
Using and
Administering
Linux: Volume 1

Zero to SysAdmin: Getting Started
—
David Both

Using and Administering
Linux: Volume 1

Zero to SysAdmin: Getting Started

David Both

Using and Administering Linux: Volume 1

ISBN-13 (pbk): 978-1-4842-5048-8 ISBN-13 (electronic): 978-1-4842-5049-5
https://doi.org/10.1007/978-1-4842-5049-5

Copyright © 2020 by David Both

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250488. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

David Both
Raleigh, NC, USA

https://doi.org/10.1007/978-1-4842-5049-5

This book – this course – is dedicated to all Linux and
open source course developers and trainers.

:(){ :|:& };:

v

Chapter 1: Introduction��� 1

Objectives ��� 1

About Linux ��� 1

The birth of Windows �� 3

Black box syndrome �� 3

The birth of Linux��� 5

The open box ��� 6

The Linux Truth �� 7

Knowledge ��� 8

Flexibility ��� 9

Stability ��� 10

Scalability �� 11

Security ��� 11

Freedom �� 12

Longevity ��� 13

Should I be a SysAdmin? �� 15

About this course �� 17

About the experiments �� 18

What to do if the experiments do not work ��� 20

Terminology �� 21

Table of Contents
About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

vi

How to access the command line ��� 21

Chapter summary ��� 22

Exercises ��� 22

Chapter 2: Introduction to Operating Systems ��� 23

Objectives ��� 23

Choice – Really! �� 23

What is an operating system?��� 24

Hardware ��� 25

The operating system �� 30

Typical operating system functions �� 31

Memory management ��� 32

Multitasking ��� 32

Multiuser ��� 33

Process management �� 34

Interprocess communication ��� 35

Device management �� 35

Error handling �� 36

Utilities �� 36

A bit of history ��� 37

Starting with UNICS ��� 37

UNIX ��� 38

A (very) brief history of Linux �� 41

Core utilities �� 41

GNU coreutils ��� 42

util-linux �� 43

Copyleft ��� 44

Games ��� 44

Chapter summary ��� 45

Exercises ��� 45

Table of ConTenTs

vii

Chapter 3: The Linux Philosophy for SysAdmins �� 47

Objectives ��� 47

Background ��� 47

The structure of the philosophy �� 48

The tenets ��� 50

Data streams are a universal interface ��� 50

Transforming data streams ��� 51

Everything is a file ��� 52

Use the Linux FHS ��� 52

Embrace the CLI �� 53

Be the lazy SysAdmin �� 54

Automate everything ��� 54

Always use shell scripts �� 55

Test early test often ��� 55

Use common sense naming �� 56

Store data in open formats �� 57

Use separate filesystems for data ��� 58

Make programs portable ��� 59

Use open source software ��� 60

Strive for elegance �� 61

Find the simplicity ��� 61

Use your favorite editor ��� 63

Document everything �� 63

Back up everything – frequently ��� 65

Follow your curiosity ��� 65

There is no should ��� 66

Mentor the young SysAdmins �� 67

Support your favorite open source project �� 67

Reality bytes �� 68

Chapter summary ��� 69

Exercises ��� 69

Table of ConTenTs

viii

Chapter 4: Preparation ��� 71

Objectives ��� 71

Overview ��� 71

Got root? ��� 72

Hardware specifications ��� 73

Host software requirements ��� 74

Installing VirtualBox �� 75

Install VirtualBox on a Linux host �� 75

Install VirtualBox on a Windows host ��� 82

Creating the VM ��� 86

VirtualBox Manager ��� 86

Configuring the virtual network ��� 88

Preparing disk space ��� 90

Download the ISO image file ��� 104

Creating the VM ��� 105

Chapter summary ��� 114

Exercises ��� 115

Chapter 5: Installing Linux ��� 117

Objectives ��� 117

Overview ��� 117

Boot the Fedora live image �� 118

Installing Fedora ��� 123

Start the installation �� 124

Set the hostname �� 125

Hard drive partitioning ��� 126

About swap space ��� 136

Begin the installation �� 140

Set the root password ��� 141

Create the student user ��� 143

Finishing the installation ��� 144

Exit the installer ��� 144

Table of ConTenTs

ix

Shut down the Live system ��� 145

Reconfigure the VM ��� 146

Create a snapshot ��� 146

First boot ��� 148

What to do if the experiments do not work ��� 149

Chapter summary ��� 151

Exercises ��� 151

Chapter 6: Using the Xfce Desktop ��� 153

Objectives ��� 153

Why Xfce ��� 153

The desktop ��� 154

The file manager ��� 156

Stability ��� 156

xfce4-terminal emulator �� 156

Configurability ��� 157

Getting started �� 157

Login ��� 159

Exploring the Xfce desktop ��� 162

Settings Manager �� 165

Adding launchers to Panel 2 �� 166

Preferred applications ��� 168

Desktop appearance ��� 170

Appearance ��� 170

Multiple desktops �� 173

Installing updates �� 175

Chapter summary ��� 178

Exercises ��� 179

Chapter 7: Using the Linux Command Line ��� 181

Objectives ��� 181

Introduction ��� 181

Table of ConTenTs

x

Preparation ��� 182

Defining the command line ��� 183

CLI terminology ��� 183

Command prompt �� 184

Command line ��� 184

Command-line interface �� 184

Command �� 185

Terminal ��� 185

Console �� 187

Virtual consoles ��� 188

Terminal emulator ��� 195

Pseudo-terminal �� 196

Session �� 197

Shell��� 198

Secure Shell (SSH)��� 201

screen �� 201

The GUI and the CLI ��� 204

Some important Linux commands �� 205

The PWD �� 206

Directory path notation styles ��� 206

Moving around the directory tree �� 207

Tab completion facility��� 212

Exploring files �� 214

More commands �� 217

Command recall and editing ��� 220

Chapter summary ��� 223

Exercises ��� 223

Chapter 8: Core Utilities �� 225

Objectives ��� 225

GNU coreutils �� 225

util-linux �� 230

Table of ConTenTs

xi

Chapter summary ��� 236

Exercises ��� 237

Chapter 9: Data Streams��� 239

Objectives ��� 239

Data streams as raw materials ��� 239

Text streams – A universal interface ��� 241

STDIO file handles ��� 241

Preparing a USB thumb drive �� 242

Generating data streams ��� 247

Test a theory with yes ��� 250

Exploring the USB drive �� 254

Randomness ��� 261

Pipe dreams �� 262

Building pipelines ��� 264

Redirection �� 265

Just grep’ing around ��� 268

Cleanup ��� 269

Chapter summary ��� 270

Exercises ��� 271

Chapter 10: Text Editors ��� 273

Objectives ��� 273

Why we need text editors ��� 273

Vim �� 275

Other editors ��� 276

Emacs �� 276

gedit �� 276

Leafpad �� 277

Kate ��� 277

xfw ��� 277

xed ��� 277

Table of ConTenTs

xii

Learning Vim ��� 277

Disabling SELinux �� 278

Use your favorite text editor �� 280

Chapter summary ��� 281

Exercises ��� 281

Chapter 11: Working As Root �� 283

Objectives ��� 283

Why root? �� 283

More about the su command �� 284

Getting to know the root account �� 286

Disadvantages of root ��� 292

Escalating user privilege ��� 293

The bad ways �� 293

Using sudo ��� 293

Using su as root �� 305

Chapter summary ��� 306

Exercises ��� 306

Chapter 12: Installing and Updating Software �� 309

Objectives ��� 309

Dependency hell �� 309

RPM ��� 310

YUM ��� 315

DNF ��� 316

Installing packages �� 317

Installing updates �� 320

Post-update tasks ��� 323

Removing packages �� 324

Groups ��� 326

Adding repositories ��� 327

Table of ConTenTs

xiii

About the kernel �� 330

Chapter summary ��� 332

Exercises ��� 332

Chapter 13: Tools for Problem Solving ��� 335

Objectives ��� 335

The art of problem solving �� 336

The five steps of problem solving �� 336

Knowledge ��� 337

Observation ��� 338

Reasoning �� 339

Action �� 340

Test �� 340

System performance and problem solving ��� 341

top ��� 342

Other top-like tools ��� 358

htop ��� 359

atop ��� 361

More tools ��� 364

Memory tools ��� 364

Tools that display disk I/O statistics �� 366

The /proc filesystem ��� 369

Exploring hardware ��� 372

Monitoring hardware temperatures �� 374

Monitoring hard drives �� 377

System statistics with SAR ��� 386

Installation and configuration �� 386

Examining collected data �� 386

Cleanup ��� 391

Chapter summary ��� 392

Exercises ��� 393

Table of ConTenTs

xiv

Chapter 14: Terminal Emulator Mania �� 395

Objectives ��� 395

About terminals ��� 395

My requirements ��� 396

rxvt �� 398

xfce4-terminal ��� 398

LXTerminal ��� 402

Tilix �� 404

Konsole �� 410

Terminator ��� 412

Chapter summary ��� 415

Exercises ��� 415

Chapter 15: Advanced Shell Topics �� 417

Objectives ��� 417

The Bash shell ��� 418

Shell options ��� 418

Shell variables ��� 420

Commands �� 421

The PATH ��� 422

Internal commands �� 424

External commands ��� 427

Forcing the use of external commands ��� 428

Compound commands �� 429

Time-saving tools �� 433

Brace expansion �� 433

Special pattern characters �� 435

Sets ��� 438

Meta-characters �� 440

Using grep ��� 440

Finding files �� 445

Table of ConTenTs

xv

Chapter summary ��� 448

Exercises ��� 448

Chapter 16: Linux Boot and Startup ��� 451

Objectives ��� 451

Overview ��� 451

Hardware boot �� 452

Linux boot ��� 453

GRUB ��� 454

Configuring GRUB �� 464

The Linux kernel �� 470

Linux startup ��� 471

systemd ��� 471

Graphical login screen ��� 478

About the login �� 487

CLI login screen ��� 487

GUI login screen �� 488

Chapter summary ��� 489

Exercises ��� 490

Chapter 17: Shell Configuration �� 491

Objectives ��� 491

Starting the shell ��� 492

Non-login shell startup �� 495

Login shell startup ��� 495

Exploring the global configuration scripts ��� 496

Exploring the local configuration scripts ��� 499

Testing it �� 500

Exploring the environment �� 504

User shell variables ��� 505

Table of ConTenTs

xvi

Aliases��� 508

Chapter summary ��� 510

Exercises ��� 510

Chapter 18: Files, Directories, and Links �� 513

Objectives ��� 513

Introduction ��� 514

Preparation ��� 514

User accounts and security��� 516

File attributes �� 517

File ownership ��� 517

File permissions �� 520

Directory permissions ��� 522

Implications of Group ownership ��� 522

umask �� 527

Changing file permissions ��� 529

Applying permissions �� 531

Timestamps ��� 532

File meta-structures ��� 533

The directory entry �� 533

The inode ��� 533

File information ��� 533

Links ��� 536

Hard links �� 537

Chapter summary ��� 546

Exercises ��� 546

Chapter 19: Filesystems ��� 549

Objectives ��� 549

Overview ��� 549

Definitions ��� 550

Filesystem functions ��� 551

Table of ConTenTs

xvii

The Linux Filesystem Hierarchical Standard ��� 553

The standard ��� 553

Problem solving ��� 556

Using the filesystem incorrectly �� 556

Adhering to the standard ��� 557

Linux unified directory structure ��� 557

Filesystem types ��� 559

Mounting ��� 561

The Linux EXT4 filesystem �� 562

Cylinder groups ��� 563

The inode ��� 569

Journal �� 570

Data allocation strategies ��� 572

Data fragmentation �� 573

Repairing problems ��� 578

The /etc/fstab file �� 578

Repairing damaged filesystems �� 585

Creating a new filesystem �� 594

Finding space �� 595

Add a new virtual hard drive ��� 596

Other filesystems �� 604

Chapter summary ��� 606

Exercises ��� 606

Bibliography ��� 609

Books �� 609

Web sites �� 610

Index ��� 615

Table of ConTenTs

xix

About the Author

David Both is an open source software and GNU/Linux

advocate, trainer, writer, and speaker. He has been working

with Linux and open source software for more than 20 years

and has been working with computers for over 45 years.

He is a strong proponent of and evangelist for the “Linux

Philosophy for System Administrators.” David has been in

the IT industry for over 40 years.

Mr. Both worked for IBM for 21 years and, while working

as a Course Development Representative in Boca Raton, FL,

in 1981, wrote the training course for the first IBM PC. He

has taught RHCE classes for Red Hat and has worked at MCI

WorldCom, Cisco, and the State of North Carolina. In most

of the places he has worked since leaving IBM in 1995, he has taught classes on Linux

ranging from Lunch’n’Learns to full five-day courses. Helping others learn about Linux

and open source software is one of his great pleasures.

David prefers to purchase the components and build his own computers from

scratch to ensure that each new computer meets his exacting specifications. Building

his own computers also means not having to pay the Microsoft tax. His latest build is an

ASUS TUF X299 motherboard and an Intel i9 CPU with 16 cores (32 CPUs) and 64GB of

RAM in a ThermalTake Core X9 case.

He has written articles for magazines including Linux Magazine, Linux Journal, and

OS/2 back when there was such a thing. His article “Complete Kickstart,” co-authored

with a colleague at Cisco, was ranked 9th in the Linux Magazine Top Ten Best System

Administration Articles list for 2008. He currently writes prolifically and is a volunteer

community moderator for Opensource.com. He particularly enjoys learning new things

while researching his articles.

David currently lives in Raleigh, NC, with his very supportive wife and a strange rescue

dog that is mostly Jack Russell. David also likes reading, travel, the beach, old M*A*S*H

reruns, and spending time with his two children, their spouses, and four grandchildren.

David can be reached at LinuxGeek46@both.org or on Twitter @LinuxGeek46.

xxi

About the Technical Reviewer

 Jason Baker has been a Linux user since the early 2000s,

ever since stuffing a Slackware box under his desk and

trying to make the darn thing work. He is a writer and

presenter on a variety of open source projects and

technologies, much of which can be found on Opensource.

com. A Red Hat Certified Systems Administrator, he is

currently the managing editor of Enable SysAdmin, Red

Hat’s community publication for system administrators.

When he’s not at work, he enjoys tinkering with hardware

and using open source tools to play with maps and other

visualizations of cool data sets. He lives in Chapel Hill, NC,

with his wife, Erin, and their rescue cat, Mary.

xxiii

Acknowledgments

Writing a book is not a solitary activity, and this massive three-volume Linux training

course required a team effort so much more than most.

The most important person in this effort has been my awesome wife, Alice, who

has been my head cheerleader and best friend throughout. I could not have done this

without your support and love.

I am grateful for the support and guidance of Louise Corrigan, senior editor for open

source at Apress, who believed in me and my vision for this book. This book would not

have been possible without her.

To my coordinating editor, Nancy Chen, I owe many thanks for her hours of work,

guidance, and being there to discuss many aspects of this book. As it grew and then

continued to grow some more, our discussions were invaluable in helping to shape the

final format of this work.

And to Jim Markham, my development editor, who quietly kept an eye and a guiding

hand on the vast volume of material in these three volumes to ensure that the end result

would meet the needs of you – my readers – and most importantly, you as the student.

Jason Baker, my intrepid technical reviewer, has done an outstanding job to ensure

the technical accuracy of the first two volumes and part of the third volume of this

course. Due to the major changes made in some parts of the course as its final form

materialized, he retested some chapters in their entirety to help ensure that I had not

screwed anything up. Jason also made important suggestions that have significantly

enhanced the quality and scope of the entire three-volume work. These volumes are

much better for his contributions. Jason’s amazing work and important contributions to

this book and the course of which it is part have helped to make it far better than it might

have been.

Of course any remaining errors and omissions are my responsibility alone.

xxv

Introduction

First, thank you for purchasing Using and Administering Linux: Volume 1 – Zero to

SysAdmin: Getting Started. The Linux training course upon which you have embarked is

significantly different from other training that you could purchase to learn about Linux.

 About this course
This Linux training course, Using and Administering Linux – Zero to SysAdmin, consists

of three volumes. Each of these three volumes is closely connected, and they build upon

each other. For those new to Linux, it’s best to start here with Volume 1, where you’ll

be guided through the creation of a virtual laboratory – a virtual network and a virtual

machine – which will be used and modified by many of the experiments in all three

volumes. More experienced Linux users can begin with later volumes and download

the script that will set up the VM for the start of Volumes 2 and 3. Instructions provided

with the script will provide specifications for configuration of the virtual network and the

virtual machine.

Refer to the following Volume overviews to select the volume of this course most

appropriate for your current skill level.

This Linux training course differs from others because it is a complete self-study

course. Newcomers should start at the beginning of Volume 1 and read the text, perform

all of the experiments, and complete all of the chapter exercises through to the end of

Volume 3. If you do this, even if you are starting from zero knowledge about Linux, you

can learn the tasks necessary to becoming a Linux system administrator, a SysAdmin.

Another difference this course has over others is that all of the experiments are

performed on one or more virtual machines (VMs) in a virtual network. Using the free

software, VirtualBox, you will create this virtual environment on any reasonably sized

host, whether Linux or Windows. In this virtual environment, you are free to experiment

on your own, make mistakes that could damage the Linux installation of a hardware

host, and still be able to recover completely by restoring the Linux VM host from any one

of multiple snapshots. This flexibility to take risks and yet recover easily makes it possible

to learn more than would otherwise be possible.

xxvi

I have always found that I learn more from my mistakes than I ever have when things

work as they are supposed to. For this reason I suggest that rather than immediately

reverting to an earlier snapshot when you run into trouble, you try to figure out how the

problem was created and how best to recover from it. If, after a reasonable period of

time, you have not resolved the problem, that would be the point at which reverting to a

snapshot would make sense.

Inside, each chapter has specific learning objectives, interactive experiments,

and review exercises that include both hands-on experiments and some review

questions. I learned this format when I worked as a course developer for IBM from

1978 through 1981. It is a tried and true format that works well for self-study.

These course materials can also be used as reference materials. I have used my

previous course materials for reference for many years, and they have been very useful in

that role. I have kept this as one of my goals in this set of materials.

Note not all of the review exercises in this course can be answered by simply
reviewing the chapter content. for some questions you will need to design
your own experiment in order to find a solution. In many cases there will very
probably be multiple solutions, and all that produce the correct results will be the
“correct” ones.

 Process
The process that goes with this format is just as important as the format of the course –

really even more so. The first thing that a course developer must do is generate a list of

requirements that define both the structure and the content of the course. Only then can

the process of writing the course proceed. In fact, many times I find it helpful to write the

review questions and exercises before I create the rest of the content. In many chapters

of this course, I have worked in this manner.

These courses present a complete, end-to-end Linux training course for students

like you who know before you start that you want to learn to be a Linux system

administrator – a SysAdmin. This Linux course will allow you to learn Linux right from

the beginning with the objective of becoming a SysAdmin.

InTroduCTIon

xxvii

Many Linux training courses begin with the assumption that the first course a

student should take is one designed to start them as users. Those courses may discuss

the role of root in system administration but ignore topics that are important to future

SysAdmins. Other courses ignore system administration altogether. A typical second

course will introduce the student to system administration, while a third may tackle

advanced administration topics.

Frankly, this baby step approach did not work well for many of us who are now Linux

SysAdmins. We became SysAdmins, in part at least, due to our intense desire – our deep

need – to learn as much as possible as quickly as possible. It is also, I think in large part,

due to our highly inquisitive natures. We learn a basic command and then start asking

questions, experimenting with it to see what its limits are, what breaks it, and what

using it can break. We explore the man(ual) pages and other documentation to learn the

extreme usages to which it might be put. If things don’t break by themselves, we break

them intentionally to see how they work and to learn how to fix them. We relish our own

failures because we learn more from fixing them than we do when things always work as

they are supposed to.

In this course we will dive deep into Linux system administration almost from the

very beginning. You will learn many of the Linux tools required to use and administer

Linux workstations and servers – usually multiple tools that can be applied to each of

these tasks. This course contains many experiments to provide you with the kind of

hands-on experiences that SysAdmins appreciate. All of these experiments guide you

one step at a time into the elegant and beautiful depths of the Linux experience. You will

learn that Linux is simple and that simplicity is what makes it both elegant and knowable.

Based on my own years working with Unix and Linux, the course materials contained

in these three volumes are designed to introduce you to the practical, daily tasks you

will perform as a Linux user and, at the same time, as a Linux system administrator –

SysAdmin. But I do not know everything – that is just not possible – no SysAdmin does.

Further, no two SysAdmins know exactly the same things because that too is impossible.

We have each started with different knowledge and skills; we have different goals; we

have different experiences because the systems on which we work have failed in different

ways, had different hardware, were embedded in different networks, had different

distributions installed, and have many other differences. We use different tools and

approaches to problem solving because the many different mentors and teachers we

had used different sets of tools from each other; we use different Linux distributions; we

think differently; and we know different things about the hardware on which Linux runs.

Our past is much of what makes us what we are and what defines us as SysAdmins.

InTroduCTIon

xxviii

So I will show you things in this course – things that I think are important for you

to know – things that, in my opinion, will provide you with the skills to use your own

curiosity and creativity to find solutions that I would never think of to problems I have

never encountered.

 What this course is not
This course is not a certification study guide. It is not designed to help you pass a

certification test of any type. This course is intended purely to help you become a good

or perhaps even great SysAdmin, not to pass a test.

There are a few good certification tests. Red Hat and Cisco certifications are among

the best because they are based on the test-taker’s ability to perform specific tasks. I am

not familiar with any of the other certification tests because I have not taken them. But

the courses you can take and books you can purchase to help you pass those tests are

designed to help you pass the tests and not to administer a Linux host or network. That

does not make them bad – just different from this course.

 Content overview
Because there are three volumes to this course, and because I reference other chapters,

some of which may be in other volumes, we need a method for specifying in which

volume the referenced material exists. If the material is in another volume, I will always

specify the volume number, that is, “Chapter 2 in Volume 3,” or “Volume 2, Chapter 5.” If

the material is in the same volume as the reference to it, I may simply specify the chapter

number; however I may also reference the current volume number for clarity.

This quick overview of the contents of each volume should serve as a quick

orientation guide if you need to locate specific information. If you are trying to decide

whether to purchase this book and its companion volumes, it will give you a good

overview of the entire course.

InTroduCTIon

xxix

 Using and Administering Linux: Volume 1
Zero to SysAdmin: Getting Started
Volume 1 of this training course introduces operating systems in general and Linux in

particular. It briefly explores the The Linux Philosophy for SysAdmins1 in preparation for

the rest of the course.

Chapter 4 then guides you through the use of VirtualBox to create a virtual machine

(VM) and a virtual network to use as a test laboratory for performing the many

experiments that are used throughout the course. In Chapter 5, you will install the Xfce

version of Fedora – a popular and powerful Linux distribution – on the VM. In Chapter 6,

you will learn to use the Xfce desktop which will enable you to leverage your growing

command-line interface (CLI) expertise as you proceed through the course.

Chapters 7 and 8 will get you started using the Linux command line and introduce you

to some of the basic Linux commands and their capabilities. In Chapter 9, you will learn

about data streams and the Linux tools used to manipulate them. And in Chapter 10, you

will learn a bit about several text editors which are indispensable to advanced Linux users

and system administrators.

Chapters 11 through 13 start your work as a SysAdmin and take you through some

specific tasks such as installing software updates and new software. Chapters 14 and

15 discuss more terminal emulators and some advanced shell skills. In Chapter 16, you

will learn about the sequence of events that take place as the computer boots and Linux

starts up. Chapter 17 shows you how to configure your shell to personalize it in ways that

can seriously enhance your command-line efficiency.

Finally, Chapters 18 and 19 dive into all things file and filesystems.

 1. Introduction

 2. Introduction to Operating Systems

 3. The Linux Philosophy for SysAdmins

 4. Preparation

 5. Installing Linux

 6. Using the Xfce Desktop

 7. Using the Linux Command Line

1 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018

InTroduCTIon

xxx

 8. Core Utilities

 9. Data Streams

 10. Text Editors

 11. Working As Root

 12. Installing and Updating Software

 13. Tools for Problem Solving

 14. Terminal Emulator Mania

 15. Advanced Shell Topics

 16. Linux Boot and Startup

 17. Shell Configuration

 18. Files, Directories, and Links

 19. Filesystems

 Using and Administering Linux: Volume 2
Zero to SysAdmin: Advanced Topics
Volume 2 of Using and Administering Linux introduces you to some incredibly powerful

and useful advanced topics that every SysAdmin must know.

In Chapters 1 and 2, you will experience an in-depth exploration of logical volume

management – and what that even means – as well as the use of file managers to

manipulate files and directories. Chapter 3 introduces the concept that in Linux,

everything is a file. You will also learn some fun and interesting uses of the fact that

everything is a file.

In Chapter 4, you will learn to use several tools that enable the SysAdmin to manage

and monitor running processes. Chapter 5 enables you to experience the power of the

special filesystems, such as /proc, which enable us as SysAdmins to monitor and tune

the kernel while it is running – without a reboot.

Chapter 6 will introduce you to regular expressions and the power that using them for

pattern matching can bring to the command line, while Chapter 7 discusses managing

printers and printing from the command line. In Chapter 8, you will use several tools to

unlock the secrets of the hardware in which your Linux operating system is running.

InTroduCTIon

xxxi

Chapters 9 through 11 show you how to do some simple – and not so simple –

command-line programming and how to automate various administrative tasks.

You will begin to learn the details of networking in Chapter 12, and Chapters 13

through 15 show you how to manage the many services that are required in a Linux

system. You will also explore the underlying software that manages the hardware and

can detect when hardware devices such as USB thumb drives are installed and how the

system reacts to that.

Chapter 16 shows you how to use the logs and journals to look for clues to problems

and confirmation that things are working correctly.

Chapters 17 and 18 show you how to enhance the security of your Linux systems,

including how to perform easy local and remote backups.

 1. Logical Volume Management

 2. File Managers

 3. Everything Is a File

 4. Managing Processes

 5. Special Filesystems

 6. Regular Expressions

 7. Printing

 8. Hardware Detection

 9. Command-Line Programming

 10. Automation with BASH Scripts

 11. Time and Automation

 12. Networking

 13. systemd

 14. dbus and Udev

 15. Using Logs and Journals

 16. Managing Users

 17. Security

 18. Backups

InTroduCTIon

xxxii

 Using and Administering Linux: Volume 3
Zero to SysAdmin: Network Services
In Volume 3 of Using and Administering Linux, you will start by creating a new VM on

the existing virtual network. This new VM will be used as a server for the rest of this

course, and it will replace some of the functions performed by the virtual router that is

part of our virtual network.

Chapter 2 begins this transformation from simple workstation to server by adding a

new network interface card (NIC) to the VM so that it can act as a firewall and router and

then changing its network configuration from DHCP to static. This includes configuring

both NICs so that one is connected to the existing virtual router so as to allow

connections to the outside world and so that the other NIC connects to the new “inside”

network that will contain the existing VM.

Chapters 3 and 4 guide you through setting up the necessary services, DHCP and

DNS, which are required to support a managed, internal network, and Chapter 5 takes

you through configuration of SSHD to provide secure remote access between Linux

hosts. In Chapter 6, you will convert the new server into a router with a simple yet

effective firewall.

You will learn to install and configure an enterprise class e-mail server that can

detect and block most spam and malware in Chapters 7 through 9. Chapter 10 takes you

through setting up a web server, and in Chapter 11, you will set up WordPress, a flexible

and powerful content management system.

In Chapter 12, you return to e-mail by setting up a mailing list using Mailman.

Then Chapter 13 guides you through sharing files to both Linux and Windows hosts.

Sometimes accessing a desktop remotely is the only way to do some things, so in

Chapter 14, you will do just that.

Chapter 15 shows you how to set up a time server on your network and how to

determine its accuracy. Although we have incorporated security in all aspects of what

has already been covered, Chapter 16 covers some additional security topics.

Chapter 17 discusses package management from the other direction by guiding you

through the process of creating an RPM package for the distribution of your own scripts

and configuration files.

InTroduCTIon

xxxiii

Finally, Chapter 18 will get you started in the right direction because I know you are

going to ask, “Where do I go from here?”

 1. Preparation

 2. Server Configuration

 3. DHCP

 4. Name Services – DNS

 5. Remote Access with SSH

 6. Routing and Firewalls

 7. Introducing E-mail

 8. E-mail Clients

 9. Combating Spam

 10. Apache Web Server

 11. WordPress

 12. Mailing Lists

 13. File Sharing with NFS and SAMBA

 14. Using Remote Desktop Access

 15. Does Anybody Know What Time It Is?

 16. Security

 17. Advanced Package Management

 18. Where Do I Go from Here?

 Taking this course
Although designed primarily as a self-study guide, this course can be used effectively in

a classroom environment. This course can also be used very effectively as a reference.

Many of the original course materials I wrote for Linux training classes I used to teach

as an independent trainer and consultant were valuable to me as references. The

experiments became models for performing many tasks and later became the basis for

InTroduCTIon

xxxiv

automating many of those same tasks. I have used many of those original experiments in

parts of this course, because they are still relevant and provide an excellent reference for

many of the tasks I still need to do.

You will see as you proceed through the course that it uses many software programs

considered to be older and perhaps obsolete like Sendmail, Procmail, BIND, the Apache

web server, and much more. Despite their age, or perhaps because of it, the software

I have chosen to run my own systems and servers and to use in this course has been

well-proven and is all still in widespread use. I believe that the software we will use in

these experiments has properties that make it especially valuable in learning the in-

depth details of how Linux and those services work. Once you have learned those details,

moving to any other software that performs the same tasks will be relatively easy. In any

event, none of that “older” software is anywhere near as difficult or obscure as some

people seem to think that it is.

 Who should take this course
If you want to learn to be an advanced Linux user and SysAdmin, this course is for you.

Most SysAdmins have an extremely high level of curiosity and a deep-seated need to

learn Linux system administration. We like to take things apart and put them back

together again to learn how they work. We enjoy fixing things and are not hesitant about

diving in to fix the computer problems that our friends and coworkers bring us.

We want to know what happens when some part of computer hardware fails so we

might save defective components such as motherboards, RAM memory, and hard drives.

This gives us defective components with which we can run tests. As I write this, I have

a known defective hard drive inserted in a hard drive docking station connected to my

primary workstation, and have been using it to test failure scenarios that will appear later

in this course.

Most importantly, we do all of this for fun and would continue to do so even if we

had no compelling vocational reason for doing so. Our intense curiosity about computer

hardware and Linux leads us to collect computers and software like others collect stamps

or antiques. Computers are our avocation – our hobby. Some people like boats, sports,

travel, coins, stamps, trains, or any of thousands of other things, and they pursue them

relentlessly as a hobby. For us – the true SysAdmins – that is what our computers are.

InTroduCTIon

xxxv

That does not mean we are not well-rounded and do not do other things. I like to travel,

read, go to museums and concerts, and ride historical trains, and my stamp collection is

still there, waiting for me when I decide to take it up again.

In fact, the best SysAdmins, at least the ones I know, are all multifaceted. We are

involved in many different things, and I think that is due to our inexhaustible curiosity

about pretty much everything. So if you have an insatiable curiosity about Linux and

want to learn about it – regardless of your past experience or lack thereof – then this

course is most definitely for you.

 Who should not take this course
If you do not have a strong desire to learn about or to administer Linux systems, this

course is not for you. If all you want – or need – to do is use a couple apps on a Linux

computer that someone has put on your desk, this course is not for you. If you have no

curiosity about what superpowers lie underneath the GUI desktop, this course is not for

you.

 Why this course
Someone asked me why I want to write this course. My answer is simple – I want to give

back to the Linux community. I have had several amazing mentors over the span of my

career, and they taught me many things – things I find worth sharing with you along with

much that I have learned for myself.

This course – all three volumes of it – started its existence as the slide presentations

and lab projects for three Linux courses I created and taught. For a number of reasons, I

do not teach those classes any more. However I would still like to pass on my knowledge

and as many of the tips and tricks I have learned for the administration of Linux as

possible. I hope that with this course, I can pass on at least some of the guidance and

mentoring that I was fortunate enough to have in my own career.

InTroduCTIon

1
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_1

CHAPTER 1

Introduction
 Objectives
After reading this chapter, you will be able to

• Define the value proposition of Linux

• Describe at least four attributes that make Linux desirable as an

operating system

• Define the meaning of the term “free” when it is applied to open

source software

• State the Linux Truth and its meaning

• Describe how open source software makes the job of the SysAdmin

easier

• List some of the traits found in a typical SysAdmin

• Describe the structure of the experiments used throughout this

course

• List two types of terminal environments that can be used to access

the Linux command line

 About Linux
The value of any software lies in its usefulness not in its price.

—Linus Torvalds1

1 Wikipedia, Linus Torvalds, https://en.wikipedia.org/wiki/Linus_Torvalds

https://en.wikipedia.org/wiki/Linus_Torvalds

2

The preceding quote from Linus Torvalds, the creator of Linux,2 perfectly describes the

value proposition of free open source software (FOSS) and particularly Linux. Expensive

software that performs poorly or does not meet the needs of the users can in no way be

worth any amount of money. On the other hand, free software that meets the needs of

the users has great value to those users.

Most open source software3 falls in the latter category. It is software that millions of

people find extremely useful and that is what gives it such great value. I have personally

downloaded and used only one proprietary software application in over 20 years that I

have been using Linux.

Linux itself is a complete, open source operating system that is open, flexible,

stable, scalable, and secure. Like all operating systems, it provides a bridge between

the computer hardware and the application software that runs on it. It also provides

tools that can be used by a system administrator, SysAdmin, to monitor and manage the

following things:

 1. The functions and features of the operating system itself

 2. Productivity software like word processors; spreadsheets;

financial, scientific, industrial, and academic software; and much

more

 3. The underlying hardware, for example, temperatures and

operational status

 4. Software updates to fix bugs

 5. Upgrades to move from one release level of the operating system

to the next higher level

The tasks that need to be performed by the system administrator are inseparable

from the philosophy of the operating system, both in terms of the tools which

are available to perform them and the freedom afforded to the SysAdmin in their

performance of those tasks. Let’s look very briefly at the origins of both Linux and

Windows and explore a bit about how the philosophies of their creators affect the job of

a SysAdmin.

2 Wikipedia, History of Linux, https://en.wikipedia.org/wiki/History_of_Linux
3 Wikipedia, Open Source Software, https://en.wikipedia.org/wiki/Open-source_software

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/Open-source_software

3

 The birth of Windows
The proprietary DEC VAX/VMS4 operating system was designed by developers who

subscribed to a closed philosophy. That is, that the user should be protected from the

internal “vagaries” of the system5 because the users are afraid of computers.

Dave Cutler,6 who wrote the DEC VAX/VMS operating system, is also the chief

architect of Windows NT, the parent of all current forms of Windows. Cutler was hired

away from DEC by Microsoft with the specific intention of having him write Windows

NT. As part of his deal with Microsoft, he was allowed to bring many of his top engineers

from DEC with him. Therefore, it should be no surprise that the Windows versions of

today, however, far removed from Windows NT they might be, remain hidden behind

this veil of secrecy.

 Black box syndrome
Let’s look at what proprietary software means to someone trying to fix it. I will use a

trivial black box example to represent some hypothetical compiled, proprietary software.

This software was written by a hypothetical company that wants to keep the source code

a secret so that their alleged “trade secrets” cannot be stolen.

As the hypothetical user of this hypothetical proprietary software, I have no

knowledge of what happens inside the bit of compiled machine language code to which

I have access. Part of that restriction is contractual – notice that I do not say “legal” – in

a license agreement that forbids me from reverse engineering the machine code to

produce the source code. The sole function of this hypothetical code is to print “no” if

the number input is 17 or less and to print “yes” if the input is over 17. This result might

be used to determine whether my customer receives a discount on orders of 17 units or

more.

Using this software for a number of weeks/months/years, everything seems normal

until one of my customers complains that they should have received the discount but

did not.

4 Renamed to OpenVMS circa late 1991
5 Gancarz. Mike, Linux and the Unix Philosophy, Digital Press, 2003, 146–148
6 ITPro Today, Windows NT and VMS: The rest of the Story, www.itprotoday.com/
management-mobility/windows-nt-and-vms-rest-story

Chapter 1 IntroduCtIon

http://www.itprotoday.com/management-mobility/windows-nt-and-vms-rest-story
http://www.itprotoday.com/management-mobility/windows-nt-and-vms-rest-story

4

Simple testing of input numbers from 0 to 16 produces the correct output of “no.”

Testing of numbers from 18 and up produces the correct output of “yes.” Testing of the

number 17 results in an incorrect output of “no.” Why? We have no way of knowing why!

The program fails on the edge case of exactly 17. I can surmise that there is an incorrect

logical comparison in the code, but I have no way of knowing, and without access to the

source code, I can neither verify this nor fix it myself.

So I report this problem to the vendor from whom I purchased the software. They tell

me they will fix it in the next release. “When will that be?” I ask. “In about six months – or

so,” they reply.

I must now task one of my workers to check the results of every sale to verify whether

the customer should receive the discount. If they should, we assign other people to cut a

refund check and send that along with a letter explaining the situation.

After a few months with no work on a fix from the vendor, I call to try and determine

the status of the fix. They tell me that they have decided not to fix the problem because

I am the only one having the problem. The translation of this is “sorry, you don’t spend

enough money with us to warrant us fixing the problem.” They also tell me that the new

owners, the venture capital company who bought out the company from which I bought

the software, will no longer be selling or supporting that software anyway.

I am left with useless – less than useless – software that will never be fixed and that I

cannot fix myself. Neither can anyone else who purchased that software fix it if they ever

run into this problem.

Because it is completely closed and the sealed box in which it exists is impenetrable,

proprietary software is unknowable. Windows is like this. Even most Windows support

staff have no idea how it works inside. This is why the most common advice to fix

Windows problems is to reboot the computer – because it is impossible to reason about a

closed, unknowable system of any kind.

Operating systems like Windows that shield their users from the power they

possess were developed starting with the basic assumption that the users are not

smart or knowledgeable enough to be trusted with the full power that computers can

actually provide. These operating systems are restrictive and have user interfaces –

both command line and graphical – which enforce those restrictions by design. These

restrictive user interfaces force regular users and SysAdmins alike into an enclosed

room with no windows and then slam the door shut and triple lock it. That locked room

prevents them from doing many clever things that can be done with Linux.

Chapter 1 IntroduCtIon

5

The command-line interfaces of such limiting operating systems offer a relatively few

commands, providing a de facto limit on the possible activities in which anyone might

engage. Some users find this a comfort. I do not and, apparently, neither do you to judge

from the fact that you are reading this book.

 The birth of Linux
The short version of this story is that the developers of Unix, led by Ken Thompson7

and Dennis Ritchie,8 designed Unix to be open and accessible in a way that made sense

to them. They created rules, guidelines, and procedural methods and then designed

them into the structure of the operating system. That worked well for system developers

and that also – partly, at least – worked for SysAdmins (system administrators). That

collection of guidance from the originators of the Unix operating system was codified in

the excellent book, The Unix Philosophy, by Mike Gancarz, and then later updated by Mr.

Gancarz as Linux and the Unix Philosophy.9

Another fine book, The Art of Unix Programming,10 by Eric S. Raymond, provides the

author's philosophical view of programming in a Unix environment. It is also somewhat

of a history of the development of Unix as it was experienced and recalled by the author.

This book is also available in its entirety at no charge on the Internet.11

In 1991, in Helsinki, Finland, Linus Torvalds was taking computer science classes

using Minix,12 a tiny variant of Unix that was written by Andrew S. Tanenbaum.13

Torvalds was not happy with Minix as it had many deficiencies, at least to him. So he

wrote his own operating system and shared that fact and the code on the Internet. This

little operating system, which started as a hobby, eventually became known as Linux as a

tribute to its creator and was distributed under the GNU GPL 2 open source license.14

7 https://en.wikipedia.org/wiki/Ken_Thompson
8 https://en.wikipedia.org/wiki/Dennis_Ritchie
9 Mike Gancarz, “Linux and the Unix Philosophy,” Digital Press – an imprint of Elsevier Science,
2003, ISBN 1-55558-273-7

10 Eric S. Raymond, “The Art of Unix Programming,” Addison-Wesley, September 17, 2003,
ISBN 0-13-142901-9

11 Eric S. Raymond, “The Art of Unix Programming,” www.catb.org/esr/writings/taoup/html/
index.html/

12 https://en.wikipedia.org/wiki/MINIX
13 https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
14 https://en.wikipedia.org/wiki/GNU_General_Public_License

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
http://www.catb.org/esr/writings/taoup/html/index.html/
http://www.catb.org/esr/writings/taoup/html/index.html/
https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
https://en.wikipedia.org/wiki/GNU_General_Public_License

6

Wikipedia has a good history of Linux15 as does Digital Ocean.16 For a more personal

history, read Linus Torvalds’ own book, Just for fun17.

 The open box
Let’s imagine the same software as in the previous example but this time written by a

company that open sourced it and provides the source code should I want it. The same

situation occurs. In this case, I report the problem, and they reply that no one else has

had this problem and that they will look into it but don’t expect to fix it soon.

So I download the source code. I immediately see the problem and write a quick

patch for it. I test the patch on some samples of my own customer transactions – in a test

environment of course – and find the results to show the problem has been fixed. I submit

the patch to them along with my basic test results. They tell me that is cool, insert the

patch in their own code base, run it through testing, and determine that the fix works. At

that point they add the revised code into the main trunk of their code base, and all is well.

Of course, if they get bought out or otherwise become unable or unwilling to

maintain the software, the result would be the same. I would still have the open source

code, fix it, and make it available to whoever took over the development of the open

source product. This scenario has taken place more than once. In one instance, I took

over the development of a bit of shell script code from a developer in Latvia who no

longer had the time to maintain it and I maintained it for several years.

In another instance, a large company purchased a software firm called StarOffice who

open sourced their office suite under the name OpenOffice.org. Later, a large computer

company purchased OpenOffice.org. The new organization decided they would create

their own version of the software starting from the existing code. That turned out to

be quite a flop. Most of the developers of the open source version migrated to a new,

open organization that maintains the reissued software that is now called LibreOffice.

OpenOffice now languishes and has few developers while LibreOffice flourishes.

One advantage of open source software is that the source code is always available.

Any developers can take it over and maintain it. Even if an individual or an organization

15 https://en.wikipedia.org/wiki/History_of_Linux
16 Juell, Kathleen, A Brief History of Linux, www.digitalocean.com/community/tutorials/
brief-history-of-linux

17 Torvalds, Linus, and Diamond, David, Just for fun: The story of an accidental revolutionary,
HarperBusiness, 2001

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/History_of_Linux
http://www.digitalocean.com/community/tutorials/brief-history-of-linux
http://www.digitalocean.com/community/tutorials/brief-history-of-linux

7

tries to take it over and make it proprietary, they cannot, and the original code is out

there and can be “forked” into a new but identical product by any developer or group. In

the case of LibreOffice, there are thousands of people around the world contributing new

code and fixes when they are required.

Having the source code available is one of the main advantages of open source

because anyone with the skills can look at it and fix it then make that fix available to the

rest of the community surrounding that software.

§§§

In the context of open source software, the term “open” means that the source code

is freely available for all to see and examine without restriction. Anyone with appropriate

skills has legal permission to make changes to the code to enhance its functionality or to

fix a bug.

For the latest release of the Linux kernel, version 4.17, on June 03, 2018, as I write

this, over 1,700 developers from a multitude of disparate organizations around the globe

contributed 13,500 changes to the kernel code. That does not even consider the changes

to other core components of the Linux operating system, such as core utilities, or even

major software applications such as LibreOffice, the powerful office suite that I use for

writing my books and articles as well as spreadsheets, drawings, presentations, and

more. Projects such as LibreOffice have hundreds of their own developers.

This openness makes it easy for SysAdmins – and everyone else, for that matter – to

explore all aspects of the operating system and to fully understand how any or all of it is

supposed to work. This means that it is possible to apply one’s full knowledge of Linux to

use its powerful and open tools in a methodical reasoning process that can be leveraged

for problem solving.

 The Linux Truth
Unix was not designed to stop its users from doing stupid things, as that
would also stop them from doing clever things.

—Doug Gwyn

This quote summarizes the overriding truth and the philosophies of both Unix and Linux –

that the operating system must trust the user. It is only by extending this full measure of trust

that allows the user to access the full power made possible by the operating system. This

truth applies to Linux because of its heritage as a direct descendant of Unix.

Chapter 1 IntroduCtIon

8

The Linux Truth results in an operating system that places no restrictions or limits on

the things that users, particularly the root18 user, can do. The root user can do anything

on a Linux computer. There are no limits of any type on the root user. Although there

are a very few administrative speed bumps placed in the path of the root user, root can

always remove those slight impediments and do all manner of stupid and clever things.

Non-root users have a few limits placed on them, but they can still do plenty of clever

things as well. The primary limits placed on non-root users are intended to – mostly –

prevent them from doing things that interfere with others’ ability to freely use the Linux

host. These limits in no way prevent regular users from doing great harm to their own

user accounts.

Even the most experienced users can do “stupid things” using Linux. My experience

has been that recovery from my own not so infrequent stupidity has been made much

easier by the open access to the full power of the operating system. I find that most times

a few commands can resolve the problem without even a reboot. On a few occasions,

I have had to switch to a lower runlevel to fix a problem. I have only very infrequently

needed to boot to recovery mode in order to edit a configuration file that I managed to

damage so badly it caused serious problems including failure to boot. It takes knowledge

of the underlying philosophy, the structure, and the technology of Linux to be able to

fully unleash its power, especially when things are broken. Linux just requires a bit of

understanding and knowledge on the part of the SysAdmin to fully unlock its potential.

 Knowledge
Anyone can memorize or learn commands and procedures, but rote memorization is not

true knowledge. Without the knowledge of the philosophy and how that is embodied in

the elegant structure and implementation of Linux, applying the correct commands as

tools to resolve complex problems is not possible. I have seen smart people who had a

vast knowledge of Linux be unable to resolve a relatively simple problem because they

were unaware of the elegance of the structure beneath the surface.

As a SysAdmin, part of my responsibility in many of my jobs has been to assist with

hiring new employees. I participated in many technical interviews of people who had

passed many Microsoft certifications and who had fine resumes. I also participated in

18 The root user is the administrator of a Linux host and can do everything and anything.
Compared to other operating systems, non-root Linux users also have very few restrictions, but
we will see later in this course that there are some limits imposed on them.

Chapter 1 IntroduCtIon

9

many interviews in which we were looking for Linux skills, but very few of those applicants

had certifications. This was at a time when Microsoft certifications were the big thing but

during the early days of Linux in the data center and few applicants were yet certified.

We usually started these interviews with questions designed to determine the limits

of the applicant’s knowledge. Then we would get into the more interesting questions,

ones that would test their ability to reason through a problem to find a solution. I noticed

some very interesting results. Few of the Windows certificate owners could reason their

way through the scenarios we presented, while a very large percentage of the applicants

with a Linux background were able to do so.

I think that result was due in part to the fact that obtaining the Windows certificates

relied upon memorization rather than actual hands-on experience combined with the

fact that Windows is a closed system which prevents SysAdmins from truly understanding

how it works. I think that the Linux applicants did so much better because Linux is open

on multiple levels and that, as a result, logic and reason can be used to identify and

resolve any problem. Any SysAdmin who has been using Linux for some time has had to

learn about the architecture of Linux and has had a decent amount of experience with the

application of knowledge, logic, and reason to the solution of problems.

 Flexibility
To me, flexibility means the ability to run on any platform, not just Intel and AMD

processors. Scalability is about power, but flexibility is about running on many processor

architectures.

Wikipedia has a list of CPU architectures supported by Linux,19 and it is a long

one. By my automated count, there are over 100 CPU architectures on which Linux is

currently known to run. Note that this list changes and CPUs get added and dropped

from the list. But the point is well taken that Linux will run on many architectures. If your

architecture is not currently supported by Linux, with some work you can recompile it to

run on any 64-bit system and some 32-bit ones.

This broad-ranging hardware support means that Linux can run on everything from

my Raspberry Pi20 to my television, to vehicle entertainment systems, to cell phones, to

19 Wikipedia, List of Linux-supported computer architectures, https://en.wikipedia.org/wiki/
List_of_Linux-supported_computer_architectures

20 Raspberry Pi web site, www.raspberrypi.org/

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
http://www.raspberrypi.org/

10

DVRs, to the computers on the International Space Station21 (ISS), to all 500 of the fastest

supercomputers back on Earth,22 and much more. A single operating system can run

nearly any computing device from the smallest to the largest from any vendor.

 Stability
Stability can have multiple meanings when the term is applied to Linux by different

people. My own definition of the term as it applies to Linux is that it can run for weeks or

months without crashing or causing problems that make me worry I might lose data for

any of the critical projects I am working on.

Today’s Linux easily meets that requirement. I always have several computers

running Linux at any given time, and they are all rock solid in this sense. They run

without interruption. I have workstations, a server, a firewall, and some that I use for

testing, and they all just run.

This is not to say that Linux never has any problems. Nothing is perfect. Many of

those problems have been caused by my own misconfiguration of one or more features,

but a few have been caused by problems with some of the software I use. Sometimes a

software application will crash, but that is very infrequent and usually related to issues I

have had with the KDE desktop.

If you read my personal technical web site, you know that I have had some problems

with the KDE GUI desktop over the years and that it has had two significant periods of

instability. In the first of these instances which was many years ago around the time

of Fedora 10, KDE was transitioning from KDE 3 to the KDE Plasma 4 desktop which

offered many interesting features. In this case most of the KDE-specific applications I

used had not been fully rewritten for the new desktop environment so lacked required

functionality or would just crash. During the second, most recent, and still ongoing

instance, the desktop just locks up, crashes, or fails to work properly.

In both of these cases, I was able to use a different desktop to get my work done in

a completely stable environment. In the first case, I used the Cinnamon desktop, and

in this most recent instance, I am using the LXDE desktop. However, the underlying

software, the kernel, and the programs running underneath the surface – they all

21 ZDNet, The ISS just got its own Linux supercomputer, www.zdnet.com/article/
the-iss-just-got-its-own-linux-supercomputer/

22 Wikipedia, TOP500, https://en.wikipedia.org/wiki/TOP500

Chapter 1 IntroduCtIon

http://www.zdnet.com/article/the-iss-just-got-its-own-linux-supercomputer/
http://www.zdnet.com/article/the-iss-just-got-its-own-linux-supercomputer/
https://en.wikipedia.org/wiki/TOP500

11

continued to run without problem. So this is the second layer of stability; if one thing

crashes, even the desktop, the underlying stuff continues to run.

To be fair, KDE is improving, and many of the problems in this round have been

resolved. I never did lose any data, but I did lose a bit of time. Although I still like KDE,

the LXDE desktop is my current favorite, and I also like the Xfce desktop.

 Scalability
Scalability is extremely important for any software, particularly for an operating system.

Running the same operating system from watches, phones (Android), to laptops, powerful

workstations, servers, and even the most powerful supercomputers on the planet can

make life much simpler for the network administrator or the IT manager. Linux is the only

operating system on the planet today which can provide that level of scalability.

Since November of 2017, Linux has powered all of the fastest supercomputers in

the world.23 Through this writing, as of July 2019, one hundred percent, 100% – all – of

the top 500 supercomputers in the world run Linux of one form or another, and this is

expected to continue. There are usually specialized distributions of Linux designed for

supercomputers. Linux also powers much smaller devices such as Android phones and

Raspberry Pi single board computers. Supercomputers are very fast, and many different

calculations can be performed simultaneously. It is, however, very unusual for a single

user to have access to the entire resources of a supercomputer. Many users share those

resources, each user performing his or her own set of complex calculations.

Linux can run on any computer from the smallest to the largest and anything in

between.

 Security
We will talk a lot about security as we proceed through these courses. Security is a critical

consideration in these days of constant attacks from the Internet. If you think that they

are not after you, too, let me tell you that they are. Your computer is under constant

attack every hour of every day.

Most Linux distributions are very secure right from the installation. Many tools are

provided to both ensure tight security where it is needed as well as to allow specified

23 Top 500, www.top500.org/statistics/list/

Chapter 1 IntroduCtIon

http://www.top500.org/statistics/list/

12

access into the computer. For example, you may wish to allow SSH access from a limited

number of remote hosts, access to the web server from anywhere in the world, and

e-mail to be sent to a Linux host from anywhere. Yet you may also want to block, at least

temporarily, access attempts by black hat hackers attempting to force their way in. Other

security measures provide your personal files protection from other users on the same

host while still allowing mechanisms for you to share files that you choose with others.

Many of the security mechanisms that we will discuss in these courses were designed

and built in to Linux right from its inception. The architecture of Linux is designed from

the ground up, like Unix, its progenitor, to provide security mechanisms that can protect

files and running processes from malicious intervention from both internal and external

sources. Linux security is not an add-on feature, it is an integral part of Linux. Because of

this, most of our discussions that relate to security will be embedded as an integral part

of the text throughout this book. There is a chapter about security, but it is intended to

cover those few things not covered elsewhere.

 Freedom
Freedom has an entirely different meaning when applied to free open source software

(FOSS) than it does in most other circumstances. In FOSS, free is the freedom to do what

I want with software. It means that I have easy access to the source code and that I can

make changes to the code and recompile it if I need or want to.

Freedom means that I can download a copy of Fedora Linux, or Firefox, or

LibreOffice, and install it on as many computers as I want to. It means that I can share

that downloaded code by providing copies to my friends or installing it on computers

belonging to my customers, both the executables and the sources.

Freedom also means that we do not need to worry about the license police showing

up on our doorsteps and demanding huge sums of money to become compliant. This

has happened at some companies that “over-installed” the number of licenses that they

had available for an operating system or office suite. It means that I don’t have to type in

a long, long, “key” to unlock the software I have purchased or downloaded.

 Our software rights

The rights to the freedoms that we have with open source software should be part of

the license we receive when we download open source software. The definition for

Chapter 1 IntroduCtIon

13

open source software24 is found at the Open Source Initiative web site. This definition

describes the freedoms and responsibilities that are part of using open source software.

The issue is that there are many licenses that claim to be open source. Some are

and some are not. In order to be true open source software, the license must meet the

requirements specified in this definition. The definition is not a license – it specifies the

terms to which any license must conform if the software to which it is attached is to be

legally considered open source. If any of the defined terms do not exist in a license, then

the software to which it refers is not true open source software.

All of the software used in this book is open source software.

I have not included that definition here despite its importance because it is and not

really the focus of this book. You can go to the web site previously cited, or you can read

more about it in my book, The Linux Philosophy for SysAdmins.25 I strongly recommend

that you at least go to the web site and read the definition so that you will more fully

understand what open source really is and what rights you have.

I also like the description of Linux at Opensource.com,26 as well as their long list of

other open source resources.27

 Longevity
Longevity – an interesting word. I use it here to help clarify some of the statements

that I hear many people make. These statements are usually along the lines of “Linux

can extend the life of existing hardware,” or “Keep old hardware out of landfills or

unmonitored recycling facilities.”

The idea is that you can use your old computer longer and that by doing that, you

lengthen the useful life of the computer and decrease the number of computers you

need to purchase in your lifetime. This both reduces demand for new computers and

reduces the number of old computers being discarded.

Linux prevents the planned obsolescence continually enforced by the ongoing

requirements for more and faster hardware required to support upgrades. It means I do

not need to add more RAM or hard drive space just to upgrade to the latest version of the

operating system.

24 Opensource.org, The Open Source Definition, https://opensource.org/docs/osd
25 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, 311–316
26 Opensource.com, What is Linux?, https://opensource.com/resources/linux
27 Opensource.com, Resources, https://opensource.com/resources

Chapter 1 IntroduCtIon

https://opensource.org/docs/osd
https://opensource.com/resources/linux
https://opensource.com/resources

14

Another aspect of longevity is the open source software that stores data in open

and well-documented formats. Documents that I wrote over a decade ago are still

readable by current versions of the same software I used then, such as LibreOffice and

its predecessors, OpenOffice, and before that Star Office. I never need to worry that a

software upgrade will relegate my old files to the bit bucket.

 Keep the hardware relevant

For one example, until it recently died, I had an old Lenovo ThinkPad W500 that I

purchased in May of 2006. It was old and clunky and heavy compared to many of today’s

laptops, but I liked it a lot, and it was my only laptop. I took it with me on most trips and

use it for training. It had enough power in its Intel Core 2 Duo 2.8GHz processor, 8GB of

RAM, and 300GB hard drive to support Fedora running a couple virtual machines and to

be the router and firewall between a classroom network and the Internet, to connect to a

projector to display my slides, and to use to demonstrate the use of Linux commands.

I used Fedora 28 on it, the very latest. That is pretty amazing considering that this laptop,

which I affectionately called vgr, was a bit over 12 years old.

The ThinkPad died of multiple hardware problems in October of 2018, and I replaced

it with a System7628 Oryx Pro with 32GB of RAM, an Intel i7 with 6 cores (12 CPU threads)

and 2TB of SSD storage. I expect to get at least a decade of service out of this new laptop.

And then there is my original EeePC 900 netbook with an Intel Atom CPU at 1.8GHz,

2G of RAM, and an 8GB SDD. It ran Fedora up through Fedora 28 for ten years before it

too started having hardware problems.

Linux can most definitely keep old hardware useful. I have several old desktop

workstations that are still useful with Linux on them. Although none are as old as vgr,

I have at least one workstation with an Intel motherboard from 2008, one from 2010, at

least three from 2012.

 Resist malware

Another reason that I can keep old hardware running longer is that Linux is very resistant

to malware infections. It is not completely immune to malware, but none of my systems

have ever been infected. Even my laptop which connects to all kinds of wired and

wireless networks that I do not control has never been infected.

28 System76 Home page, https://system76.com/

Chapter 1 IntroduCtIon

https://system76.com/

15

Without the massive malware infections that cause most peoples’ computers to slow

to an unbearable crawl, my Linux systems – all of them – keep running at top speed. It

is this constant slowdown, even after many “cleanings” at the big box stores or the strip

mall computer stores, which causes most people to think that their computers are old

and useless. So they throw them away and buy another.

So if Linux can keep my 12-year-old laptop and other old systems running smoothly,

it can surely keep many others running as well.

 Should I be a SysAdmin?
Since this book is intended to help you become a SysAdmin, it would be useful for you

to know whether you might already be one, whether you are aware of that fact or not, or

if you exhibit some propensity toward system administration. Let’s look at some of the

tasks a SysAdmin may be asked to perform and some of the qualities one might find in a

SysAdmin.

Wikipedia29 defines a system administrator as “a person who is responsible for the

upkeep, configuration, and reliable operation of computer systems, especially multiuser

computers, such as servers.” In my experience, this can include computer and network

hardware, software, racks and enclosures, computer rooms or space, and much more.

The typical SysAdmin's job can include a very large number of tasks. In a small

business, a SysAdmin may be responsible for doing everything computer related. In

larger environments, multiple SysAdmins may share responsibility for all of the tasks

required to keep things running. In some cases, you may not even know you are a

SysAdmin; your manager may have simply told you to start maintaining one or more

computers in your office – that makes you a SysAdmin, like it or not.

There is also a term, “DevOps,” which is used to describe the intersection of the

formerly separate development and operations organizations. In the past, this has been

primarily about closer cooperation between development and operations, and it included

teaching SysAdmins to write code. The focus is now shifting to teaching programmers

how to perform operational tasks.30 Attending to SysAdmin tasks makes these folks

SysAdmins, too, at least for part of the time. While I was working at Cisco, I had a DevOps

29 Wikipedia, System Administrator, https://en.wikipedia.org/wiki/System_administrator
30 Charity, “Ops: It’s everyone’s job now,” https://opensource.com/article/17/7/
state-systems-administration

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/System_administrator
https://opensource.com/article/17/7/state-systems-administration
https://opensource.com/article/17/7/state-systems-administration

16

type of job. Part of the time I wrote code to test Linux appliances, and the rest of the time

I was a SysAdmin in the lab where those appliances were tested. It was a very interesting

and rewarding time in my career.

I have created this short list to help you determine whether you might have some of

the qualities of a SysAdmin. You know you are a SysAdmin if...

 1. You think this book might be a fun read.

 2. You would rather spend time learning about computers than

watch television.

 3. You like to take things apart to see how they work.

 4. Sometimes those things still work when you are required by

someone else to reassemble them.

 5. People frequently ask you to help them with their computers.

 6. You know what open source means.

 7. You document everything you do.

 8. You find computers easier to interact with than most humans.

 9. You think the command line might be fun.

 10. You like to be in complete control.

 11. You understand the difference between “free as in beer” and “free

as in speech,” when applied to software.

 12. You have installed a computer.

 13. You have ever repaired or upgraded your own computer.

 14. You have installed or tried to install Linux.

 15. You have a Raspberry Pi.

 16. You leave the covers off your computer because you replace

components frequently.

 17. ...etc...

You get the idea. I could list a lot more things that might make you a good candidate

to be a SysAdmin, but I am sure you can think of plenty more that apply to you. The

bottom line here is that you are curious, you like to explore the internal workings of

Chapter 1 IntroduCtIon

17

devices, you want to understand how things work – particularly computers, you enjoy

helping people, and you would rather be in control of at least some of the technology

that we encounter in our daily lives than to let it completely control you.

 About this course
If you ask me a question about how to perform some task in Linux, I am the Linux

guy that explains how Linux works before answering the question – at least that is the

impression I give most people. My tendency is to explain how things work, and I think

that it is very important for SysAdmins to understand why things work as they do and the

architecture and structure of Linux in order to be most effective.

So I will explain a lot of things in detail as we go through this course. For the most part,

it will not be a course in which you will be told to type commands without some reasoning

behind it. The preparation in Chapter 4 will also have some explanation but perhaps not

so much as the rest of the book. Without these explanations, the use of the commands

would be just rote memorization and that is not how most of us SysAdmins learn best.

UNIX is very simple, it just needs a genius to understand its simplicity.

—Dennis Ritchie31

The explanations I provide will sometimes include historical references because

the history of Unix and Linux is illustrative of why and how Linux is so open and easy

to understand. The preceding Ritchie quote also applies to Linux because Linux was

designed to be a version of Unix. Yes, Linux is very simple. You just need a little guidance

and mentoring to show you how to explore it yourself. That is part of what you will learn

in this course.

Part of the simplicity of Linux is that it is completely open and knowable, and you

can access any and all of it in very powerful and revealing ways. This course contains

many experiments which are designed to explore the architecture of Linux as well as to

introduce you to new commands.

Why do you think that Windows support – regardless of where you get it – always

starts with rebooting the system? Because it is a closed system and closed systems

31 Wikipedia, Dennis Ritchie, https://en.wikipedia.org/wiki/Dennis_Ritchie

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Dennis_Ritchie

18

cannot ever be knowable. As a result, the easiest approach to solving problems is to

reboot the system rather than to dig into the problem, find the root cause, and fix it.

 About the experiments
As a hands-on SysAdmin, I like to experiment with the command line in order to

learn new commands, new ways to perform tasks, and how Linux works. Most of the

experiments I have devised for this book are ones that I have performed in my own

explorations with perhaps some minor changes to accommodate their use in a course

using virtual machines.

I use the term “experiments” because they are intended to be much more than simple

lab projects, designed to be followed blindly with no opportunity for you, the student, to

follow your own curiosity and wander far afield. These experiments are designed to be

the starting points for your own explorations. This is one reason to use a VM for them,

so that production machines will be out of harm’s way and you can safely try things

that pique your curiosity. Using virtualization software such as VirtualBox enables us

to run a software implementation of standardized hardware. It allows us to run one or

more software computers (VMs), in which we can install any operating system, on your

hardware computer. It seems complex, but we will go through creating a virtual network

and a virtual machine (VM) in Chapter 4 as we prepare for the experiments.

All SysAdmins are curious, hands-on people even though we have different ways of

learning. I think it is helpful for SysAdmins to have hands-on experience. That is what

the experiments are for – to provide an opportunity to go beyond the theoretical and

apply the things you learn in a practical way. Although some of the experiments are a bit

contrived in order to illustrate a particular point, they are nevertheless valid.

These enlightening experiments are not tucked away at the end of each chapter, or

the book, where they can be easily ignored – they are embedded in the text and are an

integral part of the flow of this book. I recommend that you perform the experiments as

you proceed through the book.

The commands and sometimes the results for each experiment will appear in

“experiment” sections as shown in the following. Some experiments need only a single

command and so will have only one “experiment” section. Other experiments may be

more complex and so split among two to more experiments.

Chapter 1 IntroduCtIon

19

SAMPLE EXPERIMENT

this is an example of an experiment. each experiment will have instructions and code for you

to enter end run on your computer.

Many experiments will have a series of instructions in a prose format like this paragraph. Just

follow the instructions and the experiments will work just fine:

 1. Some experiments will have a list of steps to perform.

 2. Step 2.

 3. etc...

Code that you are to enter for the experiments will look like this.

this is the end of the experiment.

Some of these experiments can be performed as a non-root user; that is much

safer than doing everything as root. However you will need to be root for many of these

experiments. These experiments are considered safe for use on a VM designated for

training such as the one that you will create in Chapter 4. Regardless of how benign they

may seem, you should not perform any of these experiments on a production system

whether physical or virtual.

There are times when I want to present code that is interesting but which you should

not run as part of one of the experiments. For such situations I will place the code and

any supporting text in a CODE SAMPLE section as shown in the following.

CODE SAMPLE

Code that is intended to illustrate a point but which you should not even think about running

on any computer will be contained in a section like this one:

echo "This is sample code which you should never run."

Warning do not perform the experiments presented in this book on a production
system. You should use a virtual machine that is designated for this training.

Chapter 1 IntroduCtIon

20

 What to do if the experiments do not work
These experiments are intended to be self-contained and not dependent upon any setup,

except for the USB thumb drive, or the results of previously performed experiments.

Certain Linux utilities and tools must be present, but these should all be available on

a standard Fedora Linux workstation installation or any other mainstream general use

distribution. Therefore, all of these experiments should “just work.” We all know how that

goes, right? So when something does fail, the first things to do are the obvious.

Verify that the commands were entered correctly. This is the most

common problem I encounter for myself.

You may see an error message indicating that the command was

not found. The Bash shell shows the bad command; in this case

I made up badcommand. It then gives a brief description of the

problem. This error message is displayed for both missing and

misspelled commands. Check the command spelling and syntax

multiple times to verify that it is correct:

[student@testvm1 ~]$ badcommand

bash: badcommand: command not found...

Use the man command to view the manual pages (man pages) in

order to verify the correct syntax and spelling of commands.

Ensure that the required command is, in fact, installed. Install

them if they are not already installed.

For experiments that require you to be logged in as root, ensure

that you have done so. There should be only a few of these, but

performing them as a non-root user will not work.

There is not much else that should go wrong – but if you

encounter a problem that you cannot make work using these tips,

contact me at LinuxGeek46@both.org, and I will do my best to

help figure out the problem.

Chapter 1 IntroduCtIon

https://LinuxGeek46@both.org

21

 Terminology
It is important to clarify a bit of terminology before we proceed. In this course I will refer

to computers with multiple terms. A “computer” is a hardware or virtual machine for

computing. A computer is also referred to as a “node” when connected to a network.

A network node can be any type of device including routers, switches, computers, and

more. The term “host” generally refers to a computer that is a node on a network, but I

have also encountered it used to refer to an unconnected computer.

 How to access the command line
All of the modern mainstream Linux distributions provide at least three ways to access

the command line. If you use a graphical desktop, most distributions come with multiple

terminal emulators from which to choose. I prefer Krusader, Tilix, and especially xfce4-

terminal, but you can use any terminal emulator that you like.

Linux also provides the capability for multiple virtual consoles to allow for multiple

logins from a single keyboard and monitor (KVM32). Virtual consoles can be used on

systems that don’t have a GUI desktop, but they can be used even on systems that do

have one. Each virtual console is assigned to a function key corresponding to the console

number. So vc1 would be assigned to function key F1, and so on. It is easy to switch to

and from these sessions. On a physical computer, you can hold down the Ctrl and Alt

keys and press F2 to switch to vc2. Then hold down the Ctrl and Alt keys and press F1 to

switch to vc1 and the graphical interface.

The last method to access the command line on a Linux computer is via a remote

login. Telnet was common before security became such an issue, so Secure Shell (SSH) is

now used for remote access.

For some of the experiments, you will need to log in more than once or start multiple

terminal sessions in the GUI desktop. We will go into much more detail about terminal

emulators, console sessions, and shells as we proceed through this book.

32 Keyboard, Video, Mouse

Chapter 1 IntroduCtIon

22

 Chapter summary
Linux was designed from the very beginning as an open and freely available operating

system. Its value lies in the power, reliability, security, and openness that it brings to the

marketplace for operating systems and not just in the fact that it can be had for free in

monetary terms. Because Linux is open and free in the sense that it can be freely used,

shared, and explored, its use has spread into all aspects of our lives.

The tasks a SysAdmin might be asked to do are many and varied. You may already

be doing some of these or at least have some level of curiosity about how Linux works or

how to make it work better for you. Most of the experiments encountered in this book

must be performed at the command line. The command line can be accessed in multiple

ways and with any one or more of several available and acceptable terminal emulators.

 Exercises
Note that a couple of the following questions are intended to cause you to think about

your desire to become a SysAdmin. There are no right answers to these questions, only

yours, and you are not required to write them down or to share them. They are simply

designed to prompt you to be a bit introspective about yourself and being a SysAdmin:

 1. From where does open source software derive its value?

 2. What are the four defining characteristics of Linux?

 3. As of the time you read this, how many of the world’s top 500

supercomputers use Linux as their operating system?

 4. What does the “Linux Truth” mean to Linux users and

administrators?

 5. What does “freedom” mean with respect to open source software?

 6. Why do you want to be a SysAdmin?

 7. What makes you think you would be a good SysAdmin?

 8. How would you access the Linux command line if there were no

GUI desktop installed on the Linux host?

Chapter 1 IntroduCtIon

23
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_2

CHAPTER 2

Introduction to Operating
Systems
 Objectives
In this chapter you will learn to

• Describe the functions of the main hardware components of a

computer

• List and describe the primary functions of an operating system

• Briefly outline the reasons that prompted Linus Torvalds to create

Linux

• Describe how the Linux core utilities support the kernel and together

create an operating system

 Choice – Really!
Every computer requires an operating system. The operating system you use on your

computer is at least as important – or more so – than the hardware you run it on. The

operating system (OS) is the software that determines the capabilities and limits of your

computer or device. It also defines the personality of your computer.

