
Monitoring Microservices
and Containerized
Applications

Deployment, Configuration, and
Best Practices for Prometheus and
Alert Manager
—
Navin Sabharwal
Piyush Pandey

Monitoring
Microservices and

Containerized
Applications

Deployment, Configuration, and
Best Practices for Prometheus

and Alert Manager

Navin Sabharwal
Piyush Pandey

Monitoring Microservices and Containerized Applications

ISBN-13 (pbk): 978-1-4842-6215-3 ISBN-13 (electronic): 978-1-4842-6216-0
https://doi.org/10.1007/978-1-4842-6216-0

Copyright © 2020 by Navin Sabharwal, Piyush Pandey

This work is subject to copyright. All rights are reserved by the publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-6215-3. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Navin Sabharwal
New Delhi, Delhi, India

Piyush Pandey
New Delhi, India

https://doi.org/10.1007/978-1-4842-6216-0

iii

Chapter 1: Container Overview ���1

Introducing Containers ��1

What Are Containers? ��3

Evolution of Container Technology ��4

Docker and Kubernetes Architecture ��6

Master Node ��10

Node (Worker) Components ���11

Microservices Architecture ��12

Container Monitoring Ecosystem Overview ��15

Summary���20

Chapter 2: Getting Started with Containers ��21

Lab Environment Setup ���21

Setting Up Docker CE ��23

Setting Up Kubernetes ��27

Installing Kubernetes on RHEL 7 ���27

Add Worker Node to the Kubernetes Master Node ��33

Deploying an Application ���36

Summary���42

Table of Contents

About the Authors ���vii

About the Technical Reviewer ���ix

Acknowledgments ���xi

iv

Chapter 3: Getting Started with Prometheus and Alert Manager �������43

Overview of Prometheus ���43

Prometheus and Alert Manager Architecture ��44

Prometheus and Alert Manager Setup and Configuration �����������������������������������46

Setting Up Prometheus on a Kubernetes Cluster ��48

Setting Up Alert Manager ��70

Alert Manager and Prometheus Integration ��76

Summary���83

Chapter 4: Container Infrastructure Monitoring ���������������������������������85

Container Infrastructure Monitoring Using Parameters ��������������������������������������86

Service Discovery ��86

Node Availability ��87

Node Health ���87

Kubernetes Control Plane ��87

Kubernetes Infrastructure Services ���88

Kubernetes Metrics ���88

Labels��89

Helm and Tiller Setup ��92

Installing Tiller ���93

Exporters ���98

Node Exporter ��99

cAdvisor Exporter ��110

Azure Monitor Exporter ��116

Kube Stat Metrics ���136

Summary���139

Table of ConTenTs

v

Chapter 5: Working with Prometheus Query
Language (PromQL) ��141

Data in Prometheus ��141

Getting Started ��144

Selectors ���144

Aggregation Example ��156

Logical and Arithmetic Operators ��162

Summary���167

Chapter 6: Container Reporting & Dashboards ���������������������������������169

Introduction to Container Reporting and Dashboards ���������������������������������������169

Grafana ��171

Summary���182

Chapter 7: Container Application Monitoring Using Dynatrace ��������183

Introduction to Dynatrace ���183

Architecture Overview���185

Container Monitoring Using Dynatrace ���186

Containerized Application Deployment ��191

Monitoring Application using Dynatrace ��195

Container Metrics on Dynatrace ��212

Application Topology ��227

Transactions and Services ���230

Summary���233

Chapter 8: Container Application Monitoring Using Sysdig��������������235

Introduction to Sysdig ���235

Container Application Monitoring ��237

Sysdig Trial License Setup ���240

Elastic Kubernetes Service Setup on AWS ��242

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-6216-0_7#Sec0504

vi

Sysdig Agent Installation ���254

Deploy Sock Shop Application on EKS ���256

EKS Metrics on Sysdig ���258

Sysdig Navigation ��260

Docker Container Metrics ��263

Application Performance Metrics in Sysdig���264

Sysdig Topology View ��266

Golden Signal Monitoring Using Sysdig ���268

Summary���269

Chapter 9: Automation and Orchestration of
Container Monitoring ��271

Container Monitoring Automation ���271

Hands-on Exercise for Container Monitoring Automation ���������������������������������275

Cleaning Up the AWS Environment Namespace ��275

Jenkins Installation (v2�204�1)���276

Terraform Open Source Installation ���283

Summary���302

 Index ���303

Table of ConTenTs

vii

About the Authors

Navin Sabharwal: Navin has more than

twenty years of industry experience and is

an innovator, thought leader, patent holder,

and author in the areas of cloud computing,

artificial intelligence and machine learning,

public cloud, DevOps, AIOps, infrastructure

services, monitoring and management

platforms, big data analytics, and software

product development. Navin is responsible

for DevOps, artificial intelligence, cloud lifecycle management, service

management, monitoring and management, IT Ops analytics, AIOps and

machine learning, automation, operational efficiency of scaled delivery

through Lean Ops, strategy, and delivery for HCL Technologies. He is

reachable at navinsabharwal@gmail.com and https://www.linkedin.com/

in/navinsabharwal.

https://www.linkedin.com/in/navinsabharwal
https://www.linkedin.com/in/navinsabharwal

viii

Piyush Pandey: Piyush has more than ten

years of industry experience. He is currently

working at HCL Technologies as automation

architect, delivering solutions catering to

hybrid cloud using cloud native and third-

party solutions. Automation solutions cover

use cases like enterprise observability, infra as

code, server automation, runbook automation,

cloud management platform, cloud native

automation, and dashboard/visibility. He is

responsible for designing end-to-end solutions

and architecture for enterprise automation adoption. You can reach him at

piyushnsitcoep@gmail.com and https://www.linkedin.com/in/piyush-

pandey-704495b.

abouT The auThors

https://www.linkedin.com/in/piyush-pandey-704495b
https://www.linkedin.com/in/piyush-pandey-704495b

ix

About the Technical Reviewer

Amit Agrawal: Amit is principal data scientist and researcher delivering

solutions in field of AI and machine learning. He is responsible for

designing end-to-end solutions and architecture for enterprise products.

He is reachable at agrawal.amit24@gmail.com and https://www.linkedin.

com/in/amit-agrawal-30383425.

https://www.linkedin.com/in/amit-agrawal-30383425
https://www.linkedin.com/in/amit-agrawal-30383425

xi

Acknowledgments

To my family, Shweta and Soumil, for being always there by my side and

letting me sacrifice their time for my intellectual and spiritual pursuits. For

taking care of everything while I am immersed in authoring. This and other

accomplishments of my life wouldn't have been possible without your love

and support. To my Mom and my sister for the love and support as always,

without your blessings nothing is possible.

To my coauthor Piyush, thank you for the hard work and quick

turnarounds to deliver this. It was an enriching experience. Also to

Siddharth Choudhary & Saurabh Tripathi, thank you for your research input

for this book which helped in shaping up practical examples for readers.

To my team here at HCL who has been a source of inspiration with

their hard work, ever engaging technical conversations and their technical

depth. Your everflowing ideas are a source of happiness and excitement

every single day. Piyush Pandey, Sarvesh Pandey, Amit Agrawal, Vasand

Kumar, Punith Krishnamurthy, Sandeep Sharma, Amit Dwivedi, Gauarv

Bhardwaj, Nitin Narotra, and Vivek thank you for being their and making

technology fun.

To Celestine and Aditee and the entire team at Apress for turning our

ideas into reality. It has been an amazing experience authoring with you

and over the years, the speed of decision making and the editorial support

has been excellent.

To all that I have had the opportunity to work with my co-authors,

colleagues, managers, mentors and guides, in this world of 7 Billion, it

was conincidence that brought us together it was and is an enriching

experience to be associated with you and learn from you. All ideas and

paths are an assimilation of conversations that I have had and epxeriences

I have shared. Thank you.

xii

Thank you goddess Saraswati, for guiding me to the path of knowledge

and spirituality and keep me on this path.

असतो मा साद गमय, तमसो मा ज्योतिर् गमय, मृत्योर मा अमृतम् गमय
(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma

Amritam Gamaya)

Lead us from ignorance to truth, lead us from darkness to light, Lead us

from death to immortality.

aCknowledgmenTs

1© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_1

CHAPTER 1

Container Overview
This first chapter will introduce readers to the world of containers,

microservice applications, and their associated monitoring and

management tools ecosystem. We will also look into how containers and

the ecosystem around them are assembled. The chapter will cover the

following topics:

• Introducing Containers

• Evolution of Container Technology

• Docker and Kubernetes Architecture

• Container Monitoring Ecosystem Overview

 Introducing Containers
Over the past few years, worldwide digital transformation has accelerated

by leaps and bounds, as companies of all sizes find new ways to

leverage technology to boost their agility and provide better services

to their customers. Fueling this fire is the need to survive in a changing

environment. For many companies, an initial step toward digital

transformation is modernizing their applications and taking advantage

of automated environments in the cloud. Modernization empowers

companies with the following:

https://doi.org/10.1007/978-1-4842-6216-0_1#DOI

2

• Elasticity: the ability to respond to spikes in customer

demand

• Availability: the ability to serve customers’ requests

wherever and whenever

• Agility: the ability to quickly fix a problem or deploy

new functionality that customers want

When cloud computing first started gaining traction among

enterprises, one major motivation was cost reduction. Many organizations

began to recognize that cloud computing’s capability to transform IT

offered a vision of infrastructure as a dynamic, self-service- based, and

pay-as-you-go consumption of resources that would augment their

aspirations to become twenty-first-century business enterprises.

Containers are taking the innovations introduced by virtualization and

cloud computing to the next level.

Containers provide a portable, consistent, and lightweight software

environment for applications to easily run and scale anywhere.

Throughout its lifecycle, an application will operate in many different

environments, from development to testing, to integration, to pre-

production and production. An application may be hosted on either

physical infrastructure or virtual on-premises infrastructure, or may be

ported to a public cloud infrastructure. Before containers, IT teams had

to consider the compatibility restrictions of each new environment and

write additional code to ensure the application would function in all the

different environments. To solve this problem of portability and to ensure

that an application can run irrespective of the changes in underlying

infrastructure components, containers were developed to package the

application with its dependencies, configuration files, and interfaces—

allowing developers to use a single image that moves seamlessly between

different hosts.

Chapter 1 Container overview

3

 What Are Containers?
Containers are a way to wrap up an application into its own isolated

package. Everything the application requires to run successfully as a

process is now captured and executed within the container.

A container enables bundling of all application dependencies, like library

dependencies, runtimes, and so forth. This allows for the concept of

standardization and consistency across environments, as the container

will always come pre-loaded with all the pre-requisites/dependencies

required to run the application service. Now you can develop the

application code on your personal work station and then safely deploy it to

run on production infrastructure.

A container is an instance of a container image. A container image is a

way to package an app or service (like a snapshot) and then deploy it in a

reliable and reproducible way.

Figure 1-1. Container vs VM comparison

Chapter 1 Container overview

4

Building applications with containers helps bring in agility for developing,

testing, and deploying an application across any cloud. With containers,

you can take an app from development to production with little or no code

change. However, when you deploy to VMs, you have to either do it manually

or use a CI/CD tool with Infra as Code solutions (see Figure 1-1). You might

need to perform tasks like modifying configuration items, copying application

content between servers, and running interactive setup programs based

on application setup, followed by testing. In case of manual setup, this can

consume significant time. With an automated setup, the amount of time may

be less than that required by the manual approach, but the reduction when

a container is used is even more significant. Below Figure 1-1 shows how

applications are segregated with a separate Operating System layer and only

share the hardware using the hypervisor in virtualization. This also shows

how containers are sharing the operating system and there is no separate

OS for each application, only the components which are different for each

application are deployed separately, the OS image is shared.

 Evolution of Container Technology
The earliest computers were typically dedicated to a specific task that

might take days or even weeks to run, which is why in the 1960s and

through the 1970s there was rise of virtualization technology. VM

partitioning is as old as the 1960s, enabling multiple users to access

a computer concurrently. The following decades were marked by

widespread VM use and development. The modern VM serves a variety of

purposes, such as installing multiple operating systems on one machine

to enable it to host multiple applications with specific, unique OS

requirements that differ from each other.

In 1979, the chroot system call was introduced, which allowed one to

change the root directory of a process and its children to a new location in

the file system. Chroot was a significant step toward the rise of containers,

Chapter 1 Container overview

5

as it allowed process isolation by restricting an application’s file access to a

specific directory. This helped improve system security.

Introduced in 2001, Linux VServer is an operating system virtualization

technology that is implemented by patching the Linux kernel. In 2004, the

first public beta of Solaris Containers was released; it combined system

resource controls and boundary separation provided by zones. Process

containers, or control groups (cgroups), were introduced by Google in 2006

and were designed for limiting, accounting for, and isolating the resource

usage (CPU, memory, disk I/O, network) of a collection of processes.

LXC (LinuX Containers) was the first mature implementation of Linux

Container Manager. It was implemented in 2008 using cgroups and Linux

namespaces.

Finally, Docker emerged in 2013, which led to a tectonic shift in the

way applications are designed, developed, and deployed. Docker built

its foundation on two systems, LXC and libcontainers. Libcontainers

came from LMCTFY, which was an open source container stack where

applications created and managed their own subcontainers. Docker also

used LXC in its initial stages and later replaced that container manager

with its own library, libcontainer. In addition to building on previous

software, Docker had an easy-to-use GUI and was capable of running

multiple applications with different requirements on a single OS.

Container technology’s momentum continued in 2017 with the

introduction of Kubernetes, which is a highly effective container orchestration

technology. Container technology ramped up over the next few years as

multiple players, such as Openshift, Pivotal, Azure, Google, AWS, and even

Docker, changed gears to support the open source Kubernetes container

scheduler and orchestration tool, making it the most popular and widely used

container orchestration technology. In 2017, Microsoft enabled organizations

to run Linux containers on Windows servers, which was a major development

for Microsoft-based businesses that wanted to containerize applications and

stay compatible with their existing systems.

Chapter 1 Container overview

6

 Docker and Kubernetes Architecture
Containers are a way of packaging software, mainly the application’s

code, libraries, and dependencies. Containers group and isolate a set of

processes and resources, such as memory, CPU, disk, and so forth, from

the host and any other containers. The isolation ensures that any processes

inside the container cannot see any processes or resources outside

the container. Containers typically leverage Linux kernel features like

namespaces (ipc, uts, mount, pid, network, and user) and cgroups, which

provide an abstraction layer on top of an existing kernel instance, thus

creating isolated environments similar to virtual machines.

Docker is a container-based technology where containers share

the host OS kernel by using Linux kernel features like namespaces and

control groups. Docker is available in two versions: Docker Community

Edition (CE) and Docker Enterprise Edition (EE). Docker EE is designed

for enterprise adoption and is recommended over Docker CE for running

containerized business-critical applications in production.

Figure 1-2. Container architecture with respect to physical and
virtual infrastructure

Chapter 1 Container overview

7

Docker architecture is based on client–server architecture (Figure 1- 3).

The Docker client interacts with the Docker daemon, which in turn

manages the lifecycle of the container from building and running to scaling.

Figure 1-3. Docker architecture

• Docker client: Docker users can interact with Docker

through a client.

• Docker host: The Docker host provides a base

environment in which to run containerized

applications. It provides all the necessary infrastructure

base components right from the Docker daemon:

images, containers, networks, and storage.

• Docker images: Docker images are equivalent to an

OS template or an image, with the difference being that

instead of packaging the OS it contains the application

source code along with all the dependencies required to

run the application. Using these images, we can achieve

application portability across infrastructure without

worrying about the underlying technologies used.

Chapter 1 Container overview

8

• Registries: Registries are used for managing Docker

images. There are two major registry types: public and

private.

• Docker engine: The Docker engine enables

developing, packaging, deploying, and running

applications.

• Docker daemon: Docker daemon is the core process

that manages Docker images, containers, networks,

and storage volumes.

• Docker Engine REST API: This is the API used by

containerized applications to interact with the Docker

daemon.

• Docker CLI: This provides a command line interface

for interacting with the Docker daemon (Figure 1-4).

Figure 1-4. Docker management interfaces (CLI & API)

Chapter 1 Container overview

9

Kubernetes is an open-source container management (orchestration)

tool that provides an abstraction layer over the container to manage the

container fleets leveraging REST APIs. Kubernetes is portable in nature

and is supported to run on various public or private cloud platforms, such

as Physical Server, GCP, AWS, Azure, OpenStack, or Apache Mesos.

Similar to Docker, Kubernetes follows a client–server architecture. It

has a master server, which could be one or more than one, that is used to

manage target nodes where containerized applications are deployed. It

also has the feature of service discovery.

The master server consists of various components, including a kube-

apiserver, an etcd storage, a kube-controller-manager, a cloud-controller-

manager, a kube-scheduler, and a DNS server for Kubernetes services.

Node components include Kubelet and kube-proxy (Figure 1-5).

Figure 1-5. Kubernetes architecture

Chapter 1 Container overview

10

 Master Node
The following are the main components on the master node:

• etcd cluster: etcd cluster is a distributed key–value

storage used to store Kubernetes cluster data (such

as number of pods, their state, namespace, etc.), API

objects, and service discovery details.

• kube-apiserver: Kubernetes API server provides a

programmatic interface for container management

activities (like pods, services, replication sets/

controllers) using REST APIs.

• kube-controller-manager: kube-controller-manager

is used for managing controller processes like Node

Controller (for monitoring and responding to node

health), Replication Controller (for maintaining

number of pods), Endpoints Controller (for service

and pod integration), and Service Account/Token

Controller (for API/token access management).

• cloud-controller-manager: cloud-controller-manager

is responsible for managing controller processes that

interact with the underpinning cloud provider.

• kube-scheduler: kube-scheduler helps with managing

pod placement across target nodes based on resource

utilization. It takes into account resource requirements,

hardware/software/security policy, affinity

specifications, etc., before deciding on the best node for

running the pod.

Chapter 1 Container overview

11

 Node (Worker) Components
The following are the main components on a (worker) node:

• Kubelet: Kubelet is the agent component running

on a worker node, and its main purpose is to ensure

containers are running in the pod. Any containers that

are outside the management of Kubernetes are not

managed by Kubelet. It ensures that workers, pods, and

their containers are in a healthy state, as well as reports

these metrics back to the Kubernetes master node.

• kube-proxy: kube-proxy is a proxy service that runs

on the worker node to manage inter-pod networking

and communication. It’s also a crucial component for

service concept realization.

• Kubectl: kubectl is a command line tool used for

Kubernetes cluster management and uses APIs

exposed by kube-apiserver .

• Pod: A pod is a logical collection of one or more

containers that formulates a single application and is

represented as a running process on worker nodes.

A pod packages application containers, storage,

network and other configurations required for running

containers. A pod can horizontally scale out and enable

application deployment strategies like rolling updates

and blue/green deployment, which aim to minimize

application downtime and risk during upgrades.

• Service: A service provides an interface for the

collection of one or more pods bound by policy. Since

a pod’s lifecycle is ephemeral in nature, services help

to ensure application access without worrying even if a

backend pod dies abruptly .

Chapter 1 Container overview

12

• Namespace: A namespace is a logical construct used

for dividing cluster resources across multiple users. You

can use resource quotas with a namespace to manage

resource consumption by multiple application teams.

• Deployment: Deployment represents a collection

of one or more running pods that formulate an

application as per the pod specification. It works

closely with Deployment Controller to ensure the pod

is available as per the user specification mentioned in

the pod specification.

 Microservices Architecture
Microservices architecture is an approach to building an application

using a set of small services. Each service runs in its own process and

communicates with other processes. Each microservice represents

a functionality that can now be developed, deployed, and managed

independently. Each of these smaller services has its individual data

model, logic, data storage technologies (SQL, NoSQL), and programming

language.

Additionally, microservices can now scale out independently, meaning

you can scale out a specific service instead of the entire application based

on utilization patterns. This approach helps organizations save money on

infrastructure components that may remain unutilized in the traditional

monolithic application world (Figure 1-6).

Chapter 1 Container overview

13

Containers are pretty much the accepted norm for managing

microservice architectures. That’s true for hosted services that have

adopted Kubernetes and offer services based on a container infrastructure.

It’s also true for organizations that increasingly use containers to manage

their workloads and adapt to new market conditions. Advancements in

container technology ecosystems are opening new avenues of monitoring.

For example, service mesh technologies, when paired with Kubernetes,

enable traffic management, service identity, policy enforcement, and

telemetry for microservices.

Monitoring and health management of application services and

infrastructure is an important aspect of operational stability, especially for

the production environment.

Health monitoring allows near-real-time visibility into the state of

your application services, pods, containers, and underlying infrastructure.

Microservices-based applications often leverage health checks to keep track

of application availability, performance, faults, etc. Table 1-1 shows the

monitoring areas to be considered for microservices-based applications.

Figure 1-6. Monolithic vs microservice application comparison

Chapter 1 Container overview

14

Table 1-1. Monitoring Areas

Architecture Metric Selection Decision Logic Sample Metrics

Microservice

in general, there is one

process to track per

container.

where are the new services

deployed?

what percentage of time is the

service reachable?

how many requests are

enqueued?

average percentage

of time a request-

servicing thread is

busy.

number of enqueued

requests.

percentage of time a

service is reachable

Application

Multiple microservices

running simultaneously

constitute an application

Does the database respond

quickly?

are the message queues fast

enough?

how does heap memory usage

change over time?

are application services

responsive?

Query execution

frequency, response

time, and failure rate.

response time,

failure rate

Container
Separate from the

underlying process being

run within it, containers

are also monitored

how responsive are the processes

within container?

which images have been deployed?

are specific containers associated

with over- utilization of host?

CpU throttle time.

Container disk i/o.

Memory usage.

network (volume,

dropped packets)

Container Cluster
Multiple containers

deployed to run as group.

Many of the metrics of

individual containers can

also be summarized.

are your clusters healthy and

properly sized?

Can applications be effectively run

on fewer nodes?

percentage of

clusters remaining

operational

compared to those

originally deployed

(continued)

Chapter 1 Container overview

15

 Container Monitoring Ecosystem Overview
With the rise of container technology, there was a requirement to have a

supporting ecosystem via which enterprises could run mission-critical

workloads on the container. With the introduction of container technology

and microservices architecture, monitoring solutions now need to manage

data for both non-ephemeral and ephemeral services. Collecting data

from applications composed of so many services has now become vastly

complex. In a DevOps world, monitoring containerized applications

and environments is not just needed for the operations team but also as

a feedback mechanism for developers to understand their application

Table 1-1. (continued)

Architecture Metric Selection Decision Logic Sample Metrics

Host
also called a node,

multiple hosts can

support a cluster of

containers

Do changes in utilization indicate

a problem with a process or

application?

percentage of total

memory capacity in

use.

percentage of time

CpUs are utilized

Infrastructure

Cloud in which hosts are

running

how much does it cost to run

each service or deployment?

what is the ratio of microservices

and/or containers per instance?

network traffic

Utilization of

databases, storage,

and other shared

services

End user
the users using the

application or other

applications using apis.

what is the average web/

transaction response time

experienced by users or by target

application?

response time.

number and

percentage of

failed user actions/

transactions

Chapter 1 Container overview

16

performance bottlenecks/faults/bugs/etc. The following are the nuances to

be considered when it comes to container monitoring:

• Short lifespan of containers: Containers are

constantly provisioned and decommissioned based on

demand. This can lead to cycles, where in the morning

a container host cluster is filled up with microservices

belonging to Workload A, while in the afternoon this

same host is serving Application B. This means that a

security breach, slow performance, or downtime on a

certain host will have a very different business impact

depending on when it happens.

• One microservice can be leveraged by numerous
applications: As different applications often share the

same microservices, monitoring tools must be able

to dynamically map which instance of a microservice

impacts which application.

• Temporary nature of containers: When the assembly

of a new container is triggered based on a container

image, networking connections, storage resources,

and integration with other required services have

to be instantly provided. This dynamic provisioning

can impact the performance of related and unrelated

infrastructure components.

• More levels to watch: In the case of Kubernetes,

enterprise IT needs to monitor at the level of nodes

(host servers), pods (host clusters), and individual

containers. In addition, monitoring has to happen

on the VM and storage levels, as well as on the

microservices level.

Chapter 1 Container overview

17

• Different container management frameworks:
Amazon EC2 Container Services run on Amazon’s

proprietary management platform, while Google

naturally supports Kubernetes (so does VMware),

and Docker supports Swarm. Container monitoring

solutions need to be aware of the differences between

these container management platforms.

• Microservices change fast and often: Anomaly

detection for microservices-based applications is much

more difficult than that for standard apps, as apps

consisting of microservices are constantly changing.

New microservices are added to the app and existing

ones are updated in a very quick sequence, leading to

different infrastructure usage patterns. The monitoring

tool needs to be able to differentiate between “normal”

usage patterns caused by intentional changes and

actual anomalies that have to be addressed.

Figure 1-7. Metrics explosion view with container technology
evolution

Chapter 1 Container overview

18

In order to have complete visibility of containerized applications, you

need to have data from the various components that formulate the base

infrastructure for running containers. This means you need to monitor the

following:

• Application services

• Pods and containers

• Clusters running the containers

• Network for service/pod/cluster communication

• Host OS/machine running the cluster

Choosing the right monitoring toolset is certainly important and

should be based upon the pros and cons of the solution. The following are

the options available in the market for container monitoring:

• Prometheus: Prometheus is one of the oldest and most

popular open source container monitoring solutions

available. It’s a graduated cloud native computing

foundation (CNCF) project that offers powerful

querying capabilities, visualization, and alerting.

• Grafana: Grafana is a popular reporting dashboarding

tool for container environments. It has the capability to

leverage data feeds from Prometheus and other sources for

visualizing information from the Kubernetes environment.

• cAdvisor: cAdvisor is another container resource

monitoring tool that works at the worker node level

instead of the pod level. It has the capability to discover

all the containers running on worker nodes and to

provide metrics about CPU, memory, filesystem, etc.

This solution does not provide long-term storage of

metric data or analytics services on top, which would

be useful for driving insights for the operations team.

Chapter 1 Container overview

19

• Heapster: Heapster aggregates monitoring data across

multiple nodes using Kubelet and cAdvisor at the

backend. Unlike cAdvisor, Heapster works at the pod

level instead of the worker node level.

• Sysdig: Sysdig Monitor helps in monitoring container

applications by providing end-to-end visibility—from

application service to pod to container to node level—

of the availability, performance, and faults across

multiple container technologies and clouds.

• Dynatrace: Dynatrace has a new suite of tools available

for container monitoring and alerting. Leveraging

an agent-based approach, it can discover and fetch

data about containerized application services, pods,

containers, worker nodes, etc.

• AppDynamics: Application and business performance

software that collects data from agents installed on the

host using Docker APIs.

• Fluentd: Open source data collector for unified logging

layers.

• Collectd: A small daemon that periodically collects

system information and provides mechanisms to store

and monitor container metrics.

• Cloud native: Leading cloud providers like AWS

(Cloudwatch), Azure (Azure Monitor), and Google

Cloud (Stackdriver) have their own native mechanisms

to monitor container ecosystems on AWS EKS, Azure

AKS, and Google GKE.

Chapter 1 Container overview

20

 Summary
In this chapter, we have seen the container ecosystem evolution, Docker

and Kubernetes architecture, and the benefits and challenges of container

technology. We have also looked at monitoring and management tools

and metrics for effective container monitoring. In the next chapter, we

will start with practical exercises to set up Docker and Kubernetes, and we

will end with deploying our first containerized application to kickstart the

container monitoring journey.

Chapter 1 Container overview

21© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_2

CHAPTER 2

Getting Started
with Containers
This chapter will provide hands-on steps for installing Docker and

Kubernetes. We also look into how to deploy a containerized application

on Kubernetes. This will set us up for the following chapters, where we will

monitor this setup using Prometheus. This chapter will cover the following

topics:

• Setting Up Docker CE and Running First Container

• Setting Up Kubernetes

• Deploying the Sample Application

 Lab Environment Setup
For our lab environment, we will be using two Redhat 7 virtual machines

(VMs). We recommend that readers use at minimum two CPUs, 8 GB RAM,

and 80 GB hard disk (under/location) for the exercises here in Chapter 2.

VMs can be hosted on VMware Workstation, VMware, Hyper V, or a

public cloud like AWS, Azure, or GCP. Kindly ensure both VMs are able to

communicate with each other on a private IP address and have outbound

internet connectivity to download packages for installation.

Figure 2-1 represents the lab environment we will be setting up as part

of this chapter.

https://doi.org/10.1007/978-1-4842-6216-0_2#DOI

22

Figure 2-1. Lab environnement setup for Chapter 2

Chapter 2 GettinG Started with ContainerS

23

As part of this chapter, we will be performing the following steps:

• We will begin with installation of Docker CE engine on

two nodes.

• After Docker CE engine setup, we will run a “Hello

World” sample on the master Kubernetes node to

validate our setup.

• We will install the core Kubernetes components on the

master node using the Kubeadm utility.

• We will install Kubernetes components on the worker/

target node.

• We will join the worker/target node with the master node.

• Finally, we will deploy the containerized application

Sock-shop on the worker/target node.

 Setting Up Docker CE
To start with container monitoring using Prometheus and Alert Manager,

the first step will be to set up the container ecosystem. We will set up

Docker CE 18.09.0 on both of our Redhat VMs. This will serve as the

container engine for our applications.

Note please make sure all the commands mentioned in Steps 1
through 8 are executed successfully on both redhat VMs. Steps 9
and 10 will be only executed on the master node.

Chapter 2 GettinG Started with ContainerS

24

 1. SSH into Redhat VMs. We will begin with cleaning

up any older version of Docker (if any) present

on the system. It is recommended to clean any

pre-existing installation in case readers are using

existing VMs for this exercise. If readers are using

fresh VMs then kindly proceed to Step 2.

