
Migrating to
MariaDB

Toward an Open Source Database
Solution
—
William Wood

Migrating to MariaDB
Toward an Open Source

Database Solution

William Wood

Migrating to MariaDB: Toward an Open Source Database Solution

ISBN-13 (pbk): 978-1-4842-3996-4 ISBN-13 (electronic): 978-1-4842-3997-1
https://doi.org/10.1007/978-1-4842-3997-1

Library of Congress Control Number: 2018963756

Copyright © 2019 by William Wood

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484239964. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

William Wood
Pacific, MO, USA

https://doi.org/10.1007/978-1-4842-3997-1

First and foremost, I would like to dedicate this book to my
son, Cam Carter, in that over many months there were times
daddy could not do things that a four-year-old really needs
to do. Someday he will understand, but for now I have lots

of things to catch up on.

Next would be to my wonderful wife and her patience when
I had to skip out on some family function, or something or

another, in an attempt to get words on paper.

Finally, my boss, Phil Mazza, for providing me the
opportunity to take on some interesting tasks and
responsibilities. The fine folks at MariaDB for their

database solution and allowing me to speak at their 2018
conference, and to the team at Apress for their patience
and taking a chance on someone who has never done

anything like this before. This dedication would of course
be remiss without mentioning that none of this would be

possible without the drivers for change.

v

Table of Contents

Chapter 1: Drivers for Change ��1

Driver: A New Product ���1

Driver: Oracle Costs and Business Practices ��5

Chapter 2: Requirements and Risk Assessment ���������������������������������15

Requirements of a New DBMS ��16

Audits and Compliance ���18

Risks ���29

Chapter 3: Database and Application Code ��33

Migrating the Database ���34

Database Side Programming ��37

Application Code ���43

Becoming Database Agnostic ���45

Chapter 4: Making the Decision ���49

Extolling the Benefits ��50

Presenting Cost Savings ���51

Develop a Strategy ��54

Putting it Together ���56

About the Author ���ix

About the Technical Reviewer ���xi

Introduction ���xiii

vi

Chapter 5: MariaDB Solution ��59

Preinstallation Considerations ��60

MariaDB Stand-Alone with Replication ���62

Replication Limits and Testing ��69

Galera Clustering���69

Chapter 6: Change as a Catalyst ���73

Evaluating Solutions for Rework ���75

Fixing the Legacy ��77

Standards Adoption ���78

Process Improvement ���81

Automation ��84

Chapter 7: Defining a Roadmap for Success ��������������������������������������89

Database Evaluation ���90

Evaluating First Steps ���92

Path of Least Resistance���94

Success ���95

Chapter 8: Making the Data Move ��97

First Steps ���98

Letting DBAs be DBAs ���99

Tool Building��101

FOPEN ��102

FCLOSE ��104

FFLUSH ��104

PUT ��104

PUT_LINE ���105

PUT_RAW ���106

Dynamic SQL ���107

Table of ConTenTsTable of ConTenTs

vii

Handling LOB Data ��115

Sample Solution Code ���119

 Appendix A: Open Source Continuum ���135

 Open Source in the Data Center ��136

 Entrepreneurial Limits of Big Name Proprietary Systems ���������������������������������138

 Where Is Open Source Not Viable ��142

 Benefits of Open Source ���143

Index ���145

Table of ConTenTsTable of ConTenTs

ix

About the Author

William Wood is an IT professional who has

worked across many disciplines in his 18-year

career. He started his work experience as a

student worker for his school’s engineering

department, which ran the school’s website,

doing LAMP Stack work for database-driven

dynamic website development. He has been

working specifically in the database field

for the past 10 years, first on a team that

supported development infrastructure and

release engineering where he became the

Oracle SME, and then entering the working database administrator field

in 2010 as a DBA, primarily working with and supporting Oracle and

Oracle RAC in high-volume, compute intensive, and high availability

environments.

xi

About the Technical Reviewer

Ben Stillman is Director of Subscriber Services

at MariaDB Corporation. He has over ten years

experience with MariaDB and MySQL, and

prior to that had several years of experience

with Oracle Database and SQL Server. Ben is

well-versed in migration challenges and has a

good understanding of the various database

platforms on the market and what each brings

to the table. Ben resides near Columbus, Ohio

where he enjoys spending time with his family

and riding motorcycles.

xiii

Introduction

Migrating to MariaDB covers a wide range of topics that can be applied

to many facets of the information technology industry in that the

same methods and practices can be used in any type of migration

and development project. There are many approaches to tackling a

monumental task, and presented here you will find the strategies and

methodologies that I have adopted over many years in the technology

sector. This work follows a fictional company, FWP, and the leader of their

database team, Vernon, through a database migration from Oracle to the

MariaDB Open Source database.

The fictional portions of the story are based on many years spent in

the technology sector as well as the educational endeavors that preceded

them. The name of the company, FWP, was chosen entirely in jest for a

comical take on what many will recall from their educational experience

with the work examples and problems that all seemed to relate to one kind

of widget or another. I grew to detest the widget and all that it stood for,

so using it so widely says a bit about my acerbic sense of humor and wit.

The story itself spans experiences and observations as seen throughout

my career, to add a bit of storyline to what is many times considered the

dry topic of technical information. It also provide a vehicle for explaining

the how and why of many things that have been accomplished in a varied

career, highlighting the successful migration from the Oracle database to

the MariaDB database.

The more technically oriented reader may gravitate to a few chapters,

while the project planners and managers might glean more by reading it in

its entirety. Whatever the reader’s strategy, there are many gems that can

be gleaned from each chapter no matter their discipline or background.

The first chapters provide the storyline and background for a small

xiv

fictitious company that has a new solution that needs a more cost-effective

solution for its database backend, and how the head of their database

department went about making this transition successfully. Vernon and

FWP are fictional, as are their solutions; however, I have made the same

database migration successfully using the same methodologies, roadmap,

and solutions as discussed here. This backend migration was completed

successfully on many levels and is still ongoing at the time of this writing,

which is part of why getting this completed was a struggle with the timeline

and final product.

Many of the methodologies on display throughout this book have

been around for a very long time. One of my favorites that seems to

display itself time and time again is that of the age-old mantra of “Keep It

Simple, Stupid”, referred to as KISS. It is very much applicable today as it

was twenty years ago as I was exploring my educational pursuits. This is

something that I have seen overlooked so many times with overworked,

over-obfuscated, and increasingly complex solutions for problems that

could be solved in a much simpler manner, making the solution easier

to maintain, support, and deploy. There are also many methodologies

covered here that have been around for a long time and are enjoying a

rebranding or a reemergence in more recent times. Hopefully KISS comes

full circle as well, as I am a big fan of the simple and effective solution.

There are many ways that one could make this same migration, so the

more important aspect of this work is the path to follow, and not get hung

up in the solution as applied here. What worked well here may not be as

efficient for a much larger entity with a much larger data set size; however,

the roadmap will still be the same and the solutions as provided will work

when modified to suit the tasks requirements. Using Oracle’s own tool

set in the migration of the data carried some weight, as these tools were

already available within the database software. This meant no additional

cost for software to do this work, making the migration even more fiscally

responsible for any entity undertaking a similar task, arbitrary of the

database they may be migrating to with few modifications.

InTroduCTIonInTroduCTIon

1© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_1

CHAPTER 1

Drivers for Change
There are many drivers for change in the world of technology and business.

We are going to look at a couple of those in the following chapters from the

viewpoint of a fictional company that has come out with a new product

while at the same time going through a licensing audit. These two catalysts

caused the company, Financial Widgets Plus (FWP), to evaluate their

current database solution and possible alternative solutions because the

cost, along with the overhead of use, of the proprietary solution could no

longer be supported or fiscally responsible. They needed a replacement

that would propel their new platform into the forefront while allowing

them to generate more revenue to drive and support growth.

We will follow this fictional company, along with the fictional head

of their database department, Vernon, as they go through the evaluation

process to implementation. The hurdles as seen by FWP are identical to

what any small software company would see when going through the

evaluation and development of a migration plan for moving away from

a high-cost, proprietary, closed database system like Oracle to an open

solution, which in this case is MariaDB.

 Driver: A New Product
The world of data and databases today is full of complex solutions and

ever evolving buzzwords. However, nothing can be more confusing and

daunting than the underlying costs, considerations, and licensing abstracts

2

when considering a Database Management System (DBMS) or migrating

one’s topology from one solution to another. This can easily become

compounded into a daunting undertaking, depending upon one’s type of

business and the requirements that lie within. In the following chapters

and throughout this book we will be looking at a lot of the decisions,

requirements, and special considerations from the standpoint of a fictitious

company (FWP) that falls within the financial sector of the business world.

There are two main drivers behind FWP looking at an alternative database

solution, a new product coming into fruition and trying to leverage its

deployment in a cost- effective manner, so we will be diving into a majority

of the aspects of these changes.

The new product that we will be talking about was the brainchild of

a newly hired database administrator, Vernon, with FWP. This software

company has been around for many years, offering a highly customizable

product platform to large entities within the financial world. The company

had done well for these many years offering this highly customized

service to these large-scale lenders within the ever-evolving financial

world. However, these larger entities were beginning to evolve as well

and were starting to bring this exact type of service in-house, so the days

were numbered for providing this highly customized financial widget

platform that we will refer to as the Custom Financial Widget, or CFW

moving forward. The CFW platform and methodologies were severely

outdated. It was also starting to cut into profits because each one of the

solutions was not sharing a common code base; no processes were done

in the same manner twice; and it required dedicated resources for each

implementation, requiring that someone had the background knowledge

to keep it moving along. It did not take a rocket scientist to see that if FWP

continued to operate in the same fashion, that its longevity was limited and

at stake. Vernon was not a rocket scientist and he saw this, but he also saw

the possibilities of effecting change to FWP, which he had come to work at

with the attitude of it being the last job of his career prior to retirement.

Chapter 1 Drivers for Change

3

Vernon knew that the task of moving away from the CFW product

line was multilayered and would be no easy task. The company had a

“customize” mindset that had to change, and was so ingrained that it

was effectually an uphill battle to even get some ear time for this idea

to get traction. When Vernon presented his idea to the first person,

the response was “FWP doesn’t want to grow, it does not want more

customers, because there is too much money to be made doing what

we do.” This was definitely not a warm reception to be sure. It also had

some undertones of management practices he had seen previously in

his career many times before, so Vernon sat on this for the time being

and contemplated, waiting for the right opportunity. As he waited for

this opportunity, there started to be some rumblings about this new

idea being shopped around at FWP for a turnkey Widget, something

that could be quickly deployed, easy to support, etc. It’s amazing how

that works in the business world, and this could very well be a topic for

another book; however, we will go back to Vernon’s next step trying to get

this idea to fruition.

A few months later, while having a family dinner out with the General

Manager (GM) of FWP, Vernon seized the opportunity to explain the

full ramifications and scope of his idea. This involved developing a

standardized engine for a new product line called Standardized Financial

Widgets, which we will refer to here as SFW, with an easily repeatable and

common code base as the heart of the product. Then all the best parts

of the current CFW could be rolled into plug and play modules if you

will, having a multi-tiered approach. For example, if a customer wanted

to be able to have electronic data warehousing reports, then that was a

pluggable module, and with some of the more advanced modules the

customer could move up to the next tiers. The other methodology for

tiering would be through the number of transactions; if a customer did not

plan to process enough Widgets to make it fiscally conceivable, then they

would have to pay more for the base service. Or if they wanted system of

record long-term storage of their Widgets, that could be done as well, but

Chapter 1 Drivers for Change

4

also with an upcharge for the storage requirements. Suddenly we were

talking about a viable solution that could target both large customers

and small, along with everything in between. The beauty of this solution,

and what Vernon thought was the biggest selling point, was that not only

would it generate revenue, but also lower the risk to FWP. That’s because,

being able to target smaller customers, they would be reducing the impact

of losing a customer due to circumstances beyond their control, and this

really obtained the effect that Vernon was looking for with the GM of FWP.

The new SFW product really started to get some momentum after this,

and the GM requested that Vernon be the database administrator (DBA)

assigned to this new venture. Interestingly, this did not pan out for Vernon

as he had hoped. Even though the first couple of meetings seemed to go

well and he contributed some really good ideas on how to proceed from

the database side of things, he was then removed from the project after

the third week by none other than the same boss who said “FWP does not

want to grow.” There are battles throughout life and careers and so Vernon

decided to bide his time even though this was a major setback for him. It

was okay because the idea for SFW continued to move forward, although

slowly and not without its hurdles, and a somewhat abstract portion of

the concept came into being with the first few customers. This proved the

logic and marketability of the new product; however, limitations started to

be seen, with the biggest one being the current DBMS solution that FWP

had been using for over ten years. It was a solid foundation once Vernon

went to work starting to improve and slim down the footprint into a more

stable, fast, and lean deployment. In addition, Vernon began taking a very

proactive approach to database principles that previous administrators

had overlooked or just never considered. There was only one problem,

scalability, both fiscal and physical resource, as the DBMS of choice from

a historical perspective for FWP was Oracle Enterprise Edition with Real

Application Clusters (RAC) and Advanced Security Option (ASO).

Chapter 1 Drivers for Change

5

 Driver: Oracle Costs and Business Practices
Like many organizations in the financial sector, such as banking

institutions, credit card providers, and mortgage companies, FWP built

their digital footprint around the tried and true architectural solutions

of the time. For the most part these solutions oriented around a DBMS

running on System V UNIX variants like Solaris, HPUX, and IBM’s

AIX. However, luckily FWP had already initiated conversions away from

the old System V Unix variants and IA64 architecture, choosing to adopt

RedHat Enterprise Linux in its stead along with moving away from the

old Itanium-based servers to newer and faster machines based on the

x64 architecture. The Oracle DBMS had become the solution of choice,

especially with the combination of Real Application Clusters for hardware

failover and the ASO (Advanced Security Option) for encryption of data

at rest providing a secure and robust solution for any organization that

deals with data protection requirements. During the proof of concept

for these deployments, Vernon ran some pretty intensive stress tests

against Oracle RAC on the newer architecture with the expected results

of the combination performing superior to the previous and outdated

architecture. However, this notwithstanding, the Oracle solution came at

a very steep price that has grown significantly over the years, as has the

complexity of licensing these solutions due to the advent of constantly

evolving technologies such as virtualization, hardware partitioning, etc.

that have and continue to evolve at an accelerated rate.

One cannot fault Larry Ellison for coming up with the licensing errata

as instituted by the Oracle Corporation, as this was an absolutely brilliant

idea. All one had to do was look at the basics of Moore’s Law to see that as

the architecture and solutions grew at seemingly exponential rates, thus

would the coffers of Oracle. One of the aspects about the Oracle DBMS

that helped solidify it as a revenue generating machine was the proprietary

solutions that it offered to solve many complex problems with built in

Chapter 1 Drivers for Change

6

capabilities, optimization engines, and fault tolerance that other vendors

did not have. The only standard Oracle was willing to adhere to was their

own; while many other vendors worked on and solidified standardizations

like SQL-99, Oracle did everything their way. The result is a fantastically

stable high-performance DBMS solution that works so well that many of

its customers and end users shudder to think of what the results would be

in migrating to anything else. So they continue to pay the exorbitant yearly

price tag associated with what used to be the only high-grade solution

on the market with the requirements for high-volume transactional

processing in a high availability always environment. The mere thought of

having to migrate large volumes of database structure and data, especially

considering all the built-in functionality that may have been used with

application code side solutions that were driven by the back-end database,

is daunting. It was a monumental task that Vernon and his team chose to

undertake, due to but not limited to, the following major points:

• The high cost of the Oracle solution(s)

• Having to run a mission critical DBMS on outdated

hardware, because if they upgraded to a more powerful

architecture with more internal processors, the costs

incurred would be significant

• The Oracle pricing model does not fit a small to mid-

sized company.

• Buy Oracle products in quantity, then the pricing is

much cheaper

• Customers cannibalizing revenue-generating audit

approaches being employed over the last few years

• The sales approaches that open one up to be

cannibalized

Chapter 1 Drivers for Change

7

To really get an idea of the scope and breadth regarding the primary

drivers for change that Vernon and the team at FWP were dealing with,

we have to take a pretty hard look at Oracle licensing and costs to see if

they fit within the requirements of their new emerging product. This new

product, Standardized Financial Widgets, required scalability, stability,

security, failover capabilities, and cost effectiveness in order to be feasible.

They knew that their current DBMS solution had everything thing they

required from a stability, failover capabilities, and security standpoint.

However, no matter how they crunched the numbers it did not come

out as the viable solution that fit from a fiscally responsible and revenue

generating standpoint as far as cost effectiveness, which was directly

proportional to and impacted scalability. To explain this further, we are

going to have to dig into Oracle pricing and licensing models and how they

affect the bottom line for a small to mid-sized company. This is not to say

that the solutions the team at FWP reviewed and vetted are not or were

not perfectly suited to the larger entities as well, but more so the problem

being that Oracle’s does not fit the latter.

Oracle DBMS and DBMS-related products, as well as other Oracle

owned products, essentially have two licensing methodologies, which

consist of licensing by Named User Plus or by Processor type licensing.

Oracle’s revenue generating gold mine over the years has been directly

relational to the already mentioned idea of licensing their product by the

number of processors, which is great for them, but not so great for a smaller

company to be able to absorb. This processor licensing requirement can

also be very confusing because there are different prices for different

processors, different processor architecture, and of course different

processor manufacturers. One must be very careful with either licensing

methodology, as there are some traps that a company can easily be led down

that will come back to bite them when the License Management Service

(LMS) team comes knocking to perform an audit. The team at FWP had the

experience of finding this out the hard way, particularly with the Named

User Plus licensing, so we will delve into that first.

Chapter 1 Drivers for Change

8

Named User Plus is defined as an individual authorized by you, the

licensee, to use the DBMS software, and this is regardless of the activity

or duration of use. This sounds good for a small company, even a small

company with software that uses the database as the back end for storing

and manipulating it throughout processing in comparison with having

to pay by processor; however, do not be fooled by this. This is where the

term “multiplexor” comes into play, and what this means is that if you

have a device, such as bar code readers, even if they are using the same

“Named User” account, they are considered separate and disjoint users.

What one can derive from this, especially someone in Vernon’s shoes

having taken over the database department in mid stride of an audit, is

that this also relates to database-driven software applications. In FWP’s

case, they provided software as a service to their customers, who at no time

had access to the database in any way, such as direct user accounts via a

command prompt or a database GUI tool such as Toad. All application

processing was done via the custom database-driven web application

that processed financial information, but that application code, according

to Oracle’s legalese was in fact acting as a multiplexor. There is a huge

problem here that lies entirely upon Oracle and how the Named User

Plus licensing was sold to FWP. This was perpetrated upon them not only

by an Oracle licensed reseller, but also by Oracle sales employees as well

in the form that in order for them to save money they could license their

development and test environments as Named User Plus while having

their production environment licensed by processor.

This is where it gets interesting in that Vernon had started looking at

licensing a two-node Oracle cluster in a remote data facility in order to

provide proof of concept and scalability for the new Standard Financial

Widgets product. This was right about the time the audit began and was

quoted with the same Named User Plus licensing methodology for this

new development and testing environment by the company’s Oracle

account representative. Under that guise, FWP, like most companies,

generated no revenue from these types of environments, which was a

Chapter 1 Drivers for Change

9

significant break on the surface as compared with also having to license

those non–revenue-generating machines by processor cores. The

problem that soon came to light is that there appeared to be a lack of

communication and interpretation between the Oracle sales and account

representatives and Oracle’s LMS group that performs the auditing.

According to the LMS team, FWP was out of compliance for their

existing development and test environment. Because it too ran the same

software as the production environment, these environments were

also considered multiplexors and thus had an infinite number of users

requiring years of back licensing fees for being improperly licensed.

According to the interpretation of Financial Widget Plus’s product, not just

named accounts on the DBMS were considered, but so was every one of

Financial Widget Plus’s customer’s employees as well as each one of their

customer’s customers. Not only this, but some licensing changes over the

years also meant that Financial Widget Plus was also providing the Oracle

DBMS software as a service to each one of these users, thereby meaning

their licensing purchased needed to include a hosting license. What this

could be interpreted to mean is that Oracle first sold a specific license

in a way to make it seem like the customer was getting a break for their

non–revenue-generating environments, but then several years later would

schedule an audit with these same customers and charge them hundreds

of thousands of dollars, if not in the millions, for improper licensing. This

amounts to cannibalizing their own long- term customers to shake them

down to increase revenue streams. Would a company really do that, and

what could be done about it?

Vernon, as well as others on the management team, started to research

this new problem and it appeared that this was exactly what Oracle was

doing and people were starting to talk about it. Articles and tech websites

were containing pretty in-depth pieces on this new strategy being

implemented by Oracle while at the same time lamenting that there was

nothing that could be done. If anyone tried to fight them in court over

these sales practices, licensing changes, and interpretations, the behemoth

Chapter 1 Drivers for Change

10

of a corporation would tie them up in court for years. This could end up

costing much more in legal fees and court actions only to possibly end

up having to pay them anyhow. It seems that most of Oracle’s customers

came to this realization and would just cough up the money and purchase

additional licensing per the LMS findings, considering it as a hard-learned

lesson and moving on. Most came to the realization that the money to fight

it wasn’t worth it, and the costs and problems to migrate to another DBMS

would be virtually impossible because they were so ingrained in the Oracle

solution. Ultimately, this was the path that FWP chose upon attorney

recommendations—to negotiate as the best outcome they could and keep

moving forward, because it was against the odds to come out on top in this

situation. However, the decision on how to move forward was a different

story that would launch a change in FWP from the core.

This chapter would not be complete without getting into licensing

costs involved at the processor level in regard to Oracle, as this is the real

meat and potatoes of any company using an Oracle product in a similar

fashion as FWP in a revenue-generating production environment where

Named User Plus would be far and above the major cost. As already

alluded to in regard to how Oracle arrives at costs via a multiplier value

based on chip manufacturer, architecture, version, and type, please

reference Table 1-1 as part of this overview. This is only a small sampling

of the full table that Oracle publishes; however, it’s enough to give one an

idea of the complexity involved but at the same time not being overkill for

the reader who is already all too familiar. The nuances at play here are not

just related to a chip or its manufacturer, but also one that many will find

interesting is the date purchased.

Chapter 1 Drivers for Change

11

Using Vernon’s two-node, single-cluster RAC environment at FWP as a

model, he looked at scalability of this same architecture. The new product

line was sure to take off and the one cluster running on the antiquated

hardware would need expansion to a second cluster in the near future,

so using Oracle’s Pricing Guide this can easily be priced out. He planned

on leveraging the same type of quad-core Intel processor to keep the

costs down on the same model servers. From a security and compliance

Table 1-1. Sample of Oracle’s Multiplier Information

Manufacturer Multiplier

sun sparC t3 0.25

sUn t6300, 1.4 ghz UltrasparC t1 processor 0.5

intel itanium series 93XX or earlier Multicore chips(purchased prior to

Dec 1st, 2010

0.5

intel® Xeon® platinum 81XX, intel® Xeon® gold 61XX, intel® Xeon®

gold 51XX, intel® Xeon® silver 41XX, intel® Xeon® Bronze 31XX, intel

Xeon series 56XX, series 65XX, series 75XX, series e7-28XX, e7-28XX v2,

series e7-48XX, e7-48XX v2, e7-48XX v3, e7-48XX v4, series e7- 88XX,

e7-88XX v2, e7-88XX v3, e7-88XX v4, series e5-24XX, e5-24XX v2,

e5-24XX v3, series e5-26XX, e5-26XX v2, e5-26XX v3, e5–26XX v4,

series e5-46XX, e5- 46XX v2, e5-46XX v3, e5-46XX v4, e3-15XX v5,

series e3-12XX, e3-12XX v2, e3-12XX v3, e3-12XX v4, e3–12XX v5,

e5-14XX v3, e5-14XX v2, e5-16XX v4, e5-16XX v3, e5-16XX v2, and

e5-16XX or earlier Multicore chips

0.5

sun and fujitsu sparC64 vi, vii 0.75

hp pa-risC 0.75

intel itanium series 93XX (for servers purchased on or after Dec 1st,

2010)

1.0

iBM poWer7, iBM poWer7+ 1.0

Chapter 1 Drivers for Change

12

standpoint, this cluster would also need the same options as the existing

one, so the following are the detailed requirements for this expansion

cluster:

• 2 Dell servers

• Single Intel Quad-Core 5640 at 2.67GHz

• 124GB of RAM

• 2T of Network Storage

• Oracle Enterprise DBMS

• Oracle RAC

• Oracle ASO

• Oracle Tuning Pack

• Oracle Diagnostic Pack

• RHEL Licenses

This is Vernon’s entire shopping list. However, we are only going

to consider pricing from Oracle’s published pricing list for the initial

purchase of the required and necessary products based on the correct

multiplier, from Table 1-1. For our pricing breakdown, refer to Table 1-2.

Looking at the initial upfront cost using outdated hardware, it is pretty

apparent that the upfront cost is fairly substantial: to be able to run

databases on a single, two-node cluster comes out to $392,000. To be

clear, this is only the costs for deployment; to be thorough in our analysis

we also have to look at the ongoing costs, wherein with the way the

chosen DBMS provider plays the game, they can and will change the

rules of the game at any time. Table 1-3 provides a best-case scenario

for yearly ongoing costs for upgrades and support at a cost of $86,240 a

year. This is a huge amount of money that nearly makes scalability and

cost effectiveness unattainable for virtually any small company hoping to

Chapter 1 Drivers for Change

13

use the Oracle DBMS solutions mentioned here and still be successful.

It quickly became apparent, even with the audit tactics aside, that there

had to be a better solution in order to provide a cost-effective solution

to the customers of FWP, but cost was only a minor portion of the new

mindset. In order to continue using the current DBMS and stay profitable,

they were already having to run the software on no longer supported and

outdated hardware at a risk of failure, along with no further updates and

support. This also meant that any further deployments would of course

need to be on that same hardware.