The most important single choice you will make concerning your computer is

that of the operating system which will create a useful tool out of it. Computers have

no ability to do anything without software. If you turn on a computer which has no

software program, it simply generates revenue for the electric company in return

for adding a little heat to the room. There are far less expensive ways to heat a room.

24

The operating system is the first level of software which allows your computer to

perform useful work. Understanding the role of the operating system is key to making

informed decisions about your computer.

Of course, most people do not realize that there even is a choice when it comes

to operating systems. Fortunately, Linux does give us a choice. Some vendors such as

EmperorLinux, System76, and others are now selling systems that already have Linux

installed. Others, like Dell, sometimes try out the idea of Linux by selling a single model

with few options.

We can always just purchase a new computer, install Linux on it, and wipe out

whatever other operating system might have previously been there. My preference is

to purchase the parts from a local computer store or the Internet and build my own

computers to my personal specifications. Most people don’t know that they have either

of these options and, if they did, would not want to try anyway.

 What is an operating system?
Books about Linux are books about an operating system. So – what is an operating

system? This is an excellent question – one which most training courses and books I have

read either skip over completely or answer very superficially. The answer to this question

can aid the SysAdmin’s understanding of Linux and its great power.

The answer is not simple.

Many people look at their computer’s display and see the graphical (GUI1) desktop

and think that is the operating system. The GUI is only a small part of the operating

system. It provides an interface in the form of a desktop metaphor that is understandable

to many users. It is what is underneath the GUI desktop that is the real operating system.

The fact is that for advanced operating systems like Linux, the desktop is just another

application, and there are multiple desktops from which to choose. We will cover the

Xfce desktop in Chapter 6 of this volume because that is the desktop I recommend for

use with this course. We will also explore window managers, a simpler form of desktop,

in Chapter 16 of this volume.

1 Graphical User Interface

Chapter 2 IntroduCtIon to operatIng SyStemS

25

In this chapter and throughout the rest of this course, I will elaborate on the answer

to this question, but it is helpful to understand a little about the structure of the hardware

which comprises a computer system. Let’s take a brief look at the hardware components

of a modern Intel computer.

 Hardware
There are many different kinds of computers from single-board computers (SBC) like

the Arduino and the Raspberry Pi to desktop computers, servers, mainframes, and

supercomputers. Many of these use Intel or AMD processors, but others do not. For

the purposes of this series of books, I will work with Intel X86_64 hardware. Generally,

if I say Intel, you can also assume I mean the X86_64 processor series and supporting

hardware, and that AMD X86_64 hardware should produce the same results, and the

same hardware information will apply.

 Motherboard

Most Intel-based computers have a motherboard that contains many components of the

computer such as bus and I/O controllers. It also has connectors to install RAM memory

and a CPU, which are the primary components that need to be added to a motherboard

to make it functional. Single-board computers are self-contained on a single board

and do not require any additional hardware because components such as RAM, video,

network, USB, and other interfaces are all an integral part of the board.

Some motherboards contain a graphics processing unit (GPU) to connect the video

output to a monitor. If they do not, a video card can be added to the main computer I/O

bus, usually PCI2, or PCI Express (PCIe).3 Other I/O devices like a keyboard, mouse, and

external hard drives and USB memory sticks can be connected via the USB bus. Most

modern motherboards have one or two Gigabit Ethernet network interface cards (NIC)

and four or six SATA4 connectors for hard drives.

Random-access memory (RAM) is used to store data and programs while they

are being actively used by the computer. Programs and data cannot be used by the

computer unless they are stored in RAM from where they can be quickly moved into the

2 Wikipedia, Conventional PCI, https://en.wikipedia.org/wiki/Conventional_PCI
3 Wikipedia, PCI Express, https://en.wikipedia.org/wiki/PCI_Express
4 Wikipedia, Serial ATA, https://en.wikipedia.org/wiki/Serial_ATA

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/Serial_ATA

26

CPU cache. RAM and cache memory are both volatile memory; that is, the data stored

in them is lost if the computer is turned off. The computer can also erase or alter the

contents of RAM, and this is one of the things that gives computers their great flexibility

and power.

Hard drives are magnetic media used for long-term storage of data and programs.

Magnetic media is nonvolatile; the data stored on a disk remains even when power is

removed from the computer. DVDs and CD-ROM store data permanently and can be

read by the computer but not overwritten. The exception to this is that some DVD and

CD-ROM disks are re-writable. ROM means read-only memory because it can be read by

the computer but not erased or altered. Hard drives and DVD drives are connected to the

motherboard through SATA adapters.

Solid-state drives (SSDs) are the solid state equivalent of hard drives. They have the

same characteristics in terms of the long-term storage of data because it is persistent

through reboots and when the computer is powered off. Also like hard drives with

rotating magnetic disks, SSDs allow data to be erased, moved, and managed when

needed.

Printers are used to transfer data from the computer to paper. Sound cards convert

data to sound as well as the reverse. USB storage devices can be used to store data for

backup or transfer to other computers. The network interface cards (NICs) are used to

connect the computer to a network, hardwired or wireless, so that it can communicate

easily with other computers attached to the network.

 The processor

Let’s take a moment to explore the CPU and define some terminology in an effort to help

reduce confusion. Five terms are important when we talk about processors: processor,

CPU, socket, core, and thread. The Linux command lscpu, as shown in Figure 2-1, gives

us some important information about the installed processor(s) as well as clues about

terminology. I use my primary workstation for this example.

Chapter 2 IntroduCtIon to operatIng SyStemS

27

The first thing to notice in Figure 2-1 is that the term “processor” never appears.

The common usage for the term “processor”5 refers generically to any hardware unit

that performs some form of computations. It can refer to the CPU6 – central processing

5 Wikipedia, Processor, https://en.wikipedia.org/wiki/Processor
6 Wikipedia, Central processing unit, https://en.wikipedia.org/wiki/Central_processing_unit

[root@david ~]# lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 32

On-line CPU(s) list: 0-31

Thread(s) per core: 2

Core(s) per socket: 16

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 85

Model name: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

Stepping: 4

CPU MHz: 3542.217

CPU max MHz: 4400.0000

CPU min MHz: 1200.0000

BogoMIPS: 5600.00

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 22528K

NUMA node0 CPU(s): 0-31

Flags: <snip

Figure 2-1. The output of the lscpu command gives us some information about
the processor installed in a Linux host. It also helps us understand the current
terminology to use when discussing processors

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/Processor
https://en.wikipedia.org/wiki/Central_processing_unit

28

unit – of the computer, to a graphic processing unit (GPU7) that performs calculations

relating to graphical video displays, or any number of other types of processors. The

terms processor and CPU tend to be used interchangeably when referring to the physical

package that is installed in your computer.

Using Intel terminology, which can be a bit fluid, the processor is the physical package

that can contain one or more computing cores. Figure 2-2 shows an Intel i5- 2500 processor

which contains four cores. Because the processor package is plugged into a socket and a

motherboard may have multiple sockets, the lscpu utility numbers the sockets. Figure 2-1

shows the information for the processor in socket number 1 on the motherboard. If this

motherboard had additional sockets, lscpu would list them separately.

A core, which is sometimes referred to as a compute core, is the smallest physical

hardware component of a processor that can actually perform arithmetic and logical

computations, that is, it is composed of a single arithmetic and logic unit (ALU)8 and its

7 Wikipedia, Graphics processing unit, https://en.wikipedia.org/wiki/
Graphics_processing_unit

8 Wikipedia, Arithmetic Logic Unit, https://en.wikipedia.org/wiki/Arithmetic_logic_unit

Figure 2-2. An Intel Core i5 processor may contain one, two, or four cores. Photo
courtesy of Wikimedia Commons, CC by SA 4 International

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit

29

required supporting components. Every computer has at least one processor with one or

more cores. Most modern Intel processors have more – two, four, or six cores, and many

processors have eight or more cores. They make up the brains of the computer. They

are the part of the computer which is responsible for executing each of the instructions

specified by the software utilities and application programs.

The line in the lscpu results that specifies the number of cores contained in the

processor package is “Core(s) per socket.” For this socket on my primary workstation,

there are sixteen (16) cores. That means that there are 16 separate computing devices in

the processor plugged into this socket.

But wait – there’s more! The line “CPU(s)” shows that there are 32 CPUs on this

socket. How can that be? Look at the line with the name “Thread(s) per core,” and the

number there is 2, so 16 x 2 = 32. Well that is the math but not the explanation. The short

explanation is that compute cores are really fast. They are so fast that a single stream

of instructions and data is not enough to keep them busy all the time even in a very

compute intensive environment. The details of why this is so are beyond the scope of

this book but suffice it to say that before hyper-threading, most compute cores would sit

waiting with nothing to do, while the slower external memory circuitry tried to feed them

sufficient steams of program instructions and data to them to keep them active.

Rather than let precious compute cycles go to waste in high-performance computing

environments, Intel developed hyper-threading technology that allows a single core to

process two streams of instructions and data by switching between them. This enables

a single core to perform almost as well as two. So the term CPU is used to specify that a

single hyper-threading core is reasonably close to the functional equivalent of two CPUs.

But there are some caveats. Hyper-threading is not particularly helpful if all you are

doing is word processing and spreadsheets. Hyper-threading is intended to improve

performance in high-performance computing environments where every CPU compute

cycle is important in speeding the results.

 Peripherals

Peripherals are hardware devices that can be plugged into the computer via the various

types of interface ports. USB devices such as external hard drives and thumb drives are

typical of this type of hardware. Other types include keyboards, mice, and printers.

Chapter 2 IntroduCtIon to operatIng SyStemS

30

Printers can also be connected using the very old parallel printer ports which I still

see on some new motherboards, but most are USB capable of being attached using

USB or a network connection. Displays are commonly connected using HDMI, DVI,

DisplayPort, or VGA connectors.

Peripheral devices can also include such items as USB hubs, disk drive docking

stations, plotters, and more.

 The operating system
All of these hardware pieces of the computer must work together. Data must be gotten

into the computer and moved about between the various components. Programs

must be loaded from long-term storage on the hard drive into RAM where they can be

executed. Processor time needs to be allocated between running applications. Access

to the hardware components of the computer such as RAM, disk drives, and printers by

application programs must be managed.

It is the task of the operating system to provide these functions. The operating system

manages the operation of the computer and of the application software which runs on

the computer.

 The definition

A simple definition of an operating system is that it is a program, much like any other

program. It is different only in that its primary function is to manage the movement of data

in the computer. This definition refers specifically to the kernel of the operating system.

The operating system kernel manages access to the hardware devices of the

computer by utility and application programs. The operating system also manages

system services such as memory allocation – the assignment of specific virtual memory

locations to various programs when they request memory – the movement of data

from various storage devices into memory where it can be accessed by the CPU,

communications with other computers and devices via the network, display of data in

text or graphic format on the display, printing, and much more.

The Linux kernel provides an API – application programming interface – for other

programs to use in order to access the kernel functions. For example, a program that

needs to have more memory allocated to its data structures uses a kernel function call

to request that memory. The kernel then allocates the memory and notifies the program

that the additional memory is available.

Chapter 2 IntroduCtIon to operatIng SyStemS

31

The Linux kernel also manages access to the CPUs as computing resources. It uses

a complex algorithm to determine which processes have are allocated some CPU time,

when, and for how long. If necessary, the kernel can interrupt a running program in

order to allow another program to have some CPU time.

An operating system kernel like Linux can do little on its own. It requires other

programs – utilities – that can be used to perform basic functions such as create a

directory on the hard drive and then other program utilities to access that directory,

create files in that directory, and then manage those files. These utility programs perform

functions like creating files, deleting files, copying files from one place to another, setting

display resolution, and complex processing of textual data. We will cover the use of many

of these utilities as we proceed through this book.

 Typical operating system functions
Any operating system has a set of core functions which are the primary reason for its

existence. These are the functions that enable the operating system to manage itself, the

hardware on which it runs, and the application programs and utilities that depend upon

it to allocate system resources to them:

• Memory management

• Managing multitasking

• Managing multiple users

• Process management

• Interprocess communication

• Device management

• Error handling and logging

Let’s look briefly at these functions.

Chapter 2 IntroduCtIon to operatIng SyStemS

32

 Memory management
Linux and other modern operating systems use advanced memory management

strategies to virtualize real memory – random-access memory9 (RAM) and swap memory

(disk) – into a single virtual memory space which can be used as if it were all physical

RAM. Portions of this virtual memory10 can be allocated by the memory management

functions of the kernel to programs that request memory.

The memory management components of the operating system are responsible for

assigning virtual memory space to applications and utilities and for translation between

virtual memory spaces and physical memory. The kernel allocates and deallocates

memory and assigns physical memory locations based upon requests, either implicit

or explicit, from application programs. In cooperation with the CPU, the kernel also

manages access to memory to ensure that programs only access those regions of

memory which have been assigned to them. Part of memory management includes

managing the swap partition or file and the movement of memory pages between RAM

and the swap space on the hard drive.

Virtual memory eliminates the need for the application programmer to deal directly

with memory management because it provides a single virtual memory address space

for each program. It also isolates each application’s memory space from that of every

other, thus making the program’s memory space safe from being overwritten or viewed

by other programs.

 Multitasking
Linux, like most modern operating systems, can multitask. That means that it can

manage two, three, or hundreds of processes at the same time. Part of process

management is managing multiple processes that are all running on a Linux computer.

I usually have several programs running at one time such as LibreOffice Write which

is a word processor, an e-mail program, a spreadsheet, a file manager, a web browser,

and usually multiple terminal sessions in which I interact with the Linux command-line

interface (CLI). Right now, as I write this sentence, I have multiple documents open in

several LibreOffice Write windows. This enables me to see what I have written in other

documents and to work on multiple chapters at the same time.

9 Wikipedia, Random Access Memory, https://en.wikipedia.org/wiki/Random-access_memory
10 Wikipedia, Virtual Memory, https://en.wikipedia.org/wiki/Virtual_memory

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Virtual_memory

33

But those programs usually do little or nothing until we give them things to do by

typing words into the word processor or clicking an e-mail to display it. I also have

several terminal emulators running and use them to log in to various local and remote

computers for which I manage and have responsibility.

Linux itself always has many programs running in the background – called

daemons – programs that help Linux manage the hardware and other software running

on the host. These programs are usually not noticed by users unless we specifically look

for them. Some of the tools you will learn about in this book can reveal these otherwise

hidden programs.

Even with all of its own programs running in the background and users’ programs

running, a modern Linux computer uses a few compute cycles and wastes most of its

CPU cycles waiting for things to happen. Linux can download and install its own updates

while performing any or all of the preceding tasks simultaneously – without the need

for a reboot. Wait... what?! That’s right. Linux does not usually need to reboot before,

during, or after installing updates or when installing new software. After a new kernel or

glibc (General C Libraries) is installed, however, you may wish to reboot the computer to

activate it, but you can do that whenever you want and not be forced to reboot multiple

times during an update or even stop doing your work while the updates are installed.

 Multiuser
The multitasking functionality of Linux extends to its ability to host multiple users – tens

or hundreds of them – all running the same or different programs at the same time on

one single computer.

Multiuser capabilities means a number of different things. First, it can mean a single

user who has logged in multiple times via a combination of the GUI desktop interface

and via the command line using one or more terminal sessions. We will explore the

extreme flexibility available when using terminal sessions a bit later in this course.

Second, multiuser means just that – many different users logged in at the same time,

each doing their own thing, and each isolated and protected from the activities of the

others. Some users can be logged in locally and others from anywhere in the world with

an Internet connection if the host computer is properly configured.

The role of the operating system is to allocate resources to each user and to ensure

that any tasks, that is, processes, they have running have sufficient resources without

impinging upon the resources allocated to other users.

Chapter 2 IntroduCtIon to operatIng SyStemS

34

 Process management
The Linux kernel manages the execution of all tasks running on the system. The Linux

operating system is multitasking from the moment it boots up. Many of those tasks are

the background tasks required to manage a multitasking and – for Linux – a multiuser

environment. These tools take only a small fraction of the available CPU resources

available on even modest computers.

Each running program is a process. It is the responsibility of the Linux kernel to

perform process management.11

The scheduler portion of the kernel allocates CPU time to each running process

based on its priority and whether it is capable of running. A task which is blocked –

perhaps it is waiting for data to be delivered from the disk, or for input from the

keyboard – does not receive CPU time. The Linux kernel will also preempt a lower

priority task when a task with a higher priority becomes unblocked and capable of

running.

In order to manage processes, the kernel creates data abstractions that represent that

process. Part of the data required is that of memory maps that define the memory that is

allocated to the process and whether it is data or executable code. The kernel maintains

information about the execution status such as how recently the program had some CPU

time, how much time, and a number called the “nice” number. It uses that information

and the nice number to calculate the priority of the process. The kernel uses the priority

of all of the process to determine which process(es) will be allocated some CPU time.

Note that not all processes need CPU time simultaneously. In fact, for most desktop

workstations in normal circumstances, usually only two or three processes at the most

need to be on the CPU at any given time. This means that a simple quad-core processor

can easily handle this type of CPU load.

If there are more programs – processes – running than there are CPUs in the system,

the kernel is responsible for determining which process to interrupt in order to replace it

with a different one that needs some CPU time.

11 Process management is discussed in Chapter 4 of Volume 2.

Chapter 2 IntroduCtIon to operatIng SyStemS

35

 Interprocess communication
Interprocess communication (IPC) is vital to any multitasking operating system. Many

programs must be synchronized with each other to ensure that their work is properly

coordinated. Interprocess communication is the tool that enables this type of inter-

program cooperation.

The kernel manages a number of IPC methods. Shared memory is used when two

tasks need to pass data between them. The Linux clipboard is a good example of shared

memory. Data which is cut or copied to the clipboard is stored in shared memory. When

the stored data is pasted into another application, that application looks for the data in

the clipboard’s shared memory area. Named pipes can be used to communicate data

between two programs. Data can be pushed into the pipe by one program, and the other

program can pull the data out of the other end of the pipe. A program may collect data

very quickly and push it into the pipe. Another program may take the data out of the

other end of the pipe and either display it on the screen or store it to the disk, but it can

handle the data at its own rate.

 Device management
The kernel manages access to the physical hardware through the use of device drivers.

Although we tend to think of this in terms of various types of hard drives and other

storage devices, it also manages other input/output (I/O) devices such as the keyboard,

mouse, display, printers, and so on. This includes management of pluggable devices

such as USB storage devices and external USB and eSATA hard drives.

Access to physical devices must be managed carefully, or more than one application

might attempt to control the same device at the same time. The Linux kernel manages

devices so that only one program actually has control of or access to a device at any given

moment. One example of this is a COM port.12 Only one program can communicate

through a COM port at any given time. If you are using the COM port to get your e-mail

from the Internet, for example, and try to start another program which attempts to use

the same COM port, the Linux kernel detects that the COM port is already in use. The

kernel then uses the hardware error handler to display a message on the screen that the

COM port is in use.

12 A COM (communications) port is used with serial communications such as a serial modem to
connect to the Internet over telephone lines when a cable connection is not available.

Chapter 2 IntroduCtIon to operatIng SyStemS

36

For managing disk I/O devices, including USB, parallel and serial port I/O, and

filesystem I/O, the kernel does not actually handle physical access to the disk but rather

manages the requests for disk I/O submitted by the various running programs. It passes

these requests on to the filesystem, whether it be EXT[2,3,4], VFAT, HPFS, CDFS (CD-

ROM file system), or NFS (Network Filesystem, or some other filesystem types), and

manages the transfer of data between the filesystem and the requesting programs.

We will see later how all types of hardware – whether they are storage devices or

something else attached to a Linux host – are handled as if they were files. This results in

some amazing capabilities and interesting possibilities.

 Error handling
Errors happen. As a result, the kernel needs to identify these errors when they occur. The

kernel may take some action such as retrying the failing operation, displaying an error

message to the user, and logging the error message to a log file.

In many cases, the kernel can recover from errors without human intervention.

In others, human intervention may be required. For example, if the user attempts to

unmount13 a USB storage device that is in use, the kernel will detect this and post a

message to the umount program which usually sends the error message to the user

interface. The user must then take whatever action necessary to ensure that the storage

device is no longer in use and then attempt to unmount the device.

 Utilities
In addition to its kernel functions, most operating systems provide a number of basic

utility programs which enable users to manage the computer on which the operating

system resides. These are the commands such as cp, ls, mv, and so on, as well as the

various shells, such as bash, ksh, csh and so on, which make managing the computer so

much easier.

These utilities are not truly part of the operating system; they are merely provided

as useful tools that can be used by the SysAdmin to perform administrative tasks. In

Linux, often these are the GNU core utilities. However, common usage groups the kernel

together with the utilities into a single conceptual entity that we call the operating system.

13 The Linux command to unmount a device is actually umount.

Chapter 2 IntroduCtIon to operatIng SyStemS

37

 A bit of history
Entire books have been written just about the history of Linux14 and Unix,15 so I will

attempt to make this as short as possible. It is not necessary to know this history to be

able to use Unix or Linux, but you may find it interesting. I have found it very useful to

know some of this history because it has helped me to understand the Unix and Linux

Philosophy and to formulate my own philosophy which I discuss in my book, The Linux

Philosophy for SysAdmins16 and a good bit in the three volumes of this course.

 Starting with UNICS
The history of Linux begins with UNICS which was originally written as a gaming

platform to run a single game. Ken Thompson was an employee at Bell Labs in the

late 1960s – before the breakup – working on a complex project called Multics. Multics

was an acronym that stood for Multiplexed Information and Computing System. It

was supposed to be a multitasking operating system for the GE (yes, General Electric)

64517 mainframe computer. It was a huge, costly, complex project with three very large

organizations, GE, Bell Labs, and MIT, working on it.

Although Multics never amounted to much more than a small bump along the road

of computer history, it did introduce a good number of then innovative features that had

never before been available in an operating system. These features included multitasking

and multiuser capabilities.

Ken Thompson,18 one of the developers of Multics, had written a game called Space

Travel19 that ran under Multics. Unfortunately, due at least in part to the committee-

driven design of Multics, the game ran very slowly. It was also very expensive to run at

about $50 per iteration. As with many projects developed by committees, Multics died

a slow, agonizing death. The platform on which the Space Travel game was run was no

longer available.

14 Wikipedia, History of Linux, https://en.wikipedia.org/wiki/History_of_Linux
15 Wikipedia, History of Unix, https://en.wikipedia.org/wiki/History_of_Unix
16 Apress, The Linux Philosophy for SysAdmins, www.apress.com/us/book/9781484237298
17 Wikipedia, GE 645, https://en.wikipedia.org/wiki/GE_645
18 Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson
19 Wikipedia, Space Travel, https://en.wikipedia.org/wiki/Space_Travel_(video_game)

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/History_of_Unix
http://www.apress.com/us/book/9781484237298
https://en.wikipedia.org/wiki/GE_645
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Space_Travel_(video_game)

38

Thompson then rewrote the game to run on a DEC PDP-7 computer similar to the

one in Figure 2-3 that was just sitting around gathering dust. In order to make the game

run on the DEC, he and some of his buddies, Dennis Ritchie20 and Rudd Canaday,

first had to write an operating system for the PDP-7. Because it could only handle two

simultaneous users – far fewer than Multics had been designed for – they called their

new operating system UNICS for UNiplexed Information and Computing System as a bit

of geeky humor.

 UNIX
At some time later, the UNICS name was modified slightly to UNIX, and that name has

stuck ever since.

In 1970, recognizing its potential, Bell Labs provided some financial support for the

Unix operating system and development began in earnest. In 1972 the entire operating

system was rewritten in C to make it more portable and easier to maintain than the

assembler it had been written in allowed for. By 1978, Unix was in fairly wide use inside

AT&T Bell Labs and many universities.

Due to the high demand, AT&T decided to release a commercial version of Unix in

1982. Unix System III was based on the seventh version of the operating system. In 1983,

AT&T released Unix System V Release 1. For the first time, AT&T promised to maintain

upward compatibility for future versions. Thus programs written to run on SVR1 would

also run on SVR2 and future releases. Because this was a commercial version, AT&T

began charging license fees for the operating system.

Also, in order to promote the spread of Unix and to assist many large universities

in their computing programs, AT&T gave away the source code of Unix to many of

these institutions of higher learning. This caused one of the best and one of the worst

situations for Unix. The best thing about the fact that AT&T gave the source code to

universities was that it promoted rapid development of new features. It also promoted

the rapid divergence of Unix into many distributions.

System V was an important milestone in the history of Unix. Many Unix variants are

today based on System V. The most current release is SVR4 which is a serious attempt to

reconverge the many variants that split off during these early years. SVR4 contains most

of the features of both System V and BSD. Hopefully they are the best features.

20 Wikipedia, Dennis Ritchie, https://en.wikipedia.org/wiki/Dennis_Ritchie

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/Dennis_Ritchie

39

 The Berkeley Software Distribution (BSD)

The University of California at Berkeley got into the Unix fray very early. Many of the

students who attended the school added their own favorite features to BSD Unix.

Eventually only a very tiny portion of BSD was still AT&T code. Because of this it was very

different from, though still similar to System V. Ultimately the remaining portion of BSD

was totally rewritten as well and folks using it no longer needed to purchase a license

from AT&T.

Figure 2-3. A DEC PDP-7 similar to the one used by Ken Thompson and Dennis
Ritchie to write the UNICS[sic] operating system. This one is located in Oslo,
and the picture was taken in 2005 before restoration began. Photo courtesy of
Wikimedia, CC by SA 1.0

Chapter 2 IntroduCtIon to operatIng SyStemS

40

 The Unix Philosophy

The Unix Philosophy is an important part of what makes Unix unique and powerful.

Because of the way that Unix was developed, and the particular people involved

in that development, the Unix Philosophy was an integral part of the process of

creating Unix and played a large part in many of the decisions about its structure

and functionality. Much has been written about the Unix Philosophy. And the Linux

Philosophy is essentially the same as the Unix Philosophy because of its direct line of

descent from Unix.

The original Unix Philosophy was intended primarily for the system developers.

In fact, the developers of Unix, led by Thompson and Ritchie, designed Unix in a way

that made sense to them, creating rules, guidelines, and procedural methods and

then designing them into the structure of the operating system. That worked well for

system developers and that also – partly, at least – worked for SysAdmins (system

administrators). That collection of guidance from the originators of the Unix operating

system was codified in the excellent book, The Unix Philosophy, by Mike Gancarz, and

then later updated by Mr. Gancarz as Linux and the Unix Philosophy.21

Another fine and very important book, The Art of Unix Programming,22 by Eric

S. Raymond, provides the author’s philosophical and practical views of programming in

a Unix environment. It is also somewhat of a history of the development of Unix as it was

experienced and recalled by the author. This book is also available in its entirety at no

charge on the Internet.23

I learned a lot from all three of those books. They all have great value to Unix

and Linux programmers. In my opinion, Linux and the Unix Philosophy and The Art

of Unix Programming should be required reading for Linux programmers, system

administrators, and DevOps personnel. I strongly recommend that you read these two

books in particular.

I have been working with computers for over 45 years. It was not until I started

working with Unix and Linux and started reading some of the articles and books about

Unix, Linux, and the common philosophy they share that I understood the reasons why

21 Gancarz, Mike, Linux and the Unix Philosophy, Digital Press – an imprint of Elsevier Science,
2003, ISBN 1-55558-273-7

22 Raymond, Eric S., The Art of Unix Programming, Addison-Wesley, September 17, 2003,
ISBN 0-13-142901-9

23 Raymond, Eric S., The Art of Unix Programming, www.catb.org/esr/writings/taoup/html/
index.html/

Chapter 2 IntroduCtIon to operatIng SyStemS

http://www.catb.org/esr/writings/taoup/html/index.html/
http://www.catb.org/esr/writings/taoup/html/index.html/

41

many things in the Linux and Unix worlds are done as they are. Such understanding can

be quite useful in learning new things about Linux and in being able to reason through

problem solving.

 A (very) brief history of Linux
Linus Torvalds, the creator of Linux, was a student at Helsinki University in 1991. The

university was using a very small version of Unix called Minix for school projects.

Linus was not very happy with Minix and decided to write his own Unix-like operating

system.24

Linus wrote the kernel of Linux and used the then ubiquitous PC with an 80386

processor as the platform for his operating system because that is what he had on hand

as his home computer. He released an early version in 1991 and the first public version

in March of 1992.

Linux spread quickly, in part because many of the people who downloaded

the original versions were hackers like Linus and had good ideas that they wanted

to contribute. These contributors, with guidance from Torvalds, grew into a loose

international affiliation of hackers dedicated to improving Linux.

Linux is now found in almost all parts of our lives.25 It is ubiquitous, and we depend

upon it in many places that we don’t normally even think about. Our mobile phones,

televisions, automobiles, the International Space Station, most supercomputers, the

backbone of the Internet, and most of the web sites on the Internet all utilize Linux.

For more detailed histories of Linux, see Wikipedia26 and its long list of references

and sources.

 Core utilities
Linus Torvalds wrote the Linux kernel, but the rest of the operating system was written

by others. These utilities were the GNU core utilities developed by Richard M. Stallman

(aka, RMS) and others as part of their intended free GNU operating system. All

24 Torvalds, Linus and Diamond, David, Just for Fun, HarperCollins, 2001, 61–64,
ISBN 0-06-662072-4

25 Opensource.com, Places to find Linux, https://opensource.com/article/18/5/
places-find-linux?sc_cid=70160000001273HAAQ

26 Wikipedia, History of Linux, https://en.wikipedia.org/wiki/History_of_Linux

Chapter 2 IntroduCtIon to operatIng SyStemS

https://opensource.com/article/18/5/places-find-linux?sc_cid=70160000001273HAAQ
https://opensource.com/article/18/5/places-find-linux?sc_cid=70160000001273HAAQ
https://en.wikipedia.org/wiki/History_of_Linux

42

SysAdmins use these core utilities regularly, pretty much without thinking about them.

There is also another set of basic utilities, util-linux, that we should also look at because

they also are important Linux utilities.

Together, these two sets of utilities comprise many of the most basic tools – the core –

of the Linux system administrator’s toolbox. These utilities address tasks that include

management and manipulation of text files, directories, data streams, various types of

storage media, process controls, filesystems, and much more. The basic functions of

these tools are the ones that allow SysAdmins to perform many of the tasks required to

administer a Linux computer. These tools are indispensable because without them, it is

not possible to accomplish any useful work on a Unix of Linux computer.

GNU is a recursive algorithm that stands for “Gnu’s Not Unix.” It was developed

by the Free Software Foundation (FSF) to provide free software to programmers and

developers. Most distributions of Linux contain the GNU utilities.

 GNU coreutils
To understand the origins of the GNU core utilities, we need to take a short trip in the

Wayback Machine to the early days of Unix at Bell Labs. Unix was originally written so

that Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe Ossanna could continue

with something they had started while working on a large multitasking and multiuser

computer project called Multics. That little something was a game called “Space Travel.”

As is true today, it always seems to be the gamers that drive forward the technology of

computing. This new operating system was much more limited than Multics as only two

users could log in at a time, so it was called Unics. This name was later changed to UNIX.

Over time, UNIX turned out to be such a success, that Bell Labs began essentially

giving it away to universities and later to companies, for the cost of the media and

shipping. Back in those days, system-level software was shared between organizations

and programmers as they worked to achieve common goals within the context of system

administration.

Eventually the PHBs27 at AT&T decided that they should start making money on Unix

and started using more restrictive – and expensive – licensing. This was taking place at a

time when software in general was becoming more proprietary, restricted, and closed. It

was becoming impossible to share software with other users and organizations.

27 PHB: Pointy Haired Bosses. A reference to the boss in the Dilbert comics

Chapter 2 IntroduCtIon to operatIng SyStemS

43

Some people did not like this and fought it with – free software. Richard

M. Stallman28 led a group of rebels who were trying to write an open and freely available

operating system that they call the “GNU Operating System.” This group created the GNU

utilities but did not produce a viable kernel.

When Linus Torvalds first wrote and compiled the Linux kernel, he needed a set of

very basic system utilities to even begin to perform marginally useful work. The kernel

does not provide these commands or even any type of command shell such as bash.

The kernel is useless by itself. So Linus used the freely available GNU core utilities and

recompiled them for Linux. This gave him a complete operating system even though it

was quite basic.

You can learn about all of the individual programs that comprise the GNU utilities

by entering the command info coreutils at a terminal command line. The utilities are

grouped by function to make specific ones easier to find. Highlight the group you want

more information on, and press the Enter key.

There are 102 utilities in that list. It does cover many of the basic functions necessary

to perform some basic tasks on a Unix or Linux host. However, many basic utilities are

missing. For example, the mount and umount commands are not in this list. Those and

many of the other commands that are not in the GNU coreutils can be found in the util-

linux collection.

 util-linux
The util-linux package of utilities contains many of the other common commands

that SysAdmins use. These utilities are distributed by the Linux Kernel Organization,

and virtually every distribution uses them. These 107 commands were originally three

separate collections, fileutils, shellutils, and textutils, which were combined into the

single package, util-linux, in 2003.

These two collections of basic Linux utilities, the GNU core utilities and util-

linux, together provide the basic utilities required to administer a basic Linux system.

As I researched this book, I found several interesting utilities in this list that I never

knew about. Many of these commands are seldom needed. But when you do, they

are indispensable. Between these two collections, there are over 200 Linux utilities.

28 Wikipedia, Richard M. Stallman, https://en.wikipedia.org/wiki/Richard_Stallman

Chapter 2 IntroduCtIon to operatIng SyStemS

https://en.wikipedia.org/wiki/Richard_Stallman

44

Linux has many more commands, but these are the ones that are needed to manage

the most basic functions of the typical Linux host. The lscpu utility that I used earlier

in this chapter is distributed as part of the util-linux package.

I find it easiest to refer to these two collections together as the Linux core utilities.

 Copyleft
Just because Linux and its source code are freely available does not mean that there

are no legal or copyright issues involved. Linux is copyrighted under the GNU General

Public License Version 2 (GPL2). The GNU GPL2 is actually called a copyleft instead of a

copyright by most people in the industry because its terms are so significantly different

from most commercial licenses. The terms of the GPL allow you to distribute or even to

sell Linux (or any other copylefted software), but you must make the complete source

code available without restrictions of any kind, as well as the compiled binaries.

The original owner – Linus Torvalds in the case of parts of the Linux kernel – retains

copyright to the portions of the Linux kernel he wrote, and other contributors to the

kernel retain the copyright to their portions software no matter by whom or how much it

is modified or added to.

 Games
One thing that my research has uncovered and which I find interesting is that right

from the beginning, it has been the gamers that have driven technology. At first it was

things like Tic-Tac-Toe on an old IBM 1401, then Space Travel on Unics and the PDP-7,

Adventure and many other text-based games on Unix, single player 2D video games on

the IBM PC and DOS, and now first person shooter (FPS) and massively multiplayer

online games (MMOGs) on powerful Intel and AMD computers with lots of RAM,

expensive and very sensitive keyboards, and extremely high-speed Internet connections.

Oh, yes, and lights. Lots of lights inside the case, on the keyboard and mouse, and even

built into the motherboards. In many instances these lights are programmable.

AMD and Intel are intensely competitive in the processor arena, and both

companies provide very high-powered versions of their products to feed the gaming

community. These powerful hardware products also provide significant benefits to other

communities like writers.

Chapter 2 IntroduCtIon to operatIng SyStemS

45

For me, having many CPUs and huge amounts of RAM and disk space makes it

possible to run several virtual machines simultaneously. This enables me to have two

or three VMs to represent the ones you will use for the experiments that will help you

to explore Linux in this book, and other, crashable and disposable VMs that I use test

various scenarios.

 Chapter summary
Linux is an operating system that is designed to manage the flow and storage of

programs and data in a modern Intel computer. It consists of a kernel, which was written

by Linus Torvalds, and two sets of system-level utilities that provide the SysAdmin with

the ability to manage and control the functions of the system and the operating system

itself. These two sets of utilities, the GNU utilities and util-linux, together consist of a

collection of over 200 Linux core utilities that are indispensable to the Linux SysAdmin.

Linux must work very closely with the hardware in order to perform many of its

functions, so we looked at the major components of a modern Intel-based computer.

 Exercises

 1. What is the primary function of an operating system?

 2. List at least four additional functions of an operating system.

 3. Describe the purpose of the Linux core utilities as a group.

 4. Why did Linus Torvalds choose to use the GNU core utilities for

Linux instead of writing his own?

Chapter 2 IntroduCtIon to operatIng SyStemS

47
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_3

CHAPTER 3

The Linux Philosophy
for SysAdmins
 Objectives
In this chapter you will learn

• The historical background of the Linux Philosophy for SysAdmins

• A basic introduction to the tenets of the Linux Philosophy for

SysAdmins

• How the Linux Philosophy for SysAdmins can help you learn to be a

better SysAdmin

 Background
The Unix Philosophy is an important part of what makes Unix1 unique and powerful.

Much has been written about the Unix Philosophy, and the Linux philosophy is essentially

the same as the Unix Philosophy because of its direct line of descent from Unix.

The original Unix Philosophy was intended primarily for the system developers.

Having worked with Unix and Linux for over 20 years as of this writing, I have found that

the Linux Philosophy has contributed greatly to my own efficiency and effectiveness as

a SysAdmin. I have always tried to follow the Linux Philosophy because my experience

has been that a rigorous adherence to it, regardless of the pressure applied by a legion of

Pointy-Haired Bosses (PHB), will always pay dividends in the long run.

1 https://en.wikipedia.org/wiki/Unix

https://en.wikipedia.org/wiki/Unix

48

The original Unix and Linux Philosophy was intended for the developers of those

operating systems. Although system administrators could apply many of the tenets to

their daily work, many important tenets that address things unique to SysAdmins were

missing. Over the years I have been working with Linux and Unix; I have formulated my

own philosophy – one which applies more directly to the everyday life and tasks of the

system administrator. My philosophy is based in part upon the original Unix and Linux

Philosophy, as well as the philosophies of my mentors.

My book, The Linux Philosophy for SysAdmins,2 is the result of my SysAdmin

approach to the Linux Philosophy. Much of this chapter is taken directly from that book.

Because the name, “Linux Philosophy for SysAdmins,” is a bit long, most of the time I will

refer to it in this book as the “Philosophy” for simplicity.

 The structure of the philosophy
There are three layers to the Linux Philosophy for System Administrators in a way that

is similar to Maslow’s hierarchy of needs.3 These layers are also symbolic of our growth

through progressively higher levels of enlightenment.

The bottom layer is the foundation – the basic commands and knowledge that we

as SysAdmins need to know in order to perform the lowest level of our jobs. The middle

layer consists of those practical tenets that build on the foundation and inform the daily

tasks of the SysAdmin. The top layer contains the tenets that fulfill our higher needs as

SysAdmins and which encourage and enable us to share our knowledge.

In the first and most basic layer of the philosophy is the foundation. It is about “The

Linux Truth,” data streams, Standard Input/Output (STDIO), transforming data streams,

small command-line programs, and the meaning of “everything is a file,” for example.

The middle layer contains the functional aspects of the philosophy. Embracing

the command line, we expand our command-line programs to create tested and

maintainable shell programs that we save and can use repeatedly and even share. We

become the “lazy admin” and begin to automate everything. We use the Linux filesystem

hierarchy appropriately and store data in open formats. These are the functional

portions of the philosophy.

2 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, ISBN 978-1-4842-3729-8
3 Wikipedia, Maslow’s hierarchy of needs, https://en.wikipedia.org/wiki/
Maslow%27s_hierarchy_of_needs

Chapter 3 the Linux phiLosophy for sysadmins

https://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs

49

The top layer of the philosophy is about enlightenment. We begin to progress beyond

merely performing our SysAdmin tasks and just getting the job done; our understanding

of the elegance and simplicity in the design of Linux is perfected. We begin striving

for doing our own work elegantly, keeping solutions simple, simplifying existing but

complex solutions, and creating usable and complete documentation. We begin to

explore and experiment simply for the sake of gaining new knowledge. At this stage

of enlightenment, we begin to pass our knowledge and methods to those new to the

profession, and we actively support our favorite open source projects.

In my opinion it is impossible to learn about many Linux commands and utilities

without learning about the structure and philosophy of Linux. Working on the

command line requires such knowledge. At the same time, working on the command

line engenders the very knowledge required to use it. If you use the command line long

enough, you will find that you have learned at least some about the intrinsic beauty of

Linux without even trying. If you then follow your own curiosity about what you have

already learned, the rest will be revealed.

Does that sound a bit Zen? It should because it is.

Figure 3-1. The hierarchy of the Linux Philosophy for SysAdmins

Chapter 3 the Linux phiLosophy for sysadmins

50

 The tenets
Here we look briefly at each of the tenets of the Linux Philosophy for SysAdmins. As we

proceed through this book, I will point out many places where these tenets apply and

what they reveal about the underlying structure of Linux. We will also discover many

practical applications of the philosophy that you will be able to use every day.

This list must necessarily be terse, and it cannot cover all aspects of each tenet. If you

are interested in learning more, you should refer to The Linux Philosophy for SysAdmins4

for more information and the details of each tenet.

 Data streams are a universal interface
Everything in Linux revolves around streams of data – particularly text streams. In the

Unix and Linux worlds, a stream is a flow text data that originates at some source; the

stream may flow to one or more programs that transform it in some way, and then it

may be stored in a file or displayed in a terminal session. As a SysAdmin, your job is

intimately associated with manipulating the creation and flow of these data streams.

The use of Standard Input/Output (STDIO) for program input and output is a key

foundation of the Linux way of doing things and manipulating data streams. STDIO was

first developed for Unix and has found its way into most other operating systems since

then, including DOS, Windows, and Linux.

This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together. Write programs to handle text
streams, because that is a universal interface.

—Doug McIlroy, Basics of the Unix Philosophy5,6

STDIO was developed by Ken Thompson7 as a part of the infrastructure required

to implement pipes on early versions of Unix. Programs that implement STDIO use

4 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, ISBN 978-1-4842-3729-8
5 Eric S. Raymond, The Art of Unix Programming, www.catb.org/esr/writings/taoup/html/
ch01s06.html

6 Linuxtopia, Basics of the Unix Philosophy, www.linuxtopia.org/online_books/programming_
books/art_of_unix_programming/ch01s06.html

7 Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson

Chapter 3 the Linux phiLosophy for sysadmins

http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
https://en.wikipedia.org/wiki/Ken_Thompson

51

standardized file handles for input and output rather than files that are stored on a disk

or other recording media. STDIO is best described as a buffered data stream, and its

primary function is to stream data from the output of one program, file, or device to the

input of another program, file, or device.

Data streams are the raw materials upon which the core utilities and many other CLI

tools perform their work. As its name implies, a data stream is a stream of data being

passed from one file, device, or program to another using STDIO.

 Transforming data streams
This tenet explores the use of pipes to connect streams of data from one utility program

to another using STDIO. The function of these programs is to transform the data in some

manner. You will also learn about the use of redirection to redirect the data to a file.

Data streams can be manipulated by inserting transformers into the stream

using pipes. Each transformer program is used by the SysAdmin to perform some

transformational operation on the data in the stream, thus changing its contents in some

manner. Redirection can then be used at the end of the pipeline to direct the data stream

to a file. As has already been mentioned, that file could be an actual data file on the hard

drive, or a device file such as a drive partition, a printer, a terminal, a pseudo-terminal,

or any other device connected to a computer.

I use the term “transform” in conjunction with these programs because the primary

task of each is to transform the incoming data from STDIO in a specific way as intended

by the SysAdmin and to send the transformed data to STDOUT for possible use by

another transformer program or redirection to a file.

The standard term for these programs, “filters,” implies something with which I don’t

agree. By definition, a filter is a device or a tool that removes something, such as an air

filter removes airborne contaminants so that the internal combustion engine of your

automobile does not grind itself to death on those particulates. In my high school and

college chemistry classes, filter paper was used to remove particulates from a liquid. The

air filter in my home HVAC system removes particulates that I don’t want to breathe.

So, although they do sometimes filter out unwanted data from a stream, I much prefer

the term “transformers” because these utilities do so much more. They can add data to

a stream, modify the data in some amazing ways, sort it, rearrange the data in each line,

perform operations based on the contents of the data stream, and so much more. Feel

free to use whichever term you prefer, but I prefer transformers.

Chapter 3 the Linux phiLosophy for sysadmins

52

The ability to manipulate these data streams using these small yet powerful

transformer programs is central to the power of the Linux command-line interface.

Many of the Linux core utilities are transformer programs and use STDIO.

 Everything is a file
This is one of the most important concepts that makes Linux especially flexible and

powerful: Everything is a file. That is, everything can be the source of a data stream,

the target of a data stream, or in many cases both. In this book you will explore what

“everything is a file” really means and learn to use that to your great advantage as a

SysAdmin.

The whole point with “everything is a file” is ... the fact that you can use
common tools to operate on different things.

—Linus Torvalds in an e-mail

The idea that everything is a file has some interesting and amazing implications. This

concept makes it possible to copy a boot record, a disk partition, or an entire hard drive

including the boot record, because the entire hard drive is a file, just as are the individual

partitions. Other possibilities include using the cp (copy) command to print a PDF file to a

compatible printer, using the echo command to send messages from one terminal session

to another, and using the dd command to copy ISO image files to a USB thumb drive.

“Everything is a file” is possible because all devices are implemented by Linux as

these things called device special files which are located in the /dev/ directory. Device

files are not device drivers; rather they are gateways to devices that are exposed to the

user. We will discuss device special files in some detail throughout this course as well as

in Volume 2, Chapter 3.

 Use the Linux FHS
The Linux Filesystem Hierarchical Standard (FHS) defines the structure of the Linux

directory tree. It names a set of standard directories and designates their purposes. This

standard has been put in place to ensure that all distributions of Linux are consistent

in their directory usage. Such consistency makes writing and maintaining shell and

compiled programs easier for SysAdmins because the programs, their configuration files,

Chapter 3 the Linux phiLosophy for sysadmins

53

and their data, if any, should be located in the standard directories. This tenet is about

storing programs and data in the standard and recommended locations in the directory

tree and the advantages of doing so.

As SysAdmins, our tasks include everything from fixing problems to writing CLI

programs to perform many of our tasks for us and for others. Knowing where data

of various types are intended to be stored on a Linux system can be very helpful in

resolving problems as well as preventing them.

The latest Filesystem Hierarchical Standard (3.0)8 is defined in a document

maintained by the Linux Foundation.9 The document is available in multiple formats

from their web site as are historical versions of the FHS.

 Embrace the CLI
The force is with Linux, and the force is the command-line interface – the CLI. The

vast power of the Linux CLI lies in its complete lack of restrictions. Linux provides

many options for accessing the command line such as virtual consoles, many different

terminal emulators, shells, and other related software that can enhance your flexibility

and productivity.

The command line is a tool that provides a text mode interface between the user

and the operating system. The command line allows the user to type commands into the

computer for processing and to see the results.

The Linux command-line interface is implemented with shells such as Bash (Bourne

again shell), csh (C shell), and ksh (Korn shell) to name just three of the many that

are available. The function of any shell is to pass commands typed by the user to the

operating system which executes the commands and returns the results to the shell.

Access to the command line is through a terminal interface of some type. There

are three primary types of terminal interface that are common in modern Linux

computers, but the terminology can be confusing. These three interfaces are virtual

consoles, terminal emulators that run on a graphical desktop, and an SSH remote

connection. We will explore the terminology, virtual consoles, and one terminal

emulator in Chapter 7. Several different terminal emulators are covered in Chapter 14.

8 The Linux Foundation, The Linux Filesystem Hierarchical Standard, http://refspecs.
linuxfoundation.org/fhs.shtml

9 The Linux Foundation maintains documents defining many Linux standards. It also
sponsors the work of Linus Torvalds.

Chapter 3 the Linux phiLosophy for sysadmins

http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml

54

 Be the lazy SysAdmin
Despite everything, we were told by our parents, teachers, bosses, well-meaning

authority figures, and hundreds of quotes about hard work that I found with a Google

search, getting your work done well and on time is not the same as working hard. One

does not necessarily imply the other.

I am a lazy SysAdmin. I am also a very productive SysAdmin. Those two seemingly

contradictory statements are not mutually exclusive; rather they are complementary in a

very positive way. Efficiency is the only way to make this possible.

This tenet is about working hard at the right tasks to optimize our own efficiency as

SysAdmins. Part of this is about automation which we will explore in detail in Chapter 10

of Volume 2 but also throughout this course. The greater part of this tenet is about

finding many of the myriad ways to use the short cuts already built into Linux.

Things like using aliases as shortcuts to reduce typing – but probably not in the way

you think of them if you come from a Windows background. Naming files so that they

can be easily found in lists, using the file name completion facility that is part of Bash,

the default Linux shell for most distributions, and more all contribute to making life

easier for lazy SysAdmins.

 Automate everything
The function of computers is to automate mundane tasks in order to allow us humans to

concentrate on the tasks that the computers cannot – yet – do. For SysAdmins, those of

us who run and manage the computers most closely, we have direct access to the tools

that can help us work more efficiently. We should use those tools to maximum benefit.

In Chapter 8, “Be a Lazy SysAdmin,” of The Linux Philosophy for SysAdmins10, I state,

“A SysAdmin is most productive when thinking – thinking about how to solve existing

problems and about how to avoid future problems; thinking about how to monitor Linux

computers in order to find clues that anticipate and foreshadow those future problems;

thinking about how to make her job more efficient; thinking about how to automate all

of those tasks that need to be performed whether every day or once a year.”

SysAdmins are next most productive when creating the shell programs that automate

the solutions that they have conceived while appearing to be unproductive. The more

10 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, 132, ISBN 978-1-4842-3729-8

Chapter 3 the Linux phiLosophy for sysadmins

55

automation we have in place, the more time we have available to fix real problems when

they occur and to contemplate how to automate even more than we already have.

I have learned that, for me at least, writing shell programs – also known as scripts –

provides the best single strategy for leveraging my time. Once having written a shell

program, it can be rerun as many times as needed.

 Always use shell scripts
When writing programs to automate – well, everything – always use shell scripts

rather than compiled utilities and tools. Because shell scripts are stored in plain text11

format, they can be easily viewed and modified by humans just as easily as they can by

computers. You can examine a shell program and see exactly what it does and whether

there are any obvious errors in the syntax or logic. This is a powerful example of what it

means to be open.

A shell script or program is an executable file that contains at least one shell

command. They usually have more than a single command, and some shell scripts

have thousands of lines of code. When taken together, these commands are the ones

necessary to perform a desired task with a specifically defined result.

Context is important, and this tenet should be considered in the context of our

jobs as SysAdmins. The SysAdmin’s job differs significantly from those of developers

and testers. In addition to resolving both hardware and software problems, we manage

the day-to-day operation of the systems under our care. We monitor those systems

for potential problems and make all possible efforts to prevent those problems before

they impact our users. We install updates and perform full release level upgrades to the

operating system. We resolve problems caused by our users. SysAdmins develop code to

do all of those things and more; then we test that code; and then we support that code in

a production environment.

 Test early test often
There is always one more bug.

—Lubarsky’s Law of Cybernetic Entomology

11 Wikipedia, Plain text, https://en.wikipedia.org/wiki/Plain_text

Chapter 3 the Linux phiLosophy for sysadmins

https://en.wikipedia.org/wiki/Plain_text

56

Lubarsky – whoever he might be – is correct. We can never find all of the bugs in our

code. For every one I find there always seems to be another that crops up, usually at a

very inopportune time.

Testing affects the ultimate outcome of the many tasks SysAdmins do and is an

integral part of the philosophy. However, testing is not just about programs. It is also

about verification that problems – whether caused by hardware, software, or the

seemingly endless ways that users can find to break things – that we are supposed to

have resolved actually have been. These problems can be with application or utility

software we wrote, system software, applications, and hardware. Just as importantly,

testing is also about ensuring that the code is easy to use and the interface makes sense

to the user.

Testing is hard work, and it requires a well-designed test plan based on the

requirements statements. Regardless of the circumstances, start with a test plan. Even a

very basic test plan provides some assurance that testing will be consistent and will cover

the required functionality of the code.

Any good plan includes tests to verify that the code does everything it is supposed to.

That is, if you enter X and click button Y, you should get Z as the result. So you write a test

that does creates those conditions and then verify that Z is the result.

The best plans include tests to determine how well the code fails. The specific

scenarios explicitly covered by the test plan are important, but they may fail to anticipate

the havoc that can be caused by unanticipated or even completely random input. This

situation can be at least partially covered by fuzzy testing in which someone or some tool

randomly bangs on the keyboard until something bad happens.

For SysAdmins, testing in production, which some people consider to be a new

thing, is a common practice. There is no test plan that can be devised by a lab full of

testers that can possibly equal a few minutes in the real world of production.

 Use common sense naming
The lazy SysAdmin does everything possible to reduce unnecessary typing, and I take

that seriously. This tenet expands on that, but there is much more to it than just reducing

the amount of typing I need to do. It is also about the readability of scripts and naming

things so that they are more understandable more quickly.

Chapter 3 the Linux phiLosophy for sysadmins

57

One of the original Unix Philosophy tenets was to always use lowercase and keep

names short.12 An admirable goal but not one so easily met in the world of the SysAdmin.

In many respects my own tenet would seem a complete refutation of the original.

However the original was intended for a different audience, and this one is intended for

SysAdmins with a different set of needs.

The ultimate goal is to create scripts that are readable and easily understood in order

to make them easily maintainable. And then to use other, simple scripts and cron jobs to

automate running those scripts. Keeping the script names reasonably short also reduces

typing when executing those scripts from the command line, but that is mostly irrelevant

when starting them from another script or as cron jobs.

Readable scripts depend upon easily understandable and readable variable names.

Sometimes, as with script names, these names may be longer but more understandable

than many I have encountered in the past. Variable names like $DeviceName are much

more understandable than $D5 and make a script easier to read.

Note that most of the Linux command names are short, but they also have meaning.

After working at the command line for a while, you will understand most of these. For

example, the ls command means list the contents of a directory. Other command names

contain the “ls” string in their names, such as lsusb to list the USB devices connected to

the host or lsblk to list the block devices – hard drives – in the host.

 Store data in open formats
The reason we use computers is to manipulate data. It used to be called “Data

Processing” for a reason, and that was an accurate description. We still process data

although it may be in the form of video and audio streams, network and wireless

streams, word processing data, spreadsheets, images, and more. It is all still just data.

We work with and manipulate text data streams with the tools we have available to us

in Linux. That data usually needs to be stored, and when there is a need to store data, it is

always better to store it in open file formats than closed ones.

Although many user application programs store data in plain text formats including

simple flat plain text and XML, this tenet is mostly about configuration data and scripts that

relate directly to Linux. However, any type of data should be stored as plain text if possible.

12 Early Unix systems had very little memory compared to today’s systems, so saving a few bytes
in a name was important. Unix and Linux are case sensitive, so an extra keystroke to hit the shift
key was extra work.

Chapter 3 the Linux phiLosophy for sysadmins

58

“Open source” is about the code and making the source code available to any and all

who want to view or modify it. “Open data”13 is about the openness of the data itself.

The term open data does not mean just having access to the data itself; it also means

that the data can be viewed, used in some manner, and shared with others. The exact

manner in which those goals are achieved may be subject to some sort of attribution

and open licensing. As with open source software, such licensing is intended to ensure

the continued open availability of the data and not to restrict it any manner that would

prevent its use.

Open data is knowable. That means that access to it is unfettered. Truly open

data can be read freely and understood without the need for further interpretation

or decryption. In the SysAdmin world, open means that the data we use to configure,

monitor, and manage our Linux hosts is easy to find, read, and modify when necessary. It

is stored in formats that permit that ease of access, such as plain text text. When a system

is open, the data and software can all be managed by open tools – tools that work with

plain text text.

 Use separate filesystems for data
There is a lot to this particular tenet, and it requires understanding the nature of Linux

filesystems and mount points.

Note the primary meaning for the term “filesystem” in this tenet is a segment of
the directory tree that is located on a separate partition or logical volume that must
be mounted on a specified mount point of the root filesystem to enable access to
it. We also use the term to describe the structure of the metadata on the partition
or volume such as ext4, xfs, or other structure. these different usages should be
clear from their context.

There are at least three excellent reasons for maintaining separate filesystems on

our Linux hosts. First, when hard drives crash, we may lose some or all of the data on a

damaged filesystem, but, as we will see, data on other filesystems on the crashed hard

drive may still be salvageable.

13 Wikipedia, Open Data, https://en.wikipedia.org/wiki/Open_data

Chapter 3 the Linux phiLosophy for sysadmins

https://en.wikipedia.org/wiki/Open_data

59

Second, despite having access to huge amounts of hard drive space, it is possible

to fill up a filesystem. When that happens, separate filesystems can minimize the

immediate effects and make recovery easier.

Third, upgrades can be made easier when certain filesystems such as /home are

located on separate filesystems. This makes it easy to upgrade without needing to restore

that data from a backup.

I have frequently encountered all three of these situations in my career. In some

instances, there was only a single partition, the root (/) partition, and so recovery was

quite difficult. Recovery from these situations was always much easier and faster when

the host was configured with separate filesystems.

Keeping data of all types safe is part of the SysAdmin’s job. Using separate filesystems

for storing that data can help us accomplish that. This practice can also help us achieve

our objective to be a lazy Admin. Backups do allow us to recover most of the data that

would otherwise be lost in a crash scenario, but using separate filesystem may allow us

to recover all of the data from unaffected filesystems right up to the moment of a crash.

Restoring from backups takes much longer.

 Make programs portable
Portable programs make life much easier for the lazy SysAdmin. Portability is an

important consideration because it allows programs to be used on a wide range of

operating system and hardware platforms. Using interpretive languages such as Bash,

Python, and Perl that can run on many types of systems can save loads of work.

Programs written in compiled languages such as C must be recompiled at the very

least when porting from one platform to another. In many cases, platform specific code

must be maintained in the sources in order to support the different hardware platforms

that the binaries are expected to run on. This generates a lot of extra work, both writing

and testing the programs.

Perl, Bash, and many other scripting languages are available in most environments.

With very few exceptions, programs written in Perl, Bash, Python, PHP, and other

languages can run unchanged on many different platforms.

Linux runs on a lot of hardware architectures.14 Wikipedia maintains a long list of

hardware architectures supported by Linux, but here are just a few. Of course Linux

14 Wikipedia, List of Linux-supported computer architectures, https://en.wikipedia.org/wiki/
List_of_Linux-supported_computer_architectures

Chapter 3 the Linux phiLosophy for sysadmins

https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures

60

supports Intel and AMD. It also supports 32- and 64-bit ARM architectures that are

found in practically every mobile phone on the planet and devices such as the Raspberry

Pi.15 Most mobile phones use a form of Linux called Android.

 Use open source software
This tenet may not mean exactly what you think it does. Most times we think of

open source software as something like the Linux kernel, LibreOffice, or any of the

thousands of open source software packages that make up our favorite distribution. In

the context of system administration, open source means the scripts that we write to

automate our work.

Open source software is software with source code that anyone can inspect,
modify, and enhance.16

—Opensource.com

The web page from which the preceding quote was taken contains a well-written

discussion of open source software including some of the advantages of open source.

I suggest you read that article and consider how it applies to the code we write – our

scripts. The implications are there if we look for them.

The official definition of open source is quite terse. The annotated version of the

open source definition17 at opensource.org contains ten sections that explicitly and

succinctly define the conditions that must be met for software to be considered truly

open source. This definition is important to the Linux Philosophy for SysAdmins. You

do not have to read this definition, but I suggest you do so in order to gain a more

complete understanding of what the term open source really means. However I can

summarize a bit.

Open source software is open because it can be read, modified, and shared

because its source code is freely available to anyone who wants it. This “free as in

speech” approach to software promotes worldwide participation by individuals and

15 Raspberry Pi Foundation, www.raspberrypi.org/
16 Opensource.com, What is open source?, https://opensource.com/resources/
what-open-source

17 Opensource.org, The Open Source Definition (Annotated), https://opensource.org/
osd-annotated

Chapter 3 the Linux phiLosophy for sysadmins

http://www.raspberrypi.org/
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated

61

organizations in the creation and testing of high-quality code that can be shared freely by

everyone. Being a good user of open source also means that we SysAdmins should share

our own code, the code that we write to solve our own problems, and license it with one

of the open source licenses.

 Strive for elegance
Elegance is one of those things that can be difficult to define. I know it when I see it, but

putting what I see into a terse definition is a challenge. Using the Linux dict command,

Wordnet provides one definition of elegance as “a quality of neatness and ingenious

simplicity in the solution of a problem (especially in science or mathematics); ‘the

simplicity and elegance of his invention.’”

In the context of this book, I assert that elegance is a state of beauty and simplicity

in the design and working of both hardware and software. When a design is elegant,

software and hardware work better and are more efficient. The user is aided by simple,

efficient, and understandable tools.

Creating elegance in a technological environment is hard. It is also necessary.

Elegant solutions produce elegant results and are easy to maintain and fix. Elegance

does not happen by accident; you must work for it.

 Find the simplicity
The quality of simplicity is a large part of technical elegance. The tenets of the Linux

Philosophy helped me to solidify my understanding of the truth that Linux is simple and

that the simplicity is illuminated by the philosophy.

UNIX is basically a simple operating system, but you have to be a genius to
understand the simplicity.18

—Dennis Ritchie

In this tenet we search for the simplicity of Linux. I cringe when I see articles with

titles like 77 Linux commands and utilities you’ll actually use19 and 50 Most Frequently

18 azquotes.com, www.azquotes.com/quote/246027?ref=unix
19 TechTarget.com, http://searchdatacenter.techtarget.com/
tutorial/77-Linux-commands-and-utilities-youll-actually-use

Chapter 3 the Linux phiLosophy for sysadmins

http://www.azquotes.com/quote/246027?ref=unix
http://searchdatacenter.techtarget.com/tutorial/77-Linux-commands-and-utilities-youll-actually-use
http://searchdatacenter.techtarget.com/tutorial/77-Linux-commands-and-utilities-youll-actually-use

62

Used UNIX / Linux Commands (With Examples).20 These titles imply that there are sets

of commands that you must memorize, or that knowing large numbers of commands is

important.

I do read many of these articles, but I am usually looking for new and interesting

commands, commands that might help me resolve a problem or simplify a command-

line program. I never tried to learn all of those Linux commands, regardless of what

numbers you might come up with as the total for “all.”

I just started by learning the commands I needed at any given moment for whatever

project was at hand. I started to learn more commands because I took on personal

projects and ones for work that stretched my knowledge to the limit and forced me to

find commands previously unknown to me in order to complete those projects. My

repertoire of commands grew over time, and I became more proficient at the application

of those commands to resolve problems; I began finding jobs that paid me more and

more money to play with Linux, my favorite toy.

As I learned about piping and redirection, about Standard Streams and STDIO, as I

read about the Unix Philosophy and then the Linux Philosophy, I started to understand

how and why the command line made Linux and the core utilities so powerful. I learned

about the elegance of writing command-line programs that manipulated data streams in

amazing ways.

I also discovered that some commands are, if not completely obsolete, then seldom

used and only in unusual circumstances. For this reason alone, it does not make sense to

find a list of Linux commands and memorize them. It is not an efficient use of your time

as a SysAdmin to learn many commands that may never be needed. The simplicity here

is to learn what you need to do the task at hand. There will be plenty of tasks in the future

which will require you to learn other commands.

When writing our own administrative scripts, simplicity is also key. Each of our

scripts should do only one thing and do it well. Complex programs are difficult to use

and to maintain.

Fools ignore complexity; pragmatists suffer it; experts avoid it; geniuses
remove it.

—Alan Perlis21

20 The Geek Stuff, www.thegeekstuff.com/2010/11/50-linux-commands/?utm_
source=feedburner

21 Wikipedia, Alan Perlis, https://en.wikipedia.org/wiki/Alan_Perlis

Chapter 3 the Linux phiLosophy for sysadmins

http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner
http://www.thegeekstuff.com/2010/11/50-linux-commands/?utm_source=feedburner
https://en.wikipedia.org/wiki/Alan_Perlis

63

 Use your favorite editor
Why is this a tenet of The Linux Philosophy for System Administrators? Because arguing

about editors can be the cause of a great deal of wasted energy. Everyone has their

favorite text editor, and it might not be the same as mine. So what?

I use Vim as my editor. I have used it for years and like it very much. I am used to it.

It meets my needs more than any other editor I have tried. If you can say that about your

editor – whichever one that might be – then you are in editor Nirvana.

I started using vi when I began learning Solaris over 20 years ago. My mentor

suggested that I start learning to edit with vi because it would always be present on every

system. That has proven to be true whether the operating system is Solaris or Linux. The

vi editor is always there, so I can count on it. For me, this works. Vim is the new vi, but I

can still use the vi command to launch Vim.

The vi editor can also be used as the editor for Bash command-line editing. Although

the default for command editing is EMACS-like, I use the vi option because I already

know the vi keystrokes. Other tools that use vi editing are the crontab and visudo

commands; both of these are wrappers around vi. Lazy developers use code that already

exists, especially when it is open source. Using existing editors for these tools is an

excellent example of that.

It does not matter to me what tools you use, and it should not matter to anyone else,

either. What really matters is getting the job done. Whether you use Vim or EMACS,

systemd or SystemV, or RPM or DEB, what difference does it make? The bottom line here

is that you should use the tools with which you are most comfortable and that work best

for you.

 Document everything
Real programmers don’t comment their code, if it was hard to write, it
should be hard to understand and harder to modify.

—Unknown

I, too, would want to remain anonymous if I had written that. It might even have been

meant to be sarcasm or irony. Regardless, this does seem to be the attitude of many

developers and SysAdmins. There is a poorly disguised ethos among some developers

and SysAdmins that one must figure everything out for themselves in order to join the

Chapter 3 the Linux phiLosophy for sysadmins

64

club – whatever club that might be. If you cannot figure it out, they imply, you should go

do something else because you don’t belong.

First, that is not true. Second, most developers, programmers, and SysAdmins that I

know definitely do not subscribe to this view. In fact, the best ones, some of whom have

been my mentors over the years, exemplify the exact opposite. The best of the best make

documentation – good documentation – a high priority in everything they do.

I have used a lot of software whose creators subscribed to the philosophy that all

code is self-explanatory. I have also been required to fix a lot of code that was completely

uncommented and otherwise undocumented as well. It seems that many developers

and SysAdmins figure if the program works for them, it does not need to be documented.

I have been the SysAdmin assigned to fix uncommented code on more than one

occasion. That is one of the least enjoyable tasks I have ever had to do.

Part of the problem is that many PHBs do not see documentation as a high priority.

I have been involved in many aspects of the IT industry, and fortunately most of the

companies I worked for believed that documentation was not only important but that it

was crucial to the task at hand, regardless of what that task was.

And yet there is a lot of really good documentation out there. For example, the

documentation for LibreOffice is excellent. It includes several documents in multiple

formats including HTML and PDF that range from “Getting Started” to a very complete

user’s guide for each of the LibreOffice applications.

The documentation for Red Hat Enterprise Linux (RHEL) and CentOS and that for

Fedora – which are all very closely related distributions – are also among the best I have

seen in my more than 40 years of working in the IT industry.

Good documentation is not easy and takes time. It also requires an understanding

of the audience – not only in relation to the purpose of the documentation but also the

technical expertise of the intended readers as well as the languages and cultures of the

readers. Rich Bowen covered that quite nicely in his fine article at Opensource.com,

“RTFM? How to write a manual worth reading.”22

There is also the question of what constitutes good documentation for a

SysAdmin. We explore these things in this tenet which is mostly about documenting

the scripts we write.

22 Bowen, Rich, Opensource.com, RTFM? How to write a manual worth reading, https://
opensource.com/business/15/5/write-better-docs

Chapter 3 the Linux phiLosophy for sysadmins

https://opensource.com/business/15/5/write-better-docs
https://opensource.com/business/15/5/write-better-docs

65

 Back up everything – frequently
Nothing can ever go wrong with my computer, and I will never lose my data. If you

believe that, I have a bridge you might like to buy.

I have experienced data loss for a myriad of reasons, many of them my own fault.

Keeping decent backups has always enabled me to continue with minimal disruption.

This tenet is concerned with some of the more common reasons for data loss and

methods for preventing data loss and facilitating easy recovery.

Recently, very recently, I encountered a problem in the form of a hard drive crash

that destroyed the data in my home directory. I had been expecting this for some time,

so it came as no surprise. The first indication I had that something was wrong was a

series of e-mails from the SMART (Self-Monitoring, Analysis and Reporting Technology)

enabled hard drive on which my home directory resided.23 Each of these e-mails

indicated that one or more sectors had become defective and that the defective sectors

had been taken offline and reserved sectors allocated in their place. This is normal

operation; hard drives are designed intentionally with reserved sectors for just this, and

the data is stored in a reserved sector instead of the intended one.

When the hard drive finally failed – I left it in my computer until it failed as a test – I

replaced the drive, partitioned and formatted it appropriately, copied my files from the

backup to the new drive, did a little testing, and was good to go.

Backups save time, effort, and money. Don’t be caught without backups. You will

need them.

 Follow your curiosity
People talk about lifelong learning and how that keeps one mentally alert and youthful.

The same is true of SysAdmins. There is always more to learn, and I think that is what

keeps most of us happy and always ready to tackle the next problem. Continuous

learning helps to keep our minds and skills sharp no matter what or age.

I love to learn new things. I was fortunate in that my curiosity led me to a lifetime of

working with my favorite toys – computers. There are certainly plenty of new things to

learn about computers; the industry and technology are constantly changing. There are

23 Your host must have a mail transfer agent (MTA) such as Sendmail installed and running.
The /etc/aliases file must have an entry to send root’s e-mail to your e-mail address.

Chapter 3 the Linux phiLosophy for sysadmins

66

many things on Earth and in this universe to be curious about. Computers and related

technology just seem to be the thing I enjoy the most.

I also assume that you must be curious because you are reading this book. Curiosity

got me into Linux in the first place, but it was a long and winding road. Over a period

of many years, my curiosity led me through many life events that led me to a job at IBM

which led to writing the first training course for the original IBM PC, which led to a job at

a company where I was able to learn Unix, which led me to Linux because Unix was too

expensive to use at home, which led to a job at Red Hat which ... you get the idea. Now I

write about Linux.