$ sudo yum remove docker docker-common docker-

selinux docker- engine- selinux

 2. Execute the following command to install pre-

requisite packages for Docker CE. The yum-config-

manager utility is used to manage the main yum

configuration options like enabling/disabling/

adding repositories. device-mapper- persistent-

data and lvm2 are needed for the device mapper

storage driver. The device mapper storage driver

for containers enables capabilities like thin

provisioning and snapshotting, which are useful for

image and container management.

$ sudo yum install -y yum-utils device-mapper-

persistent-data lvm2

 3. Configure the docker-ce repo by executing the

following command:

$ sudo yum-config-manager --add-repo https://

download.docker.com/linux/centos/docker-ce.repo

Docker CE repo configuration will occur after the

execution of the preceding command. It will save

the repo under _/etc/yum.repos.d/docker-ce.

repo as mentioned in Figure 2-2.

Chapter 2 GettinG Started with ContainerS

25

 4. Execute the following command to update the yum

cache. This will ensure yum configuration is updated

as per the command executed in the previous step.

$ sudo yum makecache fast

 5. Run the following command for SELinux policies for

container runtimes. This package is needed for setting

up container SELinux policy on Redhat systems. This

is required to setup the security policies for Docker

containers to access and share the resources.

$ sudo yum install -y http://mirror.centos.

org/centos/7/extras/x86_64/Packages/container-

selinux-2.107-3.el7.noarch.rpm

The SELinux policy gets updated after the execution

of the preceding command.

 6. Run the following command to install Docker

community edition:

$ sudo yum install docker-ce-18.09.0-3.el7 –y

Installation of Docker CE is completed after the

execution of the preceding command.

 7. Run the following command to enable the Docker service:

$ sudo systemctl enable docker.service

Enable the service of Docker after executing the

preceding command.

Figure 2-2. Docker CE repo configuration

Chapter 2 GettinG Started with ContainerS

26

 8. Execute the following commands to start and then

validate the status of Docker service (see Figure 2-3):

$ sudo systemctl start docker.service

$ sudo systemctl status docker.service

Figure 2-3. Start and verify Docker CE service. Look for the active
(running) status of the docker service

 9. Pull the Docker image from Docker Hub by

executing the following command. Docker Hub

is a service provided by Docker for searching and

sharing container images. Docker Hub provides

repositories with access to push and pull container

images. Additionally, Docker Hub provides official

images managed by Docker and publisher images

managed by external vendors.

$ docker pull hello-world

 10. Now, let’s validate our installation of the Docker

Engine by running the first Docker container on our

master node. Execute the following command after

logging in to the master node. You can verify the

installation as shown in Figure 2-4.

$ docker run hello-world

Chapter 2 GettinG Started with ContainerS

27

If you see the response as “Hello from the Docker!” the Docker

container is running successfully.

 Setting Up Kubernetes
The following steps elaborate the commands needed to set up Kubernetes

master and worker nodes. In the previous section, we set up Docker

Engine on both nodes.

 Installing Kubernetes on RHEL 7
Let’s start:

 1. Disable SELinux and set up firewall rules on the master

node. Setting SELinux in permissive mode effectively

disables it and thereby enables containers to access

the host filesystem. The br_netfilter and net.

bridge.bridge-nf-call-iptables modules are used

for setting up Kubernetes networking options.

Figure 2-4. Running first Docker container

Chapter 2 GettinG Started with ContainerS

28

Set the following firewall rules on your master node

by executing the following commands:

firewall-cmd --permanent --add-port=6443/tcp

firewall-cmd --permanent --add-port=2379-2380/tcp

firewall-cmd --permanent --add-port=10250/tcp

firewall-cmd --permanent --add-port=10251/tcp

firewall-cmd --permanent --add-port=10252/tcp

firewall-cmd --permanent --add-port=10255/tcp

firewall-cmd --reload

modprobe br_netfilter

echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

Table 2-1 lists the relevance of the inbound TCP

ports enabled on the master node. See Figure 2-6.

Navigate to the Kubernetes master node and execute

the following commands to set the hostname and

disable SELinux:

$ hostnamectl set-hostname 'k8s-master'

$ exec bash

$ setenforce 0

$ sed -i --follow-symlinks 's/SELINUX=enforcing/

SELINUX=disabled/g' /etc/sysconfig/selinux

Figure 2-5. SELinux policy update

Chapter 2 GettinG Started with ContainerS

29

Table 2-1. Ports required for Kubernetes

Port Range Purpose

6443* these ports are used for Kubernetes api access.

2379-2380 these ports are used for etcd server client api.

10250 this port is used for Kubelet api.

10251 this port is used for kube- scheduler.

10252 this port is used for kube- controller- manager.

Figure 2-6. Firewall policy update

Note in the absence of a dnS server in your lab environment, you
need to update the /etc/hosts file on the master and worker nodes
manually with entries as depicted below.

• <Master node IP > k8s-master

• <Worker node IP > worker-node1

Chapter 2 GettinG Started with ContainerS

30

 For example, in our environment, the hosts file had the following

entries on both servers (see Figure 2-7).

Figure 2-7. /etc/hosts file entry sample

 2. Configure the Kubernetes repository on the master

node. Execute the following command to configure

the repositories needed for Kubernetes installation:

cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/

kubernetes- el7- x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/yum-

key.gpg https://packages.cloud.google.com/yum/doc/rpm-

package-key.gpg

EOF

 3. Install Kubeadm on the master node (Figure 2-8).

This will be used to deploy Kubernetes components

in an automated fashion on the master and worker/

target nodes. Execute the following command to

install kubeadm:

Chapter 2 GettinG Started with ContainerS

31

$ yum install kubeadm -y

Start and enable kubectl service by executing below

command

$systemctl restart kubelet && systemctl enable kubelet

$systemctl status kubelet

Figure 2-8. Kubeadm installation

 4. Execute the following command to initialize

Kubernetes kubeadm on the master node:

$sudo swapoff -a

$sudo sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

$kubeadm init

 Execute the following commands to use the cluster as a

root user:

$mkdir -p $HOME/.kube

$cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

$chown $(id -u):$(id -g) $HOME/.kube/config

 5. Deploy the pod network to the cluster on the master

node.

 Run the following command to get the status of the cluster and

pods (Figure 2-9):

$kubectl get nodes

$kubectl get pods --all-namespaces

Chapter 2 GettinG Started with ContainerS

32

Figure 2-10. Kubernetes network deployment

Figure 2-9. List Kubernetes nodes and namespaces

Execute the following commands to deploy the network (Figure 2-10):

$export kubever=$(kubectl version | base64 | tr -d '\n')

$kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-

version=$kubever"

Execute the following command to get the status of the cluster and

pods; this time, the statuses should come as “Ready” and “Running” states,

respectively (Figure 2-11).

$kubectl get nodes

$kubectl get pods --all-namespaces

Chapter 2 GettinG Started with ContainerS

33

 Add Worker Node to the Kubernetes Master Node
Now, we’ll add a worker node:

 1. Update the /etc/hosts file on the worker node

(10.1.150.150):

• <Master node IP > k8s-master1

• <Worker node IP > worker-node1

 For example, in our environment the hosts file had the following

entries on the worker node (Figure 2-12):

Figure 2-11. List Kubernetes nodes and namespaces

Figure 2-12. /etc/hosts file entry sample

Chapter 2 GettinG Started with ContainerS

34

 2. Disable SELinux and configure the firewall rules on

the worker node:

$setenforce 0

$sed -i --follow-symlinks 's/SELINUX=enforcing/

SELINUX=disabled/g' /etc/sysconfig/selinux

$firewall-cmd --permanent --add-port=10250/tcp

$firewall-cmd --permanent --add-port=10255/tcp

$firewall-cmd --permanent --add-port=30000-32767/tcp

$firewall-cmd --permanent --add-port=6783/tcp

$firewall-cmd --reload

$echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

 Table 2-2 lists the relevance of each inbound TCP port on the

worker/target node (see Figure 2-13).

Table 2-2. Port ranges required for Kubernetes

Port Range Purpose

10250 this port is used by the Kubelet api.

30000-32767 this port is used by nodeport Services.

Figure 2-13. SELinux and firewall policy update

Chapter 2 GettinG Started with ContainerS

35

 3. Configure Kubernetes repositories on the worker

node (10.1.150.150)(Figure 2-14):

cat <<EOF > /etc/yum.repos.d/kubernetes.repo

[kubernetes]

name=Kubernetes

baseurl=https://packages.cloud.google.com/yum/repos/

kubernetes- el7- x86_64

enabled=1

gpgcheck=1

repo_gpgcheck=1

gpgkey=https://packages.cloud.google.com/yum/doc/

yum-key.gpg https://packages.cloud.google.com/

yum/doc/rpm-package-key.gpg

EOF

Figure 2-14. Kubernetes repository configuration

 4. Install kubeadm on worker node(10.1.150.150).

Execute the following command to install kubeadm:

$install kubeadm –y

Then start and enable the kubectl service:

$systemctl restart kubelet && systemctl enable kubelet

Chapter 2 GettinG Started with ContainerS

36

 5. Join the worker node (10.1.1.50.150) to the master

node (10.1.150.126) using the token ID. Navigate

to Kubernetes master (10.1.150.126) and fetch the

token by executing the following command:

$kubeadm token list

Execute the following command in the worker node

(10.1.1.50.150):

$sudo swapoff -a

$sudo sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

$kubeadm join --token ahh26d.8sl6ey1l9h4eawl7

10.1.150.126:6443 --discovery-token-unsafe-skip-

ca-verification

Run the kubectl get nodes command on the master

node (101.1.150.126) to see the worker node machine join

(Figure 2-15):

$kubectl get nodes

Figure 2-15. List Kubernetes nodes

Kubernetes master and worker nodes are configured

successfully.

 Deploying an Application
Now that we have our container ecosystem ready, it’s time to deploy our

first application. We will deploy a microservice-based application called

Sock Shop (Figure 2-16).

Chapter 2 GettinG Started with ContainerS

37

The following is the flow for the Sock Shop application deployment we

will follow in this chapter:

 1. We will first clone the configuration scripts for Sock

Shop from GitHub.

 2. We will then use Kubectl to create a namespace

on the worker/target node and then deploy the

configuration as a pod.

 3. We will then create a service for our application for

end-user access.

 4. Finally, we will test the status of our application

using command line and web browser access.

Figure 2-16. Sock Shop application deployment flow

Chapter 2 GettinG Started with ContainerS

38

Note we will cover the basics of the configuration script in the next
chapter in detail, as readers need to understand the file structure
before using it to deploy prometheus and alert Manager.

Log in to the Kubernetes master node (10.1.150.126)

using SSH.

 5. First, we need to set up Git on the master node

(10.1.150.126). Log in to the master node with root

user and execute the following command:

$ yum install git

 When prompt asks “Is this ok [y/d/N]”, Text “Y” and press Enter

key (Figure 2-17).

Figure 2-17. Install Git

Figure 2-18. Verify Git version

 Check that Git installed successfully by executing the following

command:

$ git version

 You will get a result like that in Figure 2-18, which means Git was

installed successfully.

Chapter 2 GettinG Started with ContainerS

39

 6. Clone the Sock Shop application from GitHub from

the following URL into the /home/prometheus folder.

You will see a microservices-demo folder after

command execution.

$ git clone https://github.com/dryice-devops/

microservices- demo.git

$ll

 Navigate into the microservices-demo folder. You will be able to

view the following files and folder:

$ cd microservices-demo/

 7. Navigate to the Deploy folder within the

microservices- demo folder. Then, navigate to the

kubernetes folder.

$ cd deploy/kubernetes/

 In the kubernetes folder you will be able to view the files and

folder shown in Figure 2-19.

Figure 2-19. Navigate to Deploy folder

 8. Create the namespace sock-shop by executing

the following inline command from the /home/

prometheus/microservices-demo/deploy/

kubernetes folder (Figure 2-20):

$ kubectl create namespace sock-shop

Chapter 2 GettinG Started with ContainerS

40

 9. Deploy Sock Shop by executing the following

inline command from the /home/prometheus/

microservices- demo/deploy/kubernetes folder

(Figure 2-21):

$ kubectl apply -f complete-demo.yaml

Figure 2-21. Deploy container application Sock Shop

Figure 2-20. Namespace creation for container application Sock Shop

Chapter 2 GettinG Started with ContainerS

41

 10. To get the status of all the components of the Sock

Shop application, please execute the following

command:

$ kubectl get all -n sock-shop

 The result would be as shown in Figure 2-22 (all the components’

statuses should be “Running”).

Figure 2-22. Verify container application Sock Shop

 11. Open your browser and open the following URL:

http://Kubernetes-Cluster-IP: 31010; e.g.,

in our case, it is http://10.1.150.126:31010

(Figure 2-23).

Chapter 2 GettinG Started with ContainerS

http://10.1.150.126:31010

42

 Summary
In this chapter, we have provided hands-on steps for setting up Docker and

Kubernetes. We also deployed our first containerized application. In the

next chapter, we will show how to install Prometheus and Alert Manager.

Figure 2-23. Sock Shop application page

Chapter 2 GettinG Started with ContainerS

43© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_3

CHAPTER 3

Getting Started
with Prometheus
and Alert Manager
In this chapter, we will go through the Prometheus monitoring tool,

including its architecture and deployment. We will also be installing

Prometheus and Alert Manager on Kubernetes and integrating the two.

The chapter will cover the following topics:

• Overview of Prometheus

• Architecture of Prometheus and Alert Manager

• Prometheus and Alert Manager Setup and

Configuration on Kubernetes Cluster

• Integration of Prometheus and Alert manager

 Overview of Prometheus
Container-based technologies also affect elements of infrastructure

management services, like backup, patching, security, high availability,

disaster recovery, and so forth. Monitoring is one such element that

has evolved in leaps and bounds with the rise of container technology.

https://doi.org/10.1007/978-1-4842-6216-0_3#DOI

44

Prometheus is one of the container monitoring tools that comes up as

a go-to open source monitoring and alerting solution. Prometheus was

initially conceived at SoundCloud, and slowly it became a favorite tool for

container monitoring. It’s predominantly written in GO language and is

one of the first Cloud Native Computing Foundation (CNCF)–graduated

projects.

Prometheus supports multi-dimensional data models based on

key–value pairs, which helps in collecting container monitoring as

time-series data. It also provides a powerful query language called

Prometheus Query Language (PromQL). PromQL allows the selection and

aggregation of time-series data in real time, which can either be viewed as

a graph, viewed as tabular data, or used by external systems via API call.

Prometheus also supports various integrations with third-party systems

for reporting, alerting, and dashboarding, along with exporters for fetching

data from various sources.

 Prometheus and Alert Manager Architecture
The Prometheus and Alert Manager architecture diagram in Figure 3-1

illustrates the architecture of Prometheus and its components.

Chapter 3 GettinG Started with prometheuS and alert manaGer

45

Now, let’s look more closely at the following components:

Prometheus Server: This component is the central component that

collects the metrics from multiple container cluster nodes. The metrics

data is stored locally. Prometheus monitoring leverages the concept of

scraping, where target systems’ metric endpoints are contacted to fetch

data at regular intervals.

This means that your application needs to expose an endpoint where

metrics are available, and Prometheus should have a mechanism to scrape

it. If the application service is not designed to provide Prometheus with

metrics because the code either can’t be modified or is not written to send

metrics we can leverage the Prometheus exporter to fetch metrics.

Figure 3-1. Prometheus and Alert Manager architecture

Chapter 3 GettinG Started with prometheuS and alert manaGer

46

Push Gateway: Push Gateway is used for scraping metrics from

applications and passing on the data to Prometheus. Push Gateway

captures the data and then transforms it into the Prometheus data format

before pushing.

Exporter: Exporter is equivalent to a plugin or monitoring agent that

runs on the target host to fetch data and then export it to the metric in

Prometheus.

Alert Manager: Alert Manager is used to send the various alerts based

upon the metrics data collected in Prometheus.

Web UI: The web UI layer of Prometheus provides the end user with an

interface to visualize data collected by Prometheus.

Kubernetes APIs provide metrics regarding these infrastructure

components from an availability, fault, performance, and security

standpoint. Prometheus helps overcome many of the unique challenges

that monitoring Kubernetes clusters can present. While the Kubernetes

native API and the kube-state-metrics can fetch container, node, and

application data by exposing the Kubernetes internal data (number of

desired/running replicas in a deployment, schedulable nodes, etc.),

Prometheus provides an aggregation layer above to enable operations

teams to manage the container ecosystem seamlessly. A typical user would

have to do computations of their own if they directly fetch metrics from

Kubernetes for monitoring data in the absence of a tool like Prometheus.

 Prometheus and Alert Manager Setup
and Configuration
In the previous chapter, while deploying the Sock Shop application, we

used a YAML (a recursive acronym for “YAML Ain’t Markup Language”)

configuration file to provide the details required for deploying the

application on a target/worker node. We will now look at how to install and

configure Prometheus and Alert Manager using YAML-based definitions.

Chapter 3 GettinG Started with prometheuS and alert manaGer

47

These days, Kubernetes objects, such as pods, services, and deployments,

are created by using YAML files, and thus have a number of advantages

over a kubectl command, which is an alternative way to create Kubernetes

objects.

Advantages of using a YAML file to create Kubernetes Objects:

• YAML files are saved into source code management,

like Github, to track the changes.

• It can be parameterized to make changes to Kubernetes

objects at runtime.

Before installing Prometheus and Alert Manager, we want to give

readers an overview of the basics of the YAML file structure. YAML is a

human-readable data-serialization language. It is commonly used for

configuration files and in applications where data is being stored or

transmitted. YAML was created specifically for common use cases, such as

the following:

• Configuration files

• Log files

• Cross-language data sharing

• Complex data structures

At a high level, the following are the building blocks of a YAML file,

shown in Figure 3-2.

Figure 3-2. YAML file building blocks

Chapter 3 GettinG Started with prometheuS and alert manaGer

48

• Key–Value Pair: The basic type of entry in a YAML file

is a key–value pair. After the key and colon there is a

space and then the value.

• Arrays/Lists: Lists would have a number of items listed

under the name of the list. The elements of the list

would start with a hyphen (-).

• Dictionary/Map: A more complex type of YAML file

would be a dictionary and map.

In the upcoming sections, we will cover the creation of the deployment

resource by using YAML and will provide readers with an overview of key

fields used in that process.

Now, let’s start with setting up Prometheus and Alert Manager on a

Kubernetes cluster. We will use the same container environment setup

seen in the previous chapter for this exercise.

 Setting Up Prometheus on a Kubernetes Cluster
Figure 3-3 provides an overview of the task flows we will follow to deploy

Prometheus.

Chapter 3 GettinG Started with prometheuS and alert manaGer

49

The following is the flow for the Prometheus deployment that we will

follow in this chapter:

• We will first clone the configuration files from GitHub.

• We will then use Kubectl to create a namespace on the

worker/target node.

• We will create a cluster role and role binding.

• We will create a config map and then deploy the

configuration as a pod.

• We will then create a service for Prometheus for end-

user access.

• Finally, we will test the status of the Prometheus

deployment using the command line and web browser

access.

Figure 3-3. Prometheus deployment flow

Chapter 3 GettinG Started with prometheuS and alert manaGer

50

 Create Namespace

As Prometheus is a monitoring tool, we will create a namespace to make

a logical segregation from other Kubernetes components that are running

under different namespaces on Kubernetes Cluster, such as default,

kube-system, Any Application Namespace etc.

Prometheus and Alert Manager components, e.g., Prometheus Server,

will be deployed as Kubernetes objects (e.g., pods, services, etc.) and will

also be created under the monitoring namespace.

Step 1: Execute the following command on the master node

(10.1.150.126) to create a new namespace called monitoring:

$kubectl create namespace monitoring

After executing the command, you will see the monitoring namespace

created, as shown in Figure 3-4.

Step 2: Now we will create a cluster role and binding. Kubernetes

resources access is regulated via role-based access control (RBAC). RBAC

uses the rbac.authorization.k8s.io API to manage authorization. In the

RBAC API, a cluster role contains rules that represent a set of permissions

on the Kubernetes cluster. A cluster role will be used to provide access to

the following:

• Non-resource endpoints (like /healthz)

• Cluster-scoped resources (like nodes)

• Namespaced resources (like pods) across all

namespaces (needed to run kubectl get pods --all-

namespaces, for example)

Figure 3-4. Namespace creation for Prometheus monitoring

Chapter 3 GettinG Started with prometheuS and alert manaGer

51

Cluster role binding grants the permissions defined in a cluster role

to a user or set of users. It holds a list of subjects (users, groups, or service

accounts) and a reference to the role being granted. Permissions can be

granted within a namespace cluster-wide using a cluster role binding. In

this step, we will create the cluster role and role binding using the single

YAML file clusterRole.yaml.

Log in to the Kubernetes master node and navigate to the /home

directory. Execute the following commands in the Clone clusterRole.

yaml file.

$ cd /home

$ git clone https://github.com/dryice-devops/prometheus.git

Now, let’s have a look at the content of this YAML file and understand

the sections and their relevance. The file has two sections: ClusterRole

and ClusterRoleBinding.

 ClusterRole Section Details

• apiVersion: The beginning section of the file defines

apiVersion of Kubernetes so it can interact with the

Kubernetes API server. It is typically used for creating

the object. apiVersion varies depending upon the

Kubernetes version you have in your environment.

• Kind: The Kind field defines the type of Kubernetes

object; e.g., ClusterRole, deployment, service, pods, etc.

In our case, we are using ClusterRole.

• Metadata: This section has name subcomponents

defined in the file. The Name field specifies the name of

the object. We are using Prometheus as the name in our

example.

Chapter 3 GettinG Started with prometheuS and alert manaGer

52

Figure 3-5 shows snapshots of these sections.

• Rules: A rule is a set of operations (verbs) that can

be carried out on a group of resources that belong

to different API groups (also called legacy). In our

example, we are creating a rule that allows a user to

execute several operations on nodes, proxy, service,

endpoints, and pods that belong to the core (expressed

by “” in the YAML file), apps, and extensions. API

Groups.Rule has several subcomponent elements in it.

Resources: This field defines various Kubernetes

resources.

Verbs: This field defines the action to be performed

on the resources.

nonResourceURLs: NonResourceURLs is a set

of partial URLs that a user should have access to.

Non- resource URLs are not namespaced; this field

is only applicable for ClusterRoles referenced from

a ClusterRoleBinding. Rules can either apply to API

resources (such as pods or secrets) or non-resource

URL paths (such as /api), but not both. Figure 3-6

shows snapshot of above mentioned sections.

Figure 3-5. ClusterRole YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

53

 ClusterRoleBinding Section

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes so it can interact with the

Kubernetes API server. It is typically used for creating

the object. apiVersion varies depending upon the

Kubernetes version you have in your environment.

• Kind: The Kind field defines the types of Kubernetes

objects; e.g., ClusterRole, deployment, service, pods,

etc. In our case, we are using ClusterRoleBinding.

• Metadata: This section has name subcomponents

defined in the file. The Name field specifies the name of

the object. We are using Prometheus as the name in our

example. See Figure 3-7.

Figure 3-6. ClusterRole YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

54

• RoleRef: In this field, we are binding the Prometheus

ClusterRole to the default service account provided by

Kubernetes inside the monitoring namespace. This

section has further subcomponents in it.

apiGroup: This field defines the rbac.authorization.

k8s.io API to interact with the API group.

kind: This field defines the object type.

Name: Name of the ClusterRole; e.g., Prometheus

• Subjects: This section defines the set of users and

processes that needs to access the Kubernetes API. This

section has further subcomponents in it.

Kind: This field defines the object type service

account.

Name: As every Kubernetes installation has a

service account called default that is associated

with every running pod, we used the same default.

Namespace: This field defines the namespace name

for cluster role binding; e.g., monitoring (which we

created in previous step). Figure 3-8 shows snapshot

of above mentioned sections.

Figure 3-7. ClusterRole YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

55

Step 3: Now, let’s create the role using the following command on the

master node (10.1.150.126) in the /home directory:

$kubectl create -f clusterRole.yaml

After executing the preceding command, the cluster role and cluster

role binding will be created as per Figure 3-9.

 Create a Config Map

A config map will be used to decouple any configuration artifacts

from image content and alerting rules, which will be mounted to the

Prometheus container in the /etc/prometheus as prometheus.yaml and

prometheus.rules files.

Step 1: In the previous step, while creating the cluster role and binding,

we cloned a file on the Kubernetes master node called config-map.yaml

in /home/Prometheus. We will use this file to create a config map. Now,

let’s review the content of this YAML file. The config map incorporates the

prometheus.rules and prometheus.yml files under the data section. See

the snapshot of configmap.yaml in Figure 3-10.

Figure 3-9. Cluster role creation for Prometheus

Figure 3-8. ClusterRole YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

56

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. apiVersion varies depending upon

the Kubernetes version you have in your environment.

• Kind: This field defines the types of the Kubernetes

objects; e.g., ClusterRole, deployment, service, pods,

etc. In our case, the object is a config map.

• Metadata: This section has name subcomponents

defined in the file that have data about the config map.

Name: This field has the name of the config map.

In our example, we are using prometheus-server-

conf.

Label: This field defines the label for the config

map; e.g., prometheus- server- conf.

Namespace: This field defines the namespace

where the config map will be created; e.g.,

monitoring.

Figure 3-10. Config map YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

57

• Data: This field defines the prometheus.rules and

prometheus.yaml content and passes their information

at runtime to the config map.

prometheus.rules: This section contains the alerting

rules used to generate alerts on the basis of various

conditions; e.g., out of memory, out of disk space, etc.

In this case, we used high pod memory usage.

prometheus.yml: This file is used for configuring

Prometheus. It defines scraping jobs and their

instances, as well as which rule files to load. The

prometheus.yaml file contains all the configuration

information that would help to dynamically discover

pods and services running in the Kubernetes cluster.

The following are scrape jobs in our Prometheus

scrape configuration:

• kubernetes-apiservers: It gets all the metrics from

the API servers.

• kubernetes-nodes: All Kubernetes node metrics

will be collected with this job.

• kubernetes-pods: All the pod metrics will be

discovered if the pod metadata is annotated with

prometheus.io/scrape and prometheus.io/port

annotations.

• kubernetes-cadvisor: Collects all cAdvisor metrics.

• kubernetes-service-endpoints: All the service

endpoints will be scraped if the service metadata

is annotated with prometheus.io/scrape and

prometheus.io/port annotations. Service endpoints

when annotated with the prometheus annotations are

used by prometheus to select and scrape data from.

Chapter 3 GettinG Started with prometheuS and alert manaGer

58

• prometheus.rules: This contains all the alert rules

for sending alerts to Alert Manager.

• Global: The global configuration specifies parameters

that are valid in all other configuration contexts. This

has various subcomponents, as follows:

scrape_interval: How frequently to scrape

targets by default; we took 20s in our example.

evaluation_interval: How long until a scrape

request times out; we took 20s in our example.

• rule_files: This specifies a list of globs. Glob

provides method for traversing file systems and find

pathname or files matching a specific pattern. Using

this Rules and alerts are read from all matching files

that we defined under prometheus.rules and the

path defined as /etc/prometheus/prometheus.

rules. See Figure 3-11.

Figure 3-11. Config map YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

59

Alerting: This section specifies settings related

to Alert Manager.

• alertmanagers: This section defines how to integrate

with Alert Manager for sending alerts from Prometheus.

• Scheme: This configures the protocol scheme used

for making the requests to send the requests; e.g.,

http, https; we used http in our case.

• static_configs: Using Static_Configs, Alertmanagers

configuration can be defined as a static value.

Another option available is to use dynamic discovery

mechanism for configuring Alertmanagers.

• targets: This defines the static target value (IP

address and port) xxx.xxx.xxx.xxx:port on which

Alert Manager is running.

scrape_configs: This section specifies a set

of targets and parameters for how to scrape

them. Prometheus needs some targets to scrape

application metrics from.

• job_name: The job name assigned to scraped

metrics; in our case we use prometheus as a job name,

the same used by Prometheus to monitor itself.

• static_configs: In this Static_config we can define

the list of Targets that will be used for scrapping

metrics using above mentioned Job.

• Targets: Targets may be statically configured via

the static_configs parameter or dynamically

discovered using one of the supported service-

discovery mechanisms; e.g., Consul, Kubernetes, etc.

In our case, we use a static target (IP & port); e.g., xxx.

xxx.xxx.xxx:port.

Chapter 3 GettinG Started with prometheuS and alert manaGer

60

Step 2: Execute the following command to create the config map in

Kubernetes on the master node (10.1.150.126) in the /home/Prometheus

directory:

kubectl create -f config-map.yaml

After executing the preceding command, a config map with the name

prometheus-server-conf will be created, as shown in Figure 3-12.

 Create a Prometheus Deployment

Step 1: In a previous step, while creating the cluster role and binding,

we cloned a file on the Kubernetes master node called prometheus-

deployment.yaml in /home/Prometheus. We will use the official

Prometheus Docker image v2.12.0 from the Docker hub. In this

configuration, the Prometheus config map is mounted as a file inside

/etc/Prometheus. The following are the details of the Prometheus-

deployment.yaml file (Figure 3-13):

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. The apiVersion varies depending

upon the Kubernetes version you have in your

environment .

• kind: This field defines the types of the Kubernetes

objects; e.g., ClusterRole, deployment, service, pods,

etc. In our case, we are using a deployment object.

Figure 3-12. Config map creation for Prometheus

Chapter 3 GettinG Started with prometheuS and alert manaGer

61

• Metadata: This section has name subcomponents

defined in the file.

• Name: This field specifies the name of the service

object; e.g., prometheus-deployment.

• Namespace: This field specifies the namespace of

the service object; e.g., monitoring.

• Spec: This field provides the specification of service.

Replicas: This field provides data about the number

of pods to be made available at a particular instance.

Selector: This section provides details about the

service selector. Service Selector enables grouping of

set of Pods (in this case Prometheus pod) which will

be exposed as a Service for external network access.