Table 1-2. Pricing Analysis: New 2-Node Cluster

Product Multiplier Units Price per Unit Total

enterprise DBMs .5 4 47,500 190,000

raC .5 4 23,000 92,000

aso .5 4 15,000 60,000

Diagnostic pack .5 4 7,500 30,000

tuning pack .5 4 5,000 20,000

Grand Total: $392,000

The findings of Vernon’s analysis and cost projections further

presented the fact that the Oracle DBMS was just not targeted for the

smaller companies like them, thus opening up an entirely new round of

further research and analysis in regard to finding an alternative solution.

There had to be a better way. This was a losing battle when coupled with

the results of the audit findings and moving forward being forced also

to pay the premium processor licensing for their development and test

environments, which generated no revenue but were a necessity. How

could FWP move forward, remain profitable, provide a cost-effective

Chapter 1 Drivers for Change

14

solution, and still survive? At the bottom line were a full analysis on what

did they really need in a DBMS solution, could they possibly migrate to a

completely different system, and at what cost. Certainly, there had to be

risks involved. And after so many years of customized code and solutions,

where no one thing was done the same way twice, how much time would

be lost to working on a new back-end solution with code that for the

most part had been developed specifically to use the Oracle DBMS? The

magnitude of a change like this has been where a lot of the companies

have balked: larger companies with much deeper pockets and multiple

revenue streams. So how could a small company tackle what they could

not? We will find out in the following chapters how they not only managed

to make this transition, but took advantage of it and used it as a catalyst for

change and came out the other side in a much better position with a much

better product offering.

Table 1-3. Pricing Analysis forOngoing Costs: New 2-Node Cluster

Product Multiplier Units Price per Unit Total

enterprise DBMs .5 4 10,450 41,800

raC .5 4 5,060 20,240

aso .5 4 3,300 13,200

Diagnostic pack .5 4 1,650 6,600

tuning pack .5 4 1,100 4,400

Grand Total: $86,240

The costs savings for FWP in migrating away from the closed Oracle

proprietary solution is substantial and makes a very strong case for moving

forward. Identifying risks and fulfilling requirements for their needs from

a security and compliance standpoint would be the next step for the

database team.

Chapter 1 Drivers for Change

15© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_2

CHAPTER 2

Requirements
and Risk Assessment
The primary catalysts for Financial Widgets Plus (FWP) to make such

a monumental change were identified—the primary problem being

centered on the ongoing and escalating costs over time of doing business

with their current vendor. The benefits of their current DBMS being rock

solid, dependable, and having served their needs effectively for many

years, were revenue drivers going to be worth the risk to the company

would be the next set of questions that would have to be answered.

The best approach for Vernon from a business standpoint was to

mitigate risks through requirements. The financial sector has to deal with

many auditing and security requirements; if the MariaDB solution could

satisfy the same exacting auditing requirements as their current DBMS,

then the data security risks would be mitigated by the requirements.

Compromised data can bring about the end of a company in one fell

swoop, and this was not a risk anyone was willing to take.

Once requirements can be satisfied, the next question is whether or

not the level of effort (LOE) will be a risk to the continued operational

needs and something that the company can withstand. FWP already

had a large number of existing customers on the heavily customized

platforms, along with an array of new customers on their standardized

platform, that would have to be maintained and supported throughout

16

the same time period that it would take to implement the MariaDB

solution and integrate it into their code base. In culmination of the

project, these existing customers would then have to be migrated to the

new solution.

The project would undoubtedly need to be a success, otherwise

the time spent would be time lost for the small company and could be

detrimentally a waste of resources that could have been better used

elsewhere. This is why it was approached in a cautious and phased roll out

in order to be able to pull the plug at the first sign of a showstopper.

 Requirements of a New DBMS
The team at FWP, through in-depth analysis and pricing models, quickly

came to the conclusion that their current database solution lacked the

scalability requirements by the limiting factor of cost. Sure, they could

continue to use their current solution—it worked well, was fast, and

provided high availability as a solid and sound solution—however, the

costs were phenomenal and would not allow them to target the business

they were going after. Historically their customers dictated and had

requirements that were specifically contracted around Oracle and Oracle

RAC for the security, high availability, and failover capabilities. They were

also willing to carry part of that cost; however, with the evolving and ever-

changing landscape of the financial industry this was starting to change.

This change was not just big customers changing the way they do business

and moving these financial services in-house, but smaller companies,

small lenders, service providers, and financial-oriented industries were

starting to look for solutions in order to complete loan origination and

credit decisioning for their own products and services.

Chapter 2 requirements and risk assessment

17

The latter was a budding niche, and this was part of what FWP was

targeting with their new standardized software. Something that was quick

to deploy, standardized for ease of maintenance and support, modularly

adaptable for more advanced capabilities and services, customizable for

those willing to pay the price, but affordable for those smaller entities to

leverage just as easily. This is what the organization of FWP was looking

to capitalize on by reworking their legacy coding practices and processes

to bring a solution to market that could reach virtually any sized potential

customer. However, the costs of the Oracle line of products were in the

way of this coming through to fruition in the longer term. FWP started to

hear something from these new targeted customers that they had never

heard before, which also ventured away from their current solution, and

that was that they didn’t care about what vendor’s database solution

they used. They just needed the service to be cost effective to them,

quickly deployed, and capable of getting them up and operational and

processing transactions quickly, consistently, and with as little down time

as possible. This opened the doors to a much larger base of solutions

to choose from for Vernon and the team at FWP, because no longer was

the customer dictating that they must use expensive proprietary DBMS

solutions like Oracle, SAP, Informix, and the like that previously had the

market cornered for the financial sector.

This opened the flood gates for potential solutions, which Vernon

was quickly finding out to have almost the same price points with every

well-known proprietary DBMS solution provider. He had already vetted

several of the big names as potential replacements for Oracle. Each big

database vendor had a slightly different methodology in regard to their

pricing models; however, once one went through this model one thing

always came out to be almost identical. The price, even though a different

pathway, computational model, or whatever one wishes to call it always

worked out to be nearly identical. This meant that, sure, FWP could get

Chapter 2 requirements and risk assessment

18

away from Oracle, but they could not get away from the uncanny similarity

in pricing. This all changed radically with the comments and viewpoints

that they were getting back from these new customers and potential

customers, that resoundingly they didn’t care about the DBMS as long as

their data wasn’t stolen or used for nefarious purposes. The box was now

open for a potentially drastic shift towards a cost effective Open Source

solution and the time was right.

As we have already learned, FWP had already shifted away from the

System V solutions for the server architecture and had replaced it with

RedHat Enterprise Edition running on Intel x86 64-bit machines, so the

next logical step was to target the possibility of an Open Source database

solution as long as it fulfilled their requirements and those they set for

their customers. Being in the financial sector brings about a myriad of

rules and regulations that are always changing and ever evolving, kind of

like technology, but had the technology from the Open Source community

evolved enough to make one of the vendor-offered solutions a viable

candidate was the question Vernon was saddled with answering.

Since the Standardized Financial Widgets (SFW) suite of tools dealt

with loan origination and credit decisioning, this made it mandatory for

yearly audits from a PCI DSS and SSAE 16 standpoint. So this is where

Vernon chose to start with developing requirements, not just for an Open

Source DBMS, but for any new database solution that FWP might consider.

 Audits and Compliance
In the financial and banking industry there are a whole slew of regulatory

acts, commissions, and compliancy standards, some that overlap and

some that are not pertinent specifically to Vernon’s database requirements

or to FWP. However, we’ll take a look at a couple that are intrinsic to the

Chapter 2 requirements and risk assessment

19

company, focusing primarily on those standards that fall within their

best interest to follow in the act of providing the highest level of security

standards to their customers in their day to day operations. It is no longer

a rarity for one to read or hear in the news the latest security breach where

cardholder data, government data, and other forms of secure information

have been stolen for nefarious purposes. This can effectively ruin a

company, especially a small to mid-sized company that does not have the

resources to withstand such an impact.

Often referred to as an onion, data security has many layers and those

layers place Vernon and his team of database administrators (DBAs) at

the center, so security is of optimum importance for them as well as the

rest of the company. Even though securing data places many layers above

that of the database, one cannot rely on any other layer when it comes to

layered security. This understandably puts a database team as the last line

of defense in protecting data. Protecting data from exploitation is only the

beginning of a database team’s responsibility; it must also be protected

from hardware failures, loss of integrity, and corruption. These latter items

are just as important, and we will highlight those after we look at the two

main audits that FWP undergoes, and maintains their compliance with,

from an industry standard practice. This also reduces the compliancy

needs of their customers by being able to present audit findings to them

from an accredited compliancy auditor, thus in some cases negating those

same customers having to send out their own audit teams. This saves both

the company and their customers the economic impact of time and travel

to come on site and perform the same audit and compliancy checks for

their own regulatory needs.

The first one we will take a hard look at is SSAE 16, short for Statements

of Standards for Attestation Engagements 16. This replaced SAS 70

(Statement on Auditing Standards 70) in June 2011 and replaced the

Chapter 2 requirements and risk assessment

20

Service Auditor’s Examination with the Service Organization Controls

(SOC) report, referred to as SOC 1, 2, and 3. There are two report types

contained within each SOC of the SSAE 16 standard: the Type 1 and Type 2:

• Type 1 has to do with controls broken down to the

micro level into a specific day.

• Type 2 takes a much broader or macro look at controls

over a much longer period of time, with a minimum of

six months.

• This is where having a change management system

in place is very important. It should be easily

searchable, with reporting features for tracking all

changes that are within auditing scope over any

period of time.

Breaking each SOC down, we have already seen that there are two

different types of reports, so now we’ll break down the three different types

of SOC as well. There are three SOC types, of which one can have two

different types of reports for each:

• SOC 1 is primarily related to internal access controls

over financial reporting.

• SOC 2 is a detailed technical review and analysis

of the controls of an organization related to day

to day operations related to availability, integrity,

confidentiality, and privacy.

• SOC 3 is a higher level analysis of SOC 2, containing

a generalized statement of opinion and assurances

of an entity’s control system meeting SSAE 16 SOC 2

requirements for public release.

Chapter 2 requirements and risk assessment

21

SSAE 16 primarily deals with physical location and data access control

standards, of which the majority of are handled above the DBA level.

However, Vernon and his team must remain fully aware of those standards

and how they relate to their systems, and that a viable DBMS solution must

support.

The second main audit and compliance standard for which FWP

is responsible to maintain is the PCI DSS, which is the Payment Card

Industry Data Security Standard. This one has a much broader impact

on the selection of a potential DBMS and on the day to day operations of

Vernon’s team, a primary focus of which is the encryption of data, both

at rest and in transit to and from the DBMS. This historically was a big

hurdle for many DBMS vendors and one of the needs that originally led the

team at FWP to choose the Oracle Enterprise DBMS with the ASO option

as their solution. It was also a contractual requirement of some of their

legacy Customized Financial Widget (CFW) customers and at the time

was considered a financial industry database standard secure solution.

There are many requirements of the PCI DSS that could carry the makings

of a book all on their own, and one is encouraged to take a deeper dive

to become intimate with the standardization as a whole. However, we

are only interested in the requirements related to Vernon’s search for an

alternative DBMS.

The minimum requirements for a possible alternative solution came

down to a few very crucial aspects of the PCI DSS that had to be available

for any solution to be considered:

 1. It must support the encryption of data at rest.

 2. The database must support the encryption of data in

transmission.

 3. The ability to safely rotate cryptographic keys in use

as required.

 4. It must support multitoken authentication standards.

Chapter 2 requirements and risk assessment

22

There is a wealth of information regarding PCI DSS specifications

and requirements easily found online; however, a few things specifically

to note from a database perspective were documented by Vernon’s team.

Most of it is very straightforward and to the point; however, one thing to

note is that the PCI DSS documentation will actually reference standards

as defined by the National Institute of Standards and Technology,

commonly referred to as NIST. So, while researching and creating one’s

own documented standards multiple browser windows as well as multiple

monitors will come in quite handy, having plenty of monitor real estate

should also be a standard specification as well for anyone in the computer

industry. If we were to take a look at the bare minimum standards that

the aforementioned items 1 through 4 address from the PCI DSS, we have

the basis as to why these requirements were essential when looking for an

alternative database solution.

In order to attain a full understanding of encryption, we need to

cover the different types and the nomenclature that is used to describe

the two different options for encryption and their shelf life. Asymmetrical

encryption uses two different keys for encryption and decryption

processes, whereas symmetrical encryption uses the same key for

both. The different types of encryption methods each have a different

requirement for the lifespan of encryption keys, commonly referred to as

a cryptoperiod. The NIST document SP800-57 Part 1 Revision 3 covers

both the different forms of encryption as well as the cryptoperiods for data

and what we are specifically looking at from a DBMS table and tablespace

encryption standpoint, which is Symmetric Data Encryption Keys and

that they must be rotated with a maximum cryptoperiod of two years

contingent on risk factors.

The ability to encrypt data in transit has been supported for quite

some time with many Open Source database solutions by leveraging

Secure Socket Layer (SSL) for creating an encrypted network link between

systems. The encryption methodology used for SSL throws a completely

different spin in that it uses both symmetric and asymmetric encryption keys.

Chapter 2 requirements and risk assessment

23

Asymmetric Keys are used to initiate the handshake between the client

and server; once the Asymmetric Key is validated the Symmetrical

keys take over for the actual encryption of the data in transmission and

decryption at the end point for entrance into the database. The acceptable

cryptoperiod for both of these key types is also limited to the maximum

lifespan of two years, also contingent on risk factors.

The dive into encryption requirements would not be complete

without an explanation regarding mitigating risk factors related to a key’s

cryptoperiod. The same NIST documentation breaks this down into several

external factors that require key rotations, as well as factors related to the

key generation itself and the processes involved in their maintenance

and deployment. A shorter cryptoperiod, one could extrapolate, would

have the benefit of enhancing their security endeavors. However, this

can become difficult to manage as well as open up the potential for other

problems such as human error or disruption of service, therefore negating

the benefits of the process and introducing additional risk. A DBA’s worst

nightmare would be to lock themselves out of their own data, which would

be irreversible. As long as one’s strategy uses strong cryptographic keys,

fewer managed key rotations are actually much better and lower the risk

much more significantly. That having been said, there are several factors

that can warrant key changes out of the necessity for maintaining the

security of one’s data, with a couple of the most obvious being:

• Employee turnover, specifically for anyone with access

to, or who was a part of, the encryption key process

whether their departure was voluntary or involuntary

• An existing immediate threat to related systems; an

example could be a hacked application server where

access to the client keys have been exploited

The ability to rotate keys safely, therefore, is of great importance for

both the encryption of data at rest and data in transmission. Developing a

process to do this in a controlled and tightly managed manner is crucial,

Chapter 2 requirements and risk assessment

24

and any DBMS solution under consideration must have a stable and

solid set of utilities in order to reduce the risk to the data throughout the

process. Oracle has a very wide leveraged and vetted solution for this

in their ASO product; however, even one of the oldest DBMS providers

with such a secure system recommends changing encryption keys as

infrequently as possible. This also confirms what NIST alludes to within

its own standards documentation. One cannot make any more important

recommendation than to have a well-planned and documented process

for rotating encryption keys, specifically for data at rest, and above all

having part of that process begin with a full backup of any database as the

first step in the process.

Getting back to the team at FWP and their search for a cost-effective

scalable alternative to their Oracle driven platform, Vernon’s search when

looking at proprietary big-name solutions was able to match every single

one of these requirements; however, it failed the fiscal economic viability

portion, so he turned his attention to the Open Source market place. While

evaluating almost every solution he found that, although cost effective,

they lacked a data encryption solution that made the migration a viable

one. Many of them, such as MySQL, supported the novelty of encrypting

columns. However, that had to be done at the application code level when

creating the record for inserting by encrypting it, and then again at the

same application level when selecting and decrypting the data out of the

database. This was a nightmare, not just due to the amount of changes to

make this work, but also for the maintainability of the encryption process

to encrypt and decrypt the data with a possibly performance impact on the

large data objects, which are very prevalent in both the CFW and the SFW

platform.

In the middle of Vernon’s search an interesting thing happened at the

most opportune time: an Open Source database solution that was forked

off of MySQL announced that their latest version would contain a solution

for encrypting data at rest, not only at the column level but also at the full

table and tablespace levels. The name of this solution was MariaDB, and

Chapter 2 requirements and risk assessment

25

the timing could not have been more perfect. With the announcement of

MariaDB version 10.1 in the latter part of 2015, FWP finally had a possible

contender.

As Vernon set about researching and evaluating the MariaDB

solution, the possibilities really came to light with the potential that

existed with a migration of this magnitude. With it being a fork of the

MySQL database, that meant anything one could do in MySQL could

also be done with MariaDB with such tools as Perl and the unlimited

number of Perl modules, specifically the Perl DBI, and this was extremely

exciting. In Vernon’s early career he had done some database driven web

development using Linux Apache MySQL and predominantly Perl, so he

began to envision reworking legacy solutions and the implementation

of standardized solutions, and the potential was limitless. To be able to

have the opportunity to fix all the bad database side solutions that had

propagated over the years with FWP would be a lot of hard work, but it

would be time well spent. As long as the requirements could be met, the

solution from MariaDB could be just what was needed to really effect

change within the organization across the board.

At the culmination of a couple weeks of deep diving into the

documentation for MariaDB, and cross referencing the wealth of

documentation that had been around for years with MySQL, it appeared

they had found their solution. MariaDB had the required encryption

capabilities along with several other valuable options built in:

• Data encryption at rest was supported for three of the

commonly used storage engines:

• InnoDB

• XtraDB

• Aria

• Encryption of temporary files and binary logs

Chapter 2 requirements and risk assessment

26

• Encryption key management:

• Supported the use of multiple keys

• Each key has a 32-bit integer as an identifier and

can be versioned.

• This allows one to change encryption keys

automatically to newer versions.

• Supports two encryption algorithms:

• AES_CBS

• AES_CTR

Things started moving very quickly now, as MariaDB also supported

SSL for the encryption of data in transmission with the openSSL

plugins and also supported multitoken authentication via RSA’s PAM

Authentication Agent. It appeared that there were no deal breakers that

could be found from a PCI DSS requirements standpoint; however, we

have to also look at the costs and if it will scale to handle the same kind

of load as what FWP was currently running on Oracle. There were a lot

of questions that still had to be answered regarding whether they could

service the same number of customer databases with a similar database

footprint or would they need more database servers, and what the cost

ratio involved might be if it took more servers to process the same volume

of information as one Oracle Cluster, so Vernon’s last requirement was to

compare the costs.

Looking at the comparison on a by server license scope was the

next logical step. This was done by projecting the costs of a two-node

Oracle Cluster running on their existing outdated quad-core systems vs.

a three-node MariaDB Cluster using their Maxscale database proxy on

whatever system and processor Vernon’s team wanted to run it on. They

did a five-year projection starting with initial upfront costs that looked

at it strictly from a software licensing and support viewpoint based on

Chapter 2 requirements and risk assessment

27

similar solutions, and as we can see from Table 2-1 there really wasn’t a

comparison. On a per server case, they were looking at a very significant

savings that would put them on target for the new SFW product’s cost

effectiveness. Even if the database collapse ratio meant more servers, the

initial costs were looking very promising; however, further projections

were needed for the bigger picture.

Table 2-1. Initial Upfront Costs

Product MariaDB per Server Oracle per Core

enterprise database/proxy 7,500 47,500

Clustering included 23,000

Compression included 11,500

partitioning included 11,500

security/encryption included 15,000

diagnostic pack n/a 7,500

tuning pack n/a 5,000

Firewall included 6,000

data masking included 11,500

Totals: $7,500 $138,500

Looking at the difference in licensing scope really made this analysis

stand out, because Oracle licensing is bound by processor cores and

MariaDB is by server. This meant that not only could they possibly be on

track to a much more cost-effective DBMS solution, they could run it on

any type of server with all the CPU power they could find. This is huge,

especially when one considers the potential for database collapse ratio

going from one system to the other, which could be very minimal already;

however, being able to run the MariaDB solution on high-end server

Chapter 2 requirements and risk assessment

28

architectures had the potential to relegate that to being a fleeting thought.

Vernon had already made the observation that with MariaDB with Galera

clustering that the minimum number of servers in a cluster was three; as

well, it would take another set of server licenses for the Maxscale product

out in front of the clustered solution for connection routing and failover,

and the price was the same for either product meaning at least five

licenses. FWP was looking at an initial cost for a similarly licensed three-

node Oracle Cluster coming in at approximately $831,000 running on

antiquated quad-core servers, while the initial first year cost for a MariaDB

Cluster, requiring three nodes for the cluster and two for the Maxscale

proxy, came in at $37,500. The team was ecstatic!

The next step was to complete a full five-year project, even though the

team already had a very good idea who the hands-down winner was going

to be. Looking at Table 2-2 we can see that the costs over time are holding

true to intuition in that one core for the Oracle solution is almost the price

of the first-year cost of MariaDB. The full scope of the cost comparison

between the two DBMS solutions for five years can now be computed with

the information we have from Table 2-2. The results are phenomenal, and

FWP appeared to have options for the first time in a very long time that

could have a very beneficially positive impact on their business. As Vernon

and his team sat back and reflected on the results of the cost analysis and

double-checked their work, the flood gates opened in regard to next steps:

where did they go from here, and how they were going to get there with

as little risk as possible? One thing that can easily be construed from the

following five-year cost analysis was that the offset in costs alone could

very well pay for the change:

• Oracle 5-Year Cost: $1,562,280

• MariaDB 5-Year Cost: $187,500

Chapter 2 requirements and risk assessment

29

 Risks
FWP had been around for over 30 years and over this time had been a very

conservatively run business, and for them to take on the work involved

for a change this huge had to come with some risk. So now that the team

had come to the conclusion that they had found their new DBMS it was

time to calculate the risks. It was apparent that MariaDB fulfilled the

requirements as set forth by Vernon’s team and was much more cost

effective than Oracle. It was also scalable, not just from an architectural

viewpoint, but from a cost to scale viewpoint as well. If successful, this

new database backend could make the new standardized solution a real

revenue-generating possibility at a time that couldn’t have been better

for everyone; however, any risks had to be evaluated and marginalized as

much as possible.

Table 2-2. Yearly Licensing and Support Ongoing

Product MariaDB per Server Oracle per Core

enterprise database/proxy 7,500 10,450

Clustering included 5,060

Compression included 2,530

partitioning included 2,530

security/encryption included 3,300

diagnostic pack n/a 1,650

tuning pack n/a 1,100

Firewall included 1,320

data masking included 2,530

Totals: $7,500 $30,470

Chapter 2 requirements and risk assessment

30

Even considering migrating from a solution like Oracle’s, high price

tag aside, is something that many institutions would give a wide pass

on. Not only was Vernon’s team considering this, but the potential

replacement DBMS was an Open Source solution, an Open Source

Database Management Solution (OSDBMS) to be exact. The Open Source

community has produced some really great tools and solutions over the

years; however, many times they were lacking in areas that the proprietary

solutions excelled at, worked flawlessly, and were much more polished.

A couple areas of concern that made choosing an OSDBMS for

a financial sector solution a potential risk were documentation and

flaky behavior, what many in the industry call undocumented features.

Historically, Open Source solutions are not all known to have the best

documentation; however, since MariaDB was branched from MySQL,

which has been around for many years, where the MariaDB documentation

might fall short there was a wealth of it available for MySQL. Even though

Vernon found the MariaDB documentation to be pretty good and thorough,

it also occasionally referenced MySQL documentation. This was a plus and

relieved apprehension where documentation was concerned; however,

the team was still at the behest of a fairly new technology stack that made

up the solution. Encryption was first added with version 10.1, released in

2015. What kind of issues could they come across and more importantly

how responsive would their support organization be with any of the

aforementioned undocumented features? Needless to say, many of these

concerns were set aside with firm assurances that they had a top-notch

support organization that would be ready to offer any assistance that might

be needed to work through any issues.

The FWP team knew that many of the processes and capabilities that

they took for granted with the Oracle’s DBMS would not be available with

MariaDB. Part of their analysis included that this would mean a more

active role on the part of their DBAs as well as the need for additional

staff resources to handle the extra work load that would be involved.

Chapter 2 requirements and risk assessment

31

Vernon knew from past experience that they always ran very lean from

a DBA perspective. He had actually spent a few years of working very

long hours, nights and weekends, and being on call the entire time, with

working 70 plus hour weeks not being unheard of. He had a young son

and had spent the first couple years of his son’s life working, so part of

the consideration would have to be that the database team would need

to grow. However, the days of the high-paid Oracle DBA were numbered,

and his management was in agreement that staffing needs were

understandable and expected.

To help offset many of the technical risks involved in a migration of this

magnitude, they could also engage in onsite training and remote database

services that were offered by MariaDB in part of their negotiations with

them. The great thing about MariaDB training is that not only do they

offer DBA training, but also for the development teams as well. These

options were crucial and turned out to be of great benefit to both of these

main groups relating to the new technology stack. With the cost analysis,

being able to leverage the expertise at MariaDB as needed, training, and

remote services removing the blunt of the risk the only other factor was

time and resources being tied up, or in this case freed up to be able to work

on the code side of the technology stack, the migration of the database

design from the Oracle to MariaDB, and just as importantly obtaining the

customer base for the new standardized product suit of offerings.

FWP already had several new customers running on differing

amalgamations of their standardized product; however, they were running

on Oracle. The fact that they already had customers on the solution meant

the market was there. There were even more customers lined up that

had the potential to go straight to the new technology stack, completely

bypassing Oracle and never having to be migrated. This allowed the

resources on the code and database side of the product to be allocated to

make this work, and this would be no easy feat because the teams were

Chapter 2 requirements and risk assessment

32

already stretched very thin and all the current customers still needed to

be maintained, supported, and new requests addressed. However, none

of these considerations were showstoppers and the decision was made to

move forward to the next phase of the project and taking a hard look at

the scope of the changes required.