Follow your own curiosity. You should explore the many aspects of Linux and

go wherever your curiosity leads you. It was only by following my curiosity, first

about electronics, then computers, programming, operating systems, Linux, servers,

networking, and more, that I have been able to do so many fun and interesting things.

 There is no should
This tenet is about possibilities. It is also the most Zen of all the tenets. It is more about

how our minds work to solve problems than it is about specific technology. It is also

about overcoming or at least recognizing some of the obstacles that prevent us from fully

utilizing the potential we have in ourselves.

In “The Wrath of Kahn,” Spock says, “There are always possibilities.” With Linux there

are always possibilities – many ways to approach and solve problems. This means that

you may perform a task in one way, while another SysAdmin may do it in another. There

is no one way in which tasks “should” be done. There is only the way you have done it.

If the results meet the requirements, then the manner in which they were reached is

perfection.

I believe that we Linux SysAdmins approach solving Linux problems with

fewer constraints on our thinking than those who appear to think more in terms of

“harnessing” and “restrictions.” We have so many simple yet powerful tools available

to us that we do not find ourselves constrained by either the operating system or any

inhibitive manner of thinking about the tools we use or the operational methods with

which we may apply them.

Rigid logic and rules do not give us SysAdmins enough flexibility to perform our jobs

efficiently. We don’t especially care about how things “should” be done. SysAdmins are

Chapter 3 the Linux phiLosophy for sysadmins

67

not easily limited by the “shoulds” that others try to constrain us with. We use logical and

critical thinking that is flexible and that produces excellent results and which enables us

to learn more while we are at it.

We don’t just think outside the box. We are the ones who destroy the boxes that

others try to make us work inside. For us, there is no “should.”

 Mentor the young SysAdmins
I have taken many training courses over the years, and most have been very useful

in helping me to learn more about Unix and Linux as well as a host of other subjects.

But training – as useful and important as it is – cannot cover many essential aspects of

performing SysAdmin duties. Some things can only be taught by a good mentor in a

real-world environment, usually while you are under extreme pressure to fix a critical

problem. A good mentor will allow you to do the actual work in these situations, so you

can have a valuable learning experience while keeping the wolves at bay, taking the

heat while you work uninterrupted. A great mentor will also be able to create a learning

opportunity from every situation no matter how critical.

This tenet is also about teaching the young SysAdmins critical thinking and

application of the scientific method to the art of solving problems. It is about passing on

what you have received.

 Support your favorite open source project
Linux and a very large proportion of the programs that we run on it are open source

programs. Many of the larger projects, such as the kernel itself, are supported directly

by foundations set up for that purpose, such as the Linux Foundation, and/or by

corporations and other organizations that have an interest in doing so.

As a SysAdmin, I write a lot of scripts, and I like doing so, but I am not an application

programmer. Nor do I want to be because I enjoy the work of a SysAdmin which allows

for a different kind of programming. So, for the most part, contributing code to an

open source project is not a good option for me. There are other ways to contribute,

such as answering questions on lists or web sites, submitting bug reports, writing

documentation, writing articles for web sites like Opensource.com, teaching, and

contributing money. And I use some of those options. This tenet is about exploring some

of the ways in which you might contribute. As in mentoring, this is a way to give back to

the community.

Chapter 3 the Linux phiLosophy for sysadmins

68

 Reality bytes
The Linux Philosophy for SysAdmins is a technical philosophy which would not

normally be considered to be very practical. But there is “truth” here. Reality imposes

itself upon SysAdmins every day in a multitude of ways. It is possible always to be able to

follow each of the tenets – but it is quite improbable. In the “real” world, we SysAdmins

face some incredible challenges just to get our assigned work completed. Deadlines,

management, and other pressures force us to make decisions many times a day about

what to do next and how to do it. Meetings usually waste our time – not always but

usually. Finding time and money for training is unheard of in many organizations and

requires selling your SysAdmin soul in others.

Adhering to the philosophy does pay high-value returns in the long run. Still, reality

always intrudes on the ever so perfect philosophical realm. Without room for flexibility,

any philosophy is merely doctrine and that is not what the Linux Philosophy for

System Administrators is about. This tenet explores how reality may affect us as system

administrators.

Computers are easy – people are hard.

—Bridget Kromhout

SysAdmins must work and interact with people. It can be difficult, but we do need

to do so from time to time. We SysAdmins must interact with other people whether they

be users, technical professionals on other teams, our peers, or management. We need to

discuss our work with other people who have differing levels of knowledge. Knowledge

is not a binary condition; it is analog. People have a wide disparity in the amount of

knowledge that they have about computers and technology. This ranges from seemingly

less than none to very knowledgeable. Their level of knowledge is important in how we

interact with them.

I have been accused of overexplaining things, but I would rather overexplain than

under-explain. Some have even called it “mansplaining,” but that is not really my

intent. I have found that all technical people, regardless of gender, gender preference,

or identification, or other identifying characteristic, have the same tendency to explain

things from the ground up when asked a simple question. That is because the answers

are never as simple as the questions.

Chapter 3 the Linux phiLosophy for sysadmins

69

 Chapter summary
This chapter is a brief overview of The Linux Philosophy for SysAdmins. The philosophy

is my mental framework for how I work as a SysAdmin. It has been a useful tool for me,

and as we proceed through this course, I will point out and explain why and how these

tenets apply to certain situations or tasks. Working in accordance with the tenets of the

philosophy will enhance our productivity and efficiency as we perform our work.

 Exercises
Perform the following exercises to complete this chapter:

 1. Why do you think that the Linux Philosophy for SysAdmins is

important?

 2. Do any of the tenets discussed in this chapter suggest doing things

differently for you?

Chapter 3 the Linux phiLosophy for sysadmins

71
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_4

CHAPTER 4

Preparation
 Objectives
In this chapter you will

• Choose a computer host on which to install VirtualBox and a virtual

machine (VM) on which you can perform the experiments

• Install VirtualBox on the hardware you chose

• Create a small VM with which to safely perform experiments

• Configure the virtual network adapter as needed for this course

 Overview
There are some tasks that need to be accomplished in order to prepare for the

experiments in this Linux training course. Most lab environments use physical machines

for training purposes, but this course will ultimately use at least two Linux hosts in a

private network in order to enable a realistic environment for learning about being a

SysAdmin. It is also helpful for these hosts to be left untouched during the times between

one course and the next or in case of long breaks while in the middle of any of the

courses. So a normal classroom environment is not optimal for learning Linux.

Also, most people who want to learn Linux do not usually have that many physical

hosts and a private network available. Even if you work for a company that supports

your training with money – a very big consideration for many people – and the time to

take classes – usually an even more scarce commodity – I have never seen a company or

public training center that can dedicate multiple computers to a single student during a

class and keep them untouched between classes which may be scheduled months apart.

72

Because of these factors, this series of three volumes that make up our training

manual – which is what this is – uses virtual machines (VMs) in a virtual network

that can be installed on a modest system with a set of specifications to which nearly

everyone should have access. Thus, the VMs can be used for this volume and saved

for use in the next two volumes. Of course they can always be restored from snapshots

which we will take at one or two checkpoints or even recreated from scratch if

necessary. This is one advantage of VMs over physical hosts because it is easy to recover

from really bad mistakes.

Hopefully the use of multiple VMs to create a virtual network on a single physical

host will provide a safe virtual computing and network environment in which to learn by

making mistakes.

In this chapter you also begin to do the work of the SysAdmin. One of the many tasks

that SysAdmins do is install Linux, and that is what you will do in this chapter – after

we install VirtualBox visualization software. I will try to explain as much as I can as we

go through this chapter, but there are probably some things you won’t yet understand.

Don’t worry – we will get to them.

In this chapter you will begin to use some Linux commands, most of which you may

not know or understand. For now I will explain a little about some of the commands that

we will encounter, but so long as you enter them as they are given here, you should have

no problems. In many cases, if you make an error when typing the command, the system

will respond with an error message that should help you understand what is wrong.

 Got root?
Root is the primary user account on a Linux system. Root is the god of Linux, the

administrator, the SysAdmin, the privileged user. Root can do anything. There is an

entire chapter a bit later in this book about root and the powers available to root that go

far beyond those of mere mortals and non-privileged users.

This course is intended to enable you to safely use those root privileges, but we are

not going to start by having you merely dip your toes into the water and wade in deeper

a little bit at a time. I was always told to just dive into the water and get wet all over.

That is what we do in this chapter – dive right in. So I hereby declare that you are now

root. Much of what we do from this point on will be performed as root, and you are the

 SysAdmin.

Chapter 4 preparation

73

 Hardware specifications
In order to perform the experiments contained in this course, you must have access to a

single physical computer that can run a single virtual machine for Volumes 1 and 2

and at least two virtual machines for the third volume in this series. These hardware

specifications are intended to provide you with some guidance for selecting a computer

for use with all three volumes of this course.

Because the VMs will not be running large complex programs, the load on them in

terms of CPU and RAM memory, will be relatively low. Disk usage may be somewhat

high because virtual disks for the VMs may take up a significant amount of disk space

after some of the experiments, and you will also make occasional snapshots of the virtual

disk in order to make recovery from otherwise catastrophic failures relatively simple.

This volume, Learning to use and Administer Linux, uses a single VM, but the hardware

specifications listed here should be enough to handle at least three virtual machines

because at least two and possibly three will be required for the last volume of this course.

You should nevertheless consider these hardware specifications as a minimum for use

during these courses. More is always better.

The motherboard, processor, and memory should be 64-bit. Many of the 32-bit

versions of Linux are no longer supported. Table 4-1 is a list of the minimum physical

hardware requirements for this course. More is always better.

Table 4-1. Physical system minimum hardware requirements.

Component Description

processor the intel i5 or i7 processors or an aMD equivalent; at least four cores plus hyper-

threading with support for virtualization; 2.5Ghz or higher CpU speed.

Motherboard Capable of supporting the intel processor you selected earlier; USB support for a

keyboard and mouse; video output that matches the video connector your display

(see below) such as VGa, hDMi, or DVi.

Memory i recommend at least 8GB of raM for your host system. this will allow sufficient

memory for multiple VMs and still have enough available for the host itself.

hard drive internal or external hard drive with at least 300GB of free space for storage of

virtual machine disk drives.

network one ethernet network interface card (niC) that has support for 1Gb connections.

(continued)

Chapter 4 preparation

74

 Host software requirements
In all probability, the computer you use will already have an operating system installed,

and it will most likely be Windows. Preferably you will have the latest version which, as of

this writing, is Windows 10 with all updates installed.

The preferred operating system for your physical lab host would be Fedora 29 or the

most recent version of Fedora that is currently available. Any recent version of Linux is

fine so long as it is 64-bit. I recommend Fedora if you have a choice. However, I strongly

recommend using the most recent version of Fedora because that is what I am using in

these books and you won’t need to make any adjustments for other distributions in this

chapter. You will be using Fedora on the virtual machines anyway, so this makes the

most sense. Regardless of which operating system is installed as the host OS on your lab

system, you should use VirtualBox as the virtualization platform for these experiments

because it is open source and free of charge. All of the procedures for creating the VMs

and the virtual network are based on VirtualBox, so I strongly suggest that you use it for

virtualizing your lab environment. Other virtualization tools would probably work, but it

would be your own responsibility to install and configure them and the VMs you create.

No other software is required for the physical system that will host the virtual

environment.

Component Description

USB keyboard

and mouse

Seems obvious but just being thorough.

Video display any decent screen monitor will do so long as it is at least hD resolution.

internet

connection

the physical host must have an internet connection with at least 2Mb/s

download speeds. Greater download speed is highly recommended and will

make downloading faster and result in less waiting.

Table 4-1. (continued)

Chapter 4 preparation

75

 Installing VirtualBox
The VirtualBox virtualization software can be downloaded from web pages accessible

from the URL at www.virtualbox.org/wiki/Downloads.

Note You must have root access, that is, the root password, on a Linux host, or
be the administrator on a Windows host in order to install VirtualBox. You will also
need to have a non-root user account on the Linux host.

 Install VirtualBox on a Linux host
This section covers the steps required to install VirtualBox on a Fedora Linux host. If you

have a Windows host, you can skip to the next section.

For this book we will download the files from the VirtualBox web site. If you are using

a different Linux distribution, the steps will be mostly the same, but you should use the

VirtualBox package and the package manager commands for your own distribution.

In the following steps, the # character is the command prompt for root. Do not enter

it. It is displayed on the console or terminal screen to indicate that the command line

is waiting for input. You will type the commands that are shown in boldface type in the

following instructions. After typing each command and ensuring that it is correct, then

press the Enter key to submit the command to the shell for processing.

Don’t worry if you don’t understand what these commands are doing. If you enter

them just as they are, they will all work just fine. You are doing tasks that are typical of

those you will be doing as a SysAdmin, so you might as well jump right in. However,

if you do not feel that you can safely do this, you should have the SysAdmin who has

responsibility for this host do it for you.

Your entries are shown in bold. Press the Enter key when you see <Enter> if there is

no data to enter such as when you might take a default that requires no keyboard input:

 1. Log in to your Linux host GUI desktop as a non-root user. In the

example in Figure 4- 1, I use the student user ID. You may need

your SysAdmin to create an account for you and set the password.

Chapter 4 preparation

https://www.virtualbox.org/wiki/Downloads

76

Note the login GUi may look different on your system, but it will have the same
elements that will enable you to select a user account and enter the password.

 2. After the GUI desktop has finished loading, open your favorite

web browser.

 3. Enter the following URL to display the Linux download page:

https://www.virtualbox.org/wiki/Linux_Downloads. If this

download page does not appear, you can go to the VirtualBox

home page and click through to the Downloads section.

Figure 4-1. Select the non-root user account and type the password for that account

Chapter 4 preparation

https://www.virtualbox.org/wiki/Linux_Downloads

77

 4. Download the VirtualBox package suitable for your Linux

distribution into the /Downloads directory. In Figure 4-2 the

mouse pointer (the hand with the pointing finger) is pointing

to the AMD version for Fedora 26-28. The AMD version is the

64- bit version of VirtualBox and is used for both AMD and Intel

processors. Do not use the i386 version.

Figure 4-2. Download the VirtualBox package appropriate to your distribution.
The VirtualBox version will probably be more recent than the one shown here

Chapter 4 preparation

78

 5. When the Save file dialog pops up, be sure to verify the directory

location to which your browser saves the file. This might be ~/

Downloads for browsers like Chrome, and other browsers may ask

you to specify the location. If you have a choice, use ~/Downloads.

 6. Click the Save button.

 7. Click the Downloads link on the left of the web page.

 8. Under the section “ … Oracle VM VirtualBox Extension
Pack,” select the All supported platforms link to download the

Extension Pack.

 9. When the Save file dialog pops up, be sure to select ~/Downloads

as the destination directory.

 10. Click the Save button.

Now that both files we will need have been downloaded, we can

install VirtualBox.

 11. Launch a terminal session on the desktop, and use the su

command to switch to the root user:

[student@david ~]$ su -

Password: <Enter the password for root>

[root@david ~]#

 12. Make ~/Downloads the present working directory (PWD), and

verify the files just downloaded are located there:

[root@fedora29vm ~]# cd /home/student/Downloads/ ; ll *Virt*
-rw-rw-r--. 1 student student 23284806 Dec 18 13:36 Oracle_VM_VirtualBox_

Extension_Pack- 6.0.0.vbox-extpack

-rw-rw-r--. 1 student student 136459104 Dec 18 13:36

VirtualBox-6.0-6.0.0_127566_fedora29-1.x86_64.rpm

Chapter 4 preparation

79

 13. We need to install all the current updates and some RPMs that are

needed for VirtualBox to work. They may be already installed on your

Fedora computer, but attempting to install them again will not cause

a problem. The dnf command is the package manager for Fedora

Linux and can be used to install, remove, and update packages:

[root@fedora29vm Downloads]# dnf -y update

Reboot the physical computer after installing the latest updates.

It is not always necessary to reboot after installing updates on a

Linux computer unless the kernel has been updated. I suggest

do it here in case the kernel has been updated. It is important

for the next steps that the kernel be the most recent one or the

installation of VirtualBox may not properly complete. Then make /

home/student/Downloads the PWD:

[root@fedora29vm ~]# cd /home/student/Downloads/

[root@david Downloads]# dnf -y install elfutils-libelf-devel kernel-devel

I did not include any of the output from these commands in order

to save some space.

 14. Now install the VirtualBox RPM with this dnf command. Note that

the command needs to be entered on a single line. It can wrap on

your screen if there are not enough columns in your terminal, but

just don’t press the Enter key until you have entered the entire

command. Be sure to use the correct name for your VirtualBox

installation file which probably will be different from this one:

[root@fedora29vm Downloads]# dnf -y install VirtualBox-6.0-6.0.0_127566_

fedora29- 1.x86_64.rpm

Last metadata expiration check: 0:04:17 ago on Tue 18 Dec 2018 04:40:44 PM EST.

Dependencies resolved.

Chapter 4 preparation

80

===

 Package Arch Version Repository Size

===

Installing:

 VirtualBox-6.0 x86_64 6.0.0_127566_fedora29-1 @commandline 130 M

Installing dependencies:

 SDL x86_64 1.2.15-33.fc29 fedora 202 k

Transaction Summary

===

Install 2 Packages

Total size: 130 M

Total download size: 202 k

Installed size: 258 M

Downloading Packages:

SDL-1.2.15-33.fc29.x86_64.rpm 112 kB/s | 202 kB

00:01

Total 58 kB/s | 202 kB

00:03

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Running transaction

 Preparing : 1/1

 Installing : SDL-1.2.15-33.fc29.x86_64 1/2

 Running scriptlet: VirtualBox-6.0-6.0.0_127566_fedora29-1.x86_64 2/2

 Installing : VirtualBox-6.0-6.0.0_127566_fedora29-1.x86_64 2/2

 Running scriptlet: VirtualBox-6.0-6.0.0_127566_fedora29-1.x86_64 2/2

Creating group 'vboxusers'. VM users must be member of that group!

 Verifying : SDL-1.2.15-33.fc29.x86_64 1/2

 Verifying : VirtualBox-6.0-6.0.0_127566_fedora29-1.x86_64 2/2

Chapter 4 preparation

81

Installed:

 VirtualBox-6.0-6.0.0_127566_fedora29-1.x86_64 SDL-1.2.15-33.fc29.x86_64

Complete!

 15. We now install the Extension Pack which provides some additional

functionality for the guest operating systems. Note that the command

needs to be entered on a single line. It can wrap on your screen if

there are not enough columns in your terminal, but just don’t press

the Enter key until you have entered the entire command:

[root@fedora29vm Downloads]# VBoxManage extpack install Oracle_VM_

VirtualBox_Extension_Pack- 6.0.0.vbox-extpack

VirtualBox Extension Pack Personal Use and Evaluation License (PUEL)

<Snip the long license>

 16. Press the Y key when asked to accept the license.

Do you agree to these license terms and conditions (y/n)? y

License accepted. For batch installation add

--accept-license=56be48f923303c8cababb0bb4c478284b688ed23f16d775d729b89a2e8

e5f9eb

to the VBoxManage command line.

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Successfully installed "Oracle VM VirtualBox Extension Pack".

[root@david Downloads]#

Do not close the root terminal session. It will be used to prepare an external USB

hard drive on which we will store the virtual hard drives and other files required for the

virtual machines that we will create. From this point on, using the VirtualBox Manager

GUI interface is the same whether you are running Windows or Linux.

Chapter 4 preparation

82

 Install VirtualBox on a Windows host
This section covers the steps required to install VirtualBox on a current host with a

currently supported version of Windows. This procedure downloads the VirtualBox

installer and then installs VirtualBox and the VirtualBox Extension Pack. If you have

never worked as the SysAdmin before, just follow the directions as given, and everything

should work. However, if you do not feel that you can safely do this, you should have the

SysAdmin who has responsibility for this host do this for you:

 1. Log in to your Windows host as an administrative user.

 2. Install all current updates.

 3. Open your browser.

 4. Enter the following URL in the browser: https://www.

virtualbox.org

 5. Click the big large “Download VirtualBox” button in the middle of

the screen to continue to the download page.

 6. Locate the section heading VirtualBox X.X.XX platform packages

where X.X.XX is the most current version of VirtualBox.

 7. Locate the Windows hosts link and click that.

 8. When the Save as window opens, as in Figure 4-3, ensure that the

download target is the Downloads directory, which should be the

default.

Chapter 4 preparation

https://www.virtualbox.org/
https://www.virtualbox.org/

83

 9. Click the Save button.

 10. When the file has finished downloading, open the File Explorer

and click Downloads.

 11. Locate the VirtualBox installer, and double-click to launch it.

 12. When the setup wizard Welcome dialog shown in Figure 4-4

appears, click the Next button. This will take you to the Custom

Setup dialog.

Figure 4-3. The Save As window. Be sure to download the VirtualBox installer for
Windows into the Downloads directory

Chapter 4 preparation

84

 13. Do not make any changes to the Custom Setup dialog, and press

Next to continue.

 14. Again, do not make any changes on the second Custom Setup

dialog, and press Next to continue.

 15. If a dialog appears with a warning about resetting the network

interfaces, just click Yes to continue.

 16. When the Ready to install window is displayed, click Install.

 17. You will see a dialog asking whether you want to allow this app to

make changes to your device. Click Yes to continue.

 18. When the completion dialog is displayed, remove the check from

the box to start VirtualBox after the installation.

Figure 4-4. The Oracle VirtualBox Setup Wizard

Chapter 4 preparation

85

 19. Click the Finish button to complete the basic installation. You

should now have a shortcut on your desktop to launch VirtualBox.

However we still need to install the “Extension Pack,” which helps

to integrate VMs more closely into the Windows desktop.

 20. Use your browser to navigate to the URL: www.virtualbox.org/

wiki/Downloads

 21. Locate the section, VirtualBox X.X.X Oracle VM VirtualBox
Extension Pack, and the link All Platforms under that.

 22. When the file has finished downloading, open the File Explorer

and click Downloads.

 23. Locate the Oracle Extension Pack file, and double-click it to

launch VirtualBox and install the Extension Pack.

 24. When the dialog window titled VirtualBox Question is displayed,

click Install to continue.

 25. The license will be displayed in a dialog window. Scroll down to

the bottom, and when the I Agree button is no longer grayed out,

click it.

 26. Once again, click Yes when the message asking if you want to

allow this app to make changes. You will receive a verification

dialog window when the Extension Pack software has been

installed.

 27. Click OK to close that dialog, and this leaves the VirtualBox

Manager welcome window displayed on the screen.

From this point on, using the VirtualBox Manager GUI interface is the same whether

you are running Windows or Linux.

Chapter 4 preparation

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

86

 Creating the VM
Before setting up the VM itself, we want to create a virtual network that has a specific

configuration. This will enable the experiments in this course to work as designed,

and it will provide the basis for the virtual network in Volume 3 of this course. After the

virtual network has been configured, we will create the virtual machine and configure it

properly for use in the experiments. This VM will also be used in the follow-on course.

 VirtualBox Manager
Both tasks, configuring the virtual network and creating the VM, are accomplished using

the VirtualBox Manager which is a GUI interface that is used to create and manage VMs.

Start by locating the Oracle VM VirtualBox item in the application launcher on your

desktop. The icon should look like Figure 4-5.

Click this icon to launch the VirtualBox Manager. The first time the VirtualBox

Manager is launched, it displays the VirtualBox Welcome shown in Figure 4-6.

Figure 4-5. The VirtualBox icon

Chapter 4 preparation

87

The Virtual Manager is identical in both Windows and Linux. The steps required to

create your VMs is the same. Although VirtualBox can be managed from the command

line, I find that, for me, working with the GUI interface is quick and easy. Although I am

a strong proponent of using the command line, I find that using the VirtualBox Manager

GUI interface is easy and quick enough for the type of work I am doing. Besides, for the

purposes of this book, it will probably be easier for you. Using the GUI will certainly

enable you to more easily find and understand the available options.

Figure 4-6. The VirtualBox Manager welcome is displayed the first time it is
launched

Chapter 4 preparation

88

 Configuring the virtual network
Before creating the virtual machine, let’s configure the virtual network. The virtual

network is a private network that exists only on the VirtualBox host. It is designed to

allow the user to manage access to the outside world. The virtual router which is created

also provides services such as DHCP and name services for the VMs that are created on

the virtual network.

VirtualBox has a number of interesting options for connecting the VM hosts to a

network. The Oracle VM VirtualBox User Manual1 lists these options with excellent

descriptions of the capabilities of each as well as their limitations.

The simplest is the default which is using Network Address Translation2 (NAT) which

allows the VM to talk to the Internet but which does not allow multiple VM hosts to talk

to each other. Because we will need our VM to be able to communicate with at least one

more host in Volume 3 of this course, this option won’t be appropriate for us. We will

instead use the NAT Network option which allows hosts to communicate with each other

on the virtual network as well as the outside world through a virtual router. The limitation

of the NAT Network option is that it does not allow communication from the physical

host into the virtual network. We can overcome that limitation if we need to, but the NAT

Network option gives us the virtual network environment that most closely resembles a

real network so that is what we will use.

We will discuss networking in more detail later in this course, but for now, the folks at

whatismyipaddress.com, referenced in footnote 2, have the best short description of NAT,

while Wikipedia3 has an excellent, if somewhat long and esoteric, discussion of NAT. We

will use the VirtualBox Manager to create and configure the virtual NAT Network:

 1. The VirtualBox Manager should be open. If it is not, start the

VirtualBox Manager now.

 2. On the menu bar, click File ➤ Preferences.

 3. Click the Network folder on the left side of the Preferences

window as shown in Figure 4-7.

1 The Oracle VM VirtualBox User Manual (PDF), https://download.virtualbox.org/
virtualbox/5.2.16/UserManual.pdf , 96-107

2 https://whatismyipaddress.com/nat
3 Wikipedia, Network Address Translation, https://en.wikipedia.org/wiki/
Network_address_translation

Chapter 4 preparation

https://download.virtualbox.org/virtualbox/5.2.16/UserManual.pdf
https://download.virtualbox.org/virtualbox/5.2.16/UserManual.pdf
https://whatismyipaddress.com/nat
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation

89

 4. On the right side of the Preferences dialog box, click the little

network adapter icon with the green + (plus) sign to add a new

NAT network. The network is added and configured automatically.

 5. Double-click the new Nat Network or the bottom icon on the right

side of the Preferences dialog box, and change the Network Name

to StudentNetwork as in Figure 4-8.

Figure 4-7. Select the Network folder to add a NAT Network

Chapter 4 preparation

90

 6. Click the OK button to complete the name change, and then click

the OK button on the Preferences dialog.

The virtual network configuration is complete.

 Preparing disk space
In order to have space for the virtual machines that we will be using in this course, it

may be necessary to clear some space on a hard drive. You should make backups of your

system before taking this step. If you have a host with about 300GB of free hard drive

space already available for your home directory, you can skip this section. If you have

less than that amount of space available, you will need to allocate some disk space for

storing the virtual hard drives and other files required for the virtual machines.

I found it a useful alternative to allocate an external USB hard drive on which to

locate the virtual machines for the experiments in this course. I don’t have an external

hard drive smaller than 500GB, and I had this one on hand, so it is what I used. I suggest

using an external USB hard drive that is designated by the vendor to be at least 300GB

capacity. In reality, less than that will be available to the user after the partition is created

and formatted. We will destroy all of the existing data on this external hard drive and

repartition it, so be sure to make a backup of any data on this external hard drive that you

might want to keep.

Figure 4-8. Change the Network Name to StudentNetwork

Chapter 4 preparation

91

 Windows

These steps will guide you in configuring an external USB hard drive to use for the

experiments on a Windows 10 host. If you have a Linux host, you can skip this section:

 1. Using the Start menu, locate and open the Computer
Management tool.

 2. Select Storage and then Disk Management.

 3. Verify the disks that are currently available on your Windows host.

 4. Plug the USB cable on the hard drive into a free USB connector on

your computer.

 5. After a moment or two, the disk management tool will display the new

disk drive, as shown in Figure 4-9. On my Windows VM, this new disk

is Disk 1, and the space is shown as unallocated because I previously

deleted the existing partition. This may be a different disk for you.

Figure 4-9. Disk 1 is the new external USB hard drive

Chapter 4 preparation

92

 6. Right-click Disk 1, and choose New Simple Volume to begin

preparing the drive. The New Simple Volume Wizard welcome

dialog is displayed.

 7. Click Next to continue.

 8. Do not make any changes on the Specify Volume Size dialog. This

will assign the entire physical drive to this partition. Press Next to

continue.

 9. Accept the suggested drive letter on the Assign Drive Letter or

Path dialog. On my Windows VM, this is E:. This drive assignment

will most likely be different on your host. Be sure to make a note

of this drive letter because you will need it soon. Click the Next

button to continue.

 10. Take the defaults on the Format Partition dialog as you can see in

Figure 4-10. Click Next to continue.

Figure 4-10. Accept the defaults to format the partition

Chapter 4 preparation

93

 11. Click the Finish button on the Completing the New Simple

Volume Wizard dialog to start the format process. Figure 4-11

shows the final result.

Note that the final formatted disk provides less than the 500GB specified by the drive

vendor.

 Linux

This section will guide you through adding an external USB hard drive to your Linux

host. This hard drive will be the storage location for the virtual hard drive and other files

required for the virtual machines used for the experiments in the rest of this course.

There is a GUI desktop tool for Linux that works very similarly to the disk

management tool for Windows. Just so you see we could do that, I have included a

screenshot of the disk tool in Figure 4-12.

Figure 4-11. The completed disk partition

Chapter 4 preparation

94

We are not going to use this gnome-disks GUI tool shown in Figure 4-10. Instead

we are going to use the command-line interface (CLI) because there is no time like

the present to start learning the command-line tools. This is so that you will become

familiar with the tools themselves as well as some of the other concepts such as device

identification. We will go into great detail about many of the things you will encounter

here as we proceed through the course.

Your entries are shown in bold. Press the Enter key when you see <Enter>. You must

be root to perform all of the following tasks:

 1. You should already have a terminal open and be logged in as

root. Run the following command, like I did on my physical

workstation, to determine whether you have enough space

available:

Figure 4-12. The Linux GUI disk management tools provide functionality similar
to those of the Windows Disk Manager tools. We are not going to use them

Chapter 4 preparation

95

[root@david /]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 32G 40K 32G 1% /dev

tmpfs 32G 24M 32G 1% /dev/shm

tmpfs 32G 2.2M 32G 1% /run

tmpfs 32G 0 32G 0% /sys/fs/cgroup

/dev/mapper/vg_david1-root 9.8G 437M 8.9G 5% /

/dev/mapper/vg_david1-usr 45G 9.6G 33G 23% /usr

/dev/mapper/vg_david3-home 246G 46G 190G 20% /home

/dev/mapper/vg_david2-Virtual 787G 425G 323G 57% /Virtual

/dev/mapper/vg_david2-stuff 246G 115G 119G 50% /stuff

/dev/sdb2 4.9G 433M 4.2G 10% /boot

/dev/sdb1 5.0G 18M 5.0G 1% /boot/efi

/dev/mapper/vg_david1-tmp 45G 144M 42G 1% /tmp

/dev/mapper/vg_david1-var 20G 6.6G 12G 36% /var

tmpfs 6.3G 24K 6.3G 1% /run/user/1000

/dev/mapper/vg_Backups-Backups 3.6T 1.9T 1.6T 54% /media/Backups

/dev/sde1 3.6T 1.5T 2.0T 42% /media/4T-Backup

/dev/sdi1 457G 73M 434G 1% /Experiments

This is the output of the df command on my workstation. It shows

the space available on each disk volume of my workstation. The

output from this command on your physical host will be different

from this. I have a couple places that conform to the LFHS4 on

which I could locate the virtual machines’ data on my filesystems,

but I choose to use the /Experiments filesystem and directory

rather than mix this data in with other data, even that of my other

virtual machines. You will now configure your external USB hard

drive like I did /Experiments.

 2. Plug in the external USB hard drive. It will take a few moments for

it to spin up and be initialized.

4 We will discuss the Linux Hierarchical Filesystem Standard (LHFS) in Chapter 19. The LHFS
defines the approved directory structure of the Linux filesystem and provides direction on what
types of files are to be located in which directories.

Chapter 4 preparation

96

 3. Run the following command to determine the drive ID assigned to

the new device:

[root@david /]# dmesg

[258423.969703] usb 1-14.4: new high-speed USB device number 24 using

xhci_hcd

[258424.060505] usb 1-14.4: New USB device found, idVendor=1058,

idProduct=070a, bcdDevice=10.32

[258424.060509] usb 1-14.4: New USB device strings: Mfr=1, Product=2,

SerialNumber=3

[258424.060511] usb 1-14.4: Product: My Passport 070A

[258424.060512] usb 1-14.4: Manufacturer: Western Digital

[258424.060513] usb 1-14.4: SerialNumber: 575850314133304434303739

[258424.062534] usb-storage 1-14.4:1.0: USB Mass Storage device detected

[258424.063769] usb-storage 1-14.4:1.0: Quirks match for vid 1058 pid

070a: 200000

[258424.064704] scsi host14: usb-storage 1-14.4:1.0

[258425.108670] scsi 14:0:0:0: Direct-Access WD My Passport 070A 1032

PQ: 0 ANSI: 4

[258425.109453] scsi 14:0:0:1: CD-ROM WD Virtual CD 070A 1032

PQ: 0 ANSI: 4

[258425.112633] scsi 14:0:0:2: Enclosure WD SES Device 1032

PQ: 0 ANSI: 4

[258425.115424] sd 14:0:0:0: Attached scsi generic sg11 type 0

[258425.115609] sd 14:0:0:0: [sdi] 975400960 512-byte logical blocks:

(499 GB/465 GiB)

[258425.117416] sd 14:0:0:0: [sdi] Write Protect is off

[258425.117426] sd 14:0:0:0: [sdi] Mode Sense: 23 00 10 00

[258425.118978] sd 14:0:0:0: [sdi] No Caching mode page found

[258425.118986] sd 14:0:0:0: [sdi] Assuming drive cache: write back

[258425.120216] sr 14:0:0:1: [sr2] scsi3-mmc drive: 51x/51x caddy

[258425.120460] sr 14:0:0:1: Attached scsi CD-ROM sr2

[258425.120641] sr 14:0:0:1: Attached scsi generic sg12 type 5

[258425.120848] ses 14:0:0:2: Attached Enclosure device

[258425.120969] ses 14:0:0:2: Attached scsi generic sg13 type 13

[258425.134787] sdi: sdi1

Chapter 4 preparation

97

[258425.140464] sd 14:0:0:0: [sdi] Attached SCSI disk

[root@david /]#

The data from the preceding dmesg command is displayed at the

end of a long list of kernel messages. The dmesg command is

used to display the kernel messages because they can be used

in situations like this as well as providing information that can

be used in debugging problems. The numbers inside the square

braces, such as [258425.134787], are the time in seconds down

to the nanosecond since the computer was booted up.

We are looking for the drive device identifier so that we can use it

in the next few commands; in this case, the device identifier for

the entire hard drive is sdi. The sdi1 device is the first partition on

the drive. We are going to delete the existing partition in order to

start from the very beginning because that is what I would do with

any new disk device. On your Linux host, the drive identifier is

more likely to be /dev/sdb or /dev/sdc.

Warning Be sure you use the correct device identifier for the USB hard drive in
the next step, or you might wipe out your main hard drive and all of its data.

 4. Start fdisk and then see if there are any existing partitions and

how many:

[root@david /]# fdisk /dev/sdi

Welcome to fdisk (util-linux 2.32.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

 Command (m for help): p

 Disk /dev/sdi: 465.1 GiB, 499405291520 bytes, 975400960 sectors

 Units: sectors of 1 * 512 = 512 bytes

 Sector size (logical/physical): 512 bytes / 512 bytes

 I/O size (minimum/optimal): 512 bytes / 512 bytes

 Disklabel type: dos

Chapter 4 preparation

98

 Disk identifier: 0x00021968

 Device Boot Start End Sectors Size Id Type

 /dev/sdi1 2048 975400959 975398912 465.1G 83 Linux

If there are no partitions on the hard drive, skip the next step.

 5. Delete the existing partitions, and then create a new one with

fdisk. Be sure to use /dev/sdi and not /dev/sdi1 because we are

working on the disk and not the partition. The d sub-command

deletes the existing partition:

Command (m for help): d

Selected partition 1

Partition 1 has been deleted.

If there were more partitions on the hard drive, delete those, too,

also using d.

 6. Now let’s create the new partition and write the results to the

partition table on the USB drive. We use the n sub-command to

create a new partition and then mostly just hit the Enter key to

take the defaults. This would be a bit more complex if we were

going to create multiple partitions on this hard drive and we will

do that later in this course. Your entries are shown in bold. Press

the Enter key when you see <Enter> to take the defaults:

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

Select (default p): <Enter>

Using default response p.

Partition number (1-4, default 1): <Enter>

First sector (2048-975400959, default 2048): <Enter>

Last sector, +sectors or +size{K,M,G,T,P} (2048-975400959, default

975400959): <Enter>

Created a new partition 1 of type 'Linux' and of size 465.1 GiB.

Chapter 4 preparation

99

 7. If you do not get the following message, skip this step. We must

respond with y to remove the previous partition signature:

Partition #1 contains a ext4 signature.

Do you want to remove the signature? [Y]es/[N]o: y

The signature will be removed by a write command.

 8. The following p sub-command prints the current partition table

and disk information to the terminal:

Command (m for help): p

Disk /dev/sdi: 465.1 GiB, 499405291520 bytes, 975400960 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x00021968

Device Boot Start End Sectors Size Id Type

/dev/sdi1 2048 975400959 975398912 465.1G 83 Linux

Filesystem/RAID signature on partition 1 will be wiped.

Command (m for help):

 9. If your operating system automatically mounted the new

partition when you created it, be sure to unmount (eject) it. Now

write the revised partition table to the disk, and exit back to the

command line:

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

[root@david /]#

Chapter 4 preparation

100

 10. Create an EXT4 filesystem on the partition. Be careful to specify

the correct device identifier so that the correct partition is

formatted:

[root@david /]# mkfs -t ext4 /dev/sdi1

mke2fs 1.44.2 (14-May-2018)

Creating filesystem with 121924864 4k blocks and 30482432 inodes

Filesystem UUID: 1f9938a0-82cd-40fb-8069-57be0acd13fd

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632,

2654208,

 4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,

 102400000

Allocating group tables: done

Writing inode tables: done

Creating journal (262144 blocks): done

Writing superblocks and filesystem accounting information: done

[root@david /]#

 11. Now let’s add a label to the partition. This label makes it easy for

us humans to identify a disk device. It also allows us to use the

label so that the computer can identify and mount the device in

the correct location on the filesystem directory structure. We will

get to that in a few steps:

[root@david /]# e2label /dev/sdi1 Experiments

[root@david /]# e2label /dev/sdi1

Experiments

[root@david /]#

The second invocation of the e2label command lists the current

label for that partition.

 12. Create the Experiments directory. This will be the directory on

which we mount the filesystem that we are creating on the USB

drive. Create this in the root (/) directory:

[root@david ~]# mkdir /Experiments

Chapter 4 preparation

101

 13. At this point we could mount the filesystem on the USB drive onto

the /Experiments directory, but let’s make it a bit easier by adding

a line to the /etc/fstab (filesystem table) file. This will reduce the

amount of typing we need to do in the long run. The easy way to

do this, since we have not discussed the use of editors, yet, is to

use the following simple command to append the line we need

to the end of the existing fstab file. Be sure to enter the entire

command on a single line:

[root@david ~]# echo "LABEL=Experiments /Experiments ext4 user,owner,

noauto,defaults 0 0" >> /etc/fstab

If it wraps around on your terminal that is ok. Just do not hit the

Enter key until you have typed the entire line. Be sure to use the

double >> or you will overwrite the entire fstab file. That would not

be a good thing. We will talk about backups and other options for

editing files later, but for now just be careful.

 14. Mount the new drive and verify that it is present:

[root@david ~]# mount /Experiments ; df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 32G 40K 32G 1% /dev

tmpfs 32G 34M 32G 1% /dev/shm

tmpfs 32G 2.2M 32G 1% /run

tmpfs 32G 0 32G 0% /sys/fs/cgroup

/dev/mapper/vg_david1-root 9.8G 437M 8.9G 5% /

/dev/mapper/vg_david1-usr 45G 9.6G 33G 23% /usr

/dev/mapper/vg_david3-home 246G 46G 190G 20% /home

/dev/mapper/vg_david2-Virtual 787G 425G 323G 57% /Virtual

/dev/mapper/vg_david2-stuff 246G 115G 119G 50% /stuff

/dev/sdb2 4.9G 433M 4.2G 10% /boot

/dev/sdb1 5.0G 18M 5.0G 1% /boot/efi

/dev/mapper/vg_david1-tmp 45G 144M 42G 1% /tmp

/dev/mapper/vg_david1-var 20G 6.8G 12G 37% /var

tmpfs 6.3G 28K 6.3G 1% /run/user/1000

/dev/mapper/vg_Backups-Backups 3.6T 1.9T 1.6T 56% /media/Backups

Chapter 4 preparation

102

/dev/sde1 3.6T 1.5T 2.0T 43% /media/4T-Backup

/dev/sdh1 458G 164G 272G 38% /run/media/dboth/USB-

X47GF

/dev/sdi1 457G 73M 434G 1% /Experiments

I have highlighted the line for our new device in bold at the

bottom of the output. This tells us that the new filesystem has

been properly mounted on the root filesystem. It also tells us

how much space is used and how much is available. The -h

option tells the df command to display the numeric results in

human-readable format instead of bytes. Go ahead and run the df

command without any options, and see the difference. Which is

easier to read and interpret?

 15. Now look at the contents of our new directory:

[root@david ~]# ll -a /Experiments/

total 24

drwxr-xr-x 3 root root 4096 Aug 8 09:34 .

dr-xr-xr-x. 24 root root 4096 Aug 8 11:18 ..

drwx------ 2 root root 16384 Aug 8 09:34 lost+found

If you see the lost+found directory, then everything is working as it

should.

 16. We still have a bit more to do to prepare this directory. First, we

need to change the group ownership and permissions of this

directory so that VirtualBox users can have access to it. First let’s

look at its current state. Piping the output of the grep command

allows us to see only the Experiments directory for clarity:

[root@david ~]# cd / ; ll | grep Exp

drwxr-xr-x 3 root root 4096 Aug 8 09:34 Experiments

This way we can verify the changes actually happen.

Chapter 4 preparation

103

 17. Making the changes. First we change the PWD (present working

directory) to the root directory (/). Then we will make the changes

and finally verify them:

[root@david /]# cd /

[root@david /]# chgrp root /Experiments

[root@david /]# chmod g+w /Experiments

[root@david /]# ll | grep Exp

drwxrwxr-x 3 root root 4096 Aug 8 09:34 Experiments

[root@david /]#

Some things you might notice here – or possibly even before this.

Now is a good time to explain. The chgrp (change group) and

chmod (change file mode, i.e., access permissions) commands

were quiet. They did not announce their success. This is one of

the Linux Philosophy tenets, that “silence is golden.” Also, the ll

command is an alias that expands into ls -l to give a long listing

of the current directory. We will go into much more detail about

things like this as we get further into the course.

 18. Now we need to add our own non-root user account to the

vboxusers group in the /etc/groups file. I use my own personal

ID in this case, but you should use the non- root account you are

logged into to create and use the virtual machine:

[root@david /]# cd /etc

[root@david etc]# grep vboxusers group

vboxusers:x:973:

[root@david etc]# usermod -G vboxusers dboth

[root@david etc]# grep vboxusers group

vboxusers:x:973:dboth

[root@david /]#

You have completed preparation of the hard drive. Regardless of whether you

prepared this USB hard drive on a Windows or Linux host, you are already doing the

work of a SysAdmin. These are exactly the types of tasks required of SysAdmins on a

regular basis.

Chapter 4 preparation

104

 Download the ISO image file
Now is a good time to download the Fedora5 ISO live image file. This is just a file that is

an image we can copy to a CD or USB thumb drive. You can insert the CD or thumb drive

into a computer and boot from it to run Linux in a test drive environment. Booting this

live image device on your computer will not make any changes to the hard drive of the

computer until you install Linux.

For our purposes, we will not need to create a hardware device; all we need to do is

download the image, so this will be very easy. The VM we create will boot directly from

the live image file when we are ready to install Linux – no external physical media will be

needed.

We will use the Fedora 29 image for Xfce6 which is one of the alternate desktops. We

could use KDE or GNOME, but for this course, we will use Xfce which is much smaller

and uses far less system resources. It is also fast and has all of the features we need in a

desktop for this course without a lot of extra features that cause code bloat and reduced

performance. The Xfce desktop is also very stable so does not change much between

Fedora releases which occur every six months or so.7

For Fedora 28, which is the current release as of this writing, the file Fedora-Xfce-

Live-x86_64-28-1.1.iso is about 1.3G in size. Be sure to use the Fedora release that is most

current at the time you take this course:

 1. Use your favorite browser, and navigate to the URL: https://

spins.fedoraproject.org/xfce/download/index.html.

 2. Click the button with the Download label.

 3. For students with a Linux host, select the /tmp directory in which

to store the download, and click the Save button. If you have a

Windows host or a browser that does not allow you to select a

download directory, the default download directory is fine.

5 Fedora Project, Fedora’s Mission and Foundations, https://docs.fedoraproject.org/en-US/
project/

6 Fedora Project, Xfce, https://spins.fedoraproject.org/xfce/
7 For us, this Xfce stability means that the desktop images in this book will be correct through
several releases of Fedora.

Chapter 4 preparation

https://spins.fedoraproject.org/xfce/download/index.html
https://spins.fedoraproject.org/xfce/download/index.html
https://docs.fedoraproject.org/en-US/project/
https://docs.fedoraproject.org/en-US/project/
https://spins.fedoraproject.org/xfce/

105

 4. If the downloaded file is not in the /tmp directory, move or copy it

from the ~/Downloads directory to /tmp:

[dboth@david ~]$ cd Downloads/ ; ll Fedora*
-rw-rw-r-- 1 dboth dboth 1517289472 Dec 20 12:56 Fedora-Xfce-Live-x86_64-

29- 20181029.1.iso

[dboth@david Downloads]$ mv Fedora* /tmp

[dboth@david Downloads]$

We will use this file when we install Fedora Linux on the VM, but we need to create

the virtual machine first.

 Creating the VM
To create the VM we will use in the rest of this course, we need to first create it and then

make some configuration changes:

 1. Switch back to the VirtualBox Manager to perform these steps.

 2. Click the Machine Tools icon. This shows the list of current virtual

machines and the configuration details of one that is selected.

 3. I already have several VMs in five groups. Don’t worry about

creating or using groups in VirtualBox. That is not necessary to the

success of these experiments.

Click the New icon to start the process of creating the new

VM. Enter the following data as shown in Figure 4-13.

Chapter 4 preparation

106

 4. In the Create Virtual Machine window, type the VM name,

StudentVM1.

 5. For the Machine Folder, type /Experiments.

 6. Select Linux as the operating system type in the Type field.

 7. For the Version, select Fedora (64-bit).

 8. Set the memory size (RAM) to 4096MB. The memory size can be

changed at any time later so long as the VM is powered off. For

now this should be more than enough RAM.

Figure 4-13. Creating the virtual machine with the name StudentVM1

Chapter 4 preparation

107

 9. Click the Create button to continue to the Create Virtual Hard

Disk dialog shown in Figure 4-14.

 10. If you have set up a different location from the default, click

the little folder icon with the green ^ sign on it as shown in

Figure 4-12. This opens an operating system dialog that allows

you to choose the location in which you want to store your

virtual machines including the virtual hard drives. I have set up

a separate 500GB hard drive and mounted it on /Experiments,

so I selected the /Experiments directory. Note that the VM name

is automatically appended to whatever location you choose.

The .vdi extension is the VirtualBox Disk Image file format. You

could select other formats, but this VDI format will be perfect for

our needs.

Figure 4-14. Click the folder icon with the green ^ character to change the default
file location. Type in /Experiments to prepend the VM name

Chapter 4 preparation

108

 11. Use the slider or the text box to set 60GB for the size of the virtual

hard drive. Be sure to use the default dynamic allocation of disk

space. This ensures that the disk will take up no more space on

the hard drive than is actually needed. For example, even though

we specified this disk size as 60GB, if we only use 24GB, the space

required on the physical hard drive will be about 24GB. This space

allocation will expand as needed.

 12. Click the Create button to create the virtual hard drive and

continue.

 13. At this point the basic virtual machine has been created, but we

need to make a few changes to some of the configuration. Click

the entry for the new VM. If the VM details are not shown on the

right side of the VirtualBox Manager as it is in Figure 4- 15, click

the Details button using the menu icon on the right side of the

StudentVM1 entry in the VM list.

Chapter 4 preparation

109

Figure 4-15. The details for the StudentVM1 virtual machine we just created

 14. Click the Settings icon to open the Settings dialog in Figure 4-16,

and then select the System page in the list on the left. Deselect the

Floppy disk icon, and then use the down arrow button to move it

down the Boot Order to below the Hard Disk. Leave the Pointing
Device set to USB Tablet.

Chapter 4 preparation

110

 15. Still on the System settings page, select the Processor tab, as in

Figure 4-17, and increase the number of CPUs from 1 to 2 for the

StudentVM1 virtual machine.

Figure 4-16. Move the Floppy disk down the boot order, and remove the check
mark beside it

Chapter 4 preparation

111

 16. If your physical host has 8G of RAM or more, click the Display

settings, and increase the amount of video memory to 128MB as

shown in Figure 4-18. It is neither necessary nor recommended

that you enable 2D or 3D video acceleration because it is not

needed for this course.

Figure 4-17. Set the number of CPUs to 2

Chapter 4 preparation

112

 17. Click the storage dialog as shown in Figure 4-19. The port count

for the VM must be at least 5 in order to add new disk devices in

later chapters. Previous versions of VirtualBox defaulted to 2 ports,

while VB 6.0 defaults to only 1 which means we need to add more

ports to the existing SATA controller (but not another controller)

in order to accommodate additional SATA storage devices in

later chapters. Increase the port count to 5 or more. We will need

some of these additional drives in Chapter 19 in this Volume and

Chapter 1 in Volume 2.

Figure 4-18. With sufficient RAM in the physical host, you can increase the
amount of video memory assigned to the virtual machine

Chapter 4 preparation

113

 18. Select the Network settings page, and, in the Adapter 1 tab,

select NAT Network in the Attached to: field, as seen in

Figure 4-20. Because we have created only one NAT Network,

the StudentNetwork, that network will be selected for us. Click

the little blue triangle next to Advanced to view the rest of the

configuration for this device. Do not change anything else on

this page.

Figure 4-19. Set the number of SATA ports to 5

Chapter 4 preparation

114

 19. Click the OK button to save the changes we have made.

The virtual machine is now configured and ready for us to install Linux.

 Chapter summary
You have finished preparations for installing Fedora and performing the experiments

in the rest of this course. You prepared an external USB disk drive to hold the virtual

machine we will use in this course, and you have created that VM. You have also made

some modifications to the VM that could not be made during its initial creation, such as

the network adapter settings and the number of processors allocated to the VM.

We will install the latest release of Fedora in Chapter 5.

Note that you will be required to create another virtual machine and install Linux

on it in Volume 3 of this course. The steps in creating the VM and installing Linux on

it will be nearly the same. The only differences will be that the second VM will need a

different name.

Figure 4-20. Selecting the NAT Network option automatically selects the
StudentNetwork because it is the only NAT Network we have created

Chapter 4 preparation

115

 Exercises
Do the following exercises to complete this chapter:

 1. Define “virtual machine.”

 2. What command used in this chapter might be used to discover

information about the hardware components of a computer

system?

 3. How does “NAT Network” differ from “NAT” as a network type

when using VirtualBox?

 4. Why might we want more than a single network adapter on a VM?

Chapter 4 preparation

117
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_5

CHAPTER 5

Installing Linux
 Objectives
In this chapter you will learn to

• Install the latest version of Fedora on your VM

• Partition a hard drive using recommended standards

• Describe and explain the use of swap space

• State the amount of swap space recommended in the Fedora

documentation

• Create snapshots of your VM

 Overview
In this chapter you begin to do the work of the SysAdmin. One of the many tasks that

SysAdmins do is install Linux, and that is what you will do in this chapter. I will try to

explain as much as I can as we go through this chapter, but there are probably some

things you won’t yet understand. Don’t worry – we will get to them.

Just as a reminder, this book uses Fedora 29 with the Xfce desktop for the

experiments that we will be doing. You should be sure to use the most current version of

Fedora Xfce for this course. Both the Xfce desktop and the Linux tools we will be using

are stable and will not change appreciably over the next several releases of Fedora.

Please install Fedora as the Linux distribution for this course. This will make it much

easier for you because you won’t have to make allowances for the differences that exist

between Fedora and some other distributions. Even other Red Hat-based distributions

such as RHEL and CentOS differ from Fedora. You will find, however, that after finishing

this course, the knowledge you gain from it will transfer easily to other distributions.

118

 Boot the Fedora live image
If this were a physical host, you would create a physical USB thumb drive with the ISO

image on it and plug it into a USB slot on your host. In order to boot the live ISO image in

our VM, we need to “insert” it into a logical device:

 1. Open the Settings for the StudentVM1 VM.

 2. Select the Storage page.

 3. Click the Empty disk icon on the IDE controller. If you do not

have an IDE controller on your VM – which is possible but very

unlikely – you can right-click the white space in the Storage

Devices panel and choose to add a new IDE controller. Only one

IDE controller can be added.

 4. Click the CD icon to the right of the Optical Drive field of the IDE

controller. As you can see in Figure 5-1, this opens a selection

list that enables us to select which ISO image to mount1 on this

device.

 5. Unlike my workstation, your computer will probably have no

images in this list. Select the Choose Virtual Optical Disk File item.

1 We will discuss the term “mount” and all it means in Chapter 19. For now, if you want more
information, see Wikipedia, https://en.wikipedia.org/wiki/Mount_(computing).

Chapter 5 InstallIng lInux

https://en.wikipedia.org/wiki/Mount_(computing

119

 6. Navigate to the location in which you stored the file when you

downloaded it, and click the file, then click Open to set the mount.

In Figure 5-2 we see the ISO image file which is located in the /

tmp directory.

Figure 5-1. Select Choose Virtual Optical Disk File to locate and mount the ISO
image

Chapter 5 InstallIng lInux

120

 7. Verify that the correct file is selected for the IDE controller in the

Storage Devices box as shown in Figure 5-3. Click OK. The Fedora

live ISO image file is now “inserted” in the virtual optical drive,

and we are ready to boot the VM for the first time.

Figure 5-2. Select the ISO image file, and then click Open

Chapter 5 InstallIng lInux

121

 8. To boot the VM, be sure that the StudentVM1 virtual machine

is selected and click the green Start arrow in the icon bar of

the VirtualBox Manager. This launches the VM which opens a

window in which the VM will run and boots to the image file. The

first screen you see is shown in Figure 5-4. The first time you use

VirtualBox on any physical host, you will also get a message, “You

have the Auto capture keyboard option turned on. This will cause

the Virtual Machine to automatically capture the keyboard every

time the VM window is activated...,” and then you’ll see also get

a similar message about mouse pointer integration. They’re just

informational, but you can change these settings if you like.

 9. This first screen has a countdown timer, and the second item is

already selected. After the timer counts down to zero, or when you

press the Enter key, this selection will first test the install medium

to detect any errors and then boot to the installer if there are no

problems. We can skip the test because it is far less useful for our

Figure 5-3. The Fedora live image ISO file is now “inserted” in the virtual optical
drive

Chapter 5 InstallIng lInux

122

image file than it would be for a physical DVD or USB thumb

drive. Press the up arrow on your keyboard to highlight the entry

Start Fedora-Xfce-Live 29, as shown in Figure 5-4, and press the

Enter key on your keyboard.

 10. The VM boots into a login screen as shown in Figure 5-5. The only

user account is the Live System User, and there is no password.

Click the Log In button to access the live desktop.

Figure 5-4. Select the Start Fedora-Xfce-Live 29 menu item, and press Enter

Chapter 5 InstallIng lInux

123

Your VM is now booted to the live image, and you could spend some time exploring

Linux without installing it. In fact, if I go shopping at my local computer store – I stay

away from the big box stores because they never have what I want – I take my trusty Live

Linux thumb drive and try out the various systems that my local computer store has on

display. This lets me test Linux on them and not disturb the Windows installations that

are already there.

We do not need to do any exploration right now, although you can if you like. We will

do plenty of exploration after the installation. So let’s get right to the installation.

 Installing Fedora
Installing Fedora from the live image is easy, especially when using all of the defaults. We

won’t use the defaults because we are going to make a few changes, the most complex

one being to the virtual hard drive partitioning. If you have any questions about the

Figure 5-5. Click the Log In button to log in

Chapter 5 InstallIng lInux

124

details of installation and want more information, you can go to the Fedora installation

documentation at https://docs.fedoraproject.org/en-US/fedora/f29/install-

guide/install/Installing_Using_Anaconda/ . This URL will be different for later versions

of Fedora. Just be sure to use the correct Fedora release number when you enter the URL.

 Start the installation
To start the Fedora Linux installation, double-click the Install to Hard Drive icon on the

desktop as shown in Figure 5-6. As on any physical or virtual machine, the live image

does not touch the hard drive until we tell it to install Linux.

A double-click Install to Hard Drive launches the Anaconda installer. The first screen

displayed by Anaconda is the Welcome screen where you can choose the language that

Figure 5-6. Double-click the Install to Hard Drive icon to start the Fedora
installation

Chapter 5 InstallIng lInux

https://docs.fedoraproject.org/en-US/fedora/f28/install-guide/install/Installing_Using_Anaconda/
https://docs.fedoraproject.org/en-US/fedora/f28/install-guide/install/Installing_Using_Anaconda/

125

will be used during the installation process. If your preferred language is not English,

select the correct language for you on this screen. Then click the Continue button.

 Set the hostname
Click the Network & Host Name option on the Installation Summary dialog as shown

in Figure 5-7. This hostname is the one that the computer will be known to itself as. It is

the hostname that you will see on the command prompt line.

The external world, that is any node on the network to which this host is connected,

sees a computer as the hostname set up in whichever name service you are using. So it is

possible that you might ping or ssh to a computer using one name and that it will have a

different name once you are logged into it.

By convention, computer hostnames are usually in lowercase. Note that the name of the

VM is in mixed case, StudentVM1, but that is not the hostname and has no network usage.

Figure 5-7. Select Network & Host Name to set the hostname for the VM

Chapter 5 InstallIng lInux

126

In the Host Name field, type the hostname studentvm1 in all lowercase letters, and

then click Apply. That is all we need to do on this dialog, so click the blue Done button

on the upper left. This will take you back to the Installation Summary dialog.

Note that there are no options for selecting any additional software packages to

install in any of the live images. If you want to install additional software, you must do it

after the basic installation.

 Hard drive partitioning
The second and most important thing we need to change is to partition the hard drive in

a more standard, recommended manner. We do this rather than taking the default way

which is easy for most beginners but which is definitely not the best partitioning setup

for a workstation intended for training a SysAdmin. We will explore the details of why

this partitioning scheme is better in Chapter 19 of this volume.

In Figure 5-7, notice that the Installation Destination has a caution icon and the

text, Automatic partitioning in red. Click Installation Destination, and you get the

dialog shown in Figure 5-8.

Chapter 5 InstallIng lInux

127

We only have a single virtual disk drive in this VM, but if we had multiple hard drives,

they could be selected here as part of the installation target.

The size of the VM display window at this point may be too small to contain the

entire dialog box. It is hard to see, but there is a scroll bar on the right side of this dialog.

Scroll down using the scroll bar or the scroll wheel on your mouse until you get to the

bottom. You should also be able to resize the window in which the VM is running to

make it big enough to see the entire dialog box as in Figure 5-9.

Figure 5-8. Select Custom for Storage Configuration, then click Done

Chapter 5 InstallIng lInux

128

You should see Storage Configuration and three options. We are going to perform a

custom configuration, so select the middle radio button, Custom. Then click Done.

The next dialog, which you can see in Figure 5-9, is the one where we will do a good

deal of work. What we need to do is create a partitioning scheme like the one shown in

Table 5-1. The partition sizes in this table are not appropriate for a real-world working

system, but they are more than sufficient for use in this educational environment.

Figure 5-9. The Manual Partitioning dialog

Chapter 5 InstallIng lInux

129

However, that said, I have an old ASUS EeePC netbook with a built-in 4GB SSD-

like hard drive and a 32GB removable SD card that I have set up as part of the volume

group that, along with the system drive, totals 36GB. I have installed Fedora Linux 28 on

it along with LibreOffice. I use this little system for presentations, note taking in some

meetings, and for Seti@home.2 There is still over 17GB of “disk” space available. So it is

possible and not unreasonable to install a working Fedora system with a GUI desktop in

about 20GB. Of course it would be somewhat limited, but it would be usable.

In Table 5-1, you can see what are usually considered the standard filesystems that

most books and SysAdmins – well at least I – recommend. Note that for Red Hat-based

distributions including Fedora, the directory structure is always created, but separate

filesystems – partitions – may or may not be.

Theoretically, because of the fact that we created a brand new virtual hard drive for this

VM, there should be no existing partitions on this hard drive. If you are not following these

instructions exactly or are using a physical or virtual hard drive with existing partitions, use

this page to delete all existing partitions before you continue any further. If, as in Figure 5-9,

you see the message that you have not created any mount points, then continue.

To add the first partition, click the plus (+) button as illustrated in Figure 5-9.

This results in the display of the Add Mount Point dialog box as shown in Figure 5-10.

Enter Select /boot as the first mount point, and type 1G in the Desired Capacity field.

2 Seti@Home, http://setiweb.ssl.berkeley.edu/index.php

Table 5-1. The disk partitions – filesystems – and their sizes

Mount point Partition Filesystem type Size (GiB) Label

/boot standard ext4 1.0 boot

/ (root) lVM ext4 2.0 root

/usr lVM ext4 15.0 usr

/home lVM ext4 2.0 home

/var lVM ext4 10.0 var

/tmp lVM ext4 5.0 tmp

swap swap swap 4.0 swap

Total 119.00

Chapter 5 InstallIng lInux

http://setiweb.ssl.berkeley.edu/index.php

130

Although we will go into more detail in later chapters, let’s take a moment to talk about

partitions, filesystems, and mount points. Hopefully this will temporarily answer questions

you might have about the apparently conflicting and definitely confusing terminology.

First, the entire Linux directory structure starting at the top with the root (/) directory can

be called the Linux filesystem. A raw partition on a hard drive or a logical volume can be

formatted with an EXT3, EXT4, BTRFS, XFS, or other filesystem meta-structure. The partition

can then be called a filesystem. If the partition is for the /home directory, for example, it will

be called the /home filesystem. The /home filesystem is then mounted on the /home mount

point, which is simply the /home directory on the root filesystem, and then it becomes

a logical and functional part of the root filesystem. Just remember that not all root-level

directories can be separate filesystems and others just don’t make sense to make separate.

Figure 5-10. Set the mount point and size desired for the /boot partition

Chapter 5 InstallIng lInux

131

So after all of the partitions are defined, Anaconda, the installation program, will

create the volume group, the logical volumes, any raw partitions such as /boot, and the

entire directory tree including the mount points (directories) on the / filesystem, format

the volumes or partitions with the selected filesystem type (EXT4 for the most part), and

create the /etc/fstab file to define the mounts and their mount points so the kernel knows

about and can find them every time the system is booted. Again, more on all of this later.

After entering the correct data for this partition, click the Add mount point button

to proceed. At this point the Manual Partitioning dialog looks like Figure 5-11. Notice

that if the VM window is a bit small, there is a scroll bar at the right side of the screen. If

you hover your mouse there, the scroll bar becomes a bit wider so is easier to see and

manipulate. You can also resize the VM window if you have not already.

Figure 5-11. Creating the /boot partition

Chapter 5 InstallIng lInux

132

If necessary, scroll down so that you can see the Label field. Enter the label for this

partition as “boot” without the quotes. As mentioned before, I find that labels make

working with various components of the filesystem much easier than would be possible

without them.

After typing in the label, click the Update Settings button to save the changes you made.

The /boot partition contains the files required for the system to boot up and get to

a minimal state of functionality. Because full-featured filesystem kernel drivers are not

available at the beginning of this process, drivers that would allow the use of logical volume

management (LVM), the /boot partition must be a standard, non-LVM3 Linux partition

with an EXT4 filesystem. These settings are chosen automatically when the /boot partition

was created. We will study the boot and start up sequences in some detail in Chapter 16.

After saving the updated settings for the /boot filesystem, the rest of the partitions

can be created as logical volumes in a volume group. We will discuss logical volume

management (LVM) in Chapter 1 of Volume 2, but for now it is important to know that

LVM makes managing and resizing logical volumes very easy.

For example, recently the logical volume I was using to store my virtual machines filled

up while I was creating a new VM. VirtualBox politely stopped with a warning message

indicating it was out of disk space and that it could continue when additional disk space

was made available. I wish all software were that nice. Most times one would think about

deleting existing files, but all I had in this filesystem were files for VMs that I needed.

I was able to increase the size of the logical volume containing the directory in which

my VMs are stored. Using Logical Volume Management made it possible to add space

to the volume group, assign some of that space to the logical volume, and then increase

the size of the filesystem, all without rebooting the computer or even terminating and

restarting VirtualBox. When the task of adding space to the (physical) logical volume on

which my VMs reside was complete, I simply clicked the button in the warning dialog to

continue, and creation of the VM proceeded as if nothing had happened.

Let’s continue creating mount points. Once again, start by clicking the + button.

Select / (the root filesystem), and type 2G for the size as shown in Figure 5-12. Click Add
mount point to continue.

The root filesystem is the top level of the Linux directory tree on any Linux host. All

other filesystems will be mounted at various mount points on the root filesystem.

3 Logical Volume Manager

Chapter 5 InstallIng lInux

133

Now scroll down in the right pane of the Manual Partitioning dialog, and type in the

label “root” as shown in Figure 5-13. Notice that the device type is now LVM for Logical

Volume Management, and there is a volume group name.

We are not yet done because we want to do one more thing before proceeding. If

we do nothing else to define the size of the volume group that will be created when the

hard drive is formatted, the volume group will take only the 41G or so, as we specify our

filesystems in Table 5-1, and it will leave the rest of the disk empty and inaccessible. We

could fix that later, and the result would work, but it would be less than elegant.

Figure 5-12. Adding the root filesystem

Chapter 5 InstallIng lInux

134

In order to include all of the remaining space available on our virtual disk in the

volume group (VG), we need to modify the VG specification. Click the Modify button

under Volume Group.

We will not need to modify the volume group size more than once. After making the

change to the volume group while creating this logical volume (LV), the VG size is set,

and we don’t need to do this on the following LVs. The only change we need to make on

the rest of the logical volumes is to set the label.

Figure 5-13. After entering the “root” label, click Modify to make changes to the
volume group

Chapter 5 InstallIng lInux

135

The Configure Volume Group dialog would also allow us to change other things like

the name of the volume group, but unless there is some imperative to do so, we should

leave the rest of these configuration items alone. Nothing that we will do in this course

requires any further changes to the volume group configuration.

Under the Size policy selection box in the Configure Volume Group dialog box,

click As large as possible as shown in Figure 5-14. This will cause the volume group to

expand to include all of the remaining free space on the hard drive. Then click Save. Add

the label “root,” and click the Update Settings button.

Figure 5-14. Configuring the volume group to use all available disk space

Chapter 5 InstallIng lInux

136

Go ahead and add the other partitions, except for the swap partition, as shown in

Table 5-1. You will notice that the /usr and /tmp partitions are not in the list of mount

points. For these partitions, just type in the partition names, being sure to use the leading

slash (/), and then proceed as you would with any other partition.

 About swap space
Before you create the swap partition, this would be a good time to discuss swap, also

known as paging. Swap space is a common and important aspect of computing today,

regardless of operating system. Linux uses swap space and can use either a dedicated

swap partition or a file on a regular filesystem or logical volume.

SysAdmins have differing ideas about swap space – in particular how much is

the right amount. Although there are no definitive answers here, there are some

explanations and guidelines to get you started.

 Types of memory

There are two basic types of memory in a typical computer. Random-access memory

(RAM) is used to store data and programs while they are being actively used by the

computer. Programs and data cannot be used by the computer unless they are stored in

RAM. RAM is volatile memory; that is, the data stored in RAM is lost if the computer is

turned off.

Hard drives are magnetic media or solid-state devices (SSDs) used for long-term

storage of data and programs. Magnetic media and SSDs are nonvolatile; the data stored

on a disk remains even when power is removed from the computer. The CPU cannot

directly access the programs and data on the hard drive; it must be copied into RAM

first, and that is where the CPU can access its programming instructions and the data

to be operated on by those instructions. USB memory devices are used as if they were

removable hard drives, and the operating system treats them as hard drives.

During the boot process, a computer copies specific operating system programs such

as the kernel and startup programs like init or systemd and data from the hard drive

into RAM where it is accessed directly by the computer’s processor, the CPU (central

processing unit).

Chapter 5 InstallIng lInux

137

 Swap

The primary function of swap space is to substitute disk space for RAM memory when

real RAM fills up and more space is needed. For example, assume you have a computer

system with 2GB of RAM. If you start up programs that don’t fill that RAM, everything

is fine, and no swapping is required. But say the spreadsheet you are working on grows

when you add more rows to it, and it now fills all of RAM. Without swap space available,

you would have to stop work on the spreadsheet until you could free up some of your

limited RAM by closing down some other programs.

Swap space allows the use of disk space as a memory substitute when enough RAM

is not available. The kernel uses a memory management program that detects blocks,

aka pages, of memory in which the contents have not been used recently. The memory

management program swaps enough of these relatively infrequently used pages of

memory out to a special partition on the hard drive specifically designated for “paging”

or swapping. This frees up RAM and makes room for more data to be entered into your

spreadsheet. Those pages of memory swapped out to the hard drive are tracked by the

kernel’s memory management code and can be paged back into RAM if they are needed.

The total amount of memory in a Linux computer is the RAM plus swap space and is

referred to as virtual memory.

 Types of Linux swap

Linux provides for two types of swap space. By default, most Linux installations create

a swap partition, but it is also possible to use a specially configured file as a swap file. A

swap partition is just what its name implies – a standard disk partition or logical volume

that is designated as swap space by the mkswap command.