• matchLabels: The name will be used to match and

identify the service (Figure 3-14).

Figure 3-14. prometheus-deployment YAML file walkthrough

Figure 3-13. Prometheus-deployment YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

62

• Template: type of port used by the service (Figure 3-15)

Metadata: Name will be used to match and identify

the service

• Labels: key–value pair that is attached to object

intended to be used to specify identifying attributes.

See here:

app — key

prometheus-server — value

• Spec: See Figure 3-16.

• Containers: detail of container object

Name: name of the container

Image: image with version

Args: argument used at the time of container

creation

• --config.file=/etc/prometheus/prometheus.yml:
This is the file name to be used at the time of

deployment.

• --storage.tsdb.path=/prometheus/: This

determines where Prometheus writes its database.

Figure 3-15. prometheus-deployment YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

63

Ports:

• containerport: application listening port

• volumeMounts: A storage volume allows an existing

StorageOS volume to be mounted into your pod

(Figure 3-17). Two volumeMounts are created:

prometheus-config-volume and prometheus-storage-

volume. The former will be using our config map to

manage prometheus.yml. With prometheus-storage-

volume, we create an empty directory in which to store

the Prometheus data.

Name: name of the volume

mountPath: defines the mounted path

Figure 3-16. prometheus-deployment YAML file walkthrough

Figure 3-17. prometheus-deployment YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

64

• volume: A volume is a directory with data that is

accessible to all containers running in a pod and gets

mounted into each container’s file system. Its lifetime

is identical to the lifetime of the pod. Decoupling the

volume lifetime from the container lifetime allows the

volume to persist across container crashes and restarts.

Volumes can be backed by the host’s file system, by

persistent block storage volumes such as AWS EBS, or

by a distributed file system.

name: name of the volume

configMap: config map used by the volume

• defaultMode: This defines the default file permissions

for Volume.

• name: defined name of the config map that needs to be

used

name:

• emptyDir: The emptyDir volume is first created when

a pod is assigned to a node, and it exists as long as

that pod is running on the node we used to store the

Prometheus data (Figure 3-18).

Figure 3-18. prometheus-deployment YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

https://aws.amazon.com/ebs/

65

Step 2: To create a deployment on the monitoring namespace using

the prometheus-deployment.yaml file, execute the following command on

the master node (10.1.150.126) in the /home/Prometheus folder:

$kubectl apply -f prometheus-deployment.yaml -n monitoring

Once the preceding command has run successfully, prometheus-

deployment will be created under the monitoring namespace in the

Kubernetes cluster, as shown in Figure 3-19.

Step 3: You can check the created deployment using the following

command on the master node (10.1.150.126) in the /home/Prometheus

folder. It will return the name of the deployment—in our case, prometheus-

deployment) and its states, as shown in Figure 3-20.

$kubectl get deployments --namespace=monitoring

Figure 3-20. Prometheus deployment status verification

Figure 3-19. Prometheus deployment

 Exposing Prometheus as a Service

To access the Prometheus dashboard over IP, we need to expose it as a

Kubernetes service.

Step 1: In a previous section, while creating the cluster role and

binding, we cloned a file on the Kubernetes master node called

prometheus-service.yaml in /home/prometheus. It exposes Prometheus

Chapter 3 GettinG Started with prometheuS and alert manaGer

66

on all Kubernetes node IP addresses on port 30000. The following are the

details of the prometheus-service.yaml file:

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. apiVersion varies depending upon

the Kubernetes version you have in your environment.

• kind: This field defines the types of the Kubernetes

object; e.g., ClusterRole, deployment, service, pods, etc.

In our case, we are using a service object.

• Metadata: This section has name subcomponents

defined in the file.

Name: Specifies the name of the service object; e.g.,

Prometheus- service.

Namespace: The namespace of the service object;

e.g., monitoring.

Annotations: These are used for non-identifying

information that is used by the other tools like

AlertManager for scraping Promeheus endpoint

(except K8).

• prometheus.io/scrape: To scrape metrics for the

specific service or pods, use the prometheus scrape

annotation (Figure 3-21).

• prometheus.io/port: This annotation indicates to

Prometheus to scrape the specific port.

Chapter 3 GettinG Started with prometheuS and alert manaGer

67

• spec: Specification of the service

selector: Service selector

• App: Pod name used by the service to communicate

with this pod.

• Type: In this section, we define how the specific

Kubernetes service will be exposed (the default

value is ClusterIP). In our example, we are using

NodePort, which exposes the service on each node’s

IP at a static port (the NodePort). A ClusterIP

service, to which the NodePort service routes, is

automatically created. You’ll be able to contact

the NodePort service from outside the cluster by

requesting <NodeIP>:<NodePort> (Figure 3-22).

Figure 3-22. prometheus-service YAML file walkthrough

Figure 3-21. prometheus-service YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

68

Ports: Service selector

• Port: The port on which the service will be exposed

internally within the cluster. Once the service is up

on the defined port it starts sending requests to the

port on the pods selected by the service.

• targetPort: This is a port via which the service will

send the request to the specific pod; the pod must

be run on the same port.

• nodePort: This port is used to expose the service

externally to the cluster. NodePort is the default

setting if the port field is not specified (Figure 3-23).

Step 2: Create the service using the following command on the master

node (10.1.150.126). See Figure 3-24.

$kubectl create -f prometheus-service.yaml

 --namespace=monitoring

Figure 3-23. prometheus-service YAML file walkthrough

Figure 3-24. Prometheus service creation

Step 3: Once the service is created, the Prometheus dashboard can be

accessed by using any Kubernetes master node IP address (10.1.150.126)

on port 30000 (Figure 3-25).

Chapter 3 GettinG Started with prometheuS and alert manaGer

69

Step 4: Now, if you browse to Status ➤ Targets, you can see the

Kubernetes endpoints are connected to Prometheus automatically using

service discovery (Figure 3-26).

Figure 3-25. Prometheus console access

Figure 3-26. Verify Prometheus console access

Chapter 3 GettinG Started with prometheuS and alert manaGer

70

 Setting Up Alert Manager
Figure 3-27 provides an overview of the task flows we will follow to deploy

Alert Manager.

The following is the flow for the Prometheus deployment that we will

follow in this chapter:

We will use the already cloned configuration files

from Github.

We will deploy the Alert Manager configuration as a

pod.

We will then create a service for Alert Manager for

end-user access.

Figure 3-27. Alert Manager deployment flow

Chapter 3 GettinG Started with prometheuS and alert manaGer

71

Finally, we will test the status of the Alert Manager

deployment using the command line and web

browser access.

 Create a Deployment

Step 1: In a previous section, while creating the cluster role and binding,

we cloned a file on the Kubernetes master node called alertmanager-

deployment.yaml in /home/prometheus. The following are the details of

this YAML file:

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. apiVersion varies depending upon

the Kubernetes version you have in your environment.

• kind: This field defines the type of the Kubernetes

object; e.g., ClusterRole, deployment, service, pod, etc.

In our case, we are using a deployment object.

• Metadata: This section has name subcomponents

defined in the file (Figure 3-28).

Name: Specifies the name of the deployment object;

e.g., alertmanager.

Namespace: Specifies the namespace of the

deployment object; e.g., monitoring.

Figure 3-28. alertmanager-deployment YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

72

• Spec: Specification of service

Replicas: Number of pods to be available on

Kubernetes cluster; e.g., 1 or 2

Selector: Service selector

• matchLabels: Name will be used to match and identify

the service by key and value pair; e.g., we used app as

the key and alertmanager as the value (Figure 3-29).

Template: Type of port used by the service

• Metadata: Name will be used to match and identify the

service (Figure 3-30).

• Labels: Key–value pair that is attached to the object

intended to be used to specify identifying attributes.

app is a key and alertmanager is the value.

Figure 3-30. alertmanager-deployment YAML file walkthrough

Figure 3-29. alertmanager-deployment YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

73

• Spec: See Figure 3-31.

• Containers: Detail of container object

Name: Name of the container

Image: Docker image with version

Ports:

• containerPort: Application listening port

Figure 3-31. alertmanager-deployment YAML file walkthrough

Figure 3-32. Alert Manager deployment

Step 2: Create the deployment using the following command on the

master node (10.1.150.126) in the /home/Prometheus folder (Figure 3-32):

$kubectl create -f alertmanager-deployment.yaml

 Create a Service

Step 1: We need to expose the Alert Manager using NodePort just to access

the web UI. Prometheus will talk to Alert Manager using the internal

service endpoint. In a previous section, while creating the cluster role

Chapter 3 GettinG Started with prometheuS and alert manaGer

74

and binding, we cloned a file on the Kubernetes master node called

alertmanager-service.yaml. The following outlines the details of the

YAML file:

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. apiVersion varies depending upon

the Kubernetes version you have in your environment

(Figure 3-33).

• Kind: This field defines the type of the Kubernetes

object; e.g., ClusterRole, deployment, service, pod, etc.

In our case, we are using a service object.

• Metadata: This section has name subcomponents

defined in the file.

Name: Specifies the name of the service object; e.g..

alertmanager

Namespace: The namespace of the service object;

e.g., monitoring

• Spec:

Selector: Service selector

• app: Pod name used by the service to communicate

with this pod

Figure 3-33. alertmanager-service YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

75

Type: This field provides information about the type

of the publishing services. Kubernetes service types

allow you to specify what kind of service you want.

In our example, we are using app: alertmanager,

where app is a key and alertmanager is the value of

the pod we defined in alertmanager- deployment.

yaml. The same will be used by alertmanager-

service to communicate with this pod name

(Figure 3-34).

ports: We explained about the port, targetPort,

and nodePort fields in the “Exposing Prometheus as

a Service” section (Figure 3-35).

Step 2: Create the service using the following

command (Figure 3-36):

$kubectl create -f alertmanager-service.yaml

Figure 3-34. alertmanager-service YAML file walkthrough

Figure 3-35. alertmanager-service YAML file walkthrough

Chapter 3 GettinG Started with prometheuS and alert manaGer

76

After creating the service, the Alert Manager dashboard is accessible

on node port 32000 with the IP address of the Kubernetes master node

(10.1.150.126) (Figure 3-37).

 Alert Manager and Prometheus Integration
Figure 3-38 provides an overview of the task flows we will follow to

integrate Alert Manager with Prometheus.

Figure 3-37. Alert Manager dashboard access

Figure 3-36. Alert Manager service creation

Chapter 3 GettinG Started with prometheuS and alert manaGer

77

The following is the flow for the Alert Manager and Prometheus

integration that we will follow in this chapter:

We will use the already cloned configuration files

from Github.

We will then use Kubectl to update the config map.

Finally, we will test the status of the integration

using Prometheus web browser access.

Step 1: Log in to the Kubernetes master node (10.1.150.126), go to the

/home/prometheus folder, and update the config-map.yaml file. Replace

alertmanager.monitoring.svc:9093 with the Alert Manager URL, e.g.,

http://10.1.150.126:32000, under the targets section of prometheus.

yml highlighted in the config-map.yaml file in Figure 3-39.

Figure 3-38. Alert Manager and Prometheus integration flow

Chapter 3 GettinG Started with prometheuS and alert manaGer

78

Step 2: Run the following command in the master node (10.1.150.126)

under /home/prometheus to get the config map:

$kubectl get configmaps -n=monitoring

This command returns the config map list (Figure 3-40).

Step 3: Run the following command in the master node (10.1.150.126)

under /home/prometheus to get the prometheus-server-conf config map

we updated in Step 1 (Figure 3-41).

$ kubectl delete configmaps prometheus-server-conf -n=monitoring

Figure 3-39. Alert Manager and Prometheus integration

Figure 3-40. Config map list

Figure 3-41. Config map delete

Chapter 3 GettinG Started with prometheuS and alert manaGer

79

Step 4: Once you have deleted prometheus-server-conf, create

the same with the updated config-map.yaml file in the master node

(10.1.150.126) by executing the following command from the /home/

Prometheus directory (Figure 3-42):

$ kubectl create -f config-map.yaml

Figure 3-42. Config map create

Figure 3-43. List Prometheus pods

Figure 3-44. Delete pods

Step 5: Execute the following command to identify the Prometheus

pod and then delete to get the updated config map changes:

$kubectl get pods -n=monitoring

The preceding command will return all the pods running under the

monitoring namespace (Figure 3-43).

Select Prometheus-deployment-5c4f4f5779-p6pcm and delete the

same with the following command (Figure 3-44):

$kubectl delete pods prometheus-deployment-5c4f4f5779-zgkkf

 -n=monitoring

Chapter 3 GettinG Started with prometheuS and alert manaGer

80

Check the running pods again by using the following command:

$kubectl get pods -n=monitoring

It will return the newly created Prometheus pods by Kubernetes

deployment (Figure 3-45).

Figure 3-45. List pods

Step 6: Check the Prometheus URL to verify Alert Manager is

configured correctly:

• Open Prometheus URL http://10.1.150.126:30000.

• Go to Status ➤ Runtime & Build Information.

• Check the Alert Manager section. The Alert

Manager end point should be mentioned

http://10.1.150.126:32000/api/v1/alerts

(Figure 3-46).

Chapter 3 GettinG Started with prometheuS and alert manaGer

81

Figure 3-46. Verify Alert Manager endpoint in Prometheus

• Prometheus starts sending the alert after five seconds

(configured in config map) to Alert Manager, and the

State would be “FIRING” in the Prometheus URL under

the Alert section (Figure 3-47).

Chapter 3 GettinG Started with prometheuS and alert manaGer

82

Step 7: Verify Alert Manager starts receiving the alerts from

Prometheus:

• Open the Alert Manager URL

http://10.1.150.126:32000/

• Click “Alerts.”

• It shows alert, e.g., alertname = “High Pod Memory,”

sending from Prometheus (Figure 3-48).

Figure 3-47. Alert view in Prometheus

Chapter 3 GettinG Started with prometheuS and alert manaGer

83

Figure 3-48. Alert view in Alert Manager

 Summary
In this chapter, we have learned the basics of Prometheus, its architecture,

and various components. We set up Prometheus and Alert Manager and

integrated the two to work together. In the next chapter, we will start with a

deep-dive understanding of Prometheus and Alert Manager solutions for

container monitoring, starting with infrastructure parameter monitoring.

Chapter 3 GettinG Started with prometheuS and alert manaGer

85© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_4

CHAPTER 4

Container
Infrastructure
Monitoring
This chapter will provide hands-on steps to the readers on container

infrastructure monitoring using Prometheus. We will also learn how to

deploy a containerized application using a Helm chart. A Helm chart is a

package manager for Kubernetes that helps developers and operators to

more easily package, configure, and deploy applications and services onto

Kubernetes clusters. This chapter will cover the following topics:

• Container Infrastructure Monitoring Using Parameters

• Labels

• Helm and Tiller Installation

• Using Exporters for Container Monitoring

https://doi.org/10.1007/978-1-4842-6216-0_4#DOI

86

 Container Infrastructure Monitoring Using
Parameters
Before we jump into using Prometheus to monitor a Kubernetes-

managed container ecosystem, let’s look at the key aspects that need to

be monitored from an infrastructure perspective. Monitoring and alerting

at the container orchestration level works on two levels. On one side, we

need to monitor whether the services handled by Kubernetes do meet the

requirements we defined. On the other side, we need to make sure all the

components of Kubernetes are up and running. From an infrastructure

perspective, the following are the key layers that need to be monitored:

• Containers

• Clusters running the containers, such as Kubernetes

• Communication and telemetry between containers

(this can be done via contracts or by collecting logs

from tools like ISTIO)

• Host OS/machine running the cluster

• Server running the hosts

To monitor Kubernetes, we need to ensure the status of certain services

and components that are core to Kubernetes’ functionality. Let’s look at

some of the key monitoring areas.

 Service Discovery
In microservices apps, services are added and removed all the time.

Containers move between hosts; autoscaling groups add and remove

instances dynamically. Additionally, there’s failover and auto-replication

adding to the complexity of container monitoring. Manually validating

the availability of services every time their network location changes is not

feasible. Hence, there is a need for a monitoring solution for this.

Chapter 4 Container infrastruCture Monitoring

87

 Node Availability
Providing alerts regarding node availability is not very different from

monitoring VMs or machines. Essentially, it involves checking if the host

is up or down/unreachable, as well as the resources’ availability (CPU,

memory, disk, etc.).

 Node Health
A node failure is not so much a critical event in Kubernetes, as its

scheduler service will spin off containers in other available nodes.

However, it’s crucial to monitor scenarios where we could be running

out of nodes, or where the resource requirements for the deployed

applications exhaust existing nodes’ resources. Another scenario could

be to monitor quota limits configured at the resources level. To monitor

node status, alerts on the metrics kube_node_status_ready and kube_

node_spec_unschedulable can be scheduled. If you want to have an alert

for capacity, you will have to sum each scheduled pod request for CPU

and memory and then check that it doesn’t go over the threshold for each

of the nodes; this can be done using kube_node_status_capacity_cpu_

cores and kube_node_status_capacity_memory_bytes.

 Kubernetes Control Plane
The Kubernetes control plane constitutes the control plane of the cluster.

Its service components (or “master” components) provide features like

container orchestration, computing resource management, and the

Chapter 4 Container infrastruCture Monitoring

88

central API for users and services. An unhealthy control plane will sooner or

later affect the availability of applications or the ability of users to manage

their workloads. The control plane components include the following:

• Kubernetes API server

• Controller manager

• Scheduler

• etcd key–value store

Basic monitoring of these components would involve an HTTP check

that queries the health-check endpoint (/healthz) exposed by instances of

these services or by scraping the API endpoint in Kubernetes.

In addition to health checks, control plane components expose

internal metrics via a Prometheus HTTP endpoint (/metrics) that can be

added into a time-series database. While most of the metric data is useful

for retrospective or live issue debugging/troubleshooting, some metrics,

like latency, request, or error counts, can be used for proactive alerting.

 Kubernetes Infrastructure Services
Beside the master components, there are a number of other services

running in the cluster that play critical infrastructure service roles, like

DNS and service discovery (kube-dns, coredns) or traffic management

(kube-proxy). Just like control plane components, these components

provide HTTP endpoints for health checks as well as internal metrics via a

Prometheus endpoint.

 Kubernetes Metrics
kube-state-metrics is a service that leverages Kubernetes APIs and

provides metrics about the status/state of objects like pods, nodes, and

deployments. The following are some of the key insights provided by kube-

state that help operations to easily manage the container ecosystem state:

Chapter 4 Container infrastruCture Monitoring

89

• Noting how many pods are running/stopped/terminated

• Noting how many times the specific pod has been

restarted

• Analyzing the response time of a Kubernetes service

• Analyzing the slowest endpoints of a Kubernetes HTTP

service

• Noting the most frequently used HTTP endpoints

• Noting the slowest HTTP endpoints

• Looking at the average connection time

• Noting any error codes

 Labels
Labels enable us to capture additional attribute details of the data

monitored. In the object, this is further stored as a key–value pair, where

the key is the name of the attribute being captured and the value is the

actual attribute data.

Labels work very well in Prometheus using PromQL. Let us consider

a metric for getting the total number of HTTP requests received by the

Kubernetes API server by differentiating based on the label, such as in the

following:

instance ="10.1.150.150:30000", job = "federate" and

quantile="0.999"

PromQL:

http_requests{instance="10.1.150.150:30000",job="federate",

quantile="0.999"}

Chapter 4 Container infrastruCture Monitoring

90

Now, let us see how we can execute the preceding example to generate

the respective metrics on the Prometheus server.

Log in to the Prometheus UI and navigate to the Graph section, where

you should type the following query:

http_requests{instance="10.1.150.150:30000",job="federate",

quantile="0.999"}

Click the Execute button, which will show the result in the form of a

graph, as shown in Figure 4-1.

Figure 4-1. HTTP request filterd by label

Let us consider another example to find out the sum of the total

number of requests handled by the Kubernetes API server per second by

differentiating based on label, like component="apiserver",group="policy".

Chapter 4 Container infrastruCture Monitoring

91

Here is the PromQL:

apiserver_request_duration_seconds_sum{component="apiserver",

group="policy"}

Again, type the following PromQL query:

http_requests{instance="10.1.150.150:30000",job="federate",

quantile="0.999"}

This will generate the respective metrics in Prometheus. Click the

Execute button, which will show the result in the form of a graph, as shown

in Figure 4-2.

Figure 4-2. Apiserver request duration in seconds, sum, filtered by
label

In the upcoming section, you will learn about the Prometheus

exporters; e.g., cAdvisor, Blackbox. These exporters pull the metrics from

various systems—e.g., Kubernetes, nodes, etc.—and push the data into

Prometheus for further analysis. To install exporters on the Kubernetes

cluster we need a Helm chart–based installation.

Chapter 4 Container infrastruCture Monitoring

92

 Helm and Tiller Setup
Helm consists of two components: Helm and Tiller. Helm itself is the

client-side component that you run in your command line, while Tiller

resides on target node cluster.

Before continuing, you will need to download and install Helm. For

this exercise we are using the following Linux version of Helm: helm-

v2.16.0-rc.2-linux-amd64.tar.gz. Helm should be installed on master

node 10.1.150.126.

Step 1: Download Helm on the master node in the /home/prometheus

folder and unpack the tar. After unpacking this, the linux-amd64 folder

should be created. Below commands download the tar file using wget and

then are unpacked using tar command:

• $ wget https://get.helm.sh/helm-v2.16.0-rc.2-

linux-amd64.tar.gz

• $ tar zxvf helm-v2.16.0-rc.2-linux-amd64.tar.gz

After executing the preceding commands, you will see the Helm and

Tiller executables, as seen in Figure 4-3.

Figure 4-3. Downloading Helm

Step 2: After unzipping, copy the Helm binary from the /home/

prometheus/linux-amd64 directory to the /usr/local/bin directory using

cp command for installing Helm on your local Linux VM:

$ cp helm /usr/local/bin

Chapter 4 Container infrastruCture Monitoring

93

After copying the Helm executable, execute the following command from

the /home/prometheus directory to verify that Helm was installed successfully.

The output should show the Helm version, as shown in Figure 4-4.

$helm version

Note please ignore the error related to tiller, as tiller will be
installed later on the Kubernetes master node.

 Installing Tiller
Tiller is used to deploy the Helm chart on the Kubernetes cluster. Tiller

requires a Kubernetes service account and permissions to access Kubernetes

resources using role-based access and control (RBAC). The Kubernetes

service account is used by Tiller for Kubernetes API server authentication.

RBAC is used to give access to Kubernetes resources—e.g., pods, services,

etc.—at the cluster level or within Kubernetes namespaces.

Kubernetes provides the following types of RBAC permission:

Role and ClusterRole: A set of permissions over a

user or group of users. A role is always confined to

a single namespace, while a ClusterRole is cluster-

scoped.

RoleBinding and ClusterRoleBinding: Grants

the permissions defined in a Role/ClusterRole

respectively to a user or group of users.

RoleBindings are bound to a certain namespace,

and ClusterRoleBindings are cluster-global.

Figure 4-4. Verifying Helm version

Chapter 4 Container infrastruCture Monitoring

94

In the following steps we will create a Kubernetes service account and

ClusterRoleBinding for Tiller to deploy the Helm charts on the Kubernetes

cluster.

Step 1: Navigate to the /home/prometheus directory. You will find the

tiller-helm.yaml file on the Kubernetes master node (10.1.150.126). This

will be used for creating the service account in kube-system and for the

ClusterRoleBinding, which will provide Tiller access to the cluster.

The kube-system is a namespace used by Kubernetes to manage objects

or resources created by the Kubernetes components, so typically it contains

pods like kube-dns, kube-proxy, kubernetes-dashboard, and so on.

Next is the explanation of the various sections of the tiller-helm.

yaml file. It has two sections: ClusterRole and ClusterRoleBinding.

 ClusterRole Section Details

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. apiVersion varies depending upon

the Kubernetes version you have in your environment.

• Kind: This field defines the type of the Kubernetes

object; e.g., ClusterRole, deployment, service, pod,

service account, etc. In our case, we defined kind as

ServiceAccount.

• Metadata: This section has name subcomponents

defined in the file. The name field specifies the name

of the object. We are using tiller as the name in

our example. For the namespace, we are using

kube- system.

Chapter 4 Container infrastruCture Monitoring

95

These sections are explained in Figure 4-5.

 ClusterRoleBinding Section

• apiVersion: The beginning section of the file defines

the apiVersion of Kubernetes with which to interact

with the Kubernetes API server. It is typically used for

creating the object. apiVersion varies depending upon

the Kubernetes version you have in your environment.

• Kind: This field defines the type of the Kubernetes

object; e.g., ClusterRole, deployment, service, pods,

etc. In our case, we are using ClusterRoleBinding, as

per the explanation covered in the section “Installing

Tiller.”

• Metadata: This section has name subcomponents

defined in the file. The name field specifies the name

of the object. We are using tiller as the name in our

example. See Figure 4-6.

Figure 4-6. tiller-helm.yaml file walkthrough

Figure 4-5. tiller-helm.yaml file walkthrough

Chapter 4 Container infrastruCture Monitoring

96

• RoleRef: In this field, we are binding the Prometheus

cluster role to the default service account provided by

Kubernetes inside the monitoring namespace. This

section has further subcomponents in it.

apiGroup: In Kubernetes, the API group is specified

with the apiVersion to make a REST API call for a

serialized object. Kubernetes RBAC uses the rbac.

authorization.k8s.io API group to communicate

with the Kubernetes API server. For detailed

information about the apiGroup and Kubernetes

REST API please refer to the following links: 1

kind: This field defines the object type.

name: This is the name of the cluster role; e.g.,

cluster-admin.

See Figure 4-7.

Subjects: This section defines the set of users, such

as service accounts and processes, that need to

access the Kubernetes API. Here, we have to give the

reference of the tiller service account, as shown in

Figure 4-8 under the following subsections.

1 https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/

Figure 4-7. tiller-helm.yaml file walkthrough

Chapter 4 Container infrastruCture Monitoring

https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/

97

• Kind: This field defines the object type. Here it is

ServiceAccount because ServiceAccount was created

for Tiller to make a connection with the Kubernetes API

server.

• Name: We are using name as tiller.

• Namespace: This field defines the namespace for the

cluster role binding; e.g., kube-system.

Please see Figure 4-8.

Step 2: Use the following command to create the cluster role shown in

Figure 4-9:

 $ kubectl create -f tiller-helm.yaml

Step 3: Once the service account is created, deploy Tiller to your

cluster and assign it the service account you just created.

$ helm init --service-account tiller --history-max 200

The --service-account flag signifies that Tiller should run under

the tiller service account previously created. The --history-max flag

specifies the maximum number of objects Helm persists in its history.

Figure 4-8. tiller-helm.yaml file walkthrough

Figure 4-9. Configuring role for installing Tiller

Chapter 4 Container infrastruCture Monitoring

98

If this flag isn’t specified, history objects are not purged. Over a period of

time, this can build up to a huge number of objects in your cluster and

thereby make administration tasks difficult. Please refer to Figure 4-10.

Step 4: Run the following command on the master node under /home/

Prometheus. You should now see both the client and the server version

information, as shown in Figure 4-11.

$helm version

 Exporters
An exporter helps in fetching the state/logs/metrics from the application/

Kubernetes service and providing data to Prometheus. This concept is

similar to that of adapters or plugins in other monitoring tools available

in the market. Prometheus provides a list of official and externally

contributed exporters. Let’s explore some of these exporters, which are

useful for container infrastructure monitoring:

https://prometheus.io/docs/instrumenting/exporters/

Figure 4-10. Installing Tiller

Figure 4-11. Verifying Helm version

Chapter 4 Container infrastruCture Monitoring

https://prometheus.io/docs/instrumenting/exporters/

99

 Node Exporter
Node Exporter is a Prometheus exporter for fetching metrics for hardware

and OS metrics exposed by Unix/Linux kernels. It is written in Go language

with pluggable metric collectors. Collectors differ as per operating system

type. Table 4-1 provides a few examples.

Table 4-1. Types of Collectors

Name Description OS

arp exposes arp statistics from

 /proc/net/arp

Linux

Boottime exposes system boot time derived from

kern.boottime sysctl

Darwin, Dragonfly,

freeBsD, netBsD,

openBsD, solaris

Cpu exposes Cpu statistics Darwin, Dragonfly,

freeBsD, Linux, solaris

Cpufreq exposes Cpu frequency statistics Linux, solaris

Diskstats exposes disk i/o statistics Darwin, Linux, openBsD

filesystem exposes filesystem statistics, such as disk

space used

Darwin, Dragonfly,

freeBsD, Linux, openBsD

hwmon exposes hardware monitoring and sensor

data from /sys/class/hwmon/

Linux

Meminfo exposes memory statistics Darwin, Dragonfly,

freeBsD, Linux, openBsD

netclass exposes network interface info from /sys/

class/net/

Linux

(continued)

Chapter 4 Container infrastruCture Monitoring

100

Now, let’s start with configuring Node Exporter on the environment

we set up in the previous chapter. We will install Node Exporter on the

Kubernetes master node (10.1.150.126) using Helm.

Step 1: Log in to the Kubernetes master node (10.1.150.126), navigate

to the /home/prometheus folder, and execute the following command. It

will download the exporter from the GitHub URL given below, as shown in

Figure 4-12.

$ helm install --name node-exporter stable/prometheus-node-

exporter

https://github.com/helm/charts/tree/master/stable/prometheus-

node- exporter

Table 4-1. (continued)

Name Description OS

netdev exposes network interface statistics such as

bytes transferred

Darwin, Dragonfly,

freeBsD, Linux, openBsD

netstat exposes network statistics from /proc/

net/netstat. this is the same information

as netstat -s.

Linux

nfs exposes nfs client statistics from /proc/

net/rpc/nfs. this is the same information

as nfsstat -c.

Linux

nfsd exposes nfs kernel server statistics from

/proc/net/rpc/nfsd. this is the same

information as nfsstat -s.

