we completely forgo the use of proprietary software when it meets a need that

cannot otherwise be met. By this I mean that we consider proprietary software after

extensive Google searches have failed to locate appropriate open source software, and

then exploring the possibility of writing a script to perform the task in question.

If you choose to write a script to solve the problem, open source your own code.

Make it available for others because if you need to perform this task, others also need to

do so. You will be saving others the work you invested in creating the script.

Stay away from the trap of always writing your own code when something is already

available. We could write our own web-based content management or blogging software,

but there is already plenty of software that does that. WordPress, Drupal, Joomla, Plone,

OpenCms, Mambo, and many more are already available and it will take far less work

that writing your own. Write a plug-in for whichever one you choose if some bit you need

is not already available.

Use open source software written by others when you can; the rest of the time write

open source software that others can use.

18 The Document Foundation, https://www.documentfoundation.org/

ChapTer 16 USe Open SOUrCe SOfTware

https://www.documentfoundation.org/

PART IV

Becoming Zen

Part 4 of this book takes us from the everyday practical aspects of being a SysAdmin to

the more esoteric world of the Zen. We look at various aspects of the Linux Philosophy

for SysAdmins that are about making our own choices, doing things in ways that make

sense to us, dealing with and respecting all of those we work with including the PHBs,

and giving back to the community.

You will find only a couple of experiments in this part of the book. However, you

will find some advice and suggestions that I usually try to impart to students and new

SysAdmins – those for whom I have been a mentor.

Enter and become Zen with me.

327
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_17

CHAPTER 17

Strive for Elegance
Elegance is one of those things that can be difficult to define. I know it when I see it, but

putting what I see into a terse definition is a challenge. Using the Linux dict command,

Wordnet provides one definition of elegance as, “a quality of neatness and ingenious

simplicity in the solution of a problem (especially in science or mathematics); ‘the

simplicity and elegance of his invention.’”

In the context of this book, I think that elegance is a state of beauty and simplicity

in the design and working of both hardware and software. When a design is elegant,

software and hardware work better and are more efficient. The user is aided by simple,

efficient, and understandable tools.

Creating elegance in a technological environment is hard. It is also necessary.

Elegant solutions produce elegant results and are easy to maintain and fix. Elegance

does not happen by accident; you must work for it.

The quality of simplicity is a large part of technical elegance. So large, in fact that it

deserves a chapter of its own, Chapter 18, “Find the Simplicity,” but we do not ignore it

here. This chapter discusses what it means for hardware and software to be elegant.

 Hardware Elegance
Yes, hardware can be elegant – even beautiful, pleasing to the eye. Hardware that is well

designed is more reliable as well. Elegant hardware solutions improve reliability.

Many of us SysAdmins have responsibility for hardware as well as software. This is

especially true of those of us who work in smaller organizations, but it can also be true

in larger environments as well. In my five-year stint at Cisco, the SysAdmin part of my

job required me to rack and cable new servers, identify and fix hardware problems, help

design rack layouts and power requirements, and more hardware related tasks.

Understanding hardware elegance is just as important as understanding software

and operating system elegance.

328

 The PCB
A Google search for “pcb1 reliability” reveals many articles and papers on PCB design

and reliability. One article by Darvin Edwards, “PCB Design and Its Impact on Device

Reliability,”2 discusses four broad areas of PCB design that affect reliability. One factor

Edwards discusses is that of thermomechanical reliability. Repeated power cycling

causes rapid thermal changes, which in turn causes expansion and contraction of the

components, traces (electrical conductors), and solder joints. Over time these repeated

thermal stress cycles can cause various types of failures on the PCB.

In one of my technical drafting classes in college, one of my assignments was to create

a set of drawings for a printed circuit board. The layout was already provided, and all I

really needed to do was to redraw it using some new technique we had just been taught.

As I looked at the component layout in the drawing and the traces, and land

patterns – places where components are soldered on the PCB, I had a bit of insight. One

of the things we had also learned in class was that each solder joint is a potential point of

failure and each jumper used – short lengths of wire used to “jump” over other traces –

on a PCB added two points of failure, one for each solder joint. There were two jumpers

on this board and I decided to see if I could alter the design to eliminate them. I was able

to reroute a couple of the traces to different locations and eliminate the jumpers.

I showed this to the instructor, and his response was that it was a more elegant solution.

He gave me a good grade on that project.

 Motherboards
Hardware elegance can mean the simple and well laid-out design of a motherboard,

which is a fairly large PCB. As previously discussed, good motherboard design can

improve reliability.

In my opinion a well laid-out motherboard, one that looks good with sleek lines of the

conductors and land patterns (mounting pads to which components are soldered) on the

surface is elegant. A motherboard with well-placed components that do not interfere with

each other or with additional components that might be added later such as powerful but

long video adapters, a CPU socket that is placed on the motherboard so that RAM memory

1 Printed Circuit Board
2 Edwards, Darvin, Electronic Design, PCB Design and Its Impact on Device Reliability, http://
www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability

Chapter 17 Strive for eleganCe

http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability

329

and other motherboard components do not interfere with adding high-capacity air cooling

fans or liquid cooling equipment – that is elegant design. Frankly, I have always appreciated

the look of a well-designed motherboard. These motherboards are truly works of art.

 Computers
A well-designed computer is elegant. This includes a case that is designed with easy access to

the internal components and that provides for plenty of unrestricted airflow, lots of locations

to mount fans and liquid cooling radiators, and plenty of options for easy cable routing.

This is not about lots of LED lighting on the motherboard, fans, LED strips, and

fancy lighting controllers. Such things are for show and fun. The latest motherboard

I purchased for my main workstation is an ASUS TUF X299 that met all of the

requirements I had for this workstation. It was also the only one that met all of my needs.

It also just happens to have a string of LEDs along the back edge that produce a simple

light show of scrolling colors. I have not turned them off in BIOS because they are a bit of

fun, but I would not go out of my way to add LED shows to my set of requirements.

A computer is elegant when the external power and hard drive activity LEDs are

easily visible and a decent brightness so they can be seen in all lighting conditions. The

power and reset switches are also easily accessible but not obtrusive so that they might

be accidentally bumped and cause the computer to reset or power off.

I could go on, but you get the idea.

 Data Centers
Hardware elegance also means a well-planned and constructed computer room or data

center. Rack enclosures are laid out in such a way that multiple power sources can reach

them with ease and access to both front and rear are unimpeded. The cabling is neat and

orderly - unlike that in Figure 17-1 which is a mess; it is cut to length and flows without

kinks or tangles through the cable channels and trays throughout the computer room.

Chapter 17 Strive for eleganCe

330

Uninterruptible power supplies should be used to maintain power to all devices

until a generator can be brought online and power switched over to that for long-term

stability in the event of power failures. Power and grounding leads themselves should be

routed for safety as well as ease of access.

 Power and Grounding
It is hard to imagine that power and grounding feeds to a computer should have a term

like “elegance” applied to them. but here is something to consider about that.

In about 1976 I was working for IBM as a Customer Engineer in Lima, Ohio. In

addition to fixing broken computers and installing new ones, one of my duties was to assist

customers in planning for the installation of new computers. This included planning for

appropriate power and grounding. In this particular instance, I had a long discussion with

my customer about the requirements for power and a good ground. Good grounding is

essential for the proper electronic operation and stability of computers.

So what constitutes a good ground? It is a large gauge wire with green insulation

(green wire ground) that runs from the device being protected, the computer, to a copper

stake that is embedded at least 10 feet deep into moist earth. The green wire ground

must not have any other grounding wires connected to it, and it must not be connected

to any grounding or neutral buses in any of the power distribution boxes through which

it passes. Note that this is IBM’s definition for the integrity of the logical operation of the

computer as well as for human safety.

After our discussion, the customer said that they had an old well on the grounds

that was lined with copper and that was at least 80 feet deep with over 60 feet of water

in it. This was a great ground, and I agreed that bonding the green wire ground from

Figure 17-1. It may get the job done, but this cabling job is definitely not elegant.
Creative Commons CC0

Chapter 17 Strive for eleganCe

331

the computer to the well casing was appropriate grounding. Using this preexisting and

amazingly good ground point was an elegant solution.

After the installation we had nothing but problems. These were seemingly random

but frequent problems that one day would be indicative of memory failures, the next day

a disk problem, the next day a processor problem, and so on. We replaced memory, CPU

boards, and pretty much everything we could think of over a period of about two weeks,

and the customer was understandably getting upset.

I was by now fairly certain that this was a grounding problem. I discussed the ground

with the plant electrician and he said that he had run the ground wire just as we had

discussed. But I had to see for myself to be sure.

I got out my oscilloscope and used an induction clamp on the ground wire so that I could

see any electrical noise on the ground line. As I got this all hooked up, the vice president of IT

came by and I told him what I was doing. He was a bit skeptical, to say the least.

Just as we were finished with our discussion, we both heard an electrical motor

start up and a large burst of electrical noise showed up on the scope. A moment later,

someone ran out of the computer room and yelled that the computer was down.

I could not have asked for a better audience to this than the disgruntled vice president.

Especially since the motor we had heard starting up was the compressor motor on the

large soft drink machine that we were standing next to.

We had the electrician begin removing the front panels to all of the electrical

distribution boxes in order to see and verify the integrity of the green wire ground. In

the first box we looked at, I immediately saw the problem. There was a big, ugly, nasty

looking, very old wire that had been grafted onto our once-pristine green wire ground.

About this time someone came into the little room in which we had been standing

during all of this and ran a few letters through the postage machine. The resultant noise on

the ground wire said it all because both of these devices were plugged into the same power

outlet. We had the electrician clip that ugly, old ground wire off of my nice new, clean green

wire ground and the customer never had another problem caused by grounding issues.

Sometimes elegance is a pristine green wire ground.

 Software Elegance
Here I am, back to talking specifically about shell scripts, which is the type of coding

that SysAdmins typically do. It would be very unusual for a SysAdmin to write code in

a language such as C, which requires much more development effort and needs to be

compiled. This is a poor use of time for a SysAdmin.

Chapter 17 Strive for eleganCe

332

There are many opinions on software elegance. What makes software elegant, and

what does “elegant” even mean in the software world? Here are some of my opinions

with a bit of explanation for each.

In general, elegance is code that looks good, even pretty, and follows the tenets

outlined in this book. In my opinion, software is elegant when you use these guidelines.

This is my list of characteristics, and I am willing to bet that other SysAdmins have their

own ideas about what constitutes software elegance. In any event these are not hard and

fast rules – just guidelines. The most important aspect of any software is that it should

perform the task you wrote it to do. Using these guidelines makes it easier for others –

and you – to understand what you did and maintain the code you wrote.

 1. Use consistent indenting - Code should be consistent in the

indenting of procedures and flow control structures. This helps

to make it easier to visualize the structure of the program and the

flow of execution under various circumstances.

I know that some developers use tabs for indentation and

others spaces. The number of tabs or spaces people use vary as well.

That is mostly irrelevant so long as the code can be easily read by

anyone who did not write it – and by those who did write it as well.

 2. Design with a clear layout - Code should be well laid out and

sequenced so that it is easy to see the flow of execution under

various conditions.

The most efficient code is that which executes in a straight-

through fashion and which does not jump around or have

unnecessary flow control structure that slow it down.

There are good reasons for using procedures, such as to

prevent replication of the same code in multiple places. However,

the main body of the program should flow in a straightforward

fashion where possible.

 3. Use STDIO - We have already seen that STDIO is a powerful

enabler; it allows us to chain many small programs together in

order to perform complex tasks that no single program can do.

A program with a captive user interface (CUI) such as a menu,

does not provide for STDIO. Such a program is limited to a stand-

alone existence and cannot work as a within a data stream.

Chapter 17 Strive for eleganCe

333

Captive user interfaces should be avoided because they are so

limiting and do not play well with the command-line pipes and

redirection.

The fdisk program is one example of a useful and powerful

utility that uses a menu interface. The problem with this is

that fdisk cannot be used in scripts. Someone wrote a separate

program for performing fdisk functions from within scripts. The

current tool for this is sfdisk.

 4. Add meaningful comments - The program is well commented

with meaningful information. This helps to make the purpose of

the code clear for maintainers and to ensure that problems can be

located and fixed quickly.

 5. Each program should do one thing well - This guideline has

long been a tenet of the Unix and the Linux Philosophies and

has resulted in the Core Utilities, and other core utilities that are

small, targeted to a single task and that perform that task well. This

results in powerful and flexible command-line programs that can

be combined into pipelines to perform complex tasks that a single

program cannot.

One side effect of this is that programs that do one thing tend

to be small. This makes them easy to understand and modify

when necessary.

The corollary to this tenet is that adding more features to these

small programs is not usually a good idea. The need for a so- called

“new feature” should really be seen as the need for a new program

that should also follow these guidelines. Most new features, when

patched onto existing programs, simply create code bloat and

make the programs harder to use and maintain.

 6. Silence is golden - Linux command-line tools usually do not

display a message to the SysAdmin that all has gone well. This

keeps undesired messages from entering the STDOUT data

stream feeding a pipeline and causing confusion for later

programs.

Chapter 17 Strive for eleganCe

334

 7. Always use the least amount of code necessary - The minimum

amount of code necessary to perform the desired task is used.

Everything else is cruft and should be eliminated. This is the crux

of simplicity and the opposite of complexity.

Some programmers like to show off with a twisty maze of

complex code that is impossible to determine the entrances and

exits. This type of code is poor practice and is subject to bugs.

On the other extreme, there is a game, a competition, really,

called “code golf.”3 The objective is to implement a specified

algorithm with the smallest possible resultant executable binary.

This is most definitely not what we are doing in this particular

guideline. Competitions such as this are fine so long as they are

not carried over into the actual practice of system administration.

In the context of the SysAdmin, using the least amount of code

necessary means to also meet as many as possible of the rest of

these guidelines. Code golf does not because it ignores everything

else in the pursuit of minimization.

 8. The output is easy to read and understand - When any output

is necessary at all, it should be easily interpreted by the user. For

many programs, the output is their reason for being.

Output that is cluttered with messages and other information

that have little or nothing to do with the purpose of the program

obfuscates the important data. The actual structure of the output

is irrelevant so long as it serves the intended purpose with clarity.

 9. Use meaningful variable names - I like to use meaningful

variable names in my command line and shell programming.

Random variable names or names like $X have little meaning to

whoever needs to debug code a couple years down the road; that

includes the person who originally wrote the code.

3 Wikipedia, Code Golf, https://en.wikipedia.org/wiki/Code_golf

Chapter 17 Strive for eleganCe

https://en.wikipedia.org/wiki/Code_golf

335

Names like $AccountTotal and $NumberOfUsers are far

more meaningful than $A1, $B3, for example. They make it much

easier to read the code. They also serve as a good starting place

for the tenet “Document everything,” in Chapter 20. Well-named

variables tell program maintainers what to expect in terms of how

the variable fits into the logic of the program as well as the kinds of

values to expect when debugging the program.

Going back to the Perl programs that I was tasked with

cleaning up, the variable names were so random that it turned

out several of those variable names pointed to the same thing. I

renamed all of the variables in the program and then was able to

substitute a single variable name for those other different names

for the same variable. Just that little step made a big leap forward

in cleaning up that particular program.

 10. Follow Eric S. Raymond’s 17 Unix Rules4 - These are 17 rules

that should be read and understood by all developers including

SysAdmins. Raymond expounded at length on these rules in

his book, The Art of Unix Programming.5 Wikipedia has a nice

summary of these rules (see footnote 3).

If you think an important guideline is absent from my list, it

is probably in Raymond’s list of rules. Be sure to read these rules

because they apply to SysAdmins as well as developers.

 11. Test everything - Is this not blindingly obvious?! Apparently not,

because I have encountered plenty of software that has clearly not

been well tested.

My job at Cisco was twofold. Part of the time I was assistant to

the lab manager where the testing department's tests were run.

The rest of the time I was one of the testers, assigned to test Linux

powered appliances.

4 Wikipedia, The Unix Philosophy, Section: Eric Raymond’s 17 Unix Rules, https://en.wikipedia.
org/wiki/Unix_philosophy#Eric_Raymond%E2%80%99s_17_Unix_Rules

5 Raymond, Eric S., The Art of Unix Programming, http://www.catb.org/~esr/writings/taoup/
html/

Chapter 17 Strive for eleganCe

https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond%E2%80%99s_17_Unix_Rules
https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond%E2%80%99s_17_Unix_Rules
http://www.catb.org/~esr/writings/taoup/html/
http://www.catb.org/~esr/writings/taoup/html/

336

Testing is not just running a series of test programs to verify

that the software under test could perform its design tasks – it is

also ensuring that the software does not fail when it encounters

unexpected input. One of the most common vulnerabilities that

hackers use to obtain unauthorized access to computers and other

devices that are run by software is the inability of the software to

handle unexpected input.

Other testing that I did was to simply peruse the

documentation and the code to determine whether the code met

the specifications outlined in the documentation. If it did not, I

had to fail it, or the development team would have to obtain an

exception, which was rare.

Part of what I did while reviewing both the code and the

documentation was to ensure that the design of the code

supported the Linux Philosophy and well-documented standards

such as the filesystem Hierarchical Standard, and standards

created to ensure consistency of usage among all Linux

distributions.

 12. Clean out the cruft - Cruft is all of the old code in a program that

is never used. Many programs evolve over time and sometimes

code that was once useful is no longer needed. As I fix my own

scripts or add new features or options, I sometimes find myself

with code and variables that are no longer used and which need to

be cleaned out.

Following these guidelines will help ensure that the code you write remains easy to

read and modify. It will look good and it will run well. It will be elegant.

 Fixing My Web Site
By now you already know that I use WordPress for hosting my own web sites and others

as well. I use it because it is free, open source software that performs its task well and

provides great flexibility. However, things do go wrong. You can count on it. In this

particular case, I have encountered the problem twice on different web sites and have

now fixed it twice.

Chapter 17 Strive for eleganCe

337

The symptom of this problem was perplexing until I determined the source. Things

looked normal on the blog page, which is the home page for my both.org web site. The

problem was only visible when I tried to display any of the static pages I have for this

web site.

The static pages displayed the theme elements such as the top banner and the web

site name. Each page showed the correct title for that page, but none of the content. It

was a page without content. I tried changing themes to no avail – that meant the problem

was not with the theme itself. I installed another instance of WordPress and pointed it to

the existing MySQL database for the both.org web site. The symptom did not change or

go away.

The only place left to check was the MySQL database. It is too bad that I forgot

about the mysqlcheck tool; I might have easily fixed the problem that way. It is a good

thing I forgot about the mysqlcheck tool because I learned a lot more than I would have

otherwise.

This problem was really quite simple to fix. I copied the MySQL database files for that

web site from my daily backup to the /var/lib/mysql/wordpress directory and restarted

MySQL.

WordPress can use a different MySQL database for each web site or a single MySQL

database with different tables for each web site. The tables for each web site have

different prefixes for the table names. This prefix is defined in the WordPress wp-config.

php file for each site.

I located the correct set of database files in /var/lib/mysql/wordpress directory

and saved them to another location just in case. I then went to one of my backups

that was a couple days old since I was unsure exactly when this problem had begun.

I copied the backup files to the /var/lib/mysql/wordpress directory and restarted

MySQL. Everything worked fine at this point. I may not have needed the MySQL

restart, but I figured I might as well get a clean restart to flush anything that might be in

a cache somewhere.

The only way this could work is that both WordPress and MySQL are open so that

I was able to view the code for WordPress and the configuration and data files for both

WordPress and MySQL. I could have downloaded the source for MySQL but did not need

to. I didn’t really need to do that for WordPress either but because it is written in PHP it is

wide open.

The data files for MySQL are stored in the Linux FHS defined location, /var, which is

for – database files! I was able to find them, determine which files were for my web site,

and easily replace them with earlier backups.

Chapter 17 Strive for eleganCe

338

Another contributing factor is that the backup script that I wrote creates backups

that store files in their normal format and directory structure. It does not compress them

into tarballs, zip files, or – even worse – some proprietary backup format. I can access

my files with command-line tools like cd and cp; the Midnight Commander (mc) text

mode file manager; or a GUI file manager such as Krusader, Dolphin, or others. When

I find the backup files I want, I can simply copy them to the desired location to replace

the damaged ones.

It is also possible to use the mysqldump command to export the data to a file that is a

script of SQL commands that will rebuild the database. I have tried this in the past and

found that it works quite well. Either method would work just as well, but I like my own

method better.

The elegance of WordPress, MySQL, and my backup solution, when taken together,

result in an easy resolution to the problem at hand. One of the things I learned from

fixing this problem is that fancy backup solutions are not necessary for a MySQL

database.

 Removing Cruft
Creating elegance is hard work. Maintaining it can be even more difficult. Cruft is

superfluous programs and code within programs, old data files, and directories with files

left over from programs that have been removed.

Cleaning out cruft is an important part of our job as SysAdmins. Among the

things we can search for cruft are old or unused software, old code in our own

scripts, and old configuration and data files. Fortunately we have some tools that can

assist us in this task.

 Old or Unused Programs
I just removed some programs I don’t use. I was using the KDE Application Launcher

and noticed that several of the Calligra office suite programs were in the list. I never use

Calligra preferring LibreOffice. It had been installed by default with Fedora and I did

us it several months ago for a test. Because I will never use it for my productive work,

I decided to delete it.

Chapter 17 Strive for eleganCe

339

But how do we actively search for unused programs? There is a way to find what are

called orphans – programs that are not required by any other program. There are usually

very few of these so it cannot hurt to use the tools we have to try to find them. For this

task we use the rpmorphan utility to list RPM packages that are not dependencies for any

other packages installed on the host.

EXPERIMENT 17-1

install the rpmorphan package if it is not already.

[root@testvm1 ~] dnf -y install rpmorphan

list the orphaned packages.

[root@testvm1 ~]# rpmorphan

liberation-sans-fonts

liberation-serif-fonts

libertas-usb8388-firmware

libkolab

libsss_autofs

libsss_sudo

libyui-mga-gtk

libyui-mga-qt

libyui-qt-graph

[root@testvm1 ~]#

Your list of orphaned packages will be different from mine. Some of these “orphaned”

packages on my test vM may be oK to delete, but i really do want the extra fonts. i also cannot

say whether the other packages can be safely removed without a good bit of research, but

i did look at the libkolab package and it looks like it can be safely removed from my vM host.

remove it if it is installed and then reinstall, or install it if it is not already, so we can see

another option.

[root@testvm1 ~]# dnf -y remove libkolab ; dnf -y install libkolab

let’s use the time functions of rpmorphan to identify the newest package. first let’s look at

orphans installed more than one day ago.

Chapter 17 Strive for eleganCe

340

[root@testvm1 ~]# rpmorphan -install-time +1

liberation-sans-fonts

liberation-serif-fonts

libertas-usb8388-firmware

libsss_autofs

libsss_sudo

libyui-mga-gtk

libyui-mga-qt

libyui-qt-graph

note that libkolab is not in this list. now find the orphans that were installed less than one

day ago.

[root@testvm1 ~]# rpmorphan -install-time -1

libkolab

the only orphan we see is libkolab. if other packages had been installed in the past day, they

would also have been found and could be removed.

The rpmorphan tool has many interesting options that enable us to do things like

locate those orphaned packages older than a certain date. It can also find packages

newer than a certain date. This latter option allows us to remove packages that may have

been added for testing purposes.

Read the rpmorphan man page to understand more about some of the interesting

options. You will see that it also has a GUI option, but I prefer the command-line

interface. This program illustrates an important consideration that many programmers

like to follow. It is really related to Eric Raymond's Rule of Separation.6 In this case the

programmers have separated the logic and functional aspects of the program from the

user interfaces. This separation of logic from the user interface allowed them to create

a command-line interface and two graphical interfaces, one based on tk and the other

on curses.

6 Raymond, Eric S., The Art of Unix Programming, Section The Rule of Separation, http://www.
catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777

Chapter 17 Strive for eleganCe

http://www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777

341

Caution! Don’t remove orphan packages indiscriminately. this may result in
removing needed packages. Just because they are orphans does not mean they
are not needed. Be judicious when removing orphan packages. the rpmorphan tool
simply allows us to identify packages that should be investigated further so that
we may make a determination of whether they are truly safe to remove.

The deborphan tool can be used for Debian distributions. In fact, rpmorphan is

based on deborphan. The rpmorphan tool only locates the orphans, it does not remove

them. If you do decide to remove any orphan packages, you would use a package

manager such as yum or dnf.

These tools cannot uncover all of the packages we might wish to remove from

our systems. Finding orphans is one thing but many packages that do not show up as

orphans might also be removed. For example, the Calligra office suite I mentioned

earlier in this chapter does not show up as an orphan and neither does LibreOffice or

many other user-level applications. Sometimes the most disk space can be recovered by

removing these large programs.

You can use the Application Launcher for your desktop to locate user-level

packages that you never use. This can also help you find some GUI administration

tools you never use.

Caution! never attempt to remove packages using the -y option for your
package manager. this may result in removing many packages that you would not
want to remove. When your package manager displays the list of packages that
it will remove if you respond with “y,” be sure to inspect the list carefully. You can
choose “y” or “n” after checking the list. this is much safer.

If you do decide to remove the packages you find, be careful that you will not remove

other software that is needed. I always use the package removal command without the -y

option that would remove without stopping to ask all packages dependent upon the one

I am removing as well as the packages that the one I am removing is dependent upon.

Be sure to check the list of packages that your package manager is preparing to remove

and respond “no” if there are any packages you think should not be removed.

Chapter 17 Strive for eleganCe

342

I once tried to remove a single package I thought I did not need. The list of packages

that would have also been removed as dependencies ran into the hundreds and would

have completely removed the KDE desktop from my system. That was definitely not what

I wanted to do.

 Old Code in Scripts
Finding cruft code in scripts is also a task that should be undertaken at least occasionally

by SysAdmins. Getting rid of unused code and locating syntax errors can be challenging,

but there are some tools we have to help us.

The shellcheck utility is like lint7 for C and other languages. It scans scripts written for

bash and bash- like shells, sh, dash, and ksh, for cruft and syntactical improvements that can

be made. It is, as always, your choice as to whether you make the suggested changes or not.

Let’s look at how this tool works.

EXPERIMENT 17-2

let us start by installing the ShellCheck package – yes, with the uppercase letters as shown.

[root@testvm1 student]# dnf -y install ShellCheck

now let’s check the shell script template using shellcheck.

[student@testvm1 ~]$ shellcheck script.template.sh | less

i received a number of SC2086 errors like this one.

In script.template.sh line 92:

 if [$verbose = 1]

 ^-- SC2086: Double quote to prevent globbing and word splitting.

the shellcheck utility tool is a bit overzealous about wanting us to place double quotes around

our variables. there are some edge cases8 when this may be an issue, but i have never

encountered them myself. So, after checking to ensure that we do not have one of those edge

cases, we can exclude these errors as in this next command.

7 Wikipedia, Lint, https://en.wikipedia.org/wiki/Lint_(software)
8 GitHub, shellcheck, Double quote to prevent globbing and word splitting, https://github.com/
koalaman/shellcheck/wiki/SC2086

Chapter 17 Strive for eleganCe

https://en.wikipedia.org/wiki/Lint_(software
https://github.com/koalaman/shellcheck/wiki/SC2086
https://github.com/koalaman/shellcheck/wiki/SC2086

343

[student@testvm1 ~]$ shellcheck --exclude SC2086 script.template.sh

In script.template.sh line 152:

RC=0

^-- SC2034: RC appears unused. Verify it or export it.

In script.template.sh line 153:

Test=0

^-- SC2034: Test appears unused. Verify it or export it.

In script.template.sh line 160:

if [`id -u` != 0]

 ^-- SC2046: Quote this to prevent word splitting.

 ^-- SC2006: Use $(..) instead of legacy `..`.

now it is easier to see a couple of unused variables that could be removed from the code. We

also see some syntactical recommendations for one of the if statements.

now you can see a few issues that have been highlighted by shellcheck. Make whatever

changes you want to make using this information.

Beyond anything that shellcheck can tell you about syntax, orphan variables, and

other things, sometimes you just need to look through the code. For example, one type

of cruft that shellcheck does not find is superfluous procedures that are not called from

anywhere in the script. These can also be removed if they are not required.

Do you see an unused procedure in the script template? There is one,

SelectPkgMgr(), that is not used in the template and shellcheck did not find that it was

superfluous.

 Old Files
Sometimes old software is removed when it is no longer needed. In many cases, the

package removal procedures leave behind their user-level configuration files. These are

usually the hidden “dot” files that we find in our home directories.

The good thing about these left-over configuration files is that if that software

package is ever reinstalled we will not have lost our personal configuration. The bad

thing is that, over a long period of time, a large number of these files can accumulate.

For example, the personal configuration files for Calligra, which I recently removed

are still located in my home directory.

Chapter 17 Strive for eleganCe

344

Old data files also are left on our hard drives long past any usefulness they might have

had. This is usually because we seldom take the time to assess all of the files we have in

order to determine whether they can be deleted, archived, or retained. One easy way to

find old files is to use the find command to determine the last time files were accessed.

EXPERIMENT 17-3

first let’s make a couple of files old. We do that with the touch command. With no arguments,

touch sets atime, mtime, and ctime all to the current system time. first let’s use the stat

command to look at the attributes of one of the files you created in an earlier experiment, file0.

txt. if you do not have this file, create it now.

[student@testvm1 ~]$ stat file0.txt

 File: file0.txt

 Size: 15 Blocks: 8 IO Block: 4096 regular file

Device: fd03h/64771d Inode: 393236 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1001/ student) Gid: (1001/ student)

Context: system_u:object_r:user_home_t:s0

Access: 2018-02-02 15:39:56.415630341 -0500

Modify: 2018-01-27 11:41:36.056367865 -0500

Change: 2018-01-28 12:15:03.176000000 -0500

 Birth: -

this shows the current access, Modify, and Change times – atime, mtime, and ctime – of the file.

they may be identical but probably are not unless you just now created the file. now touch the

file using no options to set these three attributes to the current time. then check the times again.

[student@testvm1 ~]$ touch file0.txt

[student@testvm1 ~]$ stat file0.txt

 File: file0.txt

 Size: 15 Blocks: 8 IO Block: 4096 regular file

Device: fd03h/64771d Inode: 393236 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1001/ student) Gid: (1001/ student)

Context: system_u:object_r:user_home_t:s0

Access: 2018-02-23 10:28:25.794938943 -0500

Modify: 2018-02-23 10:28:25.794938943 -0500

Change: 2018-02-23 10:28:25.794938943 -0500

 Birth: -

[student@testvm1 ~]$

Chapter 17 Strive for eleganCe

345

notice that all three times are now identical. here we use touch to set the atime – the last

time the file was accessed – much earlier. the -a option in the command below tells the touch

command to only set the atime. the -t option uses the following timestamp to set the date and

time to 16:45:23 on July 15 of 2013.

[student@testvm1 ~]$ touch -a -t 1307151645.23 file0.txt

[student@testvm1 ~]$ stat file0.txt

 File: file0.txt

 Size: 15 Blocks: 8 IO Block: 4096 regular file

Device: fd03h/64771d Inode: 393236 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1001/ student) Gid: (1001/ student)

Context: system_u:object_r:user_home_t:s0

Access: 2013-07-15 16:45:23.000000000 -0400

Modify: 2018-02-23 10:28:25.794938943 -0500

Change: 2018-02-23 10:48:13.781669926 -0500

 Birth: -

note that the ctime was also changed. the ctime is the last time the file inode was changed

and that occurred when we set the atime.

So far all we have done is set the conditions for our experiment. now we can use the find

command to look for old files based on their atime. Use the find command as shown below to

look for files that are more than two years old. the atime option on the find command

uses age in days – actually 24-hour periods that start with “now.” therefore we need to use

365*2 = 730 days as our time period. We set the atime to more than five years ago so the test

file should show up in this test.

[student@testvm1 ~]$ find . -atime +730

./file0.txt

the file0.txt file is displayed as expected. You can also show files that have been accessed

more recently than 730 days. pipe the results through the sort utility to make it easier to see

that file0.txt is not among the ones listed.

[student@testvm1 ~]$ find . -atime -730 | sort

.

./.bash_history

./.bash_logout

./.bash_profile

./.bashrc

Chapter 17 Strive for eleganCe

346

./.cache

./.cache/mc

./.cache/mc/Tree

./.config

./.config/mc

./.config/mc/ini

./error.txt

./file1.txt

./file2.txt

./file3.txt

./file4.txt

./file5.txt

./file6.txt

./file7.txt

./file8.txt

./file9.txt

./good.txt

./index.cgi

./.lesshst

./.local

./.local/share

./.local/share/mc

./.local/share/mc/history

./.mozilla

./.mozilla/extensions

./.mozilla/plugins

./mymotd

./perl.index.cgi

./script.template.sh

./test1.html

./test1.txt

./.viminfo

The find command can locate files based on size, permissions, name, and other

criteria. However, all it can do is locate files that might be worthwhile to investigate further.

That investigation is the only way to know with any degree of certainty what should be

done with the files that were found. That usually means investigating the content, but

sometimes it is possible to determine the disposition from the name or location of the file.

Chapter 17 Strive for eleganCe

347

One potential issue with using the find command is files that have been recently

restored from a backup in a manner that did not preserve their attributes. This can make

old files look newer than they really are and prevent easy identification of the oldest files.

In cases like this it is, once again, necessary to use basic tools such as the ls command or

your favorite file manager to search through files, open them to check their content, and

delete them if they are no longer needed.

Another criteria that can be used to locate files that might be archived or deleted

is by size. There are two ways to do this. We can use the find command or the du

command. The find command gives us a bit more control over the results because we

can combine the parameters and do fun things like find all files that are larger than

15MB, were last accessed more than five years ago, and which belong to a specific user.

In this next experiment we will first look at the du command then the find command.

EXPERIMENT 17-4

perform this experiment as the student user.

once again we need to do a little bit of setup in order to make this experiment a bit more

interesting than it is with only a few small files in the home directory of the student user. first

we will create the ~/Documents directory if it does not exist, and then we will add some files

of increasing sizes to it.

[student@testvm1 ~]$ mkdir Documents

the next command should be entered on a single line. it creates 100 files with increasing

amounts of data in the ~/Documents directory.

[student@testvm1 ~]$ count=0;while [$count -lt 100000]; do

count=$((count+1000)); echo $count;dd if=/dev/urandom of=~/Documents/file-

$count.txt bs=256 count=$count ;done

Make ~/Documents the pWD and list the contents. i only show the first 20 files files here for the

sake of brevity. if you like, you can eliminate the head utility program so you can see them all.

[student@testvm1 Documents]$ ls -l | head -20

total 1262600

-rw-rw-r--. 1 student student 25600000 Feb 23 15:32 file-100000.txt

-rw-rw-r--. 1 student student 2560000 Feb 23 15:31 file-10000.txt

-rw-rw-r--. 1 student student 256000 Feb 23 15:31 file-1000.txt

-rw-rw-r--. 1 student student 2816000 Feb 23 15:31 file-11000.txt

Chapter 17 Strive for eleganCe

348

-rw-rw-r--. 1 student student 3072000 Feb 23 15:31 file-12000.txt

-rw-rw-r--. 1 student student 3328000 Feb 23 15:31 file-13000.txt

-rw-rw-r--. 1 student student 3584000 Feb 23 15:31 file-14000.txt

-rw-rw-r--. 1 student student 3840000 Feb 23 15:31 file-15000.txt

-rw-rw-r--. 1 student student 4096000 Feb 23 15:31 file-16000.txt

-rw-rw-r--. 1 student student 4352000 Feb 23 15:31 file-17000.txt

-rw-rw-r--. 1 student student 4608000 Feb 23 15:31 file-18000.txt

-rw-rw-r--. 1 student student 4864000 Feb 23 15:31 file-19000.txt

-rw-rw-r--. 1 student student 5120000 Feb 23 15:31 file-20000.txt

-rw-rw-r--. 1 student student 512000 Feb 23 15:31 file-2000.txt

-rw-rw-r--. 1 student student 5376000 Feb 23 15:31 file-21000.txt

-rw-rw-r--. 1 student student 5632000 Feb 23 15:31 file-22000.txt

-rw-rw-r--. 1 student student 5888000 Feb 23 15:31 file-23000.txt

-rw-rw-r--. 1 student student 6144000 Feb 23 15:31 file-24000.txt

-rw-rw-r--. 1 student student 6400000 Feb 23 15:31 file-25000.txt

the du -a command simply lists files and their sizes as well as the cumulative size of all

the files in each directory. We can use this to easily and quickly find the largest files and the

directories that contain the largest amount of data. We run the results through the sort utility

to get a numerically sorted listing with the largest files and directories at the end. in this case i

only show the last 20 items in the list.

[student@testvm1 ~]$ du . -a | sort -n | tail -20

20752 ./Documents/file-83000.txt

21000 ./Documents/file-84000.txt

21252 ./Documents/file-85000.txt

21500 ./Documents/file-86000.txt

21752 ./Documents/file-87000.txt

22000 ./Documents/file-88000.txt

22252 ./Documents/file-89000.txt

22500 ./Documents/file-90000.txt

22752 ./Documents/file-91000.txt

23000 ./Documents/file-92000.txt

23252 ./Documents/file-93000.txt

23500 ./Documents/file-94000.txt

23752 ./Documents/file-95000.txt

24000 ./Documents/file-96000.txt

24252 ./Documents/file-97000.txt

24500 ./Documents/file-98000.txt

Chapter 17 Strive for eleganCe

349

24752 ./Documents/file-99000.txt

25000 ./Documents/file-100000.txt

1262604 ./Documents

1262780 .

the results are in Kilobytes. note that the directories sort out near the bottom because of the

files they contain. it can be difficult to separate the directories from the files when using du.

the find command can be a little more specific. let’s find all files that are larger than 20MB.

[student@testvm1 ~]$ find . -size +20M

./Documents/file-93000.txt

./Documents/file-94000.txt

./Documents/file-90000.txt

./Documents/file-92000.txt

./Documents/file-89000.txt

./Documents/file-88000.txt

./Documents/file-91000.txt

./Documents/file-98000.txt

./Documents/file-84000.txt

./Documents/file-85000.txt

./Documents/file-83000.txt

./Documents/file-97000.txt

./Documents/file-100000.txt

./Documents/file-96000.txt

./Documents/file-95000.txt

./Documents/file-82000.txt

./Documents/file-87000.txt

./Documents/file-86000.txt

./Documents/file-99000.txt

[student@testvm1 ~]$

notice that the find command does not list the file sizes. We can add a bit of code to the

find command to make that happen.

[student@testvm1 ~]$ find . -size +20M -exec ls -l {} \;

-rw-rw-r--. 1 student student 23808000 Feb 23 15:32 ./Documents/file-93000.txt

-rw-rw-r--. 1 student student 24064000 Feb 23 15:32 ./Documents/file-94000.txt

-rw-rw-r--. 1 student student 23040000 Feb 23 15:32 ./Documents/file-90000.txt

-rw-rw-r--. 1 student student 23552000 Feb 23 15:32 ./Documents/file-92000.txt

Chapter 17 Strive for eleganCe

350

-rw-rw-r--. 1 student student 22784000 Feb 23 15:32 ./Documents/file-89000.txt

-rw-rw-r--. 1 student student 22528000 Feb 23 15:32 ./Documents/file-88000.txt

-rw-rw-r--. 1 student student 23296000 Feb 23 15:32 ./Documents/file-91000.txt

-rw-rw-r--. 1 student student 25088000 Feb 23 15:32 ./Documents/file-98000.txt

-rw-rw-r--. 1 student student 21504000 Feb 23 15:32 ./Documents/file-84000.txt

-rw-rw-r--. 1 student student 21760000 Feb 23 15:32 ./Documents/file-85000.txt

-rw-rw-r--. 1 student student 21248000 Feb 23 15:32 ./Documents/file-83000.txt

-rw-rw-r--. 1 student student 24832000 Feb 23 15:32 ./Documents/file-97000.txt

-rw-rw-r--. 1 student student 25600000 Feb 23 15:32 ./Documents/file- 100000.txt

-rw-rw-r--. 1 student student 24576000 Feb 23 15:32 ./Documents/file-96000.txt

-rw-rw-r--. 1 student student 24320000 Feb 23 15:32 ./Documents/file-95000.txt

-rw-rw-r--. 1 student student 20992000 Feb 23 15:32 ./Documents/file-82000.txt

-rw-rw-r--. 1 student student 22272000 Feb 23 15:32 ./Documents/file-87000.txt

-rw-rw-r--. 1 student student 22016000 Feb 23 15:32 ./Documents/file-86000.txt

-rw-rw-r--. 1 student student 25344000 Feb 23 15:32 ./Documents/file-99000.txt

[student@testvm1 ~]$

We now have a listing of the largest files in our home directory. in this case they are all in

the ~/Documents directory.