Chapter 2 requirements and risk assessment

33© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_3

CHAPTER 3

Database and
Application Code
With no showstoppers found with MariaDB, the next phase of validating

the solution entailed taking a look at moving on to the implementation

phase by evaluating both database and application code for migration

to arrive at a feasible plan. Once the work was completed in the previous

phase they were pretty optimistic and excited about the MariaDB solution;

however, they wanted to analyze the process of not only adding new

customers but migrating existing customers on the Oracle DBMS to

MariaDB. The LOE was also a concern from the applications side as well as

mapping data types, database code changes, and rewrites for PL SQL, and

of course sequences.

From a database perspective the database team was not too concerned

about anything from their side. There would be syntax differences, and

Vernon knew they would have to code around packages and such that

Oracle had built in but MariaDB did not. The sequences were not even

going to be a huge hurdle, as they could be implemented to work similarly

to Oracle with some PL SQL programming on the database side. The

bigger question was the application code, and it turned out to be easier

than anyone thought.

34

 Migrating the Database
The team at Financial Widgets Plus (FWP) found that MariaDB contained

the requirements they were looking for and so much more, all in one

package, but there were still many unanswered questions. The biggest

question had been answered, and yes MariaDB was viable and they had

made it their choice; however, how they were going to get there opened up a

copious amount of additional questions. It seemed easy for new customers

to just start out on the new database once the code database and application

side were modified to work. On the database side there were triggers, stored

procedures, and datatypes to migrate, but Vernon and his team needed to

do a deep dive into everything to get an idea of the scope of work involved.

Certainly, there would be application code changes to interface and perform

transactions with the new OSDBMS. All functionality would have to be

available, or a new process would have to be created to perform the same

actions just as they were currently being completed. It was now time to

take a look at the scope involved and get a strategic plan in place to make it

happen, while at the same time mitigating risk.

Vernon had an idea of exactly how to plan his approach to completing

a task as monumental as this. In higher level mathematics and physics, one

of the biggest and often overlooked side effects was learning to break what

seemed like daunting tasks into smaller, easier to manage and solve tasks,

approaching each one individually. Previous experience gave him some

insight from having completed his share of successful Oracle migrations over

the years, so Vernon was certain it could be done. Obviously this was going

to be quite different, as he wasn’t managing the migration of one version of

Oracle to another, but migrating to a totally different database solution. It was

a challenge he was eager to get involved in, so he started breaking it down:

 1. Deploy the simplest architectural solution for proof

of concept

 2. Set up and test the technology that addressed the

requirements

Chapter 3 Database anD appliCation CoDe

35

 3. Assess scope of changes at the DDL and database

side programming levels

 4. Assess application side changes

As the analysis showed, their current solution came with an exorbitant

price tag. This price wasn’t just for the DBMS, but also individual prices for

every piece of the solution required to maintain compliance and secure

their customer’s data. It was definitely apparent that if this project could

be pulled off successfully, it would be a game changer for FWP, it’s future,

and its employees’ futures. The outlook was one that suited the culture

perfectly in that the money they could save by switching to a much more

cost-effective system that fulfilled all the security requirements meant that

they could get their pricing for the new Standardized Financial Widgets

platform in line with the types of business they were targeting. This also

meant the ability to have more economic resources to spend on marketing

campaigns, staffing, and employee retention—all to ultimately go after

more business, which would mean growth and a higher potential for

leveraging the scalability of the new solution. FWP became a fully licensed

customer of MariaDB in December of 2015, and there was a lot of work

to do for Vernon and his team of DBAs. Not only did they need prepare

for new business coming in on the new database, but the existing SFW

customers would also have to be migrated data and all.

Vernon knew that they would need to get a MariaDB footprint within

their datacenters as soon as possible, so the first item of order was to

leverage the knowledge and staff of the MariaDB team. They were able

to get one of the MariaDB consultants on site to help them make this a

quick endeavor to get the new solution up and running as expediently

as possible. This would save the team considerable time and provide the

database team with an active deployment to get accustomed to and to start

testing against with code that would be need to be migrated. This strategy

worked out great and since Vernon was able to work one on one with the

consultant, it turned out to not only be valuable for getting their first set of

Chapter 3 Database anD appliCation CoDe

36

servers up and running with the new OSDBMS, but a wealth of knowledge

was shared in the process. This turned out to be well worth the effort, and

the professional staff at MariaDB were just as excited about their solution

as the team at FWP was. They are legitimately there to help their customers

to succeed.

It only took a few days until they had a fully functional set of MariaDB

servers set up, and not just replicating locally but also replicating

successfully to their remote data center on the other side of the country.

This was some major progress considering the time that elapsed from

the initial evaluation to having it live and in the FWP data centers, and

this gave the entire team an extremely optimistic outlook. They had

successfully set up four database servers, three at their local data center

and one in the remote location, and two Maxscale servers with very few

problems. The setup leveraged the following resources that fulfilled their

audit compliance:

• Data encryption at rest

• Data encryption in transmission with SSL

• Multitoken authentication using the RSA PAM plugin

It wasn’t completely trouble free, but the few things they ran into were

minimal and each time they found a way to work around any problems.

The next phase was to test the features with encryption and the ability to

change and rotate encryption keys as their requirements dictated, which

went smoothly without any problems. One of the issues they did run into

was regarding the use of PAM for RSA authentication. It required local user

accounts to initiate the authentication process with, and from a historical

standpoint the only users that had accounts local to any database servers

were limited strictly to those users that were necessary and business needs

dictated. This meant the following teams:

• Systems team

• Networking team

Chapter 3 Database anD appliCation CoDe

37

• Security team

• Database team

The way that Vernon was able to resolve the issue with PAM

authentication was to work with the systems and security teams for the

creation of the accounts, but with no local login capabilities. Having

previous systems administration experience prior to becoming a full-

fledged database administrator (DBA), he knew that they could create

accounts local to the servers in Linux; however, they could also prohibit

those accounts from being able to log in locally, but this would still allow

them to authenticate. Once the accounts were created and set up to

prohibit local login, they tested the setup and it worked flawlessly while

not compromising security. Another hurdle they ran across also related

to PAM and RSA was that the Maxscale database proxy did not support

this type of authentication, which meant all internal users that required

database access would need to connect directly to a database server and

bypass the proxy completely.

The team had their proof of concept deployment and had tested the

security requirements with great success with no showstoppers.

 Database Side Programming
Following Vernon’s task list meant that his next stop was a database

side deep dive; however, since he had already been supporting legacy

customers as well as new customers he was very intimate with the overall

design for both. Much of both the legacy and new standardized solution

did not rely on heavy amounts of database side programming. However,

there were triggers, stored procedures, and various scripts that would

need at least some reworking, with development, debugging, and testing

time involved. MariaDB advertised a very high percentage of support

for the PL/SQL language and most of the database side code was fairly

Chapter 3 Database anD appliCation CoDe

38

straightforward and easy to follow, so there were not many concerns here.

There were also some Oracle built-in functionality and solutions that were

being relied upon in regards to sequencing, which did not exist in a form

anything like it at the time for MariaDB. There is a sequencing engine as

part of the solution, but it works nothing like the Oracle solution and this

had already been considered by Vernon in his initial research into the

OSDBMS.

Triggers, love them or hate them, are one of the necessary evils.

Vernon’s viewpoint was like most DBAs and database programmers in

that they have their place, but use them as little as possible and don’t

overdue it. The alternative can have a very substantial impact on database

performance, so part of his approach to the migration was to try to get rid

of as many as possible, in particularly those that were not needed and did

not make sense. Like many database applications, both the legacy CFW

and SFW products used triggers for tracking the history of transactions

as the application makes its way through the system. Oracle’s built-in

optimization capabilities are very robust, so a major concern here was

going from a solution like Oracle’s to one that did not have some of those

same capabilities. The best recommendation in this type of transition is to

limit your impact as much as possible from a performance viewpoint, to

give the new solution breathing room and yourself headroom to focus on a

successful migration instead of dealing with performance issues.

There are some slight differences between Oracle’s implementation

of database triggers and that of other database vendors, but what we are

going to look at here will be specific to those differences in comparison

with MariaDB, which are going to be virtually identical to the differences

between Oracle and MySQL. The first and most impactful difference is

easily observed with the fact that with Oracle one can write a single trigger

that will function on multiple possible transactions types, but for MariaDB

one must write a separate trigger for each possibility.

Chapter 3 Database anD appliCation CoDe

39

Note MariaDb now supports triggers on multiple transaction types.

Here we will take a look at an Oracle trigger that executes based on

either an insert or an update in Listing 3-1 as compared with the same

trigger operation ported to MariaDB in Listing 3-2. This is actually not

a bad thing, as it forces one to keep the two actions separate instead of

having a large amount of code to troubleshoot and read through; it is much

easier to debug and code the processes being separate functionality. In

essence, it is actually much easier to support and maintain, so one could

actually chalk this up to being a benefit, especially if one is coding triggers

for large tables with many columns.

Listing 3-1. Oracle History Trigger

CREATE OR REPLACE TRIGGER TRIGGER_NAME

AFTER INSERT OR UPDATE

ON TABLE_NAME

FOR EACH ROW

BEGIN

IF INSERTING

THEN

...DO SOME INSERT WORK;

ELSIF UPDATING

THEN

...DO SOME UPDATE WORK;

END IF;

END;

Chapter 3 Database anD appliCation CoDe

40

Listing 3-2. Comparable MariaDB Triggers

CREATE TRIGGER TRIGGER_NAME_INS

AFTER INSERT ON TABLE_NAME

FOR EACH ROW

BEGIN

...DO SOME INSERT WORK;

END;

CREATE TRIGGER TRIGGER_NAME_UPD

AFTER UPDATE ON TABLE_NAME

FOR EACH ROW

BEGIN

...DO SOME UPDATE WORK;

END;

As discussed and one can see here, this lends itself to being a benefit

in that the code is broken down into separate components, and this

means when migrating from Oracle to MariaDB one has the potential to

double their number of triggers that are written in this fashion. Different

database administrators will probably look at this in different ways;

however, one does view the difference as really a triviality with benefits

of organized processing and reduced possibility of human error. Instead

of opening one trigger with a magnanimous number of fields being

processed that are dependent on multiple manners in which they can be

fired (INSERT|UPDATE|DELETE), to troubleshoot only one of the firing

processes and possibly making a keystroke error that breaks both portions,

one is only working on one aspect at a time.

Note MariaDb 10.3 introduces temporal tables, making it
potentially easier to maintain a history of change over time.

Chapter 3 Database anD appliCation CoDe

41

Another crucial bit of Oracle functionality that is highly used is the

concept of sequences, and FWP used these in many operations, which

MariaDB does not. At least not in the same manner in which Oracle

provides sequences and the functions used to manipulate them, so this

meant a little ingenuity to provide this functionality to support both

the legacy and standardized Financial Widget’s code bases. As of this

writing MariaDB has since added similar functionality in their latest

version 10.3 in 2018, but prior to that it did not exist. This was not a

showstopper and turned out to be a simple solution to what might seem

a complex problem.

Looking at it from a data and programming logic perspective, an

Oracle sequence was essentially a collection of parameter and value-

based information related to a named object that had built-in functions to

access and manipulate portions of that information. These two functions

are NEXTVAL and CURRVAL and they do exactly what it sounds like they

would do:

• CURRVAL returns the current value of the sequence

• NEXTVAL increments the sequence by the increment

by value in the sequence definition and returns that

value

Looking at the parameter and value relationship of a sequence as a

collection of information lends itself to the idea of field and field values of a

table layout, or at least that’s how Vernon saw it, so he folded the sequence

information into a table in MariaDB and wrote functions to perform the

same functionality as Oracle’s NEXTVAL and CURRVAL. Figure 3-1 shows

the information he used to create the sequence table for this functionality.

Then, using this table design, the two routines were written to perform the

same functionality that the same Oracle versions did. To be unique and

creative, Vernon effectually named them NEXTVAL and CURRVAL.

Chapter 3 Database anD appliCation CoDe

42

The stored procedures were in Vernon’s opinion easier to convert

than the triggers that were already done. Like the triggers did, the stored

procedures also called Oracle built-ins like sysdate() and systimestamp()

were the top contenders here and had to be replaced with now() and

current_timestamp() in order to work in MariaDB. The team at MariaDB

had been quoted as saying that more than 90% of Oracle PL SQL would

work on MariaDB PL SQL. Vernon was lucky enough to find out that

100% of the stored procedures and functions in use by the databases he

managed worked with a few minor changes.

There were some other items in use on the databases such as

materialized views for a reporting application; however, the design was

very rudimentary, short sighted, and lacked capabilities for useful trend

analysis. Vernon had his eye on this for quite some time and did not want

it to propagate from the one customer that was using it, predominantly

because the views were on a refresh of every 15 minutes in order to provide

up to date reporting for the customers. Imagine three views performing a

refresh every 15 minutes on 30 databases on the same server that had the

following characteristics:

• Refreshed every 15 minutes

• Each contained varying subsets of the same superset.

• All dates and timestamps were being converted to

numbers.

• The numbers were then queried against a helper table

for querying.

Figure 3-1. Table layout for the sequencing driver table

Chapter 3 Database anD appliCation CoDe

43

• Multiple data transformations, besides the dates and

timestamps

• The query that refreshed and created the views was a

conglomeration of archaic, poorly performing joins and

subjoins.

Needless to say, this design did not make the cut over to MariaDB and

instead it was replaced with a fully functional alternative that could be

used to track trend analysis all the way back to when the customer started

using the system. This is crucial, especially in the financial sector where

long-term and mid-term trend analysis can mean the difference between

profit and loss. Having reporting capability that is based on materialized

views that are pulling data from tables that are being purged on a routine

basis per either contractual obligation or auditing purposes was of limited

use. This would be a good example of how not to design a reporting feature

on the back end.

Much of the additional legacy code for electronic data warehousing

style reports and database management had been written using a lot of

shell scripts.

 Application Code
Migrating code that had been around for many years and had a lot of

Oracle-specific logic, Oracle-specific SQL semantics, and used what are

called Oracle built-ins was where the real concern was. After all, for the

most part a database is nothing more than a collection of structured data,

but talking about code written to access and process that data in a very

specific way was where things could get a little nasty. One of the biggest

inhibiting factors for many other OSDBMS solutions had to do with the

way that they encrypted data, or actually didn’t encrypt the data, which

meant much of that had to be done at the application and SQL invocation

Chapter 3 Database anD appliCation CoDe

44

level in order to encrypt the data just before or as it was being entered and

then do the same processing when trying to access the data. This would

mean significant hours, in some cases possibly years, to accomplish a

complete rewrite. FWP was not in the position to afford this both fiscally or

time-wise, so just as Vernon had scheduled some time with resources from

MariaDB, so did the development team, which also made a huge impact

on the migration.

There were a lot of reservations and resistance to the database

migration from a developer and architect standpoint, as nobody really

wanted to get into what seemed like such a momentous task. Historically

the team had to write an in-house set of daemons to maintain stated

connections to the Oracle database backend, to alleviate the time and

processing involved in making a new connection each time a database

transaction was issued. As it turns out these daemons were written in

Oracle’s Pro*C and during the training Vernon came in to talk with the

group about the current MariaDB footprint, at which time a few different

things were brought up. When talking about Maxscale and how it worked

as a proxy, the in-house written daemons where brought up. This initiated

a discussion that ended with a solution that had a far-reaching impact

when the trainer stated that those could still be used with a wrapper to do

the same job for MariaDB. This opened things up quite a bit and brought

about a much more optimistic viewpoint from the entire group in the

training session.

The discussion then turned to many more topics such as what the

database team planned to do about sequences, because they didn’t exist

like they did with Oracle. Vernon already not only had the answer for them

but had developed and thoroughly tested the solution. It appeared that the

excitement was starting to transfer around the room with the capabilities

and that, yes, MariaDB was absolutely a viable solution. It seemed as if

it instilled a new vigor in the team that was previously dreading having

to start the process. All of this occurred in the calendar year of 2016 and

no matter the level of excitement to start working with a new database

Chapter 3 Database anD appliCation CoDe

45

technology, it would be almost a year later to the day of the developer

training before an actual customer’s development region started hitting

a MariaDB database. This nobody’s fault, however, but was primarily due

to the size of the company and the amount of resources that could be

pulled off of other projects and be given the time to start working on the

application side of things.

In regard to the database side of this migration, Vernon did not

waste any time and had that first customer’s database migrated over to

MariaDB where it sat unused for almost a year. He also scheduled a week

of on-site training for the team of DBAs so that when the application side

of things took off, the hope was that everyone would be up to the task.

Once the project took off in spring of the following year it really picked up

some steam, and by the end of the year approximately 4.5% of 20 million

production transactions had rolled through the new database solution. By

the end of February of 2018 that ratio of the company’s transactions going

through the production databases would grow to an astounding 42%. They

were making up for lost time.

 Becoming Database Agnostic
The aforementioned training session brought about a lot of ideas, as

mentioned. The fact that they could slightly modify the Oracle-specific

connection state daemons to work with MariaDB was huge. This later

led to the novel idea that if they could do this, then why not take it a step

further and modify it to the point that upon startup the daemon could

ascertain which database solution it was connecting to and process any

transactions appropriately. This also pointed them down the path of many

other observations.

If they can wrap their daemons with enough code that it would know

what type of database it was connecting to and process in a befitting

manner, then this could be done for virtually any other database solution.

Chapter 3 Database anD appliCation CoDe

46

This meant that they could move to the realm of having their application

become database agnostic and never be so engrained in a solution as they

had become with Oracle over the years. They were and are still hoping that

MariaDB will become a mainstay in their product line, but anything can

happen and generally will.

All of this work towards becoming database agnostic and the fact

they could use the same connection state daemons also led Vernon to an

additional idea on leveraging this to help move existing customers from

Oracle to MariaDB with little or no impact via parallel writes. In essence

this meant that an application server could be running two different

daemons strictly for database writes. One daemon would handle normal

transaction processing to the Oracle database while another daemon

could send all write transactions in duplicate to the MariaDB until such

time all transactions could be routed solely to the MariaDB version.

Historically, any time Vernon had to move data from one Oracle

database version to another it always meant a big portion of down-time,

but with this idea it meant that they could pick a cut-off point and thus the

down-time and transition could be minimalized to the extreme. Database

migrations were always tricky, but to be able to do it with almost no down-

time, now that would be novel. The process broke down like this:

• Analyze the customer’s workflow to find the optimum

number of days that they ever went back to on an

application.

• For instance, 90 days

• Pick a starting date and begin the parallel write process.

• In the meantime all normal work is flowing through the

Oracle side, while all writes are going to both.

• Once the 90-day mark is hit, “flip the switch” to have all

transactions start going to MariaDB.

Chapter 3 Database anD appliCation CoDe

47

• While the customer continues processing with

MariaDB, all the data out past one’s 90-day time frame

can then be migrated without any service interruption.

• This could also be done during the 90-day parallel

write period as long as none of the older data was

changed.

The biggest takeaway from FWP and what many in the company would

certainly recommend was to engage the MariaDB teams and leverage

them to get off the ground and running. They found it to be crucial to

their success in making this transition, and as well it had the added

benefit in regard to idea and process generation throughout and after the

engagements.

This only covers a few options and ideas to make a change like this,

more specifically ones that fit the business needs of a small company.

A bigger company or global corporation could throw a lot more resources

and staff at a project like this, which opens up many more possibilities.

For Vernon and the rest of the team at FWP, the approaches outlined here

worked the best for their situation. It is recommended to do one’s own

research and explore solutions that fit the individual situation, as there are

so many tools, utilities, and database migration solutions out there that

may fit their need.

Moving forward with MariaDB for the team was absolutely solidified at

this point in time, with a few caveats that would need to be addressed from

the database side programming. At this point it was also a good time to start

analyzing existing solutions that could be improved during the database

migration. This analysis would coincide perfectly with moving into the

more technical aspects of migrating from Oracle to MariaDB. The two

topics are complimentary to a successful migration as change is inevitable.

Chapter 3 Database anD appliCation CoDe

49© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_4

CHAPTER 4

Making the Decision
This chapter will take us through a summary of the Financial Widgets Plus

(FWP) team’s work and culminate with a sample project definition with

an executive summary for the team’s presentation in regard to choosing

MariaDB as the new DBMS over their existing solution. Even though

the raw presentation of the work completed so far speaks for itself, one

may find that bringing this all together in a professionally formatted

presentation should be the primary goal for any project, much less one

with the far-reaching scope of migrating to a completely new database

backend for a company’s premier product. As with any good analysis

it isn’t just about presenting the benefits, but also identifying risks and

mitigations in order to minimize those risks, along with an overall Cost

Benefit Analysis (CBA), and that was Vernon’s approach.

The first thing Vernon wanted to address in the decision making

was why FWP would want to undertake such a huge project. Why would

any entity take on the additional workload? Why would they allocate

resources to such a monumental task when they might be used elsewhere?

Why shouldn’t they just stay on their legacy system and continue with

business as usual? Ultimately, all of these questions can be answered by

the cost analysis phase of this project when it comes to presenting the

benefits; however, he also wanted to present a path for moving forward

and completing it successfully with a systematically planned approach.

A strategy for success if you will that should include the benefits, cost

analysis, and at a minimum the first phase of the implementation.

50

 Extolling the Benefits
The benefits of MariaDB over the existing solution employed by FWP

were not easily overlooked and Vernon could not see any reason to not

proceed further; however, that final decision would be up to the head

of the company and ultimately ownership. There were still questions to

be answered and risks to be identified in regard to such a monumental

change as performing a complete overhaul of their application’s backend.

When we talk about extolling the benefits, we want to effectively answer

all off the questions as to why this change should be considered and the

reasons the work is beneficial.

Part of any good solution analysis begins with identifying the problem

and scope along with weighing the benefits of change to the entity. Those

benefits can range broadly and should present a solution to a beneficial

business need that contains a positive Return on Investment (ROI) to the

company. Cost savings can be in time and resources or just an overall

existing process improvement of deploying a new solution, altering an

existing solution, and identifying the drivers that make the engagement

successful.

The benefits for the MariaDB solution as compared with the existing

solution were substantial and culminated in a list that could extend for

many pages. What we will do here is provide a synopsis of benefits that

were considered to be the top purveyors of change:

• Costs

• Overall Software Licensing and Support costs

savings as well as being hardware and virtualization

agnostic

• Driving the bottom line, allowing the company to

invest savings into marketing, staff, and resources

and therefore growing their business

Chapter 4 Making the DeCision

51

• Secure

• Fulfils security requirements for data at rest and in

transit

• Scalable

• Scalable to meet growing business needs and

reduced licensing complexity means less drain on

staff.

• High Availability

• Leveraging Enterprise Clustering with Galera and

Maxscale

• Location failover capabilities with hybrid

replication deployments

 Presenting Cost Savings
It does not make sense for a company to begin a project that does not

benefit them in some way, and Vernon knew that with the MariaDB

solution the cost savings and ROI were going to be huge, so huge to the

point that everything else might be considered inconsequential. In fact,

the costs savings alone when projected over time were enough to offset

virtually any risks involved as well as the costs in allocating the workforce

necessary to complete the task. Essentially, by looking at costs in their

most simplified classifications of Indirect Costs and Direct Costs, Vernon

was able to present a very thorough analysis to the company. There were

many different nuances when it came to attempting to arrive at a solid

foundation for a CBA such as price changes due to vendor-experienced

Costs of Doing Business (CODB) increases, defining and identifying cost

types, and bringing it all together into a well-organized and documented

project scope of work.

Chapter 4 Making the DeCision

52

When it came time to present findings to the upper management

level at FWP, Vernon knew the numbers would speak for themselves

when compared with the current impact to their overhead and ultimately

the bottom line when looking at the amount of money that had been

spent over the years in licensing and support fees on their current DBMS

solution. The team had also witnessed price increases over the years

with their current solution, and as with any product or service in the

tech industry it is virtually unheard of for the costs to decrease over time.

These price increases are generally based on a percentage of existing costs

that can be accounted for in projections, so if one compares a projected

increase on 1.2 million dollars versus 400 thousand dollars at similar rates,

then there is even further argument for change.

Looking at any project from a cost perspective they can always be

simplified down into two essential classifications: Direct Costs and Indirect

Costs. These can change depending upon the point of analysis, so for

instance from Vernon’s standpoint his Direct and Indirect Costs for the

database team could be different than those of another team within the

same organization, for instance the development team. For this project, due

to the scope being virtually company wide, Vernon chose to look at it from a

broader scope as compared to the perspective of solely his team alone.

In identifying the Direct Costs for the database solution change,

Vernon was able to come up with the following items as being what he

considered the primary candidates related to the project:

• Software Licensing and Support

• DBMS Licensing

• Operating System Licensing

• Database team resources

• Training on new DBMS

• Database side programming development, porting,

and testing

Chapter 4 Making the DeCision

53

• Increased role in management of DBMS’ although

costly, their existing solution has many built-in

capabilities for optimization, so a more hands-on

approach will be required for monitoring, tuning,

and performance evaluations.

• Phasing out the legacy DBMS

• Migration of existing customers

• Staff increase will be necessary to meet these needs.

• Development team resources

• Training for development work with new DBMS

• Migration of existing customers

• Application code side development, porting, and

testing for DBMS change

Moving on to identifying the Indirect Costs that could be associated

with the project:

• Hardware

• Taking advantage of updated server architecture

• Systems team resources

• Deploying and maintaining server OS and

hardware

• Quality Analysis

• Increased QA load for regression testing

• Security

• Development and deployment of new security

testing and utilities oriented towards the new

DBMS

Chapter 4 Making the DeCision

54

One can now start to really appreciate the scope, the amount of work,

the resource allocation demands, and the time that will be required in the

migration to a new database solution for the team at FWP. This is also why

the development and documentation of a full analysis and scope of work is

crucial. Being as thorough as possible with leaving no stones unturned as

well as knowing which stones one can minimize, and in some cases ignore,

successfully can mean the difference in the failure and completion of a

project, especially one as large as migrating to a new DBMS.