Linux

uname exposes system information as provided by

the uname system call

Darwin, freeBsD, Linux,

openBsD

Chapter 4 Container infrastruCture Monitoring

101

Step 2: Now, let’s verify the Node Exporter service is running by

executing the following command from the /home/prometheus folder. The

node-exporter-prometheus-node-exporter service should be visible

in a running state, as highlighted in Figure 4-13. Also note the cluster IP

address for the service, as it will be used in the next step.

$kubectl get svc

Figure 4-12. Configuring Node Exporter

Figure 4-13. Verifying Node Exporter status

Step 3: The next step is to configure Node Exporter. Navigate to the

/home/prometheus folder on the master Kubernetes node and open

the config-map.yml file. Under the scarpe_config section find the

job_name: node-exporter section and details for the job name and static

configs, as shown in Figure 4-14.

Chapter 4 Container infrastruCture Monitoring

102

• job_name: This field represents the job name for Node

Exporter. In this example, we are using node-exporter

as job_name.

• static_configs: This section has a subsection named

targets in it. Targets refers to the job target, which

is 10.102.155.199 (cluster IP) and 9100, which is the

service port on which the Node Exporter service is

running. You can use the following command to verify

your cluster IP and port information, as shown in

Figure 4-15.

$ kubectl get svc

Step 3: Execute the following commands to reflect the Prometheus

config map changes made in previous steps:

kubectl delete configmaps prometheus-server-conf -n=monitoring

kubectl create -f config-map.yaml

kubectl delete deployment prometheus-deployment -n monitoring

kubectl apply -f prometheus-deployment.yaml -n monitoring

Figure 4-14. Node Exporter section

Figure 4-15. Verifying Node Exporter status

Chapter 4 Container infrastruCture Monitoring

103

Step 4: Verify Node Exporter’s status from within the Prometheus

UI by logging in and navigating to Status and then to Targets (http://

masternodeip:30000)

Search for node-exporter on the page and verify that its state is UP, as

shown in Figure 4-16.

Step 5: Now, let’s execute a query to start collecting and displaying

the node metrics. Click on the Graph tab. In the Expression section, in the

text box, write node_load15 and click on the Execute button, as shown in

Figure 4-17.

You will see a graph showing metrics similar to the one shown in

Figure 4-18.

Figure 4-16. Verifying Node Exporter status on Prometheus
console

Figure 4-17. Node Exporter–based query sample

Chapter 4 Container infrastruCture Monitoring

104

Node Exporter is primarily used to monitor infrastructure elements

of containers and not processes/services. Node Exporter is typically run

as a privilege user instead of a root user. We will explore some of the key

collectors as part of this chapter.

 CPU Collector

The metric from the CPU collector is node_cpu_seconds_total, indicating

how much time each CPU spent in each mode. Log in to Prometheus

and click on the Graph tab. In the Expression section (text box) write the

following query and click on the Execute button:

node_cpu_seconds_total{cpu="0", mode="idle"}

Figure 4-18. Node Exporter–based graph

Chapter 4 Container infrastruCture Monitoring

105

The following are the various aspects of CPU data collected by the CPU

collector:

• Latency: Average or maximum delay in CPU scheduler

• Traffic: CPU utilization

• Errors: Processor-specific error events, faulted CPUs

• Saturation: Run-queue length

After execution, you will get the result shown in Figure 4-19.

Node Exporter provided the following CPU-based metrics that tell us

how many seconds each CPU spent doing each type of work:

node_cpu_seconds_total{cpu="0",mode="guest"} 0

node_cpu_seconds_total{cpu="0",mode="idle"} 2.03442237e+06

node_cpu_seconds_total{cpu="0",mode="iowait"} 3522.37

node_cpu_seconds_total{cpu="0",mode="irq"} 0.48

node_cpu_seconds_total{cpu="0",mode="nice"} 515.56

node_cpu_seconds_total{cpu="0",mode="softirq"} 953.06

Figure 4-19. CPU collector–based graph

Chapter 4 Container infrastruCture Monitoring

106

node_cpu_seconds_total{cpu="0",mode="steal"} 0

node_cpu_seconds_total{cpu="0",mode="system"} 6605.46

 Filesystem Collector

This collector exposes filesystem statistics, such as disk space used. Log in

to Prometheus and click on the Graph tab. In the Expression section (text

box), write the following query and click on the Execute button:

(node_filesystem_avail_bytes / node_filesystem_size_bytes)

node_filesystem_avail_bytes returns the available filesystem space

in bytes for on-root users.

node_filesystem_size_bytes returns the filesystem size in bytes.

After execution, you will get the used disk space in bytes, as shown in

Figure 4-20.

Figure 4-20. Filesystem collector–based graph

Chapter 4 Container infrastruCture Monitoring

107

 Diskstats Collector

This collector exposes disk I/O statistics. Log in to Prometheus and click

on the Graph tab. In the Expression section (text box), write the following

query and click on the Execute button:

node_disk_io_now

After execution, you will get the result as per Figure 4-21.

 Netdev Collector

This collector exposes network interface statistics such as bytes transferred.

Log in to Prometheus and click on the Graph tab. In the Expression section

(text box), write the following query and click on the Execute button. This

query will calculate network bandwidth usage of cluster.

rate(node_network_receive_bytes_total[1m])

Figure 4-21. Diskstats collector–based graph

Chapter 4 Container infrastruCture Monitoring

108

After execution, you will get the result shown in Figure 4-22.

Figure 4-22. Netdev collector–based graph

 Meminfo Collector

This collector exposes memory statistics. Log in to Prometheus and click

on the Graph tab. In the Expression section (text box), write the following

query and click on the Execute button. This query will calculate and show

free available memory.

node_memory_MemFree_bytes

The following are the various aspects of memory data collected by the

Meminfo collector:

• Latency: (none—difficult to find a good method of

measuring and not actionable)

• Traffic: Amount of memory being used

• Errors: Out-of-memory errors

• Saturation: Out of Memory (OOM) killer events, swap usage

Chapter 4 Container infrastruCture Monitoring

109

After execution, you will get the result shown in Figure 4-23.

The following are some useful memory-based metrics provided by

Node Exporter:

• node_memory_Active_anon_bytes (gauge) return

memory information field Active_anon_bytes

• node_memory_Active_bytes (gauge) return memory

information field Active_bytes

• node_memory_Active_file_bytes (gauge) return

memory information field Active_file_bytes

 Uname Collector

This collector exposes system information as provided by the uname system

call. Log in to Prometheus and click on the Graph tab. In the Expression

section (text box), write the following query and click on the Execute button.

This query will show the count of machines run, along with the kernel version.

count by(release)(node_uname_info) from prometheus GUI.

After execution, you will get the result shown in Figure 4-24.

Figure 4-23. Meminfo collector–based graph

Chapter 4 Container infrastruCture Monitoring

110

 cAdvisor Exporter
cAdvisor is an open source container resource usage and performance

monitoring exporter. Let’s now configure the cAdvisor exporter in our

container setup.

Step 1: We will configure cAdvisor on the Kubernetes master node

(10.1.150.126). Navigate to the /home/prometheus folder and open the

config-map.yaml file. Find the section with job_name: 'kubernetes-

cadvisor' and review the following sections:

• job_name: This field defines the job name assigned

to scraped metrics; in our case, we use kubernetes-

cadvisor as the job name to fetch to gets metrics using

the Kubernetes APIs.

• kubernetes_sd_configs: This field represents a

list of Kubernetes service discovery configurations.

Kubernetes SD configurations help in fetching targets

Figure 4-24. Uname collector–based graph

Chapter 4 Container infrastruCture Monitoring

111

from Kubernetes' REST API. We are using nodes in

our case because every node has Docker containers

that are running under Kubernetes pods, and cAdvisor

provides Docker container–related metrics. The node

role discovers one target per cluster node.

• tls_config: This field provide details for configuring

TLS connections. Under this field there is a subfield for

ca_file. This field provides details of the CA certificate

used for API authentication.

• metrics_path: Defined cAdvisor metrics endpoint that

is used by Prometheus to collect the container data, as

shown in Figure 4-25.

Step 2: Execute the following commands to apply the changes made to

the Prometheus configuration:

$kubectl delete configmaps prometheus-server-conf -n=monitoring

$kubectl create -f config-map.yaml

$kubectl delete deployment prometheus-deployment -n monitoring

$kubectl apply -f prometheus-deployment.yaml -n monitoring

Figure 4-25. Config-map.yaml file review for cAdvisor exporter

Chapter 4 Container infrastruCture Monitoring

https://kubernetes.io/

112

Step 3: To verify that all the components related to Prometheus are

running fine, execute the following command, as shown in Figure 4-26:

$ kubectl get all -n=monitoring

Step 4: Log in to Prometheus GUI at http://kubernetes_master_

nodeip: 30000.

Click Status, and then choose “Targets.” You will find the cAdvisor

details as in Figure 4-27. Here, the number of endpoints depends on the

number of nodes in the Kubernetes cluster, as shown in Figure 4-27.

Figure 4-27. cAdvisor exporter verification

Figure 4-26. cAdvisor exporter configuration

Chapter 4 Container infrastruCture Monitoring

113

In our example, we are using a two-node cluster.

Step 5: Click the Graph tab in the Prometheus GUI and execute the

following query to view the cumulative count of reads merged:

container_fs_reads_merged_total

After executing the query, you will see the result, as per Figure 4-28.

Step 6: Execute the following query to get the CPU usage by

Kubernetes namespaces:

sum(rate(container_cpu_usage_seconds_total{container_

name!="POD",namespace!=""}[5m])) by (namespace)

After executing the query, you will see the result as per Figure 4-29.

Figure 4-28. cAdvisor exporter–based filesystem read graph

Chapter 4 Container infrastruCture Monitoring

114

Step 7: Execute the following query to get the ICMP statistics:

node_netstat_Icmp_InMsgs

After executing the query, you will see the result as shown in Figure 4- 30.

Figure 4-29. cAdvisor exporter–based CPU usage graph

Chapter 4 Container infrastruCture Monitoring

115

Step 8: Execute the following command to get a list of currently

opened connections:

node_netstat_Tcp_ActiveOpens

After executing the query, you will see the result shown in Figure 4-31.

Figure 4-31. cAdvisor exporter–based open connection graph

Figure 4-30. cAdvisor exporter–based ICMP stats graph

Chapter 4 Container infrastruCture Monitoring

116

 Azure Monitor Exporter
The Azure Monitor exporter is used for exporting metrics from Azure

applications using the Azure Monitor API. Now, let’s configure an Azure

container cluster and see how we can monitor it using Prometheus and

leveraging the Azure Monitor exporter.

Step 1: This lab step assumes readers have an Azure account set up

and have working knowledge of Azure. Log in to your Azure account and

navigate to the Azure dashboard. Click on “Create a resource,” as shown in

Figure 4-32.

Step 2: Select “Kubernetes service” from the Containers section.

Step 3: Fill in the details to create the Kubernetes service:

Provide resource group name PrometheusPOC, as shown in Figure 4-33.

Figure 4-32. Azure Console

Chapter 4 Container infrastruCture Monitoring

117

Note this value as it will be used in the exporter configuration.

Insert other required inputs like cluster name, location, pool size, etc.

We are taking Node Count as “1” in this example, as shown in Figure 4-34.

Figure 4-33. Launching Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

118

Now, click on the Scale tab and provide scaling settings by enabled VM

scale sets, as shown in Figure 4-35.

Figure 4-34. Launching Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

119

Click on the Authentication tab and provide either an existing service

principal or create a new one. The service principal should have at least a

read role on associated log analytics.

Then click on the Networking tab. Create a new virtual network and

subnets, etc., or use the basic configuration, which will create a basic

network with the default configuration, as shown in Figure 4-36.

Figure 4-35. Launching Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

120

Click on the Monitoring tab and select “Yes” to enable container

monitoring. Choose a workspace for the Log Analytics workspace. This

workspace is used by Azure to monitor log data. In our example, we select

the “DRYICEDEMOIAC” option for Log Analytics workspace, as shown in

Figure 4-37.

Figure 4-36. Launching Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

121

The Review+Create tab gives details about the information and options

provided by the user to create the cluster. Now click the Create button to

start the process of cluster creation, as shown in Figure 4-38.

Figure 4-37. Launching Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

122

Step 4: After cluster creation, we will see the screen shown in Figure 4- 39,

which verifies the successful creation of the Azure AKS through Azure

Console. We can see that a cluster by the name of PrometheusCluster is

displayed on the Azure Console screen.

Figure 4-38. Launching Azure AKS instance via Azure Console

Figure 4-39. Verifying Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

123

After clicking on PrometheusCluster, the information related to the

cluster is shown, as in Figure 4-40. Information would contain information

like resource group name, location, tags, etc.

Step 5: Now we will use the PowerShell AZ module to check nodes

associated with the Kubernetes cluster. For this step, we will assume

readers have PowerShell set up for Azure access. First, log in to the Azure

PowerShell module using your credentials. Then, execute the following

command to get the details of the nodes. For arguments, use the values

used for provisioning the cluster in the previous step. You will need a

Windows system with the PowerShell module installed on it to proceed, as

shown in Figure 4-41.

az aks get-credentials –-resource-group PrometheusPOC –name

PrometheusCluster

Figure 4-40. Verifying Azure AKS instance via Azure Console

Chapter 4 Container infrastruCture Monitoring

124

Step 6: Now we will push an application on Azure AKS. For this

exercise, we will leverage a sample Azure voting application. The following

is the URL for GitHub from which the container image will be pulled:

https://github.com/Azure-Samples/azure-voting-app-redis

Step 7: Create the namespace ms-votefront using the following

command:

Kubectl create ns ms-votefront

Step 8: Check the associated nodes by executing the following

command, as shown in Figure 4-42:

kubectl get ns

Figure 4-41. Configuring Azure Powershell module for Azure AKS

Figure 4-42. Namespace verification for container application
deployment on Azure AKS

Chapter 4 Container infrastruCture Monitoring

https://github.com/Azure-Samples/azure-voting-app-redis

125

Step 9: Now let’s apply the image to the Kubernetes cluster using the

following command, as shown in Figure 4-43:

kubectl apply -f azure-vote-all-in-one-redis.yaml

Step 10: Check the status and browser load balancer IP by executing

the following command, as shown in Figure 4-44:

kubectl get all -n ms-votefront

Step 11: Open the browser and type the IP address of the load balancer

to verify the application is working, as shown in Figure 4-45.

Figure 4-44. Verification of container application on Azure AKS

Figure 4-43. Deployment of container application on Azure AKS

Chapter 4 Container infrastruCture Monitoring

126

Step 12: To view the log, navigate to the Azure home page and click

“Log Analytics workspaces,” as shown in Figure 4-46.

Step 13: Once the Log Analytics workspaces page has opened, click the

DRYICEDEMoIAC workspace as shown in Figure 4-47.

Figure 4-45. Verification of container application on Azure AKS

Figure 4-46. Log Analytics workspaces

Chapter 4 Container infrastruCture Monitoring

127

Now, click the “Logs” option, as shown in Figure 4-48, to see the Azure

AKS logs.

Figure 4-47. Log Analytics workspaces page

Figure 4-48. Logs

Chapter 4 Container infrastruCture Monitoring

128

Step 14: Once the Logs page opens you can run the various queries

to see the AKS cluster log. In our example, we type query ContainerLog

in the query text box to see all the container logs running in our AKS

cluster, then click the Run button, as shown in Figure 4-49. This query

will return the deployed application container logs, such as details of the

deployed Docker image, HTTP request request(GET,POST) handled by the

application container, etc.

Step 15: The Prometheus Azure exporter is based on Go language. To

configure the same we would require Go language. So, let’s download and

install the Go language binary archive file using the following command,

as shown in Figure 4-50.

wget https://dl.google.com/go/go1.13.3.linux-amd64.tar.gz

Figure 4-49. Verification of container application metrics via Azure
Console

Chapter 4 Container infrastruCture Monitoring

129

For this command, download Go Linux version 1.13.3 from the

following link: https://dl.google.com.

Step 16: Extract the downloaded archive and install it in the /usr/

local Linux directory. You can also install this under the home directory

(for shared hosting) or other location.

tar -xzf go1.13.3.linux-amd64.tar.gz

After extracting go1.13.3.linux-amd64.tar.gz move all the

directories and files related to the Go language to /usr/local by using the

mv command:

mv go /usr/local

Step 17: Now we need to set up the Go language environment

variables for your project. Commonly, you need to set three environment

variables: GOROOT, GOPATH, and PATH. GOROOT is the location where the Go

package is installed on your system.

export GOROOT=/usr/local/go

Now set the PATH variable to access Go binary systemwide using the

following command:

export PATH=$GOPATH/bin:$GOROOT/bin:$PATH

Figure 4-50. Download package for Go installation

Chapter 4 Container infrastruCture Monitoring

https://dl.google.com

130

All the preceding environment setup will be set for your current

session only. To make it permanent, add the preceding commands in the

~/.bash_profile file.

With this step, you have successfully installed and configured Go

language on your system. Verify the setup by using the following command

to check the Go version:

go version

Step 18: Clone the Azure exporter by executing the following inline

command in the Kubernetes master server (10.1.150.126) from the home/

prometheus directory:

git clone https://github.com/RobustPerception/azure_metrics_

exporter.git

Step 19: Navigate to the azure_metrics_exporter directory and create

the azure.yaml file and copy the following content. You can download the

sample Azure.yml file from the following link as well: https://github.

com/RobustPerception/azure_metrics_exporter/blob/master/azure-

example.yml. Add the details of your Azure subscription and credentials in

the following section in the file (highlighted):

active_directory_authority_url: "https://login.

microsoftonline.com/"

resource_manager_url: "https://management.azure.com/"

credentials:

 subscription_id: <secret>

 client_id: <secret>

 client_secret: <secret>

 tenant_id: <secret>

Provide the resource group ID and valid metrics name in the targets

section of the file.

Chapter 4 Container infrastruCture Monitoring

https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml
https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml
https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml

131

The final content of file will look as follows:

active_directory_authority_url: "https://login.

microsoftonline.com/"

resource_manager_url: "https://management.azure.com/"

credentials:

 subscription_id: "xxxxxx"

 client_id: "xxxxxx"

 client_secret: "xxxxxx"

 tenant_id: "xxxxxx"

targets:

 - resource: "/resourcegroups/PrometheusRG/providers/Microsoft.

ContainerService/managedClusters/prometheusclusterpoc"

 metrics:

 - name: "memoryRssBytes"

 - name: "cpuUsageNanoCores"

 - name: "cpuAllocatableNanoCores"

 - name: "memoryAllocatableBytes"

 - name: "cpuUsageNanoCores"

 - name: "memoryCapacityBytes"

resource_groups:

 - resource_group: "PrometheusRG"

 resource_types:

 - "Microsoft.Compute/virtualMachines"

 resource_name_include_re:

 - "aks-agentpool-75077965-vmss000000"

 resource_name_exclude_re:

 - "testvm12"

 metrics:

 - name: "memoryRssBytes"

 - name: "cpuUsageNanoCores"

Chapter 4 Container infrastruCture Monitoring

132

 - name: "cpuAllocatableNanoCores"

 - name: "memoryAllocatableBytes"

 - name: "cpuUsageNanoCores"

 - name: "memoryCapacityBytes"

Step 20: To generate the azure_metrics_exporter executable file,

execute the following inline command under the same directory; e.g.,

/home/prometheus/azure_metrics_exporter:

$ make build

Step 21: Create the Linux service for the azure_metrics_exporter

executable. Create the azexporter.service file under the /etc/systemd/

system directory and copy the following inline commands, as shown in

Figure 4-51:

[Unit]

Description=azure-exporter

Wants=network-online.target

After=network-online.target

[Service]

Type=simple

ExecStart=/usr/local/bin/azure_metrics_exporter \

 --config.file /home/prometheus/azure_metrics_exporter/

azure.yml

Restart=always

RestartSec=1

[Install]

WantedBy=multi-user.target

Chapter 4 Container infrastruCture Monitoring

133

Step 22: Start the service by executing the following command:

$ systemctl start azexporter

Verify whether the azexporter service has started by executing the

following command, as shown in Figure 4-52:

$ systemctl status azexporter

Figure 4-51. Create Linux service for Azure exporter

Figure 4-52. Verification of Azure exporter

Step 23: Copy the following content into the config-map.yaml file

under the scrape_configs: section:

 - job_name: 'azure-monitoring'

 static_configs:

 - targets: ['10.1.150.126:9276']

Under targets, give the IP address of the master node (10.1.150.126)

and Azure Monitor port, which is 9276.

Step 24: Execute the following command to reflect the changes in

Prometheus:

$ kubectl delete configmaps prometheus-server-conf

 -n=monitoring

$ kubectl create -f config-map-new.yaml

Chapter 4 Container infrastruCture Monitoring

134

$ kubectl delete deployment prometheus-deployment -n monitoring

$ kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 25: Open the Prometheus GUI to get the status of the Azure

exporter, as shown in Figure 4-53.

Step 26: Click on Graph tab and execute the following query to get

the result (after configuring the exporter, please wait for at least twenty to

thirty minutes to get the result), as shown in Figure 4-54.

kube_node_status_allocatable_cpu_cores_count_min

Figure 4-54. Node status graph using Azure exporter

Figure 4-53. Verification of Azure exporter on Prometheus console

Chapter 4 Container infrastruCture Monitoring

135

Step 27: Click on the Graph tab and execute the following query to get

the total amount of available memory in a managed cluster, as shown in

Figure 4-55.

kube_node_status_allocatable_memory_bytes_bytes_average

Figure 4-55. Node allocated memory graph using Azure exporter

Step 28: Click on the Graph tab and execute the following query to get

the total number of ready pods:

kube_pod_status_ready_count_total

Step 29: Click on the Graph tab and execute the following query to get

the maximum number of ready pods. See the result under the Console

section of query.

kube_pod_status_ready_count_max

Chapter 4 Container infrastruCture Monitoring

136

 Kube Stat Metrics
The Kube-state-metrics exporter leverages the Kubernetes APIs to

provide metrics for various Kubernetes objects. Let’s configure Kube-state

and see how we can fetch metrics using Prometheus. You will get more

metrics at the following link:

https://github.com/kubernetes/kube-state-metrics/tree/master/docs

Step 1: Navigate to the /home/prometheus directory and execute the

following inline command:

$ git clone https://github.com/kubernetes/kube-state-metrics.

git

Step 2: Verify whether the kube-state-metrics clone is successful by

executing the following inline command, as shown in Figure 4-56:

$ ls -ltr

Step 3: Navigate to /home/prometheus/kube-state-metrics and

execute the following command to install the kube-state exporter:

$ cd /home/prometheus/kube-state-metrics

$ kubectl apply -f examples/standard

Step 4: Execute the following command to get the kube-state service

details, as shown in Figure 4-57:

$ kubectl get svc -n kube-system

Figure 4-56. Kube-state-metrics clone from Git

Chapter 4 Container infrastruCture Monitoring

https://github.com/kubernetes/kube-state-metrics/tree/master/docs

137

Step 5: Execute the following command to fetch the kube-state-

metrics endpoint that needs to be set in Prometheus, as shown in

Figure 4-58:

$kubectl describe svc kube-state-metrics -n kube-system

Copy the Endpoints value 10.32.0.2:8080, then update the config-

map.yaml file and copy the following lines under the scrape_configs:

section:

 - job_name: 'kube-state-metrics'

 static_configs:

 - targets: ['10.32.0.2:8080']

Step 6: Execute the following command to reflect the changes in

Prometheus:

$kubectl delete configmaps prometheus-server-conf -n=monitoring

Figure 4-57. Kube-state-metrics service status

Figure 4-58. Kube-state-metrics service endpoint details

Chapter 4 Container infrastruCture Monitoring

138

$kubectl create -f config-map.yaml

$kubectl delete deployment prometheus-deployment -n monitoring

$kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 7: Log in to the Prometheus GUI (http://master_ip:30000) ➤

Targets to verify whether kube-state-metrics is up and running, as

shown in Figure 4-59.

Figure 4-60. Kube deployment status metrics graph using Kube-state-
metrics

Figure 4-59. Kube-state-metrics service verification on Prometheus
console

Step 8: Navigate to the Graph tab to execute the following query to

analyze the Kubernetes deployment status to get the desired state of

replicas. This helps in identifying the deployments that are having issues or

facing errors, as shown in Figure 4-60.

kube_deployment_status_replicas

Chapter 4 Container infrastruCture Monitoring

139

 Summary
In this chapter, we provided hands-on steps for setting up Helm and Tiller.

We also provided information on various exporters’ setup and their uses in

Prometheus. We also guided readers in deploying exporters and viewing

metrics for their containerized application. In the next chapter, we will

start with an overview of Prometheus Query Language.

Chapter 4 Container infrastruCture Monitoring

141© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_5

CHAPTER 5

Working with
Prometheus Query
Language (PromQL)
PromQL (Prometheus Query Language) is a functional query language

provided by Prometheus to enable the user to query data stored in real

time and perform all sorts of analysis, aggregations, and operations. In

this chapter, we will provide hands-on steps to the readers that will enable

them to use PromQL.

Prior to getting started with PromQL, let’s briefly understand the way

data is stored in Prometheus.

 Data in Prometheus
As we know by now, Prometheus monitors metrics and collects and stores

time-series data.

Time-series data is defined as a series of data points ordered by time.

Let’s understand time-series data with an example. If we enable per-

minute monitoring of the CPU in an environment comprising different

types of Cis, such as servers, devices, networks, etc., then at every minute

https://doi.org/10.1007/978-1-4842-6216-0_5#DOI

142

a data point will be generated that depicts the CPU utilization at that point

in time. If we represented the data collected as a table, the values collected

would look like Table 5-1.

In Prometheus, a time-series object is created for each metric

monitored, in order to store the metric’s data. The object is uniquely

identified by the metric’s name and primarily comprises a key–value pair,

where the key is a millisecond-precision timestamp and the value is the

measured data in Float format. Each key–value pair is termed as Sample;

i.e., data at a given timestamp.

So, in Prometheus, the preceding data will become part of the time-

series object uniquely identified by its metric name; i.e., cpu_util_perc.

The hypothetical representation of the preceding data looks as follows:

cpu_util_perc:

(1591709873808, 67),

(1591709884270, 66),

(1591709891811, 67),

(1591709898278, 68),

(1591709905225, 67)

Table 5-1. CPU Utilization example

Timestamp CPU Utilization (%)

1591709873808 67

1591709884270 66

1591709891811 67

1591709898278 68

1591709905225 67

Chapter 5 Working With prometheus Query Language (promQL)

143

Though the preceding data provides information about the CPU

utilization (%) against a timestamp, it doesn’t provide any information

related to which CI’s data it is.

To cater to this, Prometheus enables us to define labels. Labels enable

us to capture additional attributes of the data monitored. In the object,

this is further stored as a key–value pair, where the key is the name of the

attribute being captured and the value is the actual attribute data.

In the preceding example of object cpu_util_perc we can create a

label named CI to capture details of the CI whose CPU utilization is being

monitored.

With the labels in place, the samples—i.e., the time-series data—will

be hypothetically represented as shown here:

cpu_util_perc {ci: "ci_1"}:

(1591709873808, 67),

(1591709884270, 66),

(1591709891811, 67),

(1591709898278, 68),

(1591709905225, 67)

cpu_util_perc {ci: "ci_2"}:

(1591709873808, 67),

(1591709884270, 66),

(1591709891811, 67),

(1591709898278, 68),

(1591709905225, 67)

......

Multiple labels can be defined per metric to capture various

information about the data being measured.

Chapter 5 Working With prometheus Query Language (promQL)

144

 Getting Started
Now that we know the way data is stored in a Prometheus time-series

database, let’s begin querying the data.

We begin with selectors—different ways in which we can select data,

aggregators, and functions. Finally, we will see the ways in which we can

use operators (arithmetic and Boolean) to work with the result data.

 Selectors
There are various options for selecting the data. In PromQL terminology,

we will look at various selectors of the metrics data.

Please note for all the examples here we will refer to the data of metric

jvm_memory_bytes_used. This metric stores the JVM memory area-wise

bytes used by different jobs running across various instances.

 Select Metric

We begin with simply typing the metric name into the query console, as

follows:

jvm_memory_bytes_used

As mentioned earlier, all data related to the metric is stored in a time-

series object identified by the metric name and its distinct labels. So,

simply typing the metric name in the query console selects and displays

data for all its distinct labels, as shown in Figure 5-1.

Chapter 5 Working With prometheus Query Language (promQL)

145

The data returned is a single sample value for all distinct labels

timestamped at the same timestamp, which is probably the last

timestamped value captured. This output is termed as an instant vector in

PromQL.

 Filter by Labels

As can be seen in the preceding output, the labels associated with the

metric are area, job, instance, and so on. Let’s next look at selectors with

filters on labels.

Let’s add a filter on the label “area” to select data where the value is

heap. For this, we will simply mention the required label in the query, as

shown here:

jvm_memory_bytes_used {area="heap"}

This returns data points where the label “area” has a value of heap, as

shown in Figure 5-2.

Figure 5-1. Displaying data

Chapter 5 Working With prometheus Query Language (promQL)

146

In the preceding query we used the = operator to return matching data.

Next, let’s use the following query to display all data except the ones where

“area” equals heap.

jvm_memory_bytes_used {area!="heap"}

Here, we have just replaced the = operator with the != operator. As

we can see in Figure 5-3, the output instant vector comprises data where

area! = "heap".

Figure 5-3. Return values that are not heap

Figure 5-2. Return values as heap

Chapter 5 Working With prometheus Query Language (promQL)

147

The preceding were examples where we did exact matches of the

values. Let’s next look at regular expressions or searches where we will

filter the data on the basis of a regular expression. The following query

enables us to select all cases where the “job” label values begin with the

characters fed.

jvm_memory_bytes_used {job=~"fed.+"}

As shown in the output in Figure 5-4, the instant vector–only data

where the “Job” label values begin with fed are selected.