A swap file can be used if there is no free disk space in which to create a new swap

partition or space in a volume group in which a logical volume can be created for swap

space. This is just a regular file that is created and preallocated to a specified size. Then

the mkswap command is run to configure it as swap space. I don’t recommend using a

file for swap space unless absolutely necessary or if you have so much system RAM that

you find it unlikely that Linux would ever use your swap file unless something was going

wrong, but you still wanted to prevent crashing/thrashing in unusual circumstances. I

have discovered that even on my very large workstation with 64G of RAM, some swap

space is used during backups and other operations that can take huge amounts of RAM

and use it as buffers for temporary storage.

Chapter 5 InstallIng lInux

138

 Thrashing

Thrashing can occur when total virtual memory, both RAM and swap space, become

nearly full. The system spends so much time paging blocks of memory between swap

space and RAM and back, that little time is left for real work. The typical symptoms of

this are fairly obvious:

• The system becomes completely unresponsive or very, very slow.

• If you can issue a command like free that shows CPU load and

memory usage, you will see that the CPU load is very high, perhaps as

much as 30–40 times the number of CPUs in the system.

• RAM is almost completely allocated, and swap space is seeing

significant usage.

 What is the right amount of swap space?

Many years ago, the rule of thumb for the amount of swap space that should be

allocated was 2X the amount of RAM installed in the computer. Of course that was when

computers typically had RAM amounts measured in KB or MB. So if a computer had

64KB of RAM, a swap partition of 128KB would be an optimum size.

This rule of thumb took into account the fact that RAM memory sizes were typically

quite small at that time and the fact that allocating more than 2X RAM for swap space

did not improve performance. With more than twice RAM for swap, most systems spent

more time thrashing than actually performing useful work.

RAM memory has become quite inexpensive, and many computers these days

have amounts of RAM that extend into tens or hundreds of gigabytes. Most of my newer

computers have at least 4 or 8GB of RAM, and one has 32 GB while another, my main

workstation, 64GB. When dealing with computers having huge amounts of RAM, the

limiting performance factor for swap space is far lower than the 2X multiplier. As a

consequence, the recommended swap space is considered a function of system memory

workload, not of system memory.

Table 5-2 provides the Fedora Project’s recommended size of a swap partition

depending on the amount of RAM in your system and whether you want sufficient

memory for your system to hibernate. To allow for hibernation, however, you will need

to edit the swap space in the custom partitioning stage. The “recommended” swap

Chapter 5 InstallIng lInux

139

partition size is established automatically during a default installation, but I usually find

that to be either too large or too small for my needs.

The Fedora 29 Installation Guide4 contains the following table that defines the

current thinking about swap space allocation. I have included in the following my

version of that table of recommendations. Note that other versions of Fedora and

other Linux distributions may differ slightly from this table in some aspects, but this

is the same table used by Red Hat Enterprise Linux for its recommendations. The

recommendations in Table 5-2 have been very stable since Fedora 19.

Of course most Linux administrators have their own ideas about the appropriate

amount of swap space—as well as pretty much everything else. Table 5-3 contains my

own recommendations based on my experiences in multiple environments.

Neither of these tables may work for your specific environment but it does give you

a place to start. The main consideration in both tables is that as the amount of RAM

increases, adding more swap space simply leads to thrashing well before the swap space

4 Fedora Documentation, Installation Guide, https://docs.fedoraproject.org/en-US/
fedora/f29/

Table 5-2. Recommended System Swap Space in Fedora 29 Documentation

Amount of RAM
installed in system

Recommended swap
space

Recommended swap space
with hibernation

≤ 2gB 2x raM 3x raM

2gB–8gB = raM 2x raM

8gB–64gB 4g to 0.5x raM 1.5x raM

>64gB Min 4gB hibernation not recommended

Table 5-3. Recommended System Swap Space per the author

Amount of RAM installed in system Recommended swap space

≤ 2gB 2x raM

2gB–8gB = raM

>8gB 8gB

Chapter 5 InstallIng lInux

https://docs.fedoraproject.org/en-US/fedora/f29/
https://docs.fedoraproject.org/en-US/fedora/f29/

140

even comes close to being filled. If you have too little virtual memory while following these

recommendations, you should add more RAM, if possible, rather than more swap space.

In order to test the Fedora (and RHEL) swap space recommendations, I have

used their recommendation of 0.5 ∗ RAM on my two largest systems, the ones with

32 and 64GB of RAM. Even when running four or five VMs, multiple documents in

LibreOffice, Thunderbird, Chrome web browser, several terminal emulator sessions,

the Xfce file manager, and a number of other background applications, the only time

I see any use of swap is during backups I have scheduled for every morning at about

2am. Even then, swap usage is no more than 16MB – yes megabytes. Don’t forget –

these results are for my system with my loads and do not necessarily apply to your

particular real-world environment.

 Finish partitioning

Now go ahead and enter the data to create the swap partition as shown in Table 5-1. Note

that once you select “swap” in the Add New Mount Point dialog, the swap partition does

not actually have a mount point as it is accessible only by the Linux kernel and not by

users, even root. This is just a mechanism for allowing you to choose the swap partition

while doing manual partitioning.

When you have created all of the partitions listed in Table 5-1, click the blue Done

button. You will then see a dialog entitled Summary of Changes. Click Accept Changes

to return to the Installation Summary dialog.

 Begin the installation
We have now completed all of the configuration items needed for our VM. To start the

installation procedure, click the blue Begin Installation button.

We have a couple tasks that need to be performed during the installation. We do not

need to wait until the installation has completed before we can set the root password

and add a non-root user. Notice in Figure 5-15 that there are warnings superimposed

over the Root Password and User Creation options. It is not required that we create a

non-root user and we could do it later. Since we have this opportunity to do so now, let’s

go ahead and take care of both of these remaining tasks.

Chapter 5 InstallIng lInux

141

 Set the root password
Click Root Password to set the password for root. Type in the password twice as shown

in Figure 5-16. Notice the warning message at the bottom of the root password dialog

which says that the password I entered is based on a dictionary word.

Because of the weak password, you must click the blue Done button twice to verify

that you really want to use this weak password. If, as root, you set a weak password

for root or a non-privileged user from the command line, you would receive a similar

message, but you could continue anyway. This is because root can do anything, even

Figure 5-15. The installation process has started

Chapter 5 InstallIng lInux

142

set poor passwords for themselves or non-root users. The non-privileged users must

set a good password and are not allowed to circumvent the rules for the creation of

good passwords.

However, you should enter a stronger password – one which does not generate any

warnings – and then click the Done button.

After setting the root password, you will be back at the installation dialog as in

Figure 5-15, and the Root Password item will no longer have a warning message.

Figure 5-16. Setting the root password

Chapter 5 InstallIng lInux

143

 Create the student user
Click the User Creation icon, and you will enter the User Creation dialog shown in

Figure 5-17. Enter the data as shown, and click the blue Done button.

After specifying the user information, you will be back at the main installation dialog.

The installation may not be complete yet. If not, wait until it does complete as shown in

Figure 5-18 and then proceed.

Figure 5-17. Creating the student user

Chapter 5 InstallIng lInux

144

 Finishing the installation
When completed, the Anaconda installer dialog will indicate “Complete” on the progress

bar, and the success message at the bottom right in Figure 5-18 will be displayed along

with the blue Quit button.

 Exit the installer
This terminology may be a bit confusing. Quit means to quit the Anaconda installer,

which is an application running on the live image desktop. The hard drive has been

partitioned and formatted, and Fedora has already been installed. Click Quit to exit the

Anaconda installer.

Figure 5-18. The installation is complete

Chapter 5 InstallIng lInux

145

 Shut down the Live system
Before we do anything else, look at the Live system Xfce desktop. It looks and works the

same as the Xfce desktop you will use when we reboot the VM using its own virtual disk

instead of the Live system. The only difference will be that of some of the Live filesystem

icons will no longer be present. So using this desktop will be the same as using the Xfce

desktop on any installed system.

Figure 5-19 shows how to shut down the Live system. The Xfce panel across the top

of the screen starts with the Applications launcher on the left and has space for the icons

of running applications, a clock, the system tray containing icons of various functions

and notifications, and the User button on the far right which always displays the name of

the current logged in user.

Click the Live System User button, and then click the Shut Down action button. A

dialog with a 30-second countdown will display. This dialog will allow you to shut down

Figure 5-19. Shut down the VM after the installation is complete

Chapter 5 InstallIng lInux

146

immediately or cancel the shutdown. If you do nothing, the system will shut down when

the 30-second timer counts down to zero.

This shutdown will power off the VM, and the VM window will close.

 Reconfigure the VM
Before rebooting the VM, we need to reconfigure it a little by removing the Fedora ISO

image file from the virtual optical drive. If we were to leave the ISO image inserted in the

virtual drive, the VM would boot from the image:

 1. Open the Settings for StudentVM1.

 2. Click Storage.

 3. Select the Fedora Live CD which is under the IDE controller in the

Storage Devices panel.

 4. Click the little CD icon on the Optical Drive line in the Attributes

panel.

 5. At the bottom of the list, choose the menu option, Remove disk
From Virtual Drive. The entry under the IDE controller should

now be empty.

 6. Click the OK button of the Settings dialog.

The StudentVM1 virtual machine is now ready to run the experiments you will

encounter in the rest of this course.

 Create a snapshot
Before we boot the VM, we want to create a snapshot that you can return to in case the

VM gets borked up so badly that you cannot recover without starting over. The snapshot

will make it easy to recover to a pristine system without having to perform a complete

reinstallation.

Figure 5-20 shows the Snapshots view for the StudentVM1 virtual machine which

we just created. To get to this view in the VirtualBox Manager, select the StudentVM1

VM, and then click the menu icon on the right side of the StudentVM1 selection bar. This

pops up a short menu with Snapshots in it. Click the Snapshots view button in the icon

bar. The Current State entry is the only one shown, so there are no snapshots.

Chapter 5 InstallIng lInux

147

You can take many snapshots of the same virtual machine as you progress through

this course which will make it easy to back up to a recent snapshot instead of going

back all the way to the first one which we will create here. I suggest creating a snapshot

at the end of each chapter if you have enough room on the hard drive where the virtual

machine files are stored.

To create a snapshot, simply click the Take button – the one with the green + sign.

This opens the Take Snapshot of Virtual Machine dialog where you can change the

default name to something else. There is also a description field where you can enter any

type of notes or identifying data that you want. I kept the name and just entered, “Before

first boot” in the description field. Enter whatever you want in the description field, but

I suggest keeping the default snapshot names. The Snapshot view looks like Figure 5-21

after taking your first snapshot.

Figure 5-20. The Snapshots view of StudentVM1 before taking a snapshot

Chapter 5 InstallIng lInux

148

 First boot
It is now time to boot up the VM:

 1. Select the StudentVM1 virtual machine.

 2. Be sure that the Current State of the VM is selected in the

Snapshots dialog.

 3. Click the Start icon in the icon bar of the VirtualBox Manager.

You could also right- click the VM and select Start from the

pop-up menu.

 4. The VM should boot to a GUI login screen like the one shown in

Figure 5-22.

Figure 5-21. After taking the first snapshot of StudentVM1

Chapter 5 InstallIng lInux

149

But don’t log in just yet. We will get to that in Chapter 6 where we will explore this

login screen and some other things a bit before we actually log in and explore the Xfce

desktop.

If you are not ready to continue to the next chapter, you can leave the VM running

in this state or shut it down from the login screen. In the upper right corner of the VM

login screen is a universal On/Off symbol. Click that and select Shut Down ... to power

off the VM.

 What to do if the experiments do not work
Starting in the next chapter, you will have experiments to perform as part of learning

to become a SysAdmin. These experiments are intended to be self-contained and not

dependent upon any setup, except for the results of previously performed experiments

or preparation. Certain Linux utilities and tools must be present, but these should all

Figure 5-22. The Fedora 29 GUI login screen

Chapter 5 InstallIng lInux

150

be installed or available to install on a standard Fedora Linux workstation installation.

If any of these tools need to be installed, there will be a preparation section before the

experiment in which they are needed. Installing tools like this is, after all, another part of

being a SysAdmin.

All of these experiments should “just work” assuming we install the requisite tools.

We all know how that goes, right? So when something does fail, the first things to do are

the obvious:

 1. Ensure that the required tools were installed as part of the chapter

preparation section. Not all chapters will need a preparation

section.

 2. Verify that the commands were entered correctly. This is the most

common problem I encounter for myself; it sometimes seems as if

my fingers are not typing the things my brain sends to them.

 3. You may see an error message indicating that the command was

not found. The Bash shell shows the bad command; in this case

I made up badcommand. It then gives a brief description of the

problem. This error message is displayed for both missing and

misspelled commands. Check the command spelling and syntax

multiple times to verify that it is correct:

[student@testvm1 ~]$ badcommand

bash: badcommand: command not found...

 4. Use the man command to view the manual pages (man pages) in

order to verify the correct syntax and spelling of commands.

 5. Ensure that the required commands are, in fact, installed. Install

them if they are not already installed.

 6. For experiments that require you to be logged in as root, ensure

that you have done so. Many of the experiments in this course

require that you be logged in as root – performing them as a non-

root user will not work, and the tools will throw errors.

 7. For the experiments that require being performed as a non-root

user, be sure that you are using the student account.

Chapter 5 InstallIng lInux

151

There is not much else that should go wrong – but if you encounter a problem that

you cannot make work using these tips, contact me at LinuxGeek46@both.org, and I will

do my best to help figure out the problem.

 Chapter summary
We have now installed the latest release of Fedora Linux on the virtual machine we

created in the previous chapter. We discussed the terminology surrounding filesystems

and should be able to list the directories that are typically recommended for mounting as

separate filesystems. We have created a snapshot of the VM in case we run into problems

and need to roll back to the beginning.

 Exercises
Perform the following exercises to complete this chapter:

 1. Can the name of the volume group created by the Anaconda

installer be changed during the installation?

 2. How much swap space is recommended in the Fedora

documentation for a host with 10GB of RAM that does not require

hibernation?

 3. On what factors are the swap space recommendations based?

 4. How much total space was used by the installation?

 5. What is the purpose of snapshots?

 6. Is it possible to take a snapshot while the VM is up and running?

Chapter 5 InstallIng lInux

153
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_6

CHAPTER 6

Using the Xfce Desktop
 Objectives
In this chapter you will learn

• Why Xfce is a good desktop to use for this course as well as for

regular use

• The basic usage and navigation of the Xfce desktop

• How to launch programs

• The basic usage of the xfce4-terminal emulator

• How to install all current updates as well as some new software

• How to use the Settings Manager

• How to add program launchers to the bottom panel

• How to configure the Xfce desktop

 Why Xfce
Xfce seems like an unusual choice for the desktop to use in a Linux course rather than

the more common GNOME or KDE desktops. I started using Xfce a few months ago,

and I find that I like it a lot and am enjoying its speed and lightness. The Xfce desktop is

thin and fast with an overall elegance that makes it easy to figure out how to do things.

Its lightweight construction conserves both memory and CPU cycles. This makes it

ideal for older hosts with few resources to spare for a desktop and resource-constrained

virtual machines. However, Xfce is flexible and powerful enough to satisfy my needs as

a power user.

154

 The desktop
Xfce is a lightweight desktop that has a very small memory footprint and CPU usage

compared to some of the other desktops such as KDE and GNOME. On my system

the programs that make up the Xfce desktop take a tiny amount of memory for such a

powerful desktop. Very low CPU usage is also a hallmark of the Xfce desktop. With such

a small memory footprint, I am not especially surprised that Xfce is also very sparing of

CPU cycles.

The Xfce desktop, as seen in Figure 6-1, is simple and uncluttered with fluff. The

basic desktop has two panels and a vertical line of icons on the left side. Panel 0 is at the

bottom and consists of some basic application launchers, as well as the “Applications”

icon which provides access to all of the applications on the system. The panels can be

modified with additional items such as new launchers or altering their height and width.

Panel 1 is at the top and has an Applications launcher as well as a “Workspace

Switcher” that allows the user to switch between multiple workspaces. A workspace is

an organizational entity like a desktop, and having multiple workspaces is like having

multiple desktops on which to work with different projects on each.

Chapter 6 Using the XfCe Desktop

155

The icons down the left side of the desktop consist of home directory and Trash

icons. It can also display icons for the complete filesystem directory tree and any

connected pluggable USB storage devices. These icons can be used to mount and

unmount the device, as well as to open the default file manager. They can also be

hidden, if you prefer, with the filesystem, Trash, and home directory icons being

separately controllable. The removable drives can be hidden or displayed as a group.

Figure 6-1. The Xfce desktop with the Thunar file manager and the xfce4-terminal
open

Chapter 6 Using the XfCe Desktop

156

 The file manager
Thunar is the default file manager for Xfce. It is simple, easy to use and configure, and

very easy to learn. While not as full featured as file managers like Konqueror or Dolphin,

it is quite capable and very fast. Thunar does not have the ability to create multiple panes

in its window, but it does provide tabs so that multiple directories can be open at the

same time. Thunar also has a very nice sidebar that, like the desktop, shows the same

icons for the complete filesystem directory tree and any connected USB storage devices.

Devices can be mounted or unmounted, and removable media such as CDs can be

ejected. Thunar can also use helper applications such as ark to open archive files when

they are clicked on. Archives such as zip, tar, and rpm files can be viewed, and individual

files can be copied out of them.

Having used a number of different file managers, I must say that I like Thunar for its

simplicity and ease of use. It is easy to navigate the filesystem using the sidebar.

 Stability
The Xfce desktop is very stable. New releases seem to be on a three-year cycle although

updates are provided as necessary. The current version is 4.12 which was released

in February of 2015. The rock solid nature of the Xfce desktop is very reassuring after

having issues with KDE. The Xfce desktop has never crashed for me, and it has never

spawned daemons that gobbled up system resources. It just sits there and works which

is what I want.

Xfce is simply elegant. Simplicity is one of the hallmarks of elegance. Clearly the

programmers who write and maintain Xfce and its component applications are great

fans of simplicity. This simplicity is very likely the reason that Xfce is so stable, but it also

results in a clean look, a responsive interface, an easily navigable structure that feels

natural, and an overall elegance that makes it a pleasure to use.

 xfce4-terminal emulator
The xfce4-terminal emulator is a powerful emulator that uses tabs to allow multiple

terminals in a single window, like many other terminal emulators. This terminal

emulator is simple compared to other emulators like Tilix, Terminator, and Konsole, but

it does get the job done. The tab names can be changed, and the tabs can be rearranged

by drag and drop, by using the arrow icons on the toolbar, or the options on the menu

Chapter 6 Using the XfCe Desktop

157

bar. One thing I especially like about the tabs on the Xfce terminal emulator is that they

display the name of the host to which they are connected regardless of how many other

hosts are connected through to make that connection, that is, host1 → host2 → host3 →

host4 properly shows host4 in the tab. Other emulators show host2 at best.

Many aspects of its function and appearance can be easily configured to suit your

needs. Like other Xfce components, this terminal emulator uses very little in the way of

system resources.

 Configurability
Within its limits, Xfce is very configurable. While not offering as much configurability

as a desktop like KDE, it is far more configurable and more easily so than GNOME, for

example. I found that the Settings Manager is the doorway to everything that is needed to

configure Xfce. The individual configuration apps are separately available, but the Settings

Manager collects them all into one window for ease of access. All of the important aspects

of the desktop can be configured to meet my own personal needs and preferences.

 Getting started
Before we log in for the first time, let’s take a quick look at the GUI login screen shown in

Figure 6-2. There are some interesting things to explore here. The login screen, that is,

the greeter, is displayed and controlled by the display manager, lightdm,1 which is only

one of several graphical login managers called display managers.2 Each display manager

also has one or more greeters – graphical interfaces – which can be changed by the user.

In the center of the screen is the login dialog. The user student is already selected

because there are no other users who can log in at the GUI. The root user is not allowed

to log in using the GUI. Like everything else in Linux, this behavior is configurable, but

I recommend against changing that. If there were other users created for this host, they

would be selectable using the selection bar.

The panel across the top of the login screen contains information and controls.

Starting from the left, we see first the name of the host. Many of the display managers

1 Wikipedia, LightDM, https://en.wikipedia.org/wiki/LightDM
2 Wikipedia, Display Manager, https://en.wikipedia.org/wiki/X_display_manager_
(program_type)

Chapter 6 Using the XfCe Desktop

https://en.wikipedia.org/wiki/LightDM
https://en.wikipedia.org/wiki/X_display_manager_(program_type)
https://en.wikipedia.org/wiki/X_display_manager_(program_type)

158

I have used – and there are several – do not display the hostname. In the center of the

control panel is the current date and time.

On the right side of the panel, we first find – again from left to right – a circle that

contains “XF,” which stands for Xfce. This control allows you to select any one of multiple

desktops if you have more than Xfce installed. Linux has many desktops available, such

as KDE, GNOME, Xfce, LXDE, Mate, and many more. You can install any or all of these

and switch between them whenever you log in. You would need to select the desired

desktop before you log in.

Figure 6-2. Type in the password, and click the Log In button

Chapter 6 Using the XfCe Desktop

159

The next item we encounter is language selection. This control allows you to select

any one of hundreds of languages to use on the desktop.

Next we have a human person with arms and legs spread wide. This allows

accessibility choices for large font and high-contrast color selections for the desktop.

Last and furthest to the right is the virtual power button. Click this and you get a

submenu that allows you to suspend, hibernate, restart (reboot), and shut down (power

off) the system.

 Login
Before we can use the Xfce desktop, we need to log in. The StudentVM1 virtual

machine should already be up and running and waiting for you to log in as shown

in Figure 6-2; however if you closed it at the end of the previous chapter, start it now.

Click the VM screen, then type in the password you chose for the student user, and

click the Log In button.

The first time you log in to Xfce, you are given a choice for the panel configuration.

The panel(s) can contain application launchers, a time and date calendar, a system tray

with icons to allow access to things like network, updates, the clipboard, and more. I

strongly suggest using the default configuration rather than an empty panel. You can

make changes to the panel later, but starting with an empty one creates a lot of work to

start with that we don’t need right now.

Chapter 6 Using the XfCe Desktop

160

Just click Use default config to continue to the Xfce desktop which now has a panel

at the top and one at the bottom as shown in Figure 6-4. The top panel contains several

components that provide access and control over some important functions.

On the far left of the top panel is the Applications menu. Click this to see a menu

and several submenus that allow you to select and launch programs and utilities. Just

click the desired application to launch it.

Next is some currently empty space where the icons for running applications will

be displayed. Then we have four squares, one of which is dark gray and the other three

are lighter gray. This is the desktop selector, and the darker one is the currently selected

desktop. The purpose of having more than one desktop is to enable placing windows

for different projects on different desktops to help keep things organized. Application

Figure 6-3. Select the default panel configuration

Chapter 6 Using the XfCe Desktop

161

windows and icons are displayed in the desktop selector if any are running. Just click the

desired desktop to switch to it. Applications can be moved from one desktop to another.

Drag the application from one desktop in the switcher to another, or right-click the

application title bar to raise a menu that provides a desktop switching option.

To the immediate right of the desktop switcher is the clock. You can right-click the

clock to configure it to display the date as well as the time in different formats. Next is the

system tray which contains icons to install software updates; connect, disconnect, and

check the status of the network; and check the battery status. The network is connected

by default at boot time, but you can also find information about the current connection.

On a laptop, you would also have wireless information.

Figure 6-4. The Xfce desktop

Chapter 6 Using the XfCe Desktop

162

Soon after you log in, and at regular intervals thereafter, the dnf-dragora program –

the orange and blue icon that is hard to see – will check for updates and notify you if

there are any. There will very likely be a large number after the installation and first

boot. For now just ignore this. Do not try to install updates now; we will do that from the

command line later in this chapter.

The bottom panel contains launchers for some basic applications. Be sure to note

the second icon from the left which will launch the xfce4-terminal emulator. We will look

at the rest of these launchers in more detail soon.

 Exploring the Xfce desktop
Let’s spend some time exploring the Xfce desktop itself. This includes reducing the

annoyance level of the screensaver, doing some configuration to set default applications,

adding launchers to Panel 2 – the bottom panel – to make them more easily accessible,

and using multiple desktops.

As we proceed through this exploration of the Xfce desktop, you should take time to

do a bit of exploration on your own. I find that is the way I learn best. I like to fiddle with

things to try to get them the way I want them – or until they break – whichever comes

first. When they break, I get to figure out what went wrong and fix them.

Like all decent desktops, Xfce has a screensaver that also locks the screen. This can

get annoying – as it has for me while I write this – so we are going to reconfigure the

screensaver first. Figure 6-5 shows us how to get started.

Chapter 6 Using the XfCe Desktop

163

EXPERIMENT 6-1

Do this experiment as the student user. in this experiment we explore the screensaver and

then turn it off so it won’t interfere with our work.

 1. to launch the screensaver application, use panel 1 (the top one) and select

Applications ➤ Settings ➤ Screensaver.

 2. figure 6-6 shows the Screensaver Preferences dialog. the Mode is currently

set to random screen saver which selects savers from the checked ones in

the list. scroll down and select some of them to see what they look like in the

preview box on the right. i selected the XanalogtV for this screen shot because

Figure 6-5. Launching the screensaver configuration application

Chapter 6 Using the XfCe Desktop

164

it is interesting and it does bring back memories. go ahead and “experiment” –

all right – play with this because it is fun.

this page also allows you to select timeouts for screen blanking and how often to cycle to a

new random saver.

 3. Click the Advanced tab. this dialog allows configuration of text and image

manipulation. it also provides power management configuration for the display.

 4. to disable the screensaver, return to the Display Modes tab, click the Mode

button, and select Disable Screen Saver.

 5. Close the screensaver preferences dialog.

for my physical hosts, i usually select the blank screen for my screensaver and set the time

long enough that it won’t blank while i am still working at my desk but not touching the mouse

or keyboard. i set the screen to lock a few minutes after that. My tolerance levels change over

time, so i do reset these occasionally. You should set them to your own needs.

Figure 6-6. Experimenting with the screensaver application

Chapter 6 Using the XfCe Desktop

165

 Settings Manager
Let’s look at how we can access the various desktop settings to Xfce. There are two ways

to do so, and one is to use the Applications button on Panel 1, select Settings, and then

select the specific setting item you want to view of change. The other option is to open

the Settings Manager at the top of the Settings menu. The Settings Manager has all of the

other settings in one window for easy access. Figure 6-7 shows both options. On the left,

you can see the Applications menu selection, and on the right is the Settings Manager.

Figure 6-7. There are two ways of accessing the various Xfce desktop settings.
Notice that I have resized the window of the StudentVM1 virtual machine so that
there would be enough vertical space to show all of the settings in the Settings
Manager

Chapter 6 Using the XfCe Desktop

166

 Adding launchers to Panel 2
I prefer to use the Settings Manager. I also like to make it easier for myself to access the

Settings Manager itself. Not that three clicks to go through the menu tree every time I

want to access a settings tool, but one click is always better than three. This is part of

being the lazy SysAdmin, less typing and fewer mouse clicks are always more efficient.

So let’s take a side trip to add the Settings Manager icon to Panel 2, the bottom panel, as

a launcher.

EXPERIMENT 6-2

in this experiment we will add the settings Manager to panel 2 on the Xfce desktop.

 1. open the applications menu as shown in figure 6-7, and locate the settings

Manager at the top of the settings menu.

 2. Click the Settings Manager as if you were going to open it, but hold the mouse

button down, and drag it to the left side of panel 2 like i have in figure 6-8.

hover over the small space at the end of the panel until the vertical red bar

appears. this bar shows where the new launcher will be added.

Chapter 6 Using the XfCe Desktop

167

 3. When the red bar is in the desired location on the panel, release the mouse

button to drop it there.

 4. an interrogatory dialog will open that asks if you want to “Create new launcher

from 1 desktop file.” Click the Create Launcher button. the new launcher now

appears on panel 2 as shown in figure 6-9.

You can now launch the settings Manager from the panel. You could have placed the launcher

anywhere on the panel or on the desktop.

Figure 6-8. Adding the Settings Manager to Panel 2

Figure 6-9. The new Settings Manager launcher on Panel 2

Chapter 6 Using the XfCe Desktop

168

Note that only one click is required to launch applications from the panel. I add all of

my most used applications to Panel 2 which prevents me from having to search for them

in the menus every time I want to use one of them. As we work our way through this

course, you can add more launchers to the panel to enhance your own efficiency.

 Preferred applications
We can now return to setting our preferred applications. Default applications are choices

like which terminal emulator or web browser that you want all other applications to

launch when one of those is needed. For example, you might want your word processor

to launch Chrome when you click a URL embedded in the text. Xfce calls these preferred

applications.

The preferred terminal emulator is already configured as the xfce4-terminal, which

you have had an opportunity to use. We will go into much more detail about the xfce4-

terminal in Chapter 7.

The icons at the bottom of the Xfce desktop, in Panel 2, include a couple for which

we should choose default applications, the web browser and the file manager. If you were

to click the web browser icon, the Earth with a mouse pointer on it, you would be given

a choice of which of the installed web browsers you want to use as the default. At the

moment, only the Firefox web browser is installed, so there aren’t any real choices available.

There is also a better way, and that is to make all of the preferred application

selections at one time.

EXPERIMENT 6-3

in this experiment we will set the preferred applications for the student user.

 1. if the Settings Manager is not already open, open it now.

 2. Locate the Preferred Applications icon in the settings dialog, and click it once

to open it. this dialog opens to its internet tab which allows selection of the

browser and e-mail application. neither has a preferred application at this time,

so we need to set one for the browser.

 3. to set firefox as the default browser, click the selection bar that says “no

application selected” for the web browser. the only option at this time is firefox

so select that.

Chapter 6 Using the XfCe Desktop

169

 4. switch to the Utilities tab of the preferred applications dialog shown in

figure 6-10. notice that both items here already have selections made. thunar

is the only option available as the file manager, and the Xfce terminal is the only

option for the terminal emulator.

 5. the fact that there are no other options available for any of these applications

is due to the extremely basic installation that is performed by the desktop

installers.

 6. Click the all settings button shown in figure 6-10 to return to the main settings

Manager.

The Thunar file manager is one of the best ones I have used. There are many and

several of them are available for Fedora Linux. The same is true of the Xfce terminal – it is

one of the best of many very good ones. In my opinion, even if there were other choices

available to be made here, these are excellent ones, and I would not change them. We

will cover file managers in more detail in Chapter 2 of Volume 2.

Figure 6-10. The Utilities tab of the Preferred Applications dialog allows selection
of the default GUI file manager and the default terminal emulator

Chapter 6 Using the XfCe Desktop

170

 Desktop appearance
Changing the appearance of the desktop is managed by more than one of the settings

tools in the Settings Manager. I like to play – ...er...experiment – with these as my moods

change. Well, not that often, but every few weeks. I like to try different things, and this is

one harmless way of making changes that can be fun.

 Appearance
We start with the Appearance tools which allows us to select various aspects of the look

of the user interface. Although Xfce does not have the vast number of configuration that

KDE does, it has more than some other desktops. I like a lot of flexibility in changing the

look of my desktop, and I am quite satisfied with the amount of flexibility I get with the

Xfce desktop. It is flexible enough for me without being overly complex.

The Appearance tool has four tabs that provide controls to adjust different parts of

the Xfce desktop. The Appearance dialog opens to the Style tab. This tab is mostly about

color schemes, but it also has some effect on the rendering of buttons and sliders. For

example, controls may have a flat or 3D appearance in different styles.

The second tab, Icons, allows selection of an icon theme from among several

available ones. Others can be downloaded and installed as well.

The third tab, Fonts, allows the user to select a font theme for the desktop. A default

variable width font can be selected as well as a default monospace font.

The fourth tab, Settings, allows selection of whether the icons have text or not and

where it is located. It also provides the ability to determine whether some buttons and

menu items have images on them. You can also turn sounds for events on or off on this tab.

EXPERIMENT 6-4

this experiment will provide you with an opportunity to try making changes to the look and

feel of your desktop. experimenting with these changes can suck up a lot of time, so try not to

get too distracted by it. the main idea here is to allow you to familiarize yourself with changing

the appearance of the Xfce desktop.

Chapter 6 Using the XfCe Desktop

171

to begin, open the settings Manager using the icon you added to panel 2 in experiment 6-2.

then click the appearance icon which is in the upper left of the settings Manager window.

figure 6-11 shows the style tab. this tab allows you to choose the basic color scheme and

some of the visual aspects of the Xfce desktop.

Click some of the different schemes to see how they look in your VM. i have noticed (at the

time of this writing) that the Xfce selections look good with respect to the colors, but that

the menu bars, on windows that have them, seem to jam the menu items together, so they

become difficult to read. for your new style, you should consider one of the others. i like the

adwaita-dark, arc-Dark-solid, and Crux styles.

now go to the icons tab, and select some different icon schemes to see how they look. this is

not the mouse pointer icon, but the application icons. i like the fedora icon set.

notice that all changes take place almost as soon as you select them.

Figure 6-11. Setting the style elements of the Xfce desktop

Chapter 6 Using the XfCe Desktop

172

When you have finished setting the appearance of your desktop, click the all settings button

to return to the main settings dialog. then click window manager. these settings enable you

to change the look of the window decorations – things like the title bar, the icons on the title

bar, and the size and look of the window borders. in figure 6-12 i have chosen the B6 window

decorations. try some of the other themes in this menu.

the keyboard tab allows you to change some of the keyboard shortcuts, but i seldom make

any changes here. the focus tab gives you the ability to determine when a window gets the

focus so that it is the active window. the advanced tab determines whether windows snap to

invisible grid lines when moves and the granularity of the grid. it also allows you to configure

how windows dragged to the edge of the screen act.

Leave the settings Manager open for now.

Figure 6-12. The Window Manager settings allow you to change the look of the
window decorations

Chapter 6 Using the XfCe Desktop

173

You should also take a little time to explore the other dialogs found in the settings Manager.

Don’t forget that you can return to the settings Manager at any time to change the appearance

of your desktop. so if you don’t like tomorrow what you selected today, you can choose

another look and feel for your desktop.

Configuring the look and feel of the desktop may seem a bit frivolous, but I find that

having a desktop that looks good to me and that has launchers for the applications I

use most frequently and that can be easily modified goes a long way to making my work

pleasant and easy. Besides, it is fun to play with these settings, and SysAdmins just want

to have fun.

 Multiple desktops
Another feature of the Xfce desktop, and all except the simplest of the others I have used,

is the ability to use multiple desktops, or workspaces as they are called in Xfce. I use

this feature often, and many people find it useful to organize their work by placing the

windows belonging to each project on which they are working on different desktops.

For example, I have four workspaces on my Xfce desktop. I have my e-mail, an instance

of the Chromium web browser, and a terminal session on my main workspace. I have

VirtualBox and all of my running VMs in a second workspace along with another

terminal session. I have my writing tools on a third workspace, including various

documents that are open in LibreOffice, another instance of Chromium for research, a

file manager to open and manage the documents that comprise this book, and another

terminal emulator session with multiple tabs each of which are logged in via SSH to one

of the VMs I have running.

EXPERIMENT 6-5

this experiment is designed to give you practice with using multiple desktops. Your desktop

should look very similar to that in figure 6-13, with the settings Manager and thunar file

manager open.

Chapter 6 Using the XfCe Desktop

174

to start, click the filing cabinet icon in the center of panel 2 (the bottom panel). if you hover

the mouse pointer over this folder, the tool tip will pop up showing the title “file Manager.” the

default file manager is thunar, and it can be used to explore the files and directories in your

home directory as well as other system directories to which you have access, such as /tmp.

But we want to move this file manager to a different desktop. there are two different ways

to do this. first, right-click anywhere on the file manager’s title bar at the top of the window.

then select Move to Another Workspace as in figure 6-13, and then click Workspace 3. You

could also access the same menu with a right-click on the button for the running application in

the top panel, panel 1.

the Workspace switcher now shows the window for the file manager in workspace 3, while the

settings Manager is still in workspace 1, as shown in figure 6-14. You can click any workspace

in the switcher to go immediately to that workspace. so click workspace three to go there.

Figure 6-13. Move the Thunar file manager to another workspace using the
System menu

Chapter 6 Using the XfCe Desktop

175

notice that the windows in the switcher are a reasonable approximation of their relative size

on the workspaces that the switcher represents. the windows in the switcher also have icons

that represent the application running in the window. this makes it fairly easy for us to use the

switcher to move windows from one workplace to another.

however, if the panel size is too small, the windows may not be replicated in the desktop

switcher, or just the outline of the window will be present without an icon. if there are no

windows in the desktop switcher, you should skip the next paragraph.

Drag the file manager icon from workspace 3 to workspace 4 and drop it there. the file

manager window disappears from the workspace, and the icon for the file manager is now in

workspace 4. Click workspace 4 to go there.

as with all things Linux, there are multiple ways to manage these workspaces and the

application windows in each. i find that there are times when placing windows that belong to

a specific project on a workspace by themselves is a good way to simplify the clutter on my

primary workspace.

 Installing updates
It is important to ensure that the Linux operating system and software are always

up to date. Although it is possible to install updates using the dnfdragora software

management tool that is found in the system tray on the desktop, SysAdmins are more

likely to perform updates from the command line.

Software updates are installed to fix problems with existing versions or to add some

new function. Updates do not install a complete new release version of Fedora. The last

experiment in this chapter will explore using a terminal session on the desktop as root to

install software updates.

Figure 6-14. The Workspace Switcher shows windows in workspaces 1 and 3

Chapter 6 Using the XfCe Desktop

176

EXPERIMENT 6-6

on the bottom panel, panel 2, click the terminal emulator icon once, the third from the left in

figure 6-15. You can hover the mouse pointer over the icon to view a terse description of the

program represented by the icon.

 1. Updates can only be installed by root. even if we used the graphical dnfdragora

software management tool on the desktop, we would need to use the root

password. We need to switch user to root in the terminal session:

[student@studentvm1 ~]$ su -

Password: <Enter the root password>

[root@studentvm1 ~]#

Figure 6-15. Use Panel 2 to open a terminal session

Chapter 6 Using the XfCe Desktop

177

You may have already noticed that we always add a dash after the su

command, like so: su -. We will go into more detail about this in a later

chapter, but for now it is sufficient to say that the dash ensures that root is

working in the correct environment. the root user has its own home directory,

environment variables like the path ($path), and some command-line tools that

are a bit different for root than for other users.

 2. now we install all of the available updates. this is very important because it

is always a best practice to ensure that things are working as they should by

having the latest updates installed. the latest updates will contain the most

recent security patches as well as functional fixes.

this is easy, but it will require waiting while the process completes. the nice

thing is that Linux updates, even when they do require a reboot, don’t reboot

automatically, and you can continue working until you are ready to do the

reboot.

enter the following command:

[root@studentvm1 ~]# dnf -y update

on my VM this installed over 375 updates. this number may vary greatly

depending upon how recent the iso image you installed Linux from is and how

many updates there are. i have not shown the lengthy output produced from

this command, but you should pay some attention to it as the dnf command

does its work. this will give you an idea of what to expect when you do updates

later.

the installation of some updates, especially some kernel packages, may appear

to stop for a period of time or be hung. Don’t worry; this is normal.

 3. Because the kernel was updated, we will do a reboot so that the new kernel is

loaded. there are some ways to do this in the gUi, but i prefer rebooting from

the command line. after the updates have been installed and the message,

“Complete!” is displayed, we will do the reboot – but not before:

[root@studentvm1 ~]# reboot

Chapter 6 Using the XfCe Desktop

178

 4. During the reboot, be sure to look at the grUB menu. note that there are

multiple kernels shown, two, for now. You can use the up and down arrow keys

on your keyboard to select a different kernel than the default, which is always

the most recent. We will talk more about this later, but having multiple kernels

from which to boot can be very helpful at times. Don’t change this for now.

 5. Log in to the desktop and open a terminal session. there is something else that

needs to be done after an update to ensure that the man(ual) pages – the help

facility – are up to date. i have had times when the database was not properly

updated and the man command did not display the man page for a command.

this command ensures that all of the man pages are up to date:

[root@studentvm1 ~]# mandb

<snip>

Purging old database entries in /usr/share/man/ko...

Processing manual pages under /usr/share/man/ko...

Purging old database entries in /usr/local/share/man...

Processing manual pages under /usr/local/share/man...

0 man subdirectories contained newer manual pages.

0 manual pages were added.

0 stray cats were added.

2 old database entries were purged.

not very much resulted from this on my system, but two old manual database items were

purged.

 Chapter summary
You have logged in using the GUI greeter for the Xfce desktop and familiarized yourself

with the desktop. You launched and learned very basic usage of the xfce4-terminal

emulator. You installed all current updates.

You have explored the Xfce desktop and learned a number of ways to configure it to

create a different look and feel. You have also explored some ways to make the desktop

work a bit more efficiently for you, such as adding launchers to the panel and using

multiple desktops.

Chapter 6 Using the XfCe Desktop

179

I did an online search to try to discover what Xfce means, and there is a historical

reference to XForms Common Environment, but Xfce no longer uses the Xforms tools.

Some years ago I found a reference to “Xtra fine computing environment,” and I like that

a lot and will use that despite not being able to find the page reference again.

 Exercises
Perform the following exercises to complete this chapter:

 1. What does the term “lightweight” mean when applied to the Xfce

desktop?

 2. Do you think that using multiple workspaces will be beneficial to

you and the way you like to work?

 3. How many options are there for the terminal emulator in the

Preferred Applications configuration dialog?

 4. Can you change the number of available workspaces?

 5. What is the name of the default file manager for the Xfce desktop?

 6. How does this file manager compare to others you have used?

 7. How do you obtain a terminal login as the root user?

Chapter 6 Using the XfCe Desktop

181
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_7

CHAPTER 7

Using the Linux Command
Line
 Objectives
In this chapter you will learn

• Command-line terminology and exploration of the differences

between the terms terminal, console, shell, command line, and

session.

• Three different methods for gaining access to the Linux command-

line interface (CLI)

• To use the Bash shell

• About some other, alternative shells

• Why it can be useful to have multiple command-line sessions open

simultaneously

• At least three different ways to deal with multiple command-line

interfaces

• Some basic but important Linux commands

 Introduction
The Linux command line is “Linux Command Central” to a SysAdmin. The Linux CLI is a

nonrestrictive interface because it places no limits on how you use it.

A graphical user interface (GUI) is by definition a very restrictive interface. You

can only perform the tasks you are allowed in a prescribed manner, and all of that is

182

chosen by the programmer. You cannot go beyond the limits of the imagination of

the programmer who wrote the code or – more likely – the restrictions placed on the

programmer by the Pointy-Haired Bosses.

In my opinion, the greatest drawback of any graphical interface is that it suppresses

any possibility for automation. No GUI offers any capability to truly automate tasks.

Instead there is only repetitive mouse clicks to perform the same or similar operations

multiple times on slightly different data. Simple “search and replace” operations are

about the best it gets with most GUI programs.

The CLI, on the other hand, allows for great flexibility in performing tasks. The

reason for this is that each Linux command, not just the GNU core utilities but also the

vast majority of the Linux commands, was written using tenets of the Linux Philosophy

such as “Everything is a file,” “Always use STDIO,” “Each program should do one thing

well,” “Avoid captive user interfaces,” and so on. You get the idea, and I will discuss each

of these tenets later in this book, so don’t worry too much if you don’t yet understand

what they mean.

The bottom line for the SysAdmin is that when developers follow the tenets, the

power of the command line can be fully exploited. The vast power of the Linux CLI lies

in its complete lack of restrictions. In this chapter we will begin to explore the command

line in ways that will illuminate the power that it literally places at your fingertips.

There are many options for accessing the command line such as virtual consoles,

many different terminal emulators, and other related software that can enhance your

flexibility and productivity. All of those possibilities will be covered in this chapter as well

as some specific examples of how the command line can perform seemingly impossible

tasks – or just satisfy the Pointy-Haired Boss.

 Preparation
Before we get any further into our discussion about the command line, there is a little

preparation we need to take care of.

The default Linux shell is Bash which is the one I prefer. Like many other things,

there are many shells from which you can choose. Many of these shells are available for

both Linux and Unix systems including OS X. We will be looking at a few of them and are

going to install them here, along with a couple other interesting programs that we will

explore later.

Chapter 7 Using the LinUx Command Line

183

PREPARATION

not all distributions install several software packages we will use during this chapter, so we

will install them now. these packages are primarily shells.

if one or more of these packages are already installed, a message will be displayed to indicate

that, but the rest of the packages will still install correctly. some additional packages will be

installed to meet the prerequisites of the ones we are installing.

Do this as root:

[root@studentvm1 ~]# dnf -y install tilix screen ksh tcsh zsh sysstat

on my test Vm, the command installed the packages listed and some other packages to meet

dependencies.

 Defining the command line
The command line is a tool that provides a text mode interface between the user and

the operating system. The command line allows the user to type commands into the

computer for processing and to see the results.

The Linux command-line interface is implemented with shells such as Bash (Bourne

again shell), csh (C shell), and ksh (Korn shell) to name just three of the many that are

available. The function of any shell is to interpret commands typed by the user and pass

the results to the operating system which executes the commands and returns the results

to the shell.

Access to the command line is through a terminal interface of some type. There are

three primary types of terminal interface that are common in modern Linux computers,

but the terminology can be confusing. So indulge me while I define those terms as well

as some other terms that relate to the command line – in some detail.

 CLI terminology
There are several terms relating to the command line that are often used

interchangeably. This indiscriminate usage of the terms caused me a good bit of

confusion when I first started working with Unix and Linux. I think it is important for

Chapter 7 Using the LinUx Command Line

184

SysAdmins to understand the differences between the terms console, virtual console,

terminal, terminal emulator, a terminal session, and shell.

Of course you can use whatever terminology works for you so long as you get your

point across. Within the pages of this book, I will try to be as precise as possible because

the reality is that there are significant differences in the meanings of these terms and it

sometimes matters.

 Command prompt
The command prompt is a string of characters like this one that sits there with a cursor

which may be flashing and waiting – prompting – you to enter a command:

[student@studentvm1 ~]$ ■

The typical command prompt in a modern Linux installation consists of the username,

the hostname, and the present working directory (PWD), also known as the “current”

directory, all enclosed in square braces. The tilde (~) character indicates the home directory.

 Command line
The command line is the line on the terminal that contains the command prompts and

any command you enter.

All of the modern mainstream Linux distributions provide at least three ways to access

the command line. If you use a graphical desktop, most distributions come with multiple

terminal emulators from which to choose. The graphical terminal emulators run in a

window on the GUI desktop, and more than one terminal emulator can be open at a time.

Linux also provides the capability for multiple virtual consoles to allow for multiple

logins from a single keyboard and monitor (KVM). Virtual consoles can be used on systems

that don’t have a GUI desktop, but they can be used even on systems that do have one.

The last method to access the command line on a Linux computer is via a remote

login. Telnet was a common tool for remote access for many years, but because of greatly

increased security concerns, it has largely been replaced by Secure Shell (SSH).

 Command-line interface
The Command-line interface is any text mode user interface to the Linux operating

system that allows the user to type commands and see the results as textual output.

Chapter 7 Using the LinUx Command Line

185

 Command
Commands are what you type on the command line in order to tell Linux what you want

it to do for you. Commands have a general syntax that is easy to understand. The basic

command syntax for most shells is

command [-o(ptions)] [arg1] [arg2] ... [argX]

Options may also be called switches. They are usually a single character and are

binary in meaning, that is, to turn on a feature of the command, such as using the -l

option in ls -l to show a long listing of the directory contents. Arguments are usually

text or numerical data that the command needs to have in order to function or produce

the correct results. For example, the name of a file, directory, username, and so on would

be an argument. Many of the commands that you will discover in this course use one or

more options and, sometimes, an argument.

If you run a command that simply returns to the CLI command prompt without

printing any additional data to the terminal, don’t worry, that is what is supposed to

happen with most commands. If a Linux command works as it is supposed to, most

of the time it will not display any result at all. Only if there is an error will any message

display. This is in line with that part of the Linux Philosophy – and there is a significant

discussion about that which I won’t cover here – that says, “Silence is golden.”

Command names are also usually very short. This is called the “Lazy Admin” part

of the Linux Philosophy; less typing is better. The command names also usually have

some literal relation to their function. Thus the “ls” command means “list” the directory

contents, “cd” means change directory, and so on.

Note that Linux is case sensitive. Commands will not work if entered in uppercase. ls

will work but LS will not. File and directory names are also case sensitive.

 Terminal
The original meaning of the word “terminal” is an old bit of hardware that provides a

means of interacting with a mainframe or Unix computer host. In this book the term will

refer to terminal emulator software that performs the same function.

The terminal is not the computer; the terminals merely connect to mainframes

and Unix systems. Terminals – the hardware type – are usually connected to their host

computer through a long serial cable. Terminals such as the DEC VT100 shown in

Figure 7-1 are usually called “dumb terminals” to differentiate them from a PC or other

Chapter 7 Using the LinUx Command Line

186

small computer that may act as a terminal when connecting to a mainframe or Unix

host. Dumb terminals have just enough logic in them to display data from the host and

to transfer keystrokes back to the host. All of the processing and computing is performed

on the host to which the terminal is connected.

This file is licensed under the Creative Commons Attribution 2.0 Generic license.

Author: Jason Scott.

Terminals that are even older, such as mechanical teletype machines (TTY), predate

the common use of CRT displays. They used rolls of newsprint-quality paper to provide

a record of both the input and results of commands. The first college course I took on

computer programming used these TTY devices which were connected by telephone

line at 300 bits per second to a GE (yes, General Electric) time-sharing computer a couple

hundred miles away. Our university could not afford a computer of their own at that time.

Much of the terminology pertaining to the command line is rooted by historical

usage in these dumb terminals of both types. For example, the term TTY is still in

common use, but I have net seen an actual TTY device in a many years. Look again in the

/dev directory of your Linux or Unix computer, and you will find a large number of TTY

device files.

Terminals were designed with the singular purpose of allowing users to interact with

the computer to which they were attached by typing commands and viewing the results

Figure 7-1. A DEC VT100 dumb terminal

Chapter 7 Using the LinUx Command Line

187

on the roll of paper or the screen. The term, “terminal,” tends to imply a hardware device

that is separate from the computer while being used to communicate and interact with it.

 Console
A console is a special terminal because it is the primary terminal connected to a host. It

is the terminal at which the system operator would sit to enter commands and perform

tasks that were not allowed at other terminals connected to the host. The console is also

the only terminal on which the host would display system-level error messages when

problems occurred.

Peter Hamer – Uploaded by Magnus Manske.

Figure 7-2. Unix developers Ken Thompson and Dennis Ritchie. Thompson is
sitting at a teletype terminal used as a console to interface with a DEC computer
running Unix

Chapter 7 Using the LinUx Command Line

188

There can be many terminals connected to mainframe and Unix hosts, but only one

can act as a console. On most mainframes and Unix hosts, the console was connected

through a dedicated connection that was designated specifically for the console. Like

Unix, Linux has runlevels, and some of the runlevels such as runlevel 1, single user mode,

and recovery mode are used only for maintenance. In these runlevels, only the console is

functional to allow the SysAdmin to interact with the system and perform maintenance.

Note KVm stands for keyboard, video, and mouse, the three devices that most
people use to interact with their computers.

On a PC the physical console is usually the keyboard, monitor (video), and

sometimes the mouse (KVM) that are directly attached to the computer. These are the

physical devices used to interact with BIOS during the BIOS boot sequence and can be

used during the early stages of the Linux boot process to interact with GRUB and choose

a different kernel to boot or modify the boot command to boot into a different run level.

Because of the close physical connection to the computer of the KVM devices, the

SysAdmin must be physically present at this console during the boot process in order to

interact with the computer. Remote access is not available to the SysAdmin during the

boot process and only becomes available when the SSHD service is up and running.

 Virtual consoles
Modern personal computers and servers that run Linux do not usually have dumb

terminals that can be used as a console. Linux typically provides the capability for

multiple virtual consoles to allow for multiple logins from a single, standard PC keyboard

and monitor. Red Hat Enterprise Linux, CentOS, and Fedora Linux usually provide for

six or seven virtual consoles for text mode logins. If a graphical interface is used, the

first virtual console, vc1, becomes the first graphical (GUI) session after the X Window

System (X) starts, and vc7 becomes the second GUI session.

Each virtual console is assigned to a function key corresponding to the console

number. So vc1 would be assigned to function key F1, and so on. It is easy to switch to

and from these sessions. On a physical computer, you can hold down the Ctrl-Alt keys

and press F2 to switch to vc2. Then hold down the Ctrl-Alt keys and press F1 to switch to

vc1 and what is usually the graphical desktop interface. We will cover how to do this on a

VM in Experiment 7-1. If there is no GUI running, vc1 will be simply another text console.

Chapter 7 Using the LinUx Command Line

189

Virtual consoles provide a means to access multiple consoles using a single

physical system console, the keyboard, video display, and mouse (KVM). This gives

administrators more flexibility to perform system maintenance and problem solving.

There are some other means for additional flexibility, but virtual consoles are always

available if you have physical access to the system or directly attached KVM device or

some logical KVM extension such as Integrated Lights-Out (ILO). Other means such as

the screen command might not be available in some environments, and a GUI desktop

will probably not be available on most servers.

 Using virtual consoles

EXPERIMENT 7-1

For this experiment you will use one of the virtual consoles to log in to the command line as

root. the command line is where you will do most of your work as a system administrator. You

will have an opportunity to use a terminal session in the gUi desktop later, but this is what

your system will look like if you do not have a gUi.

 1. if you were on a physical host, you would press Ctrl-alt-F2 to access virtual

console 2. Because we are on virtual machines, however, pressing that key

combination would take us to virtual console for the physical host. We need to

do something a bit different for the virtual machine.

Click the Vm to give it the focus. there is a key called the host Key that we will

use to simulate the Ctrl-alt key combination. the current host Key is indicated in

the lower right corner of the Vm window as you can see in Figure 7-4. as you can

see there, i have changed the default host Key on my VirtualBox installation to be

the Left WinKey because i find it easier to use than the right Ctrl key.1 the WinKeys

are the keys on your physical keyboard that have the Windows icon on them.

Figure 7-3. Login prompt for virtual console 2

1 Use the File ➤ Preferences menu on the VM window’s menu bar, and then choose Input to
change the Host Key and other key combinations.

Chapter 7 Using the LinUx Command Line

190

to change to virtual console 2 (vc2) now that the Vm has the focus, press and

hold the host Key for your Vm, then press the F2 key (HostKey-F2) on your

keyboard. Your Vm window should now look like that in Figure 7-5. note that i

have resized the Vm window so that the entire window can be easily shown here.

 2. if you are not already logged in, and you probably are not, log in to virtual

console session 2 as root. type root on the Login line, and press the Enter key

as shown in Figure 7-6. type in your root password, and press Enter again. You

should now be logged in and at the command prompt.

Figure 7-4. The Right WinKey is the default Host Key, but I have changed mine to
the Left WinKey because it is easier for me to use

Figure 7-5. The VM window showing the virtual console 2 login

Chapter 7 Using the LinUx Command Line

191

the # prompt shows that this is a root login.

 3. Use HostKey-F3 to change to virtual console session three (vc3). Log in on this

console as student. note that any user can be logged in multiple times using

any combination of the virtual consoles and gUi terminal emulators. note the $

prompt which denotes the prompt for a non-root (non-privileged) user. in vc3,

run the ls -la command. notice the Bash and other configuration files, most of

which start with a dot (.). Your listing will probably be different from my listing:

[student@studentvm1 ~]$ ls -la

total 160

drwx------. 15 student student 4096 Sep 2 09:14 .

drwxr-xr-x. 5 root root 4096 Aug 19 08:52 ..

-rw-------. 1 student student 19 Aug 29 13:04 .bash_history

-rw-r--r--. 1 student student 18 Mar 15 09:56 .bash_logout

-rw-r--r--. 1 student student 193 Mar 15 09:56 .bash_profile

-rw-r--r--. 1 student student 231 Mar 15 09:56 .bashrc

drwx------. 9 student student 4096 Sep 2 09:15 .cache

drwx------. 8 student student 4096 Aug 19 15:35 .config

drwxr-xr-x. 2 student student 4096 Aug 18 17:10 Desktop

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Documents

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Downloads

-rw-------. 1 student student 16 Aug 18 10:21 .esd_auth

drwx------. 3 student student 4096 Aug 18 10:21 .gnupg

-rw-------. 1 student student 1550 Sep 2 09:13 .ICEauthority

Figure 7-6. Vc2 after logging in as root

Chapter 7 Using the LinUx Command Line

192

drwxr-xr-x. 3 student student 4096 Aug 18 10:21 .local

drwxr-xr-x. 4 student student 4096 Apr 25 02:19 .mozilla

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Music

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Pictures

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Public

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Templates

-rw-r-----. 1 student student 5 Sep 2 09:13 .vboxclient-clipboard.pid

-rw-r-----. 1 student student 5 Sep 2 09:13 .vboxclient-display.pid

-rw-r-----. 1 student student 5 Sep 2 09:13 .vboxclient-draganddrop.pid

-rw-r-----. 1 student student 5 Sep 2 09:13 .vboxclient-seamless.pid

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Videos

-rw-rw-r--. 1 student student 18745 Sep 2 09:24 .xfce4-session.verbose- log

-rw-rw-r--. 1 student student 20026 Sep 2 09:12 .xfce4-session.verbose- log.

last

-rw-rw-r--. 1 student student 8724 Aug 18 21:45 .xscreensaver

-rw-------. 1 student student 1419 Sep 2 09:13 .xsession-errors

-rw-------. 1 student student 1748 Sep 2 09:12 .xsession-errors.old

[student@studentvm1 ~]$

 4. Use the clear command to clear the console screen:

[student@studentvm1 ~]$ clear

the reset command resets all terminal settings. this is useful if the terminal

becomes unusable or unreadable, such as after cat’ing a binary file. even if

you cannot read the reset command as you input it, it will still work. i have on

occasion had to use the reset command twice in a row.

 5. if you are not currently logged in to a terminal emulator session in the gUi, do

so now. Use HostKey-F1 to return to the gUi and open the terminal emulator.

Because you are already logged in to the gUi desktop, it is unnecessary to log

in to the terminal emulator session.

 6. open a terminal window if you do not already have one open, and type w to list

currently logged in users and uptime. You should see at least three logins, one

for root on tty2 and one for student on tty3 and one for student on tty1, which is

the gUi console session:

[student@studentvm1 ~]$ w

 16:48:31 up 2 days, 7:35, 5 users, load average: 0.05, 0.03, 0.01

Chapter 7 Using the LinUx Command Line

193

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

student tty1 Sun09 2days 10.41s 0.05s /bin/sh /etc/xdg/xfce4/

xinitrc -- vt

student pts/1 Sun09 18:57m 0.15s 0.05s sshd: student [priv]

root tty2 13:07 3:41m 0.02s 0.02s -bash

student pts/3 13:17 4.00s 0.05s 0.03s w

student tty3 13:21 3:24m 0.03s 0.03s -bash

[student@studentvm1 ~]$

i have more logins listed than you will because i also have logged in “remotely”

from the physical host workstation using ssh. this makes it a bit easier for me

to copy and paste the results of the commands. due to the setup of the virtual

network, you will not be able to ssh into the virtual machine.

notice the first line of data which shows student logged in on ttY1. ttY1 is the

gUi desktop. You will also see the logins for ttY2 and ttY3 as well as two logins

using pseudo-terminals (pts) pts/1 and pts/3. these are my remote ssh login

sessions.

 7. enter the who command. it provides similar, slightly different information than w:

[student@studentvm1 ~]$ who

student tty1 2018-09-02 09:13 (:0)

student pts/1 2018-09-02 09:26 (192.168.0.1)

root tty2 2018-09-04 13:07

student pts/3 2018-09-04 13:17 (192.168.0.1)

student tty3 2018-09-04 13:21

[student@studentvm1 ~]$

in the results of the who command you can also see the ip address from which i

logged in using ssh. the (:0) string is not an emoji, it is an indicator that ttY1

is attached to display :0 – the first display.

 8. type whoami to display your current login name:

[student@studentvm1 ~]$ whoami

student

[student@studentvm1 ~]$

of course your login name is also displayed in the text of the command prompt.

however, you may not always be who you think you are.

Chapter 7 Using the LinUx Command Line

194

 9. type the id command to display your real and effective id and gid. the id

command also shows a list of the groups to which your user id belongs:

[student@studentvm1 ~]$ id

uid=1000(student) gid=1000(student) groups=1000(student) context=unconfined_u

:unconfined_r:unconfined_t:s0-s0:c0.c1023

[student@studentvm1 ~]$

We will discuss user ids, groups, and group ids in detail later.

the part of the output from the id command that starts with “context” is split onto

a second line here, but it should be displayed on a single line in your terminal.

however, the split here is a convenient way to see the seLinux information. seLinux

is secure Linux, and the code was written by the nsa to ensure that even if a hacker

gains access to a host protected by seLinux, the potential damage is extremely

limited. We will cover seLinux in a little more detail in Volume 3, Chapter 17.

 10. switch back to console session 2. Use the whoami , who, and id commands the

same as in the other console session. Let’s also use the who am I command:

[student@studentvm1 ~]$ whoami

student

[student@studentvm1 ~]$ who

root pts/1 2019-01-13 14:13 (192.168.0.1:S.0)

root pts/2 2019-01-14 12:09 (192.168.0.1:S.1)

student pts/3 2019-01-15 16:15 (192.168.0.1)

student tty1 2019-01-15 21:53 (:0)

student pts/5 2019-01-15 22:04 (:pts/4:S.0)

student pts/6 2019-01-15 22:04 (:pts/4:S.1)

student tty2 2019-01-15 22:05

student tty3 2019-01-15 22:06

student pts/8 2019-01-15 22:19

[student@studentvm1 ~]$ id

uid=1000(student) gid=1000(student) groups=1000(student) context=unconfined_u

:unconfined_r:unconfined_t:s0-s0:c0.c1023

[student@studentvm1 ~]$ who am i

student pts/8 2019-01-15 22:19

 11. Log out of all the virtual console sessions.

 12. User Ctrl-alt-F1 (host Key+F1) to return to the gUi desktop.

Chapter 7 Using the LinUx Command Line

195

The virtual consoles are assigned to device files such as /dev/tty2 for virtual

console 2 as in Figure 7-3. We will go into much more detail on device files throughout

this course and especially in Chapter 3 of Volume 2. The Linux console2 is the terminal

emulator for the Linux virtual consoles.

 Terminal emulator
Let’s continue with our terminology. A terminal emulator is a software program that

emulates a hardware terminal. Most of the current graphical terminal emulators, like the

xfce4-terminal emulator seen in Figure 7-7, can emulate several different types of hardware

terminals. Most terminal emulators are graphical programs that run on any Linux graphical

desktop environment like Xfce, KDE, Cinnamon, LXDE, GNOME, and others.

You can see in Figure 7-7 that a right-click on the Xfce4 terminal emulator window

brings up a menu that allows opening another tab or another emulator window. This figure

also shows that there are currently two tabs open. You can see them just under the menu bar.

Figure 7-7. The xfce4-terminal emulator with two tabs open

2 Wikipedia, Linux Console, https://en.wikipedia.org/wiki/Linux_console

Chapter 7 Using the LinUx Command Line

https://en.wikipedia.org/wiki/Linux_console

196

The first terminal emulator was Xterm3 which was originally developed in 1984 by

Thomas Dickey.4 The original Xterm is still maintained and is packaged as part of many

modern Linux distributions. Other terminal emulators include xfce4-terminal,5 GNOME-

terminal,6 Tilix,7 rxvt,8 Terminator,9 Konsole,10 and many more. Each of these terminal

emulators has a set of interesting features that appeal to specific groups of users. Some

have the capability to open multiple tabs or terminals in a single window. Others provide

just the minimum set of features required to perform their function and are typically

used when small size and efficiency are called for.

My favorite terminal emulators are xfce4-terminal, Konsole, and Tilix because they

offer the ability to have many terminal emulator sessions in a single window. The xfce4-

terminal and terminal do this using multiple tabs that I can switch between. Tilix offers

the ability to tile multiple emulator sessions in a window session as well as providing

multiple sessions. My current terminal emulator of choice is xfce4, primarily because it

offers a good feature set that is as good as terminal and yet is also very lightweight and

uses far fewer system resources. Other terminal emulator software provides many of

these features but not as adroitly and seamlessly as the xfce4-terminal and Tilix.

For this course we will use the xfce4-terminal because it is the default for the Xfce

desktop, it is very sparing of system resources, and it has all of the features we need. We

will install and explore other terminal emulators in Chapter 14 of this volume.

 Pseudo-terminal
A pseudo-terminal is a Linux device file to which a terminal emulator is attached in

order to interface with the operating system. The device files for pseudo-terminals are

located in the /dev/pts directory and are created only when a new terminal emulator

session is launched. That can be a new terminal emulator window or a new tab or

3 Wikipedia, Xterm, https://en.wikipedia.org/wiki/Xterm
4 Wikipedia, Thomas Dickey, https://en.wikipedia.org/wiki/Thomas_Dickey
5 Xfce Documentation, Xfce4-terminal, https://docs.xfce.org/apps/terminal/introduction
6 Wikipedia, GNOME terminal, https://en.wikipedia.org/wiki/GNOME_Terminal
7 Fedora Magazine, Tilix, https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
8 Wikipedia, Rxvt, https://en.wikipedia.org/wiki/Rxvt
9 Wikipedia, Terminator, https://en.wikipedia.org/wiki/Terminator_(terminal_emulator)
10 KDE, Konsole terminal emulator, https://konsole.kde.org/

Chapter 7 Using the LinUx Command Line

https://en.wikipedia.org/wiki/Xterm
https://en.wikipedia.org/wiki/Thomas_Dickey
https://docs.xfce.org/apps/terminal/introduction
https://en.wikipedia.org/wiki/GNOME_Terminal
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://en.wikipedia.org/wiki/Rxvt
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator)
https://konsole.kde.org/

197

panel in an existing window of one of the terminal emulators, such as terminal, which

supports multiple sessions in a single window.

The device files in /dev/pts are simply a number for each emulator session that is

opened. The first emulator would be /dev/pts/1, for example.

 Device special files

Let’s take a brief side trip. Linux handles almost everything as a file. This has some

interesting and amazing implications. This concept makes it possible to copy an

entire hard drive, boot record included, because the entire hard drive is a file, just as

are the individual partitions. “Everything is a file” is possible because all devices are

implemented by Linux as these things called device files. Device files are not device

drivers; rather they are gateways to devices that are exposed to the user.

Device files are technically known as device special files.11 Device files are employed

to provide the operating system and, even more importantly in an open operating

system, the users, an interface to the devices that they represent. All Linux device files

are located in the /dev directory which is an integral part of the root (/) filesystem

because they must be available to the operating system during early stages of the boot

process – before other filesystems are mounted.

We will encounter device special files throughout this course, and you will have an

opportunity to experiment extensively with device special files in Chapter 3 of Volume 2.

For now, just having a bit of information about device special files will suffice.

 Session
Session is another of those terms that can apply to different things, and yet it retains

essentially the same meaning. The most basic application of the term is to a terminal

session. That is a single terminal emulator connected to a single user login and shell. So

in its most basic sense, a session is a single window or virtual console logged into a local

or remote host with a command-line shell running in it. The xfce4-terminal emulator

supports multiple sessions by placing each session in a separate tab.

11 Wikipedia, Device File, https://en.wikipedia.org/wiki/Device_file

Chapter 7 Using the LinUx Command Line

https://en.wikipedia.org/wiki/Device_file

198

 Shell
A shell is the command interpreter for the operating system. Each of the many shells

available for Linux interprets the commands typed by the user or SysAdmin into a form

usable by the operating system. When the results are returned to the shell program, it

displays them on the terminal.

The default shell for most Linux distributions is the Bash shell. Bash stands for

Bourne again shell because the Bash shell is based upon the older Bourne shell which

was written by Steven Bourne in 1977. Many other shells are available. The four I list here

are the ones I encounter most frequently but many others exist:12

• csh: The C shell for programmers who like the syntax of the

C language

• ksh: The Korn shell, written by David Korn and popular with

Unix users

• tcsh: A version of csh with more ease of use features

• zsh: Which combines many features of other popular shells

All shells have some built-in commands that supplement or replace the commands

provided by the core utilities. Open the man page for bash and find the “BUILT-INS”

section to see the list of commands provided by the shell itself.

I have used the C shell, the Korn shell, and the Z shell. I still like the Bash shell

better than any of the others I have tried. Each shell has its own personality and syntax.

Some will work better for you and others not so well. Use the one that works best for

you, but that might require that you at least try some of the others. You can change

shells quite easily.

 Using different shells

So far we have been using the Bash shell, so you have a brief experience with it. There are

some other shells that might be better suited for your needs. We will look at three others

in this experiment.

12 Wikipedia, Comparison of command shells, https://en.wikipedia.org/wiki/
Comparison_of_command_shells

Chapter 7 Using the LinUx Command Line

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells

199

EXPERIMENT 7-2

Because most Linux distributions use the Bash shell as the default, i will assume that is the

one you have been using and that it is your default shell. in our preparation for this chapter, we

installed three other shells, ksh, tcsh, and zsh.

do this experiment as the user student. First, look at your command prompt which should look

like this:

[student@studentvm1 ~]$

this is the standard bash prompt for a non-root user. now let’s change this to the ksh shell.

Just enter the name of the shell:

[student@studentvm1 ~]$ ksh

$

You can tell by the difference in the prompt that this is a different shell. run a couple simple

commands such as ls and free just to see that there is no difference in how the commands

work. this is because most of the commands are separate from the shell, except for the

built-ins. try the ll command:

$ ll

ksh: ll: not found [No such file or directory]

$

that fails because Korn shell aliases are different from Bash aliases. try scrolling up to get a

command history like bash. it does not work. now let’s try zsh.

$ zsh

This is the Z Shell configuration function for new users,

zsh-newuser-install.

You are seeing this message because you have no zsh startup files

(the files .zshenv, .zprofile, .zshrc, .zlogin in the directory

~). This function can help you with a few settings that should

make your use of the shell easier.

You can:

(q) Quit and do nothing. The function will be run again next time.

Chapter 7 Using the LinUx Command Line

200

(0) Exit, creating the file ~/.zshrc containing just a comment.

 That will prevent this function being run again.

(1) Continue to the main menu.