Without a detailed analysis and thorough understanding of the

requirements for a project, one cannot count on successful completion

as an end result; however, that is only part of making a change like this

successfully. Vernon knew this just as much as he knew that they had

to also develop a game plan with a winning strategy to really make this

happen. After all we are talking about a set of core products that are

leveraged heavily by institutions in the financial industry, where a mistake

could very well result in catastrophic implications for FWP as well as their

respective customers. That is a heavy burden and a lot of responsibility

that could be a career ending situation, not to mention business ending.

So now it was time to analyze how they were going to make this happen

in a manner that gets them on the new platform while lowering risk and

mitigating potential problems.

 Develop a Strategy
With the benefits and cost effectiveness barriers out of the way, it was time

to have an initial strategy for the implementation of the new database

solution—what many would refer to as Phase 1 of the implementation.

What Vernon wanted to accomplish with his strategy here was to develop

a road map that would take FWP from having no existing MariaDB

infrastructure or footprint whatsoever in their data center to having the

new database solution deployed. This deployment would be followed

Chapter 4 Making the DeCision

55

with getting a customer’s data migrated over and their application widgets

taking full advantage of the new DBMS, ultimately resulting in it all

eventually migrating out to a full production level implementation.

Vernon and the team had surmised that it did not make a lot of sense

to make a huge investment in hardware and other resources until they had

an environment up and running to validate that MariaDB was in fact the

solution they had been looking for. In the meantime, it was decided to keep

the deployment simple and as cost effective as possible, the KISS (Keep It

Simple, Stupid) design principle being still as relevant today as when it was

first phrased. This would help to lower the risk on the off chance that the

solution turned out to not be a good fit for their application.

The initial MariaDB deployment would turn out to be very cost

effective in that FWP had recently gone through a hardware refresh and

thus had several HP Proliant DL380 G7 servers that could be repurposed to

provide the initial hardware to house the MariaDB database deployments.

These were old and outdated servers; however, they had the memory

capabilities and processing power to serve out their usefulness as

supplying the proof of concept for the new database solution.

Sticking with the principle of KISS, Vernon made the executive

decision to keep the first MariaDB deployment simple as well. He chose

to stick with single, stand-alone nodes to house the database solution

using Maxscale and MariaDB Replication to provide replicated failover for

the first incarnation. These standalone nodes would run on the G7 server

architecture; however, for the purpose of providing the Maxscale footprint,

seeing how it was such a lightweight solution, Vernon decided that it

would be perfectly suited to virtualized environments.

With many existing customers already on the legacy solution, it

seemed that the best-case scenario would be to analyze the existing

customers for an initial candidate. A meeting was scheduled that included

representatives from the different teams to assist in this portion, as with

many of the legacy customers only the most recent adhered to any type of

Chapter 4 Making the DeCision

56

standardization or common code base. What the team was looking for was

a candidate that would be lightweight in regard to data retention, which

would mean less data to migrate, and that would involve minimal code

changes in order to point them to the new database solution. This turned

out to be a pretty quick and simple job, as all teams were in agreement

when the requirements were discussed in that one customer stood out

above all the rest. This customer was lightweight, maintained a small data

footprint due to retention policies, and FWP provided more of a Software

as a Service (SAAS) than any other customer.

With the hardware lined out and a first candidate for migration

designated, FWP started to move forward at a rapid pace with the MariaDB

solution. Although, others might choose a different path or even be

migrating with completely different database solutions, the lessons learned

here are applicable to virtually any project when success is the ultimate

goal. There are some good lessons here, and when one combines this with

the fact that Vernon lead the team through a successful migration from

one database technology to another, the roadmap he developed is valid

and applicable for others to use as a basis in their own work, and the same

methodologies are adaptable to other types of large- scale projects.

 Putting it Together
After detailed documentation of the benefits, cost analysis, and

development of an implementation strategy, the next step is putting this

all into a nicely formatted project documentation for presentation and

approval. There are many acceptable preformatted project document

outlines readily available, many are free and easily downloadable,

and all will work. You can even make up your own; however, there

are a few minimum sections that one should include in their project

documentation. What we will present here are the requirements that

Vernon used as a format for his documentation.

Chapter 4 Making the DeCision

57

At a minimum, one will want to have a well-organized document that

contains specific requirements in an easily readable format that begins

with an Executive Summary. This can and will be the most important

part of your document and should be treated as such, as the target of

this summary will be the company leaders at the highest level who will

have the final say on your project. One does not want to get too wordy

and should stick to the facts related to the most important portions of

your project and what benefit they will provide to the business. This first

section will be the difference on whether your reader stops and moves on

to something else, setting your project aside, or continues to digest your

document in its entirety with a much higher potential of getting the go

ahead. If you have spent the time to get to that point, spend the time and

make the Executive Summary pop, otherwise you are wasting your time as

well as your reader’s time.

The Executive Summary is where you grab the reader’s attention and

effectually sell your project, enticing the target audience to read the rest of

the document for a more detailed breakdown of the work. This does not

mean that one skimps on the remaining document, as the details are just

as important and if you don’t have the specifics to back up the Executive

Summary, your project can end up dead in the water as well.

The benefits of MariaDB over Oracle from a pricing and side by side

comparison did not require too much on the project presentation side, as it

pretty much spoke for itself. With many utilities and capabilities that come

prepackaged with MariaDB it seems that Oracle is going to have some very

capable competition in the secure database market. It satisfies auditing

requirements, is scalable, and cost effective—with the latter being something

that Oracle currently cannot compete with. The one thing to glean from the

analysis as presented over these first few chapters is that although MariaDB

is a very cost-effective solution from a support and licensing viewpoint, the

only downside is that it will require more hands on from one’s database

administration team. Even with the additional staffing needs, Oracle is

effectually blown out of the water by what MariaDB has to offer.

Chapter 4 Making the DeCision

59© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_5

CHAPTER 5

MariaDB Solution
As discussed in Chapter 4 in regard to the initial deployment of their

MariaDB solution at Financial Widgets Plus (FWP) and keeping with the

KISS principle, the team chose to stand up a stand-alone environment

with replication. Using this as the basis for their proof of concept work

turned out to enable them to get an active MariaDB environment deployed

quickly and easily in order to validate what they had already perceived

as a viable solution to their database solution alternative. Once the proof

of concept was complete, the team then went on to deploy a much more

robust high availability solution. Here we will get into detail on the setup

and deployments as completed by Vernon’s team, to get them familiar with

the database solution by enabling them to rapidly deploy and then extend

their MariaDB footprint.

Starting with a stand-alone install of the MariaDB database solution

provided them a vehicle to prove their concepts and initial evaluation

with a simple setup. The team then went on to evaluate Replication and

ultimately to a full blown Galera Cluster. The use of a phased approach

in their implementation minimized risk as well as allowing the team to

increase their knowledge of the system from the basic setup to the much

more advanced deployment. This approach was also tantamount to the

project’s success, as they were able to maintain a simplified footprint

for development and testing work while working on the more advanced

solutions. This allowed for continuous integration and improvement

throughout the migration process without interruption of the day to day

operations.

60

The team at FWP had migrated from the financial sector staple of

HP-UX many years ago and had updated to RedHat Enterprise Linux

(RHEL) as their companywide server class operating system. Therefore,

all installation and configuration errata will be based on RHEL as the

operating system of choice, which for completeness it should be noted

that it is packaged with CentOS. One can easily apply the same database

system setup and configurations across virtually any Linux distribution of

choice. RedHat being an open source and community driven commercial

variation of the Linux operating system also has a community release

called Fedora that could be used freely in one’s proof of concept work in a

sandbox environment. The only differences might be with the installation

of the MariaDB libraries and code base as to whether one’s distributions

leverage installation utilities such as yum, rpm, apt-get, and so on. Since

we will be installing and configuring MariaDB software on RHEL version

7, the following documentation will be oriented towards that distribution

and its libraries and utilities.

 Preinstallation Considerations
The setup, configuration, and deployment of the MariaDB solution by

Vernon’s team, although kept in their simplest form, required some

consideration. Being new to the technology and not knowing how well

the database would perform with their application code meant some

guesswork would be involved as to system requirements. MariaDB

leverages the Linux temporary directory and would require enough space

to perform operations. In order to fully test the new database solution,

encryption for data in transit and data at rest also must be deployed along

with the installation.

Using the system deployments of the Oracle RAC nodes seemed to

be a good starting point for overall system requirements as far as system

memory allocation and CPU. The changes that were made were in regard

Chapter 5 MariaDB Solution

61

to allocating specific disk mounts for MariaDB use. This would allow them

to size and resize the mounts arbitrarily of other system and application

processes, with the added benefit that if something went wrong on the

database side it would not bring down the entire system. These decisions

regarding disk space were to provide the database its own mount point for

data files, logs, etc. as compared with the default location as well as its own

temporary file mount.

One of the primary requirements in the search for a new database

solution for the team at FWP was the capability for the encryption of

data, both for data at rest and data in transit, so this had to be a part of the

testing and evaluation sandbox. The encryption of data in transit has been

around with MySQL for quite some time with the use of SSL and requiring

connections to use SSL; however, the advent of the encryption of data

at rest beginning with MariaDB 10.1 was new, so it had to be set up and

evaluated.

Note MariaDB actually supports an updated form of SSl known
as tlS. however, it is common for the term SSl to still be used even
though tlS is the intended meaning.

The installation of the MariaDB software as well as many of the lower

level configuration settings does require root level system access. From

the FWP perspective, much of the system setup, mounting of storage,

and various other operations are handled by their group of system

administrators. In most cases, from a business and security viewpoint this

will be similar due to separation of duty constraints for most businesses

handling secure data. Our focal point here will be primarily from the

database administrator side for the setup and configurations, but anything

of particular mention will be notated for the reader.

Chapter 5 MariaDB Solution

62

 MariaDB Stand-Alone with Replication
Starting with MariaDB as a stand-alone database server is the perfect place

to gain experience and find out how your database driven application

is going to work. It can be set up on a rapidly deployed virtualized

environment that is low cost and low impact to your systems team and will

get you up and running quickly. The files are easily downloaded directly

from the MariaDB website, which is how this exercise will be approached,

and are also available in most vendors’ code repositories and can be pulled

into one’s internal repository in order to be more readily available.

Note Be very prudent if your company maintains its own repository
for yum or apt-get based installations and updates. it is highly
recommended that all database software updates should be done in
a controlled manner and should not coincide with operating system
updates,; if your operating system updates automatically pull from an
internal repository, then your database software could be at risk of an
unplanned update.

The MariaDB code repository contains installation files for the

following operating systems:

• WINDOWS

• REDHAT / CENTOS

• DEBIAN

• UBUNTO

• SLES

The files required for an installation of a MariaDB release are all

packaged together into a large tar file and must be unpacked prior to

installation; however, we can also take a sneak peek by passing specific

Chapter 5 MariaDB Solution

63

parameters to the tar command to see that there are a lot of files (Listing 5- 1

and Listing 5-2). Once the tar archive is unpacked for a base install, there

are only a few of the rpm files that will be required for the base installation:

• MariaDB-10.2.15-centos73-x86_64-server.rpm

• MariaDB-10.2.15-centos73-x86_64-client.rpm

• MariaDB-10.2.15-centos73-x86_64-common.rpm

• MariaDB-10.2.15-centos73-x86_64-shared.rpm

Listing 5-1. Using the tar Command to List the Archive Contents

tar -tvf mariadb-10.2.15-rhel-7-x86_64-rpms.tar

Listing 5-2. Using the tar Command to Extract the Contents

tar -xvf mariadb-10.2.15-rhel-7-x86_64-rpms.tar

Note this is a little confusing and it should be noted that the tar
file will contain the designation of rhel, and when unpacked it will
create a directory designated rhe. however, the individual install files
will have the designation of CentoS. Both linux distributions use the
exact same files, so the naming construct although confusing has no
deleterious effect.

The installation of the MariaDB software is made easy with the yum

installation and update utility; see Listing 5-3 for a single line command

to install all 4 packages. As mentioned previously, one must be very

careful if including database packages in their own local repository, as

the application of an unplanned patching event can be catastrophic if not

done in a controlled environment. The author’s own recommendation

is to always keep system updates disjoint and performed at different

times than database updates for a very valid and significant reason. It is

Chapter 5 MariaDB Solution

64

extraordinarily difficult to troubleshoot failures when you have patched

both your database and your operating system at the same time. Which

patch broke everything is not always easily definable, and the last thing

you want is people from different groups standing around pointing the

finger at each other while your customers are experiencing a prolonged

and potentially unplanned outage. Play it safe to plan and perform your

deployment’s maintenance accordingly.

Listing 5-3. Using yum to Install the Required MariaDB Packages

yum install MariaDB-10.2.15-centos73-x86_64-server.rpm

MariaDB-10.2.15-centos73-x86_64-client.rpm MariaDB-10.2.15-

centos73- x86_64-shared.rpm MariaDB-10.2.15-centos73-x86_64-

common.rpm

The base install will put everything into the default locations along with

placing some sample configuration files on your system for MariaDB to use

on database start up. We do not want to start the database up at this time;

instead we want to start our configuration of the system in order to have

everything in place at startup. A few things to note about the base install:

• Default location for configuration files

• /etc/my.cnf.d

• Default location for database files and log files

• /var/lib/mysql

Since we will be using encryption, that will be the next step in our

setup and although we can put those files virtually anywhere, the default

location was chosen for consistency. For data in transit our deployment

will be using Secure Socket Layer (SSL), so the keys will have to be created

in order to take advantage of the network security layer it provides. This

key creation process is described in Listing 5-4 and since they will be

created in the default location, the first step would be to move to that

directory so the files will then be created within the target location.

Chapter 5 MariaDB Solution

65

Listing 5-4. Creating SSL Encryption Keys for Data in Transit

cd /var/lib/mysql

openssl genrsa 2048 > ca-key.pem

openssl req -new -x509 -nodes -days 3600 -key ca-key.pem -out

ca-cert.pem

openssl req -newkey rsa:2048 -days 3600 -nodes -keyout

server-key.pem -out server-req.pem

openssl rsa -in server-key.pem -out server-key.pem

openssl x509 -req -in server-req.pem -days 3600 -CA ca-cert.

pem -CAkey cakey.pem -set_serial 01 -out server-cert.pem

openssl req -newkey rsa:2048 -days 3600 -nodes -keyout

client-key.pem -out client-req.pem

openssl rsa -in client-key.pem -out client-key.pem

openssl x509 -req -in client-req.pem -days 3600 -CA ca-cert.

pem -CAkey cakey.pem -set_serial 01 -out client-cert.pem

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

Note it is highly recommended to create backup copies of all
encryption related files and keys—local for quick access in an
emergency, as well as remotely in case of a full Disaster recovery
situation.

The next phase is creating the encryption keys for the security of our data

at rest by encrypting all data that is considered PII or PCI scoped. This will

also take advantage of the openssl libraries in order to create the initial keys

that will be used to encrypt the tables that contain the data that is targeted

Chapter 5 MariaDB Solution

66

as requiring a high level of protection. When compared to the creation of the

keys for data protection at the network layer, the process is much easier for

the data at rest in that it is a single command that will generate the output

that can then be placed in your key file. For simplicity sake we will name this

file keys.txt with read access protection. The creation process is covered in

Listing 5-5.

Listing 5-5. Creating Encryption Keys for Data at Rest

openssl enc -aes-256-ctr -k mypass -P -md sha1

With the data encryption portion of the setup complete, the next steps

will be the configuration of the database server as well as the client. As

previously mentioned, these files are located in the default location of /etc/

my.cnf.d, so this will be our next focal point in the setup and deployment

process. The installation of MariaDB will create default configuration files

for the database; these are very rudimentary and sometimes will require

significant customization throughout the lifetime of a deployment. These

configuration files consist of a file for the database server as well as one for

the client, and are easily identified due to their naming convention:

• Server configuration file: /etc/my.cnf.d/server.cnf

• Client configuration file: /etc/my.cnf.d/client.cnf

Continuing in the same order as the creation of the keys, the first

step will be to configure the local client configuration for encrypted

communications. Essentially we are pointing the client to the location

of the SSL files for use in connection initiation with the server, which is

accomplished by adding the file names and paths to the client.cnf file, as

shown in Listing 5-6. The server must also be configured to use the server

side SSL files in order to communicate with the client, so a similar entry

must be made in the server.cnf file (Listing 5-7).

Chapter 5 MariaDB Solution

67

Listing 5-6. Client Configuration File Rntry for Use of SSL

[client]

ssl-cert = /var/lib/mysql/client-cert.pem

ssl-key = /var/lib/mysql/client-key.pem

This completes the configuration requirements for the network

encryption of data in transit and is all the editing required for the client

configuration file. The SSL configuration on the server side resides within

the server.cnf and doesn’t have to be in any particular location or order;

however, it does have to be included in order to use SSL encryption of the

database communications.

Note When patching and applying updates to your database the
configuration files can and will be overwritten. it is generally good
practice to maintain a backup of both files on a remote server, as well
to add the step of creating a copy of your configuration files locally
prior to any changes.

Listing 5-7. Server Configuration File Entry for Use of SSL

[mysqld]

SSL settings

ssl-ca = /var/lib/mysql/ca-cert.pem

ssl-cert = /var/lib/mysql/server-cert.pem

ssl-key = /var/lib/mysql/server-key.pem

This completes the encryption setup portion and allows us to move

along to the rest of the server configuration, which gets a little more

involved. The server configuration file can go from the short and simple

to an exceedingly complex, hard to follow, and lengthy array of server

parameter value combinations. Therefore, the best approach is to start

with a well-organized file and build upon that organizational standard as

Chapter 5 MariaDB Solution

68

one’s needs and requirements evolve over time along with the deployment.

This is exactly how this will be approached with the sample configuration

settings that will be shared here in the example server configuration file

provided, beginning with standard configuration settings in Listing 5-8.

Listing 5-8. Server Configuration File General Settings

[mysqld]

turn on the performance schema

performance_schema=ON

General

basedir = /usr

datadir = /data_mount/mysql

tmpdir = /tmp_mount/tmp

report_host = sandbox1

port = 3306

user = mysql

character-set-server = utf8

collation-server = utf8_general_ci

optimizer_switch = 'index_merge=on,index_

merge_union=on,index_merge_

sort_union=on,index_merge_

intersection=on,index_merge_sort_

intersection=off,index_condition_

pushdown=on,derived_merge=on,derived_

with_keys=on,firstmatch=on,loo

sescan=on,materialization=on,

in_to_exists=on,semijoin=on,partial_

match_rowid_merge=on,partial_

match_table_scan=on,subquery_

cache=on,mrr=on,mrr_cost_based=on,mrr_

sort_keys=off,outer_join_with_

Chapter 5 MariaDB Solution

69

cache=on,semijoin_with_cache=on,join_

cache_incremental=on,join_cache_

hashed=on,join_cache_bka=on,optimize_

join_buffer_size=on,table_

elimination=on,extended_keys=on'

event_scheduler = ON

log_error = sandbox.err

log_warnings = 1

 Replication Limits and Testing
At the time of this project there were some limitations with stand-alone

replication in a master-slave scenario in regard to high availability and

failover, which could be overcome with some work. That capability is

now available within Maxscale using GTID (Global Transaction ID) and

if the automatic rejoin is enabled if the master is lost and recovers it will

automatically reconfigure as a slave.

Testing the replication features was completed both locally and to a

remote data center across the country. This was one of the simpler features

of MariaDB to test; however, one should test the replication of both data

and structure. This is where Vernon and his team ran into an interesting

anomaly with using the create or replace functionality for triggers, stored

procedures, and functions. These objects do not replicate successfully,

and one must explicitly drop the objects and recreate them. This is by

no means a showstopper, but it does have some implications for making

changes on the fly.

 Galera Clustering
Once replication failover was tested, the next phase was to evaluate

MariaDB with Galera Clustering. The replication setup provided a quick

and simple deployment to get MariaDB up and running in the datacenter

Chapter 5 MariaDB Solution

70

at FWP. It also provided an environment for their development team

to start their portion of the work in migrating the company’s software

to the new DBMS. The company required full failover capabilities just

like what they had with Oracle RAC, to alleviate downtime and service

interruptions. A Galera cluster was the next step with a minimum three-

node deployment.

The Galera software rpm is included in the same distribution files

as the base release, and the setup requires a few changes to the server

configuration file. The settings shown in Listing 5-9 are the minimum run

time settings required to for a cluster setup. The naming constructs and

parameters are straightforward, with wsrep_node_address being the IP

address of the server configuration files node and wsrep_cluster_address

being the list of all cluster members.

Listing 5-9. Server Configuration File Galera Settings

[galera]

wsrep_on=ON

wsrep_data_home_dir=/<path>/galera

wsrep_node_address=<node_ip>

wsrep_provider=/usr/lib64/galera/libgalera_smm.so

wsrep_cluster_address="gcomm://<ip_1>,<ip_2>,<ip_3>"

wsrep_cluster_name="<some_cluster_name>"

The configuration settings should be the same across all nodes except

for the individual node address, and a distinct cluster name should

be assigned to each cluster as deployed. Once the first node is up and

operational one can then move on to the second node in the cluster. with

the understanding that the second node will then synchronize with the

first node. An observation here is that the time it takes to synchronize will

be heavily dependent on the number of databases and their size. Initial

setup should not take any time; however this time will increase as more

Chapter 5 MariaDB Solution

71

databases and data are added. Another item worth noting is that in most

cases a new node joining the cluster will get syncrhonized with the most

up to date node; this is generally the current Master node. This will cause a

failover event, as the Master will go into a quiesced state to transfer data to

the joining node and a new Master will be chosen unless a specific donor

node is designated. If the Master is the only node in the cluster when a

node attempts to join, there will be a loss of service because the Master will

still go into a quiescing state and will accept no transactions until it is done

bringing the new node up to state.

Some things to note about differences between Oracle RAC and Galera

Clustering:

• Oracle RAC is shared disk; Galera is not.

• Oracle RAC has load balancing capabilities; Galera

does not.

• Galera has read/write splitting with Maxscale.

• Galera cluster requires a minimum of three nodes.

The Galera Clustering solution does have a few caveats that one must

become familiar with in order to support it. The failover capabilities are

instantaneous and with Maxscale providing connection routing, stated

connections failover seemlessly without issue. If one’s application allows

for it, read/write splitting with Maxscale can also provide some load

balancing capabilities by moving read transactions across the nodes. The

biggest impact that Oracle RAC has over Galera is that it supports shared

disk via ASM, which reduces network storage overhead for RAC. With

Galera the disk requirements are such that each node must have the same

amount of disk space allocated because they are all equal copies of one

another. With the reduction in overhead of newer storage technologies,

this is also not a showstopper.

Chapter 5 MariaDB Solution

73© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_6

CHAPTER 6

Change as a Catalyst
When Vernon was first presented with the mandate to start researching

alternative database solutions for Financial Widgets Plus (FWP) he saw a

much larger opportunity at hand. Coming in to a new company that had a

database department that consisted entirely of a group of what he termed

as Reactive Database Administrators that had created and deployed an

amalgamation of one off solutions and had never explored the concept

of standardization, he realized that this was the best thing that could

happen to not only FWP, but also to the department that he was now

heading up. Where others saw the migration to a new database solution

as an opportunity to lower costs significantly and be done with what they

perceived as a predatory vendor, Vernon saw this is an opportunity to fix

many headaches and problems that had been plaguing the organization

for quite some time.

From the very first discussion on the topic he realized that he was

going to seize upon this opportunity and use it as a catalyst for change for

his department as well as the organization. He had already made some

inroads into change once he had taken over the database department with

developing and promoting standardization in a few areas. However, this

would allow for the opportunity to effect change on an even greater level

with the opportunity to rework and fix many of the legacy headaches that

plagued his team, and in some ways the entire organization as a whole,

with difficult to support and maintain products and services. There were

many hours of time spent in the support and maintenance of poorly

written and designed database side processes and code. Although some

74

of that time was in fact billable to the end customers, it was in fact lost

time for the organization itself. It was time that was better served being

expended working on new and improved solutions, new product lines, and

normal maintenance that was sometimes being deferred due to the lack of

staffing resources or the time to actually allocate to them.

Up to the point of entertaining a new DBMS solution, Vernon had

systematically been pinpointing areas of improvement that could be

targeted without major overhauls to the solution side, and the biggest

problem was breaching the reactive attitude of the department that

he had inherited. This was not just internal to his department, but was

also a problem with the way that every other internal team within the

organization treated and worked with the database team. He had great

disdain for any organization or team being predominantly reactive in

nature because it was never conducive to productivity and never provided

a positive experience, especially when it was something that could be

easily automated or monitored. Of course if there is an outage of some

type there is no other approach than to react to the situation, but when

the culture is one where the staff is surfing the Internet, shopping, and not

maintaining their systems and the end result was a production level outage

for a customer, being reactive is not the answer. The first step was to begin

promoting a proactive approach for the group of database administrators,

which then would begin to flow over and hopefully have the desired

impact on the other teams.

The changing of a culture from one of being predominantly reactive

to that of taking on a more proactive role and attitude was the largest

hurdle that in many ways prepared the database team for the future of

migrating to a new database solution. Although it was unknown at the

time when Vernon started this arduous task, in self-reflection without

crossing this hurdle the team would not have been prepared to take on

the level of work involved with migrating from a DBMS such as Oracle’s

Enterprise Edition (that had the internal optimization capabilities, built

in features, and performance utilities that quite simply worked out of

Chapter 6 Change as a Catalyst

75

the box) to something entirely different like MariaDB. This outlook in

no way minimizes the capabilities of the MariaDB solution, but more so

maximizes the fact that it does require more hands on, a shift in learning,

and ultimately a team of Proactive Database Administrators to manage

and support it.