Once again we have tools that can help us identify the largest files in our home

directory. It still requires some judgment to decide which, if any, of these files can be

deleted or archived.

 A Final Word
It is not always possible to do everything discussed in this chapter and the references to

which I have pointed you. It would be great if we could but in real life we cannot always

do so. Our scripts will never be completely free of cruft, and they will never reach the

highest levels of elegance.

The title of the chapter should hint at that. Elegance is something to strive for but we

will probably never achieve the pinnacle in which all cruft has been removed, all code

made as efficient as possible, added the exact number of perfect comments that are clear

and concise to our code, and all of the programming rules and suggestions followed.

This is not possible for a number of reasons. The two I run into most frequently are

that the PHBs don’t care and won’t allow us the time, and that some of these guidelines

are – at least to some extent – in conflict.

Chapter 17 Strive for eleganCe

351

We do have some tools available to assist with locating cruft in scripts and as files on

hard drives. Although these tools can be helpful, they are imperfect and can only do so

much. It is really up to us as SysAdmins to search out cruft in our code and directories;

sometimes this means manually looking through things to see what is there that can be

eliminated. This is time consuming and I dislike doing it, but it does need to be done.

Using these tools to locate the largest and oldest files in our home directories – or

those of the other non-root users – on our systems can be the first step in cleaning out

the cruft. It gives us a starting point where we can get the best results for the least amount

of effort. After deleting the largest and oldest files, it becomes less effective to continue to

look for smaller and newer files to delete or move to archival storage.

Chapter 17 Strive for eleganCe

353
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_18

CHAPTER 18

Find the Simplicity

UNIX is basically a simple operating system, but you have to be a genius to
understand the simplicity.1

— Dennis Ritchie

I would never deign to disagree with one of the creators of Unix. However, my own

perspective has evolved since I began using Unix and Linux. The tenets of the Linux

Philosophy helped me to solidify my understanding of the truth that Linux is simple and

that the simplicity is illuminated by the philosophy.

Many of the tenets in this book intersect and reinforce each other. I have no doubt

that you have begun to see that for yourself. In Chapter 17, I discussed elegance but one

thing I did not list there is simplicity, although it was mentioned in passing there and in

many other places in this book. I believe that the concept of simplicity deserves its own

chapter in the Linux Philosophy for System Administrators.

In this chapter we search for the simplicity of Linux.

 Complexity in Numbers
Yes, GNU/Linux is complex on the surface. One book I know of, Linux in a Nutshell,2

contains a list of 372 Linux commands. Yes, I counted them. Another book, my favorite

for beginners, A Practical Guide to Linux, Commands, Editors, and Shell Programming,3

covers “… 98 utilities …”.

1 azquotes.com, http://www.azquotes.com/quote/246027?ref=unix
2 Siever, Figgins, Love & Robbins, Linux in a Nutshell 6th Edition (O’Reilly, 2009),
ISBN 978-0-596-15448-6 .

3 Sobell, A Practical Guide to Linux, Commands, Editors, and Shell Programming, 3rd Edition
(Prentice Hall, 2013), ISBN 978-0-13-308504-4.

http://www.azquotes.com/quote/246027?ref=unix

354

But those numbers are trivial compared to another number I came up with.

Experiment 1 illustrates a method for estimating the total number of commands on your

Linux computer. Most of the executable files that are command-line commands are

located in the /usr/bin directory, so counting the number of files in that directory gives a

pretty good estimate.

EXPERIMENT 18-1

Perform this experiment as the student user. Determine how many executables are located in

/usr/bin.

[student@testvm1 ~]$ ls /usr/bin | wc -w

2635

Yup – that is a lot of commands. Of course the number you see will be different. Ben Cotton,

my technical reviewer, informed me that he has 1,992 files in /usr/bin on his laptop. You can

see there will be a range depending upon which distribution you have and which packages

have been installed.

The test VM that I am using to create and test these experiments is a pretty

basic installation with the KDE and MATE desktops and a few applications like

LibreOffice. That VM has 2,633 executable Linux files, most of which are CLI

commands. Those numbers seem overwhelming to someone just learning Linux.

They did to me when I was just starting as a baby SysAdmin.

When I was just beginning to learn Linux, back around 1996 or 1997, I picked up a

couple of books about Linux – not that there were that many available back then – and

discovered what seemed to me at the time an unimaginable number of commands.

I thought it would be impossible for me to learn all of those commands.

I cringe when I see articles with titles like “77 Linux commands and utilities

you’ll actually use,”4 and “50 Most Frequently Used UNIX / Linux Commands (With

Examples).”5 These titles imply that there are sets of commands that you must memorize,

or that knowing large numbers of commands is important.

4 TechTarget.com, http://searchdatacenter.techtarget.com/tutorial/
77-Linux-commands-and-utilities-youll-actually-use

5 The Geek Stuff, http://www.thegeekstuff.com/2010/11/50-linux-commands/
?utm_source=feedburner

ChaPter 18 FinD the SimPliCitY

http://searchdatacenter.techtarget.com/tutorial/77-Linux-commands-and-utilities-youll-actually-use
http://searchdatacenter.techtarget.com/tutorial/77-Linux-commands-and-utilities-youll-actually-use
http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner
http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner

355

I do read many of these articles, but I am usually looking for new and interesting

commands: commands that might help me resolve a problem or simplify a command-

line program.

 Simplicity in Basics
Although my mother thinks I am a genius, I really am not. But I am persistent. I never

tried to learn all of those Linux commands, regardless of what numbers you might come

up with as the total for “all.”

I just started by learning the commands I needed at any given moment for whatever

project was at hand. I started to learn more commands because I took on personal

projects and ones for work that stretched my knowledge to the limit and forced me to

find commands previously unknown to me in order to complete those projects. My

repertoire of commands grew over time, and I became more proficient at the application

of those commands in resolving problems. I began finding jobs that payed me more and

more money to play with Linux, my favorite toy.

As I learned about piping and redirection, about Standard Streams and Standard

I/O, as I read about the Unix Philosophy and then the Linux Philosophy, I started

to understand how and why the command line made Linux and the Core Utilities

so powerful. I learned about the elegance of writing command-line programs that

manipulated data streams in amazing ways.

I also discovered that some commands are, if not completely obsolete, then seldom

used and only in unusual circumstances. For this reason alone, it does not make sense to

find a list of Linux commands and memorize them. It is not an efficient use of your time

as a SysAdmin to learn many commands that may never be needed.

The simplicity here is to learn what you need to do the task at hand. There will be

plenty of tasks in the future that will require you to learn other commands. There are

always methods for discovering and learning those commands when you need them.

I have found that discovering and learning new commands as the need arose works very

well for me. Almost any new project, including writing this book, leads to finding new

commands to learn.

ChaPter 18 FinD the SimPliCitY

356

 The Never-Ending Process of Simplification
However – just because a solution works does not mean that you should stop looking

for better ways. One of the common traits of the SysAdmin is that we are always looking

for better ways of doing what we already do. Sometimes I find a command previously

unknown to me, and I realize that it is a much better fit than one or two or more that I am

already using to accomplish that task.

In one program I wrote over a decade ago, I used a series of commands in a pipeline

starting with dmidecode to ascertain whether the hardware architecture of a system

is 32-bit or 64-bit. It was cumbersome but mostly worked. I later discovered a Linux

command, arch, that does what it took several commands to do the old way. I made

the change in my script; the results have not changed but the program is simpler, more

efficient, and more elegant.

Simplicity is not about performance or efficiency – at least not directly – it is more

about elegance. Through simplification, my programs become more efficient and

performance improves. This is elegance.

Simplicity is a never-ending process. It never stops because I am always learning new

things and new ways to apply the things I already know.

 Simple Programs Do One Thing
Most of us who work directly with computers really like to have fun. And early computer

programmers were no exception. They wrote plenty of programs that allowed us all to

have some serious fun. We geeks just want to have fun, too!

Back in about 1970, I was one of the night computer operators for a small company

in Toledo, Ohio. After all the real work was done, we would have some fun on the IBM

1401 mainframe. We would play games like tic-tac-toe, or print off pages of ASCII art

that should not be reproduced here. Tic-tac-toe was fun, but it was interesting and

challenging to play on that old computer. The computer would always take the first move

as “X” and print out the resulting 3x3 matrix on one sheet of computer paper. The human

player had to turn on one of the front panel sense-switches to indicate the number of

the square in which they wanted to place the “O” and then press a button to tell the

computer to continue to run the program. Those were the good old days.

ChaPter 18 FinD the SimPliCitY

357

The early Unix programmers gave us fun things like adventure, fortune, and cowsay.

The last two can be used to illustrate a bit about simplicity. This simplicity is because

both programs are designed to do exactly one thing. The fortune program prints a

random fortune to STDOUT, and cowsay takes text strings from STDIN and displays

them in the speech balloon of a cartoon cow.

Use your package manager to install both fortune and cowsay because it is not likely

that they are already on your computer. On current versions of Fedora, they are “fortune-

mod” and “cowsay.” For earlier versions of Fedora and other distros, you might need to

use “fortune” as the package name.

EXPERIMENT 18-2

install fortune-mod and cowsay just in case they are not already. Do this part of the

experiment as root.

[root@testvm1 ~]# dnf -y install fortune-mod cowsay

the rest of this experiment should be performed as the student user. now run the fortune

command a few times to see the results.

[student@testvm1 ~]$ fortune

Vulcans believe peace should not depend on force.

-- Amanda, "Journey to Babel", stardate 3842.3

i admit it took me several tries before this particular result was displayed. if you want to check,

there may now be one or two more files in /usr/bin.

It’s fine – just go ahead and play with the fortune program for a while.

Done? Then let’s proceed to have fun with cowsay. The cowsay program

requires a text string as input, so do something like is shown in Experiment 18-3.

cowsay takes the text string and places it in the cow’s speech balloon. Seems silly

but it can get to be addictive. Just be careful about who is looking over your shoulder

when you use it.

ChaPter 18 FinD the SimPliCitY

358

EXPERIMENT 18-3

let’s try the cowsay program by itself.

[root@testvm1 ~]# cowsay hello world!

< hello world! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

It’s OK to play with this one for a while, too. I can see that someone might use cowsay

instead of echo in a shell program to print messages, but cowsay does not maintain things

like the columnar formatting of the original message texts; it just mashes everything together.

We have two small programs that each do exactly one thing. Let’s put them together

and take advantage of the fact that the cowsay program takes input on STDIN. Experiment

18-4 shows how to do that and the result. Here again, I have to admit to running the

programs a few times to get this result, but it is the true output from one of those runs.

EXPERIMENT 18-4

Pipe the output from fortune through cowsay.

[student@testvm1 ~]$ fortune | cowsay

 __

/ But I have a holy crusade. I dislike \

| waste. I dislike over-engineering. I |

| absolutely detest the "because we can" |

| mentality. I think small is beautiful, |

| and the guildeline should always be |

| that performance and size are more |

| important than features. |

| |

\ - Linus Torvalds on linux-kernel /

 --

ChaPter 18 FinD the SimPliCitY

359

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

Combine two simple programs that are each small and where each does one thing, to create

something more complex. it also took me a while to get this result. the misspelling was in the

original.

Both fortune and cowsay have simple interfaces, they both perform a single task,

they do it well, and they use STDIO. They both have a few command-line options that

can be used to modify their behavior just a little, but once you use them together as

shown in Experiment 18-4, there is not really much else to learn about them. If you want

to explore their few command-line options, you can look up their man pages.

 Simple Programs Are Small
Just to see how small these two programs are, run the command in Experiment 18-5 to

find that information. Neither one is very big. Small programs are easy to understand

and to maintain.

EXPERIMENT 18-5

this command lets us find the sizes for the cowsay and fortune programs.

[student@testvm1 ~]$ ls -l `which cowsay` `which fortune`

-rwxr-xr-x 1 root root 4460 Nov 20 11:20 /usr/bin/cowsay

-rwxr-xr-x 1 root root 28576 Aug 2 19:54 /usr/bin/fortune

ChaPter 18 FinD the SimPliCitY

360

The fact that these programs are small is due to the fact that they each do exactly

one thing. Adding more functions to either one of these programs would significantly

increase their size and make them harder to maintain. Besides – what would be

the point? These two programs are perfect as they are because they both meet the

requirements set for them.

Now think about the rest of the GNU/Unix/Linux utilities in the same way. What is

the ls program supposed to accomplish? Its only function is to list the files contained

in a directory, remembering that directories themselves are nothing more or less than

files. It can do this task in a number of different ways by using one or more of its several

options – or no options at all.

Without options, the ls command lists only non-hidden filenames in the current

directory (PWD), and as many as possible are listed on each line of output. The -l option

is a long listing that shows the permissions, size, and other data about the files in a nice

columnar listing that is easy to read. The -a option shows all files, including the hidden

ones. The -r option lists files, recursing through each subdirectory and also listing the

files in each of those as well. Without an argument, the ls command lists the files in the

PWD. Using a different directory path as an argument, it can list the files in that other

directory. Other variations of the argument let you list specific files.

The ls utility has a number of other interesting options and variations on

the arguments that can be used with it. Read the man page for ls to see all of the

possibilities.

Note that file globbing is handled by the shell and not by the ls command. Because

the shell handles file globbing for all programs and scripts that take file names as an

argument, none of those programs needs to do it. The shell expands the filenames that

match the globs into a list of files on which the programs and scripts operate. This, too, is

simplicity. Why include the file globbing capability into each program when it need only

be in one place, the shell.

The thing you should observe about the ls utility is that every option, every

argument variation, are all in aid of producing a list of files. That’s it – that is all it

does, list files. Therein lies its simplicity, that it does one thing and it does it very

well. There is no point in adding more features to this program because it does not

need them.

ChaPter 18 FinD the SimPliCitY

361

 Simplicity and the Philosophy
At first I hoped that such a technically unsound project would collapse but I
soon realized it was doomed to success. Almost anything in software can be
implemented, sold, and even used given enough determination. There is
nothing a mere scientist can say that will stand against the flood of a hundred
million dollars. But there is one quality that cannot be purchased in this
way — and that is reliability. The price of reliability is the pursuit of the
utmost simplicity. It is a price which the very rich find most hard to pay.6

— C. A. R. Hoare,7 Writing about the development of the programming
language PL/I8 (Emphasis is mine.)

Many of the more interesting software problems I have encountered have involved

the simplification of existing code – especially my own code. Adding new functions to

a program increases its complexity. A quick new feature added to existing code and

employed to meet a deadline increases complexity.

One of the hardest things to do is to reduce the complexity of code. But it pays

dividends in the long run.

 Simplifying My Own Programs
One of my own programs, a bash shell script that I had written to perform a number of

tasks after a basic Fedora installation has grown out of control more than once. I have

already mentioned this post-installation program in Chapter 9, “Automate Everything.”

But now I need to discuss its darker side.

Due to the changes between Fedora releases, the needs of the program changed.

The program needed to be modified to install some packages that are no longer installed

during a default installation. Sometimes I needed to add code that would remove

packages that were installed automatically because I did not want or need them.

Adding new code to do these things added to the complexity of the program. In some

cases I added more options to be evaluated as the program initialized in order to leave

my options open – as it were – with regard to the changes required to my program. Over a

period of several years, this program grew to be quite large with plenty of cruft. I recently

6 WikiQuote, C. A. R. Hoare, https://en.wikiquote.org/wiki/C._A._R._Hoare
7 Wikipedia, Tony Hoare, https://en.wikipedia.org/wiki/Tony_Hoare
8 Wikipedia, PL/I, https://en.wikipedia.org/wiki/PL/I

ChaPter 18 FinD the SimPliCitY

https://en.wikiquote.org/wiki/C._A._R._Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/PL/I

362

took some time to use the shellcheck utility and my own eyes on the code to remove

cruft – mostly unused and no longer needed procedures – that reduced the size of the

code by a few hundred lines.

 Simplifying Others’ Programs
It is always more fun to talk about how I fixed other people’s code. One of my past

consulting jobs involved an almost complete rewrite of an interlocking set of existing

Perl programs. There were around twenty-five or so of these programs running on a

small Intel server. It was becoming impossible to maintain these programs to add new

function and to locate and fix bugs due to the spaghetti code and lack of comments. My

assigned task was to fix the bugs and add some additional function to these programs.

As I began trying to make sense of the frighteningly complex spaghetti code, it

became clear that my first priority had to be simplifying the code. After commenting the

code profusely and fixing a few bugs as I went,9 I began to collect some code that had

been inserted into two or more of these programs and collected them into Perl libraries.

This made fixing problems easier because they only had to be fixed in one location – the

library. I straightened out other code, simplifying the common execution paths.

The revised programs were faster, smaller, and easier to maintain. Problems could be

located and fixed in hours and minutes rather than days.

 Uncommented Code
I scrounged around in my personal archives and found the code in Figure 18-1. I have

no idea where it came from in the first place. I have no idea why I even kept it. It has no

comments whatsoever. The few variable names are more than just a couple of characters

in length, but they still tell us next to nothing about the purpose of the program or how it

is supposed to work.

Even the “usage” procedure – apparently the “help” feature – in Figure 18-1 is not

especially helpful because it shows a little about usage syntax, and it really still says

nothing about the purpose of the program. Well – except for the program name. That

indicates that it might have something to do with USB libraries. Is that even close to

being understandable? I don’t think so. I spent a good bit of time trying to figure it out.

9 See Chapter 20, “Document Everything,” for more information.

ChaPter 18 FinD the SimPliCitY

363

#!/bin/sh

prefix=/usr/local
exec_prefix=${prefix}
exec_prefix_set=no

usage()
{

cat <<EOF
Usage: libusb-config [OPTIONS] [LIBRARIES]

Options:
[--prefix[=DIR]]
[--exec-prefix[=DIR]]
[--version]
[--libs]
[--cflags]

EOF
exit $1

}

if test $# -eq 0; then
usage 1 1>&2

fi

while test $# -gt 0; do
case "$1" in
-*=*) optarg=`echo "$1" | sed 's/[-_a-zA-Z0-9]*=//'` ;;
*) optarg= ;;
esac
case $1 in
--prefix=*)

prefix=$optarg
if test $exec_prefix_set = no ; then
exec_prefix=$optarg

fi
;;

--prefix)
echo_prefix=yes
;;

--exec-prefix=*)
exec_prefix=$optarg
exec_prefix_set=yes
;;

Figure 18-1. What does this code do?

ChaPter 18 FinD the SimPliCitY

364

The few variables I see are assigned in the second case statement and then used to

determine the flow through the series of if statements at the bottom. In fact, this code

could be refactored to make it simpler by deleting all the if statements and moving the

echo statements up into the matching stanza of the case statement. This would eliminate

the need for those variables in this code.

I copied the script to a VM and tried it a few times with various option combinations.

The results are shown in Figure 18-2 and are not much more illuminating.

Figure 18-1. (continued)

--exec-prefix)
echo_exec_prefix=yes
;;

--version)
echo 0.1.4
exit 0
;;

--cflags)
if test "${prefix}/include" != /usr/include ; then
includes="-I${prefix}/include"

fi
echo_cflags=yes
;;

--libs)
echo_libs=yes
;;

*)
usage 1 1>&2
;;

esac
shift

done

if test "$echo_prefix" = "yes"; then
echo $prefix

fi
if test "$echo_exec_prefix" = "yes"; then

echo $exec_prefix
fi
if test "$echo_cflags" = "yes"; then

echo $includes
fi
if test "$echo_libs" = "yes"; then

echo -L${exec_prefix}/lib -lusb
fi

ChaPter 18 FinD the SimPliCitY

365

Nothing like crappy code. How could I fix this code without any idea what it is

supposed to do? It appears that this code may be just a test or that it is the beginning of

some larger script intended to do – something. The real problem with this code is that it

takes valuable time to figure out that it apparently does nothing useful.

I eventually used the dnf command shown in Experiment 18-6, below, to discover

that this script is part of the USB development library. I have no idea how it came to be in

my personal ~/bin directory.

[--prefix[=DIR]]
[--exec-prefix[=DIR]]
[--version]
[--libs]
[--cflags]

[root@testvm1 student]# ./libusb-config --version
0.1.4
[root@testvm1 student]# ./libusb-config --libs /usr/lib
Usage: libusb-config [OPTIONS] [LIBRARIES]
Options:

[--prefix[=DIR]]
[--exec-prefix[=DIR]]
[--version]
[--libs]
[--cflags]

[root@testvm1 student]# ./libusb-config --prefix=/usr/lib
[root@testvm1 student]# ./libusb-config --prefix=/usr/lib --cflags
-I/usr/lib/include
[root@testvm1 student]# ./libusb-config --prefix=/var/lib --cflags
-I/var/lib/include
[root@testvm1 student]# ./libusb-config --prefix=/lib --cflags
-I/lib/include
[root@testvm1 student]# ./libusb-config --prefix=/lib
[root@testvm1 student]# ./libusb-config --prefix=/lib64
[root@testvm1 student]#

[root@testvm1 student]# ./libusb-config
Usage: libusb-config [OPTIONS] [LIBRARIES]
Options:

Figure 18-2. The results from running this program are not helpful, either

ChaPter 18 FinD the SimPliCitY

366

EXPERIMENT 18-6

Files that are part of an rPm package in one of the repositories for which your host is

configured can be located with the dnf command.

[root@david ~]# dnf whatprovides *libusb-config

Last metadata expiration check: 2:10:49 ago on Sat 24 Feb 2018 01:50:16 PM

EST.

libusb-devel-1:0.1.5-10.fc27.i686 : Development files for libusb

Repo : fedora

Matched from:

Other : *libusb-config

libusb-devel-1:0.1.5-10.fc27.x86_64 : Development files for libusb

Repo : fedora

Matched from:

Other : *libusb-config

We now know what rPm package provides this file, so let’s see if that package is installed on

our host.

[root@david ~]# dnf list libusb-devel

Last metadata expiration check: 2:11:35 ago on Sat 24 Feb 2018 01:50:16 PM

EST.

Available Packages

libusb-devel.i686 1:0.1.5-10.fc27 fedora

libusb-devel.x86_64 1:0.1.5-10.fc27 fedora

these rPms are available, which means that they have not been installed.

In this case, the results indicate that the script is from an RPM that is not installed on

my host. Because it is a development package, it is also unlikely that I would ever have

installed it myself. The bottom line is that I can delete this script because – for me at

least – it is cruft.

Of course this is all part of the SysAdmin’s work, too. Finding these useless scripts in

among the ones that perform some needed task and getting rid of them. It also involves

finding useless variables, line of code that would never be executed, and other cruft, in

otherwise useful scripts and getting rid of it. Identifying and removing cruft takes time

and some level of dedication.

ChaPter 18 FinD the SimPliCitY

367

 Hardware
We have already talked some about hardware in Chapter 17, “Strive for Elegance.” It is an

appropriate topic when discussing simplicity, too. Hardware is, after all, the engines on

which our software runs.

Hardware is not particularly complex these days. There are standard motherboard

sizes, ATX, Mini ATX, Micro ATX, and Extended ATX. Most desktop and tower computer

cases are standardized to accept any of these sizes, except perhaps the Extended ATX.

With a little research it is possible to purchase a CPU and RAM memory DIMMs that

are compatible with any standard motherboard on the market. Additional adapters such

as GPUs, SATA, and USB plug-in adapters, and others are facilitated by the standardized

PCI Express bus common to the standard motherboards.

Power supplies are standardized and all fit in spaces specifically allotted to them.

The only real difference being the total power wattage that they are capable of supplying.

The power connectors have long been standardized as are the voltages that they supply.

USB and SATA connectors make attaching devices from hard drives to mice trivially

easy and fast. Devices such as hard drives are standard sizes and fit easily in the space

designed for them in today’s cases.

I did say that hardware is not especially complex these days, but that is not strictly

true. On the macro-level of motherboards, cases, adapters, power supplies, and so on,

that is true. But each of those devices becomes more complex at the micro- and nano-

levels. As the chips get smaller and more complex, they contain more and more of the

logic necessary to make life simpler for the end user.

Perhaps you were not around in the early ‘80s when the original IBM PC was first

released. Integrated circuits (ICs) could contain only a fraction of the components that

they do now, and they ran at a tiny fraction of the speeds we now take for granted, let

alone those speeds attainable by the extreme overclocking crowd.

In 1981, the Intel 8088 CPU with a single core held 29,000 transistors in an area of

33 square millimeters.10 The 10-core Core i7 Broadwell-E, the latest of the Intel i-series

processors listed on the Wikipedia page in footnote 10, contains 3.2 billion transistors in

246 square millimeters. This is more than 110 thousand times the number of transistors

in only 7.5 times the area. All of this extra power makes it possible to do complex things

within the CPU itself that used to be done by hand.

10 Wikipedia, Transistor count, https://en.wikipedia.org/wiki/Transistor_count

ChaPter 18 FinD the SimPliCitY

https://en.wikipedia.org/wiki/Transistor_count

368

In those early days, the ICs were simpler and had far fewer transistors. Jumper pins

and DIP switches were common and confusing ways to configure the hardware. Today

I can boot the computer into a BIOS configuration mode and make changes in a GUI

environment. But in most cases, even this is not required as both the hardware and the

operating system pretty much configure themselves.

 Linux and Hardware
Today’s Linux brings amazing levels of simplicity to configuring hardware. Most of the

time user intervention is not required. In the past it was often necessary for the Linux

user to install device drivers for some hardware. In the present, Linux almost always does

all of the work for us.

In Chapter 5 we looked at the Udev daemon and its mechanisms that enable Linux to

identify hardware at boot time and when it is hot-plugged some arbitrary time after boot.

Let’s look at a somewhat simplified version of what takes place when a new device is

connected to the host. I stipulate here that the host system is already booted and running

at multi-user.target (run level 3) or graphical.target (run level 5).

 1. The user plugs in a new device, usually into an external USB,

SATA, or eSATA connector.

 2. The kernel detects this and sends a message to Udev to announce

the new device.

 3. Based on the device properties and its location in the hardware

bus tree, Udev creates a name for the new device if one does not

already exist.

 4. The Udev system creates the device special file in /dev.

 5. If a new device driver is required, it is loaded.

 6. The device is initialized.

 7. Udev may send a notification to the desktop so that the desktop

may display a notification of the new device to the user.

ChaPter 18 FinD the SimPliCitY

369

The overall process of hot-plugging a new hardware device into a running Linux

system and making it ready is very complex – for the operating system. It is very simple

for the user who just wants to plug in a new device and have it work. This simplifies

things immensely for the end user. For USB and SATA hard drives, USB thumb drives,

keyboards, mice, printers, displays, and nearly anything else, all I need to do as a user is

to plug the device into the appropriate USB or SATA port and it will work.

 The Quandary
To me, the ultimate goal is to make things as simple for the end user as possible. We must

not forget that we SysAdmins are also end users. I would much prefer getting actual work

accomplished than fiddling with a new device for hours just to get it to work. That is the

old way of doing things. But this new way of doing things moves the complexity from the

human side of the equation to the software side. And that software complexity is aided

by the manifold increase in hardware complexity.

So our quandary is that on the one hand we have been told that our programs should

be simple, yet on the other hand that we should move complexity into the software or get

rid of it entirely. Hopefully so that the user does not need to deal with it.

Reconciling this tension between complexity and simplicity is the task of both the

developer and the System Administrator. The programs and scripts that we create to

“automate everything” do need to be as simple as possible. But they also need to be able

to perform the tasks at hand in order to simplify the end users’ tasks as much as possible.

Computers are unreliable, but humans are even more unreliable.

— Gilb’s Laws of Unreliability

When you have been a SysAdmin for a certain time, the truth of the preceding quote

becomes obvious. Our users will, at some point, always find a way to do something

unexpected, which will create more damage and havoc than anything we could possibly

do in our programs and scripts. That means our objective must be to follow the basic

tenets to write small programs that each do one thing well and interact using STDIO.

ChaPter 18 FinD the SimPliCitY

370

Let us not forget the ultimate irony – we SysAdmins are also humans, at least for

now – and that makes us users of our own scripts. I have found that as a SysAdmin I am

my own worst nightmare as a user. If I write my scripts to deal with the careless mistakes

I know that I will make, they will be reasonably reliable. I ensure that my scripts are as

reliable as possible by making them as simple as I can and continuously working to

simplify them even further.

 The Last Word
Fools ignore complexity; pragmatists suffer it; experts avoid it; geniuses
remove it.

— Alan Perlis11

11 Wikipedia, Alan Perlis, https://en.wikipedia.org/wiki/Alan_Perlis

ChaPter 18 FinD the SimPliCitY

https://en.wikipedia.org/wiki/Alan_Perlis

371
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_19

CHAPTER 19

Use Your Favorite Editor
Why is this a tenet of The Linux Philosophy for System Administrators? Because arguing

about editors can be the cause of a great deal of wasted energy. Everyone has their

favorite editor, and it might not be the same as mine. So what?

I use vim as my editor. I have used it for years and like it very much. I am used to it.

It meets my needs more than any other editor I have tried. If you can say that about your

editor – whichever one that might be – then you are in editor nirvana.

I started using vi when I began learning Solaris over twenty years ago. My mentor

suggested that I start learning to edit with vi because it would always be present on every

system. That has proven to be true whether the operating system is Solaris or Linux. The

vi editor is always there so I can count on it. For me, this works.

The vi editor can also used as the editor for bash command-line editing. Although

the default for command editing is emacs, I use the vi option because I already know the

vi keystrokes. The option to use vi style editing in bash can be set by adding the line

“set -o vi” to the ~/.bashrc file for just your own use. For setting the vi option globally,

a configuration file in /etc/profile.d/ is used, so that all users, root and non-privileged

have that as part of their bash configuration.

Other tools that use vi editing are the crontab and visudo commands; both of these

are wrappers around vi. Lazy SysAdmins use code that already exists, especially when it

is open source. Using the vi editor for these tools is an excellent example of that.

There are many other editors available that are also great and powerful and fantastic.

I still prefer vi or vim. You should use what you want and don't worry about what

everyone else is using. Just because I use vim does not mean you have to use it also.

Using the best editor for you is important for your productivity. Once you have learned

the keystroke combinations and commands that you use most frequently in an editor,

you can be very efficient in editing files of all types.

372

 More Than Editors
There is much more to this chapter than just editors. It is really about using the tools that

work for you, and the discussions about the best editors are the archetype for those same

types of discussions about all kinds of tools.

Discussions about which tools to use, whether about editors, desktops, shells,

programming languages, or anything else, are normal and can be very helpful. Those

discussions provide knowledge of new things or new information about how known

things work and how to make them work better. Thoughtful and respectful discourse can

be helpful and even critical to enhancing my knowledge and improving my skills as a

SysAdmin. I hope it works that way for you, too.

The problem arises when those discussions degenerate into disrespectful and

useless flame wars that only create anger and discord among the participants. I always

try to exit those discussions in order to conserve my energies for more productive

activities. Let’s look at some examples.

 Linux Startup
SystemV and systemd are two different methods of performing the Linux startup

sequence. SystemV start scripts and the init program are the old method and systemd

using targets is the new method.

Just to ensure that we are all on the same page here, the Linux startup sequence

begins after the kernel has loaded either init or systemd, depending upon whether the

distribution uses the new or old startup, respectively. The init and systemd programs

start and manage all of the other processes, that is, programs, and are both know as the

mother of all processes on their respective systems.

Although many modern Linux distributions use the newer systemd for startup,

shutdown, and process management, there are still some that do not. One reason for

this is that some of the distribution maintainers and some SysAdmins prefer the older

SystemV method over the newer systemd.

I think both have their advantages so let me explain my reasoning.

Chapter 19 Use YoUr Favorite editor

373

 Why I Prefer SystemV
The primary reason I prefer SystemV is that it is more open because startup is

accomplished using bash scripts. After the kernel starts the init program, which is

a compiled binary, init launches the rc.sysinit script, which performs many system

initialization tasks. After rc.sysinit has completed, init launches the /etc/rc.d/

rc script ,which in turn starts the various services as defined by the SystemV start

scripts in the /etc/rc.d/rcX.d, where “X” is the number of the runlevel that is being

started.

All of these programs are open and easily knowable scripts. It is possible to read

through these scripts and learn exactly what is taking place during the entire startup

process. Each script is numbered so that it starts the service for which it is intended

in a specific sequence. Services are started serially and only one service is started at

a time.

Systemd is a single, large compiled binary executable that is not understandable

without access to the source code. It represents a significant refutation of multiple tenets

of the Linux philosophy. As a binary, systemd is not directly open to view or easy change

by the SysAdmin.

 Why I Prefer systemd
I prefer systemd as my startup mechanism because it starts as many services as possible

in parallel, depending upon the current stage in the startup process. This speeds the

overall startup and gets the host system to a login screen faster than SystemV.

The systemd startup mechanism is open because all of the configuration files

are ASCII text files. Startup configuration can be modified through various GUI and

command-line tools, as well as adding or modifying various configuration files.

How many of us ever actually looked at, much less made changes to, rc.sysinit or rc

programs? I did look at them but never would I have altered them in any manner. There

are configuration files external to the code of these two scripts that enabled modification

of the startup process as much as was ever needed.

Chapter 19 Use YoUr Favorite editor

374

 The Real Issue
Did you think I could not like both startup systems? I do and I can work with either one.

The real issue with SystemV vs systemd is that there is no choice on the SysAdmin

level.1 The choice of whether to use SystemV or systemd has already been made by the

developers, maintainers, and packagers of the various distributions.

Despite the fact that this particular choice has been made for us, our Linux

hosts boot up and work, which is what I usually care the most about. As an end user

and even as a SysAdmin, my primary concern is whether I can get my work done:

work such as writing this book, installing updates, and writing scripts to automate

everything. So long as I can do my work, I don’t really care about the start sequence

used on my distro.

However, I do care when there is a problem during startup. Regardless of which

startup system is used on any host, I know enough and am able to follow the sequence of

events to find the failure and fix it. That is all that matters.

 Desktop
My preferred desktop is KDE Plasma. Several years ago, around 2008 with the release of

Fedora 9, KDE moved from V3.x to V4 with significant changes that caused some serious

problems. Some of my favorite KDE applications no longer worked because they had not

yet been updated to work with the new version of KDE. I experienced frequent crashes

of the desktop that made it impossible to get any real work done. Sometimes KDE would

crash several times an hour. This was not good for productivity.

Fortunately I was able to switch to a different desktop and I used GNOME 2 for a year

until KDE was usable again.

Then in late 2016 KDE underwent another set of changes that resulted in more

instability. This time I made it a priority to learn more about several of the other

desktop environments that are available. Starting in December of 2016, I used

each of three different desktops for a month so I could really get a feel for how they

worked. Just trying something out for a couple hours does not give you any real idea

how a desktop works or how it can be configured to work more in line with your

own style.

1 OSnews, “Editorial: Thoughts on Systemd and the Freedom to Choose,” http://www.osnews.com/
story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose

Chapter 19 Use YoUr Favorite editor

http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose

375

2 Both, David, Opensource.com, 10 reasons to use Cinnamon as your Linux desktop environment,
https://opensource.com/article/17/1/cinnamon-desktop-environment

3 Both, David, Opensource.com, 8 reasons to use LXDE, https://opensource.com/article/
17/3/8-reasons-use-lxde

4 Both, David, Opensource.com, 11 reasons to use the GNOME 3 desktop environment for Linux,
https://opensource.com/article/17/5/reasons-gnome

5 Both, David, Opensource.com, 9 reasons to use KDE, https://opensource.com/life/
15/4/9-reasons-to-use-kde

6 Venezia, Paul, Nine traits of the veteran Unix admin, InfoWorld, Feb. 14, 2011, www.infoworld.
com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr

I tried Cinnamon, LXDE, and GNOME 3 and learned to like each for their own

strengths. As a result of these trials, I wrote an article on each, “10 reasons to use

Cinnamon as your Linux desktop environment,”2 “8 reasons to use LXDE,”3 and “11

reasons to use the GNOME 3 desktop environment for Linux,”,4 to match the one I wrote

previously about KDE, “9 reasons to use KDE.”5

I was able to turn a problem into an opportunity to try some new things: desktops,

in this case. Each of these desktops has a number of strengths and each has some things

that I found to be drawbacks when I used them.

Even KDE, my favorite desktop, has some issues. It does tend to go through cycles

where it is unusable. It is large and takes a great deal of memory. Some of the default

applications that it installs and which start when KDE is launched at login, suck up

CPU cycles. My post-installation script has code to remove the more problematic KDE

applications and turn off the background daemons of others so that my systems are not

affected by them. And so I continue to use it when it is usable.

 sudo or Not sudo
I think that part of being a System Administrator and using your favorite tools is to use

the tools we have correctly and to have them available without any restrictions. In this

case I find that the sudo command is used in a manner for which it was never intended.

I have a particular dislike for how the sudo facility is being used in some distributions,

especially because it is employed to limit and restrict access by people doing the work of

system administration to the tools they need to perform their duties.

[SysAdmins] don’t use sudo.

— Paul Venezia6

Chapter 19 Use YoUr Favorite editor

https://opensource.com/article/17/1/cinnamon-desktop-environment
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/article/17/5/reasons-gnome
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/life/15/4/9-reasons-to-use-kde
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr

376

Venezia explains in his InfoWorld article that sudo is used as a crutch for SysAdmins.

He does not spend a lot of time defending this position or explaining it. He just states

this as a fact. And I agree with him – for SysAdmins. We don’t need the training wheels in

order to do our jobs. In fact they get in the way.

Some distros, such as Ubuntu, use the sudo command in a manner that is intended

to make the use of commands that require elevated (root) privileges a little more

difficult. In these distros it is not possible to log in directly as the root user so the sudo

command is used to allow non-root users temporary access to root privileges. This is

supposed to make the person a little more careful about issuing commands that need

elevated privileges such as adding and deleting users, deleting files that don’t belong

to them, installing new software, and generally all of the tasks that are required to

administer a modern Linux host. Forcing SysAdmins to use the sudo command as a

preface to other commands is supposed to make working with Linux safer.

Using sudo in the manner it is by these distros is, in my opinion, a horrible and

ineffective attempt to provide novice SysAdmins with a false sense of security. It is

completely ineffective at providing any level of protection. I can issue commands that are

just as incorrect or damaging using sudo as I can when not using it. The distros that use

sudo to anesthetize the sense of fear that we might issue an incorrect command are doing

SysAdmins a great disservice. There is no limit or restriction imposed by these distros on

the commands that one might use with the sudo facility. There is no attempt to actually

limit the damage that might be done by actually protecting the system from the users and

the possibility that they might do something harmful – nor should there be.