--- Type one of the keys in parentheses ---

if you continue by entering a “1,” you will be taken through a series of menus that will help you

configure the Z shell to suit your needs – as best you might know them at this stage. i chose

“Q” to just go on to the prompt which looks like just a bit different from the bash prompt:

[student@studentvm1]~%

run a few simple commands while you are in the Z shell. then type exit twice to get back to

the original, top-level Bash shell:

[student@studentvm1]~% w

 14:30:25 up 3 days, 6:12, 3 users, load average: 0.00, 0.00, 0.02

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

student pts/0 Tue08 0.00s 0.07s 0.00s w

root pts/1 Wed06 18:48 0.26s 0.26s -bash

student pts/2 08:14 6:16m 0.03s 0.03s -bash

[student@studentvm1]~% exit

$ exit

[student@studentvm1 ~]$

What do you think might happen if you start a Bash shell while you are already in a bash shell?

[student@studentvm1 ~]$ bash

[student@studentvm1 ~]$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos

[student@studentvm1 ~]$ exit

exit

[student@studentvm1 ~]$

You just get into another Bash shell, is what.

This illustrates more than it might appear superficially. First there is the fact that

each shell is a layer. Starting a new shell does not terminate the previous one. When you

started tcsh from bash, the Bash shell remained in the background, and when you exited

from tcsh, you were returned to the waiting Bash shell.

Chapter 7 Using the LinUx Command Line

201

It turns out that this is exactly what happens when running any command or process

from a shell. The command runs in its own session, and the parent shell – process –

waits until that sub-command returns and control is returned to it before being able to

continue processing further commands.

So if you have a script which runs other commands – which is the purpose of a

script – the script runs each command, waiting for it to finish before moving on to run

the next command.

That behavior can be modified by appending an ampersand (&) to the end of a

command, which places the called command in the background and allows the user

to continue to interact with the shell, or for the script to continue processing more

commands. You would only want to do this with commands that do not require further

human interaction or output to STDOUT. You would also not want to run commands in

the background when the results of that command are needed by other commands that

will be run later but perhaps before the background task has finished.

Because of the many options available to SysAdmins and users in Linux, there is little

need for moving programs to the background. Just open another terminal emulator on

the desktop, start another terminal emulator in a screen session, or switch to an available

virtual console. This capability might be more useful in scripts to launch programs that

will run while your script continues to process other commands.

You can change your shell with the chsh command so that it will be persistent every

time you log in and start a new terminal session. We will explore terminal emulators and

shells in more detail in Chapter 14.

 Secure Shell (SSH)
SSH is not really a shell. The ssh command starts a secure communication link between

itself as the client and another host with the SSHD server running on it. The actual

command shell used at the server end is whatever the default shell set for that account

on the server side, such as the Bash shell. SSH is simply a protocol that creates a secure

communications tunnel between to Linux hosts.

 screen
You might at first think of “screen” as the device on which your Linux desktop is

displayed. That is one meaning. For SysAdmins like us, screen is a program, a screen

manager that enhances the power of the command line. The screen utility allows

Chapter 7 Using the LinUx Command Line

202

launching multiple shells in a single terminal session and provides means to navigate

between the running shells.

I have many times had a remote session running a program when the

communications link failed. When that happened, the running program was terminated

as well, and I had to restart it from the beginning. It could get very frustrating. The

screen program can prevent that. A screen session will continue to run even if the

connectivity to the remote hosts is broken because the network connection fails. It also

allows the intentional disconnection of the screen session from the terminal session

and reconnecting later from the same or a different computer. All of the CLI programs

running in the screen terminal sessions will continue to run on the remote host. This

means that once communications is reestablished, one can log back into the remote host

and use the screen -r command at the remote command line to reattach the screen

session to the terminal.

So I can start up a bunch of terminal sessions in screen and use Ctrl-a + d to

disconnect from screen and log out. Then I can go to another location, log in to a

different host, SSH to the host running screen, and log in and use the screen -r

command to reconnect to the screen session, and all of the terminal sessions and their

respective programs will still be running.

The screen command can be useful in some environments where physical access

to a hardware console is not available to provide access to the virtual consoles but the

flexibility of multiple shells is needed. You will probably find it convenient to use the

screen program, and in some cases, it will be necessary to do so in order to work quickly

and efficiently.

EXPERIMENT 7-3

in this experiment we explore the use of the screen program. perform this experiment in a

terminal session as the student user.

Before we begin, let’s discuss how to send commands to the screen program itself in order to

do things like open a new terminal and switch between running terminal sessions.

in this experiment i provide instructions such as “press Ctrl-a + c” to open a new terminal, for

example. that means that you should hold down the Control key while you press the “a” key;

at this point you can release the Control and “a” keys because you have alerted the screen

program that the next keystroke is intended for it. now press the “c” key. this sequence of

Chapter 7 Using the LinUx Command Line

203

keystrokes seems a bit complicated, but i soon learned it as muscle memory, and it is quite

natural by now. i’m sure the same will be true for you, too.

For the sequence Ctrl-a + " (double quote) sequence which shows a list of all open terminals

in that screen session, do Ctrl-a, release those keys, and then press shift + ".

Use the Ctrl-a + Ctrl-a sequence which toggles between the most recent two terminal

sessions. You must continue to hold down the Control key and press the “a” key twice.

 1. enter the screen command which will clear the display and leave you at a

command prompt. You are now in the screen display manager with a single

terminal session open and displayed in the window.

 2. type any command such as ls to have something displayed in the terminal

session besides the command prompt.

 3. press Ctrl-a + c to open a new shell within the screen session.

 4. enter a different command, such as df –h in this new terminal.

 5. type Ctrl-a + a to switch between the terminals.

 6. enter Ctrl-a + c to open a third terminal.

 7. type Ctrl-a + " to list the open terminals. Choose any one except the last one

by using the up/dn arrow keys, and hit the Enter key to switch to that terminal.

 8. to close the selected terminal, type exit and press the Enter key.

 9. type the command Ctrl-a + " to verify that the terminal is gone. notice that the

terminal with the number you have chosen to close is no longer there and that

the other terminals have not been renumbered.

 10. to reopen a fresh terminal, use Ctrl-a + c.

 11. type Ctrl-a + " to verify that the new terminal has been created. notice that it

has been opened in the place of the terminal that was previously closed.

 12. to disconnect from the screen session and all open terminals, press Ctrl-a + d.

note that this leaves all of the terminals and the programs in them intact and still

running.

 13. enter the command screen -list command on the command line to list all

of the current screen sessions. this can be useful to ensure that you reconnect

to the correct screen session if there are multiple ones.

Chapter 7 Using the LinUx Command Line

204

 14. Use the command screen –r to reconnect to the active screen session. if

multiple active screen sessions are open, then a list of them will be displayed,

and you can choose the one to which you wish to connect; you will have to

enter the name of the screen session to which you want to connect.

i recommend that you not open a new screen session inside of an existing screen session. it

can be difficult to switch between the terminals because the screen program does not always

understand which of the embedded sessions to which to send the command.

I use the screen program all the time. It is a powerful tool that provides me with

extreme flexibility for working on the command line.

 The GUI and the CLI
You may like and use any of the many graphical user interfaces, that is, desktops, which

are available with almost all Linux distributions; you may even switch between them

because you find one particular desktop such as KDE more usable for certain tasks and

another like GNOME better suited for other tasks. But you will also find that most of the

graphical tools required to manage a Linux computer are simply wrappers around the

underlying CLI commands that actually perform those functions.

A graphical interface cannot approach the power of the CLI because the GUI is

inherently limited to those functions the programmers have decided you should have

access to. This is how Windows and other restrictive operating systems work. They only

allow you to have access to the functions and power that they decide you should have.

This might be because the developers think you really do want to be shielded from

the full power of your computer, or it might be due to the fact that they don’t think you

are capable of dealing with that level of power, or it might be that writing a GUI to do

everything a CLI can do is time-consuming and a low priority for the developer. .

Just because the GUI is limited in some ways does not mean that good SysAdmins

cannot leverage it to make their jobs easier. I do find that I can leverage the GUI with

more flexibility for my command-line tasks. By allowing multiple terminal windows

on the desktop, or by using advanced terminal emulation programs such as Xfce, Tilix,

and terminal that are designed for a GUI environment, I can improve my productivity.

Having multiple terminals open on the desktop gives me the capability of being logged

Chapter 7 Using the LinUx Command Line

205

into multiple computers simultaneously. I can also be logged into any one computer

multiple times, having open multiple terminal sessions using my own user ID and more

terminal sessions as root.

For me, having multiple terminal sessions available at all times, in multiple ways,

is what the GUI is all about. A GUI can also provide me with access to programs like

LibreOffice, which I am using to write this book, graphical e-mail and web browsing

applications, and much more. But the real power for SysAdmins is in the command line.

Linux uses the GNU core utilities which were originally written by Richard

M. Stallman,13 aka RMS, as the free, open source utilities required by any free version

of Unix or Unix-like operating systems. The GNU core utilities are the basic file, shell,

and text manipulation utilities of any GNU operating system such as GNU/Linux and

can be counted upon by any SysAdmin to be present on every version of Linux. In

addition, every Linux distribution has an extended set of utilities that provide even more

functions.

You can enter the command, info coreutils, to view a list of the GNU core utilities

and select individual commands for more information. You can also use the In-line

command to view the man page for each of these commands and all of the many

hundreds of other Linux commands that are also standard with every distribution.

 Some important Linux commands
The most basic Linux commands are those that allow you to determine and change your

current location in the directory structure, create manage and look at files, view various

aspects of system status, and more. These next experiments will introduce you to some

basic commands that enable you to do all of these things. It also covers some advanced

commands that are frequently used during the process of problem determination.

Most of the commands covered in these experiments have many options, some of

which can be quite esoteric. These experiments are neither meant to cover all of the

Linux commands available (there are several hundred) nor are they intended to cover all

of the options on any of these commands. This is meant only as an introduction to these

commands and their uses.

13 Wikipedia, Richard M. Stallman, https://en.wikipedia.org/wiki/Richard_Stallman

Chapter 7 Using the LinUx Command Line

https://en.wikipedia.org/wiki/Richard_Stallman

206

 The PWD
The acronym PWD means present working directory. The PWD is important because all

command actions take place in the PWD unless another location is explicitly specified

in the command. The pwd command means “print working directory,” that is, print the

name of the current directory on the shell output.

 Directory path notation styles
A path is a notational method for referring to directories in the Linux directory tree. This

gives us a method for expressing the path to a directory or a file that is not in the pwd.

The term pwd refers to present working directory, which you might know as the “current

directory.” Linux uses paths extensively for easy location of and access to executable files,

making it unnecessary to type the entire path to the executable.

For example, it is easier to type “ls” than it is to type “/usr/bin/ls” to run the ls

command. The shell uses the PATH variable where it finds a list of directories in which to

search for the executable by the name “ls”.

EXPERIMENT 7-4

this simple experiment simply displays the content of the path environment variable for the

student user:

[student@studentvm1 ~]$ echo $PATH

/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/student/.local/bin:/

home/student/bin

[student@studentvm1 ~]$

the various paths – directories – that the shell will search are listed in the output from the

preceding command. each path is separated by a colon (:).

There are two types of notation we can use to express a path – absolute and relative.

An absolute path is specified completely stating with the root directory. So if the pwd is

the Downloads directory of my home directory, I would specify the absolute path as

/home/student/Downloads. With that as my pwd, if I need to specify the absolute path to

my Documents/Work directory, that would look like this, /home/student/Documents/

Chapter 7 Using the LinUx Command Line

207

Work. I could also specify that path in relative notation from my current pwd as

../Documents/Work. I could also use the notation ~/Documents/Work because the

Tilde (~) is a shorthand notation for my home directory.

 Moving around the directory tree
Let’s start by looking at how to move around the Linux filesystem directory tree at the

command line. Many times working on or in a directory is easier if it is the present

working directory (pwd), which is also known as the current directory. Moving around

the filesystem is a very important capability, and there are a number of shortcuts that

can help as well.

EXPERIMENT 7-5

perform this experiment as the student user. You should already be logged in to the xfce

desktop with an xfce terminal session open as the student user. if not, do that now.

moving around the Linux filesystem directory tree is important for many reasons. You will use

these skills throughout this course and in real life as a sysadmin.

 1. start in the terminal session as the user student. Check the present working

directory (pWd):

[student@studentvm1 tmp]$ pwd

/tmp

[student@studentvm1 tmp]$ cd

[student@studentvm1 ~]$ pwd

/home/student

[student@studentvm1 ~]$

the first time i checked, the pwd was the /tmp directory because i had been

working there. Your pWd will probably be your home directory, (~). Using the

cd command with no options always makes your home directory the pwd.

notice in the command prompt that the tilde (~) is a shorthand indicator for

your home directory.

 2. now just do a simple command to view the content of your home directory. these

directories are created when a new user does the first gUi login to the account:

Chapter 7 Using the LinUx Command Line

208

 [student@studentvm1 ~]$ ll

total 212

drwxr-xr-x. 2 student student 4096 Aug 18 17:10 Desktop

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Documents

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Downloads

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Music

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Pictures

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Public

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Templates

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Videos

[student@studentvm1 ~]$

this command does not show the so-called hidden files in your home directory

which makes it easier to scan the rest of the contents.

 3. Let’s create a few files to work with since there are none other than the hidden

configuration files created by default. the following command line program will

create a few files so that we have more than just directories to look at. We will

look at command-line programming in some detail as we proceed through the

course. enter the program all on one line:

[student@studentvm1 ~]$ for I in dmesg.txt dmesg1.txt dmesg2.txt dmesg3.txt

dmesg4.txt ; do dmesg > $I ; done

[student@studentvm1 ~]$ ll

total 252

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Desktop

-rw-rw-r--. 1 student student 41604 Sep 30 16:13 dmesg1.txt

-rw-rw-r--. 1 student student 41604 Sep 30 16:13 dmesg2.txt

-rw-rw-r--. 1 student student 41604 Sep 30 16:13 dmesg3.txt

-rw-rw-r--. 1 student student 41604 Sep 30 16:13 dmesg4.txt

-rw-rw-r--. 1 student student 41604 Sep 30 16:13 dmesg.txt

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Documents

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Downloads

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Music

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Pictures

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Public

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Templates

drwxr-xr-x. 2 student student 4096 Sep 29 15:31 Videos

[student@studentvm1 ~]$

Chapter 7 Using the LinUx Command Line

209

this long listing shows the ownership and file permissions for each file and

directory. the data drwxr-xr-x shows first that this is a directory with the leading

“d” while a file would have a dash (-) in that position. the file permissions are

three triplets of (r)ead, (W)rite, and e(x)ecute. each triplet represents User, the

owner of the file, group, the group that owns the file, and other, for all other users.

these permissions represent something a bit different on a directory. We will

explore file and directory ownership and permissions in more detail in Chapter 18.

 4. make /var/log the pwd and list the contents:

[student@studentvm1 ~]# cd /var/log ; ll

total 18148

drwxrwxr-x. 2 root root 4096 Aug 13 16:24 anaconda

drwx------. 2 root root 4096 Jul 18 13:27 audit

drwxr-xr-x. 2 root root 4096 Feb 9 2018 blivet-gui

-rw-------. 1 root root 74912 Sep 2 09:13 boot.log

-rw-rw----. 1 root utmp 768 Sep 2 09:26 btmp

-rw-rw----. 1 root utmp 384 Aug 18 10:21 btmp-20180901

<snip>

drwxr-xr-x. 2 lightdm lightdm 4096 Sep 2 09:13 lightdm

-rw-------. 1 root root 0 Sep 2 03:45 maillog

-rw-------. 1 root root 0 Apr 25 02:21 maillog-20180819

-rw-------. 1 root root 0 Aug 19 03:51 maillog-20180831

-rw-------. 1 root root 0 Aug 31 14:47 maillog-20180902

-rw-------. 1 root root 2360540 Sep 6 13:03 messages

-rw-------. 1 root root 1539520 Aug 19 03:48 messages-20180819

-rw-------. 1 root root 1420556 Aug 31 14:44 messages-20180831

-rw-------. 1 root root 741931 Sep 2 03:44 messages-20180902

drwx------. 3 root root 4096 Jul 8 22:49 pluto

-rw-r--r--. 1 root root 1040 Jul 18 07:39 README

<snip>

-rw-r--r--. 1 root root 29936 Sep 4 16:48 Xorg.0.log

-rw-r--r--. 1 root root 28667 Sep 2 09:12 Xorg.0.log.old

-rw-r--r--. 1 root root 23533 Aug 18 10:16 Xorg.9.log

[root@studentvm1 log]#

Can you determine which are files and which are directories?

Chapter 7 Using the LinUx Command Line

210

 5. try to display the content of the current maillog file:

[student@studentvm1 log]$ cat maillog

cat: maillog: Permission denied

[student@studentvm1 log]$

 6. if you are using Fedora as recommended, there should be a readme file in /

var/log. Use the cat command to view the contents:

[student@studentvm1 log]$ cat README

Why can you view the contents of this file?

 7. Let’s change the pwd to /etc:

[student@studentvm1 log]$ cd /etc ; pwd

/etc

[student@studentvm1 etc]$

 8. now change to the documents subdirectory of your home directory (~):

[student@studentvm1 etc]$ cd ~/Documents/ ; ll

total 0

[student@studentvm1 Documents]$

notice that we used the tilde (~) to represent our home directory which would

otherwise have to be typed out as /home/student/documents.

 9. now i want to return to the /etc directory, but we can save a bit of typing using

this shortcut:

[student@studentvm1 Documents]$ cd -

/etc

[student@studentvm1 etc]$

the dash (-), aka, the minus sign, will always return you to the previous pwd.

how? Let’s look a bit at the environment which defines many environment

variables including $pWd and $oLdpWd. the env command prints all of the

current environment variables, and the grep command extracts and sends to

stdoUt only those lines that contain “pwd”:

[student@studentvm1 etc]$ env | grep -i pwd

PWD=/etc

Chapter 7 Using the LinUx Command Line

211

OLDPWD=/home/student/Documents

[student@studentvm1 etc]$

the dash (-), when used as an option to the cd command, is a shorthand

notation for the $oLdpWd variable. the command could also be issued in the

following manner:

[student@studentvm1 Documents]$ cd $OLDPWD

[student@studentvm1 etc]$

 10. Let’s go to a directory that is a couple layers deep. First we return to our home

directory and create a new directory that has a few levels of parents. the

mkdir command can do that when used with the -p option:

[student@studentvm1 etc]$ cd ; mkdir -p ./testdir1/testdir2/testdir3/

testdir4/testdir5 testdir6 testdir7

[student@studentvm1 ~]$ tree

.

├── Desktop

├── dmesg1.txt
├── dmesg2.txt
├── dmesg3.txt
├── dmesg.txt
├── Documents
├── Downloads
├── Music
├── newfile.txt
├── Pictures
├── Public
├── Templates
├── testdir1
│ └── testdir2
│ └── testdir3
│ └── testdir4
│ └── testdir5
├── testdir6
├── testdir7
└── Videos

Chapter 7 Using the LinUx Command Line

212

We also did some other fun stuff with that command to make new directories.

the first string was a directory with a number of parents. then we also added

two more directories to be created in the current directory. the mkdir utility,

like so many others, accepts a list of arguments not just a single one. in this

case the list was of new directories to create.

 11. there is also a shorthand notation for the pWd that we can use in commands.

the variable $pWd would work, but the dot (.) is much faster. so for some

commands that need a source and target directory, we can use the . for either.

note that in the previous step, the top of the tree command output starts with a

dot which indicates the current directory:

[student@studentvm1 ~]$ mv ./dmesg2.txt /tmp

[student@studentvm1 ~]$ cp /tmp/dmesg2.txt .

[student@studentvm1 ~]$ cp /tmp/dmesg2.txt ./dmesg4.txt

in this experiment we have looked at how to navigate the directory tree and how to create new

directories. We have also practiced using some of the notational shortcuts available to us.

 Tab completion facility
Bash provides a facility for completing partially typed program and hostnames, file

names, and directory names. Type the partial command or a file name as an argument to

a command, and press the Tab key. If the host, file, directory, or program exists and the

remainder of the name is unique, Bash will complete the entry of the name. Because the

Tab key is used to initiate the completion, this feature is sometimes referred to as “Tab

completion.”

Tab completion is programmable and can be configured to meet many different

needs. However unless you have specific needs that are not met by the standard

configurations provided by Linux, the core utilities, and other CLI applications, there

should never be a reason to change the defaults.

Chapter 7 Using the LinUx Command Line

213

Note the Bash man page has a detailed and mostly unintelligible explanation of
“programmable completion.” the book Beginning the Linux Command Line has
a short and more readable description,14 and Wikipedia15 has more information,
examples, and an animated giF to aid in understanding this feature.

Experiment 7-6 provides a very short introduction to command completion.

EXPERIMENT 7-6

perform this experiment as the student user. Your home directory should have a subdirectory

named documents for this experiment. most Linux distributions create a documents

subdirectory for each user.

Be sure that your home directory is the pWd. We will use completion to change into the ~/

documents directory. type the following partial command into the terminal:

[student@studentvm1 ~]$ cd D<Tab>

<Tab> means to press the tab key once. nothing happens because there are three directories

that start with “d.” You can see that by pressing the tab key twice in rapid succession which

lists all of the directories that match what you have already typed:

[student@studentvm1 ~]$ cd D<tab><Tab>

Desktop/ Documents/ Downloads/

[student@studentvm1 ~]$ cd D

now add the “o” to the command, and press tab twice more:

[student@studentvm1 ~]$ cd Do<tab><Tab>

Documents/ Downloads/

[student@studentvm1 ~]$ cd Do

14 Van Vugt, Sander. Beginning the Linux Command Line, (Apress 2015), 22.
15 Wikipedia, Command Line Completion, https://en.wikipedia.org/wiki/
Command-line_completion

Chapter 7 Using the LinUx Command Line

https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Command-line_completion

214

You should see a list of both directories that start with “do.” now add the “c” to the command,

and press the tab key once:

[student@studentvm1 ~]$ cd Doc<Tab>

[student@studentvm1 ~]$ cd Documents/

so if you type cd Doc<Tab> the rest of the directory name is completed in the command.

Let’s take a quick look at completion for commands. in this case the command is relatively

short, but most are. assume we want to determine the current uptime for the host:

[student@studentvm1 ~]$ up<Tab><Tab>

update-alternatives updatedb update-mime-database upower

update-ca-trust update-desktop-database update-pciids uptime

update-crypto-policies update-gtk-immodules update-smart-drivedb

[student@studentvm1 ~]$ up

We can see several commands that begin with “up” and we can also see that typing one more

letter, “t”, will complete enough of the uptime command that the rest will be unique:

[student@studentvm1 ~]$ upt<Tab>ime

 07:55:05 up 1 day, 10:01, 7 users, load average: 0.00, 0.00, 0.00

the completion facility only completes the command, directory, or file name when the

remaining text string needed is unequivocally unique.

Tab completion works for commands, some sub-commands, file names, and directory

names. I find that completion is most useful for completing directory and file names,

which tend to be longer, and a few of the longer commands and some sub- commands.

Many Linux commands are so short already that using the completion facility can

actually be less efficient than typing the command. The short Linux command names

is quite in keeping with being a lazy SysAdmin. So it just depends on whether you find

it more efficient or consistent for you to use completion on short commands. Once you

learn which commands are worthwhile for tab completion and how much you need to

type, you can use those that you find helpful.

 Exploring files
The commands we will be exploring in this next experiment are all related to creating

and manipulating files as objects.

Chapter 7 Using the LinUx Command Line

215

EXPERIMENT 7-7

perform this experiment as the student user. You should already be logged in to your Linux

computer as the user student in the gUi and have an xfce4-terminal session open.

 1. open a new tab by selecting File from the terminal menu bar, and select Open
Tab from the drop-down menu. the new tab will become the active one, and it

is already logged in as the user student. an alternate and easy way to open a

new tab in terminal is to right-click anywhere in the terminal window and select

Open Tab from the pop-up menu.

 2. enter the pwd command to determine the present working directory (pwd). it

should be /home/student as shown here:

[student@studentvm1 ~]$ pwd

/home/student

[student@studentvm1 ~]$

 3. if the pwd is not your home directory, change to your home directory using the

cd command without any options or arguments.

 4. Let’s create some new files like you did as root in an earlier project. the cp

command is used to copy files. Use the following commands to create and copy

some files:

[student@studentvm1 ~]$ touch newfile.txt

[student@fstudentvm1 ~]$ df -h > diskusage.txt

 5. Use the command ls -lah to display a long list of all files in your home

directory and display their sizes in human-readable format. note that the time

displayed on each file is the mtime which is the time the file or directory was

last modified. there are a number of “hidden” files that have a dot (.) as the

first character of their names. Use ls –lh if you don’t need to see all of the

hidden files.

 6. the touch dmesg2.txt changes all of the times for that file:

[student@studentvm1 ~]$ touch dmesg2.txt

[student@studentvm1 ~]$ ls -lh

total 212K

Chapter 7 Using the LinUx Command Line

216

drwxr-xr-x. 2 student student 4.0K Aug 18 17:10 Desktop

-rw-rw-r--. 1 student student 1.8K Sep 6 09:08 diskusage.txt

-rw-rw-r--. 1 student student 44K Sep 6 10:52 dmesg1.txt

-rw-rw-r--. 1 student student 44K Sep 6 10:54 dmesg2.txt

-rw-rw-r--. 1 student student 44K Sep 6 10:52 dmesg3.txt

-rw-rw-r--. 1 student student 44K Sep 6 10:52 dmesg.txt

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Documents

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Downloads

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Music

-rw-rw-r--. 1 student student 0 Sep 6 10:52 newfile.txt

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Pictures

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Public

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Templates

drwxr-xr-x. 2 student student 4.0K Aug 18 10:21 Videos

[student@studentvm1 ~]$

 7. enter the commands ls -lc and ls -lu to view the ctime (time the inode

last changed) and atime (time the file was last accessed – used or the contents

viewed), respectively.

 8. enter the command cat dmesg1.txt but don’t worry about the fact that the

data spews off the screen. now use the commands ls -l, ls -lc, and ls -lu

to again view the dates and times of the files, and notice that the file dmesg1.txt

has had its atime changed. the atime of a file is the time that it was last accessed

for reading by some program. note that the ctime has also changed. Why? if you

don’t figure this out now, it will be covered later, so no worries.

 9. enter stat dmesg1.txt to display a complete set of information about this

file, including its [acm]times, its size, permissions, the number of disk data

blocks assigned to it, its ownership, and even its inode number. We will cover

inodes in detail in a later session:

[student@studentvm1 ~]$ stat dmesg1.txt

 File: dmesg1.txt

 Size: 44297 Blocks: 88 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 213 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1000/ student) Gid: (1000/ student)

Context: unconfined_u:object_r:user_home_t:s0

Access: 2018-09-06 10:58:48.725941316 -0400

Chapter 7 Using the LinUx Command Line

217

Modify: 2018-09-06 10:52:51.428402753 -0400

Change: 2018-09-06 10:52:51.428402753 -0400

 Birth: -

[student@studentvm1 ~]$

notice that the stat command displays the files timestamps in microseconds.

this has changed since Fedora 14. the reason for this is that the previous

granularity of timestamps in full seconds was not fine enough to deal with

high-speed, high-volume transaction-based environments in which transaction

timing sequence is important.

Note the /tmp directory is readable and writable by all users. this makes it a
good place to share files temporarily. But that can also make it a security issue.

 10. perhaps you were curious – that is a good thing – and repeated step 8 of this

experiment multiple times, in which case you would have noticed that the atime

did not change after the first cat command to access the file content. this is

because the file content is now in cache and does not need to be accessed

again to read the content. Use the following commands to change the content,

and then stat it to view the results:

[student@studentvm1 ~]$ echo "hello world" >> dmesg1.txt ; cat dmesg1.txt ;

stat dmesg1.txt

 11. move the file dmesg3.txt to the /tmp directory with the mv dmesg3.txt /tmp

command. Use the ls command in both the current directory and the /tmp

directory to verify that the file has been moved.

 12. enter the command rm /tmp/dmesg3.txt to delete the file, and use the ls

command to verify that it has been deleted.

this experiment has explored creating, copying, and moving files. it also provided some tools

that allow you to expose metadata about files.

 More commands
There are some additional commands that you will find useful.

Chapter 7 Using the LinUx Command Line

218

EXPERIMENT 7-8

perform this experiment as the student user.

start by looking at what happens when too much data is displayed by a command and it

scrolls off the top of the screen.

 1. the dmesg command displays the messages generated by Linux during the

initial boot process. enter the command dmsg and watch the output quickly

scroll off the screen. there are lots of data there that could be missed.

 2. enter the dmsg | less command. You should see the top of the output from

the dmesg command. at the bottom of the terminal, you should see a colon and

the cursor as in the following example :

:■

to see a single new line at the bottom of the screen, press the Enter key.

 3. press the Space bar to see a whole new page of output from the command.

 4. You can also use the up and down arrow keys to move one line at a time in the

respective direction. the Page Up and Page Down keys can be used to move

up or down a page at a time. Use these four keys to navigate the output stream

for a few moments. You will see (end) at the bottom left of the screen when the

end of the data stream has been reached.

 5. You can also specify a line number and use the G key to “goto” the specified

line number. the following entry will go to line 256, which will display at the top

of the terminal:

256G

 6. Capital g without a line number takes you to the end of the data stream:

G

 7. Lowercase g takes you to the beginning of the data stream:

g

 8. press the q key to quit and return to the command line.

the movement commands in less are very similar to those of vim so this

should be familiar.

Chapter 7 Using the LinUx Command Line

219

time and date are important, and the Linux date and cal commands

command provide some interesting capabilities.

 9. enter the date command to display today’s date:

[student@studentvm1 ~]$ date

Sun Sep 23 15:47:03 EDT 2018

[student@studentvm1 ~]$

 10. enter the cal command to display a calendar for the current month:

[student@studentvm1 ~]$ cal

 September 2018

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

[student@studentvm1 ~]$

 11. enter the following command to display a calendar for the entire year of 1949:

[student@studentvm1 ~]$ cal 1949

 12. Use the command cat /etc/passwd | less to display the contents of the

password file. hint: it does not actually contain any passwords. after browsing

around a bit, quit from less.

 13. enter the following command to generate a data stream and pipe the results

through the wc (word count) command to count the words, lines, and

characters in the data stream:

[student@studentvm1 ~]$ cat /etc/services | wc

 11473 63130 692241

[student@studentvm1 ~]$

Chapter 7 Using the LinUx Command Line

220

this shows that the wc command counted 11,473 lines, 63,130 words, and

692,241 characters in the data stream. the numbers in your result should be

the same or very close. the services file is a list of the standard assigned

and recognized ports used by various network services to communicate

between computers.

 14. the wc command can be used on its own. Use wc -l /etc/services to count

the lines in that file. that is -L in lowercase for “line.”

 Command recall and editing
Lazy admins don’t like typing. We especially don’t like repetitive typing, so we look for

ways to save time and typing. Using the Bash shell history can help do that. The history

command displays the last 1000 commands issued from the command line. You can use

the up/down arrow keys to scroll through that history on the command line and then

execute the same or modified commands with no or minimal retyping.

Command-line editing can make entering lots of similar commands easier. Previous

commands can be located by using the up arrow key to scroll back through the

command history. Then some simple editing can be performed to make modifications to

the original command. The Left arrow and Right arrow keys are used to move through

the command being edited. The Backspace key is used to delete characters, and simply

typing can complete the revised command.

EXPERIMENT 7-9

start this experiment as the student user. We will switch to root partway through. in this

experiment we look at using the Bash history, command-line recall, and editing the recalled

command line.

 1. enter the history command to view the current command history:

[student@studentvm1 ~]$ history

 1 su -

 2 poweroff

 3 su -

 4 ls -la

Chapter 7 Using the LinUx Command Line

221

 5 clear

 6 w

 7 who

 8 whoami

 9 id

 10 ksh

 11 exit

 12 infor core-utils

 13 info core-utils

 14 info coreutils

 15 info utils-linux

 16 info utilslinux

 17 info utils

 18 info coreutils

 19 ls -la

 20 tty

 21 stty

<snip>

 220 hwclock --systohc -v

 221 cd /root

 222 vgs

 223 less /etc/sudoers

 224 cd /tmp/testdir1

 225 ll

 226 tree

 227 vim ascii-program.sh

<snip>

 257 dnf list installed

 258 dnf list installed | wc

 259 dnf list available | wc

 260 dnf list available

 261 dnf info zorba

 262 dnf info zipper

 263 history

[student@studentvm1 ~]$

 2. Use the up arrow key to scroll through the history on the command line.

Chapter 7 Using the LinUx Command Line

222

 3. When you find a nondestructive command, like one of the many ls commands

that should be in the history, just hit the Enter key to issue that command

again.

 4. Use the history command to view the history again. pick a command you want

to execute again, and enter the following command, where xxx is the number

of the command you want to run. then press the Enter key:

[student@studentvm1 ~]$!XXX

 5. switch to a root terminal session to perform the rest of this experiment.

 6. Changing the pWd to /var/log/ and do a listing of the files there. You will

see, among others, a file named boot.log. We will use this file for some of

the next tasks.

 7. Use the cat command to print the contents of the boot.log file to the screen:

[root@studentvm1 log]# cat boot.log

 8. Count the lines in the boot.log file. Use the up arrow key to return to the

previous line. the changes to the command are added to the end, so just type

until the command looks like this:

[root@studentvm1 log]# cat boot.log | wc

 9. now view the lines that have the word “kernel” in them. return to the

previous command using the up arrow key. Backspace to remove “wc” but

leave the pipe (|). add the grep command, which we will cover in more detail

in Chapter 9, to show only those lines containing the kernel:

[root@studentvm1 log]# cat boot.log | grep kernel

 10. But what if some lines contain “Kernel” with an uppercase K? return to the last

command, and use the left arrow key to move the cursor to the space between

“grep” and “kernel” then add -i (ignore case) so the command looks like this:

[root@studentvm1 log]# cat boot.log | grep -i kernel

 11. edit that last command to add | wc to the end to count the total lines with the

word “kernel” in both upper- and lowercases.

Chapter 7 Using the LinUx Command Line

223

Although using the CLI history as in these examples seems a bit trivial, if you have

to repeat some very long and complex commands, it can really save a lot of typing and

perhaps mis-typing which can be even more frustrating.

 Chapter summary
I hope you can see from these simple examples, just a little of the vast power available to

the SysAdmin when using the command line.

In this chapter you have discovered that Linux provides a large number of methods

to access the command line and perform your work as a SysAdmin. You can use the

virtual consoles and any of a number of different terminal emulators and shells. You can

combine those with the screen program in order to further enhance the flexibility you

have at the command line.

We have also explored a number of important Linux commands and learned how to

recall and edit commands from the Bash history.

The examples in this chapter are informative in themselves, but they also are just the

beginning. As we proceed through this course, you will encounter many ways in which

the power and flexibility of the command line will be enhanced by combining the many

options discussed in this chapter.

 Exercises
Complete the following exercises to finish this chapter:

 1. Why does the Bash shell use different characters to denote root

and non-root sessions, that is, $ and #?

 2. Why do you think that there are so many different shells available

for Linux?

 3. If you already have a favorite terminal emulator, how does it

compare to the Xfce terminal emulator and which features of each

do you prefer?

 4. What is the function of any terminal emulator?

 5. If you prefer a shell other than Bash, which one and why?

Chapter 7 Using the LinUx Command Line

224

 6. What command would you use to temporarily switch to the

tcsh shell?

 7. How does SSH differ from virtual consoles and terminal

emulators?

 8. Can an unprivileged user such as student display the contents

of the /var/log/messages file? Why or why not – from a technical

perspective rather than an architectural design decision one?

 9. What command would you use to return the pwd to the

previous pwd?

 10. What do the last two entries of the student user’s PATH tell you?

 11. Can the cat command be used to list the contents of more than

one file at a time?

 12. If you want to repeat the previous command, how would you do

that if you don’t want to type it in again?

 13. How can you list all of the commands previously issued at the

command line?

Chapter 7 Using the LinUx Command Line

225
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_8

CHAPTER 8

Core Utilities
 Objectives
In this chapter you will learn

• Some history of the GNU core utilities

• Some history of the utils-linux utilities

• How to use some of the basic core utilities

I have recently been doing research for some articles and books I am writing –

yes, this one among others – and the GNU core utilities have been showing up quite

frequently. All SysAdmins use these utilities regularly, pretty much without thinking

about them. There is another set of basic utilities, util-linux, which we should also look at

because they also are important Linux.

Together, these two sets of utilities comprise many of the most basic tools the Linux

system administrator uses to complete everyday tasks. These tasks include management

and manipulation of text files, directories, data streams, various types of storage media,

process controls, filesystems, and much more. The primary functions of these tools are

the ones that allow SysAdmins to perform many of the basic tasks required to administer

a Linux computer. These tools are indispensable because, without them, it is not possible

to accomplish any useful work on a Linux computer.

 GNU coreutils
To understand the origins of the GNU core utilities, we need to take a short trip in the

Wayback Machine to the early days of Unix at Bell Labs. Unix was originally written so

that Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe Ossanna could continue

with something they had started while working on a large multitasking and multiuser

computer project called Multics. That little something was a game called “Space Travel.”

226

As is true today, it always seems to be the gamers that drive forward the technology of

computing. This new operating system was much more limited than Multics as only two

users could log in at a time, so it was called Unics. This name was later changed to Unix.

Over time, Unix turned out to be such a success, that Bell Labs began essentially

giving it away it to universities and later to companies, for the cost of the media and

shipping. Back in those days, system-level software was shared between organizations

and programmers as they worked to achieve common goals within the context of system

administration.

Eventually the PHBs at AT&T decided that they should start making money on Unix

and started using more restrictive – and expensive – licensing. This was taking place at a

time when software in general was becoming more proprietary, restricted, and closed. It

was becoming impossible to share software with other users and organizations.1

Some people did not like this and fought it with – free software. Richard M. Stallman,

aka RMS, led a group of rebels who were trying to write an open and freely available

operating system that they call the “GNU Operating System.” This group created what

would become the GNU core utilities2 but have not as yet produce a viable kernel.

When Linus Torvalds first began working on and compiled the Linux kernel, he needed

a set of very basic system utilities to even begin to perform marginally useful work. The

kernel does not provide commands themselves or any type of command shell such as Bash.

It is useless by itself. So Linus used the freely available GNU core utilities and recompiled

them for Linux. This gave him a complete operating system even though it was quite basic.

These commands were originally three separate collections, fileutils, shellutils, and

textutils, which were combined into the Linux core utilities, in 2002.

EXPERIMENT 8-1

This experiment can be performed as the student user.

You can learn about all of the individual programs that comprise the GNU utilities with the

info command. If you do not already have a terminal emulator open on the Xfce desktop,

please open one now:

 [student@studentvm1 ~]$ info coreutils

Next: Introduction, Up: (dir)

1 Wikipedia, History of Unix, https://en.wikipedia.org/wiki/History_of_Unix
2 GNU Operating System, Core Utilities, www.gnu.org/software/coreutils/coreutils.html

ChapTer 8 Core UTIlITIes

https://en.wikipedia.org/wiki/History_of_Unix
http://www.gnu.org/software/coreutils/coreutils.html

227

GNU Coreutils

This manual documents version 8.29 of the GNU core utilities, including

the standard programs for text and file manipulation.

 Copyright © 1994-2017 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this

 document under the terms of the GNU Free Documentation License,

 Version 1.3 or any later version published by the Free Software

 Foundation; with no Invariant Sections, with no Front-Cover Texts,

 and with no Back-Cover Texts. A copy of the license is included in

 the section entitled "GNU Free Documentation License".

* Menu:

* Introduction:: Caveats, overview, and authors

* Common options:: Common options

* Output of entire files:: cat tac nl od base32 base64

* Formatting file contents:: fmt pr fold

* Output of parts of files:: head tail split csplit

* Summarizing files:: wc sum cksum b2sum md5sum sha1sum sha2

* Operating on sorted files:: sort shuf uniq comm ptx tsort

* Operating on fields:: cut paste join

* Operating on characters:: tr expand unexpand

* Directory listing:: ls dir vdir dircolors

* Basic operations:: cp dd install mv rm shred

* Special file types:: mkdir rmdir unlink mkfifo mknod ln link

readlink

* Changing file attributes:: chgrp chmod chown touch

* Disk usage:: df du stat sync truncate

* Printing text:: echo printf yes

* Conditions:: false true test expr

* Redirection:: tee

* File name manipulation:: dirname basename pathchk mktemp realpath

* Working context:: pwd stty printenv tty

* User information:: id logname whoami groups users who

* System context:: date arch nproc uname hostname hostid uptime

* SELinux context:: chcon runcon

ChapTer 8 Core UTIlITIes

228

* Modified command invocation:: chroot env nice nohup stdbuf timeout

* Process control:: kill

* Delaying:: sleep

* Numeric operations:: factor numfmt seq

* File permissions:: Access modes

* File timestamps:: File timestamp issues

* Date input formats:: Specifying date strings

* Opening the software toolbox:: The software tools philosophy

* GNU Free Documentation License:: Copying and sharing this manual

* Concept index:: General index

 — The Detailed Node Listing —

-----Info: (coreutils)Top, 344 lines --Top----------------------------------

The utilities are grouped by function to make specific ones easier to find. This page is

interactive. Use the arrow keys on the keyboard to highlight the group you want more

information on, and press the Enter key.

scroll down the list so that the block cursor is on the line, “Working context::” and press Enter.
The following page is displayed:

Next: User information, Prev: File name manipulation, Up: Top

19 Working context

This section describes commands that display or alter the context in

which you are working: the current directory, the terminal settings, and

so forth. See also the user-related commands in the next section.

* Menu:

* pwd invocation:: Print working directory.

* stty invocation:: Print or change terminal characteristics.

* printenv invocation:: Print environment variables.

* tty invocation:: Print file name of terminal on standard

input.

Now highlight the bottom line of the listed utilities and press Enter:

Prev: printenv invocation, Up: Working context

ChapTer 8 Core UTIlITIes

229

19.4 'tty': Print file name of terminal on standard input

===

'tty' prints the file name of the terminal connected to its standard

input. It prints 'not a tty' if standard input is not a terminal.

Synopsis:

 tty [OPTION]...

 The program accepts the following option. Also see *note Common

options::.

'-s'

'--silent'

'--quiet'

 Print nothing; only return an exit status.

 Exit status:

 0 if standard input is a terminal

 1 if standard input is a non-terminal file

 2 if given incorrect arguments

 3 if a write error occurs

You can read the information about this utility. so now let’s use it. If you don’t already have

a second terminal emulator open and ready, open a new one now – you might want to

open a second tab in the existing xfce4-terminal emulator. This way you can see or easily

switch between the Info page and the command line on which you will be working. enter the

command following command in the second terminal:

[student@studentvm1 ~]$ tty

/dev/pts/52

[student@studentvm1 ~]$

You can see we are getting essentially the same information as we did from the w and who

commands, but this is in a format that shows the complete path to the device special file. This

would be useful when you need that information for a script because it is easier than writing

code to extract the date needed from either of those other two commands.

To do some basic maneuvering in Info, use the following keys. a node is a page about a

specific command or group of commands:

ChapTer 8 Core UTIlITIes

230

• p: previous Info node in the menu sequence

• n: Next Info node in the menu sequence

• u: Up one menu layer

• l (lowercase L): last visited node in history

• q: Quit the Info facility

• H: help / exit help

Take some time to use the Info facility to look at a few of the core utilities.

You have learned a bit about the GNU utilities in this experiment. You have also received a

quick tutorial in using the info utility for locating information about linux commands. To

learn more about using the Info facility, use the command info info. and – of course – all of

these utilities can be found in the man pages, but the documentation in the Info facility is more

complete.

There are 102 utilities in the GNU core utilities. It does cover many of the basic

functions necessary to perform some basic tasks on a Unix or Linux host. However, many

basic utilities are still missing. For example, the mount and umount commands are not

in this group of utilities. Those and many of the other commands that are not in the GNU

coreutils can be found in the util-linux collection.

 util-linux
The util-linix3 package of utilities contains many of the other common commands that

SysAdmins use. These utilities are distributed by the Linux Kernel Organization. As you

can see from the following list, they cover many aspects of Linux system administration:

agetty fsck.minix mkfs.bfs setpriv

blkdiscard fsfreeze mkfs.cramfs setsid

blkid fstab mkfs.minix setterm

blockdev fstrim mkswap sfdisk

cal getopt more su

cfdisk hexdump mount sulogin

3 Wikipedia, util-linux, https://en.wikipedia.org/wiki/Util-linux

ChapTer 8 Core UTIlITIes

https://en.wikipedia.org/wiki/Util-linux

231

chcpu hwclock mountpoint swaplabel

chfn ionice namei swapoff

chrt ipcmk newgrp swapon

chsh ipcrm nologin switch_root

colcrt ipcs nsenter tailf

col isosize partx taskset

colrm kill pg tunelp

column last pivot_root ul

ctrlaltdel ldattach prlimit umount

ddpart line raw unshare

delpart logger readprofile utmpdump

dmesg login rename uuidd

eject look renice uuidgen

fallocate losetup reset vipw

fdformat lsblk resizepart wall

fdisk lscpu rev wdctl

findfs lslocks rtcwake whereis

findmnt lslogins runuser wipefs

flock mcookie script write

fsck mesg scriptreplay zramctl

fsck.cramfs mkfs setarch

Note that some of these utilities have been deprecated and will likely fall out of the

collection at some point in the future. You should check the Wikipedia reference for

util-linux for some information on many of the utilities. The man pages can be used to

learn the details of these commands, but there is no corresponding Info pages for these

utilities. Notice that mount and umount are a part of this group of commands.

Let’s look at a couple of these utilities just to see what they are about.

EXPERIMENT 8-2

Do this experiment as the student user.

let’s start with the cal command which generates a calendar. Without any options, it shows

the current month with today’s date highlighted:

ChapTer 8 Core UTIlITIes

232

[student@studentvm1 ~]$ cal

 September 2018

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

[student@studentvm1 ~]$

Using the -3 option prints three months with the current month in the middle:

[student@studentvm1 ~]$ cal -3

 August 2018 September 2018 October 2018

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 4 1 1 2 3 4 5 6

 5 6 7 8 9 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13

12 13 14 15 16 17 18 9 10 11 12 13 14 15 14 15 16 17 18 19 20

19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27

26 27 28 29 30 31 23 24 25 26 27 28 29 28 29 30 31

 30

[student@studentvm1 ~]$

Using a year as an argument displays a calendar of that entire year:

[student@studentvm1 ~]$ cal 1948

 1948

 January February March

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6

 4 5 6 7 8 9 10 8 9 10 11 12 13 14 7 8 9 10 11 12 13

11 12 13 14 15 16 17 15 16 17 18 19 20 21 14 15 16 17 18 19 20

18 19 20 21 22 23 24 22 23 24 25 26 27 28 21 22 23 24 25 26 27

25 26 27 28 29 30 31 29 28 29 30 31

ChapTer 8 Core UTIlITIes

233

 April May June

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 1 1 2 3 4 5

 4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12

11 12 13 14 15 16 17 9 10 11 12 13 14 15 13 14 15 16 17 18 19

18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26

25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30

 30 31

 July August September

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 3 1 2 3 4 5 6 7 1 2 3 4

 4 5 6 7 8 9 10 8 9 10 11 12 13 14 5 6 7 8 9 10 11

11 12 13 14 15 16 17 15 16 17 18 19 20 21 12 13 14 15 16 17 18

18 19 20 21 22 23 24 22 23 24 25 26 27 28 19 20 21 22 23 24 25

25 26 27 28 29 30 31 29 30 31 26 27 28 29 30

 October November December

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

 1 2 1 2 3 4 5 6 1 2 3 4

 3 4 5 6 7 8 9 7 8 9 10 11 12 13 5 6 7 8 9 10 11

10 11 12 13 14 15 16 14 15 16 17 18 19 20 12 13 14 15 16 17 18

17 18 19 20 21 22 23 21 22 23 24 25 26 27 19 20 21 22 23 24 25

24 25 26 27 28 29 30 28 29 30 26 27 28 29 30 31

31

[student@studentvm1 ~]$

Use the command man cal to find additional information about the cal command. I do use

the cal command, so you might find it useful, too.

I use some commands to find information about the hardware – real or virtual – to which I am

logged in. For example, it can be useful for a sysadmin to know about the CpU:

[student@studentvm1 ~]$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 2

ChapTer 8 Core UTIlITIes

234

On-line CPU(s) list: 0,1

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 85

Model name: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

Stepping: 4

CPU MHz: 2807.986

BogoMIPS: 5615.97

Hypervisor vendor: KVM

Virtualization type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 1024K

L3 cache: 22528K

NUMA node0 CPU(s): 0,1

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx

rdtscp lm constant_tsc rep_good nopl xtopology nonstop_

tsc cpuid pni pclmulqdq ssse3 cx16 pcid sse4_1 sse4_2

x2apic movbe popcnt aes xsave avx rdrand hypervisor

lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase

avx2 invpcid rdseed clflushopt

The lscpu command provides a great deal of information about the installed CpU(s). some of

this information is very useful when writing scripts that may have need to know it. Note that

VirtualBox sees most hardware and passes on the virtualized version just the same as the

physical.

The lsblk command – list block devices which are usually disk drives – is very useful in

helping me to understand the structure of the partitions, volume groups, and physical and

logical volumes of disks using logical volume management (lVM):

ChapTer 8 Core UTIlITIes

235

[student@studentvm1 ~]$ lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-pool00_tmeta 253:0 0 4M 0 lvm

 | `-fedora_studentvm1-pool00-tpool 253:2 0 2G 0 lvm

 | |-fedora_studentvm1-root 253:3 0 2G 0 lvm /

 | `-fedora_studentvm1-pool00 253:6 0 2G 0 lvm

 |-fedora_studentvm1-pool00_tdata 253:1 0 2G 0 lvm

 | `-fedora_studentvm1-pool00-tpool 253:2 0 2G 0 lvm

 | |-fedora_studentvm1-root 253:3 0 2G 0 lvm /

 | `-fedora_studentvm1-pool00 253:6 0 2G 0 lvm

 |-fedora_studentvm1-swap 253:4 0 8G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:5 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:7 0 2G 0 lvm /home

 |-fedora_studentvm1-var 253:8 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:9 0 5G 0 lvm /tmp

sr0 11:0 1 1024M 0 rom

[student@studentvm1 ~]$

I used the -i option to produce the results in asCII format because it transfers better to a

document like this. You can use -i but you should also try the command without any options to

get a version that looks a little nicer on the display.

The df command (from the original GNU core utilities) shows similar data but with somewhat

different detail:

[student@studentvm1 ~]$ df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 2.0G 0 2.0G 0% /dev

tmpfs 2.0G 0 2.0G 0% /dev/shm

tmpfs 2.0G 1.2M 2.0G 1% /run

tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup

/dev/mapper/fedora_studentvm1-root 2.0G 49M 1.8G 3% /

/dev/mapper/fedora_studentvm1-usr 15G 3.8G 11G 27% /usr

/dev/sda1 976M 185M 724M 21% /boot

/dev/mapper/fedora_studentvm1-tmp 4.9G 21M 4.6G 1% /tmp

/dev/mapper/fedora_studentvm1-var 9.8G 494M 8.8G 6% /var

ChapTer 8 Core UTIlITIes

236

/dev/mapper/fedora_studentvm1-home 2.0G 7.3M 1.8G 1% /home

tmpfs 395M 8.0K 395M 1% /run/user/1000

tmpfs 395M 0 395M 0% /run/user/0

I used the -h option to show the disk space in easily human-readable numbers like GB and

MB. Note that the names of commands that list things tend to start with “ls” which in linux-

speak usually means “list.”

There are several temporary filesystem shown in the output of both the df and lsblk

commands. We will talk about some temporary filesystems later in this course. We

will also explore the logical volume manager (LVM) that creates the entries like /dev/

mapper/fedora_studentvm1-tmp.

 Chapter summary
These two collections of basic Linux utilities, the GNU core utilities and util-linux,

together provide the basic utilities required to administer a basic Linux system. As

I researched this chapter, I found several interesting utilities in this list that I never

knew about. Many of these commands are seldom needed. But when you do, they are

indispensable.

Between these two collections, there are over 200 Linux utilities. The typical Linux

distribution has many more commands, but these are the ones that are needed to

manage the most basic functions of the typical Linux host.

We explored a couple commands from each of these utility packages, but we will

definitely encounter more as we proceed through this course. It makes much more sense

to only cover the utilities that we will encounter and use the most rather than try to learn

all of these commands.

Just a note about terminology so that we are working with the same understanding:

From this point on in this course, when I say core utilities, I mean both sets of these

utilities. If I intend to refer to either set individually, I will name them explicitly.

ChapTer 8 Core UTIlITIes

237

 Exercises
Complete these exercises to finish this chapter:

 1. What is the overall purpose of these two groups of core utilities?

 2. Why were the GNU core utilities important to Linus Torvalds?

 3. Which core utility would you use to determine how much space is

left in each filesystem?

 4. What is the model name of the CPU in your VM?

 5. How many CPUs does your physical host have and how many are

allocated to the VM?

 6. Does allocating a CPU to the VM make it unavailable to the host

machine?

ChapTer 8 Core UTIlITIes

239
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_9

CHAPTER 9

Data Streams
 Objectives
In this chapter you will learn

• How text data streams form the architectural basis for the extreme

flexibility of the Linux command line

• How to generate streams of text data

• How to use pipes, STDIO, and many of the core utilities to

manipulate text data streams

• How to redirect data streams to and from files

• The basic usage of some of the special device files in the /dev

directory

 Data streams as raw materials
Everything in Linux revolves around streams of data – particularly text streams.

Data streams are the raw materials upon which the core utilities and many other

CLI tools perform their work. As its name implies, a data stream is a stream of data – text

data – being passed from one file, device, or program to another using Standard Input/

Output (STDIO). This chapter introduces the use of pipes to connect streams of data

from one utility program to another using STDIO. You will learn that the function of

these programs is to transform the data in some manner. You will also learn about the

use of redirection to redirect the data to a file.

I use the term “transform” in conjunction with these programs because the primary

task of each is to transform the incoming data from STDIO in a specific way as intended

by the SysAdmin and to send the transformed data to STDOUT for possible use by

another transformer program or redirection to a file.

240

The standard term, “filters,” implies something with which I don't agree. By

definition, a filter is a device or a tool that removes something, such as an air filter

removes airborne contaminants so that the internal combustion engine of your

automobile does not grind itself to death on those particulates. In my high school and

college chemistry classes, filter paper was used to remove particulates from a liquid. The

air filter in my home HVAC system removes particulates that I don’t want to breathe.

Although they do sometimes filter out unwanted data from a stream, I much prefer

the term “transformers” because these utilities do so much more. They can add data to

a stream, modify the data in some amazing ways, sort it, rearrange the data in each line,

perform operations based on the contents of the data stream, and so much more. Feel

free to use whichever term you prefer, but I prefer transformers.

Data streams can be manipulated by inserting transformers into the stream using

pipes. Each transformer program is used by the SysAdmin to perform some operation on

the data in the stream, thus changing its contents in some manner. Redirection can then

be used at the end of the pipeline to direct the data stream to a file. As has already been

mentioned, that file could be an actual data file on the hard drive, or a device file such as

a drive partition, a printer, a terminal, a pseudo-terminal, or any other device1 connected

to a computer.

The ability to manipulate these data streams using these small yet powerful

transformer programs is central to the power of the Linux command-line interface.

Many of the core utilities are transformer programs and use STDIO.

I recently Googled “data stream,” and most of the top hits are concerned with

processing huge amounts of streaming data in single entities such as streaming video

and audio or financial institutions processing streams consisting of huge numbers

of individual transactions. This is not what we are talking about here, although the

concept is the same and a case could be made that current applications use the stream

processing functions of Linux as the model for processing many types of data.

In the Unix and Linux worlds, a stream is a flow text data that originates at some

source; the stream may flow to one or more programs that transform it in some way, and

then it may be stored in a file or displayed in a terminal session. As a SysAdmin, your job

is intimately associated with manipulating the creation and flow of these data streams. In

this chapter we will explore data streams – what they are, how to create them, and a little

bit about how to use them.

1 In Linux systems all hardware devices are treated as files. More about this in Chapter 3 of
Volume 2.

Chapter 9 Data StreamS

241

 Text streams – A universal interface
The use of Standard Input/Output (STDIO) for program input and output is a key

foundation of the Linux way of doing things. STDIO was first developed for Unix and has

found its way into most other operating systems since then, including DOS, Windows,

and Linux.

This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together. Write programs to handle text
streams, because that is a universal interface.

—Doug McIlroy, Basics of the Unix Philosophy2,3

STDIO was developed by Ken Thompson4 as a part of the infrastructure required

to implement pipes on early versions of Unix. Programs that implement STDIO use

standardized file handles for input and output rather than files that are stored on a disk

or other recording media. STDIO is best described as a buffered data stream, and its

primary function is to stream data from the output of one program, file, or device to the

input of another program, file, or device.

 STDIO file handles
There are three STDIO data streams, each of which is automatically opened as a file

at the startup of a program – well those programs that use STDIO. Each STDIO data

stream is associated with a file handle which is just a set of metadata that describes the

attributes of the file. File handles 0, 1, and 2 are explicitly defined by convention and long

practice as STDIN, STDOUT, and STDERR, respectively.

STDIN, File handle 0, is Standard Input which is usually input from the keyboard.

STDIN can be redirected from any file including device files instead of the keyboard. It is

not common to need to redirect STDIN, but it can be done.

2 Eric S. Raymond, The Art of Unix Programming, www.catb.org/esr/writings/taoup/html/
ch01s06.html

3 Linuxtopia, Basics of the Unix Philosophy, www.linuxtopia.org/online_books/programming_
books/art_of_unix_programming/ch01s06.html

4 Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson

Chapter 9 Data StreamS

http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
https://en.wikipedia.org/wiki/Ken_Thompson

242

STDOUT, File handle 1, is Standard Output which sends the data stream to the

display by default. It is common to redirect STDOUT to a file or to pipe it to another

program for further processing.

STDERR is associated with File handle 2. The data stream for STDERR is also usually

sent to the display.

If STDOUT is redirected to a file, STDERR continues to be displayed on the screen.

This ensures that when the data stream itself is not displayed on the terminal, that

STDERR is thus ensuring that the user will see any errors resulting from execution

of the program. STDERR can also be redirected to the same or passed on to the next

transformer program in a pipeline.

STDIO is implemented in a standard C library header file, stdio.h, which can be

included in the source code of programs so that it can be compiled into the resulting

executable.

 Preparing a USB thumb drive
You can perform some the following experiments safely with a USB thumb drive that

is not being used for anything else. I found an 8GB – thumb drive that I have no other

current use for, so set it up to use with these experiments. You can use any size USB stick

that you have on hand, but a small one, even just a few MB in size, is perfectly fine. The

thumb drive you use should have a VFAT partition on it; unless you have intentionally

formatted the device with another type of filesystem, it should meet the requirements for

the experiments in this chapter.

PREPARATION 9-1

prepare the USB device for use with some of these experiments.

 1. If a terminal session as root is not already open, open one on the virtual

machine that you will be using for these experiments and login as root.

 2. Insert the USB device in an available USB slot on your physical host computer.

 3. at the top of the Vm window, in the menu bar, click Devices ➤ USB. Locate

the specific device you just inserted. It will probably look a lot like Figure 9-1

as a “generic mass storage device.” another of my devices was identified as a

“USB Disk.”

Chapter 9 Data StreamS

243

 4. Click the device, and within a moment or two, a new disk device icon should

appear on your Vm desktop. this is how you know that you found the correct

device.

 5. In the Vm, use the root terminal session to run the dmesg command to

determine which device file the kernel has assigned to the USB drive. It will

probably be something like /dev/sdb. the dmesg output should show at least

one partition /dev/sdb1. the drive letter – b in this example – might be a

different letter on your Linux Vm, but that should be highly unlikely:

[root@studentvm1 ~]# dmesg

<snip>

[849.668963] usb 1-1: new high-speed USB device number 3 using ehci-pci

[849.981751] usb 1-1: New USB device found, idVendor=0781, idProduct=5530,

bcdDevice= 2.00

[849.981757] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[849.981760] usb 1-1: Product: Cruzer

[849.981762] usb 1-1: Manufacturer: SanDisk

Figure 9-1. Selecting the USB device for use by the VM so that it can be prepared

Chapter 9 Data StreamS

244

[849.981764] usb 1-1: SerialNumber: 2243021B525036CB

[849.988408] usb-storage 1-1:1.0: USB Mass Storage device detected

[849.992316] scsi host4: usb-storage 1-1:1.0

[851.028443] scsi 4:0:0:0: Direct-Access SanDisk Cruzer

8.02 PQ: 0 ANSI: 0 CCS

[851.028826] sd 4:0:0:0: Attached scsi generic sg2 type 0

[851.039594] sd 4:0:0:0: [sdb] 7856127 512-byte logical blocks: (4.02 GB/3.75

GiB)

[851.046239] sd 4:0:0:0: [sdb] Write Protect is off

[851.046245] sd 4:0:0:0: [sdb] Mode Sense: 45 00 00 08

[851.052946] sd 4:0:0:0: [sdb] No Caching mode page found

[851.052953] sd 4:0:0:0: [sdb] Assuming drive cache: write through

[851.139347] sdb: sdb1

[851.181538] sd 4:0:0:0: [sdb] Attached SCSI removable disk

[root@studentvm1 ~]#

You could also use the following command:

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 100G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 99G 0 part

 |-fedora_studentvm1-root 253:0 0 1G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 9G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 5G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 2G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 1 3.8G 0 disk

`-sdb1 8:17 1 3.8G 0 part

sr0 11:0 1 1024M 0 rom

[root@studentvm1 ~]#

Now run the fdisk command on the device because it can also tell us the type

of partition that is on the USB drive. Notice that we are using the device special

files for this:

Chapter 9 Data StreamS

245

[root@studentvm1 ~]# fdisk -l /dev/sdb

Disk /dev/sdb: 3.8 GiB, 4022337024 bytes, 7856127 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x00000000

Device Boot Start End Sectors Size Id Type

/dev/sdb1 38 7839719 7839682 3.8G b W95 FAT32

[root@studentvm1 ~]#

 6. Now that we know the device file, we can mount the drive’s partition on /mnt.

Storage devices must be mounted as part of the main root (/) filesystem before

they can be accessed. the /mnt directory is a defined mount point location for

temporarily mounting filesystems for purposes exactly like ours:

[root@studentvm1 ~]# mount /dev/sdb1 /mnt

[root@studentvm1 ~]#

 7. Change the pWD to /mnt and delete any preexisting files that might exist:

[root@studentvm1 ~]# cd /mnt

[root@studentvm1 mnt]# ll

total 31734

-rwxr-xr-x. 1 root root 7250452 May 9 2017 BE0028P.bio

-rwxr-xr-x. 1 root root 7133368 May 8 2017 BE0034P.bio

-rwxr-xr-x. 1 root root 7709204 May 8 2017 BE0041P.bio

-rwxr-xr-x. 1 root root 9732628 Nov 5 2012 BE0048.bio

-rwxr-xr-x. 1 root root 66945 May 8 2017 command.com

-rwxr-xr-x. 1 root root 13 Feb 26 2002 command.en

-rwxr-xr-x. 1 root root 27918 Aug 24 2006 country.sys

-rwxr-xr-x. 1 root root 766 May 20 2000 fdcom.ico

-rwxr-xr-x. 1 root root 102418 Aug 19 2006 freecom.en

-rwxr-xr-x. 1 root root 194332 Jul 19 2011 IFLASH2.exe

-rwxr-xr-x. 1 root root 2336 Aug 5 2000 join.en

-rwxr-xr-x. 1 root root 30802 Nov 28 2002 join.exe

-rwxr-xr-x. 1 root root 40548 Aug 20 2006 kernel16.sys

-rwxr-xr-x. 1 root root 44530 Aug 20 2006 kernel32.sys

-rwxr-xr-x. 1 root root 44889 May 8 2017 kernel.sys

-rwxr-xr-x. 1 root root 2370 Aug 5 2000 subst.en

Chapter 9 Data StreamS

246

-rwxr-xr-x. 1 root root 30802 Nov 28 2002 subst.exe

-rwxr-xr-x. 1 root root 25791 Aug 5 2000 swsubst.en

-rwxr-xr-x. 1 root root 30802 Nov 28 2002 swsubst.exe

-rwxr-xr-x. 1 root root 11600 Aug 20 2006 sys.com

[root@studentvm1 mnt]# rm -rf *
[root@studentvm1 mnt]# ll

total 0

[root@studentvm1 mnt]#

 8. enter and run the following command-line program to create some files with

content on the drive. We use the dmesg command simply to provide data for

the files to contain. the contents don’t matter so much as just the fact that

each file has some content:

[root@studentvm1 mnt]# for I in 0 1 2 3 4 5 6 7 8 9 ; do dmesg > file$I.txt ; done

[root@studentvm1 mnt]#

 9. Verify that there are now at least ten files on the drive with the names file0.txt

through file9.txt:

[root@studentvm1 mnt]# ll

total 440

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file0.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file1.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file2.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file3.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file4.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file5.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file6.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file7.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file8.txt

-rwxr-xr-x. 1 root root 44240 Sep 5 21:15 file9.txt

[root@studentvm1 mnt]#

 10. make the /root directory (the home directory for root) the pWD:

[root@studentvm1 mnt]# cd

Do not unmount the USB device or detach it from the Vm. the USB drive is now ready for use

in some of the experiments in this chapter.

Chapter 9 Data StreamS

247

 Generating data streams
Most of the core utilities use STDIO as their output stream, and those that generate

data streams, rather than acting to transform the data stream in some way, can be used

to create the data streams that we will use for our experiments. Data streams can be as

short as one line or even a single character, and as long as needed.5

Let’s try our first experiment and create a short data stream.

EXPERIMENT 9-1

If you have not already, log in to the host you are using for these experiments as the user

“student.” If you have logged in to a GUI desktop session, start your favorite terminal emulator;

if you have logged in to one of the virtual consoles or a terminal emulator, you are ready to go.

Use the command shown in the following to generate a stream of data:

[student@studentvm1 ~]$ ls -la

total 28

drwx------ 3 student student 4096 Oct 20 01:25 .

drwxr-xr-x. 10 root root 4096 Sep 21 10:06 ..

-rw------- 1 student student 1218 Oct 20 20:26 .bash_history

-rw-r--r-- 1 student student 18 Jun 30 11:57 .bash_logout

-rw-r--r-- 1 student student 193 Jun 30 11:57 .bash_profile

-rw-r--r-- 1 student student 231 Jun 30 11:57 .bashrc

drwxr-xr-x 4 student student 4096 Jul 5 18:00 .mozilla

the output from this command is a short data stream that is displayed on StDOUt, the

console, or terminal session that you are logged in to.

Some GNU core utilities are designed specifically to produce streams of data. Let’s

take a look at some of these utilities.

5 A data stream taken from special device files random, urandom, and zero, for example, can
continue forever without some form of external termination such as the user entering Ctrl-C, a
limiting argument to the command or a system failure.

Chapter 9 Data StreamS

248

EXPERIMENT 9-2

the yes command produces a continuous data stream that consists of repetitions of the data

string provided as the argument. the generated data stream will continue until it is interrupted

with a Ctrl-C which is displayed on the screen as ^C.

enter the command as shown, and let it run for a few seconds. press Ctrl-C when you get tired

of watching the same string of data scroll by:

[student@studentvm1 ~]$ yes 123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

123465789-abcdefg

1234^C

Now just enter the yes command with no options:

[student@studentvm1 ~]$ yes

y

y

y

<snip>

y

y

y^C

the primary function of the yes command is to produce a stream of data.

“What does this prove?” you ask. Just that there are many ways to create a data

stream that might be useful. For example, you might wish to automate the process

of responding to the seemingly interminable requests for “y” input to from the fsck

program to fix a problem on the hard drive. This solution can result in saving a lot of

presses on the “y” key.

Chapter 9 Data StreamS

249

And now, here is something that you should most definitely not try. When run as

root, the rm * command will erase every file in the present working directory (pwd) – but

it asks you to enter “y” for each file to verify that you actually want to delete that file. This

means more typing.

EXPERIMENT 9-3

I haven’t talked about pipes yet but as a Sysadmin, or someone who wants to become one,

you should already know how to use them. the CLI program in the following will supply the

response of “y” to each request by the rm command and will delete all of the files in the pWD.

ensure that /mnt is the pwd:

yes | rm * ; ll

Warning Do not run this command anywhere but the location specified in this
experiment because it will delete all of the files in the present working directory.

Now recreate the files we just deleted using the seq (sequence) command to generate the file

numbers instead of providing them as a list as we did earlier. then verify that the files have

been recreated:

for I in `seq 0 9` ; do dmesg > file$I.txt ; done

Of course you could also use rm -f * which would also forcibly delete all of the files in the

pWD. the -f means “force” the deletions. Be sure you are in the /mnt directory where the USB

device is mounted. then run the following commands to delete all the files we just created,

and verify they are gone:

rm -f * ; ll

this is also something you should not normally do without ensuring that the files really should

be deleted.

Once more, recreate the test files in /mnt. Do not unmount the USB device.

Chapter 9 Data StreamS

250

 Test a theory with yes
Another option for using the yes command is to fill a directory with a file containing

some arbitrary and irrelevant data in order to – well – fill up the directory. I have used

this technique to test what happens to a Linux host when a particular directory becomes

full. In the specific instance where I used this technique, I was testing a theory because a

customer was having problems and could not log in to their computer.

Note I assume in this series of experiments that the USB drive is on /dev/sdb and
its partition is /dev/sdb1 – as it is on my Vm – be sure you verify the device it has
been assigned on your Vm as it might be different. Use the correct device file6 for
your situation.

EXPERIMENT 9-4

this experiment should be performed as root.

In order to prevent filling the root filesystem, this experiment will use the USB device that

you should have prepared in advance in the preparation 9-1 section of this chapter. this

experiment will not affect the existing files on the device.

You did prepare that USB drive, did you not? If not, then go back and do so now. I will wait...

ready? Great!

We start this experiment with the assumption that the partition on the USB drive is mounted on

/mnt because that is the state it was in at the end of experiment 9-3.

