Monitoring Microservices
and Containerized
Applications

Deployment, Configuration, and
Best Practices for Prometheus and
Alert Manager

Navin Sabharwal
Piyush Pandey

ApPress’

Monitoring
Microservices and
Containerized
Applications
Deployment, Configuration, and

Best Practices for Prometheus
and Alert Manager

Navin Sabharwal
Piyush Pandey

Apress’

Monitoring Microservices and Containerized Applications

Navin Sabharwal Piyush Pandey
New Delhi, Delhi, India New Delhi, India
ISBN-13 (pbk): 978-1-4842-6215-3 ISBN-13 (electronic): 978-1-4842-6216-0

https://doi.org/10.1007/978-1-4842-6216-0

Copyright © 2020 by Navin Sabharwal, Piyush Pandey

This work is subject to copyright. All rights are reserved by the publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-6215-3. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6216-0

Table of Contents

About the AUthOrS.........ccccmmisemmmmsmmmmsnsmmsssnsss s snnnnns vii
About the Technical REVIEWETcccccssssemmmsssnsmsssnsssssnsssssnsssssnsssssnnsnns ix
Acknowledgments.......ccccuseemmimssssnnnmmsssssnnmsssssnsnssssssnssssssssnsnssssssnnnssssnnns Xi
Chapter 1: Container OVervieW.......cccsesssssnssssssssnsssssssnnsssssssnsssssssssnnssnss 1
Introducing CONtAINENS.......cccveiiirirre s s 1
What Are CONTAINEIS?ccoeeceerererererercre e se s 3
Evolution of Container TEChNOIOQYcccvererrrerenererese e 4
Docker and Kubernetes ArChiteCtUrecooveeverermresesnsesese s 6
MaSEEE NOUEcoveeerrreereee s 10

Node (Worker) COmPONENtS........ccccereeernsesrneseresesssesese s sessnses 11
Microservices ArChiteCLUIE..........ccovrrerernserrnesere s 12
Container Monitoring ECOSyStem OVEIVIEWcccvveernenmnenmsnsesenesesesessssesenns 15
1] 4= O 20
Chapter 2: Getting Started with Containers........ccccuseemrrnssssnnnsssssnnnns 21
Lab Environment SEtUP.......ccovviirini e 21
Setting Up DOCKETF CE........cooiiiirrrrrrne st se s sne s 23
Setting Up KUDEIMELEScccveerecrrceree e 27
Installing Kubernetes on RHEL 7 ... 27

Add Worker Node to the Kubernetes Master Node..........c.ccovrererencrenscnennnens 33
Deploying an AppliCation..........ccvvvirennnninier e 36
SUMMANY ... ettt e e p e e 42

ii

TABLE OF CONTENTS

Chapter 3: Getting Started with Prometheus and Alert Manager 43
Overview Of PrometheusS..........covvveeecrernsesescse e 43
Prometheus and Alert Manager ArchiteCture.........c.ccocevvvnrneniesnsnsene s 44
Prometheus and Alert Manager Setup and Configuration...........ccccvevivvininiennens 46

Setting Up Prometheus on a Kubernetes Clustercoovvnvnininnniniennens 48
Setting Up Alert Managerocooeeerenerneneseseresesesse s sesse s ssesesessesenns 70
Alert Manager and Prometheus Integration............ccccovevniennescnssennsesenesenenne 76
SUMMAIY.c et s e s s b e e e s e s R b e e e e e R e b e e s e naennes 83

Chapter 4: Container Infrastructure Monitoring.........ccccunseennrrsssnnennnn89

Container Infrastructure Monitoring Using Parametersccocveevverrervsenseniennns 86
SEIVICE DISCOVEIY...ervereerrererrerersersesesessessesssssssessessessssessessesssssssessessessssensessens 86
Node Availabilitycccccvreriririine e 87
Node Health..........ccoiirrrr s 87
Kubernetes Control PIane...........cooeerenenenmnnnnssesesesssssssse e sessssssens 87
Kubernetes INfrastructure ServiCes.........cunrernnnnssesesessssssesesessssenens 88
Kubernetes MEtriCScovinmnirnsns s sssss 88

LADEIS. ... e 89
Helm and Tiller SEIUP ...cvevvverrerere s r e sae s saesnes 92
103 2 1 10T T T S 93

(010 OSSOSO 98
NOAE EXPOILELcoveiriirererie et 99
CAAVISOr EXPOILET ...c.veverecirere s sn s 110
Azure Monitor EXPOIET.......ccccviierierierene s ses s ssessssessesessessssessesnens 116

Kube Stat MEIrICScoeoerereereereeereres e 136

SUMMANY....eeeerircreree e s e pe e e e 139

iv

TABLE OF CONTENTS

Chapter 5: Working with Prometheus Query

Language (PromaQL)ccccusssmmnnmmssssnnnmsssssnsnsssssssnnssssssnsnssssssnnssssssnnnnss 141
Data in Prometheus ... s 141
Getting Started.........ccvvevnresree s ————————— 144

B3 T=] [T (0] £ SRS 144
Aggregation EXAmPIEccccvrerenenmsnsesnsssess s s sssse e 156
Logical and Arithmetic Operators..........ccoveevrenernsesnsesessssesssesesesesesesenns 162
SUMMAIY.c.ueiteirierere s e a e s e s s a e e e e s b b e e s e s R sae e e e naenne s 167

Chapter 6: Container Reporting & Dashbhoards..........cccsursssnnnnsrsssnness 169

Introduction to Container Reporting and Dashboards..........c.ccocvvrvererenrenserens 169
Grafan@.......ccorrimieirere s 171
11T 1117 OSSR 182
Chapter 7: Container Application Monitoring Using Dynatrace........ 183
Introduction t0 DYNATraCecoeeererererererre e 183
ArchiteCture OVEIVIEW........coveerrrerrreserrssesese s sessssesnnnens 185
Container Monitoring Using DYNatraceccuuvnsernesesssesssessssesessesessnsenenns 186
Containerized Application Deployment............ccocvrvnrniniennnnsnsenesensensenes 191
Monitoring Application using Dynatrace.........c.cuccerrenernsesensesesesesnsesesenens 195
Container Metrics on DYNAtrace........c.cocvvererreserrssesensesesssse s sessesessesesennes 212
Application TOPOIOGY.......ccuererirrienierene st se s ssesnens 227
Transactions and SErVICES........cuourerrnsesnesrrese s senns 230
SUMMANY....eivierieerrrese e e np e e 233

Chapter 8: Container Application Monitoring Using Sysdig..............235

INtroduction t0 SYSAIg......cccvrerererreriererersre e 235
Container Application MORitoring........cccccvverninninnnnesn e 237
Sysdig Trial LICENSE SELUP......cccvrverrerircrersse st 240
Elastic Kubernetes Service Setup on AWScccvrnvnnnnnnesernsenenenens 242

https://doi.org/10.1007/978-1-4842-6216-0_7#Sec0504

TABLE OF CONTENTS

Sysdig Agent INStallationccoevvvrvieriennsnrerrere e 254
Deploy Sock Shop Application on EKS...........cccecvrvnnnrnieninnensensenenessensenens 256
EKS MEtricS 0N SYSUig......corvrerrerrerererserseressnsessessessssessessessessssessessessssessessens 258
Sysdig Navigation........cccceververierienenserese s ses s se s ssesessessesaes 260
Docker Container MEtriCS.........covrurimnmseresnsssese e sesssseas 263
Application Performance Metrics in SYSAig........ouvvrerreriererserserseresensessenaens 264
Sysdig TOPOIOGY VIEW ...c.vevveverrereriesensereressssessessessessssessessesssssssessesssssssessesaes 266
Golden Signal Monitoring USing SYSdig........cccvrerernrerieriensnsensessesesessessenses 268
SUMMAIY e ueitetrerereseesere s e sese s sre s e e ssessesaesessesaesaess e e saesaesaesessesaesasssenensessens 269
Chapter 9: Automation and Orchestration of
Container Monitoring.......ccccessserrsssssssssssssssssssssssssssssnnssssssssssssnnnnnnnnnes 271
Container Monitoring AUtOMAtionccoveeeneserinsesnese e 271
Hands-on Exercise for Container Monitoring Automation............cccceeevvieniennenn. 275
Cleaning Up the AWS Environment Namespaceccveevvrerverereesensensenas 275
Jenkins Installation (V2.204.1)........cccvievrnnrnierennsensesessesessessesessssessessees 276
Terraform Open Source Installation..........c.cccvivninvniniennsncre e 283
SUMMAIY.c.veitetrerere e sere e see s s e s e e s e s s ss e e s e s aesaese e e saesaesaesessesaesaesesennesaens 302
11 - 303

About the Authors

Navin Sabharwal: Navin has more than
twenty years of industry experience and is
an innovator, thought leader, patent holder,
and author in the areas of cloud computing,
artificial intelligence and machine learning,
public cloud, DevOps, AIOps, infrastructure
services, monitoring and management

platforms, big data analytics, and software
product development. Navin is responsible

for DevOps, artificial intelligence, cloud lifecycle management, service
management, monitoring and management, IT Ops analytics, AIOps and
machine learning, automation, operational efficiency of scaled delivery
through Lean Ops, strategy, and delivery for HCL Technologies. He is
reachable at navinsabharwal@gmail.comand https://www.linkedin.com/
in/navinsabharwal.

vii

https://www.linkedin.com/in/navinsabharwal
https://www.linkedin.com/in/navinsabharwal

ABOUT THE AUTHORS

Piyush Pandey: Piyush has more than ten
years of industry experience. He is currently
working at HCL Technologies as automation
architect, delivering solutions catering to
hybrid cloud using cloud native and third-
party solutions. Automation solutions cover
use cases like enterprise observability, infra as
code, server automation, runbook automation,
cloud management platform, cloud native
automation, and dashboard/visibility. He is
responsible for designing end-to-end solutions

and architecture for enterprise automation adoption. You can reach him at
piyushnsitcoep@gmail.comand https://www.linkedin.com/in/piyush-

pandey-704495b.

viii

https://www.linkedin.com/in/piyush-pandey-704495b
https://www.linkedin.com/in/piyush-pandey-704495b

About the Technical Reviewer

Amit Agrawal: Amit is principal data scientist and researcher delivering
solutions in field of Al and machine learning. He is responsible for
designing end-to-end solutions and architecture for enterprise products.
He is reachable at agrawal .amit24@gmail.comand https://www.linkedin.
com/in/amit-agrawal-30383425.

ix

https://www.linkedin.com/in/amit-agrawal-30383425
https://www.linkedin.com/in/amit-agrawal-30383425

Acknowledgments

To my family, Shweta and Soumil, for being always there by my side and
letting me sacrifice their time for my intellectual and spiritual pursuits. For
taking care of everything while I am immersed in authoring. This and other
accomplishments of my life wouldn't have been possible without your love
and support. To my Mom and my sister for the love and support as always,
without your blessings nothing is possible.

To my coauthor Piyush, thank you for the hard work and quick
turnarounds to deliver this. It was an enriching experience. Also to
Siddharth Choudhary & Saurabh Tripathi, thank you for your research input
for this book which helped in shaping up practical examples for readers.

To my team here at HCL who has been a source of inspiration with
their hard work, ever engaging technical conversations and their technical
depth. Your everflowing ideas are a source of happiness and excitement
every single day. Piyush Pandey, Sarvesh Pandey, Amit Agrawal, Vasand
Kumar, Punith Krishnamurthy, Sandeep Sharma, Amit Dwivedi, Gauarv
Bhardwaj, Nitin Narotra, and Vivek thank you for being their and making
technology fun.

To Celestine and Aditee and the entire team at Apress for turning our
ideas into reality. It has been an amazing experience authoring with you
and over the years, the speed of decision making and the editorial support
has been excellent.

To all that I have had the opportunity to work with my co-authors,
colleagues, managers, mentors and guides, in this world of 7 Billion, it
was conincidence that brought us together it was and is an enriching
experience to be associated with you and learn from you. All ideas and
paths are an assimilation of conversations that I have had and epxeriences
I have shared. Thank you.

ACKNOWLEDGMENTS

Thank you goddess Saraswati, for guiding me to the path of knowledge
and spirituality and keep me on this path.

AT | HIE THA, THET | S, T, AL AT SHTH T

(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma
Amritam Gamaya)

Lead us from ignorance to truth, lead us from darkness to light, Lead us
from death to immortality.

xii

CHAPTER 1

Container Overview

This first chapter will introduce readers to the world of containers,
microservice applications, and their associated monitoring and
management tools ecosystem. We will also look into how containers and
the ecosystem around them are assembled. The chapter will cover the
following topics:

e Introducing Containers
o Evolution of Container Technology
e Docker and Kubernetes Architecture

o Container Monitoring Ecosystem Overview

Introducing Containers

Over the past few years, worldwide digital transformation has accelerated
by leaps and bounds, as companies of all sizes find new ways to

leverage technology to boost their agility and provide better services

to their customers. Fueling this fire is the need to survive in a changing
environment. For many companies, an initial step toward digital
transformation is modernizing their applications and taking advantage
of automated environments in the cloud. Modernization empowers
companies with the following:

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_1

https://doi.org/10.1007/978-1-4842-6216-0_1#DOI

CHAPTER 1 CONTAINER OVERVIEW

o Elasticity: the ability to respond to spikes in customer
demand

o Availability: the ability to serve customers’ requests

wherever and whenever

o Agility: the ability to quickly fix a problem or deploy
new functionality that customers want

When cloud computing first started gaining traction among
enterprises, one major motivation was cost reduction. Many organizations
began to recognize that cloud computing’s capability to transform IT
offered a vision of infrastructure as a dynamic, self-service-based, and
pay-as-you-go consumption of resources that would augment their
aspirations to become twenty-first-century business enterprises.
Containers are taking the innovations introduced by virtualization and
cloud computing to the next level.

Containers provide a portable, consistent, and lightweight software
environment for applications to easily run and scale anywhere.
Throughout its lifecycle, an application will operate in many different
environments, from development to testing, to integration, to pre-
production and production. An application may be hosted on either
physical infrastructure or virtual on-premises infrastructure, or may be
ported to a public cloud infrastructure. Before containers, IT teams had
to consider the compatibility restrictions of each new environment and
write additional code to ensure the application would function in all the
different environments. To solve this problem of portability and to ensure
that an application can run irrespective of the changes in underlying
infrastructure components, containers were developed to package the
application with its dependencies, configuration files, and interfaces—
allowing developers to use a single image that moves seamlessly between
different hosts.

CHAPTER 1 CONTAINER OVERVIEW

What Are Containers?

Containers are a way to wrap up an application into its own isolated
package. Everything the application requires to run successfully as a
process is now captured and executed within the container.
A container enables bundling of all application dependencies, like library
dependencies, runtimes, and so forth. This allows for the concept of
standardization and consistency across environments, as the container
will always come pre-loaded with all the pre-requisites/dependencies
required to run the application service. Now you can develop the
application code on your personal work station and then safely deploy it to
run on production infrastructure.

A container is an instance of a container image. A container image is a
way to package an app or service (like a snapshot) and then deploy it in a
reliable and reproducible way.

Figure 1-1. Container vs VM comparison

CHAPTER 1 CONTAINER OVERVIEW

Building applications with containers helps bring in agility for developing,
testing, and deploying an application across any cloud. With containers,
you can take an app from development to production with little or no code
change. However, when you deploy to VMs, you have to either do it manually
or use a CI/CD tool with Infra as Code solutions (see Figure 1-1). You might
need to perform tasks like modifying configuration items, copying application
content between servers, and running interactive setup programs based
on application setup, followed by testing. In case of manual setup, this can
consume significant time. With an automated setup, the amount of time may
be less than that required by the manual approach, but the reduction when
a container is used is even more significant. Below Figure 1-1 shows how
applications are segregated with a separate Operating System layer and only
share the hardware using the hypervisor in virtualization. This also shows
how containers are sharing the operating system and there is no separate
OS for each application, only the components which are different for each
application are deployed separately, the OS image is shared.

Evolution of Container Technology

The earliest computers were typically dedicated to a specific task that
might take days or even weeks to run, which is why in the 1960s and
through the 1970s there was rise of virtualization technology. VM
partitioning is as old as the 1960s, enabling multiple users to access
a computer concurrently. The following decades were marked by
widespread VM use and development. The modern VM serves a variety of
purposes, such as installing multiple operating systems on one machine
to enable it to host multiple applications with specific, unique OS
requirements that differ from each other.

In 1979, the chroot system call was introduced, which allowed one to
change the root directory of a process and its children to a new location in
the file system. Chroot was a significant step toward the rise of containers,

CHAPTER 1 CONTAINER OVERVIEW

as it allowed process isolation by restricting an application’s file access to a
specific directory. This helped improve system security.

Introduced in 2001, Linux VServer is an operating system virtualization
technology that is implemented by patching the Linux kernel. In 2004, the
first public beta of Solaris Containers was released; it combined system
resource controls and boundary separation provided by zones. Process
containers, or control groups (cgroups), were introduced by Google in 2006
and were designed for limiting, accounting for, and isolating the resource
usage (CPU, memory, disk I/0, network) of a collection of processes.

LXC (LinuX Containers) was the first mature implementation of Linux
Container Manager. It was implemented in 2008 using cgroups and Linux
namespaces.

Finally, Docker emerged in 2013, which led to a tectonic shift in the
way applications are designed, developed, and deployed. Docker built
its foundation on two systems, LXC and libcontainers. Libcontainers
came from LMCTFY, which was an open source container stack where
applications created and managed their own subcontainers. Docker also
used LXC in its initial stages and later replaced that container manager
with its own library, libcontainer. In addition to building on previous
software, Docker had an easy-to-use GUI and was capable of running
multiple applications with different requirements on a single OS.

Container technology’s momentum continued in 2017 with the
introduction of Kubernetes, which is a highly effective container orchestration
technology. Container technology ramped up over the next few years as
multiple players, such as Openshift, Pivotal, Azure, Google, AWS, and even
Docker, changed gears to support the open source Kubernetes container
scheduler and orchestration tool, making it the most popular and widely used
container orchestration technology. In 2017, Microsoft enabled organizations
to run Linux containers on Windows servers, which was a major development
for Microsoft-based businesses that wanted to containerize applications and
stay compatible with their existing systems.

CHAPTER 1 CONTAINER OVERVIEW

Docker and Kubernetes Architecture

Containers are a way of packaging software, mainly the application’s

code, libraries, and dependencies. Containers group and isolate a set of
processes and resources, such as memory, CPU, disk, and so forth, from
the host and any other containers. The isolation ensures that any processes
inside the container cannot see any processes or resources outside

the container. Containers typically leverage Linux kernel features like
namespaces (ipc, uts, mount, pid, network, and user) and cgroups, which
provide an abstraction layer on top of an existing kernel instance, thus
creating isolated environments similar to virtual machines.

Userspace

B B wh M 5 3 — App Process App Process App Precess
— i winsibs e s

Virtual Machine Container

Virtaal Machines Containers o i -

[|
— - -

Physical Server/ Data Cemesf Cloud

Figure 1-2. Container architecture with respect to physical and
virtual infrastructure

Docker is a container-based technology where containers share
the host OS kernel by using Linux kernel features like namespaces and
control groups. Docker is available in two versions: Docker Community
Edition (CE) and Docker Enterprise Edition (EE). Docker EE is designed
for enterprise adoption and is recommended over Docker CE for running

containerized business-critical applications in production.

CHAPTER 1 CONTAINER OVERVIEW

Docker architecture is based on client-server architecture (Figure 1-3).
The Docker client interacts with the Docker daemon, which in turn
manages the lifecycle of the container from building and running to scaling.

(G} (BocKEEsn (oo

docker build --{:-=4:4 Docker daemon | 4
& o SRR S
H oy L -~)
docker pull -| |/ ; = 4
\
L -

N

j| [Containers b— \.\ @t—

N\ NGInX
.
. -_f_ !
e /

docker run —

-

000y

Figure 1-3. Docker architecture

¢ Docker client: Docker users can interact with Docker
through a client.

e Docker host: The Docker host provides a base
environment in which to run containerized
applications. It provides all the necessary infrastructure
base components right from the Docker daemon:

images, containers, networks, and storage.

o Docker images: Docker images are equivalent to an
OS template or an image, with the difference being that
instead of packaging the OS it contains the application
source code along with all the dependencies required to
run the application. Using these images, we can achieve
application portability across infrastructure without
worrying about the underlying technologies used.

CHAPTER 1 CONTAINER OVERVIEW

o Registries: Registries are used for managing Docker

images. There are two major registry types: public and

private.

o Docker engine: The Docker engine enables

developing, packaging, deploying, and running

applications.

e Docker daemon: Docker daemon is the core process

that manages Docker images, containers, networks,

and storage volumes.

e Docker Engine REST API: This is the API used by
containerized applications to interact with the Docker

daemon.

e Docker CLI: This provides a command line interface

for interacting with the Docker daemon (Figure 1-4).

container

network

manages

docker CLI

REST API

sarver
docker daemon

w

data volumes

)

manages

Figure 1-4. Docker management interfaces (CLI & API)

CHAPTER 1 CONTAINER OVERVIEW

Kubernetes is an open-source container management (orchestration)
tool that provides an abstraction layer over the container to manage the
container fleets leveraging REST APIs. Kubernetes is portable in nature
and is supported to run on various public or private cloud platforms, such
as Physical Server, GCP, AWS, Azure, OpenStack, or Apache Mesos.

Similar to Docker, Kubernetes follows a client-server architecture. It
has a master server, which could be one or more than one, that is used to
manage target nodes where containerized applications are deployed. It
also has the feature of service discovery.

The master server consists of various components, including a kube-
apiserver, an etcd storage, a kube-controller-manager, a cloud-controller-
manager, a kube-scheduler, and a DNS server for Kubernetes services.
Node components include Kubelet and kube-proxy (Figure 1-5).

@
Worker Node

_.[Kubelet] [Kube-proxy]
]

Master Node

Docker

Pod Pod

API Server - i - [
| Container , Container
Controller-manager Scheduler
(replication, namespace,

serviceaccounts, ...}

Worker Node

% _.[Kubelet] |r|<ube -proxy
E——
l . Docker
Pod Pod

[- [{
[| Container Container

Figure 1-5. Kubernetes architecture

CHAPTER 1

CONTAINER OVERVIEW

Master Node

The following are the main components on the master node:

10

etcd cluster: etcd cluster is a distributed key-value
storage used to store Kubernetes cluster data (such
as number of pods, their state, namespace, etc.), API
objects, and service discovery details.

kube-apiserver: Kubernetes API server provides a
programmatic interface for container management
activities (like pods, services, replication sets/
controllers) using REST APIs.

kube-controller-manager: kube-controller-manager
is used for managing controller processes like Node
Controller (for monitoring and responding to node
health), Replication Controller (for maintaining
number of pods), Endpoints Controller (for service
and pod integration), and Service Account/Token
Controller (for API/token access management).

cloud-controller-manager: cloud-controller-manager
is responsible for managing controller processes that
interact with the underpinning cloud provider.

kube-scheduler: kube-scheduler helps with managing
pod placement across target nodes based on resource
utilization. It takes into account resource requirements,
hardware/software/security policy, affinity
specifications, etc., before deciding on the best node for
running the pod.

CHAPTER 1 CONTAINER OVERVIEW

Node (Worker) Components

The following are the main components on a (worker) node:

e Kubelet: Kubelet is the agent component running
on a worker node, and its main purpose is to ensure
containers are running in the pod. Any containers that
are outside the management of Kubernetes are not
managed by Kubelet. It ensures that workers, pods, and
their containers are in a healthy state, as well as reports
these metrics back to the Kubernetes master node.

e kube-proxy: kube-proxy is a proxy service that runs
on the worker node to manage inter-pod networking
and communication. It’s also a crucial component for
service concept realization.

o Kubectl: kubectl is a command line tool used for
Kubernetes cluster management and uses APIs
exposed by kube-apiserver .

e Pod: A podis alogical collection of one or more
containers that formulates a single application and is
represented as a running process on worker nodes.

A pod packages application containers, storage,
network and other configurations required for running
containers. A pod can horizontally scale out and enable
application deployment strategies like rolling updates
and blue/green deployment, which aim to minimize
application downtime and risk during upgrades.

e Service: A service provides an interface for the
collection of one or more pods bound by policy. Since
a pod’s lifecycle is ephemeral in nature, services help
to ensure application access without worrying even if a
backend pod dies abruptly .

11

CHAPTER 1 CONTAINER OVERVIEW

o Namespace: A namespace is a logical construct used
for dividing cluster resources across multiple users. You
can use resource quotas with a namespace to manage
resource consumption by multiple application teams.

o Deployment: Deployment represents a collection
of one or more running pods that formulate an
application as per the pod specification. It works
closely with Deployment Controller to ensure the pod
is available as per the user specification mentioned in
the pod specification.

Microservices Architecture

Microservices architecture is an approach to building an application
using a set of small services. Each service runs in its own process and
communicates with other processes. Each microservice represents

a functionality that can now be developed, deployed, and managed
independently. Each of these smaller services has its individual data
model, logic, data storage technologies (SQL, NoSQL), and programming
language.

Additionally, microservices can now scale out independently, meaning
you can scale out a specific service instead of the entire application based
on utilization patterns. This approach helps organizations save money on
infrastructure components that may remain unutilized in the traditional
monolithic application world (Figure 1-6).

12

CHAPTER 1 CONTAINER OVERVIEW

> & o ée oo

oo 09 o9 :

%° eo oo oo
.. o °*°%

©@ ©@ © @

© © ©

Figure 1-6. Monolithic vs microservice application comparison

Containers are pretty much the accepted norm for managing
microservice architectures. That’s true for hosted services that have
adopted Kubernetes and offer services based on a container infrastructure.
It’s also true for organizations that increasingly use containers to manage
their workloads and adapt to new market conditions. Advancements in
container technology ecosystems are opening new avenues of monitoring.
For example, service mesh technologies, when paired with Kubernetes,
enable traffic management, service identity, policy enforcement, and
telemetry for microservices.

Monitoring and health management of application services and
infrastructure is an important aspect of operational stability, especially for
the production environment.

Health monitoring allows near-real-time visibility into the state of
your application services, pods, containers, and underlying infrastructure.
Microservices-based applications often leverage health checks to keep track
of application availability, performance, faults, etc. Table 1-1 shows the
monitoring areas to be considered for microservices-based applications.

13

CHAPTER 1

CONTAINER OVERVIEW

Table 1-1. Monitoring Areas

Architecture

Metric Selection Decision Logic

Sample Metrics

Microservice

In general, there is one
process to track per
container.

Application

Multiple microservices
running simultaneously
constitute an application

Container
Separate from the

underlying process being

run within it, containers
are also monitored

Container Cluster
Multiple containers

deployed to run as group.

Many of the metrics of
individual containers can
also be summarized.

Where are the new services
deployed?

What percentage of time is the
service reachable?

How many requests are
enqueued?

Does the database respond
quickly?

Are the message queues fast
enough?

How does heap memory usage
change over time?

Are application services
responsive?

How responsive are the processes
within container?

Which images have been deployed?
Are specific containers associated
with over-utilization of host?

Are your clusters healthy and
properly sized?

Can applications be effectively run
on fewer nodes?

Average percentage
of time a request-
servicing thread is
busy.

Number of enqueued
requests.
Percentage of time a
service is reachable

Query execution
frequency, response
time, and failure rate.
Response time,
failure rate

CPU throttle time.
Container disk I/0.
Memory usage.
Network (volume,
dropped packets)

Percentage of
clusters remaining
operational
compared to those
originally deployed

14

(continued)

CHAPTER 1 CONTAINER OVERVIEW

Table 1-1. (continued)

Architecture Metric Selection Decision Logic Sample Metrics
Host Do changes in utilization indicate ~ Percentage of total
Also called a node, a problem with a process or memory capacity in
multiple hosts can application? use.
support a cluster of Percentage of time
containers CPUs are utilized
Infrastructure How much does it cost to run Network traffic
Cloud in which hosts are each service or deployment? Utilization of
running What is the ratio of microservices databases, storage,
and/or containers per instance? and other shared
services
End user What is the average web/ Response time.
The users using the transaction response time Number and
application or other experienced by users or by target percentage of
applications using APIs. application? failed user actions/
transactions

Container Monitoring Ecosystem Overview

With the rise of container technology, there was a requirement to have a
supporting ecosystem via which enterprises could run mission-critical
workloads on the container. With the introduction of container technology
and microservices architecture, monitoring solutions now need to manage
data for both non-ephemeral and ephemeral services. Collecting data
from applications composed of so many services has now become vastly
complex. In a DevOps world, monitoring containerized applications

and environments is not just needed for the operations team but also as

a feedback mechanism for developers to understand their application

15

CHAPTER 1 CONTAINER OVERVIEW

performance bottlenecks/faults/bugs/etc. The following are the nuances to
be considered when it comes to container monitoring:

o Shortlifespan of containers: Containers are
constantly provisioned and decommissioned based on
demand. This can lead to cycles, where in the morning
a container host cluster is filled up with microservices
belonging to Workload A, while in the afternoon this
same host is serving Application B. This means that a
security breach, slow performance, or downtime on a
certain host will have a very different business impact
depending on when it happens.

e One microservice can be leveraged by numerous
applications: As different applications often share the
same microservices, monitoring tools must be able
to dynamically map which instance of a microservice
impacts which application.

o Temporary nature of containers: When the assembly
of a new container is triggered based on a container
image, networking connections, storage resources,
and integration with other required services have
to be instantly provided. This dynamic provisioning
can impact the performance of related and unrelated

infrastructure components.

e More levels to watch: In the case of Kubernetes,
enterprise IT needs to monitor at the level of nodes
(host servers), pods (host clusters), and individual
containers. In addition, monitoring has to happen
on the VM and storage levels, as well as on the
microservices level.

16

CHAPTER 1 CONTAINER OVERVIEW

o Different container management frameworks:
Amazon EC2 Container Services run on Amazon'’s
proprietary management platform, while Google
naturally supports Kubernetes (so does VMware),
and Docker supports Swarm. Container monitoring
solutions need to be aware of the differences between
these container management platforms.

e Microservices change fast and often: Anomaly
detection for microservices-based applications is much
more difficult than that for standard apps, as apps
consisting of microservices are constantly changing.
New microservices are added to the app and existing
ones are updated in a very quick sequence, leading to
different infrastructure usage patterns. The monitoring
tool needs to be able to differentiate between “normal”
usage patterns caused by intentional changes and
actual anomalies that have to be addressed.

Per Host Metrics Explosion
Component # of Metrics for a for 10 Container Cluster for 10 Container Cluster
Traditional Stack with 1 Underlying Host with 1 Underlying Host

Operating System 100 100 200

Orchestrator n/a 50 50

Container nfa 500 (50 per container) 5,000 (50 per container)
Application 50 500 (50 per container) 5,000 (50 per container)
Total # of Metrics 150 1,150 10,250

Figure 1-7. Metrics explosion view with container technology
evolution

CHAPTER 1 CONTAINER OVERVIEW

In order to have complete visibility of containerized applications, you
need to have data from the various components that formulate the base
infrastructure for running containers. This means you need to monitor the
following:

e Application services

e Pods and containers

o Clusters running the containers

o Network for service/pod/cluster communication
e Host OS/machine running the cluster

Choosing the right monitoring toolset is certainly important and
should be based upon the pros and cons of the solution. The following are
the options available in the market for container monitoring:

o Prometheus: Prometheus is one of the oldest and most
popular open source container monitoring solutions
available. It’s a graduated cloud native computing
foundation (CNCF) project that offers powerful
querying capabilities, visualization, and alerting.

e Grafana: Grafana is a popular reporting dashboarding
tool for container environments. It has the capability to
leverage data feeds from Prometheus and other sources for
visualizing information from the Kubernetes environment.

o cAdvisor: cAdvisor is another container resource
monitoring tool that works at the worker node level
instead of the pod level. It has the capability to discover
all the containers running on worker nodes and to
provide metrics about CPU, memory, filesystem, etc.
This solution does not provide long-term storage of
metric data or analytics services on top, which would
be useful for driving insights for the operations team.

18

CHAPTER 1 CONTAINER OVERVIEW

Heapster: Heapster aggregates monitoring data across
multiple nodes using Kubelet and cAdvisor at the
backend. Unlike cAdvisor, Heapster works at the pod
level instead of the worker node level.

Sysdig: Sysdig Monitor helps in monitoring container
applications by providing end-to-end visibility—from
application service to pod to container to node level —
of the availability, performance, and faults across
multiple container technologies and clouds.

Dynatrace: Dynatrace has a new suite of tools available
for container monitoring and alerting. Leveraging

an agent-based approach, it can discover and fetch
data about containerized application services, pods,

containers, worker nodes, etc.

AppDynamics: Application and business performance
software that collects data from agents installed on the
host using Docker APIs.

Fluentd: Open source data collector for unified logging
layers.

Collectd: A small daemon that periodically collects
system information and provides mechanisms to store
and monitor container metrics.

Cloud native: Leading cloud providers like AWS
(Cloudwatch), Azure (Azure Monitor), and Google
Cloud (Stackdriver) have their own native mechanisms
to monitor container ecosystems on AWS EKS, Azure
AKS, and Google GKE.

19

CHAPTER 1 CONTAINER OVERVIEW

Summary

In this chapter, we have seen the container ecosystem evolution, Docker
and Kubernetes architecture, and the benefits and challenges of container
technology. We have also looked at monitoring and management tools
and metrics for effective container monitoring. In the next chapter, we
will start with practical exercises to set up Docker and Kubernetes, and we
will end with deploying our first containerized application to kickstart the

container monitoring journey.

20

CHAPTER 2

Getting Started
with Containers

This chapter will provide hands-on steps for installing Docker and
Kubernetes. We also look into how to deploy a containerized application
on Kubernetes. This will set us up for the following chapters, where we will
monitor this setup using Prometheus. This chapter will cover the following
topics:

o Setting Up Docker CE and Running First Container
o Setting Up Kubernetes

o Deploying the Sample Application

Lab Environment Setup

For our lab environment, we will be using two Redhat 7 virtual machines
(VMs). We recommend that readers use at minimum two CPUs, 8 GB RAM,
and 80 GB hard disk (under/location) for the exercises here in Chapter 2.
VMs can be hosted on VMware Workstation, VMware, Hyper 'V, or a
public cloud like AWS, Azure, or GCP. Kindly ensure both VMs are able to
communicate with each other on a private IP address and have outbound
internet connectivity to download packages for installation.

Figure 2-1 represents the lab environment we will be setting up as part
of this chapter.

© Navin Sabharwal, Piyush Pandey 2020 21
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_2

https://doi.org/10.1007/978-1-4842-6216-0_2#DOI

CHAPTER 2 GETTING STARTED WITH CONTAINERS

Kubernetes Master Node

Controller

API Server Manager
Scheduler

. Hello Word Container Docker CE

etcd

Kubernetes Node

Sock Shop App
Pod

Docker CE

Figure 2-1. Lab environnement setup for Chapter 2

22

CHAPTER 2 GETTING STARTED WITH CONTAINERS

As part of this chapter, we will be performing the following steps:

We will begin with installation of Docker CE engine on
two nodes.

After Docker CE engine setup, we will run a “Hello
World” sample on the master Kubernetes node to
validate our setup.

We will install the core Kubernetes components on the
master node using the Kubeadm utility.

We will install Kubernetes components on the worker/
target node.

We will join the worker/target node with the master node.

Finally, we will deploy the containerized application
Sock-shop on the worker/target node.

Setting Up Docker CE

To start with container monitoring using Prometheus and Alert Manager,

the first step will be to set up the container ecosystem. We will set up
Docker CE 18.09.0 on both of our Redhat VMs. This will serve as the

container engine for our applications.

Note Please make sure all the commands mentioned in Steps 1
through 8 are executed successfully on both Redhat VMs. Steps 9
and 10 will be only executed on the master node.

23

CHAPTER 2 GETTING STARTED WITH CONTAINERS

1. SSH into Redhat VMs. We will begin with cleaning
up any older version of Docker (if any) present
on the system. It is recommended to clean any
pre-existing installation in case readers are using
existing VMs for this exercise. If readers are using
fresh VMs then kindly proceed to Step 2.

$ sudo yum remove docker docker-common docker-
selinux docker-engine-selinux

2. Execute the following command to install pre-
requisite packages for Docker CE. The yum-config-
manager utility is used to manage the main yum
configuration options like enabling/disabling/
adding repositories. device-mapper-persistent-
data and 1vm2 are needed for the device mapper
storage driver. The device mapper storage driver
for containers enables capabilities like thin
provisioning and snapshotting, which are useful for
image and container management.

$ sudo yum install -y yum-utils device-mapper-
persistent-data lvm2

3. Configure the docker-ce repo by executing the
following command:

$ sudo yum-config-manager --add-repo https://
download.docker.com/1linux/centos/docker-ce.repo

Docker CE repo configuration will occur after the
execution of the preceding command. It will save
the repo under /etc/yum.repos.d/docker-ce.
repo as mentioned in Figure 2-2.

24

CHAPTER 2 GETTING STARTED WITH CONTAINERS

[root@devopal088 ~]# yum-config-manager --add-repo httpsa://download.docker.com/linux/centos/docker-ce.repo
Loaded plugins: langpacks, product-id, subscription-manager

adding repo from: htips://download.docker.com/linux/centos/dockez-ce.repo

grabbing file htops://download.docker.com/linux/centos/docker-ce.repo to fetc/yum.repos.d/docker-ce.xepo
repo saved to fetc/yum.repos.d/docker-ce.repo

Figure 2-2. Docker CE repo configuration

4. Execute the following command to update the yum
cache. This will ensure yum configuration is updated
as per the command executed in the previous step.

$ sudo yum makecache fast

5. Run the following command for SELinux policies for
container runtimes. This package is needed for setting
up container SELinux policy on Redhat systems. This
is required to setup the security policies for Docker
containers to access and share the resources.

$ sudo yum install -y http://mirror.centos.
org/centos/7/extras/x86_64/Packages/container-
selinux-2.107-3.el7.noarch.rpm

The SELinux policy gets updated after the execution
of the preceding command.

6. Run the following command to install Docker

community edition:
$ sudo yum install docker-ce-18.09.0-3.el7 -y

Installation of Docker CE is completed after the
execution of the preceding command.

7. Run the following command to enable the Docker service:
$ sudo systemctl enable docker.service

Enable the service of Docker after executing the
preceding command.

25

CHAPTER 2

8.

GETTING STARTED WITH CONTAINERS

Execute the following commands to start and then
validate the status of Docker service (see Figure 2-3):

$ sudo systemctl start docker.service
$ sudo systemctl status docker.service

[root@devops0088 ~]# sudo systemctl status docker.service
s docker.service - Docker Application Container Engine

Loaded:
Active:
Docs:
Main PID:
Tasks:
Memory:
CGroup:

loaded (/usr/lib/systemd/system/docker.service; enabled; vendor preset: disabled)
active (running) since Wed 2019-10-30 15:37:28 IST; 16s ago
https://docs.docker.com

20937 (dockerd)

10

42,1M

/aystem.slice/docker.service

20937 /fusr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

Figure 2-3. Start and verify Docker CE service. Look for the active
(running) status of the docker service

9.

10.

26

Pull the Docker image from Docker Hub by
executing the following command. Docker Hub

is a service provided by Docker for searching and
sharing container images. Docker Hub provides
repositories with access to push and pull container
images. Additionally, Docker Hub provides official
images managed by Docker and publisher images
managed by external vendors.

$ docker pull hello-world

Now, let’s validate our installation of the Docker
Engine by running the first Docker container on our
master node. Execute the following command after
logging in to the master node. You can verify the
installation as shown in Figure 2-4.

$ docker run hello-world

CHAPTER 2 GETTING STARTED WITH CONTAINERS

[root@devops0088 ~]# docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

o

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(amde4)

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

4, The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, wvisit:
https://docs.docker.com/get-started/

Figure 2-4. Running first Docker container

If you see the response as “Hello from the Docker!” the Docker

container is running successfully.

Setting Up Kubernetes

The following steps elaborate the commands needed to set up Kubernetes
master and worker nodes. In the previous section, we set up Docker
Engine on both nodes.

Installing Kubernetes on RHEL 7

Let’s start:

1. Disable SELinux and set up firewall rules on the master
node. Setting SELinux in permissive mode effectively
disables it and thereby enables containers to access
the host filesystem. The br_netfilter and net.
bridge.bridge-nf-call-iptables modules are used
for setting up Kubernetes networking options.

27

CHAPTER 2

GETTING STARTED WITH CONTAINERS

Navigate to the Kubernetes master node and execute
the following commands to set the hostname and
disable SELinux:

$ hostnamectl set-hostname 'k8s-master'

$ exec bash

$ setenforce 0

$ sed -i --follow-symlinks 's/SELINUX=enforcing/
SELINUX=disabled/g"' /etc/sysconfig/selinux

~]# hostnamectl set-hostname 'k8s-master'

~]# exec bash

~]# setenforce 0

~]# sed -i ——follow-symlinks 's/SELINUX=enforcing/SELINUX=disabled/g"
/etc/ayasconfig/selinux

Figure 2-5. SELinux policy update

28

Set the following firewall rules on your master node
by executing the following commands:

firewall-cmd --permanent --add-port=6443/tcp
firewall-cmd --permanent --add-port=2379-2380/tcp
firewall-cmd --permanent --add-port=10250/tcp
firewall-cmd --permanent --add-port=10251/tcp
firewall-cmd --permanent --add-port=10252/tcp
firewall-cmd --permanent --add-port=10255/tcp
firewall-cmd --reload

modprobe br netfilter

echo '1" > /proc/sys/net/bridge/bridge-nf-call-iptables

Table 2-1 lists the relevance of the inbound TCP
ports enabled on the master node. See Figure 2-6.

CHAPTER 2 GETTING STARTED WITH CONTAINERS

Table 2-1. Ports required for Kubernetes

Port Range Purpose

6443* These ports are used for Kubernetes API access.
2379-2380 These ports are used for etcd server client API.
10250 This port is used for Kubelet API.

10251 This port is used for kube-scheduler.

10252 This port is used for kube-controller-manager

[root@k8s-master
3uccess
[root@k8s-master
success
[root@kB8s-master
3uccess
[root@k8s-master
success
[root@kB8s-master
3uccess
[root@k8s-master
success
[root@k8s-master
3uccess
[root@kB8s-master
[root@k8s-master

~1# firewall-cmd --permanent —--add-port=€443/tcp

~]# firewall-cmd --permanent —--add-port=2379-2380/tcp
~]#%# firewall-cmd --permanent --add-port=10250/tcp

~]# firewall-cmd --permanent --add-port=10251/tcp

~]#% firewall-cmd --permanent --add-port=10252/tcp

~]# firewall-cmd --permanent --add-port=10255/tcp

~]1# firewall-cmd --reload

~1# modprobe br_netfilter
~]1# echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

Figure 2-6. Firewall policy update

Note In the absence of a DNS server in your lab environment, you
need to update the /etc/hosts file on the master and worker nodes

manually with

entries as depicted below.

e <Mast

o <Work

er node IP > k8s-master

er node IP > worker-nodel

29

CHAPTER 2

GETTING STARTED WITH CONTAINERS

For example, in our environment, the hosts file had the following
entries on both servers (see Figure 2-7).

10.1.150.12¢ k8=s-master
10.1.150.150 worker—nodel

Figure 2-7. /etc/hosts file entry sample

2.