So let’s be clear about this – these distributions expect the user to perform all

of the tasks of system administration. They lull the users – who are really System

Administrators if you remember my list from Chapter 1 – into thinking that they are

somehow protected from the effects of doing anything bad because they must take this

restrictive extra step to enter their own password in order to run the commands.

 Bypass sudo
Distributions that work like this usually lock the password for the root user and

Ubuntu is one of these distros. This way no one can log in to root and start working

unencumbered. I have set up a VM with Ubuntu 16.04 LTS (Long Term Support) in it so

I can show you how to set a password to circumvent the need to use sudo.

Chapter 19 Use YoUr Favorite editor

377

Note experiment 19-1 is optional. it is intended to guide you in using sudo to
unlock the root account by setting a password for it. if the distribution you are
using does not force you to use sudo, you should skip this experiment.

EXPERIMENT 19-1

Let me stipulate the setup here so that you can reproduce it if you wish. i installed Ubuntu

16.04 Lts7 and installed it in a vM using virtualBox. during the installation i created a non-root

user, student, with a simple password for this experiment.

Log in as the user student and open a terminal session. Let’s look at the entry for root in the /

etc/shadow file, which is where the encrypted passwords are stored.

student@ubuntu1:~$ cat /etc/shadow

cat: /etc/shadow: Permission denied

permission is denied so we cannot look at the /etc/shadow file. this is common to all

distributions so that non-privileged users cannot see and access the encrypted passwords.

that access would make it possible to use common hacking tools to crack those passwords

so it is insecure to allow that.

Now let’s try to su – to root.

student@ubuntu1:~$ su -

Password:

su: Authentication failure

this fails because the root account has no password and is locked out. Let’s use sudo to look

at the /etc/shadow file.

student@ubuntu1:~$ sudo cat /etc/shadow

[sudo] password for student: <enter the password>

root:!:17595:0:99999:7:::

<snip>

student:6tUB/y2dt$A5ML1UEdcL4tsGMiq3KOwfMkbtk3WecMroKN/:17597:0:99999:7:::

<snip>

7 Canonical Group LTD, Download web site, https://www.ubuntu.com/download/desktop

Chapter 19 Use YoUr Favorite editor

https://www.ubuntu.com/download/desktop

378

i have truncated the results to only show the entry for the root and student users. i have also

shortened the encrypted password so that the entry will fit on a single line.

the fields are separated by colons (:) and the second field is the password. Notice that the

password field for root is a “bang,” known to the rest of the world as an exclamation point (!).

this indicates that the account is locked and that it cannot be used.

Now all we need to do to use the root account as proper sysadmins is to set up a password

for the root account.

student@ubuntu1:~$ sudo su -

[sudo] password for student: <Enter password for student>

root@ubuntu1:~# passwd root

Enter new UNIX password: <Enter new root password>

Retype new UNIX password: <Re-enter new root password>

passwd: password updated successfully

root@ubuntu1:~#

Now we can log in directly on a console as root or su – directly to root instead of having to use

sudo for each command. of course, we could just use sudo su – every time we want to log in

as root – but why bother?

Please do not misunderstand me. Distributions like Ubuntu and their up- and down-

stream relatives are perfectly fine and I have used several of them over the years. When

using Ubuntu and related distros, one of the first things I do is set a root password so that

I can log in directly as root.

 Valid Uses for sudo
The sudo facility does have its uses. The real intent of sudo is to enable the root user to

delegate to one or two non-root users, access to one or two specific privileged commands

that they need on a regular basis. The reasoning behind this is that of the lazy sysadmin;

allowing the users access to a command or two that requires elevated privileges and that

they use constantly, many times per day, saves the SysAdmin a lot of requests from the

users and eliminates the wait time that the users would otherwise experience. But most

non-root users should never have full root access, just to the few commands that they need.

Chapter 19 Use YoUr Favorite editor

379

I sometimes need non-root users to run programs that require root privileges. In

cases like this I set up one or two non-root users and authorize them to run that single

command. The sudo facility also keeps a log of the user ID of each user that uses it. This

might enable me to track down who made an error. That’s all it does; it is not a magical

protector.

The sudo facility was never intended to be used as a gateway for commands issued

by a SysAdmin. It cannot check the validity of the command. It does not check to see

if the user is doing something stupid. It does not make the system safe from users who

have access to all of the commands on the system even if it is through a gateway that

forces them to say “please” – That was never its intended purpose.

Unix never says please.

— Rob Pike8

This quote about Unix is just as true about Linux as it is about Unix. We SysAdmins log

in as root when we need to do work as root and we log out of our root sessions when we are

done. Some days we stay logged in as root all day long, but we always work as root when we

need to. We never use sudo because it forces us to type more than necessary in order to run

the commands we need to do our jobs. Neither Unix nor Linux asks us if we really want to

do something, that is, it does not say “Please verify that you want to do this.”

Yes, I dislike the way some distros use the sudo command.

 A Few Closing Words
It does not matter to me what tools you use and it should not matter to anyone else, either.

What really matters is getting the job done. Whether you are vim or EMACS, systemd or

SystemV, RPM or DEB, what difference does it make? The bottom line here is that you

should use the tools with which you are most comfortable and that work best for you.

8 Wikipedia, Rob Pike, https://en.wikipedia.org/wiki/Rob_Pike

Chapter 19 Use YoUr Favorite editor

https://en.wikipedia.org/wiki/Rob_Pike

380

It is of the utmost importance that the tools we choose to use are not restricted

or hindered in any manner. The misuse of perfectly good tools to aid and abet this

impediment is unconscionable and inimical with all of the freedoms that Linux

and open source stand for. It should be resisted and circumvented whenever it is

encountered.

One of the greatest strengths of Unix, Linux, and open source in general is that there

are usually many options open for each task we need to accomplish. We have more open

source word processors available to us than the three or so I remember at the height of

the proprietary PC software age.

Chapter 19 Use YoUr Favorite editor

381
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_20

CHAPTER 20

Document Everything

Real programmers don't comment their code, if it was hard to write, it
should be hard to understand and harder to modify.

— unknown

I, too, would want to remain anonymous if I had written that. It might even have been

meant to be sarcasm or irony. Regardless, this does seem to be the attitude of many

developers and SysAdmins. There is a poorly disguised ethos among some developers

and SysAdmins that one must figure everything out for themselves in order to join the

club – whatever club that might be. If you cannot figure it out, they imply, you should go

do something else because you don’t belong.

First, that is not true. Second, most developers, programmers, and SysAdmins that I

know definitely do not subscribe to this view. In fact, the best ones, some of whom have

been my mentors over the years, exemplify the exact opposite. The best of the best make

documentation – good documentation – a high priority in everything they do.

I have used a lot of software whose creators subscribed to the philosophy that all

code is self-explanatory. I have also been required to fix a lot of code that was completely

uncommented and otherwise undocumented as well. It seems that many developers

and SysAdmins figure if the program works for them, it does not need to be documented.

There are a number of quotes out there similar to the one above. They all tend to

espouse the idea that documentation is neither needed nor should it be. Yet throughout

my career. I have seen the disastrous results of this lack of documentation. I have been

the SysAdmin assigned to fix uncommented code on more than one occasion. That is

one of the least enjoyable tasks I have ever had to do.

Part of the problem is that many PHBs do not see documentation as a high priority.

I have been involved in many aspects of the IT industry and fortunately most of the

companies I worked for believed that documentation was not only important, but that it

was crucial to the task at hand, regardless of what that task was.

382

I don't think I have ever heard anyone say, “This documentation is great.” Mostly I

hear how badly some specific documentation sucks. And I have repeated that refrain

myself many times.

And yet there is a lot of really good documentation out there. For example, the

documentation for LibreOffice is excellent. It includes several documents in multiple

formats including HTML and PDF that range from “Getting Started” to a very complete

user's guide for each of the LibreOffice applications.

The documentation for RHEL and CentOS, and that for Fedora – which are all very

closely related distributions – are also among the best I have seen in my more than forty

years of working in the IT industry.

Good documentation is not easy and takes time. It also requires an understanding

of the audience – not only in relation to the purpose of the documentation, but also the

technical expertise of the intended readers as well as the languages and cultures of the

readers. Rich Bowen covered that quite nicely in his fine article at Opensource.com,

“RTFM? How to write a manual worth reading.”1

There is also the question of what constitutes good documentation for a SysAdmin.

We explore these things in this chapter, which is mostly about documenting the scripts

we write.

 The Red Baron
One of the more frustrating incidents in my IBM career as a Customer Engineer was to

assist with resolving some problems on an IBM 18002 process control computer in an oil

refinery.

This particular computer was connected to many sensors out in the refinery, and

it was used to make adjustments to various components of the processes taking place.

Based on the sensor readings, this computer would adjust things such as temperatures

and flow rates to ensure that the products of the processes were correct and of high

quality. But when things went wrong, it could have been disastrous. I mean, come on!

This was process control for a freakin’ oil refinery!

1 Bowen, Rich, Opensource.com, RTFM? How to write a manual worth reading, https://
opensource.com/business/15/5/write-better-docs

2 Engineering and Technology Wiki, IBM 1800, http://ethw.org/IBM_1800

Chapter 20 DoCument everything

https://opensource.com/business/15/5/write-better-docs
https://opensource.com/business/15/5/write-better-docs
http://ethw.org/IBM_1800

383

It seems that the programmer who wrote the code did not comment his code very

well – or not at all as far as I could tell – not that I had direct access to his proprietary

source code. That developer was apparently not a fan of informative error messages, either.

I do have to say that the code was good at detecting errors. It also seems to have been

good at shutting off the affected processes out on the ground in the refinery. Nothing

blew up, after all. However, to say that the program was deficient at communicating what

was wrong was a gross understatement. No matter what the error, no matter what was

wrong, the only message printed on the console was, “Curse you, Red Baron,” along with

a numeric error message that we had to look up in a very long list of error codes. The

resulting message from the list was never much help, either.

Just to be fair to IBM, the programmer did not work for IBM.

 My Documentation Philosophy
My philosophy is one that has been drilled into me by my best mentors over the years,

“The job is not done until the documentation is complete.” This means that everything

must be documented. And documentation is definitely not the place to skimp on typing.

Still – good documentation means something different to a SysAdmin than it does to an

end user.

In the context of the Linux Philosophy for System Administrators, we shall consider

documentation for the intended audience of our code – ourselves and other SysAdmins.

There are two primary types of documentation we SysAdmins need. Some form of

decent command-line help option and well-commented shell code.

 The Help Option
The first place I go when looking for documentation to help me understand a shell script

is the help facility because my most common need is to understand the syntax of the

command that launches the program and available options and required or optional

arguments to the command. This type of information is usually available by using the

-h option for the desired command.

The bash script template we created in Chapter 10, “Always Use Shell Scripts,”

contains the template help facility shown in Code Listing 20-1. You have seen this before.

Note that this is just a template, like the rest of the script template. All of the details

Chapter 20 DoCument everything

384

required to provide usable help for the script need to be added and modified in this

procedure as necessary. When adding a new option or function, that information should

also be recorded in the help facility.

CODE LISTING 20-1

##

Help

##

Help()

{

 # Display Help

 echo "Add description of the script functions here."

 echo

 echo "Syntax: template <option list here>"

 echo "options:"

 echo "g Print the GPL license notification."

 echo "h Print this Help."

 echo "v Verbose mode."

 echo "V Print software version and exit."

 echo

}

Simple help facilities like this one can answer most of the questions I have about what

the script does and the various options available that can be used to modify its behavior.

Between the description of the script’s functions, the syntax diagram, and the list of

options along with a short description of each, makes runtime questions easy to answer.

Good help is the first line of documentation for the scripts we write as SysAdmins. All

of the operational documentation must be included in the help procedure. It also means

that the user interface of the script should be blindingly obvious and extremely simple so

that the need to refer to any form of help is minimized.

 Comment Code Liberally
Comments within code are a form of documentation. In fact, they should be the first and

primary form of documentation for SysAdmins.

Chapter 20 DoCument everything

385

As part of my own need to document everything, I add many comments to my

scripts. When tempted to cut back on comments, I think back to what it was like when

I had to interpret and fix uncommented and undocumented code that was written by

someone else.

I know many SysAdmins and other developers who think that their code is self-

explanatory, even without comments. No matter how good our code is, and even with

profuse and well-written comments, code will never be self-explanatory. We all think

about problems differently, we write our code differently, and we solve problems

differently. Because of the different ways in which we perceive things like code and

its structure, the purpose of code that might be perfectly obvious to you even without

comments, may be impenetrable to me.

Earlier in this book, we created first a bash script template and then we used

the template to create a short script. The template and the script were both well-

commented. The point of that is for me to remember to comment my own code as I

build it. The comments I include in the script template are a good start.

I think that the first three sections are particularly important. These are the program

description, the change history, and the license statement. I have included these here

again in Code Listing 20-2 for ease of access.

CODE LISTING 20-2

#!/bin/bash

##

scriptTtemplate

#

Use this template as the beginning of a new program. Place a short

description of the script here.

#

Change History

04/12/2017 David Both Original code. This is a template for creating

new Bash shell scripts.

01/30/2018 David Both Add an option for setting test mode.

#

Add new history entries as needed.

#

Chapter 20 DoCument everything

386

#

##

##

##

#

Copyright (C) 2007, 2018 David Both

LinuxGeek46@both.org

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston,

MA 02111-1307 USA #

#

##

The program description defines the purpose of the program and a little about its

primary functions and options. The change history tells future SysAdmins that may need

to perform maintenance on the script, what features were added or removed, bugs that

were fixed, who did the work, and when these things took place.

The license statement is used to document the license under which the script is

distributed and made available for other users. This is important so that there can be no

question about the conditions under which the script can be used, modified, and distributed.

Comments embedded in the code should describe the functions of the code

segments to which they refer. They should also contain information about why things

are done in a certain way, and explanations of logic where that might not be obvious.

For example, the snippet of code in Code Listing 20-3 below has comments about its

function, some assumptions I made, an indicator that a new method was used, and the

old code was retained as a comment so that the difference could be evaluated.

Chapter 20 DoCument everything

387

CODE LISTING 20-3

###

Processing Intel CPU data

###

NOTE :This assumes certain data to be constant in /proc/cpuinfo based on

data from the chipsets.

if [$verbose == 1]

then

 echo "This is an Intel box"

fi

CPUtype="Intel"

Get number of CPU cores

CPUs=`cat /proc/cpuinfo | grep "^processor" | wc -l`

New method below

CPUs=`cat /proc/cpuinfo | grep "cpu cores" | uniq | awk -F: '{print $2}' |

sed -e "s/^ //"`

Also, the section of code in Code Listing 20-2 has a heading that helps to separate

it visually from other sections of the code. This makes it easy to visualize the overall

structure and functional flow of the code.

 My Code Documentation Process
Which came first? The program or the documentation. Ideally the documentation

should be first. Then the code can be developed to meet the specifications outlined in

the documentation. You do create specifications before you write code, don't you? That

is another common problem I encounter: the lack of clear specifications for scripts.

As previously mentioned, I like to start coding by creating an outline of my proposed

code using comments. This lets me see the structure of the program and determine

whether it is clean and elegant, allowing me to change the structure if necessary before

I have written any code. Whether I am writing new code or maintaining existing code,

comments are the first thing I add. These comments become the specifications for the

script I am writing or maintaining. Then I can write the code that enables the actions

described in the comments.

Chapter 20 DoCument everything

388

But I don't always do all of the comments to begin with. I first create a basic outline

containing a bare framework of comments describing the logic of the program.

I create an outline of the main body of the program, as much as I can. If I envision using

additional procedures, I create and name the empty procedure, then add comments to

describe its internal functions.

I then create the code to implement that basic framework. I usually start with the

main body of the program, adding new comments as it becomes necessary and then

filling in the code to implement the comments. When I arrive at a call that branches to

an incomplete function, I write that function and add any comments that might still be

required, then write the code to implement the procedure.

This is the answer to the question I posed at the beginning of this section. For me,

at least, the documentation comes first. I can hear the Agile proponents' keyboards

typing their contrary opinions already. But in a very real sense, what I am doing is Agile,

because I write just the documentation I need, just in time to write the code. And then

the comments become the documentation as well.

Not everyone will want to work this way or will find it as well suited to their modus

operandi as I do. There are as many ways of creating code and documenting it as there

are people doing it. Do what works best for you but do it!

 Man Pages
Where do man pages fit into this philosophy of documenting everything? Frankly, not

very well for scripts written by SysAdmins.

Early on we discussed the time constraints under which we SysAdmins work, and

the fact that most of the scripts we write tend to start out as minimalistic solutions to

operational problems. In this type of environment we have little or no time to spend on

creating man pages. The bottom line is that I do not spend the time to create man pages.

 Systems Documentation
This type of documentation is not about documenting scripts or programs. It is about

documenting the state of the network, the connected hosts, and any work I perform

on them. This documentation is critical and important to the customers of my former

consulting business, and to any employer where I have worked as a full-time employee

or contractor.

Chapter 20 DoCument everything

389

At one time I owned a small LLC through which I used to do a bit of consulting on

Linux and open source. I still do a bit of consulting for my church and a few friends.

When working with customers I always documented my interactions with them and

the work I performed. Documentation like this serves me the same way that a doctor’s

notes of my visits serve her. It is a permanent record of the customer’s environment that

I can refer to when talking to them on the phone or engaging in email conversations. It

provides me with a running commentary of the problems I find and what actions I take

to resolve them.

In some cases, I have years of documentation that covers everything from my first

contact with them to the information I discover about their network while I am working

on projects for them, the details of hardware I install for them, details of my work on

projects, and a record of each time I install updates. I include data in these records such

as network diagrams, tables of network IP and MAC addressed with notes about the

function of each node. I also keep the output from a script I have written that lists the

hardware and some of the configuration details of each Linux host that I work on.

This information has multiple uses. It gives me a record so that I can go back and

recall what I have done and the structure of my customer's environment – it is a memory

aid for me. I can use it to support my recommendations for additional work when needed.

Keeping detailed records also can be useful in the event of a dispute with a customer.

I always create a task list before performing work for a customer so that I do not

forget anything that needs to be done. I take notes on that list and then, at the end of the

work, the task list becomes part of the documentation of the work I have performed and

is supplemented by the notes I took during my performance of the work. For some of my

customers I have ended up with over forty pages of this type of documentation.

I typically use LibreOffice Writer for this type of documentation. Writer uses the

Open Document Text (ODT) format, which is open and well-known and used by many

word-processing programs. Even Microsoft Word can use the odt format.

Using a word processor for this type of documentation allows me to make it pretty so

that it looks good when I give copies of it to my customers.

 System Documentation Template
I have created a template – really the outline for a template – that helps me document

systems information for organizations I have performed work for in the past. The

simplified outline below is what works for me, and it is my suggestion that you use it

Chapter 20 DoCument everything

390

as a starting place if you do not already have a specification or template for this type of

document. Feel free to use and modify it to meet your own unique needs.

 1. Title Page.

 2. Table of Contents.

 3. Index of tables.

 4. Index of Illustrations.

 5. Index of Code Listings.

 6. Introduction – A brief description of the document and the

organization.

 7. Administrators – A list of the current SysAdmins and their contact

information.

 8. Internet Connection – A description of the Internet connection

and the ISP that provides it. This may include information about

the contract dates and costs.

• Cable run – A description of the physical cable location on the

property as it runs from the ISP’s street connection across the

property, and to the demarcation point, which is usually the ISP’s

modem/router/switch.

• External IP Addresses – A list of the external IP Addresses if static

and General IP Address range if DHCP.

 9. Internal Network – A description of the internal network.

• Internal IP Address spaces for all internal networks.

• Firewalls – A description of firewalls that belong to the

organization and not the ISP.

• Physical Description – This includes a text description, a network

diagram, and an address map that lists each network node, its

name, MAC address, IP address, whether network configuration

is static or DHCP, and a very short description of its function.

Chapter 20 DoCument everything

391

 10. Hardware – A list of each network node.

• A description of the hardware. This can be created using the

mymotd program created earlier in this book.

• The operating system. For Linux, this includes the distribution

and release.

• A description of the functions provided by the network node.

 11. Operating systems and software

• A list of all operating systems and which hosts they run on.

• A list of specific software on each host. This does not mean all

of the software like the PHPs with no clue might request, but the

primary software for which that host is intended. For example

you might just say, “Desktop software,” for a simple desktop. For

servers, this might be, “DHCPD, HTTPD, NAMED,” etc.

• Licenses – Information about software licenses that might be

pertinent such as renewal information and costs. Software

with proprietary licensing should be listed with license IDs or

numbers for reference in case a license compliance audit is

required.

 12. Host configuration – Common host configuration items such as

network configuration in terms of DNS and DHCP servers, default

gateway, Email servers, etc.

 13. Administrative tasks – A list of various administrative tasks and the

SysAdmin or user responsible for performing them or monitoring

them if they are automated.

 14. Contact lists – Include internal SysAdmin and management

contacts and their responsibilities, as well as contacts for all

vendors including the ISP, hardware and software vendors, HVAC,

data center cooling, UPS, internal security, external security

company, external emergency contacts such as fire and police,

and anything else you might think of.

Chapter 20 DoCument everything

392

 15. Activity log – This is my log of contacts with the customer and the

work performed by me for the customer. This section should be as

explicit as possible when describing problems and their solutions.

This template is a good place to start. Having this type of documentation is

important as a memory aid – I always appreciated not having to ask the customer what

I did for them because I could easily look it up. You may find it necessary to use a well-

maintained document as evidence in a worst-case scenario where the customer or the

PHB questions your actions. I was fortunate to never find myself in a worst-case scenario.

 Document Existing Code
Creating the documentation for existing code requires different approaches than any

other type.

The first thing I do is read the source code, which is almost always Perl or bash

scripts for me. Then I can use the comments as a starting point to create external

documentation – if there are any comments and if the comments have any meaning at all.

One job I took a goodly number of years ago, I was to take over maintenance and

fix a large number of preexisting bash scripts. Those scripts were part of a series of

complex internal applications used by the company. The code worked – mostly –

but was excessively convoluted spaghetti code, and it lacked usable comments and

documentation of any kind.

My first task was to fix a few bugs in several of the scripts. I started reading these

scripts to determine what they actually were supposed to do. As I determined what each

section of code did, I added comments that would describe the code I had just read and

interpreted. And just in the process of doing that, I was able to determine the cause of

some the bugs and correct them.

During this initial stage I determined from reading the bash scripts and questioning the

IT folks that the scripts were originally written by several different contractors and had been

maintained over a period of years by a series of other contractors. Each of the contractors

added on little sections of code that were obviously designed to circumvent the problems

that they encountered. None of these add-on bits of code made any attempt to fix the root

causes. Each contractor had their own way of doing things such as naming schemes for

variables, indents, coding style, and comments. Those scripts were a complete disaster.

That project was a nightmare. It took me weeks to analyze the code and add

appropriate, understandable, and useful comments to the code. That task was tedious and

Chapter 20 DoCument everything

393

made more difficult by apparently random naming of the variables. That was one of the

inevitable results of having so many different people working on the scripts without any

type of guidance or oversight in terms of either the project objectives or programming style.

After I completed the task of commenting each of these scripts, renaming as many

variables as I could, it became much easier to resolve the remaining problems.

Of course code written by others is not the only code with these problems. My

own code, especially much of my older code, is subject to these same problems. This

occurred because I had not yet learned about the Unix or Linux philosophy. My code did

improve over time and when it becomes useful to revisit some of my old code to revise

it of fix a problem, I revise it to follow the better programming practices I have learned

since I was a baby SysAdmin.

 Keep Docs Updated
I have had a few issues with my own documentation. First among them is neglecting to

update documentation in a timely or complete manner. This has caused problems when

information I needed had not been properly recorded.

When I discover I have been lax in my documentation, I try to go back and correct

it as soon as possible. This usually means correcting and updating the comments

embedded in my scripts. It also means fixing the help procedures to be consistent with

the changes made to the code.

Updating my customer documentation is also a task I need to keep up with.

I sometimes forget to do this as I always seem to be rushing to my next task.

It takes discipline to keep my documentation current. Without constant upkeep,

documentation can become hopelessly out of date.

 File Compatibility
File compatibility can also be an issue with external documentation – that is

documentation that is outside of my code, such as customer documentation. For several

years, I used some open source software that maintained my data in format that was not

plain text and was proprietary in the sense that it was not documented and which no

other software could access. This is at least in part because I was not aware of the data

format and that was my own fault. It is also the fault of the developers of that program

because they should have used open formats for the data.

Chapter 20 DoCument everything

394

In Chapter 13, “Store Data in Open Format Files,” we looked at some of the reasons

for using open formats. The emphasis there was on data used by the program itself. Now

we are looking at data used by the SysAdmin to maintain various types of documentation

such as records of customer visits and repair histories. These are important documents

because they enable us to go back and review what has already been done and get a feel

for the progress we have made in problem determination of current problems.

So when an upgrade to the program in question failed to properly upgrade the

database in which the data was stored, I was unable to access customer notes from several

years. Even returning to the previous version of the program did not recover my data

because it had been corrupted. And, unfortunately, my backups were not as extensive as

they now are, so I could not go back far enough to get a copy that was not corrupt.

I now store my notes in Open Document Format (ODF). ODF is a well-known,

open, and documented format, and there are many applications that can work with it.

Although that tenet specifically refers to program data, I believe that a corollary should

be that documentation should be maintained in an open format such as ODF.

 A Few Thoughts
Documentation is very important to System Administrators. While executing our

daily duties, we depend on the documentation that others have left for us. The quality

and speed with which we can do our work is directly affected by the quality of that

documentation. Here are some guidelines for documenting our scripts.

 1. Scripts should be documented with lucid and meaningful

comments.

 2. Scripts should be easy to read. This is a form of self-

documentation.

 3. Scripts should have a useful and concise help feature.

 4. Following these guidelines results in elegant scripts.

System documentation kept as a record of interactions with customers or as an internal

record should always be kept up to date. Entries should be made as soon as the work is

completed in order to ensure that the information is recalled as accurately as possible.

Whatever you do and however you choose to work, just remember that the job is not

done until the documentation is complete.

Chapter 20 DoCument everything

395
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_21

CHAPTER 21

Back Up Everything –
Frequently
Nothing can ever go wrong with my computer and I will never lose my data.

<Sarcasm>Right</sarcasm>.

I have experienced data loss for a myriad of reasons, many of them my own fault.

Keeping decent backups has always enabled me to continue with minimal interruption.

This chapter discusses some of the more common reasons for data loss and methods for

preventing data loss and facilitating easy recovery.

 Data Loss
Without going into detail about my own stupidity, here are a few reasons why we may

lose data at inopportune times. Of course, there is no opportune time to lose data.

Self-inflicted data loss comes in many forms. The most common form is erasure of

one or more important files or directories.

Sometimes erasing needed files is accidental. I just erased a bunch of old files in a

directory, and it turns out later that one or two are still needed. More often, for me at

least, I actually look at the files and decide they are no longer needed. A day, or two,

or a week after I delete them, it turns out that I still need at least some of the files I just

deleted. I have also made significant changes to a file and saved it. Once again, I find at

some time later I made changes and especially deletions that I should not have.

Clearly it is necessary to pay attention when deleting files or making changes to

them. That still won’t keep us from deleting data we may need later.

Power failures can occur for many reasons. This includes momentary power

failures that can shut down the computer just as irrevocably as longer ones. Regardless

of the reason for the power failure, there is the danger of losing data, especially from

396

documents that have not been saved. Modern hard drives and filesystems employ

strategies that help to minimize the probabilities of data loss, but it still happens.

I have had my share of power failures. Back before modern, journaling filesystems

like EXT3 and EXT4, I did experience some serious data loss. One way to help prevent

data loss due to power failures is to invest in Uninterruptible power supplies (UPS) that

maintain power on the hosts long enough to perform a shutdown, either manual or

triggered by the power failure itself.

Electromagnetic Interference, EMI, is a various type of electromagnetic radiation

from many different sources. This radiation can interfere with the correct operation of

any electronic device, including computers.

When I worked for IBM in their PC customer support center in Atlanta, Georgia, our

first office was about a mile from and directly on the centerline of the Dobbins Air Force

base runway. Military aircraft of all types flew in and out twenty-four hours a day. There

were times when the high-powered military radars would cause multiple systems to

crash at the same time. It was just a fact of life in that environment.

Lightning, static electricity, microwaves, old CRT displays, radio frequency bursts on

a ground line, all of these and more can cause problems. Good grounding can reduce the

effects of all of these types of EMI, as we saw in Chapter 17. But that does not make our

computers completely immune to the effects of EMI.

Hard drive failures also cause data loss. The most common failures in today’s

computers are devices that have moving mechanical components. Leading the

frequency list are cooling fans, and hard drives are a close second. Modern hard drives

have SMART capabilities that enable predictive failure analysis. Linux can monitor these

drives and send an email to root indicating that failure is imminent. Do not ignore those

emails because replacing a hard drive before it fails is less trouble than replacing one

after it fails and then hoping the backups are up to date.

Disgruntled employees can maliciously destroy data. Proper security procedures

can mitigate this type of threat, but backups are still handy.

Theft is also a way to lose data. Soon after we moved to Raleigh, North Carolina, in

1993, there was a series of articles in the local paper and TV that covered the tribulations

of a scientist at one of our better-known universities. This scientist kept all of his data on

a single computer. He did have a backup – to another hard drive on that same computer.

When the computer was stolen from his office, all of his experimental data went missing

as well and it was never recovered.

Chapter 21 BaCk Up everything – FreqUently

397

This is one very good reason to keep good backups separate from the host being

backed up.

Natural disasters occur. Fire, flood, hurricanes, tornadoes, mud slides, tsunamis,

and so many more kinds of disasters can destroy computers and locally stored backups

as well. I can guarantee that, even if I have a good backup, I will never take the time

during a fire, tornado, or natural disaster that places me in imminent danger to save the

backups.

Malware is software that can be used for various malicious purposes, including

destroying or deleting your data.

Ransomware is a specific form of malware that encrypts your data and holds it for

ransom. If you pay the ransom, you may get the key that will allow you to decrypt your

data – if you are lucky.

So, as you can see, there are many ways to lose your data. My intent with this list of

possible ways in which data can be damaged or lost is to scare you into doing backups.

Did it work?

 Backups to the Rescue
Recently, very recently – while I was working on this book, actually – I encountered a

problem in the form of a hard drive crash that destroyed the data in my home directory.

I had been expecting this for some time, so it came as no surprise.

 The Problem
The first indication I had that something was wrong was a series of emails from the

S.M.A.R.T (Self-Monitoring, Analysis and Reporting Technology) enabled hard drive

on which my home directory resided.1 Each of these emails indicated that one or more

sectors had become defective and that the defective sectors had been taken offline

and reserved sectors allocated in their place. This is normal operation; hard drives are

designed intentionally with reserved sectors for just this reason.

We will discuss curiosity in some detail in Chapter 22, “Follow Your Curiosity,” but

I put mine to use when these error messages started arriving in my email inbox several

1 Your host must have a mail transfer agent (MTA) such as SendMail installed and running.
The /etc/aliases file must have an entry to send root’s email to your email address.

Chapter 21 BaCk Up everything – FreqUently

398

months ago. I first used the smartctl command to view the internal statistics for the

hard drive in question. The original, defective hard drive has been replaced but – yes,

I keep some old, defective devices for teachable moments like this. I installed this

damaged hard drive in my docking station to demonstrate what the results of a defective

hard drive look like.

You can perform this experiment along with me, but your results will be different –

hopefully healthier than my defective drive.

The SMART reports used in Experiment 21-1 can be a bit confusing. The web page,

“Understanding SMART Reports,2” can help somewhat with that. Wikipedia also has

an interesting page on this technology.3 I recommend reading those documents before

attempting to interpret the SMART results; they can be very confusing.

Note Be sure to perform this experiment on a physical host that is not in
production use. the hardware status of a virtual hard drive is irrelevant.

EXPERIMENT 21-1

this experiment must be performed as root.

after installing the drive in the docking station and turning it on, the dmesg command showed

the drive to be assigned as device special file /dev/sdi. Be sure to use the correct device

special file for your hard drive. you can use any physical hard drive installed in your host, even

if it is in use.

i have divided the results of the command into sections for easier reference during the

discussion, and i have removed a large amount of irrelevant data.

[root@david ~]# smartctl -x /dev/sdi | less

smartctl 6.5 2016-05-07 r4318 [x86_64-linux-4.15.6-300.fc27.x86_64] (local

build)

Copyright (C) 2002-16, Bruce Allen, Christian Franke, www.smartmontools.org

2 Understanding SMART Reports, https://lime-technology.com/wiki/Understanding_
SMART_Reports

3 Wikipedia, SMART, https://en.wikipedia.org/wiki/SMART

Chapter 21 BaCk Up everything – FreqUently

https://lime-technology.com/wiki/Understanding_SMART_Reports
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://en.wikipedia.org/wiki/S.M.A.R.T

399

=== START OF INFORMATION SECTION ===

Model Family: Seagate Barracuda 7200.11

Device Model: ST31500341AS

Serial Number: 9VS2F303

LU WWN Device Id: 5 000c50 01572aacc

Firmware Version: CC1H

User Capacity: 1,500,301,910,016 bytes [1.50 TB]

Sector Size: 512 bytes logical/physical

Rotation Rate: 7200 rpm

Device is: In smartctl database [for details use: -P show]

ATA Version is: ATA8-ACS T13/1699-D revision 4

SATA Version is: SATA 2.6, 3.0 Gb/s

Local Time is: Wed Mar 14 14:19:03 2018 EDT

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

AAM level is: 0 (vendor specific), recommended: 254

APM feature is: Unavailable

Rd look-ahead is: Enabled

Write cache is: Enabled

ATA Security is: Disabled, NOT FROZEN [SEC1]

Wt Cache Reorder: Unknown

=== START OF READ SMART DATA SECTION ===

SMART Status not supported: Incomplete response, ATA output registers missing

SMART overall-health self-assessment test result: PASSED

Warning: This result is based on an Attribute check.

the first section of results, shown just above, provides basic information about the hard drive

capabilities and attributes such as brand, model, and serial number. this is interesting and

good information to have. however, this section shows that this SMart data report must be

taken with a bit of skepticism. notice that my known defective drive has passed the self-

assessment test. that appears to mean that the drive is not about to fail catastrophically even

though it already has.

the data we are most interested in at present is in the next two sections. notice that i have

trimmed out a great deal of the information not essential to this experiment.

=== START OF READ SMART DATA SECTION ===

<snip – removed list of SMART capabilities.>

Chapter 21 BaCk Up everything – FreqUently

400

SMART Attributes Data Structure revision number: 10

Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE

 1 Raw_Read_Error_Rate POSR-- 116 086 006 - 107067871

 3 Spin_Up_Time PO---- 099 099 000 - 0

 4 Start_Stop_Count -O--CK 100 100 020 - 279

 5 Reallocated_Sector_Ct PO--CK 048 048 036 - 2143

 7 Seek_Error_Rate POSR-- 085 060 030 - 365075805

 9 Power_On_Hours -O--CK 019 019 000 - 71783

10 Spin_Retry_Count PO--C- 100 100 097 - 0

12 Power_Cycle_Count -O--CK 100 100 020 - 279

184 End-to-End_Error -O--CK 100 100 099 - 0

187 Reported_Uncorrect -O--CK 001 001 000 - 1358

188 Command_Timeout -O--CK 100 098 000 - 12885622796

189 High_Fly_Writes -O-RCK 001 001 000 - 154

190 Airflow_Temperature_Cel -O---K 071 052 045 - 29 (Min/Max 22/29)

194 Temperature_Celsius -O---K 029 048 000 - 29 (0 22 0 0 0)

195 Hardware_ECC_Recovered -O-RC- 039 014 000 - 107067871

197 Current_Pending_Sector -O--C- 100 100 000 - 0

198 Offline_Uncorrectable ----C- 100 100 000 - 0

199 UDMA_CRC_Error_Count -OSRCK 200 200 000 - 20

240 Head_Flying_Hours ------ 100 253 000 - 71781 (50 96 0)

241 Total_LBAs_Written ------ 100 253 000 - 2059064490

242 Total_LBAs_Read ------ 100 253 000 - 260980229

 ||||||_ K auto-keep

 |||||__ C event count

 ||||___ R error rate

 |||____ S speed/performance

 ||_____ O updated online

 |______ P prefailure warning

the preceding section of results from the smartctl command displays raw data accumulated

in the hardware registers on the drive. the raw values are not particularly helpful for some of

the error rates; as you can see, some of the numbers are clearly bogus. the “value” column

is usually more helpful. read the referenced web pages to understand a bit about why. in

general, numbers like 100 in the value column mean 100% good and low numbers like 001

mean close to failure – sort of 99% of the useful life is used up. it is really very strange.

Chapter 21 BaCk Up everything – FreqUently

401

in this case, 048 in the value column for reallocated_Sector_Ct – reallocated Sector Count –

sort of might mean that about half of the sectors allocated for reallocation have been used up.

the number 001 for reported_Uncorrect – reported defective sectors that are uncorrectable –

and high_Fly_Writes – writes in which the heads were flying further off the recording surface

of the hard drive than is optimal – means that the life of this hard drive is effectively over. this

has been shown to be the case with empirical evidence.

this next section actually lists errors and information about them when they occur. this is

the most helpful part of the output. i do not try to analyze every error; i simply look to see if

there are multiple errors. the number 1350, in the first line below is the total number of errors

detected on this hard drive.

<Snip>

Error 1350 [9] occurred at disk power-on lifetime: 2257 hours (94 days + 1

hours)

 When the command that caused the error occurred, the device was active

or idle.

 After command completion occurred, registers were:

 ER -- ST COUNT LBA_48 LH LM LL DV DC

 -- -- -- == -- == == == -- -- -- -- --

 40 -- 51 00 00 00 04 ed 00 14 59 00 00 Error: UNC at LBA = 0x4ed001459 =

21156074585

 Commands leading to the command that caused the error were:

 CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name

 -- == -- == -- == == == -- -- -- -- -- --------------- ------------------

 60 00 00 00 08 00 04 ed 00 14 58 40 00 11d+10:44:56.878 READ FPDMA QUEUED

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:56.851 READ NATIVE MAX

ADDRESS EXT

[OBS-ACS-3]

 ec 00 00 00 00 00 00 00 00 00 00 a0 00 11d+10:44:56.849 IDENTIFY DEVICE

 ef 00 03 00 46 00 00 00 00 00 00 a0 00 11d+10:44:56.836 SET FEATURES [Set

transfer mode]

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:56.809 READ NATIVE MAX

ADDRESS EXT

[OBS-ACS-3]

Chapter 21 BaCk Up everything – FreqUently

402

Error 1349 [8] occurred at disk power-on lifetime: 2257 hours (94 days + 1

hours)

 When the command that caused the error occurred, the device was active or

idle.

 After command completion occurred, registers were:

 ER -- ST COUNT LBA_48 LH LM LL DV DC

 -- -- -- == -- == == == -- -- -- -- --

 40 -- 51 00 00 00 04 ed 00 14 59 00 00 Error: UNC at LBA = 0x4ed001459 =

21156074585

 Commands leading to the command that caused the error were:

 CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name

 -- == -- == -- == == == -- -- -- -- -- --------------- ------------------

 60 00 00 00 08 00 04 ed 00 14 58 40 00 11d+10:44:53.953 READ FPDMA QUEUED

 60 00 00 00 08 00 04 f4 00 14 10 40 00 11d+10:44:53.890 READ FPDMA QUEUED

 60 00 00 00 10 00 04 f4 00 14 00 40 00 11d+10:44:53.887 READ FPDMA QUEUED

 60 00 00 00 10 00 04 f3 00 14 f0 40 00 11d+10:44:53.886 READ FPDMA QUEUED

 60 00 00 00 10 00 04 f3 00 14 e0 40 00 11d+10:44:53.886 READ FPDMA QUEUED

Error 1348 [7] occurred at disk power-on lifetime: 2257 hours (94 days + 1

hours)

 When the command that caused the error occurred, the device was active or

idle.