Let’s take the time to learn another tool, the watch utility, which works nicely to make a

static command such as df into one that continuously updates. the df utility displays the

filesystems, their sizes, free space, and mount points. Just run the df command:

[root@studentvm1 ~]# df

Filesystem Size Used Avail Use% Mounted on

devtmpfs 982M 12K 982M 1% /dev

6 We will learn more about device files and the /dev directory in Chapter 3 of Volume 2.

Chapter 9 Data StreamS

251

tmpfs 996M 0 996M 0% /dev/shm

tmpfs 996M 992K 995M 1% /run

tmpfs 996M 0 996M 0% /sys/fs/cgroup

/dev/mapper/fedora_studentvm1-root 976M 56M 854M 7% /

/dev/mapper/fedora_studentvm1-usr 8.8G 4.4G 4.1G 52% /usr

/dev/mapper/fedora_studentvm1-home 4.9G 24M 4.6G 1% /home

/dev/mapper/fedora_studentvm1-var 2.0G 690M 1.2G 38% /var

/dev/mapper/fedora_studentvm1-tmp 4.9G 21M 4.6G 1% /tmp

/dev/sda1 976M 213M 697M 24% /boot

tmpfs 200M 8.0K 200M 1% /run/user/992

tmpfs 200M 0 200M 0% /run/user/0

/dev/sdb1 3.8G 672K 3.8G 1% /mnt

the -h option presents the numbers in (h)uman-readable format:

[root@studentvm1 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 982M 12K 982M 1% /dev

tmpfs 996M 0 996M 0% /dev/shm

tmpfs 996M 984K 995M 1% /run

tmpfs 996M 0 996M 0% /sys/fs/cgroup

/dev/mapper/fedora_studentvm1-root 976M 56M 854M 7% /

/dev/mapper/fedora_studentvm1-usr 8.8G 4.4G 4.1G 52% /usr

/dev/mapper/fedora_studentvm1-home 4.9G 24M 4.6G 1% /home

/dev/mapper/fedora_studentvm1-var 2.0G 690M 1.2G 38% /var

/dev/mapper/fedora_studentvm1-tmp 4.9G 21M 4.6G 1% /tmp

/dev/sda1 976M 213M 697M 24% /boot

tmpfs 200M 8.0K 200M 1% /run/user/992

tmpfs 200M 0 200M 0% /run/user/0

For this experiment we will run the default units which are 1K blocks. In one root terminal

session, start the watch command, and use the df command as its argument. this constantly

updates the disk usage information and allows us to watch as the USB device fills up. the -n

option on the watch command tells it to run the df command every one second instead of the

default two seconds.

Chapter 9 Data StreamS

252

[root@studentvm1 ~]# watch -n 1 df -h

Every 1.0s: df -h studentvm1:

Wed Feb 13 15:56:02 2019

Filesystem 1K-blocks Used Available Use% Mounted on

devtmpfs 1004944 12 1004932 1% /dev

tmpfs 1019396 0 1019396 0% /dev/shm

tmpfs 1019396 992 1018404 1% /run

tmpfs 1019396 0 1019396 0% /sys/fs/

cgroup

/dev/mapper/fedora_studentvm1-root 999320 56812 873696 7% /

/dev/mapper/fedora_studentvm1-usr 9223508 4530124 4205144 52% /usr

/dev/mapper/fedora_studentvm1-home 5095040 23740 4792772 1% /home

/dev/mapper/fedora_studentvm1-var 1998672 705988 1171444 38% /var

/dev/mapper/fedora_studentvm1-tmp 5095040 20528 4795984 1% /tmp

/dev/sda1 999320 217544 712964 24% /boot

tmpfs 203876 8 203868 1% /run/

user/992

tmpfs 203876 0 203876 0% /run/

user/0

/dev/sdb1 3918848 672 3918176 1% /mnt

place this terminal session somewhere on your desktop so that you can see it, then, as root

in another terminal session, run the command shown in the following. Depending upon the

size of your USB filesystem, the time to fill it may vary, but it should be quite fast on a small

capacity USB drive. It took 18 minutes and 55 seconds on my system with a 4GB USB device.

Watch the /dev/sdb1 filesystem on /mnt as it fills up:

[root@studentvm1 ~]# yes 123456789-abcdefgh >> /mnt/testfile.txt

yes: standard output: No space left on device

[root@studentvm1 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 982M 12K 982M 1% /dev

tmpfs 996M 0 996M 0% /dev/shm

tmpfs 996M 992K 995M 1% /run

tmpfs 996M 0 996M 0% /sys/fs/cgroup

/dev/mapper/fedora_studentvm1-root 976M 56M 854M 7% /

/dev/mapper/fedora_studentvm1-usr 8.8G 4.4G 4.1G 52% /usr

/dev/mapper/fedora_studentvm1-home 4.9G 24M 4.6G 1% /home

Chapter 9 Data StreamS

253

/dev/mapper/fedora_studentvm1-var 2.0G 690M 1.2G 38% /var

/dev/mapper/fedora_studentvm1-tmp 4.9G 21M 4.6G 1% /tmp

/dev/sda1 976M 213M 697M 24% /boot

tmpfs 200M 8.0K 200M 1% /run/user/992

tmpfs 200M 0 200M 0% /run/user/0

/dev/sdb1 3.8G 3.8G 0 100% /mnt

[root@studentvm1 ~]# ll /mnt

total 3918816

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file0.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file1.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file2.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file3.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file4.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file5.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file6.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file7.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file8.txt

-rwxr-xr-x 1 root root 40615 Feb 13 09:15 file9.txt

-rwxr-xr-x 1 root root 4012212224 Feb 13 16:28 testfile.txt

[root@studentvm1 ~]#

Your results should look similar to mine. Be sure to look at the line from the df output that

refers to the /dev/sdb1 device. this shows that 100% of the space on that filesystem is used.

Now delete testfile.txt from /mnt and unmount that filesystem:

[root@studentvm1 ~]# rm -f /mnt/testfile.txt ; umount /mnt

[root@studentvm1 ~]#

Note that I have placed two commands on the same line separated by a semicolon. this can

be faster than entering two separate commands and is the start of creating command-line

programs which we will explore in more detail later in the course.

I used the simple test in Experiment 9-4 on the /tmp directory of one of my own

computers as part of my testing to assist me in determining my customer’s problem.

After /tmp filled up, users were no longer able to log in to a GUI desktop, but they could

still log in using the consoles. That is because logging into a GUI desktop creates files in

the /tmp directory and there was no room left, so the login failed. The console login does

Chapter 9 Data StreamS

254

not create new files in /tmp so they succeeded. My customer had not tried logging into

the console because they were not familiar with the CLI.

After testing this on my own system as verification, I used the console to log in to the

customer host and found a number of large files taking up all of the space in the /tmp

directory. I deleted those and helped the customer determine how the files were being

created, and we were able to put a stop to that.

 Exploring the USB drive
It is now time to do a little exploring, and to be as safe as possible, you will use the USB

thumb drive that you have already been experimenting with. In this experiment we will

look at some of the filesystem structures.

Let’s start with something simple. You should be at least somewhat familiar with the

dd command. Officially known as “disk dump,” many SysAdmins call it “disk destroyer”

for good reason. Many of us have inadvertently destroyed the contents of an entire

hard drive or partition using the dd command. That is why we will use the USB drive to

perform some of these experiments.

Despite its reputation, dd can be quite useful in exploring various types of storage

media, hard drives, and partitions. We will also use it as a tool to explore other aspects

of Linux.

EXPERIMENT 9-5

this experiment must be performed as root. Log in to a terminal session as root if you are not

already.

It is not necessary to mount the USB drive for this experiment; in fact this experiment is more

impressive if you do not mount the device. If the USB device is currently mounted, unmount it.

as root in a terminal session, use the dd command to view the boot record of the USB drive,

assuming it is assigned to the /dev/sdb device. the bs= argument is not what you might think,

it simply specifies the block size, and the count= argument specifies the number of blocks to

dump to StDIO. the if= argument specifies the source of the data stream, in this case, the

USB device:

Chapter 9 Data StreamS

255

[root@studentvm1 ~]# dd if=/dev/sdb bs=512 count=1

'

 ��&wU�1+0 records in

1+0 records out

512 bytes copied, 0.079132 s, 6.5 kB/s

[root@studentvm1 ~]#

this prints the text of the boot record, which is the first block on the disk – any disk. In this

case, there is information about the filesystem and, although it is unreadable because it is

stored in binary format, the partition table. If this were a bootable device, stage 1 of GrUB or

some other boot loader would be located in this sector. the last three lines contain data about

the number of records and bytes processed.

Now let’s do the same experiment but on the first record of the first partition.

EXPERIMENT 9-6

the USB device should now be mounted again, and you should still be logged in as root. run

the following command as root:

[root@studentvm1 ~]# dd if=/dev/sdb1 bs=512 count=1

�� @ �?�&w�)��NO NAME FAT32 U�1+0 records in

1+0 records out

512 bytes copied, 0.0553326 s, 9.3 kB/s

[root@studentvm1 ~]#

the data you see in the output may not look like this at all. this is what was on the USB device

I used.

this experiment shows that there are differences between a boot record and the first record

of a partition. It also shows that the dd command can be used to view data in the partitions as

well as for the disk itself.

Let’s see what else is out there on the USB drive. Depending upon the specifics of

the USB device you are using for these experiments, you may have different results from

mine. I will show you what I did, and you can modify that if necessary to achieve the

desired result.

Chapter 9 Data StreamS

256

What we are attempting to do is use the dd command to locate the directory entries

for the files we created on the USB drive and then some of the data. If we had enough

knowledge of the metadata structures, we could interpret them directly to find the

locations of this data on the drive, but we don’t so we will have to do this the hard way –

print out data until we find what we want.

So let’s start with what we do know and proceed with a little finesse. We know that

the data files we created during the USB device preparation were in the first partition on

the device. Therefore we don’t need to search the space between the boot record and the

first partition which contains lots of emptiness. At least that is what it should contain.

Starting with the beginning of /dev/sdb1, let’s look at a few blocks of data at a time

to find what we want. The command in Experiment 9-7 is similar to the previous one

except that we have specified a few more blocks of data to view. You may have to specify

fewer blocks if your terminal is not large enough to display all of the data at one time,

or you can pipe the data through the less utility and use that to page through the data.

Either way works. Remember we are doing all of this as root user because non-root users

do not have the required permissions.

EXPERIMENT 9-7

enter the same command as you did in the previous experiment, but increase the block count

to be displayed to 2000 as shown in the following in order to show more data:

[root@studentvm1 ~]# dd if=/dev/sdb1 bs=512 count=2000

�� @ �?�&w�)��NO NAME FAT32 U�RRaArrAaK��U�U�
�� @ �?�&w�)��NO NAME FAT32 U�RRaArrAa����U�U�
�������������]����]����]����]����]����]����]

����]����]����]����������������]����]����]����]

����]����]����]����]����]����]���Afile0�.txt����
��FILE0 TXT �IMNMN�IMN�]��Afile1�.txt������FILE1 TXT �IMNMN

�IMN�]��Afile2�.txt������FILE2 TXT �IMNMN�IMN�]��Afile3�.txt

������FILE3 TXT �IMNMN�IMN�]��Afile4�.txt������FILE4 TXT

�IMNMN�IMN�]��Afile5�.txt������FILE5 TXT �IMNMN�IMN�]��
Afile6A.txt������FILE6 TXT �IMNMN�IMN�]��Afile7E.txt����
��FILE7 TXT �IMNMN�IMN�]��Afile8�.txt������FILE8 TXT

�IMNMN�IMN�]��Afile9M.txt������FILE9 TXT �IMNMN�IMN�]���
testfxile.txt�ES��%��ntTem�plate.ot�Compl�exDocume�OMPLE~1OTT

Chapter 9 Data StreamS

257

GMNMNGMN1]AB�.odt<�����������������tract<Template�Consu<ltingCon

�ONSUL~1ODT GMNMNGMN2]���.ottD�����������������tractD

Template�ConsuDltingCon�ONSUL~1OTT GMNMNGMN4]���hexag{ons.odp�EXAGONSODP

GMNMNGMN6]�� �ots��z�����������������Invoizce- 2018.

�NVOIC~1OTS GMNMNGMNJ]�E�t�����������������������
ctTemplate.ot�LinuxLabProje�INUXL~1OTT GMNMNGMNK]QZ�oice.�ott���
������Mille�nniumInv�ILLEN~1OTT GMNMNGMNL]S�p����������
��������������senta�tions.ot�Mille�nniumPre�ILLEN~1OTP

GMNMNGMNM]�K�rHead�.ott�������tingL�LC.Lette�hnolo�gyConsul�
Mille�nniumTec�ILLEN~2OTT GMNMNGMNP]�Q�t������{�����������
������rkTem{plate.od�State{mentOfWo�TATEM~1ODT GMNMNGMNQ])ýT▮L▮┼�
ux.ott���-Intr�oduction�Stude�ntRoster�TUDEN~1OTT GMNMNGMNR]�-�-

LSAS�A.ott�����Stude�ntRoster�TUDEN~2OTT GMNMNGMNS]/�-TPLSoA.ott

�����StudeontRoster�TUDEN~3OTT GMNMNGMNT]�'�card-=10-b.ott�v42-

b=usiness-�42-BU~1OTT GMNMNGMNU]�=�~$opt�ion Even�$OPTI~1DOC"�[;<�
>vU{7V��mbers� (3).doc�ff Co�ntact Nu�~$opt�ions Sta�$OPTI~2DOC"D

�[;<�>�m�:V��WRL0474TMP r�[;<�>�`l1Vd�ng_65�9.xls�����dopt_

�counseli�2004_�budget_a�004_B~1XLS ��[;<�>���.Vý┼±▮6690.xls��
���dopt_9counseli�2004_9budget_a�004_B~2XLS I�[;<;<��.

V�.docX�����������������2009 XHolidays�009HO~1DOC

��[;<�>LL�9V��Mail.ldoc��rm.do�c�������������t Tra�cking

Fo�Adopt�ion Even�DOPTI~1DOC ��[;<�>N[�6V`�rPoinIt2.ppt���AdoptIion

Powe�DOPTI~1PPT �[;<;<�am;V�S�rPoin�t.ppt�����Adopt�ion

Powe�DOPTI~2PPT '�[;<;<DrR7�VR[�ls����H�����������������nt

actH List .x�osterH Care Co�AdoptHions F�DOPTI~1XLS \;<�>&U28qW��HART.

doc���������ANIZATIONAL C�ADOPTIONS ORG�DOPTI~2DOC

<snip>

�PADO{ SPC \;<;<I��W�PDMM{ CHK 8\;<�>im/�PDMM{ SPC

t\;<�>im/�W�PLOG{ CHK �\;<�>�C��PLOG{ SPC

\;<;<�C��W�DDENDUM '\;<�>"]�>�W�DDRESS "p\;<�>"]�>�X�DDSUM UPD

��\;<�>#]�>CY�c#����C�����������������_CondCensed.do�tact

CNumbers �ons SCtaff Con�.~locCk.Adopti�LOCKA~1DOC d�Y�<�<�Y�<�\D

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

Chapter 9 Data StreamS

258

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

2000+0 records in

2000+0 records out

1024000 bytes (1.0 MB, 1000 KiB) copied, 0.19544 s, 5.2 MB/s

[root@studentvm1 ~]#

We do eventually see the contents of some of the files we created and then the repeating data

in our testfile.txt file.

Let’s look at a new option for the dd command, one which gives us a little more

flexibility.

EXPERIMENT 9-8

We now want to display about 50 blocks of data at a time, but we don’t want to start at the

beginning of the partition; we want to skip the blocks we have already looked at.

enter the following command, and add the skip argument which skips the first 2000 blocks

of data and displays the next 50:

[root@studentvm1 ~]# dd if=/dev/sdb1 bs=512 count=50 skip=2000

10+0 records in

10+0 records out

5120 bytes (5.1 kB, 5.0 KiB) copied, 0.01786 s, 287 kB/s

This set of parameters may not display the file data for you if your USB drive is a

different size or is formatted differently, but it should be a good place to start. You can

continue iterating until you find the data.

Chapter 9 Data StreamS

259

EXPERIMENT 9-9

Now enter the dd command, make the count 100, and skip 200 blocks. then pipe the data

stream through the less transformer. this allows you to use the page Up and page Down

keys to scroll through the output:

[root@studentvm1 ~]# dd if=/dev/sdb1 bs=512 count=100 skip=200 | less

I won’t reproduce all of my results here, but let’s look at a couple places in particular. First,

look at the following section which contains the directory entries for the files on the USB

drive. this is a Fat partition – perhaps you noticed that in experiment 9-6. You can see the file

names for the files we created in the preparation of the USB drive. You can also see the partial

names of some files that were deleted as part of that prep:

^@Af^@i^@l^@e^@0^@^O^@<D9>.^@t^@x^@

t^@^@^@<FF><FF>^@^@<FF><FF><FF><FF>FILE0 TXT ^@^@<E5> &M&M^@^@<E5>

&M^C^@Ь^@^@Af^@i^@l^@e^@1^@^O^@<ED>.^@t^@x^@t^@^@^@<FF><FF>^@^@<FF><FF
><FF><FF>FILE1 TXT ^@^@<E5> &M&M^@^@<E5> &M/^@Ь^@^@Af^@i^@l^@
e^@2^@^O^@<F1>.^@t^@x^@t^@^@^@<FF><FF>^@^@<FF><FF><FF><FF>FILE2 TXT ^@^@

<E5> &M&M^@^@<E5> &M[^@Ь^@^@Af^@i^@l^@e^@3^@^O^@<D5>.^@t^@x^@t^
@^@^@<FF><FF>^@^@<FF><FF><FF><FF>FILE3 TXT ^@^@ <E5> &M&M^@^@<E5>

&M<87>^@Ь^@^@Af^@i^@l^@e^@4^@^O^@<E9>.^@t^@x^@t^@^@^@<FF><FF>^@^@<FF><FF
><FF><FF>FILE4 TXT ^@^@ <E5> &M&M^@^@<E5> &M<B3>^@Ь^@^@Af^@i^@l^@
e^@5^@^O^@<FD>.^@t^@x^@t^@^@^@<FF><FF>^@^@<FF><FF><FF><FF>FILE5 TXT ^@^@

<E5> &M&M^@^@<E5> &M<DF>^@Ь^@^@Af^@i^@l^@e^@6^@^O^@A.^@t^@x^@t^@^@^@<F
F><FF>^@^@<FF><FF><FF><FF>FILE6 TXT ^@^@<E5> &M&M^@^@<E5> &M^K^AЬ^@^@
Af^@i^@l^@e^@7^@^O^@E.^@t^@x^@t^@^@^@<FF><FF>^@^@<FF><FF><FF><FF>FILE7 TXT

^@^@<E5> &M&M^@^@<E5> &M7^AЬ^@^@Af^@i^@l^@e^@8^@^O^@<F9>.^@t^@x^@t^@^@^@
<FF><FF>^@^@<FF><FF><FF><FF>FILE8 TXT ^@^@<E5> &M&M^@^@<E5> &Mc^AЬ^@^@
Af^@i^@l^@e^@9^@^O^@M.^@t^@x^@t^@^@^@<FF><FF>^@^@<FF><FF><FF><FF>FI

LE9 TXT ^@^@<E5> &M&M ^@^@<E5> &M<8F>^AЬ^@^@<E5>t^@e^@s^@t^@f^@^O^@
xi^@l^@e^@.^@t^@x^@^@^@t^@^@^@<E5>ESTFILETXT ^@^@<AB>^K&M&M^@^@<AB>^K&M<BB>

^A^@<C0><AE>^C<E5>j^@o^@i^@n^@.^@^O^@<D7>e^@x^@e^@^@^@<FF><FF><FF><FF>^@^@<FF

><FF><FF><FF><E5>OIN EXE ^@^@

the output from this command shows the data contained in the directory of the /dev/sdb1

partition. this shows that directories are just data on the partition just like any other data.

Chapter 9 Data StreamS

260

Scrolling further, we eventually come to the data contents of the files:

^@^@^@^@^@

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

<snip>

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdefgh

123456789-abcdef[0.000000] Linux version 4.17.14-202.fc28.x86_64

(mockbuild@bkernel01.phx2.fedoraproject.org) (gcc version 8.1.1 20180712 (Red

Hat 8.1.1-5) (GCC)) #1 SMP Wed Aug 15 12:29:25 UTC 2018

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-4.17.14-202.fc28.x86_64 root=/

dev/mapper/fedora_studentvm1-root ro resume=/dev/mapper/fedora_studentvm1-

swap rd.lvm.lv=fedora_studentvm1/root rd.lvm.lv=fedora_studentvm1/swap

rd.lvm.lv=fedora_studentvm1/usr rhgb quiet LANG=en_US.UTF-8

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point

registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'

[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256

[0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,

using 'standard' format.

[0.000000] e820: BIOS-provided physical RAM map:

[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable

[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved

[0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved

[0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable

[0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfffffff] ACPI data

[0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved

Chapter 9 Data StreamS

261

[0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved

[0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved

[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000011fffffff] usable

[0.000000] NX (Execute Disable) protection: active

[0.000000] random: fast init done

the first part of this bit of data is part of the content of the large file we created to fill up the

USB filesystem. We deleted that file, but you can see that the data is still on the medium. It is

not gone, but the directory entry for this file was marked as “deleted.”

the second part of this output is the dmesg output that we used as data content for the files,

file0.txt through file9.txt.

So you can see that the dd command can be very useful for exploring the structures of various

types of filesystems, locating data on a defective storage device, and much more. It also produces

a stream of data on which we can use the transformer utilities in order to modify or view.

press the “q” key to quit and exit from less.

You should definitely take some time on your own to explore the contents of the USB

drive. You might be surprised at what you find.

 Randomness
It turns out that randomness is a desirable thing in computers. Who knew. There are a

number of reasons that SysAdmins might want to generate a stream of random data.

A stream of random data is sometimes useful to overwrite the contents of a complete

partition, such as /dev/sda1, or even the entire hard drive as in /dev/sda.

Although deleting files may seem permanent, it is not. Many forensic tools are

available and can be used by trained specialists to easily recover files that have

supposedly been deleted. It is much more difficult to recover files that have been

overwritten by random data. I have frequently needed not just to delete all of the data

on a hard drive but to overwrite it so it cannot be recovered. I do this for customers and

friends who have “gifted” me with their old computers for reuse or recycling.

Chapter 9 Data StreamS

262

Regardless of what ultimately happens to the computers, I promise the persons who

donate the computers that I will scrub all of the data from the hard drive. I remove the

drives from the computer, put them in my plug-in hard drive docking station, and used a

command similar to the one in Experiment 9-10 to overwrite all of the data, but instead

of just spewing the random data to STDOUT as in this experiment, I redirect it to the

device file for the hard drive that needs to be overwritten – but don’t do that.

EXPERIMENT 9-10

perform this experiment as the student user. enter this command to print an unending stream

of random data to StDIO:

[student@studentvm1 ~]$ cat /dev/urandom

Use Ctrl-C to break out and stop the stream of data. You may need to use Ctrl-C multiple

times.

If you are extremely paranoid, the shred command can be used to overwrite

individual files as well as partitions and complete drives. It can write over the device as

many times as needed for you to feel secure, with multiple passes using both random

data as well as specifically sequenced patterns of data designed to prevent even the most

sensitive equipment from recovering any data from the hard drive. As with other utilities

that use random data, the random stream is supplied by the /dev/urandom device.

Random data is also used as the input seed to programs that generate random

passwords and random data and numbers for use in scientific and statistical

calculations. I will cover randomness and other interesting data sources in a bit more

detail in Chapter 3 of Volume 2.

 Pipe dreams
Pipes are critical to our ability to do the amazing things on the command line, so much

so I think it is important to recognize that they were invented by Douglas McIlroy7 during

7 Wikipedia, Biography of Douglas McIlroy, www.cs.dartmouth.edu/~doug/biography

Chapter 9 Data StreamS

http://www.cs.dartmouth.edu/~doug/biography

263

the early days of Unix. Thanks, Doug! The Princeton University web site has a fragment

of an interview8 with McIlroy in which he discusses the creation of the pipe and the

beginnings of the Unix Philosophy.

Notice the use of pipes in the simple command-line program shown in

Experiment 9-11 that lists each logged in user a single time no matter how many

logins they have active.

EXPERIMENT 9-11

perform this experiment as the student user. enter the command shown in the following:

[student@studentvm1 ~]$ w | tail -n +3 | awk '{print $1}' | sort | uniq

root

student

[student@studentvm1 ~]$

the results from this command produce two lines of data that show that the users root and

student are both logged in. It does not show how many times each user is logged in.

Pipes – represented by the vertical bar (|) – are the syntactical glue, the operator that

connects these command-line utilities together. Pipes allow the Standard Output from

one command to be “piped,” that is, streamed from Standard Output of one command to

the Standard Input of the next command.

The |& operator can be used to pipe the STDERR along with STDOUT to STDIN of

the next command. This is not always desirable, but it does offer flexibility in the ability

to record the STDERR data stream for the purposes of problem determination.

A string of programs connected with pipes is called a pipeline, and the programs that

use STDIO are referred to officially as filters, but I prefer the term transformers.

Think about how this program would have to work if we could not pipe the data

stream from one command to the next. The first command would perform its task on the

data, and then the output from that command would have to be saved in a file. The next

command would have to read the stream of data from the intermediate file and perform

its modification of the data stream, sending its own output to a new, temporary data

8 Princeton University, Interview with Douglas McIlroy, www.princeton.edu/~hos/frs122/
precis/mcilroy.htm

Chapter 9 Data StreamS

http://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
http://www.princeton.edu/~hos/frs122/precis/mcilroy.htm

264

file. The third command would have to take its data from the second temporary data file

and perform its own manipulation of the data stream and then store the resulting data

stream in yet another temporary file. At each step the data file names would have to be

transferred from one command to the next in some way.

I cannot even stand to think about that because it is so complex. Remember that

simplicity rocks!

 Building pipelines
When I am doing something new, solving a new problem, I usually do not just type in

a complete bash command pipeline from scratch, as in Experiment 9-11 off the top of

my head. I usually start with just one or two commands in the pipeline and build from

there by adding more commands to further process the data stream. This allows me to

view the state of the data stream after each of the commands in the pipeline and make

corrections as they are needed.

In Experiment 9-12 you should enter the command shown on each line and run it

as shown to see the results. This will give you a feel for how you can build up complex

pipelines in stages.

EXPERIMENT 9-12

enter the commands as shown on each line. Observe the changes in the data stream as each

new transformer utility is inserted to the data stream using the pipe.

Log in as root to two of the Linux virtual consoles and as the student user to two additional

virtual consoles, and open several terminal sessions on the desktop. this should give plenty of

data for this experiment:

[student@studentvm1 ~]$ w

[student@studentvm1 ~]$ w | tail -n +3

[student@studentvm1 ~]$ w | tail -n +3 | awk '{print $1}'

[student@studentvm1 ~]$ w | tail -n +3 | awk '{print $1}' | sort

[student@studentvm1 ~]$ w | tail -n +3 | awk '{print $1}' | sort | uniq

the results of this experiment illustrates the changes to the data stream performed by each of

the transformer utility programs in the pipeline.

Chapter 9 Data StreamS

265

It is possible to build up very complex pipelines that can transform the data stream

using many different utilities that work with STDIO.

 Redirection
Redirection is the capability to redirect the STDOUT data stream of a program to a file

instead of to the default target of the display. The “greater than” (>) character, aka, “gt,”

is the syntactical symbol for redirection. Experiment 9-13 shows how to redirect the

output data stream of the df -h command to the file diskusage.txt.

EXPERIMENT 9-13

redirecting the StDOUt of a command can be used to create a file containing the results from

that command:

[student@studentvm1 ~]$ df -h > diskusage.txt

there is no output to the terminal from this command unless there is an error. this is because

the StDOUt data stream is redirected to the file and StDerr is still directed to the StDOUt

device which is the display. You can view the contents of the file you just created using this

next command:

[student@studentvm1 ~]$ cat diskusage.txt

Filesystem Size Used Avail Use% Mounted on

devtmpfs 2.0G 0 2.0G 0% /dev

tmpfs 2.0G 0 2.0G 0% /dev/shm

tmpfs 2.0G 1.2M 2.0G 1% /run

tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup

/dev/mapper/fedora_studentvm1-root 2.0G 49M 1.8G 3% /

/dev/mapper/fedora_studentvm1-usr 15G 3.8G 11G 27% /usr

/dev/sda1 976M 185M 724M 21% /boot

/dev/mapper/fedora_studentvm1-tmp 4.9G 21M 4.6G 1% /tmp

/dev/mapper/fedora_studentvm1-var 9.8G 504M 8.8G 6% /var

/dev/mapper/fedora_studentvm1-home 2.0G 7.3M 1.8G 1% /home

Chapter 9 Data StreamS

266

tmpfs 395M 8.0K 395M 1% /run/user/1000

tmpfs 395M 0 395M 0% /run/user/0

/dev/sdb1 60M 440K 59M 1% /mnt

[student@studentvm1 ~]$

When using the > symbol for redirection, the specified file is created if it does not

already exist. If it already does exist, the contents are overwritten by the data stream from

the command. You can use double greater than symbols, >>, to append the new data

stream to any existing content in the file as illustrated in Experiment 9-14.

EXPERIMENT 9-14

this command appends the new data stream to the end of the existing file:

[student@studentvm1 ~]$ df -h >> diskusage.txt

You can use cat and/or less to view the diskusage.txt file in order to verify that the new data

was appended to the end of the file.

The < (less than) symbol redirects data to the STDIN of the program. You might

want to use this method to input data from a file to STDIN of a command that does not

take a file name as an argument but that does use STDIN. Although input sources can

be redirected to STDIN, such as a file that is used as input to grep, it is generally not

necessary as grep also takes a file name as an argument to specify the input source. Most

other commands also take a file name as an argument for their input source.

One example of using redirection to STDIN is with the od command as shown in

Experiment 9-15. The -N 50 option prevents the output from continuing forever. You could

use Ctrl-C to terminate the output data stream if you don’t use the -N option to limit it.

Chapter 9 Data StreamS

267

EXPERIMENT 9-15

this experiment illustrates the use of redirection as input to StDIN:

[student@studentvm1 ~]$ od -c -N 50 < /dev/urandom

0000000 331 203 _ 307] { 335 337 6 257 347 $ J Z U

0000020 245 \0 ` \b 8 307 261 207 K : } S \ 276 344 ;

0000040 336 256 221 317 314 241 352 ` 253 333 367 003 374 264 335 4

0000060 U \n 347 (h 263 354 251 u H] 315 376 W 205 \0

0000100 323 263 024 % 355 003 214 354 343 \ a 254 # ` { _

0000120 b 201 222 2 265 [372 215 334 253 273 250 L c 241 233

<snip>

It is much easier to understand the nature of the results when formatted using od (octal

display) which formats the data stream in a way that is a bit more intelligible. read the man

page for od for more information.

Redirection can be the source or the termination of a pipeline. Because it is so

seldom needed as input, redirection is usually used as termination of a pipeline.

EXPERIMENT 9-16

perform this experiment as the student user. this activity provides examples of some aspects

of redirection not yet covered. the echo command is used to print text strings to StDOUt.

 1. make your home directory the pWD

 2. Create a text file:

[student@studentvm1 ~]$ echo "Hello world" > hello.txt

 3. read the contents of the file by redirecting it to StDIN:

[student@studentvm1 ~]$ cat < hello.txt

Hello world

[student@studentvm1 ~]$

 4. add another line of text to the existing file:

[student@studentvm1 ~]$ echo "How are you?" >> hello.txt

Chapter 9 Data StreamS

268

 5. View the contents:

[student@studentvm1 ~]$ cat hello.txt

Hello world

How are you?

[student@studentvm1 ~]$

 6. Delete (remove) the file, and list the contents of your home directory to verify

that the file has been erased:

[student@studentvm1 ~]$ rm hello.txt ; ls -l

 7. Create the file again:

[student@studentvm1 ~]$ echo "Hello world" >> hello.txt ; ll

 8. Verify that the file was recreated using the ls and cat commands.

Note that in this last case, the >> operator created the file because it did not exist. If it has

already existed, the line would have been added at the end of the existing file as it was

in step 4. also notice the quotes are standard aSCII quotes, the same before and after the

quoted string, and not extended aSCII which are different before and after.

 Just grep’ing around
The grep command is used to select lines that match a specified pattern from a stream

of data. grep is one of the most commonly used transformer utilities and can be used in

some very creative and interesting ways. The grep command is one of the few that can

correctly be called a filter because it does filter out all the lines of the data stream that

you do not want; it leaves only the lines that you do want in the remaining data stream.

Chapter 9 Data StreamS

269

EXPERIMENT 9-17

We need to create a file with some random data in it. We can use a tool that generates random

passwords, but we first need to install it as root:

 dnf -y install pwgen

Now as the student user, let’s generate some random data and create a file with it. If the pWD

is not your home directory, make it so. the following command creates a stream of 5000 lines

of random data that are each 75 characters long and stores them in the random.txt file:

pwgen 75 5000 > random.txt

Considering that there are so many passwords, it is very likely that some character strings in

them are the same. Use the grep command to locate some short, randomly selected strings

from the last ten passwords on the screen. I saw the words “see” and “loop” in one of those

ten passwords, so my command looked like this: grep see random.txt and you can try that,

but you should also pick some strings of your own to check. Short strings of 2–4 characters

work best.

Use the grep filter to locate all of the lines in the output from dmesg with CpU in them:

dmesg | grep cpu

List all of the directories in your home directory with the command:

ls -la | grep ^d

this works because each directory has a “d” as the first character in a long listing.

to list all of the files that are not directories, reverse the meaning of the previous grep

command with the -v option:

ls -la | grep -v ^d

 Cleanup
We have just a bit of cleanup to do.

Chapter 9 Data StreamS

270

CLEANUP 9-1

the USB drive should not be mounted at this point, but just in case, we will do that anyway:

[root@studentvm1 ~]# umount /mnt

[root@studentvm1 ~]# umount /mnt

umount: /mnt: not mounted.

[root@studentvm1 ~]#

On my Vm, the first umount command unmounted the USB drive because it was still mounted.

the result from the second umount command shows an error indicating that the device is no

longer mounted.

Now refer back to Figure 9-1, and open the list of USB devices. the USB drive you have been

using for the experiments in this chapter will have a check mark. Click that menu item to

remove the check. You can now remove the physical USB device from the USB slot on your

computer.

the cleanup is now complete.

 Chapter summary
It is only with the use of pipes and redirection that many of the amazing and powerful

tasks that can be performed on the Linux command line are possible. It is the pipes that

transport STDIO data streams from one program or file to another. In this chapter you

have learned that the use of piping streams of data through one or more transformer

programs supports powerful and flexible manipulation of data in those streams.

Each of the programs in the pipelines demonstrated in the experiments is small, and

each does one thing well. They are also transformers, that is, they take Standard Input,

process it in some way, and then send the result to Standard Output. Implementation of

these programs as transformers to send processed data streams from their own Standard

Output to the Standard Input of the other programs is complementary to and necessary

for the implementation of pipes as a Linux tool.

In this chapter you also learned that STDIO is nothing more than streams of data.

This data can be almost anything from the output of a command to list the files in a

directory, or an unending stream of data from a special device like /dev/urandom,

Chapter 9 Data StreamS

271

or even a stream that contains all of the raw data from a hard drive or a partition. You

learned some different and interesting methods to generate different types of data

streams and how to use the dd command to explore the contents of a hard drive.

Any device on a Linux computer can be treated like a data stream. You can use

ordinary tools like dd and cat to dump data from a device into a STDIO data stream that

can be processed using other ordinary Linux tools.

 Exercises
Do the following exercises to complete this chapter:

 1. What is the function of the greater than symbol (>)?

 2. Is it possible to append the content of a data stream to an

existing file?

 3. Design a short command-line program to display the CPU model

name and nothing else.

 4. Create a file in the /tmp directory that consists of ten blocks of

random data.

Chapter 9 Data StreamS

273
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_10

CHAPTER 10

Text Editors
 Objectives
In this chapter you will learn

• Why text editors are needed

• About several text editors, some intended for use in a terminal

session, and others for the GUI desktop

• How to use the Vim text editor

• Why you should use the text editor of your choice

 Why we need text editors
Before there were word processing programs, there were text editors. The initial use for

early text editors was for the creation and maintenance of text files such as shell scripts,

programs written in C and other programming languages, and system configuration files.

Soon after, document preparation software such as LaTeX1 was developed to

automate the process of typesetting various types of documents, particularly technical

documents and journals. This is not word processing but rather typesetting. LaTeX,

which is still in heavy use and is quite popular, is about the content of a document and

not about the formatting and look. The text files created for input to LaTeX are ASCII

plain text files created by text editors such as Vim.

Text editors were developed for an environment where the text characters and

strings were the only important aspect of the resulting file. Editors create text files that

are free from the extraneous markup characters used by word processing programs to

denote fonts, styles, various heading levels, fancy tables, and graphical illustrations.

1 The LaTeX project, www.latex-project.org

https://www.latex-project.org

274

The entire point of an editor is to create a file containing text only. For the Intel PC and

related processors, this means ASCII2 text.

It is true that LibreOffice Writer and other word processing programs can save files

as ASCII text. But it takes a few extra steps to do that, and the results are still not true

ASCII. For example, I tried to create a small ASCII text file as an executable program.

Very simple. I created the following text in a LibreOffice Writer document and saved it as

a “text” document.

CODE SAMPLE 10-1

#!/usr/bin/bash

This is an ASCII text file.

echo “This is a BASH program created by LibreOffice”

exit

Can you see the problem here?

Look at the double quotes in the echo statement. These are not true ASCII, they

are extended ASCII which has left and right quotes. These extended ASCII quotes are

not interpreted properly by the Bash shell of any other. This program will run, but the

result is that the entire string including the quotes is printed. The intent of this type of

code is to print the string within the quotes and not the quotes themselves. Only the

standard ASCII double quote character (Hex 22) or the ASCII single quote (Hex 27)

works correctly.

There are ways to convince LibreOffice to use the standard ASCII double quote, but

it can be a pain when switching from documents that use standard ASCII and those that

use anything else.

There is also the fact that you cannot use a GUI program of any kind when logged

in to a host that does not have a GUI desktop installed, such as most servers. What is

available – always, on any Linux distribution – is Vim or vim.3 No other editor can be

expected to be available on any distribution at any target runlevel.

2 Wikipedia, ASCII, https://en.wikipedia.org/wiki/ASCII
3 Vim web site,Vim, www.vim.org/

Chapter 10 text editors

https://en.wikipedia.org/wiki/ASCII
https://www.vim.org/

275

 Vim
The Vim editor is an enhanced version of the Vi text editor that is distributed with many

versions of Unix. There are a few instances when the Vi editor is available and Vim is

not. This may be the case with older distributions when the system is booted to recovery

mode or single user mode. Current Fedora distributions use Vim in rescue mode.

Although Vim may appear at first glance to be a very simple text editor, it is, in fact,

quite powerful. Vim can be configured extensively, and many plug-ins are available

for it. When used with a terminal and shell that support color, various predefined color

schemes can be used. When color is available, Vim can highlight the syntactical and

logical structures of various programming and scripting languages to enhance the

programmer’s ability to visualize the code’s structure and functionality.

Vim has a powerful search and replace capability that surpasses that of any word

processor. Using regular expressions, Vim can locate and modify text strings in ways

that my favorite word processor, LibreOffice Writer, cannot possibly equal. Vim calls this

substitution. Vim also has its own scripting language, Vim Script.

The Bash shell that is the default for most Linux distributions has a lot of very

powerful built-in commands, and many more tools are available as part of the Linux core

utilities. All of these are available directly from inside the Vim editor.

This is a great example of a number of tenets of the Linux Philosophy; among them,

every program should do one thing and do it very well. One particular example of this is

the sort core utility. The sort utility is a small program that is very good at sorting. It only

sorts. When the Vim developers decided that it would be a good idea to perform some

tasks like sorting that were already available as core utilities, they made the decision to

simply use those utilities that were already available. Why reinvent the wheel and make

Vim more complex. Using the external sort command – and any and all other external

commands – means that adding those and any future features was simple; merely add

the capability to use those commands that already exist outside of Vim.

Vim can work in a split screen mode to edit two files in the same screen or even

different files in one screen. It also has a built-in help feature that is displayed in split

screen along with the file being edited.

To make things even better for vim users, it is available as gVim for GUI desktop

environments. Vim can also be configured to work as a simpler version of itself, evim, or

easy Vim. There is also an option to use Vim mode for command-line editing in the Bash

shell. The Vim editor, Vim in Fedora and other Red Hat–based distributions, is one of the

most powerful tools a system administrator can have in their toolbox.

Chapter 10 text editors

276

I suggest learning Vim or vim because it is always present in all releases and

distributions of Linux down to the very most minimal installation. It is also the most

readily available editor in other Unixes as well. No other editor is so ubiquitous. Because

of this wide availability of Vim, that is what we will use in this course.

 Other editors
There are many other editors available to Linux SysAdmins, so let’s look at a very few to

give you an idea what is out there.

A Google search using “Linux open source text editors” as the search phrase results in

many hits. Many of these results are articles with titles like “X Best text editors …” so there

are lots of options here. There are so many editors that there is no way to include them all.

All of these editors are perfectly good, and each has its own strengths and weaknesses. I

have tried some of these other editors but always return to Vim. Therefore, I am not very

knowledgeable about them, but I will only include the ones I have tried here.

 Emacs
Emacs4 is arguably the other favorite and most used open source editor. With a very

extensible architecture and a large number of plug-ins, Emacs is very powerful. It is a text

mode editor, but, like Vim, there is also a GUI version.

Emacs does syntax highlighting for many programming and scripting languages.

It has a scripting language, Emacs Lisp, and extensive built-in documentation. Some

people have called Emacs an operating system itself because it is possible to write many

types of programs with Emacs, including games that run in an Emacs session.

Emacs mode is also the default editing mode for the Bash shell. If you like Emacs,

then Bash command-line editing will be second nature for you.

 gedit
The gedit text editor is a GUI program that provides syntax highlighting, plug-ins, built-

in spell-checking, and a side pane that can show a list of open text documents. It was

developed to be simple and easy to use, but it still boasts a powerful feature set.

4 GNU Emacs web site, www.gnu.org/software/emacs/

Chapter 10 text editors

https://www.gnu.org/software/emacs/

277

 Leafpad
Leafpad is another GUI text editor I have tried. It is very simple with only a couple

features. You can turn on word wrap, auto-indent, and and line numbering. If you want

the simplest GUI editor of all this is definitely in the running.

 Kate
Kate is an advanced GUI desktop text editor designed for the KDE environment, but it

works on other desktops as well. It has syntax highlighting and can use multiple panes

like split screen, a side panel for a document overview, line numbering, and more. Kate

also supports plug-ins, and it has a Vi mode for those of us with deeply ingrained Vim

muscle memory.

Unlike many other KDE-related tools, Kate does not have a large number of KDE

package requirements. When I installed it, only one additional dependency was installed.

Kate has many features that are designed for use in a programming environment. If

you are a developer and work on a GUI desktop, Kate is an editor you should consider.

 xfw
The xfw editor is also known as X File Write. It is a very basic GUI text editor that provides

few features beyond basic search and replace. It has only a few configuration options. If

you like very simple and clean, xfw is a good choice.

 xed
xed is another simple GUI editor. It does have spell-check and syntax highlighting, so it

might be a better choice for some users who do coding or long text documents.

 Learning Vim
Learning any editor can be challenging. Learning the Vim editor can be very beneficial

for all SysAdmins because Vim or vi will always be available. Fortunately Vim has

an excellent tutorial, vimtutor. Install and start the tutorial using the directions in

Experiment 10-1.

Chapter 10 text editors

278

EXPERIMENT 10-1

the vimtutor tutorial may already be installed, but let’s make sure that it is. Vimtutor is located

in the vim-enhanced package.

 1. in a terminal session as root, install the vim-enhanced package:

[root@studentvm1 ~]# dnf -y install vim-enhanced

 2. in a terminal session as the student user, type the command vimtutor to start

the tutorial:

[student@studentvm1 ~]$ vimtutor

 3. read the file that vimtutor loads and follow the directions it gives. all of the

information you need to complete the tutorial is in the vimtutor file.

There are many jokes in the SysAdmin community about new users’ inability to exit

Vim. That is covered in lesson 1.2, so be sure to pay attention to that. It is not hard, but if

you don’t know how to do it, you would get very frustrated.

Your ability to use Vim is important to some of the remaining experiments in this

course. The vimtutor tutorial provides you with a very basic set of skills that will enable

you to perform the editing required. However vimtutor barely scratches the surface of

Vim’s capabilities. You will encounter situations in this course as well as out in the real

world where you will wish that Vim had a particular capability. It is highly likely that it

does have whatever you were thinking about. Use the help facility to see if you can locate

the feature or capability that you need.

I can also recommend the book Pro Vim,5 which provides an excellent way to learn

Vim from the ground up.

 Disabling SELinux
SELinux is a security protocol originally created by the NSA to prevent crackers from

making changes to a Linux computer even if they have gained access. It is a good security

measure, and it is open source so that many developers outside the NSA have had a

5 McDonnell, Mark, Pro Vim, Apress, 2014

Chapter 10 text editors

279

chance to inspect it to verify that there are no backdoors. Due to some problems that

SELinux may cause with some future experiments, you must disable SELinux.

EXPERIMENT 10-2

as root, use Vim to set seLinux to “disabled” in the /etc/selinux/config file. Launch Vim with

the seLinux config file using the following command:

[root@studentvm1 ~]# vim /etc/selinux/config

Change the SELINUX line from:

SELINUX=enforcing

to:

SELINUX=disabled

the file should look like the one in the following when you have finished editing it. i have

highlighted the changed line, showing what it should be:

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - No SELinux policy is loaded.

SELINUX=disabled

SELINUXTYPE= can take one of these three values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy. Only selected processes are

protected.

mls - Multi Level Security protection.

SELINUXTYPE=targeted

save the file, exit from Vim, and reboot the virtual machine.

This is one of the very few times that a reboot is required to effect the desired

changes to the configuration. It may take a few minutes during the reboot while SELinux

relabels the targeted files and directories. Labeling is the process of assigning a security

context to a process or a file. The system will reboot again at end of the relabel process.

We will cover SELinux in more detail in Chapter 16 of Volume 3.

Chapter 10 text editors

280

 Use your favorite text editor
“User your favorite text editor” is a tenet of The Linux Philosophy for System

Administrators.6 I think it is important because arguing about editors can be the cause of

a great deal of wasted energy. Everyone has their favorite editor, and it might not be the

same as mine. So what?

I use Vim as my editor. I have used it for years and like it very much. I am used to it.

It meets my needs more than any other editor I have tried. If you can say that about your

editor – whichever one that might be – then you are in editor Nirvana.

I started using Vim when I began learning Solaris over 20 years ago. My mentor

suggested that I start learning to edit with Vim because it would always be present on

every system. That has proven to be true whether the operating system is Solaris or

Linux. The Vim editor is always there, so I can count on it. For me, this works.

The Vim editor can also be used as the editor for Bash command-line editing.

Although the default for command editing is emacs, I use the Vim option because I

already know the Vim keystrokes. The option to use Vim style editing in bash can be set

by adding the line “set -o vi” to the ~/.bashrc file for just your own use. For setting the

Vim option globally, a configuration file in /etc/profile.d/ is used, so that all users, root

and non-privileged, have that as part of their Bash configuration.

Other tools that use Vim editing are the crontab and visudo commands; both of

these are wrappers around vi. Lazy SysAdmins use code that already exists, especially

when it is open source. Using the Vim editor for these tools is an excellent example of

that.

There are many other editors available that are also great and powerful and fantastic.

I still prefer Vim. You should use what you want and don't worry about what everyone

else is using. Just because I use vim does not mean you have to use it also. Using the best

editor for you is important for your productivity. Once you have learned the keystroke

combinations and commands that you use most frequently in an editor, you can be very

efficient in editing files of all types.

6 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, 371–379

Chapter 10 text editors

281

 Chapter summary
This chapter is mostly about introducing you to the Vim editor. This is partly because

it will always be present in any Linux distribution but it is also because of its amazing

power. It is possible to learn only the basics of Vim and be very productive. Learning its

more advanced features can enhance its power and allow SysAdmins to become even

more productive.

As noted in this chapter, there are also many other open source text editors available.

Some are extremely popular with large numbers of developers and users; others not so

much. But all have features to recommend them.

You may find one of these other editors more conducive to your own style, and if you

do, you should certainly use it. But your knowledge of Vim will always be useful, too.

 Exercises
Complete the following exercises to finish this chapter:

 1. How do text editors differ from word processors?

 2. What Vim command would you use to delete five words?

 3. What two modes of operation does Vim use?

 4. How would you navigate the cursor to a specific line number –

assuming you already know the line number?

 5. Use Vim to create a file named fruit.txt in the student user’s home

directory that contains a list of at least ten fruits, one on each line.

Save the file, and then use the cat utility to display the contents of

the file.

 6. Use Vim to edit the fruit.txt file and sort the names of the fruits

into alphabetical order. Save the file and again display its contents

with cat.

 7. Does Vim have a spell-check feature? How did you determine

that?

Chapter 10 text editors

283
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_11

CHAPTER 11

Working As Root
 Objectives
In this chapter you will learn

• The functional difference between root and non-root users

• The advantages of having root access

• The disadvantages of having root access

• To raise the privilege level of a non-root user to enable access to

privileged tasks

• The correct usage of sudo

• How to assign a non-root user root privileges to run a single program

 Why root?
All Linux computer systems need an administrator. The system administrator –

SysAdmin – is the user with assigned authority to perform any necessary administrative

task on a computer. For Unix and Linux, that administrator is called root. A commonly

used synonym for root is superuser.

The root user can do anything, perform any task on a Linux computer regardless of

which user owns the file, directory, or process. Root can delete undeletable files and add

and delete users. Root can change the priority (via the “nice” number) of any running

program and kill or suspend execution of any running program. Root can explore all of

the deep and fascinating corners of the filesystem directory tree as well as the structure

of the filesystems themselves.

284

Non-root users, that is, users without the raised privilege level assigned to the root

user, do not have the authority to perform root-level tasks on a Linux computer. For

example, non-privileged users may not enter home – or any – directories belonging to

other users, and they may not delete files belonging to other users unless root or that

other non-root user that owns the files has explicitly set permissions on the files that will

allow other non-root users to do so. That is because Linux protects files and processes of

one user from being deleted or changed by other users. This is necessary in a multiuser

operating system like Linux.

Although it is possible for the user of a non-root account to have root privileges, it is

not a best practice to do so. Best practice is to have a designated, knowledgeable person

with access to the root account. If one or more non-privileged, non-root users need

access to one or two commands that require root privilege, the appropriate practice is to

us the sudo facility to allow them access to those few commands. We will cover the use of

sudo in more detail later in this chapter.

 More about the su command
The su (switch user, also called substitute user) command gives us a powerful tool that

allows us to work on the command line as a different user from the one we logged in as.

We have already used this command at the command line to switch from the student

user to the root user, but it requires more attention.

This command is necessary in today’s Linux environment because users are

discouraged from logging in as root directly to the graphical desktop. This restriction is

usually implemented by the display manager as the requirement to type the username

root, while all other valid usernames are displayed for selection. This can be circumvented,

but it is used to discourage the SysAdmin from doing everything as root which could cause

security problems. Each SysAdmin should have a non-root login and then switch to the

root user only when necessary to perform some action that requires root privileges.

Now – about that hyphen (-). If a non-root user, student, for example, were to

use the command su without the hyphen to obtain root privilege, the environment,

$PATH and other environment variables, for example, would remain that of the student

user, and the PWD would remain the same; this behavior is for historical backward

compatibility. Adding the hyphen to the command tells the su command to start up as a

login shell which sets the root environment and makes /root, root’s home directory, the

PWD. If root is using su to switch to a non-root user, the hyphen causes the environment

to be set to that of the target user. Let’s explore this.

Chapter 11 Working as root

285

EXPERIMENT 11-1

start this experiment as the student user. open a terminal session if necessary. switch to the

root user using the su command without the hyphen:

[student@studentvm1 ~]$ su

Password: <Enter the root password>

[root@studentvm1 student]# echo $PATH

/home/student/.local/bin:/home/student/bin:/usr/local/bin:/usr/bin:/usr/

local/sbin:/usr/sbin

the exit command exits from the subshell created by the su command and returns us to the

original Bash shell:

[root@studentvm1 student]# exit

[student@studentvm1 ~]$ su -

Password: <Enter the root password>

[root@studentvm1 ~]# echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin

[root@studentvm1 ~]# exit

[student@studentvm1 ~]$

notice the difference in the pWD and the significant difference in the $path environment

variable. Because of these and other differences in the shell environment, the results of some

commands may not be correct and might provide misleading results.

The results of Experiment 11-1 inform us that it is important to always use the

hyphen when switching users to root and, by extension, any other user.

Root can use the su - command to switch to any other user without the need for a

password. This makes it possible for the root user to switch to any other user to perform

tasks as that user. This is usually to assist in problem determination by trying the same

commands the regular user is having problems with. We look at this aspect of the su

command near the end of this chapter.

Read the man page for su for more information.

Another option for performing tasks that require root access is the sudo (switch

user and do) command. The sudo command has its uses, and we will discuss its relative

advantages and disadvantages later in this chapter.

Chapter 11 Working as root

286

 Getting to know the root account
The root account has some unique attributes that identify it to the operating system.

Each Linux user account has attributes which provide the operating system with

information about how to handle the account, files that belong to the account, and any

commands entered at the command line or issued by programs and utilities on behalf

of the account. Two of these are the User ID (UID) and Group ID (GID). Let’s start by

looking at the user and group information for root.

EXPERIMENT 11-2

this simple experiment should be performed as root. the information we need to find the UiD

and giD for the root user can be extracted from the /etc/passwd file with the id command

along with some information about the security context of the user.

in the VM you are using for this course, if a terminal emulator logged in to root is not already

open, do so and su - to root:

[student@studentvm1 ~]$ su -

Password: <Enter root password here>

[root@studentvm1 ~]#

in Chapter 7 we used the id command to look at the account information for the student user.

Let’s now use that command for root:

[root@studentvm1 ~]# id

uid=0(root) gid=0(root) groups=0(root)

[root@studentvm1 ~]#

this shows that the UiD and giD for root are both 0 (zero) and that the root user is a member

of the root group with a giD of 0. if seLinux were set to “enforcing,” this command would

display additional information about the seLinux context.

now let’s look at the files in root’s home directory. the -n option in the second ll command

displays the ownership as the numeric UiD of the User and group ownership rather than as the

user and group names:

Chapter 11 Working as root

287

[root@studentvm1 ~]# ll

total 12

-rw-------. 1 root root 1354 Aug 13 16:24 anaconda-ks.cfg

-rw-r--r--. 1 root root 1371 Aug 18 10:16 initial-setup-ks.cfg

[root@studentvm1 ~]# ll -n

total 12

-rw-------. 1 0 0 1354 Aug 13 16:24 anaconda-ks.cfg

-rw-r--r--. 1 0 0 1371 Aug 18 10:16 initial-setup-ks.cfg

[root@studentvm1 ~]#

You can see that the User and group ownership is UiD and giD of zero, which is root.

The UID and GID of 0, as shown in Experiment 11-2, are recognized by Linux as

belonging to root and are handled differently than any other user. We will explore user

management and the files that contain user and group information in detail in Chapter 16

of Volume 2. For now we need only know that the root account is different and can do

anythingor perform any task in a Linux system and that all other accounts are limited in

specific ways that ensure one user can impinge upon the resources of another or those of

the system itself.

You have already done some work as root while setting up VirtualBox and installing

the Linux virtual machine. You have also installed some new software packages and

performed some experiments as root. None of those tasks that you were instructed to

perform as root during that setup and preparation could have been accomplished by a

non-root user.

In order to more fully understand the capabilities of the root user, we will start with

an exploration of the limits of non-root users.

Chapter 11 Working as root

288

EXPERIMENT 11-3

Let’s start with a simple illustration of creating a directory. as the user student, use the

commands shown in the following examples to try to create a new directory, testdir, in various

locations in the filesystem directory tree:

[student@studentvm1 ~]$ mkdir /testdir

mkdir: cannot create directory '/testdir': Permission denied

[student@studentvm1 ~]$ mkdir /etc/testdir

mkdir: cannot create directory '/etc/testdir': Permission denied

[student@studentvm1 ~]$ mkdir /var/testdir

mkdir: cannot create directory '/var/testdir': Permission denied

[student@studentvm1 ~]$ mkdir /media/testdir

mkdir: cannot create directory '/media/testdir': Permission denied

[student@studentvm1 ~]$ mkdir /mnt/testdir

mkdir: cannot create directory '/mnt/testdir': Permission denied

[student@studentvm1 ~]$ mkdir testdir

[student@studentvm1 ~]$

the student user cannot create a new directory in most parts of the directory tree. the

attempts result in a “permission denied” error message. the only location that the student

user could create a new directory was in its own home directory.

there is one directory in which non-root users such as student can create a new directory.

Can you think of where that might be?

try the following:

[student@studentvm1 ~]$ mkdir /tmp/testdir

[student@studentvm1 ~]$ ll /tmp

total 80

-rw-rw-r--. 1 student student 44297 Sep 6 10:54 dmesg2.txt

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

-rw-r--r--. 1 root root 5120 Sep 6 09:37 random.file

drwx------. 3 root root 4096 Sep 12 17:19 systemd-private-

24e6ace1ee014ad28178a1d72dc5ac1e-chronyd.service-AHYFAL

Chapter 11 Working as root

289

drwx------. 3 root root 4096 Sep 12 17:19 systemd-private-

24e6ace1ee014ad28178a1d72dc5ac1e-rtkit-daemon.service-JajDc7

drwxrwxr-x. 2 student student 4096 Sep 13 16:38 testdir

[student@studentvm1 ~]$

in this instance there is no error, and we can confirm that the /tmp/testdir directory was

created. Why does this work?

To explain why non-root users cannot create new directories – or files as well – we

need to look at the ownership and permissions set on these directories.

EXPERIMENT 11-4

take a look at the ownership and permissions for the directories in which the student user

tried to create a new directory:

[student@studentvm1 ~]$ ls -la /

total 76

dr-xr-xr-x. 18 root root 4096 Apr 25 02:19 .

dr-xr-xr-x. 18 root root 4096 Apr 25 02:19 ..

<snip>

dr-xr-xr-x. 13 root root 0 Sep 12 17:18 sys

drwxrwxrwt. 10 root root 4096 Sep 13 16:45 tmp

drwxr-xr-x. 13 root root 4096 Apr 25 02:19 usr

drwxr-xr-x. 22 root root 4096 Apr 25 02:23 var

[student@studentvm1 ~]$

this information tells us what we need to know. i have highlighted two entries in this list of

directories that illustrate this.

In the two highlighted directories shown in Experiment 11-4, you can see there is a

difference in the permissions. Notice also that both directories are owned by root and the

group ownership is also root. Let’s look at what those permissions mean when applied to

directories. We will cover file and directory permissions in detail in Chapter 18.

Figure 11-1 shows a breakdown of the Linux permissions structure for files and

directories.

Chapter 11 Working as root

290

File and directory permissions and ownership are one aspect of security provided by

Linux as they are related to user accounts. Each file and directory on a Linux system has

an owner and a set of access permissions. It is important to understand a bit about file

ownership and permissions in the context of user accounts and their ability to work with

files and directories. The permissions settings of a file or directory is also be known as

the file mode. Look at the entry for the /usr directory:

drwxr-xr-x. 13 root root 4096 Apr 25 02:19 usr

The first character, “d” in this case, tells us that this is a directory. An “l” would

indicate that the entry is a link; we will look at links in detail in Chapter 18. A dash (-) in

the first position indicates no character, and by default this represents a file – any type of

file as can be seen in root’s home directory:

-rw-------. 1 root root 2118 Dec 22 11:07 anaconda-ks.cfg

-rw-r--r--. 1 root root 2196 Dec 22 12:47 initial-setup-ks.cfg

Then there are three categories of permissions, each category providing (r)ead, (w)

rite, and e(x)ecute access to the file. The permission categories are (u)ser, (g)roup, and

(o)ther.

The User is the owner of the file or directory. The permissions for the (U)ser are rwx

which means that user root can list the contents (read) and create new files (write) in this

directory. The (G)roup and (O)ther permissions are r-x which means that any user that

is a member of the group root – and there should not be any – can enter this directory (x)

and read (r) the files in it. The “other” category access permissions may allow all other

users — those that are not root and that are not members of the group root that owns the

file — can enter the directory and read contents but not create files or directories inside

this directory.

The result of this is that the student user can make /usr the PWD and can list the files

and other directories there. In all cases, access to read and write the individual files in

the directory is managed by the mode of each file.

Figure 11-1. Linux permissions as applied to directories

Chapter 11 Working as root

291

EXPERIMENT 11-5

perform this experiment as root until explicitly stated otherwise. First we create a directory in /tmp:

[root@studentvm1 ~]# mkdir /tmp/testdir1 ; cd /tmp

[root@studentvm1 ~]# ll

total 84

-rw-rw-r--. 1 student student 44297 Sep 6 10:54 dmesg2.txt

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

-rw-r--r--. 1 root root 5120 Sep 6 09:37 random.file

<snip>

drwxrwxr-x. 2 student student 4096 Sep 13 16:38 testdir

drwxr-xr-x 2 root root 4096 Sep 15 09:27 testdir1

now change the permissions on the directory using the chmod (change mode) command. the

easy way to do this is with octal numeric permissions:

[root@studentvm1 tmp]# chmod 000 testdir1 ; ll

total 84

-rw-rw-r--. 1 student student 44297 Sep 6 10:54 dmesg2.txt

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

-rw-r--r--. 1 root root 5120 Sep 6 09:37 random.file

<snip>

drwxrwxr-x. 2 student student 4096 Sep 13 16:38 testdir

d--------- 2 root root 4096 Sep 15 09:27 testdir1

[root@studentvm1 tmp]#

at this point – theoretically – even the user (owner) of the /tmp/testdir1 directory should not

be able to enter it or create a file in it. and yet we get the following results when we try that as

root:

[root@studentvm1 tmp]# cd testdir1 ; pwd

/tmp/testdir1

[root@studentvm1 testdir1]# echo "This is a new file" > testfile.txt ; ll

total 4

-rw-r--r-- 1 root root 19 Sep 15 09:38 testfile.txt

[root@studentvm1 testdir1]#

Chapter 11 Working as root

292

You should also cat testfile.txt to verify its actual content, but we can see from the listing that it

contains 19 bytes of data.

We will explore file modes with non-root users later, but for now you can assume the fact

that this will not work for users other than root. other users will not be able to create files in

directories that belong to them when the permissions are 000.

So you can now see that actions taken by root override the permissions set on the

directory and the root user is able to enter and create a file containing data in a directory

that has no permissions at all. The key point here is that root can do anything. Despite

the fact that there are a couple intentional ways to limit root, it is quite easy for the root

user to overcome those relatively minor limitations.

 Disadvantages of root
Because root can do anything on a Linux system, there is great danger. Any error made

by root has the potential to cause catastrophic harm to a Linux host. I used the following

quote back in Chapter 1 to help illustrate the vast power of Linux.

Unix was not designed to stop its users from doing stupid things, as that
would also stop them from doing clever things.

—Doug Gwyn

This quote is absolutely true, especially for the root user. Although there are a few

limits on the powers of root just to assist in preventing a few easily made mistakes,

those can all be circumvented just as easily. The problem is that many times when I

am working as root, I do things automatically – muscle memory is powerful. It is easy

to make a mistake that can wipe out a file or a whole directory structure. It is also easy

to power off or reboot the wrong machine when working as root remotely via an SSH

connection.

It is incumbent upon us as SysAdmins to be very careful when we work as root.

The power of the root user is complete, and it is easy to cause damage that may not

be completely recoverable. At the very least, it may take hours to recover from the

unintentional slip of the fingers.

Chapter 11 Working as root

293

 Escalating user privilege
It is possible to raise the privilege level of non-root users in order to enable them to

perform tasks that only root can usually do. The reasons for doing this are usually

to enable non-root users to perform some tasks for which only the root user has

permissions. This is a common requirement and can easily be done safely.

 The bad ways
I have, however, seen many instances where SysAdmins simply give the local user the

root password. This is dangerous and can lead to problems caused by an inexperienced

user. This is a horrible way to assist users in doing their legitimate jobs while off-loading

some repetitive tasks from the root user. This is definitely not a safe way in which to allow

unprivileged users access to commands that require root privileges.

There is another horrible way of providing complete privilege escalation. You should

know what they are because you should be able to identify them so you can disable

them. Change the UID and GID of the user to zero. You can edit the passwd, group, and

shadow files to do this. We will explore those files in Volume 2, Chapter 16. Approaches

like this may be leftovers from previous administrators who were improperly trained – if

at all – or who just did not understand how insecure these methods are. They may also

be due to a PHB who, out of ignorance, demands one of these approaches.

There is a better way.

 Using sudo
Using the sudo facility to provide legitimate access to specific privileged commands

by non-root users can reduce the system administrator's workload while maintaining

security and providing a log of the users” actions by ID and command. The sudo facility

can be used to allow unprivileged users some escalation of privileges for one command

or a group of related commands.

Chapter 11 Working as root

294

EXPERIMENT 11-6

in a terminal session as root, enter the following command which will display information

about the internet connections on your test VM:

[root@studentvm1 ~]# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

group default qlen 1000

 link/ether 08:00:27:a9:e6:b4 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.6/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

 valid_lft 1065sec preferred_lft 1065sec

 inet6 fe80::2edb:118b:52cc:b63f/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

Look for entry number 2 (highlighted) which contains the name of the niC that is configured

on this VM. it should probably be enp0s3 as it is in my VM, but check to be sure. if it is not the

same as mine, be sure to use the niC name that matches the one on your VM.

enter the next command as the student user to attempt to view the details of the niC:

[student@studentvm1 ~]$ mii-tool -v enp0s3

SIOCGMIIPHY on 'enp0s3' failed: Operation not permitted

[student@studentvm1 ~]$

this fails because the student user does not have the privileges required to run this command.

now you will now give the user student sudo access to this single command. Working in a

terminal session as root, use the visudo command to enter the following line to the bottom

of /etc/sudoers:

student ALL=/usr/sbin/mii-tool

Chapter 11 Working as root

295

this line gives the student user access to use only this one privileged command. save the

altered sudoers file.

run the following command to test the ability of the user student to execute the mii-tool

command:

[student@studentvm1 ~]$ sudo mii-tool -v enp0s3

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these three things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 #3) With great power comes great responsibility.

[sudo] password for student: <Enter student password>

enp0s3: no autonegotiation, 1000baseT-FD flow-control, link ok

 product info: Yukon 88E1011 rev 4

 basic mode: autonegotiation enabled

 basic status: autonegotiation complete, link ok

 capabilities: 1000baseT-FD 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT- HD

 advertising: 1000baseT-FD 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT- HD

flow-control

 link partner: 1000baseT-HD 1000baseT-FD 100baseTx-FD 100baseTx-HD 10baseT-

FD 10baseT-HD

[student@studentvm1 ~]$

note that the first time a user uses sudo, they get a little onscreen lecture. the sysadmin

should always give a stern lecture to users with sudo privileges.

the user must enter their own password, and the command is then executed. notice that if

you execute the same command or any other allowed command within five minutes, it is not

necessary to reenter your password. this expiration time is configurable.

now try another privileged command. the vgs command lists the volume groups currently

available in the host whether active or not:

[student@studentvm1 ~]$ vgs

 WARNING: Running as a non-root user. Functionality may be unavailable.

 /run/lvm/lvmetad.socket: access failed: Permission denied

Chapter 11 Working as root

296

 WARNING: Failed to connect to lvmetad. Falling back to device scanning.

 /dev/mapper/control: open failed: Permission denied

 Failure to communicate with kernel device-mapper driver.

 Incompatible libdevmapper 1.02.146 (2017-12-18) and kernel driver (unknown

version).

[student@studentvm1 ~]$

this command fails because the user student has only been given privileges to a single

command.

 Do do that sudo that you do so well

Let’s look at the sudoers file in a bit more detail. I recently wrote a short Bash program to

copy some MP3 files from a USB thumb drive on one network host to another network

host. The files are copied from a workstation to a specific directory on a server from

where they can be downloaded and played.

This program does a few other things, like changing the name of the files before they

are copied so that they are automatically sorted by date on the web page. It also deletes

all of the files on the USB drive after verifying that the transfer has taken place correctly.

This nice little program has a few options such as -h to display help, -t for test mode, and

a couple others.

My program, wonderful as it is, needs to run as root in order to perform its primary

functions. Unfortunately this organization has only a couple people besides myself who

have any interest in administering our audio and computer systems, which puts me in

the position of finding semi-technical people to train to log in to the computer we use to

perform the transfer and run this little program.

It is not that I cannot run the program myself, but I am not always there for various

reasons such as travel and illness. Even when I am present, as the “Lazy SysAdmin,” I like

to delegate tasks to others so that they have learning opportunities. So I wrote scripts to

automate those tasks and used sudo to anoint a couple users to run the scripts.

Many Linux administrative commands require the user to be root in order to run.

The sudo program is a handy tool that allows me as a SysAdmin with root access to

delegate responsibility for all or a few administrative tasks to other users of the computer

as I see fit. It allows me to perform that delegation without compromising the root

password and thus maintain a high level of security on the host.

Chapter 11 Working as root

297

Let's assume, for example, that I have given regular user, “ruser,” access to my Bash

program, “myprog,” which must be run as root in order to perform part of its functions.

First, the user logs in as ruser with their own password. The user then uses the following

command to run myprog:

sudo myprog

The sudo program checks the /etc/sudoers file and verifies that ruser is permitted

to run myprog. If so, sudo requests that the user enter their own password – not the root

password. After ruser enters their own password, the program is run. The sudo program

also logs the facts of the access to myprog with the date and time the program was run,

the complete command, and the user who ran it. This data is logged in /var/log/secure.

I have done this to delegate authority to run a single program to myself and a couple

other users. However sudo can be used to do so much more. It can allow the SysAdmin to

delegate authority for managing network functions or specific services to a single person

or to a group of trusted users. It allows these functions to be delegated while protecting

the security of the root password.

 The sudoers file

As a SysAdmin I can use the /etc/sudoers file to allow users or groups of users access to

a single command, defined groups of commands, or all commands. This flexibility is key

to both the power and the simplicity of using sudo for delegation. I have not reproduced

the sudoers file here in order to save space. You can view the sudoers file using the less

command.