30

Configure the Kubernetes repository on the master
node. Execute the following command to configure
the repositories needed for Kubernetes installation:

cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]

name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/
kubernetes-el7-x86 64

enabled=1

gpgcheck=1

repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-
key.gpg https://packages.cloud.google.com/yum/doc/xrpm-
package-key.gpg

EOF

Install Kubeadm on the master node (Figure 2-8).
This will be used to deploy Kubernetes components
in an automated fashion on the master and worker/
target nodes. Execute the following command to
install kubeadm:

CHAPTER 2 GETTING STARTED WITH CONTAINERS

$ yum install kubeadm -y
Start and enable kubectl service by executing below
command

$systemctl restart kubelet && systemctl enable kubelet
$systemctl status kubelet

systemctl restart kubelet && systemctl enable kubelet
systemctl status kubelet

kubelet.service - kubelet: The Rubernetes Node Agent

Loaded: loaded (/usr/lib/systemd/system/kubelet.service; enabled; wvendor preset: disabled)
Drop=In: /usr/lib/systemd/system/kubelet.service.d

L-10-kubeadm.conf
Active: active (running) since Wed 2020-05-13 19:01:02 IST; 2min 31s ago
Docs: https://kubernetes.ioc/docs/

Figure 2-8. Kubeadm installation

4. Execute the following command to initialize
Kubernetes kubeadm on the master node:

$sudo swapoff -a
$sudo sed -i '/ swap / s/\(.*\)$/#\1/g' /etc/fstab
$kubeadm init

Execute the following commands to use the cluster as a

root user:

$mkdir -p $HOME/.kube
$cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$chown $(id -u):$(id -g) $HOME/.kube/config

5. Deploy the pod network to the cluster on the master
node.

Run the following command to get the status of the cluster and
pods (Figure 2-9):

$kubectl get nodes
$kubectl get pods --all-namespaces

31

CHAPTER 2 GETTING STARTED WITH CONTAINERS

[root@kBs-master ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION
k8s-master NotReady master 13m v1l.16.2
[root@kBs-master ~]# kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-5644d7b6d9-mwhbf 0/1 Pending 0 13m
kube-system coredns-5644d7b6d9-vkqgg 0/1 Pending 1] 13m
kube-system etcd-k8s-mascer 1/1 Running 0 12m
kube-system kube-apiserver-k8s-master 1/1 Running 0 12m
kube-sysatem kube-controller-manager-k8s-master 1/1 Running 0 12m
kube-system kube-proxy-5Tkfh 1/1 Running 0 13m
kube-system kube-scgeduler-kes-mas:ex 1/1 Running 0 12m

Figure 2-9. List Kubernetes nodes and namespaces

Execute the following commands to deploy the network (Figure 2-10):

$export kubever=$(kubectl version | base64 | tr -d '\n')
$kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-
version=$kubever"

[root@k8s-master ~]# kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=5kubever"
serviceaccount/weave-net created

clusterrole.rbac.authorization. k8s.io/weave-net created
clusterrolebinding.rbac.authorization.k8s. io/weave-net created
role.rbac.authorizacion.k8s,io/weave-net created
rolebinding.rbac.authorization.k8s.io/weave-net created

daemonset.apps/Wweave-net created

Figure 2-10. Kubernetes network deployment

Execute the following command to get the status of the cluster and
pods; this time, the statuses should come as “Ready” and “Running” states,
respectively (Figure 2-11).

$kubectl get nodes
$kubectl get pods --all-namespaces

32

CHAPTER 2 GETTING STARTED WITH CONTAINERS

[rootBk8s-master ~]# kubectl get nodes

HAME STATUS ROLES AGE VERSION

kE8s-master Ready master 2lm vl.1l6.2

[root@k8s-master ~]§ kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-5644d7béd9-mwhbf 1/1 Running 0 21lm
kube-system coredns-5644d7b6d%-vkqgg 1/1 Running 0 2lm
kube-system etcd-k8s-master 1/1 Running 0 20m
kube-system kube-apiserver-kfs-master 1/1 Running 0 20m
kube-system kube-controller-manager-k8s-mascer 1/1 Running 0 20m
kube-system kube-proxy-57kfh 1/1 Running 0 21lm
kube-system kube-scheduler-k8s-master 1/1 Running 0 20m
kube-system weave-net-dxfqc 2/2 Running 0 2m47s

Figure 2-11. List Kubernetes nodes and namespaces

Add Worker Node to the Kubernetes Master Node

Now, we'll add a worker node:

1. Update the /etc/hosts file on the worker node
(10.1.150.150):

e <Master node IP > k8s-masteri
o <Worker node IP > worker-node1l

For example, in our environment the hosts file had the following
entries on the worker node (Figure 2-12):

10.1.150.12¢ k8=s-master
10.1.150.150 worker—nodel

Figure 2-12. /etc/hosts file entry sample

33

CHAPTER 2 GETTING STARTED WITH CONTAINERS

2. Disable SELinux and configure the firewall rules on
the worker node:

$setenforce 0

$sed -i --follow-symlinks 's/SELINUX=enforcing/
SELINUX=disabled/g' /etc/sysconfig/selinux
$firewall-cmd --permanent --add-port=10250/tcp
$firewall-cmd --permanent --add-port=10255/tcp
$firewall-cmd --permanent --add-port=30000-32767/tcp
$firewall-cmd --permanent --add-port=6783/tcp
$firewall-cmd --reload

$echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

Table 2-2 lists the relevance of each inbound TCP port on the
worker/target node (see Figure 2-13).

Table 2-2. Port ranges required for Kubernetes

Port Range Purpose

10250 This port is used by the Kubelet API.
30000-32767 This port is used by NodePort Services.

forcing/SELINUX=disabled/g' /etc/sysconfig/selinux
frop

success
[root@devopa0088 ~)# firewall-cmd --permanent --add-port=l0255/tcp
success

[root@§devops0088 ~]§ firewall-cmd =-permanent =-add-port=30000-3276&7/tcp
success
[rootl@devopa(088 ~])# firewall-cmd --permanent --add-port=6783/tcp

8 ~]§ firewall-cmd --reload

55
[rootl@devops00ss ~1# echo 'l' > /proc/sys/netv/bridge/bridge-nf-call-iptables

Figure 2-13. SELinux and firewall policy update

34

3.

CHAPTER 2 GETTING STARTED WITH CONTAINERS

Configure Kubernetes repositories on the worker
node (10.1.150.150)(Figure 2-14):

cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]

name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/
kubernetes-el7-x86 64

enabled=1

gpgcheck=1

repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/
yum-key.gpg https://packages.cloud.google.com/
yum/doc/rpm-package-key.gpg

EOF

> g
> ECF

+//packages.cloud.google. com/vum/doc/ yum-key.gpg hoopa:/Spackages.cloud.google. com/yun/doc/ rpm-package-key. opg

Figure 2-14. Kubernetes repository configuration

4.

Install kubeadm on worker node(10.1.150.150).
Execute the following command to install kubeadm:
$install kubeadm -y

Then start and enable the kubectl service:

$systemctl restart kubelet && systemctl enable kubelet

35

CHAPTER 2 GETTING STARTED WITH CONTAINERS

5. Join the worker node (10.1.1.50.150) to the master
node (10.1.150.126) using the token ID. Navigate
to Kubernetes master (10.1.150.126) and fetch the
token by executing the following command:

$kubeadm token list

Execute the following command in the worker node
(10.1.1.50.150):

$sudo swapoff -a

$sudo sed -i '/ swap / s/\(.*\)$/#\1/g" /etc/fstab
$kubeadm join --token ahh26d.8sl6eyi1l9h4eawl7
10.1.150.126:6443 --discovery-token-unsafe-skip-
ca-verification

Run the kubectl get nodes command on the master
node (101.1.150.126) to see the worker node machine join
(Figure 2-15):

$kubectl get nodes

[root@k8s-master ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION
devops0088 Ready <none> 3m53s vli.l6.2
k8s-master Ready master 91lm vli.l6.2

Figure 2-15. List Kubernetes nodes

Kubernetes master and worker nodes are configured
successfully.

Deploying an Application

Now that we have our container ecosystem ready;, it’s time to deploy our
first application. We will deploy a microservice-based application called
Sock Shop (Figure 2-16).

36

CHAPTER 2 GETTING STARTED WITH CONTAINERS

Node

Configuration Create K8s
'—V yaml Namespace
Kubectl
Create K8s

[Kubernetes Master Node [Kubernetes Worker/Target]

Deployment

Create K8s Pod
Service Verification

Figure 2-16. Sock Shop application deployment flow

The following is the flow for the Sock Shop application deployment we
will follow in this chapter:

1. We will first clone the configuration scripts for Sock
Shop from GitHub.

2. We will then use Kubect]l to create a namespace
on the worker/target node and then deploy the
configuration as a pod.

3. We will then create a service for our application for
end-user access.

4. Finally, we will test the status of our application
using command line and web browser access.

37

CHAPTER 2 GETTING STARTED WITH CONTAINERS

Note We will cover the basics of the configuration script in the next
chapter in detail, as readers need to understand the file structure
before using it to deploy Prometheus and Alert Manager.

Log in to the Kubernetes master node (10.1.150.126)
using SSH.

5. First, we need to set up Git on the master node
(10.1.150.126). Log in to the master node with root
user and execute the following command:

$ yum install git

When prompt asks “Is this ok [y/d/N]’; Text “Y” and press Enter
key (Figure 2-17).

Transaction Summary

Install 1 Package (+3 Dependent packages)

Total download size: 4.5 M
Installed size: 22 M
Is this ok [v/d/N]: v}

Figure 2-17. Install Git

Check that Git installed successfully by executing the following
command:

$ git version
You will get a result like that in Figure 2-18, which means Git was

installed successfully.

[root@devops0088

88 ~]#% git wversion
git wversion 1.8.3.1

Figure 2-18. Verify Git version

38

CHAPTER 2 GETTING STARTED WITH CONTAINERS

6. Clone the Sock Shop application from GitHub from
the following URL into the /home/prometheus folder.
You will see amicroservices-demo folder after

command execution.

$ git clone https://github.com/dryice-devops/
microservices-demo.git
$11

Navigate into the microservices-demo folder. You will be able to
view the following files and folder:

$ cd microservices-demo/

7. Navigate to the Deploy folder within the
microservices-demo folder. Then, navigate to the
kubernetes folder.

$ cd deploy/kubernetes/
In the kubernetes folder you will be able to view the files and

folder shown in Figure 2-19.

[root@devops0087 kuber‘Tetes]# 11
total 16
-rw-r--r-- 1 root root 13112 Dec 18 19:45 complete-demo.yaml

Figure 2-19. Navigate to Deploy folder

8. Create the namespace sock-shop by executing
the following inline command from the /home/
prometheus/microservices-demo/deploy/
kubernetes folder (Figure 2-20):

$ kubectl create namespace sock-shop

39

CHAPTER 2 GETTING STARTED WITH CONTAINERS

[root@k8s-master kubernetes]# kubectl create namespace sock-shop
namespace/sock-shop created

Figure 2-20. Namespace creation for container application Sock Shop

9. Deploy Sock Shop by executing the following
inline command from the /home/prometheus/
microservices-demo/deploy/kubernetes folder
(Figure 2-21):

$ kubectl apply -f complete-demo.yaml

[root@k8s-master kubernetes]# kubectl apply -f complete-demo.yaml
deployment.apps/carts-db created
service/carts-db created
deployment.apps/carts created
service/carts created
deployment.apps/catalogue-db created
service/catalogue-db created
deployment.apps/catalogue created
service/catalogue created
deployment.apps/front-end created
service/front-end created
deployment.apps/orders-db created
service/orders-db created
deployment.apps/orders created
service/orders created
deployment.apps/payment created
service/payment created
deployment.apps/queue-master created
service/queue-master created
deployment.apps/rabbitmq created
service/rabbitmq created
deployment.apps/shipping created
service/shipping created
deployment.apps/user-db created
service/user-db created
deployment.apps/user created
service/user created

Figure 2-21. Deploy container application Sock Shop

40

CHAPTER 2 GETTING STARTED WITH CONTAINERS

10. To get the status of all the components of the Sock
Shop application, please execute the following
command:

$ kubectl get all -n sock-shop

The result would be as shown in Figure 2-22 (all the components’
statuses should be “Running”).

[root@k8s-master kubernetes]# kubectl get all -n sock-shop

NAME READY STATUS RESTARTS ACE
pod/carts-7989595fd6-8dsm2 1/1 Running 0 L4m
pod/carts-db-6b5bd9cfd9-hrvvp 1/1 Running 0 14m
pod/catalogue-894664bb5-wz81z 1/1 Running 0 14m
pod/catalogue-db-7cb7cdf884-qxj8d 1/1 Running 0 14m
pod/front-end-5cf4fc84cd-44g2r 1/1 Running 0 14m
pod/orders-78b875776C-k75pk 1/1 Running 0 14m
pod/orders-db-66847d5fc-bdfwl 1/1 Running 0 14m
pod/payment-5f7dcddf5-tqnzd 1/1 Running 0 14m
pod/queue-master-b8b6dofo7-ftzst 1/1 Running 0 14m
pod/rabbitmq-568f768447-1tt56 1/1 Running 0 14m
pod/shipping-6965fd459-h4dh7 1/1 Running 0 14m
pod/user-6d7cffc456-gtrdp 1/1 Running 0 14m
pod/user-db-85c¢858465d-bf54s 1/1 Running 0 14m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/carts ClusterIP 10.109.121.210 <nonex 80/TCP 14m
service/carts-db ClusterIP 10.98.68.250 <nones 27017/TCP 14m
service/catalogue ClusterIP 10.96.50.238 <none> 80/TCP 14m
service/catalogue-db ClusterIP 10.105.221.162 <none- 3306/TCP 14m
service/front-end NodePort 10.110.154.63 <nonex 80:31010/TCP 14m
service/orders ClusterIP 10.104.255.248 <nones 80/TCP 14m
service/orders-db ClusterIP 10.110.94.108 <nones 27017 /TCP 14m
service/payment ClusterIP 10.103.40.167 <nonex> 80/TCP 14m
service/queue-master ClusterIP 10.99.71.24 <nones 80/TCP 14m
service/rabbitmg ClusterIP 10.104.53.156 <none: 5672/TCP 14m
service/shipping ClusterIP 10.104.201.147 <none 80/TCP 14m
service/user ClusterIP 10.103.202.136 <nonex 80/TCP 14m
service/user-db ClusterIP 10.108.246.238 <nonex 27017 /TCP 14m

Figure 2-22. Verify container application Sock Shop

11. Open your browser and open the following URL:
http://Kubernetes-Cluster-IP: 31010;e.g.,
in our case, itis http://10.1.150.126:31010
(Figure 2-23).

41

http://10.1.150.126:31010

CHAPTER 2 GETTING STARTED WITH CONTAINERS

0 WeaveSocks Ll

& C (D Notsscure 1015012631010 « e & B

JOFFER OF THEDWY | Bury 1000 sock, get @ shee for froel

Weaveworss- LooUE -
w SDOE& CATALOGUE 7 O iLems in cart

Figure 2-23. Sock Shop application page

Summary

In this chapter, we have provided hands-on steps for setting up Docker and
Kubernetes. We also deployed our first containerized application. In the
next chapter, we will show how to install Prometheus and Alert Manager.

42

CHAPTER 3

Getting Started
with Prometheus
and Alert Manager

In this chapter, we will go through the Prometheus monitoring tool,
including its architecture and deployment. We will also be installing
Prometheus and Alert Manager on Kubernetes and integrating the two.

The chapter will cover the following topics:
e Overview of Prometheus
e Architecture of Prometheus and Alert Manager

e Prometheus and Alert Manager Setup and
Configuration on Kubernetes Cluster

o Integration of Prometheus and Alert manager

Overview of Prometheus

Container-based technologies also affect elements of infrastructure
management services, like backup, patching, security, high availability,
disaster recovery, and so forth. Monitoring is one such element that
has evolved in leaps and bounds with the rise of container technology.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_3

https://doi.org/10.1007/978-1-4842-6216-0_3#DOI

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Prometheus is one of the container monitoring tools that comes up as

a go-to open source monitoring and alerting solution. Prometheus was
initially conceived at SoundCloud, and slowly it became a favorite tool for
container monitoring. It’s predominantly written in GO language and is
one of the first Cloud Native Computing Foundation (CNCF)-graduated
projects.

Prometheus supports multi-dimensional data models based on
key-value pairs, which helps in collecting container monitoring as
time-series data. It also provides a powerful query language called
Prometheus Query Language (PromQL). PromQL allows the selection and
aggregation of time-series data in real time, which can either be viewed as
a graph, viewed as tabular data, or used by external systems via API call.
Prometheus also supports various integrations with third-party systems
for reporting, alerting, and dashboarding, along with exporters for fetching
data from various sources.

Prometheus and Alert Manager Architecture

The Prometheus and Alert Manager architecture diagram in Figure 3-1
illustrates the architecture of Prometheus and its components.

44

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Short -lived Jobs

E Service Discovery

= . i
Push Metrics Kubernetes File_sd Alert Manager EEI‘!(k
Notification
9 HEC(";EH‘ E [r”dll
Push Gateway Discovery Targets []
ITSM

Push Alerts

Pull Metrics
Prometheus Servers
Pull Metrics PromQL Prometheus
Web U1
6}
Jobs/ o) Data Visualization
Exporters ' ;
p Gratana and Export

Prometheus Targets

Node API Clients

Figure 3-1. Prometheus and Alert Manager architecture

Now, let’s look more closely at the following components:

Prometheus Server: This component is the central component that
collects the metrics from multiple container cluster nodes. The metrics
data is stored locally. Prometheus monitoring leverages the concept of
scraping, where target systems’ metric endpoints are contacted to fetch
data at regular intervals.

This means that your application needs to expose an endpoint where
metrics are available, and Prometheus should have a mechanism to scrape
it. If the application service is not designed to provide Prometheus with
metrics because the code either can’t be modified or is not written to send
metrics we can leverage the Prometheus exporter to fetch metrics.

45

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Push Gateway: Push Gateway is used for scraping metrics from
applications and passing on the data to Prometheus. Push Gateway
captures the data and then transforms it into the Prometheus data format
before pushing.

Exporter: Exporter is equivalent to a plugin or monitoring agent that
runs on the target host to fetch data and then export it to the metric in
Prometheus.

Alert Manager: Alert Manager is used to send the various alerts based
upon the metrics data collected in Prometheus.

Web UI: The web Ul layer of Prometheus provides the end user with an
interface to visualize data collected by Prometheus.

Kubernetes APIs provide metrics regarding these infrastructure
components from an availability, fault, performance, and security
standpoint. Prometheus helps overcome many of the unique challenges
that monitoring Kubernetes clusters can present. While the Kubernetes
native API and the kube-state-metrics can fetch container, node, and
application data by exposing the Kubernetes internal data (number of
desired/running replicas in a deployment, schedulable nodes, etc.),
Prometheus provides an aggregation layer above to enable operations
teams to manage the container ecosystem seamlessly. A typical user would
have to do computations of their own if they directly fetch metrics from
Kubernetes for monitoring data in the absence of a tool like Prometheus.

Prometheus and Alert Manager Setup
and Configuration

In the previous chapter, while deploying the Sock Shop application, we
used a YAML (a recursive acronym for “YAML Ain’t Markup Language”)
configuration file to provide the details required for deploying the
application on a target/worker node. We will now look at how to install and
configure Prometheus and Alert Manager using YAML-based definitions.

46

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

These days, Kubernetes objects, such as pods, services, and deployments,
are created by using YAML files, and thus have a number of advantages
over a kubectl command, which is an alternative way to create Kubernetes
objects.

Advantages of using a YAML file to create Kubernetes Objects:

¢ YAML files are saved into source code management,
like Github, to track the changes.

e It can be parameterized to make changes to Kubernetes
objects at runtime.

Before installing Prometheus and Alert Manager, we want to give
readers an overview of the basics of the YAML file structure. YAML is a
human-readable data-serialization language. It is commonly used for
configuration files and in applications where data is being stored or
transmitted. YAML was created specifically for common use cases, such as
the following:

o Configuration files

e Logfiles

o Cross-language data sharing
o Complex data structures

At a high level, the following are the building blocks of a YAML file,
shown in Figure 3-2.

Key-Value Pair | Array/Lists Dictionary/Map
Fruit: Apple Fruits: Banana:
Vegetable: Radish - Orange Calories: 200
Liquid: Water - Banana Fat: 0.5g
Meat: Goat - Mango Carbs: 30g
Vegetables: Grapes:

Potato Calories: 100

Tomato Fat: 0.4g

Carrot Carbs: 20g

Figure 3-2. YAML file building blocks

47

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

o Key-Value Pair: The basic type of entry in a YAML file
is a key-value pair. After the key and colon there is a
space and then the value.

e Arrays/Lists: Lists would have a number of items listed
under the name of the list. The elements of the list
would start with a hyphen (-).

o Dictionary/Map: A more complex type of YAML file
would be a dictionary and map.

In the upcoming sections, we will cover the creation of the deployment
resource by using YAML and will provide readers with an overview of key
fields used in that process.

Now, let’s start with setting up Prometheus and Alert Manager on a
Kubernetes cluster. We will use the same container environment setup
seen in the previous chapter for this exercise.

Setting Up Prometheus on a Kubernetes Cluster

Figure 3-3 provides an overview of the task flows we will follow to deploy
Prometheus.

48

Clone files from

GitHub

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Kubernetes Master Node | | Kubernetes Worker/Target Node |

- i
Configuration yaml :
i ’
|
I Cres # -1 Config M
ConfigMap Prometheus E— Create I5s seelll Pl
™ Namespace Prometheus

]
i
i
]
: 1
' |
Deployment yaml e :
: i
! i
. |
i

—|

Cluster role & binding

|

, Create K8s
Deployment
/ l

Create K8s Prometheus

Service Verification

Figure 3-3. Prometheus deployment flow

The following is the flow for the Prometheus deployment that we will

follow in this chapter:

We will first clone the configuration files from GitHub.

We will then use Kubectl to create a namespace on the
worker/target node.

We will create a cluster role and role binding.

We will create a config map and then deploy the
configuration as a pod.

We will then create a service for Prometheus for end-

user access.

Finally, we will test the status of the Prometheus
deployment using the command line and web browser
access.

49

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Create Namespace

As Prometheus is a monitoring tool, we will create a namespace to make
a logical segregation from other Kubernetes components that are running
under different namespaces on Kubernetes Cluster, such as default,
kube-system, Any Application Namespace etc.

Prometheus and Alert Manager components, e.g., Prometheus Server,
will be deployed as Kubernetes objects (e.g., pods, services, etc.) and will
also be created under the monitoring namespace.

Step 1: Execute the following command on the master node
(10.1.150.126) to create a new namespace called monitoring:

$kubectl create namespace monitoring

After executing the command, you will see the monitoring namespace
created, as shown in Figure 3-4.

[root@k8s-master /]# kubectl create namespace monitoring
namespace/monitoring created

Figure 3-4. Namespace creation for Prometheus monitoring

Step 2: Now we will create a cluster role and binding. Kubernetes
resources access is regulated via role-based access control (RBAC). RBAC
uses the rbac.authorization.k8s.io API to manage authorization. In the
RBAC AP], a cluster role contains rules that represent a set of permissions
on the Kubernetes cluster. A cluster role will be used to provide access to
the following:

e Non-resource endpoints (like /healthz)
e Cluster-scoped resources (like nodes)

o Namespaced resources (like pods) across all
namespaces (needed to run kubectl get pods --all-
namespaces, for example)

50

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Cluster role binding grants the permissions defined in a cluster role
to a user or set of users. It holds a list of subjects (users, groups, or service
accounts) and a reference to the role being granted. Permissions can be
granted within a namespace cluster-wide using a cluster role binding. In
this step, we will create the cluster role and role binding using the single
YAML file clusterRole.yaml.

Log in to the Kubernetes master node and navigate to the /home
directory. Execute the following commands in the Clone clusterRole.
yaml file.

$ cd /home
$ git clone https://github.com/dryice-devops/prometheus.git

Now, let’s have a look at the content of this YAML file and understand
the sections and their relevance. The file has two sections: ClusterRole
and ClusterRoleBinding.

ClusterRole Section Details

o apiVersion: The beginning section of the file defines
apiVersion of Kubernetes so it can interact with the
Kubernetes API server. It is typically used for creating
the object. apiVersion varies depending upon the
Kubernetes version you have in your environment.

e Kind: The Kind field defines the type of Kubernetes
object; e.g., ClusterRole, deployment, service, pods, etc.
In our case, we are using ClusterRole.

e Metadata: This section has name subcomponents
defined in the file. The Name field specifies the name of
the object. We are using Prometheus as the name in our
example.

51

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Figure 3-5 shows snapshots of these sections.

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRole
metadata:

name: prometheus

Figure 3-5. ClusterRole YAML file walkthrough

o Rules: A rule is a set of operations (verbs) that can
be carried out on a group of resources that belong
to different API groups (also called legacy). In our
example, we are creating a rule that allows a user to
execute several operations on nodes, proxy, service,
endpoints, and pods that belong to the core (expressed
by “” in the YAML file), apps, and extensions. API
Groups.Rule has several subcomponent elements in it.

Resources: This field defines various Kubernetes
resources.

Verbs: This field defines the action to be performed
on the resources.

nonResourceURLs: NonResourceURLs is a set

of partial URLs that a user should have access to.
Non-resource URLs are not namespaced; this field
is only applicable for ClusterRoles referenced from
a ClusterRoleBinding. Rules can either apply to API
resources (such as pods or secrets) or non-resource
URL paths (such as /api), but not both. Figure 3-6
shows snapshot of above mentioned sections.

52

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

rules: I

[<]- apiGroups: [""]

resources:

- nodes

- nodes/proxy

- services

- endpoints

- pods
- werbs: ["get", "list™, "watch"]
[Fl- apiGroups:

- extensions

resources:

- ingresses
L wverbs: ["get", "list", "watch"]
%- nonResourceURLs: ["/metrics"])

verbs: ["get")

Figure 3-6. ClusterRole YAML file walkthrough

ClusterRoleBinding Section

apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes so it can interact with the
Kubernetes API server. It is typically used for creating
the object. apiVersion varies depending upon the
Kubernetes version you have in your environment.

Kind: The Kind field defines the types of Kubernetes
objects; e.g., ClusterRole, deployment, service, pods,
etc. In our case, we are using ClusterRoleBinding.

Metadata: This section has name subcomponents
defined in the file. The Name field specifies the name of
the object. We are using Prometheus as the name in our
example. See Figure 3-7.

53

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRoleBinding
metadata:

name: prometheus

Figure 3-7. ClusterRole YAML file walkthrough

¢ RoleRef: In this field, we are binding the Prometheus
ClusterRole to the default service account provided by
Kubernetes inside the monitoring namespace. This
section has further subcomponents in it.

apiGroup: This field defines the rbac.authorization.
k8s.io API to interact with the API group.

kind: This field defines the object type.
Name: Name of the ClusterRole; e.g., Prometheus

o Subjects: This section defines the set of users and
processes that needs to access the Kubernetes API. This
section has further subcomponents in it.

Kind: This field defines the object type service
account.

Name: As every Kubernetes installation has a
service account called default that is associated
with every running pod, we used the same default.

Namespace: This field defines the namespace name
for cluster role binding; e.g., monitoring (which we
created in previous step). Figure 3-8 shows snapshot

of above mentioned sections.

54

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

roleRef:
apiGroup: rbac.authorization.kBs.id
kind: ClusterRole
name: prometheus

subjects:

- kind: ServiceAccount

name: default
namespace: monitoring

Figure 3-8. ClusterRole YAML file walkthrough

Step 3: Now, let’s create the role using the following command on the
master node (10.1.150.126) in the /home directory:

$kubectl create -f clusterRole.yaml

After executing the preceding command, the cluster role and cluster
role binding will be created as per Figure 3-9.

[root@k8s-master prometheus]# kubectl create -f clusterRole.yaml
clusterrole.rbac.authorization.k8s.io/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created

Figure 3-9. Cluster role creation for Prometheus

Create a Config Map

A config map will be used to decouple any configuration artifacts
from image content and alerting rules, which will be mounted to the
Prometheus container in the /etc/prometheus as prometheus.yaml and
prometheus.rules files.

Step 1: In the previous step, while creating the cluster role and binding,
we cloned a file on the Kubernetes master node called config-map.yaml
in /home/Prometheus. We will use this file to create a config map. Now,
let’s review the content of this YAML file. The config map incorporates the
prometheus.rules and prometheus.yml files under the data section. See
the snapshot of configmap.yaml in Figure 3-10.

55

CHAPTER 3

GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. apiVersion varies depending upon
the Kubernetes version you have in your environment.

Kind: This field defines the types of the Kubernetes
objects; e.g., ClusterRole, deployment, service, pods,
etc. In our case, the object is a config map.

Metadata: This section has name subcomponents
defined in the file that have data about the config map.

Name: This field has the name of the config map.
In our example, we are using prometheus-server-
conf.

Label: This field defines the label for the config
map; e.g., prometheus-server-cont.

Namespace: This field defines the namespace
where the config map will be created; e.g.,
monitoring.

ppivVersion: vl
kind: ConfigMap
metadata:
name: prometheus-server-conft
labels:
name: prometheus-server-conf
namespace: monitoring

=l

Figure 3-10. Config map YAML file walkthrough

56

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Data: This field defines the prometheus.rules and
prometheus.yaml content and passes their information
at runtime to the config map.

prometheus.rules: This section contains the alerting
rules used to generate alerts on the basis of various
conditions; e.g., out of memory, out of disk space, etc.
In this case, we used high pod memory usage.

prometheus.yml: This file is used for configuring
Prometheus. It defines scraping jobs and their
instances, as well as which rule files to load. The
prometheus.yaml file contains all the configuration
information that would help to dynamically discover
pods and services running in the Kubernetes cluster.
The following are scrape jobs in our Prometheus
scrape configuration:

o kubernetes-apiservers: It gets all the metrics from
the API servers.

¢ kubernetes-nodes: All Kubernetes node metrics
will be collected with this job.

e kubernetes-pods: All the pod metrics will be
discovered if the pod metadata is annotated with
prometheus.io/scrape and prometheus.io/port

annotations.
¢ kubernetes-cadvisor: Collects all cAdvisor metrics.

¢ kubernetes-service-endpoints: All the service
endpoints will be scraped if the service metadata
is annotated with prometheus.io/scrape and
prometheus.io/port annotations. Service endpoints
when annotated with the prometheus annotations are
used by prometheus to select and scrape data from.

57

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

o prometheus.rules: This contains all the alert rules
for sending alerts to Alert Manager.

e Global: The global configuration specifies parameters
that are valid in all other configuration contexts. This
has various subcomponents, as follows:

scrape_interval: How frequently to scrape
targets by default; we took 20s in our example.

evaluation_interval: How long until a scrape
request times out; we took 20s in our example.

o rule_files: This specifies a list of globs. Glob
provides method for traversing file systems and find
pathname or files matching a specific pattern. Using
this Rules and alerts are read from all matching files
that we defined under prometheus.rules and the
path defined as /etc/prometheus/prometheus.
rules. See Figure 3-11.

prometheus.rules: |-
groups:
- name: devopscube demo alert
rules:
- alert: High Pod Meory
expr: sum(container_ memory usage bytes) > 1
for: 1m
labels:
severity: slack
annotations:
summary: High Memory Usage
prometheus.yml: |-
global:
scrape_interval: 20s
evaluation interval: 20s

rnle_tlles:
fetc/prometheuns/promethens.rules
alerting:
alertmanagers:
- scheme: http
statlc_conflqs:
targets:

- "alertmanager.monitoring.swvc:9093 P

Figure 3-11. Config map YAML file walkthrough

58

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Alerting: This section specifies settings related
to Alert Manager.

alertmanagers: This section defines how to integrate
with Alert Manager for sending alerts from Prometheus.

Scheme: This configures the protocol scheme used
for making the requests to send the requests; e.g.,
http, https; we used http in our case.

static_configs: Using Static_Configs, Alertmanagers
configuration can be defined as a static value.
Another option available is to use dynamic discovery
mechanism for configuring Alertmanagers.

targets: This defines the static target value (IP
address and port) xxx.XxX.XxX.xxx:port on which
Alert Manager is running.

scrape_configs: This section specifies a set
of targets and parameters for how to scrape
them. Prometheus needs some targets to scrape

application metrics from.

job_name: The job name assigned to scraped
metrics; in our case we use prometheus as a job name,
the same used by Prometheus to monitor itself.

static_configs: In this Static_config we can define
the list of Targets that will be used for scrapping
metrics using above mentioned Job.

Targets: Targets may be statically configured via

the static_configs parameter or dynamically
discovered using one of the supported service-
discovery mechanisms; e.g., Consul, Kubernetes, etc.
In our case, we use a static target (IP & port); e.g., Xxx.

XXX.XXX.XXX:pOTt.

59

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Step 2: Execute the following command to create the config map in
Kubernetes on the master node (10.1.150.126) in the /home/Prometheus
directory:

kubectl create -f config-map.yaml

After executing the preceding command, a config map with the name
prometheus-server-conf will be created, as shown in Figure 3-12.

[root@k8s-master prometheus]# kubectl create -f config-map.yaml
configmap/prometheus-server-conf created

Figure 3-12. Config map creation for Prometheus

Create a Prometheus Deployment

Step 1: In a previous step, while creating the cluster role and binding,
we cloned a file on the Kubernetes master node called prometheus-
deployment.yaml in /home/Prometheus. We will use the official
Prometheus Docker image v2.12.0 from the Docker hub. In this
configuration, the Prometheus config map is mounted as a file inside
/etc/Prometheus. The following are the details of the Prometheus-
deployment.yaml file (Figure 3-13):

o apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. The apiVersion varies depending
upon the Kubernetes version you have in your

environment .

o kind: This field defines the types of the Kubernetes
objects; e.g., ClusterRole, deployment, service, pods,
etc. In our case, we are using a deployment object.

60

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

e Metadata: This section has name subcomponents
defined in the file.

o Name: This field specifies the name of the service
object; e.g., prometheus-deployment.

o« Namespace: This field specifies the namespace of
the service object; e.g., monitoring.

hinbrsion: apps/vl
kind: Deployment
[-lmetadata:
lf name: prometheus-deployment
namespace: monitoring

Figure 3-13. Prometheus-deployment YAML file walkthrough

e Spec: This field provides the specification of service.

Replicas: This field provides data about the number
of pods to be made available at a particular instance.

Selector: This section provides details about the
service selector. Service Selector enables grouping of
set of Pods (in this case Prometheus pod) which will
be exposed as a Service for external network access.

« matchLabels: The name will be used to match and
identify the service (Figure 3-14).

—|spec:
replicas:
selector:
matchLabels:
app: prometheus-server

Figure 3-14. prometheus-deployment YAML file walkthrough

61

CHAPTER 3

GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Template: type of port used by the service (Figure 3-15)

Metadata: Name will be used to match and identify
the service

o Labels: key-value pair that is attached to object
intended to be used to specify identifying attributes.
See here:

app — key

prometheus-server — value

template:
metadata:
labels:
app: prometheus-server

Figure 3-15. prometheus-deployment YAML file walkthrough

62

Spec: See Figure 3-16.

o Containers: detail of container object
Name: name of the container

Image: image with version

Args: argument used at the time of container
creation

o --config.file=/etc/prometheus/prometheus.yml:
This is the file name to be used at the time of
deployment.

o --storage.tsdb.path=/prometheus/: This
determines where Prometheus writes its database.

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Ports:

e containerport: application listening port

spec:
containers:
- name: prometheus
image: prom/prometheus:latest

= args:
- "——config.file=/etc/prometheus/prometheus.yml"
- "—_storage.tsdb.path=/prometheus/"

= ports:

- containerPort: =0%

Figure 3-16. prometheus-deployment YAML file walkthrough

e volumeMounts: A storage volume allows an existing
StorageOS volume to be mounted into your pod
(Figure 3-17). Two volumeMounts are created:
prometheus-config-volume and prometheus-storage-
volume. The former will be using our config map to
manage prometheus.yml. With prometheus-storage-
volume, we create an empty directory in which to store
the Prometheus data.

Name: name of the volume

mountPath: defines the mounted path

- volumeMounts:
- name: prometheus-config-volume
mountPath: /etc/prometheus/
- name: prometheus-storage-volume
mountPath: /prometheus/

Figure 3-17. prometheus-deployment YAML file walkthrough

63

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

e volume: A volume is a directory with data that is
accessible to all containers running in a pod and gets
mounted into each container’s file system. Its lifetime
is identical to the lifetime of the pod. Decoupling the
volume lifetime from the container lifetime allows the
volume to persist across container crashes and restarts.
Volumes can be backed by the host’s file system, by
persistent block storage volumes such as AWS EBS, or
by a distributed file system.

name: name of the volume
configMap: config map used by the volume

e defaultMode: This defines the default file permissions
for Volume.

o name: defined name of the config map that needs to be
used

name:

o emptyDir: The emptyDir volume is first created when
a pod is assigned to a node, and it exists as long as
that pod is running on the node we used to store the
Prometheus data (Figure 3-18).

volumes:
- name: prometheus-config-volume

configMap:
defaunltMode:

name: prometheus-server-conf

- name: prometheus-storage-volume
emptyDir: {}

Figure 3-18. prometheus-deployment YAML file walkthrough

64

https://aws.amazon.com/ebs/

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Step 2: To create a deployment on the monitoring namespace using
the prometheus-deployment.yaml file, execute the following command on
the master node (10.1.150.126) in the /home/Prometheus folder:

$kubectl apply -f prometheus-deployment.yaml -n monitoring

Once the preceding command has run successfully, prometheus-
deployment will be created under the monitoring namespace in the
Kubernetes cluster, as shown in Figure 3-19.

[root@kE8s-master prometheus]# kubectl apply -f prometheus-deployment.yaml -n monitoring
deployment.apps/prometheus-deployment created

Figure 3-19. Prometheus deployment

Step 3: You can check the created deployment using the following
command on the master node (10.1.150.126) in the /home/Prometheus
folder. It will return the name of the deployment—in our case, prometheus-
deployment) and its states, as shown in Figure 3-20.

$kubectl get deployments --namespace=monitoring

[root@k8s-master prometheus]# kubectl get deployments --namespace=monitoring
NAME READY UP-TO-DATE AVAILABLE AGE
prometheus-deployment 1/1 1 1 3mSs

Figure 3-20. Prometheus deployment status verification

Exposing Prometheus as a Service

To access the Prometheus dashboard over IP, we need to expose it as a
Kubernetes service.

Step 1: In a previous section, while creating the cluster role and
binding, we cloned a file on the Kubernetes master node called
prometheus-service.yaml in /home/prometheus. It exposes Prometheus

65

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

on all Kubernetes node IP addresses on port 30000. The following are the
details of the prometheus-service.yaml file:

o apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. apiVersion varies depending upon
the Kubernetes version you have in your environment.

e kind: This field defines the types of the Kubernetes
object; e.g., ClusterRole, deployment, service, pods, etc.
In our case, we are using a service object.

e Metadata: This section has name subcomponents
defined in the file.

Name: Specifies the name of the service object; e.g.,
Prometheus-service.

Namespace: The namespace of the service object;
e.g., monitoring.

Annotations: These are used for non-identifying
information that is used by the other tools like
AlertManager for scraping Promeheus endpoint
(except K8).

o prometheus.io/scrape: To scrape metrics for the
specific service or pods, use the prometheus scrape
annotation (Figure 3-21).

o prometheus.io/port: This annotation indicates to
Prometheus to scrape the specific port.

66

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

BpiVersion: vl

kind: Service

metadata:
name: prometheus-service
namespace: monitoring

annotations:
prometheus.io/scrape: 'true'
prometheus.io/port: '9090"*

Figure 3-21. prometheus-service YAML file walkthrough

spec: Specification of the service
selector: Service selector

App: Pod name used by the service to communicate
with this pod.

Type: In this section, we define how the specific
Kubernetes service will be exposed (the default
value is ClusterIP). In our example, we are using
NodePort, which exposes the service on each node’s
IP at a static port (the NodePort). A ClusterIP
service, to which the NodePort service routes, is
automatically created. You'll be able to contact

the NodePort service from outside the cluster by
requesting <NodeIP>:<NodePort> (Figure 3-22).

spec:
selector:
app: prometheus-server
type: NodePort

Figure 3-22. prometheus-service YAML file walkthrough

67

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Ports: Service selector

e Port: The port on which the service will be exposed
internally within the cluster. Once the service is up
on the defined port it starts sending requests to the
port on the pods selected by the service.

o targetPort: This is a port via which the service will
send the request to the specific pod; the pod must
be run on the same port.

e nodePort: This port is used to expose the service
externally to the cluster. NodePort is the default
setting if the port field is not specified (Figure 3-23).

B ports:
- port:
targetPort:
nodePort:

Figure 3-23. prometheus-service YAML file walkthrough
Step 2: Create the service using the following command on the master
node (10.1.150.126). See Figure 3-24.

$kubectl create -f prometheus-service.yaml
--namespace=monitoring

[root@k8s-master prometheus]# kubectl create -f prometheus-service.yaml --namespace=monitoring
service/prometheus-service created

Figure 3-24. Prometheus service creation

Step 3: Once the service is created, the Prometheus dashboard can be
accessed by using any Kubernetes master node IP address (10.1.150.126)
on port 30000 (Figure 3-25).

68

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

& Prometheus Tene Senes Colles. X +

&« C @ Notseowe | 10.1.150.126:30000/graph?gll.range_ing

Prometheus

O Enable query histary

press Shift+Enter for newlines)

m - insert metric at cursor -

Graph Console

- 1 + FTRIE ' Res (s) D stacked

Figure 3-25. Prometheus console access

Step 4: Now, if you browse to Status » Targets, you can see the
Kubernetes endpoints are connected to Prometheus automatically using
service discovery (Figure 3-26).

Promatheus Time Series Coliect: X +

<« C @ Notsecurs | 10.1.150.12630000 targets

Prometheus

Targets

kubernetes-apiservers (1/1 up)

Scrape
Endpeint State Labels Last Scrape Duration Error

hittps://10.1.150.126:6443/metrics up instance="10.1.150.126:6443" 473ms ago 75.25ms

kubernetes-cadvisor (2/2 up)

Scrape
Labels Last Scrape Duration Error

1.565 ago 17.12ms

Figure 3-26. Verify Prometheus console access

69

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Setting Up Alert Manager

Figure 3-27 provides an overview of the task flows we will follow to deploy
Alert Manager.

| Kubernetes Master Node | Kubernetes Worker/Target Node

I
I
I
]
I
|
: Configuration yaml ——T
I
I
I
I
I
I
I
I

Create K8s
Deployment

|

Create K8s Alert manager

Service Verification

Docker Hub

Figure 3-27. Alert Manager deployment flow

The following is the flow for the Prometheus deployment that we will
follow in this chapter:

We will use the already cloned configuration files
from Github.

We will deploy the Alert Manager configuration as a
pod.

We will then create a service for Alert Manager for
end-user access.

70

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Finally, we will test the status of the Alert Manager
deployment using the command line and web
browser access.

Create a Deployment

Step 1: In a previous section, while creating the cluster role and binding,
we cloned a file on the Kubernetes master node called alertmanager-
deployment.yaml in /home/prometheus. The following are the details of
this YAML file:

o apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. apiVersion varies depending upon
the Kubernetes version you have in your environment.

o kind: This field defines the type of the Kubernetes
object; e.g., ClusterRole, deployment, service, pod, etc.
In our case, we are using a deployment object.

e Metadata: This section has name subcomponents
defined in the file (Figure 3-28).

Name: Specifies the name of the deployment object;
e.g., alertmanager.

Namespace: Specifies the namespace of the
deployment object; e.g., monitoring.

ppiVersion: apps/vl
kind: Deployment
[Fmetadata:
name: alertmanager
namespace: monitoring

Figure 3-28. alertmanager-deployment YAML file walkthrough

71

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

e Spec: Specification of service

Replicas: Number of pods to be available on

Kubernetes cluster; e.g., 1 or 2

Selector: Service selector

o matchLabels: Name will be used to match and identify
the service by key and value pair; e.g., we used app as
the key and alertmanager as the value (Figure 3-29).

Elspec:

| replicas:

[selector:

=] matchLabels:

i app: alertmanager

Figure 3-29. alertmanager-deployment YAML file walkthrough

Template: Type of port used by the service

¢ Metadata:

Name will be used to match and identify the

service (Figure 3-30).

o Labels: Key-value pair that is attached to the object
intended to be used to specify identifying attributes.
app is a key and alertmanager is the value.

=
=

B

template:
metadata:
name: alertmanager
labels:
app: alertmanager

Figure 3-30. alertmanager-deployment YAML file walkthrough

72

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

e Spec: See Figure 3-31.
o Containers: Detail of container object
Name: Name of the container
Image: Docker image with version
Ports:

o containerPort: Application listening port

FL spec:
é containers:
= - name: alertmanager
image: prom/alertmanager:latest
ports:
- name: alertmanager
containerPort:

Figure 3-31. alertmanager-deployment YAML file walkthrough

Step 2: Create the deployment using the following command on the
master node (10.1.150.126) in the /home/Prometheus folder (Figure 3-32):

$kubectl create -f alertmanager-deployment.yaml

[root@k8s-master prometheus]# kubectl create -f alertmanager-deployment.yaml
deployment.apps/alertmanager created

Figure 3-32. Alert Manager deployment

Create a Service

Step 1: We need to expose the Alert Manager using NodePort just to access
the web UI. Prometheus will talk to Alert Manager using the internal

service endpoint. In a previous section, while creating the cluster role

73

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

and binding, we cloned a file on the Kubernetes master node called
alertmanager-service.yaml. The following outlines the details of the
YAML file:

o apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. apiVersion varies depending upon
the Kubernetes version you have in your environment
(Figure 3-33).

o Kind: This field defines the type of the Kubernetes
object; e.g., ClusterRole, deployment, service, pod, etc.
In our case, we are using a service object.

e Metadata: This section has name subcomponents
defined in the file.