 After command completion occurred, registers were:

 ER -- ST COUNT LBA_48 LH LM LL DV DC

 -- -- -- == -- == == == -- -- -- -- --

 40 -- 51 00 00 00 04 ed 00 14 59 00 00 Error: UNC at LBA = 0x4ed001459 =

21156074585

 Commands leading to the command that caused the error were:

 CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name

 -- == -- == -- == == == -- -- -- -- -- --------------- ------------------

 60 00 00 00 08 00 04 ed 00 14 58 40 00 11d+10:44:50.892 READ FPDMA QUEUED

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:50.865 READ NATIVE MAX

ADDRESS EXT

[OBS-ACS-3]

 ec 00 00 00 00 00 00 00 00 00 00 a0 00 11d+10:44:50.863 IDENTIFY DEVICE

Chapter 21 BaCk Up everything – FreqUently

403

 ef 00 03 00 46 00 00 00 00 00 00 a0 00 11d+10:44:50.850 SET FEATURES [Set

transfer mode]

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:50.823 READ NATIVE MAX

ADDRESS EXT

[OBS-ACS-3]

Error 1347 [6] occurred at disk power-on lifetime: 2257 hours (94 days +

1 hours)

 When the command that caused the error occurred, the device was active or

idle.

<Snip – removed many redundant error listings>

these errors are indicative that something really is wrong with the disk.

I decided I would wait to see what else occurred before I replaced the hard drive. The

failure numbers were not as bad in the beginning. The error count rose to 1350 at the

time of the catastrophic failure.

Some testing of over 67,800 SMART drives4 by a cloud company named Backblaze

provides some statistically based insight into failure rates of hard drives that experienced

various numbers of reported errors. This web page is the first I have found that

demonstrates a statistically relevant correlation between reported SMART errors and

actual failure rates. Their web page also helped improve my understanding of the five

SMART attributes that they found should be closely monitored.

In my opinion, the bottom line of the Backblaze analysis is that hard drives should be

replaced as soon as possible after they begin to experience error reports in any of the five

statistics they recommend monitoring.

My experience seems to confirm that although it was not even close to being

statistically significant. My drive failed within a couple months of the first indications

that there was a problem. The number of errors my drive experienced before failing

beyond recovery is very high, and I had been very lucky to have been able to recover

from several errors that caused the /home filesystem to switch to read-only (ro) mode.

This only occurs when Linux determines that the filesystem is unstable and cannot be

trusted.

4 BackBlaze, Web site, “What SMART Stats Tell Us About Hard Drives,” https://www.backblaze.
com/blog/what-smart-stats-indicate-hard-drive-failures/

Chapter 21 BaCk Up everything – FreqUently

https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/

404

 Recovery
So that was all just a long way to say that the drive containing my home directory failed

catastrophically. Recovery was straightforward if a bit time consuming.

I turned off the computer, removed the defective 320GB SATA drive, replaced it with

a new 1TB SATA drive because I want to use the extra space for other storage later, and

turned the computer back on. I created a physical volume (PV) that takes up all of the

space on the drive, and then a volume group (VG) that fills the PV. I used 250GB of that

space for a logical volume (LV) that was to be the /home filesystem. I then created an

EXT4 filesystem on the logical volume and used the e2label command to give it the

label “home” because I mount filesystems using labels. At this point the replacement

drive was ready so I mounted it on /home.

As a result of the method I use to create my backups, it is only necessary for me to

use a simple copy command, like that shown in Code Sample 21-1, to restore the entire

home directory to the newly installed drive.

CODE SAMPLE 21-1

note that to ensure that the data being restored would not be corrupted, i could not be logged

in as any non-root user that has files in the /home filesystem. i logged in on a virtual console

as root and used the following command to restore the data from my backup to the newly

installed and prepared replacement hard drive.

cp -Rp /media/Backups/Backups/david/2018-03-04-RSBackup/home/ /home

the “r” option recurses through the entire /home directory structure and copies everything in

the entire directory tree. the “p” option preserves the ownership and permissions attributes

for the files.

After restoring the data to my /home directory, I logged in using my non-privileged

user ID and checked things out. Everything worked as expected, and all of my data had

been restored correctly, including the files for this book.

Chapter 21 BaCk Up everything – FreqUently

405

 Doing It My Way
My backups shell script is one of those programs that had the advantage

of — well — being planned. This is because I wrote, used, and figured out what was

wrong with a number of my own backup scripts prior to this one. I was able to more

completely understand what I really needed in a backup system.

Once again, I started with a set of requirements. Ones I had been considering for

several months. I already had a backup script that used tar to create backups in tgz files.

But it was a good bit of work and took some time to deal with extracting single files or

directories from the tar files. It also took over an hour each night to make the backups.

And despite the gzip compression, the large files meant that only a few days history

could be kept on the external USB hard drives I use for backups because everything was

backed up completely multiple times.

I have a lot of files that I have accumulated over the years. Some of those files are very

large, particularly the ones for my virtual machines. At this time, I have about 18 VMs that

each have very large virtual disks associated with them. This takes up huge amounts of space.

So I wanted a backup solution that was fast, would easily and quickly handle very

large files, which would allow more history on a single backup drive by saving space

without creating some type of compressed archive, and that would be easy for me or my

customers to access specific files when needed.

 Backup Options
There are many options for performing backups. In addition to old favorites like

tar, most Linux distributions are provided with one or more additional open source

programs especially designed to perform backups. There are many commercial options

available as well.

None of these solutions fully met my needs and I really wanted to use another tool I

had heard about, rsync.5 Fancy and expensive backup programs are not really necessary

to design and implement a viable backup program.

I had been experimenting with the rsync command, which has some very interesting

features that I have been able to use to good advantage. My primary objectives were to

create backups from which users could locate and restore files quickly without having to

extract data from a backup tarball, and to reduce the amount of time taken to create and

the backups.

5 Wikipedia, rsync, https://en.wikipedia.org/wiki/Rsync

Chapter 21 BaCk Up everything – FreqUently

https://en.wikipedia.org/wiki/Rsync

406

This section is intended only to describe my own use of rsync in a backup scenario.

It is not a look at all of the capabilities of rsync or the many other interesting ways in

which it can be used.

 rsync

The rsync command was written by Andrew Tridgell and Paul Mackerras and first

released in 1996. The primary intention for rsync is to remotely synchronize the files on

one computer with those on another. Did you notice what they did to create the name

there? rsync is open source software and is provided with all of the distros with which

I am familiar.

The rsync command can be used to synchronize two directories or directory trees

whether they are on the same computer or on different computers, but it can do so much

more than that. rsync creates or updates the target directory to be identical to the source

directory. The target directory is freely accessible by all the usual Linux tools because it is

not stored in a tarball or zip file or any other archival file type; it is just a regular directory

with regular files that can be navigated by regular users using basic Linux tools. This

meets one of my primary objectives.

One of the most important features of rsync is the method it uses to synchronize

preexisting files that have changed in the source directory. Rather than copying the

entire file from the source, it uses checksums to compare blocks of the source and

target files. If all of the blocks in the two files are the same, no data is transferred. If the

data differs, only the block that has changed on the source is transferred to the target.

This saves an immense amount of time and network bandwidth for remote sync. For

example, when I first used my rsync bash script to back up all of my hosts to a large

external USB hard drive, it took about 3 hours. That is because all of the data had to be

transferred because none of it had been previously backed up. Subsequent backups

took between 3 and 8 minutes of real time, depending upon how many files had been

changed or created since the previous backup. I used the time command to determine

this, so it is empirical data. Last night, for example, it took 3 minutes and 12 seconds

to complete a backup of approximately 750GB of data from 6 remote systems and the

local workstation. Of course, only a few hundred megabytes of data were actually altered

during the day and needed to be backed up.

Chapter 21 BaCk Up everything – FreqUently

407

The simple rsync command shown in Code Sample 21-2 can be used to synchronize

the contents of two directories and any of their subdirectories. That is, the contents of the

target directory are synchronized with the contents of the source directory so that at the

end of the sync, the target directory is identical to the source directory.

CODE SAMPLE 21-2

this is the minimum command necessary to synchronize two directories using rsync.

rsync -aH sourcedir targetdir

the -a option is for archive mode, which preserves permissions, ownerships, and symbolic

(soft) links. the -h is used to preserve hard links rather than creating a new file for each hard

link. note that either the source or target directories can be on a remote host.

Now let’s assume that yesterday we used rsync to synchronize two directories. Today

we want to resync them, but we have deleted some files from the source directory. The

normal way in which rsync would do this is to simply copy all the new or changed files

to the target location and leave the deleted files in place on the target. This may be the

behavior you want, but if you would prefer that files deleted from the source also be

deleted from the target, that is, the backup, you can add the --delete option to make that

happen.

Another interesting option, and my personal favorite because it increases the power

and flexibility of rsync immensely, is the --link-dest option. The --link-dest option uses

hard links,6 7 to create a series of daily backups that take up very little additional space for

each day and also take very little time to create.

Specify the previous day’s target directory with this option and a new directory for

today. The rsync command then creates today’s new directory and a hard link for each

file in yesterday’s directory is created in today’s directory. So we now have a bunch of

hard links to yesterday’s files in today’s directory. No new files have been created or

duplicated. Just a bunch of hard links to the files from yesterday have been created. After

creating the target directory for today with this set of hard links to yesterday’s target

6 Wikipedia, Hard Links, https://en.wikipedia.org/wiki/Hard_link
7 Both, David, DataBook for Linux, Using hard and soft links in the Linux filesystem,
http://www.linux-databook.info/?page_id=5087

Chapter 21 BaCk Up everything – FreqUently

https://en.wikipedia.org/wiki/Hard_link
http://www.linux-databook.info/?page_id=5087

408

directory, rsync performs its sync as usual, but when a change is detected in a file, the

target hard link is replaced by a copy of the file from yesterday and the changes to the file

are then copied from the source to the target.

So now our command looks like that in Code Sample 21-3.

CODE SAMPLE 21-3

this version of our rsync command first creates hard links in today’s backup directory for each

file in yesterday’s backup directory. the files in the source directory – the one being backed

up – are then compared to the hard links that were just created. if there are no changes to the

files in the source directory, no further action is taken.

rsync -aH --delete --link-dest=yesterdaystargetdir sourcedir todaystargetdir

if there are changes to files in the source directory, rsync deletes the hard link to the file in

yesterday’s backup directory and makes an exact copy of the file from yesterday’s backup. it

then copies the changes made to the file from the source directory to today’s target backup

directory.

rsync also deletes files on the target drive or directory that have been deleted from the

source directory.

There are also times when it is desirable to exclude certain directories or files from

being synchronized. We usually do not care about backing up cache directories and,

because of the large amount of data they can contain, the amount of time required

to back them up can be huge compared to other data directories. For this there is the

--exclude option. Use this option and the pattern for the files or directories you want to

exclude. You might want to exclude browser cache files so your new command will look

like Code Sample 21-4.

CODE SAMPLE 21-4

rsync -aH --delete --exclude Cache --link-dest=yesterdaystargetdir sourcedir

todaystargetdir

note that each file pattern you want to exclude must have a separate exclude option.

Chapter 21 BaCk Up everything – FreqUently

409

The rsync command can sync files with remote hosts as either the source or the

target. For the next example, let’s assume that the source directory is on a remote

computer with the hostname remote1 and the target directory is on the local host. Even

though SSH is the default communications protocol used when transferring data to or

from a remote host, I always add the ssh option. The command now looks like this.

CODE SAMPLE 21-5

in this code segment the source directory is located on the remote host, remote1.

rsync -aH -e ssh --delete --exclude Cache --link-dest=yesterdaystargetdir

remote1:sourcedir todaystargetdir

this command backs up the data from the directory on the remote host to the local host.

The rsync command has a very large number of options that you can use to

customize the synchronization process. For the most part, the relatively simple

commands that I have described here are perfect for making backups for my personal

needs. Be sure to read the extensive man page for rsync to learn about more of its

capabilities as well as details of the options discussed here.

 Performing Backups

I automated my backups because – “automate everything.” I wrote a bash script, rsbu,

which handles the details of creating a series of daily backups using rsync. This includes

ensuring that the backup medium is mounted, generating the names for yesterday and

today’s backup directories, creating appropriate directory structures on the backup

medium if they are not already there, performing the actual backups, and unmounting

the medium.

The end result of the method in which I employ the rsync command in my script is

that I end up with a date-sequence of backups for each host in my network. The backup

drives end up with a structure similar to the one shown in Figure 21-1. This makes it easy

to locate specific files that might need to be restored.

Chapter 21 BaCk Up everything – FreqUently

410

Figure 21-1. The directory structure for my backup data disks

|
/Backups

|
|--/host1
| |--/2018-01-01
| | |--/etc
| | |--/home
| | |--/var
| | |--/usr/local
| |--2018-01-02
| | |--/etc
| | |--/home
| | |--/var
| | |--/usr/local
| |--2018-01-03
| | |--/etc
| | |--/home
| | |--/var
| | |--/usr/local
| etc
|--host2
| |--2018-01-01
| | |--/etc
| | |--/home
| | | |
| | | |--/student
| | | | |
| | | | |--/file1.txt (Unchanged)
| | | etc etc
| | |--/var
| | |--/usr/local
| |--2018-01-02
| | |--/etc
| | |--/home
| | | |
| | | |--/student
| | | | |
| | | | |--/file1.txt (Unchanged)
| | | etc etc
| | |--/var
| | |--/usr/local

Chapter 21 BaCk Up everything – FreqUently

411

So, starting with an empty disk on January 1, the rsbu script makes a complete backup

for each host of all the files and directories that I have specified in the configuration file.

This first backup can take several hours if you have a lot of data like I do.

On January 2, the rsync command uses the –link-dest= option to create a complete

new directory structure identical to that of January 1, then it looks for files that have

changed in the source directories. If any have changed, A copy of the original file from

January 1 is made in the January 2 directory and then the parts of the file that have been

altered are updated from the original.

After the first backup onto an empty drive, the backups take very little time because

the hard links are created first, and then only the files that have been changed since the

previous backup need any further work.

Figure 21-1 also shows a bit more detail for the host2 series of backups for one

file, /home/student/file1.txt, on the dates January 1, 2, and 3. On January 2 the file has

not changed since January 1. In this case, the rsync backup does not copy the original

data from January 1. It simply creates a directory entry with a hard link in the January

2 directory to the January 1 directory, which is a very fast procedure. We now have two

directory entries pointing to the same data on the hard drive. On January 3, the file has

been changed. In this case, the data for ../2018-01-02/home/student/file1.txt is copied

to the new directory, ../2018-01-03/home/student/file1.txt and any data blocks that

have changed are then copied to the backup file for January 3. These strategies, that are

implemented using features of the rsync program, allow backing up huge amounts of

data while saving disk space and much of the time that would otherwise be required to

copy data files that are identical.

| | | | |--/file1.txt (Changed)
| | | etc etc
| | |--/var
| | |--/usr/local
etc etc etc

| |--2018-01-03
| | |--/etc
| | |--/home
| | | |
| | | |--/student
| | | | |

Figure 21-1. (continued)

Chapter 21 BaCk Up everything – FreqUently

412

One of my procedures is to run the backup script twice each day from a single cron

job. The first iteration performs a backup to an internal 4TB hard drive. This is the

backup that is always available and always at the most recent version of all my data.

If something happens and I need to recover one file or all of them, the most I could

possibly lose is a few hours’ worth of work.

The second backup is made to one of a rotating series of 4TB external USB hard

drive. I take the most recent drive to my safe deposit box at the bank at least once per

week. If my home office is destroyed and the backups I maintain there are destroyed

along with it, I just have to get the external hard drive from the bank and I have lost at

most a single week of data. That type of loss is easily recovered.

The drives I am using for backups, not just the internal hard drive but also the

external USB hard drives that I rotate weekly, never fill up. This is because the rsbu script

I wrote checks the ages in days of the backups on each drive before a new backup is

made. If there are any backups on the drive that are older than the specified number of

days, they are deleted. The script uses the find command to locate these backups. The

number of days is specified in the rsbu.conf configuration file.

Of course, after a complete disaster, I would first have to find a new place to live with

office space for my wife and me, purchase parts and build new computers, restore from

the remaining backup, and then re-create any lost data.

My script, rsbu, is available along with its configuration file, rsbu.conf, and a READ.

ME file from https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch21

 Recovery Testing

No backup regimen would be complete without testing. You should regularly test

recovery of random files or entire directory structures to ensure not only that the

backups are working, but that the data in the backups can be recovered for use after a

disaster. I have seen too many instances where a backup could not be restored for one

reason or another, and valuable data was lost because the lack of testing prevented

discovery of the problem.

Just select a file or directory to test and restore it to a test location such as /tmp so that

you won’t overwrite a file that may have been updated since the backup was performed.

Verify that the files’ contents are as you expect them to be. Restoring files from a backup

made using the rsync commands above simply a matter of finding the file you want to

restore from the backup and then copying it to the location you want to restore it to.

Chapter 21 BaCk Up everything – FreqUently

https://github.com/Apress/linux-philo-sysadmins/tree/master/Ch21

413

I have had a few circumstances where I have had to restore individual files and,

occasionally, a complete directory structure. I have had to restore the entire contents of

a hard drive on a couple of occasions, as I discussed earlier in this chapter. Most of the

time this has been self-inflicted when I accidentally deleted a file or directory. At least a

few times it has been due to a crashed hard drive. So those backups do come in handy.

 Off-Site Backups
Creating good backups is an important first step in a backup strategy. Keeping the

resulting backup media in the same physical location as your original data is a mistake.

We have seen that theft of a computer that has all its backups on an internal drive can

result in the complete and irrecoverable loss of important data. Fire and other disasters

can also result in the loss of original data and the backup data if it is stored in the same

location. Fireproof safes are one option that can reduce the threat from both theft and

disaster like fire. Such safes are usually rated in minutes at specified temperatures for

which they are supposed to protect their contents. I guess my personal concern here is

that I have no idea how long or hot a fire will burn. Perhaps the safe will hold out long

enough, but what if it does not?

I prefer to do for my own backups what the large companies do. I keep current off-

site backups. For me this is in the safe deposit box at my bank. For others this might be

“in the cloud” somewhere. I like the end-to-end control I have with my safe deposit box

solution. I know it is well protected. If my little home office is destroyed, the bank is likely

far enough away that it will not be affected by whatever disaster occurred.

For large companies, there are services that store your backups in a remote, high

security location with climate-controlled vaults. Most of these services will even send

armored trucks to your facilities to pick up and transport your backup media. Some

provide high-speed network connections so that backups can be made directly onto

their own storage media at their remote locations.

Many people and organizations are making backups to the cloud these days. I have

serious reservations about the so-called “cloud.” First, “cloud” is just another word for

someone else’s computer. Second, considering the number of hacks into allegedly secure

computing facilities that I have been reading about, I am not likely to trust my data to

any external organization that maintains online backups accessible from the Internet.

I would much prefer my remote backup data to be off line until I need it.

Chapter 21 BaCk Up everything – FreqUently

414

The concern I have with the cloud is that, aside from the marketing information the

providers put on their web sites, there is no way for me to actually know whether their

security measures are better than I can do for myself. Perhaps they can but as a SysAdmin

I would like some proof of this. I have no doubt that a good portion of the cloud providers

can do a better job of managing the security of the data entrusted to them than many

businesses and individuals do. How do I know which ones those are? Remember that we

are talking about cloud-based backup solutions, not application or web presence solutions.

What I think I can say with some level of confidence is that the established

and recognized cloud providers, such as Amazon, Azure, Google, and others, are

certainly more trustworthy when it comes to security than are many small or medium

organizations. I am thinking about the ones don’t have a full-time SysAdmin, or

outsource IT to small, local companies that are not especially reputable. I also think that

many less experienced SysAdmins are not ready to deal with the high level of security

required on the Internet in today’s world of constant cyberattack.

So for many organizations, the cloud may be a viable option. For others, an experienced

and knowledgeable SysAdmin may be the best choice. As with many IT decisions, it is a

matter of weighing the risk factors and determining how much you are willing to accept.

 Disaster Recovery Services
Taking backups a step further, some of the places I have worked maintained a contract

with one or more disaster recovery services. This type of service is paid to maintain a

complete computer and network environment that can replace your own on a moment’s

notice. This usually includes everything from mainframes down to Intel-based servers

and workstations. This is, of course, in addition to keeping massive amounts of data in

off-site backup storage.

At one of the places I worked, we had quarterly assessments of our disaster recovery

plan. We shut down all of the computers from the mainframes through the Intel servers.

We notified the disaster recovery company that we were conducting a test, and they

prepared their site with the various computers we would require to get back up and

operational. We had the backup storage service transport the latest backup media from

their secure facility to the recovery site in Philadelphia.

A group of folks from our offices traveled up to the recovery site and restored all of

the data from our backup media, brought everything online, and tested to ensure that

everything was working properly.

Chapter 21 BaCk Up everything – FreqUently

415

There were always problems. Always. But that was the whole point of the exercise –

to find the problems with our strategies and procedures. And then to fix them.

 Other Options
Not everyone needs a disaster recovery service or huge amounts of backup data storage.

For some individuals and very small businesses with only a single computer, a couple

USB thumb drives and a manual backup to one of those drives is more than sufficient.

For others, a relatively small external USB hard drive works well.

It is all in what you need for your circumstances.

 What About the “Frequently” Part?
This is easy. Always make at least one backup every day. No matter what. If some file or

files are particularly important and you have just created or altered them, make a backup

of them right away.

The rsbu script will do this very quickly because it will only make backups for files

that have changed. It does this in a way that still allows you to continue working on your

computer.

 Summary
Backups are an incredibly important part of our jobs as SysAdmins. I have experienced

many instances where backups have enabled rapid operational recovery for places I have

worked as well as for my own business and personal data.

There are many options for performing and maintaining data backups. I do what

works for me and have never had a situation where I lost more than a few hours’ worth of

data.

Like everything else, backups are all about what you need. Whatever you do – do

something! Figure out how much pain you would have if you lost everything – data,

computers, hard copy records – everything. The pain includes the cost of replacing the

hardware and the cost of the time required to restore data that was backed up and to

recover data that was not backed up. Then plan and implement your backup systems

and procedures accordingly.

Chapter 21 BaCk Up everything – FreqUently

417
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_22

CHAPTER 22

Follow Your Curiosity
People talk about life-long learning and how that keeps one mentally alert and youthful.

The same is true of SysAdmins. There is always more to learn, and I think that is what

keeps most of us happy and always ready to tackle the next problem. Continuous

learning helps to keep our minds and skills sharp, no matter what our age.

I love to learn new things. I was fortunate in that my curiosity led me to a lifetime of

working with my favorite toys – computers. There are certainly plenty of new things to

learn about computers; the industry and technology are constantly changing. There are

many things on Earth and in this Universe to be curious about. Computers and related

technology just seem to be the thing I enjoy the most.

I also assume that you must be curious because you are reading this book. But not

everyone is as curious as we are.

 Charlie
Let's take a trip in my Wayback machine to 1970 in Toledo, Ohio. I was working at a

chemical plant in a very boring job as a tester, along with seven or eight others. We

would take chemical formulations dreamed up by our chemists, compound them into

vinyl, and press it into various types of fabrics used in the automotive industry for seats

and vinyl roofs. Our jobs were to test the resulting raw vinyl and coated fabrics to see if

they met all of the specifications supplied by the auto company that had ordered them.

Never seen a vinyl roof on a car? Yeah, that long ago!

One of my coworkers, Charlie, was a negative sort of guy. His complaining was

incessant. He would complain about the working conditions – we had lots of volatile

chemicals around and it was pretty easy to get high and stay there if that is what you

wanted, but it was also dangerous. He complained about the danger and about how

boring the job was but we all did some of that – it was part of being in that type of job. But

418

Charlie complained about everything from the moment he walked in until the ending

whistle blew in the afternoon.

One day we had a conversation that went something like this.

Charlie said to me one morning about 8:30 a.m., “I hate this job. Quitting time can't

get here fast enough.”

I was getting pretty fed up with his negativity, so I said, “Charlie, if you hate this job

so much, why don't you find another job?”

“I don't know how to do anything else.”

So I said, “Well, why don't you learn something new? I’ll be going back to university

next term and I'm not going to stay here for long after I get my degree. I plan to get a

better job.”

“That’s easy for you – you're young. I’m old and you can't teach an old dog new tricks.”

I asked him, “How old are you Charlie?”

“Thirty-six,” he said.

Even then, in my early twenties and seemingly invulnerable and immortal in my own

mind, I knew that thirty-six was not old. Right then I vowed to myself that I would never

stop learning – that I would learn something new every day. And I have kept that vow. Of

course, that vow has been pretty easy to keep what with both my vocation and avocation

being computers for most of the last forty years.

 Curiosity Led Me to Linux
Curiosity got me into Linux in the first place but it was a long and winding road. You may

skip this long and, perhaps to you, boring section, if you like. I do find that describing

how my journey brought me to where I am today has been interesting and helpful to

some people. It does show that the shortest distance between two points in life are not

usually a straight line. In any event I will try to keep this as short as I can and still show

the impact of curiosity on my life.

I was never a particularly good student in the standard sense of my school marks.

I tended to follow my curiosity rather than the lesson plans. Most teachers don’t like that.

I was interested in electricity, electronics, math, and chemistry. I was fortunate to have

good teachers for chemistry and math but in 1960 there were no high school classes in

electronics unless I went to the vocational technical high school in Toledo. I wanted to go

there but my parents convinced me that I could learn about electronics later.

Chapter 22 Follow Your CuriositY

419

During my early teen years, my interest in electronics was aided and abetted by my

HO gauge model railroad, which required that I learn at least the basics of electricity. So

I got books from the library to study. I also found college-level workbooks at the

University of Toledo (UT) book store that I bought and studied. I wired my model

railroad, and when I learned new things, I completely tore out the existing wiring and

rewired it from scratch.

I also used to fix our TV when it broke. Eventually the neighbors started asking

me to help them with their TVs and radios when they broke. It was easy in those days,

because every electronic device came with a schematic and all I had to do was figure out

which vacuum tube to replace. It helped that books were available that showed various

symptoms in pictures and then listed the types of tubes that would cause those problems

when they failed. It was also helpful that most every drug store and grocery had tube

testers with a supply of tubes. That meant I could remove the tube or tubes I suspected

of being the cause of the failure and walk to a place where I could test it and purchase a

replacement.

I spent the summer of 1968 at an aunt’s home in Los Angeles. My uncle worked as

a computer programmer in the aerospace industry and I found a pile of old self-study

manuals in their garage. Instead of going to the beach all the time as I had planned,

I spent most of the summer learning about IBM mainframe computing from those old

courses.

Then in late 1968 I was in a job that involved lots of number crunching and we

were using very old mechanical calculators that could take several minutes to do a

single multiplication. I suggested that we purchase one of the four-function electronic

calculators that were just then beginning to hit the market. My supervisor thought this

would be a good idea so he had me look into this possibility. Two of the vendors we

contacted had these interesting new devices, desktop programmable calculators. Both

were willing to let me use demonstrator models so I could test them out in our own

environment with problems I knew we would be working on.

I was able to convince the financial people that this $3,500 calculator was worth the

cost, so we purchased an Olivetti Programma 101.1 I spent a few months programming

that and wanted to learn more about programming in general.

I soon found that the university offered a single course in programming so I took a

course in BASIC. This class was taught by the University of Toledo on a GE time sharing

1 Wikipedia, Programma 101, https://en.wikipedia.org/wiki/Programma_101

Chapter 22 Follow Your CuriositY

https://en.wikipedia.org/wiki/Programma_101

420

system, probably a GE-6002 series, located in Columbus, Ohio. Terminal access was

through an ASR 33 teletype machine over dial-up phone lines at 300 baud.

I was then promoted from my job using the P-101 to working on the IBM 1401 as a

night operator where I had my first direct contact with mainframe computers. I worked

this job for a few months before moving on.

I got married in early 1969. Although this had no direct effect on my career path just

yet, it would be critical later.

In my next job I had no direct contact with computers, but I also worked nights for

a band as their sound technician and only roadie. The drummer for the band had a by-

mail course in electronics that he had paid for but did not have time to take, so he offered

it to me. I snatched at this opportunity and that electronics knowledge led me to a job at

an audio sales and repair shop in Toledo where I learned even more.

By now it was around 1972 and my wife and I purchased a former rental house from

my father-in-law. It turns out that one of our neighbors worked for IBM. He asked if I was

interested in working at IBM, but I was happy where I was, so I said I was not interested.

The audio repair job led to another job as service manager of a new stereo shop

where I also spent some time taking classes in electronics engineering. I excelled in these

classes because I enjoyed electronics.

When I was laid off from my job at the new stereo shop, I asked my IBM friend if

they were still hiring. He got me an interview and I started a 21-year career at IBM. My

first job at IBM was as a Customer Engineer (CE) in the General Systems Division (GSD)

repairing hardware. In 1978, IBM moved me to their facility Boca Raton, Florida, for a

job-writing training courses for new products. In early 1981, I was assigned to write the

training for the original IBM PC.3

In order to write the training course for the PC, I needed one in my office so I could

have easy access to learn about it myself. Because it was so secret at the time, the security

people had chicken wire installed in the ceiling of my office and a lock put on the door.

I was the only non-manager in the building with a lock on my office door. I guess the

chicken wire in the overhead was to prevent some nefarious thieves from climbing over

the walls of my office and dropping down inside. Only after that could I have a PC in my

office. I had serial number 00000001.

While writing the training course, I initially went with a more traditional IBM

training strategy, but that was not working for the CEs in the Typewriter division who

2 Wikipedia, GE-600, https://en.wikipedia.org/wiki/GE-600_series
3 Wikipedia, IBM PC, https://en.wikipedia.org/wiki/IBM_Personal_Computer

Chapter 22 Follow Your CuriositY

https://en.wikipedia.org/wiki/GE-600_series
https://en.wikipedia.org/wiki/IBM_Personal_Computer

421

were paid less than we were in GSD. Using CEs from the Typewriter division made it

more cost effective, but it meant we had to familiarize those CEs in computer concepts

and technology. I had to make sure they got hands-on during the training, but it was too

expensive to have them travel to a training center.

So I rewrote the training completely. I wrote a complete computerized training

program that would allow me to author the course content and then present it to the

CEs in their local branch office on IBM PCs that we shipped to the branch office for the

training. And then I wrote the course itself. Although this was most definitely not the first

computerized training course, it was the first training software and courseware for the

IBM PC.

In order to write this revised course and maintain our schedule with the PC release

date, I requested that I be allowed to have a PC in my home so I could more easily work

on the class at night. After dozens of sign-offs by various high-level executives I was given

a PC to take home in addition to the one I had at the office. As far as I know, I am the first

person to ever have an IBM PC at home.

Of course all of this got me very interested in personal computers. So I bought one

for myself through the employee purchase program. This cost a bit over $5,000 after the

employee discount. The system included a pair of 160KB 5.25” floppy drives, no hard

drive, and 64K of RAM. I started hacking PC hardware when several of us at the office

went together to purchase the parts for third-party memory cards that we had to build

ourselves.

Following a couple of more career moves, my experience with the PC led to a job

at the IBM PC Help Center in Atlanta, Georgia. I became very interested in operating

systems during that time and eventually became one of the primary support people

for OS/2.

After moving to Raleigh, North Carolina, in 1993, I left IBM in 1995 and started a

consulting company that specialized in OS/2. By 1996 it was clear that OS/2 was not

going to be around for much longer. I was appalled by the thought of learning Windows

NT. I decided that the future for me was in Unix although I had not yet heard about

Linux.

Around this time, an friend from IBM called me one day and asked if I knew anyone

looking for a job who could help MCI, where he was now working, with their OS/2

computers. I took the job with the proviso that I get to learn Unix.

While at MCI, I was able to take some basic Unix classes that got me started. I also

heard about this thing called Linux that was a lot like Unix and that I could install on

one of my personal computers. I figured I needed to improve my Unix/Solaris skills, but

Chapter 22 Follow Your CuriositY

422

I could not afford to purchase a Sun computer and Solaris for home. So I purchased a

copy of Red Hat 5.0 (not RHEL) at the local computer store and installed it on one of my

several computers. I liked Linux and after learning more about it, I found that

I was not progressing. I decided to make the leap and upgraded all but one of my home

computers to Linux. The final step was when I migrated my web and email server from

OS/2 over to Linux.

As a result of all this learning, I was able to find a job as a Unix engineer at a local

ISP. They sent me to Solaris classes and I earned a Sun Certified System Administrator

certification. This is where I met some of my best mentors.

About eighty of us were laid off from the ISP and I quickly found a job as a contractor.

This is where I was responsible for fixing all of those Perl scripts running on a Red Hat

Linux server. We also used some bash shell scripts that needed cleaning up. I learned a

lot more about Linux and shell scripting in that job.

That led to a series of jobs that centered around Linux, in most of which I did at least

some Linux training. I found that most places I worked had the need for someone to

train other admins and users in various aspects of Linux. I put together several Linux

classes and Lunch-and-learn sessions that were all well received.

I have found that I learn the most myself when I am teaching others whether in a

classroom environment or in books and articles. I have to research things carefully in

order to ensure that I get them right. I also have to answer questions from students about

things I never considered when creating the materials. I have to research questions that

I have no answers for.

And now here I am writing about Linux, which requires even more research, testing,

and experimentation.

§

This is only a portion of my personal road to Linux and open source. There are a lot

of side trips that affected some of my decisions and altered the timing of certain events in

my life so that things were in place for the story above to unfold.

Getting a job in Linux was not something that could have been planned for while

I was growing up or in school because neither Unix nor Linux nor open source existed

when I was in high school and my early years at university. The choices I made, the

people I met, the knowledge I gained, the places I lived, the series of jobs I had, all led to

the place I am now because I chose over and over again to follow the things that

I enjoyed and about which I had a deep curiosity, technology, computers, operating

systems, and Linux. My choices, whether conscious or not, took me along a path that was

driven by curiosity. It was enjoyable and rewarding in many ways.

Chapter 22 Follow Your CuriositY

423

If you are interested in reading the stories of some others who have found their

way into Linux and open source, check out the list of articles tagged with “Careers”4 at

Opensource.com. They frequently publish stories of people who have found different

ways to get here. Not all of the articles in the list are about “How I got a job in open

source,” but some are. You may find those and other articles with this tag interesting.

 Curiosity Solves Problems
There is an old – and I think incredibly stupid – saying that “curiosity killed the cat.” I had

this used on me as a kid, fortunately not by my parents. I think this dumb saying is used

mostly to stifle kids when their questions and inquisitiveness takes them to places that

some parents, teachers, and caregivers would rather not take the time to deal with. This

is one of the way in which the boxes were built around us.

My personal saying is that “curiosity solves problems.” Following our curiosity leads

us to places that are outside the box, places that allow us to solve our problems in ways

that we could not otherwise. Sometimes curiosity can lead me directly to the cause of a

problem and other times the connection is indirect.

 Securiosity
Curiosity has led me to fix many problems, some of which I was initially unaware that

even existed. In cases like these, the computer was still up and running and there were

no noticeable symptoms such as crashes or programs failing. There were no observable

problems and things seemed just fine. Security issues can be like that.

This particular adventure started one day many years ago when I decided to look at

the security of my systems, particularly the firewalls between me and the outside world.

I had already set up some firewall rules and some strong passwords on my firewalls.

But I was curious about the state of my security and whether there might be some

vulnerabilities that I could close. I don’t mean code vulnerabilities, I mean procedural

and security configuration vulnerabilities, things that I could do better than I was at that

time. It all started with the logs.

4 Opensource.com, Tag Careers, https://opensource.com/tags/careers

Chapter 22 Follow Your CuriositY

https://opensource.com/tags/careers

424

I like watching top, htop, iotop, glances, or any other system monitoring tool when

things are working right so that I know when they look different that there might be a

problem. I am this way with my log files, too. So I spent a good deal of time scanning my

log files to see if I could spot any anomalies. It was always a very time-consuming chore

and trying to interpret the hundreds and even thousands of lines on the log files each day

was just too much, and it was difficult to boil the data down to something manageable.

I needed to find a way to automate that task in a way that would alert me if there were a

potential problem – yes, automate everything.

 Logwatch

I had read about Logwatch, which does just that, so I spent some time investigating that

and other, similar tools that might work for me. Each day, Logwatch scans the log files for

the previous day to look for anomalous entries that should be seen by the SysAdmin to

determine whether there might be a problem. It is perfect for my needs.

I think I installed Logwatch on the Fedora host I was using for a firewall because it

was not installed by default. It has been a long time so I do not remember for certain and

my postinstall.sh script now installs logwatch if it is not already installed. Logwatch is

most definitely not installed by default in current releases of Fedora workstation.

Logwatch is typically run by a cron job, 0logwatch, in /etc/cron.daily and the

0logwatch script is configured to send the results as an email to the root user. I did not

want the output from Logwatch to go to root, so I added a line to the /etc/aliases file on

the firewall host and restarted sendmail. Now the emails would be sent to me.

The logwatch program can also be run directly from the command line. In this case,

the default is for the output to be sent to STDOUT, so rather than wait for the next day to

see what the cron job sent to me, I ran logwatch from the command line.

Experiment 22-1 installs Logwatch and then has you run it from the command

line. I did this on my firewall, and there is a huge amount of data. I have removed large

segments of some sections, leaving just enough for you to see

Chapter 22 Follow Your CuriositY

425

EXPERIMENT 22-1

this experiment must be performed as root. we will first install logwatch and then run it from

the command line.

[root@wally1 ~]# dnf -y install logwatch

Last metadata expiration check: 2:59:04 ago on Sat 07 Apr 2018 05:11:02 AM

EDT.

Dependencies resolved.

==

 Package Arch Version Repository Size

==

Installing:

 logwatch noarch 7.4.3-6.fc27 fedora 423 k

Installing dependencies:

 perl-Date-Manip noarch 6.60-1.fc27 fedora 1.1 M

 perl-Sys-CPU x86_64 0.61-13.fc27 fedora 19 k

 perl-Sys-MemInfo x86_64 0.99-5.fc27 fedora 25 k

Transaction Summary

==

Install 4 Packages

Total download size: 1.6 M

Installed size: 12 M

Downloading Packages:

(1/4): perl-Sys-CPU-0.61-13.fc27.x86_ 49 kB/s | 19 kB 00:00

(2/4): perl-Sys-MemInfo-0.99-5.fc27.x 458 kB/s | 25 kB 00:00

(3/4): logwatch-7.4.3-6.fc27.noarch.r 776 kB/s | 423 kB 00:00

(4/4): perl-Date-Manip-6.60-1.fc27.no 1.8 MB/s | 1.1 MB 00:00

--

Total 1.8 MB/s | 1.6 MB 00:00

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Chapter 22 Follow Your CuriositY

426

Running transaction

 Preparing : 1/1

 Installing : perl-Sys-MemInfo-0.99-5.fc27.x86_64 1/4

 Installing : perl-Sys-CPU-0.61-13.fc27.x86_64 2/4

 Installing : perl-Date-Manip-6.60-1.fc27.noarch 3/4

 Installing : logwatch-7.4.3-6.fc27.noarch 4/4

 Running scriptlet: logwatch-7.4.3-6.fc27.noarch 4/4

 Running as unit: run-r859e9a9c34c64b2280025d5d33b5a7ac.service

 Verifying : logwatch-7.4.3-6.fc27.noarch 1/4

 Verifying : perl-Date-Manip-6.60-1.fc27.noarch 2/4

 Verifying : perl-Sys-CPU-0.61-13.fc27.x86_64 3/4

 Verifying : perl-Sys-MemInfo-0.99-5.fc27.x86_64 4/4

Installed:

 logwatch.noarch 7.4.3-6.fc27

 perl-Date-Manip.noarch 6.60-1.fc27

 perl-Sys-CPU.x86_64 0.61-13.fc27

 perl-Sys-MemInfo.x86_64 0.99-5.fc27

Complete!

after the installation we run the logwatch command with no options. i have snipped out a huge

number of lines in some of the sections to save space. i have also inserted comments in the

output to describe the results to some extent. Your results will be different from mine, but this

will give you a good idea of why i let my curiosity take me to other aspects of security.

