

 [image: Cover image]

 Navin Sabharwal and Piyush Pandey
Monitoring Microservices and Containerized Applications
Deployment, Configuration, and Best Practices for Prometheus and Alert Manager
1st ed.
[image: ../images/491282_1_En_BookFrontmatter_Figa_HTML.png]

Navin SabharwalNew Delhi, Delhi, India

Piyush PandeyNew Delhi, India

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6215-3. For more detailed information, please visit http://www.apress.com/source-code.

				ISBN 978-1-4842-6215-3e-ISBN 978-1-4842-6216-0
https://doi.org/10.1007/978-1-4842-6216-0
© Navin Sabharwal, Piyush Pandey 2020
Apress Standard
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

Acknowledgments
To my family, Shweta and Soumil, for being always there by my side and letting me sacrifice their time for my intellectual and spiritual pursuits. For taking care of everything while I am immersed in authoring. This and other accomplishments of my life wouldn’t have been possible without your love and support. To my Mom and my sister for the love and support as always, without your blessings nothing is possible.
To my coauthor Piyush, thank you for the hard work and quick turnarounds to deliver this. It was an enriching experience. Also to Siddharth Choudhary & Saurabh Tripathi, thank you for your research input for this book which helped in shaping up practical examples for readers.
To my team here at HCL who has been a source of inspiration with their hard work, ever engaging technical conversations and their technical depth. Your everflowing ideas are a source of happiness and excitement every single day. Piyush Pandey, Sarvesh Pandey, Amit Agrawal, Vasand Kumar, Punith Krishnamurthy, Sandeep Sharma, Amit Dwivedi, Gauarv Bhardwaj, Nitin Narotra, and Vivek thank you for being their and making technology fun.
To Celestine and Aditee and the entire team at Apress for turning our ideas into reality. It has been an amazing experience authoring with you and over the years, the speed of decision making and the editorial support has been excellent.
To all that I have had the opportunity to work with my co-authors, colleagues, managers, mentors and guides, in this world of 7 Billion, it was conincidence that brought us together it was and is an enriching experience to be associated with you and learn from you. All ideas and paths are an assimilation of conversations that I have had and epxeriences I have shared. Thank you.
Thank you goddess Saraswati, for guiding me to the path of knowledge and spirituality and keep me on this path.
असतो मा साद गमय, तमसो मा ज्योतिर् गमय, मृत्योर मा अमृतम् गमय
(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma Amritam Gamaya)
Lead us from ignorance to truth, lead us from darkness to light, Lead us from death to immortality.

Table of Contents

Chapter 1: Container Overview
1

Introducing Containers
1

What Are Containers?
3

Evolution of Container Technology
4

Docker and Kubernetes Architecture
6

Master Node
10

Node (Worker) Components
11

Microservices Architecture
12

Container Monitoring Ecosystem Overview
15

Summary
20

Chapter 2: Getting Started with Containers
21

Lab Environment Setup
21

Setting Up Docker CE
23

Setting Up Kubernetes
27

Installing Kubernetes on RHEL 7
27

Add Worker Node to the Kubernetes Master Node
33

Deploying an Application
36

Summary
42

Chapter 3: Getting Started with Prometheus and Alert Manager
43

Overview of Prometheus
43

Prometheus and Alert Manager Architecture
44

Prometheus and Alert Manager Setup and Configuration
46

Setting Up Prometheus on a Kubernetes Cluster
48

Setting Up Alert Manager
70

Alert Manager and Prometheus Integration
76

Summary
83

Chapter 4: Container Infrastructure Monitoring
85

Container Infrastructure Monitoring Using Parameters
86

Service Discovery
86

Node Availability
87

Node Health
87

Kubernetes Control Plane
87

Kubernetes Infrastructure Services
88

Kubernetes Metrics
88

Labels
89

Helm and Tiller Setup
92

Installing Tiller
93

Exporters
98

Node Exporter
99

cAdvisor Exporter
110

Azure Monitor Exporter
116

Kube Stat Metrics
136

Summary
139

Chapter 5: Working with Prometheus Query Language (PromQL)
141

Data in Prometheus
141

Getting Started
144

Selectors
144

Aggregation Example
156

Logical and Arithmetic Operators
162

Summary
167

Chapter 6: Container Reporting & Dashboards
169

Introduction to Container Reporting and Dashboards
169

Grafana
171

Summary
182

Chapter 7: Container Application Monitoring Using Dynatrace
183

Introduction to Dynatrace
183

Architecture Overview
185

Container Monitoring Using Dynatrace
186

Containerized Application Deployment
191

Monitoring Application using Dynatrace
195

Container Metrics on Dynatrace
212

Application Topology
227

Transactions and Services
230

Summary
233

Chapter 8: Container Application Monitoring Using Sysdig
235

Introduction to Sysdig
235

Container Application Monitoring
237

Sysdig Trial License Setup
240

Elastic Kubernetes Service Setup on AWS
242

Sysdig Agent Installation
254

Deploy Sock Shop Application on EKS
256

EKS Metrics on Sysdig
258

Sysdig Navigation
260

Docker Container Metrics
263

Application Performance Metrics in Sysdig
264

Sysdig Topology View
266

Golden Signal Monitoring Using Sysdig
268

Summary
269

Chapter 9: Automation and Orchestration of Container Monitoring
271

Container Monitoring Automation
271

Hands-on Exercise for Container Monitoring Automation
275

Cleaning Up the AWS Environment Namespace
275

Jenkins Installation (v2.204.1)
276

Terraform Open Source Installation
283

Summary
302

Index
303

About the Authors

Navin Sabharwal[image: ../images/491282_1_En_BookFrontmatter_Figb_HTML.jpg]

Navin has more than twenty years of industry experience and is an innovator, thought leader, patent holder, and author in the areas of cloud computing, artificial intelligence and machine learning, public cloud, DevOps, AIOps, infrastructure services, monitoring and management platforms, big data analytics, and software product development. Navin is responsible for DevOps, artificial intelligence, cloud lifecycle management, service management, monitoring and management, IT Ops analytics, AIOps and machine learning, automation, operational efficiency of scaled delivery through Lean Ops, strategy, and delivery for HCL Technologies. He is reachable at navinsabharwal@gmail.com and https://www.linkedin.com/in/navinsabharwal
.

Piyush Pandey[image: ../images/491282_1_En_BookFrontmatter_Figc_HTML.jpg]

Piyush has more than ten years of industry experience. He is currently working at HCL Technologies as automation architect, delivering solutions catering to hybrid cloud using cloud native and third-party solutions. Automation solutions cover use cases like enterprise observability, infra as code, server automation, runbook automation, cloud management platform, cloud native automation, and dashboard/visibility. He is responsible for designing end-to-end solutions and architecture for enterprise automation adoption. You can reach him at piyushnsitcoep@gmail.com and https://www.linkedin.com/in/piyush-pandey-704495b
.

About the Technical Reviewer

Amit AgrawalAmit is principal data scientist and researcher delivering solutions in field of AI and machine learning. He is responsible for designing end-to-end solutions and architecture for enterprise products. He is reachable at agrawal.amit24@gmail.com and https://www.linkedin.com/in/amit-agrawal-30383425
.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_1

1. Container Overview

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This first chapter will introduce readers to the world of containers, microservice applications, and their associated monitoring and management tools ecosystem. We will also look into how containers and the ecosystem around them are assembled. The chapter will cover the following topics:	Introducing Containers

	Evolution of Container Technology

	Docker and Kubernetes Architecture

	Container Monitoring Ecosystem Overview

Introducing Containers
Over the past few years, worldwide digital transformation has accelerated by leaps and bounds, as companies of all sizes find new ways to leverage technology to boost their agility and provide better services to their customers. Fueling this fire is the need to survive in a changing environment. For many companies, an initial step toward digital transformation is modernizing their applications and taking advantage of automated environments in the cloud. Modernization empowers companies with the following:	Elasticity: the ability to respond to spikes in customer demand

	Availability: the ability to serve customers’ requests wherever and whenever

	Agility: the ability to quickly fix a problem or deploy new functionality that customers want

When cloud computing first started gaining traction among enterprises, one major motivation was cost reduction. Many organizations began to recognize that cloud computing’s capability to transform IT offered a vision of infrastructure as a dynamic, self-service-based, and pay-as-you-go consumption of resources that would augment their aspirations to become twenty-first-century business enterprises. Containers are taking the innovations introduced by virtualization and cloud computing to the next level.
Containers provide a portable, consistent, and lightweight software environment for applications to easily run and scale anywhere. Throughout its lifecycle, an application will operate in many different environments, from development to testing, to integration, to pre-production and production. An application may be hosted on either physical infrastructure or virtual on-premises infrastructure, or may be ported to a public cloud infrastructure. Before containers, IT teams had to consider the compatibility restrictions of each new environment and write additional code to ensure the application would function in all the different environments. To solve this problem of portability and to ensure that an application can run irrespective of the changes in underlying infrastructure components, containers were developed to package the application with its dependencies, configuration files, and interfaces—allowing developers to use a single image that moves seamlessly between different hosts.
What Are Containers?

Containers are a way to wrap up an application into its own isolated package. Everything the application requires to run successfully as a process is now captured and executed within the container. A container enables bundling of all application dependencies, like library dependencies, runtimes, and so forth. This allows for the concept of standardization and consistency across environments, as the container will always come pre-loaded with all the pre-requisites/dependencies required to run the application service. Now you can develop the application code on your personal work station and then safely deploy it to run on production infrastructure.
A container is an instance of a container image. A container image is a way to package an app or service (like a snapshot) and then deploy it in a reliable and reproducible way.[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig1_HTML.jpg]
Figure 1-1Container vs VM comparison

Building applications with containers helps bring in agility for developing, testing, and deploying an application across any cloud. With containers, you can take an app from development to production with little or no code change. However, when you deploy to VMs, you have to either do it manually or use a CI/CD tool with Infra as Code solutions (see Figure 1-1). You might need to perform tasks like modifying configuration items, copying application content between servers, and running interactive setup programs based on application setup, followed by testing. In case of manual setup, this can consume significant time. With an automated setup, the amount of time may be less than that required by the manual approach, but the reduction when a container is used is even more significant. Below Figure 1-1 shows how applications are segregated with a separate Operating System layer and only share the hardware using the hypervisor in virtualization. This also shows how containers are sharing the operating system and there is no separate OS for each application, only the components which are different for each application are deployed separately, the OS image is shared.
Evolution of Container Technology

The earliest computers were typically dedicated to a specific task that might take days or even weeks to run, which is why in the 1960s and through the 1970s there was rise of virtualization technology. VM partitioning is as old as the 1960s, enabling multiple users to access a computer concurrently. The following decades were marked by widespread VM use and development. The modern VM serves a variety of purposes, such as installing multiple operating systems on one machine to enable it to host multiple applications with specific, unique OS requirements that differ from each other.
In 1979, the chroot system call was introduced, which allowed one to change the root directory of a process and its children to a new location in the file system. Chroot was a significant step toward the rise of containers, as it allowed process isolation by restricting an application’s file access to a specific directory. This helped improve system security.
Introduced in 2001, Linux VServer is an operating system virtualization technology that is implemented by patching the Linux kernel. In 2004, the first public beta of Solaris Containers was released; it combined system resource controls and boundary separation provided by zones. Process containers, or control groups (cgroups), were introduced by Google in 2006 and were designed for limiting, accounting for, and isolating the resource usage (CPU, memory, disk I/O, network) of a collection of processes.
LXC (LinuX Containers) was the first mature implementation of Linux Container Manager. It was implemented in 2008 using cgroups and Linux namespaces.
Finally, Docker emerged in 2013, which led to a tectonic shift in the way applications are designed, developed, and deployed. Docker built its foundation on two systems, LXC and libcontainers. Libcontainers came from LMCTFY, which was an open source container stack where applications created and managed their own subcontainers. Docker also used LXC in its initial stages and later replaced that container manager with its own library, libcontainer. In addition to building on previous software, Docker had an easy-to-use GUI and was capable of running multiple applications with different requirements on a single OS.
Container technology’s momentum continued in 2017 with the introduction of Kubernetes, which is a highly effective container orchestration technology. Container technology ramped up over the next few years as multiple players, such as Openshift, Pivotal, Azure, Google, AWS, and even Docker, changed gears to support the open source Kubernetes container scheduler and orchestration tool, making it the most popular and widely used container orchestration technology. In 2017, Microsoft enabled organizations to run Linux containers on Windows servers, which was a major development for Microsoft-based businesses that wanted to containerize applications and stay compatible with their existing systems.
Docker and Kubernetes Architecture

Containers are a way of packaging software, mainly the application’s code, libraries, and dependencies. Containers group and isolate a set of processes and resources, such as memory, CPU, disk, and so forth, from the host and any other containers. The isolation ensures that any processes inside the container cannot see any processes or resources outside the container. Containers typically leverage Linux kernel features like namespaces (ipc, uts, mount, pid, network, and user) and cgroups, which provide an abstraction layer on top of an existing kernel instance, thus creating isolated environments similar to virtual machines.[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig2_HTML.jpg]
Figure 1-2Container architecture with respect to physical and virtual infrastructure

Docker is a container-based technology where containers share the host OS kernel by using Linux kernel features like namespaces and control groups. Docker is available in two versions: Docker Community Edition (CE) and Docker Enterprise Edition (EE

). Docker EE is designed for enterprise adoption and is recommended over Docker CE for running containerized business-critical applications in production.
Docker architecture is based on client–server architecture (Figure 1-3). The Docker client interacts with the Docker daemon, which in turn manages the lifecycle of the container from building and running to scaling.[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig3_HTML.jpg]
Figure 1-3Docker architecture

	Docker client: Docker users can interact with Docker through a client.

	Docker host: The Docker host provides a base environment in which to run containerized applications. It provides all the necessary infrastructure base components right from the Docker daemon: images, containers, networks, and storage.

	Docker images: Docker images are equivalent to an OS template or an image, with the difference being that instead of packaging the OS it contains the application source code along with all the dependencies required to run the application. Using these images, we can achieve application portability across infrastructure without worrying about the underlying technologies used.

	Registries: Registries are used for managing Docker images. There are two major registry types: public and private.

	Docker engine: The Docker engine enables developing, packaging, deploying, and running applications.

	Docker daemon: Docker daemon is the core process that manages Docker images, containers, networks, and storage volumes.

	Docker Engine REST API: This is the API used by containerized applications to interact with the Docker daemon.

	Docker CLI: This provides a command line interface for interacting with the Docker daemon (Figure 1-4).

[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig4_HTML.jpg]
Figure 1-4Docker management interfaces (CLI & API)

Kubernetes is an open-source container management (orchestration) tool that provides an abstraction layer over the container to manage the container fleets leveraging REST APIs. Kubernetes is portable in nature and is supported to run on various public or private cloud platforms, such as Physical Server, GCP, AWS, Azure, OpenStack, or Apache Mesos.
Similar to Docker, Kubernetes follows a client–server architecture. It has a master server, which could be one or more than one, that is used to manage target nodes where containerized applications are deployed. It also has the feature of service discovery.
The master server consists of various components, including a kube-apiserver, an etcd storage, a kube-controller-manager, a cloud-controller-manager, a kube-scheduler, and a DNS server for Kubernetes services. Node components include Kubelet and kube-proxy (Figure 1-5).[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig5_HTML.jpg]
Figure 1-5Kubernetes architecture

Master Node
The following are the main components on the master node:	etcd cluster: etcd cluster is a distributed key–value storage used to store Kubernetes cluster data (such as number of pods, their state, namespace, etc.), API objects, and service discovery details.

	kube-apiserver: Kubernetes API server provides a programmatic interface for container management activities (like pods, services, replication sets/controllers) using REST APIs.

	kube-controller-manager: kube-controller-manager is used for managing controller processes like Node Controller (for monitoring and responding to node health), Replication Controller (for maintaining number of pods), Endpoints Controller (for service and pod integration), and Service Account/Token Controller (for API/token access management).

	cloud-controller-manager: cloud-controller-manager is responsible for managing controller processes that interact with the underpinning cloud provider.

	kube-scheduler: kube-scheduler helps with managing pod placement across target nodes based on resource utilization. It takes into account resource requirements, hardware/software/security policy, affinity specifications, etc., before deciding on the best node for running the pod.

Node (Worker) Components
The following are the main components on a (worker) node:	Kubelet: Kubelet is the agent component running on a worker node, and its main purpose is to ensure containers are running in the pod. Any containers that are outside the management of Kubernetes are not managed by Kubelet. It ensures that workers, pods, and their containers are in a healthy state, as well as reports these metrics back to the Kubernetes master node.

	kube-proxy: kube-proxy is a proxy service that runs on the worker node to manage inter-pod networking and communication. It’s also a crucial component for service concept realization.

	Kubectl: kubectl is a command line tool used for Kubernetes cluster management and uses APIs exposed by kube-apiserver .

	Pod: A pod is a logical collection of one or more containers that formulates a single application and is represented as a running process on worker nodes. A pod packages application containers, storage, network and other configurations required for running containers. A pod can horizontally scale out and enable application deployment strategies like rolling updates and blue/green deployment, which aim to minimize application downtime and risk during upgrades.

	Service: A service provides an interface for the collection of one or more pods bound by policy. Since a pod’s lifecycle is ephemeral in nature, services help to ensure application access without worrying even if a backend pod dies abruptly .

	Namespace: A namespace is a logical construct used for dividing cluster resources across multiple users. You can use resource quotas with a namespace to manage resource consumption by multiple application teams.

	Deployment: Deployment represents a collection of one or more running pods that formulate an application as per the pod specification. It works closely with Deployment Controller to ensure the pod is available as per the user specification mentioned in the pod specification.

Microservices Architecture
Microservices architecture

 is an approach to building an application using a set of small services. Each service runs in its own process and communicates with other processes. Each microservice represents a functionality that can now be developed, deployed, and managed independently. Each of these smaller services has its individual data model, logic, data storage technologies (SQL, NoSQL), and programming language.
Additionally, microservices can now scale out independently, meaning you can scale out a specific service instead of the entire application based on utilization patterns. This approach helps organizations save money on infrastructure components that may remain unutilized in the traditional monolithic application world (Figure 1-6).[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig6_HTML.jpg]
Figure 1-6Monolithic vs microservice application comparison

Containers are pretty much the accepted norm for managing microservice architectures. That’s true for hosted services that have adopted Kubernetes and offer services based on a container infrastructure. It’s also true for organizations that increasingly use containers to manage their workloads and adapt to new market conditions. Advancements in container technology ecosystems are opening new avenues of monitoring. For example, service mesh technologies, when paired with Kubernetes, enable traffic management, service identity, policy enforcement, and telemetry for microservices.
Monitoring and health management of application services and infrastructure is an important aspect of operational stability, especially for the production environment.
Health monitoring allows near-real-time visibility into the state of your application services, pods, containers, and underlying infrastructure. Microservices-based applications often leverage health checks to keep track of application availability, performance, faults, etc. Table 1-1 shows the monitoring areas to be considered for microservices-based applications.Table 1-1Monitoring Areas

	Architecture
	Metric Selection Decision Logic
	Sample Metrics

	Microservice In general, there is one process to track per container.
	Where are the new services deployed?What percentage of time is the service reachable?How many requests are enqueued?
	Average percentage of time a request-servicing thread is busy. Number of enqueued requests. Percentage of time a service is reachable

	Application Multiple microservices running simultaneously constitute an application
	Does the database respond quickly?Are the message queues fast enough?How does heap memory usage change over time?Are application services responsive?
	Query execution frequency, response time, and failure rate.Response time, failure rate

	Container Separate from the underlying process being run within it, containers are also monitored
	How responsive are the processes within container?Which images have been deployed?Are specific containers associated with over-utilization of host?
	CPU throttle time. Container disk I/O. Memory usage. Network (volume, dropped packets)

	Container Cluster Multiple containers deployed to run as group. Many of the metrics of individual containers can also be summarized.
	Are your clusters healthy and properly sized? Can applications be effectively run on fewer nodes?
	Percentage of clusters remaining operational compared to those originally deployed

	Host Also called a node, multiple hosts can support a cluster of containers
	Do changes in utilization indicate a problem with a process or application?
	Percentage of total memory capacity in use. Percentage of time CPUs are utilized

	Infrastructure Cloud in which hosts are running
	How much does it cost to run each service or deployment? What is the ratio of microservices and/or containers per instance?
	Network traffic Utilization of databases, storage, and other shared services

	End user The users using the application or other applications using APIs.
	What is the average web/transaction response time experienced by users or by target application?
	Response time. Number and percentage of failed user actions/transactions

Container Monitoring Ecosystem Overview
With the rise of container technology, there was a requirement to have a supporting ecosystem via which enterprises could run mission-critical workloads on the container. With the introduction of container technology and microservices architecture, monitoring solutions now need to manage data for both non-ephemeral and ephemeral services. Collecting data from applications composed of so many services has now become vastly complex. In a DevOps world, monitoring

 containerized applications and environments is not just needed for the operations team but also as a feedback mechanism for developers to understand their application performance bottlenecks/faults/bugs/etc. The following are the nuances to be considered when it comes to container monitoring:

	Short lifespan of containers: Containers are constantly provisioned and decommissioned based on demand. This can lead to cycles, where in the morning a container host cluster is filled up with microservices belonging to Workload A, while in the afternoon this same host is serving Application B. This means that a security breach, slow performance, or downtime on a certain host will have a very different business impact depending on when it happens.

	One microservice can be leveraged by numerous applications: As different applications often share the same microservices, monitoring tools must be able to dynamically map which instance of a microservice impacts which application.

	Temporary nature of containers: When the assembly of a new container is triggered based on a container image, networking connections, storage resources, and integration with other required services have to be instantly provided. This dynamic provisioning can impact the performance of related and unrelated infrastructure components.

	More levels to watch: In the case of Kubernetes, enterprise IT needs to monitor at the level of nodes (host servers), pods (host clusters), and individual containers. In addition, monitoring has to happen on the VM and storage levels, as well as on the microservices level.

	Different container management frameworks: Amazon EC2 Container Services run on Amazon’s proprietary management platform, while Google naturally supports Kubernetes (so does VMware), and Docker supports Swarm. Container monitoring solutions need to be aware of the differences between these container management platforms.

	Microservices change fast and often: Anomaly detection for microservices-based applications is much more difficult than that for standard apps, as apps consisting of microservices are constantly changing. New microservices are added to the app and existing ones are updated in a very quick sequence, leading to different infrastructure usage patterns. The monitoring tool needs to be able to differentiate between “normal” usage patterns caused by intentional changes and actual anomalies that have to be addressed.[image: ../images/491282_1_En_1_Chapter/491282_1_En_1_Fig7_HTML.jpg]
Figure 1-7Metrics explosion view with container technology evolution

In order to have complete visibility of containerized applications, you need to have data from the various components that formulate the base infrastructure for running containers. This means you need to monitor the following:	Application services

	Pods and containers

	Clusters running the containers

	Network for service/pod/cluster communication

	Host OS/machine running the cluster

Choosing the right monitoring toolset is certainly important and should be based upon the pros and cons of the solution. The following are the options available in the market for container monitoring:	Prometheus: Prometheus is one of the oldest and most popular open source container monitoring solutions available. It’s a graduated cloud native computing foundation (CNCF) project that offers powerful querying capabilities, visualization, and alerting.

	Grafana: Grafana is a popular reporting dashboarding tool for container environments. It has the capability to leverage data feeds from Prometheus and other sources for visualizing information from the Kubernetes environment.

	cAdvisor: cAdvisor is another container resource monitoring tool that works at the worker node level instead of the pod level. It has the capability to discover all the containers running on worker nodes and to provide metrics about CPU, memory, filesystem, etc. This solution does not provide long-term storage of metric data or analytics services on top, which would be useful for driving insights for the operations team.

	Heapster: Heapster aggregates monitoring data across multiple nodes using Kubelet and cAdvisor at the backend. Unlike cAdvisor, Heapster works at the pod level instead of the worker node level.

	Sysdig: Sysdig Monitor helps in monitoring container applications by providing end-to-end visibility—from application service to pod to container to node level—of the availability, performance, and faults across multiple container technologies and clouds.

	Dynatrace: Dynatrace has a new suite of tools available for container monitoring and alerting. Leveraging an agent-based approach, it can discover and fetch data about containerized application services, pods, containers, worker nodes, etc.

	AppDynamics: Application and business performance software that collects data from agents installed on the host using Docker APIs.

	Fluentd: Open source data collector for unified logging layers.

	Collectd: A small daemon that periodically collects system information and provides mechanisms to store and monitor container metrics.

	Cloud native: Leading cloud providers like AWS (Cloudwatch), Azure (Azure Monitor), and Google Cloud (Stackdriver) have their own native mechanisms to monitor container ecosystems on AWS EKS, Azure AKS, and Google GKE.

Summary
In this chapter, we have seen the container ecosystem evolution, Docker and Kubernetes architecture, and the benefits and challenges of container technology. We have also looked at monitoring and management tools and metrics for effective container monitoring. In the next chapter, we will start with practical exercises to set up Docker and Kubernetes, and we will end with deploying our first containerized application to kickstart the container monitoring journey.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_2

2. Getting Started with Containers

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This chapter will provide hands-on steps for installing Docker and Kubernetes. We also look into how to deploy a containerized application on Kubernetes. This will set us up for the following chapters, where we will monitor this setup using Prometheus. This chapter will cover the following topics:	Setting Up Docker CE and Running First Container

	Setting Up Kubernetes

	Deploying the Sample Application

Lab Environment Setup
For our lab environment, we will be using two Redhat 7 virtual machines (VMs). We recommend that readers use at minimum two CPUs, 8 GB RAM, and 80 GB hard disk (under/location) for the exercises here in Chapter 2. VMs can be hosted on VMware Workstation, VMware, Hyper V, or a public cloud like AWS, Azure, or GCP. Kindly ensure both VMs are able to communicate with each other on a private IP address and have outbound internet connectivity to download packages for installation.
Figure 2-1 represents the lab environment we will be setting up as part of this chapter.[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig1_HTML.jpg]
Figure 2-1Lab environnement setup for Chapter 2

As part of this chapter, we will be performing the following steps:	We will begin with installation of Docker CE engine on two nodes.

	After Docker CE engine setup, we will run a “Hello World” sample on the master Kubernetes node to validate our setup.

	We will install the core Kubernetes components on the master node using the Kubeadm utility.

	We will install Kubernetes components on the worker/target node.

	We will join the worker/target node with the master node.

	Finally, we will deploy the containerized application Sock-shop on the worker/target node.

Setting Up Docker CE
To start with container monitoring using Prometheus and Alert Manager, the first step will be to set up the container ecosystem. We will set up Docker CE 18.09.0 on both of our Redhat VMs. This will serve as the container engine for our applications.
Note
Please make sure all the commands mentioned in Steps 1 through 8 are executed successfully on both Redhat VMs. Steps 9 and 10 will be only executed on the master node.

	1.SSH into Redhat VMs. We will begin with cleaning up any older version of Docker (if any) present on the system. It is recommended to clean any pre-existing installation in case readers are using existing VMs for this exercise. If readers are using fresh VMs then kindly proceed to Step 2.