Name: Specifies the name of the service object; e.g..
alertmanager

Namespace: The namespace of the service object;
e.g., monitoring

BpiVersion: vl
kind: Service
metadata:
T name: alertmanager
namespace: monitoring

Figure 3-33. alertmanager-service YAML file walkthrough

e Spec:
Selector: Service selector

o app: Pod name used by the service to communicate
with this pod

74

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Type: This field provides information about the type
of the publishing services. Kubernetes service types
allow you to specify what kind of service you want.
In our example, we are using app: alertmanager,
where app is a key and alertmanager is the value of
the pod we defined in alertmanager-deployment.
yaml. The same will be used by alertmanager-
service to communicate with this pod name
(Figure 3-34).

spec:
selector:
app: alertmanager
type: NodePort

Figure 3-34. alertmanager-service YAML file walkthrough

ports: We explained about the port, targetPort,
and nodePort fields in the “Exposing Prometheus as
a Service” section (Figure 3-35).

=] ports:
- port:
targetPort:
nodePort:

Figure 3-35. alertmanager-service YAML file walkthrough

Step 2: Create the service using the following
command (Figure 3-36):

$kubectl create -f alertmanager-service.yaml

75

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

[root@k8s-master prometheus]# kubectl create -f alertmanager-service.yaml
gervice/alertmanager created

Figure 3-36. Alert Manager service creation

After creating the service, the Alert Manager dashboard is accessible
on node port 32000 with the IP address of the Kubernetes master node
(10.1.150.126) (Figure 3-37).

& Aerimarage = I
< G D Notsecure | 10.1.150.126:32000/ %/ alerts 5 ®
Alertmanager Alents Silences Status Help
Fier Group Receiver: All Silenced Inhibited

Figure 3-37. Alert Manager dashboard access

Alert Manager and Prometheus Integration

Figure 3-38 provides an overview of the task flows we will follow to
integrate Alert Manager with Prometheus.

76

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

| Kubernetes Master Node Kubernetes Worker/Target Node |

Configuration yaml

ConfigMap Prometheus —‘—l_._, ConfigMap update for

Prometheus & Alert

I
I
[
l
I
I
]
I manager Integration
I
I
I
I
I
]

“ pfomEthEus & Alert
Manager Integration

Verification

Figure 3-38. Alert Manager and Prometheus integration flow

The following is the flow for the Alert Manager and Prometheus
integration that we will follow in this chapter:

We will use the already cloned configuration files
from Github.

We will then use Kubectl to update the config map.

Finally, we will test the status of the integration
using Prometheus web browser access.

Step 1: Log in to the Kubernetes master node (10.1.150.126), go to the
/home/prometheus folder, and update the config-map.yaml file. Replace
alertmanager.monitoring.svc:9093 with the Alert Manager URL, e.g.,
http://10.1.150.126:32000, under the targets section of prometheus.
yml highlighted in the config-map.yaml file in Figure 3-39.

77

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

-] prometheus.yml: |-

= global:
scrape interval: 20s
evalunation interval: 20s

= rule files:
- Jetc/prometheus/prometheus.rules
= alerting:
alertmanagers:
= - scheme: http
static_configs:
= - targets:

- "10.1.150.150:32000"

Figure 3-39. Alert Manager and Prometheus integration

Step 2: Run the following command in the master node (10.1.150.126)
under /home/prometheus to get the config map:

$kubectl get configmaps -n=monitoring

This command returns the config map list (Figure 3-40).

[root@k8s-master prometheus]# kubectl get configmaps -n=monitoring

NAME DATA AGE
alertmanager-config 1 20h
prometheus-server-conf 2 _ 21h

Figure 3-40. Config map list

Step 3: Run the following command in the master node (10.1.150.126)
under /home/prometheus to get the prometheus-server-conf config map
we updated in Step 1 (Figure 3-41).

$ kubectl delete configmaps prometheus-server-conf -n=monitoring

[root@k8s-master prometheus]# kubectl delete configmaps prometheus-server-conf -n=monitoring
configmap "prometheus-server-conf” deleted

Figure 3-41. Config map delete

78

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

Step 4: Once you have deleted prometheus-server-conf, create
the same with the updated config-map.yaml file in the master node
(10.1.150.126) by executing the following command from the /home/
Prometheus directory (Figure 3-42):

$ kubectl create -f config-map.yaml

[root@k8s-master prometheus]# kubectl create -f config-map.yaml
configmap/prometheus-server-conf created

Figure 3-42. Config map create

Step 5: Execute the following command to identify the Prometheus
pod and then delete to get the updated config map changes:

$kubectl get pods -n=monitoring

The preceding command will return all the pods running under the
monitoring namespace (Figure 3-43).

alertmanager-564d4884bd-mjjfc 1/1 Running 0 18h
prometheus-deployment-5c4f4£5779-pépcm 1/1 Running 0 62s
- a. o - - = 1B

Figure 3-43. List Prometheus pods

Select Prometheus-deployment-5c4f4f5779-p6pcm and delete the
same with the following command (Figure 3-44):

$kubectl delete pods prometheus-deployment-5c4f4f5779-zgkkf
-n=monitoring
[root@k8s-master promstheus]# kubectl delete pods prometheus-deployment-5c4f£4£5778-zgkkf -n=monitoring

pod "prometheus-deployment-Sc4f4f£5779-zgkkf" deleted

Figure 3-44. Delete pods

79

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER
Check the running pods again by using the following command:

$kubectl get pods -n=monitoring

It will return the newly created Prometheus pods by Kubernetes

deployment (Figure 3-45).

[root@kB8s-master prometheus]# kubectl get pods -n=monitoring

NAME READY STATUS RESTARTS
alertmanager-564d4884bd-mjjft 1/1 Running 0
prometheus-deployment-5c4£4£5779-zhmde 1/1 Running 0

Figure 3-45. List pods
Step 6: Check the Prometheus URL to verify Alert Manager is
configured correctly:
e Open Prometheus URL http://10.1.150.126:30000.
e Goto Status » Runtime & Build Information.

e Checkthe Alert Manager section. The Alert
Manager end point should be mentioned
http://10.1.150.126:32000/api/v1/alerts
(Figure 3-46).

80

AGE
20h
S0m

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

&« C @ Notsecure | 10.1.150.126:30000/status
Prometheus Alerts Graph Status ¥
Goroutines Runtime & Build Information 110
GOMAXPROCS Command-Line Flags 2
GOGC Configuration
GODEBUG Rules
T: t
Storage Retention argets 15d

Service Discovery

Build Information

Version 2.12.0

Revision 43acd0e2e9319f70c49b2267efa0124f1e759286
Branch HEAD

BuildUser root@7a9dbdbelcc7

BuildDate 20190818-13:53:16

GoVersion go1.12.8

Alertmanagers
Endpoint

http://10.1.150.126:32000/api/v1/alerts

Figure 3-46. Verify Alert Manager endpoint in Prometheus

o Prometheus starts sending the alert after five seconds
(configured in config map) to Alert Manager, and the
State would be “FIRING” in the Prometheus URL under
the Alert section (Figure 3-47).

81

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

= C @ Notsecure | 10.1.150.026:30000/3ens -1 @

Prometheus Alert:

Alerts

O show arnotations
Jfercfprometheus/prometheus.rules > devopscube demo alert

High Pod Memory (1 active)

Labels State Active Since Value
[stertnama-"High Pod Momory”] sevesity="stick" FIRING 2019-11-01 06:01:22.056441315 +0000 UTC 6.667235328¢ +09

Figure 3-47. Alert view in Prometheus

Step 7: Verify Alert Manager starts receiving the alerts from

Prometheus:

e Open the Alert Manager URL
http://10.1.150.126:32000/

o Click “Alerts.”

o Itshows alert, e.g., alertname = “High Pod Memory,”
sending from Prometheus (Figure 3-48).

82

CHAPTER 3 GETTING STARTED WITH PROMETHEUS AND ALERT MANAGER

< C (® Notsecure | 10.1.150.126:32000/#/alerts

Alertmanager Alerts Silences Status Help

Filter Group

Custom matcher, e.g. env="production"

- alertname="High Pod Memory"| + 1 alert

06:02:22, 2019-11-01 (UTC) + Info " Source y2y

severity="slack”

Figure 3-48. Alert view in Alert Manager

Summary

In this chapter, we have learned the basics of Prometheus, its architecture,
and various components. We set up Prometheus and Alert Manager and
integrated the two to work together. In the next chapter, we will start with a
deep-dive understanding of Prometheus and Alert Manager solutions for

container monitoring, starting with infrastructure parameter monitoring.

83

CHAPTER 4

Container
Infrastructure
Monitoring

This chapter will provide hands-on steps to the readers on container
infrastructure monitoring using Prometheus. We will also learn how to
deploy a containerized application using a Helm chart. A Helm chartis a
package manager for Kubernetes that helps developers and operators to
more easily package, configure, and deploy applications and services onto
Kubernetes clusters. This chapter will cover the following topics:

e Container Infrastructure Monitoring Using Parameters
e Labels
e Helm and Tiller Installation

e Using Exporters for Container Monitoring

© Navin Sabharwal, Piyush Pandey 2020 85
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_4

https://doi.org/10.1007/978-1-4842-6216-0_4#DOI

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Container Infrastructure Monitoring Using
Parameters

Before we jump into using Prometheus to monitor a Kubernetes-
managed container ecosystem, let’s look at the key aspects that need to
be monitored from an infrastructure perspective. Monitoring and alerting
at the container orchestration level works on two levels. On one side, we
need to monitor whether the services handled by Kubernetes do meet the
requirements we defined. On the other side, we need to make sure all the
components of Kubernetes are up and running. From an infrastructure

perspective, the following are the key layers that need to be monitored:
o Containers
o Clusters running the containers, such as Kubernetes

o Communication and telemetry between containers
(this can be done via contracts or by collecting logs
from tools like ISTIO)

e Host OS/machine running the cluster
e Server running the hosts

To monitor Kubernetes, we need to ensure the status of certain services
and components that are core to Kubernetes’ functionality. Let’s look at
some of the key monitoring areas.

Service Discovery

In microservices apps, services are added and removed all the time.
Containers move between hosts; autoscaling groups add and remove
instances dynamically. Additionally, there’s failover and auto-replication
adding to the complexity of container monitoring. Manually validating
the availability of services every time their network location changes is not
feasible. Hence, there is a need for a monitoring solution for this.

86

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Node Availability

Providing alerts regarding node availability is not very different from
monitoring VMs or machines. Essentially, it involves checking if the host
is up or down/unreachable, as well as the resources’ availability (CPU,
memory, disk, etc.).

Node Health

A node failure is not so much a critical event in Kubernetes, as its
scheduler service will spin off containers in other available nodes.
However, it’s crucial to monitor scenarios where we could be running
out of nodes, or where the resource requirements for the deployed
applications exhaust existing nodes’ resources. Another scenario could
be to monitor quota limits configured at the resources level. To monitor
node status, alerts on the metrics kube_node_status_ready and kube
node_spec_unschedulable can be scheduled. If you want to have an alert
for capacity, you will have to sum each scheduled pod request for CPU
and memory and then check that it doesn’t go over the threshold for each
of the nodes; this can be done using kube_node_status_capacity cpu_
cores and kube _node_status capacity memory bytes.

Kubernetes Control Plane

The Kubernetes control plane constitutes the control plane of the cluster.
Its service components (or “master” components) provide features like
container orchestration, computing resource management, and the

87

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

central API for users and services. An unhealthy control plane will sooner or
later affect the availability of applications or the ability of users to manage
their workloads. The control plane components include the following:

o Kubernetes API server
e Controller manager

e Scheduler

o etcd key-value store

Basic monitoring of these components would involve an HTTP check
that queries the health-check endpoint (/healthz) exposed by instances of
these services or by scraping the API endpoint in Kubernetes.

In addition to health checks, control plane components expose
internal metrics via a Prometheus HTTP endpoint (/metrics) that can be
added into a time-series database. While most of the metric data is useful
for retrospective or live issue debugging/troubleshooting, some metrics,
like latency, request, or error counts, can be used for proactive alerting.

Kubernetes Infrastructure Services

Beside the master components, there are a number of other services
running in the cluster that play critical infrastructure service roles, like
DNS and service discovery (kube-dns, coredns) or traffic management
(kube-proxy). Just like control plane components, these components
provide HTTP endpoints for health checks as well as internal metrics via a
Prometheus endpoint.

Kubernetes Metrics

kube-state-metrics is a service that leverages Kubernetes APIs and
provides metrics about the status/state of objects like pods, nodes, and
deployments. The following are some of the key insights provided by kube-
state that help operations to easily manage the container ecosystem state:

88

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

o Noting how many pods are running/stopped/terminated

» Noting how many times the specific pod has been
restarted

e Analyzing the response time of a Kubernetes service

e Analyzing the slowest endpoints of a Kubernetes HTTP

service

o Noting the most frequently used HTTP endpoints

Noting the slowest HTTP endpoints

Looking at the average connection time

Noting any error codes

Labels

Labels enable us to capture additional attribute details of the data
monitored. In the object, this is further stored as a key-value pair, where
the key is the name of the attribute being captured and the value is the
actual attribute data.

Labels work very well in Prometheus using PromQL. Let us consider
a metric for getting the total number of HTTP requests received by the
Kubernetes API server by differentiating based on the label, such as in the
following:

instance ="10.1.150.150:30000", job = "federate" and
quantile="0.999"

PromQL:

http _requests{instance="10.1.150.150:30000",job="federate",
quantile="0.999"}

89

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Now, let us see how we can execute the preceding example to generate
the respective metrics on the Prometheus server.

Log in to the Prometheus Ul and navigate to the Graph section, where
you should type the following query:

http_requests{instance="10.1.150.150:30000",job="federate",
quantile="0.999"}

Click the Execute button, which will show the result in the form of a
graph, as shown in Figure 4-1.

O Enatie query history
| http_requests{instance="10.1.150.150:30000" job="faderate" quantile="0.999"}
- insert metric at cursor - ¥
Graph Console
- | Eh + | Unt » Res. (s) 10 stacked
|—!
|
1
| - N
L~ —— L~k
hitp_requests{exp.

Figure 4-1. HTTP request filterd by label

Let us consider another example to find out the sum of the total
number of requests handled by the Kubernetes API server per second by
differentiating based on label, like component="apiserver",group="policy".

90

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING
Here is the PromQL:

apiserver request duration seconds sum{component="apiserver",
group="policy"}

Again, type the following PromQL query:

http_requests{instance="10.1.150.150:30000",job="federate",
quantile="0.999"}

This will generate the respective metrics in Prometheus. Click the
Execute button, which will show the result in the form of a graph, as shown
in Figure 4-2.

ds_sumcompanent="apiserver” group="palicy’)

Figure 4-2. Apiserver request duration in seconds, sum, filtered by
label

In the upcoming section, you will learn about the Prometheus
exporters; e.g., cAdvisor, Blackbox. These exporters pull the metrics from
various systems—e.g., Kubernetes, nodes, etc.—and push the data into
Prometheus for further analysis. To install exporters on the Kubernetes
cluster we need a Helm chart-based installation.

91

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Helm and Tiller Setup

Helm consists of two components: Helm and Tiller. Helm itself is the
client-side component that you run in your command line, while Tiller
resides on target node cluster.

Before continuing, you will need to download and install Helm. For
this exercise we are using the following Linux version of Helm: helm-
v2.16.0-1rc.2-linux-amd64.tar.gz. Helm should be installed on master
node 10.1.150.126.

Step 1: Download Helm on the master node in the /home/prometheus
folder and unpack the tar. After unpacking this, the 1inux-amdé4 folder
should be created. Below commands download the tar file using wget and
then are unpacked using tar command:

o % wgethttps://get.helm.sh/helm-v2.16.0-xc.2-
linux-amd64.tar.gz

o $ tar zxvf helm-v2.16.0-rc.2-linux-amd64.tar.gz

After executing the preceding commands, you will see the Helm and
Tiller executables, as seen in Figure 4-3.

/home/prometheus/linux-amdé4

[root@k8s-master linux-amdé4]# 11

cotal 79692

-IWXIr-Xr-x. 1 root root 40460288 Oct 31 21:19 helm
-IW-Yr--r--. 1l root root 11343 Oct 31 21:20 LICENSE
=IW=-r--r--. 1l root root 3444 Oct 31 21:20 README.r
-IWXI-Xr-x. 1l root root 4112?935 Oct 31 21:19 tiller

Figure 4-3. Downloading Helm

Step 2: After unzipping, copy the Helm binary from the /home/
prometheus/linux-amd64 directory to the /usr/local/bin directory using
cp command for installing Helm on your local Linux VM:

$ cp helm /usr/local/bin

92

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

After copying the Helm executable, execute the following command from
the /home/prometheus directory to verify that Helm was installed successfully.
The output should show the Helm version, as shown in Figure 4-4.

$helm version

72.16.0-rc.2", GroCommit:"el3boPd62ld4er€66270cipe734aaanli42a49b”, GictIreeStace:"clean™}

Figure 4-4. Verifying Helm version

Note Please ignore the error related to Tiller, as Tiller will be
installed later on the Kubernetes master node.

Installing Tiller

Tiller is used to deploy the Helm chart on the Kubernetes cluster. Tiller
requires a Kubernetes service account and permissions to access Kubernetes
resources using role-based access and control (RBAC). The Kubernetes
service account is used by Tiller for Kubernetes API server authentication.
RBAC is used to give access to Kubernetes resources—e.g., pods, services,
etc.—at the cluster level or within Kubernetes namespaces.

Kubernetes provides the following types of RBAC permission:

Role and ClusterRole: A set of permissions over a
user or group of users. A role is always confined to
a single namespace, while a ClusterRole is cluster-
scoped.

RoleBinding and ClusterRoleBinding: Grants
the permissions defined in a Role/ClusterRole
respectively to a user or group of users.
RoleBindings are bound to a certain namespace,
and ClusterRoleBindings are cluster-global.

93

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

In the following steps we will create a Kubernetes service account and
ClusterRoleBinding for Tiller to deploy the Helm charts on the Kubernetes
cluster.

Step 1: Navigate to the /home/prometheus directory. You will find the
tiller-helm.yaml file on the Kubernetes master node (10.1.150.126). This
will be used for creating the service account in kube-system and for the
ClusterRoleBinding, which will provide Tiller access to the cluster.

The kube-systemis a namespace used by Kubernetes to manage objects
or resources created by the Kubernetes components, so typically it contains
pods like kube-dns, kube-proxy, kubernetes-dashboard, and so on.

Next is the explanation of the various sections of the tiller-helm.
yaml file. It has two sections: ClusterRole and ClusterRoleBinding.

ClusterRole Section Details

o apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. apiVersion varies depending upon
the Kubernetes version you have in your environment.

e Kind: This field defines the type of the Kubernetes
object; e.g., ClusterRole, deployment, service, pod,
service account, etc. In our case, we defined kind as
ServiceAccount.

e Metadata: This section has name subcomponents
defined in the file. The name field specifies the name
of the object. We are using tiller as the name in
our example. For the namespace, we are using
kube-system.

94

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

These sections are explained in Figure 4-5.

apiVersion: vl
kind: ServiceAccount
—metadata:
T name: tiller
namespace: kube-system

Figure 4-5. tiller-helm.yaml file walkthrough

ClusterRoleBinding Section

o apiVersion: The beginning section of the file defines
the apiVersion of Kubernetes with which to interact
with the Kubernetes API server. It is typically used for
creating the object. apiVersion varies depending upon
the Kubernetes version you have in your environment.

¢ Kind: This field defines the type of the Kubernetes
object; e.g., ClusterRole, deployment, service, pods,
etc. In our case, we are using ClusterRoleBinding, as
per the explanation covered in the section “Installing
Tiller”

e Metadata: This section has name subcomponents
defined in the file. The name field specifies the name
of the object. We are using tiller as the name in our
example. See Figure 4-6.

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRoleBinding
[%meta.da.ta:
name: tiller

Figure 4-6. tiller-helm.yaml file walkthrough

95

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

e RoleRef: In this field, we are binding the Prometheus
cluster role to the default service account provided by
Kubernetes inside the monitoring namespace. This
section has further subcomponents in it.

apiGroup: In Kubernetes, the API group is specified
with the apiVersion to make a REST API call for a
serialized object. Kubernetes RBAC uses the rbac.
authorization.k8s.1i0 API group to communicate
with the Kubernetes API server. For detailed
information about the apiGroup and Kubernetes
REST API please refer to the following links: !

kind: This field defines the object type.

name: This is the name of the cluster role; e.g.,
cluster-admin.

See Figure 4-7.

kind: ClusterRole

roleRef:
apiGroup: rbac.authorization.k8s.io
name: cluster-admin

Figure 4-7. tiller-helm.yaml file walkthrough

Subjects: This section defines the set of users, such
as service accounts and processes, that need to
access the Kubernetes API. Here, we have to give the
reference of the tiller service account, as shown in
Figure 4-8 under the following subsections.

'https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/

96

https://kubernetes.io/docs/reference/using-api/api-overview/
https://kubernetes.io/docs/reference/

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

e Kind: This field defines the object type. Here it is
ServiceAccount because ServiceAccount was created
for Tiller to make a connection with the Kubernetes API

server.
o Name: We are using name as tiller.

o Namespace: This field defines the namespace for the
cluster role binding; e.g., kube-system.

Please see Figure 4-8.

subjects:
- kind: SerwviceAccount
name : 'cillerl
namespace: kube-system

Figure 4-8. tiller-helm.yaml file walkthrough

Step 2: Use the following command to create the cluster role shown in
Figure 4-9:

$ kubectl create -f tiller-helm.yaml

[root@k8s-master ~]# kubectl create -f tiller-helm.yaml
serviceaccount/tiller created
clusterrolebinding.rbac.authorization.k8s.io/tiller created

Figure 4-9. Configuring role for installing Tiller

Step 3: Once the service account is created, deploy Tiller to your
cluster and assign it the service account you just created.

$ helm init --service-account tiller --history-max 200

The --service-account flag signifies that Tiller should run under
the tiller service account previously created. The --history-max flag
specifies the maximum number of objects Helm persists in its history.

97

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

If this flag isn’t specified, history objects are not purged. Over a period of
time, this can build up to a huge number of objects in your cluster and
thereby make administration tasks difficult. Please refer to Figure 4-10.

rice-account tiller --history-max 200

m/repository/local
e lm ins

harcs.storage.googleapis.com
/charta

Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster.

Figure 4-10. Installing Tiller

Step 4: Run the following command on the master node under /home/
Prometheus. You should now see both the client and the server version
information, as shown in Figure 4-11.

$helm version

[zoot@kBs-master ~]# helm versicn -
Client: & on.Version{SemVer:"v2.16.0=-rc.2%, GicCommit:"el3bc94621d4ef6E66270clIbeTidaaabl342a45bb", GictTreeStace:"clean™)
Server: Lversion.Version(SemVer:"vi.l6.0-rc.2", GitCommit:"el3bcii€lldiefdec2T0ctbe’idaaabi3qladsob”, GitlzeeState: "clean”)

Figure 4-11. Verifying Helm version

Exporters

An exporter helps in fetching the state/logs/metrics from the application/
Kubernetes service and providing data to Prometheus. This concept is
similar to that of adapters or plugins in other monitoring tools available
in the market. Prometheus provides a list of official and externally
contributed exporters. Let’s explore some of these exporters, which are

useful for container infrastructure monitoring:

https://prometheus.io/docs/instrumenting/exporters/

98

https://prometheus.io/docs/instrumenting/exporters/

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Node Exporter

Node Exporter is a Prometheus exporter for fetching metrics for hardware

and OS metrics exposed by Unix/Linux kernels. It is written in Go language

with pluggable metric collectors. Collectors differ as per operating system

type. Table 4-1 provides a few examples.

Table 4-1. Types of Collectors

Name Description 0S
Arp Exposes ARP statistics from Linux
/proc/net/arp

Boottime Exposes system boot time derived from
kern.boottime sysctl

Cpu Exposes CPU statistics

Cpufreq Exposes CPU frequency statistics
Diskstats Exposes disk 1/0 statistics

Filesystem Exposes filesystem statistics, such as disk
space used

Hwmon Exposes hardware monitoring and sensor
data from /sys/class/hwmon/

Meminfo Exposes memory statistics

Darwin, Dragonfly,
FreeBSD, NetBSD,
OpenBSD, Solaris

Darwin, Dragonfly,
FreeBSD, Linux, Solaris

Linux, Solaris
Darwin, Linux, OpenBSD

Darwin, Dragonfly,
FreeBSD, Linux, OpenBSD

Linux

Darwin, Dragonfly,
FreeBSD, Linux, OpenBSD

Netclass Exposes network interface info from /sys/ Linux

class/net/

(continued)

99

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Table 4-1. (continued)

Name Description 0S

netdev Exposes network interface statistics such as Darwin, Dragonfly,
bytes transferred FreeBSD, Linux, OpenBSD

netstat Exposes network statistics from /proc/ Linux
net/netstat. This is the same information
as netstat -s.

Nfs Exposes NFS client statistics from /proc/ Linux
net/rpc/nfs. This is the same information
as nfsstat -c.

Nfsd Exposes NFS kernel server statistics from Linux
/proc/net/rpc/nfsd. This is the same
information as nfsstat -s.

uname Exposes system information as provided by Darwin, FreeBSD, Linux,
the uname system call OpenBSD

Now, let’s start with configuring Node Exporter on the environment
we set up in the previous chapter. We will install Node Exporter on the
Kubernetes master node (10.1.150.126) using Helm.

Step 1: Log in to the Kubernetes master node (10.1.150.126), navigate
to the /home/prometheus folder, and execute the following command. It
will download the exporter from the GitHub URL given below, as shown in
Figure 4-12.

$ helm install --name node-exporter stable/prometheus-node-
exporter

https://github.com/helm/charts/tree/master/stable/prometheus-
node-exporter

100

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

[root@kss-master prometheus]# helm install --name node-exporter stable/prometheus-node-exporter
NAME: node-exporter

LAST DEPLOYED: Tue Nov 12 15:10:28 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ClusterRole

NAME AGE
psp-node-exporter-prometheus-node-exporter <invalids
==> V1/ClusterRoleBinding

NAME AGE
psp-node-exporter-prometheus-node-exporter <invalids
==> V1/Daemonset

NAME AGE
node-exporter-prometheus-node-exporter <invalid:

==> v1/Pod(related)

NAME AGE
node-exporter-prometheus-node-exporter-p2b5j <invalids
node-exporter-prometheus-node-exporter-tspré <invalids
==> V1/5ervice

NAME AGE
node-exporter-prometheus-node-exporter <invalids

Figure 4-12. Configuring Node Exporter

Step 2: Now, let’s verify the Node Exporter service is running by
executing the following command from the /home/prometheus folder. The
node-exporter-prometheus-node-exporter service should be visible
in a running state, as highlighted in Figure 4-13. Also note the cluster IP
address for the service, as it will be used in the next step.

$kubectl get svc

[root@k8s-master prometheus]# kubect] get svc
NAME TYPE

CLUSTER-TP EXTERNAL-TIP PORT(S) AGE
frontend NodePort 10.105.20.144 <nones= B0:30186/TCP 7d19h
44

kubernetes ClusterIP 10.96.0.1 <nones
n ; orieP 0.105.3

3/TCP) 1zd

<nones 639/ 1CH

. . . dlh
redis-slave ClusterIP 10.108.54.154 <nones 6379/TCP 7d19h

Figure 4-13. Verifying Node Exporter status

Step 3: The next step is to configure Node Exporter. Navigate to the
/home/prometheus folder on the master Kubernetes node and open
the config-map.yml file. Under the scarpe_config section find the
job_name: node-exporter section and details for the job name and static
configs, as shown in Figure 4-14.

101

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

- job_name: node-exporter
static_configs:
- targets: ['10.102.155.199:9100"]

Figure 4-14. Node Exporter section

o job_name: This field represents the job name for Node
Exporter. In this example, we are using node-exporter
as job_name.

o static_configs: This section has a subsection named
targets in it. Targets refers to the job target, which
is 10.102.155.199 (cluster IP) and 9100, which is the
service port on which the Node Exporter service is
running. You can use the following command to verify
your cluster IP and port information, as shown in
Figure 4-15.

$ kubectl get svc

[root@kds-master prometheus]# kubect] get svc
NAME TYPE

CLUSTER-TP EXTERNAL-TIP PORT(S) AGE
frontend NodePort 10.105.20.144 <nones B0:30186/TCP 7d1gh
kubernetes ClusterIP 10.96.0.1 <nones= 443/TCP 1z2d

Ul A [5.37. =] £ H
I1nEe-exanrter—grn.‘letﬁeus—noée—e:ﬁorter ClusterIP _ 10.102.155.199 <none> 9100,/ TCP
15-master usterlF T TI0 387052 <MOne= 639/ 1CH

i
redis-slave ClusterIP 10.108.54.154 <nones 6379/TCP 7d19h

Figure 4-15. Verifying Node Exporter status

Step 3: Execute the following commands to reflect the Prometheus
config map changes made in previous steps:

kubectl delete configmaps prometheus-server-conf -n=monitoring
kubectl create -f config-map.yaml

kubectl delete deployment prometheus-deployment -n monitoring
kubectl apply -f prometheus-deployment.yaml -n monitoring

102

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Step 4: Verify Node Exporter’s status from within the Prometheus
UI by logging in and navigating to Status and then to Targets (http://
masternodeip:30000)

Search for node-exporter on the page and verify that its state is UP,

shown in Figure 4-16.

as

node-exporter (1/1 up)

Scrape
Endpoint State Labels Last Scrape Duration Error
http://10.102,155.199:9100/metrics up 3.23s ago 13.97ms

job="node-exporter”

Figure 4-16. Verifying Node Exporter status on Prometheus
console

Step 5: Now, let’s execute a query to start collecting and displaying

the node metrics. Click on the Graph tab. In the Expression section, in the

text box, write node_load15 and click on the Execute button, as shown in

Figure 4-17.

& Prometheus Time Series Collect . X +

— C (@® Notsecure | 10.1.150.126:30000/graph

Prometheus

@ Enable query history

Fxpression (press Shift+Enter for newlines)

Execute - insert metric at cursor - %

Figure 4-17. Node Exporter-based query sample

You will see a graph showing metrics similar to the one shown in
Figure 4-18.

103

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

§ Prometheus Time Series Collec:. X NewTab X +

& = C A Notsecure | 10.1,150.126:30000/graph?g0.range_input=1h&gl.expr=node_load158ig0.tab=0

Prometheus Aler

& Enable guery history

node_load15

m - insert metric at cursor - #

Graph | Console

- 1h L - Unt » Res. (s) 0 stacked

Figure 4-18. Node Exporter-based graph

Node Exporter is primarily used to monitor infrastructure elements
of containers and not processes/services. Node Exporter is typically run
as a privilege user instead of a root user. We will explore some of the key
collectors as part of this chapter.

CPU Collector

The metric from the CPU collector is node_cpu_seconds_total, indicating
how much time each CPU spent in each mode. Log in to Prometheus

and click on the Graph tab. In the Expression section (text box) write the
following query and click on the Execute button:

node_cpu_seconds total{cpu="0", mode="idle"}

104

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

The following are the various aspects of CPU data collected by the CPU
collector:

o Latency: Average or maximum delay in CPU scheduler
o Traffic: CPU utilization

o Errors: Processor-specific error events, faulted CPUs

e Saturation: Run-queue length

After execution, you will get the result shown in Figure 4-19.

Figure 4-19. CPU collector-based graph

Node Exporter provided the following CPU-based metrics that tell us
how many seconds each CPU spent doing each type of work:

node_cpu_seconds_total{cpu="0",mode="guest"} 0
node_cpu_seconds total{cpu="0",mode="idle"} 2.03442237e+06
node_cpu_seconds total{cpu="0",mode="iowait"} 3522.37
node_cpu_seconds total{cpu="0",mode="irq"} 0.48

node cpu_seconds total{cpu="0",mode="nice"} 515.56
node_cpu_seconds total{cpu="0",mode="softirq"} 953.06

105

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

node cpu_seconds total{cpu="0",mode="steal"} 0
node_cpu_seconds total{cpu="0",mode="system"} 6605.46

Filesystem Collector

This collector exposes filesystem statistics, such as disk space used. Log in
to Prometheus and click on the Graph tab. In the Expression section (text
box), write the following query and click on the Execute button:

(node_filesystem avail bytes / node filesystem size bytes)

node filesystem avail bytes returns the available filesystem space
in bytes for on-root users.

node filesystem size bytes returns the filesystem size in bytes.

After execution, you will get the used disk space in bytes, as shown in
Figure 4-20.

Graph Console

- 1h - 4 | Unti » Res. (s) 0O stacked

— v\ ,—

Figure 4-20. Filesystem collector-based graph

106

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Diskstats Collector

This collector exposes disk I/0 statistics. Log in to Prometheus and click
on the Graph tab. In the Expression section (text box), write the following
query and click on the Execute button:

node_disk io now

After execution, you will get the result as per Figure 4-21.

Graph Console

- 1h +* « | Unti » Res. (s) O stacked

Figure 4-21. Diskstats collector-based graph

Netdev Collector

This collector exposes network interface statistics such as bytes transferred.
Login to Prometheus and click on the Graph tab. In the Expression section
(text box), write the following query and click on the Execute button. This
query will calculate network bandwidth usage of cluster.

rate(node _network receive bytes total[im])

107

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

After execution, you will get the result shown in Figure 4-22.

Graph = Console

- | ih - “ Unt » Res. (s) 0 stacked

] ys s

Figure 4-22. Netdev collector-based graph

Meminfo Collector

This collector exposes memory statistics. Log in to Prometheus and click
on the Graph tab. In the Expression section (text box), write the following
query and click on the Execute button. This query will calculate and show
free available memory.

node_memory MemFree bytes

The following are the various aspects of memory data collected by the
Meminfo collector:

o Latency: (none—difficult to find a good method of
measuring and not actionable)

o Traffic: Amount of memory being used
e Errors: Out-of-memory errors

e Saturation: Out of Memory (OOM) killer events, swap usage

108

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

After execution, you will get the result shown in Figure 4-23.

- 1 + o Until » Res. (3) O stacked

N,

g

Figure 4-23. Meminfo collector-based graph

The following are some useful memory-based metrics provided by
Node Exporter:

o node_memory_Active_anon_bytes (gauge) return

memory information field Active_anon_bytes

e node_memory_Active_bytes (gauge) return memory
information field Active_bytes

« node_memory_Active_file_bytes (gauge) return
memory information field Active_file_bytes

Uname Collector

This collector exposes system information as provided by the uname system
call. Log in to Prometheus and click on the Graph tab. In the Expression
section (text box), write the following query and click on the Execute button.
This query will show the count of machines run, along with the kernel version.

count by(release)(node _uname info) from prometheus GUI.

After execution, you will get the result shown in Figure 4-24.

109

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Graph Consacle

= 1h + # | Unt L Res. (s 0O stacked

B {release="node-axporter}

{releases"3 10.0-382 «I7 x38_647}

Figure 4-24. Uname collector-based graph

cAdvisor Exporter

cAdvisor is an open source container resource usage and performance
monitoring exporter. Let’s now configure the cAdvisor exporter in our
container setup.

Step 1: We will configure cAdvisor on the Kubernetes master node
(10.1.150.126). Navigate to the /home/prometheus folder and open the
config-map.yaml file. Find the section with job_name: 'kubernetes-
cadvisor' and review the following sections:

e job_name: This field defines the job name assigned
to scraped metrics; in our case, we use kubernetes-
cadvisor as the job name to fetch to gets metrics using
the Kubernetes APIs.

o kubernetes_sd_configs: This field represents a
list of Kubernetes service discovery configurations.
Kubernetes SD configurations help in fetching targets

110

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

from Kubernetes' REST API. We are using nodes in

our case because every node has Docker containers
that are running under Kubernetes pods, and cAdvisor
provides Docker container-related metrics. The node
role discovers one target per cluster node.

tls_config: This field provide details for configuring
TLS connections. Under this field there is a subfield for
ca_file. This field provides details of the CA certificate
used for API authentication.

metrics_path: Defined cAdvisor metrics endpoint that
is used by Prometheus to collect the container data, as
shown in Figure 4-25.

= job name: 'kuberntes-cadvisor'

kubernetes sd configs:
- role: node
scheme: https
tls config:
ca file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
metrzcs_path: /metrics/cadvisor

Figure 4-25. Config-map.yaml file review for cAdvisor exporter

Step 2: Execute the following commands to apply the changes made to

the Prometheus configuration:

$kubectl delete configmaps prometheus-server-conf -n=monitoring
$kubectl create -f config-map.yaml

$kubectl delete deployment prometheus-deployment -n monitoring
$kubectl apply -f prometheus-deployment.yaml -n monitoring

111

https://kubernetes.io/

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Step 3: To verify that all the components related to Prometheus are

running fine, execute the following command, as shown in Figure 4-26:

$ kubectl get all -n=monitoring

[root@k8s-master prometheus]# kubectl get all -n-monitoring

NAME READY STATUS RESTARTS AGE
pod/alertmanager-564d4884bd-mjjft 1/1 Running 0 13d
pod/prometheus-deployment-5c4f4fs779-7rpbt 1/1 Running 0 69m

NAME TYPE CLUSTER-IP EXTERMNAL-IP PORT(S)
service/alertmanager NodePort 10.111.165.123 <nones 8080:32000/TCP
service/prometheus-service MNodePort 10.97.107.57 <nones 8080:30000,/TCP
NAME READY UP-TO-DATE AVATLABLE AGE
deployment.apps/alertmanager 1/1 1 1 13d
deployment . apps/prometheus-deployment 1/1 1 1 69m

NAME DESIRED CURRENT READY AGE
replicaset.apps/alertmanager-564d4884bd 1 1 1 13d
replicaset.apps/prometheus-deployment-5c4fafs7ye 1 1 1 69m

Figure 4-26. cAdvisor exporter configuration

AGE
13d
13d

Step 4: Log in to Prometheus GUI at http://kubernetes master

nodeip: 30000.

Click Status, and then choose “Targets.” You will find the cAdvisor

details as in Figure 4-27. Here, the number of endpoints depends on the

number of nodes in the Kubernetes cluster, as shown in Figure 4-27.

kubernetes-cadvisor (2/2 up) [l

Scrape
Endpoint State Labels Last Scrape Duration Error

https://kubernetes.defaultsve:443/apint/ UP 16075 ago 53.3ms
nodes/devops0088/proxy/metrics/cadvis
or

job = "kubernetes-cadvisar®

Rubemmetes_jo_fostname =" devops0B3"
httpsy/kubermnetes. defaultsved43/apines | UP 29265 ago 66.63ms

nodes;/kBs-master/proxy/metrics/cadviso | b

' [imstance="kfs-master” | job="kubernetes-codvisar™
kubernetes_io_bostname="kis-master™
lubernetes lo_os="Hnux"

Figure 4-27. cAdvisor exporter verification

112

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

In our example, we are using a two-node cluster.
Step 5: Click the Graph tab in the Prometheus GUI and execute the
following query to view the cumulative count of reads merged:

container_fs reads_merged total

After executing the query, you will see the result, as per Figure 4-28.

a | 1h + | umi » Sas. [5) O muacked

H O Type hese 1o search

Figure 4-28. cAdvisor exporter-based filesystem read graph

Step 6: Execute the following query to get the CPU usage by
Kubernetes namespaces:

sum(rate(container cpu_usage seconds total{container
name!="POD",namespace!=""}[5m])) by (namespace)

After executing the query, you will see the result as per Figure 4-29.

113

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Graph Console

= | 1h + | Until » Res. (s) O stacked

B {namespace="monitoring 7}
B {namespaces="kube-syslem”}
{namespace="defaul{"}

Figure 4-29. cAdvisor exporter-based CPU usage graph

Step 7: Execute the following query to get the ICMP statistics:
node_netstat Icmp_InMsgs

After executing the query, you will see the result as shown in Figure 4-30.

114

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

« © (A Netseure 10.1.150.126:30000, Tgase higlies a+« @B ®EH 6 @

Figure 4-30. cAdvisor exporter-based ICMP stats graph

Step 8: Execute the following command to get a list of currently

opened connections:
node netstat Tcp ActiveOpens

After executing the query, you will see the result shown in Figure 4-31.

o+ - o =
. © (A HE) 10.0.150.126:30000 5 bl haates s Ty ActiveOpearilgitabi=0 ¢ @BOH 81
raph
- + ow » [P
e
7
7
/’
/
r
4

R T T AT AR T 1 DI ST DT A 108 SO 1) T 08T A= 8 158 1 85 A TN MV 47RO T A -0 SO B R T D]

H O Type here ta senich

Figure 4-31. cAdvisor exporter-based open connection graph

115

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Azure Monitor Exporter

The Azure Monitor exporter is used for exporting metrics from Azure
applications using the Azure Monitor API. Now, let’s configure an Azure
container cluster and see how we can monitor it using Prometheus and
leveraging the Azure Monitor exporter.

Step 1: This lab step assumes readers have an Azure account set up
and have working knowledge of Azure. Log in to your Azure account and
navigate to the Azure dashboard. Click on “Create a resource,” as shown in

Figure 4-32.

B Seorch resources, seraces, and docs (G4

2 > O & B =
SCL servers Arore Actiee Secunity Center App Services. Virtual
irectary macings

Recent resources

Figure 4-32. Azure Console

Step 2: Select “Kubernetes service” from the Containers section.
Step 3: Fill in the details to create the Kubernetes service:
Provide resource group name PrometheusPOC, as shown in Figure 4-33.

116

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Home > MNew > Create Kubemetes cluster

Create Kubernetes cluster

Basics Scale Authentication MNetworking Monitoring Tags Review + create
Azure Kub Service (AKS) G835 yC deploy and
manage containerized applications without fongoing

cperations and maintenance by provisionini
offine. Learn more about Azure Kubernete

Project details N

Select 3 subscription te manage deployed n I PrometheuspOC] - i and manage all

your resources,

Subscription * O i w

. —
Resource group * () s s b |
Create new

Cluster details

Kubemetes cluster name * (O i |

Region * O [ws) centrat us ~ |

A resource group is a container that holds relzted aur applications

resources for an Azure solution.

< Previous

Next : Scale >

Figure 4-33. Launching Azure AKS instance via Azure Console

Note this value as it will be used in the exporter configuration.

Insert other required inputs like cluster name, location, pool size, etc.

We are taking Node Count as “1” in this example, as shown in Figure 4-34.

117

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Create Kubernetes cluster

S s r T g A R i ok AN 3 M LTS i S S P

Subscription * O | Microsote Azure v
. Resource group * D | DrometheutPOC it |
Create new

Cluster details

Kubernetes cluster name * () | Prometheusciuster il |
Region * @ | (US) East US i |
Kubernetes version * (0 | 1.13.12 (defaul) b |
DNS name prefix * (0 | Prometheusciuster-dns /]
Primary node pool

The number and size of nodes in the primary node pooel in your clustér. For production workloads. 3t least 3 nodes are

ded for resili For devel or test workloads, only ong node is required. You will not be able to change the
node size after cluster creation, but you will be able to change the number of nodes in your cluster after creation. If you would
like additional nede peols. you will need to enable the "X feature on the “Scale” tab which will allow you to add more node
pools after creating the cluster. Learn more about node pools in Azure Kubermetes Service

Node size * @ Standard D52 v2
Change size

Node count * O (D rimrmisrisim s s I:I

o [

Figure 4-34. Launching Azure AKS instance via Azure Console

Now, click on the Scale tab and provide scaling settings by enabled VM
scale sets, as shown in Figure 4-35.

118

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Mbernetes custer

Create Kubernetes cluster

Basics | Scale | Authentication Networking Monitoring Tags Review + create

Enable scaling features 10 allow fexible capacity and burstable scaling options within your cluster.

VM gcale sets in AKS

Virtual nedes @ Enabled)
VM scale sets D (Dasties D
0 0 soaie sens sen rasuived for the fllowing soenssiss:
* Auoscabng
* MuRigia node pocls

* Virtual nodes aliow curstasie scaling Backed by Serveriess Azure Container Ingtances. Leam mare Bbowt Virtual nodes
* VM scale sets 3re required for 3 vaniesy of scenanics induding Jutoseaing and multiole nade pools Learn more asout

Figure 4-35. Launching Azure AKS instance via Azure Console

Click on the Authentication tab and provide either an existing service

principal or create a new one. The service principal should have at least a

read role on associated log analytics.