By the time the database team at FWP began working on the MariaDB

implementation, this cultural shift was well underway and his own

team was becoming much more agile with adopting his more proactive

approach in their work and daily duties. This allowed Vernon’s team to

jump ahead of the project proactively in order to start identifying items

that could be improved, the adoption of further standards, and the

overall improvement of tasks and services from the database side for the

company’s offerings.

 Evaluating Solutions for Rework
Entering into a change with ramifications such as changing one’s DBMS for

a complete backend overhaul is a huge undertaking and no stone should

be left unturned in outlining the requirements and scope. This includes

existing solutions and services that might be outdated, poorly written or

could use improvement, and may very well cause a performance impact

to your new DBMS. As if migrating to a completely different database

weren’t enough, one cannot overlook potential performance impacts that

lie just outside getting the primary application up and running with the

new database solution, which increases the overall scope of the project,

furthering the potential for success.

The methodology being introduced here is not new and the largest

mitigating factor in a change like this is to not fall prey to tunnel vision but

instead to try to be thorough in the analysis of any change requirement

across the full scope of the solution. Most software applications that

leverage a database-driven backend for transactional application

Chapter 6 Change as a Catalyst

76

processing do not stop at providing that service and that service alone.

There are many other secondary and tertiary services, and beyond, that

the database portion of solutions is saddled with. These also need to fall

under the microscope because they have the potential to affect one’s

project. This may be as simple as some daily generated reporting services

or as complex as feeding a data warehousing solution designed as a system

of record.

Solutions that fall outside the scope of standard transactional

processing that were designed and written for a solution like Oracle’s

Enterprise Edition DBMS in most cases are not going to perform the same

against a different database solution. As mentioned, the Oracle database

has optimization capabilities that others do not and can make poorly

written code or poorly designed objects perform without noticeable issues.

The time to find out about these hidden gems is not after everything has

been ported and you are up and running in a production environment.

Although, from experience there are going to be items at the application

code side that undoubtedly will have less than desirable effects, the idea

is to mitigate these items to as few, small, and far between as is humanly

possible by looking at the bigger picture.

The approach as taken by the database team at FWP was just such

an exercise as this. Processes and systems were analyzed that were easily

identifiable from the database side thoroughly, in order to evaluate them

for potential impact and then addressed systematically. They used the

database solution migrations as an opportunity to fix issues with legacy

solutions, to adopt standards, and to improve processes and automated

solutions. This not only helped to mitigate post migration problems, but

also to target solutions that had been developed a long time ago in order

to improve them and thus provide a more stable and robust solution to

their customers.

Chapter 6 Change as a Catalyst

77

 Fixing the Legacy
Everyone has been there at some point in their career, where they have

been tasked with supporting and maintaining legacy solutions that

sometimes turn out to be the bane of their existence. These solutions

often turn into considerable time sinks that adversely affect day to day

operations and inhibit forward progress in other areas. Sometimes these

solutions were written by technical resources that are no longer available

and have moved on in some capacity. However, one also sometimes

has the distinct pleasure of running across something they did earlier in

their career that also offers the same amount of enjoyment. Either way, if

you are performing a migration such as this, you are aware of all of these

potential targets already and should take advantage of this opportunity to

correct these potential time wasters and productivity hurting problems.

The database team at FWP took many of these things into account in

their transition, as there were several opportunities for improved level of

service. For them, since their company was relatively small and lacked

resources to start tackling items on the code side right away, they had the

luxury of time on their side to spend evaluating legacy code and processes

as targets for improvement. Some of the tasks they chose to tackle were

actually redesigned and developed into more robust solutions to the point

that no legacy code existed in the migrated solution.

There were many processes that had absolutely no logging or error

checking, which meant many times the database team would get notified

by other teams, sometimes even customers, that something had failed.

Vernon had started to ferret out these lackluster solutions on the Oracle

side and augment the existing code to include some levels of logging and

error checking, but did not have the time or resources to allocate to them

at the level they really required. The transition to the MariaDB solution

provided his entire team the ability to address many issues that had been

Chapter 6 Change as a Catalyst

78

plaguing them as a team, and FWP as a company. They were able to make

these changes as part of the migration and move to a more robust, time-

saving, and maintainable day to day operational efficiency.

From the database code side, the migration to a new database solution

is a great time to evaluate and potentially resolve many of the legacy

issues that tend to cause a negative impact. In Vernon’s case, going from

Oracle to MariaDB provided a great vehicle for this. Even though much of

the database side coding would only require slight changes and recoding

work due to MariaDB’s support for PL/SQL, there are still many built-

in functions being leveraged that Oracle has that no other solution has.

The fact that much of the database programming code would need to

be gone through validated the argument for addressing shortcomings

and improving the code base. This may not be true for everyone, but the

opportunity should not be passed up for the evaluation and improvement

of legacy code and processes.

 Standards Adoption
One of the biggest time sinks for Vernon and the team of database

administrators at FWP was the lack of standards adoption across the entire

organization. For the database team it meant supporting many databases

that were largely disjoint in every way possible, but the same policies

existed across the entire development team as well. Within a short time

of his initial employment, he quickly concluded that nobody historically

ever did the same thing the same way twice even when it was the same

person performing the work. Vernon set about enacting policies and

pushing standardization within his team with the strategy that the avenue

he was taking would filter out and have a beneficial side effect across the

organization. It was sorely needed and was not going to be an easy task by

any account with many bumps and bruises—again the process of database

solution migration to the rescue inducing more needed changes.

Chapter 6 Change as a Catalyst

79

The problems were so bad that the organization was literally

hemorrhaging losses in hours, productivity, and ultimately affecting the

bottom line because of it; however, pointing this out would certainly win

no political races. The benefits of standards adoption are magnanimously

positive, just as the lack of standards is negative. The turnaround times for

supporting issues are quite lengthy when standardization methods are not

followed in any way, shape, or form, especially if the person familiar with

the implementation is not immediately available. Some organizations may

be better off, and yet some may be one on even worse footing. However,

any reason for the adoption of standards is a good enough reason to

explore. The results will speak for themselves in rewards that will recoup

the time investment exponentially.

The adoption of standardized solutions is not limited in scope to

databases, but is applicable to most areas of any business and results in the

prospect of other beneficial practices like code reuse, report formatting,

naming conventions, and a myriad of virtually limitless other topics

and areas. One of Vernon’s first targets of standardization was reporting

for their existing product, which focused on 30 customers that received

nightly financial reports. Each customer had a slightly different report

format where some wanted fields in a different order, others wanted some

fields left out, and yet others wanted something completely different with

pipe-limited choices, comma delimited, and whether they wanted field

encapsulation or not. This meant that each time there was a table definition

change that includes a field addition or removal, a database administrator

was tasked with systematically modifying the jobs that produced the

reports in each region for a customer from development through to

production. Each time that code is modified adds another opportunity for

human error to occur and not only was the formatting different for many

of them, but the entire process for producing these reports was different

as well. It was a jumble of shell scripts, stored procedures, and various

other amalgamations that were thrown together to solve each customer’s

reporting solution, and each one different than the next.

Chapter 6 Change as a Catalyst

80

The maintenance and support of these types of deployments are not

sustainable unless one does not want their organization to spend time on

work that is more beneficial to its continued business and survival. The

first step is the identification of a potential candidate for standardization,

the adoption of a standard, putting it into practice, and then the arduous

task of maintaining it. The last two of these steps are the most difficult

tasks when it comes to trying to adopt any level of standardization, but

maintaining a standard is by far the most difficult in that it means sticking

to it. In many cases this also means trying to make sure others stick to the

standard practices, ultimately in some cases enforcing it, which in some

cases makes one evil incarnate to those who would rather continue with

the way things have always been done in the past. Change is too often not

welcomed and standardizing practices where none have ever been before

is a huge, but beneficial change that many fail to see the face value of.

Making use of the database migration as a driver, or catalyst, for change

helped to alleviate the pressure and lackluster responses that result from

making many improvements, including adding additional standardization

and process improvement. For the team at FWP this meant getting out

from under a closed proprietary DBMS as well as leveraging that change

to help the organization evolve to the next level. There were many more

areas for standardization besides the example of reporting that Vernon

targeted that made a lasting impression on day to day operations. If one is

considering evolving their business to a new platform that is in and of itself

considered a disruptive change, they really should consider using that as a

vehicle to improve the foundation of their business and its offerings. There

really is no better time, and using it to provide an excuse for the often

resisted rational of change is a strategy not to be overlooked.

Chapter 6 Change as a Catalyst

81

 Process Improvement
The analysis of day to day functions and how one’s team spends their

time is essential to taking a proactive approach in any industry, process,

or task. Analyzing and creating an ordered target list by importance

based on impact should be the first order when taking over anything

from a managerial aspect if the intent is to improve and produce quality

quantitative results. To be an effective leader and provide the highest level

of operational consistency demands it, otherwise one is just coasting and

continuing the business as usual standard, which is how businesses get

left in the lurch in the technology sector every day. Constant evolution and

improvement are not only expected but demanded, and anything else is

just going through the motions.

Many managers, executives, and even business owners fall into the rut

of business as usual. There is also the unfortunate effect where trying to

improve business processes and operations can result in a target on one’s

back, as it is ingrained in human nature that change is a bad thing and

to resist it comes all too naturally. This attitude is not one meant for the

technology sector, because technology itself is changing on a daily basis

as computers become more powerful and resources that just a few years

ago were constrained are becoming almost limitless with advancements

in memory, processing power, and storage capabilities. To not improve

on processes and operations is the antithesis of the industry one is trying

to be successful in, so a level of agility is required. To move towards Agile

Methodologies is to move towards success, and to encompass these

methodologies is to improve processes by the analysis and study of

workflow.

Agile Methodologies and DevOps are two buzzwords that seem to

get a lot of attention. Like most buzzwords they get abused by many

in order to seem like they are on top of technology and adopting the

latest and greatest, yet so few truly understand them. Agile and DevOps

methodologies, just as with the term Open Source, have been practiced,

Chapter 6 Change as a Catalyst

82

been around, and implemented for many years without nearly the fanfare

or the systemic vocal authority with lack of true understanding that they

have gotten in more recent times. To be agile in the technology industry is

to be open to and ready to adapt to change quickly. It is not just a software

term, but a term that can be used to encompass all business practices

targeting the areas of workflow and process improvement. Some database

administrators may cringe at the thought of Agile Methodologies being

applied to the database realm, but it does actually fit when encompassing

the core of all that is Agile.

Work as well as workflow are much different for an applications

developer or architect than they are for a database administrator, but that

does not mean that one cannot implement Agile Methodologies from one

standpoint and not the other. It just means that the methods implemented

for one discipline may not, and in several cases are not, applicable to the

other. During database application development an architect or developer

may be working with requirements and changes that are changing rapidly,

and thus the Agile Methods applied to their work is targeted appropriately.

The database administrator on the other hand is generally handed a

set of objects and/or object changes as part of the development team’s

work. These changes are then reviewed, feedback provided, and then

implemented. The database administrator is then done and that is it

until any other modifications or changes are requested, at which time the

database team member is then reengaged by the development team. These

two disciplines are very different, so as one can easily see their workflows

and processes are different. One can easily grasp that this means that

methodologies employed by one team are not going to necessarily work

very well with the other; however, both can still be agile.

It does not make sense to have database team members sit through

daily, sometimes twice-daily, stand-ups that development teams use in

many interpretations or incarnations of Agile development methods. This

is counterintuitive and accounts for time not well spent due to the nature

of a database team and its role. For their part in the development process,

Chapter 6 Change as a Catalyst

83

once the database administrator has completed the targeted changes his/

her job is done as far as release work. The database team’s time is then

spent on the other aspects of their jobs that are extremely important and

take precedence in regard to supporting, maintaining, monitoring, and

performance evaluations on both test and production environments. This

is true especially at a smaller company where there the luxury of having

database administrators teamed up in subdisciplines handling specialized

and targeted areas does not exist.

In fact, Agile Methodologies can be applied to virtually any discipline

or type of work in existence. The key word here is work. The study of work

and workflow is the summation of implementing the Agile Methodology

across multiple disciplines, with the desired effect being streamlining

work in order that it flows continuously, even with occasional changes and

hiccups, by alleviating wasted time and bottlenecks. This gets polluted and

occasionally lost with the application across development teams; however,

in its purest form it can be applied in any areas where work and workflow

are involved.

DevOps is a more recent incarnation of Agile-related nomenclature

that encompasses its methodologies across multiple teams in order to

streamline work and its corresponding flow between teams. This has also

been fraught with confusion and interpreted definitions, and in some

cases used as a form of kingdom building in order to reign authority where

it previously did not, and in most cases should not, exist. Even outside

the financial sector where separation of duties is dictated by compliance

and data security practices, there is a reason why disciplines exist across

teams specialized in their area of expertise like Systems, Networking,

Development, and of course Database teams. When one team, for example

Development, decides that DevOps is the name of the game; convinces

executive management of its warrants; and attempts a hostile takeover of

other teams’ duties, levels of access, or permissions; and insists on these

things as requirements to do their job, it is not truly about DevOps or

becoming Agile. This is not Agile and it most certainly is not DevOps, so

Chapter 6 Change as a Catalyst

84

buyer beware. DevOps in its truest nature is about applying analysis and

strategies to interdepartmental work and its flow in order to improve it for

expediting deliverables and implementations.

As previously discussed, the work and workflow for a database team is

not like that of a development team, thus the same strategies implemented

for them will turn out to be counterproductive. The new processes and

requirements that Vernon had begun outlining as soon as he took over

management of the database team were at their very core wrapped in

the concepts of DevOps and becoming an Agile team without anyone

ever knowing or realizing it. Taking advantage of the database migration

was essential to successfully moving his team, their operations, and the

services they provide into becoming a fully functional team operating on

a level that had never been seen by the organization prior. This worked for

them and it absolutely works in the real world.

The in-depth discussion of these methodologies is absolutely relative

to the topic of migrating to the MariaDB solution in that these were used

throughout the database migration. The migration served to further

Vernon’s goal to move the database team further away from a reactive

approach, in effect aligning the team to embrace change as a much needed

and required driver. The adoption and implementation of standards and

then tactical improvement of processes served to move Vernon’s team

towards becoming a fully functional unit that provided quick response and

service turn around. With the adoption of standards followed by improving

processes, there was only one more aspect of fully bringing the team

around and that was improved automation.

 Automation
The final part, the best part, is the automation of solutions where

applicable in order to provide Agile-like response and service from the

database side of software development. To perform similar repetitive

Chapter 6 Change as a Catalyst

85

processes repeatedly, preferably without failure, is the auspicious

endeavor behind the creation of machines by humankind. It also helps to

move the database administrator discipline in the direction of being more

intrinsic to Agile and DevOps principles. Looking at the bigger picture,

successful automation is not possible without the act of standardization

and the implementation of process improvement, and all three topics are

included in the order provided specifically as a roadmap to be followed.

Computers are not unlike other machines that have been invented to

serve in various roles of production of goods and services in that they are

meant to perform repetitive work. The mantra here is that if one has to do

the same process more than once, that process is viable for automation.

First that process must be standardized, improved, and refined to the

point that it makes automation possible. The automation of processes

and procedures is in and of itself the improvement of work and the flow of

work while taking the possibility of human error out of the equation, thus

one can easily derive that automation itself is a big player in the Agile and

DevOps game. These topics are precisely how one takes a database team

into the arena.

Taking a hard look at the work and workflow of a team of database

administrators, it has been established that neither fit the same mold as

those of a development team, thus the approach must be different. The

path that Vernon laid out was successful in its implementation of these

principles and provides one the route to get there by following the same

simple three-step process for virtually any team. First identify the process

or problem and then run it through the following three steps:

 1. Standardize the solution.

 2. Refine and improve the process.

 3. Once the process is refined to the point of being

easily repeatable, automate it.

Chapter 6 Change as a Catalyst

86

Vernon applied this same methodology to reporting by first adopting

a standardized format that each customer could expect and could count

on getting without question. For their team it was as simple as adopting

the IETF (Internet Engineering Task Force) RFC-4180 standard for CSV

(Comma Separated Values) using comma separated and double quotes

encapsulated fields, new line for each record, and no field reordering or

other customized requests. This meant that all reporting would be the

same across the board without question. The next step was to develop

a process for taking data out of the database and then write to a report

file formatted with this new standard. This process then went through

several stages of refinement and improvements in order to be used across

every FWP customer’s platform. This culminated in one program that

could be automated and used to run the same standardized reports for

every different customer by being passed a parameter file specific to each

targeted customer. This was something that had never been accomplished

before, and it brought to fruition much of what Vernon had been trying to

do both in person and behind the scenes in order to bring about beneficial

engineered change with his team.

Note the full rFC-4180 specification can be found here:
https://tools.ietf.org/html/rfc4180.

The example here that was applied to reporting encompasses the

principles as discussed by first standardizing a product or process

and then refining that process to the point that it is a robust solution

improving both workflow and the customer experience. This is exactly

what Agile and DevOps are meant to be by definition, in that it improved

the database team’s workflow and work output exponentially. They were

no longer spending long hours trying to maintain, troubleshoot, and

support a mismatched hodgepodge set of solutions that were different

for every customer, and it helped ferret out some of the tribal knowledge

Chapter 6 Change as a Catalyst

https://tools.ietf.org/html/rfc4180

87

mentality that had become engrained at FWP. This meant more time could

be spent on other tasks and bottlenecks that would further improve the

performance and response of the database team, tasks that previously

would get pushed aside due to time sinks such as reporting. This all served

to facilitate making the team function in a much more Agile fashion

approaching true DevOps principles.

Chapter 6 Change as a Catalyst

89© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_7

CHAPTER 7

Defining a Roadmap
for Success
Taking on such a monumental technology task as migrating to a different

DBMS solution involves equally monumental risks, and the only way to

mitigate those risks is through proper analysis, planning, testing, and

implementation. Not to minimize other areas of technology, but migrating

database solutions carries an extraordinary risk in comparison.

At the top of the risk chain is the data itself, and minimizing any threat

by mistake or otherwise to that data is priority number one. In the effort

to maintain the data in its integrity, and entirety, there are no shortcuts

that can be taken. Following standard, everyday database administration

policies fits this task and there is no replacement for taking the extra

time to perform backup procedures and validating them prior to any big

change, especially migrating to a new DBMS. If one’s business relies on

data and that data is stored in a DBMS to be migrated, having a clearly

analyzed and defined roadmap that matches your requirements and

deployment is the only way to get there successfully.

The following is a look at the roadmap that was defined by Vernon and

the team at Financial Widgets Plus (FWP) in order to migrate from their

existing Oracle RAC deployment to the MariaDB solution. Their roadmap

was a phased approach using the principles of KISS that started with a

simple replication setup and eventually migrated that to a full MariaDB

Galera Cluster deployment.

90

 Database Evaluation
One’s current database solution should be firmly understood as part of

developing a roadmap, as well as to validate that the solution is accurate.

The team at FWP completed multiple deep dives into their current

solution in order to match up any possible replacements. The creation of

visual representations of the database topology as well as solutions that

were driven from them helped to relay this information to those with less

technical skills or with skills in other technical areas. This helped to drive

down key requirements in a new database solution to the bare minimum.

The evaluation and prioritizing of the most important requirements

are tantamount in that this allowed for reducing potential solutions

quickly while saving time for the next evaluation. For Vernon’s team,

many possible solutions were quickly dismissed due to identifying these

requirements with a thorough analysis:

• Encryption for data at rest and data in transit

• Cost effectiveness

• Licensing simplicity

• Security

• Ease of porting existing code

Requirements creation saved their team a lot of time and helped

them to quickly identify MariaDB as a potential candidate quickly and

easily. Someone else might have differing requirements, possibly less

stringent or more; however, the first part of the roadmap is defining

those requirements. This will save one’s organization time, money, and

resources.

Evaluating MariaDB involved not only database technology but also

the application side. The successful deployment to a new DBMS is going

to be a failure if the application that it is driving does not function and the

Chapter 7 Defining a roaDmap for SuCCeSS

91

preexisting functionality, both application side and database side, does

not work. This is where one must be extremely fastidious in investigating

functionality and in making sure that it migrates along with everything

else.

Migrating low-level database objects from one database technology

to another is tedious work. Mapping datatypes from one solution to the

other is generally the first line of order that then carries through with the

deployment of table definitions. Using the example of the folks at FWP,

the first line of order was creating a script that included MariaDB SQL for

table creation, defining primary keys, and indexes. The datatype mapping

from Oracle datatypes to MariaDB datatypes was then completed by

parsing out one datatype for its replacement. There are tools that will do

this for you; however, after a couple of tests Vernon concluded that it was

faster and easier to just dump the table creation statements from Oracle,

parse them into MariaDB table creation syntax, and then parse in the

corrected datatypes.

Once the table objects were all created in MariaDB, the next step was

to migrate the lower level database programming code, which involved

triggers, stored procedures, and functions. Since MariaDB supports

PL/SQL, all of the database side programming logic was moved with a

few minor changes due to Oracle built-ins that of course do not exist in

MariaDB. Since the first phase of migrating the database was getting the

table definitions migrated, this made it very easy to test the lower level

database programming logic. Vernon and the team actually found flawed

logic that existed in Oracle for a very long time that they were able to fix on

the MariaDB side. When dealing with any kind of legacy code or database

logic, one must expect to run into these little hidden gems and account for

them in the overall project timeline.

Once the database side of the migration was complete, the database

team then began focusing on the database administration portions of the

solution. At this point in time in the project for FWP, a backup solution that

Chapter 7 Defining a roaDmap for SuCCeSS

92

worked with the data encryption functionality in MariaDB did not exist.

They initially started with using mysqldump as a backup and then those

database dumps would be archived, zipped, and encrypted. The team at

MariaDB has now ported xtrabackup, which works with MariaDB data

encryption, can do incremental backups, and also encrypt the resultant

backup as well.

The next step in the migration was to get an application server

deployed with the Standardized Financial Widgets code and the new

connection daemons to evaluate the new solution. This is also a point

where legacy code can very well cause an abrupt halt; however, for their

team everything appeared to function with no major hurdles or issues. It

was time to decide on a first customer to migrate to the new solution with

MariaDB driving the backend.

 Evaluating First Steps
The first steps that fit a small organization like FWP were defined to fit

their available resources and limits therein. The approach was on the

conservative side and all work was completed in a phased approach

in order to limit the resources spent. A larger firm with more staff and

resources could very well modify this approach, deciding on either

replication or clustering for their solution of choice.

Any organization that is contemplating a migration from Oracle to

MariaDB would find the first steps as defined by Vernon and his team

applicable. That was a list of just ten steps to achieve a migration onto the

MariaDB platform:

 1. Fully evaluate the candidate solution

 a. Does it fit the most important requirements?

 2. Deploy a sandbox environment

Chapter 7 Defining a roaDmap for SuCCeSS

93

 3. Test thoroughly with similar objects that are

leveraged by the application

 4. Refine the solution, as with FWP

 a. Standalone

 b. Replication

 c. Clustering

 d. Backups

 e. Automation

 5. Deploy development environment for initial testing

 6. Evaluate legacy issues for improvement

 7. Deploy Testing and QA environment

 8. Thoroughly test application code with all possible

QA analysis including regression testing

 9. Continue rollout with User Acceptance Testing

environment

 10. Full production go-live

FWP looked at several potential solutions that never made it past

step number one, so the existence of these defined steps was tantamount

to saving them considerable time and resources. Having a roadmap is

helpful no matter what the sizing or resource constraints may be for any

organization. This strategy is not limited to database changes either; it can

be leveraged for virtually any type of change and helps identify a roadmap

to fruition of change.

Chapter 7 Defining a roaDmap for SuCCeSS

94

 Path of Least Resistance
No roadmap would be complete without bringing up KISS once again in

the strategy of choosing a path of least resistance to arrive at the desired

outcome. This may mean choosing a customer that leverages a simpler,

possibly newer, or standardized version of one’s software offering, like

what Vernon and the rest of the team at FWP chose to do. Choosing a

customer to go first meant working any bugs or complications out in a

simple environment as compared with starting with the most complex

application out of the box.

Being resource minded and with differing customers that ranged

from simple software as a service with service calls, to customers with full

out functionality for the financial industry to process information, the

team needed to pick a first customer to migrate. The KISS methodology

was again put into action by choosing the easiest customer with the least

functionality to migrate to the new database solution. For the team at

FWP, this meant that they would be doing a full evaluation of the MariaDB

solution in many ways.

The one customer that came to mind was not only their customer

of least resistance from a service and code side point of view, but they

were also one of their highest transactional customers. Out of all of the

customers they had, this customer did by far the highest amount of

transactions per day in their peak season. For Vernon and the database

team, this meant not only would they be testing out the new database

backend on the first customer from a migration standpoint, but also from a

performance perspective. This meant projecting transaction statistics and

getting the new database solution configured to meet the expected load

and processing capabilities out of the starting gate.

Following a path of least resistance works hand in hand with the

KISS principle as one is building on their solution and layering in the

complexity over time. This is a principle gleamed from the definition

of DevOps in that it lessened a potential bottleneck of spending huge

Chapter 7 Defining a roaDmap for SuCCeSS

95

resources on the application code migration by starting with a customer’s

deployment that had been scoped as one of the easiest to migrate with

the lowest level of complexity. This worked, and it worked well because so

much was gleamed from migrating the first customer that customers with

much more complex deployments turned out to be easier.