$ sudo yum remove docker docker-common docker-selinux docker-engine-selinux

	2.Execute the following command to install pre-requisite packages for Docker CE. The yum-config-manager utility is used to manage the main yum configuration options like enabling/disabling/adding repositories. device-mapper-persistent-data and lvm2 are needed for the device mapper storage driver. The device mapper storage driver for containers enables capabilities like thin provisioning and snapshotting, which are useful for image and container management.$ sudo yum install -y yum-utils device-mapper-persistent-data lvm2

	3.Configure the docker-ce repo by executing the following command:$ sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

Docker CE repo configuration will occur after the execution of the preceding command. It will save the repo under _/etc/yum.repos.d/docker-ce.repo as mentioned in Figure 2-2.

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig2_HTML.jpg]
Figure 2-2Docker CE repo configuration

	4.Execute the following command to update the yum cache. This will ensure yum configuration is updated as per the command executed in the previous step.$ sudo yum makecache fast

	5.Run the following command for SELinux policies for container runtimes. This package is needed for setting up container SELinux policy on Redhat systems. This is required to setup the security policies for Docker containers to access and share the resources.$ sudo yum install -y http://mirror.centos.org/centos/7/extras/x86_64/Packages/container-selinux-2.107-3.el7.noarch.rpm

The SELinux policy gets updated after the execution of the preceding command.

	6.Run the following command to install Docker community edition:$ sudo yum install docker-ce-18.09.0-3.el7 –y

Installation of Docker CE is completed after the execution of the preceding command.

	7.Run the following command to enable the Docker service:$ sudo systemctl enable docker.service

Enable the service of Docker after executing the preceding command.

	8.Execute the following commands to start and then validate the status of Docker service (see Figure 2-3):$ sudo systemctl start docker.service
$ sudo systemctl status docker.service

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig3_HTML.jpg]
Figure 2-3Start and verify Docker CE service. Look for the active (running) status of the docker service

	9.Pull the Docker image from Docker Hub by executing the following command. Docker Hub is a service provided by Docker for searching and sharing container images. Docker Hub provides repositories with access to push and pull container images. Additionally, Docker Hub provides official images managed by Docker and publisher images managed by external vendors.$ docker pull hello-world

	10.Now, let’s validate our installation of the Docker Engine by running the first Docker container on our master node. Execute the following command after logging in to the master node. You can verify the installation as shown in Figure 2-4.$ docker run hello-world

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig4_HTML.jpg]
Figure 2-4Running first Docker container

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig5_HTML.jpg]
Figure 2-5SELinux policy update

If you see the response as “Hello from the Docker!” the Docker container is running successfully.
Setting Up Kubernetes
The following steps elaborate the commands needed to set up Kubernetes master and worker nodes. In the previous section, we set up Docker Engine on both nodes.
Installing Kubernetes on RHEL 7

Let’s start:	1.Disable SELinux and set up firewall rules on the master node. Setting SELinux in permissive mode effectively disables it and thereby enables containers to access the host filesystem. The br_netfilter and net.bridge.bridge-nf-call-iptables modules are used for setting up Kubernetes networking options.
Navigate to the Kubernetes master node and execute the following commands to set the hostname and disable SELinux:

$ hostnamectl set-hostname 'k8s-master'
$ exec bash
$ setenforce 0
$ sed -i --follow-symlinks 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/sysconfig/selinux

Set the following firewall rules on your master node by executing the following commands:firewall-cmd --permanent --add-port=6443/tcp
firewall-cmd --permanent --add-port=2379-2380/tcp
firewall-cmd --permanent --add-port=10250/tcp
firewall-cmd --permanent --add-port=10251/tcp
firewall-cmd --permanent --add-port=10252/tcp
firewall-cmd --permanent --add-port=10255/tcp
firewall-cmd --reload
modprobe br_netfilter
echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

Table 2-1 lists the relevance of the inbound TCP ports enabled on the master node. See Figure 2-6.Table 2-1.Ports required for Kubernetes

	Port Range
	Purpose

	6443*
	These ports are used for Kubernetes API access.

	2379-2380
	These ports are used for etcd server client API.

	10250
	This port is used for Kubelet API.

	10251
	This port is used for kube-scheduler.

	10252
	This port is used for kube-controller-manager.

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig6_HTML.jpg]
Figure 2-6Firewall policy update

Note
In the absence of a DNS server in your lab environment, you need to update the /etc/hosts file on the master and worker nodes manually with entries as depicted below.

	<Master node IP > k8s-master

	<Worker node IP > worker-node1

For example, in our environment, the hosts file had the following entries on both servers (see Figure 2-7).[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig7_HTML.jpg]
Figure 2-7/etc/hosts file entry sample

	2.Configure the Kubernetes repository on the master node. Execute the following command to configure the repositories needed for Kubernetes installation:

cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

	3.Install Kubeadm on the master node (Figure 2-8). This will be used to deploy Kubernetes components in an automated fashion on the master and worker/target nodes. Execute the following command to install kubeadm:

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig8_HTML.jpg]
Figure 2-8Kubeadm installation

$ yum install kubeadm -y
Start and enable kubectl service by executing below command

$systemctl restart kubelet && systemctl enable kubelet
$systemctl status kubelet

	4.Execute the following command to initialize Kubernetes kubeadm on the master node:

$sudo swapoff -a
$sudo sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
$kubeadm init

Execute the following commands to use the cluster as a root user:$mkdir -p $HOME/.kube
$cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$chown $(id -u):$(id -g) $HOME/.kube/config

	5.Deploy the pod network to the cluster on the master node.

Run the following command to get the status of the cluster and pods (Figure 2-9):$kubectl get nodes
$kubectl get pods --all-namespaces

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig9_HTML.jpg]
Figure 2-9List Kubernetes nodes and namespaces

Execute the following commands to deploy the network (Figure 2-10):$export kubever=$(kubectl version | base64 | tr -d '\n')
$kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=$kubever"

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig10_HTML.jpg]
Figure 2-10Kubernetes network deployment

Execute the following command to get the status of the cluster and pods; this time, the statuses should come as “Ready” and “Running” states, respectively (Figure 2-11).$kubectl get nodes
$kubectl get pods --all-namespaces

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig11_HTML.jpg]
Figure 2-11List Kubernetes nodes and namespaces

Add Worker Node to the Kubernetes Master Node
Now, we’ll add a worker node:	1.Update the /etc/hosts file on the worker node (10.1.150.150):	<Master node IP > k8s-master1

	<Worker node IP > worker-node1

For example, in our environment the hosts file had the following entries on the worker node (Figure 2-12):[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig12_HTML.jpg]
Figure 2-12/etc/hosts file entry sample

	2.Disable SELinux and configure the firewall rules on the worker node:$setenforce 0
$sed -i --follow-symlinks 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/sysconfig/selinux
$firewall-cmd --permanent --add-port=10250/tcp
$firewall-cmd --permanent --add-port=10255/tcp
$firewall-cmd --permanent --add-port=30000-32767/tcp
$firewall-cmd --permanent --add-port=6783/tcp
$firewall-cmd --reload
$echo '1' > /proc/sys/net/bridge/bridge-nf-call-iptables

Table 2-2 lists the relevance of each inbound TCP port on the worker/target node (see Figure 2-13).Table 2-2.Port ranges required for Kubernetes

	Port Range
	Purpose

	10250
	This port is used by the Kubelet API.

	30000-32767
	This port is used by NodePort Services.

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig13_HTML.jpg]
Figure 2-13SELinux and firewall policy update

	3.Configure Kubernetes repositories on the worker node (10.1.150.150)(Figure 2-14):cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig14_HTML.jpg]
Figure 2-14Kubernetes repository configuration

	4.Install kubeadm on worker node(10.1.150.150).

Execute the following command to install kubeadm:$install kubeadm –y

Then start and enable the kubectl service:$systemctl restart kubelet && systemctl enable kubelet

	5.Join the worker node (10.1.1.50.150) to the master node (10.1.150.126) using the token ID. Navigate to Kubernetes master (10.1.150.126) and fetch the token by executing the following command:

$kubeadm token list

Execute the following command in the worker node (10.1.1.50.150):$sudo swapoff -a
$sudo sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
$kubeadm join --token ahh26d.8sl6ey1l9h4eawl7 10.1.150.126:6443 --discovery-token-unsafe-skip-ca-verification

Run the kubectl get nodes command

 on the master node (101.1.150.126) to see the worker node machine join (Figure 2-15):$kubectl get nodes

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig15_HTML.jpg]
Figure 2-15List Kubernetes nodes

Kubernetes master and worker nodes are configured successfully.
Deploying an Application
Now that we have our container ecosystem ready, it’s time to deploy our first application. We will deploy a microservice-based application called Sock Shop (Figure 2-16).[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig16_HTML.png]
Figure 2-16Sock Shop application deployment flow

The following is the flow for the Sock Shop application deployment we will follow in this chapter:	1.We will first clone the configuration scripts for Sock Shop from GitHub.

	2.We will then use Kubectl to create a namespace on the worker/target node and then deploy the configuration as a pod.

	3.We will then create a service for our application for end-user access.

	4.Finally, we will test the status of our application using command line and web browser access.
Note We will cover the basics of the configuration script in the next chapter in detail, as readers need to understand the file structure before using it to deploy Prometheus and Alert Manager.

Log in to the Kubernetes master node (10.1.150.126) using SSH.	5.First, we need to set up Git on the master node (10.1.150.126). Log in to the master node with root user and execute the following command:

$ yum install git

When prompt asks “Is this ok [y/d/N]”, Text “Y” and press Enter key (Figure 2-17).[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig17_HTML.jpg]
Figure 2-17Install Git

Check that Git installed successfully by executing the following command:$ git version

You will get a result like that in Figure 2-18, which means Git was installed successfully.[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig18_HTML.jpg]
Figure 2-18Verify Git version

	6.Clone the Sock Shop application from GitHub from the following URL into the /home/prometheus folder. You will see a microservices-demo folder after command execution.

$ git clone https://github.com/dryice-devops/microservices-demo.git
$ll

Navigate into the microservices-demo folder. You will be able to view the following files and folder:$ cd microservices-demo/

	7.Navigate to the Deploy folder within the microservices-demo folder. Then, navigate to the kubernetes folder.

$ cd deploy/kubernetes/

In the kubernetes folder you will be able to view the files and folder shown in Figure 2-19.[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig19_HTML.jpg]
Figure 2-19Navigate to Deploy folder

	8.Create the namespace sock-shop by executing the following inline command from the /home/prometheus/microservices-demo/deploy/kubernetes folder (Figure 2-20):

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig20_HTML.jpg]
Figure 2-20Namespace creation for container application Sock Shop

$ kubectl create namespace sock-shop

	9.Deploy Sock Shop by executing the following inline command from the /home/prometheus/microservices-demo/deploy/kubernetes folder (Figure 2-21):

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig21_HTML.jpg]
Figure 2-21Deploy container application Sock Shop

$ kubectl apply -f complete-demo.yaml

	10.To get the status of all the components of the Sock Shop application, please execute the following command:

$ kubectl get all -n sock-shop

The result would be as shown in Figure 2-22 (all the components’ statuses should be “Running”).[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig22_HTML.jpg]
Figure 2-22Verify container application Sock Shop

	11.Open your browser and open the following URL: http://Kubernetes-Cluster-IP: 31010; e.g., in our case, it is http://10.1.150.126:31010 (Figure 2-23).

[image: ../images/491282_1_En_2_Chapter/491282_1_En_2_Fig23_HTML.jpg]
Figure 2-23Sock Shop application page

Summary
In this chapter, we have provided hands-on steps for setting up Docker and Kubernetes. We also deployed our first containerized application. In the next chapter, we will show how to install Prometheus and Alert Manager.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_3

3. Getting Started with Prometheus and Alert Manager

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

In this chapter, we will go through the Prometheus monitoring tool, including its architecture and deployment. We will also be installing Prometheus and Alert Manager on Kubernetes and integrating the two. The chapter will cover the following topics:	Overview of Prometheus

	Architecture of Prometheus and Alert Manager

	Prometheus and Alert Manager Setup and Configuration on Kubernetes Cluster

	Integration of Prometheus and Alert manager

Overview of Prometheus
Container-based technologies also affect elements of infrastructure management services, like backup, patching, security, high availability, disaster recovery, and so forth. Monitoring is one such element that has evolved in leaps and bounds with the rise of container technology. Prometheus is one of the container monitoring tools that comes up as a go-to open source monitoring and alerting solution. Prometheus was initially conceived at SoundCloud, and slowly it became a favorite tool for container monitoring. It’s predominantly written in GO language and is one of the first Cloud Native Computing Foundation (CNCF)–graduated projects.
Prometheus supports multi-dimensional data models based on key–value pairs, which helps in collecting container monitoring as time-series data. It also provides a powerful query language called Prometheus Query Language (PromQL). PromQL allows the selection and aggregation of time-series data in real time, which can either be viewed as a graph, viewed as tabular data, or used by external systems via API call. Prometheus also supports various integrations with third-party systems for reporting, alerting, and dashboarding, along with exporters for fetching data from various sources.
Prometheus and Alert Manager Architecture
The Prometheus and Alert Manager architecture diagram in Figure 3-1 illustrates the architecture of Prometheus and its components.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig1_HTML.jpg]
Figure 3-1Prometheus and Alert Manager architecture

Now, let’s look more closely at the following components:	Prometheus Server: This component is the central component that collects the metrics from multiple container cluster nodes. The metrics data is stored locally. Prometheus monitoring leverages the concept of scraping, where target systems’ metric endpoints are contacted to fetch data at regular intervals.
This means that your application needs to expose an endpoint where metrics are available, and Prometheus should have a mechanism to scrape it. If the application service is not designed to provide Prometheus with metrics because the code either can’t be modified or is not written to send metrics we can leverage the Prometheus exporter to fetch metrics.

	Push Gateway: Push Gateway is used for scraping metrics from applications and passing on the data to Prometheus. Push Gateway captures the data and then transforms it into the Prometheus data format before pushing.

	Exporter: Exporter is equivalent to a plugin or monitoring agent that runs on the target host to fetch data and then export it to the metric in Prometheus.

	Alert Manager: Alert Manager is used to send the various alerts based upon the metrics data collected in Prometheus.

	Web UI: The web UI layer of Prometheus provides the end user with an interface to visualize data collected by Prometheus.
Kubernetes APIs provide metrics regarding these infrastructure components from an availability, fault, performance, and security standpoint. Prometheus helps overcome many of the unique challenges that monitoring Kubernetes clusters can present. While the Kubernetes native API and the kube-state-metrics can fetch container, node, and application data by exposing the Kubernetes internal data (number of desired/running replicas in a deployment, schedulable nodes, etc.), Prometheus provides an aggregation layer above to enable operations teams to manage the container ecosystem seamlessly. A typical user would have to do computations of their own if they directly fetch metrics from Kubernetes for monitoring data in the absence of a tool like Prometheus.

Prometheus and Alert Manager Setup and Configuration
In the previous chapter, while deploying the Sock Shop application, we used a YAML (a recursive acronym for “YAML Ain’t Markup Language”) configuration file to provide the details required for deploying the application on a target/worker node. We will now look at how to install and configure Prometheus and Alert Manager using YAML-based definitions. These days, Kubernetes objects, such as pods, services, and deployments, are created by using YAML files, and thus have a number of advantages over a kubectl command, which is an alternative way to create Kubernetes objects.
Advantages of using a YAML file to create Kubernetes Objects:	YAML files are saved into source code management, like Github, to track the changes.

	It can be parameterized to make changes to Kubernetes objects at runtime.

Before installing Prometheus and Alert Manager, we want to give readers an overview of the basics of the YAML file structure. YAML is a human-readable data-serialization language. It is commonly used for configuration files and in applications where data is being stored or transmitted. YAML was created specifically for common use cases, such as the following:	Configuration files

	Log files

	Cross-language data sharing

	Complex data structures

At a high level, the following are the building blocks of a YAML file, shown in Figure 3-2.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig2_HTML.jpg]
Figure 3-2YAML file building blocks

	Key–Value Pair: The basic type of entry in a YAML file is a key–value pair. After the key and colon there is a space and then the value.

	Arrays/Lists: Lists would have a number of items listed under the name of the list. The elements of the list would start with a hyphen (-).

	Dictionary/Map: A more complex type of YAML file would be a dictionary and map.

In the upcoming sections, we will cover the creation of the deployment resource by using YAML and will provide readers with an overview of key fields used in that process.
Now, let’s start with setting up Prometheus and Alert Manager on a Kubernetes cluster. We will use the same container environment setup seen in the previous chapter for this exercise.
Setting Up Prometheus on a Kubernetes Cluster
Figure 3-3 provides an overview of the task flows we will follow to deploy Prometheus.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig3_HTML.jpg]
Figure 3-3Prometheus deployment flow

The following is the flow for the Prometheus deployment that we will follow in this chapter:	We will first clone the configuration files from GitHub.

	We will then use Kubectl to create a namespace on the worker/target node.

	We will create a cluster role and role binding.

	We will create a config map and then deploy the configuration as a pod.

	We will then create a service for Prometheus for end-user access.

	Finally, we will test the status of the Prometheus deployment using the command line and web browser access.

Create Namespace
As Prometheus is a monitoring tool, we will create a namespace to make a logical segregation from other Kubernetes components that are running under different namespaces on Kubernetes Cluster, such as default, kube-system, Any Application Namespace etc.
Prometheus and Alert Manager components, e.g., Prometheus Server, will be deployed as Kubernetes objects (e.g., pods, services, etc.) and will also be created under the monitoring namespace.
Step 1: Execute the following command on the master node (10.1.150.126) to create a new namespace called monitoring:$kubectl create namespace monitoring

After executing the command, you will see the monitoring namespace created, as shown in Figure 3-4.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig4_HTML.jpg]
Figure 3-4Namespace creation for Prometheus monitoring

Step 2: Now we will create a cluster role and binding. Kubernetes resources access is regulated via role-based access control (RBAC). RBAC uses the rbac.authorization.k8s.io API to manage authorization. In the RBAC API, a cluster role contains rules that represent a set of permissions on the Kubernetes cluster. A cluster role will be used to provide access to the following:	Non-resource endpoints (like /healthz)

	Cluster-scoped resources (like nodes)

	Namespaced resources (like pods) across all namespaces (needed to run kubectl get pods --all-namespaces, for example)

Cluster role binding grants the permissions defined in a cluster role to a user or set of users. It holds a list of subjects (users, groups, or service accounts) and a reference to the role being granted. Permissions can be granted within a namespace cluster-wide using a cluster role binding. In this step, we will create the cluster role and role binding using the single YAML file clusterRole.yaml.

Log in to the Kubernetes master node and navigate to the /home directory. Execute the following commands in the Clone clusterRole.yaml file.$ cd /home

$ git clone https://github.com/dryice-devops/prometheus.git

Now, let’s have a look at the content of this YAML file and understand the sections and their relevance. The file has two sections: ClusterRole and ClusterRoleBinding.
ClusterRole Section Details

	apiVersion: The beginning section of the file defines apiVersion of Kubernetes so it can interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	Kind: The Kind field defines the type of Kubernetes object; e.g., ClusterRole, deployment, service, pods, etc. In our case, we are using ClusterRole.

	Metadata: This section has name subcomponents defined in the file. The Name field specifies the name of the object. We are using Prometheus as the name in our example.

Figure 3-5 shows snapshots of these sections.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig5_HTML.jpg]
Figure 3-5ClusterRole YAML file walkthrough

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig6_HTML.jpg]
Figure 3-6ClusterRole YAML file walkthrough

	Rules: A rule is a set of operations (verbs) that can be carried out on a group of resources that belong to different API groups (also called legacy). In our example, we are creating a rule that allows a user to execute several operations on nodes, proxy, service, endpoints, and pods that belong to the core (expressed by “” in the YAML file), apps, and extensions. API Groups.Rule has several subcomponent elements in it.
Resources: This field defines various Kubernetes resources.
Verbs: This field defines the action to be performed on the resources.
nonResourceURLs: NonResourceURLs is a set of partial URLs that a user should have access to. Non-resource URLs are not namespaced; this field is only applicable for ClusterRoles referenced from a ClusterRoleBinding. Rules can either apply to API resources (such as pods or secrets) or non-resource URL paths (such as /api), but not both. Figure 3-6 shows snapshot of above mentioned sections.

ClusterRoleBinding Section

	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes so it can interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	Kind: The Kind field defines the types of Kubernetes objects; e.g., ClusterRole, deployment, service, pods, etc. In our case, we are using ClusterRoleBinding.

	Metadata: This section has name subcomponents defined in the file. The Name field specifies the name of the object. We are using Prometheus as the name in our example. See Figure 3-7.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig7_HTML.jpg]
Figure 3-7ClusterRole YAML file walkthrough

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig8_HTML.jpg]
Figure 3-8ClusterRole YAML file walkthrough

	RoleRef: In this field, we are binding the Prometheus ClusterRole to the default service account provided by Kubernetes inside the monitoring namespace. This section has further subcomponents in it.

apiGroup: This field defines the rbac.authorization.k8s.io API to interact with the API group.
kind: This field defines the object type.
Name: Name of the ClusterRole; e.g., Prometheus	Subjects: This section defines the set of users and processes that needs to access the Kubernetes API. This section has further subcomponents in it.

Kind: This field defines the object type service account.
Name: As every Kubernetes installation has a service account called default that is associated with every running pod, we used the same default.
Namespace: This field defines the namespace name for cluster role binding; e.g., monitoring (which we created in previous step). Figure 3-8 shows snapshot of above mentioned sections.
Step 3: Now, let’s create the role using the following command on the master node (10.1.150.126) in the /home directory:$kubectl create -f clusterRole.yaml

After executing the preceding command, the cluster role and cluster role binding will be created as per Figure 3-9.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig9_HTML.jpg]
Figure 3-9Cluster role creation for Prometheus

Create a Config Map
A config map will be used to decouple any configuration artifacts from image content and alerting rules, which will be mounted to the Prometheus container in the /etc/prometheus as prometheus.yaml and prometheus.rules files.
Step 1: In the previous step, while creating the cluster role and binding, we cloned a file on the Kubernetes master node called config-map.yaml in /home/Prometheus. We will use this file to create a config map. Now, let’s review the content of this YAML file. The config map incorporates the prometheus.rules and prometheus.yml files under the data section. See the snapshot of configmap.yaml in Figure 3-10.	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	Kind: This field defines the types of the Kubernetes objects; e.g., ClusterRole, deployment, service, pods, etc. In our case, the object is a config map.

	Metadata: This section has name subcomponents defined in the file that have data about the config map.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig10_HTML.jpg]
Figure 3-10Config map YAML file walkthrough

Name: This field has the name of the config map. In our example, we are using prometheus-server-conf.
Label: This field defines the label for the config map; e.g., prometheus-server-conf.
Namespace: This field defines the namespace where the config map will be created; e.g., monitoring.

	Data: This field defines the prometheus.rules and prometheus.yaml content and passes their information at runtime to the config map.

prometheus.rules: This section contains the alerting rules used to generate alerts on the basis of various conditions; e.g., out of memory, out of disk space, etc. In this case, we used high pod memory usage.
prometheus.yml: This file is used for configuring Prometheus. It defines scraping jobs and their instances, as well as which rule files to load. The prometheus.yaml file contains all the configuration information that would help to dynamically discover pods and services running in the Kubernetes cluster. The following are scrape jobs in our Prometheus scrape configuration:	kubernetes-apiservers: It gets all the metrics from the API servers.

	kubernetes-nodes: All Kubernetes node metrics will be collected with this job.

	kubernetes-pods: All the pod metrics will be discovered if the pod metadata is annotated with prometheus.io/scrape and prometheus.io/port annotations.

	kubernetes-cadvisor: Collects all cAdvisor metrics.

	kubernetes-service-endpoints: All the service endpoints will be scraped if the service metadata is annotated with prometheus.io/scrape and prometheus.io/port annotations. Service endpoints when annotated with the prometheus annotations are used by prometheus to select and scrape data from.

	prometheus.rules: This contains all the alert rules for sending alerts to Alert Manager.

	Global: The global configuration specifies parameters that are valid in all other configuration contexts. This has various subcomponents, as follows:

scrape_interval: How frequently to scrape targets by default; we took 20s in our example.
evaluation_interval: How long until a scrape request times out; we took 20s in our example.	rule_files: This specifies a list of globs. Glob provides method for traversing file systems and find pathname or files matching a specific pattern. Using this Rules and alerts are read from all matching files that we defined under prometheus.rules and the path defined as /etc/prometheus/prometheus.rules. See Figure 3-11.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig11_HTML.jpg]
Figure 3-11Config map YAML file walkthrough

Alerting: This section specifies settings related to Alert Manager.	alertmanagers: This section defines how to integrate with Alert Manager for sending alerts from Prometheus.

	Scheme: This configures the protocol scheme used for making the requests to send the requests; e.g., http, https; we used http in our case.

	static_configs: Using Static_Configs, Alertmanagers configuration can be defined as a static value.Another option available is to use dynamic discovery mechanism for configuring Alertmanagers.

	targets: This defines the static target value (IP address and port) xxx.xxx.xxx.xxx:port on which Alert Manager is running.

scrape_configs: This section specifies a set of targets and parameters for how to scrape them. Prometheus needs some targets to scrape application metrics from.	job_name: The job name assigned to scraped metrics; in our case we use prometheus as a job name, the same used by Prometheus to monitor itself.

	static_configs: In this Static_config we can define the list of Targets that will be used for scrapping metrics using above mentioned Job.

	Targets: Targets may be statically configured via the static_configs parameter or dynamically discovered using one of the supported service-discovery mechanisms; e.g., Consul, Kubernetes, etc. In our case, we use a static target (IP & port); e.g., xxx.xxx.xxx.xxx:port.

Step 2: Execute the following command to create the config map in Kubernetes on the master node (10.1.150.126) in the /home/Prometheus directory:kubectl create -f config-map.yaml

After executing the preceding command, a config map with the name prometheus-server-conf will be created, as shown in Figure 3-12.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig12_HTML.jpg]
Figure 3-12Config map creation for Prometheus

Create a Prometheus Deployment

Step 1: In a previous step, while creating the cluster role and binding, we cloned a file on the Kubernetes master node called prometheus-deployment.yaml in /home/Prometheus. We will use the official Prometheus Docker image v2.12.0 from the Docker hub. In this configuration, the Prometheus config map is mounted as a file inside /etc/Prometheus. The following are the details of the Prometheus-deployment.yaml file (Figure 3-13):	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. The apiVersion varies depending upon the Kubernetes version you have in your environment .

	kind: This field defines the types of the Kubernetes objects; e.g., ClusterRole, deployment, service, pods, etc. In our case, we are using a deployment object.

	Metadata: This section has name subcomponents defined in the file.	Name: This field specifies the name of the service object; e.g., prometheus-deployment.

	Namespace: This field specifies the namespace of the service object; e.g., monitoring.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig13_HTML.jpg]
Figure 3-13Prometheus-deployment YAML file walkthrough

	Spec: This field provides the specification of service.
Replicas: This field provides data about the number of pods to be made available at a particular instance.
Selector: This section provides details about the service selector. Service Selector enables grouping of set of Pods (in this case Prometheus pod) which will be exposed as a Service for external network access.

	matchLabels: The name will be used to match and identify the service (Figure 3-14).