Then click on the Networking tab. Create a new virtual network and

subnets, etc., or use the basic configuration, which will create a basic
network with the default configuration, as shown in Figure 4-36.

119

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

» Create Kubemetes chuszer

b Create Kubernetes cluster

Basics Scale Authentication N

king Monitoring Tags

Review + create

You €3n change networking $4ttings for your custer, including enabling HTT2 application routing and configuring your network

using aithar the ‘Basic’ or "Advanced’ options:
o “Basic’ networking créates 3 new VNet for your chuster using default values.
* “Advanced networking allows CluSters 1o uSe 3 naw of euisting VNGt with customizable addresses. Application pods are
conngcted directly to the WNet which allows for nativa integration with VNet features.

Learn mare sbout netwarking in Azure Kubernetes Service

Network configuration (D)

Configure virtual networks

Virtual network * (0

Kubernetes service address range * ()
Kubernetes DNS service 1P address * ([0

Docker Bridge address * 1)

HTTP application routing @ (v
Load balancer D Sundard

O zasic (@) Advances

| (new) Prometheus®OC-vnez
Create new
Cluster subnet * 0 | new) setaur (10.2400.0/16) ~|

| 10.0.00n8

| 10.00.00

| 1721700016

_i < Pravious || Neat : Monitoring = I

Figure 4-36. Launching Azure AKS instance via Azure Console

Click on the Monitoring tab and select “Yes” to enable container
monitoring. Choose a workspace for the Log Analytics workspace. This
workspace is used by Azure to monitor log data. In our example, we select
the “DRYICEDEMOIAC” option for Log Analytics workspace, as shown in
Figure 4-37.

120

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

> Creae Kubemetes clumer
* Create Kubernetes cluster
Basics Scale Authentication Networking Monitoring Tags Review =+ create

With Azure Kubemaetes Service. you will get CPU and memory usage metrics for gach node. In addition, you can enable
<onzainer monftoring capakilives and get insights inte the performance and health of your entire Kubemetes cluser. You will
be billed based on the amount of Jat3 ingestad and your ata retention SETTings.

Learn more 3bout container performance and health meonitosing
Learn mare Jbout pricing

Azure Monitor
Enable container monitoring o -
Leg Analytics werkspace (O DAYICEDEMelAe ot

Create new

Figure 4-37. Launching Azure AKS instance via Azure Console

The Review+Create tab gives details about the information and options
provided by the user to create the cluster. Now click the Create button to
start the process of cluster creation, as shown in Figure 4-38.

121

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Home > New > Create Kubemetes cluster

Create Kubernetes cluster

~ Velidation passed

Basics Scale Authentication Metworking Monitoring Tags Review.*cneatei

Kubernetes custer name

Kubernetes version

Basics

Subseription Microsoft Azure
Resource group PrometheusPOC
Region {US) East US

PrometheusCiuster

11392

DNS name prefix ErometheusCiuster-dng

Node count 1

Node size Stangang D52 v2

Scale

Virtual nodes Disabled

VM scale sets Enabled

Authentication

Enable RBAC Yes

MNetworking

| < Previeus Next 1 3 termplate for

Figure 4-38. Launching Azure AKS instance via Azure Console

Step 4: After cluster creation, we will see the screen shown in Figure 4-39,

which verifies the successful creation of the Azure AKS through Azure
Console. We can see that a cluster by the name of PrometheusCluster is

displayed on the Azure Console screen.

7 S007TA PESDTES, HACEL £ad ot)

(1] PrometheuspaC
bl

| Pt oy marma. b
S B Adtitrieg oscrghon O
e [ETE TR T
4 Bryicn B, Ascass eontrol 1AM
[GET-ALTO-RS * T
I GETAuTaRG = .
[g rwcuce p— ETT | Croesean @) (Locwion sean @) (Vg dcammer)
[M Fromath PromethesCh- " - tolln o iken by Ho guiugiey
e s POC_Proet & Cpichairt | Sowing 1101 of Trecords, 0 Shewrbicden tipes ©
[mrycicud @ n -) e © Type 14, Lostion Ty
1 MyCloudcs, i bl Keemetmseke e
I Cepomens | Ot Prormeuncans Kaberetes fts
[My CloudRG. oia
I myResourceGrous
' = Fropertes
[Bctmarkiatehee R

Figure 4-39. Verifying Azure AKS instance via Azure Console

122

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

After clicking on PrometheusCluster, the information related to the
cluster is shown, as in Figure 4-40. Information would contain information
like resource group name, location, tags, etc.

e G

Hema PremathaurOuster

&% PrometheusCluster
W Ceavrises

SRRELE]

- Cuveniew

premetheuichaterses TI0lebee hep sstus pemidlnis

W Acvityiog

B Acoens control PAM

Tage 383291504251 5k a 0440 TSNS

P agrans ned sk prctiors o [change + | Descrption : Fromethews POC on Kubesnetes

Seitings
E Node poos

0 Uppade <) View logs

® Sewch and snslye loga uting ad-hor queties

E
onror ings
& Networking

o DevSpaces

Figure 4-40. Verifying Azure AKS instance via Azure Console

Step 5: Now we will use the PowerShell AZ module to check nodes
associated with the Kubernetes cluster. For this step, we will assume
readers have PowerShell set up for Azure access. First, log in to the Azure
PowerShell module using your credentials. Then, execute the following
command to get the details of the nodes. For arguments, use the values
used for provisioning the cluster in the previous step. You will need a
Windows system with the PowerShell module installed on it to proceed, as
shown in Figure 4-41.

az aks get-credentials --resource-group PrometheusPOC -name
PrometheusCluster

123

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Untitled1.ps1® X

1 group PrometheusPOC --name PrometheusCluster

Bz aks get-credentials --resource-g
7 Ci\Mywork\DocKubernetes\kubect], exe get nodes

Figure 4-41. Configuring Azure Powershell module for Azure AKS

Step 6: Now we will push an application on Azure AKS. For this
exercise, we will leverage a sample Azure voting application. The following
is the URL for GitHub from which the container image will be pulled:

https://github.com/Azure-Samples/azure-voting-app-redis

Step 7: Create the namespace ms-votefront using the following
command:

Kubectl create ns ms-votefront

Step 8: Check the associated nodes by executing the following
command, as shown in Figure 4-42:

kubectl get ns

Ps C:\Mywork\Dockubernetes\Git\azure-voting-app-redis> kubectl get ns
NAME STATUS AGE

default Active 5h33m

kube-public Active 5h33m

kube-system Active 5h33m

ms-votefront Active 22s

sock-shop Active 3hZ1m

Figure 4-42. Namespace verification for container application
deployment on Azure AKS

124

https://github.com/Azure-Samples/azure-voting-app-redis

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Step 9: Now let’s apply the image to the Kubernetes cluster using the
following command, as shown in Figure 4-43:

kubectl apply -f azure-vote-all-in-one-redis.yaml

Ps C:\Mywork\Dockubernetes\Git\azure-voting-app-redis> kubectl apply -f azure-vote-all-in-one-redis.yaml
deployment. apps/azure-vote-back created

service/azure-vote-back created

deployment. apps/azure-vote-front created

service/azure-vote-front created

Figure 4-43. Deployment of container application on Azure AKS

Step 10: Check the status and browser load balancer IP by executing
the following command, as shown in Figure 4-44:

kubectl get all -n ms-votefront

PS C:\Mywork\DocKubernetes\Git\azure-voting-app-redis> kubect]l get all -n ms-votefront
NAME READY STATUS RESTARTS AGE

pod/azure-vote-back-847fc9bcb9-g72c9 11 Running O 2m57s
Eodl;/az%lr e-vote-front-5d945b4797-25v81 1/1 Running O 2ms6s
ubectl :

At Tine:1 char:1
+ kubect1 get all -n ms-votefront
+

+ CategoryInfo : Notspecified: (:string) [], RemoteException

+ Fullyqualifiederrorid : NativeCommanderror
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT% AGE
service/azure-vote-back Clusterip 10.0.119.73 <nonex 6379/TCP 2m57s
service/azure-vote-front LoadBalancer 10.0.243.189 40.88.19.79 80:30980/TCP 2m56s
NAME READY UP-TO-DATE AVAILAELE AGE
deployment. apps/azure-vote-back 1/1 1 1 2m58s
deployment. apps/azure-vote-front 1/1 xl 1 2m57s
NAME DESIRED CURRENT READY AGE
replicaset. apps/azure-vote-back-847fc9bcb9 1 1 1 2m59s
replicaset. apps/azure-vote-front-5d945b4797 1 r b - | 2m58s

ne sl saneld nasviharnar el Fdel amiea ardas snn saddec |

Figure 4-44. Verification of container application on Azure AKS

Step 11: Open the browser and type the IP address of the load balancer
to verify the application is working, as shown in Figure 4-45.

125

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

@ @ Notsecure | 40.88.19.79

Azure Voting App

=]
- |

‘ Reset ‘

Cats - 6 | Dogs - 6

Figure 4-45. Verification of container application on Azure AKS

Step 12: To view the log, navigate to the Azure home page and click
“Log Analytics workspaces,” as shown in Figure 4-46.

W

Azure services

ED D HH ()

Creatza Log Anaktics All resources Resource
reouce wortkspaces qroups

Recent resources

Figure 4-46. Log Analytics workspaces

Step 13: Once the Log Analytics workspaces page has opened, click the
DRYICEDEMOoIAC workspace as shown in Figure 4-47.

126

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Home >

Log Analytics workspaces

DRYKCE-Technology

& Add D Recower 150 Managewiew ~ () Refresh 1 ExporttoCsv

?

@ Assign tags 7 Feadback

Showing 110 1of 1 records.

[] Mame *

| D D oRYICEDEMOIA: |

|h'we-byname... | (substiiption == all) (Resousce group ==all @) (locaton ==an @) (Fp add fieer)

Resource group T4

Drylee

Figure 4-47. Log Analytics workspaces page

Now, click the “Logs” option, as shown in Figure 4-48, to see the Azure

AKS logs.

Filter by name...

] B Ovenvien

Mame T

@ DRYICEDEMolA

B Activity g

p;.:_ Access control (IAM)

B

settings

Tags

Dagnosz and sole problems

N

Locks

4 Bpor templbte

@ Agents management

Quick Sarnt
=% Workspace summarny
&} Vizw Designer

B workbooks

[f=] 2

Figure 4-48. Logs

127

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Step 14: Once the Logs page opens you can run the various queries

to see the AKS cluster log. In our example, we type query ContainerLog

in the query text box to see all the container logs running in our AKS

cluster, then click the Run button, as shown in Figure 4-49. This query

will return the deployed application container logs, such as details of the
deployed Docker image, HTTP request request (GET,POST) handled by the
application container, etc.

I - e

Mo DRVICEDEMSML - Logs
) DRYICEDEMolA: - Logs
ety

srcemthbuschaber seaseee | [

Comphita. Pheuing MEss Ir2m thi st 24 hours

Whble WCht Columes~

Tt cange : Last 24 hesurs

[0 Helo 52 Settings B Sample queries [Cuery exlorer

% Save R Copy 1= Bxpont

{0 oode0203s [1,030 reconds

W' Loglieey ok

5 SRR [T ——————r——g—
- R ke A A0 38 i s e L e O . i
'; > V0N, SEDITAZY ML gl « ¥ TodeS.. An o e Ma g Qeecy B3] 9328401) (56 vies in 366 byned] [Fri Now D T2DI7 2008) POST / =uddle. sMemT
Bl o e e e T o
% > TN SAI:2600E MM - Toled &l Mg 126 varn in 906 Syteal [l o 39 132306 SNH POST / ~wdi_ mcomr
3 = Tnvens oy B ey o o s oA
VIR SILMS PN doagenibodl. | ToRoh. meoosefansevete-Sonty! i e W4ap0: Qres 00 1024457) 236 wars i 900 Bytes) i Now 29 RE2200 2MH POST / ewlll. siGem

3 OTVEGOD SASIRIIPM skraginiposl -) MRS muCTOOMURSU vob Sorkv 210000 2ANSTENRLEICE «0000) “POST J MTTR/LT 200 $50 Afgc a0l Mosi. fiout

P OIS SSIMISO MM aksagenipool. 0 ToMAL siomofanee wele-fonty! 3104400 - - (RS Ncw I RIEILAS « 30000 POST / HETRAL® 300 950 ‘NSl S TS “Mad.. sioul

: = : R et

o

Toen b w89 eaperag

s 5P Pt dathbeand

Diaclay e (WTT=8530) ~

Cartararlog
Cortarein
[
Cortarariog
Cortsreriog
Carmirenog
Cantamertog
Cartirartag

Cortareroy

FrataonponuBIS)
Patrariprion/ 543
FoubsorpionsBE1
Feutrprionu 1S
Fratacripions54153
FPUBGOpONE 551
FrabaripionsH15)
Frataempent/ B3

Fratraipier 583

1. 5001085 nems

Figure 4-49. Verification of container application metrics via Azure

Console

Step 15: The Prometheus Azure exporter is based on Go language. To

configure the same we would require Go language. So, let’s download and

install the Go language binary archive file using the following command,

as shown in Figure 4-50.

wget https://dl.google.com/go/go1.13.3.1inux-amd64.tar.gz

128

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

[rooték8s-naster homels wget nitps://dl.poogle.com/go/gol.13.3. 11nux-anded. tar 9z
2019-12-02 18:26:54 nteps://dl.google.con/go/goL. 13. 3. Tinux-amded. tar.g
usnl ing d1.go091e.con (d1.google.com)... 173.194.219.190, 173.194.219.91, 173 194.219.93, ...
Con r.] t” dl. qa g'll:‘ u'n (1. google. r.g:%l:\?a 154,219,190 :443, .. connect
iti

s Sponse .
lem;ln 120055? 9 (lll"l) [aapllcatlm foctet-strean]
Saving to: *gol.13.3.1imux-ano64 . tar.gz’

1 120,055,279 9.06MB/5 in 155

2019-12-02 18:27:12 (7.42 M8/5) - "gol.13.3.71inux-andé4.tar.gz" saved [120055279/120055279]

[rootakss-naster honeld 11

total 117256

drux----==, 15 adain admin 4096 Jul 3 00:02 acwin

--==P=NP-K, 1 FOOT FOOT 633 Nov 24 22:14

I‘J r--r--. 1 root root 120055279 OCt 18 04:07
------ 3 root root 78 Jul 2 23:59

rJerr -xr-x. 7 root root 4096 Wov 20 16:23

Figure 4-50. Download package for Go installation

For this command, download Go Linux version 1.13.3 from the
following link: https://dl.google.com.

Step 16: Extract the downloaded archive and install it in the /usz/
local Linux directory. You can also install this under the home directory
(for shared hosting) or other location.

tar -xzf gol.13.3.linux-amd64.tar.gz

After extracting go1.13.3.1inux-amd64.tar.gz move all the
directories and files related to the Go language to /usr/local by using the
mv command:

mv go /usr/local

Step 17: Now we need to set up the Go language environment
variables for your project. Commonly, you need to set three environment
variables: GOROOT, GOPATH, and PATH. GOROOT is the location where the Go
package is installed on your system.

export GOROOT=/usr/local/go

Now set the PATH variable to access Go binary systemwide using the
following command:

export PATH=$GOPATH/bin:$GOROOT/bin:$PATH

129

https://dl.google.com

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

All the preceding environment setup will be set for your current
session only. To make it permanent, add the preceding commands in the
~/.bash_profile file.

With this step, you have successfully installed and configured Go
language on your system. Verify the setup by using the following command
to check the Go version:

go version

Step 18: Clone the Azure exporter by executing the following inline
command in the Kubernetes master server (10.1.150.126) from the home/
prometheus directory:

git clone https://github.com/RobustPerception/azure metrics_
exporter.git

Step 19: Navigate to the azure_metrics_exporter directory and create
the azure.yaml file and copy the following content. You can download the
sample Azure.yml file from the following link as well: https://github.
com/RobustPerception/azure_metrics exporter/blob/master/azure-
example.yml. Add the details of your Azure subscription and credentials in
the following section in the file (highlighted):

active directory authority url: "https://login.
microsoftonline.com/"
resource_manager_url: "https://management.azure.com/"
credentials:

subscription_id: <secret»

client_id: <secret»

client_secret: <secret»

tenant_id: <secret»

Provide the resource group ID and valid metrics name in the targets
section of the file.

130

https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml
https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml
https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

The final content of file will look as follows:

active directory authority url: "https://login.
microsoftonline.com/"
resource_manager_url: "https://management.azure.com/"
credentials:

subscription_id: "xxxxxx"

client_id: "xxxxxx"

client secret: "xxxxxx"

tenant_id: "xxxxxx"

targets:

- resource: "/resourcegroups/PrometheusRG/providers/Microsoft.

ContainerService/managedClusters/prometheusclusterpoc”
metrics:

- name: "memoryRssBytes"

- name: "cpuUsageNanoCores"

- name: "cpuAllocatableNanoCores"

- name: "memoryAllocatableBytes"

- name: "cpuUsageNanoCores"

- name: "memoryCapacityBytes"

resource_groups:
- resource_group: "PrometheusRG"

resource_types:

- "Microsoft.Compute/virtualMachines'
resource_name_include_re:

- "aks-agentpool-75077965-vmss000000"
resource_name_exclude re:

- "testvm12"
metrics:

- name: "memoryRssBytes"
- name: "cpuUsageNanoCores"

131

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

- name: "cpuAllocatableNanoCores"
- name: "memoryAllocatableBytes"
- name: "cpuUsageNanoCores"

- name: "memoryCapacityBytes"

Step 20: To generate the azure_metrics_exporter executable file,
execute the following inline command under the same directory; e.g.,
/home/prometheus/azure_metrics_exporter:

$ make build

Step 21: Create the Linux service for the azure _metrics_exporter
executable. Create the azexporter.service file under the /etc/systemd/
system directory and copy the following inline commands, as shown in
Figure 4-51:

[Unit]

Description=azure-exporter

Wants=network-online.target

After=network-online.target

[Service]

Type=simple

ExecStart=/usr/local/bin/azure_metrics_exporter \
--config.file /home/prometheus/azure metrics exporter/

azure.yml

Restart=always

RestartSec=1

[Install]

WantedBy=multi-user.target

132

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

[root@devops0087 azure_metrics_exporter]# cd /etc/systemd/system
[root@devops0087 system]# 11

total 16
rw-r--r--

1 root root

301 Dec 12 11:02 azexporter.service
)d51C. Ldal'geL. wdlils

Figure 4-51. Create Linux service for Azure exporter

Step 22: Start the service by executing the following command:
$ systemctl start azexporter

Verify whether the azexporter service has started by executing the
following command, as shown in Figure 4-52:

$ systemctl status azexporter

[root@devops0087 system]# systemct] status azexporter
L] azexporler.service - ELUFE-E&DDFT.EI'
Loaded: loaded (/etc/systemd/system/azexporter.service; disabled; vendor preset: disabled)
Active: active (running) since Thu 2019-12-12 11:03:19 IST: 19min ago
Main PID: 1720 (azure_metrics_e)
Tasks: 7
Memory: 9.8M
CGroup: /system.slice/azexporter.service
+-1720 fusr/local/bin/azure_metrics_exporter --config.file /home/prometheus/azure_setrics_exporter/azure.yml

Figure 4-52. Verification of Azure exporter

Step 23: Copy the following content into the config-map.yaml file
under the scrape_configs: section:

- job_name: 'azure-monitoring'
static_configs:
- targets: ['10.1.150.126:9276"]

Under targets, give the IP address of the master node (10.1.150.126)
and Azure Monitor port, which is 9276.

Step 24: Execute the following command to reflect the changes in
Prometheus:

$ kubectl delete configmaps prometheus-server-conf
-n=monitoring
$ kubectl create -f config-map-new.yaml

133

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

$ kubectl delete deployment prometheus-deployment -n monitoring
$ kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 25: Open the Prometheus GUI to get the status of the Azure
exporter, as shown in Figure 4-53.

Targets
azure-monitoring (1/1 up) m

Serape
Endpaint State Labele Last Serape Duration Error
hittpe/710.1.150.126:9276, metrics ue 7.483s ago 29858

Figure 4-53. Verification of Azure exporter on Prometheus console

Step 26: Click on Graph tab and execute the following query to get
the result (after configuring the exporter, please wait for at least twenty to
thirty minutes to get the result), as shown in Figure 4-54.

kube node status_allocatable cpu_cores count _min

Promethens Teme Series Collect % |+ = o o

& @ @ Hotsecure | 10.1150.15030000 geaph Tgll-ange input=1hBglexpe=bube_nods_ststui_allocatable_cpu_cones_tount_minfigDiab=0 a + @y E 6

Figure 4-54. Node status graph using Azure exporter

134

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Step 27: Click on the Graph tab and execute the following query to get
the total amount of available memory in a managed cluster, as shown in
Figure 4-55.

kube node status allocatable memory bytes bytes average

Figure 4-55. Node allocated memory graph using Azure exporter

Step 28: Click on the Graph tab and execute the following query to get
the total number of ready pods:

kube pod status_ready count_total

Step 29: Click on the Graph tab and execute the following query to get
the maximum number of ready pods. See the result under the Console
section of query.

kube pod status ready count max

135

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Kube Stat Metrics

The Kube-state-metrics exporter leverages the Kubernetes APIs to
provide metrics for various Kubernetes objects. Let’s configure Kube-state
and see how we can fetch metrics using Prometheus. You will get more
metrics at the following link:

https://github.com/kubernetes/kube-state-metrics/tree/master/docs

Step 1: Navigate to the /home/prometheus directory and execute the

following inline command:

$ git clone https://github.com/kubernetes/kube-state-metrics.
git

Step 2: Verify whether the kube-state-metrics clone is successful by
executing the following inline command, as shown in Figure 4-56:

$ 1s -1tr

ULWAL=AL=X ¢ [UUL_'UUL bt L Ll LD KUDCS
drwxr-xr-x 13 root root 4096 Dec 24 1/7:5

- LT LT L)] T s

Figure 4-56. Kube-state-metrics clone from Git

Step 3: Navigate to /home/prometheus/kube-state-metrics and
execute the following command to install the kube-state exporter:

$ cd /home/prometheus/kube-state-metrics
$ kubectl apply -f examples/standard

Step 4: Execute the following command to get the kube-state service
details, as shown in Figure 4-57:

$ kubectl get svc -n kube-system

136

https://github.com/kubernetes/kube-state-metrics/tree/master/docs

[root@devops0087 prfmetheus]# kubectl get svc -n kube-system
NAME TYPE

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

CLUSTER-IP EXTERNAL-IP PORT(S) AGE
-dns ClusterIp 10.96.0.10 <l
!kube—state—metrics ClusterIP None <none: BOBO,/TCP,BO081/TCP 39m I
= CTOSCerir. 10.106.1498.3 <nones FqL347 0P T4

Figure 4-57. Kube-state-metrics service status

Step 5: Execute the following command to fetch the kube-state-

metrics endpoint that needs to be set in Prometheus, as shown in

Figure 4-58:

$kubectl describe svc kube-state-metrics -n kube-system

[root@devops0087 prometheus]# kubectl describe svc kube-state-metrics -n kube-system

Name :

kube-state-metrics

Namespace: kube-system

Labels: app.kubernetes.io/name=kube-state-metrics
app.kubernetes.io/version=v1.9.0

Annotations: kubect].kubernetes.io/last-applied-configuration:

{"apiversion":"v1l","kind":"Service","metadata”:{"annotations":{},"1abels": {"app

bernetes.i...

Selector: app.kubernetes.io/name=kube-state-metrics

Type: ClusterIP

IP: None

Port: http-metrics 8080/TCP

I) + 0, hf+.r| matrice [TCP

fndpoints: 10.32.0.2:8080

roreT reTemetry—o0ol/TCP

TargetPort: telemetry/TCP

Endpoints: 10.32.0.2:8081

Session Affinity:

Events:

None
<nones

[root@devops0087 prometheus]# [l

Figure 4-58. Kube-state-metrics service endpoint details

Copy the Endpoints value 10.32.0.2:8080, then update the config-
map.yaml file and copy the following lines under the scrape_configs:

section:

- job_name: 'kube-state-metrics'

static_configs:
- targets: ['10.32.0.2:8080"]

Step 6: Execute the following command to reflect the changes in

Prometheus:

$kubectl delete configmaps prometheus-server-conf -n=monitoring

137

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

$kubectl create -f config-map.yaml
$kubectl delete deployment prometheus-deployment -n monitoring
$kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 7: Log in to the Prometheus GUI (http://master ip:30000) »
Targets to verify whether kube-state-metrics isup and running, as
shown in Figure 4-59.

fcube-state-metrics (1/1 up)
Scrape
Endpoint State Labels Last Scrape Duration Error
nitps/10.32.0.2:8080/m etrics UP 4.318s ago 14.53ms

Figure 4-59. Kube-state-metrics service verification on Prometheus
console

Step 8: Navigate to the Graph tab to execute the following query to
analyze the Kubernetes deployment status to get the desired state of
replicas. This helps in identifying the deployments that are having issues or
facing errors, as shown in Figure 4-60.

kube deployment status replicas

Figure 4-60. Kube deployment status metrics graph using Kube-state-
metrics

138

CHAPTER 4 CONTAINER INFRASTRUCTURE MONITORING

Summary

In this chapter, we provided hands-on steps for setting up Helm and Tiller.
We also provided information on various exporters’ setup and their uses in
Prometheus. We also guided readers in deploying exporters and viewing
metrics for their containerized application. In the next chapter, we will
start with an overview of Prometheus Query Language.

139

CHAPTER 5

Working with
Prometheus Query
Language (PromQL)

PromQL (Prometheus Query Language) is a functional query language
provided by Prometheus to enable the user to query data stored in real
time and perform all sorts of analysis, aggregations, and operations. In
this chapter, we will provide hands-on steps to the readers that will enable
them to use PromQL.

Prior to getting started with PromQL, let’s briefly understand the way
data is stored in Prometheus.

Data in Prometheus

As we know by now, Prometheus monitors metrics and collects and stores
time-series data.

Time-series data is defined as a series of data points ordered by time.
Let’s understand time-series data with an example. If we enable per-
minute monitoring of the CPU in an environment comprising different

types of Cis, such as servers, devices, networks, etc., then at every minute

© Navin Sabharwal, Piyush Pandey 2020 141
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_5

https://doi.org/10.1007/978-1-4842-6216-0_5#DOI

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

a data point will be generated that depicts the CPU utilization at that point
in time. If we represented the data collected as a table, the values collected
would look like Table 5-1.

Table 5-1. CPU Utilization example

Timestamp CPU Utilization (%)

1591709873808 67
1591709884270 66
1591709891811 67
1591709898278 68
1591709905225 67

In Prometheus, a time-series object is created for each metric
monitored, in order to store the metric’s data. The object is uniquely
identified by the metric’s name and primarily comprises a key-value pair,
where the key is a millisecond-precision timestamp and the value is the
measured data in Float format. Each key-value pair is termed as Sample;
i.e., data at a given timestamp.

So, in Prometheus, the preceding data will become part of the time-
series object uniquely identified by its metric name; i.e., cpu_util perc.
The hypothetical representation of the preceding data looks as follows:

cpu_util_perc:

(1591709873808, 67),
(1591709884270, 66),
(1591709891811, 67),
(1591709898278, 68),
(1591709905225, 67)

142

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Though the preceding data provides information about the CPU
utilization (%) against a timestamp, it doesn’t provide any information
related to which CI’s data it is.

To cater to this, Prometheus enables us to define labels. Labels enable
us to capture additional attributes of the data monitored. In the object,
this is further stored as a key-value pair, where the key is the name of the
attribute being captured and the value is the actual attribute data.

In the preceding example of object cpu_util perc we can create a
label named CI to capture details of the CI whose CPU utilization is being
monitored.

With the labels in place, the samples—i.e., the time-series data—will
be hypothetically represented as shown here:

cpu_util perc {ci: "ci 1"}:
(1591709873808, 67),
(1591709884270, 66),
(1591709891811, 67),
(1591709898278, 68),
(1591709905225, 67)
cpu_util perc {ci: "ci 2"}:
(1591709873808, 67),
(1591709884270, 66),
(1591709891811, 67),
(1591709898278, 68),
(1591709905225, 67)

Multiple labels can be defined per metric to capture various
information about the data being measured.

143

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Getting Started

Now that we know the way data is stored in a Prometheus time-series
database, let’s begin querying the data.

We begin with selectors—different ways in which we can select data,
aggregators, and functions. Finally, we will see the ways in which we can
use operators (arithmetic and Boolean) to work with the result data.

Selectors

There are various options for selecting the data. In PromQL terminology,
we will look at various selectors of the metrics data.

Please note for all the examples here we will refer to the data of metric
jvm_memory bytes used. This metric stores the JVM memory area-wise
bytes used by different jobs running across various instances.

Select Metric

We begin with simply typing the metric name into the query console, as
follows:

jvm_memory bytes used

As mentioned earlier, all data related to the metric is stored in a time-
series object identified by the metric name and its distinct labels. So,
simply typing the metric name in the query console selects and displays
data for all its distinct labels, as shown in Figure 5-1.

144

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Prometheus

65 Enabile query history

i _meenony_bytes_used

Exgcute insert metric at curser - ¥

Console
W | 2000.06.09 0000:00 »

Elomert Value

Jom_memory_bytes wsadizreas"heap” exported instances10,1.150128030" eeported joba'jra’ imstances*10.1.150,150-30000" jobadederate) 400524150
Jum_shemary. bites wedjaneanheap” exported instancen*111,158,15:33000" exported joba"federate” instarcea”10.1.150.150:30000 jcbufecerste') 0315430
Jom_emory_brytes ssdianedn"hoap’ xported instandes"13.1.1 5045085 expertac_jobe"jenking”inttance="H.1.150.150:30000" be-fecerste') 0318503
v marmony_brytes wedianean"heap intance= 161,151 24085 jube s’} SO0IA160
o memony_brytes sidianed = eap indance =1 1.1 548085 b= arking) GORT
T Rmny s e 306 = O RSP SprIad INSLInCES 10,1, 1901 2800 drpertnd [Kbe B ratinge="10.1,150.150:30000 job=-fedennoe] 4778700
o, memony bites e anes = ronheup’ saperied instances* 10,1, 150150000 axperned jonslederaty istance=" 11,1 S 150000 job=Teceae'} Ha1sn2
pm 8 Tonheap" Saported instances 1011, 1504 BGES" exportec jobin Jenking” stance s 1011, 1 53150000 jobateckeeste’] 2415312
o memony iptes jauadarea s ronheap” ieatances* 28030° jobs o) sa77ETO48
Jom_memaony lbiptes jsuadanea = “ronhaap” itances 10115048085 obsjecking 3a15312

Figure 5-1. Displaying data

The data returned is a single sample value for all distinct labels
timestamped at the same timestamp, which is probably the last

timestamped value captured. This output is termed as an instant vector in
PromQL.

Filter by Labels

As can be seen in the preceding output, the labels associated with the
metric are area, job, instance, and so on. Let’s next look at selectors with
filters on labels.

Let’s add a filter on the label “area” to select data where the value is

heap. For this, we will simply mention the required label in the query, as
shown here:

jvm_memory bytes used {area="heap"}

This returns data points where the label “area” has a value of heap, as
shown in Figure 5-2.

145

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Prometheus

m - Insert metsic at casor - #

Graph Console

H | 2020-06-09 04000 »
Blement Vaboe
rn_masnoey bybes usecianeas heap sgoned_nttances"10L1L1 501 20000" experted jobeTiewinstince 101, 15015030000 job = Tecerste) 400524160
Ivm_memeey bytes_useciareas heap”, epercd._instances"1L1L150152:30000° exported_joba"fecente” natinces"10.LIS0150:30000" job= lederate’ 508130695
fvm_seemnoey bytes_useciared heap becaed_inRance "1 115049085 experted jomjenking” infance="10.1,150.150:30000" job = fecderte'| e
o ey Jiytes_usecanias Teap” atances 101150026080 jobe jra) 200524180
Jom_memany lytes_useciarmaz heap” matances" 501150 48035 job e ferking) 03125095

Remove Gragh

Figure 5-2. Return values as heap

In the preceding query we used the = operator to return matching data.
Next, let’s use the following query to display all data except the ones where
“area” equals heap.

jvm_memory bytes used {area!="heap"}

Here, we have just replaced the = operator with the != operator. As
we can see in Figure 5-3, the output instant vector comprises data where
area! = "heap".

Prometheus #

& Enable query Nistory Try experimenta

Insert metric at curser -

Graph Console

o 2000-05-09 000000 »
Eamesn Vabus
[mamEy By e aen = TRARAIY Rponied_inTance="10.1,1501 28060, mepe e job=ra INarance =101 15015050000 job = TecHInN] 4aTTSTON
o memory_bytes,_used[asea="nonhaap axporied instance="10,1.150150:30000" axported jobs"facerate”, stance="10.1.150.150:30000" job = “ledarat a2
o memasy_Eytes, e g rstanc="10.1,130.8 8083 exprortic ol femking” mitince 1011 50.150:30000° job = s st sz
e memany_Eytes iriedlasen s ressiesp &"10.1.150128080", a7TsTOs
o _memary_bytes wsediasea = nonheap”instance=" 10 L1S0W:3065" job="jenking} /35N

Remove Gragh

Figure 5-3. Return values that are not heap

146

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

The preceding were examples where we did exact matches of the
values. Let’s next look at regular expressions or searches where we will
filter the data on the basis of a regular expression. The following query
enables us to select all cases where the “job” label values begin with the
characters fed.

jvm_memory bytes used {job=""fed.+"}

As shown in the output in Figure 5-4, the instant vector-only data
where the “Job” label values begin with fed are selected.

o sarnory._ytes uaedinres = Faap erported jnstances* 101150133065 ot

00524150
Ivm_memory tytes usediares="heap” exported 03159605
fm_mamory_tytes usediareawhedp” xported preap
oy Dytes_LSedaa s Tonnesp SSpaned, 4aTrSTON
Jom_msmony_izytes sedatea s Tonhesp’ sporied | FTTTETE

Jem_memony_rytes usediares = ronheap” exported_mtance="10.1150.4808%" sorted_job=jenking instance="10.1.150.1 55 30000" joblederate’] b

Figure 5-4. The results of our query

Remove Gragh

We can also filter the data by using a regular expression where we will
fetch data not matching an expression. The following query fetches all data
except those where the “Job” label value begins with fed:

jvm_memory bytes used {job!~"fed.+"}

Figure 5-5 depicts the instant vector returned.

147

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Prometheus

Graph Console

|| 2020-06.08 000000 »

Berant Valua
Jom_memacy_bytes useciansaa hasp” nstances"T0.L140120080° oba ") 400524160
en_emgsncey yter_LSRciing Talp iIncE=" Job= ke SoRINRS
Jom_masncey Iytes_useciansas nonhisginstances 101150 2808 jobs Jra) 4aTTSTONE
Jrm_memcey lptes_usscharea="ronhessinstance="10.1.1 50,4 8035 job="jerking) ELER L]

Remave Graph

Figure 5-5. The instant vector

Next, let’s use the or operator denoted by symbol “|; which enables us
to do either/or with the values.

The following query enables us to select data where the “Job” label
values begin with either f or j.

jvm_memory bytes used {job=""f.+|j.+"}

Figure 5-6 shows the data fetched. The | operator enables us to specify
multiple values where either of the value matches satisfies the condition.

Premetheus

& [neble cuery history

jum_memon_bytes usad [job= -]~}

Graph Console

H || 00608 000000 "

Eemant Valist
v rncey_bytes e a6 = AR ot nLIne="10.1, 1501 LI000 4pertijeb="Jra initinca =101, 150, 150:50000" job="Tedees 400324160
nog=" 1001, 1501 S:500007 Erperied joba-fedeane- InRanci=" 101150152 000" job= Sederate | SN0
1,150, 88085" srportec] job= Jerides imt e = "121.150.15% BI000" jobefederate’] SORIBDILE
x [13012 B0A0" jebssFea) 400524160
iy bybes_sesecd{aena s haap instance s*10.1.1 504 085" job=henking) 08189565
e mearcey_bytes wsedizeras nonhesp”esported instances"10.1.150.12 6080 exported job=ira"iratance s"10.1.150L150:30000" job = federate") 437757048
*H1150.150:30000" axported joba"federate” instancen®101,150.150:30000" joba"federate] sz
*10.1.1504:3005" exported_jobe jenns” mstancen"10.1,150.153:30000° jobe federate”] HMN:
e praenciey_bytes_unediaeed = TONNSD"iRatance = 10,1501 19080 kb i} TSN
IV memncey_bytes_unediiend s TONNGa IMLANCE s 111, 150.45CHS" job = enkdng Pt

Figure 5-6. The fetched jobs

148

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

If we have exact values, we can use the values separated by the |
operator to select rows with either value, as shown in the following query,
where we fetch data where the “area” label value is either heap or nonheap.

jvm_memory bytes used {area=~"heap|nonheap"}

Figure 5-7 shows the vector returned.

r_bytes_used (area=-"heapjronheap’}

[EESREN - insert metric at cursor - #

Gragh Console

- H 3 0000 »
[Valae
o a0y _byoks, ubicarele TapT Bpomid_iniuncie 10.1.150.1 29000 exparted job jin " ingtances 101,150 SCI0000" job = Tederate) 40524160

n_ramony_bytes_ustoanae TaapT BPOMI_inran 50.150:30000". Bporied_jobe"Todtrat” iptance =" 101,150,150 30000" job= “Hediraty 08180506

nmamory byses usectaras Taap pored_iniancas" 10.1. 15043085 Rxported_jooejenking” mtancy="10.1.150.150:30000° JobeToederaty 808139506
400524160
e0a130856
487738
sasasmz
HISHI

43TTSTOE

FEETELETH

Figure 5-7. The vector returned

As can be seen, the data points were selected/fetched where the “area”
value is either heap or nonheap.

Filter by Multiple Labels

Let’s next look at the way we can use multiple labels to filter the data.

The multiple filters are by default combined with an AND operator, which
implies that the data returns matches where all the filter criteria are
specified. Whatever operators and criteria we discussed previously can
be individually applied to each filter condition, and then we can combine
them.

149

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMQL)
Let’s look at the following query:

jvm_memory bytes used {instance=~"10.1.150.12:8080",
area!~"heap", job="~"'j.+'}

The query returns data where “instance” is 10.1.150.12:8080, “area”
isnot heap, and “job” values start with j, as shown in Figure 5-8.

o | 2020-05-09 000000 "

Elemrant Valug

Jom_pmemony_ytes uediineas roaheap” imtance 101150128087 job=Ja) asTISTO

e
Figure 5-8. Further filtering of the results

Prometheus does not support OR between the filters. However, we can
work around the requirement by using whatever selectors we have learned
up until now.

For example, if we want to select data that matches the following
criteria—“job” starts with J and “area” = heap or “area” = nonheap—we can
use the following query:

jvm_memory bytes used {area=~"heap|nonheap", job="'j.+'}

We will look at a few more examples toward the end of the section,
where we will be talking about aggregation operations on the datasets.

150

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Select to Return Range Vectors

The preceding query returned an instant vector, which we know returns a
single sample value for each distinct labeled time series.

In addition, PromQL enables us to select a range of samples
(timestamped data) for each distinct labeled time series from the current
instant. We simply have to specify the range duration, as shown here in
square brackets next to the selectors:

jvm_memory bytes used [1m]

It comprises the duration we want to look back at followed by one of
the following units:

e s:seconds
e m:minutes
e h:hours

e d:days

e w:weeks

e y:years

In the preceding example query, we have specified to select data of the
last one minute from the current instant. As shown in Figure 5-9, the range
of all samples collected in the last one minute for each distinct labeled
entry is selected.

151

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Prometheus

& Enabls query history
fam_memary_bytes_used [1m]

Graph Console

Eloment

Jm_memony_Btes_usediaraa="haap". nflance="10.1.150.128080" joo="ra")
m_memory_bivtes usediaress"ronhesc” iratance s"10:1.150.1 23060 joba e}

Jom_memory_bytes, useckarmaz"hesp” instance="40.1.150.4:4085" job="jerkins")

BIBE4T200 SIS TETTIRNG
BIREATI SASHTATERNS

Figure 5-9. The range of samples

This data output is termed as a range vector in PromQL, as it returns
arange of values per distinct labeled time-series object for the duration
selected.

Note The range vector cannot be directly graphed, but can be
viewed in the console, as shown in Figure 5-9.

If square brackets do not specify the range, the default instant vector
is returned, which is an instant single data sample for all distinct labeled
time series objects.

The range operator can be combined with the other selection criteria
we discussed previously.

In the following query, we return a range vector for data filtered by
applying multiple filter criteria on different labels:

jvm_memory bytes used{area="heap", instance="10.1.150.150:30000",
job="federate",exported job="federate"}[1m]

152

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

As shown in Figure 5-10, the output returns a range of data collected
in the last one minute only for “instance” = 10.1.150.150:30000, “job” =
federate, “exported_job” = federate, and “area” = heap.

Jem_memary_bytes_used{area="heap”, Instance="10.1.150.150:30000" job="federare” exponad_job="federate i 1m]
Gragh = Console
- L3

Elemant

oy TS e e = TSR AP ored iNFancie " 101, 15011 S0:R0000 #2porec b TeCRItE IStAncE 111, 150, SEID00T jebe tedenate']
542929000 IITER0SZNE
ITSLAISET §1591TE0FLTR
542929000 &1591788052.05

raph
Add Graph

Figure 5-10. Another range of samples

So, in summary, to select a range vector we just need to append a range
in square brackets at the end of the selector.

Select Past/Historical Data

Till now, we have looked at selecting the current data or data specified at
a moment. PromQL also enables us to select data from the past. For this,
we simply use Offset in the query, as in the following, followed by the
duration and the units, which we covered earlier in the range section.

jvm_memory bytes used Offset 7d

As shown in Figure 5-11, the instant vector data returned is data that
was collected seven days ago.

153

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

& Enakcla quary history

ingert metric at cursor -

Graph Censole

W 2020-06.00 000000 »
Demant Valug
am_mamcey bytes, usedlarea="heap” peorted,instance = 10,1150 ZB060" sxporied_job="ra" instance="10.1.150.150:30007 job = Tederate™) 441488323
Jm_mamcey_bytes usadareas*heap” axported instance="10.1.150150:30000" saported jobs"faderate” instarce=" 1011, 1 50.150:20000° joba Tedrate”] s223s44

Jom_memcny_bytes_ uvedlarea="heap” porbed_instance="10.1150.8 8025 sxported_job="jenking” intance="10.1.1 30153300007 job="Tederate’ 2223844

Jommemcey bytes used{aea="heap” instance="101.130.12:8040" job amasars
o marnicey,bytes uedacea="heag" inttance="10.1150.£0085" job="jerkins) SRR
e ey bytes ubedlaea="nonhess” e instieces 020000 eparbed jebwTan ratances=10.1,150.150:30000° jobecerate) 407356000
e mameey_bytes, usedlsreas"nonheas” expered instarcs"H.1.150.150:3000" exported jobe"ledtrate" istance = 101, 150 15030000 sobomfeserate’) 283491975
am_mamcey, bytes,_ured{areas“nonheag” s1pcriad instances~H0.1. 150480857 eIpCIted,_job s jenidns instance =*1011,150.1 53:30000° joo=" ocerate'} 383491975
Jm_mamcey_bryses utediarea=nonhear instance="10.1. 1501 2:3080" jobe"ra'} 4g7355800
o ey lytes_svedies ea= nonhesgrstance="101150.8 8088 job= rekiny) T

Figure 5-11. Our first historical data example

We can return range vectors as well for the past data. We simply add
the range duration at the end of the selector, as shown in the following
query. The query returns a range of all data collected in the last one
minute seven days back.

jvm_memory bytes used[1m] Offset 7d

The output in Figure 5-12 shows the past timestamped range values.

Graph | Censole

| 0209509 DO.0%00 "

Elgmant Valuws

ren_memory_ytes srediasea = heap” exported jostance="1011,150.12 8080 exported,_job="jra”imtance="10.1,1 01 5230000° job= Tederate”] 43008312 ©1391095501.978
3TI48TIAL @1I91083551.974
IFE50650 P1591005561.974
422163004 @1591055871.974
433350950 §1591055581.978
441488328 §1591085991.974

[mamory_tnytes utedisesa="heap” enponed instance="101.15015030000" Sporied_jobafecerate” inttance="10.1.190.130:30000" job="faderate") 369004512 F1591083941.974
522230544 1591085942237
ITTIER SISNI0EHS1ATS
522230544 150108952237
31600556 1501055961.974
522395 PISNINEINGLIIT
43TIEBIE HISO1HTIOT
SIZIFVSAS IIPIHTLINT
AJFEO0P0 1591065501974
WIFITERLS 1481 LS FET

Figure 5-12. Timestamped range values

154

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

We can use the other selectors we discussed earlier and further
combine offset to return historical data of the filtered lot. For example,
the following query selects past range data only for instances starting with
10.1.150.150:

jvm memory bytes used {instance =~ "10.1.150.150.*"}[1m] Offset 7d

The output in Figure 5-13 depicts the data returned.