EXPERIMENT 11-7

perform this experiment as root. enter the following command to view the sudoers file:

[root@studentvm1 ~]# less /etc/sudoers

You can use the page Up and page Down keys to scroll through the file a page at a time and

the up arrow and down arrow keys to scroll one line at a time. When you are done viewing the

sudoers file just pres “q” – the q key – to quit and return to a command prompt.

Chapter 11 Working as root

298

I found the sudoers file very confusing the first time I encountered it. Hopefully it

won't be quite so obscure for you by the time we get through this explanation. I do like

that Red Hat-based distributions tend to have default configuration files with lots of

comments and examples to provide guidance. This does make things easier because

much less Internet searching is necessary.

Normally we edit the sudoers file rather than just appending new lines to the end.

Do not use your standard editor to modify the sudoers file. Use the visudo command

because it is designed to enable any changes as soon as the file is saved and you exit from

the editor. The visudo command is a wrapper around the vi editor. It is possible to use

editors besides vi in the same way as visudo.

Let's start analyzing this file at the beginning with a couple types of aliases. Scroll

through the sudoers file as we examine each section.

Host aliases

The host aliases section is used to create groups of hosts on which commands or

command aliases can be used to provide access. The basic idea is that this single file

will be maintained for all hosts in an organization and copied to /etc of each host. Some

hosts, such as servers, can thus be configured as a group to allow some users access

to specific commands such as the ability to start and stop services like HTTPD, DNS,

networking, the ability to mount filesystems, and so on. IP addresses can be used instead

of hostnames in the host aliases.

User aliases

The next set of configuration samples is user aliases. This allows root to sort users into

aliased groups so that an entire group can be provided access to certain root capabilities.

You can create your own aliases in this section.

For the little program I wrote, I added the following alias to this section:

User_Alias AUDIO = dboth, ruser

It is possible, as stated in the sudoers file, to simply use groups defined in the /etc/

groups file instead of aliases. If you already have a group defined there that meets your

needs, such as “audio,” use that group name preceded by a % sign like so %group when

assigning commands available to groups later in the sudoers file.

Chapter 11 Working as root

299

Command aliases

Further down the sudoers file is a section with command aliases. These aliases are lists

of related commands such as networking commands or commands required to install

updates or new RPM packages. These aliases allow the SysAdmin to easily allow access

to groups of commands. There are a number of aliases already set up in this section that

make it easy to delegate access to specific types of commands.

Environment defaults

The next section sets up some default environment variables. The item that is most

interesting in this section is the !visiblepw line which prevents sudo from running if the

user environment is set to show the password. This is a security precaution that should

not be overridden.

Command section

This section is the main part of the sudoers file. Everything necessary can be done

without all of the aliases by adding enough entries here. The aliases just make it a whole

lot easier.

This section uses the aliases already defined to tell sudo who can do what on which

hosts. The examples are self-explanatory once you understand the syntax in this section.

Here we have a sample entry for our user account, ruser:

ruser ALL=(ALL) ALL

The first “ALL” in the preceding line indicates that this rule applies on all hosts. The

second ALL allows ruser to run commands as any other user. By default commands

are run as root user, but ruser can specify on the sudo command line that a program

be run as any other user. The last ALL means that ruser can run all commands without

restriction. This entry would give ruser full root capabilities. I did not use a line like this to

solve my problem because that would give too much power to users who do not need it.

Note that there is an entry for root. This entry allows root to have all-encompassing

access to all commands on all hosts.

The entry in the following is the one I added to control access to myprog. It specifies

that users who are listed in the AUDIO group, as defined near the top of the sudoers file,

have access to only the one program, myprog, on one host, guest1:

AUDIO guest1=/usr/local/bin/myprog

Chapter 11 Working as root

300

Note that the syntax of the AUDIO group command specifies only the host on which

this access is to be allowed and the program. It does not specify that the user may run the

program as any other user.

Bypassing passwords

It is possible to use NOPASSWORD to allow the users specified in the group AUDIO

to run myprog without the need for entering their passwords. The revised entry in the

command section would look like this:

AUDIO guest1=NOPASSWORD : /usr/local/bin/myprog

I did not do this for my program because I believe that relatively inexperienced users

with sudo access must stop and think about what they are doing and this may help a bit

with that. I just used the entry for my little program as an example.

wheel

The wheel specification in the command section of the sudoers file as shown in the

following allows all users in the “wheel” group to run all commands on any host. The

wheel group is defined in the /etc/group file, and users must be added to the group there

for this to work. The % sign preceding the group name means that sudo should look for

that group in the /etc/group file:

%wheel ALL = (ALL) ALL

This is a good way to delegate full root access to multiple users without providing

the root password. Just adding a user to the wheel group gives them access to full root

powers. It also provides a means to monitor their activities via the log entries created

by sudo. Some distributions such as Ubuntu add users' IDs to the wheel group in /etc/

group which allows them to use the sudo command to use all privileged commands:

§§

I have used sudo in this case for a very limited objective – providing one or two users

with access to a single command. I accomplished this with two lines. Delegating the

authority to perform certain tasks to users who do not have root access is simple and can

save you as a SysAdmin a good deal of time. It also generates log entries that can help

detect problems.

Chapter 11 Working as root

301

The sudoers file offers a plethora of capabilities and options for configuration. Check

the man pages for the sudo command and the sudoers file for the down and dirty details.

 Real SysAdmins don’t sudo

I recently read a very interesting article that contained some good information about a

Linux feature that I want to learn about. I won’t tell you the name of the article, what it

was about, or even the web site on which I read it, but the article itself made me shudder.

The reason I found this article so cringe-worthy is that it prefaced every command

with the sudo command. The issue I have with this is that the article is allegedly for

SysAdmins and real SysAdmins don’t use sudo in front of every command they issue.

This is a misuse of the sudo command.

 sudo or not sudo

I think that part of being a system administrator and using your favorite tools is to use

the tools we have correctly and to have them available without any restrictions. In this

case I find that the sudo command is used in a manner for which it was never intended.

I have a particular dislike for how the sudo facility is being used in some distributions,

especially because it is employed to limit and restrict access by people doing the work of

system administration to the tools they need to perform their duties.

[SysAdmins] don’t use sudo.

—Paul Venezia

Venezia explains in his InfoWorld1 article that sudo is used as a crutch for

SysAdmins. He does not spend a lot of time defending this position or explaining it. He

just states this as a fact. And I agree with him – for SysAdmins. We don’t need the training

wheels in order to do our jobs. In fact they get in the way.

Some distros, such as Ubuntu, use the sudo command in a manner that is intended

to make the use of commands that require elevated (root) privileges a little more

difficult. In these distros, it is not possible to log in directly as the root user, so the sudo

1 Venezia, Paul, Nine traits of the veteran Unix admin, Infoworld, www.infoworld.com/
article/2623488/unix/nine-traits-of-the-veteran-unix-admin.html

Chapter 11 Working as root

https://www.infoworld.com/article/2623488/unix/nine-traits-of-the-veteran-unix-admin.html
https://www.infoworld.com/article/2623488/unix/nine-traits-of-the-veteran-unix-admin.html

302

command is used to allow non-root users temporary access to root privileges. This is

supposed to make the person a little more careful about issuing commands that need

elevated privileges such as adding and deleting users, deleting files that don’t belong

to them, installing new software, and generally all of the tasks that are required to

administer a modern Linux host. Forcing SysAdmins to use the sudo command as a

preface to other commands is supposed to make working with Linux safer.

Using sudo in the manner it is by these distros is, in my opinion, a horrible and

ineffective attempt to provide novice SysAdmins with a false sense of security. It is

completely useless for providing any level of protection. I can issue commands that are

just as incorrect or damaging using sudo as I can when not using it. The distros that use

sudo to anesthetize the sense of fear that we might issue an incorrect command are

doing SysAdmins a great disservice. There is no limit or restriction imposed by these

distros on the commands that one might use with the sudo facility. There is no attempt to

actually limit the damage that might be done by actually protecting the system from the

users and the possibility that they might do something harmful – nor should there be.

So let’s be clear about this – these distributions expect the user to perform all of the

tasks of system administration. They lull the users – who are really system administrators

if you remember my list from Chapter 1 of Volume 1 – into thinking that they are

somehow protected from the effects of doing anything bad because they must take this

restrictive extra step to enter their own password in order to run the commands.

 Bypass sudo

Distributions that work like this usually lock the password for the root user, and

Ubuntu is one of these distros. This way no one can log in to root and start working

unencumbered. I set up a VM with Ubuntu 16.04 LTS (long-term support) in it, so I can

show you how to set a password to circumvent the need to use sudo. You should not

need to do this on the VM you set up for use with this course, but I do want to show you

how to do this in case you ever need to do so on other distributions.

Note experiment 11-8 is optional. it is intended to guide you in using sudo to
unlock the root account by setting a password for it. if the distribution you are
using does not force you to use sudo, or if you do not have access to one that
does, you should skip this experiment.

Chapter 11 Working as root

303

EXPERIMENT 11-8 – OPTIONAL

Let me stipulate the setup here so that you can reproduce it if you wish. i installed Ubuntu

16.04 Lts2 in a VM using VirtualBox. During the installation i created a non-root user, student,

with a simple password for this experiment.

Log in as the user student, and open a terminal session. Let’s look at the entry for root in

the /etc/shadow file, which is where the encrypted passwords are stored:

student@ubuntu1:~$ cat /etc/shadow

cat: /etc/shadow: Permission denied

permission is denied, so we cannot look at the /etc/shadow file. this is common to all

distributions so that non-privileged users cannot see and access the encrypted passwords.

that access would make it possible to use common hacking tools to crack those passwords,

so it is insecure to allow that.

Now let's try to su – to root:

student@ubuntu1:~$ su -

Password:

su: Authentication failure

this fails because the root account has no password and is locked out. Let’s use sudo to look

at the /etc/shadow file:

student@ubuntu1:~$ sudo cat /etc/shadow

[sudo] password for student: <enter the password>

root:!:17595:0:99999:7:::

<snip>

student:6tUB/y2dt$A5ML1UEdcL4tsGMiq3KOwfMkbtk3WecMroKN/:17597:0:99999:7:::

<snip>

i have truncated the results to only show the entry for the root and student users. i have also

shortened the encrypted password so that the entry will fit on a single line.

the fields are separated by colons (:), and the second field is the password. notice that the

password field for root is a “bang,” known to the rest of the world as an exclamation point (!).

this indicates that the account is locked and that it cannot be used.

2 Canonical Group LTD, Download web site, www.ubuntu.com/download/desktop

Chapter 11 Working as root

https://www.ubuntu.com/download/desktop

304

now all we need to do to use the root account as proper sysadmins is to set up a password

for the root account:

student@ubuntu1:~$ sudo su -

[sudo] password for student: <Enter password for student>

root@ubuntu1:~# passwd root

Enter new UNIX password: <Enter new root password>

Retype new UNIX password: <Re-enter new root password>

passwd: password updated successfully

root@ubuntu1:~#

now we can log in directly on a console as root or su – directly to root instead of having to

use sudo for each command. of course we could just use sudo su - every time we want to

login as root – but why bother?

Please do not misunderstand me. Distributions like Ubuntu and their up- and

downstream relatives are perfectly fine, and I have used several of them over the years.

When using Ubuntu and related distros, one of the first things I do is set a root password

so that I can log in directly as root.

 Valid uses for sudo

The sudo facility does have its uses. The real intent of sudo is to enable the root user

to delegate to one or two non-root users and access to one or two specific privileged

commands that they need on a regular basis. The reasoning behind this is that of the

lazy SysAdmin; allowing the users access to a command or two that requires elevated

privileges and that they use constantly, many times per day, saves the SysAdmin a lot

of requests from the users and eliminates the wait time that the users would otherwise

experience. But most non-root users should never have full root access, just to the few

commands that they need.

I sometimes need non-root users to run programs that require root privileges. In

cases like this, I set up one or two non-root users and authorize them to run that single

command. The sudo facility also keeps a log of the user ID of each user that uses it. This

might enable me to track down who made an error. That’s all it does; it is not a magical

protector.

The sudo facility was never intended to be used as a gateway for commands issued

by a SysAdmin. It cannot check the validity of the command. It does not check to see

if the user is doing something stupid. It does not make the system safe from users who

Chapter 11 Working as root

305

have access to all of the commands on the system even if it is through a gateway that

forces them to say “please” – That was never its intended purpose.

Unix never says please.

—Rob Pike

This quote about Unix is just as true about Linux as it is about Unix. We SysAdmins

log in as root when we need to do work as root, and we log out of our root sessions when

we are done. Some days we stay logged in as root all day long, but we always work as root

when we need to. We never use sudo because it forces us to type more than necessary in

order to run the commands we need to do our jobs. Neither Unix nor Linux asks us if we

really want to do something, that is, it does not say “Please verify that you want to do this.”

Yes, I dislike the way some distros use the sudo command.

 Using su as root
So far we have looked at using the su and sudo commands to elevate our privilege level

from that of a regular user to that of root, the superuser. There are times when it becomes

necessary to switch to another user.

For example, I may be working as a non-root user like student and another user, say

student1, borks3 up their account so that weird things are happening and they can’t fix it or

explain it. Believe me, it happens. So as the SysAdmin, my job is to figure this out. And being

the lazy SysAdmin that I am, I have no desire to walk to wherever it is that student1 is located,

if in walking distance at all, just to look at their screen so I can observe the symptoms.

I can simply use su - in one of my terminal sessions to switch to student1. All I need

is student1’s password – except that I don’t have it and were I to ask student1 for their

password and get a positive response, they would have broken one of the most basic

security rules: never, ever share your password, even with root.

But root can do anything even if not quite directly. I can su - from student to root

and then use the command su - student1 to complete the two-step switch. At this

point I can see what is going on and resolve the problem. The root user does not require

a non-root user’s password in order to switch to that user.

3 To break in almost any way possible is usually the way in which the most damage is done.

Chapter 11 Working as root

306

 Chapter summary
In this chapter we have looked at the root user and explored a few of root’s capabilities.

The bottom line is that root can do anything. In Linux the root user is all-powerful even

to the extent that it can perform tasks that are completely self-destructive with complete

impunity. The power we have as SysAdmins when working as root is limitless as far as

the Linux host is concerned.

Non-root users do have some limitations that are intended only to prevent them

from interfering with or damaging the work of others. Using sudo enables the SysAdmin

to assign certain limited additional privileges to regular users to enable them to perform

specific tasks that require root privilege.

SysAdmins should never use sudo themselves and should bypass it if working on a

Linux distribution that implements that as a requirement. We configured the sudoers file

so that non-privileged users may utilize sudo to obtain very limited access to a very few

commands that they might need when a SysAdmin is not available.

 Exercises
Complete the following exercises to finish this chapter:

 1. What is the function of the root account?

 2. In Experiment 11-1, we explored switching users from student to

root using the su command. What happens when root uses su to

switch to a non-privileged user with and without the hyphen?

 3. Why should SysAdmins not use sudo for their own work?

 4. What advantage is there to the SysAdmin that might make it useful

to use sudo to provide administrative access for a non-privileged

user to one or a few programs?

Chapter 11 Working as root

307

 5. Experiment 11-5 shows that root can create files in a directory

with all permissions set to off (000). The directory used in that

experiment was owned by root. In an earlier chapter, the student

user created a directory in /tmp also. Can root still create files in a

directory owned by another user with all permissions set to 000?

Prove your answer.

 6. Are there any limitations to what the root account can do in a

Linux host?

 7. Configure the sudoers file to allow the student user to use the vgs

command and test the result.

Chapter 11 Working as root

309
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_12

CHAPTER 12

Installing and Updating
Software
 Objectives
In this chapter you will learn

• Why the RPM Package Manager (RPM) was created

• The deficiencies of the Red Hat Package Manager in today’s Internet

connected world

• The advantages of the DNF package manager

• How to use DNF to install, update, and manage software packages

• How the RPM tool can still be used productively

The purpose of package management and tools like RPM and DNF is to provide

for easy installation and management of software on Linux hosts. DNF is a wrapper

around RPM and was developed to compensate for the main deficiencies of RPM. In

this chapter we will explore the deficiencies of RPM and the use of DNF for installing

and updating software.

 Dependency hell
I think it important to understand the full impact of dependency hell – at least as much

as possible without actually having been there. Dependency hell is the difficult process

of resolving multiple layers of complex dependencies, a common problem before the

development of modern package management tools.

310

One time during my very early experiences with Linux, the original Red Hat Linux,

before Red Hat Enterprise Linux (RHEL), CentOS, and Fedora, I installed Linux on one

of my computers. Not knowing what software I might need eventually, I just installed

a few basic things. After I got the system up and running, I decided I wanted to install

some additional software, so I tried to install a word processor; I don’t even remember

which one, but it was not LibreOffice or even one of its predecessors. All of the software I

needed was on the distribution CD, so it should have been easy. Hah!

I first tried to install the word processor itself. I received a very long list of package

dependencies which I would need to install first. So I started working my way down the

list. The first dependency was a package of library files. I tried to install that and received

another list of dependencies which had not been previously listed and which were

required before the library package could be installed. So I started down that list. After

installing several dependencies, I managed to get the libraries installed. So I started on

the second dependency in the original list only to get another list of dependencies that

needed to be fulfilled.

I had discovered dependency hell. It took me a full day to get all of the package

dependencies installed before I could actually install the word processor. This was a bad

situation and was probably one of the reasons that Linux was considered to be very hard

to use in those early days. Something else was needed.

You have already used DNF to install updates and some new software. Now let’s look

at package management and DNF specifically in more detail. Both RPM and DNF can do

more than just software installations and updates.

 RPM
RPM1 is the RPM Package Manager. It is both a system and a program that provides the

capability to install, remove, upgrade, and manage RPM packages. RPM is the name of

the Red Hat package management system. It is also the name of the program, rpm, used

to install and manage RPM packages, and .rpm is the file extension for RPM packages.

The rpm program has some drawbacks such as its inability to deal with dependencies

in RPMs being installed or removed. This means that you might try to install a new

software package that you want to use only to receive an error message indicating that

there is a missing dependency.

1 Wikipedia, RPM, https://en.wikipedia.org/wiki/Rpm_(software)

Chapter 12 InstallIng and UpdatIng software

https://en.wikipedia.org/wiki/Rpm_(software)

311

The rpm program can only operate on RPM packages that have been already

downloaded to the localhost. It has no capability to access remote repositories, that is,

repos.

Despite all of its drawbacks, RPM was a major step forward in making Linux available

to more users than ever before. By replacing the need to download and compile every

software package using the so-called five-step process, RPM simplified and standardized

software installation for Linux. The old and cumbersome five-step process took time

and patience. The following list of steps assumes that the compiler and make programs

are installed and that you know how to use them. It also assumes that there is an easily

accessible site on the Internet from which the sources can be downloaded:

 1. Download the source code. These are usually distributed as

tarballs.2

 2. Untar the tarball in the desired development location in your

directory tree.

 3. Run the make configure command to configure the procedure

for the specific host machine on which these steps are being

performed.

 4. Run the make command to perform the actual compilation of the

source code into executable files.

 5. Run the make install to install the executable binary file, any

libraries created by the compile process, and any documentation

including man pages, into the correct locations in the filesystem

directory structure.

The RPM package management system was the first available for any distribution,

and it made installing and maintaining Linux hosts far easier than it had been

previously. It also provides security in the form of signing keys. A packager can use RPM

to sign an RPM package with a GPG3 signing key, and then the key can be used to verify

the authenticity of the RPM when it is downloaded. The signing key is used by package

management systems like DNF to ensure that any packages downloaded from a package

repository such as the Fedora repositories are safe and have not been tampered with.

2 Similar in function to zip files, tarballs are created with the tar command and have the .tar file
name extension.

3 GNU Privacy Guard

Chapter 12 InstallIng and UpdatIng software

312

Despite its shortcomings and more capable wrappers like DNF, the rpm program is

powerful and still useful. Because dnf is a program wrapper around the rpm program,

understanding how the rpm works is an important part of understanding advanced

package management with DNF. You will also find many reasons to use RPM itself.

Let’s start exploring RPM by attempting to install a simple RPM package. The wget

command you will encounter in Experiment 12-1 can be used to download files directly

from the Internet so long as you know the complete URL. This means not having to open

a web browser and navigating to the correct URL which can be time-consuming.

EXPERIMENT 12-1

perform this experiment as root. this experiment is intended to illustrate the issues of the

rpm program. we will attempt to install an rpM package that I created for this experiment,

utils-1.0.0-1.noarch.rpm.

Make /tmp the pwd.

download the rpM file to be used in this experiment into the /tmp directory.

https://github.com/Apress/using-and-administering-linux-volume-1/blob/

master/utils-1.0.0-1.noarch.rpm

Use the following command to install the downloaded rpM. the options are (i)nstall, (v)erbose,

and (h)ash (to display a progress bar):

[root@studentvm1 tmp]# rpm -ivf utils-1.0.0-1.noarch.rpm

error: Failed dependencies:

 mc is needed by utils-1.0.0-1.noarch

[root@studentvm1 tmp]#

this error is caused by the fact that the mc (Midnight Commander) package is not already

installed.

the rpm program cannot resolve this dependency, so it simply throws an error and quits. at

least it tells us what is wrong.

Chapter 12 InstallIng and UpdatIng software

https://github.com/Apress/using-and-administering-linux-volume-1/blob/master/utils-1.0.0-1.noarch.rpm
https://github.com/Apress/using-and-administering-linux-volume-1/blob/master/utils-1.0.0-1.noarch.rpm

313

The rpm program by itself cannot resolve the dependency encountered in

Experiment 12-1. It would be necessary to download the Midnight Commander package

from the repo and then use rpm to install that before attempting again to install the

utils package. Of course that assumes that Midnight Commander does not have any

unfulfilled dependencies.

Before we look at the solutions to those problems, let’s look at some of the things that

RPM can do.

EXPERIMENT 12-2

this experiment must be performed as root. we will use rpM to explore the utils package and

find out more about it.

let’s look at the utils-1.0.0-1.noarch.rpm file and find all of the dependencies that it has. the

-q option is a query, and the r option is the type of query, in this case requires, which means

the dependencies or requirements. the -q option must always precede any other query option:

[root@studentvm1 tmp]# rpm -qR utils-1.0.0-1.noarch.rpm

/bin/bash

/bin/sh

/bin/sh

/bin/sh

/bin/sh

bash

dmidecode

mc

rpmlib(CompressedFileNames) <= 3.0.4-1

rpmlib(FileDigests) <= 4.6.0-1

rpmlib(PayloadFilesHavePrefix) <= 4.0-1

rpmlib(PayloadIsXz) <= 5.2-1

screen

[root@studentvm1 tmp]#

we may also want to know what files are going to be installed by this rpM package. the l

(lowercase l) lists the files that will be installed. these are primarily little scripts I have written

and the gpl license information:

Chapter 12 InstallIng and UpdatIng software

314

[root@studentvm1 tmp]# rpm -ql utils-1.0.0-1.noarch.rpm

/usr/local/bin/create_motd

/usr/local/bin/die

/usr/local/bin/mymotd

/usr/local/bin/sysdata

/usr/local/share/utils/Copyright.and.GPL.Notice.txt

/usr/local/share/utils/GPL_LICENSE.txt

/usr/local/share/utils/utils.spec

[root@studentvm1 tmp]#

note that this list of files shows the complete absolute path into which the files will be

installed.

the -i option displays the package detailed information as seen in the following:

[root@studentvm1 tmp]# rpm -qi utils-1.0.0-1.noarch.rpm

Name : utils

Version : 1.0.0

Release : 1

Architecture: noarch

Install Date: (not installed)

Group : System

Size : 71985

License : GPL

Signature : (none)

Source RPM : utils-1.0.0-1.src.rpm

Build Date : Thu 30 Aug 2018 10:16:42 AM EDT

Build Host : testvm1.both.org

Relocations : (not relocatable)

Packager : David Both

URL : http://www.both.org

Summary : Utility scripts for testing RPM creation

Description : A collection of utility scripts for testing RPM creation.

sometimes the rpM database becomes corrupted. You will know when this happens because

the rpm command will throw an error indicating that the database is corrupt. It can be rebuilt

with the following command:

Chapter 12 InstallIng and UpdatIng software

315

[root@studentvm1 tmp]# rpm --rebuilddb

[root@studentvm1 tmp]#

this rebuilds the database of installed packages. rpM has no means of knowing what

packages are available but not installed.

read the man page for rpm to learn more of the capabilities of rpM:

[root@studentvm1 tmp]# man rpm

rpM can be used to delete (erase) installed packages. simply use the -e option and the name

of the rpM. rpM won’t erase packages that are needed as dependencies by other packages.

It will just quit with an error message.

 YUM
The YUM4 (Yellow Dog Updater Modified) program was an early – but not the first –

attempt to resolve the problem of dependency hell as well as to make Red Hat Linux

RPM packages available from repositories on the Internet. This eliminated the need to

insert the CD in the system every time you needed to install new software. It also made it

possible to install updates easily over the Internet.

YUM was written by Seth Vidal and Michael Stenner at Duke University Department

of Physics to do for Red Hat and RPM packages what the original, YUP, did for an early

Linux distribution called Yellow Dog. YUM was very successful, but as it aged, several

problems were uncovered. It was slow and used a great deal of memory, and much of its

code needed to be rewritten.

There is little point in discussing YUM any further. As a drop-in replacement, the

syntax for DNF is identical except for the command name itself. Prior to RHEL 8, YUM is

still used by RHEL and CentOS as the package manager, but whatever you learn for DNF

will also apply to YUM. Both the yum and dnf commands for current releases of Fedora

and RHEL 8 are simply links to the dnf-3 command. We will explore links in Chapter 18

of this volume, but for now, it is sufficient to say that a link is a pointer to a file and

multiple links are allowed.

4 Wikipedia, YUM, https://en.wikipedia.org/wiki/Yum_(software)

Chapter 12 InstallIng and UpdatIng software

https://en.wikipedia.org/wiki/Yum_(software)

316

EXPERIMENT 12-3

perform this experiment as root. let’s look at the links for the yum and dnf utilities:

[root@studentvm1 ~]# for I in `which yum dnf` ; do ll $I ; done

lrwxrwxrwx. 1 root root 5 Dec 13 05:33 /usr/bin/yum -> dnf-3

lrwxrwxrwx. 1 root root 5 Dec 13 05:33 /usr/bin/dnf -> dnf-3

the which utility locates the executables for both yum and dnf. the for loop uses that result

to perform a long listing of the files it finds.

You might try which yum dnf by itself.

 DNF
The DNF5 facility replaced YUM as the default package manager in Fedora 22. It is a

wrapper around the rpm program. It provides for installation of RPM packages from

local or remote repositories and deals with dependencies as required. DNF’s handling

of dependencies includes the ability to recursively determine all dependencies that

might prevent the target package from being installed and to fulfill them. This means

that if the target package has 25 dependent packages, it will identify them all, determine

whether they are already installed, and mark them for installation if they are not. It then

checks those dependencies for further dependencies and marks them for installation; it

continues to recurse through all newly marked packages until no further dependencies

are found. It then downloads all of the marked packages and installs them.

DNF stands for “DaNdiFied YUM.” The syntax of DNF commands are identical to

those of YUM making the switch from YUM to DNF easy. DNF can install and remove

packages. It can also install updates and provide us with information about installed

packages and packages that are available in the repositories and which have not been

installed. DNF allows packages that have been signed to be automatically checked to

prevent counterfeit packages from installing malware on your Fedora system.

DNF can automatically download GPG signing keys and check RPM packages for

authenticity after they are downloaded and before they are installed.

5 Wikipedia, DNF, https://en.wikipedia.org/wiki/DNF_(software)

Chapter 12 InstallIng and UpdatIng software

https://en.wikipedia.org/wiki/DNF_(software)

317

 Installing packages
Installing new software is the first thing most of us do after installing Linux on a new

system. Because of the limited options when doing an installation from the Fedora

live USB sticks, most software needs to be installed after the initial installation of the

operating system.

EXPERIMENT 12-4

this experiment must be performed as root. the rpM and dnf facilities can only perform

much of their work when run as root user.

let’s now try to install the utils package that we attempted earlier.

 1. the utils-1.0.0-1.noarch.rpm package should be in the /tmp directory so make

/tmp the pwd.

 2. Install this package using dnf:

[root@studentvm1 tmp]# dnf -y install ./utils-1.0.0-1.noarch.rpm

Last metadata expiration check: 2:55:12 ago on Sun 23 Sep 2018 06:09:48 PM

EDT.

Dependencies resolved.

===

 Package Arch Version Repository Size

===

Installing:

 utils noarch 1.0.0-1 @commandline 24 k

Installing dependencies:

 libssh2 x86_64 1.8.0-7.fc28 fedora 97 k

 mc x86_64 1:4.8.19-7.fc27 fedora 2.0 M

Transaction Summary

===

Install 3 Packages

Total size: 2.1 M

Total download size: 2.0 M

Installed size: 7.0 M

Chapter 12 InstallIng and UpdatIng software

318

Downloading Packages:

(1/2): libssh2-1.8.0-7.fc28.x86_64.rpm 109 kB/s | 97 kB 00:00

(2/2): mc-4.8.19-7.fc27.x86_64.rpm 613 kB/s | 2.0 MB 00:03

Total 518 kB/s | 2.0 MB 00:04

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Running transaction

 Preparing : 1/1

 Installing : libssh2-1.8.0-7.fc28.x86_64 1/3

 Installing : mc-1:4.8.19-7.fc27.x86_64 2/3

 Running scriptlet: utils-1.0.0-1.noarch 3/3

 Installing : utils-1.0.0-1.noarch 3/3

 Running scriptlet: utils-1.0.0-1.noarch 3/3

 Verifying : utils-1.0.0-1.noarch 1/3

 Verifying : mc-1:4.8.19-7.fc27.x86_64 2/3

 Verifying : libssh2-1.8.0-7.fc28.x86_64 3/3

Installed:

 tils.noarch 1.0.0-1 libssh2.x86_64 1.8.0-7.fc28 mc.x86_64 1:4.8.19-7.fc27

Complete!

[root@studentvm1 tmp]#

how amazing is that! not only did dnf determine which packages were needed to

fulfill the dependencies of the package that we installed, it also downloaded them and

installed them for us. no more dependency hell.

 3. If you remember back in experiment 12-2, we looked at the dependencies

specified in the utils package, and libssh2 was not among them. It is likely that

this is a dependency for the mc (Midnight Commander) package. we can check

that as follows:

[root@studentvm1 tmp]# dnf repoquery --deplist mc

Last metadata expiration check: 0:22:27 ago on Sun 23 Sep 2018 09:11:46 PM EDT.

package: mc-1:4.8.19-7.fc27.x86_64

 dependency: /bin/sh

 provider: bash-4.4.23-1.fc28.x86_64

 dependency: /usr/bin/perl

Chapter 12 InstallIng and UpdatIng software

319

 provider: perl-interpreter-4:5.26.2-413.fc28.x86_64

 dependency: /usr/bin/python

 provider: python2-2.7.15-2.fc28.i686

 provider: python2-2.7.15-2.fc28.x86_64

 dependency: libc.so.6(GLIBC_2.15)(64bit)

 provider: glibc-2.27-32.fc28.x86_64

 dependency: libglib-2.0.so.0()(64bit)

 provider: glib2-2.56.1-4.fc28.x86_64

 dependency: libgmodule-2.0.so.0()(64bit)

 provider: glib2-2.56.1-4.fc28.x86_64

 dependency: libgpm.so.2()(64bit)

 provider: gpm-libs-1.20.7-15.fc28.x86_64

 dependency: libpthread.so.0()(64bit)

 provider: glibc-2.27-32.fc28.x86_64

 dependency: libpthread.so.0(GLIBC_2.2.5)(64bit)

 provider: glibc-2.27-32.fc28.x86_64

 dependency: libslang.so.2()(64bit)

 provider: slang-2.3.2-2.fc28.x86_64

 dependency: libslang.so.2(SLANG2)(64bit)

 provider: slang-2.3.2-2.fc28.x86_64

 dependency: libssh2.so.1()(64bit)

 provider: libssh2-1.8.0-7.fc28.x86_64

 dependency: perl(File::Basename)

 provider: perl-interpreter-4:5.26.2-413.fc28.x86_64

 dependency: perl(File::Temp)

 provider: perl-File-Temp-0.230.600-1.fc28.noarch

 dependency: perl(POSIX)

 provider: perl-interpreter-4:5.26.2-413.fc28.x86_64

 dependency: perl(bytes)

 provider: perl-interpreter-4:5.26.2-413.fc28.x86_64

 dependency: perl(strict)

 provider: perl-libs-4:5.26.2-413.fc28.i686

 provider: perl-libs-4:5.26.2-413.fc28.x86_64

 dependency: rtld(GNU_HASH)

 provider: glibc-2.27-32.fc28.i686

 provider: glibc-2.27-32.fc28.x86_64

[root@studentvm1 tmp]#

You will see libssh.so.2 as one of the result lines from this query.

Chapter 12 InstallIng and UpdatIng software

320

 Installing updates
DNF, like most package managers, can install updates to software that is already

installed. This usually consists of one or more – usually lots more – updated RPM

packages that contain bug fixes, documentation updates, and sometimes software

version updates. This procedure does not install a complete upgrade from one release of

Fedora to another, such as from Fedora 28 to Fedora 29.

EXPERIMENT 12-5

this experiment must be performed as root. we start by using dnf to ascertain whether

updates are available and then proceed to install the updates.

 1. dnf also allows us to check for a list of updates that can be installed on our

system:

[root@studentvm1 tmp]# dnf check-update

You may want to pipe the resulting data stream through the less utility to

enable you to page through the results.

 2. when you finish viewing the list of packages that need to be updated, let’s go

ahead and perform the updates. the tee utility duplicates the data stream that

is sent to stdoUt to the specified file for later viewing. there are other dnf

log files, but this saves what we would have seen on the display screen to the /

tmp/update.log file as a record for us to view later:

[root@studentvm1 tmp]# dnf -y update | tee /tmp/update.log

I won’t include the output data stream for this command because it is very long.

It probably will be for yours too because new updates become available as soon

as they are tested and verified.

 3. observe the update process. notice that there will be a large number of

packages to update. It will take some time to perform this task which takes

place in phases which are listed in the following:

 (1) determine which installed packages have updates available.

 (2) Check for and add dependencies.

 (3) download the required packages or deltas.

Chapter 12 InstallIng and UpdatIng software

321

 (4) rebuild rpMs using deltas.

 (5) Install the updates.

 4. after the update has completed, use the less utility to view the results stored

in /etc/update.log that we created with the tee command.

 5. dnf creates log files of its own. let’s take a look:

[root@studentvm1 tmp]# cd /var/log

[root@studentvm1 log]# ll dnf*
-rw------- 1 root root 1606065 Sep 24 11:48 dnf.librepo.log

-rw-------. 1 root root 1202827 Sep 2 03:35 dnf.librepo.log-20180902

-rw-------. 1 root root 4944897 Sep 12 17:29 dnf.librepo.log-20180912

-rw-------. 1 root root 2603370 Sep 16 02:57 dnf.librepo.log-20180916

-rw------- 1 root root 6019320 Sep 23 02:57 dnf.librepo.log-20180923

-rw------- 1 root root 178075 Sep 24 11:48 dnf.log

-rw-------. 1 root root 46411 Sep 2 03:35 dnf.log-20180902

-rw-------. 1 root root 271613 Sep 12 17:29 dnf.log-20180912

-rw-------. 1 root root 98175 Sep 16 02:57 dnf.log-20180916

-rw------- 1 root root 313358 Sep 23 02:57 dnf.log-20180923

-rw------- 1 root root 27576 Sep 24 11:48 dnf.rpm.log

-rw-------. 1 root root 1998 Sep 2 03:35 dnf.rpm.log-20180902

-rw-------. 1 root root 9175 Sep 12 17:28 dnf.rpm.log-20180912

-rw-------. 1 root root 4482 Sep 16 02:57 dnf.rpm.log-20180916

-rw------- 1 root root 10839 Sep 23 02:57 dnf.rpm.log-20180923

[root@studentvm1 log]#

Using the * (star/splat) symbol allows us to specify all files that begin with

“dnf” and have zero or more additional characters following that and that only

those files that match this specification will be displayed. this is called file

globbing, and * is one of the globbing characters that are available. More on file

globbing later.

note that the files with dates in their names are older log files. linux rotates log

files regularly so that no one file grows too large.

 6. Make /var/log the pwd. then use less to view dnf.log. You should be able

to locate the log data for your installation of the utils package. the less utility

allows you to search the content of the viewed file. Just type a forward slash

Chapter 12 InstallIng and UpdatIng software

322

and then the string for which you want to search. Use /util which should easily

locate the first entry. each entry is preceded with the date and time that it

occurred in Zulu which is what the Z stands for. Zulu is the military way of

saying gMt:

2018-09-24T01:04:09Z DDEBUG Command: dnf -y install utils-1.0.0-1.noarch.rpm

press the n key to find the next instance of the string. You should find the entire

transaction that installs the util package and its dependencies.

 7. scroll through the dnf.log file to explore its content. You should be able to find

the entries for the system update we did in step 5 of this experiment. exit from

less when you have finished your exploration.

 8. Use less to explore the dnf.librepo.log and dnf.rpm.log files.

 9. the dnf command has some options that makes it easy to get information from

its log files. this first command lists the most recently installed packages:

[root@studentvm1 ~]# dnf list recent

this one lists all of the installed packages – every one of them:

[root@studentvm1 ~]$ dnf list installed

and this one lists all available packages:

[root@studentvm1 ~]$ dnf list available

 10. pipe the data stream from the dnf command through the wc command to

determine how many packages are installed and how many are available. I

have 1503 packages installed on my student virtual machine, but it is fine if

your number is a bit different.

 11. the only time it is necessary to reboot a linux computer is after a new kernel

has been installed; this is the only way to load the new kernel. It is also a good

idea to reboot after glibc has been updated. It is highly likely that the kernel

or glibc packages were updated. Check the log to verify that a new kernel has

been installed and reboot if so.

 12. after the system has started the reboot process, you will see the grUB menu

screen that lists multiple kernels.

Chapter 12 InstallIng and UpdatIng software

323

Before this screen passes, be sure to press the escape key. the default timeout is five

seconds, so you will need to be ready. pressing the space bar or escape key stops the

countdown and lets you view the options. You could select any of the available kernels using

the arrow keys and select any of the listed kernels to boot. Just check out this menu because

we will come back to it later.

Boot from the top – default – kernel by pressing the Enter key to continue.

GRUB – actually GRUB 2 – is the GRand Unified Bootloader and is responsible for the

initial stages of the Linux boot process. We will discuss GRUB, kernels, and booting, in

detail in Chapter 16.

 Post-update tasks
There is usually at least one additional step to take after performing an update, especially

when many RPM packages have been updated. It is always a good idea to update the

Man page database to include new and revised pages as well as to delete obsolete ones.

EXPERIMENT 12-6

this experiment must be performed as the root user. Update the Man page database:

[root@studentvm1 ~]# mandb

Purging old database entries in /usr/share/man...

Processing manual pages under /usr/share/man...

Purging old database entries in /usr/share/man/ru...

Processing manual pages under /usr/share/man/ru...

Purging old database entries in /usr/share/man/zh_CN...

Processing manual pages under /usr/share/man/zh_CN...

Purging old database entries in /usr/share/man/cs...

<snip>

Purging old database entries in /usr/local/share/man...

Processing manual pages under /usr/local/share/man...

3 man subdirectories contained newer manual pages.

27 manual pages were added.

0 stray cats were added.

5 old database entries were purged.

Chapter 12 InstallIng and UpdatIng software

324

[root@studentvm1 ~]#

now you will have the most recent man pages available when you need them.

I am not sure why the Man database is not being updated automatically at this time.

 Removing packages
DNF can also remove packages (dnf remove), and it will also remove the dependencies

that were installed with it. So removing the utils package would also remove the libssh2

and mc packages.

EXPERIMENT 12-7

perform this experiment as root. In this experiment we remove the utils package using the

following command. do not use the -y option so that dnf will ask whether we want to proceed

or not. I use this as a safety device when attempting to remove packages that I thought were

orphans or unused; it has saved me from removing hundreds of files that were still needed:

[root@studentvm1 log]# dnf remove utils

Dependencies resolved.

===

 Package Arch Version Repository Size

===

Removing:

 utils noarch 1.0.0-1 @@commandline 70 k

Removing dependent packages:

 mc x86_64 1:4.8.19-7.fc27 @fedora 6.7 M

Removing unused dependencies:

 libssh2 x86_64 1.8.0-7.fc28 @fedora 197 k

Transaction Summary

===

Remove 3 Packages

Freed space: 7.0 M

Chapter 12 InstallIng and UpdatIng software

325

this command will remove the three listed packages. there is a problem with this. the

removal of the utils package also causes the removal of the mc (Midnight Commander)

package. Midnight Commander is not truly a dependency of the utils package. In another

root session, use the following command to query the repository database and list the

dependencies – requirements – for mc:

[root@studentvm1 log]# dnf repoquery --requires mc

why do you think dnf tries to remove mc as a dependency? return to the terminal session

with the deletion waiting and enter y to continue the removal:

Is this ok [y/N]: y

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Running transaction

 Preparing : 1/1

 Erasing : utils-1.0.0-1.noarch 1/3

 Running scriptlet: utils-1.0.0-1.noarch 1/3

 Erasing : mc-1:4.8.19-7.fc27.x86_64 2/3

 Erasing : libssh2-1.8.0-7.fc28.x86_64 3/3

 Running scriptlet: libssh2-1.8.0-7.fc28.x86_64 3/3

 Verifying : utils-1.0.0-1.noarch 1/3

 Verifying : libssh2-1.8.0-7.fc28.x86_64 2/3

 Verifying : mc-1:4.8.19-7.fc27.x86_64 3/3

Removed:

 utils.noarch 1.0.0-1 mc.x86_64 1:4.8.19-7.fc27 libssh2.x86_64

1.8.0-7.fc28

Complete!

[root@studentvm1 tmp]#

Although DNF already seems like a major improvement over the stand-alone RPM

system of package management, there is another capability it has that can make our

work as SysAdmins much easier – groups.

Chapter 12 InstallIng and UpdatIng software

326

 Groups
There are many complex software systems that require many packages – sometimes

hundreds – to be fully complete. Think about GUI desktops, or an integrated

development environment (IDE) such as Eclipse, or a set of development tools. All of

these require many separate packages to be fully functional.

DNF has a “group” capability that allows packagers to define all of the individual

packages that are required to create a fully functional system such as a desktop,

educational software, electronic lab, Python classroom, and more.

EXPERIMENT 12-8

this experiment must be performed as root.

 1. we start by listing all groups:

[root@studentvm1 tmp]# dnf grouplist

the groups in the resulting list are separated into categories. the groups listed in

Available Environment Groups category tend to be desktop environments. the Installed
Groups category is obvious. there should be only one group listed in this category. the

Available Groups category consists of groups that have not been installed and that are

not desktops.

 2. look at the information about one of the groups. notice the use of quotes

around group names that have spaces in them is required for all dnf group

commands:

[root@studentvm1 ~]# dnf groupinfo "Audio Production" | less

You should see a long list of packages that will be installed with this group.

 3. now let’s install a group that might be useful for you in real life. I use the

libreoffice suite to write my books – like this one – and to create spreadsheets

and presentations. libreoffice uses the widely accepted open document

format (odf) for its documents, and it can also create and use Microsoft office

documents, spreadsheets, presentations, and more.

Chapter 12 InstallIng and UpdatIng software

327

first use dnf to view the group information for libreoffice and then install the libreoffice

group. do not use the -y option so that you can see the list of dependencies that need to be

installed:

[root@studentvm1 ~]# dnf group install LibreOffice

depending upon the speed of your Internet connection, that should have only taken a couple

minutes to download and install a complete office suite.

Many packages do not belong to any group. Groups are a means to manage complex

software systems that require many packages. It is also true that packages that are

members of one or more groups may be installed without installing the entire group.

 Adding repositories
Not all of the software you might need when using Fedora is located in the standard

Fedora repositories. Adding other repos, particularly a trusted repo like RPMFusion,

can make adding new software that is not part of the Fedora distribution much easier

and faster.

The RPMFusion repositories contain many packages that are not provided with

the Fedora distributions. The RPMFusion repos and the packages in them are well

maintained, signed, and can be trusted. If you wish, use your browser to explore the

RPMFusion web site at www.rpmfusion.org. Installation of the two RPMFusion repos is

straightforward.

For CentOS and RHEL, you must first install the EPEL (Extra Programs for Enterprise

Linux) repository, but that will not be necessary for us because we are using Fedora.

EXPERIMENT 12-9

this experiment must be performed as root. we will download the rpMs for the rpMfusion

free and non-free repositories and install them.

 1. Make /tmp the pwd:

[root@studentvm1 ~]# cd /tmp

Chapter 12 InstallIng and UpdatIng software

https://www.rpmfusion.org/

328

 2. Use wget to download the rpMfusion rpMs into /tmp. enter each of the

following two commands. each command should be on a single line. they are

split here due to space issues.

Tip although there are “stable” releases of these two repositories, as of this
writing, they have not been updated to install under fedora 29. for this reason
we need to download and install the rpM package for the specific fedora release
installed on the host being used to perform these experiments. I am using fedora
29, but you may be using a different, later, release. this problem may be fixed by
the time you perform this experiment, but if the rpMfusion stable rpMs fail to
install, then be sure to use the installed release. once the rpMfusion repositories
are installed, it is not necessary to reinstall them. this is strictly an installation
problem with the stable packages. once installed the repo files that are located in /
etc/yum.repo.d are identical.

Be sure to use the correct release number for your fedora system. we use 29 here because

that is what is installed on the host I am using to create this experiment:

[root@studentvm1 tmp]# wget http://download1.rpmfusion.org/free/fedora/

rpmfusion-free-release-29.noarch.rpm

--2019-02-22 09:55:10-- http://download1.rpmfusion.org/free/fedora/

rpmfusion-free-release-29.noarch.rpm

Resolving download1.rpmfusion.org (download1.rpmfusion.org)... 193.28.235.60

Connecting to download1.rpmfusion.org (download1.rpmfusion.

org)|193.28.235.60|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 14708 (14K) [application/x-rpm]

Saving to: 'rpmfusion-free-release-29.noarch.rpm'

rpmfusion-free-release-stable.

100%[=====================================>] 14.36K --.-KB/s in 0.1s

2019-02-22 09:55:11 (123 KB/s) - 'rpmfusion-free-release-29.noarch.rpm' saved

[14708/14708]

Chapter 12 InstallIng and UpdatIng software

329

[root@studentvm1 tmp]# wget http://download1.rpmfusion.org/nonfree/fedora/

rpmfusion-nonfree-release-29.noarch.rpm

--2019-02-22 09:55:40-- http://download1.rpmfusion.org/nonfree/fedora/

rpmfusion-nonfree-release-29.noarch.rpm

Resolving download1.rpmfusion.org (download1.rpmfusion.org)... 193.28.235.60

Connecting to download1.rpmfusion.org (download1.rpmfusion.

org)|193.28.235.60|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 15120 (15K) [application/x-rpm]

Saving to: 'rpmfusion-nonfree-release-29.noarch.rpm'

rpmfusion-nonfree-release-

100%[=====================================>] 14.77K --.-KB/s in 0.1s

2019-02-22 09:55:40 (111 KB/s) - 'rpmfusion-nonfree-release-29.noarch.rpm'

saved [15120/15120]

 3. Install these two rpMs locally with the following command:

[root@studentvm1 tmp]# dnf -y install ./rpmfusion*

 4. Change to the /etc/yum.repos.d directory, and list the files there. You should

see several rpMfusion repositories. You should also see the default fedora and

fedora-updates repository configuration files.

 5. look at the contents of some of these files. notice that the testing and rawhide

repositories have enabled=0 which means that they are disabled. these are

repositories used for testing and should never be enabled unless you are a

programming expert and like self-flagellation.

we can now install rpM packages from the rpMfusion repositories.

Some repositories simply have you download the repo file and place it in /etc/yum.

repos.d instead of packaging them in an RPM.

Chapter 12 InstallIng and UpdatIng software

330

 About the kernel
You should have noticed during the DNF update of installed packages that the new

kernel was not “updated”; it was installed. This is because DNF provides an option

to keep multiple old kernels installed in case a new kernel causes a problem with the

system. Such problems may be that some programs no longer work, especially those that

depend upon certain kernels such as the VMWare virtualization software. I have also had

other software that fails to work or works incorrectly after a kernel update. It does not

happen frequently, but it does happen. Keeping older kernels has allowed me to boot to

one of them in case there is a problem with the newest one.

Figure 12-1. After updating the system a couple times, the GRUB menu shows
three regular kernels and one rescue option. The most recent kernel is at the top,
but you can use the arrow keys to select an older kernel to boot to

Chapter 12 InstallIng and UpdatIng software

331

EXPERIMENT 12-10

perform this experiment as root. let’s look at the configuration items that enable us to

maintain multiple kernels from which we can choose to boot. we will also change the number

of older kernels to retain.

 1. Use vim to edit the /etc/dnf/dnf.conf configuration file. Change the line

installonly_limit=3 to installonly_limit=5 to increase the total

number of kernels to keep to 5.

 2. look at the line clean_requirements_on_remove=True. this means that

when removing a package that has dependencies, the dependencies should

also be removed so long as no other installed packages depend upon them. do

not change this because it does help to keep our linux hosts free of unneeded

and unused rpMs. old unneeded stuff, whether rpMs, other old programs,

old and unused code within a program, and unused files of any kind, are all

referred to as cruft.

 3. the gpgcheck=1 line means that downloaded rpMs will be checked against

the gpg signing key to ensure that they are valid and have not been altered.

 4. save the file and exit from it.

 5. now let’s look at the repo files in the /etc/yum.repo.d directory. Make /etc/yum.

repo.d the pwd and list the contents of the directory:

[root@studentvm1 yum.repos.d]# ls

fedora-cisco-openh264.repo rpmfusion-free-updates.repo

fedora.repo rpmfusion-free-updates-testing.repo

fedora-updates.repo rpmfusion-nonfree.repo

fedora-updates-testing.repo rpmfusion-nonfree-updates.repo

rpmfusion-free.repo rpmfusion-nonfree-updates-testing.repo

[root@studentvm1 yum.repos.d]#

Your list of repos should look like this.

 6. Use the cat command to view at least the contents of the fedora repository

configuration files. notice that the fedora.repo file has multiple sections. the

first section [fedora] is enabled. the other two sections, [fedora-debuginfo] and

[fedora-source], are disabled. You would only enable these sections if you were

Chapter 12 InstallIng and UpdatIng software

332

using debug code to try to solve a problem or if you were installing source code

rpMs (.src.rpm) to modify and recompile one or more packages. Most of us

never need to enable either of these sections.

any and all repositories can be disabled using the configuration files in /etc/yum.repo.d.

also, repos can be enabled or disable temporarily for a single dnf command at a time using

the disablerepo=<reponame> or enablerepo=<reponame> options. Be sure to read the

dnf man page.

 Chapter summary
Updating software and installing new software are easy with tools like DNF, the

DaNdiFied YUM package manager. DNF is a wrapper around the powerful RPM Package

Manager, but DNF offers advanced features such as the ability to provide automated

handling of dependencies; it will determine the dependencies, download them from the

repository on the Internet, and install them.

DNF uses the concept of groups to enable installation and removal of large numbers

of related packages such as would be used by complex software systems. Using groups

to define things like desktops, development environments, office suites, scientific, and

related technology packages makes it easy to install complete systems with a single

command.

DNF and RPM both provide tools that enable exploring the content of RPM

packages. It is possible to list the files that will be installed by an RPM package and the

other packages upon which it is dependent.

We installed some additional repositories beyond the default repos provided

by Fedora. Additional repos make it easier to install software that is not part of the

distribution.

 Exercises
Perform the following exercises to complete this chapter:

 1. Back in Experiment 12-7, you removed the utils package, and the

mc (Midnight Commander) package was also removed. Provide a

detailed explanation for why DNF removed mc, too.

Chapter 12 InstallIng and UpdatIng software

333

 2. Did you know that you can browse the Internet, receive and send

e-mail, download files from remote servers, and more, all in a

terminal command line text–based environment? Identify all of

the packages required to perform these tasks and install them.

 3. Reboot your student VM, and select one of the older kernels but

not the recovery option. Use a few of the tools you have already

learned to explore and determine that everything seems to be

working fine.

 4. On occasion the DNF database and cache may become corrupted

or at least out of sync with the system. How would you correct that

situation?

Chapter 12 InstallIng and UpdatIng software

335
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_13

CHAPTER 13

Tools for Problem Solving
 Objectives
In this chapter you will learn

• A procedure to use for solving problems

• To install some useful problem-solving tools that are not always

installed by default

• To select and use the correct tools to investigate the status of various

Linux system resources such as CPU, memory, and disk

• To create command line programs that simulate certain problems

• To use available tools to locate and resolve the simulated problems

• To create a FIFO named pipe to illustrate the function of buffers

This chapter introduces a few powerful and important tools that can be used for

locating and solving problems. This is a very long chapter because there is so much to

know about these tools. I have intentionally grouped these tools into this one chapter

because they are all closely related in at least two ways. First, they are some of the most

basic and commonly used tools used for problem determination. Second, these tools

offer significant overlap in the data that they provide so your choice of which tool to use

for a particular purpose can be rather flexible.

All of these tools are powerful and flexible and offer many options for how the data

they can access is displayed. Rather than cover every possible option, I will try to provide

you with enough information about these tools to pique your curiosity and encourage

your own explorations into their depths. “Follow your curiosity” is one of the tenets of

The Linux Philosophy for SysAdmins.1

1 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, Chapter 22

336

 The art of problem solving
One of the best things that my mentors helped me with was the formulation of a defined

process that I could always use for solving problems of nearly any type. This process is

very closely related to the scientific method.

I find this short article entitled, “How the Scientific Method Works,”2 to be very

helpful. It describes the scientific method using a diagram very much like the one I have

created for my five steps of problem solving. So I pass this on as a mentor, and it is my

contribution to all of you young SysAdmins. I hope that you find it as useful as I have.

Solving problems of any kind is art, science, and – some would say – perhaps a bit

of magic, too. Solving technical problems, such as those that occur with computers,

requires a good deal of specialized knowledge as well. Any approach to solving problems

of any nature – including problems with Linux – must include more than just a list of

symptoms and the steps necessary to fix or circumvent the problems which caused

the symptoms. This so-called “symptom-fix” approach looks good on paper to the

managers – the Pointy-Haired Bosses, the PHBs – but it really sucks in practice. The best

way to approach problem solving is with a large base of knowledge of the subject and a

strong methodology.

 The five steps of problem solving
There are five basic steps that are involved in the problem-solving process as shown in

Figure 13-1. This algorithm is very similar to that of the scientific method referred to in

Footnote 1 but is specifically intended for solving technical problems.

You probably already follow these steps when you troubleshoot a problem but do not

even realize it. These steps are universal and apply to solving most any type of problem,

not just problems with computers or Linux. I used these steps for years in various types

of problems without realizing it. Having them codified for me made me much more

effective at solving problems because when I became stuck, I could review the steps

I had taken, verify where I was in the process, and restart at any appropriate step.

2 Harris, William, How the Scientific Method Works, https://science.howstuffworks.com/
innovation/scientific-experiments/scientific-method6.htm

Chapter 13 tools for problem solving

https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm

337

You may have heard a couple other terms applied to problem solving in the past. The

first three steps of this process are also known as problem determination, that is, finding

the root cause of the problem. The last two steps are problem resolution which is actually

fixing the problem. The next sections cover each of these five steps in more detail.

 Knowledge
Knowledge of the subject in which you are attempting to solve a problem is the first

step. All of the articles I have seen about the scientific method seem to assume this as

a prerequisite. However the acquisition of knowledge is an ongoing process, driven by

curiosity and augmented by the knowledge gained from using the scientific method to

explore and extend your existing knowledge through experimentation. This is one of the

reasons I use the term “experiment” in this course rather than something like “lab project.”

Figure 13-1. The algorithm I use for troubleshooting

Chapter 13 tools for problem solving

338

You must be knowledgeable about Linux at the very least, and even more, you must

be knowledgeable about the other factors that can interact with and affect Linux, such

as hardware, the network, and even environmental factors such as how temperature,

humidity, and the electrical environment in which the Linux system operates can affect it.

Knowledge can be gained by reading books and web sites about Linux and those

other topics. You can attend classes, seminars, and conferences and through interaction

with other knowledgeable people who can be found there. You can also just set up a

number of Linux computers in a networked environment, physical or virtual, as we have

done in this course. Knowledge is gained when you resolve a problem and discover a

new cause for a particular type of problem. You can also find new knowledge when an

attempt to fix a problem results in a temporary failure.

Classes are also valuable in providing us with new knowledge. My personal

preference is to play – uh, experiment – with Linux or with a particular piece such as

networking, name services, DHCP, Chrony, and more, and then take a class or two to

help me internalize the knowledge I have gained.

Remember, “Without knowledge, resistance is futile,” to paraphrase the Borg.

Knowledge is power.

 Observation
The second step in solving the problem is to observe the symptoms of the problem. It

is important to take note of all of the problem symptoms. It is also important to observe

what is working properly. This is not the time to try to fix the problem; merely observe.

Another important part of observation is to ask yourself questions about what you

see and what you do not see. Aside from the questions you need to ask that are specific

to the problem, there are some general questions to ask:

• Is this problem caused by hardware, Linux, application software, or

perhaps by lack of user knowledge or training?

• Is this problem similar to others I have seen?

• Is there an error message?

• Are there any log entries pertaining to the problem?

• What was taking place on the computer just before the error

occurred?

Chapter 13 tools for problem solving

339

• What did I expect to happen if the error had not occurred?

• Has anything about the system hardware or software changed recently?

Other questions will reveal themselves as you work to answer these. The important

thing to remember here is not the specific questions but rather to gather as much

information as possible. This increases the knowledge you have about this specific

problem instance and aids in finding the solution.

As you gather data, never assume that the information obtained from someone else

is correct. Observe everything yourself. The best problem solvers are those who never

take anything for granted. They never assume that the information they have is 100%

accurate or complete. When the information you have seems to contradict itself or the

symptoms, start over from the beginning as if you have no information at all.

In almost all of the jobs I have had in the computer business, we have always tried to

help each other out, and this was true when I was at IBM. I have always been very good

at fixing things, and there were times when I would show up at a customer when another

customer engineer (CE) was having a particularly difficult time finding the source of a

problem. The first thing I would do is assess the situation. I would ask the primary CE

what they had done so far to locate the problem. After that I would start over from the

beginning. I always wanted to see the results myself. Many times that paid off because

I would observe something that others had missed. And, of course, the other CE’s – my

mentors – would help me out in the same way.

In one very strange incident, I fixed a large computer by sitting on it. That is a long

story and amounts to the fact that I observed a very brief symptom that was caused

by sitting on the workspace that was the top of a very large printer control unit. The

complete story can be found in my book, The Linux Philosophy for SysAdmins.3

 Reasoning
Use reasoning skills to take the information from your observations of the symptoms,

your knowledge to determine a probable cause for the problem. We discussed the

different types of reasoning in some detail in Chapter 23.4 The process of reasoning

through your observations of the problem, your knowledge, and your past experience is

3 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, 471–472
4 op. cit, Ch 23.

Chapter 13 tools for problem solving

340

where art and science combine to produce inspiration, intuition, or some other mystical

mental process that provides some insight to the root cause of the problem.

In some cases this is a fairly easy process. You can see an error code and look up

its meaning from the sources available to you. Or perhaps you observe a symptom

that is familiar and you know what steps might resolve it. You can then apply the vast

knowledge you have gained by reading about Linux, this book, and the documentation

provided with Linux to reason your way to the cause of the problem.

In other cases it can be a very difficult and lengthy part of the problem determination

process. These are the types of cases that can be the most difficult. Perhaps symptoms

you have never seen or a problem that is not resolved by any of the methods you have

used. It is these difficult ones that require more work and especially more reasoning

applied to them.

It helps to remember that the symptom is not the problem. The problem causes the

symptom. You want to fix the true problem not just the symptom.

 Action
Now is the time to perform the appropriate repair action. This is usually the simple part.

The hard part is what came before – figuring out what to do. After you know the cause of

the problem, it is usually easy to determine the correct repair action to take.

The specific action you take will depend upon the cause(s) of the problem. Remember,

we are fixing the root cause, not just trying to get rid of or cover up the symptom.

Make only one change at a time. If there are several actions that can be taken that

might correct the cause of a problem, only make the one change or take the one action

that is most likely to resolve the root cause. The selection of the corrective action with the

highest probability of fixing the problem is what you are trying to do here. Whether it is

your own experience telling you which action to take or the experiences of others, move

down the list from highest to lowest priority, one action at a time. Test the results after

each action.

 Test
After taking some overt repair action, the repair should be tested. This usually means

performing the task that failed in the first place, but it could also be a single, simple

command that illustrates the problem.

Chapter 13 tools for problem solving

341

We make a single change, taking one potential corrective action and then testing the

results of that action. This is the only way in which we can be certain which corrective

action fixed the problem. If we were to make several corrective actions and then test one

time, there is no way to know which action was responsible for fixing the problem. This

is especially important if we want to walk back those ineffective changes we made after

finding the solution.

If the repair action has not been successful, you should begin the procedure over

again. If there are additional corrective actions you can take, return to that step and

continue doing so until you have run out of possibilities or have learned with to a

certainty that you are on the wrong track.

Be sure to check the original observed symptoms when testing. It is possible that

they have changed due to the action you have taken and you need to be aware of this

in order to make informed decisions during the next iteration of the process. Even if

the problem has not been resolved, the altered symptom could be very valuable in

determining how to proceed.

As you work through a problem, it will be necessary to iterate through at least some

of the steps. If, for example, performing a given corrective action does not resolve the

problem, you may need to try another action that has also been known to resolve the

problem in the past. Figure 13-1 shows that you may need to iterate to any previous step

in order to continue.

It may be necessary to go back to the observation step and gather more information

about the problem. I have also found that sometimes it was a good idea to go back to

the knowledge step and gather more basic knowledge. This latter includes reading or

re-reading manuals, man pages, using a search engine, whatever is necessary to gain the

knowledge required to continue past the point where I was blocked. Be flexible. Don’t

hesitate to step back and start over if nothing else produces some forward progress.

 System performance and problem solving
Now let's explore some commands that enable you to observe various configuration

and performance aspects of your Linux system. Be sure to use the man pages for each

command if you have questions about the syntax or interpreting the data displayed.

There are a large number of Linux commands that are used in the process of

analyzing system performance and problem determination. Most of these commands

obtain their information from various files in the /proc filesystem which we will explore

Chapter 13 tools for problem solving

342

later. You may wish to use multiple terminal sessions side by side in order to make some

of the comparisons between commands and their output.

I use top, htop, and atop as my primary tools when starting the process of problem

determination. These three tools all display much of the same information, but each

does it in its own way and with different emphasis. All three of these tools display system

data in near real time. The top and htop utilities are also interactive and allow the

SysAdmin to renice and kill processes by sending them signals. The atop tools can kill

processes, but it cannot renice them.

Note the nice command can be used to change the nice number (renice) of
a process in order to modify its priority level and so how much CpU time it might
be allocated by the linux scheduler. We will explore nice numbers, priority, and
scheduling as we proceed through this chapter and also in volume 2, Chapter 4.

Let’s look at each of these three tools in some detail.

 top
The top command is my go-to tool when I am solving problems that involve any type

of performance issues. I like it because it has been around since forever and is always

available while the other tools may not be installed. The top utility is always installed by

Fedora and all of the other distributions I have worked with.

The top program is a very important and powerful tool to observe memory and CPU

usage as well as load averages in a dynamic setting. The information provided by top can

be instrumental in helping diagnose an extant problem; it is usually the first tool I use

when troubleshooting a new problem.

Understanding the information that top is presenting is key to using it to greatest

effect. Let’s look at some of the data which can alert us to performance problems and

explore their meanings in more depth. Much of this information also pertains to the

other system monitors we will study which also display some of this same information.

The top utility displays system information in near real time, updating (by default)

every three seconds. Fractional seconds are allowed, although very small values can

place a significant load the system. It is also interactive and the data columns to be

displayed and the sort column can be modified.

Chapter 13 tools for problem solving

343

EXPERIMENT 13-1

perform this experiment as root on studentvm1. start top:

[root@StudentVM1 ~]# top

the results are displayed full screen and are live, updating every three seconds. top is an

interactive tool that allows some changes to things like which programs are displayed and

how the displayed results are sorted. it also allows some interaction with programs such as

renicing them to change their priority and killing them:

top - 21:48:21 up 7 days, 8:50, 7 users, load average: 0.00, 0.00, 0.00

Tasks: 195 total, 1 running, 136 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 0.2 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.2 si, 0.0 st

KiB Mem : 4038488 total, 2369772 free, 562972 used, 1105744 buff/cache

KiB Swap: 10485756 total, 10485756 free, 0 used. 3207808 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 5173 student 20 0 316084 3328 2884 S 0.3 0.1 5:16.42 VBoxClient

 7396 root 20 0 257356 4504 3620 R 0.3 0.1 0:00.03 top

 1 root 20 0 237000 9820 6764 S 0.0 0.2 0:23.54 systemd

 2 root 20 0 0 0 0 S 0.0 0.0 0:00.26 kthreadd

 3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_gp

 4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_par_gp

 6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00

kworker/0:0H-kb

 8 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu_wq

 9 root 20 0 0 0 0 S 0.0 0.0 0:01.40 ksoftirqd/0

 10 root 20 0 0 0 0 I 0.0 0.0 0:10.44 rcu_sched

 11 root 20 0 0 0 0 I 0.0 0.0 0:00.00 rcu_bh

let that run as you study it. then press the s (lowercase) key. the top utility displays Change delay
from 3.0 to and you type 1 and press the enter key. this sets the display update to one second.

i find this to be a bit more responsive and is more to my liking than the default three seconds.

now press the 1 key to display both CpUs in this vm to show the statistics for each CpU on a

separate line in the header section. pressing 1 again would return to display of the aggregate

CpU data. Do that a couple times to compare the data but leave it so that top displays both

CpUs when you are finished.

Chapter 13 tools for problem solving

344

after making these changes, we want to make them permanent. the top utility does not

automatically save these changes, so we must press W (uppercase) to write the modified

configuration to the ~/.toprc file.

let top run while you read about the various sections in the display.

The top display is divided into two sections. The “Summary” section, which is the

topmost section of the output, and the “process” section which is the lower portion of the

output; I will use this terminology for top, atop, and htop in the interest of consistency.

The top program has a number of useful interactive commands you can use

to manage the display of data and to manipulate individual processes. Use the h

command to view a brief help page for the various interactive commands. Be sure to

press h twice to see both pages of the help. Use the q key to quit from Help and return

to the active display.

 Summary section

The top summary section contains information that provides an excellent overview of

the current system status. This section can inform you of the basic facts of overall CPU

and memory usage as well as CPU load trends.

The first line shows the system uptime and the 1-, 5-, and 15-minute load averages.

In Experiment 13-1 the load averages are all zero because the host is doing very little.

Figure 13-2 shows load averages on a system that has some work going on. The second

line shows the number of process currently active and the status of each.

The lines containing CPU statistics are shown next. There can be a single line which

combines the statistics for all CPUs present in the system, or as in Figure 13-2, one line

for each CPU, in this case a single quad core CPU. Press the 1 key to toggle between the

consolidated display of CPU usage and the display of the individual CPUs. The data in

these lines is displayed as percentages of the total CPU time available.

The last two lines in the Summary section are memory usage. They show the

physical memory usage including both RAM and swap space.

Many of the other tools we will look at present some or all of this same information.

The next few sections explore this displayed information in detail, and this will also

apply to the same information when it is displayed in all of those other tools.

Chapter 13 tools for problem solving

345

Load averages

The first line of the output from top contains the current load averages. Load averages

represent the 1-, 5-, and 15-minute load average for a system. In Figure 13-2, which was

taken from a host with four CPUs, the load averages are 2.49, 1.37, and 0.60, respectively.

But what does this really mean when I say that the one (or five or ten) minute load

average is 2.49? Load average can be considered a measure of demand for the CPU; it is a

number that represents the average number of instructions waiting for CPU time. Thus in

a single processor system, a fully utilized CPU would have a load average of 1. This means

that the CPU is keeping up exactly with the demand; in other words it has perfect utilization.

A load average of less than one means that the CPU is underutilized, and a load average

of greater than 1 means that the CPU is overutilized and that there is pent-up, unsatisfied

demand. For example, a load average of 1.5 in a single CPU system indicates that some

instructions are forced to wait to be executed until the one preceding it has completed.

This is also true for multiple processors. If a 4-CPU system has a load average of 4,

then it has perfect utilization. If it has a load average of 3.24, for example, then three of

its processors are fully utilized, and one is underutilized by about 76%. In the preceding

example, a 4-CPU system has a 1-minute load average of 2.49, meaning that there is still

significant capacity available among the four CPUs. A perfectly utilized 4-CPU system

would show a load average of 4.00.

top - 12:21:44 up 1 day, 3:25, 7 users, load average: 2.49, 1.37, 0.60

Tasks: 257 total, 5 running, 252 sleeping, 0 stopped, 0 zombie

Cpu0 : 33.2%us, 32.3%sy, 0.0%ni, 34.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu1 : 51.7%us, 24.0%sy, 0.0%ni, 24.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu2 : 24.6%us, 48.5%sy, 0.0%ni, 27.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu3 : 67.1%us, 21.6%sy, 0.0%ni, 11.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 6122964k total, 3582032k used, 2540932k free, 358752k buffers

Swap: 8191996k total, 0k used, 8191996k free, 2596520k cached

Figure 13-2. The load averages in this top sample indicate a recent increase in
CPU usage

Chapter 13 tools for problem solving

346

The optimum condition for load average in idealistic server environments is for it

to equal the total number of CPUs in a system. That would mean that every CPU is fully

utilized, and yet no instructions must be forced to wait.

Also note that the longer-term load averages provide indication of the overall

utilization trend. It appears in the preceding example that the short-term load average

is indicative of a short-term peak in utilization but that there is still plenty of capacity

available.