	Template: type of port used by the service (Figure 3-15)
Metadata: Name will be used to match and identify the service	Labels: key–value pair that is attached to object intended to be used to specify identifying attributes. See here:
app — key
prometheus-server — value

	Spec: See Figure 3-16.	Containers: detail of container object

Name: name of the container
Image: image with version
Args: argument used at the time of container creation	--config.file=/etc/prometheus/prometheus.yml: This is the file name to be used at the time of deployment.

	--storage.tsdb.path=/prometheus/: This determines where Prometheus writes its database.

Ports:	containerport: application listening port

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig14_HTML.jpg]
Figure 3-14prometheus-deployment YAML file walkthrough

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig15_HTML.jpg]
Figure 3-15prometheus-deployment YAML file walkthrough

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig16_HTML.jpg]
Figure 3-16prometheus-deployment YAML file walkthrough

	volumeMounts: A storage volume allows an existing StorageOS volume to be mounted into your pod (Figure 3-17). Two volumeMounts are created: prometheus-config-volume and prometheus-storage-volume. The former will be using our config map to manage prometheus.yml. With prometheus-storage-volume, we create an empty directory in which to store the Prometheus data.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig17_HTML.jpg]
Figure 3-17prometheus-deployment YAML file walkthrough

Name: name of the volume
mountPath: defines the mounted path

	volume: A volume is a directory with data that is accessible to all containers running in a pod and gets mounted into each container’s file system. Its lifetime is identical to the lifetime of the pod. Decoupling the volume lifetime from the container lifetime allows the volume to persist across container crashes and restarts. Volumes can be backed by the host’s file system, by persistent block storage volumes such as AWS EBS, or by a distributed file system.

name: name of the volume
configMap: config map used by the volume	defaultMode: This defines the default file permissions for Volume.

	name: defined name of the config map that needs to be used

name:	emptyDir: The emptyDir volume is first created when a pod is assigned to a node, and it exists as long as that pod is running on the node we used to store the Prometheus data (Figure 3-18).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig18_HTML.jpg]
Figure 3-18prometheus-deployment YAML file walkthrough

Step 2: To create a deployment on the monitoring namespace using the prometheus-deployment.yaml file, execute the following command on the master node (10.1.150.126) in the /home/Prometheus folder:$kubectl apply -f prometheus-deployment.yaml -n monitoring

Once the preceding command has run successfully, prometheus-deployment will be created under the monitoring namespace in the Kubernetes cluster, as shown in Figure 3-19.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig19_HTML.jpg]
Figure 3-19Prometheus deployment

Step 3: You can check the created deployment using the following command on the master node (10.1.150.126) in the /home/Prometheus folder. It will return the name of the deployment—in our case, prometheus-deployment) and its states, as shown in Figure 3-20.$kubectl get deployments --namespace=monitoring

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig20_HTML.jpg]
Figure 3-20Prometheus deployment status verification

Exposing Prometheus as a Service
To access the Prometheus dashboard over IP, we need to expose it as a Kubernetes service.
Step 1: In a previous section, while creating the cluster role and binding, we cloned a file on the Kubernetes master node called prometheus-service.yaml in /home/prometheus. It exposes Prometheus on all Kubernetes node IP addresses on port 30000. The following are the details of the prometheus-service.yaml file:	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	kind: This field defines the types of the Kubernetes object; e.g., ClusterRole, deployment, service, pods, etc. In our case, we are using a service object.

	Metadata: This section has name subcomponents defined in the file.

Name: Specifies the name of the service object; e.g., Prometheus-service.
Namespace: The namespace of the service object; e.g., monitoring.
Annotations: These are used for non-identifying information that is used by the other tools like AlertManager for scraping Promeheus endpoint (except K8).	prometheus.io/scrape: To scrape metrics for the specific service or pods, use the prometheus scrape annotation (Figure 3-21).

	prometheus.io/port: This annotation indicates to Prometheus to scrape the specific port.

	spec: Specification of the service
selector: Service selector

	App: Pod name used by the service to communicate with this pod.

	Type: In this section, we define how the specific Kubernetes service will be exposed (the default value is ClusterIP). In our example, we are using NodePort, which exposes the service on each node’s IP at a static port (the NodePort). A ClusterIP service, to which the NodePort service routes, is automatically created. You’ll be able to contact the NodePort service from outside the cluster by requesting <NodeIP>:<NodePort> (Figure 3-22).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig21_HTML.jpg]
Figure 3-21prometheus-service YAML file walkthrough

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig22_HTML.jpg]
Figure 3-22prometheus-service YAML file walkthrough

Ports: Service selector	Port: The port on which the service will be exposed internally within the cluster. Once the service is up on the defined port it starts sending requests to the port on the pods selected by the service.

	targetPort: This is a port via which the service will send the request to the specific pod; the pod must be run on the same port.

	nodePort: This port is used to expose the service externally to the cluster. NodePort is the default setting if the port field is not specified (Figure 3-23).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig23_HTML.jpg]
Figure 3-23prometheus-service YAML file walkthrough

Step 2: Create the service using the following command on the master node (10.1.150.126). See Figure 3-24.$kubectl create -f prometheus-service.yaml --namespace=monitoring

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig24_HTML.jpg]
Figure 3-24Prometheus service creation

Step 3: Once the service is created, the Prometheus dashboard can be accessed by using any Kubernetes master node IP address (10.1.150.126) on port 30000 (Figure 3-25).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig25_HTML.jpg]
Figure 3-25Prometheus console access

Step 4: Now, if you browse to Status ➤ Targets, you can see the Kubernetes endpoints are connected to Prometheus automatically using service discovery (Figure 3-26).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig26_HTML.jpg]
Figure 3-26Verify Prometheus console access

Setting Up Alert Manager
Figure 3-27 provides an overview of the task flows we will follow to deploy Alert Manager.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig27_HTML.jpg]
Figure 3-27Alert Manager deployment flow

The following is the flow for the Prometheus deployment that we will follow in this chapter:	We will use the already cloned configuration files from Github.

	We will deploy the Alert Manager configuration as a pod.

	We will then create a service for Alert Manager for end-user access.

	Finally, we will test the status of the Alert Manager deployment using the command line and web browser access.

Create a Deployment
Step 1: In a previous section, while creating the cluster role and binding, we cloned a file on the Kubernetes master node called alertmanager-deployment.yaml in /home/prometheus. The following are the details of this YAML file:	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	kind: This field defines the type of the Kubernetes object; e.g., ClusterRole, deployment, service, pod, etc. In our case, we are using a deployment object.

	Metadata: This section has name subcomponents defined in the file (Figure 3-28).
Name: Specifies the name of the deployment object; e.g., alertmanager.
Namespace: Specifies the namespace of the deployment object; e.g., monitoring.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig28_HTML.jpg]
Figure 3-28alertmanager-deployment YAML file walkthrough

	Spec: Specification of service
Replicas: Number of pods to be available on Kubernetes cluster; e.g., 1 or 2
Selector: Service selector

	matchLabels: Name will be used to match and identify the service by key and value pair; e.g., we used app as the key and alertmanager as the value (Figure 3-29).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig29_HTML.jpg]
Figure 3-29alertmanager-deployment YAML file walkthrough

Template: Type of port used by the service	Metadata: Name will be used to match and identify the service (Figure 3-30).	Labels: Key–value pair that is attached to the object intended to be used to specify identifying attributes. app is a key and alertmanager is the value.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig30_HTML.jpg]
Figure 3-30alertmanager-deployment YAML file walkthrough

	Spec: See Figure 3-31.	Containers: Detail of container object
Name: Name of the container
Image: Docker image with version
Ports:	containerPort: Application listening port

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig31_HTML.jpg]
Figure 3-31alertmanager-deployment YAML file walkthrough

Step 2: Create the deployment using the following command on the master node (10.1.150.126) in the /home/Prometheus folder (Figure 3-32):$kubectl create -f alertmanager-deployment.yaml

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig32_HTML.jpg]
Figure 3-32Alert Manager deployment

Create a Service
Step 1: We need to expose the Alert Manager using NodePort just to access the web UI. Prometheus will talk to Alert Manager using the internal service endpoint. In a previous section, while creating the cluster role and binding, we cloned a file on the Kubernetes master node called alertmanager-service.yaml. The following outlines the details of the YAML file:	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment (Figure 3-33).

	Kind: This field defines the type of the Kubernetes object; e.g., ClusterRole, deployment, service, pod, etc. In our case, we are using a service object.

	Metadata: This section has name subcomponents defined in the file.

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig33_HTML.jpg]
Figure 3-33alertmanager-service YAML file walkthrough

Name: Specifies the name of the service object; e.g.. alertmanager
Namespace: The namespace of the service object; e.g., monitoring

	Spec:
Selector: Service selector	app: Pod name used by the service to communicate with this pod

Type: This field provides information about the type of the publishing services. Kubernetes service types allow you to specify what kind of service you want. In our example, we are using app: alertmanager, where app is a key and alertmanager is the value of the pod we defined in alertmanager-deployment.yaml. The same will be used by alertmanager-service to communicate with this pod name (Figure 3-34).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig34_HTML.jpg]
Figure 3-34alertmanager-service YAML file walkthrough

ports: We explained about the port, targetPort, and nodePort fields in the “Exposing Prometheus as a Service” section (Figure 3-35).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig35_HTML.jpg]
Figure 3-35alertmanager-service YAML file walkthrough

Step 2: Create the service using the following command (Figure 3-36):$kubectl create -f alertmanager-service.yaml

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig36_HTML.jpg]
Figure 3-36Alert Manager service creation

After creating the service, the Alert Manager dashboard is accessible on node port 32000 with the IP address of the Kubernetes master node (10.1.150.126) (Figure 3-37).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig37_HTML.jpg]
Figure 3-37Alert Manager dashboard access

Alert Manager and Prometheus Integration
Figure 3-38 provides an overview of the task flows we will follow to integrate Alert Manager with Prometheus.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig38_HTML.jpg]
Figure 3-38Alert Manager and Prometheus integration flow

The following is the flow for the Alert Manager and Prometheus integration that we will follow in this chapter:	We will use the already cloned configuration files from Github.

	We will then use Kubectl to update the config map.

	Finally, we will test the status of the integration using Prometheus web browser access.

Step 1: Log in to the Kubernetes master node (10.1.150.126), go to the /home/prometheus folder, and update the config-map.yaml file. Replace alertmanager.monitoring.svc:9093 with the Alert Manager URL, e.g., http://10.1.150.126:32000, under the targets section of prometheus.yml highlighted in the config-map.yaml file in Figure 3-39.[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig39_HTML.jpg]
Figure 3-39Alert Manager and Prometheus integration

Step 2: Run the following command in the master node (10.1.150.126) under /home/prometheus to get the config map:$kubectl get configmaps -n=monitoring

This command returns the config map list (Figure 3-40).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig40_HTML.jpg]
Figure 3-40Config map list

Step 3: Run the following command in the master node (10.1.150.126) under /home/prometheus to get the prometheus-server-conf config map we updated in Step 1 (Figure 3-41).$ kubectl delete configmaps prometheus-server-conf -n=monitoring

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig41_HTML.jpg]
Figure 3-41Config map delete

Step 4: Once you have deleted prometheus-server-conf, create the same with the updated config-map.yaml file in the master node (10.1.150.126) by executing the following command from the /home/Prometheus directory (Figure 3-42):$ kubectl create -f config-map.yaml

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig42_HTML.jpg]
Figure 3-42Config map create

Step 5: Execute the following command to identify the Prometheus pod and then delete to get the updated config map changes:$kubectl get pods -n=monitoring

The preceding command will return all the pods running under the monitoring namespace (Figure 3-43).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig43_HTML.jpg]
Figure 3-43List Prometheus pods

Select Prometheus-deployment-5c4f4f5779-p6pcm and delete the same with the following command (Figure 3-44):$kubectl delete pods prometheus-deployment-5c4f4f5779-zgkkf -n=monitoring

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig44_HTML.jpg]
Figure 3-44Delete pods

Check the running pods again by using the following command:$kubectl get pods -n=monitoring

It will return the newly created Prometheus pods by Kubernetes deployment (Figure 3-45).[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig45_HTML.jpg]
Figure 3-45List pods

Step 6: Check the Prometheus URL to verify Alert Manager is configured correctly:	Open Prometheus URL http://10.1.150.126:30000.

	Go to Status ➤ Runtime & Build Information.

	Check the Alert Manager section. The Alert Manager end point should be mentioned http://10.1.150.126:32000/api/v1/alerts (Figure 3-46).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig46_HTML.jpg]
Figure 3-46Verify Alert Manager endpoint in Prometheus

	Prometheus starts sending the alert after five seconds (configured in config map) to Alert Manager, and the State would be “FIRING” in the Prometheus URL under the Alert section (Figure 3-47).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig47_HTML.jpg]
Figure 3-47Alert view in Prometheus

Step 7: Verify Alert Manager starts receiving the alerts from Prometheus:	Open the Alert Manager URL http://10.1.150.126:32000/

	Click “Alerts.”

	It shows alert, e.g., alertname = “High Pod Memory,” sending from Prometheus (Figure 3-48).

[image: ../images/491282_1_En_3_Chapter/491282_1_En_3_Fig48_HTML.jpg]
Figure 3-48Alert view in Alert Manager

Summary
In this chapter, we have learned the basics of Prometheus, its architecture, and various components. We set up Prometheus and Alert Manager and integrated the two to work together. In the next chapter, we will start with a deep-dive understanding of Prometheus and Alert Manager solutions for container monitoring, starting with infrastructure parameter monitoring.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_4

4. Container Infrastructure Monitoring

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This chapter will provide hands-on steps to the readers on container infrastructure monitoring using Prometheus. We will also learn how to deploy a containerized application using a Helm chart. A Helm chart is a package manager for Kubernetes that helps developers and operators to more easily package, configure, and deploy applications and services onto Kubernetes clusters. This chapter will cover the following topics:	Container Infrastructure Monitoring Using Parameters

	Labels

	Helm and Tiller Installation

	Using Exporters for Container Monitoring

Container Infrastructure Monitoring Using Parameters
Before we jump into using Prometheus to monitor a Kubernetes-managed container ecosystem, let’s look at the key aspects that need to be monitored from an infrastructure perspective. Monitoring and alerting at the container orchestration level works on two levels. On one side, we need to monitor whether the services handled by Kubernetes do meet the requirements we defined. On the other side, we need to make sure all the components of Kubernetes are up and running. From an infrastructure perspective, the following are the key layers that need to be monitored:	Containers

	Clusters running the containers, such as Kubernetes

	Communication and telemetry between containers (this can be done via contracts or by collecting logs from tools like ISTIO)

	Host OS/machine running the cluster

	Server running the hosts

To monitor Kubernetes, we need to ensure the status of certain services and components that are core to Kubernetes’ functionality. Let’s look at some of the key monitoring areas.
Service Discovery
In microservices apps, services are added and removed all the time. Containers move between hosts; autoscaling groups add and remove instances dynamically. Additionally, there’s failover and auto-replication adding to the complexity of container monitoring. Manually validating the availability of services every time their network location changes is not feasible. Hence, there is a need for a monitoring solution for this.
Node Availability
Providing alerts regarding node availability is not very different from monitoring VMs or machines. Essentially, it involves checking if the host is up or down/unreachable, as well as the resources’ availability (CPU, memory, disk, etc.).
Node Health

A node failure is not so much a critical event in Kubernetes, as its scheduler service will spin off containers in other available nodes. However, it’s crucial to monitor scenarios where we could be running out of nodes, or where the resource requirements for the deployed applications exhaust existing nodes’ resources. Another scenario could be to monitor quota limits configured at the resources level. To monitor node status, alerts on the metrics kube_node_status_ready and kube_node_spec_unschedulable can be scheduled. If you want to have an alert for capacity, you will have to sum each scheduled pod request for CPU and memory and then check that it doesn’t go over the threshold for each of the nodes; this can be done using kube_node_status_capacity_cpu_cores and kube_node_status_capacity_memory_bytes.
Kubernetes Control Plane
The Kubernetes control plane

 constitutes the control plane of the cluster. Its service components (or “master” components) provide features like container orchestration, computing resource management, and the central API for users and services. An unhealthy control plane will sooner or later affect the availability of applications or the ability of users to manage their workloads. The control plane components include the following:	Kubernetes API server

	Controller manager

	Scheduler

	etcd key–value store

Basic monitoring of these components would involve an HTTP check that queries the health-check endpoint (/healthz) exposed by instances of these services or by scraping the API endpoint in Kubernetes.
In addition to health checks, control plane components expose internal metrics via a Prometheus HTTP endpoint (/metrics) that can be added into a time-series database. While most of the metric data is useful for retrospective or live issue debugging/troubleshooting, some metrics, like latency, request, or error counts, can be used for proactive alerting.
Kubernetes Infrastructure Services
Beside the master components, there are a number of other services running in the cluster that play critical infrastructure service roles

, like DNS and service discovery (kube-dns, coredns) or traffic management (kube-proxy). Just like control plane components, these components provide HTTP endpoints for health checks as well as internal metrics via a Prometheus endpoint.
Kubernetes Metrics
kube-state-metrics is a service that leverages Kubernetes APIs and provides metrics

 about the status/state of objects like pods, nodes, and deployments. The following are some of the key insights provided by kube-state that help operations to easily manage the container ecosystem state:	Noting how many pods are running/stopped/terminated

	Noting how many times the specific pod has been restarted

	Analyzing the response time of a Kubernetes service

	Analyzing the slowest endpoints of a Kubernetes HTTP service	Noting the most frequently used HTTP endpoints

	Noting the slowest HTTP endpoints

	Looking at the average connection time

	Noting any error codes

Labels
Labels enable us to capture additional attribute details of the data monitored. In the object, this is further stored as a key–value pair, where the key is the name of the attribute being captured and the value is the actual attribute data.
Labels work very well in Prometheus using PromQL. Let us consider a metric for getting the total number of HTTP requests received by the Kubernetes API server by differentiating based on the label, such as in the following:instance ="10.1.150.150:30000", job = "federate" and quantile="0.999"

	PromQL:

http_requests{instance="10.1.150.150:30000",job="federate",quantile="0.999"}

Now, let us see how we can execute the preceding example to generate the respective metrics on the Prometheus server.
Log in to the Prometheus UI and navigate to the Graph section, where you should type the following query:http_requests{instance="10.1.150.150:30000",job="federate",quantile="0.999"}

Click the Execute button, which will show the result in the form of a graph, as shown in Figure 4-1.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig1_HTML.jpg]
Figure 4-1HTTP request filterd by label

Let us consider another example to find out the sum of the total number of requests handled by the Kubernetes API server per second by differentiating based on label, like component="apiserver",group="policy".
Here is the PromQL:apiserver_request_duration_seconds_sum{component="apiserver",group="policy"}

Again, type the following PromQL query:
http_requests{instance="10.1.150.150:30000",job="federate",quantile="0.999"}

This will generate the respective metrics in Prometheus. Click the Execute button, which will show the result in the form of a graph, as shown in Figure 4-2.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig2_HTML.jpg]
Figure 4-2Apiserver request duration in seconds, sum, filtered by label

In the upcoming section, you will learn about the Prometheus exporters; e.g., cAdvisor, Blackbox. These exporters pull the metrics from various systems—e.g., Kubernetes, nodes, etc.—and push the data into Prometheus for further analysis. To install exporters on the Kubernetes cluster we need a Helm chart–based installation.
Helm and Tiller Setup
Helm consists of two components: Helm and Tiller. Helm itself is the client-side component that you run in your command line, while Tiller resides on target node cluster.
Before continuing, you will need to download and install Helm. For this exercise we are using the following Linux version of Helm: helm-v2.16.0-rc.2-linux-amd64.tar.gz. Helm should be installed on master node 10.1.150.126.
Step 1: Download Helm on the master node in the /home/prometheus folder and unpack the tar. After unpacking this, the linux-amd64 folder should be created. Below commands download the tar file using wget and then are unpacked using tar command:	$ wget https://get.helm.sh/helm-v2.16.0-rc.2-linux-amd64.tar.gz

	$ tar zxvf helm-v2.16.0-rc.2-linux-amd64.tar.gz

After executing the preceding commands, you will see the Helm and Tiller executables, as seen in Figure 4-3.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig3_HTML.jpg]
Figure 4-3Downloading Helm

Step 2: After unzipping, copy the Helm binary from the /home/prometheus/linux-amd64 directory to the /usr/local/bin directory using cp command for installing Helm on your local Linux VM:$ cp helm /usr/local/bin

After copying the Helm executable, execute the following command from the /home/prometheus directory to verify that Helm was installed successfully.
The output should show the Helm version, as shown in Figure 4-4.$helm version

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig4_HTML.jpg]
Figure 4-4Verifying Helm version

Note
Please ignore the error related to Tiller, as Tiller will be installed later on the Kubernetes master node.

Installing Tiller
Tiller

 is used to deploy the Helm chart on the Kubernetes cluster. Tiller requires a Kubernetes service account and permissions to access Kubernetes resources using role-based access and control (RBAC). The Kubernetes service account is used by Tiller for Kubernetes API server authentication. RBAC is used to give access to Kubernetes resources—e.g., pods, services, etc.—at the cluster level or within Kubernetes namespaces.
Kubernetes provides the following types of RBAC permission:	Role and ClusterRole: A set of permissions over a user or group of users. A role is always confined to a single namespace, while a ClusterRole is cluster-scoped.

	RoleBinding and ClusterRoleBinding: Grants the permissions defined in a Role/ClusterRole respectively to a user or group of users. RoleBindings are bound to a certain namespace, and ClusterRoleBindings are cluster-global.

In the following steps we will create a Kubernetes service account and ClusterRoleBinding for Tiller to deploy the Helm charts on the Kubernetes cluster.
Step 1: Navigate to the /home/prometheus directory. You will find the tiller-helm.yaml file on the Kubernetes master node (10.1.150.126). This will be used for creating the service account in kube-system and for the ClusterRoleBinding, which will provide Tiller access to the cluster.
The kube-system is a namespace used by Kubernetes to manage objects or resources created by the Kubernetes components, so typically it contains pods like kube-dns, kube-proxy, kubernetes-dashboard, and so on.
Next is the explanation of the various sections of the tiller-helm.yaml file. It has two sections: ClusterRole and ClusterRoleBinding.
ClusterRole Section Details

	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	Kind: This field defines the type of the Kubernetes object; e.g., ClusterRole, deployment, service, pod, service account, etc. In our case, we defined kind as ServiceAccount.

	Metadata: This section has name subcomponents defined in the file. The name field specifies the name of the object. We are using tiller as the name in our example. For the namespace, we are using kube-system.

These sections are explained in Figure 4-5.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig5_HTML.jpg]
Figure 4-5tiller-helm.yaml file walkthrough

ClusterRoleBinding Section

	apiVersion: The beginning section of the file defines the apiVersion of Kubernetes with which to interact with the Kubernetes API server. It is typically used for creating the object. apiVersion varies depending upon the Kubernetes version you have in your environment.

	Kind: This field defines the type of the Kubernetes object; e.g., ClusterRole, deployment, service, pods, etc. In our case, we are using ClusterRoleBinding, as per the explanation covered in the section “Installing Tiller.”

	Metadata: This section has name subcomponents defined in the file. The name field specifies the name of the object. We are using tiller as the name in our example. See Figure 4-6.

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig6_HTML.jpg]
Figure 4-6tiller-helm.yaml file walkthrough

	RoleRef: In this field, we are binding the Prometheus cluster role to the default service account provided by Kubernetes inside the monitoring namespace. This section has further subcomponents in it.

apiGroup: In Kubernetes, the API group is specified with the apiVersion to make a REST API call for a serialized object. Kubernetes RBAC uses the rbac.authorization.k8s.io API group to communicate with the Kubernetes API server. For detailed information about the apiGroup and Kubernetes REST API please refer to the following links: 1
kind: This field defines the object type.
name: This is the name of the cluster role; e.g., cluster-admin.
See Figure 4-7.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig7_HTML.jpg]
Figure 4-7tiller-helm.yaml file walkthrough

Subjects: This section defines the set of users, such as service accounts and processes, that need to access the Kubernetes API. Here, we have to give the reference of the tiller service account, as shown in Figure 4-8 under the following subsections.	Kind: This field defines the object type. Here it is ServiceAccount because ServiceAccount was created for Tiller to make a connection with the Kubernetes API server.

	Name: We are using name as tiller.

	Namespace: This field defines the namespace for the cluster role binding; e.g., kube-system.

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig8_HTML.jpg]
Figure 4-8tiller-helm.yaml file walkthrough

Please see Figure 4-8.
Step 2: Use the following command to create the cluster role shown in Figure 4-9: $ kubectl create -f tiller-helm.yaml

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig9_HTML.jpg]
Figure 4-9Configuring role for installing Tiller

Step 3: Once the service account is created, deploy Tiller to your cluster and assign it the service account you just created.$ helm init --service-account tiller --history-max 200

The --service-account flag signifies that Tiller should run under the tiller service account previously created. The --history-max flag specifies the maximum number of objects Helm persists in its history. If this flag isn’t specified, history objects are not purged. Over a period of time, this can build up to a huge number of objects in your cluster and thereby make administration tasks difficult. Please refer to Figure 4-10.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig10_HTML.jpg]
Figure 4-10Installing Tiller

Step 4: Run the following command on the master node under /home/Prometheus. You should now see both the client and the server version information, as shown in Figure 4-11.$helm version

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig11_HTML.jpg]
Figure 4-11Verifying Helm version

Exporters
An exporter helps in fetching the state/logs/metrics from the application/Kubernetes service and providing data to Prometheus. This concept is similar to that of adapters or plugins in other monitoring tools available in the market. Prometheus provides a list of official and externally contributed exporters. Let’s explore some of these exporters, which are useful for container infrastructure monitoring:
https://prometheus.io/docs/instrumenting/exporters/
Node Exporter
Node Exporter is a Prometheus exporter for fetching metrics for hardware and OS metrics exposed by Unix/Linux kernels. It is written in Go language with pluggable metric collectors. Collectors differ as per operating system type. Table 4-1 provides a few examples.Table 4-1.Types of Collectors

	Name
	Description
	OS

	Arp
	Exposes ARP statistics from /proc/net/arp
	Linux

	Boottime
	Exposes system boot time derived from kern.boottime sysctl
	Darwin, Dragonfly, FreeBSD, NetBSD, OpenBSD, Solaris

	Cpu
	Exposes CPU statistics
	Darwin, Dragonfly, FreeBSD, Linux, Solaris

	Cpufreq
	Exposes CPU frequency statistics
	Linux, Solaris

	Diskstats
	Exposes disk I/O statistics
	Darwin, Linux, OpenBSD

	Filesystem
	Exposes filesystem statistics, such as disk space used
	Darwin, Dragonfly, FreeBSD, Linux, OpenBSD

	Hwmon
	Exposes hardware monitoring and sensor data from /sys/class/hwmon/
	Linux

	Meminfo
	Exposes memory statistics
	Darwin, Dragonfly, FreeBSD, Linux, OpenBSD

	Netclass
	Exposes network interface info from /sys/class/net/
	Linux

	netdev
	Exposes network interface statistics such as bytes transferred
	Darwin, Dragonfly, FreeBSD, Linux, OpenBSD

	netstat
	Exposes network statistics from /proc/net/netstat. This is the same information as netstat -s.
	Linux

	Nfs
	Exposes NFS client statistics from /proc/net/rpc/nfs. This is the same information as nfsstat -c.
	Linux

	Nfsd
	Exposes NFS kernel server statistics from /proc/net/rpc/nfsd. This is the same information as nfsstat -s.
	Linux

	uname
	Exposes system information as provided by the uname system call
	Darwin, FreeBSD, Linux, OpenBSD

Now, let’s start with configuring Node Exporter on the environment we set up in the previous chapter. We will install Node Exporter on the Kubernetes master node (10.1.150.126) using Helm.