Prometheus

- 2020:06-09 00:00:00 Ll

Bemant Vahoe

o sy s useciareasheap” erpoded imdance =" 10113012 8083 srported jos ra” mtances”10.1.130.130:30000° job s Tederate’] 385004312 G 1SHIIINITE
FTMITISL G ISTHSSHIT
321490686 G TSTHSS51.974
422163024 S 15HM0SEHTIET
433330560 § 1551035581974
41438328 © 13THISIT

o _prarcey by usedarans-haip” srpenic inmtince="1011 15150 50000 wepented job=Tederany inptarces"1011, 150 1 83000 jobe Tederatir)

Sroranes) msseenan arn

Figure 5-13. The data returned from our query

All the queries we just looked at enabled us to select the data from
the Prometheus database using PromQL, and all are termed as part of
the selector clause. We also looked at the different vectors returned; i.e.,
instant vector versus range vector.

155

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Aggregation Example

Now that we have the data selected, let’s apply aggregations to it to
aggregate the data for meaningful analysis. PromQL supports multiple
aggregation operators. Please refer to the official site for more details.! In
the following examples, we refer to these operations:

e sum: to sum the values

o topk/bottomk: to return top/bottom K data points
ordered by values data

Let’s begin with the usage of the sum operator. As shown in the
following query, we simply add the sum operator to the metric name.

sum(jvm_memory bytes used)

The output, as shown in Figure 5-14, returns the total JVM memory
bytes used.

Prometheus »

4TH13TTRE

Figure 5-14. Total memory bytes used

'https://prometheus.io/docs/prometheus/latest/querying/operators/
#aggregation-operators

156

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

The preceding query gives overall consumption data. Let’s next group
the data by area using the by clause, as shown in the following query:

sum by (area) (jvm memory bytes used)

The output, as shown in Figure 5-15, returns area-wise total memory
bytes used.

Prometheus

Figure 5-15. Total memory bytes used per area

Let’s further group the data by job to view consumed memory by job:

sum by (job) (jvm memory bytes used)

The output in Figure 5-16 shows job-wise memory consumed.

ek 38281208

{iob"jerkingy 591605008

Figure 5-16. Memory consumed per job

157

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

We have individually grouped the data by different labels. Let’s next
use the following query to group the data by area and job so as to view job-
wise each area-wise memory byte consumed.

sum by (area, job) (jvm memory bytes used)

The output in Figure 5-17 shows the area-wise job-wise memory-
consumed details.

& Enatle query history Try sxperimanta React Ul

sum by (area, job) (vm_memary_bytes_used)

Execute insert metric at cursor - #
Graph

Value
1616003552
200524160
608185650
1254847472
287TST048

seans32

Figure 5-17. Memory used by area and job

Now that we have grouped the data, let’s next find out the top two jobs
and area that are consuming the most memory. We use the topk operator
along with sum, as shown in the following query, to return the top two areas
and jobs:

topk(2, sum by (area, job) (jvm memory bytes used))

Figure 5-18 shows the top two identified labeled data.

158

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Prometheus Alens G

jareasteap” jobs federats 181 4a03s52
{ares="ronheap” job=lederate’] 12437072

Figure 5-18. The top two values

If we need to find the bottom area and jobs consuming the least
memory, we can use bottomk along with sum to return the data, as shown
in the following query:

bottomk(2, sum by (area, job) (jvm memory bytes used))

Figure 5-19 shows the bottom two identified labeled data.

Element

Walue
farsas norbwap joba jenkine} 38315312

fanea<"heag job=Fre} H0s2013

Figure 5-19. The bottom two results

Until now, we have aggregated the instant vector, which actually
aggregated the single latest timestamped value and did not take into
consideration the range of data generated. Let’s look at using the
aggregation operators with the range vectors.

159

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

As we know, range vectors return a range of all data collected, so
the vector cannot be directly used in the aggregation operators. We will
first have to use the varied functions? offered by PromQL to fetch the
most relevant data point from the range. Relevance depends on the
characteristics of the data. In our examples, since we are looking at bytes
consumed, we will be interested in looking at the average value in the
range. To find the relevant data point from the range, we will use the
avg_over_time function from the list.

Let’s first look at the output of the function. We will use the following
query to fetch all ranges of data generated in the last one min and then use
the avg_over_time function on it.

avg_over time(jvm memory bytes used[1m])

As shown in Figure 5-20, the output returns the average value of each
range.

@ - insert metric at cursor - 2

Graph Conscle

| 2020-06-09 D0:ONG »
Eloment Valwe
{areas"haag” Axporied irstance =10 11501 060 xpored_jobs fra” nstance s~ 101150 12030000 ok acerste’} 429RIZTIZ
(area="haap, aeported_irstance =" 10,1150, 130:30000° axported job= federate” instance="10.1.150.1 50-30000" job= "ederate’] 10001 2IE 0T
(e haap, eeported_irstance="10.1.150. 88085 eqorted_job=jenking” imtance="10.1150.1 30300007 job = ederate’] 02150430
{aren="haac” inslance="10.1,140.028080" job= Jira") axsnaTR
[arene"Banc”inslances10.1.150.48085" jobe jenking) 10663
(aress"nocheap” exported instarce <1011 501 20060", eperted jcbejin instarces™H0.1.1 50.150:30000" job « Federate) 48TTETO
(ares="norheap”™ exported_instarce s™H0.1.150.150: 300007 exported jobs lederate” instance = "10.1.1 501 52:30000" job="federate”] 435556180

farean nonheas expertid_instar,

50480857 axportad_jobjenking” ingtancen 11,130 5330000 jobm federate™] sz

e nerhiay PN 10,1150

ise= N} 48T7STON

(area="nerhea” ratance="10.1.150. 2895 job="forklrs FETITHTH

Figure 5-20. The average value of each range

*https://prometheus.io/docs/prometheus/latest/querying/functions/

160

https://prometheus.io/docs/prometheus/latest/querying/functions/

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

As we can see, the Value field has single value for each distinct labeled
data point and has been converted to an instant vector. The aggregation
operator can now be used with the data, as we have done previously.

Let’s continue with the preceding query. Let’s expand the range
selection to return all data in the last five minutes, average it per range, and
then further use the AVG aggregation operator to find the average value of
memory consumed grouped by area and job. Then we use topK to return
the top five areas and jobs with maximum memory used. Use the following
query to get the desired result:

TOPK(5, AVG by (area, job) (avg over time(jvm memory bytes
used[5m])))

The output in Figure 5-21 shows the top five areas and jobs.

faree=Taap” jobejenkind) SHETHA 65567
’ sETTSTOE

fareas"y 2]

. ATEETRILE668567

farsas renheap jobe tedeate] 435838180
farea=Peap jobe Fra) ATSATDABS 6658673

Figure 5-21. Top five areas

We know by now the way we can select data and group by and apply
aggregation operators to aggregate the data. We have also looked at using

the aggregation operators on range data.

161

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMQL)

Logical and Arithmetic Operators

With the data selected and aggregated, we can next look at operations that
can be performed between the output data returned or on the metrics
data. PromQL enables us to apply varied operators® on the result sets,
allowing us to combine different datasets so as to compare and derive
meaningful insights. In the examples in this section, we will use a few
sample use cases.

Use Case 1: Let’s begin with a use case wherein we compare current
data with the historical data collected seven days back to identify any rise
in memory consumed.

As shown in the following query, we use the comparison operator >
between the two result sets to identify the labeled data where consumption
is more than it was seven days before:

jvm_memory bytes used > 1 * (jvm memory bytes used offset 7d)

As can be seen, we have simply used the operator between the
previously fetched two vectors. We can use any selector criteria to select
the data, and then can use the operators to do the needful; in this case
we are comparing and identifying the ones where the consumption has
increased. Figure 5-22 shows the output, listing only the ones where the
consumption is high.

Shttps://prometheus.io/docs/prometheus/latest/querying/operators/

162

https://prometheus.io/docs/prometheus/latest/querying/operators/

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Prometheus

Jem_rmemony_bytes_used » 1= (em_memary_bytes_used offset 7d)

Bl oorecncnon

Graph Console

H | 2020-06-09 00L000 »
Eleesent Value
v ey bytes, aecianensheap” bponted rtances101150150:30000° mpeied jobefedernte inslances" 101,150 150:0000" job = Tederate) E0BIDSS
[vm_memaey bybes usaciansas heap” supecied_irstance =~10.1.15045085" exported joba"jenions” nstances"10.1.150.150:30000" joba-federate} E051E5655

W01ISGABOR" o erkiog] S0RIEEORS
o] instance= 12111301 106 axportad job = ratimzance= 1011501503000 job = Taceeate] 44TTIION

_biytes seciarma="nonbea " inslance="10.1.130124080" ob="fra} 2877

Figure 5-22. High consumption

Remove Graph

Use Case 2: As we know, the data returned by the metric jvm_memory
bytes usedis in bytes. In this use case, we will use a scalar arithmetic
operation to convert the value to megabytes. The following query uses the
multiplication operator to multiply the value by 0.000001 to convert it to
megabytes:

jvm_memory bytes used * 0.000001

The output returned is in megabytes, as shown in Figure 5-23.

& Enatia query hisory

Jvm_memaory_bytes_used * 0,000001

Graph Console

| 00609 00000 -
Hemant b
[Erea="Neap” eoporied_inFianca="10.1.130.1 280807 enported_job="Jira"inEtanca="10.1.130,1 S3:30000" job=federate™) 012418

w="101.130.15330000" wmported_job="edwiate” instan =" facherat’] 208 115634

0113015030000

farea ="t soporied in

* | inuarc= 101150 4 MRS wxported jobs Jerkin instances" 101150156 10000 joba- Recerate’] 0814954
{rea="heap" Etanoes"10L1.1501 28000 jobeFen)
fareas heap”ingtances"10L1. 15045005 joberiting™|

fances"10.1,150.128080" exported_jone"jra”instances"101,150.1 5330000° jooefederate’)

01,150 130:30000 exoeeied_jebatace: ances"10.1,150.1 5050000 b focersie)

10,1, 150.89085 " oportid jobe jerking initinte="10.1,150.1 5050000 job= Tecerati)

{irea = nonimapTinsance="10.1.150.12 8080 o= Fra)

[aeaas nonbasp” ingtaeces 1011 S14B0RT" job = Jenking] 83215312

Figure 5-23. Values in megabytes

163

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Use Case 3: Let’s now use two different metrics’ data. In this use case,
we will consider the jvm_memory bytes usage metric along with jvm_
memory bytes committed. We will use the subtraction operator to identify
the bytes remaining to consume, and further use scalar multiplication to
convert the data into megabytes. The following query enables us to find the
difference and returns the data in megabytes:

(jvm_memory bytes committed - jvm memory bytes used) * 0.000001

The output in Figure 5-24 shows per time-series object the data
remaining in megabytes.

& Enable query htery

{fam_mermary_bytes_committed - jum_memary_bites_used) * 0.000001

SRR - insert metric a1 cursor - &

Graph Conscle

H | 2020-06-09 00000 L3

Eloment WValue

(anea="hea” exported_irtance ="10.1.150.1 28080 exported_job="ra” intance="101,150.13030000 job= Tederate} SRt e
(arens"hens” exported_imttance="10.1,130.1 50:30000" exportec job= Tederate” imtance="10,1,150L1 50:30000" job = feclerate™} 88583058

Ui i eported Fatance 10,1 15040005 epeeind jobeTjerkans” ngtances =101, 150150300007 ok w fecieraty] 00539055
[aneae"heap” instamces"10.1.150.129030" job w Jira VI2TEET010999950
{anean"heap” instamces™10.1.180,4:2085" joba"jenking") 88589046

(e norhiap dxportiec ingtance="H 11501 28050", apored_jobejiraingtnce="101150,150:50000 fob=Tederate) R

R, STa = L1150, 150 B000" Anponed, e sanoe="10.1.1 511 50B000° jobs edueaty | sascuren

ehac instarcrs™ L1 | SOABIBE" apeited job s Jenking instances 1011 511830000 jobe Yedwate’) sanmTes
fareas"norheap” irstances=10.1,150.12-8060" job= Fra’) 39365384

{aren="mocheap” instance="10.1.130.48085" job= Jankins) GA5027¢8
Figure 5-24. Data remaining in megabytes

Use Case 4: Next, let’s apply an aggregation operator to the output of
Use Case 3 to return area- and job-wise bytes remaining. Use the following
query; we also use the scalar multiplier on the final output to convert it to
megabytes:

sum by (area,job) (jvm memory bytes committed - jvm memory
bytes used) * 0.000001

164

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Figure 5-25 shows the area- and job-wise remaining memory in
megabytes.

Prometheus

5 Emalblie query history

sum by (areajot) | jym_memary_bytes_committed - jm_memary_bytes_used) = 0000001
Graph Console
"
vake
269531904
NISITNES900E0
BELSIOOSE

CrE I
¥o.BA AL

64502768

Figure 5-25. Remaining megabystes, by area and job

We can also apply topk to return the top two with maximum bytes
remaining, as in the following query:

TOPK(2, sum by (job) (jvm memory bytes committed - jvm memory
bytes used))* 0.000001

The output in Figure 5-26 shows the top two jobs.

Prometheus »

ory_bytes_committed - jvm_memory_bytes used))° 0.000001

»
Blerant Valug
(obafecerste? 4SRN0
[jobejeniing 153091824

Figure 5-26. Top two jobs

165

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Use Case 5: As we mentioned in the selector section, the filters when
combined are joined by an AND operator. We looked at the way the |
operator can be used to apply OR on values on the same label, so, prior
to concluding, let’s look at the way we can apply OR between filters on
different labels. Let’s say we want to select the values where either the
label “job” or the “exported_job” label has the Jira value. We will use the
following query to select the data where job="jira” or exported_job="jira"

(jvm_memory bytes used {job="jira"}) or (jvm memory bytes used
{exported job="jira"})

Here, we have simply used the OR operator between the two outputs,
and it returns the expected output. The output returns rows where either
the “job” value is jira or the “exported_job” value is jira, as shown in
Figure 5-27.

Figure 5-27. The output of the final query

With this, we have covered all important aspects of working with
PromQL.

166

CHAPTER 5 WORKING WITH PROMETHEUS QUERY LANGUAGE (PROMAQL)

Summary

In this chapter, we have provided hands-on steps for using Prometheus
Query Language (PromQL). In the next chapter, we will start with
understanding the dashboard and reporting solutions by using Grafana as
Prometheus; Grafana is a common combination of monitoring dashboard.

167

CHAPTER 6

Container Reporting
& Dashboards

This chapter will provide hands-on steps for using container reporting
and dashboard solutions. Grafana and Prometheus are commonly used
by DevOps teams for storing and visualizing time-series data. Grafana
supports querying Prometheus and being a data source for Prometheus.
We will look at the following:

e Introduction to Container Reporting and Dashboards

e Working with Grafana

Introduction to Container Reporting
and Dashboards

As we have seen so far, containers have become an integral part of modern
application architectures, and as a result have changed the way software is
deployed and operated. Once we have set up monitoring for the containers
and applications, the next step from an operations visibility perspective

is the dashboard and reporting. The dashboard and reporting solution

will provide a graphical interface with which to visualize the container
inventory, container metrics for availability and performance, and
application metrics.

© Navin Sabharwal, Piyush Pandey 2020 169
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_6

https://doi.org/10.1007/978-1-4842-6216-0_6#DOI

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Dashboards also provide insight about the overall health of the
container platform. From a security perspective, by leveraging container
security and compliance solution integration, an operations team can
also monitor the security posture of the container platform and any
applications running on it.

There are various popular dashboard solutions available in the market
for container dashboards and reporting. Let’s look at a few of them.

Grafana: Grafana is a Ul-based dashboard and reporting tool. It is
used for data analysis and visualization that’s generated by the various
data sources in the form of metrics. Grafana has in-built support for time-
series databases such as Prometheus and InfluxDB, and it also supports
rational databases, such as MySQL, SQL Server, etc. Grafana also allows
one to create alerts on a specific condition or set of conditions; e.g., CPU
utilization more than 80 percent, or disk usage, etc.

Grafana is available as both an open source version and an enterprise
version. In this chapter, we will use open source Grafana to demonstrate
how to create the dashboard for a container monitoring ecosystem.

Sysdig: Sysdig is a container monitoring and security tool that also
provides dashboard and reporting capabilities. Sysdig provides customized
dashboard creation so as to display the most useful/relevant views
and metrics for the infrastructure in a single location. Each dashboard
comprises a series of panels configured to display specific data in a
number of different formats.

Splunk: Splunk is a unified solution with which to analyze, search, and
visualize the data gathered from the various applications, sensors, servers,
and containers. Splunk does not need any databases to store the data, as
it extensively makes use of its indexes to do so. In Splunk, one can analyze
container ecosystem performance, do troubleshooting, and store/retrieve
data for later use.

In the next section, we will focus on Grafana’s features for container
reporting and dashboards. We will do a hands-on exercise to set up
Grafana and fetch reports leveraging metrics from Prometheus.

170

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Grafana

Grafana uses the data source to connect with the system—e.g.,
Prometheus, MySQL, etc.—for collecting the data. Grafana has in-
built support for time-series-based data sources like Prometheus or
InfluxDB. Each data source has a specific query editor associated with it
for executing the query to fetch the data; e.g., PromQL query editor for
Prometheus. Grafana also supports mixed data sources, meaning the user
can use multiple data sources in a single dashboard; e.g., user can map
data from Elasticsearch along with data from Prometheus. Mixing different
data sources can be done with custom data sources as well.

The following data sources are officially supported:

¢ CloudWatch

o Elasticsearch

o Graphite
e InfluxDB
e OpenTSDB

¢ Prometheus

Panel

In Grafana visualizations known as panels, users can create a dashboard
containing panels for various data sources. Each panel is associated with
the query editor to extract the metrics and display the result. Panels can be
rearranged and resized on the dashboard.

The following are the available panel types:

o Alertlist
o Dashboard list

e Graph

171

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

o Heatmap
e« Logs

e Singlestat
e Table

o Text

Query Editor

The query editor allows the user to query the metrics. Each data source is
associated with a different query editor that is used for creating the query;
e.g., PromQL query editor is used to create any PromQL-based queries.

Dashboard

Grafana provides various types of pre-built dashboards—e.g., Prometheus,
Kubernetes overview, etc.—to measure the data.! The user can also create
customized dashboards based on various panels. Grafana supports
templating to create a dynamic dashboard, and the user can share these
dashboards among teams by publishing it.

Explore: Grafana Explore helps to analyze the metrics and logs to
identify the cause of failure of the monitoring system. Since Grafana 6.0,
Loki, a new data source introduced by Grafana, integrates with Explore to
allow users to analyze metrics and correlated logs side-by-side to debug
what went wrong.

Alerting: Grafana has a built-in alerting engine that allows the user to
trigger alerts on the basis of the conditions/rules that apply on the panels.
Grafana supports the following tools for notifying the user of the alerts:
Slack, PagerDuty, VictorOps, and OpsGenie.

'Pre-built dashboard: https://graftana.com/graftana/dashboards

172

https://grafana.com/grafana/dashboards

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Now, let’s start installing Grafana in the environment that we set up in
earlier chapters. Figure 6-1 provides an overview of the task flows we will
follow to deploy Grafana.

|. Kubernetes Master Node . Kubernetes Worker/Target Node

Kubectl

| Configuration yaml
ConfigMap re-creation
Values.yaml Grafana I—» Prometheus

Create K8s Pod
Service Verification

Figure 6-1. Grafana deployment flow

The following is the flow for the Grafana deployment that we will
follow in this chapter:

o We will use the already cloned configuration files from
GitHub. Additionally, we will pull a file from GitHub to
be used for Grafana installation.

o We will recreate the config map and deploy Grafana as
a pod.

o Finally, we will test the status of the Grafana
deployment using command line and web browser
access.

173

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Step 1: Log in to the Kubernetes master node (10.1.150.126) and navigate
to the /home/prometheus folder, and then append the following lines in
config-map.yml in the scrape_configs: section. Search for the section
named job - job_name: 'prometheus' under the scrape configs: section
in the config-map.yaml file and append as shown in Figure 6-2.

job_name: This section is the same as explained in
previous chapters. In our example case, we are using
job_name as prometheus.

static_configs: This section is the same as explained
in previous chapters.

o targets: This section is the same as explained
in previous chapters. In targets, we specify
the IP and port of Prometheus itself; e.g.,
10.1.150.126:30000.

This target will be used to set up the data source
in Grafana to fetch the metrics generated by
Prometheus itself.

- job _name: 'prometheus’'
static configs:
- targets: ['10.1.150.150:30000']

—{HIH

Figure 6-2. Config map file update

Step 2: Execute the following in-line commands to reflect the changes
in Prometheus:

$kubectl delete configmaps prometheus-server-conf -n=monitoring
$kubectl create -f config-map.yaml

$kubectl delete deployment prometheus-deployment -n monitoring
$kubectl apply -f prometheus-deployment.yaml -n monitoring

174

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Step 3: Verify that all the components of Prometheus are running fine,

as shown in Figure 6-3:

$ kubectl get all -n=monitoring

[root@k8s-master prometheus]# kubect] get all -n=monitoring

NAME READY STATUS RESTARTS ACE
pod/alertmanager-564d4884bd-mjjft 1/1 Running 0 20d
pod/prometheus-deployment-59b58c4594-xtpbg 1/1 Running 0 83m

NAME‘ TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service/alertmanager NodePort 10.111.165.123 <none> 8080:32000/TCP
service/prometheus-service NodePort 10.97.107.57 <nones 8080:30000/TCP
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/alertmanager 1/1 1 1 20d
deployment.apps/prometheus-deployment 1/1 1 1 83m

NAME DESIRED CURRENT READY AGE
replicaset.apps/alertmanager-564d4884bd 1 1 1 20d
replicaset.apps/prometheus-deplovment-59b58c4594 1 1 1 83m

Figure 6-3. Verifying Prometheus pod status

Step 4: Open the Prometheus GUI (using the http://kubernetes-

master-node:30000 URL) and navigate to targets to review the
Prometheus endpoint, as shown in Figure 6-4.

AGE
20d
20d

prometheus (1/1 up)

Serape

Endpoint State Labels Last Serape Duration Error
hitps//10.1.150.126:30000,/metrics up 16635 ago £.929ms

Figure 6-4. Verifying Prometheus pod status

Step 5: Now, let’s install the Grafana dashboard on the Kubernetes
master node (10.1.150.126) by using Helm chart version 3.12.1 (GitHub

URL: https://github.com/helm/charts/tree/master/stable/grafana)

Navigate to the /home/prometheus folder and execute the following

command to clone the code from GitHub, as shown in Figure 6-5:

$ git clone https://github.com/dryice-devops/grafana.git

175

https://github.com/helm/charts/tree/master/stable/grafana

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

drwxr-xr-x. 2 root root 25 Nov 20 15:10 grafana
Figure 6-5. Cloning file from GitHub

Step 6: Navigate into the grafana folder by executing the following
command:

$ cd grafana

Step 7: Open the values.yaml file and modify the following sections.
Save the file before closing. Navigate to the section named service
in values.yaml and add values to the following sections, as shown in
Figure 6-6:

service: This section represents Kubernetes service
configuration for Grafana.

type: This field provides information about the type
of publishing services. Kubernetes service types
allow you to specify what kind of service you want.
The default is ClusterIP. In our example, we are
using NodePort, which exposes the service on each
node’s IP at a static port (the NodePort).

port: Inside the cluster, what port does the service
expose? E.g., 9000.

targetPort: This is the port at which the pod-based
application will be listening on the network. We are
using value 3000.

nodePort: This is the port on the node, e.g., master_
node, on which the service will be available. We are
using value 30007.

176

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Elservice:
type: NodePort
port: 000
[l targetPort: 0
- # targetPort: 4181 To be used with a proxy extraContainer
nodePort: 0007
annotations: {}
labels: {}|
portName: service

Figure 6-6. Updating Value.yaml

Step 8: Navigate into the /home/prometheus folder and execute the
following Helm command to install Grafana, as shown in Figures 6-7 and 6-8:

$helm install -name Grafana-dashboard -f Grafana/values.yaml
stable/grafana --version 3.12.1

[rooték8s-master prometheus]# helm install --name grafama-dashboard -f grafana/values.yasl stable/grafana --version 3.12.1
NAME: grafama-dashboard

LAST DEPLOYED: Wed Nov 20 13:40:54 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/ClusterRole

MAME AGE
grafana-dashboard-clusterrole <invalid>

==> v1/ClusterRoleBinding

NAME AGE
grafana-dashboard-clusterrolebinding <invalids
==> V1/ConfigMap
NAME AGE
grafana-dashboard <invalids
grafana-dashboard-test <invalids
==> V1/Deployment

NAME A
grafana-dashboard <invalids
==> v1/Pod{related)

NAME

E AGE
grafana-dashboard-5856fb467b-5fpdw <invalids

Figure 6-7. Installation of Grafana

177

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

| ooy muserbemeiprometens

> vi/5ServiceAccount
[:

ALE
orafana dashboard <invalids
prafana-dashboard-test <invalids

=> vlbetal/PodSecurityl Po1 : oy
A

grafana-dashboard nmu'lld:
pratana-dastboard-test <invalids

==> vibetal/Role

NANE ALE
grafana-dashboard <invalids
~=o vibetal/Roledinding
NANE

prafana-dashboard <invalids

NOTES :
1. Get your 'adwin' user password by runming:

kubect] gel secrel pace default graf fashboard -0 jsonpath-"{.data.adrin-passwerd]™ | basetd --decode ; echo

. The Crafana server can be accessed via port 80 on the following DNS nase frem within your cluster:
grafana-dashboard.default.sve.cluster. local
Get the Crafana URL to visit by rumning these commands in the same shell:

export POD_NAME-S(kubect] get pods --namespace default -1 “app-grafana,release-grafana-dashboard™ -o jsonpath-"{.items[0].metadata.name}")
kubect] --namespace default port-forward SPOD_NAME 3000

3. Login with the password from step 1 and the username: adain
##2228 WARNING: Persistence 15 disabled! V! You will lose your data when #2888
Ll the Grafana pod 15 terminated. L

PRERRES

Figure 6-8. Installation of Grafana

Step 9: Execute the following command to get the secret password:

$kubectl get secret --namespace default grafana-dashboard -o
jsonpath="{.data.admin-password}" | base64 --decode ; echo

You will get the password—e.g., dom3BiALxXmM1Q2hAPuPVIFozxW
ID8yb7haMH6KU—which will be used to log in to the Grafana UI, as per
Figure 6-9.

[rootakBs-naster prametheus]# kubectl get secret --namespace default grafana-dashboard -o jsenpath="{.data.admin-password}" | basesd --decode ; echo
dom3B T ALXXIMLGZ haFUPYIFoz xWIDSyb ThaMHeky

Figure 6-9. Grafana temporary password fetch

Step 10: Open the browser and enter the URL (http://master-node-
ip:30007), e.g., http://10.1.150.126:30007, and enter the username as
“admin” and password you got from step 9, as in Figure 6-10.

178

http://10.1.150.126:30007

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Grafana

Figure 6-10. Grafana login page

Grafana Integration with Prometheus

Now, let’s configure the Prometheus end point in Grafana.
Step 1: After entering the credentials, navigate to Setting » Data
Source as per Figure 6-11.

88 Home -

Figure 6-11. Grafana data source configuration

179

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Step 2: Click “Add data source,” as shown in Figure 6-12.

Figure 6-12. Grafana data source configuration

Step 3: Select Prometheus and enter the Prometheus URL
http://10.1.150.126:30000/ under the HTTP URL section and hit the
Save & Test button, as shown in Figure 6-13.

Y01, 150, 12630000/

Figure 6-13. Grafana data source configuration

If the Prometheus end point has been configured successfully, you will
get the message “Data source is working,” as shown in Figure 6-14.

180

http://10.1.150.126:30000/

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Figure 6-14. Grafana data source configuration validation

Step 4: Grafana provides one default dashboard. Click on Home to
navigate to it, as shown in Figure 6-15.

13 Home - Grafana b4 +

&~ C (@ Notsecure 10.1.150.126:30007

Figure 6-15. Grafana default dashboard navigation

Click Prometheus 2.0 Stats, as shown in Figure 6-16.

88 Prometheus 2.0 Stats

Figure 6-16. Grafana default dashboard navigation

You can now view the Prometheus dashboard, as shown in Figure 6-17.

181

CHAPTER6 CONTAINER REPORTING & DASHBOARDS

Figure 6-17. Grafana default Prometheus dashboard navigation

Summary

In this chapter, we have provided hands-on steps for using Grafana for
container dashboard and reporting with Prometheus. In the next chapter,
we will start with understanding how to leverage Dynatrace for container
application monitoring, along with hands-on exercises.

182

CHAPTER 7

Container Application
Monitoring Using
Dynatrace

This chapter will provide hands-on steps for using Dynatrace for container

application monitoring. We will look at the following:
e Introduction to Dynatrace
o Container Application Monitoring

o Working with Dynatrace for Container Application
Monitoring

Introduction to Dynatrace

Dynatrace is a software-intelligence monitoring platform that simplifies
enterprise cloud complexity and accelerates digital transformation.
Dynatrace seamlessly brings infrastructure and cloud, application
performance, and digital experience monitoring into an all-in-one
automated solution that’s powered by artificial intelligence named Davis.

© Navin Sabharwal, Piyush Pandey 2020 183
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_7

https://doi.org/10.1007/978-1-4842-6216-0_7#DOI

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

The following are the key capabilities of Dynatrace:

Real User Monitoring: Dynatrace helps the support and
development teams trace an interaction end-to-end from
real users, whether it is from a desktop-based browser

or from a mobile device. It covers the availability and
response time of an application as seen by the end user.
It also provides for verification of UI elements and third-
party content, and analysis of the service-side application
down to the code level, so it is easy to troubleshoot and
analyze any issues that the users may face.

Server-side Service Monitoring: Web applications
consist of web pages that are served by web servers
which in turn interact with backend Application &
Database servers depending upon incoming request
type. Dynatrace OneAgent can provide details about
which applications or services interact with which
other services and which services or databases a
specific service calls. We will cover this in detail
using a hands-on lab exercise.

Network, Process, & Host Monitoring: Dynatrace
enables monitoring of the entire infrastructure,
including hosts, processes, and network.

Container Monitoring: Dynatrace seamlessly integrates
with existing Docker environments and automatically
monitors containerized applications and services. With
Dynatrace, there is no need to modify Docker images,
run commands, or create additional containers to
enable Docker monitoring. Dynatrace has the ability

to automatically detect the creation and termination of
containers, and monitors the applications and services
contained within those containers.

184

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Architecture Overview

Dynatrace can be deployed either as an SaaS solution or within an on-
premises deployment. The on-premises version is called Dynatrace
Managed, while the SaaS version is known as Dynatrace SaaS. In

this chapter, we will cover Dynatrace SaaS’ capabilities for container
monitoring.

8 8 ﬁ Dynatrace

Mission Control

@.

——

User Interface

Figure 7-1. Dynatrace SaaS architecture

Dynatrace Saa$ has a simplified architecture (Figure 7-1). Its core
component comprises OneAgent and ActiveGate. SaaS customers only
need to install OneAgent to enable monitoring for the target environment.

ActiveGate works as a proxy between Dynatrace OneAgent and
Dynatrace SaaS/Managed versions. It can be installed on Windows or
Linux. If you use Dynatrace SaaS, you only need to install an environment
ActiveGate. The main functions of ActiveGate include the following:

Message routing: ActiveGate knows about the
runtime structure of the Dynatrace environment
and routes messages from OneAgents to the correct
server endpoints.

185

https://www.dynatrace.com/support/help/get-started/get-started-with-dynatrace-saas/
https://www.dynatrace.com/support/help/get-started/get-started-with-dynatrace-managed/
https://www.dynatrace.com/support/help/get-started/get-started-with-dynatrace-managed/
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-oneagent/capabilities/how-one-agent-works/

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Buffering and compression: ActiveGate collects
messages from OneAgent instances and builds
bulks, which are then sent in compressed form to
the Dynatrace server.

Authentication: ActiveGate authenticates OneAgent
requests (SSL handshake and environment ID
authentication).

Entry point for sealed networks: Dynatrace server
clusters often run in protected environments that
aren’t directly accessible by OneAgent instances
running outside of a sealed network. ActiveGate can
be used to serve as a single access point for such
OneAgent instances.

Container Monitoring Using Dynatrace

Dynatrace OneAgent is container-aware and comes with built-in support
for out-of-the-box monitoring of Kubernetes. Dynatrace supports full-stack
monitoring for Kubernetes; i.e., monitoring from the application down to
the infrastructure layer.

For container monitoring, the Dynatrace OneAgent operator registers
itself as a controller that watches for resources of type OneAgent, as
defined by a custom resource definition. This allows you to define a
configuration that describes your OneAgent deployment. By loading the
configuration into Kubernetes, the configuration is automatically passed
to the custom controller. Figure 7-2 outlines the involved components and
objects.

186

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

OneAgent g!:’:;aAt;a;fi
DaemonSet
CustomResource Operator
waich ' ‘ — rollout

changes ‘
" —~trigger [URSR. SUN——
update™—a! == :
query I A A
version Frmmrmmenemmseesnee
" OneAgentPods
Dynatrace Cluster

Figure 7-2. Dynatrace container monitoring architecture

By creating the OneAgent custom resource entity in Kubernetes,
the object is automatically passed to the Dynatrace OneAgent operator.
First, it determines if a corresponding DaemonSet already exists. If not,
the Dynatrace OneAgent operator creates a new one. The DaemonSet is
responsible for rolling out OneAgent to selected nodes. Dynatrace also
automatically polls the pods to check for updated versions, and if the
updated versions are not deployed then the latest version is automatically
rolled out.

Now, let’s begin with an exercise that uses Dynatrace for container
monitoring. We will begin by requesting the evaluation version of
Dynatrace SaaS.

Step 1: Navigate to the following URL to request a fifteen-day trial of
Dynatrace SaaS. Click on the Free Trial button in the corner.

https://www.dynatrace.com

Step 2: Enter your email address and click on the Start Free Trial button.

Step 3: Add a valid password for your account and then click Continue.

Step 4: Add details regarding your account and click Continue.

Step 5: Select the region where you want to store your monitoring
data, click on the radio button for “Yes, I agree to the above terms and
conditions,” and then click Create Account, as shown in Figure 7-3.

187

https://www.dynatrace.com

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Select your region

Dynatrace datacenters are available worldwide. For optimum
performance, select the data center where your monitoring data is
to be stored.

EU West Ireland
US West Oregon

US East Virginia

¢

AP Southeast Sydney

By checking the “Yes™ box below, you agree that your use of the Dynatrace
products to which you are requestung access shall be subject to the terms and
conditions found at:

. If you do not agree to these terms, you should check the
“No" box below. If you check the "No” box and click "Cancel”, you will be
returned to the previous screen, and the requested access will not be granted.

@ Yes, | agree to the above terms and conditions

O No, | do not agree to the above terms and conditions

(|

Figure 7-3. Dynatrace SaasS region selection

Step 6: After that, you will be redirected to the Dynatrace Welcome
page. Click the Deploy Dynatrace button, as shown in Figure 7-4.

188

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Welcome to Dynatrace, Dynatrace

How Dynatrace works

1. Deploy Dynatrace 2 Auto-detect your environment 3. Get full operational insights

@ =N
%iEnl -

=0l

Il components and See all relevant
ment. and application

Deploy Dynatrace

Not ready to install Dynatrace Agent?

Figure 7-4. Dynatrace SaaS Welcome page

Step 7: You will be redirected to the Dynatrace console. Click on the
Home icon at the top of the page, as highlighted in Figure 7-5, and it will
take you to the Dynatrace home page dashboard.

Odyratace

Figure 7-5. Dynatrace SaaS home page

Step 8: On the home page you can see a default dashboard. As of
now, since there are no agents reporting to this SAAS instance, there is
no data reporting under any of the entities. Only sample data is provided
by default. On the left-hand side, there are several tabs available for each

189

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

entity that we monitor through Dynatrace. Once the data starts reporting
to the console, the user can click on any of the tabs and look at the metrics
of that entity, as shown in Figure 7-6.

Home

Create custom chart Quick overview Application health Infrastructure

Reperts
Fretiren Workdmag (Apde) Hest health,

Problems

sersesions 0 N 1

Logs
St Wiy Symshetss monsr

Dsagnastic tools

Applications

Synithetic
Transactions & services
Databases

Harsts

Figure 7-6. Dynatrace SaaS tab navigation

Now we will install a microservice application that will be monitored
using Dynatrace. We will use easyTravel Application as the demo
application. EasyTravel is a multi-tier application that uses microservice
principles. We will use this application to simulate application issues such
as high CPU load, database slowdown, or slow authentication. Figure 7-7
is the architecture diagram of the application. We have installed only the
customer frontend part of the architecture, which includes nginx, frontend,
backend, database, and a load generator.

190

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

| Customer Frontend | g. J

3 L T
.-g» \npm:mz v Crpdm:ardautmanon
B Microsch 5 I Microschms.
Vg &
ra [==

828 Frontend = ‘-;. b | jJ

(Travel Agency's) | Web Senrer | dotNelanlendl

Figure 7-7. Easy Travel Application architecture

Please refer to Table 7-1 to get information about the components used
by the travel application.

Table 7-1. Application Components

Component Description

Mongodb A pre-populated travel database (MongoDB)

Backend The easyTravel business backend (Java)

Frontend The easyTravel customer frontend (Java)

Nginx A reverse proxy for the easyTravel customer frontend (NGINX)
Loadgen A synthetic UEM load generator (Java)

Containerized Application Deployment

In this section, you will learn how to deploy the travel application on a
Kubernetes cluster with kubectl commands. You can get the application
code and its details from the following GitHub URL: https://github.com/
Dynatrace/easyTravel-docker.

191

https://github.com/Dynatrace/easyTravel-docker
https://github.com/Dynatrace/easyTravel-docker

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 1: Log in to the Kubernetes master node to install the easyTravel
application. Execute the following command to download application files
to your server:

$ git clone https://github.com/Dynatrace/easyTravel-Docker.git

Step 2: Now, we will clone easytravel.yaml for this application from
GitHub by executing the following command. Once you download the
repo you will get rc.yml, service.yml, and pod.yml files in various folders.
Using these files, we will create deployment, pods, and services for each
component.

$ git clone https://github.com/dryice-devops/dynatrace.git

Step 3: Copy the easytravel.yaml file into the Kubernetes folder /
App/microservices-demo/deploy/kubernetes/. Now, let’s create a
namespace to run this application using Kubernetes by using the following
command:

$ kubectl create namespace easytravel

To verify that the namespace has been created successfully, execute
the following command, as shown in Figure 7-8:

$ kubectl get namespace

[root@devops0087 kubernetes]# kubectl get namespace

NAME STATUS AGE
default Active 10d
dynatrace Active 8d

easytravel Active 14h
kube-node-lease Active 1od
kube-public Active 10d
kube-system Active 10d
monitoring Active 8d

Figure 7-8. easyTravel application Kubernetes namespace creation

192

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 4: Now, execute the following command on the Kubernetes
master node to create the deployment, services, and pods, as we specified
in easytravel.yaml:

$ kubectl create -f easytravel.yaml

It will create all the components to run the application. Verify by using
the following commands, as shown in Figure 7-9:

$ kubectl get deployment -n easytravel

[root@devops0087 easyTravel-Docker]# kubectl get deployment -n easytravel

NAME READY UP-TC-DATE AVAILABLE AGE
backend 1/1 1 1 13h
frontend 1/1 1 :] 1l4n
loadgen 1/1 1 1 13h
mongodb 171 1 1 13h
nginx 1/1 1 1 13h

Figure 7-9. easyTravel application deployment using Kubernetes

Step 5: Now, execute the following command on the Kubernetes
master node to fetch a list of pods for the easyTravel application, as shown
in Figure 7-10:

$ kubectl get pod -n easytravel

[root@devops0087 easyTravel-Docker]# kubectl get pod -n easytravel

NAME READY STATUS RESTARTS AGE
backend-794fc8bcf7-6tdgm 1/1 Running 0 13h
frontend-7d9969499f-2nxws 1/1 Running 0 14h
loadgen-68677457d6-1jds7 1/1 Running 0 13h
mongodb-5db6S6dd-mhfzb 13 Running 0 13h
nginx-68c4bb4ffd-h87zt 1/1 Rgnning] 13h

Figure 7-10. easyTravel application pod list

193

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 6: Now, execute the following command on the Kubernetes
master node to fetch a list of services for the easyTravel application, as
shown in Figure 7-11:

$ kubectl get service -n easytravel

[root@devops0087 easyTravel-Docker]# kubectl get service -n easytrave

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
backend ClusterIP 10.104.148.186 <none> 8091/TCP
frontend NodePort 10.99.139.181 <none> 80:31012/TCP
mongodb ClusterIP 10.103.157.16 <none> 27017/ICP
WWW ClusterIP 10.106.198.252_ <none> 80/TCP

Figure 7-11. easyTravel application service list

Copy the cluster IP for the frontend service for application page
access. Navigate to the following URL to access the easyTravel frontend
application service:

http://< cluster IP >:port

In our case, the following is the URL, as shown in Figure 7-12:
easyTravel URL: http://10.99.139.181:31012/

@ hitpy/10.99.139.181:31012/0range,s! o Q

From Date

To Date

Fil ot the bames. sbovs a%u! yins nevsts

Figure 7-12. easyTravel application frontend page, Dynatrace
OneAgent installation

194

1

AGE
13h
14h
13h
13h

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Monitoring Application using Dynatrace

In this section, you will learn how to install Dynatrace OneAgent on the
Kubernetes cluster to enable the monitoring for the easyTravel application.

Step 1: Log in to the Kubernetes master server and create the
namespace Dynatrace using the following command:

$ kubectl create namespace Dynatrace

Step 2: Create a LATEST_RELEASE variable, which will contain the URI for
the latest image of the OneAgent operator. Execute the following command:

$LATEST RELEASE=$(curl -s https://api.github.com/repos/
dynatrace/dynatrace-oneagent-operator/releases/latest | grep
tag name | cut -d """ -f 4)

Step 3: Once the variable is created, run the following command to
create Dynatrace entities:

$kubectl create -f https://raw.githubusercontent.com/Dynatrace/
dynatrace-oneagent-operator/$LATEST RELEASE/deploy/kubernetes.
yaml

Step 4: Now we check the logs of the OneAgent operator to verify that
it is successfully installed on the Kubernetes cluster; we do so by executing
the following command:

$kubectl -n dynatrace logs -f deployment/dynatrace-oneagent-
operator

Step 5: We will now create the secret holding API and Paa$ tokens for
authenticating the Dynatrace SaaS setup. To generate and manage API
tokens, log in to your Dynatrace environment, and from the navigation
menu click Settings » Integration. Select Dynatrace API, Platform as a
Service, or Dynatrace modules to generate a token for the Dynatrace API, a
token for PaaS, or a token for DCRUM or Synthetic, as shown in Figure 7-13.

195

https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/basics/dynatrace-api-authentication/

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

&idynatrace

Integration Integrate Dynatrace with 3rd party systems |

Configure detection sensitivity
Applications
Synthetic Alerting

Configure alerting settings
Transactions &

Databases Integration N

Integrate Dynatrace with 3rd party syste_..
Hosts

Network Problem notifications
Technologies Dynatrace APl
VMware Platform as a Service
AWS Dynatrace modules
Azure User session export

Docker Custom metrics overview

Cloud Foundry

Kubernetes Tags =
Group entities using custom tags
Maintenance o
Deploy Dynatrace Configure maintenance time frames
Deployment status
Preferences ~

Settings 8 Environment settings
Figure 7-13. Dynatrace API token generation

Step 6: Click the Generate Token button as shown in Figure 7-14, and
then type a meaningful token name in the text field, as shown in Figure 7-15.

My Dynatrace APl tokens Other Dynatrace APl tokens

Generate a secure access APl token that enables access to your Dynatrace monitoring data
via our REST-based API.

=0 Generate token |

API| tokens

Token name Owner Disablefenable Delete Edit

Mo tokens available.