We can also filter the data by using a regular expression where we will

fetch data not matching an expression. The following query fetches all data

except those where the “Job” label value begins with fed:

jvm_memory_bytes_used {job!~"fed.+"}

Figure 5-5 depicts the instant vector returned.

Figure 5-4. The results of our query

Chapter 5 Working With prometheus Query Language (promQL)

148

Next, let’s use the or operator denoted by symbol “|”, which enables us

to do either/or with the values.

The following query enables us to select data where the “Job” label

values begin with either f or j.

jvm_memory_bytes_used {job=~"f.+|j.+"}

Figure 5-6 shows the data fetched. The | operator enables us to specify

multiple values where either of the value matches satisfies the condition.

Figure 5-6. The fetched jobs

Figure 5-5. The instant vector

Chapter 5 Working With prometheus Query Language (promQL)

149

If we have exact values, we can use the values separated by the |

operator to select rows with either value, as shown in the following query,

where we fetch data where the “area” label value is either heap or nonheap.

jvm_memory_bytes_used {area=~"heap|nonheap"}

Figure 5-7 shows the vector returned.

Figure 5-7. The vector returned

As can be seen, the data points were selected/fetched where the “area”

value is either heap or nonheap.

 Filter by Multiple Labels

Let’s next look at the way we can use multiple labels to filter the data.

The multiple filters are by default combined with an AND operator, which

implies that the data returns matches where all the filter criteria are

specified. Whatever operators and criteria we discussed previously can

be individually applied to each filter condition, and then we can combine

them.

Chapter 5 Working With prometheus Query Language (promQL)

150

Let’s look at the following query:

jvm_memory_bytes_used {instance=~"10.1.150.12:8080",

area!~"heap", job=~'j.+'}

The query returns data where “instance” is 10.1.150.12:8080, “area”

is not heap, and “job” values start with j, as shown in Figure 5-8.

Prometheus does not support OR between the filters. However, we can

work around the requirement by using whatever selectors we have learned

up until now.

For example, if we want to select data that matches the following

criteria—“job” starts with J and “area” = heap or “area” = nonheap—we can

use the following query:

jvm_memory_bytes_used {area=~"heap|nonheap", job=~'j.+'}

We will look at a few more examples toward the end of the section,

where we will be talking about aggregation operations on the datasets.

Figure 5-8. Further filtering of the results

Chapter 5 Working With prometheus Query Language (promQL)

151

 Select to Return Range Vectors

The preceding query returned an instant vector, which we know returns a

single sample value for each distinct labeled time series.

In addition, PromQL enables us to select a range of samples

(timestamped data) for each distinct labeled time series from the current

instant. We simply have to specify the range duration, as shown here in

square brackets next to the selectors:

jvm_memory_bytes_used [1m]

It comprises the duration we want to look back at followed by one of

the following units:

• s: seconds

• m: minutes

• h: hours

• d: days

• w: weeks

• y: years

In the preceding example query, we have specified to select data of the

last one minute from the current instant. As shown in Figure 5-9, the range

of all samples collected in the last one minute for each distinct labeled

entry is selected.

Chapter 5 Working With prometheus Query Language (promQL)

152

This data output is termed as a range vector in PromQL, as it returns

a range of values per distinct labeled time-series object for the duration

selected.

Note the range vector cannot be directly graphed, but can be
viewed in the console, as shown in Figure 5-9.

If square brackets do not specify the range, the default instant vector

is returned, which is an instant single data sample for all distinct labeled

time series objects.

The range operator can be combined with the other selection criteria

we discussed previously.

In the following query, we return a range vector for data filtered by

applying multiple filter criteria on different labels:

jvm_memory_bytes_used{area="heap", instance="10.1.150.150:30000",

job="federate",exported_job="federate"}[1m]

Figure 5-9. The range of samples

Chapter 5 Working With prometheus Query Language (promQL)

153

As shown in Figure 5-10, the output returns a range of data collected

in the last one minute only for “instance” = 10.1.150.150:30000, “job” =

federate, “exported_job” = federate, and “area” = heap.

So, in summary, to select a range vector we just need to append a range

in square brackets at the end of the selector.

 Select Past/Historical Data

Till now, we have looked at selecting the current data or data specified at

a moment. PromQL also enables us to select data from the past. For this,

we simply use Offset in the query, as in the following, followed by the

duration and the units, which we covered earlier in the range section.

jvm_memory_bytes_used Offset 7d

As shown in Figure 5-11, the instant vector data returned is data that

was collected seven days ago.

Figure 5-10. Another range of samples

Chapter 5 Working With prometheus Query Language (promQL)

154

We can return range vectors as well for the past data. We simply add

the range duration at the end of the selector, as shown in the following

query. The query returns a range of all data collected in the last one

minute seven days back.

jvm_memory_bytes_used[1m] Offset 7d

The output in Figure 5-12 shows the past timestamped range values.

Figure 5-12. Timestamped range values

Figure 5-11. Our first historical data example

Chapter 5 Working With prometheus Query Language (promQL)

155

We can use the other selectors we discussed earlier and further

combine offset to return historical data of the filtered lot. For example,

the following query selects past range data only for instances starting with

10.1.150.150:

jvm_memory_bytes_used {instance =~ "10.1.150.150.*"}[1m] Offset 7d

The output in Figure 5-13 depicts the data returned.

All the queries we just looked at enabled us to select the data from

the Prometheus database using PromQL, and all are termed as part of

the selector clause. We also looked at the different vectors returned; i.e.,

instant vector versus range vector.

Figure 5-13. The data returned from our query

Chapter 5 Working With prometheus Query Language (promQL)

156

 Aggregation Example
Now that we have the data selected, let’s apply aggregations to it to

aggregate the data for meaningful analysis. PromQL supports multiple

aggregation operators. Please refer to the official site for more details.1 In

the following examples, we refer to these operations:

• sum: to sum the values

• topk/bottomk: to return top/bottom K data points

ordered by values data

Let’s begin with the usage of the sum operator. As shown in the

following query, we simply add the sum operator to the metric name.

sum(jvm_memory_bytes_used)

The output, as shown in Figure 5-14, returns the total JVM memory

bytes used.

1 https://prometheus.io/docs/prometheus/latest/querying/operators/
#aggregation-operators

Figure 5-14. Total memory bytes used

Chapter 5 Working With prometheus Query Language (promQL)

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

157

The preceding query gives overall consumption data. Let’s next group

the data by area using the by clause, as shown in the following query:

sum by (area) (jvm_memory_bytes_used)

The output, as shown in Figure 5-15, returns area-wise total memory

bytes used.

Let’s further group the data by job to view consumed memory by job:

sum by (job) (jvm_memory_bytes_used)

The output in Figure 5-16 shows job-wise memory consumed.

Figure 5-16. Memory consumed per job

Figure 5-15. Total memory bytes used per area

Chapter 5 Working With prometheus Query Language (promQL)

158

We have individually grouped the data by different labels. Let’s next

use the following query to group the data by area and job so as to view job-

wise each area-wise memory byte consumed.

sum by (area, job) (jvm_memory_bytes_used)

The output in Figure 5-17 shows the area-wise job-wise memory-

consumed details.

Now that we have grouped the data, let’s next find out the top two jobs

and area that are consuming the most memory. We use the topk operator

along with sum, as shown in the following query, to return the top two areas

and jobs:

topk(2, sum by (area, job) (jvm_memory_bytes_used))

Figure 5-18 shows the top two identified labeled data.

Figure 5-17. Memory used by area and job

Chapter 5 Working With prometheus Query Language (promQL)

159

If we need to find the bottom area and jobs consuming the least

memory, we can use bottomk along with sum to return the data, as shown

in the following query:

bottomk(2, sum by (area, job) (jvm_memory_bytes_used))

Figure 5-19 shows the bottom two identified labeled data.

Until now, we have aggregated the instant vector, which actually

aggregated the single latest timestamped value and did not take into

consideration the range of data generated. Let’s look at using the

aggregation operators with the range vectors.

Figure 5-19. The bottom two results

Figure 5-18. The top two values

Chapter 5 Working With prometheus Query Language (promQL)

160

As we know, range vectors return a range of all data collected, so

the vector cannot be directly used in the aggregation operators. We will

first have to use the varied functions2 offered by PromQL to fetch the

most relevant data point from the range. Relevance depends on the

characteristics of the data. In our examples, since we are looking at bytes

consumed, we will be interested in looking at the average value in the

range. To find the relevant data point from the range, we will use the

avg_over_time function from the list.

Let’s first look at the output of the function. We will use the following

query to fetch all ranges of data generated in the last one min and then use

the avg_over_time function on it.

avg_over_time(jvm_memory_bytes_used[1m])

As shown in Figure 5-20, the output returns the average value of each

range.

2 https://prometheus.io/docs/prometheus/latest/querying/functions/

Figure 5-20. The average value of each range

Chapter 5 Working With prometheus Query Language (promQL)

https://prometheus.io/docs/prometheus/latest/querying/functions/

161

As we can see, the Value field has single value for each distinct labeled

data point and has been converted to an instant vector. The aggregation

operator can now be used with the data, as we have done previously.

Let’s continue with the preceding query. Let’s expand the range

selection to return all data in the last five minutes, average it per range, and

then further use the AVG aggregation operator to find the average value of

memory consumed grouped by area and job. Then we use topK to return

the top five areas and jobs with maximum memory used. Use the following

query to get the desired result:

TOPK(5, AVG by (area, job) (avg_over_time(jvm_memory_bytes_

used[5m])))

The output in Figure 5-21 shows the top five areas and jobs.

We know by now the way we can select data and group by and apply

aggregation operators to aggregate the data. We have also looked at using

the aggregation operators on range data.

Figure 5-21. Top five areas

Chapter 5 Working With prometheus Query Language (promQL)

162

 Logical and Arithmetic Operators
With the data selected and aggregated, we can next look at operations that

can be performed between the output data returned or on the metrics

data. PromQL enables us to apply varied operators3 on the result sets,

allowing us to combine different datasets so as to compare and derive

meaningful insights. In the examples in this section, we will use a few

sample use cases.

Use Case 1: Let’s begin with a use case wherein we compare current

data with the historical data collected seven days back to identify any rise

in memory consumed.

As shown in the following query, we use the comparison operator >

between the two result sets to identify the labeled data where consumption

is more than it was seven days before:

jvm_memory_bytes_used > 1 * (jvm_memory_bytes_used offset 7d)

As can be seen, we have simply used the operator between the

previously fetched two vectors. We can use any selector criteria to select

the data, and then can use the operators to do the needful; in this case

we are comparing and identifying the ones where the consumption has

increased. Figure 5-22 shows the output, listing only the ones where the

consumption is high.

3 https://prometheus.io/docs/prometheus/latest/querying/operators/

Chapter 5 Working With prometheus Query Language (promQL)

https://prometheus.io/docs/prometheus/latest/querying/operators/

163

Use Case 2: As we know, the data returned by the metric jvm_memory_

bytes_used is in bytes. In this use case, we will use a scalar arithmetic

operation to convert the value to megabytes. The following query uses the

multiplication operator to multiply the value by 0.000001 to convert it to

megabytes:

jvm_memory_bytes_used * 0.000001

The output returned is in megabytes, as shown in Figure 5-23.

Figure 5-23. Values in megabytes

Figure 5-22. High consumption

Chapter 5 Working With prometheus Query Language (promQL)

164

Use Case 3: Let’s now use two different metrics’ data. In this use case,

we will consider the jvm_memory_bytes_usage metric along with jvm_

memory_bytes_committed. We will use the subtraction operator to identify

the bytes remaining to consume, and further use scalar multiplication to

convert the data into megabytes. The following query enables us to find the

difference and returns the data in megabytes:

(jvm_memory_bytes_committed - jvm_memory_bytes_used) * 0.000001

The output in Figure 5-24 shows per time-series object the data

remaining in megabytes.

Use Case 4: Next, let’s apply an aggregation operator to the output of

Use Case 3 to return area- and job-wise bytes remaining. Use the following

query; we also use the scalar multiplier on the final output to convert it to

megabytes:

sum by (area,job) (jvm_memory_bytes_committed - jvm_memory_

bytes_used) * 0.000001

Figure 5-24. Data remaining in megabytes

Chapter 5 Working With prometheus Query Language (promQL)

165

Figure 5-25 shows the area- and job-wise remaining memory in

megabytes.

We can also apply topk to return the top two with maximum bytes

remaining, as in the following query:

TOPK(2, sum by (job) (jvm_memory_bytes_committed - jvm_memory_

bytes_used))* 0.000001

The output in Figure 5-26 shows the top two jobs.

Figure 5-26. Top two jobs

Figure 5-25. Remaining megabytes, by area and job

Chapter 5 Working With prometheus Query Language (promQL)

166

Figure 5-27. The output of the final query

Use Case 5: As we mentioned in the selector section, the filters when

combined are joined by an AND operator. We looked at the way the |

operator can be used to apply OR on values on the same label, so, prior

to concluding, let’s look at the way we can apply OR between filters on

different labels. Let’s say we want to select the values where either the

label “job” or the “exported_job” label has the Jira value. We will use the

following query to select the data where job=“jira” or exported_job=“jira”.

(jvm_memory_bytes_used {job="jira"}) or (jvm_memory_bytes_used

{exported_job="jira"})

Here, we have simply used the OR operator between the two outputs,

and it returns the expected output. The output returns rows where either

the “job” value is jira or the “exported_job” value is jira, as shown in

Figure 5-27.

With this, we have covered all important aspects of working with

PromQL.

Chapter 5 Working With prometheus Query Language (promQL)

167

 Summary
In this chapter, we have provided hands-on steps for using Prometheus

Query Language (PromQL). In the next chapter, we will start with

understanding the dashboard and reporting solutions by using Grafana as

Prometheus; Grafana is a common combination of monitoring dashboard.

Chapter 5 Working With prometheus Query Language (promQL)

169© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_6

CHAPTER 6

Container Reporting
& Dashboards
This chapter will provide hands-on steps for using container reporting

and dashboard solutions. Grafana and Prometheus are commonly used

by DevOps teams for storing and visualizing time-series data. Grafana

supports querying Prometheus and being a data source for Prometheus.

We will look at the following:

• Introduction to Container Reporting and Dashboards

• Working with Grafana

 Introduction to Container Reporting
and Dashboards
As we have seen so far, containers have become an integral part of modern

application architectures, and as a result have changed the way software is

deployed and operated. Once we have set up monitoring for the containers

and applications, the next step from an operations visibility perspective

is the dashboard and reporting. The dashboard and reporting solution

will provide a graphical interface with which to visualize the container

inventory, container metrics for availability and performance, and

application metrics.

https://doi.org/10.1007/978-1-4842-6216-0_6#DOI

170

Dashboards also provide insight about the overall health of the

container platform. From a security perspective, by leveraging container

security and compliance solution integration, an operations team can

also monitor the security posture of the container platform and any

applications running on it.

There are various popular dashboard solutions available in the market

for container dashboards and reporting. Let’s look at a few of them.

Grafana: Grafana is a UI-based dashboard and reporting tool. It is

used for data analysis and visualization that’s generated by the various

data sources in the form of metrics. Grafana has in-built support for time-

series databases such as Prometheus and InfluxDB, and it also supports

rational databases, such as MySQL, SQL Server, etc. Grafana also allows

one to create alerts on a specific condition or set of conditions; e.g., CPU

utilization more than 80 percent, or disk usage, etc.

Grafana is available as both an open source version and an enterprise

version. In this chapter, we will use open source Grafana to demonstrate

how to create the dashboard for a container monitoring ecosystem.

Sysdig: Sysdig is a container monitoring and security tool that also

provides dashboard and reporting capabilities. Sysdig provides customized

dashboard creation so as to display the most useful/relevant views

and metrics for the infrastructure in a single location. Each dashboard

comprises a series of panels configured to display specific data in a

number of different formats.

Splunk: Splunk is a unified solution with which to analyze, search, and

visualize the data gathered from the various applications, sensors , servers,

and containers. Splunk does not need any databases to store the data, as

it extensively makes use of its indexes to do so. In Splunk, one can analyze

container ecosystem performance, do troubleshooting, and store/retrieve

data for later use.

In the next section, we will focus on Grafana’s features for container

reporting and dashboards. We will do a hands-on exercise to set up

Grafana and fetch reports leveraging metrics from Prometheus.

Chapter 6 Container reporting & DashboarDs

171

 Grafana
Grafana uses the data source to connect with the system—e.g.,

Prometheus, MySQL, etc.—for collecting the data. Grafana has in-

built support for time-series-based data sources like Prometheus or

InfluxDB. Each data source has a specific query editor associated with it

for executing the query to fetch the data; e.g., PromQL query editor for

Prometheus. Grafana also supports mixed data sources, meaning the user

can use multiple data sources in a single dashboard; e.g., user can map

data from Elasticsearch along with data from Prometheus. Mixing different

data sources can be done with custom data sources as well.

The following data sources are officially supported:

• CloudWatch

• Elasticsearch

• Graphite

• InfluxDB

• OpenTSDB

• Prometheus

 Panel

In Grafana visualizations known as panels, users can create a dashboard

containing panels for various data sources. Each panel is associated with

the query editor to extract the metrics and display the result. Panels can be

rearranged and resized on the dashboard.

The following are the available panel types:

• Alert list

• Dashboard list

• Graph

Chapter 6 Container reporting & DashboarDs

172

• Heatmap

• Logs

• Singlestat

• Table

• Text

 Query Editor

The query editor allows the user to query the metrics. Each data source is

associated with a different query editor that is used for creating the query;

e.g., PromQL query editor is used to create any PromQL-based queries.

 Dashboard

Grafana provides various types of pre-built dashboards—e.g., Prometheus,

Kubernetes overview, etc.—to measure the data.1 The user can also create

customized dashboards based on various panels. Grafana supports

templating to create a dynamic dashboard, and the user can share these

dashboards among teams by publishing it.

Explore: Grafana Explore helps to analyze the metrics and logs to

identify the cause of failure of the monitoring system. Since Grafana 6.0,

Loki, a new data source introduced by Grafana, integrates with Explore to

allow users to analyze metrics and correlated logs side-by-side to debug

what went wrong.

Alerting: Grafana has a built-in alerting engine that allows the user to

trigger alerts on the basis of the conditions/rules that apply on the panels.

Grafana supports the following tools for notifying the user of the alerts:

Slack, PagerDuty, VictorOps, and OpsGenie.

1 Pre-built dashboard: https://grafana.com/grafana/dashboards

Chapter 6 Container reporting & DashboarDs

https://grafana.com/grafana/dashboards

173

Now, let’s start installing Grafana in the environment that we set up in

earlier chapters. Figure 6-1 provides an overview of the task flows we will

follow to deploy Grafana.

The following is the flow for the Grafana deployment that we will

follow in this chapter:

• We will use the already cloned configuration files from

GitHub. Additionally, we will pull a file from GitHub to

be used for Grafana installation.

• We will recreate the config map and deploy Grafana as

a pod.

• Finally, we will test the status of the Grafana

deployment using command line and web browser

access.

Figure 6-1. Grafana deployment flow

Chapter 6 Container reporting & DashboarDs

174

Step 1: Log in to the Kubernetes master node (10.1.150.126) and navigate

to the /home/prometheus folder, and then append the following lines in

config-map.yml in the scrape_configs: section. Search for the section

named job - job_name: 'prometheus' under the scrape_configs: section

in the config-map.yaml file and append as shown in Figure 6-2.

job_name: This section is the same as explained in

previous chapters. In our example case, we are using

job_name as prometheus.

static_configs: This section is the same as explained

in previous chapters.

• targets: This section is the same as explained

in previous chapters. In targets, we specify

the IP and port of Prometheus itself; e.g.,

10.1.150.126:30000.

This target will be used to set up the data source

in Grafana to fetch the metrics generated by

Prometheus itself.

Step 2: Execute the following in-line commands to reflect the changes

in Prometheus:

 $kubectl delete configmaps prometheus-server-conf -n=monitoring

$kubectl create -f config-map.yaml

 $kubectl delete deployment prometheus-deployment -n monitoring

$kubectl apply -f prometheus-deployment.yaml -n monitoring

Figure 6-2. Config map file update

Chapter 6 Container reporting & DashboarDs

175

Step 3: Verify that all the components of Prometheus are running fine,

as shown in Figure 6-3:

$ kubectl get all -n=monitoring

Step 4: Open the Prometheus GUI (using the http://kubernetes-

master- node:30000 URL) and navigate to targets to review the

Prometheus endpoint, as shown in Figure 6-4.

Step 5: Now, let’s install the Grafana dashboard on the Kubernetes

master node (10.1.150.126) by using Helm chart version 3.12.1 (GitHub

URL: https://github.com/helm/charts/tree/master/stable/grafana)

Navigate to the /home/prometheus folder and execute the following

command to clone the code from GitHub, as shown in Figure 6-5:

$ git clone https://github.com/dryice-devops/grafana.git

Figure 6-3. Verifying Prometheus pod status

Figure 6-4. Verifying Prometheus pod status

Chapter 6 Container reporting & DashboarDs

https://github.com/helm/charts/tree/master/stable/grafana

176

Step 6: Navigate into the grafana folder by executing the following

command:

$ cd grafana

Step 7: Open the values.yaml file and modify the following sections.

Save the file before closing. Navigate to the section named service

in values.yaml and add values to the following sections, as shown in

Figure 6-6:

service: This section represents Kubernetes service

configuration for Grafana.

type: This field provides information about the type

of publishing services. Kubernetes service types

allow you to specify what kind of service you want.

The default is ClusterIP. In our example, we are

using NodePort, which exposes the service on each

node’s IP at a static port (the NodePort).

port: Inside the cluster, what port does the service

expose? E.g., 9000.

targetPort: This is the port at which the pod-based

application will be listening on the network. We are

using value 3000.

nodePort: This is the port on the node, e.g., master_

node, on which the service will be available. We are

using value 30007.

Figure 6-5. Cloning file from GitHub

Chapter 6 Container reporting & DashboarDs

177

Step 8: Navigate into the /home/prometheus folder and execute the

following Helm command to install Grafana, as shown in Figures 6-7 and 6-8:

$helm install –name Grafana-dashboard -f Grafana/values.yaml

stable/grafana --version 3.12.1

Figure 6-6. Updating Value.yaml

Figure 6-7. Installation of Grafana

Chapter 6 Container reporting & DashboarDs

178

Step 9: Execute the following command to get the secret password:

$kubectl get secret --namespace default grafana-dashboard -o

jsonpath="{.data.admin-password}" | base64 --decode ; echo

You will get the password—e.g., dom3BiALxXmM1Q2hAPuPVIFozxW

ID8yb7haMH6KU—which will be used to log in to the Grafana UI, as per

Figure 6-9.

Step 10: Open the browser and enter the URL (http://master-node-

ip:30007), e.g., http://10.1.150.126:30007, and enter the username as

“admin” and password you got from step 9, as in Figure 6-10.

Figure 6-9. Grafana temporary password fetch

Figure 6-8. Installation of Grafana

Chapter 6 Container reporting & DashboarDs

http://10.1.150.126:30007

179

Grafana Integration with Prometheus
Now, let’s configure the Prometheus end point in Grafana.

Step 1: After entering the credentials, navigate to Setting ➤ Data
Source as per Figure 6-11.

Figure 6-10. Grafana login page

Figure 6-11. Grafana data source configuration

Chapter 6 Container reporting & DashboarDs

180

Step 2: Click “Add data source,” as shown in Figure 6-12.

Step 3: Select Prometheus and enter the Prometheus URL

http://10.1.150.126:30000/ under the HTTP URL section and hit the

Save & Test button, as shown in Figure 6-13.

Figure 6-12. Grafana data source configuration

Figure 6-13. Grafana data source configuration

If the Prometheus end point has been configured successfully, you will

get the message “Data source is working,” as shown in Figure 6-14.

Chapter 6 Container reporting & DashboarDs

http://10.1.150.126:30000/

181

Step 4: Grafana provides one default dashboard. Click on Home to

navigate to it, as shown in Figure 6-15.

Figure 6-14. Grafana data source configuration validation

Figure 6-15. Grafana default dashboard navigation

Click Prometheus 2.0 Stats, as shown in Figure 6-16.

You can now view the Prometheus dashboard, as shown in Figure 6-17.

Figure 6-16. Grafana default dashboard navigation

Chapter 6 Container reporting & DashboarDs

182

 Summary
In this chapter, we have provided hands-on steps for using Grafana for

container dashboard and reporting with Prometheus. In the next chapter,

we will start with understanding how to leverage Dynatrace for container

application monitoring, along with hands-on exercises.

Figure 6-17. Grafana default Prometheus dashboard navigation

Chapter 6 Container reporting & DashboarDs

183© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_7

CHAPTER 7

Container Application
Monitoring Using
Dynatrace
This chapter will provide hands-on steps for using Dynatrace for container

application monitoring. We will look at the following:

• Introduction to Dynatrace

• Container Application Monitoring

• Working with Dynatrace for Container Application

Monitoring

 Introduction to Dynatrace
Dynatrace is a software-intelligence monitoring platform that simplifies

enterprise cloud complexity and accelerates digital transformation.

Dynatrace seamlessly brings infrastructure and cloud, application

performance, and digital experience monitoring into an all-in-one

automated solution that’s powered by artificial intelligence named Davis.

https://doi.org/10.1007/978-1-4842-6216-0_7#DOI

184

The following are the key capabilities of Dynatrace:

Real User Monitoring: Dynatrace helps the support and

development teams trace an interaction end- to- end from

real users, whether it is from a desktop- based browser

or from a mobile device. It covers the availability and

response time of an application as seen by the end user.

It also provides for verification of UI elements and third-

party content, and analysis of the service-side application

down to the code level, so it is easy to troubleshoot and

analyze any issues that the users may face.

Server-side Service Monitoring: Web applications

consist of web pages that are served by web servers

which in turn interact with backend Application &

Database servers depending upon incoming request

type. Dynatrace OneAgent can provide details about

which applications or services interact with which

other services and which services or databases a

specific service calls. We will cover this in detail

using a hands-on lab exercise.

Network, Process, & Host Monitoring: Dynatrace

enables monitoring of the entire infrastructure,

including hosts, processes, and network.

Container Monitoring: Dynatrace seamlessly integrates

with existing Docker environments and automatically

monitors containerized applications and services. With

Dynatrace, there is no need to modify Docker images,

run commands, or create additional containers to

enable Docker monitoring. Dynatrace has the ability

to automatically detect the creation and termination of

containers, and monitors the applications and services

contained within those containers.

Chapter 7 Container appliCation Monitoring Using DynatraCe

185

 Architecture Overview
Dynatrace can be deployed either as an SaaS solution or within an on-

premises deployment. The on-premises version is called Dynatrace

Managed, while the SaaS version is known as Dynatrace SaaS. In

this chapter, we will cover Dynatrace SaaS’ capabilities for container

monitoring.

Figure 7-1. Dynatrace SaaS architecture

Dynatrace SaaS has a simplified architecture (Figure 7-1). Its core

component comprises OneAgent and ActiveGate. SaaS customers only

need to install OneAgent to enable monitoring for the target environment.

ActiveGate works as a proxy between Dynatrace OneAgent and

Dynatrace SaaS/Managed versions. It can be installed on Windows or

Linux. If you use Dynatrace SaaS, you only need to install an environment

ActiveGate. The main functions of ActiveGate include the following:

Message routing: ActiveGate knows about the

runtime structure of the Dynatrace environment

and routes messages from OneAgents to the correct

server endpoints.

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://www.dynatrace.com/support/help/get-started/get-started-with-dynatrace-saas/
https://www.dynatrace.com/support/help/get-started/get-started-with-dynatrace-managed/
https://www.dynatrace.com/support/help/get-started/get-started-with-dynatrace-managed/
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-oneagent/capabilities/how-one-agent-works/

186

Buffering and compression: ActiveGate collects

messages from OneAgent instances and builds

bulks, which are then sent in compressed form to

the Dynatrace server.

Authentication: ActiveGate authenticates OneAgent

requests (SSL handshake and environment ID

authentication).

Entry point for sealed networks: Dynatrace server

clusters often run in protected environments that

aren’t directly accessible by OneAgent instances

running outside of a sealed network. ActiveGate can

be used to serve as a single access point for such

OneAgent instances.

 Container Monitoring Using Dynatrace
Dynatrace OneAgent is container-aware and comes with built-in support

for out-of-the-box monitoring of Kubernetes. Dynatrace supports full-stack

monitoring for Kubernetes; i.e., monitoring from the application down to

the infrastructure layer.

For container monitoring, the Dynatrace OneAgent operator registers

itself as a controller that watches for resources of type OneAgent, as

defined by a custom resource definition. This allows you to define a

configuration that describes your OneAgent deployment. By loading the

configuration into Kubernetes, the configuration is automatically passed

to the custom controller. Figure 7-2 outlines the involved components and

objects.

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

187

By creating the OneAgent custom resource entity in Kubernetes,

the object is automatically passed to the Dynatrace OneAgent operator.

First, it determines if a corresponding DaemonSet already exists. If not,

the Dynatrace OneAgent operator creates a new one. The DaemonSet is

responsible for rolling out OneAgent to selected nodes. Dynatrace also

automatically polls the pods to check for updated versions, and if the

updated versions are not deployed then the latest version is automatically

rolled out.

Now, let’s begin with an exercise that uses Dynatrace for container

monitoring. We will begin by requesting the evaluation version of

Dynatrace SaaS.

Step 1: Navigate to the following URL to request a fifteen-day trial of

Dynatrace SaaS. Click on the Free Trial button in the corner.

https://www.dynatrace.com

Step 2: Enter your email address and click on the Start Free Trial button.

Step 3: Add a valid password for your account and then click Continue.

Step 4: Add details regarding your account and click Continue.