Step 1: Log in to the Kubernetes master node (10.1.150.126), navigate to the /home/prometheus folder, and execute the following command. It will download the exporter from the GitHub URL given below, as shown in Figure 4-12.$ helm install --name node-exporter stable/prometheus-node-exporter

https://github.com/helm/charts/tree/master/stable/prometheus-node-exporter

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig12_HTML.jpg]
Figure 4-12Configuring

 Node Exporter

Step 2: Now, let’s verify the Node Exporter service is running by executing the following command from the /home/prometheus folder. The node-exporter-prometheus-node-exporter service should be visible in a running state, as highlighted in Figure 4-13. Also note the cluster IP address for the service, as it will be used in the next step.$kubectl get svc

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig13_HTML.jpg]
Figure 4-13Verifying

 Node Exporter status

Step 3: The next step is to configure Node Exporter. Navigate to the /home/prometheus folder on the master Kubernetes node and open the config-map.yml file. Under the scarpe_config section find the job_name: node-exporter section and details for the job name and static configs, as shown in Figure 4-14.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig14_HTML.jpg]
Figure 4-14Node Exporter section

	job_name: This field represents the job name for Node Exporter. In this example, we are using node-exporter as job_name.

	static_configs: This section has a subsection named targets in it. Targets refers to the job target, which is 10.102.155.199 (cluster IP) and 9100, which is the service port on which the Node Exporter service is running. You can use the following command to verify your cluster IP and port information, as shown in Figure 4-15.

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig15_HTML.jpg]
Figure 4-15Verifying

 Node Exporter status

$ kubectl get svc

Step 3: Execute the following commands to reflect the Prometheus config map changes made in previous steps:kubectl delete configmaps prometheus-server-conf -n=monitoring
kubectl create -f config-map.yaml
kubectl delete deployment prometheus-deployment -n monitoring
kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 4: Verify Node Exporter’s status from within the Prometheus UI by logging in and navigating to Status and then to Targets (http://masternodeip:30000)
Search for node-exporter on the page and verify that its state is UP, as shown in Figure 4-16.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig16_HTML.jpg]
Figure 4-16Verifying Node Exporter status on Prometheus console

Step 5: Now, let’s execute a query to start collecting and displaying the node metrics. Click on the Graph tab. In the Expression section, in the text box, write node_load15 and click on the Execute button, as shown in Figure 4-17.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig17_HTML.jpg]
Figure 4-17Node Exporter–based query sample

You will see a graph showing metrics similar to the one shown in Figure 4-18.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig18_HTML.jpg]
Figure 4-18Node Exporter–based graph

Node Exporter is primarily used to monitor infrastructure elements of containers and not processes/services. Node Exporter is typically run as a privilege user instead of a root user. We will explore some of the key collectors as part of this chapter.
CPU Collector
The metric from the CPU collector is node_cpu_seconds_total, indicating how much time each CPU spent in each mode. Log in to Prometheus and click on the Graph tab. In the Expression section (text box) write the following query and click on the Execute button:node_cpu_seconds_total{cpu="0", mode="idle"}

The following are the various aspects of CPU data collected by the CPU collector:	Latency: Average or maximum delay in CPU scheduler

	Traffic: CPU utilization

	Errors: Processor-specific error events, faulted CPUs

	Saturation: Run-queue length

After execution, you will get the result shown in Figure 4-19.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig19_HTML.jpg]
Figure 4-19CPU collector–based graph

Node Exporter provided the following CPU-based metrics that tell us how many seconds each CPU spent doing each type of work:node_cpu_seconds_total{cpu="0",mode="guest"} 0
node_cpu_seconds_total{cpu="0",mode="idle"} 2.03442237e+06
node_cpu_seconds_total{cpu="0",mode="iowait"} 3522.37
node_cpu_seconds_total{cpu="0",mode="irq"} 0.48
node_cpu_seconds_total{cpu="0",mode="nice"} 515.56
node_cpu_seconds_total{cpu="0",mode="softirq"} 953.06
node_cpu_seconds_total{cpu="0",mode="steal"} 0
node_cpu_seconds_total{cpu="0",mode="system"} 6605.46

Filesystem Collector
This collector exposes filesystem statistics, such as disk space used. Log in to Prometheus and click on the Graph tab. In the Expression section (text box), write the following query and click on the Execute button:(node_filesystem_avail_bytes / node_filesystem_size_bytes)

node_filesystem_avail_bytes returns the available filesystem space in bytes for on-root users.
node_filesystem_size_bytes returns the filesystem size in bytes.
After execution, you will get the used disk space in bytes, as shown in Figure 4-20.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig20_HTML.jpg]
Figure 4-20Filesystem collector–based graph

Diskstats Collector

This collector exposes disk I/O statistics. Log in to Prometheus and click on the Graph tab. In the Expression section (text box), write the following query and click on the Execute button:node_disk_io_now

After execution, you will get the result as per Figure 4-21.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig21_HTML.jpg]
Figure 4-21Diskstats collector–based graph

Netdev Collector
This collector exposes network interface statistics such as bytes transferred. Log in to Prometheus and click on the Graph tab. In the Expression section (text box), write the following query and click on the Execute button. This query will calculate network bandwidth usage of cluster.rate(node_network_receive_bytes_total[1m])

After execution, you will get the result shown in Figure 4-22.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig22_HTML.jpg]
Figure 4-22Netdev collector–based graph

Meminfo Collector
This collector exposes memory statistics. Log in to Prometheus and click on the Graph tab. In the Expression section (text box), write the following query and click on the Execute button. This query will calculate and show free available memory.node_memory_MemFree_bytes

The following are the various aspects of memory data collected by the Meminfo collector:	Latency: (none—difficult to find a good method of measuring and not actionable)

	Traffic: Amount of memory being used

	Errors: Out-of-memory errors

	Saturation: Out of Memory (OOM) killer events, swap usage

After execution, you will get the result shown in Figure 4-23.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig23_HTML.jpg]
Figure 4-23Meminfo collector–based graph

The following are some useful memory-based metrics provided by Node Exporter:	node_memory_Active_anon_bytes (gauge) return memory information field Active_anon_bytes

	node_memory_Active_bytes (gauge) return memory information field Active_bytes

	node_memory_Active_file_bytes (gauge) return memory information field Active_file_bytes

Uname Collector
This collector exposes system information as provided by the uname system call. Log in to Prometheus and click on the Graph tab. In the Expression section (text box), write the following query and click on the Execute button. This query will show the count of machines run, along with the kernel version.count by(release)(node_uname_info) from prometheus GUI.

After execution, you will get the result shown in Figure 4-24.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig24_HTML.jpg]
Figure 4-24Uname collector–based graph

cAdvisor Exporter
cAdvisor is an open source container resource usage and performance monitoring exporter. Let’s now configure the cAdvisor exporter in our container setup.
Step 1: We will configure cAdvisor on the Kubernetes master node (10.1.150.126). Navigate to the /home/prometheus folder and open the config-map.yaml file

. Find the section with job_name: 'kubernetes-cadvisor' and review the following sections:	job_name: This field defines the job name assigned to scraped metrics; in our case, we use kubernetes-cadvisor as the job name to fetch to gets metrics using the Kubernetes APIs.

	kubernetes_sd_configs: This field represents a list of Kubernetes service discovery configurations. Kubernetes SD configurations help in fetching targets from Kubernetes' REST API. We are using nodes in our case because every node has Docker containers that are running under Kubernetes pods, and cAdvisor provides Docker container–related metrics. The node role discovers one target per cluster node.

	tls_config: This field provide details for configuring TLS connections. Under this field there is a subfield for ca_file. This field provides details of the CA certificate used for API authentication.

	metrics_path: Defined cAdvisor metrics endpoint that is used by Prometheus to collect the container data, as shown in Figure 4-25.

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig25_HTML.jpg]
Figure 4-25Config-map.yaml file review for cAdvisor exporter

Step 2: Execute the following commands to apply the changes made to the Prometheus configuration:$kubectl delete configmaps prometheus-server-conf -n=monitoring
$kubectl create -f config-map.yaml
$kubectl delete deployment prometheus-deployment -n monitoring
$kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 3: To verify that all the components related to Prometheus are running fine, execute the following command, as shown in Figure 4-26:$ kubectl get all -n=monitoring

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig26_HTML.jpg]
Figure 4-26cAdvisor exporter configuration

Step 4: Log in to Prometheus GUI at http://kubernetes_master_nodeip: 30000.
Click Status, and then choose “Targets.” You will find the cAdvisor details as in Figure 4-27. Here, the number of endpoints depends on the number of nodes in the Kubernetes cluster, as shown in Figure 4-27.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig27_HTML.jpg]
Figure 4-27cAdvisor exporter verification

In our example, we are using a two-node cluster.
Step 5: Click the Graph tab in the Prometheus GUI and execute the following query to view the cumulative count of reads merged:container_fs_reads_merged_total

After executing the query, you will see the result, as per Figure 4-28.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig28_HTML.jpg]
Figure 4-28cAdvisor exporter–based filesystem read graph

Step 6: Execute the following query to get the CPU usage by Kubernetes namespaces:sum(rate(container_cpu_usage_seconds_total{container_name!="POD",namespace!=""}[5m])) by (namespace)

After executing the query, you will see the result as per Figure 4-29.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig29_HTML.jpg]
Figure 4-29cAdvisor exporter–based CPU usage graph

Step 7: Execute the following query to get the ICMP statistics:node_netstat_Icmp_InMsgs

After executing the query, you will see the result as shown in Figure 4-30.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig30_HTML.jpg]
Figure 4-30cAdvisor exporter–based ICMP stats graph

Step 8: Execute the following command to get a list of currently opened connections:node_netstat_Tcp_ActiveOpens

After executing the query, you will see the result shown in Figure 4-31.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig31_HTML.jpg]
Figure 4-31cAdvisor exporter–based open connection graph

Azure Monitor Exporter
The Azure Monitor exporter is used for exporting metrics from Azure applications using the Azure Monitor API. Now, let’s configure an Azure container cluster and see how we can monitor it using Prometheus and leveraging the Azure Monitor exporter.
Step 1: This lab step assumes readers have an Azure account set up and have working knowledge of Azure. Log in to your Azure account and navigate to the Azure dashboard. Click on “Create a resource,” as shown in Figure 4-32.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig32_HTML.jpg]
Figure 4-32Azure Console

Step 2: Select “Kubernetes service” from the Containers section.
Step 3: Fill in the details to create the Kubernetes service:
Provide resource group name PrometheusPOC, as shown in Figure 4-33.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig33_HTML.jpg]
Figure 4-33Launching Azure AKS instance via Azure Console

Note this value as it will be used in the exporter configuration.
Insert other required inputs like cluster name, location, pool size, etc. We are taking Node Count as “1” in this example, as shown in Figure 4-34.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig34_HTML.jpg]
Figure 4-34Launching Azure AKS instance via Azure Console

Now, click on the Scale tab and provide scaling settings by enabled VM scale sets, as shown in Figure 4-35.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig35_HTML.jpg]
Figure 4-35Launching Azure AKS instance via Azure Console

Click on the Authentication tab and provide either an existing service principal or create a new one. The service principal should have at least a read role on associated log analytics.
Then click on the Networking tab. Create a new virtual network and subnets, etc., or use the basic configuration, which will create a basic network with the default configuration, as shown in Figure 4-36.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig36_HTML.jpg]
Figure 4-36Launching Azure AKS instance via Azure Console

Click on the Monitoring tab and select “Yes” to enable container monitoring. Choose a workspace for the Log Analytics workspace. This workspace is used by Azure to monitor log data. In our example, we select the “DRYICEDEMOIAC” option for Log Analytics workspace, as shown in Figure 4-37.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig37_HTML.jpg]
Figure 4-37Launching Azure AKS instance via Azure Console

The Review+Create tab gives details about the information and options provided by the user to create the cluster. Now click the Create button to start the process of cluster creation, as shown in Figure 4-38.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig38_HTML.jpg]
Figure 4-38Launching Azure AKS instance via Azure Console

Step 4: After cluster creation, we will see the screen shown in Figure 4-39, which verifies the successful creation of the Azure AKS through Azure Console. We can see that a cluster by the name of PrometheusCluster is displayed on the Azure Console screen.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig39_HTML.jpg]
Figure 4-39Verifying Azure AKS instance via Azure Console

After clicking on PrometheusCluster, the information related to the cluster is shown, as in Figure 4-40. Information would contain information like resource group name, location, tags, etc.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig40_HTML.jpg]
Figure 4-40Verifying

 Azure AKS instance via Azure Console

Step 5: Now we will use the PowerShell AZ module to check nodes associated with the Kubernetes cluster. For this step, we will assume readers have PowerShell set up for Azure access. First, log in to the Azure PowerShell module using your credentials. Then, execute the following command to get the details of the nodes. For arguments, use the values used for provisioning the cluster in the previous step. You will need a Windows system with the PowerShell module installed on it to proceed, as shown in Figure 4-41.az aks get-credentials –-resource-group PrometheusPOC –name PrometheusCluster

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig41_HTML.jpg]
Figure 4-41Configuring Azure Powershell module for Azure AKS

Step 6: Now we will push an application on Azure AKS. For this exercise, we will leverage a sample Azure voting application. The following is the URL for GitHub from which the container image will be pulled:
https://github.com/Azure-Samples/azure-voting-app-redis
Step 7: Create the namespace ms-votefront using the following command:Kubectl create ns ms-votefront

Step 8: Check the associated nodes by executing the following command, as shown in Figure 4-42:kubectl get ns

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig42_HTML.jpg]
Figure 4-42Namespace verification for container application deployment on Azure AKS

Step 9: Now let’s apply the image to the Kubernetes cluster using the following command, as shown in Figure 4-43:kubectl apply -f azure-vote-all-in-one-redis.yaml

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig43_HTML.jpg]
Figure 4-43Deployment of container application on Azure AKS

Step 10: Check the status and browser load balancer IP by executing the following command, as shown in Figure 4-44:kubectl get all -n ms-votefront

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig44_HTML.jpg]
Figure 4-44Verification of container application on Azure AKS

Step 11: Open the browser and type the IP address of the load balancer to verify the application is working, as shown in Figure 4-45.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig45_HTML.jpg]
Figure 4-45Verification of container application on Azure AKS

Step 12: To view the log, navigate to the Azure home page and click “Log Analytics workspaces,” as shown in Figure 4-46.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig46_HTML.jpg]
Figure 4-46Log Analytics workspaces

Step 13: Once the Log Analytics workspaces page has opened, click the DRYICEDEMoIAC workspace as shown in Figure 4-47.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig47_HTML.jpg]
Figure 4-47Log Analytics workspaces page

Now, click the “Logs” option, as shown in Figure 4-48, to see the Azure AKS logs.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig48_HTML.jpg]
Figure 4-48Logs

Step 14: Once the Logs page opens you can run the various queries to see the AKS cluster log. In our example, we type query ContainerLog in the query text box to see all the container logs running in our AKS cluster, then click the Run button, as shown in Figure 4-49. This query will return the deployed application container logs, such as details of the deployed Docker image, HTTP request request(GET,POST) handled by the application container, etc.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig49_HTML.jpg]
Figure 4-49Verification of container application metrics via Azure Console

Step 15: The Prometheus Azure exporter is based on Go language. To configure the same we would require Go language. So, let’s download and install the Go language binary archive file using the following command, as shown in Figure 4-50.wget https://dl.google.com/go/go1.13.3.linux-amd64.tar.gz

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig50_HTML.jpg]
Figure 4-50Download package for Go installation

For this command, download Go Linux version 1.13.3 from the following link: https://dl.google.com.
Step 16: Extract the downloaded archive and install it in the /usr/local Linux directory. You can also install this under the home directory (for shared hosting) or other location.tar -xzf go1.13.3.linux-amd64.tar.gz

After extracting go1.13.3.linux-amd64.tar.gz move all the directories and files related to the Go language to /usr/local by using the mv command:mv go /usr/local

Step 17: Now we need to set up the Go language environment variables for your project. Commonly, you need to set three environment variables: GOROOT, GOPATH, and PATH. GOROOT is the location where the Go package is installed on your system.export GOROOT=/usr/local/go

Now set the PATH variable to access Go binary systemwide using the following command:export PATH=$GOPATH/bin:$GOROOT/bin:$PATH

All the preceding environment setup will be set for your current session only. To make it permanent, add the preceding commands in the ~/.bash_profile file.
With this step, you have successfully installed and configured Go language on your system. Verify the setup by using the following command to check the Go version:go version

Step 18: Clone the Azure exporter by executing the following inline command in the Kubernetes master server (10.1.150.126) from the home/prometheus directory:git clone https://github.com/RobustPerception/azure_metrics_exporter.git

Step 19: Navigate to the azure_metrics_exporter directory and create the azure.yaml file and copy the following content. You can download the sample Azure.yml file

 from the following link as well: https://github.com/RobustPerception/azure_metrics_exporter/blob/master/azure-example.yml. Add the details of your Azure subscription and credentials in the following section in the file (highlighted):---
active_directory_authority_url: "https://login.microsoftonline.com/"
resource_manager_url: "https://management.azure.com/"
credentials:
 subscription_id: <secret>
 client_id: <secret>
 client_secret: <secret>
 tenant_id: <secret>

Provide the resource group ID and valid metrics name in the targets section

 of the file.
The final content of file will look as follows:---
active_directory_authority_url: "https://login.microsoftonline.com/"
resource_manager_url: "https://management.azure.com/"
credentials:
 subscription_id: "xxxxxx"
 client_id: "xxxxxx"
 client_secret: "xxxxxx"
 tenant_id: "xxxxxx"

targets:
 - resource: "/resourcegroups/PrometheusRG/providers/Microsoft.ContainerService/managedClusters/prometheusclusterpoc"
 metrics:
 - name: "memoryRssBytes"
 - name: "cpuUsageNanoCores"
 - name: "cpuAllocatableNanoCores"
 - name: "memoryAllocatableBytes"
 - name: "cpuUsageNanoCores"
 - name: "memoryCapacityBytes"

resource_groups:
 - resource_group: "PrometheusRG"
 resource_types:
 - "Microsoft.Compute/virtualMachines"
 resource_name_include_re:
 - "aks-agentpool-75077965-vmss000000"
 resource_name_exclude_re:
 - "testvm12"
 metrics:
 - name: "memoryRssBytes"
 - name: "cpuUsageNanoCores"
 - name: "cpuAllocatableNanoCores"
 - name: "memoryAllocatableBytes"
 - name: "cpuUsageNanoCores"
 - name: "memoryCapacityBytes"

Step 20: To generate the azure_metrics_exporter executable file, execute the following inline command under the same directory; e.g., /home/prometheus/azure_metrics_exporter:$ make build

Step 21: Create the Linux service for the azure_metrics_exporter executable. Create the azexporter.service file under the /etc/systemd/system directory and copy the following inline commands, as shown in Figure 4-51:[Unit]
Description=azure-exporter
Wants=network-online.target
After=network-online.target
[Service]
Type=simple
ExecStart=/usr/local/bin/azure_metrics_exporter \
 --config.file /home/prometheus/azure_metrics_exporter/azure.yml
Restart=always
RestartSec=1
[Install]
WantedBy=multi-user.target

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig51_HTML.jpg]
Figure 4-51Create Linux service for Azure exporter

Step 22: Start the service by executing the following command:$ systemctl start azexporter

Verify whether the azexporter service has started by executing the following command, as shown in Figure 4-52:$ systemctl status azexporter

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig52_HTML.jpg]
Figure 4-52Verification of Azure exporter

Step 23: Copy the following content into the config-map.yaml file under the scrape_configs: section:- job_name: 'azure-monitoring'
 static_configs:
 - targets: ['10.1.150.126:9276']

Under targets, give the IP address of the master node (10.1.150.126) and Azure Monitor port, which is 9276.
Step 24: Execute the following command to reflect the changes in Prometheus:$ kubectl delete configmaps prometheus-server-conf -n=monitoring
$ kubectl create -f config-map-new.yaml
$ kubectl delete deployment prometheus-deployment -n monitoring
$ kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 25: Open the Prometheus GUI to get the status of the Azure exporter, as shown in Figure 4-53.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig53_HTML.jpg]
Figure 4-53Verification of Azure exporter on Prometheus console

Step 26: Click on Graph tab and execute the following query to get the result (after configuring the exporter, please wait for at least twenty to thirty minutes to get the result), as shown in Figure 4-54.kube_node_status_allocatable_cpu_cores_count_min

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig54_HTML.jpg]
Figure 4-54Node status graph using Azure exporter

Step 27: Click on the Graph tab and execute the following query to get the total amount of available memory in a managed cluster, as shown in Figure 4-55.kube_node_status_allocatable_memory_bytes_bytes_average

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig55_HTML.jpg]
Figure 4-55Node allocated memory graph using Azure exporter

Step 28: Click on the Graph tab and execute the following query to get the total number of ready pods:kube_pod_status_ready_count_total

Step 29: Click on the Graph tab and execute the following query to get the maximum number of ready pods. See the result under the Console section of query.kube_pod_status_ready_count_max

Kube Stat Metrics
The Kube-state-metrics

 exporter leverages the Kubernetes APIs to provide metrics for various Kubernetes objects. Let’s configure Kube-state and see how we can fetch metrics using Prometheus. You will get more metrics at the following link:
https://github.com/kubernetes/kube-state-metrics/tree/master/docs
Step 1: Navigate to the /home/prometheus directory and execute the following inline command:$ git clone https://github.com/kubernetes/kube-state-metrics.git

Step 2: Verify whether the kube-state-metrics clone is successful by executing the following inline command, as shown in Figure 4-56:$ ls -ltr

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig56_HTML.jpg]
Figure 4-56Kube-state-metrics clone from Git

Step 3: Navigate to /home/prometheus/kube-state-metrics and execute the following command to install the kube-state exporter:$ cd /home/prometheus/kube-state-metrics
$ kubectl apply -f examples/standard

Step 4: Execute the following command to get the kube-state service details, as shown in Figure 4-57:$ kubectl get svc -n kube-system

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig57_HTML.jpg]
Figure 4-57Kube-state-metrics service status

Step 5: Execute the following command to fetch the kube-state-metrics endpoint that needs to be set in Prometheus, as shown in Figure 4-58:$kubectl describe svc kube-state-metrics -n kube-system

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig58_HTML.jpg]
Figure 4-58Kube-state-metrics service endpoint details

Copy the Endpoints value 10.32.0.2:8080, then update the config-map.yaml file and copy the following lines under the scrape_configs: section: - job_name: 'kube-state-metrics'
 static_configs:
 - targets: ['10.32.0.2:8080']

Step 6: Execute the following command to reflect the changes in Prometheus:$kubectl delete configmaps prometheus-server-conf -n=monitoring
$kubectl create -f config-map.yaml
$kubectl delete deployment prometheus-deployment -n monitoring
$kubectl apply -f prometheus-deployment.yaml -n monitoring

Step 7: Log in to the Prometheus GUI (http://master_ip:30000) ➤ Targets to verify whether kube-state-metrics is up and running, as shown in Figure 4-59.[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig59_HTML.jpg]
Figure 4-59Kube-state-metrics service verification

 on Prometheus console

Step 8: Navigate to the Graph tab to execute the following query to analyze the Kubernetes deployment status to get the desired state of replicas. This helps in identifying the deployments that are having issues or facing errors, as shown in Figure 4-60.kube_deployment_status_replicas

[image: ../images/491282_1_En_4_Chapter/491282_1_En_4_Fig60_HTML.jpg]
Figure 4-60Kube deployment status metrics graph

 using Kube-state-metrics

Summary
In this chapter, we provided hands-on steps for setting up Helm and Tiller. We also provided information on various exporters’ setup and their uses in Prometheus. We also guided readers in deploying exporters and viewing metrics for their containerized application. In the next chapter, we will start with an overview of Prometheus Query Language.
Footnotes
1https://kubernetes.io/docs/reference/using-api/api-overview/https://kubernetes.io/docs/reference/

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_5

5. Working with Prometheus Query Language (PromQL)

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

PromQL (Prometheus Query Language) is a functional query language provided by Prometheus to enable the user to query data stored in real time and perform all sorts of analysis, aggregations, and operations. In this chapter, we will provide hands-on steps to the readers that will enable them to use PromQL.
Prior to getting started with PromQL, let’s briefly understand the way data is stored in Prometheus.
Data in Prometheus
As we know by now, Prometheus monitors metrics and collects and stores time-series data.
Time-series data is defined as a series of data points ordered by time. Let’s understand time-series data with an example. If we enable per-minute monitoring of the CPU in an environment comprising different types of Cis, such as servers, devices, networks, etc., then at every minute a data point will be generated that depicts the CPU utilization at that point in time. If we represented the data collected as a table, the values collected would look like Table 5-1.Table 5-1.CPU Utilization example

	Timestamp
	CPU Utilization (%)

	1591709873808
	67

	1591709884270
	66

	1591709891811
	67

	1591709898278
	68

	1591709905225
	67

In Prometheus, a time-series object is created for each metric monitored, in order to store the metric’s data. The object is uniquely identified by the metric’s name and primarily comprises a key–value pair, where the key is a millisecond-precision timestamp and the value is the measured data in Float format. Each key–value pair is termed as Sample; i.e., data at a given timestamp.