Figure 7-14. Dynatrace API token generation

196

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 7: To create Dynatrace API tokens, select or clear the access
switches as needed to set the access scope of the API token. For example,
to create an API authentication token to access Dynatrace monitoring data

for user session queries, select “User session” as shown in Figure 7-15.

Maonitering overview
Host naming
Windows services availability

Processes and containers
Det

tion and naming

‘Web and mokile monitoring

Real user and synthetic monitoring

Cloud and virtualization

Connect cloud and virtualization types

Server-side service monitonng

Manage and customize service monitoring

Log Monitoring

Set up management of logs

Anomaly detection

Configure detection sensitivity

Alerting

Configure alerting settings

My Dynatrace APl tokens

Generate a secure access APl token that enables access to your Dynatrace monitering data
via cur REST-based API,

APl-token

Use the switches below to define the access scope of your Dynatrace APl token,
- Access problem and event feed, metrics, and topology

O Read log content

\'-._0',' Create and read synthetic moniters, locations, and nodes

(@ ©) Read synthetic monitors, locations, and nodes

) ©

©) Read cenfiguration

) |

@) Write configuration

0;1 Change data privacy settings
. User sessions

(@ ©) Anonymize user session data for data privacy reasons

Figure 7-15. Dynatrace API token generation

Step 8: Click the Generate button. The token will appear in the My
Dynatrace Tokens list, as shown in Figure 7-16.

197

https://www.dynatrace.com/support/help/extend-dynatrace/dynatrace-api/basics/dynatrace-api-authentication/

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Settings Dynatrace API

USer session export o .
(® ©) Read audit logs

Remote environments —
(@ ©) Fetch data from a remote environment

Tags (@ ©) Read entities using APl V2

Group entities using custom tags -
(@ ©) Write entities using APl V2

Maintenance e
v (® ©) Read network zones using API'V2
Configure maintenance time frames

—g . .
C O) Write network zones using API V2

Preferences
N /a . -
Environment settings (@ ©) Read ActiveGates using API V2
Accounting (@ ©) write ActiveGates using API V2
v
Verify consumption —
J I\._O?J Read Credential Vault entries
(@ ©) Write Credential Vault entries
APl tokens
Token name Owner Disable/enable Delete Edit
API-token hcl.demo.dynatrace@gmail.com . x ~

Generated token

V4I5pafzT3iYWwP5dMmrQ

Token name

API-toker|

Figure 7-16. Dynatrace API token generation

Step 9: Now, we will create a PaaS token by enacting the following
steps. Log in with your Dynatrace account and select “Deploy Dynatrace”
from the navigation menu. Click the Set up PaaS Integration button, as
shown in Figure 7-17.

198

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Figure 7-17. Dynatrace PaaS token generation

Step 10: Your environment ID appears in the Environment ID text
box. You'll need this ID to link your Dynatrace account with your PaaS
environment. Click Copy to copy the ID to the clipboard. You can do this at
any time by revisiting this page, as shown in Figure 7-18.

Deploy Dynatrace } Paa5 integration

Figure 7-18. Dynatrace PaaS token generation

Step 11: To generate a PaaS token, click the Generate New Token
button. The PaaS token is essentially an API token that’s used in
combination with your environment ID to download Dynatrace OneAgent.

199

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Asyou'll see, there’s also a default InstallerDownload token available that
you can alternatively use. However, for security reasons, it's recommended
that you create several discrete tokens for each environment you have, as
shown in Figure 7-19.

Deploy Dynatrace) Paas integration

O

=0 Generate new token

Figure 7-19. Dynatrace PaaS token generation

Step 12: Type in a meaningful name for your Paa$ token. A meaningful
token name might be the name of the Paa$ platform you want to monitor
(for example, azure, cloud-foundry, or openshift). To view and manage
your existing Paa$ tokens, go to Settings » Integration » Platform as a
Service.

Click Generate to create the PaaS token. The newly created PaaS token
will appear in the list below. Click Copy to copy the generated token to the
clipboard. You can do this at any time by revisiting this page and clicking
Show Token next to the relevant Paa$S token.

Step 13: Set up API and PaaS tokens using the following command:

$kubectl -n dynatrace create secret generic oneagent --from-
literal="apiToken=D62yuwExSpOUeoM1d7 gE" --from- literal=
"paasToken=r 6pQg0zSwivPXym3dTKp"

200

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 14: Now, let’s create a custom resource for OneAgent. Navigate to
the Kubernetes folder /App/microservices-demo/deploy/kubernetes/
and run the following command. This will download the cr.yaml file to
your Kubernetes master node.

$curl -o cr.yaml https://raw.githubusercontent.com/Dynatrace/
dynatrace-oneagent-operator/$LATEST RELEASE/deploy/cr.yaml

Step 15: Edit cr.yml and modify the values of the custom resource as
indicated below. You need to update the API URL, tokens, and APP_LOG
CONTENT variable:

Before making changes, follow the code in Listing 7-1.

Listing 7-1. Dynatrace OneAgent custom resource cr.yml sample

apiVersion: dynatrace.com/vialphal

kind: OneAgent

metadata:
a descriptive name for this object.
all created child objects will be based on it.
name: oneagent
namespace: dynatrace

spec:
dynatrace api url including "/api® path at the end
either set ENVIRONMENTID to the proper tenant id or change
the apilrl as a whole, e.q. for Managed
apiUrl: https://ENVIRONMENTID.live.dynatrace.com/api
disable certificate validation checks for installer
download and API communication
skipCertCheck: false
name of secret holding “apiToken™ and “paasToken®
if unset, name of custom resource is used
tokens: ""

201

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

node selector to control the selection of nodes (optional)
nodeSelector: {}
https://kubernetes.io/docs/concepts/configuration/taint-
and-toleration/ (optional)
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
operator: Exists
oneagent installer image (optional)
certified image from RedHat Container Catalog for use on
OpenShift: registry.connect.redhat.com/dynatrace/oneagent
for kubernetes it defaults to docker.io/dynatrace/oneagent
image: ""
arguments to oneagent installer (optional)
https://www.dynatrace.com/support/help/shortlink/oneagent-
docker#limitations
args:
- APP_LOG_CONTENT ACCESS=1
environment variables for oneagent (optional)
env: []
resource settings for oneagent pods (optional)
consumption of oneagent heavily depends on the workload to
monitor
please adjust values accordingly

#resources:

requests:

cpu: 100m

memory: 512Mi
limits:

cpu: 300m

memory: 1.5Gi

202

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

priority class to assign to oneagent pods (optional)

https://kubernetes.io/docs/concepts/configuration/pod-
priority-preemption/

#priorityClassName: PRIORITYCLASS

disables automatic restarts of oneagent pods in case a new
version is available

#disableAgentUpdate: false

when enabled, and if Istio is installed on the Kubernetes
environment, then the Operator will create the corresponding
VirtualService and ServiceEntries objects to allow access
to the Dynatrace cluster from the agent.

#enableIstio: false

DNS Policy for OneAgent pods (optional.) Empty for default
(ClusterFirst), more at

https://kubernetes.io/docs/concepts/services-networking/
dns-pod-service/#pod-s-dns-policy

#dnsPolicy: ""

Labels are customer-defined labels for oneagent pods to
structure workloads as desired

#labels:

custom: label

Name of the service account for the OneAgent (optional)
#serviceAccountName: "dynatrace-oneagent"

Configures a proxy for the Agent, AgentDownload, and the
Operator (optional)

Either provide the proxy URL directly at 'value' or create
a secret with a field 'proxy' which holds your encrypted
proxy URL

#proxy:

value: https://my-proxy-url.com

valueFrom: name-of-my-proxy-secret

203

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Adds the provided CA certficates to the Operator and the
OneAgent (optional)

Provide the name of the configmap which holds your .pem in
a field called 'certs’

If this is not set the default embedded certificates on the
images will be used

#trustedCAs: name-of-my-ca-configmap

Sets a NetworkZone for the OneAgent (optional)

Note: This feature requires OneAgent version 1.195 or
higher

#networkZone: name-of-my-network-zone

Edit ENVIRONMENTID to be the environment ID of your SaaS$ instance.
For example, in our case it’s euz01562. You can navigate to your Dynatrace
SaaS$ instance and get the environment ID from its URL, as highlighted in
Figure 7-20.

< c O 8 euz01562 live.dynatrace.com/#dashboard:gf=allid=7dfe814d-33d7-4d70-9a71-dfb3214a3721;gtf=1_2

Home
Dashboards

Ciate o om diait Quick overview Application health

Reports
Problems Apphication health Worldmap (Apdex)

Figure 7-20. Dynatrace environment ID

For tokens, set the value to the name of the secret that we have created:
oneagent. Set APP_LOG_CONTENT ACCESS=1andenv: [].

After making required changes, Listing 7-2 will be the contents of the
cr.yml file

204

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Listing 7-2. Dynatrace oneagent custom resource cr.yml

apiVersion: dynatrace.com/vialphal
kind: OneAgent
metadata:
a descriptive name for this object.
all created child objects will be based on it.
name: oneagent
namespace: dynatrace
spec:
dynatrace api url including “/api® path at the end
either set ENVIRONMENTID to the proper tenant id or change
the apiUrl as a whole, e.q. for Managed
apiUrl: https://euz01562.live.dynatrace.com/api
disable certificate validation checks for installer
download and API communication
skipCertCheck: false
name of secret holding “apiToken™ and “paasToken®
if unset, name of custom resource is used
tokens: "oneagent"
node selector to control the selection of nodes (optional)
nodeSelector: {}
https://kubernetes.io/docs/concepts/configuration/taint-
and-toleration/ (optional)
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
operator: Exists
oneagent installer image (optional)
certified image from RedHat Container Catalog for use on
OpenShift: registry.connect.redhat.com/dynatrace/oneagent
for kubernetes it defaults to docker.io/dynatrace/oneagent

205

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

image:
arguments to oneagent installer (optional)

https://www.dynatrace.com/support/help/shortlink/oneagent-
docker#limitations

args:

- APP_LOG_CONTENT_ACCESS=1

environment variables for oneagent (optional)

env: []

resource settings for oneagent pods (optional)

consumption of oneagent heavily depends on the workload to
monitor

please adjust values accordingly

#resources:

requests:

cpu: 100m

memory: 512Mi
limits:

cpu: 300m

memory: 1.5Gi

priority class to assign to oneagent pods (optional)

https://kubernetes.io/docs/concepts/configuration/pod-
priority-preemption/

#priorityClassName: PRIORITYCLASS

disables automatic restarts of oneagent pods in case a new
version is available

#disableAgentUpdate: false

when enabled, and if Istio is installed on the Kubernetes
environment, then the Operator will create the corresponding
VirtualService and ServiceEntries objects to allow access
to the Dynatrace cluster from the agent.

#enableIstio: false

206

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

DNS Policy for OneAgent pods (optional.) Empty for default
(ClusterFirst), more at

https://kubernetes.io/docs/concepts/services-networking/
dns-pod-service/#pod-s-dns-policy

#dnsPolicy: ""

Labels are customer defined labels for oneagent pods to
structure workloads as desired

#labels:

custom: label

Name of the service account for the OneAgent (optional)
#iserviceAccountName: "dynatrace-oneagent"

Configures a proxy for the Agent, AgentDownload, and the
Operator (optional)

Either provide the proxy URL directly at 'value' or create
a secret with a field 'proxy' which holds your encrypted
proxy URL

#proxy:

value: https://my-proxy-url.com

valueFrom: name-of-my-proxy-secret

Adds the provided CA certficates to the Operator and the
OneAgent (optional)

Provide the name of the config map which holds your .pem in
a field called 'certs’

If this is not set the default embedded certificates on the
images will be used

#itrustedCAs: name-of-my-ca-configmap

Sets a NetworkZone for the OneAgent (optional)

Note: This feature requires OneAgent version 1.195 or
higher

#networkZone: name-of-my-network-zone

207

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 15: Create the custom resource by executing the following
command:

$ kubectl create -f cr.yaml

Step 16: Now, we will install an ActiveGate component to connect our
Kubernetes cluster with Dynatrace SaaS. Log in to the Dynatrace console
and select “Deploy Dynatrace.” Then, click on Install ActiveGate, as shown
in Figure 7-21.

Figure 7-21. Dynatrace ActiveGate installation

Step 17: Select “Linux” and click Copy underneath “Run this
command on the target host to download the installer”; run it onto the
server where we are installing the OneAgent operator. It will download the
installer as shown in Figure 7-22.

208

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

B o

Deploy Dynatrace > Install ActiveGate > Install Linux Environment ActiveGate

Install Linux Environment ActiveGate

O Monitor mainframe

2. Run this command on the target host to download the installer.

.181.144.sh
1/deployment/installe

Token hzgdWMfkRBiz4gcGDin5l™

Figure 7-22. Dynatrace ActiveGate installation

$wget -0 Dynatrace-ActiveGate-Linux-x86-1.181.144.sh
"https://euz01562.1ive.dynatrace.com/api/vi/deployment/
installer/gateway/unix/latest?arch=x86&flavor=default"”
--header="Authorization: Api-Token hzgdWMfkRBiz4gcGDin5J"

Step 18: Execute the installer to install ActiveGate. After this, we can
proceed to further Kubernetes-related configuration.

$./Dynatrace-ActiveGate-Linux-x86-1.181.144.sh

Step 19: In previous steps, we have cloned a file named kubernetes-
monitoring-service-account.yaml. Readers can review the content of
this file in Listing 7-3, as we will use this file in the next step.

Listing 7-3. Dynatrace Kubernetes monitoring configuration file

apiVersion: vi
kind: ServiceAccount
metadata:

209

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

name: dynatrace-monitoring
namespace: dynatrace
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: dynatrace-monitoring-cluster
rules:
- apiGroups:
resources:
- nodes
- pods
verbs:
- list
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: dynatrace-monitoring-cluster
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: dynatrace-monitoring-cluster
subjects:
- kind: ServiceAccount
name: dynatrace-monitoring
namespace: dynatrace

Step 20: Create a service account and cluster role for accessing the
Kubernetes API with the following snippet:

$ kubectl apply -f kubernetes-monitoring-service-account.yaml

210

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 21: Get the Kubernetes API URL for later use using the following
command:

$ kubectl config view --minify -o jsonpath='{.clusters[o0].
cluster.server}'

Step 22: Get the Bearer token for later use using the following
command:

$ kubectl get secret $(kubectl get sa dynatrace-monitoring -o
jsonpath="{.secrets[0].name}"' -n dynatrace) -o jsonpath='f{.
data.token}' -n dynatrace | base64 -decode

Step 23: Now, let’s connect the Kubernetes cluster through Dynatrace
settings. Log in to Dynatrace and navigate to Settings » Cloud. Go to
Virtualization » Kubernetes. Click Connect New Cluster. Provide a name,
Kubernetes API URL, and the Bearer token for the Kubernetes cluster, as
shown in Figure 7-23.

B settings) loudand virtualization) Kiibemetes

Dashboards

Create custom chart Settings Kubernetes

Reports Connect your Kubemetes or OpanShift cluster to Dynatrace. Please have your Kubernetes
Monitoring W APItarget URL and your beaser token ready. For more details, see the documentation for
Setup and overview connecting your Kubernztes or Openshift cluster to Dynatrace.

Problems Processes and containers =

User sessions Duthction and nansing Name this connection

Log= Web & mobile monitering = [kas-master

Smartscape topology Real user & synthetic maonitoring URL

LBRHEIC o Cloud and virtualization |SEpac 00 £:430. 1265443

~

Connect cloud & virtualization types

Applications Overview
Synthetic AWS
Transactions & services Vidware

Databases Azure

Hosts Cloud Foundry

Figure 7-23. Dynatrace and Kubernetes integration

211

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 24: Once the cluster is added successfully, it will be listed like in
Figure 7-24.

@ Kubernetes

netes of Cpensh ster to Dynatrace. Please have your Kubernetes

your bearer token ready. For mone detalls, see the docementation for
et Cpenshift duster to Dynatrace.

© kas-master HHDsN011504126:5443 Meniteing 0n S X

Figure 7-24. Dynatrace and Kubernetes integration

Container Metrics on Dynatrace

Now that we have integrated Dynatrace with our Kubernetes setup and
deployed the easyTravel application, let’s navigate the console to view
the container application monitoring metrics. OneAgent will do full-stack
monitoring, including infrastructure, Docker, and code-level monitoring,
for the hosted applications.

Step 1: Log in to Dynatrace. The home dashboard will now report
additional data, as shown in Figure 7-25.

212

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Wordmap (Apdex]

EasyTravel

Database health

N

Docker

2 Docker hasts

Figure 7-25. Dynatrace dashboard after Kubernetes integration

Step 2: To view the Kubernetes cluster status, navigate to the
Kubernetes tab at the left-hand side and then click on the cluster, as shown
in Figure 7-26.

Odynatrace:

e

Phiease peovice feedback and fir

1 Cluster

Figure 7-26. Dynatrace Kubernetes cluster metrics

213

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

By clicking on the cluster, we can look at cluster utilization. It will show
the CPU and memory utilization based on usage, requests, limits, and
availability. The same pane will show the number of nodes running under
that cluster, as shown in Figure 7-27.

Cluster utllization (2 cluster nodes)

| usage l regqueits | bty | avallacse
CPU isage Memory usage
%o s8com oo h
£ LGm A% e
E 2aCm nx (I
20w .
e
a «© am =) - =

Problematic nodes

« All your Kubermnetes cluster nodes are fine.

Figure 7-27. Dynatrace Kubernetes cluster metrics

Step 3: By clicking the Analyze Nodes button, the page will showcase
the CPU and memory utilization for the individual nodes running under
this Kubernetes cluster, as shown in Figure 7-28.

35 masier) Made hebrsia

a1 Node analysis

Mode Utilzation

2ers Modes with open problems

+ All your Kubernetes cluster nodes are fine,

2 Nodes

Figure 7-28. Dynatrace Kubernetes cluster node metrics

214

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 4: To take a closer look at these nodes, we can go to the Hosts
tab from the navigation menu. Here, the nodes are listed out as hosts, as
shown in Figure 7-29.

B Hosts~
¥ Filtor by

Problem impact 2 Hosts
any it

State o
i = A devapsooat dryicel

Monitoring mode
any =it

Technology
any

Tags
ay st

Operating system
ay

Type
any ot

Figure 7-29. Dynatrace Kubernetes Host view

Individual Host pages show problem history, event history, and related
processes for each host. To assess health, the following performance
metrics are captured for each host and presented on each Host overview
page, as shown in Figure 7-30:

CPU

Memory

Disk (storage health)
NIC (network health)

215

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Hosts devops0087dryicelabs.com

@ devops0087.dryicelabs.com [j

Uptime: over 7 days
> Properties

Red Hat Enterprise Linux Server 7.5 (Maipa) (kernel 310.0-862.el7x86.64) 12 more..

cPU Memary
;= —=

s 2 1

CPU usage 15 %

K8s CPU requests 770 mCores K8s CPU limits 770 mCores

System Load 013

Actively used CPU of the host as a percentage of available CPU.

100%
| == T R e e |
0% A —
15:00 15:30 16:00 16:30
idle of /Owait of User System ol Stealtime of Other

Consuming processes

Figure 7-30. Dynatrace Kubernetes Host view

216

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

On the same page, we can see if there is any connectivity from this host
to any another host, as shown in Figure 7-31.

nOpsn0RT deyialabs com

No problems Tecay w21 - 15

100% Availability s dus

& min total devntime

peeigaagie-oatiiners/cidviser

Figure 7-31. Dynatrace Kubernetes Host view

Step 5: On the same page, at the right-hand side, a complete list of
processes and containers running on this host can be seen. We can view
easyTravel processes and containers on this page, as shown in Figure 7-32.

217

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Processes and Containers mm

() MongoDB

MongoDB (running in docker-compose_carts-db_1)
using "'mongo”

MongoDB (running in docker-compose_orders-db_1)
using “mongo”

MongoDB (running in docker-compose_user-db_1)
using “weaveworksdemos/user-db”

MongoDB (running in mongodb)
using “dynatrace/easytravel-mongodb”

B Go

app (running in docker-compose_catalogue_1)
using "weaveworksdemos/catalogue”
app (running in docker-compose_payment_1)
using "weaveworksdemos/payment”
node_exporter winsome-hedgehog-prometheus-node-exporter (winsome-hedgehog-pro
metheus-node-exporter-svzvc)
using "sha256"
traefik (running in docker-compose_edge-router1)
using "weaveworksdemos/edge-router”
user (running in docker-compose_user_l)
using "weaveworksdemos/user”

Java

e~

nobel-agent jar
SpringBoot carts works.weave.socks.cart CartApplication (running in docker-compose_cart
s.1)

using “weaveworksdemos/carts”
SpringBoot orders works.weave socks.orders.OrderApplication (running in docker-compos
e_orders_1)

using “weaveworksdemos/orders”
SpringBoot shipping works.weave socks.shipping.ShippingServiceApplication (running in d
ocker-compose_shipping1)

using "weaveworksdemos/shipping”
vemload jar (running in loadgen)

Figure 7-32. Dynatrace Kubernetes Processes and Containers view

On the same page, by clicking on View Container, we can see the
containers grouped by image type, as shown in Figure 7-33.

218

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

I Containers grouped by image name

Name oy Memary » Trattic CPU thrattling : Details

i dynatracefeasytravel-backend 092 % 1GB 12,5 khit's oms w
shazss 023% 622 MB - oms) W
weaveworksdemos/queue-master 023 % 492 MB 514 kbit/s oms Vv
dynatracefeasytravel-frontend 19% 454 MB 396 kbit/s oms w
dynatraceieasytravel-loadgen 075% 393 MB 135 kbit/'s oms v
dynatrace/oneagent % 315 ME = oms v
weaveworksdemos/carts 005 % 759 MB 363 bit/s oms
weaveworksdemos/orders 0.05% 247 ME 368 bit/s oms v
weaveveorksdemos/shipping 007 % 247 ME obivs oms v
weaveworksdemos/catalogue-db 002% 191 MB o bit/s oms

Figure 7-33. Dynatrace Containers Grouped by Image Name view

Step 6: Expand one of the images to view the details regarding those
containers running using this image. In this view, the following details are
available, as shown in Figure 7-34.

CPU: CPU user divided by CPU system, expressed as
a percentage.

Memory: Resident Set Size (RSS) and cache
memory. RSS reflects data belonging to processes,
while cache memory represents the data stored on
disk that is currently cached in memory.

Traffic: Both incoming and outgoing network traffic

Throttling: Total time that a container’s CPU usage
was throttled

219

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Hots } kpemaster) Cotminess

Memsey « TraFic = CPUthrotting : Detals

whazse oasm BaIME - oms A

De
200 9 2130 20 249 240 20 Fr 220 Fr FE 00
B B - Bpe v g - Al k- master b e 1 N 368 MB 2 N) e CE)
W GBI S0 K A LDy S T Lrey 28 1B [L47 W) - om
B sl g gt X 0N 42TME (258 M) * Qe
[Lios Kby 1t 0 0OEN 112 ME (522 %) - o
W s hube-proky i o078 173 MB (022 ¥) - EEY
B s coredns coredng U n T gystem 420c-a080- o N WM (338 %) . Sy
W cas conedns coredn- QL tes) LI 153 MB (9,60) - om

Figure 7-34. Dynatrace container metrics

For the processes, details are captured as shown in Figure 7-35.

Processes

Memory 572 GB Traffic 4.4 kbit/s Retransmissions 019 % Connactivity 0%

100%

e T e T e e T T

ki 70 17:20 1730 1740 1750 18:00 1810 1820 1830 18:40 1850 15:00
% Hest 1 Other processes
Process Type ¢ CPUw Memery ¢ Traffic ; Retransmissions : Connectivity ¢
Other processes. % UGB 944 kbits
kubebet @ Kubernetes L33% ELIME
tomeat [running in backend) (using “dynatrace/easytravel-backend”) :m:“h " 0.59 % 2GB &8s kbits 0% 100 %
tomceak {running in frontend) (using “dyratrace/easytravel-frontend’) ;:anxha?o 0.59% 475MB 205 kbit's 0% 100 %

Figure 7-35. Dynatrace Kubernetes process metrics

220

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 7: On the navigation menu, we can see a summary of the most
relevant details of the Docker, as shown in Figure 7-36. The graphical view
at the top of the page displays the following:

Number of running containers

Number of Docker images

Top three containers consuming the most memory
Most recently started container

Most frequently used images

E o NSO < Last 2 hours

Services

4
Dockerized services

59 imim.
Fequests,

n Tep 3 of currently running containers n Latest container started E Top dactive images
1. ik dynatiace-oneagent_omsagent-kagsp dynatrace. ks busybox_busybox_ defaudt_f1adssab-679a-aeaa-a 1. ks, ger b/ pause. 34 containgrs
DbO00Cas-5315-2021-9 239 DaRaLdITIILR, 11 G Ger-catencof 2,191 stared from Image shazse: 2 shass, 18 containes.
ienory B e N P e 3 k4. g0 /DAUSES), § containars

2 ket premetheus promutheus-deploy
dejfmonitonng 821 sd-2a63-4308-9209-550600
31264.0, $47 MB memory

3. I QU HAITEL GRS Te-DEbSCH oSSt
10ck-thop, 189M001- 440-4604-2201-4127 22426710, 708
ME memony

Figure 7-36. Dynatrace Docker dashboard view

The Docker Hosts section at the bottom of the page shows the resource
usage of individual Docker hosts, including number of containers running,
as shown in Figure 7-37.

221

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Averag! beisF ing containers
w00 88
‘Containers running on hosts
2 No change
Compared to Thy, Dec 19
o
o 530 540 .

(TE1] 500 5 50 " I 1550 00 £ %530 1630 164

2 Docker hosts
Search

Hame v CPU usage Memary usage Disk latency Metwork traffic Bumber of containes. Sate
devopsn0a8 drybcelabs. com 3% 7 % of 764 GB 3nms 527 kbit/s 65 Running

devops00a7. dryicelabs com 6% 42%0f 764G 118 ms 31 kbit/s n Running

Figure 7-37. Dynatrace Docker view

Step 8: Click on the Application tab to view application monitoring
metrics, as shown in Figure 7-38.

Figure 7-38. Dynatrace application monitoring

By default, there will be an application created called “My web
application.” All the traffic will report to this application at first. Now, let’s
create a new application using the following steps. Navigate to Settings »
Web & mobile Monitoring » Application Detection and run as shown in
Figure 7-39.

222

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

g ovenary

Hest pasing

Proceuies and matamers

Wl L mrahie masitacing
Source Mz and pymied
User expeniene sozre
B etemioates

Pravides breakdzem

Retoarce types

Advarced seius

St ity

Private syathetic lscatien

Liag 5 apdesias To Matens

Ressarce URL deasue nies

Aopication cetectinn & BLM

A Temnsiegy

Baal smae B ryristc mertaring

Psgi manager
fim

Cantigune Cosniase

Canfigure Couendl

Cenfigure Easticseanch
H [

cticiogy mentoriag
I

e

Onedgent pgin

relget e

Dnedgent pigin

Onekeert ppin

Omedgent pugin

IS ovacac et piape

Onedgent pigin

Deckgert plegin

Onekpertphpn

Custom plagns

Gishal mestenng ORDs ton

Figure 7-39. Dynatrace easyTravel application onboarding

Click on Create Application Detection Rule, as shown in Figure 7-40.

Settings

Monitoring

Setup and overview
Monitored technologies
Monitoring overview
Host naming

Processes and containers

Detection and raming

Web & mobile monitoring

Real wier & synthatic monitering

Source maps and symbed files

User experience score

Grographic megiont
Map | addresses to locations

IP determination

Cantent resous

Provider breakdown

Application detection & RUM

These settings only apply to applications detected by Dynatrace Onedgent. If you haven't

done 50 already, ceploy CneAgent

Mot seeing your applic

Real User Menitoring

Real User Monitoring (RUM
detected by Onedgent. Mare

Default RUM application

or RUM data?

s enabled by cefault for all web applications that are aute-

Dynatrace comes pre-configured with a default RUM application s that you can be sure to

capture

Application detection rules

M data by simply installing CneAgent on your hosts.
default web application settings

Use appiication detection rules to customize how the domain names and sub-domains that
Dynatrace detects in your environment should be recognized and grouped info distinct

applications far monitaring. Mare.

Defing your own rules fior grougin

Apgiication names must be unique. View current list of agentiess applic

£ into distingt applications for mon

ing. More

1

l Create application detection rule Your environment is limited to 1000 detection rules. You have currently defined & rules,

Figure 7-40. Dynatrace easyTravel application onboarding

223

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Now click on New Application. Give a name for the application and
then define some rules for the web requests. Then, click on Save, as shown

in Figure 7-41.

tieh & mobie monitoring } Application detection & RUM) Create application detection rule

Settings @ Create application detection rule
R sl 1 Nikwe f2r ferve RSOHEMT SN INAE LM EHteCI
] -~ (®) riew acpioation Ensyteavel-Acp

Setup ang averview

) Exi

Meaitored becheaiogies

Mnitaring gverview This nasne will Be used s tbe inbernal 1D foi bhis agplcation. You can creste mulliphe grouping fules for Une same apalication by coeating mulliphe rules hal efers the same
apclication mame,

Host narung

A Dafina which mab requasts 31 pat of B appication
Processes and containers i
Debection a3 namisg If the domain (host] ~ | mabches. =
Web & mobile morstonng o anessd
Reaf upr B myrihatic montering
Scatce mags and symbel s

Ll + vri B groped 56 i wets ApSCHtion 1551 e gk o for e T e e

Map I scdresses 1o lotations

Figure 7-41. Dynatrace easyTravel application onboarding

This will create an application under the Application tab. Rules can be
defined based on domain and URLs. Here, we are using the domain for
detecting web requests. Our application domain is 10.1.150.150. So, we
have specified the same in the rule. Now, whenever a request comes to this
domain, it will get registered under easyTravel, as shown in Figure 7-42.

Web applications ~ [# stodmnnon [[
o
Fittered by
= . v oo e %
: soom
PRSEIRAC, 2 Pame Actian Load X actiom lavacript wrmen Sod party / CON
Unmonitared 1
@ EasyTravel Geod 007 /min 4 complete: 053 200 fm 002 fmin
(Y]
@ M

Figure 7-42. Dynatrace easyTravel application onboarding

224

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 9: To view the easyTravel application, we navigate to Applications

and click on easyTravel, as shown in Figure 7-43.

Figure 7-43. Dynatrace easyTravel application metrics

We will view the application as seen in Figure 7-44.

—— |

3 Taga and JwaSergt Famewsria

Performance analysis User behavior

Adtions Smn ATion duron, ADce FAng. vaSeriat emant. 360 panty peevicers and Senvioes Ative 1S 0%, AT DN SeEten.
Entry/Eat autioed. Beunce rate. and
Cafrreisaon gos.

ti 6% Chrome
Tep browser

3l pasty/CON resources.

' :“ m-«lm . 3 . o8 . Wb 6T faction
b i i i Fesaueces
@ Niew geoloetion Ereakidowe Vicumty mite Viaky compiete User action duration

Figure 7-44. Dynatrace easyTravel application metrics

By clicking on User Behavior, we will see the screen in Figure 7-45.

225

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

@ EasyTravel JE— .}

3 Tags wed Juvaerist frumewasa

Performance ana... = User behavior
Amnd S, Ammisn Suratien, B o,
Apeax rariag, fwvasengt amen, sl

sty pravisen bad Serviees.

57 % Returnin..,

- Top users
= !
|

Figure 7-45. Dynatrace easyTravel application metrics

On the same page, we can see the user actions and errors, as shown in
Figure 7-46.

b9 fmin Top errors Dects 201, 1730 - tocay, 333
ol A PAngE In #ror leved may INIASE L ORICE OF BIOWER-SPIIIRG protiem.
o o NEETTEVSNE oo Cusee (30 i)
3w 200 .05 .08

— Visualy compene 1l Totd XMR arvions e | XR actices /mes with viually compien B [—

Custom actions Siowert 10N | Fastest 10%

13 - 82imn
sonm o1 mn
o o mn

24 Mo 700 (X" 6 Dee

Urexpected end of inpat = jqetry 8.3 min s ELTTES)

— Ustr amon dunties b Cotem amisns (min

Compase 10 previous tme frame | [EERSTGET SRS, FEA

C ite metrics across resp times

Figure 7-46. Dynatrace easyTravel application metrics

By clicking on any of the errors, we can see the details of the errors

captured, as shown in Figure 7-47.

226

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

@ Uncaught Error: Script error for: http:/wid, L mfoutk j

vt 2 detailed i under which CoNtions the JAVASCHEt erTor Ras DOCUrmed by Cicking on the ocoveTence SEAtISEIs finaings.

Chir = Win Vs 2,
00 0
W00
| loading of page /orange- (3] Mexico
booking-review st =

Figure 7-47. Dynatrace easyTravel application metrics

Here, we can see the occurrences of the error, browser, OS, and
location-specific details. Below that we can see a detailed description of
the error, as shown in Figure 7-48.

Error details

View details for | Chiome ~

Brequire]s 1 Rasytravel-frentend

wwrmenipge

@ Chiome Message Uncawght Error: Script error for: Mttpowidgets.outbrain.com gutteain js

IoMIING 67 pAGE farange-Dosking-Tevien At
Ino A "SEript MOr IS UEUAITY FEporERS RN AN EXCERESN VIGIALES The DRowsers SAmE-origin-policy Le. wivn Ehe #1707 BCCURS i & SETIPE IRAL i Dosted 00 2 QOMAN ST EAN the BOMAIn of the curt
t page

RS HTT n“aﬂ!ﬂlﬂ LT 19@“‘&0 o get 1R full eerce SELAIS for MOSt BIowien By A0ENG the MENDte Crosserigine"anonymous” 1o 1he sript ug ﬂﬁl
:ge e ol eursently sugport the ereiiorign atlibute, Cae Is aho requited to asdy et Lhe crowenigin attribule for seripts with CORS eaders crevent a

Figure 7-48. Dynatrace easyTravel application metrics

So, by using the preceding drill-down, we can identify the root cause of
all the errors in our container application.

Application Topology

In Dynatrace there is a feature called Smartscape. Smartscape auto-
discovery delivers a quick and efficient overview of all the topological
dependencies in your infrastructure, processes, and services, both on the
vertical axis (where full-stack dependencies across all tiers are displayed)
as well as on the horizontal axis (where all ingoing and outgoing call
relationships within each tier are visualized). Let’s view the Smartscape
topology for our easyTravel application.

227

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Step 1: To view the easyTravel application topology, click on
Smartscape Topology, as shown in Figure 7-49.

Dashb % reports all Smartscape topology) Applications > EasyTravel
Dashboards

Create custom chart

EasyTravel M
Reports

Webete

Analyze

Problems

Logs

Smartscape topology

¥ Processes

Transactions & services

Figure 7-49. Dynatrace easyTravel application topology

To see a detailed description of the easyTravel processes, click on Host
and select the target node host. Under Processes and Containers, click any
process to explore that process in detail on a dedicated process page.

On each process page, you'll find process-specific statistics related
to CPU consumption, memory consumption, network utilization (see

228

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

Figure 7-50), and other infrastructure measurements. You'll also find
details regarding related events, problems, and dependencies (including
called and calling process).

m k8s-master :} Processes tomcat (running in frontend)

2% tomcat (running in frontend) (-]

> Propertes

3 sarvices

A% Apache Tomcat

2 rsesses 2 Prozesses
m dynatrace/easytravel-f..
B k8s-master
AppServer metrics Further details M

Figure 7-50. Dynatrace easyTravel application processes

At the top of this process page, we can also see provided services, as
shown in Figure 7-50.

In this Figure 7-51, a topology is created for every process, and we can
see its caller and called processes as well by clicking on the Process tab at
the left and right-hand side, as shown in Figure 7-50.

229

https://www.dynatrace.com/support/help/how-to-use-dynatrace/hosts/monitoring/measures-for-host-health/

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE
No problems Nov 29 2015, 00212 - Teday, 0022

98.9% Availability
20 min total downtime Last downtime on 04-12-2019 17:34 - 17:55

18:00 5. Dec 0600 12200 1800 €. Dac

B fuccing B Shuidown

2 Events Nov29 2019, 00:12 - Today, 00:12 B

29 New 0. Nov 1.0ec 2. Dac 2. Dac 4. Dac 5. D% 6. Dac
I 1 Process restart . 1 Deployment changed

Events Time » Details
= Deployment change for process tomeat (running in frontend) Dec 04 2019, 17:55 ~
®m Process tomcat (running in frontend) restarted Dec 04 2019, 17:55 ~

Figure 7-51. Dynatrace easyTravel application processes

Transactions and Services

We can check the availability of the processes, and in the graph itself we
can see if a process was shut down at any point in time. Below that there
will be a list of events for this process. If any changes have been made in
the process deployment, there will be an event listed for this. If the process
was restarted, there will be an event for this as well.

Step 1: When you look at processes, you're seeing topology
information, whereas services give you code-level insight. To view service-
specific details in Dynatrace, go to Transactions & Services and click on
one of the services, as shown in Figure 7-52.

230

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

nevwerdcengfealbgtis|_6_HOURS a + Qo oD+ @ i
= | B racvcmest niae | <
. s
€ Services” (X
¥ 10 g it e ©
Problem mpact B Services showing | 4
y L

oy s i &

Service type

ay o W o
Tachnalogy Nt o
wy eot
Tags
ay ot
s 100 %
Sl TEE s s
[Re—— i -
—_— AT we s

Figure 7-52. Dynatrace easyTravel application transaction metrics

For every service, we can see the caller and calling requests, number
of requests, and response time, including dynamic web requests and
resource requests, as shown in Figure 7-53.

}i&; easyTravel Customer Frontend | Smartscape view ||J 2 Problems nov s 201, 0035 - Today, 0038
e n Problem 917 Response tme degradation

E [N Frodlem 367: Multiple service proclems

eanyTravel Customer Frontend
Decavhis - Decd 200 (26 minutes)

Dy " " No recent hotspots detected 7oday 005 - soas
namic web requests

Response time Failure rate Multidimensional analysis views

709 mia Tris section will st youer bockmaried multidimensional anaiyys views for this servio

chart’ to start

(] Thesegngt
- Understand dependencies westerday ooas - Tedsy oo

I Understanc all dependences and response time contnbutions

Figure 7-53. Dynatrace easyTravel application transaction metrics

231

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

By clicking on View Dynamic Requests, we can see all the requests
coming to this service. On the same page, we can see the response time
and failure requests, including CPU and throughput. At the top right
corner, we can have an overview of the problems with this service, as
shown in Figure 7-54.

5&@ easyTravel Customer Frontend

x

Figure 7-54. Dynatrace easyTravel application transaction metrics
For every service, we can see a graph of response time, failure rate,

CPU, and throughput for all web requests coming to this service, as shown
in Figure 7-55.

232

CHAPTER 7 CONTAINER APPLICATION MONITORING USING DYNATRACE

crs) eanyTravel Citomer i
Top requests m Wb hequest Faming rules

F $tart typing 1o fite

Figure 7-55. Dynatrace easyTravel application transaction metrics

Summary

In this chapter, we have provided an overview of Dynatrace and its
capabilities, along with hands-on steps for using Dynatrace for container
application monitoring. In the next chapter, we will provide overview of
Sysdig and look at its capabilities for monitoring Container ecosystem. We
will also provide hands-on steps for using Sysdig for container application
monitoring.

233

CHAPTER 8

Container Application
Monitoring Using
Sysdig

This chapter will provide hands-on steps for doing container application
monitoring using Sysdig. We will look at the following:

e Introduction to Sysdig
o Container Application Monitoring

o Working with Sysdig for Container Application
Monitoring

Introduction to Sysdig

Sysdig Monitor is a powerful container-native monitoring and
troubleshooting solution that provides comprehensive observability.
It comes out of the box with unmatched container visibility and deep
orchestrator integrations, including Kubernetes, Docker Swarm, AWS

© Navin Sabharwal, Piyush Pandey 2020 235
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_8

https://doi.org/10.1007/978-1-4842-6216-0_8#DOI

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

EKS, Azure AKS, and Google GKE. It is available as both a cloud and an
on-premises software offering. The following are the key features of Sysdig
Monitor:

o Simplifies discovery and metric collection: Sysdig
provides transparent instrumentation that dynamically
discovers applications, containers, hosts, networks, and
custom metrics, like Prometheus, JMX, and statsD, for
deep insight into complex environments.

o Visualizes service reliability: Sysdig provides a
consolidated overview of your service performance,
capacity, and risk profile, which helps developers and
DevOps quickly identify application issues and take
action.

e Monitors infrastructure and applications: By
leveraging deep integrations with Kubernetes,
OpenShift, Docker, Mesos, DC/OS, AWS, Google, IBM,
Azure, etc., Sysdig lets you see beyond infrastructure
into how your apps and services are performing.

e Builds robust dashboards: Sysdig provides out-of-
the-box and customizable dashboards that enable
at-a-glance views of your infrastructure, applications,
compliance, and metrics and let you visualize your

environment the way you want.

« Simplifies and scales Prometheus monitoring: Using
turn-key, horizontal scalability, enterprise access
control and security, Prometheus metrics correlation,
and PromQL queries with any event or metric, Sysdig
helps you keep pace with large, complex environments.

236

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Allows you to explore your entire infrastructure:
Sysdig provides automatic correlation of data from
across your infrastructure, including custom metrics
from statsD, JMX, and Prometheus, providing deep
insight into complex environments.

Proactively alert for faster response: Sysdig provides
configurable alerts to enable proactive notification

of any condition, including events, downtime, and
anomalies, to help you get a handle on issues before
they impact operations.

Accelerates troubleshooting: Sysdig provides deep
container visibility, service-oriented views, and
comprehensive metrics that help you hunt threats and
eliminate issues faster.

Sysdig’s functional architecture is shown in Figure 8-1.

wewsstocrone [CONTARERVSONTT]

APP

CONTAINER

CLOUD PROVIDERS

AZURE
AWS

ORCHESTRATORS Allaws you to enrich your metrics

SYSDIG

NETWORK —_— SECURE

HOST Provides security and monitaring
inside containers without

invasive instrumentation.

SYSDIG

GKE — MONITOR

with real-time metadata from SYSDIG

OFEN SHIFT DOCKER —

your orchestrator,
nc/os KUBERMETES

Figure 8-1. Sysdig functional architecture

Container Application Monitoring

INSPECT

Sysdig’s commercial offering unifies all operational data and turns it

into insights. Starting with thousands of metrics and events for every

application, container, and host, the Sysdig platform enriches the data to

237

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

give you precise, in-context views of your applications and microservices.
Sysdig then provides you with apps that deliver key visualizations to help
you achieve your specific workflows.

Sysdig gets its data from the kernel by subscribing to trace-points that
many system kernels are already processing and publishing; this is called
Container Vision. This makes the data capture a very lightweight exercise
(typically 1-3% CPU resource and 500 MB system memory). Sysdig is
based on the open source Linux troubleshooting and forensics project by
the same name (Sysdig). The open source project allows you to see every
single system call, down to process, arguments, payload, and connection,
on a single host. This data is dynamically mapped to containers,
microservices, clouds, and orchestrators in a way that is at once powerful
and simple to use.

To further leverage the unique visibility created by the original Sysdig
project, the developers built an open source security tool called Falco
. Falco combines the visibility of open source Sysdig with a rules engine
that constantly monitors system events for violations of policies at run-
time. The Sysdig enterprise offering then allows for enforcement of these
policies, compliance, and auditing on top of this rich data.

To further enrich the data used to secure your environment, Sysdig
has also integrated Anchore into the platform. What Falco does for run-
time, Anchore does for build-time: it allows you to implement and enforce
vulnerability management policies and scan your container images before
they ever go into production. Please refer to Figure 8-2 for the Sysdig
container monitoring system architecture components.

238

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

COLLECT STORE, PROCESS, ALERT VISUALIZE
CONTAINER CONTAINER
_ SYSDIG DASHBOARDS
CONTAINER CONTAINER VISUALIZE + LONG-TERM TRENDS

INTEGRATE

REGISTRY

-F-

ALERT + ENFORCE

BUILD SYSTEM
ORCHESTRATOR

Figure 8-2. Sysdig container monitoring architecture

Sysdig’s architecture is very similar to those of tcpdump and
Wireshark, as events are first captured at the kernel level by a small driver
called sysdig-probe, which leverages a kernel facility called tracepoints.

Sysdig also now supports eBPF, shown in Figure 8-3, as an alternative
to the kernel module-based architecture just described. eBPF—extended
Berkeley Packet Filter—is a Linux-native in-kernel virtual machine that
enables secure, low-overhead tracing for application performance and
event observability and analysis.