[root@testvm1 ~]# logwatch

 ################### Logwatch 7.4.3 (04/27/16) ####################

 Processing Initiated: Fri Apr 6 14:01:32 2018

 Date Range Processed: yesterday

 (2018-Apr-05)

 Period is day.

 Detail Level of Output: 10

 Type of Output/Format: stdout / text

 Logfiles for Host: wally1.both.org

 ##

Chapter 22 Follow Your CuriositY

427

the previous section is the header that describes the conditions, date, and time that the

command was run. the next section contains kernel information, mostly start and stop entries

for various services, and logins. Notice that logwatch has already pruned this section from

over 10,000 lines to only 100. i have cut it down even more.

 --------------------- Kernel Audit Begin ------------------------

 Unmatched Entries (Only first 100 out of 10226 are printed)

 audit[1]: SERVICE_START pid=1 uid=0 auid=4294967295 ses=4294967295

msg='unit=mlocate-updatedb comm="systemd" exe="/usr/lib/systemd/systemd"

hostname=? addr=? terminal=? res=success'

 audit[1]: SERVICE_START pid=1 uid=0 auid=4294967295 ses=4294967295

msg='unit=sysstat-collect comm="systemd" exe="/usr/lib/systemd/systemd"

hostname=? addr=? terminal=? res=success'

 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295 ses=4294967295

msg='unit=sysstat-collect comm="systemd" exe="/usr/lib/systemd/systemd"

hostname=? addr=? terminal=? res=success'

<SNIP>

the next few entries are the result of some successful logins.

 audit[16590]: CRYPTO_KEY_USER pid=16590 uid=0 auid=4294967295

ses=4294967295 msg='op=destroy kind=server fp=SHA256:e9:53:4c:65:7f:a4:

cb:6d:42:0c:40:a3:a4:a2:a9:d3:05:dd:4f:41:3b:26:ed:f6:02:ec:2b:4f:f9:a2:

9d:5c direction=? spid=16590 suid=0 exe="/usr/sbin/sshd" hostname=? addr=?

terminal=? res=success'

 audit[16590]: CRYPTO_KEY_USER pid=16590 uid=0 auid=4294967295

ses=4294967295 msg='op=destroy kind=server fp=SHA256:2d:39:44:81:f6:e0:

47:1f:f3:b1:02:a1:76:73:2e:16:26:6f:d8:e5:7d:2a:4a:ab:76:17:dd:36:54:b1:

e6:a5 direction=? spid=16590 suid=0 exe="/usr/sbin/sshd" hostname=? addr=?

terminal=? res=success'

 audit[16590]: CRYPTO_KEY_USER pid=16590 uid=0 auid=4294967295

ses=4294967295 msg='op=destroy kind=server fp=SHA256:c4:2a:24:f1:0b:14:

d4:4e:eb:33:6b:90:e0:84:c5:64:72:ec:30:72:3c:84:28:72:88:14:e3:1a:9d:d7:

de:a9 direction=? spid=16590 suid=0 exe="/usr/sbin/sshd" hostname=? addr=?

terminal=? res=success'

Chapter 22 Follow Your CuriositY

428

 audit[16589]: CRYPTO_SESSION pid=16589 uid=0 auid=4294967295 ses=4294967295

msg='op=start direction=from-server cipher=aes128-ctr ksize=128 mac=hmac-

sha2-256 pfs=diffie-hellman-group-exchange-sha256 spid=16590 suid=74

rport=54280 laddr=24.199.159.59 lport=22 exe="/usr/sbin/sshd" hostname=?

addr=109.228.0.237 terminal=? res=success'

 audit[16589]: CRYPTO_SESSION pid=16589 uid=0 auid=4294967295 ses=4294967295

msg='op=start direction=from-client cipher=aes128-ctr ksize=128 mac=hmac-

sha2-256 pfs=diffie-hellman-group-exchange-sha256 spid=16590 suid=74

rport=54280 laddr=24.199.159.59 lport=22 exe="/usr/sbin/sshd" hostname=?

addr=109.228.0.237 terminal=? res=success'

<SNIP>

the next lines are only two of a huge number of login failures. this was my first indication of

a high number of attacks. these are hard to find just by scanning visually, so i used the grep

utility to find more. this method does not give a real sense of how bad the problem is, but

there are other sections later, which do.

 audit[16589]: USER_LOGIN pid=16589 uid=0 auid=4294967295 ses=4294967295

msg='op=login acct="(unknown)" exe="/usr/sbin/sshd" hostname=?

addr=109.228.0.237 terminal=ssh res=failed'

 audit[16596]: CRYPTO_KEY_USER pid=16596 uid=0 auid=4294967295

ses=4294967295 msg='op=destroy kind=session fp=? direction=both spid=16597

suid=74 rport=41125 laddr=24.199.159.59 lport=22 exe="/usr/sbin/sshd"

hostname=? addr=221.194.47.243 terminal=? res=success'

 audit[16596]: USER_LOGIN pid=16596 uid=0 auid=4294967295 ses=4294967295

msg='op=login acct="(unknown)" exe="/usr/sbin/sshd" hostname=?

addr=221.194.47.243 terminal=ssh res=failed'

<SNIP>

 ---------------------- Kernel Audit End -------------------------

the cron section shows how many times that each cron job was run in the previous

24-hour day.

Chapter 22 Follow Your CuriositY

429

 --------------------- Cron Begin ------------------------

 Commands Run:

 User root:

 /sbin/hwclock --systohc --localtime: 1 Time(s)

 run-parts /etc/cron.hourly: 24 Time(s)

 systemctl try-restart atop: 1 Time(s)

 ---------------------- Cron End -------------------------

the next section lists a very large number of authentication failures. it does this in a way that makes

it clear how big the problem with unauthorized access attempts really is. it does this by listing the ip

addresses from which the break-in attempts originate in order by the number of attempts.

 --------------------- pam_unix Begin ------------------------

 sshd:

 Authentication Failures:

 root (123.183.209.135): 21 Time(s)

 unknown (14.37.169.239): 10 Time(s)

 unknown (85.145.209.59): 10 Time(s)

 unknown (116.196.115.44): 8 Time(s)

 unknown (212.129.36.144): 6 Time(s)

 unknown (84.200.7.63): 5 Time(s)

 root (218.65.30.25): 3 Time(s)

 root (84.200.7.63): 3 Time(s)

 unknown (103.99.0.54): 2 Time(s)

 unknown (196.216.8.110): 2 Time(s)

 ftp (116.196.72.140): 1 Time(s)

 ftp (118.36.193.215): 1 Time(s)

 operator (5.101.40.81): 1 Time(s)

 root (103.26.14.92): 1 Time(s)

 root (103.89.88.220): 1 Time(s)

 root (103.92.104.175): 1 Time(s)

 root (103.99.2.143): 1 Time(s)

 root (118.24.28.246): 1 Time(s)

Chapter 22 Follow Your CuriositY

430

<SNIP>

 unknown (91.121.77.149): 1 Time(s)

 unknown (95.38.15.86): 1 Time(s)

 Invalid Users:

 Unknown Account: 163 Time(s)

 Sessions Opened:

 root: 2 Time(s)

 systemd-user:

 Unknown Entries:

 session opened for user root by (uid=0): 3 Time(s)

 ---------------------- pam_unix End -------------------------

the line “invalid users” above, shows that there were 163 total attempts to crack into my

firewall host system in the previous day. paM is responsible for overall login security, and the

previous section looks at the logins from the paM point of view. the sshD section below, does,

too. it is is mostly the same information but presented a bit differently.

these two sections, where i could see the entire list of ssh attacks against my system really

got me curious about their origins and how to prevent them.

 --------------------- SSHD Begin ------------------------

 Didn't receive an ident from these IPs:

 103.79.143.56 port 58313: 1 Time(s)

 103.79.143.56 port 61578: 1 Time(s)

 103.89.88.181 port 53906: 1 Time(s)

 103.89.88.181 port 57332: 1 Time(s)

 103.89.88.181 port 58951: 1 Time(s)

<SNIP>

 202.151.175.6 port 39552: 1 Time(s)

 217.61.5.246 port 44974: 1 Time(s)

 66.70.177.18 port 33668: 1 Time(s)

 87.98.251.208 port 56975: 1 Time(s)

 Failed logins from:

 5.101.40.81: 1 time

 operator/password: 1 time

 18.188.155.82 (ec2-18-188-155-82.us-east-2.compute.amazonaws.com): 2 times

Chapter 22 Follow Your CuriositY

431

 root/password: 2 times

 23.97.75.224: 1 time

 root/password: 1 time

 46.105.20.171 (vps16696.ovh.net): 1 time

 root/password: 1 time

 54.37.139.198 (198.ip-54-37-139.eu): 1 time

 root/password: 1 time

<SNIP>

 221.229.166.102: 1 time

 wp-user: 1 time

 Users logging in through sshd:

 root:

 192.168.0.1 (david.both.org): 2 times

 Unmatched Entries

 Disconnected from invalid user test 36.77.124.2 port 48914 [preauth] :

1 time(s)

 Disconnected from invalid user ubnt 103.99.2.143 port 55522 [preauth] :

1 time(s)

 Disconnected from authenticating user root 123.183.209.135 port 58498

[preauth] : 1 time(s)

 Disconnected from invalid user ftpuser 36.36.201.21 port 46357 [preauth] :

1 time(s)

<SNIP>

 Disconnected from invalid user avis 201.155.194.157 port 52769 [preauth] :

1 time(s)

 Disconnected from authenticating user root 23.97.75.224 port 1984 [preauth] :

1 time(s)

 Disconnected from authenticating user root 64.41.86.128 port 58134 [preauth] :

1 time(s)

 Disconnected from invalid user sybase 188.187.55.243 port 36344 [preauth] :

1 time(s)

 Disconnected from invalid user cron 221.145.180.62 port 37912 [preauth] :

1 time(s)

 ---------------------- SSHD End -------------------------

Chapter 22 Follow Your CuriositY

432

the rest of these sections are fairly self-explanatory and have nothing directly to do with

security. Because of that, i have not added any further comments to this output. i have left

these sections in so that you can see many of the sections that logwatch might create from

the logs of a typical firewall.

 --------------------- Systemd Begin ------------------------

 Reached target Shutdown: 3 Time(s)

 Started:

 Cleanup of Temporary Directories: 1 Time(s)

 Generate a daily summary of process accounting: 1 Time(s)

 LVM2 metadata daemon: 1 Time(s)

 Network Manager Script Dispatcher Service: 103 Time(s)

 Update a database for mlocate: 1 Time(s)

 User Manager for UID 0: 3 Time(s)

 dnf makecache: 23 Time(s)

 system activity accounting tool: 144 Time(s)

 update of the root trust anchor for DNSSEC validation in unbound: 1

Time(s)

 User Sessions:

 root: 66 68 70

 Slices created:

 User Slice of root 3 Time(s)

 Unmatched Entries

 Closed D-Bus User Message Bus Socket.: 3 Time(s)

 ---------------------- Systemd End -------------------------

 --------------------- Disk Space Begin ------------------------

 Filesystem Size Used Avail Use% Mounted on

 devtmpfs 3.9G 0 3.9G 0% /dev

 /dev/mapper/fedora_wally1-root 9.8G 173M 9.1G 2% /

 /dev/mapper/fedora_wally1-usr 35G 5.3G 28G 17% /usr

 /dev/mapper/fedora_wally1-home 4.9G 262M 4.4G 6% /home

 /dev/mapper/fedora_wally1-tmp 25G 45M 24G 1% /tmp

 /dev/mapper/fedora_wally1-var 30G 6.2G 22G 23% /var

 /dev/sda1 2.0G 399M 1.5G 22% /boot

 ---------------------- Disk Space End -------------------------

Chapter 22 Follow Your CuriositY

433

 --------------------- lm_sensors output Begin ------------------------

 coretemp-isa-0000

 Adapter: ISA adapter

 Package id 0: +82.0 C (high = +85.0 C, crit = +105.0 C)

 Core 0: +79.0 C (high = +85.0 C, crit = +105.0 C)

 Core 1: +83.0 C (high = +85.0 C, crit = +105.0 C)

 Core 2: +80.0 C (high = +85.0 C, crit = +105.0 C)

 Core 3: +80.0 C (high = +85.0 C, crit = +105.0 C)

 ---------------------- lm_sensors output End -------------------------

 ###################### Logwatch End #########################

Logwatch extracts huge amounts of useful information about a Linux host from its

logs. It reduces the amount of information a SysAdmin needs to look at from tens of

thousands of lines to merely a couple thousand. The nice part is that it aggregates related

log entries so they are all in one place in the final report, which makes it much easier to

scan.

Some quick analysis of the Logwatch results indicated that the vast majority of the

attacks are script kiddies. These are automated attacks using simple scripts that locate

open SSHD ports by simply attempting to log in to a series of IP addresses. Once an IP

with an open SSHD port is found, the script may spend a few minutes attempting to log

in using random but known user IDs and dictionary-based passwords. The objective is

to infect the computer with some malware if they can gain access.

Script kiddies are not especially serious about cracking into well-protected hosts.

They are looking for easy pickings – the poorly administered hosts that are poorly

protected or not protected at all. Serious crackers, those that target a specific person or

business, are another story altogether. A cracker who is serious enough will eventually

find a way into your computers.

In my case, these are not serious crackers. The Logwatch results showed that my

firewall was being attacked hundreds and sometimes thousands of times per day. These

attacks were random and never persistent. But I still needed to reduce the number of

attacks to improve my security. Over time, I used multiple strategies to do this. At each

step my curiosity was further flamed by new information, a new view of the problem, or

simply by curiosity for its own sake.

Chapter 22 Follow Your CuriositY

434

 IPTables

The first place I turned for help in stemming the onslaught, because I was already

familiar with it, is the iptables firewall. For a few weeks, I spent a good deal of time

adding the IP Address of the most egregious offenders to my iptables firewall.

Out of curiosity I wanted to determine which part of the world the source IP Address

was from using came from. So I started using whois to determine that. If the address was

from someplace I knew I would never need to log in from myself, I simply blocked that

whole range of addresses.

This was quite easy to do, but it did result in blocking some people who wanted to

see one of my web sites. This method is overkill when blocking an entire A class of IP

addresses, but it takes a huge amount of time to manually add individual addresses. So

in the true manner of the lazy admin, and “automate everything,” I grew curious about

automating the addition of IP addresses to my firewall rules.

 fail2ban

After a good bit of exploring and research, I found fail2ban, open source software that

automates what I was previously doing manually. “Use open source software.”

Fail2ban has a complex series of configurable matching rules and separate actions

that can be taken when attempts are made to crack into a system. It has rules for many

types of attacks that include web, email, and many other services that might have

vulnerabilities. Fail2ban works by detecting attacks and then adding a rule to the firewall

that will block further attempts from that specific, single IP address for a specified and

configurable amount of time. After the time has expired, it removes the blocking rule.

One of the methods that fail2ban uses to notify the SysAdmin when an IP address

has been blocked is to send an email. The email is sent to root by default, but that can be

configured, too. Rather than configure many different tools to send email to my personal

address, I allow them to send to root and the /etc/aliases file, which I have already

configured, reroutes all emails to root to be sent to me instead.

I spent some time out of curiosity adjusting the rules because Fail2ban will block an

IP address after a specified number of cracking attempts in a specified period of time.

I have found that – for my environment and needs – three attempts within any ten-

minute period works exactly the way I want. I also discovered that blocking an IP

address for at least twenty-four hours rather than the default of ten minutes, does tend

to discourage repeat offenders. So the results in Sample Listing 22-1, below, are based on

those filtering rules.

Chapter 22 Follow Your CuriositY

435

SAMPLE LISTING 22-1

a few days after installing fail2ban and configuring it according to my needs, i again ran

logwatch and the fail2ban section looks like this.

 --------------------- fail2ban-messages Begin ------------------------------

 Banned services with Fail2Ban: Bans:Unbans

 my-sshd: [35:35]

 123.183.209.135 17:17

 84.200.7.63 4:4

 212.129.36.144 (212-129-36-144.rev.poneytelecom.eu) 3:3

 218.65.30.25 (25.30.65.218.broad.xy.jx.dynamic. 3:3

163data.com.cn)

 18.188.155.82 (ec2-18-188-155-82.us-east-2.compute. 1:1

amazonaws.com)

 66.70.177.18 (ns545339.ip-66-70-177.net) 1:1

<SNIP>

 183.230.146.26 1:1

 Fail2Ban hosts found:

 my-sshd:

 103.20.149.252 - 2018-04-05 11:01:55 (1 Times)

 103.20.149.252 - 2018-04-05 11:01:57 (1 Times)

 103.26.14.92 - 2018-04-05 07:43:26 (1 Times)

 103.26.14.92 - 2018-04-05 07:43:28 (1 Times)

 103.28.219.152 - 2018-04-05 05:17:57 (1 Times)

 103.28.219.152 - 2018-04-05 05:18:00 (1 Times)

 103.89.88.220 - 2018-04-05 11:57:17 (1 Times)

 103.89.88.220 - 2018-04-05 11:57:19 (1 Times)

 103.92.104.175 - 2018-04-05 02:23:13 (1 Times)

 103.92.104.175 - 2018-04-05 02:23:14 (1 Times)

 103.99.0.32 - 2018-04-05 16:15:59 (1 Times)

 103.99.0.32 - 2018-04-05 16:16:01 (1 Times)

 103.99.0.54 - 2018-04-05 04:17:38 (1 Times)

<SNIP>

 88.87.202.71 - 2018-04-05 01:31:22 (1 Times)

 90.84.44.20 - 2018-04-05 19:01:06 (1 Times)

Chapter 22 Follow Your CuriositY

436

 90.84.44.20 - 2018-04-05 19:01:08 (1 Times)

 91.121.105.20 - 2018-04-05 14:21:39 (1 Times)

 91.121.105.20 - 2018-04-05 14:21:41 (1 Times)

 91.121.77.149 - 2018-04-05 04:28:28 (1 Times)

 91.121.77.149 - 2018-04-05 04:28:29 (1 Times)

 95.38.15.86 - 2018-04-05 22:13:11 (1 Times)

 95.38.15.86 - 2018-04-05 22:13:13 (1 Times)

 ---------------------- fail2ban-messages End -------------------------

 Finding the Sources

Being curious about the sources of these attacks on my firewall, I started collecting these

emails in order to analyze them. They typically look like that in Listing 22-2. This is the

complete source of the email so you can examine it in detail.

LISTING 22-2

Received: from wally1.both.org (wally1.both.org [192.168.0.254])

 by bunkerhill.both.org (8.14.4/8.14.4) with ESMTP id w34E9NnR002675

 for <dboth@millennium-technology.com>; Wed, 4 Apr 2018 10:09:23 -0400

Received: from wally1.both.org (localhost [127.0.0.1])

 by wally1.both.org (8.15.2/8.15.2) with ESMTP id w34E9NTA013030

 for <dboth@millennium-technology.com>; Wed, 4 Apr 2018 10:09:23 -0400

Received: (from root@localhost)

 by wally1.both.org (8.15.2/8.15.2/Submit) id w34E9NBq013023

 for dboth@millennium-technology.com; Wed, 4 Apr 2018 10:09:23 -0400

Message-Id: <201804041409.w34E9NBq013023@wally1.both.org>

Subject: [Fail2Ban] SSH: banned 123.183.209.135 from wally1.both.org

Date: Wed, 04 Apr 2018 14:09:23 +0000

From: wally1 <wally1@both.org>

To: dboth@millennium-technology.com

X-Spam-Status: No, score=-48 required=10.6 tests=ALL_TRUSTED,BAYES_00,USER_

IN_WHITELIST

Content-Type: text/plain

MIME-Version: 1.0

X-Scanned-By: MIMEDefang 2.83 on 192.168.0.51

Chapter 22 Follow Your CuriositY

437

Hi,

The IP 123.183.209.135 has just been banned by Fail2Ban after

3 attempts against SSH.

Here is more information about 123.183.209.135:

GeoIP Country Edition: CN, China

Regards,

Fail2Ban

This is a typical example of the type of emails I get. The subject line contains the IP

address of the source, the name of the host reporting the attack, and the Fail2ban rule,

in this case SSH. I wanted to use the originating IP address to identify the country of

origin. The Fail2ban ruleset includes an option to use GeoIP, a program that searches

a database of IP addresses and their assigned countries to determine the country from

which the attack originated. That was an interesting side excursion, and I installed it

without too much difficulty. For Fedora, which is what I use for my firewall, GeoIP is

located in the Fedora repository. For CentOS it is located in the EPEL5 repository.

After collecting a large number of Fail2ban emails, I exported them from

Thunderbird into a list of subject lines. I wrote a script that reads the list and uses GeoIP

to identify the countries of origin and generate a list of countries by frequency.

The most frequent and persistent attacks seem to come from various regions of Asia,

Eastern Europe, a couple of countries in South America, and the United States.

 Collecting the Emails

In order to collect these emails, I started by using the filters available in Thunderbird to

identify the ones sent by Fail2ban and moving them to a specific folder. This worked ok,

but I found that the Thunderbird filters were not always accurate. And this was not the

only filter that was causing problems.

I decided I needed to something different for filtering and sorting my emails – all of

them, not just the ones for Fail2ban.

5 EPEL – Extra Packages for Enterprise Linux (Linux, RHEL, Fedora)

Chapter 22 Follow Your CuriositY

438

 procmail

I had heard of procmail before. It is installed on all Red Hat-based distributions as the

default Local Delivery Agent (LDA). That made it a no-brainer for me to use procmail for

this project. The project being, first, to sort emails sent by Fail2ban into a folder just for

them, and second, to do some sorting on other emails as well.

There was also a technical problem I wanted to fix. Client-side email filtering relies

on scanning messages after they are deposited in the inbox. For some unknown reason,

sometimes the client does not delete (expunge) the moved messages from the inbox.

This may be an issue with Thunderbird (or it may be a problem with my configuration

of Thunderbird). I have worked on this problem for years with no success, even through

multiple complete reinstallations of Fedora and Thunderbird.

To solve these multiple problems, I needed a method for filing emails (i.e., sorting

them into appropriate folders) that was server-based rather than client-based. This

would mean that it would not be necessary to keep Thunderbird – or any email client –

running in order to perform email sorting.

After doing some research on procmail, I was able to create a procmail rule that

sorted the incoming Fail2ban emails to a specific folder for that purpose. I also created

some other rules that sorted other types of emails into various folders.

Although I use SpamAssassin for identifying spam, I now use a procmail rule to file

spam emails into my spam folder. There are also a few spams I get that SpamAssassin

rules never seem to identify. At some point soon, whenever the disgust of seeing those

particular spam emails in my inbox sets in, I will create a rule or rules to filter those

as well. I am also curious about the efficacy of my spam filtering so, rather than delete

spam, I store it for a few days in case I need to view the SpamAssassin scores in order to

improve those rules.

In November of 2017, I wrote an article6 for Opensource.com about using SendMail,

SpamAssassin, and procmail to classify and sort email. It goes into more detail than

I have here, about solving multiple problems, not just sorting Fail2ban emails into a

specific folder.

6 Both, David, SpamAssassin, MIMEDefang, and Procmail: Best Trio of 2017, Opensource.com,
https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail

Chapter 22 Follow Your CuriositY

https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail

439

 rkhunter

After seeing how many attempts to crack into my firewall were happening each day, I got

a bit more concerned. So my curiosity about how to proceed led me to discover root kits.

I decided to start looking specifically for root kits, which are software packages installed

on hosts that have been compromised by the crackers. They allow the cracker to access

the host and control it for their own purposes.

Ensuring that there are no root kits installed – at least no known ones – is a task

performed by a software tool called rkhunter, for root kit hunter. I installed rkhunter and

run it on a regular basis to ensure that no known root kits are installed.

Of course that last sentence is indicative of the problem with any software that

is designed to scan a computer system for any type of malware – it can only find the

malware that is already known and for which a signature has been developed. By

the time you detect a root kit, the damage is already done and it is time to wipe out

everything and start over.

I do use rkhunter but I do not depend solely upon it for the security of my network.

 SSH

The attacks I am trying to prevent are simple scripted password hacks. So the obvious

step is to ensure that the passwords are essentially uncrackable and use SSH with Public/

Private Key Pairs (PPKP) for inter-system communications inside my network.

So I set up moderately long passwords for all of my internal systems and extremely

long passwords for my firewall hosts. I have always used SSH and PPKPs for logins

to other hosts on my network so there was no significant change in my operational

procedures there. I will not describe the specifics of this setup on my firewalls because

it might provide some assistance to a serious cracker. Besides, this section is more about

the directions that my curiosity has taken me than about the details of all the steps I have

taken to secure my systems.

§

So this odyssey into the security of my firewall host system was very enlightening.

I had been doing some pretty basic security to start with but did not fully understand the

scope of the problem until I really looked at it. Step by step, my curiosity took me further

into the world of securing my systems. I used this knowledge to secure the rest of my

systems and those of my customers as well.

Chapter 22 Follow Your CuriositY

440

Had the problem not been laid out so clearly by Logwatch, I would probably not

have had my curiosity piqued enough to cause me to explore security and firewalls. As a

result, my systems are all much safer.

I also looked at some other options for security on my systems but things like various

forms of intrusion detection tend to be after the fact and the administrative load they

impose was more than I felt was required for my own systems. In this case the risk

reduction did not justify the cost of the effort required to enable and maintain it.

SELinux7 is also installed by default on all Red Hat-based distributions, and my

curiosity has also taken me down that path several times in the past. I found – that for

me in my environment – it was not appropriate for use on all of my hosts. I did enable

it in restrictive mode on my firewalls because that is where I get the most results for the

effort. Any serious attackers would need to breach the firewalls first so that would trigger

warnings that someone was serious about cracking into my network. I could then take

appropriate actions before the breach actually occurred. Remember, though, that there

is no such thing as perfect security. The object of any set of security precautions is to

make cracking in to your systems more expensive in time and effort than the bad guys

are willing to exert. It boils down to the question of how much risk can you afford.

This all started from my curiosity. I originally intended to ease the task of checking log

files for potential issues. That took me in some very interesting directions, and the primary

one was the security of my network, especially the firewalls. It also took me some other

places that I have not even covered here just because you should already see the point.

 Follow Your Own Curiosity
I have already mentioned more than once that you should explore the many aspects of

Linux and go wherever your curiosity leads you. It was only by following my curiosity, first

about electronics, then computers, programming, operating systems, OS/2, Linux, servers,

networking, and more, that I have been able to do so many fun and interesting things.

You may have specific personal and career goals in mind and that may fuel your

curiosity by taking you to places that can help you meet those goals. You may also be

an innately curious person and more inclined to be curious about things that are of

particular interest to you without being attached to a specific goal. It does not matter

how your curiosity is driven. It just matters that you follow it and that you not allow

anyone or anything to dampen that curiosity.

7 Binnie, Chris, Practical Linux Topics, Apress 2016, 91,

Chapter 22 Follow Your CuriositY

441

 Be an Author
I currently write many articles for Opensource.com8 and, no matter what I write about,

I always learn something new, even about things I am already familiar with. Every

article I have ever written, be it for Linux Journal, Linux Magazine, or Opensource.com

has been an opportunity to indulge my curiosity and learn more about Linux.

Writing this book has not been an exception to that. Even as I research various

aspects of this book, I have learned more about commands that I already know and I

have learned some new commands. I have allowed my curiosity to take me down paths

that would never show up in this book just because it is fun to learn new things about

Linux and there is so much to learn.

Finding topics about which I want to write is almost never a problem. I typically use

recent events as the subjects of my articles. Things to write about are always happening.

It is just a matter of recognizing them and putting the story into words. A number of

things happened during the writing of this book that became part of it; I have mentioned

those in several chapters.

Sometimes, as I occasionally struggle to translate into words this philosophy of mine,

I learn more about The Philosophy and about how I have used it and how it has helped

and guided me. I have learned that in many ways, my Philosophy is about more than just

Linux.

 Failure Is an Option
I have not failed. I’ve just found 10,000 ways that won’t work.

—Thomas A. Edison

Although the failure of thousands of specific combinations of individual materials

and fabrication technologies during testing did not lead to a viable light bulb, Edison

continued to experiment. Just so, the failure to resolve a problem or create code that

performs its defined task does not mean that the project or overall goal will fail. It means

only that the specific tool or approach did not result in a successful outcome.

I have learned much more through my failures than I have in almost any other

manner. I am especially glad for those failures that have been self-inflicted. Not only

did I have to correct the problems I caused myself, but I also still had to find and fix the

8 Opensource.com, https://opensource.com/

Chapter 22 Follow Your CuriositY

https://opensource.com/

442

original problem. This always led to a great deal of research that caused me to learn

much more than if I had solved the original problem quickly.

This is just my nature, and I think it is the nature of all good SysAdmins to look upon

these situations as learning opportunities. As mentioned previously, I have spent many

years as a trainer and some of the most fun experiences were when demonstrations,

experiments, and lab projects would fail while I was teaching. Those were fantastic

learning experiences for me as well as for the students in my class. Sometimes I even

incorporated those accidental failures into later classes because they enabled me to

teach something important.

 Just Do It
Everyone learns best in their own way. As a trainer I saw this every time I taught a class,

regardless of the subject. Following our curiosity is the same – we all have that spark that

leads us to discover more. Our methods may not be the same, but they will lead us all to

greater knowledge and skill.

I started by installing Linux on all of my computers at home. This forced me to learn

Linux and not look back. So long as I had a means to go back to my old and well-known

way of doing things, it was never necessary for me to truly learn Linux. This is what I did

when I decided I wanted to learn Linux, and it has taught me a large part of what I know.

I had several computers and created a complete internal network in my home office.

Over the years my network has grown and changed, and I have learned more with every

alteration. Much of this was driven by my curiosity rather than any specific need.

I have static IP addresses from my ISP and two firewalls to provide outside access

and protect my internal network. One of these firewalls is a Raspberry Pi with CentOS on

it. I have had Intel boxes with Fedora and CentOS on them over the years. I learned a lot

about using both in roles as a firewall and router.

I have a server that runs DHCP, HTTP, SMTP, IMAP, NTP, DNS, and other services to

provide them to my internal network, and to make some of those services available to

the outside world, such as my web site and incoming email. I have learned a great deal

about using Linux in a server role in general. I have learned an incredible amount about

implementing and managing each of these services.

I have a couple of desktop workstations, a laptop, an EeePC, all connected to my

wired network. The EeePC and laptop can also connect using one of my wireless routers;

I don't use the wireless provided by my ISP due to the monthly cost and it does not give

Chapter 22 Follow Your CuriositY

443

me the opportunity to learn about configuring wireless routers. I also have a couple of

smartphones, a Kindle, and an iPad. Learning how to set up my email server to best work

with these tools while doing my best to provide those services in a secure manner has

been challenging.

To me, curiosity is the driving force behind learning. I can’t just sit in a classroom

because someone says I need to learn a particular thing and be successful at it. I need to

have some interest in the subject and something about it needs to pique my curiosity.

That propensity to work harder on the subjects I liked was very evident during my school

years as I did well in the subjects that intrigued me.

 Summary
By using my home network for indulging my curiosity, I had lots of safe space in which

to fail catastrophically and to learn the best ways to recover from that. And there are lots

of ways to fail so I learned a lot. I learned the most when I accidentally broke things, but

I also learned a great deal when I would intentionally bork things. In these instances, I

knew what I wanted to learn and could target the breakage in ways that would enable me

to learn about those specific things.

I was also fortunate because I had a few jobs that required, or at least allowed me,

to take classes on various aspects of Unix and Linux. For me, classroom work is a way

to validate and reinforce what I learn on my own. It gave me the opportunity to interact

with – for the most part – knowledgeable instructors who could aid and clarify my

understanding of the bits and pieces that I could not make sense of on my own.

Be the curious SysAdmin. It worked for me.

Chapter 22 Follow Your CuriositY

445
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_23

CHAPTER 23

There Is No Should
This had not really been one of my tenets until I began writing this book and especially

the part about the contest I created for Opensource.com. It struck me as I was writing

that section that I had already used the phrase, “There is no should,” more than once.

I even discussed it briefly way back in Chapter 2, so I started thinking about this in a new

way and decided that it really should be a tenet.

This tenet is about possibilities. It is also the most Zen of all of the chapters in this

book. It is more about how our minds work to solve problems than it is about specific

technology. It is also about overcoming or at least recognizing some of the obstacles that

prevent us from fully utilizing the potential we have in ourselves.

 There Are Always Possibilities
Each of the tenets covered in this book reveals some basic truth about Linux and how

you as a SysAdmin can interact with it. I am not saying that these truths are about how

you “should” interact with Linux. With Linux there is no “should.”

/ There are always \
\ possibilities. /

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

446

In “The Wrath of Kahn,” Spock says, “There are always possibilities.” With Linux there

are always possibilities – many ways to approach and solve problems. This means that

you may perform a task in one way while another SysAdmin may do it in another. There is

no one way in which tasks "should" be done. There is only the way you have done it. If the

results meet the requirements, then the manner in which they were reached is perfection.

I have included an excellent example of this in “The Pipeline Challenge” section

of Chapter 4, “Transforming Data Streams.” More than eighty SysAdmins from around

the world submitted their solutions to a problem I posed in the form of a contest on

Opensource.com. A few of the solutions were very close to being alike, but no two were

exactly alike and many were very different. Each of those SysAdmins had a unique,

creative solution that met the requirements of the contest.

How can a single problem, when presented to so many different people, result in

such a wide range of solutions? There are two factors in play here. It is because what at

first glance is the seeming complexity of Linux is, in actuality, its incredible flexibility.

The many diverse solutions to this one specific problem is the direct result of the many

different commands and utilities available to the Linux System Administrators.

The second factor is that which Linux SysAdmins have learned Linux in many

different ways and our experiences are so different. It is also the fact that these

experiences have allowed us to realize that the unrestricted nature of Linux and open

source software allows us to more fully understand and reason about the operating

system. Even when using the exact same commands, we can find different ways to apply

them to the problem at hand.

 Unleashing the Power
I read and hear a lot of people who talk about “harnessing the power of…” whatever they

are promoting today. These are many times marketing campaigns. Many self-help gurus

talk about harnessing the power of the mind, or “the power within,” although within

what is never exactly defined and neither is the “power” being referred to.

I did a Google search on “Harnessing the power of Linux” and found about fourteen

articles with that phrase. I Googled “Unleashing the power of Linux” and got six

results. This illustrates to me a problem in perspective. When we talk about harnessing

something, we imply that we want to contain something or to bring it under control;

and when we talk about unleashing something, we are thinking from the perspective of

setting it free.

Chapter 23 there Is No should

447

In some ways this is about semantics1 because semantics is indicative of how we

think. Semantics is the study of meanings, and it considers things like word selection and

its effects on meaning. The words we use have meanings to speakers or writers that may

be different from the meanings assigned to them by the hearers and readers. I consider

the selection of unleash vs. harness in the context of computing and particularly Linux to

be quite revealing.

My very unscientific observations have led me to theorize2 that those of us who are

Linux SysAdmins tend to think more in terms of “unleashing,” “releasing,” or “setting

free” the power of Linux. I believe that we Linux SysAdmins approach solving Linux

problems with fewer restraints on our thinking than those who appear to think more

in terms of “harnessing” and “restrictions.” We have so many simple yet powerful tools

available to us that we do not find ourselves constrained by either the operating system

or any inhibitive manner of thinking about the tools we use or the operational methods

with which we may apply them.

There is power beyond measure available when the imaginations of thousands of

people can be unleashed on the problems that can be solved with open source software.

 Problem Solving
Most of us have little awareness of how we solve problems. and this can impair our

ability to do so. Problem solving is an art that relies heavily on the scientific method and

critical thinking. Understanding this concept can free us from cognitive limits imposed

upon us by institutionalized thinking.

We are taught to think in specific ways by educational systems that seem to preach

the method du jour for solving problems. For example, I was taught my math basics with

so-called traditional methods. I learned the number system, algorithms for calculating

sums and differences including positional values, the concepts of carry and borrow;

I memorized multiplication tables, specific algorithms for division, and much more. My

children learned math using different methods that was probably “new math.” Today, my

grandkids are learning with the “new” new math.

1 Wikipedia, Semantics, https://en.wikipedia.org/wiki/Semantics
2 I have no scientific basis for drawing a conclusion of any kind, but I can certainly theorize based
on what I have observed.

Chapter 23 there Is No should

https://en.wikipedia.org/wiki/Semantics

448

Having read a bit about the current methods of teaching math, I wish I had learned

this way. I like the fact that the students are being taught well-defined, repeatable, and

teachable processes for solving math problems.

In a 2017 article in the Journal of Physics: Conference Series, “The Increase of Critical

Thinking Skills through Mathematical Investigation Approach,”3 the authors established

a positive correlation between an investigative approach to learning math and an

increase in critical thinking skills. Critical thinking is a key skill for SysAdmins when

solving problems.

The thing is, I like doing math the way I was taught. It is easier for me than the more

recent methods even though I now understand those methods a bit better as the result

of my research for this chapter. I have watched my grandkids solve math problems, and

I have no idea what they were doing or how they arrived at the correct results. Checking

their results using my “old math” methods, I arrived at the same results – except for the

ones on which they made mistakes. Or I made the mistakes. Mostly it was my results that

were wrong. But when we both got it right, the answer was definitely the same.

So, who was right? Which of us was using the right methods for solving these

problems? While we are in school, getting the right answer is only part of solving the

problem. The other part is using the correct algorithms, the ones being taught today,

to arrive at the correct answer. It is the algorithms and how we choose the correct

algorithm and apply it to the math problem at hand that are being taught. Outside of

the educational system, in the so-called real world, the only thing that counts is that the

numeric result of the calculation is correct.

In the realm of Linux and computers in general, the thing that counts is fixing the

problem at hand. It does not matter whether that turns out to be a hardware problem,

a software problem, or something else. Fixing it is the measure of success for the

SysAdmin.

Breaking out of the “shoulds” taught to us by institutional instruction methodologies,

particularly rote memorization and algorithms that we blindly follow, can free us to

think about solving problems in new ways. This does not mean that those methods are

wrong, only that other methods might also be considered and that they might be better

suited for particular situations, especially for solving technical problems.

3 N Sumarna, Wahyudin, and T Herman, The Increase of Critical Thinking Skills through
Mathematical Investigation Approach, Journal of Physics: Conference Series, Volume 812,
Number 1, Article 012067, http://iopscience.iop.org/article/10.1088/1742-6596/
812/1/012067/meta

Chapter 23 there Is No should

http://iopscience.iop.org/article/10.1088/1742-6596/812/1/012067/meta
http://iopscience.iop.org/article/10.1088/1742-6596/812/1/012067/meta

449

It is not only institutions that have caged me with “should.” Many times, it is myself.

I find myself thinking inside the box because that is where I think I “should” be. There

are ways of preventing this and of recovering when I find myself trapped by “should.”

In Chapter 24, “Mentor the Young SysAdmins,” we will explore in some detail one

algorithm for solving problems that is rooted in the Scientific Method. For now, let’s look

at two important skills that are required for problem solving and avoiding the box of

limited thinking – critical thinking and reasoning.