So, in Prometheus, the preceding data will become part of the time-series object uniquely identified by its metric name; i.e., cpu_util_perc. The hypothetical representation of the preceding data looks as follows:cpu_util_perc:
(1591709873808, 67),
(1591709884270, 66),
(1591709891811, 67),
(1591709898278, 68),
(1591709905225, 67)

Though the preceding data provides information about the CPU utilization (%) against a timestamp, it doesn’t provide any information related to which CI’s data it is.
To cater to this, Prometheus enables us to define labels. Labels enable us to capture additional attributes of the data monitored. In the object, this is further stored as a key–value pair, where the key is the name of the attribute being captured and the value is the actual attribute data.
In the preceding example of object cpu_util_perc we can create a label named CI to capture details of the CI whose CPU utilization is being monitored.
With the labels in place, the samples—i.e., the time-series data—will be hypothetically represented as shown here:cpu_util_perc {ci: "ci_1"}:
(1591709873808, 67),
(1591709884270, 66),
(1591709891811, 67),
(1591709898278, 68),
(1591709905225, 67)
cpu_util_perc {ci: "ci_2"}:
(1591709873808, 67),
(1591709884270, 66),
(1591709891811, 67),
(1591709898278, 68),
(1591709905225, 67)

Multiple labels can be defined per metric to capture various information about the data being measured.
Getting Started
Now that we know the way data is stored in a Prometheus time-series database, let’s begin querying the data.
We begin with selectors—different ways in which we can select data, aggregators, and functions. Finally, we will see the ways in which we can use operators (arithmetic and Boolean) to work with the result data.
Selectors
There are various options for selecting the data. In PromQL terminology, we will look at various selectors of the metrics data.
Please note for all the examples here we will refer to the data of metric jvm_memory_bytes_used. This metric stores the JVM memory area-wise bytes used by different jobs running across various instances.
Select Metric
We begin with simply typing the metric name into the query console, as follows:jvm_memory_bytes_used

As mentioned earlier, all data related to the metric is stored in a time-series object identified by the metric name and its distinct labels. So, simply typing the metric name in the query console selects and displays data for all its distinct labels, as shown in Figure 5-1.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig1_HTML.jpg]
Figure 5-1Displaying data

The data returned is a single sample value for all distinct labels timestamped at the same timestamp, which is probably the last timestamped value captured. This output is termed as an instant vector in PromQL.

Filter by Labels
As can be seen in the preceding output, the labels associated with the metric are area, job, instance, and so on. Let’s next look at selectors with filters on labels.
Let’s add a filter on the label “area” to select data where the value is heap. For this, we will simply mention the required label in the query, as shown here:jvm_memory_bytes_used {area="heap"}

This returns data points where the label “area” has a value of heap, as shown in Figure 5-2.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig2_HTML.jpg]
Figure 5-2Return values as heap

In the preceding query we used the = operator to return matching data. Next, let’s use the following query to display all data except the ones where “area” equals heap.jvm_memory_bytes_used {area!="heap"}

Here, we have just replaced the = operator with the != operator. As we can see in Figure 5-3, the output instant vector comprises data where area! = "heap".[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig3_HTML.jpg]
Figure 5-3Return values that are not heap

The preceding were examples where we did exact matches of the values. Let’s next look at regular expressions or searches where we will filter the data on the basis of a regular expression. The following query enables us to select all cases where the “job” label values begin with the characters fed.jvm_memory_bytes_used {job=~"fed.+"}

As shown in the output in Figure 5-4, the instant vector–only data where the “Job” label values begin with fed are selected.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig4_HTML.jpg]
Figure 5-4The results of our query

We can also filter the data by using a regular expression where we will fetch data not matching an expression. The following query fetches all data except those where the “Job” label value begins with fed:jvm_memory_bytes_used {job!~"fed.+"}

Figure 5-5 depicts the instant vector returned.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig5_HTML.jpg]
Figure 5-5The instant vector

Next, let’s use the or operator denoted by symbol “|”, which enables us to do either/or with the values.
The following query enables us to select data where the “Job” label values begin with either f or j.jvm_memory_bytes_used {job=~"f.+|j.+"}

Figure 5-6 shows the data fetched. The | operator enables us to specify multiple values where either of the value matches satisfies the condition.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig6_HTML.jpg]
Figure 5-6The fetched jobs

If we have exact values, we can use the values separated by the | operator to select rows with either value, as shown in the following query, where we fetch data where the “area” label value is either heap or nonheap.jvm_memory_bytes_used {area=~"heap|nonheap"}

Figure 5-7 shows the vector returned.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig7_HTML.jpg]
Figure 5-7The vector returned

As can be seen, the data points were selected/fetched where the “area” value is either heap or nonheap.
Filter by Multiple Labels
Let’s next look at the way we can use multiple labels to filter the data. The multiple filters are by default combined with an AND operator, which implies that the data returns matches where all the filter criteria are specified. Whatever operators and criteria we discussed previously can be individually applied to each filter condition, and then we can combine them.
Let’s look at the following query:jvm_memory_bytes_used {instance=~"10.1.150.12:8080", area!~"heap", job=~'j.+'}

The query returns data where “instance” is 10.1.150.12:8080, “area” is not heap, and “job” values start with j, as shown in Figure 5-8.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig8_HTML.jpg]
Figure 5-8Further filtering of the results

Prometheus does not support OR between the filters. However, we can work around the requirement by using whatever selectors we have learned up until now.
For example, if we want to select data that matches the following criteria—“job” starts with J and “area” = heap or “area” = nonheap—we can use the following query:jvm_memory_bytes_used {area=~"heap|nonheap", job=~'j.+'}

We will look at a few more examples toward the end of the section, where we will be talking about aggregation operations on the datasets.
Select to Return Range Vectors
The preceding query returned an instant vector, which we know returns a single sample value for each distinct labeled time series.
In addition, PromQL enables us to select a range of samples (timestamped data) for each distinct labeled time series from the current instant. We simply have to specify the range duration, as shown here in square brackets next to the selectors:jvm_memory_bytes_used [1m]

It comprises the duration we want to look back at followed by one of the following units:	s: seconds

	m: minutes

	h: hours

	d: days

	w: weeks

	y: years

In the preceding example query, we have specified to select data of the last one minute from the current instant. As shown in Figure 5-9, the range of all samples collected in the last one minute for each distinct labeled entry is selected.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig9_HTML.jpg]
Figure 5-9The range of samples

This data output is termed as a range vector in PromQL, as it returns a range of values per distinct labeled time-series object for the duration selected.
Note
The range vector cannot be directly graphed, but can be viewed in the console, as shown in Figure 5-9.

If square brackets do not specify the range, the default instant vector is returned, which is an instant single data sample for all distinct labeled time series objects.
The range operator can be combined with the other selection criteria we discussed previously.
In the following query, we return a range vector for data filtered by applying multiple filter criteria on different labels:jvm_memory_bytes_used{area="heap", instance="10.1.150.150:30000",job="federate",exported_job="federate"}[1m]

As shown in Figure 5-10, the output returns a range of data collected in the last one minute only for “instance” = 10.1.150.150:30000, “job” = federate, “exported_job” = federate, and “area” = heap.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig10_HTML.jpg]
Figure 5-10Another range of samples

So, in summary, to select a range vector we just need to append a range in square brackets at the end of the selector.
Select Past/Historical Data

Till now, we have looked at selecting the current data or data specified at a moment. PromQL also enables us to select data from the past. For this, we simply use Offset in the query, as in the following, followed by the duration and the units, which we covered earlier in the range section.jvm_memory_bytes_used Offset 7d

As shown in Figure 5-11, the instant vector data returned is data that was collected seven days ago.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig11_HTML.jpg]
Figure 5-11Our first historical data example

We can return range vectors as well for the past data. We simply add the range duration at the end of the selector, as shown in the following query. The query returns a range of all data collected in the last one minute seven days back.jvm_memory_bytes_used[1m] Offset 7d

The output in Figure 5-12 shows the past timestamped range values.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig12_HTML.jpg]
Figure 5-12Timestamped range values

We can use the other selectors we discussed earlier and further combine offset to return historical data of the filtered lot. For example, the following query selects past range data only for instances starting with 10.1.150.150:jvm_memory_bytes_used {instance =~ "10.1.150.150.*"}[1m] Offset 7d

The output in Figure 5-13 depicts the data returned.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig13_HTML.jpg]
Figure 5-13The data returned from our query

All the queries we just looked at enabled us to select the data from the Prometheus database using PromQL, and all are termed as part of the selector clause. We also looked at the different vectors returned; i.e., instant vector versus range vector.
Aggregation Example
Now that we have the data selected, let’s apply aggregations to it to aggregate the data for meaningful analysis. PromQL supports multiple aggregation operators. Please refer to the official site for more details.1 In the following examples, we refer to these operations:	sum: to sum the values

	topk/bottomk: to return top/bottom K data points ordered by values data

Let’s begin with the usage of the sum operator. As shown in the following query, we simply add the sum operator to the metric name.sum(jvm_memory_bytes_used)

The output, as shown in Figure 5-14, returns the total JVM memory bytes used.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig14_HTML.jpg]
Figure 5-14Total memory bytes used

The preceding query gives overall consumption data. Let’s next group the data by area using the by clause, as shown in the following query:sum by (area) (jvm_memory_bytes_used)

The output, as shown in Figure 5-15, returns area-wise total memory bytes used.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig15_HTML.jpg]
Figure 5-15Total memory bytes used per area

Let’s further group the data by job to view consumed memory by job:sum by (job) (jvm_memory_bytes_used)

The output in Figure 5-16 shows job-wise memory consumed.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig16_HTML.jpg]
Figure 5-16Memory consumed per job

We have individually grouped the data by different labels. Let’s next use the following query to group the data by area and job so as to view job-wise each area-wise memory byte consumed.sum by (area, job) (jvm_memory_bytes_used)

The output in Figure 5-17 shows the area-wise job-wise memory-consumed details.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig17_HTML.jpg]
Figure 5-17Memory used by area and job

Now that we have grouped the data, let’s next find out the top two jobs and area that are consuming the most memory. We use the topk operator along with sum, as shown in the following query, to return the top two areas and jobs:topk(2, sum by (area, job) (jvm_memory_bytes_used))

Figure 5-18 shows the top two identified labeled data.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig18_HTML.jpg]
Figure 5-18The top two values

If we need to find the bottom area and jobs consuming the least memory, we can use bottomk along with sum to return the data, as shown in the following query:bottomk(2, sum by (area, job) (jvm_memory_bytes_used))

Figure 5-19 shows the bottom two identified labeled data.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig19_HTML.jpg]
Figure 5-19The bottom two results

Until now, we have aggregated the instant vector, which actually aggregated the single latest timestamped value and did not take into consideration the range of data generated. Let’s look at using the aggregation operators with the range vectors.
As we know, range vectors return a range of all data collected, so the vector cannot be directly used in the aggregation operators. We will first have to use the varied functions2 offered by PromQL to fetch the most relevant data point from the range. Relevance depends on the characteristics of the data. In our examples, since we are looking at bytes consumed, we will be interested in looking at the average value in the range. To find the relevant data point from the range, we will use the avg_over_time function from the list.
Let’s first look at the output of the function. We will use the following query to fetch all ranges of data generated in the last one min and then use the avg_over_time function on it.avg_over_time(jvm_memory_bytes_used[1m])

As shown in Figure 5-20, the output returns the average value of each range.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig20_HTML.jpg]
Figure 5-20The average value of each range

As we can see, the Value field has single value for each distinct labeled data point and has been converted to an instant vector. The aggregation operator can now be used with the data, as we have done previously.
Let’s continue with the preceding query. Let’s expand the range selection to return all data in the last five minutes, average it per range, and then further use the AVG aggregation operator to find the average value of memory consumed grouped by area and job. Then we use topK to return the top five areas and jobs with maximum memory used. Use the following query to get the desired result:TOPK(5, AVG by (area, job) (avg_over_time(jvm_memory_bytes_used[5m])))

The output in Figure 5-21 shows the top five areas and jobs.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig21_HTML.jpg]
Figure 5-21Top five areas

We know by now the way we can select data and group by and apply aggregation operators to aggregate the data. We have also looked at using the aggregation operators on range data.
Logical and Arithmetic Operators

With the data selected and aggregated, we can next look at operations that can be performed between the output data returned or on the metrics data. PromQL enables us to apply varied operators3 on the result sets, allowing us to combine different datasets so as to compare and derive meaningful insights. In the examples in this section, we will use a few sample use cases.
Use Case 1: Let’s begin with a use case wherein we compare current data with the historical data collected seven days back to identify any rise in memory consumed.
As shown in the following query, we use the comparison operator > between the two result sets to identify the labeled data where consumption is more than it was seven days before:jvm_memory_bytes_used > 1 * (jvm_memory_bytes_used offset 7d)

As can be seen, we have simply used the operator between the previously fetched two vectors. We can use any selector criteria to select the data, and then can use the operators to do the needful; in this case we are comparing and identifying the ones where the consumption has increased. Figure 5-22 shows the output, listing only the ones where the consumption is high.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig22_HTML.jpg]
Figure 5-22High consumption

Use Case 2: As we know, the data returned by the metric jvm_memory_bytes_used is in bytes. In this use case, we will use a scalar arithmetic operation to convert the value to megabytes. The following query uses the multiplication operator to multiply the value by 0.000001 to convert it to megabytes:jvm_memory_bytes_used * 0.000001

The output returned is in megabytes, as shown in Figure 5-23.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig23_HTML.jpg]
Figure 5-23Values in megabytes

Use Case 3: Let’s now use two different metrics’ data. In this use case, we will consider the jvm_memory_bytes_usage metric along with jvm_memory_bytes_committed. We will use the subtraction operator to identify the bytes remaining to consume, and further use scalar multiplication to convert the data into megabytes. The following query enables us to find the difference and returns the data in megabytes:(jvm_memory_bytes_committed - jvm_memory_bytes_used) * 0.000001

The output in Figure 5-24 shows per time-series object the data remaining in megabytes.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig24_HTML.jpg]
Figure 5-24Data remaining in megabytes

Use Case 4: Next, let’s apply an aggregation operator to the output of Use Case 3 to return area- and job-wise bytes remaining. Use the following query; we also use the scalar multiplier on the final output to convert it to megabytes:sum by (area,job) (jvm_memory_bytes_committed - jvm_memory_bytes_used) * 0.000001

Figure 5-25 shows the area- and job-wise remaining memory in megabytes.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig25_HTML.jpg]
Figure 5-25Remaining megabytes, by area and job

We can also apply topk to return the top two with maximum bytes remaining, as in the following query:TOPK(2, sum by (job) (jvm_memory_bytes_committed - jvm_memory_bytes_used))* 0.000001

The output

in Figure 5-26 shows the top two jobs.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig26_HTML.jpg]
Figure 5-26Top two jobs

Use Case 5: As we mentioned in the selector section, the filters when combined are joined by an AND operator. We looked at the way the | operator can be used to apply OR on values on the same label, so, prior to concluding, let’s look at the way we can apply OR between filters on different labels. Let’s say we want to select the values where either the label “job” or the “exported_job” label has the Jira value. We will use the following query to select the data where job=“jira” or exported_job=“jira”.(jvm_memory_bytes_used {job="jira"}) or

(jvm_memory_bytes_used {exported_job="jira"})

Here, we have simply used the OR operator between the two outputs, and it returns the expected output. The output returns rows where either the “job” value is jira or the “exported_job” value is jira, as shown in Figure 5-27.[image: ../images/491282_1_En_5_Chapter/491282_1_En_5_Fig27_HTML.jpg]
Figure 5-27The output of the final query

With this, we have covered all important aspects of working with PromQL.
Summary
In this chapter, we have provided hands-on steps for using Prometheus Query Language (PromQL). In the next chapter, we will start with understanding the dashboard and reporting solutions by using Grafana as Prometheus; Grafana is a common combination of monitoring dashboard.
Footnotes
1https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

2https://prometheus.io/docs/prometheus/latest/querying/functions/

3https://prometheus.io/docs/prometheus/latest/querying/operators/

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_6

6. Container Reporting & Dashboards

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This chapter will provide hands-on steps for using container reporting and dashboard solutions. Grafana and Prometheus are commonly used by DevOps teams for storing and visualizing time-series data. Grafana supports querying Prometheus and being a data source for Prometheus. We will look at the following:	Introduction to Container Reporting and Dashboards

	Working with Grafana

Introduction to Container Reporting and Dashboards
As we have seen so far, containers have become an integral part of modern application architectures, and as a result have changed the way software is deployed and operated. Once we have set up monitoring for the containers and applications, the next step from an operations visibility perspective is the dashboard and reporting. The dashboard and reporting solution will provide a graphical interface with which to visualize the container inventory, container metrics for availability and performance, and application metrics.
Dashboards also provide insight about the overall health of the container platform. From a security perspective, by leveraging container security and compliance solution integration, an operations team can also monitor the security posture of the container platform and any applications running on it.
There are various popular dashboard solutions available in the market for container dashboards and reporting. Let’s look at a few of them.
Grafana: Grafana is a UI-based dashboard and reporting tool. It is used for data analysis and visualization that’s generated by the various data sources in the form of metrics. Grafana has in-built support for time-series databases such as Prometheus and InfluxDB, and it also supports rational databases, such as MySQL, SQL Server, etc. Grafana also allows one to create alerts on a specific condition or set of conditions; e.g., CPU utilization more than 80 percent, or disk usage, etc.
Grafana is available as both an open source version and an enterprise version. In this chapter, we will use open source Grafana to demonstrate how to create the dashboard for a container monitoring ecosystem.
Sysdig: Sysdig is a container monitoring and security tool that also provides dashboard and reporting capabilities. Sysdig provides customized dashboard creation so as to display the most useful/relevant views and metrics for the infrastructure in a single location. Each dashboard comprises a series of panels configured to display specific data in a number of different formats.
Splunk: Splunk is a unified solution with which to analyze, search, and visualize the data gathered from the various applications, sensors, servers, and containers. Splunk does not need any databases to store the data, as it extensively makes use of its indexes to do so. In Splunk, one can analyze container ecosystem performance, do troubleshooting, and store/retrieve data for later use.
In the next section, we will focus on Grafana’s features for container reporting and dashboards. We will do a hands-on exercise to set up Grafana and fetch reports leveraging metrics from Prometheus.
Grafana
Grafana uses the data source to connect with the system—e.g., Prometheus, MySQL, etc.—for collecting the data. Grafana has in-built support for time-series-based data sources like Prometheus or InfluxDB. Each data source has a specific query editor associated with it for executing the query to fetch the data; e.g., PromQL query editor for Prometheus. Grafana also supports mixed data sources, meaning the user can use multiple data sources in a single dashboard; e.g., user can map data from Elasticsearch along with data from Prometheus. Mixing different data sources can be done with custom data sources as well.
The following data sources are officially supported:	CloudWatch

	Elasticsearch

	Graphite

	InfluxDB

	OpenTSDB

	Prometheus

Panel
In Grafana visualizations known as panels, users can create a dashboard containing panels for various data sources. Each panel is associated with the query editor to extract the metrics and display the result. Panels can be rearranged and resized on the dashboard.
The following are the available panel types:	Alert list

	Dashboard list

	Graph

	Heatmap

	Logs

	Singlestat

	Table

	Text

Query Editor
The query editor allows the user to query the metrics. Each data source is associated with a different query editor that is used for creating the query; e.g., PromQL query editor is used to create any PromQL-based queries.
Dashboard
Grafana provides various types of pre-built dashboards—e.g., Prometheus, Kubernetes overview, etc.—to measure the data.1 The user can also create customized dashboards based on various panels. Grafana supports templating to create a dynamic dashboard, and the user can share these dashboards among teams by publishing it.
Explore: Grafana Explore helps to analyze the metrics and logs to identify the cause of failure of the monitoring system. Since Grafana 6.0, Loki, a new data source introduced by Grafana, integrates with Explore to allow users to analyze metrics and correlated logs side-by-side to debug what went wrong.
Alerting: Grafana has a built-in alerting engine that allows the user to trigger alerts on the basis of the conditions/rules that apply on the panels. Grafana supports the following tools for notifying the user of the alerts: Slack, PagerDuty, VictorOps, and OpsGenie.
Now, let’s start installing Grafana in the environment that we set up in earlier chapters. Figure 6-1 provides an overview of the task flows we will follow to deploy Grafana.

[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig1_HTML.jpg]
Figure 6-1Grafana deployment flow

The following is the flow for the Grafana deployment that we will follow in this chapter:	We will use the already cloned configuration files from GitHub. Additionally, we will pull a file from GitHub to be used for Grafana installation.

	We will recreate the config map and deploy Grafana as a pod.

	Finally, we will test the status of the Grafana deployment using command line and web browser access.

Step 1: Log in to the Kubernetes master node (10.1.150.126) and navigate to the /home/prometheus folder, and then append the following lines in config-map.yml in the scrape_configs: section. Search for the section named job - job_name: 'prometheus' under the scrape_configs: section in the config-map.yaml file

 and append as shown in Figure 6-2.	job_name: This section is the same as explained in previous chapters. In our example case, we are using job_name as prometheus.

	static_configs: This section is the same as explained in previous chapters.	targets: This section is the same as explained in previous chapters. In targets, we specify the IP and port of Prometheus itself; e.g., 10.1.150.126:30000.

This target will be used to set up the data source in Grafana to fetch the metrics generated by Prometheus itself.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig2_HTML.jpg]
Figure 6-2Config map file update

Step 2: Execute the following in-line commands to reflect the changes in Prometheus:
$kubectl delete configmaps prometheus-server-conf -n=monitoring
$kubectl create -f config-map.yaml
$kubectl delete deployment prometheus-deployment -n monitoring
$kubectl apply -f prometheus-deployment.yaml -n monitoring
Step 3: Verify that all the components of Prometheus are running fine, as shown in Figure 6-3:$ kubectl get all -n=monitoring

[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig3_HTML.jpg]
Figure 6-3Verifying Prometheus pod status

Step 4: Open the Prometheus GUI (using the http://kubernetes-master-node:30000 URL) and navigate to targets to review the Prometheus endpoint, as shown in Figure 6-4.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig4_HTML.jpg]
Figure 6-4Verifying Prometheus pod status

Step 5: Now, let’s install the Grafana dashboard on the Kubernetes master node (10.1.150.126) by using Helm chart version 3.12.1 (GitHub URL: https://github.com/helm/charts/tree/master/stable/grafana)
Navigate to the /home/prometheus folder and execute the following command to clone the code from GitHub, as shown in Figure 6-5:$ git clone https://github.com/dryice-devops/grafana.git

[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig5_HTML.jpg]
Figure 6-5Cloning file from GitHub

Step 6: Navigate into the grafana folder by executing the following command:$ cd grafana

Step 7: Open the values.yaml file

 and modify the following sections. Save the file before closing. Navigate to the section named service in values.yaml and add values to the following sections, as shown in Figure 6-6:	service: This section represents Kubernetes service configuration for Grafana.

	type: This field provides information about the type of publishing services. Kubernetes service types allow you to specify what kind of service you want. The default is ClusterIP. In our example, we are using NodePort, which exposes the service on each node’s IP at a static port (the NodePort).

	port: Inside the cluster, what port does the service expose? E.g., 9000.

	targetPort: This is the port at which the pod-based application will be listening on the network. We are using value 3000.

	nodePort: This is the port on the node, e.g., master_node, on which the service will be available. We are using value 30007.

[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig6_HTML.jpg]
Figure 6-6Updating Value.yaml

Step 8: Navigate into the /home/prometheus folder and execute the following Helm command to install Grafana, as shown in Figures 6-7 and 6-8:$helm install –name Grafana-dashboard -f Grafana/values.yaml stable/grafana --version 3.12.1

[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig7_HTML.jpg]
Figure 6-7Installation of Grafana

[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig8_HTML.jpg]
Figure 6-8Installation of Grafana

Step 9: Execute the following command to get the secret password:$kubectl get secret --namespace default grafana-dashboard -o jsonpath="{.data.admin-password}" | base64 --decode ; echo

You will get the password—e.g., dom3BiALxXmM1Q2hAPuPVIFozxWID8yb7haMH6KU—which will be used to log in to the Grafana UI, as per Figure 6-9.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig9_HTML.jpg]
Figure 6-9Grafana temporary password fetch

Step 10: Open the browser and enter the URL (http://master-node-ip:30007), e.g., http://10.1.150.126:30007, and enter the username as “admin” and password you got from step 9, as in Figure 6-10.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig10_HTML.jpg]
Figure 6-10Grafana login page

Grafana Integration with Prometheus
Now, let’s configure the Prometheus end point in Grafana.
Step 1: After entering the credentials, navigate to Setting ➤ Data Source as per Figure 6-11.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig11_HTML.jpg]
Figure 6-11Grafana data source configuration

Step 2: Click “Add data source,” as shown in Figure 6-12.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig12_HTML.jpg]
Figure 6-12Grafana data source configuration

Step 3: Select Prometheus and enter the Prometheus URL http://10.1.150.126:30000/ under the HTTP URL section and hit the Save & Test button, as shown in Figure 6-13.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig13_HTML.jpg]
Figure 6-13Grafana data source configuration

If the Prometheus end point has been configured successfully, you will get the message “Data source is working,” as shown in Figure 6-14.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig14_HTML.jpg]
Figure 6-14Grafana data source configuration validation

Step 4: Grafana provides one default dashboard. Click on Home to navigate to it, as shown in Figure 6-15.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig15_HTML.jpg]
Figure 6-15Grafana default dashboard navigation

Click Prometheus 2.0 Stats, as shown in Figure 6-16.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig16_HTML.jpg]
Figure 6-16Grafana default dashboard navigation

You can now view the Prometheus dashboard, as shown in Figure 6-17.[image: ../images/491282_1_En_6_Chapter/491282_1_En_6_Fig17_HTML.jpg]
Figure 6-17Grafana default Prometheus dashboard navigation

Summary
In this chapter, we have provided hands-on steps for using Grafana for container dashboard and reporting with Prometheus. In the next chapter, we will start with understanding how to leverage Dynatrace for container application monitoring, along with hands-on exercises.
Footnotes
1Pre-built dashboard: https://grafana.com/grafana/dashboards

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_7

7. Container Application Monitoring Using Dynatrace

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This chapter will provide hands-on steps for using Dynatrace for container application monitoring. We will look at the following:	Introduction to Dynatrace

	Container Application Monitoring

	Working with Dynatrace for Container Application Monitoring

Introduction to Dynatrace
Dynatrace is a software-intelligence monitoring platform that simplifies enterprise cloud complexity and accelerates digital transformation. Dynatrace seamlessly brings infrastructure and cloud, application performance, and digital experience monitoring into an all-in-one automated solution that’s powered by artificial intelligence named Davis.
The following are the key capabilities of Dynatrace:	Real User Monitoring: Dynatrace helps the support and development teams trace an interaction end-to-end from real users, whether it is from a desktop-based browser or from a mobile device. It covers the availability and response time of an application as seen by the end user. It also provides for verification of UI elements and third-party content, and analysis of the service-side application down to the code level, so it is easy to troubleshoot and analyze any issues that the users may face.

	Server-side Service Monitoring: Web applications consist of web pages that are served by web servers which in turn interact with backend Application & Database servers depending upon incoming request type. Dynatrace OneAgent can provide details about which applications or services interact with which other services and which services or databases a specific service calls. We will cover this in detail using a hands-on lab exercise.

	Network, Process, & Host Monitoring: Dynatrace enables monitoring of the entire infrastructure, including hosts, processes, and network.

	Container Monitoring: Dynatrace seamlessly integrates with existing Docker environments and automatically monitors containerized applications and services. With Dynatrace, there is no need to modify Docker images, run commands, or create additional containers to enable Docker monitoring. Dynatrace has the ability to automatically detect the creation and termination of containers, and monitors the applications and services contained within those containers.