DATA
CONTAINER 2 CONTAINER 3 COLLECTION

\\\\\

ENFORCEMENT

IMAGE
---- DETECTION &
SCANNING

Figure 8-3. Sysdig container monitoring architecture

239

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Sysdig Trial License Setup

Now, let’s request the evaluation version of Sysdig Monitor and see how it
monitors container applications.

Step 1: Navigate to https://sysdig.com/ and request the evaluation
version of Sysdig. Select Products and click on the Sign-up Today button,
as shown in Figure 8-4.

"% Secure DevOsn Plttoem hoe G X

€ 3 O @ pudgoom « @ ®
N ;
@ Sysdlg Products ~ Solutions ¥ OpenSource v Resources v Company +
Platform Monitor Secure Free Trial
Sysdig platform Monitor Overview Secure Overview Start your free 14 day trial

of Sysdig Monitor.

Full Stack Data Image Scanning
Enterprise Runtime Security (signuptodsy)
Prometheus

Container
= -

overview

D

Figure 8-4. Sysdig evaluation request

Step 2: Fill in the required details and click the Submit button.

Step 3: You will receive an activation link at the email address you
provided. It takes roughly thirty minutes to one hour to receive the email.
Click on the activation link in the email to complete your evaluation access
request. You will be prompted to set up a new password for Sysdig. Click
the Activate and Login button to proceed, as shown in Figure 8-5.

240

https://sysdig.com/

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Activaie and login

Figure 8-5. Sysdig evaluation account password setup

Step 4: On the next screen, you will be prompted to go to the Sysdig
Welcome screen. Click on Next to proceed.

Step 5: We are using Sysdig to monitor our Kubernetes cluster, so
please select “Kubernetes | GKE | OpenShift” on the next screen. On
selection, you will view a key, as shown in Figure 8-6. Copy the key. We will
use this later in the chapter.

LOGOUT 5]

Waiting for first node to connect... Go ahead and follow the instructions below!

Kubernetes | GKE | OpenShift

You can find instructions to install and configure Sysdig Monitor on the support page

Here is your Access Key you will need to use during the configuration:

bFfT7372-8f4e-244a-b13a-c IB1BFISCEES coPyY

OPEN INSTRUCTIONS

Figure 8-6. Sysdig evaluation account Kubernetes integration key

241

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Now, we will set up a cluster on AWS using Amazon Elastic Kubernetes
Services (EKS), and then integrate Sysdig Monitor for container
application monitoring. We will assume the reader has knowledge of
working with AWS and has an AWS account.

Elastic Kubernetes Service Setup on AWS

Please perform the following steps to set up the Elastic Kubernetes
Services on AWS.

Step 1: Log in to your AWS account and navigate to IAM to create the
IAM role for the AWS EKS service, as shown in Figure 8-7.

« c @ console.aws.amazon.com/eks/home?region=us-east-1#/clusters/Prometheus

Hi Apps @ Employee SelfSeni. Q) Python DevOps Tut.) Powesshellseriptio.. R ListClusters- Amez. @ Runscripttocheck.] Study Guide

Resource Groups ~

History

1an]
EKS ‘
1AM @ Compute L:':J Customer Enablement Analytics
EC2 EC2 AWSIQ & Alhena
veC Lightsail & Support EMR
ECR Managed Services CloudSearch
CloudWatch
ouara ECS Elasticsearch Servi
CloudFommation EKS Kinesis
Lambda soa Blockchain QuickSight &
Batch Amazon Managed Blockchain Data Pipeline
Flastic: Beanstalk AWS Nata Fxchane

Figure 8-7. AWS EKS IAM role creation

Step 2: Select “Roles” and click on the Create Role button, as shown in
Figure 8-8.

242

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

|dentity and Access
Management (LAM)

Dashbcard
~ Accest managemint
Glos
Lisers
Roles
Fohties
Iceristy providers
Ao SeANgS
v Access reports
Access anatyzer
Archhen s
Arayzer getls
Coedential sepon

Orgargzation actaty

* Roles

What are LAM roles?

LAM roles Are 3 Sacure way ko GrANE parmissions 1o entitks that you rust Examples of entBes nclude the foliowing

« 1AM yser In angther account
+ Apobeation e FUNNING on n EC2 instance INal neads 1o DErfenm Bctons on AWS fescurces
+ AN AWNS senvice that neeids 10 acl on TesoUrces I your account B provide it features

= Users from 3 COMRONate Geciony who use IEnIRY Tederaton win SAML

LAMI reies t55ue kays that are vaild 10r shart durgbions, making INGm @ mode S6cwe nay 10 grand access.

Additional resources:
LA Roles FAD
- LA

os Documentation
+ Tuiorial: Seiiieg Lp Cross Accounit Access

« Common Scenarios for Rolkes

Figure 8-8. AWS EKS IAM role creation

Step 3: Select “AWS EKS Service” from the services list and select the

use case of EKS for managing the cluster on the user’s behalf. Provide role

name and description. Click the Next: Permissions button, as shown in

Figure 8-9.

Services Resource Groups ~ *

i.com @ 7119-6.

Application Discovery
Senvice

Batch

Chime

Q

IoUdF cImation
CloudHSM
Clouatrail

SloudWatch Application
n its

Clowdwatch Events

Data Pipeiine Global Accelerator OpsWorks

DataSync Glue Personalize

Deeplens Greengrass QLoB

Directory Service GuardDuly RAM

DynamoDB Inspecior RDS

EC2 leT Redshifl
l6T Things Graph Rekognition
KMS Roboliaker

Select your use case

EKS

Allows EKS lo manage clusters on your bedhall.

EKS - Nodegroup

Allow EKS 1o manage nodegroups an your Dehall.

* Required

Slorage Gateway
Textract
Transfer

Trusted Advisor
VPG

WorkLink

\eorkdAail

—

Figure 8-9. AWS EKS IAM role creation

243

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 4: Add the policies listed in Figure 8-10 and add tags (optional).
Click on the Next: Review button.

m © Add inline policy
Policy name = Policy type -

» B8 AmazonEKSClusterPalicy AWS managed policy x

» WG ioudWatchagentadminPalicy AWS managed policy u

» BB C ioudWatchagentSenver,olicy AWS managed policy x

» BB AmazonEKSServicePolicy AWS managed policy x®

Figure 8-10. AWS EKS IAM role creation

Step 5: Review and click the Create Role button, as shown in Figure 8-11.

Review after the role has been created.

Figure 8-11. AWS EKS IAM role creation

Step 6: Now, let’s create a security group for our AWS EKS cluster.
Select “EC2” from the AWS service list and navigate to Security Groups, as
shown in Figure 8-12.

244

B Apps (Y Employee Seff Sendi.

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

) armt - 0% Buidp | BE Verst | G psscri; | € 2019

c B console.aws.amazon.com/ec2/v2/homeTreg

Resource Groups

) Prthon DevOps Tut-.

X O AMN | R BMN | G create

st-1#Home:

8 Amaz: | €) amaze | () ameze | §F Amaz: |

) Powershell seriptto.. B Ustlusters - Amez.. @ Run seript to check Study Guide for Miz.. & AMINOE

History
EC2
1AM @ Compute LC,-I Customer Enablement Analyties __’Q
Key Management EC2 ANSIO Alhena
service Lighisail (% Supgen EMR
EKS ECR Managed Services ClougSearch
VPO ECs Elasticsearch Service
Cloudwatch ERS B . Kinesis
Lambda mea Blockehain Cuicksight & o
Batch Amazon Managed Blockchain Data Pipeline PP
Elastic Beanstalk AWS Dala Exchange
Serveness Application Repositony’ AWS Glug
AWS Outposts & satellite AWS Lake Formation
EC2 Image Buikter Ground Station MSK

Figure 8-12. AWS EKS security group creation

Step 7: Click on Create Security Group. Provide a name for the security
group and add a description (optional). Select a pre-built VPC. Click on the
Create button to set up a security group for the AWS EKS cluster, as shown
in Figure 8-13.

8 conleawiamaoncom v home regon Tug

SRcurity Groups = CIeas SECUTRy grop
Create security group

Asecuiity geoup acts &5 a virual irewall K YOUr INSANCE 10 CONtrol ibound and ouIbound IR, To CrEate & new Securty 0rou Tl in the Selds Deiow

Security group nane” | skegroop (1]
Description® | yes °
VPG | vpc-DobieE1aa1sozas ML

Figure 8-13. AWS EKS security group creation

245

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 8: Now add inbound and outbound security group ports to your \
cluster. Typically, users follow organizational policies, AWS architecture, and
security best practices to allow selective ports for their AWS EKS cluster. For
this lab exercise, we are adding a few default ports, as shown in Figure 8-14.

Security Group: sg-0b28eaZ20f42e8cal |} =]

Description Inbound Outbound Tags

Edit

Type (i) Protacol (i Port Range (i Source (i Description (i
AnTee TCe 0-55535 0.0.0.000

HTTES TCe 443 0.00.00

HTTFS TCe 43 0

Figure 8-14. AWS EKS security group inbound port

Step 9: Now, let’s create an SSH key pair for the AWS EKS cluster. Select
“EC2” from the service list and navigate to Key Pairs, as shown in Figure 8-15.

Services ~ Resol

@ New EC2 Experience m
Tell us what you think

Bundle Tasks

ELASTIC BLOCK 4 Key
STORE

Volumes
Snapshots

Lifecycle Manager
» NETWORK & o
SECURITY
Security Groups
Elastic IPS now
‘
Placement Groups
duyi
Key Pairs
Selecta k
Network Interfaces
¥ LOAD BALANCING

Load Balancers

Target Groups

Figure 8-15. AWS EKS SSH key pair creation

246

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 10: Click on Create Key Pair. Provide key pair name and click the
Create button, as shown in Figure 8-16.

Create Key Pair

Key pair name: [Dmvideyuurkeynamenere

Figure 8-16. AWS EKS SSH key pair creation

Step 11: Now, let’s create the AWS EKS cluster. Select “EKS” from the
services list. Click the Create Cluster button, as shown in Figure 8-17.

EKS > Clusters

Clstars A -]

Q, Find clusters by name < 1 3>

Figure 8-17. AWS EKS creation

Provide a cluster name and select Kubernetes version 1.14. Select the
IAM role created in previous steps, as shown in Figure 8-18.

247

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

EKS Clusters Create EKS cluster

Create cluster

General configuration

Cluster name
Enter 3 unique name for your Amazon EKS cluster,

Prometheus

Kubernetes versi
Select the Kubern

114 v

Role name [info
Satect the 1AM Rale that «

sed by the nodes

EES-Cluster-1-eks-cluster-role v

Figure 8-18. AWS EKS creation

Step 12: Select the pre-built VPC and subnet, as shown in Figure 8-19.

Services Resource Groups ~

Networking infe

vPe A
Select a VPC to use for your EKS Cluster ressurees.

vpc-0b83f49cd3afdScab - 10.3.00/16 v
Subnets [

Chaese the subnet

Q

Subnet v Name ¥ Availability Zone ¥ Subnet IPv4 CIDR ¥
subnet-07870f325386e2fc1 edge-1 us-east-1a 10.3.3.0/24

. subnet-05¢d 1dfbab88cbecd DMZ-2 us-east-1b 10.3.6.0/24
subnet-Oe12b63089b3be981 backend-2 us-gast-1h 10.3.2.0/24
subnet-Ocb4d4956cc9914ch edge-2 us-east-1b 10.3.4.0/24
subnet-03f88d11552099f41 backend-1 us-east-1a 10.3.1.0/24
subnet-Oad5c493a85237ded DMZ-1 us-gast-la 10.2.5.0/24

Figure 8-19. AWS EKS creation

Select the security group created in a previous step, as shown in
Figure 8-20.

248

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

s~ s launch-wizard-5 created 2019~
09b9048398e960a20 e 03720:38:29.140+05:30
:
5g-
v
| - Ob2Bea220f42e8ca3 eksgroup yes

Security group for Kubernetes |
LRe_alh. 3NAARRaTGT 7841 18304 ThiaE

Figure 8-20. AWS EKS creation
Step 13: Enable public access for AWS EKS APIs, as shown in Figure 8-21.

4 »

API server endpoint access
Configure the visibility of the cluster API server endpeint to the internet

Private access

Enable private AP server endpoint access

(D Disabled

Public access
Enable public API server endpoint access

@ Enabled

Figure 8-21. AWS EKS creation

Also enable all logging options, as shown in Figure 8-22.

Legging

AP server
Ligs pertaining te APY resuests ta the thisies

O Enobled

Audit
Ligs pertaining be duster aecess via the Kubesnetes API

D Enabled

Authanticator
Lot BrIIRng te JulhEDEIsn requsts in the cluter

D Enabied

Cont,

Scheduber
Lo pertaining bo khedsing deciviom

O Enabies

Log eesvnstion

5 will plsce 4o yau enabla for your chastor int this ClausWiotch ko geoup

Jav s Proevetheus/duster [F

Figure 8-22. AWS EKS creation

249

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 14: Add tag values (optional) and click the Create button, as
shown in Figure 8-23.

Authenvcator

o Loy to authentication regaests into the clusber
Amazon Container % u a A S et ot
Services O bissbled
Controller manager
Amazen ECS Lo pertsinieg totate of thatar controers.
i
Clusars @ oissbiee
Task definitions Seheduler
Lage pertainies to scheduling deciiions
P Dissbled
Amazon EKS
Clusters
Tags
A tag in o label that you maign to a0 AWS resource. Each tag conaists of & kry and an optional walue. Yom can use tags 1o sesech and filter
your ressurces. Tags are optional
Amazen ECR
Repasitories
This cluster does not have any tags
Add tag
Remaining 1ags available 1o 284 50

Figure 8-23. AWS EKS creation

Step 15: Validate your EKS cluster after setup. You can view if status is
ACTIVE on the AWS console, as shown in Figure 8-24.

Amazon Container * EKS 3 Clusters > Prometheous
Services
Amazon £Cs Prometheous [C] vesaws custorvorsion | [owtee|
Custors
Task definitions General configuration
Cubernates vers atform version tatus
Amacon EES Kubernates version Platform version Stat
1.4 55 @ncrive
Clusters
AP server endpent (9 Cortficate authority €9
........ [Z<]
“ https/fSADB4SAM0T 3IA0THIFCOT2I2TEICFERE 9r7 us-sast-
Repositories 1.ks.amazonaws.com
Operdh Conmect provider UL (3
UG i ks 4361
1 ! CET232T6ICFGFE
Cluszer AN (§ Cluster 1AM Bole ARN (3

Figure 8-24. AWS EKS creation validation

Step 16: Now, let’s create a node group in the AWS EKS cluster. Click
the Add Node Group button on the newly created AWS EKS cluster’s page,
as shown in Figure 8-25.

250

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

nEw

Node Groups (0

Info

Group name s

Desired size

v Kubernetes version v

No managed node groups

This cluster does not have any managed node groups.

Modes that are not part of an Amazon EKS managed node group are not shown in the AWS console.

Status v

Figure 8-25. AWS EKS node group creation

Provide the name of the node group, then select subnets and the IAM

role created in previous steps. Click the Next button.
Step 17: Select “Amazon Linux 2” for AMI type, select instance type as

“t3.xlarge,” and set the disk size to “20,” as shown in Figure 8-26.

Amazon Container b4 EKS 3 Clusters > Prometheus
Services
Step
Aamsion BCS Configurs node group
Cluszars
Tagk cefinicas bt
Set compute
configurstion
Amazon EKS
%
Clusters 5
Amazon ECR \,,”
Repothorie Review and create

Add nede group

Set compute configuration

Node compute configuration

These progerties eanet be Sharced eiter the rode grevs it ereated.

AMItype Infs

Seleet the ERS-optimisd Ameran Machine Imags for nedes

Amazon Linux 2 (AL2_k86_G4)
Instance type Infe
Selieet the EC nstaree tyse far nedes
Bxlarge
Disk size
Selict the size of the artached E8S velume e each rade

0 G

Cancel

Peovieus

Figure 8-26. AWS EKS node group creation

Step 18: Select the SSH key pair created in previous steps. Select “Allow

remote access from All” Click the Next button.

Step 19: Provide cluster scaling configuration of minimum, maximum,

and desired size as 1. Click the Next button, as shown in Figure 8-27.

251

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Amazon Container x EKS 3 Clumers 7 Premethoous 3 Add node group
Services
st 1 F .
et A Set scaling configuration
Clissters
Task definitions Group size
Mirirmy s 420
Amaz 2 4 irimum rumbes of nodes Bhat the groun can seals i
Clusters Set scaling
configuratio
Maxemum
the me e cf shat
Amazsn ECR
Hode
Raps L
Desired size:
Set the ibes o ot 4 Lo
Nodes

Figure 8-27. AWS EKS node group creation

Step 20: Review and click the Create button as shown in Figure 8-28.
After creation, you can view whether the node group is in an active state on
the AWS EKS cluster home page, as shown in Figure 8-24.

Amazon Container *® Step 2: Set compute configuration Edit
Services

MNode compute cenfiguration
Amazon ECS
Clusters AMI type
Yask definitions Amazon Linu 2 (AL2_8E_54)

Instance type Disk size
Amaron EKS timicro 15
Clustars

Step 3: Set scaling configuration Edit

Amazen <
Repositores 3

Group size

Minimum size Madmum s ize Desired size

1 1 1

el . |

Figure 8-28. AWS EKS node group creation

Step 21: Now we will set up the AWS cli tool on our Kubernetes master
node server. Execute the following command to install Python36 on your
system:

$sudo yum install python36

252

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 22: Verify the Python version by executing the following
command:

$Python3 -version

Step 23: Install AWS cli by executing the following command:
$Pip3 install awscli -upgrade -user

Step 24: Verify AWS cli version by executing the following command:
$aws --version

Step 25: Configure your AWS account credentials (access and secret
key) by executing the following command. Add the secret key, access key,
and region where the AWS EKS cluster was created. Select “json” as the
output format, as shown in Figure 8-29.

$aws configure

|saurabht@drylcelabs.comgdevopsooss ~|%
[saurabht@dryicelabs.com@devops@@88 ~]$% aws configure
AWS Access Key ID [****xxxxixikxixxxxylKP]:

Default region name [None]: us-east-1
Default output format [None]: json

Figure 8-29. AWS cli tool configuration

Step 26: Execute the following command to fetch the AWS EKS cluster
kubeconfig details (which we created in a previous step) from our master
Kubernetes node:

$aws eks --region "us-east-1" update-kubeconfig --name "Prometheus"

Step 27: Fetch the kernel details of the AWS EKS cluster by executing
the following command, as shown in Figure 8-30:

$kubectl describe nodes

253

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

pods: 58

System Info:

Machine ID: ec2e9243dde353f5e947aclcdff26ado
System UUID: EC2E9243-DDE3-53F5-E947-ACLCDFF26AD0
Doant ThH- Eaand007 2hed _Adcn _anh- QAc878-~C2870
iKernel version: 4.14.146-119.123.amzn2.x86_64
"osTImageT BN ZOTT CTuX™Z

Operating System: Tinux

Architecture: amd64

" PO ST SRR | TR LG e Anclenwm. /30 ~ a

Figure 8-30. AWS EKS cluster kernel version

Sysdig Agent Installation

So far we have created an evaluation account for Sysdig, created an
AWS EKS cluster, and connected our Kubernetes master node with AWS
EKS. Now, we will install a Sysdig agent on the AWS EKS cluster.

Step 1: Execute the following command to download and install
dependencies for the Sysdig agent:

$yum -y install kernel-devel-$(uname -r)

Step 2: Navigate to the /home/Prometheus directory and execute the
following command to clone the file from GitHub:

$cd /home/promethues
$ git clone https://github.com/dryice-devops/sysdig.git

Step 3: Under the cloned Sysdig directory, you will find sysdig-agent-
clusterrole.yaml, sysdig-agent-configmap.yaml, and sysdig-agent-
daemonset-v2.yaml files. You can get sample files from this GitHub link:

https://github.com/draios/sysdig-cloud-scripts/tree/master/
agent_deploy/kubernetes.

You don’t need to modify anything in the sysdig-agent-clusterrole.
yaml or sysdig-agent-daemonset-v2.yaml files. In the sysdig-agent-
configmap.yaml file, you need to update the k8s_cluster name field
with the name of the AWS EKS cluster (Prometheus, in our case). Also set
Prometheus monitoring to true, as shown in Figure 8-31.

254

https://github.com/draios/sysdig-cloud-scripts/tree/master/agent_deploy/kubernetes
https://github.com/draios/sysdig-cloud-scripts/tree/master/agent_deploy/kubernetes

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

prometheuns:

__new k8s: true
|kﬂs_cluster__name: "Prometheus" |
enabled: true

Figure 8-31. Sysdig agent config files update

Step 4: Create a namespace for the Sysdig agent using the non-root
user, as follows:

$kubectl create ns sysdig-agent

Step 5: Create secrets for the Sysdig agent by executing the following
command. This will use the key (highlighted) we got when we created the
evaluation account for Sysdig (while selecting Kubernetes on the Welcome
screen).

$kubectl create secret generic sysdig-agent --from-
literal=access-key=b7f77372-0f4e-444a-b13a-c3818fd5c885 -n
sysdig-agent

Step 6: Execute the following command to deploy the Sysdig agent
cluster role. Here, the cluster role file is the same one we created in
previous steps.

$ kubectl apply -f sysdig-agent-clusterrole.yaml -n sysdig-
agent

Step 7: Execute the following command to create a service account in
the Sysdig agent namespace:

$ kubectl create serviceaccount sysdig-agent -n sysdig-agent

Step 8: Execute the following command to create cluster role binding
in the Sysdig namespace:

$ kubectl create clusterrolebinding sysdig-agent --clusterrole=
sysdig-agent --serviceaccount=sysdig-agent:sysdig-agent

255

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 9: Execute the following commands to complete installation of
the Sysdig agent:

$ kubectl apply -f sysdig-agent-configmap.yaml -n sysdig-agent
$kubectl apply -f sysdig-agent-daemonset-v2.yaml -n sysdig-
agent

Deploy Sock Shop Application on EKS

Before starting to use Sysdig, let’s deploy an application on our AWS

EKS cluster. We will use the Sock Shop application in this example. The
application is the user-facing part of an online shop that sells socks. It is
intended to aid the demonstration and testing of microservice and cloud-
native technologies. We will use this application to demonstrate Sysdig’s
container application monitoring capability. Figure 8-32 shows the
architecture of the application.

256

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Figure 8-32. Sock Shop application architecture

Step 1: Execute the following command to download the Sock Shop
application’s yaml file to the /home/prometheus/sysdig directory.
This file contains the configuration information related to Kubernetes
deployments, pods, Docker images, and services required to deploy the
Sock Shop application on the AWS EKS cluster.

$ git clone https://github.com/dryice-devops/microservices-
demo.git

257

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 2: Execute the following command to deploy the application to
the /home/prometheus/sysdig/microservices-demo/deploy/Kubernetes
directory:

$ kubectl create namespace sock-shop
Step 3: Execute the following inline command to deploy the application:
$ kubectl apply -f complete-demo.yaml

Step 4: Execute the following inline command to validate the
deployed application. You can view all pods that are part of the Sock Shop
application, as shown in Figure 8-33.

$kubectl get pods -n sock-shop

NAME READY STATUS RESTARTS AGE
carts-668ff7f449-wbxce 1/1 Running 0 112s
carts-db-d6475f9b8-sdj2t 1/1 Running 0 113s
catalogue-6fbf7d5588-5vmfw 1/1 Running 0 109s
catalogue-db-hdf476f4c-cjmwh 1/1 Running 0 110s
front-end-6fd4d97c¢75-dgdss 1/1 Running 0 107s
orders-78f5667b66-78vxn 1/1 Running O 105s
orders-db-fb97f74c8-s9t4v 1/1 Running 0 106s
payment-7b968b8688-tt9h9 1/1 Running 0 103s
queue-master-6494b9f944-gc7wg 1/1 Running 0 102s
rabbitmq-774977d74-9w6d] 1/1 Running 0 101s
shipping-5bd79d96dd-1jpcx 1/1 Running 0 99s
user-6dbd855f5-g8kx5 1/1 Running 0 97s
user-db-78b67dfd4c-q8dép 1/1 Running 0 98s

Feanrahht@drvicralahe Fram@devnnenn®? kuhernateaclc B

Figure 8-33. Sock Shop application deployment validation

EKS Metrics on Sysdig

Now we will navigate to the Sysdig console for reviewing monitoring
metrics.

Step 1: Navigate to https://sysdig.com/ and click the Login button,
then select “Monitor” Log in using the username/password used at the
registration stage.

258

https://sysdig.com/

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 2: After login, you will view the Welcome to Sysdig page. You
will also see a “You have 1 agent connected” notification. Click on Next to
navigate to the next screen, as shown in Figure 8-34.

0 0
Wolcome

You have 1 agent connected! GO TO NEXT STEP!

Kubernetes | GKE | OpenShift

You can find instructions to install and configure Sysdig Monitor on the support page

LOGOUT 5)

Here is your Access Key you will need to use during the configuration:

BTF7I372-044e-4430 -0 32 - c BE1BFASCEES COPY

OPEN INSTRUCTIONS

Figure 8-34. Sysdig welcome page

Step 3: Add the AWS access and secret key on the screen. Enable
Cloudwatch and click the Next button. You will see the “setup complete”
message on the screen, as shown in Figure 8-35.

259

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

&, Syede Maminee x +

€ @ & sppsydgcoudcom? gan2. 2200056517457 166821576571 717- 1086412 181560840964 A wizard provider

To enable the integration, you just need to provide Sysdig Monilor with read-only access 10 your
account. See here for specific instructions on how 1o generate the necessarny Keys.

Access Key ID: AKIAZLRCHIBIHSTYYWKP
Secret Access Key: wesssesessssssssssssssssse q
CloudWatch Integration Status

Disabled =) Enabled

be enabled by default When 1l
stes, which will genesate a

You're not using a cloud provider? Don't worry, Svsdig Monitor will still week well for your infrastructure.

4

-~ B®EH 6 ;

Figure 8-35. Sysdig adding AWS account

Sysdig Navigation

Now, let’s navigate across various reports on the Sysdig console useful for

container monitoring.

Step 1: To view the deployed pods in Sysdig, click Explore. Select

“Hosts & Containers” from the drop-down menu. On the other node,

select “Kubernetes Health Overview” under the Kubernetes category

(subcategory of Default Dashboards), as shown in Figure 8-36.

Q, Searche et Qe
> (D Recently Used

~ [@ Default Dashboards
5 foari

Kubemetes Health Overview

Kubemetes Resource Quota

> Network

=& Hosts & Containers ~ [@ Kubernetes Health Overview «

Kubemetes Horizontal Pod Autoscaler

Figure 8-36. Sysdig Kubernetes health dashboard

260

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 2: You will view rich metrics regarding the entire Kubernetes
environment, including top namespace (by container), CPU/memory/file
system usage, and network in/out, as shown in Figure 8-37.

@ Kubernetes Health Overview

Scope: Entire Infrastructure

Top Deployments {container count) Top Namespaces (container count Pod Container Restarts by Deployment
- sock-shop
~sysdig-agent
0 5 10

Top Pods: CPU % Top Pods: Memory Usage Top Pods: File System %

Figure 8-37. Sysdig Kubernetes health dashboard

Step 3: Select “Container Limits” from the right-side drop-down
(Figure 8-38) to view CPU/memory share and quotas.

Explore
R® Hosts & Containers == + [@ ContainerLimits =
~ Entire Infrastructure (2) MongoDB (Server)
> ip-10-5-15-89.ec2.internal (10) MySQL/PostgreSQL
» ip10-58-167 ec2internal (9 MySQL/PostgreSQL Top

> Compliance

~ Hosts & Containers

Container Limits

File System

Overview by Container

Overview by Container Image

Figure 8-38. Sysdig container limit monitoring

261

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Step 4: Select “File system” from the right-side drop-down to view the
number of bytes free/bytes used, number of nodes in the file system, etc.,
as shown in Figure 8-39.

[File System -
Scope: Entire Infrastructure
File System

fs.mountDir fs.device fs.type fs.bytes.to. fs.bytes.u. fs.bytes.fr.. fs.usedpe_ fi

dev/rvmelnl.. xfs 200 54 146 269

Figure 8-39. Sysdig container file system monitoring

Step 5: Select the “Overview” option under Network from the right-
side drop-down to view metrics like inbound network bytes, outbound
network bytes, and total network bytes, as shown in Figure 8-40.

M@ Overview ~

In Network Bytes Qut Network Bytes

23.3kess 4,36z 18.9kess

n vs Qut Netwerk Bytes Hetwark Bytes by Application/Port

i AN AN AN AN AAA~N NN~

13

sar b Sonnas,

Figure 8-40. Sysdig container network monitoring

262

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Docker Container Metrics

Sysdig provides various useful container metrics in the form of graphs.
This information is useful for the sysadmin to monitor the health of the
container ecosystem and take an appropriate action; e.g., generating an
alert if any container is consuming more memory or CPU utilization. In
this section, you will learn how to visualize and analyze the container
metrics provided by Sysdig.

Now, let’s view container application metrics.

Step 1: To view container-based information for the Sock Shop
application (deployed in previous steps), select “Containerized Apps”
from the drop-down and then select container names, starting with
weaveworksdemos. You will view top pods CPU utilization, memory usage,
and filesystem, as shown in Figure 8-41.

Top Pogs: Memary Usage Top Pods: File System %

Figure 8-41. Sysdig containerized application view

Step 2: To view deployments, select “Deployments” from the drop-
down menu and select “Sock-Shop.” Select “Kubernetes CPU Allocation
Optimization” under the Kubernetes category, as shown in Figure 8-42.

263

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Usage by StatefulSet (Top 50) Usage vs Reguests by StatefulSet (Top 50)

kubernetes.namespace.name kubernetes.slate]

: _/_/_\ A sock-shop

1< < > 31
Usage by DaemonSet (Top 50 Usage vs Requests by DaemonSet
kubernetes namespace.name kubemetes.daemos
' A & 0
I\)
e 1 I
4 1
1< < > H

Figure 8-42. Sysdig Deployment view

Application Performance Metrics in Sysdig

Sysdig also provides various useful metrics related to application
performance monitoring; e.g., response time, latency, request, and error
count. System administrators use this information to identify and rectify
issues that might be the cause of application failure.

Now, let’s explore other metrics provided by Sysdig specific for the
application layer.

Step 1: Select “Explore” in the left-hand side panel and choose the
“Hosts & Containers” option from the drop-down menu. Select “HTTP”
from the second drop-down menu on the right. You will view metrics like
top HTTP request, average/maximum request time, slowest URLs, etc., as
shown in Figure 8-43.

264

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

v [@ HTTP ~ :
Scope: Entire Infrastructure
Request Count HTTP Error Count Average Request Ti... Max Request Time
Enlarge 10 see content Enlarge to see content Enlarge 1o see content Enlarge to see content
Number of Requests Over Time Average and Max Request Time
5is 2ms
o o
11:43 ¥ 11:43 W
Top URLs by Number of Requests Slowest URLs
{I) 1 2 3 -II D 1ms 2ms L

Figure 8-43. Sysdig HT'TP monitor

Step 2: To analyze the JVM (Java virtual machine) health—e.g., heap

size and garbage collector account—Sysdig provides insights. To see the

JVM-related metrics, please select “JVM.” This will show metrics like

allocated heap memory usage by process over time and garbage collector

collection time, as shown in Figure 8-44.

m JVMm - :
Scope: Entire Infrastructure
Heap Usage Over Time Heap Usage by Process
Japp jar

45 1147 15 I!l 20 MiB 40 M8 60 M8 80 M8 00ME

Garbage Collector: Collection Time Garbage Collector: Collection Count
100 % o
0
» 45 1147 1 » 45

Figure 8-44. Sysdig JVM monitor

265

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Sysdig Topology View

The Sysdig Topology view provides an interactive, animated interface to
visualize how different components in your system interact with each
other in real time. The interface by default renders a selected host’s top
processes and their interactions with processes on remote hosts or host
groups. The following are the entities visible on the Sysdig console:

Nodes: The entities participating in network
communication. A node could be a process, a
container, a host, or any label identified by the
Sysdig agent. For example, kubernetes.pod.name.

Links: The network connection between nodes.

e Hosts and their child processes (host.hostName
> proc.name) serve as the default grouping for the
Topology view. Scaling a Topology view is limited
by the number of processes and connections.
Sysdig Monitor creates the Topology view by
identifying network endpoints (IP addresses)
derived from system call data.

e The Topology view in the Explore tab provides
pre-defined dashboards to represent CPU usage,
network traffic, and response time metrics.

Now, let’s view the Topology view from Sysdig.

Step 1: Select “Explore” in the left-hand side panel and choose the “Hosts
& Containers” option from the drop-down menu. Select “Topology” and then
“CPU Usage.” Click on each icon to drill down to CPU usage by application
node; a container with topology mapping is shown in Figure 8-45.

266

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

M CPUUsage ~
1

Scope: Entire Infrastructure

7220
.
169.25.
P10 17220
6.26%
P10 3214
7.35% K

Figure 8-45. Sysdig Topology view by CPU

Step 2: Select the “Network Traffic” option from the second drop-
down menu instead of CPU usage. You can drill down to view the specific
flow; e.g., we selected the Python-based box that shows the network traffic
between the Python pod and Mongo DB pod related to our Sock Shop app,
as shown in Figure 8-46.

@ Newwork Traffic

Scope: hosthostName = g-10-515-89.2c2 Interna

'.‘\'E": work Traffic

“menged. |
38342

prnon.

38302

Figure 8-46. Sysdig Topology view by network traffic
267

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Golden Signal Monitoring Using Sysdig

Classic monitoring tools are usually based on static configuration files
and were designed to monitor machines, not microservices or containers.
Containers are created and destroyed at an incredible pace, and it is
impossible to catch up without specific service discovery functions.

Itis important that we are able to focus on relevant views and alerts
and not generate data that is of no use for analysis or troubleshooting.

Google resolved this issue using Golden Signals (term used in Google
SRE handbook). Golden Signals are four metrics that will give you a very
good idea of the real health and performance of your application as seen
by the actors interacting with that service, whether they are final users or
another service in your microservice application. The four Golden Signals
are as follows:

Latency: Latency is the time your system takes

to serve a request against the service. This is an
important sign to detect a performance degradation
problem.

Errors: The rate of errors returned by your service
is a very good indicator of deeper issues. It is very
important to detect not only explicit errors, but
implicit errors too.

Traffic/Connections: Traffic or connections is an
indicator of the amount of use of your service per
time unit. It can be many different values depending
on the nature of the system, like the number of
requests to an API or the bandwidth consumed by a
streaming app.

268

CHAPTER 8 CONTAINER APPLICATION MONITORING USING SYSDIG

Saturation: Usually saturation is expressed as

a percentage of the maximum capacity, but

each system will have different ways to measure
saturation. The percentage could mean the number
of users or requests obtained directly from the
application or based upon estimations.

Now, let’s see how we can view Golden Signal metrics using Sysdig.

Step 1: Select “Explore” in the left-hand side panel and choose the
“Services” option from the drop-down menu. Select “Kubernetes Service
Golden Signals” from the second drop-down menu, on the right. You'll see
the Golden Signals metrics, as shown in Figure 8-47.

Your free trisl wil expire in & days. Upgrade your plan!

« @ Kubemetes Service Golden Signake = HE

PAST: 12/18 5:30 pm - 1220 B30 pM(20) 15T WS 1M 1H &H 1D CUSTOM I = DoMZ =

Figure 8-47. Sysdig Golden Signals metrics

Summary

In this chapter, we have provided hands-on steps for using Sysdig for
container application monitoring. In the next chapter, we will cover how to
automate enabling container monitoring using CI/CD-based automated
pipelines, along with hands-on exercises.

269

CHAPTER 9

Automation and
Orchestration of
Container Monitoring

This chapter will provide hands-on steps for using Infrastructure as Code
and the CI/CD pipeline to automate the deployment of container ecosystem
infrastructure, applications, and monitoring. We will look at the following:

o Container Monitoring Automation

o Hands-on Exercise for Container Monitoring
Automation

Container Monitoring Automation

As infrastructure has evolved and matured over the last decade, the way

in which we build and deploy that infrastructure has also changed. With
the rise of Infrastructure as Code, we can now reconstruct the whole
infrastructure and platform from a code repository. With cloud computing
and APIs, we can now truly treat our infrastructure just like an application.
With containerization, since the dependencies are packaged with the
application, the application can now be ported to any infrastructure, which
itself is spun up using Infrastructure as Code.

© Navin Sabharwal, Piyush Pandey 2020 271
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0_9

https://doi.org/10.1007/978-1-4842-6216-0_9#DOI

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

A great advantage of Infrastructure as Code (IaC) is that it allows you to
build environments rapidly without any human intervention. With IaC, we
can now have consistent configuration and builds that are exactly alike.

The following is a high-level view of how IaC tools operate (Figure 9-1):

e You describe the desired infrastructure resources in a
file (for example, a virtual network with three public
subnets, a compute instance on one of them with a
block volume attached to it). You describe what you
need; you never describe how to create them—the IaC
tool figures out how to create them.

e The tool looks at what you have described in your code
and logs in to your cloud account to check if those
resources are present.

o Ifthe resources are not present, they are created.

o Iftheresources are already present with the same
attributes, no action is taken.

o If matching resources are found with differences, the
IaC tool assumes you want them changed and makes

the change happen.
1. Read file when 2. Check the current
dlnfrafjtrgc%urfﬁ triggered _AS- ACTUAL STATE
esired state nie 3. Apply the changes ON CLOUD
{if any)

Figure 9-1. How Infrastructure as Code works

As DevOps continues to evolve, developers find ways to strengthen
the integration of IaC and containers, since they complement each other.
Containers incorporate Infrastructure as Code into the development cycle
as a core component.

272

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

At first glance, a container image appears to be a fully self-contained
application: it has all of the code and software dependencies required
to run the application. However, once we deploy and operate images in
the container ecosystem, we find we need a lot more configuration to
scale it out, make it reliable, and make it observable. The monitoring and
management of container-based infrastructure and applications brings its
own unique elements and complexity.

A containerized application in the cloud might look something like
Figure 9-2, where the container image is only part of the full application.

TRAFFIC
(PORT 443)

LOAD BALANCER TLS CERTIFICATE

i TRAFFIC HEALTH CHECK
(PORT 8080) (/HEALTH)
SERVICE

4 (SCALE = 3 COPIES) AN DASHBOARD GRAPHS

Figure 9-2. Containerized application components beyond image

ALARMS

LOG STORAGE

METRICS STORAGE

The complete application is really best described with a combination
of the container image and an IaC template containing all this
configuration. Infrastructure as Code is an important element in release
management of an application.

Now, when it comes to automating the container monitoring, there are
many use cases possible. Some of the use cases are listed here:

« Enabling container monitoring for base infrastructure
and application via CI/CD pipeline and Infrastructure as
Code solutions (like Jenkins and Terraform/Ansible). This
can include use cases like installing any agent/plugin for
Monitoring, creating alarms, configuring threshold etc.

273

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

o Self-healing incidents which are created after receiving
monitoring alerts using the Runbook orchestration
tool. Essentially all the steps that a human performs to
troubleshoot and resolve an incident after receiving a
monitoring alert are converted into an automated flow,
which is automatically triggered to resolve the incident.

e Report generation automation using tools like Grafana
or Splunk

When we deploy Infrastructure as Code in a CI/CD pipeline, we
can deploy changes in both the microservices infrastructure and the
containers in the CI/CD release pipeline. This enables complete visibility
of both the application code and the infrastructure code in the pipeline
currently deployed in the production environment. A simplified example
of our release process is shown in Figure 9-3.

BUILD STAGE

H

Build and push i

DEV STAGE PROD STAGE

SOURCE STAGE

i

]
1
1
1
1
]
1
1
1
]
1
1
]

—

E Deploy i Deploy

]
]
1
1
1
]
1
1
1
1
1
1
]
]

Repo(s) contain
app code and image, update template file, template file,
template file template file run tests monitor

Figure 9-3. CI/CD pipeline leveraging Infrastructure as Code to
automate container monitoring

The IaC template contains both the container-related configuration
and the microservice’s infrastructure in the “build” stage of the pipeline.
The container image is built and pushed, and the unique ID for the
new container image is inserted into the IaC template. Each stage of the
pipeline, like “Dev” and “Prod,” then deploys the same Infrastructure

274

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

as Code template. This practice gives us confidence that deployments

of the entire application are repeatable. Within this pipeline, we can
enable automation to deploy container monitoring as part of a first-time
release. In the next section, we will do a hands-on exercise to enable such
automation using Terraform and Jenkins.

Hands-on Exercise for Container Monitoring
Automation

In this section, we will use Terraform to create a Kubernetes cluster

on AWS and configure the Sysdig agent on it, and Jenkins to automate
container monitoring. We will use AWS for our target container ecosystem
and Sysdig for our container monitoring tool.

Cleaning Up the AWS Environment Namespace

Before we begin, let’s clean up the namespace created for the Sysdig agent
and Sock Shop application from Chapter 8 for a fresh installation through
automation by Jenkins and Terraform.

Step 1: Delete the sock-shop and sysdig-agent namespaces that we
created earlier on the master node by executing the following command,
as shown in Figure 9-4:

$ kubectl delete namespace sock-shop
$ kubectl delete namespace sysdig-agent

[saurabht@dryicelabs.com@devops0087 ~]# Kubectl delete namespace sock-shop
iamespace "sock-shop" deleted

[saurabht@dryicelabs.com@devops0087 ~]# kubectT deTete namespace sysdig-agent
amespace "sysdig-agent" deleted

Figure 9-4. Kubernetes namespace clean-up

275

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Jenkins Installation (v2.204.1)

We will start with installing Jenkins, which will be used to compose a
CI/CD pipeline for our containerized application. We will use our master
node (10.1.150.126) server to install Jenkins. We will use a Dockerized
version of Jenkins in this exercise.

Step 1: Log into the master node as the root user and execute the
following command to clone the Docker file that will be used to install
Jenkins. Navigate into the jenkins directory by executing the following
command, as shown in Figure 9-5:

$ git clone https://github.com/dryice-devops/jenkins.git
$ cdJenkins
froot@devobsGOSY brometheus]# cd jenﬁins/

Figure 9-5. Jenkins installation directory creation

Step 2: Create another sub-directory named jenkins-data that will
be used as the Jenkins home and that will contain all the required details
of the Jenkins server—e.g., workspace, job, configuration details, etc.—by
executing the following command, as shown in Figure 9-6:

$ mkdir jenkins-data

Step 3: Create a Jenkins Docker image with the name jenkins by
executing the following inline command, as shown in Figure 9-6, in the
jenkins directory that contains the Docker file:

$ docker build -t jenkins.