Step 5: Select the region where you want to store your monitoring

data, click on the radio button for “Yes, I agree to the above terms and

conditions,” and then click Create Account, as shown in Figure 7-3.

Figure 7-2. Dynatrace container monitoring architecture

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://www.dynatrace.com

188

Step 6: After that, you will be redirected to the Dynatrace Welcome

page. Click the Deploy Dynatrace button, as shown in Figure 7-4.

Figure 7-3. Dynatrace SaaS region selection

Chapter 7 Container appliCation Monitoring Using DynatraCe

189

Step 7: You will be redirected to the Dynatrace console. Click on the

Home icon at the top of the page, as highlighted in Figure 7-5, and it will

take you to the Dynatrace home page dashboard.

Step 8: On the home page you can see a default dashboard. As of

now, since there are no agents reporting to this SAAS instance, there is

no data reporting under any of the entities. Only sample data is provided

by default. On the left-hand side, there are several tabs available for each

Figure 7-4. Dynatrace SaaS Welcome page

Figure 7-5. Dynatrace SaaS home page

Chapter 7 Container appliCation Monitoring Using DynatraCe

190

entity that we monitor through Dynatrace. Once the data starts reporting

to the console, the user can click on any of the tabs and look at the metrics

of that entity, as shown in Figure 7-6.

Now we will install a microservice application that will be monitored

using Dynatrace. We will use easyTravel Application as the demo

application. EasyTravel is a multi-tier application that uses microservice

principles. We will use this application to simulate application issues such

as high CPU load, database slowdown, or slow authentication. Figure 7- 7

is the architecture diagram of the application. We have installed only the

customer frontend part of the architecture, which includes nginx, frontend,

backend, database, and a load generator.

Figure 7-6. Dynatrace SaaS tab navigation

Chapter 7 Container appliCation Monitoring Using DynatraCe

191

Please refer to Table 7-1 to get information about the components used

by the travel application.

 Containerized Application Deployment
In this section, you will learn how to deploy the travel application on a

Kubernetes cluster with kubectl commands. You can get the application

code and its details from the following GitHub URL: https://github.com/

Dynatrace/easyTravel-docker.

Figure 7-7. Easy Travel Application architecture

Table 7-1. Application Components

Component Description

Mongodb a pre-populated travel database (MongoDB)

Backend the easytravel business backend (Java)

Frontend the easytravel customer frontend (Java)

nginx a reverse proxy for the easytravel customer frontend (nginX)

loadgen a synthetic UeM load generator (Java)

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://github.com/Dynatrace/easyTravel-docker
https://github.com/Dynatrace/easyTravel-docker

192

Step 1: Log in to the Kubernetes master node to install the easyTravel

application. Execute the following command to download application files

to your server:

$ git clone https://github.com/Dynatrace/easyTravel-Docker.git

Step 2: Now, we will clone easytravel.yaml for this application from

GitHub by executing the following command. Once you download the

repo you will get rc.yml, service.yml, and pod.yml files in various folders.

Using these files, we will create deployment, pods, and services for each

component.

$ git clone https://github.com/dryice-devops/dynatrace.git

Step 3: Copy the easytravel.yaml file into the Kubernetes folder /

App/microservices-demo/deploy/kubernetes/. Now, let’s create a

namespace to run this application using Kubernetes by using the following

command:

$ kubectl create namespace easytravel

To verify that the namespace has been created successfully, execute

the following command, as shown in Figure 7-8:

$ kubectl get namespace

Figure 7-8. easyTravel application Kubernetes namespace creation

Chapter 7 Container appliCation Monitoring Using DynatraCe

193

Step 4: Now, execute the following command on the Kubernetes

master node to create the deployment, services, and pods, as we specified

in easytravel.yaml:

$ kubectl create –f easytravel.yaml

It will create all the components to run the application. Verify by using

the following commands, as shown in Figure 7-9:

$ kubectl get deployment -n easytravel

Step 5: Now, execute the following command on the Kubernetes

master node to fetch a list of pods for the easyTravel application, as shown

in Figure 7-10:

$ kubectl get pod -n easytravel

Figure 7-9. easyTravel application deployment using Kubernetes

Figure 7-10. easyTravel application pod list

Chapter 7 Container appliCation Monitoring Using DynatraCe

194

Step 6: Now, execute the following command on the Kubernetes

master node to fetch a list of services for the easyTravel application, as

shown in Figure 7-11:

$ kubectl get service -n easytravel

Copy the cluster IP for the frontend service for application page

access. Navigate to the following URL to access the easyTravel frontend

application service:

http://< cluster IP >:port

In our case, the following is the URL, as shown in Figure 7-12:

easyTravel URL: http://10.99.139.181:31012/

Figure 7-11. easyTravel application service list

Figure 7-12. easyTravel application frontend page, Dynatrace
OneAgent installation

Chapter 7 Container appliCation Monitoring Using DynatraCe

195

Monitoring Application using Dynatrace
In this section, you will learn how to install Dynatrace OneAgent on the

Kubernetes cluster to enable the monitoring for the easyTravel application.

Step 1: Log in to the Kubernetes master server and create the

namespace Dynatrace using the following command:

$ kubectl create namespace Dynatrace

Step 2: Create a LATEST_RELEASE variable, which will contain the URI for

the latest image of the OneAgent operator. Execute the following command:

$LATEST_RELEASE=$(curl -s https://api.github.com/repos/

dynatrace/dynatrace-oneagent-operator/releases/latest | grep

tag_name | cut -d '"' -f 4)

Step 3: Once the variable is created, run the following command to

create Dynatrace entities:

$kubectl create -f https://raw.githubusercontent.com/Dynatrace/

dynatrace-oneagent-operator/$LATEST_RELEASE/deploy/kubernetes.

yaml

Step 4: Now we check the logs of the OneAgent operator to verify that

it is successfully installed on the Kubernetes cluster; we do so by executing

the following command:

$kubectl -n dynatrace logs -f deployment/dynatrace-oneagent-

operator

Step 5: We will now create the secret holding API and PaaS tokens for

authenticating the Dynatrace SaaS setup. To generate and manage API

tokens, log in to your Dynatrace environment, and from the navigation

menu click Settings ➤ Integration. Select Dynatrace API, Platform as a

Service, or Dynatrace modules to generate a token for the Dynatrace API, a

token for PaaS, or a token for DCRUM or Synthetic, as shown in Figure 7- 13.

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/basics/dynatrace-api-authentication/

196

Step 6: Click the Generate Token button as shown in Figure 7-14, and

then type a meaningful token name in the text field, as shown in Figure 7-15.

Figure 7-14. Dynatrace API token generation

Figure 7-13. Dynatrace API token generation

Chapter 7 Container appliCation Monitoring Using DynatraCe

197

Step 7: To create Dynatrace API tokens, select or clear the access

switches as needed to set the access scope of the API token. For example,

to create an API authentication token to access Dynatrace monitoring data

for user session queries, select “User session” as shown in Figure 7-15.

Step 8: Click the Generate button. The token will appear in the My

Dynatrace Tokens list, as shown in Figure 7-16.

Figure 7-15. Dynatrace API token generation

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/basics/dynatrace-api-authentication/

198

Step 9: Now, we will create a PaaS token by enacting the following

steps. Log in with your Dynatrace account and select “Deploy Dynatrace”

from the navigation menu. Click the Set up PaaS Integration button, as

shown in Figure 7-17.

Figure 7-16. Dynatrace API token generation

Chapter 7 Container appliCation Monitoring Using DynatraCe

199

Step 10: Your environment ID appears in the Environment ID text

box. You’ll need this ID to link your Dynatrace account with your PaaS

environment. Click Copy to copy the ID to the clipboard. You can do this at

any time by revisiting this page, as shown in Figure 7-18.

Step 11: To generate a PaaS token, click the Generate New Token

button. The PaaS token is essentially an API token that’s used in

combination with your environment ID to download Dynatrace OneAgent.

Figure 7-18. Dynatrace PaaS token generation

Figure 7-17. Dynatrace PaaS token generation

Chapter 7 Container appliCation Monitoring Using DynatraCe

200

As you’ll see, there’s also a default InstallerDownload token available that

you can alternatively use. However, for security reasons, it’s recommended

that you create several discrete tokens for each environment you have, as

shown in Figure 7-19.

Step 12: Type in a meaningful name for your PaaS token. A meaningful

token name might be the name of the PaaS platform you want to monitor

(for example, azure, cloud-foundry, or openshift). To view and manage

your existing PaaS tokens, go to Settings ➤ Integration ➤ Platform as a

Service.

Click Generate to create the PaaS token. The newly created PaaS token

will appear in the list below. Click Copy to copy the generated token to the

clipboard. You can do this at any time by revisiting this page and clicking

Show Token next to the relevant PaaS token.

Step 13: Set up API and PaaS tokens using the following command:

$kubectl -n dynatrace create secret generic oneagent --from-

literal="apiToken=D62yuwExSpOUe0M1d7_gE" --from- literal=

"paasToken=r_6pQgOzSwivPXym3dTKp"

Figure 7-19. Dynatrace PaaS token generation

Chapter 7 Container appliCation Monitoring Using DynatraCe

201

Step 14: Now, let’s create a custom resource for OneAgent. Navigate to

the Kubernetes folder /App/microservices-demo/deploy/kubernetes/

and run the following command. This will download the cr.yaml file to

your Kubernetes master node.

$curl -o cr.yaml https://raw.githubusercontent.com/Dynatrace/

dynatrace-oneagent-operator/$LATEST_RELEASE/deploy/cr.yaml

Step 15: Edit cr.yml and modify the values of the custom resource as

indicated below. You need to update the API URL, tokens, and APP_LOG_

CONTENT variable:

Before making changes, follow the code in Listing 7-1.

Listing 7-1. Dynatrace OneAgent custom resource cr.yml sample

apiVersion: dynatrace.com/v1alpha1

kind: OneAgent

metadata:

 # a descriptive name for this object.

 # all created child objects will be based on it.

 name: oneagent

 namespace: dynatrace

spec:

 # dynatrace api url including `/api` path at the end

 # either set ENVIRONMENTID to the proper tenant id or change

the apiUrl as a whole, e.q. for Managed

 apiUrl: https://ENVIRONMENTID.live.dynatrace.com/api

 # disable certificate validation checks for installer

download and API communication

 skipCertCheck: false

 # name of secret holding `apiToken` and `paasToken`

 # if unset, name of custom resource is used

 tokens: ""

Chapter 7 Container appliCation Monitoring Using DynatraCe

202

 # node selector to control the selection of nodes (optional)

 nodeSelector: {}

 # https://kubernetes.io/docs/concepts/configuration/taint-

and- toleration/ (optional)

 tolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io/master

 operator: Exists

 # oneagent installer image (optional)

 # certified image from RedHat Container Catalog for use on

OpenShift: registry.connect.redhat.com/dynatrace/oneagent

 # for kubernetes it defaults to docker.io/dynatrace/oneagent

 image: ""

 # arguments to oneagent installer (optional)

 # https://www.dynatrace.com/support/help/shortlink/oneagent-

docker#limitations

 args:

 - APP_LOG_CONTENT_ACCESS=1

 # environment variables for oneagent (optional)

 env: []

 # resource settings for oneagent pods (optional)

 # consumption of oneagent heavily depends on the workload to

monitor

 # please adjust values accordingly

 #resources:

 # requests:

 # cpu: 100m

 # memory: 512Mi

 # limits:

 # cpu: 300m

 # memory: 1.5Gi

Chapter 7 Container appliCation Monitoring Using DynatraCe

203

 # priority class to assign to oneagent pods (optional)

 # https://kubernetes.io/docs/concepts/configuration/pod-

priority- preemption/

 #priorityClassName: PRIORITYCLASS

 # disables automatic restarts of oneagent pods in case a new

version is available

 #disableAgentUpdate: false

 # when enabled, and if Istio is installed on the Kubernetes

environment, then the Operator will create the corresponding

 # VirtualService and ServiceEntries objects to allow access

to the Dynatrace cluster from the agent.

 #enableIstio: false

 # DNS Policy for OneAgent pods (optional.) Empty for default

(ClusterFirst), more at

 # https://kubernetes.io/docs/concepts/services-networking/

dns-pod-service/#pod-s-dns-policy

 #dnsPolicy: ""

 # Labels are customer-defined labels for oneagent pods to

structure workloads as desired

 #labels:

 # custom: label

 # Name of the service account for the OneAgent (optional)

 #serviceAccountName: "dynatrace-oneagent"

 # Configures a proxy for the Agent, AgentDownload, and the

Operator (optional)

 # Either provide the proxy URL directly at 'value' or create

a secret with a field 'proxy' which holds your encrypted

proxy URL

 #proxy:

 # value: https://my-proxy-url.com

 # valueFrom: name-of-my-proxy-secret

Chapter 7 Container appliCation Monitoring Using DynatraCe

204

 # Adds the provided CA certficates to the Operator and the

OneAgent (optional)

 # Provide the name of the configmap which holds your .pem in

a field called 'certs'

 # If this is not set the default embedded certificates on the

images will be used

 #trustedCAs: name-of-my-ca-configmap

 # Sets a NetworkZone for the OneAgent (optional)

 # Note: This feature requires OneAgent version 1.195 or

higher

 #networkZone: name-of-my-network-zone

Edit ENVIRONMENTID to be the environment ID of your SaaS instance.

For example, in our case it’s euz01562. You can navigate to your Dynatrace

SaaS instance and get the environment ID from its URL, as highlighted in

Figure 7-20.

For tokens, set the value to the name of the secret that we have created:

oneagent. Set APP_LOG_CONTENT_ACCESS=1 and env: [].

After making required changes, Listing 7-2 will be the contents of the

cr.yml file.

Figure 7-20. Dynatrace environment ID

Chapter 7 Container appliCation Monitoring Using DynatraCe

205

Listing 7-2. Dynatrace oneagent custom resource cr.yml

apiVersion: dynatrace.com/v1alpha1

kind: OneAgent

metadata:

 # a descriptive name for this object.

 # all created child objects will be based on it.

 name: oneagent

 namespace: dynatrace

spec:

 # dynatrace api url including `/api` path at the end

 # either set ENVIRONMENTID to the proper tenant id or change

the apiUrl as a whole, e.q. for Managed

 apiUrl: https://euz01562.live.dynatrace.com/api

 # disable certificate validation checks for installer

download and API communication

 skipCertCheck: false

 # name of secret holding `apiToken` and `paasToken`

 # if unset, name of custom resource is used

 tokens: "oneagent"

 # node selector to control the selection of nodes (optional)

 nodeSelector: {}

 # https://kubernetes.io/docs/concepts/configuration/taint-

and- toleration/ (optional)

 tolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io/master

 operator: Exists

 # oneagent installer image (optional)

 # certified image from RedHat Container Catalog for use on

OpenShift: registry.connect.redhat.com/dynatrace/oneagent

 # for kubernetes it defaults to docker.io/dynatrace/oneagent

Chapter 7 Container appliCation Monitoring Using DynatraCe

206

 image: ""

 # arguments to oneagent installer (optional)

 # https://www.dynatrace.com/support/help/shortlink/oneagent-

docker#limitations

 args:

 - APP_LOG_CONTENT_ACCESS=1

 # environment variables for oneagent (optional)

 env: []

 # resource settings for oneagent pods (optional)

 # consumption of oneagent heavily depends on the workload to

monitor

 # please adjust values accordingly

 #resources:

 # requests:

 # cpu: 100m

 # memory: 512Mi

 # limits:

 # cpu: 300m

 # memory: 1.5Gi

 # priority class to assign to oneagent pods (optional)

 # https://kubernetes.io/docs/concepts/configuration/pod-

priority- preemption/

 #priorityClassName: PRIORITYCLASS

 # disables automatic restarts of oneagent pods in case a new

version is available

 #disableAgentUpdate: false

 # when enabled, and if Istio is installed on the Kubernetes

environment, then the Operator will create the corresponding

 # VirtualService and ServiceEntries objects to allow access

to the Dynatrace cluster from the agent.

 #enableIstio: false

Chapter 7 Container appliCation Monitoring Using DynatraCe

207

 # DNS Policy for OneAgent pods (optional.) Empty for default

(ClusterFirst), more at

 # https://kubernetes.io/docs/concepts/services-networking/

dns-pod-service/#pod-s-dns-policy

 #dnsPolicy: ""

 # Labels are customer defined labels for oneagent pods to

structure workloads as desired

 #labels:

 # custom: label

 # Name of the service account for the OneAgent (optional)

 #serviceAccountName: "dynatrace-oneagent"

 # Configures a proxy for the Agent, AgentDownload, and the

Operator (optional)

 # Either provide the proxy URL directly at 'value' or create

a secret with a field 'proxy' which holds your encrypted

proxy URL

 #proxy:

 # value: https://my-proxy-url.com

 # valueFrom: name-of-my-proxy-secret

 # Adds the provided CA certficates to the Operator and the

OneAgent (optional)

 # Provide the name of the config map which holds your .pem in

a field called 'certs'

 # If this is not set the default embedded certificates on the

images will be used

 #trustedCAs: name-of-my-ca-configmap

 # Sets a NetworkZone for the OneAgent (optional)

 # Note: This feature requires OneAgent version 1.195 or

higher

 #networkZone: name-of-my-network-zone

Chapter 7 Container appliCation Monitoring Using DynatraCe

208

Step 15: Create the custom resource by executing the following

command:

$ kubectl create -f cr.yaml

Step 16: Now, we will install an ActiveGate component to connect our

Kubernetes cluster with Dynatrace SaaS. Log in to the Dynatrace console

and select “Deploy Dynatrace.” Then, click on Install ActiveGate, as shown

in Figure 7-21.

Step 17: Select “Linux” and click Copy underneath “Run this

command on the target host to download the installer”; run it onto the

server where we are installing the OneAgent operator. It will download the

installer as shown in Figure 7-22.

Figure 7-21. Dynatrace ActiveGate installation

Chapter 7 Container appliCation Monitoring Using DynatraCe

209

$wget -O Dynatrace-ActiveGate-Linux-x86-1.181.144.sh

"https://euz01562.live.dynatrace.com/api/v1/deployment/

installer/gateway/unix/latest?arch=x86&flavor=default"

--header="Authorization: Api-Token hzgdWMfkRBiz4gcGDin5J"

Step 18: Execute the installer to install ActiveGate. After this, we can

proceed to further Kubernetes-related configuration.

$./Dynatrace-ActiveGate-Linux-x86-1.181.144.sh

Step 19: In previous steps, we have cloned a file named kubernetes-

monitoring- service-account.yaml. Readers can review the content of

this file in Listing 7-3, as we will use this file in the next step.

Listing 7-3. Dynatrace Kubernetes monitoring configuration file

apiVersion: v1

kind: ServiceAccount

metadata:

Figure 7-22. Dynatrace ActiveGate installation

Chapter 7 Container appliCation Monitoring Using DynatraCe

210

 name: dynatrace-monitoring

 namespace: dynatrace

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: dynatrace-monitoring-cluster

rules:

- apiGroups:

 - ""

 resources:

 - nodes

 - pods

 verbs:

 - list

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: dynatrace-monitoring-cluster

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: dynatrace-monitoring-cluster

subjects:

- kind: ServiceAccount

 name: dynatrace-monitoring

 namespace: dynatrace

Step 20: Create a service account and cluster role for accessing the

Kubernetes API with the following snippet:

$ kubectl apply -f kubernetes-monitoring-service-account.yaml

Chapter 7 Container appliCation Monitoring Using DynatraCe

211

Step 21: Get the Kubernetes API URL for later use using the following

command:

$ kubectl config view --minify -o jsonpath='{.clusters[0].

cluster.server}'

Step 22: Get the Bearer token for later use using the following

command:

$ kubectl get secret $(kubectl get sa dynatrace-monitoring -o

jsonpath='{.secrets[0].name}' -n dynatrace) -o jsonpath='{.

data.token}' -n dynatrace | base64 –decode

Step 23: Now, let’s connect the Kubernetes cluster through Dynatrace

settings. Log in to Dynatrace and navigate to Settings ➤ Cloud. Go to

Virtualization ➤ Kubernetes. Click Connect New Cluster. Provide a name,

Kubernetes API URL, and the Bearer token for the Kubernetes cluster, as

shown in Figure 7-23.

Figure 7-23. Dynatrace and Kubernetes integration

Chapter 7 Container appliCation Monitoring Using DynatraCe

212

Step 24: Once the cluster is added successfully, it will be listed like in

Figure 7-24.

 Container Metrics on Dynatrace
Now that we have integrated Dynatrace with our Kubernetes setup and

deployed the easyTravel application, let’s navigate the console to view

the container application monitoring metrics. OneAgent will do full-stack

monitoring, including infrastructure, Docker, and code-level monitoring,

for the hosted applications.

Step 1: Log in to Dynatrace. The home dashboard will now report

additional data, as shown in Figure 7-25.

Figure 7-24. Dynatrace and Kubernetes integration

Chapter 7 Container appliCation Monitoring Using DynatraCe

213

Step 2: To view the Kubernetes cluster status, navigate to the

Kubernetes tab at the left-hand side and then click on the cluster, as shown

in Figure 7-26.

Figure 7-26. Dynatrace Kubernetes cluster metrics

Figure 7-25. Dynatrace dashboard after Kubernetes integration

Chapter 7 Container appliCation Monitoring Using DynatraCe

214

By clicking on the cluster, we can look at cluster utilization. It will show

the CPU and memory utilization based on usage, requests, limits, and

availability. The same pane will show the number of nodes running under

that cluster, as shown in Figure 7-27.

Step 3: By clicking the Analyze Nodes button, the page will showcase

the CPU and memory utilization for the individual nodes running under

this Kubernetes cluster, as shown in Figure 7-28.

Figure 7-28. Dynatrace Kubernetes cluster node metrics

Figure 7-27. Dynatrace Kubernetes cluster metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

215

Step 4: To take a closer look at these nodes, we can go to the Hosts

tab from the navigation menu. Here, the nodes are listed out as hosts, as

shown in Figure 7-29.

Individual Host pages show problem history, event history, and related

processes for each host. To assess health, the following performance

metrics are captured for each host and presented on each Host overview

page, as shown in Figure 7-30:

CPU

Memory

Disk (storage health)

NIC (network health)

Figure 7-29. Dynatrace Kubernetes Host view

Chapter 7 Container appliCation Monitoring Using DynatraCe

216

Figure 7-30. Dynatrace Kubernetes Host view

Chapter 7 Container appliCation Monitoring Using DynatraCe

217

Step 5: On the same page, at the right-hand side, a complete list of

processes and containers running on this host can be seen. We can view

easyTravel processes and containers on this page, as shown in Figure 7-32.

Figure 7-31. Dynatrace Kubernetes Host view

On the same page, we can see if there is any connectivity from this host

to any another host, as shown in Figure 7-31.

Chapter 7 Container appliCation Monitoring Using DynatraCe

218

On the same page, by clicking on View Container, we can see the

containers grouped by image type, as shown in Figure 7-33.

Figure 7-32. Dynatrace Kubernetes Processes and Containers view

Chapter 7 Container appliCation Monitoring Using DynatraCe

219

Step 6: Expand one of the images to view the details regarding those

containers running using this image. In this view, the following details are

available, as shown in Figure 7-34.

CPU: CPU user divided by CPU system, expressed as

a percentage.

Memory: Resident Set Size (RSS) and cache

memory. RSS reflects data belonging to processes,

while cache memory represents the data stored on

disk that is currently cached in memory.

Traffic: Both incoming and outgoing network traffic

Throttling: Total time that a container’s CPU usage

was throttled

Figure 7-33. Dynatrace Containers Grouped by Image Name view

Chapter 7 Container appliCation Monitoring Using DynatraCe

220

For the processes, details are captured as shown in Figure 7-35.

Figure 7-34. Dynatrace container metrics

Figure 7-35. Dynatrace Kubernetes process metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

221

Step 7: On the navigation menu, we can see a summary of the most

relevant details of the Docker, as shown in Figure 7-36. The graphical view

at the top of the page displays the following:

Number of running containers

Number of Docker images

Top three containers consuming the most memory

Most recently started container

Most frequently used images

Figure 7-36. Dynatrace Docker dashboard view

The Docker Hosts section at the bottom of the page shows the resource

usage of individual Docker hosts, including number of containers running,

as shown in Figure 7-37.

Chapter 7 Container appliCation Monitoring Using DynatraCe

222

Step 8: Click on the Application tab to view application monitoring

metrics, as shown in Figure 7-38.

By default, there will be an application created called “My web

application.” All the traffic will report to this application at first. Now, let’s

create a new application using the following steps. Navigate to Settings ➤

Web & mobile Monitoring ➤ Application Detection and run as shown in

Figure 7-39.

Figure 7-38. Dynatrace application monitoring

Figure 7-37. Dynatrace Docker view

Chapter 7 Container appliCation Monitoring Using DynatraCe

223

Click on Create Application Detection Rule, as shown in Figure 7-40.

Figure 7-39. Dynatrace easyTravel application onboarding

Figure 7-40. Dynatrace easyTravel application onboarding

Chapter 7 Container appliCation Monitoring Using DynatraCe

224

Now click on New Application. Give a name for the application and

then define some rules for the web requests. Then, click on Save, as shown

in Figure 7-41.

This will create an application under the Application tab. Rules can be

defined based on domain and URLs. Here, we are using the domain for

detecting web requests. Our application domain is 10.1.150.150. So, we

have specified the same in the rule. Now, whenever a request comes to this

domain, it will get registered under easyTravel, as shown in Figure 7-42.

Figure 7-42. Dynatrace easyTravel application onboarding

Figure 7-41. Dynatrace easyTravel application onboarding

Chapter 7 Container appliCation Monitoring Using DynatraCe

225

Step 9: To view the easyTravel application, we navigate to Applications

and click on easyTravel, as shown in Figure 7-43.

Figure 7-43. Dynatrace easyTravel application metrics

We will view the application as seen in Figure 7-44.

By clicking on User Behavior, we will see the screen in Figure 7-45.

Figure 7-44. Dynatrace easyTravel application metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

226

On the same page, we can see the user actions and errors, as shown in

Figure 7-46.

By clicking on any of the errors, we can see the details of the errors

captured, as shown in Figure 7-47.

Figure 7-45. Dynatrace easyTravel application metrics

Figure 7-46. Dynatrace easyTravel application metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

227

Here, we can see the occurrences of the error, browser, OS, and

location-specific details. Below that we can see a detailed description of

the error, as shown in Figure 7-48.

So, by using the preceding drill-down, we can identify the root cause of

all the errors in our container application.

 Application Topology
In Dynatrace there is a feature called Smartscape. Smartscape auto-

discovery delivers a quick and efficient overview of all the topological

dependencies in your infrastructure, processes, and services, both on the

vertical axis (where full-stack dependencies across all tiers are displayed)

as well as on the horizontal axis (where all ingoing and outgoing call

relationships within each tier are visualized). Let’s view the Smartscape

topology for our easyTravel application.

Figure 7-47. Dynatrace easyTravel application metrics

Figure 7-48. Dynatrace easyTravel application metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

228

Step 1: To view the easyTravel application topology, click on

Smartscape Topology, as shown in Figure 7-49.

Figure 7-49. Dynatrace easyTravel application topology

To see a detailed description of the easyTravel processes, click on Host

and select the target node host. Under Processes and Containers, click any

process to explore that process in detail on a dedicated process page.

On each process page, you’ll find process-specific statistics related

to CPU consumption, memory consumption, network utilization (see

Chapter 7 Container appliCation Monitoring Using DynatraCe

229

Figure 7-50), and other infrastructure measurements. You’ll also find

details regarding related events, problems, and dependencies (including

called and calling process).

At the top of this process page, we can also see provided services, as

shown in Figure 7-50.

In this Figure 7-51, a topology is created for every process, and we can

see its caller and called processes as well by clicking on the Process tab at

the left and right-hand side, as shown in Figure 7-50.

Figure 7-50. Dynatrace easyTravel application processes

Chapter 7 Container appliCation Monitoring Using DynatraCe

https://www.dynatrace.com/support/help/how-to-use-dynatrace/hosts/monitoring/measures-for-host-health/

230

 Transactions and Services
We can check the availability of the processes, and in the graph itself we

can see if a process was shut down at any point in time. Below that there

will be a list of events for this process. If any changes have been made in

the process deployment, there will be an event listed for this. If the process

was restarted, there will be an event for this as well.

Step 1: When you look at processes, you’re seeing topology

information, whereas services give you code-level insight. To view service-

specific details in Dynatrace, go to Transactions & Services and click on

one of the services, as shown in Figure 7-52.

Figure 7-51. Dynatrace easyTravel application processes

Chapter 7 Container appliCation Monitoring Using DynatraCe

231

Figure 7-52. Dynatrace easyTravel application transaction metrics

For every service, we can see the caller and calling requests, number

of requests, and response time, including dynamic web requests and

resource requests, as shown in Figure 7-53.

Figure 7-53. Dynatrace easyTravel application transaction metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

232

By clicking on View Dynamic Requests, we can see all the requests

coming to this service. On the same page, we can see the response time

and failure requests, including CPU and throughput. At the top right

corner, we can have an overview of the problems with this service, as

shown in Figure 7-54.

For every service, we can see a graph of response time, failure rate,

CPU, and throughput for all web requests coming to this service, as shown

in Figure 7-55.

Figure 7-54. Dynatrace easyTravel application transaction metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

233

 Summary
In this chapter, we have provided an overview of Dynatrace and its

capabilities, along with hands-on steps for using Dynatrace for container

application monitoring. In the next chapter, we will provide overview of

Sysdig and look at its capabilities for monitoring Container ecosystem. We

will also provide hands-on steps for using Sysdig for container application

monitoring.