 Success
It seems whimsical that such a huge endeavor involved with migrating

from Oracle RAC to an Open Source Database could be described as an

exercise in making a change in ten steps, but in synopsis, those were the

steps followed as outlined. It has been done so successfully with MariaDB,

first in the real world by the author and second by the fictional Vernon and

the rest of the team at FWP.

It was all the work between the lines in those ten steps to success that

made it happen, with all of the analysis work, deep dives into database

code, application code functionality, and mapping solutions from one

DBMS to the next. This migration took many hours of resources and time

that went on behind the scenes, especially on the database team with all

of the analysis and design work, in order for it to have been successful. The

MariaDB solution is a proven replacement for the Oracle database with its

built-in encryption for secure applications.

Chapter 7 Defining a roaDmap for SuCCeSS

97© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1_8

CHAPTER 8

Making the Data Move
The next phase in migrating to MariaDB (from Oracle in particular) is

making the data move from one DBMS to another successfully, and this

was the part of the migration that was very important for Financial Widgets

Plus (FWP) to get right for the existing customers and their corresponding

production data. All new customers coming into the program would go

straight to the new database solution; however, they needed to get an

existing customer out there and running as a proof of concept.

There are many vendor products that are written to specifically migrate

data between different database solutions and can even do dual write as

part of that functionality. This would make the data much easier to migrate

and have up to date. There are a few caveats with these solutions such as

high cost, and getting to a point in time can be time consuming in that

if anything fails during the process one may be stuck starting back over.

Vernon and the team researched many solutions and their corresponding

price tags; however, what they needed for doing this was already in house

with their connection state solutions that already existed. They could

have a daemon running for an Oracle connection and a separate disjoint

daemon running for the MariaDB solution with no interruption to ongoing

transactions due to time, performance, or load on the MariaDB side. This

would be a great goal to shoot for in getting FWP on the road to becoming

database agnostic.

The scenario that comes to mind would be related to retention

scenarios, thereby maintaining the legacy database as the primary

database for read and writes while sending all writes to the new database

98

at the same time. This methodology would allow the new database to catch

up to the legacy database and FWP to pick a hard cutover date to coincide

with the purging constraints. If the purging constraints are 90 days, then

dual writing would be performed for 90 days, and then all transaction

reading and writing operations would migrate from the legacy database to

the new database.

With dual write having great potential for large databases with volumes

of data, once Vernon’s team stepped up to working on the data migrations

it was found that most customers could be moved within an acceptable

window. The following sections will describe in fairly concise detail how

they went about performing these migrations successfully and how they

arrived at that point.

 First Steps
The initial phase of data migration involved multiple teams getting

together and discussing the possibilities. It was during these discussions

that the team of Software Architects stepped up and offered to move the

data over programmatically. This was a great idea because their help

would be needed in order to facilitate dual writes in the not so distant

future, so their involvement was readily accepted.

With the architect team taking over the task of moving the data from

Oracle to MariaDB, it left Vernon’s team the time to do more work on the

actual implementation and deployment side of the solution. This appeared

to be a win-win solution, at least initially. The problems started to crop up

as time progressed and required time from the database team.

There were initially two problems with the first attempted solution in

that the processes that maintain the connection state could not handle

extremely large tables or large object (LOB) data. The memory capabilities

of these daemons prohibited copying large data objects as well as tables

with a large column count successfully, so this meant some changes were

Chapter 8 Making the Data Move

99

going to be required. The database team would write the code to dump

the LOB data types and load them into the database while the architect

team would modify the code to handle a subset of columns for a large table

incrementally.

During the development phase of the database move for large

objects, Vernon decided to write his code to handle all possible tables

and pertinent data types. This turned out to be a good move and a great

learning experience that reinforced that going by instinct can pay off in

dividends.

 Letting DBAs be DBAs
It is not easily discernable why it exists this way, but experience has

dictated that many folks know how to perform and want to do the work

that would normally fall under a database administrator no matter what

the field. This does not mean to say that they are not capable; rather, it

infers that database administrators deal with these things on a day to day

basis and generally have a much deeper knowledge on database topics. In

some cases this help may actually be warranted but in others it just adds

an additional dynamic, making the database administrator’s job harder.

Looking at it from Vernon’s perspective at FWP, dealing with this was one

of the biggest struggles in his career and directly relative to completing a

huge migration like this successfully.

For any management level and cross-departmental folks intending to

get some insight from this work, the biggest concept to grasp onto here is

to let your DBAs be DBAs. In a positive environment, everyone will want

to chip in and help; this is a good thing. In a competitive environment,

everyone will want to chip in for the sake of downplaying another team

or another person’s involvement, especially with a project with the scope

of migrating to a new database solution as the eyes on a project this

monumental are significant. If you have a competent database staff for

resources, then let them do their job.

Chapter 8 Making the Data Move

100

One of the hurdles that Vernon saw on a day to day basis was that

even though the services they provided were web-based database-driven

technologies, seldom were the DBAs ever involved other than receiving

a work order to perform database changes. This mentality had resulted

in some very bad designs making their way to implementation with an

attitude that if you asked questions, made observations, or came up

with a better solution that it was too late to change anything because

the customer wanted it in production right away. If anyone fought this

mentality or said anything about it, they were suddenly difficult to work

with, combative, and the list goes on. This was not a good collaborative

environment.

Choosing his battles and limited acquiescence had become a tool kit

that Vernon began to rely on when dealing with these hurdles. Provide

enough rope for someone to hang themselves and have a solution ready

to go when it happened. This is precisely the playbook he used for the

data migration portion of the project. If the architects succeeded then that

would be great and save some DBA time; however, if it failed he wanted

to have a solution ready to go and that is exactly what happened with one

of the first migrations. The development process for the migration in a

production environment failed and failed miserably, but the database

portion with the large data objects worked fine. This provided the vehicle

for him to approach this in a manner to get the other teams to allow his

team to be DBAs and do the work of a DBA by overseeing and migrating

the existing data.

The migration of the existing data is the next step that will be

covered: first, by building a knowledge tool kit with the functionality and

description of the tools used in the data migration process. The tool kit that

will be built here will then provide the solid foundation for making the data

move from Oracle to MariaDB by relying on resources and functionality

that already exist, with no additional costs.

Chapter 8 Making the Data Move

101

 Tool Building
A huge part of one’s experience over many years in the technology sector

is learning many different tools and utilities to make their work easier. The

Oracle database solution has some built-in packages and tools that come

in handy, not just for day to day operations, but that can be very useful in

migrating off of the DBMS itself. After looking at many different options,

these are what Vernon decided to leverage in order to facilitate the data

migration from Oracle to MariaDB. There is some irony in the fact that one

can use Oracle’s own tools in order to be free of their product.

Oracle has many built-in packages that can be taken advantage of

from a database programming level using PL/SQL, and one of those is

the UTL_FILE package that allows queried data to be written to the file

system into flat files with formatting. This package is very useful for any

kind of reporting that requires special formatting when pulling data out

of an Oracle database. There are many different ways that could be used

to pull data out of one database and import it to another; there are several

vendors that offer database management studios that can not only migrate

the data but also keep it in sync. The team at FWP leveraged this package

to pull data from Oracle to MariaDB dumped into insert statements

that conformed to SQL 99 that could then be batch loaded into the new

database solution.

There are many different parameters and function calls in the UTL_

FILE package; however, for this exercise we are concerned with what is

required to make the data move from one database to another. It is always

advisable to learn more about any type of utility or package when using it

in order to grasp a firm understanding of what a particular tool, or set of

tools, is capable of. However, for this the requirement is very simple in that

Chapter 8 Making the Data Move

102

one needs to know how to open a file for writing, write to the file, and then

close it once it is complete. The following functions are to be levied:

• FOPEN

• Opens and creates a file handle

• FCLOSE

• Closes the file handle

• FFLUSH

• Flushes any string remnants in the buffer to the file

handle

• PUT

• Writes a string to file handle

• PUT_LINE

• Writes line to file handle and appends OS specific

line terminator

• PUT_RAW

• Writes raw data o file handle in binary form; in this

exercise it is necessary for writing LOB data types

such as BLOB and CLOB.

 FOPEN
The FOPEN procedure is used to open a file handle to a specified file

name and location as passed from the calling program, and is dependent

on the mode it is opened in. See Listing 8-1 for the usage statement. The

parameters that are passed to FOPEN are very important in relation to the

Chapter 8 Making the Data Move

103

requirements and have been listed here along with a description of the

expected parameters when calling the function:

• location: string with the full directory path where file is

to be created

• filename: string designating the name of the file to be

created

• open_mode: the mode in which the file should be

opened

• r - read

• w - write

• a - append

• rb - read in byte mode

• wb - write in byte mode

• ab - append in byte mode

• max_linesize: is an integer designating the max number

of characters to be written in a line

• minimum = 1

• maxmimum = 32767

• default = 1024

Listing 8-1. FOPEN

UTL_FILE.FOPEN (location IN VARCHAR2,

 filename IN VARCHAR2,

 open_mode IN VARCHAR2,

 max_linesize IN BINARY_INTEGER DEFAULT 1024)

 RETURN FILE_TYPE;

Chapter 8 Making the Data Move

104

The FOPEN procedure when called will return a file handle. This can

be stored in a named variable for easy access and calling throughout a PL/

SQL program.

 FCLOSE
The FCLOSE procedure closes the file handle as created with the FOPEN

procedure. See Listing 8-2 for the usage statement. Proper programming

etiquette would be to always make sure that if you open a file, or file

handle, that it should be closed within the code as well. If the file is not

closed, it will potentially remain locked and inaccessible.

Listing 8-2. FCLOSE

UTL_FILE.FCLOSE (file_handle IN OUT FILE_TYPE);

 FFLUSH
The FFLUSH function writes any pending string data in the buffer to the

file handle. See Listing 8-3 for the usage statement.

Listing 8-3. FFLUSH

UTL_FILE.FFLUSH (file_handle IN FILE_TYPE);

 PUT
The PUT procedure places a text string from the buffer to the open file

handle without any new line formatting characters. See Listing 8-4 for the

usage statement. The buffer is written as is.

The parameter list for PUT consists of just two parameters:

Chapter 8 Making the Data Move

105

• file_handle: name of the file handle being passed

• buffer: buffer size

• default = 1024

• maximum = 32767

Listing 8-4. PUT

UTL_FILE.PUT (file_handle IN FILE_TYPE,

 buffer IN VARCHAR2);

 PUT_LINE
The PUT_LINE procedure is almost identical to the PUT procedure except

it appends the operating system pertinent line termination string to the

end of the passed string and can be set with a boolean value for automatic

buffer flushing. Please see Listing 8-5 for the usage statement.

The parameter list for the PUT_LINE procedure consists of the

following:

• file_handle: name of the file handle being passed

• buffer: buffer size

• default = 1024

• maximum = 32767

• autoflush: boolean value for automatic buffer flush

after the write operation is complete

Listing 8-5. PUT_LINE

UTL_FILE.PUT_LINE (file_handle IN FILE_TYPE,

 buffer IN VARCHAR2,

 autoflush IN BOOLEAN DEFAULT FALSE);

Chapter 8 Making the Data Move

106

Note the maximum buffer size for both pUt and pUt_Line is
32767; however, take special note that the buffer must be flushed
prior to any consecutive calls to either procedure.

Review of the PUT and PUT_LINE procedures will make it readily

apparent under which circumstances one should use either. If writing a full

line at once, then PUT_LINE is easier; however, logic dictates that the PUT

procedure can be used as well with a follow up PUT placing a new line

character. This results in superfluous code that could be better written by

using the correct tool for the desired results.

 PUT_RAW
The PUT_RAW procedure within the UTL_FILE package is used for

writing raw data to a file handle, such as large objects that must be written

in binary mode. See Listing 8-6 for the usage statement. One caveat

that will be seen later when these topics are all put together is that in

many instances the same tables that contain raw data will also contain

descriptive constraint fields with regular data types that must be pulled

too. The simple workaround for this is:

 1. Close the file handle with FCLOSE.

 2. Recreate the same file handle with FOPEN in

append byte mode(ab).

 3. Write the binary data.

 4. Close the file handle in binary mode with FCLOSE.

 5. Recreate the file handle with FOPEN in append

mode(a).

Chapter 8 Making the Data Move

107

The parameter list for the PUT_LINE procedure consists of the

following:

• file_handle: name of the file handle being passed

• buffer: buffer size

• default = 1024

• maximum = 32767

• autoflush: boolean value for automatic buffer flush

after the write operation is complete

Listing 8-6. PUT_RAW

UTL_FILE.PUT_RAW (file_handle IN FILE_TYPE,

 buffer IN VARCHAR2,

 autoflush IN BOOLEAN DEFAULT FALSE);

The use of PUT_RAW procedures is the last procedure that is part of

the data migration solution; however, as with all things one is encouraged

to increase their knowledge base by becoming familiar with more of the

functionality built into the UTL_FILE package.

These procedures give one the building blocks in regard to using Oracle’s

UTL_FILE package in order to create output at the file system level, and can

be used for everything from reporting to dumping properly formatted insert

statements for batch loading for data migrations. There are other ways to do

this and one should explore multiple avenues in order to arrive at the best

case scenario that augments their specific setups and deployments.

 Dynamic SQL
Dynamic SQL is a very powerful tool that makes it possible to generate SQL

on the fly when working across databases where tables are not identical,

and it also helps to alleviate a lot of hard coded queries, thus lowering the

Chapter 8 Making the Data Move

108

maintenance and support of one’s code. When working across multiple

customer databases there might be similarly named tables that do not

share the exact same fields, which could make it a nightmare to support

when migrating a large number of customer databases as one would need

to update their code for each table. The Oracle DBMS has another great

package that we can exploit here called DBMS_SQL.

The DBMS_SQL package is another Oracle package that provides a

great vehicle for database programming (for which only the surface will

be scratched) in order to satisfy the requirements in the migration of data

that may have similar but disjoint definitions across multiple databases.

A database generally consists of many tables, which consist of many

columns of varying data types, and to try to write reusable, sustainable,

and manageable code would be next to impossible without the ability to

generate code specific to all these variable table definitions.

With such a wide array of variance across tables in regard to data types,

field lengths, and field names there is only a small bit of information one

would need to be able to dynamically select information about a specific

table on the fly. Different data types will need to be handled with respect

to their data type, and there are many system views that can be used to get

this information. One such view is the all_tab_columns view that contains

information specific to each column in a table. There are two pieces of

information that one needs to know in order to perform processing of the

table data:

• Number of columns in the target table

• Name of the columns of the target table

The number of columns is needed to loop through the all_tab_cols

view in order to obtain information specific to each column; however,

we can get both values from the same view. In order to find the number

of columns in a table, a simple select is used with the count function;

an example is provided in Listing 8-7. One can then use the results of

Chapter 8 Making the Data Move

109

this in order to loop through each of the columns in the table to obtain

information specific to each column, as seen in Listing 8-8. These two

queries provide the basis for using dynamic SQL to not just be able to

dump one table’s data, but by using this information the same can be run

on each table by passing a table or potentially a list of tables.

Listing 8-7. Obtaining the Number of Columns in a Table

select count(*) from all_tab_columns where owner = 'target_

schema' and table_name = 'target_table';

Note Use the oracle describe command to view the definition of
any table or view:
mysql> describe table_name;

Listing 8-8. Obtaining a List of Column Names for a Table

select column_name from all_tab_columns where owner =

'target_schema' and table_name='table_name';

These two queries can now be used as the basis for generating table-

specific information on the fly. Assuming that one has a PL/SQL procedure

that is called with two variables that contain the owner (schema name)

and the table name as in_owner and in_table, respectively, this provides

the capability to grab this information to any set of owners and tables that

the user has access to. This information can then be stored into variables

for further processing.

A sample stored procedure is provided in Listing 8-9 that first queries

the number of columns in the specific table and then uses a cursor in order

to loop through the view to obtain the column name for each column

of the target table. Notice the use of bind variables and the DBMS_SQL

package in this example.

Chapter 8 Making the Data Move

110

Listing 8-9. Table Information Procedure

create or replace procedure table_info(in_table varchar2,in_

owner varchar2)

is

v_row_num NUMBER;

v_nothing NUMBER;

v_count NUMBER;

v_colid NUMBER;

v_colname VARCHAR2(32);

sqlStr_hdr VARCHAR2(4096);

hdr_rslts VARCHAR2(4096);

hdr_cols VARCHAR2(4096);

begin

execute immediate ('select count(*) from all_tab_columns

where owner = :1 and table_name = :2') into v_row_num using

in_owner,in_table;

sqlStr_hdr:='select column_name from all_tab_columns where

owner = :1 and table_name = :2 order by column_id';

v_colid := dbms_sql.open_cursor;

DBMS_SQL.PARSE(v_colid,sqlStr_hdr,dbms_sql.native);

DBMS_SQL.BIND_VARIABLE(v_colid, ':1', in_owner);

DBMS_SQL.BIND_VARIABLE(v_colid, ':2', in_table);

DBMS_SQL.DEFINE_COLUMN(v_colid,1,v_colname,1024);

v_nothing := DBMS_SQL.EXECUTE(v_colid);

v_count := 0;

WHILE DBMS_SQL.FETCH_ROWS(v_colid) > 0 LOOP

 DBMS_SQL.COLUMN_VALUE(v_colid, 1, v_colname);

 hdr_cols := hdr_cols||v_colname;

 hdr_rslts := hdr_rslts||v_colname;

 v_count := v_count + 1;

Chapter 8 Making the Data Move

111

 if (v_count < v_row_num) then

 hdr_cols := hdr_cols||',';

 hdr_rslts := hdr_rslts||',';

 end if;

END LOOP;

DBMS_SQL.CLOSE_CURSOR(v_colid);

dbms_output.put_line(hdr_cols);

dbms_output.put_line(hdr_rslts);

END table_info;

/

This stored procedure can be created on any Oracle database, and

when called properly with server output enabled will provide the output

of two strings created as a comma separated list containing the names of

each column in the table. See Listing 8-10 as an example of running the

stored procedure at the command line.

Listing 8-10. Execute Stored Procedure

SQL> set serveroutput on;

SQL> exec table_info('table_name','table_owner');

 column1,column2,column3,column4

 column1,column2,column3,column4

 PL/SQL procedure succesfully completed.

SQL>

This is a really good starting point on the way to being able to dump

migration data into properly formatted insert statements; however, there

is still one other thing that is missing. With data type mapping exercises it

is know that Oracle and MariaDB store dates and timestamps differently,

not to mention we also have to deal with LOB data types, so these data

types will need to be formatted properly for insert into the new database.

Chapter 8 Making the Data Move

112

This means in order to process this data programmatically, the data type of

each column must be known at or before run time. Before run time would

mean lots of coding, so let’s look at how it can be done dynamically at run

time by pulling information regarding the data types used in the specific

Oracle database version and their type codes while comparing it with

those used by the database being migrated.

Pulling out some simple SQL in SQLPLUS against the same view that

has been used for our other requirements, it is quite simple to obtain a list

of the data types used by a specific database. The sample query and results

in Listing 8-11 provide exactly what is needed with one of Financial Widget

Plus’s customers. One could spend the time coding for every possible data

type; however, this saves some considerable development time by sticking

to the requirements to get the job done.

Listing 8-11. Quering Data Types in Use by a Customer Database

SQL> select distinct data_type from all_tab_columns where

owner='FWP_CUST1';

DATA_TYPE

--

TIMESTAMP(6)

NUMBER

CLOB

CHAR

DATE

VARCHAR2

BLOB

7 rows selected.

SQL>

Chapter 8 Making the Data Move

113

FWP customer database FWP_CUST1 is using only seven data types

throughout their entire database. Knowing this information makes the

conversion much easier and short circuits the time involved in having to

provide the logic flow for only the data types at play. There is still a piece of

the puzzle missing in that when using DBMS_SQL package function desc_

tab the data type code. This information can be found on the Internet, Oracle

documentation, and via the query in Listing 8-12 along with the results. For

completeness, the database this was run on was Oracle 12.1.0.2.0. The most

appropriate would be what comes directly out of your database version, so

the use of the query is recommended.

Listing 8-12. Obtaining a List of Data Types and Type Codes Direct

from Local Database

SQL> select text from all_source where owner = 'SYS' and name =

'DBMS_TYPES' and type='PACKAGE';

PACKAGE dbms_types AS

 TYPECODE_DATE PLS_INTEGER := 12;

 TYPECODE_NUMBER PLS_INTEGER := 2;

 TYPECODE_RAW PLS_INTEGER := 95;

 TYPECODE_CHAR PLS_INTEGER := 96;

 TYPECODE_VARCHAR2 PLS_INTEGER := 9;

 TYPECODE_VARCHAR PLS_INTEGER := 1;

 TYPECODE_MLSLABEL PLS_INTEGER := 105;

 TYPECODE_BLOB PLS_INTEGER := 113;

 TYPECODE_BFILE PLS_INTEGER := 114;

 TYPECODE_CLOB PLS_INTEGER := 112;

 TYPECODE_CFILE PLS_INTEGER := 115;

 TYPECODE_TIMESTAMP PLS_INTEGER := 187;

 TYPECODE_TIMESTAMP_TZ PLS_INTEGER := 188;

 TYPECODE_TIMESTAMP_LTZ PLS_INTEGER := 232;

 TYPECODE_INTERVAL_YM PLS_INTEGER := 189;

Chapter 8 Making the Data Move

114

 TYPECODE_INTERVAL_DS PLS_INTEGER := 190;

 TYPECODE_REF PLS_INTEGER := 110;

 TYPECODE_OBJECT PLS_INTEGER := 108;

 TYPECODE_VARRAY PLS_INTEGER := 247;

/* COLLECTION TYPE */

 TYPECODE_TABLE PLS_INTEGER := 248;

/* COLLECTION TYPE */

 TYPECODE_NAMEDCOLLECTION PLS_INTEGER := 122;

 TYPECODE_OPAQUE PLS_INTEGER := 58;

/* OPAQUE TYPE */

/* NOTE: These typecodes are for use in AnyData api only and

are short forms for the corresponding char typecodes with a

charset form of SQLCS_NCHAR.*/

 TYPECODE_NCHAR PLS_INTEGER := 286;

 TYPECODE_NVARCHAR2 PLS_INTEGER := 287;

 TYPECODE_NCLOB PLS_INTEGER := 288;

/* Typecodes for Binary Float, Binary Double and Urowid. */

 TYPECODE_BFLOAT PLS_INTEGER := 100;

 TYPECODE_BDOUBLE PLS_INTEGER := 101;

 TYPECODE_UROWID PLS_INTEGER := 104;

 SUCCESS PLS_INTEGER := 0;

 NO_DATA PLS_INTEGER := 100;

/* Exceptions */

 invalid_parameters EXCEPTION;

 PRAGMA EXCEPTION_INIT(invalid_parameters, -22369);

 incorrect_usage EXCEPTION;

 PRAGMA EXCEPTION_INIT(incorrect_usage, -22370);

 type_mismatch EXCEPTION;

 PRAGMA EXCEPTION_INIT(type_mismatch, -22626);

END dbms_types;

Chapter 8 Making the Data Move

115

This last piece of the puzzle now provides everything needed to

move forward with dynamically creating formatted insert statements that

conform to SQL 99 and provide an avenue for data migration.

 Handling LOB Data
The handling of LOB data types is not an easy task when it comes to the

Oracle database. It is easy to get large data objects in, but getting them

back out again can be a completely different matter. Pulling large objects

back out of the database requires a bit more programming logic and

work in order to do it consistently and successfully. This process gets

compounded for the benefit of producing specifically formatted results

such as insert statements, reports, and the like.

The first thing to draw one’s attention is that magical number that we

have already seen a significant amount of times in this chapter, 32767.

That golden number is the max buffer size for many Oracle functions

and procedures. If one’s requirements entail pulling out a 4-GB file from

database storage, it has to be done in increments that are less than or equal

to this number. This buffer size requires close scrutiny and attention, as

many built-in procedures have this same limitation that affects the amount

of data that can be pulled out and processed at any one time. So if your

large objects are stored in an encoded format, such as PDF documents in

base64, the logic must allow for that. Also, as noted previously this buffer

must be flushed for sequential use, otherwise the results will be incorrect

resulting in data that is no longer valid or usable.

Note When using a buffer size and adding escape characters, one
must be aware that any formatting characters will change the size of
the data in the bugger.

Chapter 8 Making the Data Move

116

Using the utilities that have been discussed up to this point, one only

needs to add a little program logic to loop through any type of LOB data

and write it to a file that can then be easily migrated to the new database.

In Vernon’s case the only types of LOBs that had to be handled were

BLOB and CLOB datatypes. Listing 8-13 provides a portion of code that

includes an if statement to ascertain that the datatype is a CLOB. The

logic then proceeds to close out the current file handle to then open it in

append mode writing in binary to the file. The next steps are then to loop

through the LOB datatype and write it in chunks to the migration file while

escaping any special characters. One caveat of dumping LOB datatypes

with the utl_file utility is that the file must be opened in binary mode.

Dumping full tables that have many columns with differing datatypes

requires first closing the file and then opening it back up in binary mode.

Listing 8-13. Looping Through CLOB Data and Writing to File

ELSIF (v_desctab(i).col_type = 112) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_clob_var);

 IF v_clob_var IS NOT NULL THEN

 utl_file.put(out_file,"");

 utl_file.fclose(out_file);

 out_file := utl_file.fopen(in_dir,v_file_name,'ab',32767);

 l_length := DBMS_LOB.getlength(v_clob_var);

 v_pdf_var := dbms_lob.substr(v_clob_var,4,1);

 while (l_offset < l_length)

 Loop

 v_cvchar := dbms_lob.substr(v_clob_var,l_amt,l_offset);

 v_cvchar := replace(v_cvchar, '\',");

 v_cvchar := replace(v_cvchar,"", '\"');

 v_cvchar := replace(v_cvchar,'"', '\"');

 utl_file.put_raw(out_file,utl_raw.cast_to_raw(v_cvchar));

 l_offset := l_offset + l_amt;

 end loop;

Chapter 8 Making the Data Move

117

 l_offset := 1;

 utl_file.fclose(out_file);

 out_file := UTL_FILE.fopen(in_dir,v_file_name,'a', 32767);

 utl_file.put(out_file,'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

There are other ways to dump data from an Oracle database besides

using PL/SQL. This does work, it works well, and unless one is working

with extremely large datasets it is fast. Some performance improvements

are certainly possible with Pro *C and potentially leveraging expensive

utilities to do the same work; however, this adheres well to the KISS

principle and it works. The formatting of the resulting database feed file

can easily be modified to suit ones needs or application.