Architecture Overview
Dynatrace can be deployed either as an SaaS solution or within an on-premises deployment. The on-premises version is called Dynatrace Managed, while the SaaS version is known as Dynatrace SaaS. In this chapter, we will cover Dynatrace SaaS’ capabilities for container monitoring.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig1_HTML.jpg]
Figure 7-1Dynatrace SaaS architecture

Dynatrace SaaS has a simplified architecture (Figure 7-1). Its core component comprises OneAgent and ActiveGate. SaaS customers only need to install OneAgent to enable monitoring for the target environment.
ActiveGate works as a proxy between Dynatrace OneAgent and Dynatrace SaaS/Managed versions. It can be installed on Windows or Linux. If you use Dynatrace SaaS, you only need to install an environment ActiveGate. The main functions of ActiveGate include the following:	Message routing: ActiveGate knows about the runtime structure of the Dynatrace environment and routes messages from OneAgents to the correct server endpoints.

	Buffering and compression: ActiveGate collects messages from OneAgent instances and builds bulks, which are then sent in compressed form to the Dynatrace server.

	Authentication: ActiveGate authenticates OneAgent requests (SSL handshake and environment ID authentication).

	Entry point for sealed networks: Dynatrace server clusters often run in protected environments that aren’t directly accessible by OneAgent instances running outside of a sealed network. ActiveGate can be used to serve as a single access point for such OneAgent instances.

Container Monitoring Using Dynatrace
Dynatrace OneAgent is container-aware and comes with built-in support for out-of-the-box monitoring of Kubernetes. Dynatrace supports full-stack monitoring for Kubernetes; i.e., monitoring from the application down to the infrastructure layer.
For container monitoring, the Dynatrace OneAgent operator registers itself as a controller that watches for resources of type OneAgent, as defined by a custom resource definition. This allows you to define a configuration that describes your OneAgent deployment. By loading the configuration into Kubernetes, the configuration is automatically passed to the custom controller. Figure 7-2 outlines the involved components and objects.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig2_HTML.jpg]
Figure 7-2Dynatrace container monitoring architecture

By creating the OneAgent custom resource entity in Kubernetes, the object is automatically passed to the Dynatrace OneAgent operator. First, it determines if a corresponding DaemonSet already exists. If not, the Dynatrace OneAgent operator creates a new one. The DaemonSet is responsible for rolling out OneAgent to selected nodes. Dynatrace also automatically polls the pods to check for updated versions, and if the updated versions are not deployed then the latest version is automatically rolled out.
Now, let’s begin with an exercise that uses Dynatrace for container monitoring. We will begin by requesting the evaluation version of Dynatrace SaaS.
Step 1: Navigate to the following URL to request a fifteen-day trial of Dynatrace SaaS. Click on the Free Trial button in the corner.
https://www.dynatrace.com
Step 2: Enter your email address and click on the Start Free Trial button.
Step 3: Add a valid password for your account and then click Continue.
Step 4: Add details regarding your account and click Continue.
Step 5: Select the region where you want to store your monitoring data, click on the radio button for “Yes, I agree to the above terms and conditions,” and then click Create Account, as shown in Figure 7-3.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig3_HTML.jpg]
Figure 7-3Dynatrace SaaS region selection

Step 6: After that, you will be redirected to the Dynatrace Welcome page. Click the Deploy Dynatrace button, as shown in Figure 7-4.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig4_HTML.jpg]
Figure 7-4Dynatrace SaaS Welcome page

Step 7: You will be redirected to the Dynatrace console. Click on the Home icon at the top of the page, as highlighted in Figure 7-5, and it will take you to the Dynatrace home page dashboard.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig5_HTML.jpg]
Figure 7-5Dynatrace SaaS home page

Step 8: On the home page you can see a default dashboard. As of now, since there are no agents reporting to this SAAS instance, there is no data reporting under any of the entities. Only sample data is provided by default. On the left-hand side, there are several tabs available for each entity that we monitor through Dynatrace. Once the data starts reporting to the console, the user can click on any of the tabs and look at the metrics of that entity, as shown in Figure 7-6.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig6_HTML.jpg]
Figure 7-6Dynatrace SaaS tab navigation

Now we will install a microservice application that will be monitored using Dynatrace. We will use easyTravel Application as the demo application. EasyTravel is a multi-tier application that uses microservice principles. We will use this application to simulate application issues such as high CPU load, database slowdown, or slow authentication. Figure 7-7 is the architecture diagram of the application. We have installed only the customer frontend part of the architecture, which includes nginx, frontend, backend, database, and a load generator.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig7_HTML.jpg]
Figure 7-7Easy Travel Application architecture

Please refer to Table 7-1 to get information about the components used by the travel application.Table 7-1Application Components

	Component
	Description

	Mongodb
	A pre-populated travel database (MongoDB)

	Backend
	The easyTravel business backend (Java)

	Frontend
	The easyTravel customer frontend (Java)

	Nginx
	A reverse proxy for the easyTravel customer frontend (NGINX)

	Loadgen
	A synthetic UEM load generator (Java)

Containerized Application Deployment
In this section, you will learn how to deploy the travel application on a Kubernetes cluster with kubectl commands. You can get the application code and its details from the following GitHub URL: https://github.com/Dynatrace/easyTravel-docker.
Step 1: Log in to the Kubernetes master node to install the easyTravel application. Execute the following command to download application files to your server:$ git clone https://github.com/Dynatrace/easyTravel-Docker.git

Step 2: Now, we will clone easytravel.yaml

 for this application from GitHub by executing the following command. Once you download the repo you will get rc.yml, service.yml, and pod.yml files in various folders. Using these files, we will create deployment, pods, and services for each component.$ git clone https://github.com/dryice-devops/dynatrace.git

Step 3: Copy the easytravel.yaml file into the Kubernetes folder /App/microservices-demo/deploy/kubernetes/. Now, let’s create a namespace to run this application using Kubernetes by using the following command:$ kubectl create namespace easytravel

To verify that the namespace has been created successfully, execute the following command, as shown in Figure 7-8:$ kubectl get namespace

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig8_HTML.jpg]
Figure 7-8easyTravel application Kubernetes namespace creation

Step 4: Now, execute the following command on the Kubernetes master node to create the deployment, services, and pods, as we specified in easytravel.yaml:$ kubectl create –f easytravel.yaml

It will create all the components to run the application. Verify by using the following commands, as shown in Figure 7-9:$ kubectl get deployment -n easytravel

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig9_HTML.jpg]
Figure 7-9easyTravel application deployment using Kubernetes

Step 5: Now, execute the following command on the Kubernetes master node to fetch a list of pods for the easyTravel application, as shown in Figure 7-10:$ kubectl get pod -n easytravel

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig10_HTML.jpg]
Figure 7-10easyTravel application pod list

Step 6: Now, execute the following command on the Kubernetes master node to fetch a list of services for the easyTravel application, as shown in Figure 7-11:$ kubectl get service -n easytravel

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig11_HTML.jpg]
Figure 7-11easyTravel application service list

Copy the cluster IP for the frontend service for application page access. Navigate to the following URL to access the easyTravel frontend application service:
http://< cluster IP >:port
In our case, the following is the URL, as shown in Figure 7-12:[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig12_HTML.jpg]
Figure 7-12easyTravel application frontend page, Dynatrace OneAgent installation

easyTravel URL: http://10.99.139.181:31012/
Monitoring Application using Dynatrace
In this section, you will learn how to install Dynatrace OneAgent on the Kubernetes cluster to enable the monitoring for the easyTravel application.
Step 1: Log in to the Kubernetes master server and create the namespace Dynatrace using the following command:$ kubectl create namespace Dynatrace

Step 2: Create a LATEST_RELEASE variable, which will contain the URI for the latest image of the OneAgent operator. Execute the following command:$LATEST_RELEASE=$(curl -s https://api.github.com/repos/dynatrace/dynatrace-oneagent-operator/releases/latest | grep tag_name | cut -d '"' -f 4)

Step 3: Once the variable is created, run the following command to create Dynatrace entities:$kubectl create -f https://raw.githubusercontent.com/Dynatrace/dynatrace-oneagent-operator/$LATEST_RELEASE/deploy/kubernetes.yaml

Step 4: Now we check the logs of the OneAgent operator to verify that it is successfully installed on the Kubernetes cluster; we do so by executing the following command:$kubectl -n dynatrace logs -f deployment/dynatrace-oneagent-operator

Step 5: We will now create the secret holding API and PaaS tokens for authenticating the Dynatrace SaaS setup. To generate and manage API tokens, log in to your Dynatrace environment, and from the navigation menu click Settings ➤ Integration. Select Dynatrace API, Platform as a Service, or Dynatrace modules to generate a token for the Dynatrace API, a token for PaaS, or a token for DCRUM or Synthetic, as shown in Figure 7-13.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig13_HTML.jpg]
Figure 7-13Dynatrace API token generation

Step 6: Click the Generate Token button as shown in Figure 7-14, and then type a meaningful token name in the text field, as shown in Figure 7-15.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig14_HTML.jpg]
Figure 7-14Dynatrace API token generation

Step 7: To create Dynatrace API tokens, select or clear the access switches as needed to set the access scope of the API token. For example, to create an API authentication token to access Dynatrace monitoring data for user session queries, select “User session” as shown in Figure 7-15.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig15_HTML.jpg]
Figure 7-15Dynatrace API token generation

Step 8: Click the Generate button. The token will appear in the My Dynatrace Tokens list, as shown in Figure 7-16.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig16a_HTML.jpg][image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig16b_HTML.jpg]
Figure 7-16Dynatrace API token generation

Step 9: Now, we will create a PaaS token by enacting the following steps. Log in with your Dynatrace account and select “Deploy Dynatrace” from the navigation menu. Click the Set up PaaS Integration button, as shown in Figure 7-17.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig17_HTML.jpg]
Figure 7-17Dynatrace PaaS token generation

Step 10: Your environment ID appears in the Environment ID text box. You’ll need this ID to link your Dynatrace account with your PaaS environment. Click Copy to copy the ID to the clipboard. You can do this at any time by revisiting this page, as shown in Figure 7-18.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig18_HTML.jpg]
Figure 7-18Dynatrace PaaS token generation

Step 11: To generate a PaaS token, click the Generate New Token button. The PaaS token is essentially an API token that’s used in combination with your environment ID to download Dynatrace OneAgent. As you’ll see, there’s also a default InstallerDownload token available that you can alternatively use. However, for security reasons, it’s recommended that you create several discrete tokens for each environment you have, as shown in Figure 7-19.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig19_HTML.jpg]
Figure 7-19Dynatrace PaaS token generation

Step 12: Type in a meaningful name for your PaaS token. A meaningful token name might be the name of the PaaS platform you want to monitor (for example, azure, cloud-foundry, or openshift). To view and manage your existing PaaS tokens, go to Settings ➤ Integration ➤ Platform as a Service.
Click Generate to create the PaaS token. The newly created PaaS token will appear in the list below. Click Copy to copy the generated token to the clipboard. You can do this at any time by revisiting this page and clicking Show Token next to the relevant PaaS token.
Step 13: Set up API and PaaS tokens using the following command:$kubectl -n dynatrace create secret generic oneagent --from-literal="apiToken=D62yuwExSpOUe0M1d7_gE" --from- literal="paasToken=r_6pQgOzSwivPXym3dTKp"

Step 14: Now, let’s create a custom resource for OneAgent. Navigate to the Kubernetes folder /App/microservices-demo/deploy/kubernetes/ and run the following command. This will download the cr.yaml file to your Kubernetes master node.$curl -o cr.yaml https://raw.githubusercontent.com/Dynatrace/dynatrace-oneagent-operator/$LATEST_RELEASE/deploy/cr.yaml

Step 15: Edit cr.yml and modify the values of the custom resource as indicated below. You need to update the API URL, tokens, and APP_LOG_CONTENT variable:
Before making changes, follow the code in Listing 7-1.apiVersion: dynatrace.com/v1alpha1
kind: OneAgent
metadata:
 # a descriptive name for this object.
 # all created child objects will be based on it.
 name: oneagent
 namespace: dynatrace
spec:
 # dynatrace api url including `/api` path at the end

 # either set ENVIRONMENTID to the proper tenant id or change the apiUrl as a whole, e.q. for Managed
 apiUrl: https://ENVIRONMENTID.live.dynatrace.com/api
 # disable certificate validation checks for installer download and API communication
 skipCertCheck: false
 # name of secret holding `apiToken` and `paasToken`
 # if unset, name of custom resource is used
 tokens: ""
 # node selector to control the selection of nodes (optional)
 nodeSelector: {}
 # https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/ (optional)
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists
 # oneagent installer image (optional)
 # certified image from RedHat Container Catalog for use on OpenShift: registry.connect.redhat.com/dynatrace/oneagent
 # for kubernetes it defaults to docker.io/dynatrace/oneagent
 image: ""
 # arguments to oneagent installer (optional)
 # https://www.dynatrace.com/support/help/shortlink/oneagent-docker#limitations
 args:
 - APP_LOG_CONTENT_ACCESS=1
 # environment variables for oneagent (optional)
 env: []
 # resource settings for oneagent pods (optional)
 # consumption of oneagent heavily depends on the workload to monitor
 # please adjust values accordingly
 #resources:
 # requests:
 # cpu: 100m
 # memory: 512Mi
 # limits:
 # cpu: 300m
 # memory: 1.5Gi
 # priority class to assign to oneagent pods (optional)
 #

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
 #priorityClassName: PRIORITYCLASS
 # disables automatic restarts of oneagent pods in case a new version is available
 #disableAgentUpdate: false
 # when enabled, and if Istio is installed on the Kubernetes environment, then the Operator will create the corresponding
 # VirtualService and ServiceEntries objects to allow access to the Dynatrace cluster from the agent.
 #enableIstio: false
 # DNS Policy for OneAgent pods (optional.) Empty for default (ClusterFirst), more at
 # https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy
 #dnsPolicy: ""
 # Labels are customer-defined labels for oneagent pods to structure workloads as desired
 #labels:
 # custom: label
 # Name of the service account for the OneAgent (optional)
 #serviceAccountName: "dynatrace-oneagent"
 # Configures a proxy for the Agent, AgentDownload, and the Operator (optional)
 # Either provide the proxy URL directly at 'value' or create a secret with a field 'proxy' which holds your encrypted proxy URL
 #proxy:

 # value: https://my-proxy-url.com
 # valueFrom: name-of-my-proxy-secret
 # Adds the provided CA certficates to the Operator and the OneAgent (optional)
 # Provide the name of the configmap which holds your .pem in a field called 'certs'
 # If this is not set the default embedded certificates on the images will be used
 #trustedCAs: name-of-my-ca-configmap
 # Sets a NetworkZone for the OneAgent (optional)
 # Note: This feature requires OneAgent version 1.195 or higher
 #networkZone: name-of-my-network-zone

Listing 7-1Dynatrace OneAgent custom resource cr.yml sample

Edit ENVIRONMENTID to be the environment ID of your SaaS instance. For example, in our case it’s euz01562. You can navigate to your Dynatrace SaaS instance and get the environment ID from its URL, as highlighted in Figure 7-20.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig20_HTML.jpg]
Figure 7-20Dynatrace environment ID

For tokens, set the value to the name of the secret that we have created: oneagent. Set APP_LOG_CONTENT_ACCESS=1 and env: [].
After making required changes, Listing 7-2 will be the contents of the cr.yml file.apiVersion: dynatrace.com/v1alpha1
kind: OneAgent
metadata:
 # a descriptive name for this object.
 # all created child objects will be based on it.
 name: oneagent
 namespace: dynatrace
spec:
 # dynatrace api url including `/api` path at the end
 # either set ENVIRONMENTID to the proper tenant id or change the apiUrl as a whole, e.q. for Managed

 apiUrl: https://euz01562.live.dynatrace.com/api
 # disable certificate validation checks for installer download and API communication
 skipCertCheck: false
 # name of secret holding `apiToken` and `paasToken`
 # if unset, name of custom resource is used
 tokens: "oneagent"
 # node selector to control the selection of nodes (optional)
 nodeSelector: {}
 # https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/ (optional)
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 operator: Exists

 # oneagent installer image (optional)
 # certified image from RedHat Container Catalog for use on OpenShift: registry.connect.redhat.com/dynatrace/oneagent
 # for kubernetes it defaults to docker.io/dynatrace/oneagent
 image: ""
 # arguments to oneagent installer (optional)
 # https://www.dynatrace.com/support/help/shortlink/oneagent-docker#limitations
 args:
 - APP_LOG_CONTENT_ACCESS=1
 # environment variables for oneagent (optional)
 env: []
 # resource settings for oneagent pods (optional)
 # consumption of oneagent heavily depends on the workload to monitor
 # please adjust values accordingly
 #resources:
 # requests:
 # cpu: 100m
 # memory: 512Mi
 # limits:
 # cpu: 300m
 # memory: 1.5Gi
 # priority class to assign to oneagent pods (optional)
 #

https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/
 #priorityClassName: PRIORITYCLASS
 # disables automatic restarts of oneagent pods in case a new version is available
 #disableAgentUpdate: false
 # when enabled, and if Istio is installed on the Kubernetes environment, then the Operator will create the corresponding
 # VirtualService and ServiceEntries objects to allow access to the Dynatrace cluster from the agent.
 #enableIstio: false
 # DNS Policy for OneAgent pods (optional.) Empty for default (ClusterFirst), more at
 # https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy
 #dnsPolicy: ""
 # Labels are customer defined labels for oneagent pods to structure workloads as desired
 #labels:
 # custom: label
 # Name of the service account for the OneAgent (optional)
 #serviceAccountName: "dynatrace-oneagent"
 # Configures a proxy for the Agent, AgentDownload, and the Operator (optional)
 # Either provide the proxy URL directly at 'value' or create a secret with a field 'proxy' which holds your encrypted proxy URL
 #proxy:
 # value: https://my-proxy-url.com
 # valueFrom: name-of-my-proxy-secret
 # Adds the provided CA certficates to the Operator and the OneAgent (optional)
 # Provide the name of the config map which holds your .pem in a field called 'certs'
 # If this is not set the default embedded certificates on the images will be used
 #trustedCAs: name-of-my-ca-configmap
 # Sets a NetworkZone for the OneAgent (optional)
 # Note: This feature requires OneAgent version 1.195 or higher
 #networkZone: name-of-my-network-zone

Listing 7-2Dynatrace oneagent custom resource cr.yml

Step 15: Create the custom resource by executing the following command:$ kubectl create -f cr.yaml

Step 16: Now, we will install an ActiveGate component to connect our Kubernetes cluster with Dynatrace SaaS. Log in to the Dynatrace console and select “Deploy Dynatrace.” Then, click on Install ActiveGate, as shown in Figure 7-21.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig21_HTML.jpg]
Figure 7-21Dynatrace ActiveGate installation

Step 17: Select “Linux” and click Copy underneath “Run this command on the target host to download the installer”; run it onto the server where we are installing the OneAgent operator. It will download the installer as shown in Figure 7-22.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig22_HTML.jpg]
Figure 7-22Dynatrace ActiveGate installation

$wget -O Dynatrace-ActiveGate-Linux-x86-1.181.144.sh "https://euz01562.live.dynatrace.com/api/v1/deployment/installer/gateway/unix/latest?arch=x86&flavor=default" --header="Authorization: Api-Token hzgdWMfkRBiz4gcGDin5J"

Step 18: Execute the installer to install ActiveGate. After this, we can proceed to further Kubernetes-related configuration.$./Dynatrace-ActiveGate-Linux-x86-1.181.144.sh

Step 19: In previous steps, we have cloned a file named kubernetes-monitoring-service-account.yaml. Readers can review the content of this file in Listing 7-3, as we will use this file in the next step.apiVersion: v1
kind: ServiceAccount
metadata:
 name: dynatrace-monitoring
 namespace: dynatrace

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: dynatrace-monitoring-cluster
rules:
- apiGroups:
 - ""
 resources:
 - nodes
 - pods
 verbs:
 - list

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: dynatrace-monitoring-cluster
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: dynatrace-monitoring-cluster
subjects:
- kind: ServiceAccount
 name: dynatrace-monitoring
 namespace: dynatrace

Listing 7-3Dynatrace Kubernetes monitoring configuration file

Step 20: Create a service account and cluster role for accessing the Kubernetes API with the following snippet:$ kubectl apply -f kubernetes-monitoring-service-account.yaml

Step 21: Get the Kubernetes API URL for later use using the following command:$ kubectl config view --minify -o jsonpath='{.clusters[0].cluster.server}'

Step 22: Get the Bearer token for later use using the following command:$ kubectl get secret $(kubectl get sa dynatrace-monitoring -o jsonpath='{.secrets[0].name}' -n dynatrace) -o jsonpath='{.data.token}' -n dynatrace | base64 –decode

Step 23: Now, let’s connect the Kubernetes cluster through Dynatrace settings. Log in to Dynatrace and navigate to Settings ➤ Cloud. Go to Virtualization ➤ Kubernetes. Click Connect New Cluster. Provide a name, Kubernetes API URL, and the Bearer token for the Kubernetes cluster, as shown in Figure 7-23.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig23_HTML.jpg]
Figure 7-23Dynatrace and Kubernetes integration

Step 24: Once the cluster is added successfully, it will be listed like in Figure 7-24.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig24_HTML.jpg]
Figure 7-24Dynatrace and Kubernetes integration

Container Metrics on Dynatrace
Now that we have integrated Dynatrace with our Kubernetes setup and deployed the easyTravel application, let’s navigate the console to view the container application monitoring metrics. OneAgent will do full-stack monitoring, including infrastructure, Docker, and code-level monitoring, for the hosted applications.
Step 1: Log in to Dynatrace. The home dashboard will now report additional data, as shown in Figure 7-25.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig25_HTML.jpg]
Figure 7-25Dynatrace dashboard after Kubernetes integration

Step 2: To view the Kubernetes cluster status, navigate to the Kubernetes tab at the left-hand side and then click on the cluster, as shown in Figure 7-26.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig26_HTML.jpg]
Figure 7-26Dynatrace Kubernetes cluster metrics

By clicking on the cluster, we can look at cluster utilization. It will show the CPU and memory utilization based on usage, requests, limits, and availability. The same pane will show the number of nodes running under that cluster, as shown in Figure 7-27.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig27_HTML.jpg]
Figure 7-27Dynatrace Kubernetes cluster metrics

Step 3: By clicking the Analyze Nodes button, the page will showcase the CPU and memory utilization for the individual nodes running under this Kubernetes cluster, as shown in Figure 7-28.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig28_HTML.jpg]
Figure 7-28Dynatrace Kubernetes cluster node metrics

Step 4: To take a closer look at these nodes, we can go to the Hosts tab from the navigation menu. Here, the nodes are listed out as hosts, as shown in Figure 7-29.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig29_HTML.jpg]
Figure 7-29Dynatrace Kubernetes Host view

Individual Host pages show problem history, event history, and related processes for each host. To assess health, the following performance metrics are captured for each host and presented on each Host overview page, as shown in Figure 7-30:	CPU

	Memory

	Disk (storage health)

	NIC (network health)

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig30_HTML.jpg]
Figure 7-30Dynatrace Kubernetes Host view

On the same page, we can see if there is any connectivity from this host to any another host, as shown in Figure 7-31.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig31_HTML.jpg]
Figure 7-31Dynatrace Kubernetes Host view

Step 5: On the same page, at the right-hand side, a complete list of processes and containers running on this host can be seen. We can view easyTravel processes and containers on this page, as shown in Figure 7-32.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig32_HTML.jpg]
Figure 7-32Dynatrace Kubernetes Processes and Containers view

On the same page, by clicking on View Container, we can see the containers grouped by image type, as shown in Figure 7-33.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig33_HTML.jpg]
Figure 7-33Dynatrace Containers Grouped by Image Name view

Step 6: Expand one of the images to view the details regarding those containers running using this image. In this view, the following details are available, as shown in Figure 7-34.	CPU: CPU user divided by CPU system, expressed as a percentage.

	Memory: Resident Set Size (RSS) and cache memory. RSS reflects data belonging to processes, while cache memory represents the data stored on disk that is currently cached in memory.