Figure 7-55. Dynatrace easyTravel application transaction metrics

Chapter 7 Container appliCation Monitoring Using DynatraCe

235© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_8

CHAPTER 8

Container Application
Monitoring Using
Sysdig
This chapter will provide hands-on steps for doing container application

monitoring using Sysdig. We will look at the following:

• Introduction to Sysdig

• Container Application Monitoring

• Working with Sysdig for Container Application

Monitoring

 Introduction to Sysdig
Sysdig Monitor is a powerful container-native monitoring and

troubleshooting solution that provides comprehensive observability.

It comes out of the box with unmatched container visibility and deep

orchestrator integrations, including Kubernetes, Docker Swarm, AWS

https://doi.org/10.1007/978-1-4842-6216-0_8#DOI

236

EKS, Azure AKS, and Google GKE. It is available as both a cloud and an

on-premises software offering. The following are the key features of Sysdig

Monitor:

• Simplifies discovery and metric collection: Sysdig

provides transparent instrumentation that dynamically

discovers applications, containers, hosts, networks, and

custom metrics, like Prometheus, JMX, and statsD, for

deep insight into complex environments.

• Visualizes service reliability: Sysdig provides a

consolidated overview of your service performance,

capacity, and risk profile, which helps developers and

DevOps quickly identify application issues and take

action.

• Monitors infrastructure and applications: By

leveraging deep integrations with Kubernetes,

OpenShift, Docker, Mesos, DC/OS, AWS, Google, IBM,

Azure, etc., Sysdig lets you see beyond infrastructure

into how your apps and services are performing.

• Builds robust dashboards: Sysdig provides out-of-

the-box and customizable dashboards that enable

at-a-glance views of your infrastructure, applications,

compliance, and metrics and let you visualize your

environment the way you want.

• Simplifies and scales Prometheus monitoring: Using

turn-key, horizontal scalability, enterprise access

control and security, Prometheus metrics correlation,

and PromQL queries with any event or metric, Sysdig

helps you keep pace with large, complex environments.

Chapter 8 Container appliCation Monitoring Using sysdig

237

• Allows you to explore your entire infrastructure:
Sysdig provides automatic correlation of data from

across your infrastructure, including custom metrics

from statsD, JMX, and Prometheus, providing deep

insight into complex environments.

• Proactively alert for faster response: Sysdig provides

configurable alerts to enable proactive notification

of any condition, including events, downtime, and

anomalies, to help you get a handle on issues before

they impact operations.

• Accelerates troubleshooting: Sysdig provides deep

container visibility, service-oriented views, and

comprehensive metrics that help you hunt threats and

eliminate issues faster.

Sysdig’s functional architecture is shown in Figure 8-1.

Figure 8-1. Sysdig functional architecture

 Container Application Monitoring
Sysdig’s commercial offering unifies all operational data and turns it

into insights. Starting with thousands of metrics and events for every

application, container, and host, the Sysdig platform enriches the data to

Chapter 8 Container appliCation Monitoring Using sysdig

238

give you precise, in-context views of your applications and microservices.

Sysdig then provides you with apps that deliver key visualizations to help

you achieve your specific workflows.

Sysdig gets its data from the kernel by subscribing to trace-points that

many system kernels are already processing and publishing; this is called

Container Vision. This makes the data capture a very lightweight exercise

(typically 1–3% CPU resource and 500 MB system memory). Sysdig is

based on the open source Linux troubleshooting and forensics project by

the same name (Sysdig). The open source project allows you to see every

single system call, down to process, arguments, payload, and connection,

on a single host. This data is dynamically mapped to containers,

microservices, clouds, and orchestrators in a way that is at once powerful

and simple to use.

To further leverage the unique visibility created by the original Sysdig

project, the developers built an open source security tool called Falco

. Falco combines the visibility of open source Sysdig with a rules engine

that constantly monitors system events for violations of policies at run-

time. The Sysdig enterprise offering then allows for enforcement of these

policies, compliance, and auditing on top of this rich data.

To further enrich the data used to secure your environment, Sysdig

has also integrated Anchore into the platform. What Falco does for run-

time, Anchore does for build-time: it allows you to implement and enforce

vulnerability management policies and scan your container images before

they ever go into production. Please refer to Figure 8-2 for the Sysdig

container monitoring system architecture components.

Chapter 8 Container appliCation Monitoring Using sysdig

239

Sysdig’s architecture is very similar to those of tcpdump and

Wireshark, as events are first captured at the kernel level by a small driver

called sysdig-probe, which leverages a kernel facility called tracepoints.

Sysdig also now supports eBPF, shown in Figure 8-3, as an alternative

to the kernel module-based architecture just described. eBPF—extended

Berkeley Packet Filter—is a Linux-native in-kernel virtual machine that

enables secure, low-overhead tracing for application performance and

event observability and analysis.

Figure 8-2. Sysdig container monitoring architecture

Figure 8-3. Sysdig container monitoring architecture

Chapter 8 Container appliCation Monitoring Using sysdig

240

 Sysdig Trial License Setup
Now, let’s request the evaluation version of Sysdig Monitor and see how it

monitors container applications.

Step 1: Navigate to https://sysdig.com/ and request the evaluation

version of Sysdig. Select Products and click on the Sign-up Today button,

as shown in Figure 8-4.

Step 2: Fill in the required details and click the Submit button.

Step 3: You will receive an activation link at the email address you

provided. It takes roughly thirty minutes to one hour to receive the email.

Click on the activation link in the email to complete your evaluation access

request. You will be prompted to set up a new password for Sysdig. Click

the Activate and Login button to proceed, as shown in Figure 8-5.

Figure 8-4. Sysdig evaluation request

Chapter 8 Container appliCation Monitoring Using sysdig

https://sysdig.com/

241

Step 4: On the next screen, you will be prompted to go to the Sysdig

Welcome screen. Click on Next to proceed.

Step 5: We are using Sysdig to monitor our Kubernetes cluster, so

please select “Kubernetes | GKE | OpenShift” on the next screen. On

selection, you will view a key, as shown in Figure 8-6. Copy the key. We will

use this later in the chapter.

Figure 8-5. Sysdig evaluation account password setup

Figure 8-6. Sysdig evaluation account Kubernetes integration key

Chapter 8 Container appliCation Monitoring Using sysdig

242

Now, we will set up a cluster on AWS using Amazon Elastic Kubernetes

Services (EKS), and then integrate Sysdig Monitor for container

application monitoring. We will assume the reader has knowledge of

working with AWS and has an AWS account.

 Elastic Kubernetes Service Setup on AWS
Please perform the following steps to set up the Elastic Kubernetes

Services on AWS.

Step 1: Log in to your AWS account and navigate to IAM to create the

IAM role for the AWS EKS service, as shown in Figure 8-7.

Step 2: Select “Roles” and click on the Create Role button, as shown in

Figure 8-8.

Figure 8-7. AWS EKS IAM role creation

Chapter 8 Container appliCation Monitoring Using sysdig

243

Step 3: Select “AWS EKS Service” from the services list and select the

use case of EKS for managing the cluster on the user’s behalf. Provide role

name and description. Click the Next: Permissions button, as shown in

Figure 8-9.

Figure 8-8. AWS EKS IAM role creation

Figure 8-9. AWS EKS IAM role creation

Chapter 8 Container appliCation Monitoring Using sysdig

244

Step 4: Add the policies listed in Figure 8-10 and add tags (optional).

Click on the Next: Review button.

Step 5: Review and click the Create Role button, as shown in Figure 8- 11.

Review after the role has been created.

Step 6: Now, let’s create a security group for our AWS EKS cluster.

Select “EC2” from the AWS service list and navigate to Security Groups, as

shown in Figure 8-12.

Figure 8-11. AWS EKS IAM role creation

Figure 8-10. AWS EKS IAM role creation

Chapter 8 Container appliCation Monitoring Using sysdig

245

Step 7: Click on Create Security Group. Provide a name for the security

group and add a description (optional). Select a pre-built VPC. Click on the

Create button to set up a security group for the AWS EKS cluster, as shown

in Figure 8-13.

Figure 8-12. AWS EKS security group creation

Figure 8-13. AWS EKS security group creation

Chapter 8 Container appliCation Monitoring Using sysdig

246

Step 8: Now add inbound and outbound security group ports to your \

cluster. Typically, users follow organizational policies, AWS architecture, and

security best practices to allow selective ports for their AWS EKS cluster. For

this lab exercise, we are adding a few default ports, as shown in Figure 8-14.

Step 9: Now, let’s create an SSH key pair for the AWS EKS cluster. Select

“EC2” from the service list and navigate to Key Pairs, as shown in Figure 8- 15.

Figure 8-15. AWS EKS SSH key pair creation

Figure 8-14. AWS EKS security group inbound port

Chapter 8 Container appliCation Monitoring Using sysdig

247

Step 10: Click on Create Key Pair. Provide key pair name and click the

Create button, as shown in Figure 8-16.

Step 11: Now, let’s create the AWS EKS cluster. Select “EKS” from the

services list. Click the Create Cluster button, as shown in Figure 8-17.

Provide a cluster name and select Kubernetes version 1.14. Select the

IAM role created in previous steps, as shown in Figure 8-18.

Figure 8-16. AWS EKS SSH key pair creation

Figure 8-17. AWS EKS creation

Chapter 8 Container appliCation Monitoring Using sysdig

248

Step 12: Select the pre-built VPC and subnet, as shown in Figure 8-19.

Select the security group created in a previous step, as shown in

Figure 8-20.

Figure 8-19. AWS EKS creation

Figure 8-18. AWS EKS creation

Chapter 8 Container appliCation Monitoring Using sysdig

249

Step 13: Enable public access for AWS EKS APIs, as shown in Figure 8- 21.

Also enable all logging options, as shown in Figure 8-22.

Figure 8-20. AWS EKS creation

Figure 8-21. AWS EKS creation

Figure 8-22. AWS EKS creation

Chapter 8 Container appliCation Monitoring Using sysdig

250

Step 14: Add tag values (optional) and click the Create button, as

shown in Figure 8-23.

Step 15: Validate your EKS cluster after setup. You can view if status is

ACTIVE on the AWS console, as shown in Figure 8-24.

Step 16: Now, let’s create a node group in the AWS EKS cluster. Click

the Add Node Group button on the newly created AWS EKS cluster’s page,

as shown in Figure 8-25.

Figure 8-23. AWS EKS creation

Figure 8-24. AWS EKS creation validation

Chapter 8 Container appliCation Monitoring Using sysdig

251

Provide the name of the node group, then select subnets and the IAM

role created in previous steps. Click the Next button.

Step 17: Select “Amazon Linux 2” for AMI type, select instance type as

“t3.xlarge,” and set the disk size to “20,” as shown in Figure 8-26.

Step 18: Select the SSH key pair created in previous steps. Select “Allow

remote access from All.” Click the Next button.

Step 19: Provide cluster scaling configuration of minimum, maximum,

and desired size as 1. Click the Next button, as shown in Figure 8-27.

Figure 8-25. AWS EKS node group creation

Figure 8-26. AWS EKS node group creation

Chapter 8 Container appliCation Monitoring Using sysdig

252

Step 20: Review and click the Create button as shown in Figure 8-28.

After creation, you can view whether the node group is in an active state on

the AWS EKS cluster home page, as shown in Figure 8-24.

Figure 8-27. AWS EKS node group creation

Figure 8-28. AWS EKS node group creation

Step 21: Now we will set up the AWS cli tool on our Kubernetes master

node server. Execute the following command to install Python36 on your

system:

$sudo yum install python36

Chapter 8 Container appliCation Monitoring Using sysdig

253

Step 22: Verify the Python version by executing the following

command:

$Python3 –version

Step 23: Install AWS cli by executing the following command:

$Pip3 install awscli –upgrade –user

Step 24: Verify AWS cli version by executing the following command:

$aws --version

Step 25: Configure your AWS account credentials (access and secret

key) by executing the following command. Add the secret key, access key,

and region where the AWS EKS cluster was created. Select “json” as the

output format, as shown in Figure 8-29.

$aws configure

Figure 8-29. AWS cli tool configuration

Step 26: Execute the following command to fetch the AWS EKS cluster

kubeconfig details (which we created in a previous step) from our master

Kubernetes node:

$aws eks --region "us-east-1" update-kubeconfig --name "Prometheus"

Step 27: Fetch the kernel details of the AWS EKS cluster by executing

the following command, as shown in Figure 8-30:

$kubectl describe nodes

Chapter 8 Container appliCation Monitoring Using sysdig

254

 Sysdig Agent Installation
So far we have created an evaluation account for Sysdig, created an

AWS EKS cluster, and connected our Kubernetes master node with AWS

EKS. Now, we will install a Sysdig agent on the AWS EKS cluster.

Step 1: Execute the following command to download and install

dependencies for the Sysdig agent:

$yum -y install kernel-devel-$(uname -r)

Step 2: Navigate to the /home/Prometheus directory and execute the

following command to clone the file from GitHub:

$cd /home/promethues

$ git clone https://github.com/dryice-devops/sysdig.git

Step 3: Under the cloned Sysdig directory, you will find sysdig-agent-

clusterrole.yaml, sysdig-agent-configmap.yaml, and sysdig-agent-

daemonset-v2.yaml files. You can get sample files from this GitHub link:

https://github.com/draios/sysdig-cloud-scripts/tree/master/

agent_deploy/kubernetes.

You don’t need to modify anything in the sysdig-agent-clusterrole.

yaml or sysdig-agent-daemonset-v2.yaml files. In the sysdig-agent-

configmap.yaml file, you need to update the k8s_cluster_name field

with the name of the AWS EKS cluster (Prometheus, in our case). Also set

Prometheus monitoring to true, as shown in Figure 8-31.

Figure 8-30. AWS EKS cluster kernel version

Chapter 8 Container appliCation Monitoring Using sysdig

https://github.com/draios/sysdig-cloud-scripts/tree/master/agent_deploy/kubernetes
https://github.com/draios/sysdig-cloud-scripts/tree/master/agent_deploy/kubernetes

255

Step 4: Create a namespace for the Sysdig agent using the non-root

user, as follows:

$kubectl create ns sysdig-agent

Step 5: Create secrets for the Sysdig agent by executing the following

command. This will use the key (highlighted) we got when we created the

evaluation account for Sysdig (while selecting Kubernetes on the Welcome

screen).

$kubectl create secret generic sysdig-agent --from-

literal=access-key=b7f77372-0f4e-444a-b13a-c3818fd5c885 -n

sysdig-agent

Step 6: Execute the following command to deploy the Sysdig agent

cluster role. Here, the cluster role file is the same one we created in

previous steps.

$ kubectl apply -f sysdig-agent-clusterrole.yaml -n sysdig-

agent

Step 7: Execute the following command to create a service account in

the Sysdig agent namespace:

$ kubectl create serviceaccount sysdig-agent -n sysdig-agent

Step 8: Execute the following command to create cluster role binding

in the Sysdig namespace:

$ kubectl create clusterrolebinding sysdig-agent --clusterrole=

sysdig-agent --serviceaccount=sysdig- agent:sysdig-agent

Figure 8-31. Sysdig agent config files update

Chapter 8 Container appliCation Monitoring Using sysdig

256

Step 9: Execute the following commands to complete installation of

the Sysdig agent:

$ kubectl apply -f sysdig-agent-configmap.yaml -n sysdig-agent

$kubectl apply -f sysdig-agent-daemonset-v2.yaml -n sysdig-

agent

 Deploy Sock Shop Application on EKS
Before starting to use Sysdig, let’s deploy an application on our AWS

EKS cluster. We will use the Sock Shop application in this example. The

application is the user-facing part of an online shop that sells socks. It is

intended to aid the demonstration and testing of microservice and cloud-

native technologies. We will use this application to demonstrate Sysdig’s

container application monitoring capability. Figure 8-32 shows the

architecture of the application.

Chapter 8 Container appliCation Monitoring Using sysdig

257

Step 1: Execute the following command to download the Sock Shop

application’s yaml file to the /home/prometheus/sysdig directory.

This file contains the configuration information related to Kubernetes

deployments, pods, Docker images, and services required to deploy the

Sock Shop application on the AWS EKS cluster.

$ git clone https://github.com/dryice-devops/microservices-

demo.git

Figure 8-32. Sock Shop application architecture

Chapter 8 Container appliCation Monitoring Using sysdig

258

Step 2: Execute the following command to deploy the application to

the /home/prometheus/sysdig/microservices-demo/deploy/Kubernetes

directory:

$ kubectl create namespace sock-shop

Step 3: Execute the following inline command to deploy the application:

$ kubectl apply -f complete-demo.yaml

Step 4: Execute the following inline command to validate the

deployed application. You can view all pods that are part of the Sock Shop

application, as shown in Figure 8-33.

$kubectl get pods -n sock-shop

Figure 8-33. Sock Shop application deployment validation

 EKS Metrics on Sysdig
Now we will navigate to the Sysdig console for reviewing monitoring

metrics.

Step 1: Navigate to https://sysdig.com/ and click the Login button,

then select “Monitor.” Log in using the username/password used at the

registration stage.

Chapter 8 Container appliCation Monitoring Using sysdig

https://sysdig.com/

259

Step 2: After login, you will view the Welcome to Sysdig page. You

will also see a “You have 1 agent connected” notification. Click on Next to

navigate to the next screen, as shown in Figure 8-34.

Step 3: Add the AWS access and secret key on the screen. Enable

Cloudwatch and click the Next button. You will see the “setup complete”

message on the screen, as shown in Figure 8-35.

Figure 8-34. Sysdig welcome page

Chapter 8 Container appliCation Monitoring Using sysdig

260

 Sysdig Navigation
Now, let’s navigate across various reports on the Sysdig console useful for

container monitoring.

Step 1: To view the deployed pods in Sysdig, click Explore. Select

“Hosts & Containers” from the drop-down menu. On the other node,

select “Kubernetes Health Overview” under the Kubernetes category

(subcategory of Default Dashboards), as shown in Figure 8-36.

Figure 8-36. Sysdig Kubernetes health dashboard

Figure 8-35. Sysdig adding AWS account

Chapter 8 Container appliCation Monitoring Using sysdig

261

Step 2: You will view rich metrics regarding the entire Kubernetes

environment, including top namespace (by container), CPU/memory/file

system usage, and network in/out, as shown in Figure 8-37.

Step 3: Select “Container Limits” from the right-side drop-down

(Figure 8-38) to view CPU/memory share and quotas.

Figure 8-37. Sysdig Kubernetes health dashboard

Figure 8-38. Sysdig container limit monitoring

Chapter 8 Container appliCation Monitoring Using sysdig

262

Step 4: Select “File system” from the right-side drop-down to view the

number of bytes free/bytes used, number of nodes in the file system, etc.,

as shown in Figure 8-39.

Step 5: Select the “Overview” option under Network from the right-

side drop-down to view metrics like inbound network bytes, outbound

network bytes, and total network bytes, as shown in Figure 8-40.

Figure 8-40. Sysdig container network monitoring

Figure 8-39. Sysdig container file system monitoring

Chapter 8 Container appliCation Monitoring Using sysdig

263

 Docker Container Metrics
Sysdig provides various useful container metrics in the form of graphs.

This information is useful for the sysadmin to monitor the health of the

container ecosystem and take an appropriate action; e.g., generating an

alert if any container is consuming more memory or CPU utilization. In

this section, you will learn how to visualize and analyze the container

metrics provided by Sysdig.

Now, let’s view container application metrics.

Step 1: To view container-based information for the Sock Shop

application (deployed in previous steps), select “Containerized Apps”

from the drop-down and then select container names, starting with

weaveworksdemos. You will view top pods CPU utilization, memory usage,

and filesystem, as shown in Figure 8-41.

Step 2: To view deployments, select “Deployments” from the drop-

down menu and select “Sock-Shop.” Select “Kubernetes CPU Allocation

Optimization” under the Kubernetes category, as shown in Figure 8-42.

Figure 8-41. Sysdig containerized application view

Chapter 8 Container appliCation Monitoring Using sysdig

264

 Application Performance Metrics in Sysdig
Sysdig also provides various useful metrics related to application

performance monitoring; e.g., response time, latency, request, and error

count. System administrators use this information to identify and rectify

issues that might be the cause of application failure.

Now, let’s explore other metrics provided by Sysdig specific for the

application layer.

Step 1: Select “Explore” in the left-hand side panel and choose the

“Hosts & Containers” option from the drop-down menu. Select “HTTP”

from the second drop-down menu on the right. You will view metrics like

top HTTP request, average/maximum request time, slowest URLs, etc., as

shown in Figure 8-43.

Figure 8-42. Sysdig Deployment view

Chapter 8 Container appliCation Monitoring Using sysdig

265

Step 2: To analyze the JVM (Java virtual machine) health—e.g., heap

size and garbage collector account—Sysdig provides insights. To see the

JVM-related metrics, please select “JVM.” This will show metrics like

allocated heap memory usage by process over time and garbage collector

collection time, as shown in Figure 8-44.

Figure 8-43. Sysdig HTTP monitor

Figure 8-44. Sysdig JVM monitor

Chapter 8 Container appliCation Monitoring Using sysdig

266

 Sysdig Topology View
The Sysdig Topology view provides an interactive, animated interface to

visualize how different components in your system interact with each

other in real time. The interface by default renders a selected host’s top

processes and their interactions with processes on remote hosts or host

groups. The following are the entities visible on the Sysdig console:

Nodes: The entities participating in network

communication. A node could be a process, a

container, a host, or any label identified by the

Sysdig agent. For example, kubernetes.pod.name.

Links: The network connection between nodes.

• Hosts and their child processes (host.hostName

> proc.name) serve as the default grouping for the

Topology view. Scaling a Topology view is limited

by the number of processes and connections.

Sysdig Monitor creates the Topology view by

identifying network endpoints (IP addresses)

derived from system call data.

• The Topology view in the Explore tab provides

pre- defined dashboards to represent CPU usage,

network traffic, and response time metrics.

Now, let’s view the Topology view from Sysdig.

Step 1: Select “Explore” in the left-hand side panel and choose the “Hosts

& Containers” option from the drop-down menu. Select “Topology” and then

“CPU Usage.” Click on each icon to drill down to CPU usage by application

node; a container with topology mapping is shown in Figure 8- 45.

Chapter 8 Container appliCation Monitoring Using sysdig

267

Step 2: Select the “Network Traffic” option from the second drop-

down menu instead of CPU usage. You can drill down to view the specific

flow; e.g., we selected the Python-based box that shows the network traffic

between the Python pod and Mongo DB pod related to our Sock Shop app,

as shown in Figure 8-46.

Figure 8-46. Sysdig Topology view by network traffic

Figure 8-45. Sysdig Topology view by CPU

Chapter 8 Container appliCation Monitoring Using sysdig

268

 Golden Signal Monitoring Using Sysdig
Classic monitoring tools are usually based on static configuration files

and were designed to monitor machines, not microservices or containers.

Containers are created and destroyed at an incredible pace, and it is

impossible to catch up without specific service discovery functions.

It is important that we are able to focus on relevant views and alerts

and not generate data that is of no use for analysis or troubleshooting.

Google resolved this issue using Golden Signals (term used in Google

SRE handbook). Golden Signals are four metrics that will give you a very

good idea of the real health and performance of your application as seen

by the actors interacting with that service, whether they are final users or

another service in your microservice application. The four Golden Signals

are as follows:

Latency: Latency is the time your system takes

to serve a request against the service. This is an

important sign to detect a performance degradation

problem.

Errors: The rate of errors returned by your service

is a very good indicator of deeper issues. It is very

important to detect not only explicit errors, but

implicit errors too.

Traffic/Connections: Traffic or connections is an

indicator of the amount of use of your service per

time unit. It can be many different values depending

on the nature of the system, like the number of

requests to an API or the bandwidth consumed by a

streaming app.

Chapter 8 Container appliCation Monitoring Using sysdig

269

Saturation: Usually saturation is expressed as

a percentage of the maximum capacity, but

each system will have different ways to measure

saturation. The percentage could mean the number

of users or requests obtained directly from the

application or based upon estimations.

Now, let’s see how we can view Golden Signal metrics using Sysdig.

Step 1: Select “Explore” in the left-hand side panel and choose the

“Services” option from the drop-down menu. Select “Kubernetes Service

Golden Signals” from the second drop-down menu, on the right. You’ll see

the Golden Signals metrics, as shown in Figure 8-47.

 Summary
In this chapter, we have provided hands-on steps for using Sysdig for

container application monitoring. In the next chapter, we will cover how to

automate enabling container monitoring using CI/CD-based automated

pipelines, along with hands-on exercises.

Figure 8-47. Sysdig Golden Signals metrics

Chapter 8 Container appliCation Monitoring Using sysdig

271© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_9

CHAPTER 9

Automation and
Orchestration of
Container Monitoring
This chapter will provide hands-on steps for using Infrastructure as Code

and the CI/CD pipeline to automate the deployment of container ecosystem

infrastructure, applications, and monitoring. We will look at the following:

• Container Monitoring Automation

• Hands-on Exercise for Container Monitoring

Automation

 Container Monitoring Automation
As infrastructure has evolved and matured over the last decade, the way

in which we build and deploy that infrastructure has also changed. With

the rise of Infrastructure as Code, we can now reconstruct the whole

infrastructure and platform from a code repository. With cloud computing

and APIs, we can now truly treat our infrastructure just like an application.

With containerization, since the dependencies are packaged with the

application, the application can now be ported to any infrastructure, which

itself is spun up using Infrastructure as Code.

https://doi.org/10.1007/978-1-4842-6216-0_9#DOI

272

A great advantage of Infrastructure as Code (IaC) is that it allows you to

build environments rapidly without any human intervention. With IaC, we

can now have consistent configuration and builds that are exactly alike.

The following is a high-level view of how IaC tools operate (Figure 9-1):

• You describe the desired infrastructure resources in a

file (for example, a virtual network with three public

subnets, a compute instance on one of them with a

block volume attached to it). You describe what you

need; you never describe how to create them—the IaC

tool figures out how to create them.

• The tool looks at what you have described in your code

and logs in to your cloud account to check if those

resources are present.

• If the resources are not present, they are created.

• If the resources are already present with the same

attributes, no action is taken.

• If matching resources are found with differences, the

IaC tool assumes you want them changed and makes

the change happen.

As DevOps continues to evolve, developers find ways to strengthen

the integration of IaC and containers, since they complement each other.

Containers incorporate Infrastructure as Code into the development cycle

as a core component.

Figure 9-1. How Infrastructure as Code works

Chapter 9 automation and orChestration of Container monitoring

273

At first glance, a container image appears to be a fully self-contained

application: it has all of the code and software dependencies required

to run the application. However, once we deploy and operate images in

the container ecosystem, we find we need a lot more configuration to

scale it out, make it reliable, and make it observable. The monitoring and

management of container-based infrastructure and applications brings its

own unique elements and complexity.

A containerized application in the cloud might look something like

Figure 9-2, where the container image is only part of the full application.

Figure 9-2. Containerized application components beyond image

The complete application is really best described with a combination

of the container image and an IaC template containing all this

configuration. Infrastructure as Code is an important element in release

management of an application.

Now, when it comes to automating the container monitoring, there are

many use cases possible. Some of the use cases are listed here:

• Enabling container monitoring for base infrastructure

and application via CI/CD pipeline and Infrastructure as

Code solutions (like Jenkins and Terraform/Ansible). This

can include use cases like installing any agent/plugin for

Monitoring, creating alarms, configuring threshold etc.

Chapter 9 automation and orChestration of Container monitoring

274

• Self-healing incidents which are created after receiving

monitoring alerts using the Runbook orchestration

tool. Essentially all the steps that a human performs to

troubleshoot and resolve an incident after receiving a

monitoring alert are converted into an automated flow,

which is automatically triggered to resolve the incident.

• Report generation automation using tools like Grafana

or Splunk

When we deploy Infrastructure as Code in a CI/CD pipeline, we

can deploy changes in both the microservices infrastructure and the

containers in the CI/CD release pipeline. This enables complete visibility

of both the application code and the infrastructure code in the pipeline

currently deployed in the production environment. A simplified example

of our release process is shown in Figure 9-3.

Figure 9-3. CI/CD pipeline leveraging Infrastructure as Code to
automate container monitoring

The IaC template contains both the container-related configuration

and the microservice’s infrastructure in the “build” stage of the pipeline.

The container image is built and pushed, and the unique ID for the

new container image is inserted into the IaC template. Each stage of the

pipeline, like “Dev” and “Prod,” then deploys the same Infrastructure

Chapter 9 automation and orChestration of Container monitoring

275

as Code template. This practice gives us confidence that deployments

of the entire application are repeatable. Within this pipeline, we can

enable automation to deploy container monitoring as part of a first-time

release. In the next section, we will do a hands-on exercise to enable such

automation using Terraform and Jenkins.

 Hands-on Exercise for Container Monitoring
Automation
In this section, we will use Terraform to create a Kubernetes cluster

on AWS and configure the Sysdig agent on it, and Jenkins to automate

container monitoring. We will use AWS for our target container ecosystem

and Sysdig for our container monitoring tool.

 Cleaning Up the AWS Environment Namespace
Before we begin, let’s clean up the namespace created for the Sysdig agent

and Sock Shop application from Chapter 8 for a fresh installation through

automation by Jenkins and Terraform.

Step 1: Delete the sock-shop and sysdig-agent namespaces that we

created earlier on the master node by executing the following command,

as shown in Figure 9-4:

$ kubectl delete namespace sock-shop

$ kubectl delete namespace sysdig-agent

Figure 9-4. Kubernetes namespace clean-up

Chapter 9 automation and orChestration of Container monitoring

276

 Jenkins Installation (v2.204.1)
We will start with installing Jenkins, which will be used to compose a

CI/CD pipeline for our containerized application. We will use our master

node (10.1.150.126) server to install Jenkins. We will use a Dockerized

version of Jenkins in this exercise.