276

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

[TOUTCUEVOPSUUS7 JENKTNS I# UUCRET DUTTO =T JENKTS
ending build context to Docker daemon 2.048kB
tep 1/6 : FROM jenkins
atest: Pul11ng from library/jenkins
Scbf04beb70: Extracting [>] 33.49MB/45.31MB
607093a898c: Download complete
8ea045c926: Download complete
4eee2ddddac: Waiting
58988e753d7: wWaiting

P etrorepaliil home prematheut jerking - o x
DMIG?HIHU https: ’Ji‘ les. ed.org/packages /ed,/d3/9617609b8e LdbE S4eC 3475304 2205 38056C1740a5b4dT B600CebIZbecal s/botocore-1. 13.43-py2 . py3-non| ~
any.whl (5.8MB)

uﬂluctinu sitranster<0.3.0,»=0.2
DMLﬂ?d:ﬂU M)UDS fitiles. DYlthSlM org/packages /15,84, 11C30ba0c 4923 227621 M 05 2b305C 44606036 31 718014032 3102 15100/ s3trans fer-0. 2. 1-py2 . py 3-non|
e-any.whl (TOKE:
jCallecting pyasnis=0.1.3
Dewnloading https://Tiles.p ted.org/packages /62,1 fadcedelerf ae7 5393 Py 0.4.8-py2.py
y.whl (77kB)
Collecting urllib3<1.26,>=1.20; python_version == "2.7"
Dwmn:ng ;I;E https://Files. Dythvnhostea org/packages/b4,/40,/20837 29131008 1ccc 2420 1539645F193a7c8cB6ba 1598339,/ ur11ib3-1.25, 7-py2 . py3-none-|
any. 1
jcaTlecting JlP(pﬂlhd 0.0,50,7.1
Dwn:oaulnn RTTps: /T 1es. pythonhosted. org/packages /83,54, 7179 38320604502 6602 2AC 32 9¢ 101367 ThAb 11 1425113771027 122500/ Jnespath-0. 9, 4-pyZ . py3-nome -
any.uh

Collecting python-dateutil«<2.8.1,»=2.1; python_version »- "

Downloading https://files.pythonhosted. nr-qmackauesfu'l:‘zcﬁzfaccm‘bnle!c?fsn‘ 1| fub/pythan_dateutil-2.8.0-py2.py|
3-ncne-any.utl [226kB)
jCollecting futures«d,0.0,5=2.2.0; python_version -- or python_version —

"2y
Toading hTips://Tiles. pythonhosted. Ofﬂ"v@(kiﬁ?ﬁfdﬂ "a&;"“éaﬂSflﬂmﬂﬂSel(341333'5?@(Zf$n5?59(”N1”&“8!"60“(.505—”0("”5 3.3.0-py2-none-any. x|

Requirement already satisfied: six»=1.5 in Jusr/lib/pythen2.7/dist-packages (from python-dateutil<2.8.1,>=2.1; python_version »= "2.7"-xbotocore--1.1|
3.43->awscli) (1.10.0)

Bnﬂdu\g wheels for collected packages: PyYAML

Building wheel for PyYaML (setup.py): started

Building wheel for PyYaML (setup.py): finished with status 'done’

Created wheel for PyYAML: filenaneaPyYAML-5.1.2-cp27-cp? Tau-11nux_x86_64. whl $178=44912 shalS6elac Saaf6es735cchial
ee54e623700d
Stored 1n directory: ,rnu\:,f cache/pip d9./45,/0d/65 47ct7e531 Sccabazssodn

successfully built

Installing collected Daﬂ:kanes docutils, pyasnl, rsa, PyvAML, colorama, ur11ib3, jeespath, python-cateutil, botocore, futures, s3transfer, awscli
successfully installed PyvAML-5.1.2 asscli-1.16.307 botocore-1.13.43 colorasa-0.4.1 docutils-0.15.2 futures-3.3.0 jmespath-0.9.4 pyasnl-0.4.8 python-
dateutil-2.8.0 rsa-3.4.2 sagransrer-o.z.l wrl1ib3-1.25.7

ate container adl

enoving
===x 4fefeff7973d
Step 6/6 : USER jemkins

Runming in 87efzfodafes

Renoving intermediate container 87efzfed4fas
=== DIMadceddafio

Successfully built DOdadcedaf2n
Successtully tagoed jenking:latest

Figure 9-6. Jenkins Docker image build

Step 4: Verify whether the Jenkins Docker image was created by
executing the following inline command, as shown in Figure 9-7.

If the Docker image was created successfully, then the following
command will return “Repository” as Jenkins that we passed in as a tag
(-1) in previous step.

$docker images

[root@devops0087 jenkins]# docker images
REPOSITORY TAG IMACE ID CREATED SIZE
jenkins o]a;es; ogjag;gggfgo }ﬁ_seconds ago 778MB

Figure 9-7. Verify Jenkins Docker image

277

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 5: Execute the following command to install Jenkins on Docker, as
shown in Figure 9-8:

$docker run -u root --rm -d -p 8080:8080 -v /home/prometheus/
jenkins/jenkins-data:/var/jenkins_home -v /var/run/docker.
sock:/var/run/docker.sock Jenkins

In the preceding command we used port 8080 on the master node
to run Jenkins, so please make sure that this port is open on your Linux
VM. You can also pass another port for the VM, but the Jenkins container
port would be run on 8080 port only. For more information about the
Docker run command, please refer to Docker’s official page.*

[rootédevopsD087 jenkinsl# docker run -u root --rm -0 -p 8080:8080 -v /home/prometheus/Jenkins/Jenkins-data: fvar/denkins_home -v Svar/runfdocker.sock
s/var/run/docker. sock jenking

dacfa2ss9dbatcadb0lf 789be9b9a8d b3 32590430023 3bf Jeae39646e0d1411

[rootédevopstos? jenkinsle Il

Figure 9-8. Jenkins installation

Step 6: Execute the following command to verify that the Jenkins Docker
container is running fine. Its status should come as up as shown in Figure 9-9.

If the Jenkins Docker container is having any issues, then its status
would be Exited or Dead; in that case, you would have to check the Docker
container logs to identify the root cause of the Docker container failure.!

Lrootidevopsuds Jenkinsie docker ps
CONTAINER 1D IMAGE COMMAND CREATED STATUS PORTS

RAMES
dacfa28s906a Jenkins “/binstin Jusrf1.° 2 minutes ago Up 2 minutes 0.0.0.0:8080->8080,"

Figure 9-9. Jenkins installation verification

'https://docs.docker.com/engine/reference/commandline/docker

278

https://docs.docker.com/engine/reference/commandline/docker

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 7: Jenkins requires a secret password during login. Secret
passwords are stored in the initialAdminPassword file in the secrets
directory of the jenkins-data folder. To get it, please execute the following
command, as shown in Figure 9-10:

$ cat jenkins-data/secrets/initialAdminPassword

[root@devops0087 jenkins]# cat jenkins-data/secrets/initialAdminPassword
16b6Tbb9t07449508202d1f18606ee41
[root@devops0087 jenkinsl# Ji

Figure 9-10. Fetching Jenkins password

Step 8: Navigate to the following URL to access Jenkins. You will
receive a prompt that will require the secret password. Use the secret
password fetched in the previous step and click the Continue button, as
shown in Figure 9-11.

URL: http://Master-Node-IP:8080;e.g., http://10.1.150.126:8080

0 Sign i Deskina] P - o

€ 5 O Netswure | 1001501262000 gintrom =525 o ®H 4§

Getting Started

13
Unlock Jenkins

To ensure Jenkins is securely set up by the administrator, a password has been written

10 the Iog (pat sure where 1o find it?) and this file on the server

fvar{jenkins_hone/secrots/ LIRS IR METCRPREnE

Please copy the password from either location and paste it below.

Administrator password

Figure 9-11. Accessing Jenkins console for first time

279

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 9: Jenkins requires various plugins to create pipelines and to
interact with different tools to perform tasks related to CI/CD; e.g., to
connect with the GitHub repository and fetch the code, Jenkins required
the Git plugin. Jenkins provides two options to install plugins: “Install
suggested plugins” and “Select plugins to install.” In our case, we selected
“Install suggested plugins,” as shown in Figure 9-12. If you want to select
specific plugins, then choose “Select plugins to install.”

£ Senupizard Perkins = % - o x
& 5 C @ Hetsecure | 10.1.950.326:8080 o w [- I
Getting Started

[
Customize Jenkins

Flugins extend Jenkins with additional features to support many different needs.

Install suggested Select plugins to

plugins install

Install pluginz the Jenkins Select and install plugins
community finds most most suitable for your needs
useful.

Figure 9-12. Selection of “Install suggested plugins” option

Step 10: Click on Continue to proceed, as shown in Figure 9-13.

W Fipeline +" GitHub Branch Source Plugin +* Pipeline: GitHub Groovy Libraries " Pipeline: Stage View
W Git plegin " Subversion " S55HSlaves " Matrix Authorization Strategy Plugin
W PAM Authentication ' LDAP +” Email Extension * Mailer Plugin

Figure 9-13. Jenkins first-time login configuration

280

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 11: Fill in details for username, password, full name, and email
address and click the Save and Continue button, as shown in Figure 9-14.

|G Senpicnd Perkin = I

=
€ & (D ot ey 10.1150 1263080

Create First Admin User
T

Figure 9-14. Jenkins first admin user setup

Step 12: Click on Save and Finish to proceed, as shown in Figure 9-15.

€ 3 C A tetseae | 0kit0r26me ot @BOE O
Getting Started

Instance Configuration

Jontinn URL B 101150 126 0000

i J4kne URL 1 190 10 G008 I 1000 LIRL o S2aichse Bk 19 WRSOUE JeNnE FRcurces. Thal Mears [N vase it recrned K¢ proper
Jumiors , 87 e BUILD. LS ervironsent wanabio orowieed o bkl
atepn

ne, sl

e fpotsten wt

198 URL oot whars 300 Soecion 39500, Thes wil 3vosd COmUTion nbes Smng of weming heks

Figure 9-15. Jenkins first-time login configuration

281

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 13: Click the Start using Jenkins button to complete installation,
as shown in Figure 9-16.

6 Sebupizad [enkina] ® |+ - o8 x
« C & Nowsecure 101150 12680 " ® e :
Getting Started

Jenkins is ready!

1s setup is complete

Figure 9-16. Jenkins first-time login configuration

You will see the screen for the Jenkins console, as shown in Figure 9-17.

0 Cestbond Deniins] x4 - & x
& C (D Notsecurw | 1011501265080 * @eH O :
Jenkins
Janidas

= Mew fem

& Peope Welcome to Jenkins!

= Bug Hsiory

3 [Plossa CTEatE MW JOBS to et states
% Manage Jenkns

& 1y vens

) Open B Ocean
4. crecemas

W Lockatie Resources

Bl reew view

Bulld Queve -

Mo Eulds In tha quess.

Bulld Evecysor Sty -
18
2

Figure 9-17. Jenkins console

282

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Terraform Open Source Installation

We will start with installing Terraform open source, which will be used
to compose an Infrastructure as Code module for the containerized
infrastructure on AWS. We will use our master node (10.1.150.126) server
to install Terraform.

Step 1: Log in to the master node as a root user and create a sub-
directory named terraform under /home/Prometheus. Navigate into the
directory by executing the following command, as shown in Figure 9-18:

$ cd /home/prometheus
$ mkdir terraform
$ cd terraform

[root@devops0087 /]#]cd /home/prometheus/
[root@devops0087 prometheus]# mkdir terraform

P 10w S deramdOnT eme prometho e aloan 8 w
[rootidevopsiog? pl:nr.-hnnja cd terrafors/
[rootddevopsios? terratornl#

Figure 9-18. Terraform installation directory creation

Step 2: Execute the following command to download the Terraform
package and unzip it, as shown in Figure 9-19:

$ wget https://releases.hashicorp.com/terraform/0.11.11/
terraform 0.11.11 linux_amd64.zip

Lroot2devops0087 YFIFR'(\"'L'I" wget https://releases.hashicorp.cor/terratora/0.11.11/terratorn_0.11._11_11nux_and6d.71p
==2018-12-33 19:32:27-- htips://releases hashicorp. con/terratorn/0.11.11/terratore_0.11. 11_lnux_anded. 7ip
ving rel hicorp.coa (releases_ hash }] 199.232.21.183, 2al4:4e42:42::439

g releases hashicorp. eleases hashicorp.corn). .. 19
to releases.hashicorp.con (releases. hashicorp.com)|199.232.21.183] :443... connectad.
st sent, awaiting response... 200 OK
Length: 20071661 (20M) [application/zip]
Saving to: ‘terraforn_0.11.11 Vinux_andEd.zip"

100%[1 20,871,661 17.7M8/s in l.1s

2019-12-23 19:32:32 (17.7 MB/5) ‘terraforn 0.11.11 1inux_amds4.zip™ saved [20571661/209/1651]

Figure 9-19. Terraform installation package download

283

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 3: Verify the zip file has been successfully downloaded by
executing the following command, as shown in Figure 9-20:

$ 1s -1tr

[root@devops0087 terraform]# 1s -1tr
total 245728
-rw-r--r-- 1 root root 20971661 Dec 15 2018 terraform_0.11.11 linux_amdé4.zip

Figure 9-20. Terraform installation package download verification

Step 4: Unzip the Terraform package by executing the following
command, as shown in Figure 9-21:

$ unzip terraform_0.11.11 linux_amd64.zip

[root@devops0087 terraform]# unzip terraform_0.11.11_Tinux_amdé4.zip
Archive: terraform_0]11.11_linux_amd64.zip

Figure 9-21. Unczip Terraform installation package

Step 5: Remove the zip file by executing the following inline command,
as shown in Figure 9-22:
$ rm -rf terraform 0.11.11 linux_amd64.zip

$ 11

[root@devopsD087 terraform]? 11
total 49508
=ruxr=xr=x 1 root rool S0695264 Nov 19 03:44 terralorm

Figure 9-22. Delete Terraform zip package

Step 6: Add the Terraform file path to the Linux PATH variable, as
shown in Figure 9-23.

$ export PATH="$PATH:/home/prometheus/terraform”
$ echo $PATH

284

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

[root@devops0087 terraforml# export PATH="$PATH:/home/prometheus/terraform” |

roolddevopso08T terrhforn]# echo SPATH X X . X X X
(usr/Tocalfsbin: fusr/local bin: fusrfshin: fusr/bin: fusr/java/jre-vnware /bin: froot/bin: fusr/ocal fgo/bin: froot,/wor k,-'UlI\i[JShome/pronetheus/terraforn
rootddevops008T terraforn)s |

Figure 9-23. Update and verify PATH variable

Step 7: Update the bash.rc file by executing the following command,
and append export PATH="$PATH:/home/prometheus/terratormto the
end of the file. Save and quit the file.

$ vi ~/.bashrc

.bashrc

User specific aliases and functions
alias rm="rm -i'

alias cp="cp -i'

alias mv="mv -i'

Source global definitions

if [-f /etc/bashrc]; then

. /etc/bashrc

fi

export PATH="$PATH:/home/prometheus/terraform”

Step 8: Verify the updated content by executing the following
command, as shown in Figure 9-24:

$ cat ~/.bashrc

[root@devops0087 terraform]# cat ~/.bashrc
.bashrc

User specific aliases and functions

alias rm="rm -1'
alias cp="cp -i'
alias mv="mv -1'

Source global definitions
if [-f /etc/bashrc 1; then
. /etc/bashrc
fi
export PATH="S$SPATH:/home/prometheus/terraform"

Figure 9-24. Verify bashrc file update

285

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 9: Validate successful Terraform installation by executing the
following command, as shown in Figure 9-25:

$ terraform --version

[root@devops0087 terraform]# terraform --version
Terraform v0.11.11

Figure 9-25. Verify Terraform installation

AWS IAM authenticator Installation

Now we will install AWS IAM authenticator, which will use AWS IAM
credentials to authenticate to a Kubernetes cluster. If you are an
administrator running a Kubernetes cluster on AWS, you already have an
account to manage AWS IAM credentials so as to provision and update the
cluster. By using AWS IAM Authenticator for Kubernetes, you can avoid
having to manage a separate credential for Kubernetes access. AWS IAM
also provides a number of nice properties, such as an out-of-band audit
trail (via CloudTrail) and 2FA/MFA enforcement. We will use our Master
Node (10.1.150.126) server to install aws-iam-authenticator.

Step 1: Navigate to the /home/prometheus/terratormdirectory and
execute the following command, as shown in Figure 9-26:

$curl -o aws-iam-authenticator https://amazon-eks.s3-us-west-2.
amazonaws.com/1.14.6/2019-08-22/bin/1inux/amd64/aws-1iam-
authenticator

“url -0 aws-iam-authenticator https://amazon-eks.s3-us-west-2.amazonaws.com/1.14.6/2019-08-22/bin/Vinux/and64,/aws-ian

uthenticator

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

00 17.7M 100 17.7M 0 0 1233k 0 0:00:14 0:00:14 --:--:-- 4108k

Figure 9-26. Download aws-iam-authenticator

286

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 2: Once aws-iam-authenticator is downloaded, rename it as
iam-authenticator-aws by executing the following command:

$ mv aws-iam-authenticator iam-authenticator-aws

Step 3: Now apply execute permissions on the iam-authenticator-
aws executable by executing the following inline command:

$ chmod 0777 iam-authenticator-aws

Jenkins and Terraform Integration

Let’s now integrate Jenkins and Terraform. This will set up the base for
our CI/CD pipeline, which will have the automation logic for enabling
container monitoring while deploying the container infrastructure on
AWS. We will configure a Jenkins node on the same server where we have
configured Terraform.

Step 1: Navigate to the /home directory and create a sub-directory
called Jenkins_node. Change permission of directory to 700 permission
using chmod command so that the root user can only perform read, write,
and execute operations on it by executing the following commands. The
Jenkins_node directory will be used by the Jenkins node to connect and
execute the command.

$ cd /home
$ mkdir jenkins node
$ chmod 700 jenkins node

Step 2: Navigate to the following URL to access Jenkins. Use your
admin password set up in previous steps. Navigate to Manage Jenkins »
Manage Nodes » New Node.

URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080

287

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 3: Fill in the form as per the following values:
Root: Select directory as jenkins_node.
Name: Mention any name you like.

Remote Root Directory: Path of the Jenkins node
folder we created; e.g., /home/jenkins_node

Label: Mention label as Kubernetes Master.
Usage: Select “Use this node as much as possible.”
Launch Method: Select “Launch agents via SSH.”

Host: Mention Kubernetes master node IP address
(in our case, 10.1.150.126).

Credential: Click Add button and choose “Jenkins.”

Choose Kind as “Username with password” and
then fill Username as “root.” Password is the root
user password of the Kubernetes master node.
Also fill in the ID and Description fields. Click the
Add button and select the credential, as shown in
Figures 9-27 and 9-28.

Host Key Verification Strategy: Choose the “Non-
verifying Verification Strategy” option, as we are
connecting a Jenkins node by giving a username and
password, not by SSH keys, to simplify the Jenkins
node setup. If you want to connect the Jenkins node
with an SSH key please follow the following link.?

Availability: Choose “Keep this agent online as
much as possible.”

*https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-
Connect-to-Remote-SSH-Agents-

288

https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-Connect-to-Remote-SSH-Agents-
https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-Connect-to-Remote-SSH-Agents-

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

@ Jenkins Credentials Provider: Jenkins]
@= Add Credentials
Domain Global credentials (unrestricted) v
Kind \sarmame with password .
Scope Glabal (Jenkins, nades, items, all chitd items, etc) &
Usemame)
Password | 7]
0 ®
Description @
Add Cancel

Figure 9-27. Setting up Jenkins node

Jenking » Nodes Kubgmates_Master
4 Backiolist r"“‘ Kubernetes_Master
O aan I =
A, swans Description
© oelete agent
3¢ configure o of executons 1
= Build History | Remels raet 6|echon_r| homeenkins_nodd I
&5 Load Satstics
Labels Kubernetes_Master
B script Conscle =
D Log age Uise this node as much as &

2 sysieminormation I Tauneh memeg Launch agent agents via S5H |
@ ODisconnect
I ot 10.1.150.126 I

Build Executor Status =
I Tredentas oot (kubemeles-master) ¥ | e=Add v I
1 Wi

Hest Kay

SUMRGY o veritying Verification Strategy

Figure 9-28. Setting up Jenkins node

Step 4: Click on the Save button to proceed.
Step 5: Verify the agent has been configured successfully by reviewing
the Jenkins console status, as shown in Figure 9-29.

289

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

s Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
E Kubernates Master Linux (amd6d) In syne 2087 GB Qo8 20,87 GB ams % |
B e Lintex (amabd) In sync 20.87 6B Qs 2067 GB Oms @:{;
Data obtained 38 min 36 min 36 min 36 min 36 min 36 min
[|

Figure 9-29. Verifying Jenkins node

Jenkins and Terraform Integration

Now we will create the Jenkins Pipeline CI-CD-Kube-Sysdig to automate
the inline process, as follows:

Code Clone: Clone the sock-shop code from GitHub.

Create Cluster: Create a Kubernetes cluster EKS on
AWS by Terraform.

Deploy Sysdig Agent: Deploy a Sysdig agent on EKS.

Deploy Application: Deploy the Sock Shop
application on EKS.

Step 1: Navigate to the following URL to access Jenkins. Use your
admin password set up in previous steps. Click on “New Item,” as shown in
Figure 9-30.

URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080

5 Dashboard [Jenkins] x

< C @ Notsecure | 10.

= New ltem

Figure 9-30. Creating Jenkins ipeline

290

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 2: Fill the form by making the item name CI-CD-Kube-Sysdig.
Choose “Pipeline,” as we are using pipeline as code in Jenkins to automate
the previously defined process, then click the OK button, as shown
in Figure 9-31. Jenkins provides capability of modeling pipelines “as
code” where Pipeline definition is written as text or script file (called a
Jenkinsfile). This allows pipeline definition to be stored & managed using
Version control system.

Enter an item name

» This field cannot be empty, please enter a valid name

/3. Freestyle project
!

7 This is the central feature of Jenkins. Jenkins will build your project, combining any SCI
something other than software build.

. Pipeline
.l‘J, Orchestrates long-rulining activities that can span multiple build agents. Suitable for bu
— organizing complex ctivities that do not easily fit in free-style job type

. Multi-configuration project
@l | Suitable for projects that need a large number of different configurations, such as testin

. Falder

Creates a container that stores nested items in it. Useful for greuping things together. U
namespace, 50 you can have multiple things of the same name as long as they arein ¢

S O
alGitHub organization {or user account) for all repositories maltching some define

uMOrganization

R TR e R

Figure 9-31. Creating Jenkins pipeline

Step 3: Click on “Pipeline,” and it will display a script box where we will
compose our Jenkins script, as shown in Figure 9-32.

291

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

General Build Triggers Advanced Project Options Pipeline

Pipeline
Definition Pipeline script

Seript % try sample Pipeline v | @

¥ Use Groovy Sandbox @

Eipeline Syntax

Figure 9-32. Composing Jenkins script

Step 4: To create an EKS cluster, we will use the Terraform code. The
Terraform code does the following tasks:

o Creates an AWS IAM role with the name ${var.
cluster-name}-eks-cluster-role (where var.
cluster-name is a defined variable that takes input
from the user for the name of the cluster to be created)
and attaches policies to the IAM role created.

o Security group rules are created to allow the API access
to the cluster and defines rules to access cluster nodes
from workers and vice versa,

o EKS cluster is deployed by the code with the user input
name of the cluster. The IAM role created is attached to
the cluster, the version of Kubernetes is provided with
a default value, and the end user can opt for a different
available version of EKS for the deployment.

292

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

o EKS worker nodes are configured by passing user data
to the launch configuration, while the worker nodes
are created by using auto-scaling of AWS to ensure
availability of the nodes at all times.

e Security group rules are created for the worker node to
allow it to reach out to the EKS cluster and to allow SSH
login to the instances.

To deploy the sysdig agent, we will leverage the shell script sysdig
agent to create the namespace’s cluster role binding secrets, which will be
leveraged by the Sysdig agent to monitor the cluster. Then it deploys the
Sysdig agent config map and DaemonSet on the cluster.

Both the script and other Terraform modules are created in the /home/
EKS_CLUSTER folder.

Clone the EKS_CLUSTER files by executing the following commands

from the /home directory of the master node (10.1.150.126):

$ cd /home
$ git clone https://github.com/dryice-devops/EKS_CLUSTER.git

You will see a sub-directory under the /home directory named EKS
CLUSTER. Navigate into that to view the file named kubernetes_deploy.sh.
This file requires four parameters, as follows:

e cluster-name; e.g., Prometheus
e aws-region;e.g., us-east-1
e node-instance-type;e.g., t3.xlarge

o KeyName; e.g., awx

$ cd EKS_CLUSTER

293

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

In the EKS_CLUSTER directory you will also find the sysdig_agent.sh
file. In this script, we have to add the key mentioned as (XXXXXXXXXXXXXXX)
that we used for the Sysdig subscription in the last chapter. Replace the key
with your specific value before proceeding to the next steps.

Create an agent-files directory in the /home directory:

$ cd /home
$ mkdir agent-files

Create the inline files with the same contents as we created earlier

(manual process to deploy Sysdig agent):

sysdig-agent-clusterrole.yaml, sysdig-agent-configmap.yaml and
sysdig-agent-daemonset-v2.yaml

Step 5: Copy the contents of the Jenkins file into the EKS_CLUSTER
folder and paste it into the script box. Then, click the Save button, as

shown in Figure 9-33.

General Build Triggers Advanced Project Options Pipeline
Definition Pipeline script i
Seript li- node ("master’) { try sample Pipeline._ v

3 node("Kubernetes_Master'){ I
4
5= stage("Code Clone - GIT") {
6 try{
7
3 git “hitps://github.com/dryice-devops/microservices-demo.git’
9 }
1@~ cateh(e){
1
12 echo("esssssssssnasssssssassnsssnside Code Clone - GIT Exception ssssssvsss
13 throw e

¥ Use Groovy Sandbox
Pipeline Syntax

Figure 9-33. Saving Jenkins script

294

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Step 6: Execute the Jenkins job by clicking on “Build Now” (Figure 9-34).

Jenkins CI-CD-Kube-Sysdig

4 Back to Dashboard
(), Status
~~ Changes

@ Build Now

() Delete Pipeline

{

3% Configure
L, Full Stage View
_; Rename

e Pipeline Syntax
Figure 9-34. Executing Jenkins script

Step 7: Once the job has been executed successfully, the following
build history will show. If it runs fine, the build number will be blue; if
not, it will be red. This history will also show the stages under Stage View.
To view logs, click on the build number, as shown in Figure 9-35. Click on

Console Output.
Jenking + CLCD-Kube-Sysdg
4 Back to Dashboard M " .
- Pipeline Cl-CD-Kube-Sysdig
O status
"= Changes
) Bui b
© Detete Pigeine | 5% Recent Changes
2% conngure —
4, Ful Stage View "
.
- Rename
) Fioeline Syntax Cods Clone Create Clustar Doploy Sysdlg ’9“'.‘.""’0‘
GIT EKS AgentOn-gks CPPREROMON
Build History trend =
15 15min 43 G 18
find '
g Dc24] (U 14min 43s
1200

Figure 9-35. Reviewing Jenkins logs

295

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

In the log console, please scroll three-fourths of the way down the
screen to see the newly created EKS node’s details, as shown in Figure 9-36.

N AW ML AL WS
args:
- "token"
S
- "Prometheus”T[@m
Updating the kubeconfig and authentication file
Deploying EKS worker node
configmap/aws-auth created
Creating service account, namespaces and application on the EKS cluster created
namespace/sock-shop created
namespace/dryice-eks-dashboard created
namespace/dryice-eks created

STATUS ROLES AGE VERSION
Ready <none> 645 v1.11.5

] stage

1 { (Deplov Sysdig Agent On - EKS)

Figure 9-36. Reviewing Jenkins logs

Step 8: Navigate to your AWS account console and click on “Services,’
then select “EKS” under the Compute category, as shown in Figure 9-37.

296

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

< C] consc[h,aws.amazon.co m/eks/home?region=us-east-1#/cluste

Services Resource Groups ~ *

History [
EKS \)
ECS tCJ} Compute [
Console Home EC2

CloudWatch Lightsail &

ECR

ECS

EKS

Lambda

Batch

Elastic Beanstalk

EC2

"

Serverless Application Repository
AWS Outposts
EC2 Image Builder

Figure 9-37. Reviewing the AWS console

You will see the EKS cluster Prometheus is in an active state, as shown
in Figure 9-38, the same that we created through Jenkins and Terraform.

Amazon Container = EKS > Clustess
Services

Clusters S o IEEEEDNE
Amazon ECS G
Clistars Q o
Task defiritions

Cluster name Kubernetes version Status

Amazen EKS Promstheus 114 & ACTIVE
Clusters
Asmazon ECR
Rapostanes

& Fosdback Q) English [US)

Figure 9-38. Reviewing AWS console

297

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Now, navigate back to Services and click “EC2” under the Compute
category, as shown in Figure 9-39.

Instances | EC2 Management Cor X -+

&« (&] consoIe.a];vs.amazon.comfec2,fhome?region:us-east-wlnstance

Resource Groups ~ *

)

RS @ Compute
ECS ECZ
Lightsail
ECR

ECS

EKS
Lambda o
Batch

Elastic Beanstalk

Console Home

CloudWatch

Serverless Application Repository
AWS Outposts
EC2 Image Builder

Iy

Figure 9-39. Reviewing AWS console

Click on “Running Instances” under the Resource category, as shown
in Figure 9-40.

298

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

aﬁs Services v Resource Groups v %

@ new EC2 Experience

Tell us what you think

@ Welcome to the new EC2 console!

We're redesigning the EC2 console to make it easier to use and
EC2 Dashboard new =« and let us know where we can make improvements. To switch b

Events
Tags EC2
Reports

Limits Resources

¥ INSTANCES

Instances You are using the following Amazon EC2 resources in the US

Instance Types Running instances 2 |El

Launch Templates new

Dedicated Hosts 0 Si
Spot Requests

Figure 9-40. Reviewing AWS console

You will see the EC2 instance name as Prometheus-eks-node. Select

this, as shown in Figure 9-41.

Orrzrmm o st o

EC2 Dashboard s - (C, Fiter by togs and attribules or search by keyword -] 4 7oty >

Ewents . Heme = Instamoe 1D « | imstonce Type = | Awallabllity Zone + Instance State - Status Checks « | Alsm Status

Tags

e Anhijoot Tereatorm documants 33304080 10232089 2amal ut-easl-1a @ wnpoad Neaw ™

eports
ECS instance - EC2Coeat . 51 @misn ut-east-1a @ ruming © 22chocks... None k]

umits e i e I s e i s - b
* INSTANCES B Prometheus thanods FO3S0B4SCTMNCZed 13 xlage e @ nnning © 22chacks.. Neae I k]

Instances Terere Ueoontar [6 LT P g [e r=TTIEry CE T e e

Figure 9-41. Reviewing AWS console

In the Description tab, you will get the private DNS. It is same as we

have seen in the Jenkins logs, as shown in Figure 9-42.

299

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

¥ INSTANCES | @ Prometheus-eks-node I i-0390b44c143f1c2cd t3.darge
Instances Tt rmnr

E NOFICALA B4 nnl #3 inen

Instance Types
Instance: | i-0390b44c143f1cded (Prémetheus-eks-node) Public IP: 18.209.2
Launch Templates new

Spot Requests Description Status Chec onitoring Tags

Savings Plans 03f0b4dc1431c2cd

Reserved Instances
Dedicated Hosts
Scheduled Instances

Capacity Reservations

¥ IMAGES
Figure 9-42. Reviewing AWS console

Step 9: Now, let’s navigate to the Sysdig console and verify that our EKS
cluster has been added under Monitoring. Navigate to Sysdig at https://
sysdig.com/ and log in with your credentials.

Navigate to Explore » Hosts & Containers, and then select “Overview by
Container” under the Hosts & Container category. You will see Figure 9-43.

Avg Memony U5 Avg. Netwark Bytes Mg, Netwons Con Avg. Dk Usage Aug. File Bytes

17.6- 31.30es 23.4. 4.60. 938z

ernory Usage %

Figure 9-43. Reviewing the Sysdig console

Now, to verify that the Sock Shop application deployed, click Explore
» Hosts & Containers » Select Container Limits under the Hosts &
Containers category.

Hover over the graph of CPU Shares Used, as shown in Figure 9-44.

300

https://sysdig.com/
https://sysdig.com/

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Explore
B & Hosts & Containers ~ [@ Container Limits
Q, Sesrch emvironment Scope: hosthostMame = ip-10-3-5-200.ecZintemnal’

w Entire Infrastructure (1 3
CPU Shares Used
» ip-10-3-6-200.8c2 inkemnal (17)

e e, AT Ty -

Memeory Limit Used

Figure 9-44. Reviewing the Sysdig console

You will see the Sock Shop container’s name, as shown in Figure 9-45.

] Dee 24t 1.:07:00 pm bimu

=
=
=
~ @ g *
«f @
= g e
- 1 -
& EEEUEELTR
%
¥ |
i
LIVE: 12:40 pen - 1:40 pem (1 H) =T oS 0 MOIH sH G R T - ZoOMI &

Figure 9-45. Reviewing Sysdig Console

Click on Explore » Daemon Sets » Over by Service under Services.
You should see something similar to Figure 9-46.

301

CHAPTER9 AUTOMATION AND ORCHESTRATION OF CONTAINER MONITORING

Scops: kubernates chustern

e atneys and kubematas NAMEIpace Name = KUbe-Systent and kubernates d2emaonSat NAMe = 'BWS-node c

Container Count by Image

o o P o o
Reguest Time by Image Request Count by Image
034! or M or1s or3 0845 0T PM 07:18 07:<
CPU % by Image CPU Container Limit % by Image

Figure 9-46. Reviewing the Sysdig console

Summary

In this chapter, we have provided hands-on steps for using an
Infrastructure as Code solution, Terraform; and a CI/CD solution, Jenkins,
to automate the deployment of container infrastructure, then enabling
monitoring for and deploying a containerized application.

302

Index

A, B
Alert Manager
alter view, 82, 83
config map list/delete, 78, 79
deployment creation, 70-72
pods, 79
Prometheus integration, 78
service creation, 76-79
setup overview, 70
task flows overview, 76, 77
verification, 80, 81
YAML file walkthrough, 71-73
Automation (monitoring)
AWS environment
namespace, 275
IaC (see Infrastructure as
Code (1aC))
Jenkins installation, 276-282
Kubernetes namespace
clean-up, 275
Terraform open source (see
Terraform open source)
Azure Monitor exporter

DRYICEDEMOoIAC
workspace, 126

exporter configuration, 117

Go installation, 129

graph tab, 135

information and options, 121

inline commands, 132

Linux service, 133

log analysis workspace, 126, 127

metrics verification, 128

monitoring tab, 120, 121

namespace verification, 124

networking tab, 119

node count, 117, 118

node status graph, 134

Powershell module, 124

Prometheus console, 134

scale tab, 118

targets section, 130

verification, 122, 123, 133

C

cAdvisor exporter

application verification, 125, 126
Azure.yml file, 130

dashboard, 116

deployment, 125

config-map.yaml file, 110, 111
configuration, 112

CPU graph, 114

filesystem read graph, 113

© Navin Sabharwal, Piyush Pandey 2020 303
N. Sabharwal and P. Pandey, Monitoring Microservices and Containerized Applications,
https://doi.org/10.1007/978-1-4842-6216-0

https://doi.org/10.1007/978-1-4842-6216-0#DOI

INDEX

cAdvisor exporter (cont.)
ICMP stats graph, 115
open connection graph, 115
Prometheus configuration, 111
verification, 112
Chroot system, 4
Containerized application
deployment
components, 193
easyTravel application
ActiveGate installation, 208
API token
generation, 196, 198

cr.yml file, 201, 203, 205-207

Dynatrace entities, 195
integration, 211
master server, 195
monitoring configuration
file, 209, 210
oneagent operator, 195
PaaS token generation, 199
pod list, 193
service list, 194
easytravel.yaml file, 192
environment ID, 204
GitHub code, 191
Kubernetes namespace
creation, 192
OneAgent installation, 194
Containers, 1
cloud computing, 2
Docker and Kubernetes (see
Docker and Kubernetes)

304

environments, 2

meaning, 3

modernization empowers
companies, 1

monitoring ecosystem, 15

technology, 4, 5

testing, and deploying
application, 4

vs VM comparison, 3

Dashboard solution, (see Reporting/

dashboard solutions)

Docker and Kubernetes

architecture, 7, 8
CE edition setup, 23
community edition, 25
installation, 26
Redhat systems, 25
Redhat VMs, 24
repo configuration, 25
validation, 26
Kubernetes (see Kubernetes
services)
physical and virtual
infrastructure, 6
management interfaces, 8
namespaces, 6

Dynatrace, 19, 183

containerized application (see
Containerized application
deployment)

container monitoring
application components, 191
architecture, 186
components and objects, 186
easy travel architecture, 191
evaluation version, 187
home page, 189
region selection, 188
tab navigation, 190
welcome page, 189

key capabilities, 184

metrics (see Metrics)

SaaS architecture, 185

Smartscape topology

application, 228-231
transactions/services, 230-233

E,F

Elastic Kubernetes Services (EKS)

cli tool configuration, 253
cluster button creation, 247
cluster kernel version, 254
enable public access, 249
IAM role creation, 242
inbound/outbound security, 246
key pair creation, 246

logging options, 249

node group creation, 251, 252
permissions button, 243
review button, 244

role button, 244

security group creation, 245
security group selection, 248

INDEX

tag values (optional), 250
validation, 250
VPC and subnet creation, 248

extended Berkeley Packet

Filter (Ebpf), 239

Grafana visualization

alerting engine
cloning file, 176
components, 175
config-map.yaml file, 174
dashboard
navigation, 181, 182
data source
configuration, 179, 180
deployment flow, 173
flowchart, 173
in-line commands, 174
installation, 177, 178
login page, 179
pod status verification, 175
temporary password
fetch, 178
values.yaml file, 176, 177
dashboards, 172
data sources, 171
panels, 171
query editor, 172

Heapster, 19

305

INDEX

I J

Infrastructure as Code (IaC) Jenkins

advantage, 272

CI/CD pipeline
leveraging, 274

containerized application
components, 273

tools, 272

working process, 272

Infrastructure

monitoring, 85
exporter
Azure Monitor, 116-135
cAdvisor, 110-115
node exporter, 99-111
Kubernetes
control plane, 87
infrastructure service
roles, 88
metrics, 88
labels
Apiserver request
duration, 91
Helm version, 93, 94
HTTP request, 90
PromQL, 89
Tiller installation, 93-98
parameters
key layers, 86
node availability, 87
node health, 87
service discovery, 86

306

AWS console, 297-299
execution process, 295
inline process, 290

node verification, 289-292
parameters, 293

pipeline creation, 290, 291
reviewing logs, 295, 296
save button, 294

script box, 291

source code tasks, 292
Sysdig console, 300-302

Jenkins 9v2.204

admin user setup, 281
console, 279, 282
directory creation, 276
Docker image build, 277
finish option, 281
first-time login
configuration, 280, 282
installation, 276, 278
password, 279
plugins selection, 280
verification, 277, 278

Kubernetes services

architecture, 9
components, 9
control plane, 87

infrastructure service roles, 88
master node, 10
metrics, 88
microservices architecture, 12-15
installation, RHIEL 7
(see RHIEL 7)
setup, 27
worker node, 11, 12
/etc/hosts file entry, 33
kubectl get nodes
command, 36
repositories, 35
SELinux and firewall
policy, 34
target node, 34
Kube-state-metrics
deployment status graph, 138
git verification, 136
inline command, 136
metrics service status, 137
service verification, 138

L

Lab environment setup, 21-23
LinuX Containers (LXC), 5

Metrics
analyze nodes button, 214
appication monitoring, 222
application detection rule, 223
cluster status, 213

INDEX

container metrics, 220
Docker dashboard view, 221, 222
easyTravel application
onboarding, 223-227
home dashboard, 213
host view, 215-217
image name view, 219
navigation menu, 221
process details, 220
processes and Containers
view, 218
Microservices architecture, 12-15
Microservices-based
applications, 17
Monitoring ecosystem
components, 18
metrics explosion view, 17
nuances, 16
requirements, 15
toolset, 18, 19
Monolithic vs microservice
application, 13

N, O

Node exporter
configuration, 101
CPU collector, 104-106
diskstats collector, 107
filesystem collector, 106
graph node, 104
hardware and OS metrics, 99, 100
Meminfo collector, 108, 109
Netdev collector, 108, 109

307

INDEX

Node exporter (cont.)
Prometheus console, 103
query, 103
section and details, 101
Uname collector, 110, 111
verification, 101, 102

P,Q

Prometheus monitoring tool, 43
alert manager (see Alert
Manager)
alert manager
architecture, 44-46
infrastructure management
services, 43
Kubernetes objects
building blocks, 47

ClusterRoleBinding, 53-55
ClusterRole Section, 51-53

config map, 55-60
deployment, 60-65
deployment flow, 49

namespace creation, 50, 51

services, 65-69
YAML file, 47
multi-dimensional
data models, 44
Prometheus Query Language
(PromQL), 44
aggregation operations
average value output, 160
identified labeled
data, 158, 159

308

memory bytes, 156-158
operation details, 156
output, 161
hypothetical
representation, 142, 143
logical/arithmetic operators
consumption, 163
data comparison, 162
megabytes, 163-165
output screen, 165
query output, 166
timestamp function, 166
overview, 141
return range selection
past/historical data, 153-155
vector, 151-153
selector (see Selectors)
time-series data, 141, 142

Reporting/dashboard solutions

dashboard solutions, 170, 171
data source, 169
Grafana (see Grafana
visualization)
RHEL 7
/etc/hosts file entry, 30
firewall policy, 28, 29
inbound TCP ports, 28
Kubeadm installation, 30, 31
network deployment, 32
nodes and
namespaces, 31-33

repositories, 30
SELinux policy, 27, 28
Role-based access and control
(RBAC), 50, 93

S

Selectors
data fetched file, 148
filter labels, 145-149
instant vector, 148
metric selection, 144, 145
multiple labels, 149, 150
return values, 146

Sock shop application, 256-258
Sysdig monitoring application, 235

agent installation, 254-256
application performance
metrices, 264, 265
architecture
components, 238, 239
container vision, 238
deployment view, 264
Doctor application
metrics, 263, 264
eBPE 239
EKS (see Elastic Kubernetes
Services (EKS))
Falco, 238
functional architecture, 237

INDEX

golden signals, 268, 269
HTTP monitor, 265
JVM monitor, 265
key features, 236
meaning, 170
metrics, 258-260
navigation, 260-262
sock shop application, 256-258
topology view, 266, 267
trial license setup
account password
setup, 241
evaluation version, 240
Kubernetes integration
key, 241

Sysdig monitoring data, 19

TLUVWXY,Z

Terraform open source

AWS TIAM credentials, 286, 287

bash.rc file, 285

directory creation, 283

installation, 283

Jenkin (see Jenkins)

package download
verification, 283

PATH variable, 285

Unzip package, 284

zip package, 284

309

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Container Overview
	Introducing Containers
	What Are Containers?

	Evolution of Container Technology
	Docker and Kubernetes Architecture
	Master Node
	Node (Worker) Components
	Microservices Architecture

	Container Monitoring Ecosystem Overview
	Summary

	Chapter 2: Getting Started with Containers
	Lab Environment Setup
	Setting Up Docker CE
	Setting Up Kubernetes
	Installing Kubernetes on RHEL 7
	Add Worker Node to the Kubernetes Master Node

	Deploying an Application
	Summary

	Chapter 3: Getting Started with Prometheus and Alert Manager
	Overview of Prometheus
	Prometheus and Alert Manager Architecture
	Prometheus and Alert Manager Setup and Configuration
	Setting Up Prometheus on a Kubernetes Cluster
	Create Namespace
	ClusterRole Section Details
	ClusterRoleBinding Section
	Create a Config Map
	Create a Prometheus Deployment
	Exposing Prometheus as a Service

	Setting Up Alert Manager
	Create a Deployment
	Create a Service

	Alert Manager and Prometheus Integration
	Summary

	Chapter 4: Container Infrastructure Monitoring
	Container Infrastructure Monitoring Using Parameters
	Service Discovery
	Node Availability
	Node Health
	Kubernetes Control Plane
	Kubernetes Infrastructure Services
	Kubernetes Metrics

	Labels
	Helm and Tiller Setup
	Installing Tiller
	ClusterRole Section Details
	ClusterRoleBinding Section

	Exporters
	Node Exporter
	CPU Collector
	Filesystem Collector
	Diskstats Collector
	Netdev Collector
	Meminfo Collector
	Uname Collector

	cAdvisor Exporter
	Azure Monitor Exporter

	Kube Stat Metrics
	Summary

	Chapter 5: Working with Prometheus Query Language (PromQL)
	Data in Prometheus
	Getting Started
	Selectors
	Select Metric
	Filter by Labels
	Filter by Multiple Labels
	Select to Return Range Vectors
	Select Past/Historical Data

	Aggregation Example
	Logical and Arithmetic Operators

	Summary

	Chapter 6: Container Reporting & Dashboards
	Introduction to Container Reporting and Dashboards
	Grafana
	Panel
	Query Editor
	Dashboard
	Grafana Integration with Prometheus

	Summary

	Chapter 7: Container Application Monitoring Using Dynatrace
	Introduction to Dynatrace
	Architecture Overview
	Container Monitoring Using Dynatrace
	Containerized Application Deployment
	Monitoring Application using Dynatrace
	Container Metrics on Dynatrace
	Application Topology
	Transactions and Services

	Summary

	Chapter 8: Container Application Monitoring Using Sysdig
	Introduction to Sysdig
	Container Application Monitoring
	Sysdig Trial License Setup
	Elastic Kubernetes Service Setup on AWS
	Sysdig Agent Installation
	Deploy Sock Shop Application on EKS
	EKS Metrics on Sysdig
	Sysdig Navigation
	Docker Container Metrics
	Application Performance Metrics in Sysdig
	Sysdig Topology View
	Golden Signal Monitoring Using Sysdig

	Summary

	Chapter 9: Automation and Orchestration of Container Monitoring
	Container Monitoring Automation
	Hands-on Exercise for Container Monitoring Automation
	Cleaning Up the AWS Environment Namespace
	Jenkins Installation (v2.204.1)
	Terraform Open Source Installation
	AWS IAM authenticator Installation
	Jenkins and Terraform Integration
	Jenkins and Terraform Integration

	Summary

	Index