Listing 8-14. LOAD DATA INFILE Usage Statement

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE

'<file_name>' [REPLACE | IGNORE] INTO TABLE <table_

name> [CHARACTER SET charset_name] [{FIELDS |

COLUMNS} [TERMINATED BY '<string>'] [[OPTIONALLY]

ENCLOSED BY '<escape_char>'] [ESCAPED BY

'<escape_char>']] [LINES [STARTING BY

'<string>'] [TERMINATED BY '<string>']] [IGNORE

number LINES] [(col_name_or_variable,...)] [SET col_name

= expr,...]

Working with LOB data, in the form of characters or binary, is

straightforward in a logic loop when the data is encoded. Luckily for the

team at FWP, all LOB files stored as binary data were base64 encoded, so

that is the example that will be covered. The problem with binary data

that isn’t encoded is not dumping it out of the Oracle database, but in the

Chapter 8 Making the Data Move

118

process of loading it into MariaDB. This is easily resolved by dumping

these unencoded binary objects into files and using the LOAD DATA

INFILE utility. See Listing 8-14 for the usage statement. The examples

provided here only need a little modification to handle these types of loads

if one runs across them in their own migration. Listing 8-15 provides an

example on using the LOAD DATA utility. In this example we are loading

a file into a test table that has fields that are comma terminated, enclosed

by double quotes, and special characters that are escaped with and escape

character. The final parameter passed for LINES TERMINATED BY is not

mandatory; however, when dealing with large characters it can be easier to

designate a string that signifies end of line for each record. This is not the

only way to load data into MariaDB and in some cases a mixed approach

might be required.

Listing 8-15. Using LOAD DATA INFILE Example

LOAD DATA INFILE '/<directory>/<path>/<file_name>' INTO test_

table_a FIELDS TERMINATED BY ',' ENCLOSED BY '"' ESCAPED BY

'<escape_char>' LINES TERMINATED BY '\n<record_end>\n';

Another approach to loading data would be to dump the data into

properly formatted SQL insert statements. If one’s application relies on

the manipulation of data with triggers, the best manner in migrating data

would be to use insert statements as the vehicle to move data for any tables

that lie within that scope. This will save significant time as compared with

going back after the data has moved and manipulating it; it also removes

human error that can crop up during this process. Let the database

programming do that work for you.

Chapter 8 Making the Data Move

119

 Sample Solution Code
The methods and utilities discussed here can be leveraged when

migrating to, and from, any database solution that supports some method

of loading bulk data as well as PL/SQL. Oracle’s database solution has

a magnanimous amount of functionality built into it, so well that it is

perfectly viable to leverage that same functionality to migrate off their

DBMS if required. It is a great solution, as is the cost; however, the

following code is provided here as working examples.

The first example, provided in Listing 8-16, can be used to write

properly formatted load files using SQL 99 formatted insert statements.

This sample will create an insert statement load file that can be used with

a wide variety of data types by ascertaining the data type it is working

with. Each field is appended by creating an insert statement based on that

record. This works great when lower level database programming logic

exists based on row operations like an insert or update. A solution where

this might come in to play would be with metrics-based reporting where a

reporting table, or tables, exist to provide statistical analysis.

The second example, provided in Listing 8-17, is oriented towards

tables that contain LOB datatypes that need to be migrated and leverage

the LOAD DATA INFILE utility. The types of files in most cases do not have

any other lower level database logic other than storing LOB datatypes. The

second example (see Listing 8-17) provides a comma delimited, double

quotes encapsulated file that can then be loaded. There is a performance

advantage with loading a file like this in comparison with performing the

same data load using insert statements.

Both solutions use Dynamic SQL, providing for code reuse and

simplification over having to write a different procedure for each table. The

formatting is largely the difference between the two stored procedures.

Both are written to accept the schema name, table name, and the directory

to write to and are executed just like any other stored procedure. The code

will need to be modified for any datatypes that are outside the scope of the

Chapter 8 Making the Data Move

120

sample stored procedures as provided. The files can then be transferred

to the new DBMS server and loaded using the desired methods as

mentioned.

Listing 8-16. Produces a Load File for Batch Loading as Insert

Statements

CREATE OR REPLACE PROCEDURE GENERIC_EXPORT_V1

 (in_table in varchar2,

 in_owner varchar2,

 in_dir varchar2)

IS

v_file_name varchar2(200);

sqlStr_hdr varchar2(32767);

hdr_rslts varchar2(32767);

hdr_cols varchar2(32767);

sqlStr_data varchar2(32767);

TYPE ref_cur is ref cursor;

out_file UTL_FILE.FILE_TYPE;

v_timestamp_var timestamp;

v_curid NUMBER;

v_colid NUMBER;

v_desctab DBMS_SQL.DESC_TAB;

v_colname varchar2(4096);

v_name_var VARCHAR2(32767);

v_clob_var CLOB;

v_cvchar VARCHAR2(32767);

-- changed for lender_decision_doc

l_amt number default 20000;

l_offset number:= 1;

l_length number;

Chapter 8 Making the Data Move

121

v_pdf_var VARCHAR2(5);

v_blob_var BLOB;

blob_length INTEGER;

v_buffer RAW(32767);

chunk_size BINARY_INTEGER := 18000;

v_bvchar VARCHAR2(32000);

blob_position INTEGER := 1;

v_num_var NUMBER;

v_date_var DATE;

v_row_num NUMBER;

v_nothing NUMBER;

v_count number;

v_colcnt number;

BEGIN

 v_file_name := (in_owner||'_'||lower(in_table)||'_migration.sql');

 out_file := UTL_FILE.fopen(in_dir,v_file_name,'w', 32767);

 execute immediate ('select count(*) from all_tab_columns

where owner = :1 and table_name = :2') into v_row_num using

in_owner,in_table;

 sqlStr_hdr:='select column_name from all_tab_columns where

owner = :1 and table_name = :2 order by column_id';

 v_colid := dbms_sql.open_cursor;

 dbms_sql.parse(v_colid,sqlStr_hdr,dbms_sql.native);

 DBMS_SQL.BIND_VARIABLE(v_colid, ':1', in_owner);

 DBMS_SQL.BIND_VARIABLE(v_colid, ':2', in_table);

 DBMS_SQL.DEFINE_COLUMN(v_colid,1,v_colname,1024);

 v_nothing := DBMS_SQL.EXECUTE(v_colid);

 v_count := 0;

 WHILE DBMS_SQL.FETCH_ROWS(v_colid) > 0 LOOP

 DBMS_SQL.COLUMN_VALUE(v_colid, 1, v_colname);

Chapter 8 Making the Data Move

122

 hdr_cols := hdr_cols||v_colname;

 hdr_rslts := hdr_rslts||v_colname;

 v_count := v_count + 1;

 if (v_count < v_row_num) then

 hdr_cols := hdr_cols||',';

 hdr_rslts := hdr_rslts||',';

 end if;

 END LOOP;

 dbms_output.put_line(hdr_cols);

 dbms_output.put_line(hdr_rslts);

 DBMS_SQL.CLOSE_CURSOR(v_colid);

 sqlStr_data := 'select '||hdr_cols||' from '||in_

owner||'.'||in_table;

 v_curid := dbms_sql.open_cursor;

 dbms_sql.parse(v_curid,sqlStr_data,dbms_sql.native);

 dbms_sql.describe_columns(v_curid,v_colcnt,v_desctab);

 FOR i IN 1 .. v_colcnt LOOP

 IF v_desctab(i).col_type = 2 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_num_var);

 ELSIF v_desctab(i).col_type = 12 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_date_var);

 ELSIF v_desctab(i).col_type = 180 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_timestamp_var);

 ELSIF v_desctab(i).col_type = 112 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid,i,v_clob_var);

 ELSIF v_desctab(i).col_type = 113 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid,i,v_blob_var);

 ELSE

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_name_var,1024);

 END IF;

 END LOOP;

Chapter 8 Making the Data Move

123

 v_row_num := dbms_sql.execute(v_curid);

 v_count := 0;

 WHILE DBMS_SQL.FETCH_ROWS(v_curid) > 0 LOOP

 utl_file.put(out_file,'insert into '||in_

table||'('||hdr_rslts||') values (');

 FOR i IN 1 .. v_colcnt LOOP

 IF (v_desctab(i).col_type = 1) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_name_var);

 IF v_name_var IS NOT NULL THEN

 utl_file.put(out_file,""||replace(replace

(v_name_var,"","""),'"','""')||”“);

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 96) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_name_var);

 IF v_num_var IS NOT NULL THEN

 utl_file.put(out_file,""||to_char(v_name_

var)||"");

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 2) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_num_var);

 IF v_num_var IS NOT NULL THEN

 utl_file.put(out_file,""||to_char(v_num_

var)||"");

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

Chapter 8 Making the Data Move

124

 ELSIF (v_desctab(i).col_type = 12) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_date_var);

 IF v_date_var IS NOT NULL THEN

 utl_file.put(out_file,""||to_char(v_date_

var,'YYYY-MM-DD HH24:MI:SS')||"");

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 180) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_timestamp_

var);

 --dbms_output.put_line(v_date_var);

 IF v_timestamp_var IS NOT NULL THEN

 utl_file.put(out_file,""||to_char(v_

timestamp_var,'YYYY-MM-DD HH24:MI:SS.FF')||"");

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 112) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_clob_var);

 IF v_clob_var IS NOT NULL THEN

 utl_file.put(out_file,"");

 utl_file.fclose(out_file);

 out_file := utl_file.fopen(in_dir,v_file_name,

'ab',32767);

 l_length := DBMS_LOB.getlength(v_clob_var);

 v_pdf_var := dbms_lob.substr(v_clob_var,4,1);

 while (l_offset < l_length)

 loop

 v_cvchar := dbms_lob.substr(v_clob_var,l_amt,

l_offset);

Chapter 8 Making the Data Move

125

 if v_pdf_var = '%PDF' THEN

 utl_file.put_raw(out_file,utl_encode.base64_

encode(utl_raw.cast_to_raw(v_cvchar)))

 else

 v_cvchar := replace(v_cvchar, '\',");

 v_cvchar := replace(v_cvchar,"", '\"');

 v_cvchar := replace(v_cvchar,'"', '\"');

 utl_file.put_raw(out_file,utl_raw.cast_to_

raw(v_cvchar));

 end if;

 l_offset := l_offset + l_amt;

 end loop;

 v_pdf_var := NULL;

 l_offset := 1;

 utl_file.fclose(out_file);

 out_file := UTL_FILE.fopen(in_dir,v_file_name,

'a', 32767);

 utl_file.put(out_file,"");

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 113) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_blob_var);

 IF v_blob_var IS NOT NULL THEN

 utl_file.put(out_file,"");

 utl_file.fclose(out_file);

 out_file := utl_file.fopen(in_dir,v_file_name,

'ab',32767);

 blob_length:=DBMS_LOB.GETLENGTH(v_blob_var);

 v_pdf_var := utl_raw.cast_to_varchar2(dbms_

lob.substr(v_blob_var,4,1));

Chapter 8 Making the Data Move

126

 WHILE blob_position <= blob_length LOOP

 IF blob_position + chunk_size - 1 > blob_

length THEN

 chunk_size := blob_length - blob_position +

1;

 END IF;

 DBMS_LOB.READ(v_blob_var, chunk_size, blob_

position, v_buffer);

 v_bvchar := utl_raw.cast_to_varchar2(v_

buffer);

 v_bvchar := replace(v_bvchar,"", '\"');

 v_bvchar := replace(v_bvchar,'"', '\"');

 UTL_FILE.PUT_RAW(out_file, utl_raw.cast_

to_raw(v_bvchar));

 blob_position := blob_position + chunk_size;

 v_bvchar := NULL;

 END LOOP;

 chunk_size := 18000;

 blob_position := 1;

 v_pdf_var := NULL;

 utl_file.fclose(out_file);

 out_file := UTL_FILE.fopen(in_dir,v_file_name,

'a', 32767);

 utl_file.put(out_file,"");

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 END IF;

 v_count := v_count + 1;

 if (v_count < v_colcnt) then

 utl_file.put(out_file,',');

Chapter 8 Making the Data Move

127

 elsif (v_count = v_colcnt) then

 utl_file.put_line(out_file,');');

 end if;

 END LOOP;

 v_count := 0;

 UTL_FILE.FFLUSH (out_file);

 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(v_curid);

 utl_file.put_line(out_file,'commit;');

 UTL_FILE.FCLOSE (out_file);

END GENERIC_LOB_EXPORT_v1_9_1;

Listing 8-17. Produces a Load File for Batch Loading with LOAD

DATA INFILE

CREATE OR REPLACE PROCEDURE GENERIC_LOB_INFILE

 (in_table in varchar2,

 in_owner varchar2,

 in_dir varchar2)

 IS

v_file_name varchar2(200);

sqlStr_hdr varchar2(32767);

hdr_rslts varchar2(32767);

hdr_cols varchar2(32767);

sqlStr_data varchar2(32767);

TYPE ref_cur is ref cursor;

out_file UTL_FILE.FILE_TYPE;

v_timestamp_var timestamp;

v_curid NUMBER;

Chapter 8 Making the Data Move

128

v_colid NUMBER;

v_desctab DBMS_SQL.DESC_TAB;

v_colname varchar2(4096);

v_name_var VARCHAR2(32767);

v_clob_var CLOB;

v_cvchar VARCHAR2(32767);

l_amt number default 20000;

l_offset number:= 1;

l_length number;

v_pdf_var VARCHAR2(5);

v_blob_var BLOB;

blob_length INTEGER;

v_buffer RAW(32767);

chunk_size BINARY_INTEGER := 18000;

v_bvchar VARCHAR2(32000);

blob_position INTEGER := 1;

v_num_var NUMBER;

v_date_var DATE;

v_row_num NUMBER;

v_nothing NUMBER;

v_count number;

v_colcnt number;

BEGIN

v_file_name := (in_owner||'_'||lower(in_table)||'_migration.sql');

out_file := UTL_FILE.fopen(in_dir,v_file_name,'w', 32767);

execute immediate ('select count(*) from all_tab_columns

where owner = :1 and table_name = :2') into v_row_num using

in_owner,in_table;

Chapter 8 Making the Data Move

129

sqlStr_hdr:='select column_name from all_tab_columns where

owner = :1 and table_name = :2 order by column_id';

v_colid := dbms_sql.open_cursor;

dbms_sql.parse(v_colid,sqlStr_hdr,dbms_sql.native);

DBMS_SQL.BIND_VARIABLE(v_colid, ':1', in_owner);

DBMS_SQL.BIND_VARIABLE(v_colid, ':2', in_table);

DBMS_SQL.DEFINE_COLUMN(v_colid,1,v_colname,1024);

 v_nothing := DBMS_SQL.EXECUTE(v_colid);

 v_count := 0;

 WHILE DBMS_SQL.FETCH_ROWS(v_colid) > 0 LOOP

 DBMS_SQL.COLUMN_VALUE(v_colid, 1, v_colname);

 hdr_cols := hdr_cols||v_colname;

 hdr_rslts := hdr_rslts||v_colname;

 v_count := v_count + 1;

 if (v_count < v_row_num) then

 hdr_cols := hdr_cols||',';

 hdr_rslts := hdr_rslts||',';

 end if;

 END LOOP;

 dbms_output.put_line(hdr_cols);

 dbms_output.put_line(hdr_rslts);

 DBMS_SQL.CLOSE_CURSOR(v_colid);

 sqlStr_data := 'select '||hdr_cols||' from '||in_

owner||'.'||in_table;

 v_curid := dbms_sql.open_cursor;

 dbms_sql.parse(v_curid,sqlStr_data,dbms_sql.native);

 dbms_sql.describe_columns(v_curid,v_colcnt,v_desctab);

Chapter 8 Making the Data Move

130

 FOR i IN 1 .. v_colcnt LOOP

 IF v_desctab(i).col_type = 2 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_num_var);

 ELSIF v_desctab(i).col_type = 12 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_date_var);

 ELSIF v_desctab(i).col_type = 180 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_timestamp_var);

 ELSIF v_desctab(i).col_type = 112 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid,i,v_clob_var);

 ELSIF v_desctab(i).col_type = 113 THEN

 DBMS_SQL.DEFINE_COLUMN(v_curid,i,v_blob_var);

 ELSE

 DBMS_SQL.DEFINE_COLUMN(v_curid, i, v_name_var,1024);

 END IF;

 END LOOP;

 v_row_num := dbms_sql.execute(v_curid);

 v_count := 0;

 WHILE DBMS_SQL.FETCH_ROWS(v_curid) > 0 LOOP

 FOR i IN 1 .. v_colcnt LOOP

 IF (v_desctab(i).col_type = 1) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_name_var);

 IF v_name_var IS NOT NULL THEN

 utl_file.put(out_file,'"'||replace(replace

(v_name_var,"","""),'"','""')||'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 96) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_name_var);

 IF v_num_var IS NOT NULL THEN

Chapter 8 Making the Data Move

131

 utl_file.put(out_file,'"'||to_char(v_name_

var)||'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 2) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_num_var);

 IF v_num_var IS NOT NULL THEN

 utl_file.put(out_file,'"'||to_char(v_num_

var)||'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 12) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_date_var);

 IF v_date_var IS NOT NULL THEN

 utl_file.put(out_file,'"'||to_char(v_date_var,

'YYYY-MM-DD HH24:MI:SS')||'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 ELSIF (v_desctab(i).col_type = 180) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_timestamp_

var);

 IF v_timestamp_var IS NOT NULL THEN

 utl_file.put(out_file,'"'||to_char(v_timestamp_

var,'YYYY-MM-DD HH24:MI:SS.FF')||'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

Chapter 8 Making the Data Move

132

 ELSIF (v_desctab(i).col_type = 112) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_clob_var);

 IF v_clob_var IS NOT NULL THEN

 utl_file.put(out_file,'"');

 utl_file.fclose(out_file);

 out_file := utl_file.fopen(in_dir,v_file_name,

'ab',32767);

 l_length := DBMS_LOB.getlength(v_clob_var);

 v_pdf_var := dbms_lob.substr(v_clob_var,4,1);

 while (l_offset < l_length)

 loop

 v_cvchar := dbms_lob.substr(v_clob_var,

l_amt,l_offset);

 v_cvchar := replace(v_cvchar, '\',");

 v_cvchar := replace(v_cvchar,"", '\"');

 v_cvchar := replace(v_cvchar,'"', '\"');

 utl_file.put_raw(out_file,utl_raw.cast_to_

raw(v_cvchar));

 l_offset := l_offset + l_amt;

 end loop;

 v_pdf_var := NULL

 l_offset := 1;

 utl_file.fclose(out_file);

 out_file := UTL_FILE.fopen(in_dir,v_file_name,

'a', 32767);

 utl_file.put(out_file,'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

Chapter 8 Making the Data Move

133

 ELSIF (v_desctab(i).col_type = 113) THEN

 DBMS_SQL.COLUMN_VALUE(v_curid, i, v_blob_var);

 IF v_blob_var IS NOT NULL THEN

 utl_file.put(out_file,'"');

 utl_file.fclose(out_file);

 out_file := utl_file.fopen(in_dir,v_file_name,

'ab',32767);

 blob_length:=DBMS_LOB.GETLENGTH(v_blob_var);

 v_pdf_var := utl_raw.cast_to_varchar2(dbms_

lob.substr(v_blob_var,4,1));

 WHILE blob_position <= blob_length LOOP

 IF blob_position + chunk_size - 1 > blob_

length THEN

 chunk_size := blob_length - blob_position + 1;

 END IF;

 DBMS_LOB.READ(v_blob_var, chunk_size,

blob_position, v_buffer);

 v_bvchar := utl_raw.cast_to_varchar2

(v_buffer);

 v_bvchar := replace(v_bvchar,"", '\"');

 v_bvchar := replace(v_bvchar,'"', '\"');

 v_bvchar := replace(v_bvchar,',', '\,');

 UTL_FILE.PUT_RAW(out_file, utl_raw.cast_

to_raw(v_bvchar));

 blob_position := blob_position + chunk_size;

 v_bvchar := NULL;

 END LOOP;

 chunk_size := 18000;

 blob_position := 1;

 v_pdf_var := NULL;

 utl_file.fclose(out_file);

Chapter 8 Making the Data Move

134

 out_file := UTL_FILE.fopen(in_dir,v_file_name,

'a', 32767);

 utl_file.put(out_file,'"');

 ELSE

 utl_file.put(out_file,'NULL');

 END IF;

 END IF;

 v_count := v_count + 1;

 if (v_count < v_colcnt) then

 utl_file.put(out_file,',');

 elsif (v_count = v_colcnt) then

 utl_file.put_line(out_file,”);

 utl_file.put_line(out_file,'RECEND');

 end if;

 END LOOP;

 v_count := 0;

 UTL_FILE.FFLUSH (out_file);

 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(v_curid);

 UTL_FILE.FCLOSE (out_file);

END GENERIC_LOB_INFILE_v1;

Chapter 8 Making the Data Move

135© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1

APPENDIX A

 Open Source
Continuum
The Open Source community has gone full circle over the past few

decades, from first being considered as hobbyist software that was buggy

and not to be considered as professionally ready for prime time to making

inroads into a myriad of businesses, governments, and organizations. With

solution offerings that many times surpass the quality and capabilities of

the most costly and proprietary based systems, Open Source solutions

have proved themselves capable. From professional grade operating

systems that are taking over in the world's data centers to business office

oriented tools like spreadsheets and document editors, the Open Source

world of solutions has matured and become a mainstay; not bad for once-

labeled products of amateur hobby.

Large proprietary software and solution providers that had once

dismissed Open Source solutions as inferior amateur products have been

forced to come to terms. In the raw actuality the term Open Source is a more

modern term for software sharing and collaborative development principles

that have been around since the advent of the term software. It has become

common knowledge that in the early days of computing, virtually all software

was created by academics and researchers in the corporate world who were

all working collaboratively and sharing the results of their endeavors openly

and freely. It is literally amazing that the digital and computing world that

modern times have experienced came from such humble beginnings.

https://doi.org/10.1007/978-1-4842-3997-1

136

 Open Source in the Data Center
If there was a defining moment in time that truly indicated the beginnings

of the modern advent of what we now call Open Source, one could target

the year 1991 as just such a moment. This was when Linus Torvalds

released the first version of his Open Source Operating System, effectively

going on to be named Linux, which was based in part on System V Unix

and written in the C programming language. There are many other

software solutions and operating systems of note that came before Linux;

however, when looking back over time and comparing to what is driving

the current data center and having a monumental impact on modern

computing today, the Linux OS stands out.

Originally released just as an OS kernel, it has aged gracefully and

migrated into the OS of choice in computing industry data centers around

the world. Initially it took the majority of web-based server roles in large

part to other Open Source driven works like Perl, PHP, and MySQL. Now

the Linux OS has become the go-to for web hosting and web development

for which terms like LAMP Stack were coined, which referred to the

combination of Linux Apache MySQL and PHP/Perl. The population

of Linux servers has literally exploded over the years, supplanting such

mainstays as HP-UX, Windows Server, and Solaris just to name a few, to

the point that in some statistics it’s holding 60% to 70% of the rack space

in web hosting environments. With the web hosting market as just the

beginning, the Linux OS with its many distributions (distros) has not

stopped there and has moved into enterprise application hosting as well.

There are several Linux distros to choose from; however, we are going

to maintain our focus on the one pulled from the story about Vernon

and his team at Financial Widgets Plus (FWP), RedHat. The RedHat

organization is one of the largest success stories coming from the Open

Source arena, both commercial and community based, via their Enterprise

Linux and Fedora versions, respectively. Their team chose RedHat

Enterprise Linux (RHEL) as their OS of choice when replacing their HP-UX

Appendix A Open SOurce cOntinuum

137

environments, experiencing improvements in both performance and ease

of maintenance when it came to hosting their Oracle RAC environment.

Oracle even has released their own distribution, effectively named Oracle

Linux, which has a striking resemblance to RedHat's RHEL with a kernel

that is reportedly enhanced specifically for running the Oracle DBMS and

similar products. This has resulted in wild speculation in media circles

and authorships of a bit of hard feelings between the two organizations,

but this will be left to the individual reader to interpret in regard to any

significance therein.

RHEL is a rock solid and very well supported commercial version of

the RedHat distribution, and along with many other distribution providers

they have in recent years begun to supplant the historical inclusion of the

MySQL ODBMS with their newer releases with MariaDB. This aversion

to Oracle products can be interpreted in many ways as a storyline similar

to that of the fictional account of the FWP team in regard to the fictional

business practices alluded to by the Oracle Corporation in recent years.

This is left to the readership to make their own decisions, do their own

research, and form their own opinions on such matters. As to why

businesses make the choices they do, in many cases, just as in Financial

Widget Plus's case, the primary driver is that it made good business sense

to migrate away from their high-cost proprietary legacy database solution.

Anyone would be hard pressed to claim that Oracle has not developed

a less than desirable reputation over the years, which comes with growth

and sometimes can be a by-product of success as well as competition

driven. The fact is Oracle and their perceived business practices had a

positive effect on the Open Source community with their purchase of Sun

Microsystems, and by inclusion MySQL, in 2010. This was the catalyst for

the creation of the MySQL fork by Michael Widenius that has become a

perfectly viable replacement for Oracle's own Enterprise Edition DBMS,

with the inclusion and support of encryption for data at rest released in

version 10.1.