 Critical Thinking
Way back in Chapter 1, I briefly mentioned my participation in interviews with potential

new hires at some of the places I worked. We would start by asking the interviewees

some basic questions and then move on to more difficult ones that were intended to

explore the limits of their knowledge. Most of the people we considered were able to get

through this stage of the interview fairly easily.

Our concerns with many of the prospective new hires arose when we started

asking questions that required them to look at problem situations and reason through

a sequence of steps that would enable them to determine the cause of a hypothetical

problem. Most could not do this. Their standard approach to solving problems was

to reboot the computer without doing any real problem analysis. Then their normal

methodology was to use a specific set of scripted actions in a sequence designed to,

hopefully, resolve the problem based on a set of probabilities that specific symptoms

would be fixed by specific actions. There never was any attempt to understand the

reasoning behind why specific actions should be taken or to locate the root cause of the

problem.

I call this the “symptom – fix” method. It is basically a script – a series of choices –

that can be followed with little or no knowledge of how the underlying systems work.

This is a common approach to fixing broken computers and other devices when

restrictive systems are involved. It is the only way that really works because the restrictive

and closed systems cannot be truly known in the same way as open systems, particularly

operating systems like Linux.

The vast majority of those who were able reason through the trouble scenarios we set

for them tended to have significant experience with Unix and Linux. In my opinion, this

is because Unix and Linux users and SysAdmins think about solving problems differently

from those who use more restrictive operating systems. Using and administering Unix

Chapter 23 there Is No should

450

and Linux systems require a higher level of reasoning skills. The unconstrained natures

of both Unix and Linux also invites us to learn and improve those skills. Armed with

a deep knowledge of a powerful operating system, a thorough understanding of the

available tools, and well-developed critical thinking skills,4 Linux SysAdmins are capable

of resolving problems quickly and with great freedom in their choice and use of tools.

Critical thinking is a key component of what makes Linux and Unix SysAdmins so

good at what we do. It gives us the ability to look at the symptoms of the problem, to

determine what is important and what is not, to connect those symptoms to previous

experiences or knowledge we have, and to use that to determine one or more possible

root causes of the problem.

Please do not misunderstand me. There are many very smart SysAdmins who work

with Windows and other closed and proprietary operating systems. All of these very

smart SysAdmins also use critical thinking and reasoning to solve problems. The real

issue is the closed nature of the systems on which they work and that it restricts the

possibilities that are available to them.

 Reasoning to Solve Problems
Another skill that contributes to the ability of SysAdmins to solve problems is reasoning.5

After our critical thinking has enabled us to look at the symptoms of a problem, we

can use different forms of reasoning to determine some possible root causes of the

presenting symptoms in order to determine the next steps.

There are four widely recognized forms of reasoning, and we SysAdmins use all

of them to help us resolve problems. We use inductive, deductive, abductive, and

integrated reasoning6 to lead us to a conclusion that points to one or more possible

causes for the observed symptoms. Let’s briefly look at these forms of reasoning and see

how they apply to problem solving.

4 Skills You Need web site, Critical Thinking Skills, https://www.skillsyouneed.com/learn/
critical-thinking.html

5 Wikipedia, Reason, https://en.wikipedia.org/wiki/Reason
6 Butte College, Deductive, Inductive, and Abductive Reasoning, http://www.butte.edu/
departments/cas/tipsheets/thinking/reasoning.html

Chapter 23 there Is No should

https://www.skillsyouneed.com/learn/critical-thinking.html
https://www.skillsyouneed.com/learn/critical-thinking.html
https://en.wikipedia.org/wiki/Reason
http://www.butte.edu/departments/cas/tipsheets/thinking/reasoning.html
http://www.butte.edu/departments/cas/tipsheets/thinking/reasoning.html

451

 Deductive Reason

This is the most common form of reason that most of us are aware of. It is used to draw

conclusions about specific instances from large numbers of more general observations

that result in a general rule. For example, the following syllogism illustrates deductive

reasoning – and its primary flaw.

General rule: Elevated temperatures in a computer are caused by the failure of a

mechanical device, a fan.

Observational instance: My computer is overheating.

Conclusion: The fan in my computer is failing.

Many times this line of deductive reasoning has been successful at resolving

problems with overheating. However, the conclusion is entirely dependent upon the

accuracy of both the rule and the current observation.

Consider the other possibilities. The ambient temperature in the computer room

may be extraordinarily high resulting in higher temperatures inside the computer. Or the

heat radiator fins on the CPU may be clogged with dust, which reduces the airflow thus

reducing the efficacy of the cooling system. I can think of other possible causes as well.

There is a huge fallacy in this syllogism as in all deductive reason. The rule and the

assertion must always be correct for the conclusion to be true. This fallacy does not make

it wrong to use this type of reasoning, but it does inform us that we do need to be careful.

 Inductive Reason

Inductive reason flows in the other direction. The conclusions are arrived at to create

a general rule from a few observations, sometimes only a single one. This sample of

inductive reason also shows the potential for built-in fallacies.

Observations: The failure of a fan caused my computer to overheat.

Conclusion: Computers always overheat because of fan failures.

Actually, there are more equally bad conclusions that could be drawn from this. One

is that all fan failures cause computers to overheat, which is also not true. Another is that

all computer fans fail. Yet another is that all computers will overheat due to fan failures.

Here again, we must be careful of the conclusions we reach. In this type of inductive

reasoning, we are very likely to synthesize a general rule that can lead us astray when we

apply the rule as an assertion in a deductive syllogism.

Chapter 23 there Is No should

452

 Reason Fails

Both deductive and inductive reason contain the seeds of their own failure due to the

incorrect assumption that all of the evidence is available and that all of the assertions

are true. Both of those types of reasoning are rigid and inflexible. Neither deductive

nor deductive reasoning allow for possibility, probability, incomplete data, incorrect

assertions, randomness, intuition, or creativity.

Let’s explore this for a moment. First, I stipulate that in this thought experiment

we have no experience or training of any kind to help us determine the cause of the

problem.

My computer is overheating. I can feel the top of the case and it is much hotter than

it ever has been in my past experience. I turn the computer off, and after opening the

case, I turn it back on for a moment. I can now see that a large case fan is not rotating.

Because I have no basis on which to reason that the failing case fan is the problem,

I just take a chance and replace it with a new working one. This fixes the problem and the

computer no longer overheats.

I use a bit of inductive reasoning as follows.

Observation: I fixed an overheating computer by replacing the case fan.

Rule: Replacing the case fan will fix computer overheating problems.

I have taken a single instance and generalized it into a rule. Now let’s look at another

problem. In this case a different computer is overheating. Here is my deductive logic.

Rule: Replacing the case fan fixes computer overheating problems.

Assertion: The computer is overheating.

Conclusion: I should replace the case fan.

In this bit of deductive logic, I have taken the rule I created from my single

experience with overheating and applied it to a second instance of a computer

overheating. I have taken a general rule and applied it to a specific instance. The logic

is correct. There is no fault in the logic but replacing the case fan does not solve the

problem. Why? Because in this second instance the power supply is overheating because

the air intake is clogged with dust from the environment.

The difficulty here lies first in the fact that the rule we generated by our first

overheating experience was faulty because it was too general. The second problem is

that, based on this single faulty rule and the rigidity imposed by this form of reasoning,

if forced me to a conclusion that could be the only possible cause of the problem and so

I stopped looking for other root causes. The logic caused me to not even bother to check

to see of the fan was working or not.

Chapter 23 there Is No should

453

Another problem with this set of rigid logic is that there is no flexibility for other

possibilities. Our rule set was too limited to solve the problem. This raises the questions

of whether we can aver have a rule set large enough to solve all possible problems or that

any single rule can be complex enough to resolve even a single symptom all the time.

You see where I am going with this?

 Abductive Reason

Abductive reasoning is a third recognized form of reasoning and it is more complex

while being more flexible. It allows for incomplete information and probabilities that

specific relationships are present. It also allows that sometimes the best way to proceed

is with an educated guess based on the available information.

Abductive reasoning takes the full body of whatever data is available – our

observations – and allows us to draw conclusions that point to one or more of the most

likely root causes of the observed symptoms. Abductive reasoning works regardless of

whether we have all of the information or not. It allows us to draw conclusions based on

the best information we have on hand. It allows flexibility because any rules we have put

in place from previous inductive reasoning and any conclusions that we draw from those

rules using deductive reasoning are not rigidly enforced.

With abductive reasoning, we need not accept the conclusion as the only possible

result as inductive and deductive reason do. We are then free to adjust our body of rules,

to restart our reasoning process with new data, that is, that the previous line of reason

was incorrect – in this case. Thus, the freedom we now have to reason is the foundation

for integrated reason.

 Integrated Reason
I believe that SysAdmins use all three of those previously discussed forms of reasoning to

resolve problems. In fact, we do it so seamlessly that it is difficult to identify the specific

portions of our thought processes that represent one of the three recognized forms of

reasoning. In fact, this type of combinatorial reasoning is what successful SysAdmins use

rather than a single style. This is called Integrated reason.

For example, I already have rules in place about overheating that I use to deduce

possible causes. That example illustrates flexibility and the use of limited information to

analyze the problem and use additional testing to obtain more data. It also allows for the

Chapter 23 there Is No should

454

inductive process that can add more rules to the rule set we use in our deductive process.

It is also possible to disregard and discard rules that are clearly incorrect, outdated, or no

longer needed.

Integrated reasoning feels seamless to me and perhaps it seems that way to you as

well. I barely know that I am doing it and there is little or no indication when I switch

from deductive to abductive reasoning, for example, as I progress in the process of

problem solving. Integrated reasoning, intentional or not, conscious or not, helps me to

avoid the pitfalls of “should.” Not always but certainly most of the time. By understanding

my own reasoning process, I can more easily recognize when I do get stuck in the

“should” trap and more easily find my way out of it. For our overheating computer, this

might mean a reasoning process more like this.

The computer is overheating, and I know from previous experience that there are at

least two possible causes. I check over the computer and discover that none of the fans

are failing and that the power supply is not overheating. Since neither of the two possible

causes that I already know about are not the source of the current problem, I do some

further checking using both the hddtemp command and the touchy-feely method, both of

which show the fact that one hard drive is very hot.

I could replace the hard drive, but I noticed that there is no airflow around that hard

drive. Further exploration reveals that there is a place to install a fan that would create

a cooling flow of air over that hard drive. I install a new fan. I then check the hard drive

and its temperature is now much cooler.

In the case of this actual problem, I did not just blindly replace the overheating

component. The hard drive itself was not the cause of the problem despite the

observable fact that it was very hot. The lack of a fan to provide cooling airflow was also

a culprit, and there were other contributing factors. First, even though the fan provided

enough airflow to cool the drive down to normal levels, I was curious, so I checked its

usage patterns using System Activity Reporter – SAR. The SAR logs showed that the drive

was in constant heavy use. Additional investigation using htop and glances showed that

the /home filesystem was being heavily accessed by a program called baloo.

My filesystems were spread out over two physical hard drives, but the two most used,

/home and /var were on the same drive. My first step, in order to reduce the stress on

that hard drive, was to install a new hard drive as a means to spread the load and moved

the most heavily used /home filesystem to that new drive. Then, I did some research on

baloo, which turns out to be a file indexer that is a part of the KDE desktop environment.

I figured out how to turn that off and that reduced the disk activity in /home to nearly

zero except for my own work.

Chapter 23 there Is No should

455

In reality, there were multiple causes for this single symptom of overheating and all

of the fixes I implemented were appropriate. The root cause was a rogue program that

produced heavy activity in a single filesystem. This caused a high level of disk activity,

which overheated the disk drive. The lack of airflow over the drive due to the absence of

a cooling fan only exacerbated the problem.

Yes, this was a real incident and not especially uncommon. Following the rigid logic

forms could never bring us to the place where we would truly solve that problem and

reduce the chances of it occurring again. Abductive reasoning allows us to be logical as

well as creative and to think outside the alleged box. It also allows us to take preventative

measures to ensure that the same or related problems do not recur.

Abductive reasoning allows us to learn from our experiences. This is true not just

when things go right and we solve the problem but also, and especially, when things go

wrong and we do not get it right.

 Self-Knowledge
Of course, these styles of reasoning are artificial structures that are intended to enable

philosophers, psychologists, psychiatrists, and cognitive scientists to have a vocabulary

and common structural referents to enable discussion and exploration of how we think.

These purely artificial structures should not be construed as limits on how

SysAdmins should work. They are merely tools to enable us to understand ourselves and

how we think. A little introspection can go a long way in helping us to become better at

what we do.

 Finding Your Center
As a student of yoga, the first thing I do when starting my (almost) daily practice,

whether in my own little yoga room or in a class, is to find my center. This is time to just

be, and to use my mind to explore the physical aspects of my being while opening up to

the experience of just existing.

Having done it myself, I suggest that this is an excellent method for exploring our

thinking and reasoning as SysAdmins. That is not to say I use this technique to solve

problems, but rather to explore my own methods for problem solving.

Many times, after solving a problem, particularly a new or especially difficult one,

I spend some time just thinking about the problem. I start with the symptoms, my

Chapter 23 there Is No should

456

thinking process, and where those symptoms led me. I take time to consider what finally

led me to the solution, things I might have done better, and what new things I might

want to learn.

It gives me an opportunity to, as an individual, perform what we used to call a

“lessons learned” meeting at one of my former places of employment. That was an

opportunity to look at what we as a team did right and what we could have done better.

The best and yet hardest part now is that I don’t have others to help me understand what

I could have done better. That makes it all the more important for me to do this as much

as possible.

It is not necessary to practice yoga in order to do this. Just set aside some time, find

an empty space where you won’t be interrupted, close your eyes and contemplate.

Breathe, relax, and calm your mind before trying to review the incident. Start from the

beginning and think your way through the incident. Review the complete sequence of

events and the steps you used to ultimately find the solution. The things you need to

know and learn will make themselves clear to you. I find that this form of self-evaluation

can be quite powerful.

I also like to take a moment before I start to work on a new problem to center myself.

This opens my mind to the possibilities. First there are the possibilities that represent the

likely causes of the problem. Then there are the possibilities that represent the methods

and tools I have to locate the causes of the problem. Finally, there are the possibilities

that represent the ways that there are to fix the problem.

 The Implications of Diversity
As individuals, our reasoning processes are complex and diverse. We each have different

experiences that form the basis for the structures and processes we use in reasoning. No

two of us will approach the task of solving a problem in the same way because of these

differences.

I could not have asked for a better illustration of this particular tenet, “There is

no should,” than the command-line challenge I created for Opensource.com that we

explored back in Chapter 4, “Transforming Data Streams.” The incredible diversity

of thought, creativity, and problem-solving approaches is staggering in its range and

heartening in its implications.

Chapter 23 there Is No should

457

The results from that challenge illustrate the huge variety of ways in which a few

small, common utility programs can be combined to produce a correct result. This is

an important point to remember when working with Linux. There are as many correct

ways to solve a problem as there are SysAdmins, developers, DevOps, or whatever. What

counts is the result.

 Measurement Mania
Technology is dominated by two types of people: those who understand
what they do not manage, and those who manage what they do not
understand.

—Archibald Putt, Linux Journal

I still hear PHBs talk about KLOCs,7 keystrokes, error counts, and other types of

numerical measurements designed so that they can be used by lower-level PHBs to

report results to higher level PHBs and which are intended to show that progress is

being made. These attempts to quantify the quality and volume of work performed by

developers and SysAdmins completely miss the point and can lead to code bloat for

developers. If you pay me to write X number of lines of code per day, I will, regardless of

whether they are needed to perform the task the program is designed to do.

For SysAdmins, such attempted quantification results in symptom fixes and not fixing

the root causes of problems. The number of tickets taken and resolved in a specified time

period is a disgustingly ignorant way to measure performance. Productivity measurement

concepts are based on time and motion study8 practices developed by Taylor, Gilbreth,

and Gilbreth in the mid-1800s and made popular with the industrialist management of

those times. Wikipedia has a short but interesting article on time and motion.9

Using measurement strategies that are more than 150 years old, like these are,

devalue the work being performed by SysAdmins and developers. They focus on the

wrong things. They create the boundaries that are supposed to contain us in a manner

that is comprehensible to the PHB who does not know how else to deal with us.

7 KLOC is an acronym for “thousand (K) Lines of Code” that has been used by IT managers to
measure performance.

8 Time and motion study. BusinessDictionary.com. WebFinance, Inc. http://www.
businessdictionary.com/definition/time-and-motion-study.html (accessed: April 01, 2018).

9 Wikipedia, Time and motion study, https://en.wikipedia.org/wiki/Time_and_motion_study

Chapter 23 there Is No should

http://www.businessdictionary.com/definition/time-and-motion-study.html
http://www.businessdictionary.com/definition/time-and-motion-study.html
https://en.wikipedia.org/wiki/Time_and_motion_study

458

Throughout this book we have looked at the lazy SysAdmin. It is impossible to

measure the productivity of a thinking mind. I hope that such a thing never does become

possible. Yet the results of the thinking SysAdmin can be indirectly measured in terms

of the productivity achieved by the conclusions that resulted from that contemplation.

For example, each new script – scripts that were conceived in our contemplative state,

each new and improved method of installing and managing computers and their

operating systems, and each failure mode analyzed for better methods, enhances overall

productivity and results in diminished need for future intervention from SysAdmins and

others. This results in more time for the SysAdmin to engage in unfettered thinking.

I have talked about the PHBs in a very derogatory manner throughout this book.

Thanks to the Dilbert comic strip, PHB is now a common synonym for a really bad

manager. I have had a few of these managers and they are destructive to good teams

and to creative and successful SysAdmins. I have seen many good SysAdmins leave an

organization because of toxic managers.

 The Good Manager
Despite the many PHBs in the real world, there are also a lot of really good managers,

and I have been fortunate to have some of those in my career. The good ones – the ones

that understand the technology and who understand how to manage those who deal

directly with the technology – those are usually the few who have come up from the

ranks. They were CEs, developers, SysAdmins, testers, or even hackers in previous jobs.

These amazing managers know that the best way to deal with those of us now doing

the work is to ask a few knowledgeable questions to understand the situation and

then step out of the way to let us fix whatever is wrong, while keeping the higher-level

managers and PHBs informed as much as possible. They understand that we work best

without constant micromanagement and that the freedom to do what is necessary is the

hallmark of such a manager.

 Working Together
So now that I have you convinced that “there is no should” and it’s all good just to

do everything your own way, that leaves us with a question. How do all of us widely

disparate SysAdmins all work together in teams?

Chapter 23 there Is No should

459

Teams?! What teams? We don’t need no stinkin’ teams.

Actually, we do need teams, and we do need to work together in those teams. We

have some excellent examples of teams and their results in pretty much every bit of open

source software that exists.

Teams comprised of developers from around the planet work together to produce

the open source software we all use and appreciate. Some of the team members may

be paid but most are not and volunteer their time and energy to work on code. Other

volunteers perform in the role of SysAdmins to help keep development systems up and

running. Others test the resulting code and still others develop documentation.

Teams are as diverse geographically as the individuals comprising the teams are

unique in the way they work best. This geographic dispersal of talent imposes some

interesting and important constraints on working as a team.

In 2012, Ryan Tomayko wrote a blog post based on his experiences as an early

employee at GitHub. Entitled, “Your team should work like an open source project,”10

The premise of this post is that teams that are geographically compatible and that

can work in the same office space, will work better if the same types of constraints on

communication and interpersonal interactions that are imposed by geography on

widely dispersed open source teams. According to Tomayko, “…processes designed to

conform to open source constraints results in a project that runs well, attracts attention,

and seems to be self perpetuating where the same project structured more traditionally

requires much more manual coordination and authoritative prodding…[it] creates the

possibility of cooperation without coordination. …”

I strongly suggest that you read Tomayko’s post. It has some interesting things to

think about. He lists the constraints and says that the office, as a working space, is on the

decline and will be mostly used as a space designed specifically for the mobile worker,

providing those same services needed to work from places like your favorite cafe.

As SysAdmins we are often required to work across time zones and with team

members we know only through electronic interactions. My own experience is in line

with Tomayko’s and shows that this can work better than when everyone is local and

traditional alleged management is applied. Clearly, most open source projects are

excellent examples of this success.

10 Tomayko, Ryan, Your team should work like an open source project, https://tomayko.com/
blog/2012/adopt-an-open-source-process-constraints

Chapter 23 there Is No should

https://tomayko.com/blog/2012/adopt-an-open-source-process-constraints
https://tomayko.com/blog/2012/adopt-an-open-source-process-constraints

460

 Silo City
I was involved for about a year at one organization which is a fantastic example of the

failure of the traditional team methodology taken to its extreme. The worst part is that it

was also a horrible daily commute.

In this organization – which shall remain nameless – management had created very

narrow, very tall silos to contain everything. There were multiple teams, the Unix team,

the application team, the network team, the hardware team, the DNS team, the rack

team, the cable team, the power team – pretty much any team you can think of.

And the procedures were mind boggling. For example, one of my projects was

to install Linux on several servers that were to be used for various aspects of the

organization’s web site. The first step was to order the servers, but the request took weeks

to work its way through the administrative bureaucracy.

Once the servers were delivered, the Unix team would rack them in the installation

lab and install the operating system. We had that part down very nicely. But first we

had to request an IP address. We could not do that before we had the servers delivered,

because the request for IP address required the serial numbers of the servers and MAC

addresses of the NICs.

The issue here was that each silo had to have a Service Level Agreement (SLA) with

every other silo and the response time defined by the SAL was a minimum of two weeks.

And every silo took no less time to respond than that specified in the SLA.

However, we could not get the IP address until we had a rack location assigned in the

server room because IP addresses were assigned by rack and location in the rack. So we

had to send a request for a rack assignment and wait two weeks for that to be provided.

So the next step after getting the IP address was to send that to the silo that handled

DHCP configuration. Then it was at least two weeks after getting the IP address that we

had to wait before the DHCP was set up.

Only when the network configuration data for the server was configured on the

DHCP server could the request for moving the server from our rack to the server room be

sent. Another two-week turnaround.

After the move request was approved – and only after – we could then send a request

to install the computer in the rack. After the installation was complete, then we could

send the request to cable the server with network and power. Only when that was

completed could we send a request to power on the server.

Except for installing the operating system, we could not touch the server. We were

not even allowed to enter the server room. Ever.

Chapter 23 there Is No should

461

Needless to say, it took months to install each server and get it running and ready

for the production teams to take over. I could go on about many more ways in which this

place was a functional disaster, but I think you get the idea. Their alleged teams were just

political fiefdoms, protected by silos that were impenetrable.

 The Easy Way
I had a much better experience at Cisco with BRuce. You will learn more about BRuce in

the next chapter. He and I had a really great system worked out.

The servers were usually delivered less than a week after we ordered them. BRuce

and I would rack four of them in the morning, assign IP addresses, configure the

switches to which they were connected, add them to DNS and DHCP servers and install

Linux on them. We would do four more in the afternoon.

The difference is that all of the teams worked together. The teams that dealt with

network addressing and configuration had written scripts – automate everything – and

gave us access so that we could use those scripts to do all of the network configuration

for DHCP and DNS. The script that I wrote was used to perform the Linux installations.

BRuce and I were totally responsible for the racks and everything in them that had

to do with getting the servers up and running. He and I worked well as a team because

we took a bit of time each day to determine what needed to be done and decide which

of us would take on each of the various tasks that we needed to accomplish. This was

not a meeting; there was nothing at all formal about it. No one assigned us tasks based

on some arbitrary criteria. Both BRuce and I were SysAdmins with strong personalities.

When left alone to do our jobs, we did so quickly and with ease. We simply split the

tasks between us as we both felt appropriate and went about our business. Many times

we required the assistance of other SysAdmins, both local and remote, and we would

simply continue to have our little morning discussions to determine the work for the

day, splitting it up between three or four of us, depending upon how many we were.

We worked well with the other teams and would usually turn over the servers to the

developers or testers by late the same day they were delivered to the lab.

Management cooperated in this methodology. We were simply told that a new

project was starting up or that there were changes that needed to be made to an existing

one. We would confer with the project leaders to determine what their needs and

objectives were. As you will see in the next chapter, sometimes BRuce and I had to work

at it to get the information we needed, but once we had it we took care of the rest with

little or no intervention or oversight from management.

Chapter 23 there Is No should

462

 Thoughts
Those of us who are successful at Unix and Linux System Administration are by our very

nature inquisitive and thoughtful. We take every opportunity to expand our knowledge

base.

We like to experiment with new knowledge, new hardware, and new software out

of curiosity and “because it is there.” We relish the opportunities that are opened to us

when computer things break. Every problem is a new possibility for learning. We enjoy

attending technical conferences as much for the access to other SysAdmins they afford

as for the amazing amount of new information that we can gather from the scheduled

presentations.

Rigid logic and rules do not give us SysAdmins enough flexibility to perform our jobs

efficiently. We don’t especially care about how things “should” be done. SysAdmins are

not easily limited by the “shoulds” that others try to constrain us with. We use logical

and critical thinking that is flexible and that produces excellent results. We create our

own ways of doing things with independent, critical thinking, and integrated reasoning,

which enables us to learn more while we are at it.

We SysAdmins are strong personalities – we need to be in order to do our jobs and

especially to do things the “right” way. This is not about how we “should” perform the

tasks we need to do, rather it is about using best practices and ensuring that the end

result conforms to those practices.

We don’t just think outside the box. We are the ones who destroy the boxes that

others try to make us work inside. For us, there is no “should.”

Chapter 23 there Is No should

463
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_24

CHAPTER 24

Mentor the Young
SysAdmins
I have taken many training courses over the years and most have been very useful in

helping me to learn more about Unix and Linux as well as a host of other subjects.

But training – as useful and important as it is – cannot cover many essential aspects of

performing SysAdmin duties.

All of the classes I have attended were a few days in length, usually four or five. There

is just too much information to be able to cover everything you need to know just with

respect to commands, procedures, filesystems, processes, and many of the things we

have touched on in this book. And not everything can be taught in the classroom. Some

things can only be taught by a good mentor in a real-world environment, usually while

you are under extreme pressure to fix a critical problem.

There is nothing like having the PHB or one or more minions looking over your

shoulder and criticizing your every move and decision. It happens. These pressures to

provide hourly progress reports, to answer dumb questions like, “when will it be fixed,”

to resist the PHB’s attempts to add three more people to a one-person task, and much

more, not only wastes our time, it also breaks our train of thought and reduces our

overall efficiency. Most of the time we know what to do and how to do it, we just need an

environment that will allow us to work in relative peace.

A good mentor will allow you to do the actual work in these situations so you can

have a valuable learning experience while keeping the wolves at bay, taking the heat

while you work uninterrupted. A great mentor will also be able to create a learning

opportunity from every situation no matter how critical.

464

When I first started, I was a young and innocent SysAdmin. I was fortunate because

I worked at a couple different jobs where other, seasoned SysAdmins were willing to

mentor me and encourage me. None of them laughed at me when I asked what must

have seemed to them to have answers that were blindingly obvious. None of these

patient SysAdmins ever told me to RTFM.

 Hiring the Right People
Mentoring the right people is never simple or easy; mentoring the wrong people is

impossible. With that in mind, let's take a look at how to hire the right people.

As a SysAdmin, particularly if you are a senior SysAdmin, part of your job should be

to help hire the right people as part of your team. If your PHB isolates you from the hiring

process, you should do everything in your power to change that. Fortunately, this has

seldom been a problem in most of my work life. The smart managers will get their entire

team involved with hiring new members.

One of the best and most enjoyable interviews I ever had was when I applied for a

job as a tester and part-time lab SysAdmin at Cisco. I spent a little time with the manager,

and then the rest of the people in the department tag-teamed me for about five hours.

They came in groups of two or three and asked me all kinds of questions. Each group

gave me hypothetical situations to solve, they asked me technical questions, and they

tested my patience. I actually had fun in that interview because every one of the people

who interviewed me was the right person for the job they had been hired to do. I did get

that job. I did not know everything. I did tell the interviewers that fact when it was true.

There are many methods that can be used to hire the right people, but there is no

foolproof method for doing so. I have, however found that the right interviewers and the

right questions can go a long way to making that happen.

As I have previously mentioned, a lot of people who interview for SysAdmin types

of positions are not ready because they have no idea how to solve problems. Sometimes

you cannot tell this until you hire the person, and it may be difficult to “unhire” them

at that point. One place I worked used a hands-on test. Our test was simple. We set up

a Linux host with three specific but fairly simple problems that the applicant had to fix

within a specified amount of time.

Although this test was about finding and fixing the problems, we also looked at

the manner in which the applicant approached the task. Those who panicked or who

proceeded more or less randomly, thrashing about with little direction were quickly

Chapter 24 Mentor the Young SYSadMinS

465

eliminated from our consideration. Even if they did not resolve all of the problems, those

who proceeded with some sense of purpose, with a well-developed problem-solving

algorithm, those were the ones we considered most likely to be successful in the jobs we

had available. We could easily teach the technology, but we could not easily teach the

problem-solving techniques and Zen.

There can be legal issues with testing but, if the test is truly representative of the type

of work the applicants will be doing, and all of the applicants are required to take the

test, then (check with your lawyers) it should be fine to use a test.

 Mentoring
How does one mentor a young SysAdmin? How many stars are there in the galaxy? Every

SysAdmin has their own way of mentoring, and each young SysAdmin needs different

knowledge and a different approach.

It was easier to learn when I had an excellent teacher, but I found that when I

enjoyed a subject and had interest in it, the quality of my teachers made little difference.

The best mentors allowed and even encouraged me to follow my curiosity. They

rewarded me when I experimented even when I failed to accomplish my goal.

However, a really bad teacher can destroy not only the desire to learn but also

the ability to learn. One nontechnical example was my high school English literature

teacher. It was quite obvious that she really enjoyed the books, stories, poems, and other

literature that we were supposed to learn. Unfortunately, she had no idea how to teach or

how to transmit that love of the subject to we students. We studied Shakespeare, among

others, and I was bored out of my skull.

The next summer, because I had been in some school plays, and the drama teacher

liked my work, she recommended me to a recruiter for the Irish Hills Playhouse, a summer

stock theater doing Shakespearean repertory in southern Michigan. Wow! A whole

summer of Shakespeare? Yes, and I loved it. As an apprentice that summer, I learned more

about Shakespeare than I would ever have in a classroom environment with teachers like

the one I had for that lit class.

I had a couple good mentors that summer. They held training sessions for all of us.

They helped us learn the meaning of the material as well as the mechanics of acting.

For me, it was the understanding that was the most helpful. I think that understanding

is one of the most important things that a mentor can help with. Rote memorization is

not the key – understanding and critical thinking and problem solving skills are the most

important things that my technical mentors bestowed upon me.

Chapter 24 Mentor the Young SYSadMinS

466

 BRuce the Mentor
I was fortunate in having a number of very fine and patient mentors who allowed me to

fail so that I might learn. One person in particular, BRuce, as he liked to sign his emails,

ensured that I had the necessary training, but he also allowed me put that training to use

very quickly. He assigned me to difficult tasks right away, ones that forced me to use my

newfound knowledge and to break through the boundaries of my own comfort and

self- imposed limitations.

BRuce and I worked together at two different companies over the years, both of

which required deep Unix/Linux knowledge and skills. We worked together well because

we were both very good at what we did. He understood that I did not start with the

same skill level that he had, but he respected the skills I did have and gave me plenty of

opportunity to use those skills and learn new ones.

In many ways, BRuce was the quintessential grumpy SysAdmin – and with good

reason. What I mean by this is that, when dealing with less-technical people such as

marketing people and the PHBs about things they wanted to do in the labs for which

we were responsible, his first response was almost always a flat, definite, “no.” This was

always because the projects, whatever they were, would cause problems in the lab as

they were initially conceived because they were all poorly thought out with no concept of

what could and could not be done. BRuce then asked the persons who made the request

a series of questions that eventually led us to what they really wanted to do. It seems that

most of the people making these requests were also trying to design the infrastructure to

support those projects and that was our area of expertise, not theirs. They were also not

very thoughtful about how their projects might affect others using the lab to test their

projects.

BRuce was not being a jerk like some people thought. He was doing his job, which

was to ensure that the lab was fully functional for everyone who used it. Most of the

initial requests that we received were significantly flawed. It was our responsibility

to ensure that those flaws did not affect the rest of the lab. BRuce was just very blunt

because we did not have the time to deal with problems caused by other people when

it was just the two of us dealing with more than 15 rows with 24 racks each in the lab, all

of them full of equipment running tests that would have had to be restarted if the Lab

network were to be compromised by someone’s experiments run amok.

In that type of environment, there was no tolerance for errors. BRuce and I were

simply enforcing lab guidelines that had been designed to protect all of the users. As my

mentor, this is also something that BRuce was trying to help me understand – that this

Chapter 24 Mentor the Young SYSadMinS

467

is one of those times when the good of the many outweighs the good of the few. The lab

had to be run in a manner that prevented some users from impinging upon the work of

the rest.

 The Art of Problem Solving
One of the best things that my mentors helped me with was the formulation of a defined

process that I could always use for solving problems of nearly any type. As I look at it, it is

very closely related to the scientific method.

During my research for this book, I discovered a short article entitled, “How the

Scientific Method Works,”1 that describes the scientific method using a diagram very

much like the one I have created for my Five Steps of Problem Solving. So I pass this on

as a mentor and it is my contribution to all of you young SysAdmins. I hope that you find

it as useful as I have.

Solving problems of any kind is art, science, and – some would say – perhaps a bit

of magic, too. Solving technical problems, such as those that occur with computers,

requires a good deal of specialized knowledge as well.

Any approach to solving problems of any nature – including problems with

Linux – must include more than just a list of symptoms and the steps necessary to fix

or circumvent the problems that caused the symptoms. This so-called “symptom-fix”

approach looks good on paper to the managers, but it really sucks in practice. The best

way to approach problem solving is with a large base of knowledge of the subject and a

strong methodology.

 The Five Steps of Problem Solving
There are five basic steps that are involved in the problem solving process as shown in

Figure 24-1. This algorithm is very similar to that of the Scientific Method referred to in

footnote 1 but is specifically intended for solving technical problems.

1 Harris, William, How the Scientific Method Works, https://science.howstuffworks.com/
innovation/scientific-experiments/scientific-method6.htm

Chapter 24 Mentor the Young SYSadMinS

https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm

468

You probably already follow these steps when you troubleshoot a problem but do not

even realize it. These steps are universal and apply to solving most any type of problem,

not just problems with computers or Linux. I used these steps for years in various types

of problems without realizing it. Having them codified for me made me much more

effective at solving problems because when I became stuck, I could review the steps

I had taken, verify where I was in the process, and restart at any appropriate step.

You may have heard a couple other terms applied to problem solving in the past.

The first three steps of this process are also known as problem determination, that is,

finding the root cause of the problem. The last two steps are problem resolution, which is

actually fixing the problem.

The next sections covers each of these five steps in more detail.

Knowledge

Observation

Deduction

Action

Test

Done

Figure 24-1. The Five Steps of Problem Solving are much like those of the Scientific
Method

Chapter 24 Mentor the Young SYSadMinS

469

 Knowledge
Knowledge of the subject in which you are attempting to solve a problem is the first

step. All of the articles I have seen about the scientific method seem to assume this as

a prerequisite. However the acquisition of knowledge is an ongoing process, driven by

curiosity and augmented by the knowledge gained from using the scientific method to

explore and extend your existing knowledge through experimentation. This is one of the

reasons I use the term “experiment” in this book rather than something like “lab project.”

You must be knowledgeable about Linux at the very least, and even more, you must

be knowledgeable about the other factors that can interact with and affect Linux, such

as hardware, the network, and even environmental factors such as how temperature,

humidity and the electrical environment in which the Linux system operates can affect it.

Knowledge can be gained by reading books and web sites about Linux and those

other topics. You can attend classes, seminars, and conferences. You can also just set

up a number of Linux computers in a networked environment and through interaction

with other knowledgeable people. Knowledge is gained when you resolve a problem and

discover a new cause for a particular type of problem. You can also find new knowledge

when an attempt to fix a problem results in a temporary failure.

Classes are also valuable in providing us with new knowledge. My personal

preference is to play – uh, experiment – with Linux or with a particular piece such as

networking, name services, DHCP, Chrony, and more, and then take a class or two to

help me internalize the knowledge I have gained.

Remember, “Without knowledge, resistance is futile,” to paraphrase the Borg.

Knowledge is power.

 Observation
The second step in solving the problem is to observe the symptoms of the problem. It

is important to take note of all of the problem symptoms. It is also important to observe

what is working properly. This is not the time to try to fix the problem; merely observe.

Another important part of observation is to ask yourself questions about what you

see and what you do not see. Aside from the questions you need to ask that are specific

to the problem, there are some general questions to ask.

Chapter 24 Mentor the Young SYSadMinS

470

• Is this problem caused by hardware, Linux, application software, or

perhaps by lack of user knowledge or training?

• Is this problem similar to others I have seen?

• Is there an error message?

• Are there any log entries pertaining to the problem?

• What was taking place on the computer just before the error

occurred?

• What did I expect to happen if the error had not occurred?

• Has anything about the system hardware or software changed

recently?

Other questions will reveal themselves as you work to answer these. The important

thing to remember here is not the specific questions, but rather to gather as much

information as possible. This increases the knowledge you have about this specific

problem instance and aids in finding the solution.

As you gather data, never assume that the information obtained from someone else

is correct. Observe everything yourself. This can be a major problem if you are working

with someone who is at a remote location. Careful questioning is essential, and tools that

allow remote access to the system in question are extremely helpful when attempting to

confirm the information that you are given. When questioning a person at a remote site,

never ask leading questions; they will try to be helpful by answering with what they think

you want to hear.

At other times the answers you receive will depend upon how much or how

little knowledge the person has of Linux and computers in general. When a person

knows — or thinks they know — about computers, the answers you receive may contain

assumptions that can be difficult to disprove. Rather than ask. “Did you check…,” it is

better to have the other person actually perform the task required to check the item.

And rather than telling the person what they should see, simply have the user explain or

describe to you what they do see. Again, remote access to the machine can allow you to

confirm the information you are given.

The best problem solvers are those who never take anything for granted. They

never assume that the information they have is 100% accurate or complete. When the

information you have seems to contradict itself or the symptoms, start over from the

beginning as if you have no information at all.

Chapter 24 Mentor the Young SYSadMinS

471

In almost all of the jobs I have had in the computer business, we have always tried to

help each other out and this was true when I was at IBM. I have always been very good

at fixing things, and there were times when I would show up at a customer when another

CE was having a particularly difficult time finding the source of a problem. The first thing

I would do is assess the situation. I would ask the primary CE what they had done so far

to locate the problem. After that I would start over from the beginning. I always wanted

to see the results myself. Many times that paid off because I would observe something

that others had missed. In one very strange incident, I fixed a large computer by sitting

on it.

 Sitting Down on the Job

This took place while I was an IBM CE in Lima, Ohio, in about 1976. Two of us were were

installing an IBM System 3, which was smaller than an IBM mainframe, like a 360 or 370,

but still large enough to need a room of its own, high voltage power, and significant air

cooling.

We had assembled the main CPU and had started to attach the IBM 1403 line

printer controller when we ran into the problem. The printer controller was contained

in a slightly lower than desktop-height unit to the left of the CPU. That nice large work

surface is just the right height to sit on.

We had just bolted the printer controller to the frame of the CPU and were doing one

of the very many checks built into the installation instructions. We connected the leads

of an Ohm meter between the frame of the CPU and a specific terminal on the power

supply of the printer controller. The result was supposed to be an open circuit, that is,

infinite resistance, which would indicate that the hot leads of the power supply were not

shorted to the frame. In this case there was a short – zero resistance – which was bad.