Step 1: Log into the master node as the root user and execute the

following command to clone the Docker file that will be used to install

Jenkins. Navigate into the jenkins directory by executing the following

command, as shown in Figure 9-5:

$ git clone https://github.com/dryice-devops/jenkins.git

$ cd Jenkins

Step 2: Create another sub-directory named jenkins-data that will

be used as the Jenkins home and that will contain all the required details

of the Jenkins server—e.g., workspace, job, configuration details, etc.—by

executing the following command, as shown in Figure 9-6:

$ mkdir jenkins-data

Step 3: Create a Jenkins Docker image with the name jenkins by

executing the following inline command, as shown in Figure 9-6, in the

jenkins directory that contains the Docker file:

$ docker build -t jenkins.

Figure 9-5. Jenkins installation directory creation

Chapter 9 automation and orChestration of Container monitoring

277

Step 4: Verify whether the Jenkins Docker image was created by

executing the following inline command, as shown in Figure 9-7.

If the Docker image was created successfully, then the following

command will return “Repository” as Jenkins that we passed in as a tag

(-t) in previous step.

$docker images

Figure 9-6. Jenkins Docker image build

Figure 9-7. Verify Jenkins Docker image

Chapter 9 automation and orChestration of Container monitoring

278

Step 5: Execute the following command to install Jenkins on Docker, as

shown in Figure 9-8:

$docker run -u root --rm -d -p 8080:8080 -v /home/prometheus/

jenkins/jenkins-data:/var/jenkins_home -v /var/run/docker.

sock:/var/run/docker.sock Jenkins

In the preceding command we used port 8080 on the master node

to run Jenkins, so please make sure that this port is open on your Linux

VM. You can also pass another port for the VM, but the Jenkins container

port would be run on 8080 port only. For more information about the

Docker run command, please refer to Docker’s official page.1

Step 6: Execute the following command to verify that the Jenkins Docker

container is running fine. Its status should come as up as shown in Figure 9-9.

If the Jenkins Docker container is having any issues, then its status

would be Exited or Dead; in that case, you would have to check the Docker

container logs to identify the root cause of the Docker container failure.1

$ docker ps

1 https://docs.docker.com/engine/reference/commandline/docker

Figure 9-8. Jenkins installation

Figure 9-9. Jenkins installation verification

Chapter 9 automation and orChestration of Container monitoring

https://docs.docker.com/engine/reference/commandline/docker

279

Step 7: Jenkins requires a secret password during login. Secret

passwords are stored in the initialAdminPassword file in the secrets

directory of the jenkins-data folder. To get it, please execute the following

command, as shown in Figure 9-10:

$ cat jenkins-data/secrets/initialAdminPassword

Step 8: Navigate to the following URL to access Jenkins. You will

receive a prompt that will require the secret password. Use the secret

password fetched in the previous step and click the Continue button, as

shown in Figure 9-11.

URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080

Figure 9-10. Fetching Jenkins password

Figure 9-11. Accessing Jenkins console for first time

Chapter 9 automation and orChestration of Container monitoring

280

Step 9: Jenkins requires various plugins to create pipelines and to

interact with different tools to perform tasks related to CI/CD; e.g., to

connect with the GitHub repository and fetch the code, Jenkins required

the Git plugin. Jenkins provides two options to install plugins: “Install

suggested plugins” and “Select plugins to install.” In our case, we selected

“Install suggested plugins,” as shown in Figure 9-12. If you want to select

specific plugins, then choose “Select plugins to install.”

Step 10: Click on Continue to proceed, as shown in Figure 9-13.

Figure 9-12. Selection of “Install suggested plugins” option

Figure 9-13. Jenkins first-time login configuration

Chapter 9 automation and orChestration of Container monitoring

281

Step 11: Fill in details for username, password, full name, and email

address and click the Save and Continue button, as shown in Figure 9-14.

Step 12: Click on Save and Finish to proceed, as shown in Figure 9-15.

Figure 9-14. Jenkins first admin user setup

Figure 9-15. Jenkins first-time login configuration

Chapter 9 automation and orChestration of Container monitoring

282

Step 13: Click the Start using Jenkins button to complete installation,

as shown in Figure 9-16.

You will see the screen for the Jenkins console, as shown in Figure 9-17.

Figure 9-16. Jenkins first-time login configuration

Figure 9-17. Jenkins console

Chapter 9 automation and orChestration of Container monitoring

283

 Terraform Open Source Installation
We will start with installing Terraform open source, which will be used

to compose an Infrastructure as Code module for the containerized

infrastructure on AWS. We will use our master node (10.1.150.126) server

to install Terraform.

Step 1: Log in to the master node as a root user and create a sub-

directory named terraform under /home/Prometheus. Navigate into the

directory by executing the following command, as shown in Figure 9-18:

$ cd /home/prometheus

$ mkdir terraform

$ cd terraform

Step 2: Execute the following command to download the Terraform

package and unzip it, as shown in Figure 9-19:

$ wget https://releases.hashicorp.com/terraform/0.11.11/

terraform_0.11.11_linux_amd64.zip

Figure 9-18. Terraform installation directory creation

Figure 9-19. Terraform installation package download

Chapter 9 automation and orChestration of Container monitoring

284

Step 3: Verify the zip file has been successfully downloaded by

executing the following command, as shown in Figure 9-20:

$ ls -ltr

Step 4: Unzip the Terraform package by executing the following

command, as shown in Figure 9-21:

$ unzip terraform_0.11.11_linux_amd64.zip

Step 5: Remove the zip file by executing the following inline command,

as shown in Figure 9-22:

$ rm -rf terraform_0.11.11_linux_amd64.zip

$ ll

Step 6: Add the Terraform file path to the Linux PATH variable, as

shown in Figure 9-23.

$ export PATH="$PATH:/home/prometheus/terraform"

$ echo $PATH

Figure 9-20. Terraform installation package download verification

Figure 9-21. Unzip Terraform installation package

Figure 9-22. Delete Terraform zip package

Chapter 9 automation and orChestration of Container monitoring

285

Step 7: Update the bash.rc file by executing the following command,

and append export PATH="$PATH:/home/prometheus/terraform to the

end of the file. Save and quit the file.

$ vi ~/.bashrc

.bashrc

User specific aliases and functions

alias rm='rm -i'

alias cp='cp -i'

alias mv='mv -i'

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

export PATH="$PATH:/home/prometheus/terraform"

Step 8: Verify the updated content by executing the following

command, as shown in Figure 9-24:

$ cat ~/.bashrc

Figure 9-23. Update and verify PATH variable

Figure 9-24. Verify bashrc file update

Chapter 9 automation and orChestration of Container monitoring

286

Step 9: Validate successful Terraform installation by executing the

following command, as shown in Figure 9-25:

$ terraform --version

 AWS IAM authenticator Installation

Now we will install AWS IAM authenticator, which will use AWS IAM

credentials to authenticate to a Kubernetes cluster. If you are an

administrator running a Kubernetes cluster on AWS, you already have an

account to manage AWS IAM credentials so as to provision and update the

cluster. By using AWS IAM Authenticator for Kubernetes, you can avoid

having to manage a separate credential for Kubernetes access. AWS IAM

also provides a number of nice properties, such as an out-of-band audit

trail (via CloudTrail) and 2FA/MFA enforcement. We will use our Master

Node (10.1.150.126) server to install aws-iam-authenticator.

Step 1: Navigate to the /home/prometheus/terraform directory and

execute the following command, as shown in Figure 9-26:

$curl -o aws-iam-authenticator https://amazon-eks.s3-us-west-2.

amazonaws.com/1.14.6/2019-08-22/bin/linux/amd64/aws-iam-

authenticator

Figure 9-25. Verify Terraform installation

Figure 9-26. Download aws-iam-authenticator

Chapter 9 automation and orChestration of Container monitoring

287

Step 2: Once aws-iam-authenticator is downloaded, rename it as

iam-authenticator-aws by executing the following command:

$ mv aws-iam-authenticator iam-authenticator-aws

Step 3: Now apply execute permissions on the iam-authenticator-

aws executable by executing the following inline command:

$ chmod 0777 iam-authenticator-aws

 Jenkins and Terraform Integration

Let’s now integrate Jenkins and Terraform. This will set up the base for

our CI/CD pipeline, which will have the automation logic for enabling

container monitoring while deploying the container infrastructure on

AWS. We will configure a Jenkins node on the same server where we have

configured Terraform.

Step 1: Navigate to the /home directory and create a sub-directory

called Jenkins_node. Change permission of directory to 700 permission

using chmod command so that the root user can only perform read, write,

and execute operations on it by executing the following commands. The

Jenkins_node directory will be used by the Jenkins node to connect and

execute the command.

$ cd /home

$ mkdir jenkins_node

$ chmod 700 jenkins_node

Step 2: Navigate to the following URL to access Jenkins. Use your

admin password set up in previous steps. Navigate to Manage Jenkins ➤

Manage Nodes ➤ New Node.

URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080

Chapter 9 automation and orChestration of Container monitoring

288

Step 3: Fill in the form as per the following values:

Root: Select directory as jenkins_node.

Name: Mention any name you like.

Remote Root Directory: Path of the Jenkins_node

folder we created; e.g., /home/jenkins_node

Label: Mention label as Kubernetes_Master.

Usage: Select “Use this node as much as possible.”

Launch Method: Select “Launch agents via SSH.”

Host: Mention Kubernetes master node IP address

(in our case, 10.1.150.126).

Credential: Click Add button and choose “Jenkins.”

Choose Kind as “Username with password” and

then fill Username as “root.” Password is the root

user password of the Kubernetes master node.

Also fill in the ID and Description fields. Click the

Add button and select the credential, as shown in

Figures 9-27 and 9-28.

Host Key Verification Strategy: Choose the “Non-

verifying Verification Strategy” option, as we are

connecting a Jenkins node by giving a username and

password, not by SSH keys, to simplify the Jenkins

node setup. If you want to connect the Jenkins node

with an SSH key please follow the following link.2

Availability: Choose “Keep this agent online as

much as possible.”

2 https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-
Connect-to-Remote-SSH-Agents-

Chapter 9 automation and orChestration of Container monitoring

https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-Connect-to-Remote-SSH-Agents-
https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-Connect-to-Remote-SSH-Agents-

289

Step 4: Click on the Save button to proceed.

Step 5: Verify the agent has been configured successfully by reviewing

the Jenkins console status, as shown in Figure 9-29.

Figure 9-27. Setting up Jenkins node

Figure 9-28. Setting up Jenkins node

Chapter 9 automation and orChestration of Container monitoring

290

 Jenkins and Terraform Integration

Now we will create the Jenkins Pipeline CI-CD-Kube-Sysdig to automate

the inline process, as follows:

Code Clone: Clone the sock-shop code from GitHub.

Create Cluster: Create a Kubernetes cluster EKS on

AWS by Terraform.

Deploy Sysdig Agent: Deploy a Sysdig agent on EKS.

Deploy Application: Deploy the Sock Shop

application on EKS.

Step 1: Navigate to the following URL to access Jenkins. Use your

admin password set up in previous steps. Click on “New Item,” as shown in

Figure 9-30.

URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080

Figure 9-30. Creating Jenkins ipeline

Figure 9-29. Verifying Jenkins node

Chapter 9 automation and orChestration of Container monitoring

291

Step 2: Fill the form by making the item name CI-CD-Kube-Sysdig.

Choose “Pipeline,” as we are using pipeline as code in Jenkins to automate

the previously defined process, then click the OK button, as shown

in Figure 9-31. Jenkins provides capability of modeling pipelines “as

code” where Pipeline definition is written as text or script file (called a

Jenkinsfile). This allows pipeline definition to be stored & managed using

Version control system.

Step 3: Click on “Pipeline,” and it will display a script box where we will

compose our Jenkins script, as shown in Figure 9-32.

Figure 9-31. Creating Jenkins pipeline

Chapter 9 automation and orChestration of Container monitoring

292

Step 4: To create an EKS cluster, we will use the Terraform code. The

Terraform code does the following tasks:

• Creates an AWS IAM role with the name ${var.

cluster-name}-eks-cluster-role (where var.

cluster-name is a defined variable that takes input

from the user for the name of the cluster to be created)

and attaches policies to the IAM role created.

• Security group rules are created to allow the API access

to the cluster and defines rules to access cluster nodes

from workers and vice versa,

• EKS cluster is deployed by the code with the user input

name of the cluster. The IAM role created is attached to

the cluster, the version of Kubernetes is provided with

a default value, and the end user can opt for a different

available version of EKS for the deployment.

Figure 9-32. Composing Jenkins script

Chapter 9 automation and orChestration of Container monitoring

293

• EKS worker nodes are configured by passing user data

to the launch configuration, while the worker nodes

are created by using auto-scaling of AWS to ensure

availability of the nodes at all times.

• Security group rules are created for the worker node to

allow it to reach out to the EKS cluster and to allow SSH

login to the instances.

To deploy the sysdig agent, we will leverage the shell script sysdig_

agent to create the namespace’s cluster role binding secrets, which will be

leveraged by the Sysdig agent to monitor the cluster. Then it deploys the

Sysdig agent config map and DaemonSet on the cluster.

Both the script and other Terraform modules are created in the /home/

EKS_CLUSTER folder.

Clone the EKS_CLUSTER files by executing the following commands

from the /home directory of the master node (10.1.150.126):

$ cd /home

$ git clone https://github.com/dryice-devops/EKS_CLUSTER.git

You will see a sub-directory under the /home directory named EKS_

CLUSTER. Navigate into that to view the file named kubernetes_deploy.sh.

This file requires four parameters, as follows:

• cluster-name; e.g., Prometheus

• aws-region; e.g., us-east-1

• node-instance-type; e.g., t3.xlarge

• KeyName; e.g., awx

$ cd EKS_CLUSTER

Chapter 9 automation and orChestration of Container monitoring

294

In the EKS_CLUSTER directory you will also find the sysdig_agent.sh

file. In this script, we have to add the key mentioned as (XXXXXXXXXXXXXXX)

that we used for the Sysdig subscription in the last chapter. Replace the key

with your specific value before proceeding to the next steps.

Create an agent-files directory in the /home directory:

$ cd /home

$ mkdir agent-files

Create the inline files with the same contents as we created earlier

(manual process to deploy Sysdig agent):

sysdig-agent-clusterrole.yaml, sysdig-agent-configmap.yaml and

sysdig-agent-daemonset-v2.yaml

Step 5: Copy the contents of the Jenkins file into the EKS_CLUSTER

folder and paste it into the script box. Then, click the Save button, as

shown in Figure 9-33.

Figure 9-33. Saving Jenkins script

Chapter 9 automation and orChestration of Container monitoring

295

Step 6: Execute the Jenkins job by clicking on “Build Now” (Figure 9- 34).

Step 7: Once the job has been executed successfully, the following

build history will show. If it runs fine, the build number will be blue; if

not, it will be red. This history will also show the stages under Stage View.

To view logs, click on the build number, as shown in Figure 9-35. Click on

Console Output.

Figure 9-34. Executing Jenkins script

Figure 9-35. Reviewing Jenkins logs

Chapter 9 automation and orChestration of Container monitoring

296

In the log console, please scroll three-fourths of the way down the

screen to see the newly created EKS node’s details, as shown in Figure 9- 36.

Step 8: Navigate to your AWS account console and click on “Services,”

then select “EKS” under the Compute category, as shown in Figure 9-37.

Figure 9-36. Reviewing Jenkins logs

Chapter 9 automation and orChestration of Container monitoring

297

You will see the EKS cluster Prometheus is in an active state, as shown

in Figure 9-38, the same that we created through Jenkins and Terraform.

Figure 9-37. Reviewing the AWS console

Figure 9-38. Reviewing AWS console

Chapter 9 automation and orChestration of Container monitoring

298

Now, navigate back to Services and click “EC2” under the Compute

category, as shown in Figure 9-39.

Click on “Running Instances” under the Resource category, as shown

in Figure 9-40.

Figure 9-39. Reviewing AWS console

Chapter 9 automation and orChestration of Container monitoring

299

You will see the EC2 instance name as Prometheus-eks-node. Select

this, as shown in Figure 9-41.

Figure 9-40. Reviewing AWS console

Figure 9-41. Reviewing AWS console

In the Description tab, you will get the private DNS. It is same as we

have seen in the Jenkins logs, as shown in Figure 9-42.

Chapter 9 automation and orChestration of Container monitoring

300

Step 9: Now, let’s navigate to the Sysdig console and verify that our EKS

cluster has been added under Monitoring. Navigate to Sysdig at https://

sysdig.com/ and log in with your credentials.

Navigate to Explore ➤ Hosts & Containers, and then select “Overview by

Container” under the Hosts & Container category. You will see Figure 9- 43.

Now, to verify that the Sock Shop application deployed, click Explore

➤ Hosts & Containers ➤ Select Container Limits under the Hosts &

Containers category.

Hover over the graph of CPU Shares Used, as shown in Figure 9-44.

Figure 9-42. Reviewing AWS console

Figure 9-43. Reviewing the Sysdig console

Chapter 9 automation and orChestration of Container monitoring

https://sysdig.com/
https://sysdig.com/

301

Figure 9-44. Reviewing the Sysdig console

You will see the Sock Shop container’s name, as shown in Figure 9-45.

Click on Explore ➤ Daemon Sets ➤ Over by Service under Services.

You should see something similar to Figure 9-46.

Figure 9-45. Reviewing Sysdig Console

Chapter 9 automation and orChestration of Container monitoring

302

Figure 9-46. Reviewing the Sysdig console

 Summary
In this chapter, we have provided hands-on steps for using an

Infrastructure as Code solution, Terraform; and a CI/CD solution, Jenkins,

to automate the deployment of container infrastructure, then enabling

monitoring for and deploying a containerized application.

Chapter 9 automation and orChestration of Container monitoring

303© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0

Index
A, B
Alert Manager

alter view, 82, 83
config map list/delete, 78, 79
deployment creation, 70–72
pods, 79
Prometheus integration, 78
service creation, 76–79
setup overview, 70
task flows overview, 76, 77
verification, 80, 81
YAML file walkthrough, 71–73

Automation (monitoring)
AWS environment

namespace, 275
IaC (see Infrastructure as

Code (IaC))
Jenkins installation, 276–282
Kubernetes namespace

clean-up, 275
Terraform open source (see

Terraform open source)
Azure Monitor exporter

application verification, 125, 126
Azure.yml file, 130
dashboard, 116
deployment, 125

DRYICEDEMoIAC
workspace, 126

exporter configuration, 117
Go installation, 129
graph tab, 135
information and options, 121
inline commands, 132
Linux service, 133
log analysis workspace, 126, 127
metrics verification, 128
monitoring tab, 120, 121
namespace verification, 124
networking tab, 119
node count, 117, 118
node status graph, 134
Powershell module, 124
Prometheus console, 134
scale tab, 118
targets section, 130
verification, 122, 123, 133

C
cAdvisor exporter

config-map.yaml file, 110, 111
configuration, 112
CPU graph, 114
filesystem read graph, 113

https://doi.org/10.1007/978-1-4842-6216-0#DOI

304

ICMP stats graph, 115
open connection graph, 115
Prometheus configuration, 111
verification, 112

Chroot system, 4
Containerized application

deployment
components, 193
easyTravel application

ActiveGate installation, 208
API token

generation, 196, 198
cr.yml file, 201, 203, 205–207
Dynatrace entities, 195
integration, 211
master server, 195
monitoring configuration

file, 209, 210
oneagent operator, 195
PaaS token generation, 199
pod list, 193
service list, 194

easytravel.yaml file, 192
environment ID, 204
GitHub code, 191
Kubernetes namespace

creation, 192
OneAgent installation, 194

Containers, 1
cloud computing, 2
Docker and Kubernetes (see

Docker and Kubernetes)

environments, 2
meaning, 3
modernization empowers

companies, 1
monitoring ecosystem, 15
technology, 4, 5
testing, and deploying

application, 4
vs VM comparison, 3

D
Dashboard solution, (see Reporting/

dashboard solutions)
Docker and Kubernetes

architecture, 7, 8
CE edition setup, 23

community edition, 25
installation, 26
Redhat systems, 25
Redhat VMs, 24
repo configuration, 25
validation, 26

Kubernetes (see Kubernetes
services)

physical and virtual
infrastructure, 6

management interfaces, 8
namespaces, 6

Dynatrace, 19, 183
containerized application (see

Containerized application
deployment)

cAdvisor exporter (cont.)

INDEX

305

container monitoring
application components, 191
architecture, 186
components and objects, 186
easy travel architecture, 191
evaluation version, 187
home page, 189
region selection, 188
tab navigation, 190
welcome page, 189

key capabilities, 184
metrics (see Metrics)
SaaS architecture, 185
Smartscape topology

application, 228–231
transactions/services, 230–233

E, F
Elastic Kubernetes Services (EKS)

cli tool configuration, 253
cluster button creation, 247
cluster kernel version, 254
enable public access, 249
IAM role creation, 242
inbound/outbound security, 246
key pair creation, 246
logging options, 249
node group creation, 251, 252
permissions button, 243
review button, 244
role button, 244
security group creation, 245
security group selection, 248

tag values (optional), 250
validation, 250
VPC and subnet creation, 248

extended Berkeley Packet
Filter (Ebpf), 239

G
Grafana visualization

alerting engine
cloning file, 176
components, 175
config-map.yaml file, 174
dashboard

navigation, 181, 182
data source

configuration, 179, 180
deployment flow, 173
flowchart, 173
in-line commands, 174
installation, 177, 178
login page, 179
pod status verification, 175
temporary password

fetch, 178
values.yaml file, 176, 177

dashboards, 172
data sources, 171
panels, 171
query editor, 172

H
Heapster, 19

INDEX

306

I
Infrastructure as Code (IaC)

advantage, 272
CI/CD pipeline

leveraging, 274
containerized application

components, 273
tools, 272
working process, 272

Infrastructure
monitoring, 85

exporter
Azure Monitor, 116–135
cAdvisor, 110–115
node exporter, 99–111

Kubernetes
control plane, 87
infrastructure service

roles, 88
metrics, 88

labels
Apiserver request

duration, 91
Helm version, 93, 94
HTTP request, 90
PromQL, 89
Tiller installation, 93–98

parameters
key layers, 86
node availability, 87
node health, 87
service discovery, 86

J
Jenkins

AWS console, 297–299
execution process, 295
inline process, 290
node verification, 289–292
parameters, 293
pipeline creation, 290, 291
reviewing logs, 295, 296
save button, 294
script box, 291
source code tasks, 292
Sysdig console, 300–302

Jenkins 9v2.204
admin user setup, 281
console, 279, 282
directory creation, 276
Docker image build, 277
finish option, 281
first-time login

configuration, 280, 282
installation, 276, 278
password, 279
plugins selection, 280
verification, 277, 278

K
Kubernetes services

architecture, 9
components, 9
control plane, 87

INDEX

307

infrastructure service roles, 88
master node, 10
metrics, 88
microservices architecture, 12–15
installation, RHIEL 7

(see RHIEL 7)
setup, 27
worker node, 11, 12

/etc/hosts file entry, 33
kubectl get nodes

command, 36
repositories, 35
SELinux and firewall

policy, 34
target node, 34

Kube-state-metrics
deployment status graph, 138
git verification, 136
inline command, 136
metrics service status, 137
service verification, 138

L
Lab environment setup, 21–23
LinuX Containers (LXC), 5

M
Metrics

analyze nodes button, 214
appication monitoring, 222
application detection rule, 223
cluster status, 213

container metrics, 220
Docker dashboard view, 221, 222
easyTravel application

onboarding, 223–227
home dashboard, 213
host view, 215–217
image name view, 219
navigation menu, 221
process details, 220
processes and Containers

view, 218
Microservices architecture, 12–15
Microservices-based

applications, 17
Monitoring ecosystem

components, 18
metrics explosion view, 17
nuances, 16
requirements, 15
toolset, 18, 19

Monolithic vs microservice
application, 13

N, O
Node exporter

configuration, 101
CPU collector, 104–106
diskstats collector, 107
filesystem collector, 106
graph node, 104
hardware and OS metrics, 99, 100
Meminfo collector, 108, 109
Netdev collector, 108, 109

INDEX

308

Prometheus console, 103
query, 103
section and details, 101
Uname collector, 110, 111
verification, 101, 102

P, Q
Prometheus monitoring tool, 43

alert manager (see Alert
Manager)

alert manager
architecture, 44–46

infrastructure management
services, 43

Kubernetes objects
building blocks, 47
ClusterRoleBinding, 53–55
ClusterRole Section, 51–53
config map, 55–60
deployment, 60–65
deployment flow, 49
namespace creation, 50, 51
services, 65–69
YAML file, 47

multi-dimensional
data models, 44

Prometheus Query Language
(PromQL), 44

aggregation operations
average value output, 160
identified labeled

data, 158, 159

memory bytes, 156–158
operation details, 156
output, 161

hypothetical
representation, 142, 143

logical/arithmetic operators
consumption, 163
data comparison, 162
megabytes, 163–165
output screen, 165
query output, 166
timestamp function, 166

overview, 141
return range selection

past/historical data, 153–155
vector, 151–153

selector (see Selectors)
time-series data, 141, 142

R
Reporting/dashboard solutions

dashboard solutions, 170, 171
data source, 169
Grafana (see Grafana

visualization)
RHEL 7

/etc/hosts file entry, 30
firewall policy, 28, 29
inbound TCP ports, 28
Kubeadm installation, 30, 31
network deployment, 32
nodes and

namespaces, 31–33

Node exporter (cont.)

INDEX

309

repositories, 30
SELinux policy, 27, 28

Role-based access and control
(RBAC), 50, 93

S
Selectors

data fetched file, 148
filter labels, 145–149
instant vector, 148
metric selection, 144, 145
multiple labels, 149, 150
return values, 146

Sock shop application, 256–258
Sysdig monitoring application, 235

agent installation, 254–256
application performance

metrices, 264, 265
architecture

components, 238, 239
container vision, 238
deployment view, 264
Doctor application

metrics, 263, 264
eBPF, 239
EKS (see Elastic Kubernetes

Services (EKS))
Falco, 238
functional architecture, 237

golden signals, 268, 269
HTTP monitor, 265
JVM monitor, 265
key features, 236
meaning, 170
metrics, 258–260
navigation, 260–262
sock shop application, 256–258
topology view, 266, 267
trial license setup

account password
setup, 241

evaluation version, 240
Kubernetes integration

key, 241
Sysdig monitoring data, 19

T, U, V, W, X, Y, Z
Terraform open source

AWS IAM credentials, 286, 287
bash.rc file, 285
directory creation, 283
installation, 283
Jenkin (see Jenkins)
package download

verification, 283
PATH variable, 285
Unzip package, 284
zip package, 284

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Container Overview
	Introducing Containers
	What Are Containers?

	Evolution of Container Technology
	Docker and Kubernetes Architecture
	Master Node
	Node (Worker) Components
	Microservices Architecture

	Container Monitoring Ecosystem Overview
	Summary

	Chapter 2: Getting Started with Containers
	Lab Environment Setup
	Setting Up Docker CE
	Setting Up Kubernetes
	Installing Kubernetes on RHEL 7
	Add Worker Node to the Kubernetes Master Node

	Deploying an Application
	Summary

	Chapter 3: Getting Started with Prometheus and Alert Manager
	Overview of Prometheus
	Prometheus and Alert Manager Architecture
	Prometheus and Alert Manager Setup and Configuration
	Setting Up Prometheus on a Kubernetes Cluster
	Create Namespace
	ClusterRole Section Details
	ClusterRoleBinding Section
	Create a Config Map
	Create a Prometheus Deployment
	Exposing Prometheus as a Service

	Setting Up Alert Manager
	Create a Deployment
	Create a Service

	Alert Manager and Prometheus Integration
	Summary

	Chapter 4: Container Infrastructure Monitoring
	Container Infrastructure Monitoring Using Parameters
	Service Discovery
	Node Availability
	Node Health
	Kubernetes Control Plane
	Kubernetes Infrastructure Services
	Kubernetes Metrics

	Labels
	Helm and Tiller Setup
	Installing Tiller
	ClusterRole Section Details
	ClusterRoleBinding Section

	Exporters
	Node Exporter
	CPU Collector
	Filesystem Collector
	Diskstats Collector
	Netdev Collector
	Meminfo Collector
	Uname Collector

	cAdvisor Exporter
	Azure Monitor Exporter

	Kube Stat Metrics
	Summary

	Chapter 5: Working with Prometheus Query Language (PromQL)
	Data in Prometheus
	Getting Started
	Selectors
	Select Metric
	Filter by Labels
	Filter by Multiple Labels
	Select to Return Range Vectors
	Select Past/Historical Data

	Aggregation Example
	Logical and Arithmetic Operators

	Summary

	Chapter 6: Container Reporting & Dashboards
	Introduction to Container Reporting and Dashboards
	Grafana
	Panel
	Query Editor
	Dashboard
	Grafana Integration with Prometheus

	Summary

	Chapter 7: Container Application Monitoring Using Dynatrace
	Introduction to Dynatrace
	Architecture Overview
	Container Monitoring Using Dynatrace
	Containerized Application Deployment
	Monitoring Application using Dynatrace
	Container Metrics on Dynatrace
	Application Topology
	Transactions and Services

	Summary

	Chapter 8: Container Application Monitoring Using Sysdig
	Introduction to Sysdig
	Container Application Monitoring
	Sysdig Trial License Setup
	Elastic Kubernetes Service Setup on AWS
	Sysdig Agent Installation
	Deploy Sock Shop Application on EKS
	EKS Metrics on Sysdig
	Sysdig Navigation
	Docker Container Metrics
	Application Performance Metrics in Sysdig
	Sysdig Topology View
	Golden Signal Monitoring Using Sysdig

	Summary

	Chapter 9: Automation and Orchestration of Container Monitoring
	Container Monitoring Automation
	Hands-on Exercise for Container Monitoring Automation
	Cleaning Up the AWS Environment Namespace
	Jenkins Installation (v2.204.1)
	Terraform Open Source Installation
	AWS IAM authenticator Installation
	Jenkins and Terraform Integration
	Jenkins and Terraform Integration

	Summary

	Index