Appendix A Open SOurce cOntinuum

138

With many improvements since release 10.1, MariaDB has grown

their solution into a fully dependable, professionally driven and secure

database solution that is an entirely Open Source commercial product.

There is a magnanimous amount of excitement growing in the computing

industry about MariaDB, and it's future appears to be limitless with the

strides in market share and improvements the folks there are making on a

daily bases. Where RedHat has taken over the data centers in recent years,

MariaDB now stands poised to take over the data.

 Entrepreneurial Limits of Big Name
Proprietary Systems
The costs as calculated and used by Vernon in the fictional example for

FWP used pricing metrics that were derived from publicly available pricing

lists published by the Oracle Corporation. These numbers beg the question

as to how would any small business, enterprising startup, or in the case

of an existing small company like FWP who is trying to expand, afford to

do so. These costs are amazing in comparison and could easily break a

business just from the initial upfront costs. This is where the commercially

available versions of software from the Open Source community are

not only viable solutions, but solutions that will assuredly garner a

substantially growing market share in the future.

The entrepreneurial spirit and competition are easily squashed

by high-priced and closed proprietary solutions that can run into the

millions of dollars in cost just for the first five years of a new business.

This is money that would be well spent in generating more revenue to

help a business succeed in the first few years of their incarnation, and this

is something that closed system proprietors like the Oracle Corporation

do not seem to understand the concepts of and where companies like

RedHat and MariaDB stand to make their mark. They see the bottom line

Appendix A Open SOurce cOntinuum

139

relying on the sole benefit of the short-term hustle by charging as much

as possible without benefit of looking at the longer term arrangement.

What is suggested here is counterintuitive to the age old management and

business practices that have been employed historically; however, the logic

is sound.

Revenue generation and earnings impact can be expanded greatly over

time with an approach centered on creating and developing a business

relationship using a much more affordable pricing model to grow your

earnings over time. This can be easily modeled using the fictional FWP and

the information garnered from their experience. According to the Small

Business Administration (SBA) one out of five businesses fail in the first

year and approximately 50% fail within the first five years, so comparing

Oracle's pricing model with that of MariaDB we have the following

calculated costs for five years:

• Oracle: $1,562,280

• MariaDB: $187,500

• Difference: $1,374,780

This is a huge discrepancy of $1,374,780 comparing a standalone

three-node setup in a clustered database environment. Imagine what

any business could do with that extra money, much less an enterprising

business bent on success. That would be money that could be reinvested

back into the business for marketing, resources, staffing, and various other

methods used to obtain more customers and augment existing solutions.

This amount of savings being put back into the business in a beneficial

manner could very well mean the difference between success and failure.

In the end, would it be enough to improve the SBA statistics is not easily

answered; however, it is certainly food for thought and a topic to be

explored.

Appendix A Open SOurce cOntinuum

140

There is always a flip side to any kind of extruded benefit from this

logic and that is that if 50% of all business are going to fail, then it would be

better to reap the highest potential earnings possible for a large entity such

as the Oracle Corporation. In this scenario, only one entity benefits from

this strategy and can add another island to their holdings, whereas with

the logic being presented the benefits are spread out exponentially along

with the potential for a higher business success rate not only with the

business, but also with their vendors, including their ODBMS vendor. With

more revenue to invest in driving solutions to market resulting in more

customers, and possibly providing more services to existing customers

through increased product offerings, this will create a ratio to include

having to increase and maximize their database footprint to account for

this growth.

This is where the Open Source Continuum exists in all of its disjoint

glory from the closed source proprietary systems. It allows for maximizing

success due to lowered costs, while maximizing its own future at the same

time in doing so, if leveraged appropriately with good business practices.

Exploring this is as easy as envisioning a new start-up company, calling it

OSC in honor of the Open Source Continuum, and analyzing the potential

in a monetary timeline starting at the end of its first year.

Exploring the state of OSC, they effectually have broken even after

inking a five-year deal with MariaDB for their database service on the

single three-node production cluster leaving them over a million dollars to

reinvest back into the business the second year. OSC has also contracted

to provide their service to 55 customers in their first year, and they have

found that they can easily run an optimum tuned database count of 50

customers on their three-node cluster with no performance impact. The

state of the business is as such:

• Funds being reinvested the second year: $1,374,780

• Current number of customers: 60

Appendix A Open SOurce cOntinuum

141

• Customers in various stages of contract negotiations or

deployment: 12

• Additional potential customers: 6

Let’s imagine that OSC decides to spend part of their operating funds

on marketing, attending conferences, and exploring additional business

relationships in order to expand their business and need to add additional

clusters to meet these needs. With a large influx in business comes the

need to add additional database resources, thus expanding the footprint

and increasing licensing requirements for MariaDB. This is a successful

business model where many more benefit.

At the end of year two, OSC has expanded their customer base

significantly and is becoming quite the success story. Their current state of

business is:

• Current number of customers: 110

• Customers in various stages of on boarding: 24

• Potential customers: 16

OSC has had to expand their MariaDB licensing to account for this

and now has three production clusters running. This has tripled their new

ODBMS footprint and they are now spending almost $600,000 with their

new vendor for licensing and support. In the meantime, the MariaDB

organization has experienced corresponding growth as well, which means

hiring more staff to handle the increase and an increase in revenue.

It is easy to see that Open Source embraces the entrepreneurial spirit

and provides solutions that would otherwise be beyond reach. From the

developer working in her/his free time on an idea to add to the code base,

to the small start-up, and reaching all the way to the largest organizations

the solutions that were once thought of as amateur are coming into their

own. From RedHat taking over the data centers to MariaDB taking on the

niche that a company like Oracle has held onto for so many years, it is an

exciting time to be working in the technology sector.

Appendix A Open SOurce cOntinuum

142

 Where Is Open Source Not Viable
All of this begs the question, is there anywhere that Open Source

technologies cannot be considered a viable solution, and that answer is

becoming harder to get to every day. The advent of taking Open Source

solutions into the business world via commercially branded and supported

versions, that by the way are still open, has changed the viewpoint to where

proprietary closed systems are not seen as the only answer anymore.

Community driven projects can be leveraged for virtually anything and

their potential is limitless.

There will almost always be proprietary systems and code, as that is

also part of the entrepreneurial spirit as well. In many cases intellectual

rights to ingenious ideas, designs, and concepts do need to be protected

and closely guarded, as they may very well relate to a business or entity's

survival and earnings potential. The optimum solution is one that

employs Open Source to drive these types of ideas and designs. Stealing

an often heard buzzword, we could call these hybrid Open Source

solutions.

An arguable point might be that highly secure systems for military

and government use might not be a good area for Open Source solutions;

however, that actually flies in the face of the entire concept behind it. It

has been the author's opinion for many years that if someone can build

something, they can certainly break it down, and since many of the Open

Source solutions come from the global community there is certainly

concern with terrorism, security breaches, and data theft. This is true with

virtually any software that is pirated, and by using reverse engineering

methodologies, even with closed proprietary systems. However, with

Open Source solutions the code is much more available with potentially

less time involved in finding a security flaw. On the other side of that same

coin is that these solutions are Open Source and can be modified, ported,

and expanded from their original base to add in additional security,

validations, and capabilities.

Appendix A Open SOurce cOntinuum

143

In the early days of what we now refer to as Open Source, the risks were

potentially very high with many solutions being buggy, lacking thorough

documentation, and in essence much broader to an organization.

Commercially marketed and supported solutions have mitigated many

of these issues with dedicated resources from the vendors in regard to

developers and engineers augmented by services and offerings such

as 24/7 technical support, training, certifications, and even remote

administration available to augment one's internal staff.

 Benefits of Open Source
The benefits of Open Source as presented are boundless. Even though

it has been around a very long time and was the basis of almost all

initial software development, it has made a resurgence and has come

full circle into its own with what are becoming standard deployments

and go-to solutions. The growth in open source offerings will continue,

with their commercially offered counterparts being the springboard into

mainstream adoption.

The entrepreneurial spirit of open source solutions opens up the same

spirits in small companies and start-ups that can leverage these capable

but lower cost solutions to get into the marketplace with their products

and thrive. This has been proven time and time again over the past two

decades as open solutions have taken over, as vast amounts of the daily

processing that occurs over the World Wide Web is being performed by

solutions like Apache, MySQL, PostGres, Perl, PHP, and Linux. Fortunes

have been made with online stores that initially had low cost and short

implementation times to get up and running due to leveraging open

source solutions to drive these virtual store fronts.

Appendix A Open SOurce cOntinuum

144

Anyone with a desire to learn technology can do so with open

source technologies; whether they want to be a programmer, database

administrator, web developer, systems administrator, or anything in

between, the opportunity is there. It is free, it is open, and all one has

to do is download it. The avenues are there to learn the software and

even become a contributor for anyone who has an interest. The same

cannot be said for proprietary closed systems; not that they don’t

have their place, but it isn’t as easy to get into the nuts and bolts and

improve them.

Appendix A Open SOurce cOntinuum

145© William Wood 2019
W. Wood, Migrating to MariaDB, https://doi.org/10.1007/978-1-4842-3997-1

Index

A, B
Advanced Security Option (ASO),

5, 13, 14, 21, 24
Agile methodologies, 81
Application code

daemons, 44
encrypted data, 43
MariaDB, 45
Maxscale, 44
on-site training, 45
OSDBMS, 43
proxy server, 44
SQL, 43
structured data, 43

Architect team, 98
Audits

compliance
encryption at rest, 36
encryption at

transmission, SSL, 36
PAM, 36
plugin, 36
RSA, 36

database, 24
database footprint, 26
data security, 19
encryption methods

algorithms, 26
asymmetric keys, 22
cryptoperiod, 22
data at rest, 23
data in transmission, 23
keys, 22
rotating keys, 23–24

MySQL, 24, 30
PCI DSS, 21
security breach, 19
server license scope, 26
SSAE 16, 19, 21
standardized solutions, 25

Automation, 74, 85
Agile, 86
bottlenecks, 87
computers, 85
CSV, 86
customized, 86
database team, 87
development team, 85
DevOps, 86
encapsulated fields, 86
human error, 85
IETF, 86
methodology, 86
principles, 85
process steps, 85

https://doi.org/10.1007/978-1-4842-3997-1

146

record, 86
RFC-4180, 86
robust solution, 86
standardized format, 85, 86
work, 85
workflow, 85–86

C
Catalyst

automation (see Automation)
database administrators, 74
database team, 74
DBMS, 74
evaluating solutions

application code, 76
automated solutions, 76
backend, 75
database-driven, 75
database solution, 75
database team, 76
data warehousing, 76
DBMS, 75
existing solutions, 75
legacy solutions, 76
methodology, 75
mitigate, 76
Oracle database, 76
processing, 76
robust, 76
scope, 75
stable, 76
systematically, 76

fixing legacy
built-in functions, 78
database programming, 78
database solution, 78
database team, 77
error checking, 77
evaluate, 78
legacy solutions, 77
logging, 77
maintaining, 77
MariaDB, 78
migrated solution, 77
Oracle, 78
PL/SQL, 78
processes, 77
supporting, 77
time sinks, 77

MariaDB implementation, 75
migrating, 74
optimization, 74
organization, 74
standards adoption, 75, 78–80

CentOS, 60, 62
Collaborative development

principles, 135
Comma Separated Values

(CSV), 86
Corporate world, 135
Cost Benefit Analysis (CBA), 49, 51
Costs of Doing Business

(CODB), 51
CPU, 27, 60
Custom Financial Widget

(CFW), 2, 21, 38

Automation (cont.)

Index

147

D
Database

agnostic
daemon, 45
leverage, 47
MariaDB, 46
parallel writes, 46
resources, 47
transaction processing, 46
transaction routed, 46

and application code (see
Application code)

encryption, features, 36
implementation phase, 33
LOE, 33
MariaDB, footprint, 35
MariaDB, showstoppers, 33, 37
Maxscale servers, 36–37
migration, 47

datacenters, 35
datatypes, 34
DBMS, 35
Oracle, 34
OSDBMS, 34, 36
proxy server, 37
replication, 36
stored procedures, 34
triggers, 34

PL SQL, 33
sequences, 33
side processes, 73
side programming (see Database

side programming)

solution, 45
syntax, 33
vendor

methodology, 17
proprietary, 17

Database administrators
(DBAs), 4, 19, 37

Database management system
(DBMS), 2, 4, 7–10, 17, 52,
74, 89, 95

Database side programming
built-in functions, 38, 41
coding, 39
concept of sequences, 41
database administrators, 40
debugging, 37
design, 43
development, 37
functions

CURRVAL, 41
NEXTVAL, 41

keystroke, 40
legacy, 37
materialized views, 42–43
operations, 41
optimization, 38
OSDBMS, 38
parameter, 41
performance issues, 38
PL SQL, 42
refresh, 42
reports, 43
robust, 38
standardized solution, 37

Index

148

stored procedures, 37, 42
trend analysis, 42
triggers, 37–38, 40, 42

Database topology
database objects, 91
data encryption, 92
functions, 91
legacy code, 91
mapping datatypes, 91
MariaDB table creation

syntax, 91
mysqldump, 92
PL/SQL, 91
programming logic, 91
project timeline, 91
requirements, 90

cost effectiveness, 90
data at rest, 90
database technology, 90
data in transit, 90
encryption, 90
licensing, 90
security, 90

stored procedures, 91
triggers, 91
xtrabackup, 92

Data centers, 136
commercial product, 138
DBMS, 137
distros, 136
enterprise edition, 137
HP-UX, 136
LAMP stack, 136

Linux distributions, 136
Linux OS, 136
MySQL, 136–137
ODBMS, 137
Oracle RAC, 137
OS, 136
OS kernel, 136
Perl, 136
PHP, 136
proprietary, 137
RedHat organization, 136
RHEL, 136
Sun Microsystems, 137

Data migration, 100
batch loading

insert statements,
120–125, 127

LOAD DATA INFILE,
127–131, 133–134

concept, 99
cross-departmental, 99
daemons, 97–98
DBA, 99–100
database agnostic, 97
DBMS server, 120
deployment, 98
dual write, 97–98
Dynamic SQL, 119
functionality, 100
implementation, 98
knowledge tool kit, 100
legacy, 98
LOB data (see Large object

(LOB) data)

Database side programming (cont.)

Index

149

Oracle’s database solution, 119
problems, 98
purging constraints, 98
read, 97
resources, 100
retention, 97
scope, 99
software architects, 98
SQL 99, 119
tool building (see Tools)
transactions, 97
vendor, 97
writes, 97

Data warehousing, 3, 43, 76
DBMS solution, 4, 7, 14, 17, 21,

24, 27, 52
DBMS_SQL, 108, 109
Decision making

benefits
availability, 51
costs, 50
ROI, 50
scalable, 51
secure, 51

cost analysis phase, 49
cost savings

CBA, 51
CODB, 51
direct costs, 51–53
indirect costs, 51, 53
mitigating, 54
platform, 54
ROI, 51

executive summary, 57

FWP, 49
strategy

best-case scenario, 55
HP Proliant DL380 G7

servers, 55
infrastructure, 54
KISS, 55
methodologies, 56
replication, 55
SAAS, 56
stand-alone nodes, 55
virtualized environments, 55

describe command, 109
Direct costs, 52
Disaster recovery, 65
Document editors, 135
Dynamic SQL, 107

all_tab_columns view, 108
bind variables, 109
column, 111
count function, 108
cursor, 109
database, 113
data migration, 115
data type mapping, 111
data types, 112–114
dates, 111
DBMS_SQL, 108
documentation, 113
dynamically, 115
field lengths, 108
function, 113
generate SQL, 107
Internet, Oracle, 113

Index

150

LOB data types, 111
loop, 108–109
package, 113
PL/SQL procedure, 109
quering, data types, 112–113
requirements, 112
server output, 111
SQL 99, 115
SQLPLUS, 112
stored procedure, 109, 111
sustainable, 108
table information

procedure, 110–111
timestamps, 111
type codes, 113–114
variance, 108

E
Encryption key management, 26

F
Fedora, 60, 136
Financial industry

compliancy standards, 18
regulatory acts, 18

Financial sector, 15
Financial Widgets Plus

(FWP), 1, 35, 49
architecture, 11
alternative solution, 1
budding niche, 17

compliance, 19
cost-effective, 24
database solution, 1
DBMS, 15, 29
environment, 10
migration, technical risks, 31
primary catalysts, 15
proprietary, 24
revenues, 15
risk, 29
scalable, 24
vendor, 15

G, H
Galera cluster, 59, 69–71
Global Transaction ID (GTID), 69

I, J
Indirect costs, 52
Internet Engineering Task Force

(IETF), 86

K
Keep It Simple, Stupid (KISS), 55,

59, 89, 94, 117

L
Large object (LOB)

data, 98, 102, 111
base64 encoded, 117
BLOB, 116

Dynamic SQL (cont.)

Index

151

buffer size, 115
CLOB, 116
human error, 118
insert statements, 118
KISS principle, 117
limitation, 115
LOAD DATA INFILE

utility, 118
LOAD DATA utility, 118
loop, 116
PL/SQL, 117
Pro *C, 117
types, 99, 119
utl_file, 116

Level of effort (LOE), 15, 33
License Management Service

(LMS), 7, 9
Licensing audit, 1
Linux, 60, 136, 143

M
MariaDB solution, 25

Galera clustering, 28
Maxscale, 28
migration, 30
openSSL plugins, 26
requirements, 29
SSL, 26
undocumented features, 30

Maxscale, 26, 28, 36, 44, 55, 69, 71
Migration, 1, 97, 99
MySQL, 61

N
National Institute of Standards and

Technology (NIST), 22, 24
New product

buzzwords, 1
code base, 3
common code, 3
customizable, 2
database administrator, 2
dedicated resources, 2
deployment, 4
footprint, 4
implementation, 2
in-house, 2
large-scale, 2
licensing, 1
plug and play, 3
proactive, 4
requirements, 4
scalability, 4
scope, 3

O
Open source community, 135
Open source continuum

amateur hobby, 135
amateur products, 135
benefits

go-to solutions, 143
learn technology, 144
online stores, 143

Index

152

software development, 143
World Wide Web, 143

data center (see Data center)
entrepreneurial limits

business model, 141
business state, 140–141
clustered, 139
costs, 139
database, 139
earnings, 139
enterprising, 139
environment, 139
food for thought, 139
licensing, 141
ODBMS, 140
RedHat, 139, 141
revenue, 139, 141
SBA, 139
technology sector, 141
vendor, 140

non viable
buzzword, 142
commercially marketed, 143
community driven, 142
global community, 142
proprietary systems, 142
security flaw, 142
supported solutions, 143

proprietary, 135
software sharing, 135

Open Source Database
Management Solution
(OSDBMS), 30, 38, 43

Open source operating system, 136
Open source, technology, 18
Operating system, 60, 62, 64, 105
Oracle, 1, 57

analysis, 13
audit, 7–8, 13
capabilities, 6
cluster, 11

proof of concept, 8
scalability, 8

compliance, 12
cost-effective, 13
the costs, 10
DBMS, 5, 12
financial sector, 5
fiscally responsible, 7
hardware, 11
hosting license, 9
licensing, 7, 9, 13

Named User Plus, 7–8
processor type licensing, 7

LMS group, 9
mission critical, 6
multiplexor, 8
multiplier, 10–12
optimization engines, 6
outdated hardware, 13
processor, 13
profitable, 13
projections, 13
requirements, 12
research, 13
revenue, 13
security, 7, 11

Open source continuum (cont.)

Index

153

software, 13
solution, 13
standard, 6

Oracle database, 44, 46, 76, 95,
111, 115

Oracle Enterprise DBMS, 21
Oracle RAC, 60, 89
Oracle’s pricing guide, 11

P, Q
PAM authentication, 37
Payment Card Industry Data

Security Standard, 21
Perl module, 25
Pre-installation considerations,

MariaDB
application code, 60
data at rest, 60–61
data in transit, 60–61
encryption, 60–61
memory allocation, 60
secure data, 61
system administrators, 61

Pricing metrics, 138
Pricing model, 6
Proactive database administrators, 75
Process improvement, catalyst

Agile methodologies, 81, 83
analysis, 81
application development, 82
architect, 82
automation, 84
bottlenecks, 83

buzzwords, 81
database administrator, 82–83
database migration, 84
database team, 82–84
deliverables, 84
developer, 82
development teams, 83
DevOps, 81, 83
disciplines, 82
driver, 84
financial sector, 83
implementations, 84
memory, 81
methodologies, 84
networking, 83
nomenclature, 83
open source, 81
operations, 84
processing power, 81
resources, 81
storage, 81
systems, 83
technology sector, 81
work, 84
workflow, 81–82, 84

Production data, 97
Proprietary, 1

R
RAC, 4, 5, 11, 71
Reactive database administrators, 73
Real Application Clusters

(RAC), 4, 5, 11, 71

Index

154

RedHat Enterprise Linux
(RHEL), 60, 136

Remote database services, 31
Replication, 59

client.cnf, 66
client configuration file, 66
code repositories, 62
communications, 66
data, 65, 66
data in transit, 67
encryption, 64–66
Galera clustering, 69–70

configuration settings, 70
donor node, 71
IP address, 70
Maxscale connection, 71
three-node deployment, 70

limits and testing
failover, 69
high availability, 69
replication in a master-slave

scenario, 69
network encryption, 67
openssl, 65
server.cnf, 66
server configuration file, 66
server parameter, 67
SSL, 65–67
tar archive, 63
tar file, 62

Return on Investment (ROI), 50–51
RFC-4180, 86
Risk assessment

DBMS solution provider, 17
failover capabilities, 16
FWP, 17
high availability, 16
Oracle RAC, 16
scalability, 16
security, 16
transactions

processing, 17
Risks mitigation

data security, 15
requirements, 15
showstopper, 16

Roadmap
analysis, success, 95
change in ten steps, 95
database topology, 90–92
DBMS, 89
encryption, 95
Galera cluster, 89
KISS, 89, 94
least resistance

bottleneck, 94
complexity, 95
database team, 94
DevOps, 94
KISS methodology, 94

MariaDB, 89
mitigate, 89
Oracle RAC, 89
requirements, 89
resource constraints, 93
risks, 89

Index

155

sizing, 93
steps, MariaDB platform, 92–93

Rotate encryption keys, 36
rpm, 60

S
sandbox environment, 60
Secure Socket Layer (SSL), 22, 64
Security, 19
Server architecture, 18
Service interruption, 47
Service Organization Controls

(SOC), 20
Small Business Administration

(SBA), 139
SOC types, 20
Software as a Service (SAAS), 56
Spreadsheets, 135
Stand-alone environment, 59
Stand-alone database server, 62
Standards adoption

code reuse, 79
database administrator, 79
database migration, 80
database team, 78
DBMS, 80
development team, 78
existing product, 79
human error, 79
platform, 80
process improvement, 80
proprietary, 80
shell scripts, 79

standardization, 78–80
stored procedures, 79
strategy, 80
supporting issues, 79

Standardization, 73
Standardized Financial

Widgets (SFW)
PCI DSS, 18
SSAE, 18

Storage engines
Aria, 25
InnoDB, 25
XtraDB, 25

Symmetric data encryption
keys, 22

T, U, V
Tablespace encryption, 22
Tools

built-in packages, 101
DBMS, 101
Dynamic SQL

(see Dynamic SQL)
FCLOSE

etiquette, 104
locked, 104

FFLUSH, 104
buffer, 102

FOPEN procedure
append, 103
byte, 103
byte mode, 103
calling program, 102

Index

156

characters, 103
directory path, 103
file, 102, 103
mode, 103
named variable, 104
parameters, 103
PL/SQL, 104
procedure, 104
read, 103
requirements, 103
usage statement, 102
write, 103

functions, 102
package, 101
PL/SQL, 101
PUT

line, 104
parameter list, 104
procedure, 104
string, 102

PUT_LINE
appends, 105
automatic buffer

flushing, 105

line termination, 105
parameter list, 105
procedures, 106

PUT_RAW
binary mode, 106
BLOB, 102
CLOB, 102
constraint, 106
functionality, 107
LOB, 102
parameter list, 107
procedure, 107
raw data, 102, 106
UTL_FILE, 107

SQL 99, 101
UTL_FILE, 101
vendors, 101

W, X
Widenius, M.

Y, Z
yum, 60

Tools (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Drivers for Change
	Driver: A New Product
	Driver: Oracle Costs and Business Practices

	Chapter 2: Requirements and Risk Assessment
	Requirements of a New DBMS
	Audits and Compliance
	Risks

	Chapter 3: Database and Application Code
	Migrating the Database
	Database Side Programming
	Application Code
	Becoming Database Agnostic

	Chapter 4: Making the Decision
	Extolling the Benefits
	Presenting Cost Savings
	Develop a Strategy
	Putting it Together

	Chapter 5: MariaDB Solution
	Preinstallation Considerations
	MariaDB Stand-Alone with Replication
	Replication Limits and Testing
	Galera Clustering

	Chapter 6: Change as a Catalyst
	Evaluating Solutions for Rework
	Fixing the Legacy
	Standards Adoption
	Process Improvement
	Automation

	Chapter 7: Defining a Roadmap for Success
	Database Evaluation
	Evaluating First Steps
	Path of Least Resistance
	Success

	Chapter 8: Making the Data Move
	First Steps
	Letting DBAs be DBAs
	Tool Building
	FOPEN
	FCLOSE
	FFLUSH
	PUT
	PUT_LINE
	PUT_RAW
	Dynamic SQL

	Handling LOB Data
	Sample Solution Code

	Appendix A:Open Source Continuum
	Open Source in the Data Center
	Entrepreneurial Limits of Big Name Proprietary Systems
	Where Is Open Source Not Viable
	Benefits of Open Source

	Index