There would not have been a spectacular display of noise and fireworks like you see on

TV, but it would have been a problem as it would prevent the computer from powering

up. Best to catch this while it was still being assembled rather than later.

After an hour of trying to find the problem, we were unable to do so. We called the

support center for the System/3 in Boca Raton, Florida, and were guided through several

further problem determination steps that were unsuccessful.

A bit frustrated, I sat on the printer control unit. Out of the corner of my eye, I saw the

needle on the Ohm meter swing to indicate an open circuit. I mentioned this to the other

CE and to Vern in Boca Raton, who would later be one of my own mentors when I went

down there for a few years as a Course Development Representative (CSR).

Chapter 24 Mentor the Young SYSadMinS

472

We removed the top, where I had perched, from the controller and with a bit of luck,

found that one of the bolts holding the top to the frame of the printer controller had

come loose and fallen into the power supply and caused the short. When I sat on the top

of the controller, the frame moved just enough to cause the bolt to no longer make the

contact required to produce the short. Removing that loose bolt from the power supply

fixed the problem.

Vern, who was responsible for the System/3 support at that time, made some

changes to the instructions to cover this problem in case it happened again. He also

worked with the manufacturing people to ensure that it did not happen again, putting in

place a check to ensure that the bolt was properly tightened during the build process.

The thing to remember is to really observe what is going on in all parts of the system.

Pay attention to everything and don’t ignore the slightest clue. Sometimes watching top

or one of the other utilities used to monitor the internal functioning of the kernel or the

network can provide a momentary glimpse of something – a clue – that gets us started in

the right direction.

And sometimes it takes just a bit of luck like sitting on the printer control unit.

 Reasoning
Use reasoning skills to take the information from your observations of the symptoms,

your knowledge to determine a probable cause for the problem. We discussed the

different types of reasoning in some detail in Chapter 23. The process of reasoning

through your observations of the problem, your knowledge, and your past experience is

where art and science combine to produce inspiration, intuition, or some other mystical

mental process that provides some insight to the root cause of the problem.

In some cases this is a fairly easy process. You can see an error code and look up

its meaning from the sources available to you. Or perhaps you observe a symptom

that is familiar and you know what steps might resolve it. You can then apply the vast

knowledge you have gained by reading about Linux, this book, and the documentation

provided with Linux to reason your way to the cause of the problem.

In other cases it can be a very difficult and lengthy part of the problem determination

process. These are the types of cases that can be the most difficult. Perhaps symptoms

you have never seen or a problem that is not resolved by any of the methods you have

used. It is these difficult ones that require more work and especially more reasoning

applied to them.

Chapter 24 Mentor the Young SYSadMinS

473

It helps to remember that the symptom is not the problem. The problem causes the

symptom. You want to fix the true problem, not just the symptom.

 Action
Now is the time to perform the appropriate repair action. This is usually the simple part.

The hard part is what came before – figuring out what to do. After you know the cause of

the problem, it is easy to determine the correct repair action to take.

The specific action you take will depend upon the cause(s) of the problem.

Remember, we are fixing the root cause, not just trying to get rid of or cover up the

symptom.

Make only one change at a time. If there are several actions that can be taken that

might correct the cause of a problem, only make the one change or take the one action

that is most likely to resolve the root cause. The selection of the corrective action with the

highest probability of fixing the problem is what you are trying to do here. Whether it is

your own experience telling you which action to take, or the experiences of others, move

down the list from highest to lowest priority, one action at a time. Test the results after

each action.

 Test
After taking some overt repair action, the repair should be tested. This usually means

performing the task that failed in the first place but it could also be a single, simple

command that illustrates the problem.

We discussed testing in Chapter 11 in conjunction with writing code for shell

scripts and the process is the same here. We make a single change, taking one potential

corrective action and then testing the results of that action. This is the only way in which

we can be certain which corrective action fixed the problem. If we were to make several

corrective actions and then test one time, there is no way to know which action was

responsible for fixing the problem. This is especially important if we want to walk back

those ineffective changes we made after finding the solution.

If the repair action has not been successful, you should begin the procedure over

again. If there are additional corrective actions you can take, return to that step and

continue doing so until you have run out of possibilities or have learned with to a

certainty that you are on the wrong track.

Chapter 24 Mentor the Young SYSadMinS

474

Be sure to check the original observed symptoms when testing. It is possible that

they have changed due to the action you have taken and you need to be aware of this

in order to make informed decisions during the next iteration of the process. Even if

the problem has not been resolved, the altered symptom could be very valuable in

determining how to proceed.

 Example
One example of solving a problem from my own experience occurred in my role as a

part-time Linux System Administrator. It is fairly simple but is useful to illustrate the

process flow of the steps I have outlined.

I received an email from one of our testers indicating that an application he had

installed as part of a test was crashing. It was giving error messages indicating that it was

out of swap space. This is the initial Observation performed by the user and transmitted

to me.

My Knowledge told me that the system that was being used for testing this

application had 16GB of RAM and 2GB of swap space. Previous experience (Knowledge)

told me that swap space in these computers is almost never used and RAM usage is

typically far below 25% of the 16GB of RAM in these boxes.

At this point I Reasoned that the problem was not really a problem with swap space

as that would seem highly improbable. I could still hold that possibility open, though

only very slightly. You will find that many error messages provided by programs can be

quite misleading and user observations can be even more so.

I made some Observations of my own. I logged into the box and used the free

command as a tool to view memory and swap space. I could Observe that there was

lots of free RAM and swap space usage was at zero. I Know that if swap space usage is

actually zero, then it is very likely that none of the available swap space has never been

allocated and no paging has occurred since the last boot.

I also Reasoned from previous experience (Knowledge) that there might be a kernel

of truth in that error message. That being it was very likely to be out of some resource or

other. The other primary consumable resources are CPU cycles and disk space.

This did not seem like a CPU problem so I Observed disk space using the df
command, which showed that the /var filesystem was full. I Reasoned that the full

filesystem was the cause of the problem. A little exploration of /var indicated that the

tester’s software was indeed located there and had filled the filesystem.

Chapter 24 Mentor the Young SYSadMinS

475

All of the systems were kickstarted with a /var filesystem of 1.5GB. The policy was to

install application programs in /opt, which is where the ones we were supposed to test

were designed to be installed, and which was configured to take all remaining disk space

so can easily be 100GB or more in size – more than enough for any of the applications

that were being tested.

I discussed this with the tester and was told that he had indeed installed the

application in /var. I told him to uninstall the new program from there and install the

application in /opt where it belonged. After taking this Action, I had him Test the

corrective action by performing the operation that had previously failed. The test was

successful and the problem solved.

 Iteration
As you work through a problem, it will be necessary to iterate through at least some

of the steps. If, for example, performing a given corrective action does not resolve the

problem, you may need to try another action that has also been known to resolve the

problem in the past. Figure 24-1 shows that you may need to iterate to any previous step

in order to continue.

It may be necessary to go back to the observation step and gather more information

about the problem. I have also found that sometimes it was a good idea to go back to

the Knowledge step and gather more basic knowledge. This latter includes reading

or rereading manuals, man pages, using Google, whatever is necessary to gain the

knowledge required to continue past the point where I was blocked.

Be flexible and don’t hesitate to step back and start over if nothing else produces

some forward progress.

 Concluding Thoughts
In this chapter we have looked at one way to approach fixing problems that applies to

many non-technical things as well as to computer hardware and software. What we have

discussed here is how specific reasoning methods can be used within the framework

of an algorithm for problem solving. The flexibility of this particular combination is

extremely powerful.

Chapter 24 Mentor the Young SYSadMinS

476

I am not telling you that you “should” use this method. However, if you go all Zen

and analyze your own method for solving problems, you will very likely find that it is

already very close to the algorithm I describe here. As a mentor, I am suggesting that you

do take the time to analyze your own methods. I think you will find it a productive use of

time that will be quite enlightening.

I also implore you to mentor others. Pass along the knowledge, skills, and your own

philosophy. There is very little that can be more important than this for experienced

SysAdmins. Our skills are amazing and we did not achieve them all by ourselves. We are

amazing because of those who mentored us and the fact that they thought we had what

it takes to be great SysAdmins. It is our responsibility to pass that along to the younger

SysAdmins.

Finally, I had some amazing mentors who understood what it takes to learn – to

really learn – and who allowed me to do so. You all gave me the opportunity to learn

through failure. You helped my figure out where I went wrong and got me back on track.

You are my heroes. Here’s to you, Alyce, BRuce, Vern, Dan, Chris, Heather, Ron, Don,

Dave, Earl, and Pam. And to all of you unsung mentors out there – You rock! Thanks for

your support and guidance.

Chapter 24 Mentor the Young SYSadMinS

477
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_25

CHAPTER 25

Support Your Favorite
Open Source Project
Linux and a very large proportion of the programs that we run on it are open source

programs. Many of the larger projects, such as the kernel itself, are supported directly

by foundations set up for that purpose, such as the Linux Foundation, and/or by

corporations and other organizations that have an interest in doing so.

As a SysAdmin, I write a lot of scripts and I like doing so, but I am not an application

programmer. Nor do I want to be because I enjoy the work of a SysAdmin, which allows

for a different kind of programming. So, for the most part, contributing code to an open

source project is not a good option for me. There are other ways to contribute and I use

those options. This chapter will help you explore some of the ways in which you might

contribute.

 Project Selection
Before we discuss the different ways in which we can contribute to open source projects,

we will look at how to select a project to which we want to contribute. This may seem

daunting because of the many projects that need support of one kind or another.

My primary considerations are whether I use the software or hardware produced by

the project. For example, I use LibreOffice daily. I depend upon it and find it incredibly

useful to my productivity. So one of the projects I support is LibreOffice.

I also support high-level organizations, ones that oversee certain aspects of open

source such as the Linux Foundation, which supports and encourages the use of open

source software and which supports many different open source communities.

Pick some project that has some meaning for you and support it. But do not forget

about the “hidden” projects. Some of those projects are critical to the success of

478

open source software yet nobody knows about them and so they get no support. The

Heartbleed1 vulnerability from a few years ago is an example of this type of project.

With only one maintainer at that and a tiny budget, the OpenSSL software that is used

in virtually every Linux distribution and other operating systems as well, had a bug – a

vulnerability – that endangered every computer that used OpenSSL. This vulnerability

had been around since 20122 but had not been discovered until 2014.

The vulnerability was quickly fixed, and some organizations contributed to the

project to ensure that the developers could continue work on it and to help ensure that

no additional vulnerabilities existed in the code.

Whatever you choose, find some project that you can support and do so in some way

that makes sense to you and that is fun. It should always be fun!

 Code
Just because I choose not to contribute code to open source projects does not mean that

you should avoid it also. I know that many SysAdmins are excellent programmers and

could be very helpful to one or more of the hundreds of open source projects out there.

Without the coders, there would be no projects in the first place.

Many projects have large teams of developers and others are quite small, sometimes

with only a single developer who works on their open source project as a second,

non- paying job. Other developers work for larger organizations that pay them to code for

open source projects, usually because the organization has some specific interest in that

project. A new developer for a small project would be very welcome in most cases, but

larger projects are also very grateful to have new developers.

Different coding languages are used in different projects. Many projects are coded in

C or C++ while others use interpreted languages such as Perl, PHP, Python, Ruby, bash,

or other shell scripting languages.

Whatever your skill level, you can find a project that has plenty of tasks for you to

work on.

1 Heartbleed web site, http://heartbleed.com/
2 Wikipedia, Heartbleed, https://en.wikipedia.org/wiki/Heartbleed

Chapter 25 Support Your Favorite open SourCe projeCt

http://heartbleed.com/
https://en.wikipedia.org/wiki/Heartbleed

479

 Test
After the code is written, someone needs to test it. Testing is just as important as writing

the code is in the first place. We discussed testing in detail in Chapter 11, “Test Early, Test

Often,” assigning it a chapter to itself because of its importance.

Some projects need dedicated testers who take code as soon as it is completed by

the developer and run it through a series of formal tests. This is very similar to half of my

responsibilities when I worked at Cisco. This type of testing requires writing a formal test

plan and then systematically working through the plan. Failed tests are reported back to

the developers to fix.

You can also download and test beta versions of many common and popular

software packages. Most of these beta versions are put out to the world with the explicit

intent of eliciting bug reports – and fixes if you are so inclined. This type of testing is

usually less rigorous. The project leaders make the product available for use in the real

world and may provide some direction such as to test a specific feature. You use the

product just as you would a final version, but when you find a bug, you report it to the

project for fixing.

 Submit Bug Reports
Submitting bug reports is a very important way to support an open source project. I have

done a few of these and it is easy to do.

Most projects have well-defined and documented methods for reporting bugs.

Many projects use Bugzilla for reporting bugs and some use other tools including some

homegrown ones, or even just emails to the developers. The details of how to submit

bugs are usually found through a link on the project home page.

In this case we are not talking about beta testing as in the previous section. Here we

are using final release code that has passed all of the alpha and beta testing that could

be devised to test it. This is real world, “test in production,” type of testing; because

production is the best and final test.

When we find a bug in a production product, even though this is not part of an

official test program of any type, it is incumbent upon us to submit a bug report to the

project. Almost every project as some means of reporting bugs.

Chapter 25 Support Your Favorite open SourCe projeCt

480

Requests for more information from the developers are common so that they

might narrow down the source of the problem. These requests are important and quick

responses are very helpful. Much of the time these requests are to clarify the conditions

under which the error occurred such as the operating system version, or the amount of

free memory, swap, and disk space available at the time of the failure. In one case I was

asked by a kernel developer to install a kernel version with checkpoints designed to help

the developer locate the portion of code in which the problem existed.

Reporting bugs in production software helps to make it better for all users, not just

ourselves.

 Documentation
Documentation is an area where many of us can participate regardless of whether we

code or not. Although there are many jokes about people not reading the documentation

(RTFM), the documentation is very important.

There are different types of documentation. These range from man pages for

command-line utilities and tools, to complete online manuals for large applications

such as that for LibreOffice. LibreOffice has a series of well-written manuals that can be

downloaded as PDF files or used online with your browser.

LibreOffice also has an excellent help facility with a table of contents, an index, and a

search utility. Figure 25-1 shows the first page of the LibreOffice help facility. It has clear

directions for using it and different methods for finding information. It is one of the best

help facilities I have seen.

For those of us who like to write, creating and maintaining documentation can be an

excellent way to contribute.

Chapter 25 Support Your Favorite open SourCe projeCt

481

 Assist
Assisting others is another great way to support open source software. This type of

participation offers many different options.

One option is to participate in local meetups where open source enthusiasts discuss

the advantages of open source with people who are unfamiliar with it. In many of these

meetups, sometimes called install fests, the experienced users help the noobs install

Linux and get started with the basics. Another option is to simply introduce your friends

and family to Linux and help them get started. Some Linux users like to hang out on

various forums and IRC chat rooms to help people by answering questions.

I do this sometimes, but it is not what I do best.

Figure 25-1. The main page of the LibreOffice help facility offers multiple options
for locating information about the current application. David Both, CC-by-SA.

Chapter 25 Support Your Favorite open SourCe projeCt

482

 Teach
I like teaching. I am good at it according to the course evaluation forms I have received

over the years. Since I started as a Course Development Representative at IBM in 1978,

I have taught a lot of different courses for both hardware and software.

In the last fifteen years I have written courses on Linux and taught them for various

organizations for which I have worked. Later, when I started my own Linux consulting

company – which I closed a couple years ago – I wrote three multi-day courses that

covered everything from getting started to advanced system administration.

If you are so inclined, and you have some skills in doing presentations, teaching may

be a good fit for you. The sessions may range from an hour in length or a week.

At two of my employers I did hour-long Lunch’n’Learn sessions that were just overviews

of various parts of Linux and other open source software. At other places I did one- or

two-day classes that were intended to introduce Windows admins to some basic Linux

commands and things like filesystems.

This is one of the primary ways I have contributed – by spreading my knowledge.

I also managed to throw in a bit of mentoring and information about my Linux

Philosophy as well. Whatever you do to teach others is helping them to learn about Linux

and open source software.

 Write
I also like to write. This book is only one of my writing projects, the others being my

frequent articles for Opensource.com3 and my own web sites, especially the Linux

DataBook4 web site. The DataBook web site is my attempt to record things I have learned

that were hard to find.

The DataBook web site began life back in my days at IBM as a database of

information about OS/2.The database was designed to allow me and the other OS/2

support personnel to locate information about OS/2 quickly. I also used it to ensure

that once I had discovered how to do something, or found a particularly elusive bit of

information, that I would not have to reinvest the time spent obtaining it. It was basically

a memory aid for me. Much of that information on OS/2 also appeared as Chapter 6,

3 Opensource.com, https://opensource.com/
4 DataBook for Linux, http://www.linux-databook.info/

Chapter 25 Support Your Favorite open SourCe projeCt

https://opensource.com/
http://www.linux-databook.info/

483

“File Systems,” and Chapter 22, “Troubleshooting,” in the hardcopy book, Inside OS/2

Warp.5” After I left IBM, this information became the basis for the DataBook for OS/2,

which like its predecessor, was a memory tool for me in my independent consulting

company.

After OS/2 was dropped by IBM, I started writing two new books, The DataBook

for Linux Administrators and the DataBook for Linux Users. These two new(er)

books are collection of data about Linux, particularly about Fedora Linux, for System

Administrators and users, respectively. They contain information that I have discovered

over the years I have been using Linux and that I need to maintain for myself – again as

a memory aid. I also wanted to make this information available to everyone so I put it all

up on my web site.

I have written many articles for Opensource.com that are mostly deep dives into

some important subjects such as filesystems, various server software, desktops, and

other Linux and open source software.

Writing articles and books that help SysAdmins and others who want to be

SysAdmins is my own primary means to give back to the open source community and

also to provide some level of mentoring even if it is at somewhat of a remove from the

intended recipients.

Here again, if you are good with the written word, you may find that writing about

Linux and open source is a good way for you to help.

 Donate
Finally, most projects accept monetary donations. At first glance, this would seem to

be a rather crass, hands-off way of providing support for an open source project, but

all projects need monetary support. I have chosen three to which I contribute a bit of

money from time to time.

Because of its importance in my day-to-day work, I support LibreOffice6 with small

donations. I also support a couple of the high-level organizations. I donate to the Linux

Foundation7 because they support Linux infrastructure, they directly support Linus

5 Mark Minasi, et al, Inside OS/2 Warp, New Riders Publishing, 1995
6 LibreOffice web site, Support LibreOffice, https://www.libreoffice.org/donate/
7 Linux Foundation, Donate to The Linux Foundation, https://www.linuxfoundation.org/
about/donate/

Chapter 25 Support Your Favorite open SourCe projeCt

https://www.libreoffice.org/donate/
https://www.linuxfoundation.org/about/donate/
https://www.linuxfoundation.org/about/donate/

484

Torvalds by paying him to continue his work on the kernel, and they support other open

source communities that are important to its well-being and growth. I also donate to

the Open Source Initiative,8 which is responsible for approving various licenses and

certifying that they comply with open source principals.

There are many other open source organizations and projects that are in need of

funding. Your monetary donation can directly support the work of those who at the

forefront of the open source movement.

 Thoughts
Open source is all about contributing in one way or another. My primary contributions

have been in teaching and writing. I like doing both of those things and I am good at

them.

I am not going to list a bunch of projects here. The primary reason is that there

are too many and I would certainly miss some. Any such list printed here would be a

snapshot at a point in time – even if I could list them all – and would be obsolete before

I submitted the first draft to my publisher. I have simply listed a very few that I support at

the time of this writing.

So if you want to support a project, pick one that you are familiar with and that has

made a difference for you, locate its home page, and find out there how to contribute in

some way that makes sense for you.

Then contribute!

8 The Open Source Initiative, Donate, https://opensource.org/civicrm/contribute/
transact?reset=1&id=2

Chapter 25 Support Your Favorite open SourCe projeCt

https://opensource.org/civicrm/contribute/transact?reset=1&id=2
https://opensource.org/civicrm/contribute/transact?reset=1&id=2

485
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4_26

CHAPTER 26

Reality Bytes
We have had our heads in the clouds for most of this book. It is, after all, a book of

technical philosophy that would not normally be very practical. I just want to take this

opportunity to bring us back down to the real world before the book ends.

There is “truth” here. Reality imposes itself upon SysAdmins every day in a multitude

of ways. It is possible always to be able to follow each of the tenets previously set forth

in this book – but it is quite improbable. In the “real” world, we SysAdmins face some

incredible challenges just to get our assigned work completed. Deadlines, management,

and other pressures force us to make decisions many times a day about what to do next

and how to do it. Meetings usually waste our time – not always but usually. Finding time

and money for training is unheard of in many organizations and requires selling your

SysAdmin soul in others.

Finding the time to remember and employ the Philosophy is challenging at best. Yet

adhering to the Philosophy does pay high-value returns in the long run.

Still, reality always intrudes on the ever-so-perfect philosophical realm. Without

room for flexibility, any philosophy is merely doctrine and that is not what the Linux

Philosophy for System Administrators is about. In this chapter, we explore how some

aspects of reality affect us as System Administrators.

 People
Computers are easy – people are hard

—Bridget Kromhout

SysAdmins must work and interact with people. It can be difficult, but we do need to do

so from time to time.

One thing I have always liked about computers from the very first time I sat down at

one in 1969 was the fact that is did exactly what I told it to do when I wrote the program.

486

I could make it do anything I wanted – within its capabilities – by typing in a series of

commands that formed a program. If I wanted to change what it did, all I had to do was

change the program. Very simple.

People are not simple at all. Not only don’t I have access to their programming, they

don’t always pay attention to the programming they have – or that others think they

have. People are not at all simple. If I were the boss of everyone, they would all do it my

way and then things might be simple. But it does not work that way.

So in our striving to be the most Zen SysAdmins possible we run into people. They

are usually well meaning, even most of the PHBs. The problem is that many don’t

understand technology.

 The Micromanager
I once had a situation where someone with a position of some authority at a place I do

some volunteer work for sent me an email saying I needed to get a document up on the

web site news feed as soon as possible. They also said that the hard copy was on the

desk at the office. They wanted me to scan the hard copy and put that up as an image.

I responded that I wanted to see the file, and I could put it up before I would have a

chance to look at the hard copy.

This person responded back to me that they (meaning more than two people by now)

wanted me to see the hard copy because it was an odd size and they did not want it “to be

too big.” Whatever that meant. But, oh, by the way, they did have a copy of the PDF that

was sent to the printer. Unfortunately that PDF was not attached. To which I responded

that I do not care about the size of the hard copy because I would make it an appropriate

size for the space available on the web site news feed and please send me the PDF.

The next email I received had a copy of the PDF attached and a few words to the

effect that, if the document was too big on the web site, a lot of people would be very

upset. What?!

I did a copy and paste from the PDF to the WordPress post on the web site and added

a copy of the image they wanted on the document. It looks really good, but it will be gone

by the time you read this so I won’t tell you where to look for it.

But wait! There’s more!

So far, this has taken about three days. I could have had the document up on the

news feed twenty or thirty minutes after receiving it had they sent the PDF in the

first email.

Chapter 26 reality Bytes

487

In the interest of ensuring harmony among the people involved, I spoke to the writer

of the emails the next time we met in person, indicating that I was not thrilled with their

tone. I then briefly explained four good reasons why I was doing it the way I did and why

the use of a PDF directly on the web site was not nearly as good as using the raw text I

copied from it. I am sure you can think of multiple reasons why, so I won’t even go into

that here.

The person I spoke to looked quite perplexed at all of this and said, “I don’t

understand anything about what you just said.” I said that I was just trying to make sure

that the document looked as good as possible on the web site, and left the conversation

at that point, leaving unsaid a few things that I was thinking by then.

§

That is dealing with people. It is our reality.

I know that the people involved in this just wanted everything to look good and make

a good impression on visitors to the web site. I know that. But knowing it does not make

it easier to deal with the frustration of having multiple people trying to micromanage a

task that needed no management at all.

 More Is Less
If you can’t blind them with brilliance, baffle them with bullshit.

—W.C. Fields

I used to have this old, ugly t-shirt that had the saying above printed in very bold letters

on the front. I have heard many SysAdmins say similar things about the nontechnical

people they work with. This attitude might work for a t-shirt but it is inappropriate for a

truly professional SysAdmin.

We SysAdmins must interact with other people whether they be users, technical

professionals on other teams, our peers, or management. We need to discuss our work

with other people who have differing levels of knowledge. Knowledge is not a binary

condition; it is analog. People have a wide disparity in the amount of knowledge that

they have about computers and technology. This ranges from seemingly less than none

to very knowledgeable. Their level of knowledge is important in how we interact with

them.

One thing I have found is that, regardless of the knowledge level people have about

computers and technology, they almost always respond well when I explain things in

Chapter 26 reality Bytes

488

some detail. In this situation, I make the assumption that the person to whom I am

explaining things is smart enough to understand everything I say and that they will ask

for clarification if they do not understand something I say.

There are two different types of reaction when I do this. The first type of reaction is

from the person who really does not understand much about technology. Before I get

very far, they usually just say that they don’t understand. In this case I summarize as best

I can and let it go at that. In many cases these people are confused by what I have tried

to tell them but feel good because I have made the assumption that they deserved to be

treated as knowledgeable. This goes a long way to generating goodwill and setting the

stage for a positive experience for both of you. The second type of reaction is from people

who are knowledgeable. They appreciate that I am willing to give them the detailed

explanation but usually just want to cut to the chase fairly quickly.

This approach leaves the other person to set their own limits on the conversation.

They are free to tell us they want more or less information at any time. I find that giving

people more information means less hassle in the long run.

 Tech Support Terror
I am a people, too. When I call for tech support for my Internet connection when something

is not working, I don’t even let the first-level support person ask me the first question on

their script before I say, “I did reboot the modem. I did not reboot my computer because it

is Linux and does not need rebooted. I want to speak to the third level support.”

They hate when I call. I know they talk about me for days after I call them. And yet

when I call I have already done all of the things that they would try to have me do during

the scripted conversation with the level-one support people. I cannot stand having to

work my way up through various levels of support. It takes time away from me getting my

work done.

Yet, sometimes, they can get it fixed right away. Sometimes the person on the other

end of the conversation actually has some pertinent knowledge.

So I asked myself, “self – how do others see me when they need help from me?” The

answer was not good. I asked my wife and she did not hesitate. It was not pretty. I can be

arrogant, condescending, brusque, and a real jerk all at the same time. That is certainly

not my intent, but there it is.

For me this can be the result of frustration at something else entirely, that I was

interrupted, that I hear the same problems many times over, that I am just tired, or

Chapter 26 reality Bytes

489

whatever. All of this emotional response to whatever is happening then gets in the way of

fixing the problem.

This is my reality – in both directions. So my personal tasks are to be nicer to people

who need my help and also to the people from whom I am trying to get help.

 You Should Do It My Way
I can’t count how many times I have said in this book that there is no one right way to do

anything in Linux. I even wrote a chapter entitled, “There Is No Should,” to get the point

across.

Yet everything would be so much simpler if I just gave in to my urges and tell people

to do it my way. I just know that everything would be fine if they just did it my way. It can

be frustrating and hard to watch a new SysAdmin struggle with something that I can fix

quickly. It is very difficult for me as a mentor to let them make mistakes. I think this is the

hardest thing for me, to watch and let the young ones learn the hard way.

I learned how to do this from my flight instructor. Many years ago I took flying lessons.

I was about halfway through this process, which took several months, and I was preflighting

a Cessna 152 prior to a training flight with my instructor. I had completed the entire

checklist for the exterior and had gotten in the plane and seated myself in the left- hand

seat. I went through the checklist for the cabin and the startup checklist. Checklists are big

things for pilots. All this time, my instructor just sat in the co-pilot’s seat and watched.

At the end of the checklist, I released the parking brake and advanced the throttle

a bit. The airplane did not move. I advanced the throttle a bit more and still nothing

happened. There was only one reason this might occur. I looked out the side window

to verify that I had indeed left the chocks in place. That plane was not going to go

anywhere – that is exactly what the chocks are supposed to do.

I went through the shut-down checklist, exited the aircraft, pulled the chocks, got

back in, and went through the startup checklist for the second time. This time, the aircraft

did move freely. I taxied to the end of the runway and took off to start our training flight.

My instructor never said a word about it. She did not have to because I knew I had

missed a step on the checklist. I learned that lesson well. It was my instructor’s job to

teach me how to fly by myself and not to do things for me. How would I ever learn if she

did the things that I forgot for me? I don’t fly any longer, but when I did, I always, always

remembered to perform every item on the list and to be sure I checked that the chocks

had been pulled.

Chapter 26 reality Bytes

490

These are absolutely the best teaching moments. When you can see that the young

SysAdmin is clearly in the process of making a mistake, and you let them continue

without saying a word.

There is something else to watch for in these situations. Observe the demeanor of the

SysAdmins you are training. If they get frustrated and angry and blame you for not telling

them what they know you saw, if they blame someone else for their problems, they may

not be suitable for the job of SysAdmin.

 It’s OK to Say No
Sometimes a SysAdmin just has to say no. A flat, straight, there are no alternatives, no.

BRuce and I had to completely reject a couple projects that wanted to use our lab. Those

projects would have produced great upheaval in our smoothly running lab, destroying

the work of several other projects while they were about it.

I mean, we did explain why we could not take on those projects. We spent some time

with the engineers who proposed those projects and helped them understand why their

projects were incompatible with the work already being done in our lab. They were not

happy, but they ultimately understood why we could not do what they needed in our lab.

In both cases we suggested alternatives including building their own labs, but I have no

idea what they ultimately did.

Sometimes a strong “no” is the right answer whether it is appreciated or not.

 The Scientific Method
We have looked at using an algorithm based on the Scientific Method to perform

problem determination and resolution. It works. Your algorithm may be somewhat

different from mine, but if you are successful with it stick to it. Using some form of this

algorithm will make problem solving more rigorous and repeatable.

However, some problems are just intractable. Although they could probably be

solved given enough time and iterations of the various loops in the algorithm, it may

make more sense to start over from the very beginning. It is, after all, necessary to keep

downtime to a minimum when working in a production environment.

I have on occasion moved the hard drive from a failing system to a working one.

The way Linux deals with hardware these days using dbus and udev to automatically

Chapter 26 reality Bytes

491

add device special files in /dev makes this an easy move and the system with the

transplanted hard drive just came up and ran without a problem. Once the new system

was up and running, I could install another hard drive in the failing one and try to find

the root cause of the problem on it. In other cases, the fastest solution was to reinstall the

operating system.

Sometimes, even with having all the time I need available to me, and plenty of

Googling, I still have not been able to resolve an issue. This is another of those times that

I find it necessary to reinstall the operating system in order to go back to doing more

productive work. I dislike doing this because I may never figure out the root cause of the

problem.

Just to be clear, the Scientific Method does work. However, sometimes the need to

fix the computer and get it productive again means that we just need to suck it up and

do whatever is necessary to get it running again. If we can later figure out the root cause,

that is great and can help us in the future. If not, we can only move forward with our

curiosity unsatisfied.

 Understanding the Past
I find it both fun and informative to learn about the history of Unix and Linux. Earlier

in this book, I have referred to two books in particular that I have found helpful in my

understating of Linux and its philosophy.

Linux and the Unix Philosophy1 by Mike Gancarz has been particularly interesting

in terms of the philosophy. The second book, The Art of Unix Programming2 by Eric

S. Raymond, provides fascinating insider historical perspective on Unix and Linux

programming and history. This second book is also available in its entirety at no charge

on the Internet.3

I recommend reading both of these books if you have not already. They provide a

historical and philosophical basis for much of what I have written in this book.

1 Gancarz, Mike, “Linux and the Unix Philosophy,” Digital Press – an imprint of Elsevier Science,
2003, ISBN 1-55558-273-7

2 Eric S. Raymond, Eric S. “The Art of Unix Programming,” Addison-Wesley, September 17, 2003,
ISBN 0-13-142901-9

3 Raymond, Eric S. “The Art of Unix Programming,” http://www.catb.org/esr/writings/taoup/
html/index.html/

Chapter 26 reality Bytes

http://www.catb.org/esr/writings/taoup/html/index.html/
http://www.catb.org/esr/writings/taoup/html/index.html/

492

 Final Thoughts
This has been a fun book to write. When I first outlined the chapters, I thought that I

might not find very much to say about some of them. It seems that I really did have a lot

to say. So I will keep this last part brief.

• Computers break.

• SysAdmins fix broken computers.

• People are hard.

• SysAdmins deal with all types of people.

• Read the books I have referred to in this book. They are amazing

resources and can provide powerful insights into being a Linux

System Administrator.

• Never stop learning new things. There is so much to learn with more

every day.

• Follow the philosophy.

• Use the algorithm. It works.

And lastly, the only “should” that you should find in this book.

 < It should be fun! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

Chapter 26 reality Bytes

493
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4

 Bibliography

 Books
Binnie, Chris, Practical Linux Topics, Apress 2016, ISBN 978-1-4842-1772-6

Gancarz, Mike, Linux and the Unix Philosophy, Digital Press – an imprint of Elsevier

Science, 2003, ISBN 1-55558-273-7

Kernighan, Brian W.; Pike, Rob (1984), The UNIX Programming Environment, Prentice

Hall, Inc., ISBN 0-13-937699-2

Libes, Don, Exploring Expect, O’Reilly, 2010, ISBN 978-1565920903

Nemeth, Evi [et al.], The Unix and Linux System Administration Handbook, Pearson

Education, Inc., ISBN 978-0-13-148005-6

Matotek, Dennis, Turnbull, James, Lieverdink, Peter; Pro Linux System Administration,

Apress, ISBN 978-1-4842-2008-5

Raymond, Eric S., The Art of Unix Programming, Addison-Wesley, September 17, 2003,

ISBN 0-13-142901-9

Siever, Figgins, Love & Robbins, Linux in a Nutshell 6th Edition, (O'Reilly, 2009), ISBN

978-0-596-15448-6

Sobell, Mark G., A Practical Guide to Linux Commands, Editors, and Shell Programming

Third Edition, Prentice Hall; ISBN 978-0-13-308504-4

van Vugt, Sander, Beginning the Linux Command Line, Apress, ISBN 978-1-4302-6829-1

Whitehurst, Jim, The Open Organization, Harvard Business Review Press (June 2, 2015),

ISBN 978-1625275271

https://doi.org/10.1007/978-1-4842-3730-4

494

 Web Sites
BackBlaze, Web site, What SMART Stats Tell Us About Hard Drives,

https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/

Both, David, 8 reasons to use LXDE, https://opensource.com/article/17/3/8-

reasons-use-lxde

Both, David, 9 reasons to use KDE, https://opensource.com/life/15/4/9-reasons-

to-use-kde

Both, David, 10 reasons to use Cinnamon as your Linux desktop environment,

https://opensource.com/article/17/1/cinnamon-desktop-environment

Both, David, 11 reasons to use the GNOME 3 desktop environment for Linux,

https://opensource.com/article/17/5/reasons-gnome

Both, David, An introduction to Linux network routing, https://opensource.com/

business/16/8/introduction-linux-network-routing

Both, David, Complete Kickstart, http://www.linux-databook.info/?page_id=9

Both, David, Making your Linux Box Into a Router, http://www.linux-databook.

info/?page_id=697

Both, David, Network Interface Card (NIC) name assignments, http://www.

linux-databook.info/?page_id=4243

Both, David, Using hard and soft links in the Linux filesystem, http://www.

linux-databook.info/?page_id=5087

Both, David, Using rsync to back up your Linux system, https://opensource.com/

article/17/1/rsync-backup-linux

Bowen, Rich, RTFM? How to write a manual worth reading, https://opensource.com/

business/15/5/write-better-docs

Charity, Ops: It's everyone's job now, https://opensource.com/article/17/7/

state-systems-administration

Dartmouth University, Biography of Douglas McIlroy, http://www.cs.dartmouth.

edu/~doug/biography

DataBook for Linux, http://www.linux-databook.info/

BiBliography

https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/article/17/1/cinnamon-desktop-environment
https://opensource.com/article/17/5/reasons-gnome
https://opensource.com/business/16/8/introduction-linux-network-routing
https://opensource.com/business/16/8/introduction-linux-network-routing
http://www.linux-databook.info/?page_id=9
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=4243
http://www.linux-databook.info/?page_id=4243
http://www.linux-databook.info/?page_id=5087
http://www.linux-databook.info/?page_id=5087
https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/business/15/5/write-better-docs
https://opensource.com/business/15/5/write-better-docs
https://opensource.com/article/17/7/state-systems-administration
https://opensource.com/article/17/7/state-systems-administration
http://www.cs.dartmouth.edu/~doug/biography
http://www.cs.dartmouth.edu/~doug/biography
http://www.linux-databook.info/

495

Digital Ocean, How To Use journalctl to View and Manipulate Systemd Logs,

https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-

to-view-and-manipulate-systemd-logs

Edwards, Darvin, Electronic Design, PCB Design And Its Impact On Device Reliability,

http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-

reliability

Engineering and Technology Wiki, IBM 1800, http://ethw.org/IBM_1800

Fedora Magazine, Tilix, https://fedoramagazine.org/try-tilix-new-terminal-

emulator-fedora/

Fogel, Kark, Producing Open Source Software, https://producingoss.com/en/index.

html

Free On-Line Dictionary of Computing, Instruction Set, http://foldoc.org/

instruction+set

Free Software Foundation, Free Software Licensing Resources, https://www.fsf.org/

licensing/education

gnu.org, Bash Reference Manual – Command Line Editing, https://www.gnu.org/

software/bash/manual/html_node/Command-Line-Editing.html

Harris, William, How the Scientific Method Works, https://science.howstuffworks.

com/innovation/scientific-experiments/scientific-method6.htm

Heartbleed web site, http://heartbleed.com/

How-two Forge, Linux Basics: How To Create and Install SSH Keys on the Shell,

https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

Kroah-Hartman, Greg , Linux Journal, Kernel Korner – udev – Persistent Naming in User

Space, http://www.linuxjournal.com/article/7316

Krumins, Peter, Bash emacs editing, http://www.catonmat.net/blog/bash-emacs-

editing-mode-cheat-sheet/

Krumins, Peter, Bash history, http://www.catonmat.net/blog/the-definitive-guide-

to-bash-command-line-history/

Krumins, Peter, Bash vi editing, http://www.catonmat.net/blog/bash-vi-editing-

mode-cheat-sheet/

BiBliography

https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability
http://ethw.org/IBM_1800
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://producingoss.com/en/index.html
https://producingoss.com/en/index.html
http://foldoc.org/instruction+set
http://foldoc.org/instruction+set
https://www.fsf.org/licensing/education
https://www.fsf.org/licensing/education
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
http://heartbleed.com/
https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell
http://www.linuxjournal.com/article/7316
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/

496

Kernel.org, Linux allocated devices (4.x+ version), https://www.kernel.org/doc/html/

v4.11/admin-guide/devices.html

LibreOffice, Portable Versions, https://www.libreoffice.org/download/portable-

versions/

LibreOffice, Home Page, https://www.libreoffice.org/

LibreOffice, Licenses, https://www.libreoffice.org/about-us/licenses/

Linux Foundation, Filesystem Hierarchical Standard (3.0), http://refspecs.