	Traffic: Both incoming and outgoing network traffic

	Throttling: Total time that a container’s CPU usage was throttled

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig34_HTML.jpg]
Figure 7-34Dynatrace container metrics

For the processes, details are captured as shown in Figure 7-35.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig35_HTML.jpg]
Figure 7-35Dynatrace Kubernetes process

 metrics

Step 7: On the navigation menu, we can see a summary of the most relevant details of the Docker, as shown in Figure 7-36. The graphical view at the top of the page displays the following:	Number of running containers

	Number of Docker images

	Top three containers consuming the most memory

	Most recently started container

	Most frequently used images

[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig36_HTML.jpg]
Figure 7-36Dynatrace Docker dashboard view

The Docker Hosts section at the bottom of the page shows the resource usage of individual Docker hosts, including number of containers running, as shown in Figure 7-37.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig37_HTML.jpg]
Figure 7-37Dynatrace Docker view

Step 8: Click on the Application tab to view application monitoring metrics, as shown in Figure 7-38.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig38_HTML.jpg]
Figure 7-38Dynatrace application monitoring

By default, there will be an application created called “My web application.” All the traffic will report to this application at first. Now, let’s create a new application using the following steps. Navigate to Settings ➤ Web & mobile Monitoring ➤ Application Detection and run as shown in Figure 7-39.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig39_HTML.jpg]
Figure 7-39Dynatrace easyTravel application onboarding

Click on Create Application Detection Rule, as shown in Figure 7-40.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig40_HTML.jpg]
Figure 7-40Dynatrace easyTravel application onboarding

Now click on New Application. Give a name for the application and then define some rules for the web requests. Then, click on Save, as shown in Figure 7-41.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig41_HTML.jpg]
Figure 7-41Dynatrace easyTravel application onboarding

This will create an application under the Application tab. Rules can be defined based on domain and URLs. Here, we are using the domain for detecting web requests. Our application domain is 10.1.150.150. So, we have specified the same in the rule. Now, whenever a request comes to this domain, it will get registered under easyTravel, as shown in Figure 7-42.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig42_HTML.jpg]
Figure 7-42Dynatrace easyTravel application onboarding

Step 9: To view the easyTravel application, we navigate to Applications and click on easyTravel, as shown in Figure 7-43.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig43_HTML.jpg]
Figure 7-43Dynatrace easyTravel application metrics

We will view the application as seen in Figure 7-44.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig44_HTML.jpg]
Figure 7-44Dynatrace easyTravel application metrics

By clicking on User Behavior, we will see the screen in Figure 7-45.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig45_HTML.jpg]
Figure 7-45Dynatrace easyTravel application metrics

On the same page, we can see the user actions and errors, as shown in Figure 7-46.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig46_HTML.jpg]
Figure 7-46Dynatrace easyTravel application metrics

By clicking on any of the errors, we can see the details of the errors captured, as shown in Figure 7-47.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig47_HTML.jpg]
Figure 7-47Dynatrace easyTravel application metrics

Here, we can see the occurrences of the error, browser, OS, and location-specific details. Below that we can see a detailed description of the error, as shown in Figure 7-48.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig48_HTML.jpg]
Figure 7-48Dynatrace easyTravel application metrics

So, by using the preceding drill-down, we can identify the root cause of all the errors in our container application.
Application Topology
In Dynatrace there is a feature called Smartscape. Smartscape auto-discovery delivers a quick and efficient overview of all the topological dependencies in your infrastructure, processes, and services, both on the vertical axis (where full-stack dependencies across all tiers are displayed) as well as on the horizontal axis (where all ingoing and outgoing call relationships within each tier are visualized). Let’s view the Smartscape topology for our easyTravel application.
Step 1: To view the easyTravel application topology, click on Smartscape Topology, as shown in Figure 7-49.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig49_HTML.jpg]
Figure 7-49Dynatrace easyTravel application topology

To see a detailed description of the easyTravel processes, click on Host and select the target node host. Under Processes and Containers, click any process to explore that process in detail on a dedicated process page.
On each process page, you’ll find process-specific statistics related to CPU consumption, memory consumption, network utilization (see Figure 7-50), and other infrastructure measurements. You’ll also find details regarding related events, problems, and dependencies (including called and calling process).[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig50_HTML.jpg]
Figure 7-50Dynatrace easyTravel application processes

At the top of this process page, we can also see provided services, as shown in Figure 7-50.
In this Figure 7-51, a topology is created for every process, and we can see its caller and called processes as well by clicking on the Process tab at the left and right-hand side, as shown in Figure 7-50.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig51_HTML.jpg]
Figure 7-51Dynatrace easyTravel application processes

Transactions and Services
We can check the availability of the processes, and in the graph itself we can see if a process was shut down at any point in time. Below that there will be a list of events for this process. If any changes have been made in the process deployment, there will be an event listed for this. If the process was restarted, there will be an event for this as well.
Step 1: When you look at processes, you’re seeing topology information, whereas services give you code-level insight. To view service-specific details in Dynatrace, go to Transactions & Services and click on one of the services, as shown in Figure 7-52.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig52_HTML.jpg]
Figure 7-52Dynatrace easyTravel application transaction metrics

For every service, we can see the caller and calling requests, number of requests, and response time, including dynamic web requests and resource requests, as shown in Figure 7-53.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig53_HTML.jpg]
Figure 7-53Dynatrace easyTravel application transaction metrics

By clicking on View Dynamic Requests, we can see all the requests coming to this service. On the same page, we can see the response time and failure requests, including CPU and throughput. At the top right corner, we can have an overview of the problems with this service, as shown in Figure 7-54.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig54_HTML.jpg]
Figure 7-54Dynatrace easyTravel application transaction metrics

For every service, we can see a graph of response time, failure rate, CPU, and throughput for all web requests coming to this service, as shown in Figure 7-55.[image: ../images/491282_1_En_7_Chapter/491282_1_En_7_Fig55_HTML.jpg]
Figure 7-55Dynatrace easyTravel application transaction metrics

Summary
In this chapter, we have provided an overview of Dynatrace and its capabilities, along with hands-on steps for using Dynatrace for container application monitoring. In the next chapter, we will provide overview of Sysdig and look at its capabilities for monitoring Container ecosystem. We will also provide hands-on steps for using Sysdig for container application monitoring.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_8

8. Container Application Monitoring Using Sysdig

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This chapter will provide hands-on steps for doing container application monitoring using Sysdig. We will look at the following:	Introduction to Sysdig

	Container Application Monitoring

	Working with Sysdig for Container Application Monitoring

Introduction to Sysdig
Sysdig Monitor is a powerful container-native monitoring and troubleshooting solution that provides comprehensive observability. It comes out of the box with unmatched container visibility and deep orchestrator integrations, including Kubernetes, Docker Swarm, AWS EKS, Azure AKS, and Google GKE. It is available as both a cloud and an on-premises software offering. The following are the key features of Sysdig Monitor:	Simplifies discovery and metric collection: Sysdig provides transparent instrumentation that dynamically discovers applications, containers, hosts, networks, and custom metrics, like Prometheus, JMX, and statsD, for deep insight into complex environments.

	Visualizes service reliability: Sysdig provides a consolidated overview of your service performance, capacity, and risk profile, which helps developers and DevOps quickly identify application issues and take action.

	Monitors infrastructure and applications: By leveraging deep integrations with Kubernetes, OpenShift, Docker, Mesos, DC/OS, AWS, Google, IBM, Azure, etc., Sysdig lets you see beyond infrastructure into how your apps and services are performing.

	Builds robust dashboards: Sysdig provides out-of-the-box and customizable dashboards that enable at-a-glance views of your infrastructure, applications, compliance, and metrics and let you visualize your environment the way you want.

	Simplifies and scales Prometheus monitoring: Using turn-key, horizontal scalability, enterprise access control and security, Prometheus metrics correlation, and PromQL queries with any event or metric, Sysdig helps you keep pace with large, complex environments.

	Allows you to explore your entire infrastructure: Sysdig provides automatic correlation of data from across your infrastructure, including custom metrics from statsD, JMX, and Prometheus, providing deep insight into complex environments.

	Proactively alert for faster response: Sysdig provides configurable alerts to enable proactive notification of any condition, including events, downtime, and anomalies, to help you get a handle on issues before they impact operations.

	Accelerates troubleshooting: Sysdig provides deep container visibility, service-oriented views, and comprehensive metrics that help you hunt threats and eliminate issues faster.

Sysdig’s functional architecture is shown in Figure 8-1.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig1_HTML.jpg]
Figure 8-1Sysdig functional architecture

Container Application Monitoring
Sysdig’s commercial offering unifies all operational data and turns it into insights. Starting with thousands of metrics and events for every application, container, and host, the Sysdig platform enriches the data to give you precise, in-context views of your applications and microservices. Sysdig then provides you with apps that deliver key visualizations to help you achieve your specific workflows.
Sysdig gets its data from the kernel by subscribing to trace-points that many system kernels are already processing and publishing; this is called Container Vision. This makes the data capture a very lightweight exercise (typically 1–3% CPU resource and 500 MB system memory). Sysdig is based on the open source Linux troubleshooting and forensics project by the same name (Sysdig). The open source project allows you to see every single system call, down to process, arguments, payload, and connection, on a single host. This data is dynamically mapped to containers, microservices, clouds, and orchestrators in a way that is at once powerful and simple to use.
To further leverage the unique visibility created by the original Sysdig project, the developers built an open source security tool called Falco. Falco combines the visibility of open source Sysdig with a rules engine that constantly monitors system events for violations of policies at run-time. The Sysdig enterprise offering then allows for enforcement of these policies, compliance, and auditing on top of this rich data.
To further enrich the data used to secure your environment, Sysdig has also integrated Anchore into the platform. What Falco does for run-time, Anchore does for build-time: it allows you to implement and enforce vulnerability management policies and scan your container images before they ever go into production. Please refer to Figure 8-2 for the Sysdig container monitoring system architecture components.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig2_HTML.jpg]
Figure 8-2Sysdig container monitoring architecture

Sysdig’s architecture is very similar to those of tcpdump and Wireshark, as events are first captured at the kernel level by a small driver called sysdig-probe, which leverages a kernel facility called tracepoints.
Sysdig also now supports eBPF, shown in Figure 8-3, as an alternative to the kernel module-based architecture just described. eBPF—extended Berkeley Packet Filter—is a Linux-native in-kernel virtual machine that enables secure, low-overhead tracing for application performance and event observability and analysis.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig3_HTML.jpg]
Figure 8-3Sysdig container monitoring architecture

Sysdig Trial License Setup
Now, let’s request the evaluation version of Sysdig Monitor and see how it monitors container applications.
Step 1: Navigate to https://sysdig.com/ and request the evaluation version of Sysdig. Select Products and click on the Sign-up Today button, as shown in Figure 8-4.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig4_HTML.jpg]
Figure 8-4Sysdig evaluation request

Step 2: Fill in the required details and click the Submit button.
Step 3: You will receive an activation link at the email address you provided. It takes roughly thirty minutes to one hour to receive the email. Click on the activation link in the email to complete your evaluation access request. You will be prompted to set up a new password for Sysdig. Click the Activate and Login button to proceed, as shown in Figure 8-5.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig5_HTML.jpg]
Figure 8-5Sysdig evaluation account password setup

Step 4: On the next screen, you will be prompted to go to the Sysdig Welcome screen. Click on Next to proceed.
Step 5: We are using Sysdig to monitor our Kubernetes cluster, so please select “Kubernetes | GKE | OpenShift” on the next screen. On selection, you will view a key, as shown in Figure 8-6. Copy the key. We will use this later in the chapter.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig6_HTML.jpg]
Figure 8-6Sysdig evaluation account Kubernetes integration key

Now, we will set up a cluster on AWS using Amazon Elastic Kubernetes Services (EKS), and then integrate Sysdig Monitor for container application monitoring. We will assume the reader has knowledge of working with AWS and has an AWS account.
Elastic Kubernetes Service Setup on AWS
Please perform the following steps to set up the Elastic Kubernetes Services on AWS.
Step 1: Log in to your AWS account and navigate to IAM to create the IAM role for the AWS EKS service, as shown in Figure 8-7.

[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig7_HTML.jpg]
Figure 8-7AWS EKS IAM role creation

Step 2: Select “Roles” and click on the Create Role button, as shown in Figure 8-8.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig8_HTML.jpg]
Figure 8-8AWS EKS IAM role creation

Step 3: Select “AWS EKS Service” from the services list and select the use case of EKS for managing the cluster on the user’s behalf. Provide role name and description. Click the Next: Permissions button, as shown in Figure 8-9.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig9_HTML.jpg]
Figure 8-9AWS EKS IAM role creation

Step 4: Add the policies listed in Figure 8-10 and add tags (optional). Click on the Next: Review button.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig10_HTML.jpg]
Figure 8-10AWS EKS IAM role creation

Step 5: Review and click the Create Role button, as shown in Figure 8-11. Review after the role has been created.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig11_HTML.jpg]
Figure 8-11AWS EKS IAM role creation

Step 6: Now, let’s create a security group for our AWS EKS cluster. Select “EC2” from the AWS service list and navigate to Security Groups, as shown in Figure 8-12.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig12_HTML.jpg]
Figure 8-12AWS EKS security group creation

Step 7: Click on Create Security Group. Provide a name for the security group and add a description (optional). Select a pre-built VPC. Click on the Create button to set up a security group for the AWS EKS cluster, as shown in Figure 8-13.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig13_HTML.jpg]
Figure 8-13AWS EKS security group creation

Step 8: Now add inbound and outbound security group ports to your \cluster. Typically, users follow organizational policies, AWS architecture, and security best practices to allow selective ports for their AWS EKS cluster. For this lab exercise, we are adding a few default ports, as shown in Figure 8-14.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig14_HTML.jpg]
Figure 8-14AWS EKS security group inbound port

Step 9: Now, let’s create an SSH key pair for the AWS EKS cluster. Select “EC2” from the service list and navigate to Key Pairs, as shown in Figure 8-15.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig15_HTML.jpg]
Figure 8-15AWS EKS SSH key pair creation

Step 10: Click on Create Key Pair. Provide key pair name and click the Create button, as shown in Figure 8-16.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig16_HTML.jpg]
Figure 8-16AWS EKS SSH key pair creation

Step 11: Now, let’s create the AWS EKS cluster. Select “EKS” from the services list. Click the Create Cluster button, as shown in Figure 8-17.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig17_HTML.jpg]
Figure 8-17AWS EKS creation

Provide a cluster name and select Kubernetes version 1.14. Select the IAM role created in previous steps, as shown in Figure 8-18.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig18_HTML.jpg]
Figure 8-18AWS EKS creation

Step 12: Select the pre-built VPC and subnet, as shown in Figure 8-19.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig19_HTML.jpg]
Figure 8-19AWS EKS creation

Select the security group created in a previous step, as shown in Figure 8-20.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig20_HTML.jpg]
Figure 8-20AWS EKS creation

Step 13: Enable public access for AWS EKS APIs, as shown in Figure 8-21.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig21_HTML.jpg]
Figure 8-21AWS EKS creation

Also enable all logging options, as shown in Figure 8-22.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig22_HTML.jpg]
Figure 8-22AWS EKS creation

Step 14: Add tag values (optional) and click the Create button, as shown in Figure 8-23.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig23_HTML.jpg]
Figure 8-23AWS EKS creation

Step 15: Validate your EKS cluster after setup. You can view if status is ACTIVE on the AWS console, as shown in Figure 8-24.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig24_HTML.jpg]
Figure 8-24AWS EKS creation validation

Step 16: Now, let’s create a node group in the AWS EKS cluster. Click the Add Node Group button on the newly created AWS EKS cluster’s page, as shown in Figure 8-25.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig25_HTML.jpg]
Figure 8-25AWS EKS node group creation

Provide the name of the node group, then select subnets and the IAM role created in previous steps. Click the Next button.
Step 17: Select “Amazon Linux 2” for AMI type, select instance type as “t3.xlarge,” and set the disk size to “20,” as shown in Figure 8-26.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig26_HTML.jpg]
Figure 8-26AWS EKS node group creation

Step 18: Select the SSH key pair created in previous steps. Select “Allow remote access from All.” Click the Next button.
Step 19: Provide cluster scaling configuration of minimum, maximum, and desired size as 1. Click the Next button, as shown in Figure 8-27.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig27_HTML.jpg]
Figure 8-27AWS EKS node group creation

Step 20: Review and click the Create button as shown in Figure 8-28. After creation, you can view whether the node group is in an active state on the AWS EKS cluster home page, as shown in Figure 8-24.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig28_HTML.jpg]
Figure 8-28AWS EKS node group creation

Step 21: Now we will set up the AWS cli tool on our Kubernetes master node server. Execute the following command to install Python36 on your system:$sudo yum install python36

Step 22: Verify the Python version by executing the following command:$Python3 –version

Step 23: Install AWS cli by executing the following command:$Pip3 install awscli –upgrade –user

Step 24: Verify AWS cli version by executing the following command:$aws --version

Step 25: Configure your AWS account credentials (access and secret key) by executing the following command. Add the secret key, access key, and region where the AWS EKS cluster was created. Select “json” as the output format, as shown in Figure 8-29.$aws configure

[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig29_HTML.jpg]
Figure 8-29AWS cli tool configuration

Step 26: Execute the following command to fetch the AWS EKS cluster kubeconfig details (which we created in a previous step) from our master Kubernetes node:$aws eks --region "us-east-1" update-kubeconfig --name "Prometheus"

Step 27: Fetch the kernel details of the AWS EKS cluster by executing the following command, as shown in Figure 8-30:$kubectl describe nodes

[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig30_HTML.jpg]
Figure 8-30AWS EKS cluster kernel version

Sysdig Agent Installation
So far we have created an evaluation account for Sysdig, created an AWS EKS cluster, and connected our Kubernetes master node with AWS EKS. Now, we will install a Sysdig agent on the AWS EKS cluster.
Step 1: Execute the following command to download and install dependencies for the Sysdig agent:$yum -y install kernel-devel-$(uname -r)

Step 2: Navigate to the /home/Prometheus directory and execute the following command to clone the file from GitHub:$cd /home/promethues
$ git clone https://github.com/dryice-devops/sysdig.git

Step 3: Under the cloned Sysdig directory, you will find sysdig-agent-clusterrole.yaml, sysdig-agent-configmap.yaml, and sysdig-agent-daemonset-v2.yaml files. You can get sample files from this GitHub link:
https://github.com/draios/sysdig-cloud-scripts/tree/master/agent_deploy/kubernetes.
You don’t need to modify anything in the sysdig-agent-clusterrole.yaml or sysdig-agent-daemonset-v2.yaml files. In the sysdig-agent-configmap.yaml file, you need to update the k8s_cluster_name field with the name of the AWS EKS cluster (Prometheus, in our case). Also set Prometheus monitoring to true, as shown in Figure 8-31.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig31_HTML.jpg]
Figure 8-31Sysdig agent config files update

Step 4: Create a namespace for the Sysdig agent using the non-root user, as follows:$kubectl create ns sysdig-agent

Step 5: Create secrets for the Sysdig agent by executing the following command. This will use the key (highlighted) we got when we created the evaluation account for Sysdig (while selecting Kubernetes on the Welcome screen).$kubectl create secret generic sysdig-agent --from-literal=access-key=b7f77372-0f4e-444a-b13a-c3818fd5c885 -n sysdig-agent

Step 6: Execute the following command to deploy the Sysdig agent cluster role. Here, the cluster role file is the same one we created in previous steps.$ kubectl apply -f sysdig-agent-clusterrole.yaml -n sysdig-agent

Step 7: Execute the following command to create a service account in the Sysdig agent namespace:$ kubectl create serviceaccount sysdig-agent -n sysdig-agent

Step 8: Execute the following command to create cluster role binding in the Sysdig namespace:$ kubectl create clusterrolebinding sysdig-agent --clusterrole=sysdig-agent --serviceaccount=sysdig-agent:sysdig-agent

Step 9: Execute the following commands to complete installation of the Sysdig agent:$ kubectl apply -f sysdig-agent-configmap.yaml -n sysdig-agent
$kubectl apply -f sysdig-agent-daemonset-v2.yaml -n sysdig-agent

Deploy Sock Shop Application on EKS
Before starting to use Sysdig, let’s deploy an application on our AWS EKS cluster. We will use the Sock Shop application

 in this example. The application is the user-facing part of an online shop that sells socks. It is intended to aid the demonstration and testing of microservice and cloud-native technologies. We will use this application to demonstrate Sysdig’s container application monitoring capability. Figure 8-32 shows the architecture of the application.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig32_HTML.jpg]
Figure 8-32Sock Shop application architecture

Step 1: Execute the following command to download the Sock Shop application’s yaml file to the /home/prometheus/sysdig directory. This file contains the configuration information related to Kubernetes deployments, pods, Docker images, and services required to deploy the Sock Shop application on the AWS EKS cluster.$ git clone https://github.com/dryice-devops/microservices-demo.git

Step 2: Execute the following command to deploy the application to the /home/prometheus/sysdig/microservices-demo/deploy/Kubernetes directory:$ kubectl create namespace sock-shop

Step 3: Execute the following inline command to deploy the application:$ kubectl apply -f complete-demo.yaml

Step 4: Execute the following inline command to validate the deployed application. You can view all pods that are part of the Sock Shop application, as shown in Figure 8-33.$kubectl get pods -n sock-shop

[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig33_HTML.jpg]
Figure 8-33Sock Shop application deployment validation

EKS Metrics on Sysdig
Now we will navigate to the Sysdig console for reviewing monitoring metrics.
Step 1: Navigate to https://sysdig.com/ and click the Login button, then select “Monitor.” Log in using the username/password used at the registration stage.
Step 2: After login, you will view the Welcome to Sysdig page. You will also see a “You have 1 agent connected” notification. Click on Next to navigate to the next screen, as shown in Figure 8-34.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig34_HTML.jpg]
Figure 8-34Sysdig welcome page

Step 3: Add the AWS access and secret key on the screen. Enable Cloudwatch and click the Next button. You will see the “setup complete” message on the screen, as shown in Figure 8-35.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig35_HTML.jpg]
Figure 8-35Sysdig adding AWS account

Sysdig Navigation
Now, let’s navigate across various reports on the Sysdig console useful for container monitoring.
Step 1: To view the deployed pods in Sysdig, click Explore. Select “Hosts & Containers” from the drop-down menu. On the other node, select “Kubernetes Health Overview” under the Kubernetes category (subcategory of Default Dashboards), as shown in Figure 8-36.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig36_HTML.jpg]
Figure 8-36Sysdig Kubernetes health dashboard

Step 2: You will view rich metrics regarding the entire Kubernetes environment, including top namespace (by container), CPU/memory/file system usage, and network in/out, as shown in Figure 8-37.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig37_HTML.jpg]
Figure 8-37Sysdig Kubernetes health dashboard

Step 3: Select “Container Limits” from the right-side drop-down (Figure 8-38) to view CPU/memory share and quotas.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig38_HTML.png]
Figure 8-38Sysdig container limit monitoring

Step 4: Select “File system” from the right-side drop-down to view the number of bytes free/bytes used, number of nodes in the file system, etc., as shown in Figure 8-39.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig39_HTML.jpg]
Figure 8-39Sysdig container file system monitoring

Step 5: Select the “Overview” option under Network from the right-side drop-down to view metrics like inbound network bytes, outbound network bytes, and total network bytes, as shown in Figure 8-40.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig40_HTML.jpg]
Figure 8-40Sysdig container network monitoring

Docker Container Metrics
Sysdig provides various useful container metrics in the form of graphs. This information is useful for the sysadmin to monitor the health of the container ecosystem and take an appropriate action; e.g., generating an alert if any container is consuming more memory or CPU utilization. In this section, you will learn how to visualize and analyze the container metrics provided by Sysdig.
Now, let’s view container application metrics.
Step 1: To view container-based information for the Sock Shop application (deployed in previous steps), select “Containerized Apps” from the drop-down and then select container names, starting with weaveworksdemos. You will view top pods CPU utilization, memory usage, and filesystem, as shown in Figure 8-41.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig41_HTML.jpg]
Figure 8-41Sysdig containerized application view

Step 2: To view deployments, select “Deployments” from the drop-down menu and select “Sock-Shop.” Select “Kubernetes CPU Allocation Optimization” under the Kubernetes category, as shown in Figure 8-42.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig42_HTML.jpg]
Figure 8-42Sysdig Deployment view

Application Performance Metrics in Sysdig
Sysdig also provides various useful metrics related to application performance monitoring; e.g., response time, latency, request, and error count. System administrators use this information to identify and rectify issues that might be the cause of application failure.
Now, let’s explore other metrics provided by Sysdig specific for the application layer.
Step 1: Select “Explore” in the left-hand side panel and choose the “Hosts & Containers” option from the drop-down menu. Select “HTTP” from the second drop-down menu on the right. You will view metrics like top HTTP request, average/maximum request time, slowest URLs, etc., as shown in Figure 8-43.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig43_HTML.jpg]
Figure 8-43Sysdig HTTP monitor

Step 2: To analyze the JVM (Java virtual machine) health—e.g., heap size and garbage collector account—Sysdig provides insights. To see the JVM-related metrics, please select “JVM.” This will show metrics like allocated heap memory usage by process over time and garbage collector collection time, as shown in Figure 8-44.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig44_HTML.jpg]
Figure 8-44Sysdig JVM monitor

Sysdig Topology View
The Sysdig Topology view provides an interactive, animated interface to visualize how different components in your system interact with each other in real time. The interface by default renders a selected host’s top processes and their interactions with processes on remote hosts or host groups. The following are the entities visible on the Sysdig console:	Nodes: The entities participating in network communication. A node could be a process, a container, a host, or any label identified by the Sysdig agent. For example, kubernetes.pod.name.

	Links: The network connection between nodes.	Hosts and their child processes (host.hostName > proc.name) serve as the default grouping for the Topology view. Scaling a Topology view is limited by the number of processes and connections. Sysdig Monitor creates the Topology view by identifying network endpoints (IP addresses) derived from system call data.

	The Topology view in the Explore tab provides pre-defined dashboards to represent CPU usage, network traffic, and response time metrics.

Now, let’s view the Topology view from Sysdig.
Step 1: Select “Explore” in the left-hand side panel and choose the “Hosts & Containers” option from the drop-down menu. Select “Topology” and then “CPU Usage.” Click on each icon to drill down to CPU usage by application node; a container with topology mapping is shown in Figure 8-45.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig45_HTML.jpg]
Figure 8-45Sysdig Topology view by CPU

Step 2: Select the “Network Traffic” option from the second drop-down menu instead of CPU usage. You can drill down to view the specific flow; e.g., we selected the Python-based box that shows the network traffic between the Python pod and Mongo DB pod related to our Sock Shop app, as shown in Figure 8-46.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig46_HTML.jpg]
Figure 8-46Sysdig Topology view by network traffic

Golden Signal Monitoring Using Sysdig
Classic monitoring tools are usually based on static configuration files and were designed to monitor machines, not microservices or containers. Containers are created and destroyed at an incredible pace, and it is impossible to catch up without specific service discovery functions.
It is important that we are able to focus on relevant views and alerts and not generate data that is of no use for analysis or troubleshooting.
Google resolved this issue using Golden Signals (term used in Google SRE handbook). Golden Signals are four metrics that will give you a very good idea of the real health and performance of your application as seen by the actors interacting with that service, whether they are final users or another service in your microservice application. The four Golden Signals are as follows:	Latency: Latency is the time your system takes to serve a request against the service. This is an important sign to detect a performance degradation problem.

	Errors: The rate of errors returned by your service is a very good indicator of deeper issues. It is very important to detect not only explicit errors, but implicit errors too.

	Traffic/Connections: Traffic or connections is an indicator of the amount of use of your service per time unit. It can be many different values depending on the nature of the system, like the number of requests to an API or the bandwidth consumed by a streaming app.

	Saturation: Usually saturation is expressed as a percentage of the maximum capacity, but each system will have different ways to measure saturation. The percentage could mean the number of users or requests obtained directly from the application or based upon estimations.

Now, let’s see how we can view Golden Signal metrics using Sysdig.
Step 1: Select “Explore” in the left-hand side panel and choose the “Services” option from the drop-down menu. Select “Kubernetes Service Golden Signals” from the second drop-down menu, on the right. You’ll see the Golden Signals metrics, as shown in Figure 8-47.[image: ../images/491282_1_En_8_Chapter/491282_1_En_8_Fig47_HTML.jpg]
Figure 8-47Sysdig Golden Signals metrics

Summary
In this chapter, we have provided hands-on steps for using Sysdig for container application monitoring. In the next chapter, we will cover how to automate enabling container monitoring using CI/CD-based automated pipelines, along with hands-on exercises.

© Navin Sabharwal, Piyush Pandey 2020
N. Sabharwal, P. PandeyMonitoring Microservices and Containerized Applicationshttps://doi.org/10.1007/978-1-4842-6216-0_9

9. Automation and Orchestration of Container Monitoring

Navin Sabharwal1 and Piyush Pandey2
(1)New Delhi, Delhi, India

(2)New Delhi, India

This chapter will provide hands-on steps for using Infrastructure as Code and the CI/CD pipeline to automate the deployment of container ecosystem infrastructure, applications, and monitoring. We will look at the following:	Container Monitoring Automation

	Hands-on Exercise for Container Monitoring Automation

Container Monitoring Automation
As infrastructure has evolved and matured over the last decade, the way in which we build and deploy that infrastructure has also changed. With the rise of Infrastructure as Code, we can now reconstruct the whole infrastructure and platform from a code repository. With cloud computing and APIs, we can now truly treat our infrastructure just like an application. With containerization, since the dependencies are packaged with the application, the application can now be ported to any infrastructure, which itself is spun up using Infrastructure as Code.
A great advantage of Infrastructure as Code (IaC)

 is that it allows you to build environments rapidly without any human intervention. With IaC, we can now have consistent configuration and builds that are exactly alike.
The following is a high-level view of how IaC tools operate (Figure 9-1):	You describe the desired infrastructure resources in a file (for example, a virtual network with three public subnets, a compute instance on one of them with a block volume attached to it). You describe what you need; you never describe how to create them—the IaC tool figures out how to create them.