linuxfoundation.org/fhs.shtml

Linux Foundation, MIT License, https://spdx.org/licenses/MIT

The Linux Information Project, GCC Definition, http://www.linfo.org/gcc.html

Linuxtopia, Basics of the Unix Philosophy, http://www.linuxtopia.org/online_books/

programming_books/art_of_unix_programming/ch01s06.html

LSB Work group - The Linux Foundation, Filesystem Hierarchical Standard V3.0, 3,

https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

Microsoft, The Windows Subsystem for Linux, https://docs.microsoft.com/en-us/

windows/wsl/about

N Sumarna, Wahyudin, and T Herman, The Increase of Critical Thinking Skills

through Mathematical Investigation Approach, Journal of Physics: Conference

Series, Volume 812, Number 1, Article 012067, http://iopscience.iop.org/

article/10.1088/1742-6596/812/1/012067/meta

Opensource.com, https://opensource.com/

Opensource.com, Appreciating the full power of open, https://opensource.com/

open-organization/16/5/appreciating-full-power-open

Opensource.com, David Both, SpamAssassin, MIMEDefang, and Procmail: Best Trio of

2017, Opensource.com, https://opensource.com/article/17/11/spamassassin-

mimedefang-and-procmail

Opensource.com, Feb 6, 2018, Power(Shell) to the people, https://opensource.com/

article/18/2/powershell-people

Opensource.com, Tag Careers, https://opensource.com/tags/careers

BiBliography

https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
https://www.libreoffice.org/download/portable-versions/
https://www.libreoffice.org/download/portable-versions/
https://www.libreoffice.org/
https://www.libreoffice.org/about-us/licenses/
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
https://spdx.org/licenses/MIT
http://www.linfo.org/gcc.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
http://iopscience.iop.org/article/10.1088/1742-6596/812/1/012067/meta
http://iopscience.iop.org/article/10.1088/1742-6596/812/1/012067/meta
https://opensource.com/
https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail
https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail
https://opensource.com/article/18/2/powershell-people
https://opensource.com/article/18/2/powershell-people
https://opensource.com/tags/careers

497

Opensource.com, What is open source?, https://opensource.com/resources/what-

open-source

Opensource.com, What is The Open Organization, https://opensource.com/open-

organization/resources/what-open-organization

The Open Source Initiative, Donate, https://opensource.org/civicrm/contribute/

transact?reset=1&id=2

Opensource.org, Licenses, https://opensource.org/licenses

opensource.org, The Open Source Definition (Annotated), https://opensource.org/

osd-annotated

OSnews, Editorial: Thoughts on Systemd and the Freedom to Choose, http://www.

osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_

Choose

Peterson, Christine, Opensource.com, How I coined the term ‘open source’,

https://opensource.com/article/18/2/coining-term-open-source-software

Petyerson, Scott K, The source code is the license, Opensource.com, https://opensource.

com/article/17/12/source-code-license

PortableApps.com, Home page, https://portableapps.com/

Princeton University, Interview with Douglas McIlroy, https://www.princeton.

edu/~hos/frs122/precis/mcilroy.htm

Raspberry Pi Foundation, https://www.raspberrypi.org/

Raymond, Eric S., The Art of Unix Programming, http://www.catb.org/esr/writings/

taoup/html/index.html/

Wikipedia, The Unix Philosophy, Section: Eric Raymond’s 17 Unix Rules,

https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond%E2%80%99s_17_

Unix_Rules

Raymond, Eric S., The Art of Unix Programming, Section The Rule of Separation,

http://www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777

SourceForge, Logwatch repository, https://sourceforge.net/p/logwatch/patches/34/

Time and motion study. BusinessDictionary.com. WebFinance, Inc.

http://www.businessdictionary.com/definition/time-and-motion-study.html

BiBliography

https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.com/open-organization/resources/what-open-organization
https://opensource.com/open-organization/resources/what-open-organization
https://opensource.org/civicrm/contribute/transact?reset=1&id=2
https://opensource.org/civicrm/contribute/transact?reset=1&id=2
https://opensource.org/licenses
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/17/12/source-code-license
https://opensource.com/article/17/12/source-code-license
https://portableapps.com/
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.raspberrypi.org/
http://www.catb.org/esr/writings/taoup/html/index.html/
http://www.catb.org/esr/writings/taoup/html/index.html/
https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond’s_17_Unix_Rules
https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond’s_17_Unix_Rules
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777
https://sourceforge.net/p/logwatch/patches/34/
http://www.businessdictionary.com/definition/time-and-motion-study.html

498

Understanding SMART Reports, https://lime-technology.com/wiki/Understanding_

SMART_Reports

Unnikrishnan A, Linux.com, Udev: Introduction to Device Management In Modern

Linux System, https://www.linux.com/news/udev-introduction-device-

management-modern-linux-system

Venezia, Paul, Nine traits of the veteran Unix admin, InfoWorld, Feb 14, 2011,

www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-

276?page=0,0&source=fssr

Wikipedia, Alan Perlis, https://en.wikipedia.org/wiki/Alan_Perlis

Wikipedia, Christine Peterson, https://en.wikipedia.org/wiki/Christine_Peterson

Wikipedia, Command Line Completion, https://en.wikipedia.org/wiki/Command-

line_completion

Wikipedia, Comparison of command shells, https://en.wikipedia.org/wiki/

Comparison_of_command_shells

Wikipedia, Dennis Ritchie, https://en.wikipedia.org/wiki/Dennis_Ritchie

Wikipedia, Device File, https://en.wikipedia.org/wiki/Device_file

Wikipedia, Gnome-terminal, https://en.wikipedia.org/wiki/Gnome-terminal

Wikipedia, Hard Links, https://en.wikipedia.org/wiki/Hard_link

Wikipedia, Heartbleed, https://en.wikipedia.org/wiki/Heartbleed

Wikipedia, Initial ramdisk, https://en.wikipedia.org/wiki/Initial_ramdisk

Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson

Wikipedia, Konsole, https://en.wikipedia.org/wiki/Konsole

Wikipedia, Linux console, https://en.wikipedia.org/wiki/Linux_console

Wikipedia, List of Linux-supported computer architectures, https://en.wikipedia.

org/wiki/List_of_Linux-supported_computer_architectures

Wikipedia, Maslow’s hierarchy of needs, https://en.wikipedia.org/wiki/Maslow%27s_

hierarchy_of_needs

Wikipedia, Open Data, https://en.wikipedia.org/wiki/Open_data

BiBliography

https://lime-technology.com/wiki/Understanding_SMART_Reports
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
https://en.wikipedia.org/wiki/Alan_Perlis
https://en.wikipedia.org/wiki/Christine_Peterson
https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Gnome-terminal
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Initial_ramdisk
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Konsole
https://en.wikipedia.org/wiki/Linux_console
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
https://en.wikipedia.org/wiki/Open_data

499

Wikipedia, PHP, https://en.wikipedia.org/wiki/PHP

Wikipedia, PL/I, https://en.wikipedia.org/wiki/PL/I

Wikipedia, Programma 101, https://en.wikipedia.org/wiki/Programma_101

Wikipedia, Richard M. Stallman, https://en.wikipedia.org/wiki/Richard_Stallman

Wikipedia, Rob Pike, https://en.wikipedia.org/wiki/Rob_Pike

Wikipedia, rsync, https://en.wikipedia.org/wiki/Rsync

Wikipedia, Rxvt, https://en.wikipedia.org/wiki/Rxvt

Wikipedia, Semantics, https://en.wikipedia.org/wiki/Semantics

Wikipedia, SMART, https://en.wikipedia.org/wiki/SMART

Wikipedia, Software testing, https://en.wikipedia.org/wiki/Software_testing

Wikipedia, Terminator, https://en.wikipedia.org/wiki/Terminator_(terminal_

emulator)

Wikipedia, Time and motion study, https://en.wikipedia.org/wiki/Time_and_

motion_study

Wikipedia, Transistor count, https://en.wikipedia.org/wiki/Transistor_count

Wikipedia, Tony Hoare, https://en.wikipedia.org/wiki/Tony_Hoare

Wikipedia, Unit Record Equipment, https://en.wikipedia.org/wiki/Unit_record_

equipment

Wikipedia, Unix, https://en.wikipedia.org/wiki/Unix

Wikipedia, Windows Registry, https://en.wikipedia.org/wiki/Windows_Registry

Wikipedia, Xterm, https://en.wikipedia.org/wiki/Xterm

WikiQuote, C._A._R._Hoare, https://en.wikiquote.org/wiki/C._A._R._Hoare

WordPress, Home page, https://wordpress.org/

BiBliography

https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/PL/
https://en.wikipedia.org/wiki/Programma_101
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/wiki/Rsync
https://en.wikipedia.org/wiki/Rxvt
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/SMART
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator
https://en.wikipedia.org/wiki/Time_and_motion_study
https://en.wikipedia.org/wiki/Time_and_motion_study
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Unit_record_equipment
https://en.wikipedia.org/wiki/Unit_record_equipment
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Xterm
https://en.wikiquote.org/wiki/C._A._R._Hoare
https://wordpress.org/

501
© David Both 2018
D. Both, The Linux Philosophy for SysAdmins, https://doi.org/10.1007/978-1-4842-3730-4

Index

A
Anacrontab file, 183, 189, 191
ASCII, 73, 102, 130, 156, 195, 201,

257, 259, 268, 270–271, 294,
309, 356, 373

ASR 33, 420

B
Backblaze

study of hard drive failure rates, 403
Backup

cloud, 413
off-site, 413–414
procedures, 412
recovery testing, 412
shell script, 405

Bash
configuration files

~/.bash_history file, 140
~/.bashrc, 135, 270, 371
/etc/bashrc, 135, 260, 263

global configuration, 265–268
history, 139, 223
sourcing files, 263
tab completion, 137–138
user configuration, 268–270

Binary
executable, 373

Bogdanovic, D., 57

Book
The Art of Unix Programming,

3–4, 335, 491
Linux and the Unix Philosophy,

3–4, 491
The Open Organization, 319
Producing Open Source Software, 319
The Unix Philosophy, 3, 27

Boot record, 34–36, 60, 74–75, 77–78
Bourne again shell, 110, 118
Bowen, R., 382
BRuce, 461, 466–467, 476, 490
Bug reports, 479–480

C
Chase, T., 56
Cisco, 5, 218, 223, 327, 335, 461, 464, 479
Classroom, 167, 422, 443, 463, 465
Code sharing, 201, 318–319
Command-line

history, 143
interfaces, 12, 110–111
recall and editing, 139

Command-line interface (CLI), 10, 12, 31,
33, 44, 78, 82, 85, 87, 109–130, 134,
137, 145, 182, 198–200, 340, 354

Command list
adventure, 357
alias, 134–135, 263

https://doi.org/10.1007/978-1-4842-3730-4

502

awk, 56, 258
bash, 10, 15, 21, 46, 70, 104, 110, 118,

120–121, 127, 129–130, 136, 139,
143, 145, 166–167, 180, 183, 185,
189, 198–199, 201, 204, 211, 222,
226, 231, 251, 255, 262, 265, 270,
272, 293, 298–299, 303, 306,
308–309, 317, 321, 342, 371, 373,
383, 385, 392, 406, 422, 478

case, 208, 211, 233, 364, 367
cat, 64, 70, 73, 182, 258
cd, 86, 338
chmod, 307
cowsay, 357–359
curl, 56
cut, 97
dd, 33–38, 70, 73–75, 77–78, 277
deborphan, 341
df, 47, 474
dmesg, 20, 32, 151, 157
dmidecode, 235–236, 238, 356
dnf, 104, 147, 167, 202, 249, 341, 365
do, 90
e2label, 404
echo, 67, 141–144, 196, 358, 364
egrep, 55
emacs, 143–145, 183, 258–259, 379
exit, 187, 196
fdisk, 76–77, 287, 333
find, 344–347, 349, 355, 412
for, 129, 138, 371, 379, 480
fortune, 357–359
free, 90, 92, 211, 234, 305, 474
grep, 49, 155, 160, 236, 258–259,

305, 428
history, 119, 139–140
journalctl, 156–157, 160

ksh, 109–110, 118–119, 298, 342
logwatch, 426
ls, 65, 90, 119, 122, 135, 347, 360
lvscan, 276
mandb, 170
mkfs, 35
mount, 10
od, 49, 69, 72
ps2ascii, 271
rpmorphan, 339–341
rsync, 254, 405–409, 411–412
scp, 294
screen, 114, 121–123
sed, 199, 258
sestatus, 99
set, 166, 223
smartctl, 96, 398, 400
sort, 55, 199
stat, 344
su, 378
sudo, 375–376, 379
systemctl, 147
tail, 155, 160, 187
tar, 277, 405
text2pdf, 130
touch, 344–345
umount, 291
uniq, 199
vim, 135, 183, 196, 258–259, 379
w, 289
which, 138, 248–249
who, 199
who am i, 67
yes, 30–31
zsh, 109, 118–119, 298

Command prompt, 75, 110–111, 119, 122,
144, 262

Comments, 250, 384, 386–387

Command list (cont.)

Index

503

Console
virtual, 18, 29, 34, 66–67, 87, 100,

109–110, 114–115, 117, 130,
225, 404

Cron
cron.d, 149, 183, 186, 188–189
crond, 183, 186, 188
crontab, 183–186, 190–191, 371
scheduling tips, 190

Cruft
cleaning

code in scripts, old, 342–343
files, old, 343–347, 349–350
packages, 366
programs, old or unused, 338–342

Customer Engineer (CE), 133, 163, 330,
382, 420, 471

Cygwin, 298–299

D
Data

center, 13, 329–330, 391
loss, 395–397
open formats, 8, 257–272, 294, 393
streams, 27–40, 43–59, 64, 71–72, 127,

130, 257–258, 301, 333, 355
DEC VT100, 111
Developers, 3–4, 73, 102, 112, 125, 190,

195, 197, 201, 296, 318, 322, 332,
335, 369, 374, 381, 383, 385, 393,
457–459, 461, 478–479

Device
data flow, 63–64
disk, 63, 65
special file

null, 71
pts, 67–68, 117

random, 71
tty2, 66–67
tty3, 67
urandom, 71
zero, 71

DevOps, 4–5, 9, 197, 457
DiDomenico, M., 55
Directory

date sequence, 136
Disaster recovery

plan, 293, 414
services, 414–415

Diversity, 313, 456–457
Documentation

philosophy, 383–388
process, 387–388
template, 389–391

E
Editor

emacs, 143–145, 183, 258–259, 371, 379
favorite, 100, 187, 209, 228, 267, 269,

371–379
vi, 143–145, 183, 259, 371
vim, 135, 183, 259, 371, 379

Edwards, D., 328
Elegance

computer, 329
hardware, 327–331
power and grounding, 330–331
software, 331–336

End user license agreements (EULA), 295

F
Fail2ban, 52–53, 434–438
Fields, W.C., 487

Index

504

File
compatibility, 393–394
cpuinfo, 89–90
device, 10, 20, 28, 31–32, 40, 44, 60–71,

73–74, 76–77, 83, 112, 117, 276
device special, 60, 63–64, 69, 71, 278,

287, 290, 299, 368, 398, 491
driver, 63
format

ASCII text, 201, 257, 259, 270–272
binary, 35, 84, 146, 201, 257–258, 294
closed, 258
open, 270

handles, 28
meminfo, 90, 92, 242
naming, 136
sudoers, 375–379
timestamps

atime, 344–345
ctime, 344–345
mtime, 344

Filesystem
definition, 81–82
directory structure, 86, 101

/dev, 20, 31–34, 36, 38–40, 51, 59–61,
64–74, 76, 83, 112, 117, 275–278,
299, 368, 398, 491

/etc, 62–64, 83, 100–103, 135, 143,
145, 149, 161, 182, 183, 185–189,
225, 258, 260–263, 266, 279, 282,
283, 286, 290, 371, 373, 377, 424,
434

/etc/cron.daily, 161, 189, 424
/home, 83, 86, 229, 274, 276–277,

279–281, 285–287, 290–291, 301,
403–404, 411, 454

/mnt, 10, 20, 32–33, 84–85, 277–278

/opt, 84, 86, 102, 280–281, 283, 475
/proc, 79, 84, 87–90, 92–94, 97–99,

151, 239, 242
/ (root), 86–87, 102, 277
/sys, 84, 87, 93–95, 97–99
/tmp, 33, 74, 84, 86–87, 102, 187,

276, 280, 284–285, 412
/usr, 62, 84–86, 103, 149, 180–182,

189, 249, 276, 280, 282–283, 285,
354, 357

/usr/local/bin, 103, 180–182, 189,
249, 282

/usr/local/etc, 103, 182, 282
/var, 83, 84, 86, 102, 103, 146–150,

152, 154–156, 183, 186, 276, 280,
281, 283–285, 301, 304, 337, 454,
474

full, 102, 474
Linux, 81, 83, 85, 101, 278, 294
separate for data, 273–291
types

BTRFS, 82
EXT3, 82, 280, 396
EXT4, 82, 273, 280, 286–287, 289,

396, 404
FAT32, 287
VFAT, 280, 287–288
XFS, 82, 273, 280

Filesystem Hierarchical Standard (FHS),
81–104, 180, 182, 249, 280–282, 337

Filter, 43, 46, 434, 437–438
Firewall, 6, 53, 93, 390, 423–424, 430,

432–434, 436–437, 439–440, 442
Firszt, P., 56
Fogel, K., 319
Free Libré Open Source Software

(FLOSS), 12

Index

505

Free open source software, 17, 53
Free Software Foundation, 230, 386

G
Gancarz, M., 3, 491
GE-600, 420
GNU

GCC, 296
GNU/Linux, 9, 124, 353
GUI

desktop
Cinnamon, 115, 375
GNOME, 115, 124, 168, 374
KDE, 115, 124, 168, 298, 338, 342,

354, 374–375, 454
LXDE, 115, 375

H
Hall, J. (Maddog), 316
Hard drive

crashes, 273–274, 292, 413
Hardware

architecture, 225, 294, 356
Heartbleed vulnerability, 478
Help

facility, 202–203, 229, 383–384, 480–481
option (-h), 47, 209–210, 226, 229,

383–384
Hierarchy

Linux Philosophy for SysAdmins, 8
of needs, 7

Hiring
hands-on test, 464
right people, 464–465

Host
naming, 255–256

Hotplug, 60
HTML, 300–304, 382

I
IBM

Customer Engineer, 133, 382
General Systems Division, 420–421
1401 mainframe, 356, 420
PC

training course, 420–421
PC Help Center, 421
1403 printer, 128, 471
1800 process control

computer, 382
System/3, 471–472
Typewriter division, 420
Z series mainframe, 293–294

Intel
8088, 367
Core i7, 367

Interface
captive user, 125
non-restrictive, 125, 127–130
restrictive, 12, 125

IPTables, 53, 93, 434

J
Junior, Teresa e, 55

K
Keyboard, video display, and mouse

(KVM), 113–114
Kickstart, 169
Konsole, 63, 67, 109, 115–117, 124
Kroah-Hartman, G., 62
Kromhout, B., 485

Index

506

L
Languages

compiled, 195, 200, 215, 293, 295
interpreted, 478
scripting, 293, 295, 299, 308, 478
shell, 195

LibreOffice, 59, 68, 124, 168, 297, 311, 316,
324, 338, 341, 354, 382, 389, 477,
480–481, 483

Linux
command line, 9–11, 17–18, 44, 110,

259, 333
directory tree, 81, 87, 279
distribution

CentOS, 17, 57, 62, 114, 168,
279–280, 282, 382, 437, 442

Fedora, 17, 21, 57, 62, 65, 86, 99,
114, 131, 140, 146, 149, 168–169,
236, 260, 275, 278–282, 285, 299,
321, 338, 357, 361, 374, 382, 424,
437–438, 442, 483

Red Hat, 99, 114, 128–129, 221, 262,
279, 285, 293, 319, 324, 422, 438,
440

RHEL, 17, 382, 422
installation, 110, 169, 279, 299, 461
startup

systemd, 92, 149–151, 156, 158, 160,
163, 276, 372–373, 379

SystemV, 156, 372–374, 379
unified directory structure, 86–87

List of operators
#!, 180
|, 45
||, 104, 358–359, 492
&, 202
1>, 51, 302–307

2>, 51
>, 47
>>, 48, 141
<, 49

List of scripts and configuration files
created or used as examples

doit, 182, 185–186, 193
doUpdates, 171, 180–182, 185,

 202–203
index.cgi, 303–306
index.html, 301–302
mymotd, 228, 236, 245, 248–249, 251,

298, 391
perl.index.cgi, 306
postinstall.sh, 424
rsbu, 185, 252, 409, 411–412, 415
rsbu.conf, 412
script.template.sh, 204–205, 209
sudoers, 375–379
test1, 51, 196, 304, 306
test1.sh, 209–210, 228

Listserv, 125
Log files

following, 155–156
maillog, 149
messages, 150, 156
secure, 152, 154

Logical Volume Management (LVM)
volume

group, 87, 404
physical, 225, 404

Login
failure, 53, 428
success, 427

Logrotate, 146, 183
Logwatch, 52, 131, 154, 160, 162–163, 183,

424–433, 435, 440

Index

507

M
Mackerras, P., 406
Man pages, 21, 72, 118, 125, 137, 149,

160, 170, 191, 227, 235, 282, 340,
359–360, 388, 409, 475, 480

Maslow, 7
Master Boot Record (MBR), 74–77, 79
McIlroy, D., 27, 44
Mentor

BRuce, 461, 466, 476
Message of the day (MOTD), 183,

225–226
Microsoft

PowerShell, 299
Windows, 296–300, 308, 450, 482, 489
Windows Subsystem for Linux

(WSL), 300
Midnight Commander (mc), 167, 338
MySQL, 84, 259, 284, 337–338

N
Network Time Protocol (NTP), 6, 102, 183,

260, 442
New math, 447

O
Olivetti Programma 101, 419
Open data, 258, 272
Open Document Format (ODF), 394
Open source

definition, 311
GPL2, 204, 215
initiative, 316, 319, 484
license, 6, 201, 204, 312–317,

320–321, 323
project, 8, 58, 319–320, 322, 459

software, 258, 283, 312–324, 336, 393,
406, 434, 446–447, 459, 477, 481–483

Opensource.com, 52, 54, 57, 316, 319, 382,
423, 438, 441, 445–446, 456,
482–483

Opensource.org, 311, 315, 324
Operating system

distributions
CentOS, 17, 57, 62, 114, 168,

279–280, 282, 382, 437, 442
Fedora, 17, 21, 57, 62, 65, 86, 99,

114, 131, 140, 146, 149, 168, 236,
260, 275, 278–280, 282, 285, 299,
321, 338, 357, 361, 374, 382, 424,
437–438, 442, 483

Raspbian, 17
RHEL, 17, 382, 422
Ubuntu, 17, 376–378

flexibility, 292

P, Q
Packages

orphan, 339, 341
RPM, 129, 167–168, 249, 339, 366, 379

Partition, 19–20, 31–39, 44, 61, 66, 74,
76–77, 79, 82–83, 86, 225, 273–274,
277–280, 285–289

Perl
CGI scripts, 221, 259, 303, 306–307, 309

Peterson, C., 316
Philosophy

Linux, 4, 6–8, 10, 12–14
Unix, 3, 27, 44, 201, 247, 355, 491
Unix and Linux, 3–4, 11, 353, 449–450,

491
Pike, R., 379
Pipe, 28–29, 31, 36, 43–47, 72, 345, 358

Index

508

Pipeline
pipeline challenge, 52–58

Pointy-Haired-Bosses (PHB), 4, 8, 125,
128–130, 132, 192, 198, 318, 350,
381, 392, 457–458, 463–464, 466, 486

Portability, 127–128, 293, 295–302,
304–309

Power
unleashing vs. harnessing, 446–447

PowerShell, 299
Present working directory (PWD), 20, 31,

93, 110, 137, 150, 155, 186–187,
209, 229, 266, 270, 290, 347, 360

Problem
determination, 150, 155, 394, 468,

471–472, 490
resolution, 338, 468, 490

Problem solving
five steps

action, 473
knowledge, 469
observation, 469–471
reasoning, 472
test, 473

symptom-fix, 457
using scientific method, 469

Procedure
naming, 256

Processor
AMD, 17, 226, 294
Intel, 17, 236

Procmail, 52, 438
Puppet, 169

R
Random

randomness, 39–40, 71–74, 222, 452

Raspberry Pi, 6, 17, 294, 442
Raymond, E.S., 3, 316–317, 322, 335,

340, 491
Reason

abductive, 453–455
deductive, 451–454
inductive, 451–453
integrated, 450, 453–455, 462

Red Baron, 382–383
Redirection, 28, 40, 43–44, 47–52, 56, 64,

71, 73, 79, 141–142, 225, 303–304,
306–307, 355

Repository
EPEL, 57, 437
Fedora, 57, 437

Requirements, 10–11, 17, 54, 57–58, 64,
171, 197–198, 201, 203, 214–215,
218, 220, 225–227, 244, 314–315,
320–321, 327, 329–330, 360, 405,
446

Ritchie, D., 3, 112, 353
Rodríguez, V.O., 55
Rootkit hunter (rkhunter), 52, 183, 439
RPM, 104, 129, 147, 167–169, 249, 339,

366, 379
Rsync

directory synchronization, 409
options

--delete, 407
--exclude, 408
--link-dest, 407

using for backups, 254, 409
Rule of Separation, 322, 340

S
SATA, 65, 367–369, 404
Satellite Server, 169

Index

509

Scientific Method, 449, 467–468,
490–491

Script kiddies, 433
Secure Shell (SSH), 6, 18, 53, 55, 87,

121–122, 181, 260, 274, 284, 409,
430, 437, 439–440

Self-Monitoring, Analysis and Reporting
Technology (SMART), 396

failure rates, 403
High_Fly_Writes, 401
Reallocated_Sector_Ct, 401
Reported_Uncorrect, 401
reports, 398
self-assessment test, 399

SELinux, 84, 99–101, 440
Shebang, 195–197, 204
Shell

Bash, 136–145, 242, 267–268, 306–307
Korn (ksh), 109–110, 118–119, 140, 195,

298, 342
program, 8, 84, 103–104, 118, 127–128,

136, 165–167, 195, 198, 200–201,
294, 297, 334, 358

scripts
comments, 210
doit, 182, 185–186, 193
doUpdates, 171, 180–182, 185,

202–203
maintenance, 252, 386
myfree, 187
mymotd, 228, 236, 245, 248–249,

251, 298, 391
naming, 248
postinstall.sh, 424
as prototypes, 202
rsbu, 185, 252, 409, 411–412, 415
script.template.sh, 204–205, 209
sourcing fragments, 262–263

test1.sh, 209–210, 228
secure, 181
tcsh, 118–120, 298
Z, 118–120
zsh, 109, 118–119, 298

Silo (organizational), 460–461
Solaris, 371, 421
Speed

development, 198–199
performance, 199–200

Spock, 446
Standard Input/Output (STDIO), 7, 27–28,

34, 43, 44, 46, 47, 58, 64, 125, 127,
156, 332, 333, 359, 369

STDERR, 28, 48, 50–52, 225, 278
STDIN, 28–29, 43, 49, 73, 357–358
STDOUT, 28–29, 40, 43, 47–48, 50–52,

56, 121, 161, 181, 211, 225, 233,
278, 333, 357, 424

State of North Carolina, 128
Stream

data, 7, 27–58
standard, 64, 355
text, 27–28

sudo
bypass, 376–378

System Activity Report
(SAR), 146–150, 454

System Administrators (SysAdmins), 3–5,
7, 10, 219, 256, 258, 317, 353, 369,
371, 375–376, 383, 394, 422, 446,
474, 483, 485, 492

grumpy, 466
lazy, 104, 127, 131–163, 165, 185, 192,

200, 247, 293, 371, 378, 458
productivity, 132

systemd, 149–151, 156–160, 163, 276,
372–373, 379

Index

510

T
Tar

tarball, 277, 289, 294, 406
Teletype

ASR 33, 420
Template

documentation, 389–392
script, 203, 215, 220, 224, 226, 232, 343,

383, 385
Tenets

always use shell scripts, 195–215
automate everything

coffee machine, 192
working from home, 192
working late, 192

follow your curiosity, 417–443
test early, test often, 217–245
there is no should, 445–461
use Linux FHS, 81–104

Terminal
console, 17, 18, 29, 33, 66–67, 113–114,

122, 284, 378, 383
dumb, 111–112, 114
emulator

Konsole, 63, 67, 109, 115–117, 124
rxvt, 116
Terminator, 116
Tilix, 18, 67, 109, 116–117, 124
xterm, 63, 67, 116, 262

pseudo, 44, 63, 67, 117
session, 20, 29, 34, 45, 50, 65, 69,

121–122, 144, 166–167, 181, 209,
228–229, 278, 308

teletype (tty), 64–67, 112, 420
Testing

automated, 223
final, 218, 220, 222, 479

fuzzy, 219, 222–223, 230
in production, 221–222, 227, 245, 479

Test plan
content, 219
for mymotd script, 228
sample, 219

Thinking
critical, 447–450, 462, 465

Thompson, K., 3, 28, 112
Thousand (K) Lines of Code (KLOC)

keystrokes per, 457
Tilix, 18, 67, 109, 116–117, 124
Time sharing, 112, 419
Transformer, 28–29, 43–47, 58, 65
Tridgell, A., 406

U
Udev, 60–63, 66, 276, 368, 490
Universal Interface, 27–28
Unix, 3, 4, 11, 27–28, 44, 60, 64, 85, 110–

113, 118, 124, 127, 149, 201, 231,
247, 255, 293, 296–299, 316, 317,
333, 335, 353–355, 357, 360, 379,
380, 393, 421, 422, 449, 460, 462,
463, 466, 491

Updates, 3, 19, 85, 90, 102, 104, 165,
168–169, 171, 181–185, 191, 197,
202, 275, 308, 374, 389, 393, 406,
411–412

USB
bus, 97
external backup drive, 275
thumb drive

prepare, 15, 19–20
User

root, 36, 209, 376, 378
student, 19, 45, 228, 231, 269, 286, 291

Index

511

Utilities
core, 29, 44, 92, 97–98, 101, 118, 124–125,

136–137, 200, 248, 333, 355
GNU, 247, 298, 306, 316

V
Variables

content, 250–251
naming, 180, 200, 250–251, 255, 334,

362
Virtual machine (VM), 16–17, 31, 61, 66,

68, 94–95, 99, 109, 129, 150, 167,
186, 199, 225, 235–238, 260, 275,
279, 286–287, 300, 339, 354, 364,
376–377, 405

W
Whitehurst, J., 319
Windows

closed, 13
WordPress, 308–309, 316, 324, 336–338,

486
The Wrath of Kahn, 446

X
Xterm, 63, 67, 116, 262

Y, Z
Yoga

finding your center, 455–456

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Introduction
	Chapter 1: Introduction to the Linux Philosophy
	Am I a SysAdmin?
	The Structure of the Philosophy
	Who Should Read This Book
	But I Don’t Meet Those Requirements
	Who Should Not Read This Book

	The Linux Truth
	Restrictive Operating Systems
	Linux Is Open and Free
	Real Knowledge
	Enlightenment

	Chapter 2: Getting Ready
	The Experiments
	System Requirements
	How to Access the Command Line
	Create the Student User
	Preparing the USB Thumb Drive

	What to Do if the Experiments Do Not Work

	Part II: Foundation
	Chapter 3: Data Streams
	Text Streams – A Universal Interface
	STDIO File Handles
	Generating Data Streams
	Test a Theory with Yes
	Exploring the USB Drive
	Streams of Randomness
	Summary

	Chapter 4: Transforming Data Streams
	Data Streams as Raw Materials
	Pipe Dreams
	Building Pipelines
	Redirection
	Redirecting STDERR

	The Pipeline Challenge
	The Problem
	The Solutions
	First Entry with Solution
	Shortest Solutions
	Most Creative Solution
	Extra Credit Solution

	Thoughts on the Solutions

	Summary

	Chapter 5: Everything Is a File
	What Is a File?
	Device Files
	Device File Creation

	udev Simplification
	Naming Rules

	Device Data Flow
	Device File Classification
	Fun with Device Files
	Randomness, Zero, and More
	Back Up the Master Boot Record
	Implications of Everything Is a File
	Summary

	Chapter 6: Using the Linux FHS
	Definitions
	The Standard
	Using a Well-Defined filesystem Structure
	Linux Unified Directory Structure
	Special filesystems
	The /proc filesystem
	The /sys filesystem
	SELinux

	Problem Solving
	Using the filesystem Incorrectly
	Email Inboxes
	Adhering to the Standard
	Where Does This File Go?

	Summary

	Part III: Function
	Chapter 7: Embrace the CLI
	Defining the Command Line
	CLI Terminology
	Command Prompt
	Command Line
	Command-Line Interface
	Terminal
	Console
	Virtual Console
	Terminal Emulator
	Pseudo Terminal
	Session
	Shell
	Secure Shell (SSH)
	Screen

	The GUI and the CLI
	Non-Restrictive Interface
	The Mailing List
	Solution Tenets

	Baffle Them with Big Data

	CLI Power

	Chapter 8: Be a Lazy SysAdmin
	Preparation
	True Productivity
	Preventative Maintenance
	Minimize Typing
	Aliases
	Other Typing Shortcuts

	File Naming
	BASH Efficiency
	Completion Facility
	Command-Line Recall and Editing
	History
	Using the History

	Logs Are Your Friend
	SAR
	Mail Logs
	messages
	dmesg
	secure
	Following Log Files

	systemd Logs
	logwatch
	Success as a Lazy SysAdmin

	Chapter 9: Automate Everything
	Why I Use Scripts
	How I Got Here
	Scripting Repetitive Tasks
	Making It Easier
	From Desirable to Necessity

	Updates
	Additional Levels of Automation
	Using cron for Timely Automation
	crontab
	cron.d
	anacron
	Scheduling Tips
	Thoughts About cron
	cron Resources

	Other Automation Possibilities
	Some Alt Ideas

	Deepening the Philosophy

	Chapter 10: Always Use Shell Scripts
	Definition
	The SysAdmin Context
	Requirements
	Development Speed
	Performance Speed
	Variables
	Testing
	Open and Open Source

	Shell Scripts as Prototypes
	Process
	Quick and Dirty
	Planning and Foresight
	Template
	The Code

	Final Thoughts

	Chapter 11: Test Early, Test Often
	Procedures
	Create a Test Plan
	Test Plan Content

	Start Testing at the Beginning
	Final Testing
	Testing in Production

	Fuzzy Testing
	Automated Testing
	Trying It Out
	Requirements for MOTD Script
	Test Plan for MOTD Script
	Developing the Script
	The Basics

	Add Sanity Checks
	Version Number
	Main Body

	Fixing a Script
	Summary

	Chapter 12: Use Commonsense Naming
	Script and Program Names
	Variables
	Naming Variables
	Make Everything a Variable

	Procedures
	Hosts
	Organizational Naming
	Summary

	Chapter 13: Store Data in Open Formats
	Closed Is Impenetrable
	Open Is Knowable
	Flat ASCII Text
	System Configuration Files
	Global Bash Configuration
	User Configuration Files
	ASCII Rocks

	Final Thoughts

	Chapter 14: Use Separate filesystems for Data
	Why We Need Separate filesystems
	Hard Drive Crashes
	Full filesystems

	Laptop Lament
	Data Security
	Recommendations
	/boot
	/home
	/usr
	/opt
	/var
	/tmp
	The Other Branches

	Starting with Separate filesystems
	Adding Separate filesystems Later
	Final Thoughts

	Chapter 15: Make Programs Portable
	Intel PC to Mainframe
	Architectures
	Portability Restrictions
	Licensing
	Technology
	Compilers and Code

	LibreOffice

	Shell Scripts
	Portability with Windows
	Cygwin
	PowerShell
	Windows Subsystem for Linux

	The Internet and Portability
	Creating Web Pages
	Static Content
	Dynamic Web Pages for a New Job
	Using Perl
	Using BASH

	CGI – Open and Portable
	WordPress

	Final Thoughts

	Chapter 16: Use Open Source Software
	Definition of Open Source
	The Open Source Definition (Annotated)
	Introduction
	1. Free Redistribution
	2. Source Code
	3. Derived Works
	4. Integrity of The Author's Source Code
	5. No Discrimination Against Persons or Groups
	6. No Discrimination Against Fields of Endeavor
	7. Distribution of License
	8. License Must Not Be Specific to a Product
	9. License Must Not Restrict Other Software
	10. License Must Be Technology-Neutral

	Why This Is Important
	Coining the Term
	Licensing Our Own Code
	Organizational Code Sharing
	Silos Suck
	Open Organizations and Code Sharing
	Things to Avoid

	Code Availability
	How Do I Share My Code?
	Code Sharing Considerations
	Confidentiality
	Providing Support

	Parting Thoughts

	Part IV: Becoming Zen
	Chapter 17: Strive for Elegance
	Hardware Elegance
	The PCB
	Motherboards
	Computers
	Data Centers
	Power and Grounding

	Software Elegance
	Fixing My Web Site
	Removing Cruft
	Old or Unused Programs
	Old Code in Scripts
	Old Files

	A Final Word

	Chapter 18: Find the Simplicity
	Complexity in Numbers
	Simplicity in Basics
	The Never-Ending Process of Simplification
	Simple Programs Do One Thing
	Simple Programs Are Small
	Simplicity and the Philosophy
	Simplifying My Own Programs

	Simplifying Others’ Programs
	Uncommented Code

	Hardware
	Linux and Hardware
	The Quandary
	The Last Word

	Chapter 19: Use Your Favorite Editor
	More Than Editors
	Linux Startup
	Why I Prefer SystemV
	Why I Prefer systemd
	The Real Issue

	Desktop
	sudo or Not sudo
	Bypass sudo
	Valid Uses for sudo

	A Few Closing Words

	Chapter 20: Document Everything
	The Red Baron
	My Documentation Philosophy
	The Help Option
	Comment Code Liberally
	My Code Documentation Process

	Man Pages
	Systems Documentation
	System Documentation Template

	Document Existing Code
	Keep Docs Updated
	File Compatibility

	A Few Thoughts

	Chapter 21: Back Up Everything – Frequently
	Data Loss
	Backups to the Rescue
	The Problem
	Recovery

	Doing It My Way
	Backup Options
	rsync
	Performing Backups
	Recovery Testing

	Off-Site Backups

	Disaster Recovery Services
	Other Options
	What About the “Frequently” Part?
	Summary

	Chapter 22: Follow Your Curiosity
	Charlie
	Curiosity Led Me to Linux
	Curiosity Solves Problems
	Securiosity
	Logwatch
	IPTables
	fail2ban
	Finding the Sources
	Collecting the Emails
	procmail
	rkhunter
	SSH

	Follow Your Own Curiosity
	Be an Author
	Failure Is an Option
	Just Do It

	Summary

	Chapter 23: There Is No Should
	There Are Always Possibilities
	Unleashing the Power
	Problem Solving
	Critical Thinking
	Reasoning to Solve Problems
	Deductive Reason
	Inductive Reason
	Reason Fails
	Abductive Reason

	Integrated Reason

	Self-Knowledge
	Finding Your Center

	The Implications of Diversity
	Measurement Mania
	The Good Manager
	Working Together
	Silo City
	The Easy Way

	Thoughts

	Chapter 24: Mentor the Young SysAdmins
	Hiring the Right People
	Mentoring
	BRuce the Mentor

	The Art of Problem Solving
	The Five Steps of Problem Solving
	Knowledge
	Observation
	Sitting Down on the Job

	Reasoning
	Action
	Test

	Example
	Iteration

	Concluding Thoughts

	Chapter 25: Support Your Favorite Open Source Project
	Project Selection
	Code
	Test
	Submit Bug Reports
	Documentation
	Assist
	Teach
	Write
	Donate
	Thoughts

	Chapter 26: Reality Bytes
	People
	The Micromanager
	More Is Less
	Tech Support Terror
	You Should Do It My Way
	It’s OK to Say No
	The Scientific Method
	Understanding the Past
	Final Thoughts

	Bibliography
	Books
	Web Sites

	Index