	The tool looks at what you have described in your code and logs in to your cloud account to check if those resources are present.

	If the resources are not present, they are created.

	If the resources are already present with the same attributes, no action is taken.

	If matching resources are found with differences, the IaC tool assumes you want them changed and makes the change happen.

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig1_HTML.jpg]
Figure 9-1How Infrastructure as Code works

As DevOps continues to evolve, developers find ways to strengthen the integration of IaC and containers, since they complement each other. Containers incorporate Infrastructure as Code into the development cycle as a core component.
At first glance, a container image appears to be a fully self-contained application: it has all of the code and software dependencies required to run the application. However, once we deploy and operate images in the container ecosystem, we find we need a lot more configuration to scale it out, make it reliable, and make it observable. The monitoring and management of container-based infrastructure and applications brings its own unique elements and complexity.
A containerized application in the cloud might look something like Figure 9-2, where the container image is only part of the full application.

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig2_HTML.jpg]
Figure 9-2Containerized application components beyond image

The complete application is really best described with a combination of the container image and an IaC template containing all this configuration. Infrastructure as Code is an important element in release management of an application.
Now, when it comes to automating the container monitoring, there are many use cases possible. Some of the use cases are listed here:	Enabling container monitoring for base infrastructure and application via CI/CD pipeline and Infrastructure as Code solutions (like Jenkins and Terraform/Ansible). This can include use cases like installing any agent/plugin for Monitoring, creating alarms, configuring threshold etc.

	Self-healing incidents which are created after receiving monitoring alerts using the Runbook orchestration tool. Essentially all the steps that a human performs to troubleshoot and resolve an incident after receiving a monitoring alert are converted into an automated flow, which is automatically triggered to resolve the incident.

	Report generation automation using tools like Grafana or Splunk

When we deploy Infrastructure as Code in a CI/CD pipeline, we can deploy changes in both the microservices infrastructure and the containers in the CI/CD release pipeline. This enables complete visibility of both the application code and the infrastructure code in the pipeline currently deployed in the production environment. A simplified example of our release process is shown in Figure 9-3.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig3_HTML.jpg]
Figure 9-3CI/CD pipeline leveraging Infrastructure as Code to automate container monitoring

The IaC template contains both the container-related configuration and the microservice’s infrastructure in the “build” stage of the pipeline. The container image is built and pushed, and the unique ID for the new container image is inserted into the IaC template. Each stage of the pipeline, like “Dev” and “Prod,” then deploys the same Infrastructure as Code template. This practice gives us confidence that deployments of the entire application are repeatable. Within this pipeline, we can enable automation to deploy container monitoring as part of a first-time release. In the next section, we will do a hands-on exercise to enable such automation using Terraform and Jenkins.
Hands-on Exercise for Container Monitoring Automation
In this section, we will use Terraform to create a Kubernetes cluster on AWS and configure the Sysdig agent on it, and Jenkins to automate container monitoring. We will use AWS for our target container ecosystem and Sysdig for our container monitoring tool.
Cleaning Up the AWS Environment Namespace
Before we begin, let’s clean up the namespace created for the Sysdig agent and Sock Shop application from Chapter 8 for a fresh installation through automation by Jenkins and Terraform.
Step 1: Delete the sock-shop and sysdig-agent namespaces that we created earlier on the master node by executing the following command, as shown in Figure 9-4:
$ kubectl delete namespace sock-shop
$ kubectl delete namespace sysdig-agent
[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig4_HTML.jpg]
Figure 9-4Kubernetes namespace clean-up

Jenkins Installation (v2.204.1)
We will start with installing Jenkins

, which will be used to compose a CI/CD pipeline for our containerized application. We will use our master node (10.1.150.126) server to install Jenkins. We will use a Dockerized version of Jenkins in this exercise.
Step 1: Log into the master node as the root user and execute the following command to clone the Docker file that will be used to install Jenkins. Navigate into the jenkins directory by executing the following command, as shown in Figure 9-5:[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig5_HTML.jpg]
Figure 9-5Jenkins installation directory creation

$ git clone https://github.com/dryice-devops/jenkins.git
$ cd Jenkins
Step 2: Create another sub-directory named jenkins-data that will be used as the Jenkins home and that will contain all the required details of the Jenkins server—e.g., workspace, job, configuration details, etc.—by executing the following command, as shown in Figure 9-6:$ mkdir jenkins-data

Step 3: Create a Jenkins Docker image with the name jenkins by executing the following inline command, as shown in Figure 9-6, in the jenkins directory that contains the Docker file:$ docker build -t jenkins.

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig6_HTML.jpg]
Figure 9-6Jenkins Docker image build

Step 4: Verify whether the Jenkins Docker image was created by executing the following inline command, as shown in Figure 9-7.
If the Docker image was created successfully, then the following command will return “Repository” as Jenkins that we passed in as a tag (-t) in previous step.$docker images

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig7_HTML.jpg]
Figure 9-7Verify Jenkins Docker image

Step 5: Execute the following command to install Jenkins on Docker, as shown in Figure 9-8:[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig8_HTML.jpg]
Figure 9-8Jenkins installation

$docker run -u root --rm -d -p 8080:8080 -v /home/prometheus/jenkins/jenkins-data:/var/jenkins_home -v /var/run/docker.sock:/var/run/docker.sock Jenkins
In the preceding command we used port 8080 on the master node to run Jenkins, so please make sure that this port is open on your Linux VM. You can also pass another port for the VM, but the Jenkins container port would be run on 8080 port only. For more information about the Docker run command, please refer to Docker’s official page.1
Step 6: Execute the following command to verify that the Jenkins Docker container is running fine. Its status should come as up as shown in Figure 9-9.
If the Jenkins Docker container is having any issues, then its status would be Exited or Dead; in that case, you would have to check the Docker container logs to identify the root cause of the Docker container failure.1$ docker ps

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig9_HTML.jpg]
Figure 9-9Jenkins installation verification

Step 7: Jenkins requires a secret password during login. Secret passwords are stored in the initialAdminPassword file in the secrets directory of the jenkins-data folder. To get it, please execute the following command, as shown in Figure 9-10:$ cat jenkins-data/secrets/initialAdminPassword

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig10_HTML.jpg]
Figure 9-10Fetching Jenkins password

Step 8: Navigate to the following URL to access Jenkins. You will receive a prompt that will require the secret password. Use the secret password fetched in the previous step and click the Continue button, as shown in Figure 9-11.
URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080
[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig11_HTML.jpg]
Figure 9-11Accessing Jenkins console for first time

Step 9: Jenkins requires various plugins to create pipelines and to interact with different tools to perform tasks related to CI/CD; e.g., to connect with the GitHub repository and fetch the code, Jenkins required the Git plugin. Jenkins provides two options to install plugins: “Install suggested plugins” and “Select plugins to install.” In our case, we selected “Install suggested plugins,” as shown in Figure 9-12. If you want to select specific plugins, then choose “Select plugins to install.”[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig12_HTML.jpg]
Figure 9-12Selection of “Install suggested plugins” option

Step 10: Click on Continue to proceed, as shown in Figure 9-13.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig13_HTML.jpg]
Figure 9-13Jenkins first-time login configuration

Step 11: Fill in details for username, password, full name, and email address and click the Save and Continue button, as shown in Figure 9-14.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig14_HTML.jpg]
Figure 9-14Jenkins first admin user setup

Step 12: Click on Save and Finish to proceed, as shown in Figure 9-15.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig15_HTML.jpg]
Figure 9-15Jenkins first-time login configuration

Step 13: Click the Start using Jenkins button to complete installation, as shown in Figure 9-16.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig16_HTML.png]
Figure 9-16Jenkins first-time login configuration

You will see the screen for the Jenkins console, as shown in Figure 9-17.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig17_HTML.jpg]
Figure 9-17Jenkins console

Terraform Open Source Installation
We will start with installing Terraform open source, which will be used to compose an Infrastructure as Code module for the containerized infrastructure on AWS. We will use our master node (10.1.150.126) server to install Terraform.
Step 1: Log in to the master node as a root user and create a sub-directory named terraform under /home/Prometheus. Navigate into the directory by executing the following command, as shown in Figure 9-18:$ cd /home/prometheus
$ mkdir terraform
$ cd terraform

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig18_HTML.jpg]
Figure 9-18Terraform installation directory creation

Step 2: Execute the following command to download the Terraform package and unzip it, as shown in Figure 9-19:$ wget https://releases.hashicorp.com/terraform/0.11.11/terraform_0.11.11_linux_amd64.zip

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig19_HTML.jpg]
Figure 9-19Terraform installation package download

Step 3: Verify the zip file has been successfully downloaded by executing the following command, as shown in Figure 9-20:$ ls -ltr

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig20_HTML.jpg]
Figure 9-20Terraform installation package download verification

Step 4: Unzip the Terraform package by executing the following command, as shown in Figure 9-21:$ unzip terraform_0.11.11_linux_amd64.zip

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig21_HTML.jpg]
Figure 9-21Unzip Terraform installation package

Step 5: Remove the zip file by executing the following inline command, as shown in Figure 9-22:$ rm -rf terraform_0.11.11_linux_amd64.zip
$ ll

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig22_HTML.jpg]
Figure 9-22Delete Terraform zip package

Step 6: Add the Terraform file path to the Linux PATH variable, as shown in Figure 9-23.$ export PATH="$PATH:/home/prometheus/terraform"
$ echo $PATH

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig23_HTML.jpg]
Figure 9-23Update and verify PATH variable

Step 7: Update the bash.rc file

 by executing the following command, and append export PATH="$PATH:/home/prometheus/terraform to the end of the file. Save and quit the file.
$ vi ~/.bashrc
.bashrc
User specific aliases and functions
alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'
Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc
fi
export PATH="$PATH:/home/prometheus/terraform"
Step 8: Verify the updated content by executing the following command, as shown in Figure 9-24:$ cat ~/.bashrc

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig24_HTML.jpg]
Figure 9-24Verify bashrc file update

Step 9: Validate successful Terraform installation by executing the following command, as shown in Figure 9-25:$ terraform --version

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig25_HTML.jpg]
Figure 9-25Verify Terraform installation

AWS IAM authenticator Installation
Now we will install AWS IAM authenticator, which will use AWS IAM credentials to authenticate to a Kubernetes cluster. If you are an administrator running a Kubernetes cluster on AWS, you already have an account to manage AWS IAM credentials so as to provision and update the cluster. By using AWS IAM Authenticator for Kubernetes, you can avoid having to manage a separate credential for Kubernetes access. AWS IAM also provides a number of nice properties, such as an out-of-band audit trail (via CloudTrail) and 2FA/MFA enforcement. We will use our Master Node (10.1.150.126) server to install aws-iam-authenticator.
Step 1: Navigate to the /home/prometheus/terraform directory and execute the following command, as shown in Figure 9-26:$curl -o aws-iam-authenticator https://amazon-eks.s3-us-west-2.amazonaws.com/1.14.6/2019-08-22/bin/linux/amd64/aws-iam-authenticator

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig26_HTML.jpg]
Figure 9-26Download aws-iam-authenticator

Step 2: Once aws-iam-authenticator is downloaded, rename it as iam-authenticator-aws by executing the following command:$ mv aws-iam-authenticator iam-authenticator-aws

Step 3: Now apply execute permissions on the iam-authenticator-aws executable by executing the following inline command:$ chmod 0777 iam-authenticator-aws

Jenkins and Terraform Integration
Let’s now integrate Jenkins and Terraform. This will set up the base for our CI/CD pipeline, which will have the automation logic for enabling container monitoring while deploying the container infrastructure on AWS. We will configure a Jenkins node on the same server where we have configured Terraform.
Step 1: Navigate to the /home directory and create a sub-directory called Jenkins_node. Change permission of directory to 700 permission using chmod command so that the root user can only perform read, write, and execute operations on it by executing the following commands. The Jenkins_node directory will be used by the Jenkins node to connect and execute the command.$ cd /home
$ mkdir jenkins_node
$ chmod 700 jenkins_node

Step 2: Navigate to the following URL to access Jenkins. Use your admin password set up in previous steps. Navigate to Manage Jenkins ➤ Manage Nodes ➤ New Node.
URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080
Step 3: Fill in the form as per the following values:	Root: Select directory as jenkins_node.

	Name: Mention any name you like.

	Remote Root Directory: Path of the Jenkins_node folder we created; e.g., /home/jenkins_node

	Label: Mention label as Kubernetes_Master.

	Usage: Select “Use this node as much as possible.”

	Launch Method: Select “Launch agents via SSH.”

	Host: Mention Kubernetes master node IP address (in our case, 10.1.150.126).

	Credential: Click Add button and choose “Jenkins.”

	Choose Kind as “Username with password” and then fill Username as “root.” Password is the root user password of the Kubernetes master node. Also fill in the ID and Description fields. Click the Add button and select the credential, as shown in Figures 9-27 and 9-28.

	Host Key Verification Strategy: Choose the “Non-verifying Verification Strategy” option, as we are connecting a Jenkins node by giving a username and password, not by SSH keys, to simplify the Jenkins node setup. If you want to connect the Jenkins node with an SSH key please follow the following link.2

	Availability: Choose “Keep this agent online as much as possible.”

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig27_HTML.jpg]
Figure 9-27Setting up Jenkins node

[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig28_HTML.jpg]
Figure 9-28Setting up Jenkins node

Step 4: Click on the Save button to proceed.
Step 5: Verify the agent has been configured successfully by reviewing the Jenkins console status, as shown in Figure 9-29.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig29_HTML.jpg]
Figure 9-29Verifying Jenkins node

Jenkins and Terraform Integration
Now we will create the Jenkins Pipeline CI-CD-Kube-Sysdig to automate the inline process, as follows:	Code Clone: Clone the sock-shop code from GitHub.

	Create Cluster: Create a Kubernetes cluster EKS on AWS by Terraform.

	Deploy Sysdig Agent: Deploy a Sysdig agent on EKS.

	Deploy Application: Deploy the Sock Shop application on EKS.

Step 1: Navigate to the following URL to access Jenkins. Use your admin password set up in previous steps. Click on “New Item,” as shown in Figure 9-30.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig30_HTML.jpg]
Figure 9-30Creating Jenkins ipeline

URL: http://Master-Node-IP:8080; e.g., http://10.1.150.126:8080
Step 2: Fill the form by making the item name CI-CD-Kube-Sysdig. Choose “Pipeline,” as we are using pipeline as code in Jenkins to automate the previously defined process, then click the OK button, as shown in Figure 9-31. Jenkins provides capability of modeling pipelines “as code” where Pipeline definition is written as text or script file (called a Jenkinsfile). This allows pipeline definition to be stored & managed using Version control system.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig31_HTML.jpg]
Figure 9-31Creating Jenkins pipeline

Step 3: Click on “Pipeline,” and it will display a script box where we will compose our Jenkins script

, as shown in Figure 9-32.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig32_HTML.jpg]
Figure 9-32Composing Jenkins script

Step 4: To create an EKS cluster, we will use the Terraform code. The Terraform code does the following tasks:	Creates an AWS IAM role with the name ${var.cluster-name}-eks-cluster-role (where var.cluster-name is a defined variable that takes input from the user for the name of the cluster to be created) and attaches policies to the IAM role created.

	Security group rules are created to allow the API access to the cluster and defines rules to access cluster nodes from workers and vice versa,

	EKS cluster is deployed by the code with the user input name of the cluster. The IAM role created is attached to the cluster, the version of Kubernetes is provided with a default value, and the end user can opt for a different available version of EKS for the deployment.

	EKS worker nodes are configured by passing user data to the launch configuration, while the worker nodes are created by using auto-scaling of AWS to ensure availability of the nodes at all times.

	Security group rules are created for the worker node to allow it to reach out to the EKS cluster and to allow SSH login to the instances.

To deploy the sysdig agent, we will leverage the shell script sysdig_agent to create the namespace’s cluster role binding secrets, which will be leveraged by the Sysdig agent to monitor the cluster. Then it deploys the Sysdig agent config map and DaemonSet on the cluster.
Both the script and other Terraform modules are created in the /home/EKS_CLUSTER folder.
Clone the EKS_CLUSTER files by executing the following commands from the /home directory of the master node (10.1.150.126):
$ cd /home
$ git clone https://github.com/dryice-devops/EKS_CLUSTER.git
You will see a sub-directory under the /home directory named EKS_CLUSTER. Navigate into that to view the file named kubernetes_deploy.sh. This file requires four parameters, as follows:	cluster-name; e.g., Prometheus

	aws-region; e.g., us-east-1

	node-instance-type; e.g., t3.xlarge

	KeyName; e.g., awx

$ cd EKS_CLUSTER

In the EKS_CLUSTER directory you will also find the sysdig_agent.sh file. In this script, we have to add the key mentioned as (XXXXXXXXXXXXXXX) that we used for the Sysdig subscription in the last chapter. Replace the key with your specific value before proceeding to the next steps.
Create an agent-files directory in the /home directory:
$ cd /home
$ mkdir agent-files
Create the inline files with the same contents as we created earlier (manual process to deploy Sysdig agent):sysdig-agent-clusterrole.yaml, sysdig-agent-configmap.yaml and sysdig-agent-daemonset-v2.yaml

Step 5: Copy the contents of the Jenkins file into the EKS_CLUSTER folder and paste it into the script box. Then, click the Save button, as shown in Figure 9-33.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig33_HTML.jpg]
Figure 9-33Saving Jenkins script

Step 6: Execute

 the Jenkins job by clicking on “Build Now” (Figure 9-34).[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig34_HTML.jpg]
Figure 9-34Executing Jenkins script

Step 7: Once the job has been executed successfully, the following build history will show. If it runs fine, the build number will be blue; if not, it will be red. This history will also show the stages under Stage View. To view logs, click on the build number, as shown in Figure 9-35. Click on Console Output.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig35_HTML.jpg]
Figure 9-35Reviewing Jenkins logs

In the log console, please scroll three-fourths of the way down the screen to see the newly created EKS node’s details, as shown in Figure 9-36.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig36_HTML.jpg]
Figure 9-36Reviewing Jenkins logs

Step 8: Navigate to your AWS account console and click on “Services,” then select “EKS” under the Compute category, as shown in Figure 9-37.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig37_HTML.jpg]
Figure 9-37Reviewing the AWS console

You will see the EKS cluster Prometheus is in an active state, as shown in Figure 9-38, the same that we created through Jenkins and Terraform.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig38_HTML.jpg]
Figure 9-38Reviewing AWS console

Now, navigate back to Services and click “EC2” under the Compute category, as shown in Figure 9-39.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig39_HTML.jpg]
Figure 9-39Reviewing AWS console

Click on “Running Instances” under the Resource category, as shown in Figure 9-40.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig40_HTML.jpg]
Figure 9-40Reviewing AWS console

You will see the EC2 instance name as Prometheus-eks-node. Select this, as shown in Figure 9-41.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig41_HTML.jpg]
Figure 9-41Reviewing AWS console

In the Description tab, you will get the private DNS. It is same as we have seen in the Jenkins logs, as shown in Figure 9-42.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig42_HTML.jpg]
Figure 9-42Reviewing AWS console

Step 9: Now, let’s navigate to the Sysdig console and verify that our EKS cluster has been added under Monitoring. Navigate to Sysdig at https://sysdig.com/ and log in with your credentials.
Navigate to Explore ➤ Hosts & Containers, and then select “Overview by Container” under the Hosts & Container category. You will see Figure 9-43.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig43_HTML.jpg]
Figure 9-43Reviewing the Sysdig console

Now, to verify that the Sock Shop application deployed, click Explore ➤ Hosts & Containers ➤ Select Container Limits under the Hosts & Containers category.
Hover over the graph of CPU Shares Used, as shown in Figure 9-44.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig44_HTML.jpg]
Figure 9-44Reviewing the Sysdig console

You will see the Sock Shop container’s name, as shown in Figure 9-45.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig45_HTML.jpg]
Figure 9-45Reviewing Sysdig Console

Click on Explore ➤ Daemon Sets ➤ Over by Service under Services. You should see something similar to Figure 9-46.[image: ../images/491282_1_En_9_Chapter/491282_1_En_9_Fig46_HTML.jpg]
Figure 9-46Reviewing the Sysdig console

Summary
In this chapter, we have provided hands-on steps for using an Infrastructure as Code solution, Terraform; and a CI/CD solution, Jenkins, to automate the deployment of container infrastructure, then enabling monitoring for and deploying a containerized application.
Footnotes
1https://docs.docker.com/engine/reference/commandline/docker

2https://support.cloudbees.com/hc/en-us/articles/222978868-How-to-Connect-to-Remote-SSH-Agents-

Index

A, B

Alert Manager
alter view
config map list/delete
deployment creation
pods
Prometheus integration
service creation
setup overview
task flows overview
verification
YAML file walkthrough

Automation (monitoring)
AWS environment namespace
IaC
SeeInfrastructure as Code (IaC
Jenkins installation
Kubernetes namespace clean-up
Terraform open source
SeeTerraform open source

Azure Monitor exporter
application verification
Azure.yml file
dashboard
deployment
DRYICEDEMoIAC workspace
exporter configuration
Go installation
graph tab
information and options
inline commands
Linux service
log analysis workspace
metrics verification
monitoring tab
namespace verification
networking tab
node count
node status graph
Powershell module
Prometheus console
scale tab
targets section
verification

C

cAdvisor exporter
config-map.yaml file
configuration
CPU graph
filesystem read graph
ICMP stats graph
open connection graph
Prometheus configuration
verification

Chroot system

Containerized application deployment
components
easyTravel application
ActiveGate installation
API token generation
cr.yml file
Dynatrace entities
integration
master server
monitoring configuration file
oneagent operator
PaaS token generation
pod list
service list
easytravel.yaml file
environment ID
GitHub code
Kubernetes namespace creation
OneAgent installation

Containers
cloud computing
Docker and Kubernetes
SeeDocker and Kubernetes
environments
meaning
modernization empowers companies
monitoring ecosystem
technology
testing, and deploying application
vs VM comparison

D

Dashboard solution
SeeReporting/dashboard solutions)

Docker and Kubernetes
architecture
CE edition setup
community edition
installation
Redhat systems
Redhat VMs
repo configuration
validation
Kubernetes
SeeKubernetes services
physical and virtual infrastructure
management interfaces
namespaces

Dynatrace
containerized application
SeeContainerized application deployment
container monitoring
application components
architecture
components and objects
easy travel architecture
evaluation version
home page
region selection
tab navigation
welcome page
key capabilities
metrics
SeeMetrics
SaaS architecture
Smartscape topology application
transactions/services

E, F

Elastic Kubernetes Services (EKS)
cli tool configuration
cluster button creation
cluster kernel version
enable public access
IAM role creation
inbound/outbound security
key pair creation
logging options
node group creation
permissions button
review button
role button
security group creation
security group selection
tag values (optional)
validation
VPC and subnet creation

extended Berkeley Packet Filter (Ebpf)

G

Grafana visualization
alerting engine
cloning file
components
config-map.yaml file
dashboard navigation
data source configuration
deployment flow
flowchart
in-line commands
installation
login page
pod status verification
temporary password fetch
values.yaml file
dashboards
data sources
panels
query editor

H

Heapster

I

Infrastructure as Code (IaC)
advantage
CI/CD pipeline leveraging
containerized application components
tools
working process

Infrastructure monitoring
exporter
Azure Monitor
cAdvisor
node exporter
Kubernetes
control plane
infrastructure service roles
metrics
labels
Apiserver request duration
Helm version
HTTP request
PromQL
Tiller installation
parameters
key layers
node availability
node health
service discovery

J

Jenkins
AWS console
execution process
inline process
node verification
parameters
pipeline creation
reviewing logs
save button
script box
source code tasks
Sysdig console

Jenkins 9v2.204
admin user setup
console
directory creation
Docker image build
finish option
first-time login configuration
installation
password
plugins selection
verification

K

Kubernetes services
architecture
components
control plane
infrastructure service roles
master node
metrics
microservices architecture
installation, RHIEL 7
SeeRHIEL 7
setup
worker node
/etc/hosts file entry
kubectl get nodes command
repositories
SELinux and firewall policy
target node

Kube-state-metrics
deployment status graph
git verification
inline command
metrics service status
service verification

L

Lab environment setup

LinuX Containers (LXC)

M

Metrics
analyze nodes button
appication monitoring
application detection rule
cluster status
container metrics
Docker dashboard view
easyTravel application onboarding
home dashboard
host view
image name view
navigation menu
process details
processes and Containers view

Microservices architecture

Microservices-based applications

Monitoring ecosystem
components
metrics explosion view
nuances
requirements
toolset

Monolithic vs microservice application

N, O

Node exporter
configuration
CPU collector
diskstats collector
filesystem collector
graph node
hardware and OS metrics
Meminfo collector
Netdev collector
Prometheus console
query
section and details
Uname collector
verification

P, Q

Prometheus monitoring tool
alert manager
SeeAlert Manager
alert manager architecture
infrastructure management services
Kubernetes objects
building blocks
ClusterRoleBinding
ClusterRole Section
config map
deployment
deployment flow
namespace creation
services
YAML file
multi-dimensional data models

Prometheus Query Language (PromQL)
aggregation operations
average value output
identified labeled data
memory bytes
operation details
output
hypothetical representation
logical/arithmetic operators
consumption
data comparison
megabytes
output screen
query output
timestamp function
overview
return range selection
past/historical data
vector
selector
SeeSelectors
time-series data

R

Reporting/dashboard solutions
dashboard solutions
data source
Grafana
SeeGrafana visualization
RHEL 7
/etc/hosts file entry
firewall policy
inbound TCP ports
Kubeadm installation
network deployment
nodes and namespaces
repositories
SELinux policy

Role-based access and control (RBAC)

S

Selectors
data fetched file
filter labels
instant vector
metric selection
multiple labels
return values

Sock shop application

Sysdig monitoring application
agent installation
application performance metrices
architecture components
container vision
deployment view
Doctor application metrics
eBPF
EKS
SeeElastic Kubernetes Services (EKS
Falco
functional architecture
golden signals
HTTP monitor
JVM monitor
key features
meaning
metrics
navigation
sock shop application
topology view
trial license setup
account password setup
evaluation version
Kubernetes integration key

Sysdig monitoring data

T, U, V, W, X, Y, Z

Terraform open source
AWS IAM credentials
bash.rc file
directory creation
installation
Jenkin
SeeJenkins
package download verification
PATH variable
Unzip package
zip package

 Contents

 		Cover

		Front Matter

		1. Container Overview

		2. Getting Started with Containers

		3. Getting Started with Prometheus and Alert Manager

		4. Container Infrastructure Monitoring

		5. Working with Prometheus Query Language (PromQL)

		6. Container Reporting & Dashboards

		7. Container Application Monitoring Using Dynatrace

		8. Container Application Monitoring Using Sysdig

		9. Automation and Orchestration of Container Monitoring

		Back Matter

 Landmarks

 		Cover

		Table of Contents

		Body Matter