Linux Journal has an excellent article describing load averages, the theory and the

math behind them, and how to interpret them in the December 1, 2006 issue.5

CPU usage

CPU usage is a fairly simple measure of how much CPU time is being used by executing

instructions. These numbers are displayed as percentages and represent the amount of

time that a CPU is being used during the defined time period.

The default update time interval is usually three seconds although this can be

changed using the “s” key, and I normally use one second. Fractional seconds are also

accepted down to .01 seconds. I do not recommend very short intervals, that is, less

than one second, as this adds load to the system and makes it difficult to read the data.

However, as with everything Linux and its flexibility, it may occasionally be useful to set

the interval to less than one second.

5 Walker, Ray, Examining Load Average, Linux Journal, Dec. 1, 2006, https://archive.org/
details/Linux-Journal-2006-12/page/n81

top - 09:47:38 up 13 days, 24 min, 6 users, load average: 0.13, 0.04, 0.01

Tasks: 180 total, 1 running, 179 sleeping, 0 stopped, 0 zombie

Cpu0 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu1 : 0.9%us, 0.9%sy, 0.0%ni, 98.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu2 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Cpu3 : 1.0%us, 0.0%sy, 0.0%ni, 99.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 2056456k total, 797768k used, 1258688k free, 92028k buffers

Swap: 4095992k total, 88k used, 4095904k free, 336252k cached

Figure 13-3. The summary section of top contains a comprehensive overview of
CPU and memory usage data

Chapter 13 tools for problem solving

https://archive.org/details/Linux-Journal-2006-12/page/n81
https://archive.org/details/Linux-Journal-2006-12/page/n81

347

There are eight fields which describe CPU usage in more detail. The us, sy, ni, id,

wa, hi, si, and st fields subdivide the CPU usage into categories that can provide more

insight into what is using CPU time in the system:

• us: User space is CPU time spent performing tasks in user space

as opposed to system, or kernel space. This is where user-level

programs run.

• sy: System is CPU time spent performing system tasks. These are

mostly kernel tasks such as memory management, task dispatching,

and all the other tasks performed by the kernel.

• ni: This is “nice” time; CPU time spent on tasks that have a positive

nice number; a positive nice number makes a task nicer, that is, it is

less demanding of CPU time, and other tasks may get priority over it.

• id: Idle time is any time that the CPU is free and is not performing

any processing or waiting for I/O to occur.

• wa: IO wait time is the amount of time that a CPU is waiting on some

I/O such as a disk read or write to occur. The program running on

that CPU is waiting for the result of that I/O operation before it can

continue and is blocked until then.

• hi: The percentage of CPU time waiting for hardware interrupts in

the time interval. A high number here, especially when IO wait is

also high, can be indicative that hardware speed is too slow for the

existing load.

• si: The number of software interrupts during the time interval. A high

number here, especially when IO wait is also high, can be indicative

that some software application(s) may be in some sort of tight loop or

a race condition.

• st: This is time stolen from “this” VM because it can run, but another

VM is running, and the VM hypervisor cannot allocate time to “this”

VM. This should always be zero for a non-virtual host. In a virtual host,

a number significantly greater than zero might mean that more physical

CPU power is required for the given real and virtual system load.

These times should usually add up to 100% for each CPU give or take a bit of

rounding error.

Chapter 13 tools for problem solving

348

 Process section

The process section of the output from top is a listing of the running processes in

the system — at least the for the number of processes for which there is room on the

terminal display. The default columns displayed by top are described in the following.

Several other columns are available, and each can usually be added with a single

keystroke; refer to the top man page for details:

• PID: The process ID.

• USER: The username of the process owner.

• PR: The priority of the process.

• NI: The nice number of the process.

• VIRT: The total amount of virtual memory allocated to the process.

• RES: Resident size (in kb unless otherwise noted) of non-swapped

physical RAM memory consumed by a process.

• SHR: The amount of shared memory in kb used by the process.

• S: The status of the process. This can be R for running, I for idle time, S

for sleeping, and Z for zombie. Less frequently seen statuses can be T

for traced or stopped, I for idle, and D for deep, uninterruptible sleep.

• %CPU: The percentage of CPU cycles, used by this process during the

last measured time period.

• %MEM: The percentage of physical system memory used by the process.

• TIME+: The cumulative CPU time to 100ths of a second consumed

by the process since the process was started.

• COMMAND: This is the command that was used to launch the process.

Use the Page Up and Page Down keys to scroll through the list of running processes.

You can use the < and > keys to sequence the sort column to the left or right.

The k key can be used to kill a process or the r key to renice it. You have to know

the process ID (PID) of the process you want to kill or renice, and that information is

displayed in the process section of the top display. When killing a process, top asks first

for the PID and then for the signal number to use in killing the process. Type them in,

and press the enter key after each. Start with signal 15, SIGTERM, and if that does not kill

the process, use 9, SIGKILL.

Chapter 13 tools for problem solving

349

Things to look for with CPU usage

You should check a couple things with CPU usage when you are troubleshooting a

problem. Look for one or more CPUs that have 0% idle time for extended periods. You

especially have a problem if all CPUs have zero or very low idle time. You should then

look to the task area of the display to determine which process is using the CPU time.

Be careful to understand whether the high CPU usage might be normal for a

particular environment or program, so you will know whether you might be seeing

normal or transient behavior. The load averages discussed in the following can be used

to help with determination of whether the system is overloaded or just very busy.

Let’s explore the use of top to observe CPU usage when we have programs that suck it up.

EXPERIMENT 13-2

start a second terminal session as user student, and position it near the root terminal session

that is already running top so that they can both be seen simultaneously.

as the user student, create a file named cpuhog in your home directory and make it

executable with the permissions rwxr_xr_x:

[student@studentvm1 ~]$ touch cpuHog

[student@studentvm1 ~]$ chmod 755 cpuHog

Use the vim editor to add the following content to the file:

#!/bin/bash

This little program is a cpu hog

X=0;while [1];do echo $X;X=$((X+1));done

save this bash shell script, close vim, and run the cpuhog program with the following

command:

[student@studentvm1 ~]$./cpuHog

the preceding program simply counts up by one and prints the current value of X to stDoUt. and

it sucks up CpU cycles. observe the effect this has on system performance in top. CpU usage

should immediately go up, and the load averages should also start to increase over time.

What is the priority of the cpuhog program?

Chapter 13 tools for problem solving

350

now open another terminal session as the student user, and run the same program in it. You

should now have two instances of this program running. notice in top that the two processes

tend to get about the same amount of CpU time on average. sometimes one gets more than

the other, and sometimes they get about the same amount.

figure 13-4 shows the results in top when two of these CpU hogs are running. note that i have

logged in remotely using ssh and am using the screen program to perform these experiments

on the vm, so both of those tools show up with high CpU usage in figure 13-4. You should not

have those two entries in your top output. the results you see are essentially the same.

top - 11:46:13 up 20:55, 6 users, load average: 3.64, 2.46, 1.14

Tasks: 161 total, 5 running, 97 sleeping, 0 stopped, 0 zombie

%Cpu0 : 3.0 us, 73.7 sy, 0.0 ni, 0.0 id, 0.0 wa, 12.1 hi, 11.1 si, 0.0 st

%Cpu1 : 11.2 us, 85.7 sy, 0.0 ni, 0.0 id, 0.0 wa, 3.1 hi, 0.0 si, 0.0 st

KiB Mem : 4038488 total, 3015548 free, 240244 used, 782696 buff/cache

KiB Swap: 10485756 total, 10485756 free, 0 used. 3543352 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

15481 student 20 0 214388 1180 1036 R 52.0 0.0 0:19.30 cpuHog

15408 student 20 0 214388 1184 1040 R 33.3 0.0 4:07.18 cpuHog

15217 student 20 0 134336 4944 3768 R 31.4 0.1 2:02.57 sshd

15359 student 20 0 228968 3008 2212 R 31.4 0.1 2:19.63 screen

15017 root 20 0 0 0 0 I 13.7 0.0 0:27.36 kworker/u4:2-ev

15158 root 20 0 0 0 0 I 13.7 0.0 0:22.97 kworker/u4:0-ev

814 root 20 0 98212 6704 5792 S 1.0 0.2 0:02.01 rngd

13103 root 20 0 257244 4384 3628 R 1.0 0.1 1:16.87 top

1 root 20 0 171068 9488 6880 S 0.0 0.2 0:04.82 systemd

2 root 20 0 0 0 0 S 0.0 0.0 0:00.02 kthreadd

3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_gp

Figure 13-4. The top command showing what happens when two CPU hog
programs are running

notice on your vm, as is illustrated on my vm in figure 13-4, that the load averages will rise

over time until they eventually stabilize. You can also see that one or both CpUs will start to

show waits for both hardware and software interrupts.

Chapter 13 tools for problem solving

351

as the root user, use top to set the nice number for one of these CpU hogs first to +19 and

then to -20, and observe the results of each setting for a short time. We will discuss the

details of renicing and priorities in volume 2, Chapter 4, but for now it is sufficient to know

that a higher number means more nice and a lower, even negative number, means less nice.

a nicer program has a higher number for its priority and will receive fewer CpU cycles than an

identical program that has a lower number. if this seems counterintuitive, it is. this is a case of

rpl – reverse programmer logic – at least at first glance.

Tip press the r (lowercase) key for renice, and follow the directions on the screen
just below the “swap” line.

to change the nice number for a running program using top, simply type r. When top asks

for the piD to renice, enter the piD (process iD) number as shown in figure 13-5. the piDs of

your running processes will be different from mine. the top utility will then ask what value.

enter 19 and press Enter. i suggest choosing the piD of the cpuhog program that has the most

accumulated time – time+ – to watch the other cpuhog catch up over time. i have highlighted

the relevant data lines in bold.

top - 11:46:13 up 20:55, 6 users, load average: 3.64, 2.46, 1.14

Tasks: 160 total, 5 running, 97 sleeping, 0 stopped, 0 zombie

%Cpu0 : 2.0 us, 64.6 sy, 0.0 ni, 0.0 id, 0.0 wa, 15.2 hi, 18.2 si, 0.0 st

%Cpu1 : 6.1 us, 91.9 sy, 0.0 ni, 0.0 id, 0.0 wa, 2.0 hi, 0.0 si, 0.0 st

KiB Mem : 4038488 total, 3015028 free, 240208 used, 783252 buff/cache

KiB Swap: 10485756 total, 10485756 free, 0 used. 3543356 avail Mem

PID to renice [default pid = 15217] 15408

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

15217 student 20 0 134336 4944 3768 S 34.7 0.1 6:58.80 sshd

15408 student 20 0 214388 1184 1040 R 34.7 0.0 10:06.25 cpuHog

15481 student 20 0 214388 1180 1036 R 33.7 0.0 7:01.68 cpuHog

15359 student 20 0 228968 3008 2212 R 31.7 0.1 7:11.20 screen

15017 root 20 0 0 0 0 I 13.9 0.0 1:55.58 kworker/u4:2-ev

15158 root 20 0 0 0 0 I 13.9 0.0 1:21.88 kworker/u4:0-ev

9 root 20 0 0 0 0 R 2.0 0.0 0:12.88 ksoftirqd/0

15505 root 20 0 257244 4256 3504 R 1.0 0.1 0:06.23 top

Figure 13-5. Renicing one of the cpuHog programs

Chapter 13 tools for problem solving

352

You will experience very little change in overall system performance and responsiveness

despite having these two cpuhogs running because there are no other programs seriously

competing for resources. however the CpU hog with the highest priority (most negative

number) will consistently get the most CpU time even if by just a little bit. You should notice the

nice number and the actual priority as displayed by top. figure 13-6 shows the results after

nearly three hours of runtime with piD 15408 at a nice number of +19. notice that while piD

15408 had the most cumulative time in figure 13-5, it now has the least of the two CpU hogs.

top - 14:26:44 up 23:36, 6 users, load average: 4.28, 4.11, 4.10

Tasks: 161 total, 4 running, 98 sleeping, 0 stopped, 0 zombie

%Cpu0 : 6.7 us, 58.9 sy, 5.6 ni, 1.1 id, 0.0 wa, 13.3 hi, 14.4 si, 0.0 st

%Cpu1 : 1.1 us, 77.3 sy, 17.0 ni, 1.1 id, 0.0 wa, 2.3 hi, 1.1 si, 0.0 st

KiB Mem : 4038488 total, 2973868 free, 240528 used, 824092 buff/cache

KiB Swap: 10485756 total, 10485756 free, 0 used. 3541840 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

15481 student 20 0 214388 1180 1036 R 56.4 0.0 68:13.93 cpuHog

15408 student 39 19 214388 1184 1040 R 40.6 0.0 63:45.60 cpuHog

15217 student 20 0 134336 4944 3768 R 24.8 0.1 52:31.23 sshd

15359 student 20 0 228968 3008 2212 S 33.7 0.1 51:37.26 screen

16503 root 20 0 0 0 0 I 3.0 0.0 5:57.70 kworker/u4:3-ev

16574 root 20 0 0 0 0 I 5.0 0.0 5:21.60 kworker/u4:2-ev

16950 root 20 0 0 0 0 I 8.9 0.0 2:20.38 kworker/u4:1-ev

9 root 20 0 0 0 0 S 1.0 0.0 1:58.70 ksoftirqd/0

15505 root 20 0 257244 4256 3504 R 1.0 0.1 1:05.85 top

Figure 13-6. After running for almost three hours with a nice number of +19,
cpuHog PID 15408 has fallen behind cpuHog PID 15481 in cumulative CPU time

now set the nice number for the process with the higher nice number from +19 to -20. We are

changing the piD of one cpuhog from +19 to -20 and will leave the nice number of the other

cpuhog at 0 (zero). figure 13-7 shows the results of that change.

Chapter 13 tools for problem solving

353

eventually cpuhog 15408 will accumulate more time than cpuhog 15481 because of its higher

priority. leave top and the two cpuhog instances running for now. notice also that the load

averages have continued to climb.

Be aware that the nice number is only a “suggestion” to the kernel scheduler as the

info page puts it. Thus a very negative nice number may not result in a process that

receives more CPU time. It all depends upon the overall load, and many other data

points that are used in calculating which process gets CPU time and when. But our

cpuHogs help us understand that just a bit.

 Memory statistics

Performance problems can also be caused by lack of memory. Without sufficient

memory in which to run all the active programs, the kernel memory management

subsystems will spend time moving the contents of memory between swap space on

the disk and RAM in order to keep all processes running. This swapping takes CPU time

and I/O bandwidth, so it slows down the progress of productive work. Ultimately a state

known as “thrashing” can occur in which the majority of the computer’s time is spent

on moving memory contents between disk and RAM and little or no time is available to

top - 14:39:45 up 23:49, 6 users, load average: 4.29, 4.14, 4.10

Tasks: 160 total, 5 running, 97 sleeping, 0 stopped, 0 zombie

%Cpu0 : 4.9 us, 61.8 sy, 0.0 ni, 0.0 id, 0.0 wa, 15.7 hi, 17.6 si, 0.0 st

%Cpu1 : 5.9 us, 92.1 sy, 0.0 ni, 0.0 id, 0.0 wa, 2.0 hi, 0.0 si, 0.0 st

KiB Mem : 4038488 total, 2973276 free, 240688 used, 824524 buff/cache

KiB Swap: 10485756 total, 10485756 free, 0 used. 3541672 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

15481 student 20 0 214388 1180 1036 R 35.3 0.0 73:50.56 cpuHog

15408 student 1 -19 214388 1184 1040 R 37.3 0.0 68:43.16 cpuHog

15217 student 20 0 134336 4944 3768 R 35.3 0.1 56:33.25 sshd

15359 student 20 0 228968 3008 2212 R 30.4 0.1 55:39.90 screen

16503 root 20 0 0 0 0 I 12.7 0.0 7:00.04 kworker/u4:3-ev

16574 root 20 0 0 0 0 I 0.0 0.0 6:30.02 kworker/u4:2-ev

Figure 13-7. After changing the nice number of PID 15408 from +19 to -19

Chapter 13 tools for problem solving

354

spend on productive work. In Figure 13-8 we can see that there is plenty of free RAM left

and that no swap space has been used.

top - 09:04:07 up 1 day, 18:13, 6 users, load average: 4.02, 4.03, 4.05

Tasks: 162 total, 6 running, 96 sleeping, 0 stopped, 0 zombie

%Cpu0 : 2.0 us, 72.5 sy, 0.0 ni, 0.0 id, 0.0 wa, 12.7 hi, 12.7 si, 0.0 st

%Cpu1 : 12.2 us, 84.7 sy, 0.0 ni, 0.0 id, 0.0 wa, 3.1 hi, 0.0 si, 0.0 st

KiB Mem : 4038488 total, 2940852 free, 243836 used, 853800 buff/cache

KiB Swap: 10485756 total, 10485756 free, 0 used. 3538144 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

15481 student 20 0 214388 1180 1036 R 48.5 0.0 542:17.06 cpuHog

15408 student 1 -19 214388 1184 1040 R 33.7 0.0 484:37.55 cpuHog

15217 student 20 0 134336 4944 3768 R 31.7 0.1 402:08.24 sshd

15359 student 20 0 228968 3008 2212 R 31.7 0.1 396:29.99 screen

Figure 13-8. The top memory statistics show that we have plenty of virtual and
real memory available

The memory total, free, and used amounts for both RAM and swap space are

obvious. The number that is not quite so obvious is the buff/cache one. Buff/cache is

RAM, but not swap space, that is used for temporary storage.

Buffers are typically a designated area of memory where the operating system will

store data that is being transmitted over the network, a serial communications line, or

another program, for example, for a short period of time until the program or utility that

is using that data can catch up and process it. Data in the buffer is not altered before

it is removed and used. Buffers enable processes that may work at differing speeds to

communicate without loss of data due to that speed mismatch.

Linux provides a tool called a named pipe that works as a storage buffer between

two (or more) programs. A user – any user – can create a named pipe which appears as

a file in the directory in which it is created. The named pipe is a FIFO (first in, first out)

buffer because the data comes out in the same order in which it went in. Named pipes

can be used for any number of purposes. They can provide inter-process communication

between scripts and other executable programs, as well as a place to store output data

for later use by other programs.

Chapter 13 tools for problem solving

355

EXPERIMENT 13-3

this experiment should be performed as the student user. in this experiment we will look at

one type of buffer called a named pipe. because it is easily created and used by any user, it

allows us to illustrate the function of a buffer.

You will need two open terminal sessions as the student user for this experiment. in one

terminal, create a named pipe called mypipe in your home directory, then do a long listing of

the contents of your home directory and look at the entry for mypipe. it should have a “p” as

the file type in the first column to indicate that it is a pipe:

[student@studentvm1 ~]$ mkfifo mypipe

[student@studentvm1 ~]$ ll

total 284

-rw-rw-r-- 1 student student 130 Sep 15 16:21 ascii-program.sh

-rwxr-xr-x 1 student student 91 Oct 19 11:35 cpuHog

<snip>

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Music

prw-rw-r-- 1 student student 0 Oct 25 21:21 mypipe

-rw-rw-r--. 1 student student 0 Sep 6 10:52 newfile.txt

<snip>

drwxrwxr-x. 2 student student 4096 Sep 6 14:48 testdir7

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Videos

[student@studentvm1 ~]$

now let’s put some data into the pipe. We could use any command that creates a data stream,

but for this experiment, let’s use the lsblk command to list the block devices – essentially

the disk drives – on the system and redirect the output to the named pipe. run the following

command in one of the terminal sessions:

[student@studentvm1 ~]$ lsblk -i > mypipe

notice that you do not get returned to the command prompt; you are left with a blank line. Do

not press Ctrl-C to return to the command prompt.

in the other terminal session, use the cat command to read the data from the named pipe. this

simple, standard, core command retrieves the data from the pipe and sends it to stDoUt. at

that point we could do anything we want with it:

[student@studentvm1 ~]$ cat mypipe

Chapter 13 tools for problem solving

356

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-pool00_tmeta 253:0 0 4M 0 lvm

 | `-fedora_studentvm1-pool00-tpool 253:2 0 2G 0 lvm

 | |-fedora_studentvm1-root 253:3 0 2G 0 lvm /

 | `-fedora_studentvm1-pool00 253:6 0 2G 0 lvm

 |-fedora_studentvm1-pool00_tdata 253:1 0 2G 0 lvm

 | `-fedora_studentvm1-pool00-tpool 253:2 0 2G 0 lvm

 | |-fedora_studentvm1-root 253:3 0 2G 0 lvm /

 | `-fedora_studentvm1-pool00 253:6 0 2G 0 lvm

 |-fedora_studentvm1-swap 253:4 0 10G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:5 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:7 0 2G 0 lvm /home

 |-fedora_studentvm1-var 253:8 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:9 0 5G 0 lvm /tmp

sr0 11:0 1 1024M 0 rom

note that all of the data in the pipe is sent to stDoUt. return to the terminal session in which

you added data to the pipe. notice that it has been returned to the command prompt.

add more data to the pipe using some different commands and then read it again.

Cache is RAM memory that is allocated especially to data that may be changing and

that may be used at some time in the near future or that may be discarded if it is not

required.

Hardware cache is also common in processors. CPU cache is different from the RAM

cache monitored by top. This is a separate space located on the processor chip itself and

which is used to cache – store – data that has been transferred from RAM until it is needed

by the CPU. Not all of the data in a CPU cache will necessarily be used, and some may

just be discarded to make room for data from RAM that has a higher probability of being

used by the CPU. Cache in the CPU is faster than normal system RAM, so getting data into

cache that has a high probability of being used by the CPU can improve overall processing

speeds. This is definitely not the type of cache that is monitored by the top program.

Buffers and cache space are very similar in that they are both allocated in RAM to be

used for temporary storage. The difference is in the manner in which they are used.

Chapter 13 tools for problem solving

357

 The task list

The top task list provides a view of the tasks consuming the most of a particular resource.

The task list can be sorted by any of the displayed columns including CPU and memory

usage. By default top is sorted by CPU usage from high to low. This provides a quick

way to view the processes consuming the most CPU cycles. If there is one that stands

out such as sucking up 90% or more of the available CPU cycles, this could be indicative

of a problem. That is not always the case; some applications just gobble huge amounts

of CPU time. The task list also presents us with other data which, if not immediately

obvious, can be obtained from the help option or the top man page.

Again, it is imperative that you observe a correctly running system to understand

what is normal so you will know when you see abnormal. I spend a great deal of time

using top and these other tools just observing the activities of my hosts when there are

no extant problems. This enables me to understand what is “normal” for these hosts and

gives me the knowledge I need to understand when they are not running normally.

 Signals

The top, atop, and htop utilities allow you to send signals to running processes. Each

of these signals has a specific function though some of them can be defined by the

receiving program using signal handlers.

The kill command, which is separate from top, can also be used to send signals to

processes outside of the monitors. The kill -l can be used to list all possible signals

that can be sent. The use of the kill command to send signals can be confusing if you do

not actually intend to kill the process. The thing to remember is that the kill command

is used to send signals to processes and that at least three of those signals can be used to

terminate the process with varying degrees of prejudice:

• SIGTERM (15): Signal 15, SIGTERM is the default signal sent by top

and the other monitors when the k key is pressed. It may also be the

least effective because the program must have a signal handler built

into it. The program's signal handler must intercept incoming signals

and act accordingly. So for scripts, most of which do not have signal

handlers, SIGTERM is ignored. The idea behind SIGTERM is that by

simply telling the program that you want it to terminate itself, it will

take advantage of that and clean up things like open files and then

terminate itself in a controlled and nice manner.

Chapter 13 tools for problem solving

358

• SIGKILL (9): Signal 9, SIGKILL provides a means of killing even the

most recalcitrant programs, including scripts and other programs

that have no signal handlers. For scripts and other programs with no

signal handler, however, it not only kills the running script, but it also

kills the shell session in which the script is running; this may not be

the behavior that you want. If you want to kill a process and you don't

care about being nice, this is the signal you want. This signal cannot

be intercepted by a signal handler in the program code.

• SIGINT (2): Signal 2, SIGINT can be used when SIGTERM does

not work and you want the program to die a little more nicely, for

example, without killing the shell session in which it is running.

SIGINT sends an interrupt to the session in which the program

is running. This is equivalent to terminating a running program,

particularly a script, with the Ctrl-C key combination.

There are many other signals, but these are the ones I have found that pertain to

terminating a program.

 Consistency

One more thing about top and many of its relatives. It does not need to run continuously

in order to display the correct and consistent current statistics. For example, data such

as TIME+ is cumulative starting with the time that the system booted or that the process

was launched. Starting top or restarting it does not alter the accuracy of the data. This

is not due to any intrinsic capabilities of top; rather it is the fact that top and other

programs like it obtain their information from the /proc virtual filesystem.

 Other top-like tools
Like all things Linux, there are other programs that work in a top-like manner and which

can be used if you prefer them. In this section we will look at three of these alternatives,

htop, atop, and iotop. None of these tools are likely to be installed on your Fedora VM,

so let’s do that now.

Chapter 13 tools for problem solving

359

PREPARATION 13-1

perform this preparation step as root. install the tools we will need for this chapter:

[root@studentvm1 ~]# dnf -y install htop atop iotop

note that package name for atop might show up as being packaged for an earlier version. this is

uncommon, but it can happen if a tool has not yet been repackaged for the most current version

of fedora. Jason, my technical reviewer, and i both noted this. it is not a problem. if it were a

problem, the older package would not appear in the repository for the current fedora release.

 htop
The htop utility is very much like top but offers a bit different capability to interact with

the running processes. htop allows selection of multiple processes so that they can be

acted upon simultaneously. It allows you to kill and renice the selected processes and to

send signals simultaneously to one or more processes.

EXPERIMENT 13-4

leave top and the two CpU hog programs running. in another terminal session as the root user,

start htop:

[root@studentvm1 ~]# htop

notice the bar graphs and load average data at the top of the screen. i have removed some

lines of data to reduce the page space required, but you can still see that the data displayed is

very similar to top. the function key menu at the bottom of the screen provides easy access to

many functions:

Chapter 13 tools for problem solving

360

1
 [
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
10
0.
0%
]

Ta
sk
s:
 7
7,
 7
1
th
r;
 2
 r
un
ni
ng

2
 [
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
10
0.
0%
]

Lo
ad
 a
ve
ra
ge
:
3.
19
 3
.3
9
3.
50

Me
m[
||
||
||
||
||
||

25
2M
/3
.8
5G
]

Up
ti
me
:
1
da
y,
 1
1:
43
:5
0

Sw
p[

 0
K/
10
.0
0G
]

PI
D
US
ER

 P
RI

NI

 V
IR
T

RE
S

 S
HR

S

CP
U%

 M
EM
%
 T
IM
E+

 C
om
ma
nd

 4
69
1
st
ud
en
t

 2
5

5

20
9M

 1
20
0

 1
05
6

 R

 2
00
.

 0
.0

15
h0
3:
36

/b
in
/b
as
h
./
cp
uH
og

 4
69
2
st
ud
en
t

12

-8

20
9M

 1
17
6

 1
03
2

R

17
2.

 0
.0

14
h5
0:
13

/b
in
/b
as
h
./
cp
uH
og

 1
70
3
st
ud
en
t
 2
1

1

 2
24
M

33
96

 2
06
8

R

12
3.

 0
.1

 9
h1
8:
00

 S
CR
EE
N

 1
39
6
li
gh
td
m
 2
2

2

 9
51
M

85
62
0
 6
70
92

S

0.
0

 2
.1

 0
:0
0.
00

 /
 us
r/
sb
in
/l
ig
ht
dm
-g
tk
-g
re
et
er

 1
41
4
li
gh
td
m
 2
1

1

 9
51
M

85
62
0
 6
70
92

S

0.
0

 2
.1

 0
:0
0.
00

 /
 us
r/
sb
in
/l
ig
ht
dm
-g
tk
-g
re
et
er

<s
ni
p>

 1
04
5
ro
ot

 2
0

0

 6
52
M

17
15
6
 1
40
68

S

0.
0

 0
.4

 0
:0
1.
06

 /
us
r/
sb
in
/N
et
wo
rk
Ma
na
ge
r
--
no
-

 4
70
0
ro
ot

 2
0

0

 6
52
M

17
15
6
 1
40
68

S

0.
0

 0
.4

 0
:0
0.
00

 /
us
r/
sb
in
/N
et
wo
rk
Ma
na
ge
r
–n
o-

<s
ni
p>

 1
44
1
li
gh
td
m
 2
0

0

 5
72
M

12
26
4
 9
11
2

S

0.
0

 0
.3

 0
:0
0.
03

 /
 us
r/
bi
n/
pu
ls
ea
ud
io
 -
-d
ae
mo
ni
z

 <
sn
ip
>

87
2
ro
ot

20

 0

53
4M

 1
02
84

 8
74
4

S

0.
0

 0
.3

 0
:0
0.
03

/u
sr
/s
bi
n/
ab
rt
d
-d
 -
s

1
ro
ot

 2
0

0

 2
31
M

98
44

 6
82
8

S

0.
0

 0
.2

 0
:0
2.
68

 /
us
r/
li
b/
sy
st
em
d/
sy
st
em
d

F1
He
lp

F2
Se
tu
p
 F
3S
ea
rc
h
F4
Fi
lt
er
 F
5T
re
e
 F
6S
or
tB
y
F7
Ni
ce
 -
 F
8
Ni
ce
 +
 F
9K
il
l
 F
10
Qu
it

pr
es

s
h

to
 re

ad
 th

e
sh

or
t h

el
p

pa
ge

. Y
ou

 s
ho

ul
d

al
so

 ta
ke

 a
 b

it
of

 ti
m

e
to

 re
ad

 th
e

m
an

 p
ag

e
fo

r h
to

p.

pr
es

s
F2

 to
 d

is
pl

ay
 th

e
“s

et
up

”
m

en
u.

 in
 th

is
 m

en
u,

 y
ou

 c
an

 m
od

ify
 th

e
la

yo
ut

 o
f t

he
 h

ea
de

r i
nf

or
m

at
io

n
an

d
ch

oo
se

 s
om

e

al
te

rn
at

iv
e

w
ay

s
to

 d
is

pl
ay

 th
e

da
ta

. p
re

ss
 th

e
Es

c
ke

y
to

 re
tu

rn
 to

 th
e

m
ai

n
di

sp
la

y.
W

e
w

ill
 s

ee
 in

 C
ha

pt
er

 1
4

w
hy

 th
e

f1
 a

nd
 f

10

ke
ys

 d
on

’t
w

or
k

as
 y

ou
 w

ou
ld

 e
xp

ec
t i

n
th

is
 s

itu
at

io
n

an
d

ho
w

 to
 fi

x
th

at
 p

ro
bl

em
.

Us
e

th
e

F6
 k

ey
 to

 d
is

pl
ay

 th
e

“s
or

t b
y”

 m
en

u
an

d
se

le
ct

 C
pU

%
. o

bs
er

ve
 th

e
Cp

U
us

ag
e

da
ta

 fo
r t

he
 tw

o
Cp

U
ho

gs
 fo

r a
 fe

w

m
om

en
ts

.

Chapter 13 tools for problem solving

361

Use the up/down arrow keys to highlight one of the CpU hogs, then use the F7 and F8 keys to

first decrement the nice number to -20 and then increment it to +19, observing both states for

a few moments. Watch how the priority of the process changes as the nice number changes.

highlight first one cpuhog, and press the space bar to select it, then do the same for the

second cpuhog. it is oK for the highlight bar to rest on another process while performing this

task because only the selected processes are affected. Use the F7 and F8 keys to adjust the

nice number for these two processes. assuming that the cpuhogs started with different nice

numbers, what happens when one process reaches the upper or lower limit?

a process can be deselected. highlight it and then press the space bar again. Deselect the

cpuhog that has the highest amount of cumulative CpU time (time+), and then set the nice

number of the other cpuhog process, which should still be selected, to be a more negative

number than the deselected process.

Use the F5 key to display the process tree view. i like this view because it shows the parent/

child hierarchy of the running programs. scroll down the list of processes until you find the

CpU hogs.

there is much more to htop than we have explored here. i recommend that you spend some

time exploring it and learning its powerful capabilities. Do not terminate the htop tool.

 atop
The atop utility provides much of the same data as top and htop.

EXPERIMENT 13-5

start the atop program in another root terminal session:

[root@studentvm1 ~]# atop

You should now have top, htop, and atop running along with the two CpU hogs. i have

reduced the font size on the output shown in the following in order to have room for more

data. You can see in the following the additional information displayed by atop. the atop

utility provides detailed information on i/o usage including aggregated, per device, and per

process data. it should be easy to pick that data out of the information in the following as well

as on your student vm:

Chapter 13 tools for problem solving

362

AT
OP
 -
 s
tu
de
nt
vm
1
20
18
/1
0/
27

09
:2
2:
40
 -
 1
d1
2h
4m
53
s
el
ap
se
d

PR
C
|
 s
ys

 2
3h
58
m
 |

us
er

16
h1
1m

|
 #
pr
oc

16
9
 |

#t
sl
pu

 0

|
 #
zo
mb
ie

0
 |

#e
xi
t

 0

|

CP
U
|
 s
ys

48
%
 |

us
er

 2
5%

|
 i
rq

 8
%
 |

id
le

11
8%

|
 w
ai
t

 2
%
 |

cu
rs
ca
l

?%

|

cp
u
|
 s
ys

21
%
 |

us
er

 1
5%

|
 i
rq

 4
%
 |

id
le

 5
9%

|
 c
pu
00
0
w
 1
%
 |

cu
rs
ca
l

?%

|

cp
u
|
 s
ys

27
%
 |

us
er

 1
0%

|
 i
rq

 4
%
 |

id
le

 5
9%

|
 c
pu
00
1
w
 1
%
 |

cu
rs
ca
l

?%

|

CP
L
|
 a
vg
1

 3
.7
4
 |

av
g5

3.
67

|
 a
vg
15

 3
.6
1
 |

cs
w
20
98
86
e5

|
 i
nt
r
48
89
9e
5
 |

nu
mc
pu

 2

|

ME
M
|
 t
ot

 3
.9
G
 |

fr
ee

2.
7G

|
 c
ac
he
 6
69
.2
M
 |

bu
ff

13
4.
6M

|
 s
la
b
 1
36
.2
M
 |

hp
to
t

0.
0M

|

SW
P
|
 t
ot

10
.0
G
 |

fr
ee

 1
0.
0G

|

 |

|
 v
mc
om
 9
81
.5
M
 |

vm
li
m
 1
1.
9G

|

LV
M
|
 u
de
nt
vm
1-
va
r
 |

bu
sy

5%

|
 r
ea
d

14
61
5
 |

wr
it
e
29
77
86

|
 M
Bw
/s

0.
0
 |

av
io
 1
0.
4
ms

|

LV
M
|
 u
de
nt
vm
1-
us
r
 |

bu
sy

0%

|
 r
ea
d

30
06
2
 |

wr
it
e

66
43

|
 M
Bw
/s

0.
0
 |

av
io
 3
.3
5
ms

|

LV
M
|
 d
en
tv
m1
-r
oo
t
 |

bu
sy

0%

|
 r
ea
d

 1
40
8
 |

wr
it
e

10
89

|
 M
Bw
/s

0.
0
 |

av
io
 2
0.
0
ms

|

LV
M
|
 p
oo
l0
0-
tp
oo
l
 |

bu
sy

0%

|
 r
ea
d

 1
26
5
 |

wr
it
e

10
90

|
 M
Bw
/s

0.
0
 |

av
io
 2
1.
0
ms

|

LV
M
|
 p
oo
l0
0_
td
at
a
 |

bu
sy

0%

|
 r
ea
d

 1
28
0
 |

wr
it
e

10
90

|
 M
Bw
/s

0.
0
 |

av
io
 2
0.
9
ms

|

LV
M
|
 u
de
nt
vm
1-
tm
p
 |

bu
sy

0%

|
 r
ea
d

25
4
 |

wr
it
e

12
57

|
 M
Bw
/s

0.
0
 |

av
io
 1
7.
9
ms

|

LV
M
|
 d
en
tv
m1
-h
om
e
 |

bu
sy

0%

|
 r
ea
d

15
3
 |

wr
it
e

 1
08

|
 M
Bw
/s

0.
0
 |

av
io
 3
4.
9
ms

|

LV
M
|
 p
oo
l0
0_
tm
et
a
 |

bu
sy

0%

|
 r
ea
d

 6
6
 |

wr
it
e

15

|
 M
Bw
/s

0.
0
 |

av
io
 1
0.
6
ms

|

LV
M
|
 d
en
tv
m1
-s
wa
p
 |

bu
sy

0%

|
 r
ea
d

15
2
 |

wr
it
e

 0

|
 M
Bw
/s

0.
0
 |

av
io
 4
.8
9
ms

|

DS
K
|

sd
a
 |

bu
sy

5%

|
 r
ea
d

39
18
6
 |

wr
it
e
25
24
78

|
 M
Bw
/s

0.
0
 |

av
io
 1
1.
5
ms

|

NE
T
|
 t
ra
ns
po
rt

 |

tc
pi

22
19
13

|
 t
cp
o
 2
35
28
1

 |

ud
pi

39
13

|
 u
dp
o

 4
28
4

 |

tc
pa
o

48

|

NE
T
|
 n
et
wo
rk

 |

ip
i

22
66
61

|
 i
po

 2
42
44
5
 |

ip
fr
w

 0

|
 d
el
iv
 2
26
65
5
 |

ic
mp
o

38
36

|

NE
T
|
 e
np
0s
8

 0
%
 |

pc
ki

25
32
85

|
 p
ck
o
 2
44
60
4
 |

sp
 1
00
0
Mb
ps

|
 s
i

 6
 K
bp
s
 |

so

2
Kb
ps

|

NE
T
|
 e
np
0s
3

 0
%
 |

pc
ki

14
59

|
 p
ck
o

 7
23
5
 |

sp
 1
00
0
Mb
ps

|
 s
i

 0
 K
bp
s
 |

so

0
Kb
ps

|

Chapter 13 tools for problem solving

363

PI
D
SY
SC
PU
 U
SR
CP
U
 V
GR
OW

RG
RO
W
 R
DD
SK

WR
DS
K
RU
ID

EU
ID

 S
T
EX
C
 T
HR
 S
 C
PU
NR

CP
U
CM
D
1/
5

 4
69
1
 8
h3
9m

6h
38
m
20
9.
4M

12
00
K

4K

 0
K
st
ud
en
t

st
ud
en
t
 N
-

-

 1
 R

 1

81
%
cp
uH
og

 4
69
2
 8
h4
3m

6h
21
m
20
9.
4M

11
76
K

0K

 0
K
st
ud
en
t

st
ud
en
t
 N
-

-

 1
 R

 1

79
%
cp
uH
og

 1
70
3
 6
h1
8m

3h
08
m
22
4.
1M

33
96
K

 3
2K

 8
K
st
ud
en
t

st
ud
en
t
 N
-

-

 1
 R

 0

50
%
sc
re
en

 5
07
6
 7
m1
3s

2m
20
s
25
1.
2M

44
20
K

30
8K

 0
K
ro
ot

ro
ot

 N
-

-

 1
 S

 0

 1
%
to
p

20
23
3
 5
m5
8s

0.
00
s

0K

 0
K

0K

 0
K
ro
ot

ro
ot

 N
-

-

 1
 I

 1

 1
%
kw
or
ke
r/
u4
:1
-e

20
62
2
 2
m1
2s

0.
01
s

0K

 0
K

0K

 0
K
ro
ot

ro
ot

 N
-

-

 1
 I

 1

 0
%
kw
or
ke
r/
u4
:2
-e

 9
00
9
20
.1
6s
 2
0.
09
s
22
4.
4M

36
64
K

0K

 0
K
ro
ot

ro
ot

 N
-

-

 1
 S

 1

 0
%
sc
re
en

 1
38
8
10
.1
4s
 2
3.
98
s
95
1.
1M
 8
56
20
K
59
63
6K

90
20
K
li
gh
td
m

li
gh
td
m
 N
-

-

 5
 S

 0

 0
%
li
gh
td
m-
gt
k-
gr

<s
ni
p>

1
 4
.6
8s

2.
51
s
23
1.
5M

98
44
K
25
8.
1M
 2
27
.9
M
ro
ot

ro
ot

 N
-

-

 1
 S

 1

 0
%
sy
st
em
d

86
7
 3
.0
2s

3.
19
s
43
5.
2M
 3
43
88
K
13
23
6K

 4
K
ro
ot

ro
ot

 N
-

-

 2
 S

 0

 0
%
fi
re
wa
ll
d

 1
0
 6
.0
4s

0.
00
s

0K

 0
K

0K

 0
K
ro
ot

ro
ot

 N
-

-

 1
 I

 1

 0
%
rc
u_
sc
he
d

71
4
 4
.0
7s

1.
89
s
12
5.
7M
 2
44
92
K
 3
36
0K

 0
K
ro
ot

ro
ot

 N
-

-

 3
 S

 0

 0
%
dm
ev
en
td

20
72
3
 4
.2
4s

1.
12
s
21
9.
0M

41
16
K

0K

 0
K
ro
ot

ro
ot

 N
-

-

 1
 S

 1

 0
%
ht
op

85
4
 2
.0
5s

1.
76
s
 9
8.
0M

18
40
K

38
8K

 0
K
ro
ot

ro
ot

 N
-

-

 2
 S

 1

 0
%
ir
qb
al
an
ce

 1
48
1
 3
.1
9s

0.
09
s
13
1.
2M

50
16
K

0K

 0
K
st
ud
en
t

st
ud
en
t
 N
-

-

 1
 S

 1

 0
%
ss
hd

<s
ni
p>

86
2
 0
.7
5s

0.
21
s
18
8.
5M

33
76
K

 7
2K

 0
K
rt
ki
t

rt
ki
t

 N
-

-

 3
 S

 1

 0
%
rt
ki
t-
da
em
on

89
3
 0
.6
5s

0.
07
s
10
3.
1M

28
00
K

15
6K

 1
40
K
ch
ro
ny

ch
ro
ny

 N
-

-

 1
 S

 1

 0
%
ch
ro
ny
d

<s
ni
p>

Chapter 13 tools for problem solving

364

the atop program provides some network utilization data as well as combined and individual

detailed CpU usage data. by default it shows only the processes that actually receive CpU time

during the collection interval. press the a key to display all processes. atop also shows data in

the header space if there is some activity. You will see this as you watch the output for a time.

it can kill a process, but it cannot renice one.

the atop program starts with an interval of ten seconds. to set the interval to one second,

first type i and then 1.

to access the help facility type h. scan this help to learn about the many capabilities of this

tool. enter q to exit help.

atop provides insight into a great deal of information, and i find it to be very helpful. it has an

option to create a log file so it can be used to monitor long-term system performance which

can be reviewed at a later time. press q to exit from atop.

These three tools are the ones I start with when looking for problems. Between them

they can tell me almost everything I need to know about my running system. I find that

atop has the most complex interface, and on a terminal that does not have enough width

(columns), the output may be misaligned and distorted.

 More tools
There are many more tools available to us as SysAdmins. Most of these concentrate on

a single aspect of system operation such as memory or CPU usage. Let’s look briefly at a

few of them by type.

 Memory tools
The free and vmstat utilities look at memory usage. The vmstat tool also provides data

about the CPU usage breakdown such as user, system, and idle time.

Chapter 13 tools for problem solving

365

EXPERIMENT 13-6

You should perform this experiment as root, but these commands can be used with identical

results as any non-privileged user as well.

Use the free command to display the system memory information:

[root@studentvm1 ~]# free

 total used free shared buff/cache available

Mem: 4038488 255292 2865144 6092 918052 3517436

Swap: 10485756 0 10485756

[root@studentvm1 ~]#

Does it agree fairly closely with the output from top? it should because they both get their

data from the /proc filesystem.

the vmstat command shows the virtual memory statistics including some of the data shown

in top and other utilities. the data output from this command may need more explanation than

some of the others, so use the man page to interpret it if you need to:

[root@studentvm1 ~]# vmstat

procs --------memory---------- ---swap-- -----io---- -system-- ------cpu-----

 r b swpd free buff cache si so bi bo in cs us sy id wa st

 3 0 0 2865308 138528 779548 0 0 5 13 149 41 13 28 58 1 0

[root@studentvm1 ~]#

 1. neither of these commands is continuous; that is, they display data one time

and exit. the watch command can help us turn them into repeating tools.

enter the command shown in the following and watch it for a while. the output

actually appears at the top of the terminal:

[root@studentvm1 ~]# watch free

Every 2.0s: free studentvm1: Sat Oct 27 10:24:26 2018

 total used free shared buff/cache available

Mem: 4038488 255932 2864320 6092 918236 3516804

Swap: 10485756 0 10485756

Chapter 13 tools for problem solving

366

the data on the screen will update at the default 2-second interval. that interval can be

changed, and the differences between refresh instances can be highlighted. of course the

watch command also works with other tools as well. the watch command has a number of

interesting capabilities that you can explore using the man page. When finished, you can use

Ctrl-C to exit from the watch program.

 Tools that display disk I/O statistics
Although top and atop both provide some insight into I/O usage, this data is limited

to I/O waits in top. The atop utility provides a significant amount of I/O information

including disk reads (RDDSK) and writes (WRDSK). The iostat program provides, like

the free command, a point in time view of disk I/O statistics, while iotop provides a top-

like view of disk I/O statistics.

EXPERIMENT 13-7

perform this experiment as root. look first at the results of the iostat tool:

[root@studentvm1 tmp]# iostat

Linux 4.18.9-200.fc28.x86_64 (studentvm1) 10/28/2018 _x86_64_ (2 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

 8.55 11.09 42.74 0.54 0.00 37.08

Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn

sda 2.08 2.58 15.58 670835 4051880

dm-0 0.00 0.00 0.00 280 44

dm-1 0.01 0.08 0.02 20917 5576

dm-2 0.01 0.08 0.02 20853 5576

dm-3 0.01 0.14 0.02 37397 5956

dm-4 0.00 0.01 0.00 3320 0

dm-5 0.15 1.42 0.13 368072 34108

dm-7 0.00 0.01 0.00 2916 412

dm-8 2.28 1.01 11.59 261985 3014888

dm-9 0.01 0.02 4.10 6252 1065340

Chapter 13 tools for problem solving

367

the iostat utility provides point in time data about disk reads and writes per second as well

as cumulative read and write data. the sda device is the entire hard drive, so the data in that

row is an aggregate for all filesystems on that entire device. the dm devices are the individual

filesystems on the /dev/sda device. You can use the following command to view the filesystem

names:

[root@studentvm1 tmp]# iostat -j ID

Linux 4.18.9-200.fc28.x86_64 (studentvm1) 10/28/2018 _x86_64_ (2 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

 8.56 11.10 42.79 0.54 0.00 37.01

 tps kB_read/s kB_wrtn/s kB_read kB_wrtn Device

 2.09 2.57 15.57 670835 4059184 ata-VBOX_HARDDISK_VBb426cd38-22c9b6be

 0.00 0.00 0.00 280 44 dm-0

 0.01 0.08 0.02 20917 5640 dm-1

 0.01 0.08 0.02 20853 5640 dm-2

 0.01 0.14 0.02 37397 6028 dm-name-fedora_studentvm1-root

 0.00 0.01 0.00 3320 0 dm-name-fedora_studentvm1-swap

 0.15 1.41 0.13 368072 34580 dm-name-fedora_studentvm1-usr

 0.00 0.01 0.00 2916 412 -dm-name-fedora_studentvm1-home

 2.28 1.00 11.59 261985 3021780 dm-name-fedora_studentvm1-var

 0.01 0.02 4.09 6252 1065412 dm-name-fedora_studentvm1-tmp

the iostat program has many options that can be used to provide a more dynamic view of

this data as well as to create log files for later perusal.

the iotop utility consists of a two-line header that displays the total and actual disk reads

and writes for the current interval which is one second by default. first we start the iotop

program in one terminal as the user root:

[root@studentvm1 tmp]# iotop

Chapter 13 tools for problem solving

368

at first the full-screen output will look like this sample with not much going on. this output

includes all of the processes that will fit in the terminal window regardless of whether any of

them are actually performing i/o or not:

Total DISK READ : 0.00 B/s | Total DISK WRITE : 0.00 B/s

Actual DISK READ: 0.00 B/s | Actual DISK WRITE: 0.00 B/s

 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

 1 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % systemd

--switched-root~system --deserialize 32

 2 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kthreadd]

 3 be/0 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [rcu_gp]

 4 be/0 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [rcu_par_gp]

<snip>

although the cpuhog programs should still be running, they do not perform any disk i/o, so we

need a little program to do that for us. Keep the iotop utility running in this terminal window.

open another terminal as the student user such that the running iotop program can be seen in

the previous terminal window. run the short command-line program shown in the following.

this dd command makes an image backup of the /.home filesystem and stores the result in /

tmp. if you created the filesystems according to the filesystem sizes i provided in table 5-1,

this should not fill up the 5gb /tmp filesystem with the content of the 2.0 gb /home filesystem:

[root@studentvm1 tmp]# time dd if=/dev/mapper/fedora_studentvm1-home of=/tmp/

home.bak

4194304+0 records in

4194304+0 records out

2147483648 bytes (2.1 GB, 2.0 GiB) copied, 96.1923 s, 22.3 MB/s

real 1m36.194s

user 0m0.968s

sys 0m14.808s

[root@studentvm1 tmp]#

i used the time utility to get an idea of how long the dd program would run. on my vm,

it ran for a little over a minute and a half of real time, but this will vary depending on the

specifications of the underlying physical host and its other loads.

the output of the iotop command should change to look somewhat like that in the following.

Your results will depend upon the details of your system, but you should at least see some disk

activity:

Chapter 13 tools for problem solving

369

Total DISK READ : 3.14 M/s | Total DISK WRITE : 3.14 M/s

Actual DISK READ: 3.14 M/s | Actual DISK WRITE: 19.72 M/s

 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

 42 be/4 root 0.00 B/s 0.00 B/s 0.00 % 99.99 % [kswapd0]

 780 be/3 root 0.00 B/s 0.00 B/s 0.00 % 99.99 % [jbd2/dm-9-8]

26769 be/4 root 0.00 B/s 0.00 B/s 0.00 % 93.31 % [kworker/

u4:3+flush-253:9]

13810 be/4 root 3.14 M/s 3.14 M/s 0.00 % 87.98 % dd if=/dev/

mapper/fedor~1-home of=/tmp/home.bak

 1 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % systemd

--switched-root~system --deserialize 32

 2 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kthreadd]

<snip>

if the backup completes before you are able to observe it in iotop, run it again.

i leave it as an exercise for you to determine the option that can be used with iotop to show

only processes that are actually performing i/o. perform the last part of this experiment with

that option set.

 The /proc filesystem
All of the data displayed by the commands in this chapter, and many other tools that let

us look into the current status of the running Linux system, are stored by the kernel in

the /proc filesystem. Because the kernel already stores this data in an easily accessible

location and in ASCII text format, for the most part, it is possible for other programs to

access it with no impact upon the performance of the kernel.

There are two important points to understand about the /proc filesystem. First, it

is a virtual filesystem, and it does not exist on any physical hard drive – it exists only in

RAM. Second, the /proc filesystem is a direct interface between the internal conditions

and configuration settings of the kernel itself and the rest of the operating system.

Simple Linux commands enable us humans to view the current state of the kernel and

its configuration parameters. It is also possible to alter many kernel configuration items

instantly without a reboot. More on that in Volume 2, Chapter 5.

Chapter 13 tools for problem solving

370

EXPERIMENT 13-8

this experiment should be performed as root. first make /proc the pWD and do a short list of

the directory contents:

[root@studentvm1 proc]# ls

1 1375 1549 17570 33 480 781 862 99 irq sched_debug

10 1381 1550 17618 34 492 783 864 acpi kallsyms schedstat

100 1382 1555 17621 35 517 784 865 asound kcore scsi

101 1387 1556 18 36 518 792 866 buddyinfo keys self

102 1388 15614 1950 37 562 793 867 bus key-users slabinfo

103 14 16 2 379 563 8 872 cgroups kmsg softirqs

1030 1413 16021 20 38 5693 814 893 cmdline kpagecgroup stat

104 1416 16033 20599 384 6 815 9 consoles kpagecount swaps

1048 1421 16659 20863 39 616 818 9008 cpuinfo kpageflags sys

1053 1423 16872 21 4 643 820 9009 crypto latency_stats sysrq-trigger

1054 1427 16897 22 42 680 821 9010 devices loadavg sysvipc

107 1468 17 22771 43 701 839 904 diskstats locks thread-self

108 1471 1702 23 439 705 840 9056 dma mdstat timer_list

11 1473 1703 24 448 714 841 910 driver meminfo tty

114 1474 1704 27 450 741 842 9107 execdomains misc uptime

1163 1479 17155 28 462 744 854 937 fb modules version

12 1481 1729 29 463 745 856 938 filesystems mounts vmallocinfo

13 1487 17498 3 464 748 857 940 fs mtrr vmstat

1338 15 17521 30 467 778 858 945 interrupts net zoneinfo

1348 1513 17545 31 4691 779 859 97 iomem pagetypeinfo

1363 1546 17546 32 4692 780 860 98 ioports partitions

[root@studentvm1 proc]#

first notice the directories with numerical names. each directory name is the piD (process iD)

of a running process. the data contained inside these directories exposes all of the pertinent

information about each process. let’s take a look at one to see what that means.

Use htop to find the piD of one of the cpuhogs. these are 4691 and 4692 on my vm, but your

piDs probably will be different. select one of those piDs, and then make it the pWD. i used piD

4691, so my current pWD is /proc/4691:

[root@studentvm1 4691]# ls

Chapter 13 tools for problem solving

371

attr cpuset latency mountstats personality smaps_rollup timerslack_ns

autogroup cwd limits net projid_map stack

auxv environ loginuid ns root stat wchan

cgroup exe map_files numa_maps sched statm

clear_refs fd maps oom_adj schedstat status

cmdline fdinfo mem oom_score sessionid syscall

comm gid_map mountinfo oom_score_adj setgroups task

coredump_filter io mounts pagemap smaps timers

[root@studentvm1 4691]#

now cat the loginuid file. notice that most of the data in these files – at least the last item –

may not have an ending line feed character. this means that sometimes the new command

prompt is printed on the same line as the data. that is what is happening here:

[root@studentvm1 4691]# cat loginuid

1000[root@studentvm1 4691]#

the UiD of the user who started this process is 1000. now go to a terminal that is logged in as

the student user and enter this command:

[student@studentvm1 ~]$ id

uid=1000(student) gid=1000(student) groups=1000(student)

[student@studentvm1 ~]$

thus we see that the user iD (UiD) of the student user is 1000 so that the user student started

the process with piD 4691. now let’s watch the scheduling data for this process. i won’t

reproduce my results here, but you should be able to see the changes in this live data as they

occur. in a root terminal session, run the following command:

[root@studentvm1 4691]# watch cat sched

now return to /proc as the pWD. enter the following commands to view some of the raw data

from the /proc filesystem:

[root@studentvm1 proc]# cat /proc/meminfo

[root@studentvm1 proc]# cat /proc/cpuinfo

[root@studentvm1 proc]# cat /proc/loadavg

these are just a few of the files in /proc that contain incredibly useful information. spend

some time exploring more of the data in /proc. some of the data is in formats that require a bit

of manipulation in order to make sense to us humans, and much of it would only be useful to

kernel or system developers.

Chapter 13 tools for problem solving

372

We have just touched upon a very tiny bit of the /proc filesystem. Having all of this

data exposed and available to us as SysAdmins, not to mention the system developers,

makes it easy to obtain information about the kernel, hardware, and running programs.

This means that it is not necessary to write code that needs to access the kernel or its

data structures in order to discover all of the knowable aspects of a Linux system.

The CentOS / RHEL 7.2 documentation has a list of many of the more useful files in the

/proc filesystem.6 Some older Fedora documentation also contains this information. The

Linux Documentation Project has a brief description of some of the data files in /proc.7

 Exploring hardware
Sometimes – frequently, actually – I find it is nice to know very specific information

about the hardware installed in a host, and we have some tools to assist with this. Two

that I like are the lshw (list hardware) and dmidecode (Desktop Management Interface8

decode) commands which both display as much hardware information as is available in

SMBIOS.9 The man page for dmidecode states, “SMBIOS stands for System Management

BIOS, while DMI stands for Desktop Management Interface. Both standards are tightly

related and developed by the DMTF (Desktop Management Task Force).”

These utility tools use data stored in SMBIOS which is a data storage area on

system motherboards that allows the BIOS boot process to store data about the system

hardware. Because the task of collecting hardware data is performed at BIOS boot time,

the operating system does not need to probe the hardware directly in order to collect

information that can be used to perform tasks such as determination of which hardware

related kernel modules to load during the Linux kernel portion of the boot and startup

process. We will discuss the boot and startup sequence of a Linux computer in some

detail in Chapter 16.

6 Chapter 4. The /proc Filesystem, Red Hat Linux 7.2: The Official Red Hat Linux Reference Guide,
www.centos.org/docs//2/rhl-rg-en-7.2/ch-proc.html

7 Linux Documenation Project, Linux System Administrators Guide, 3.7. The /proc filesystem,
www.tldp.org/LDP/sag/html/proc-fs.html

8 Wikipedia, Desktop Management Interface, https://en.wikipedia.org/wiki/
Desktop_Management_Interface

9 Wikipedia, System Management BIOS, https://en.wikipedia.org/wiki/
System_Management_BIOS

Chapter 13 tools for problem solving

http://www.tldp.org/LDP/sag/html/proc-fs.html
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/System_Management_BIOS
https://en.wikipedia.org/wiki/System_Management_BIOS

373

The data collected into SMBIOS can be easily accessed by tools such as lshw and

dmidecode for use by SysAdmins. I use this data when planning upgrades, for example.

The last time I needed to install more RAM in a system, I used the dmidecode utility

to determine the total amount of memory capacity available on the motherboard and

the current memory type. Many times the motherboard vendor, model, and serial

number are also available. This makes it easy to obtain the information needed to locate

documentation on the Internet.

Other tools, such as lsusb (list USB) and lspci (list PCI), do not use the DMI

information; they use data from the special filesystems /proc and /sys which are

generated during Linux boot. We will explore these special filesystems in Volume 2,

Chapter 5.

Because these are command-line tools, we have access to the hardware details of

systems that are local or halfway around the planet. The value of being able to determine

detailed hardware information about systems without having to dismantle them to do so

is incalculable.

EXPERIMENT 13-9

perform this experiment as root. install the lshw (list hardware) package:

[root@studentvm1 ~]# dnf install -y lshw

this program lists data about the motherboard, CpU, and other installed hardware. run the

following command to list the hardware on your host. it may take a few moments to extract

and display the data, so be patient. look through the data to see all of the (virtual) hardware in

your vm:

[root@studentvm1 ~]# lshw | less

now run dmidecode and do the same:

[root@studentvm1 ~]# dmidecode | less

it is also possible to list hardware information by Dmi type. for example, the motherboard is

Dmi type 2, so you can use the following command to list the hardware information for just the

motherboard:

[root@studentvm1 ~]# dmidecode -t 2

Chapter 13 tools for problem solving

374

You can find the type codes for different types of hardware in the dmidecode man page.

there are two commands available to list Usb and pCi devices. both should be installed

already. run the following commands, and take some time to review the output:

[root@studentvm1 ~]# lsusb -v | less

[root@studentvm1 ~]# lspci -v | less

Caution the results for the dmidecode and lshw tools can be questionable.
according to both of their man pages, “more often than not, information contained
in the Dmi tables is inaccurate, incomplete or simply wrong.”

In large part this information deficiency is because hardware vendors do not always

cooperate by storing data about their hardware in a way that is useful – when they

provide any data at all.

 Monitoring hardware temperatures
Keeping computers cool is essential for helping to ensure that they have a long life. Large

data centers spend a great deal of energy to keep the computers in them cool. Without

going into the details, designers need to ensure that the flow of cool air is directed into

the data center and specifically into the racks of computers to keep them cool. It is even

better if they can be kept at a fairly constant temperature.

Proper cooling is essential even in a home or office environment. In fact, it is even

more essential in those environments because the ambient temperature is so much

higher as it is primarily for the comfort of the humans. One can measure the temperature

of many different points in a data center as well as within individual racks. But how can

the temperature of the internals of a computer be measured?

Fortunately, modern computers have many sensors built into various components to

enable monitoring of temperatures, fan speeds, and voltages. If you have ever looked at

some of the data available when a computer is in BIOS configuration mode, you can see

many of these values. But this cannot show what is happening inside the computer when

it is in a real-world situation under loads of various types.

Chapter 13 tools for problem solving

375

Linux has some software tools available to allow system administrators to monitor

those internal sensors. Those tools are all based on the lm_sensors, SMART, and

hddtemp library modules which are available on all Red Hat-based distributions such as

Fedora and CentOS and most others as well.

The simplest tool is the sensors command. Before the sensors command is run, the

sensors-detect command is used to detect as many of the sensors installed on the host

system as possible. The sensors command then produces output including motherboard

and CPU temperatures, voltages at various points on the motherboard, and fan speeds.

The sensors command also displays the range temperatures considered to be normal,

high, and critical.

The hddtemp command displays temperatures for a specified hard drive. The

smartctl command shows the current temperature of the hard drive, various

measurements that indicate the potential for hard drive failure, and, in some cases,

an ASCII text history graph of the hard drive temperatures. This last output can be

especially helpful in some types of problems.

There are also a number of good graphical monitoring tools that can be used to

monitor the thermal status of your computers. I like GKrellM for my desktop and are

plenty of others available for you to choose from.

I suggest installing these tools and monitoring the outputs on every newly installed

system. That way you can learn what temperatures are normal for your computers. Using

tools like these allows you to monitor the temperatures in real time and understand how

added loads of various types affect those temperatures.

EXPERIMENT 13-10

as root, install the lm_sensors and hddtemp packages. if the physical host for your virtual

machine is a linux system, you may perform these experiments on that system if you have

root access:

[root@studentvm1 proc]# dnf -y install lm_sensors hddtemp

it is necessary to configure the lm_sensors package before useful data can be obtained.

Unfortunately this is a highly interactive process, but you can usually just press the Enter key

to take all of the defaults, some of which are “no,” or pipe yes to answer yes to all options:

[root@studentvm1 proc]# yes | sensors-detect

Chapter 13 tools for problem solving

376

because these utilities require real hardware, they do not produce any results on a virtual

machine. so i will illustrate the results with data from one of my own hosts, my primary

workstation:

[root@david proc]# sensors

coretemp-isa-0000

Adapter: ISA adapter

Package id 0: +54.0°C (high = +86.0°C, crit = +96.0°C)

Core 0: +44.0°C (high = +86.0°C, crit = +96.0°C)

Core 1: +51.0°C (high = +86.0°C, crit = +96.0°C)

Core 2: +49.0°C (high = +86.0°C, crit = +96.0°C)

Core 3: +51.0°C (high = +86.0°C, crit = +96.0°C)

Core 4: +51.0°C (high = +86.0°C, crit = +96.0°C)

Core 5: +50.0°C (high = +86.0°C, crit = +96.0°C)

Core 6: +47.0°C (high = +86.0°C, crit = +96.0°C)

Core 7: +51.0°C (high = +86.0°C, crit = +96.0°C)

Core 8: +48.0°C (high = +86.0°C, crit = +96.0°C)

Core 9: +51.0°C (high = +86.0°C, crit = +96.0°C)

Core 10: +53.0°C (high = +86.0°C, crit = +96.0°C)

Core 11: +47.0°C (high = +86.0°C, crit = +96.0°C)

Core 12: +52.0°C (high = +86.0°C, crit = +96.0°C)

Core 13: +52.0°C (high = +86.0°C, crit = +96.0°C)

Core 14: +54.0°C (high = +86.0°C, crit = +96.0°C)

Core 15: +52.0°C (high = +86.0°C, crit = +96.0°C)

radeon-pci-6500

Adapter: PCI adapter

temp1: +40.5°C (crit = +120.0°C, hyst = +90.0°C)

asus-isa-0000

Adapter: ISA adapter

cpu_fan: 0 RPM

Chapter 13 tools for problem solving

377

[root@david proc]# hddtemp

/dev/sda: TOSHIBA HDWE140: 38°C

/dev/sdb: ST320DM000-1BD14C: 33°C

/dev/sdc: ST3000DM001-1CH166: 31°C

/dev/sdd: ST1000DM003-1CH162: 32°C

/dev/sdi: WD My Passport 070A: drive supported, but it doesn't have a

temperature sensor.

[root@david proc]#

 Monitoring hard drives
Hard drives are one of the most common failure points in computers, right after fans.

They have moving parts, and those are always more prone to failure than electronic

integrated circuit chips. Knowing in advance that a hard drive is likely to fail soon

can save much time and aggravation. The Self-Monitoring, Analysis and Reporting

Technology10 (SMART) capabilities built into modern hard drives enable SysAdmins

like us to identify drives that are likely to fail soon and replace them during a scheduled

maintenance.

The smartctl command is used to access the data and statistics available from

SMART-enabled hard drives. Most hard drives are SMART-enabled these days, but not

all, especially very old hard drives.

EXPERIMENT 13-11

perform this experiment as root. if you have root access to a physical linux host, you might

prefer to carefully perform this experiment on that host instead of the vm. You might need to

install the smartmontools package on the physical host:

[root@david ~]# dnf -y install smartmontools

first verify the device name of your hard drive. there should only be one hard drive, sda, on

your vm because that is the way we created it. however you may still see the Usb drive from

the experiments in Chapter 12; that is oK, just be sure to use the sda device:

10 Wikipedia, S.M.A.R.T., https://en.wikipedia.org/wiki/S.M.A.R.T.

Chapter 13 tools for problem solving

https://en.wikipedia.org/wiki/S.M.A.R.T

378

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 6G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 4G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

|-sdb1 8:17 0 2G 0 part /TestFS

|-sdb2 8:18 0 2G 0 part

`-sdb3 8:19 0 16G 0 part

 `-NewVG--01-TestVol1 253:6 0 4G 0 lvm

sdc 8:32 0 2G 0 disk

`-NewVG--01-TestVol1 253:6 0 4G 0 lvm

sdd 8:48 0 2G 0 disk

`-sdd1 8:49 0 2G 0 part [SWAP]

sr0 11:0 1 1024M 0 rom

[root@studentvm1 ~]#

Use the following command to print all smart data and pipe it through the less filter. this

assumes that your hard drive is /dev/sda, which it probably is in the virtual environment:

[root@studentvm1 proc]# smartctl -x /dev/sda

there is not much to see because your vm is using a virtual hard drive. so here are the results

from one of the hard drives on my primary workstation:

[root@david ~]# smartctl -x /dev/sda

smartctl 6.6 2017-11-05 r4594 [x86_64-linux-4.18.16-200.fc28.x86_64] (local

build)

Copyright (C) 2002-17, Bruce Allen, Christian Franke, www.smartmontools.org

Chapter 13 tools for problem solving

379

=== START OF INFORMATION SECTION ===

Model Family: Toshiba X300

Device Model: TOSHIBA HDWE140

Serial Number: 46P2K0DZF58D

LU WWN Device Id: 5 000039 6fb783fa0

Firmware Version: FP2A

User Capacity: 4,000,787,030,016 bytes [4.00 TB]

Sector Sizes: 512 bytes logical, 4096 bytes physical

Rotation Rate: 7200 rpm

Form Factor: 3.5 inches

Device is: In smartctl database [for details use: -P show]

ATA Version is: ATA8-ACS (minor revision not indicated)

SATA Version is: SATA 3.0, 6.0 Gb/s (current: 6.0 Gb/s)

Local Time is: Wed Oct 31 08:59:01 2018 EDT

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

AAM feature is: Unavailable

APM level is: 128 (minimum power consumption without standby)

Rd look-ahead is: Enabled

Write cache is: Enabled

DSN feature is: Unavailable

ATA Security is: Disabled, frozen [SEC2]

Wt Cache Reorder: Enabled

=== START OF READ SMART DATA SECTION ===

SMART overall-health self-assessment test result: PASSED

General SMART Values:

Offline data collection status: (0x82) Offline data collection activity

 was completed without error.

 Auto Offline Data Collection: Enabled.

Self-test execution status: (0) The previous self-test routine

completed

 without error or no self-test has ever

 been run.

Total time to complete Offline

data collection: (120) seconds.

Offline data collection

Chapter 13 tools for problem solving

380

capabilities: (0x5b) SMART execute Offline immediate.

 Auto Offline data collection on/off support.

 Suspend Offline collection upon new

 command.

 Offline surface scan supported.

 Self-test supported.

 No Conveyance Self-test supported.

 Selective Self-test supported.

SMART capabilities: (0x0003) Saves SMART data before entering

 power-saving mode.

 Supports SMART auto save timer.

Error logging capability: (0x01) Error logging supported.

 General Purpose Logging supported.

Short self-test routine

recommended polling time: (2) minutes.

Extended self-test routine

recommended polling time: (469) minutes.

SCT capabilities: (0x003d) SCT Status supported.

 SCT Error Recovery Control supported.

 SCT Feature Control supported.

 SCT Data Table supported.

SMART Attributes Data Structure revision number: 16

Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE

 1 Raw_Read_Error_Rate PO-R-- 100 100 050 - 0

 2 Throughput_Performance P-S--- 100 100 050 - 0

 3 Spin_Up_Time POS--K 100 100 001 - 4146

 4 Start_Stop_Count -O--CK 100 100 000 - 132

 5 Reallocated_Sector_Ct PO--CK 100 100 050 - 0

 7 Seek_Error_Rate PO-R-- 100 100 050 - 0

 8 Seek_Time_Performance P-S--- 100 100 050 - 0

 9 Power_On_Hours -O--CK 051 051 000 - 19898

 10 Spin_Retry_Count PO--CK 102 100 030 - 0

 12 Power_Cycle_Count -O--CK 100 100 000 - 132

191 G-Sense_Error_Rate -O--CK 100 100 000 - 63

192 Power-Off_Retract_Count -O--CK 100 100 000 - 82

193 Load_Cycle_Count -O--CK 100 100 000 - 162

Chapter 13 tools for problem solving

381

194 Temperature_Celsius -O---K 100 100 000 - 36 (Min/Max

24/45)

196 Reallocated_Event_Count -O--CK 100 100 000 - 0

197 Current_Pending_Sector -O--CK 100 100 000 - 0

198 Offline_Uncorrectable ----CK 100 100 000 - 0

199 UDMA_CRC_Error_Count -O--CK 200 253 000 - 0

220 Disk_Shift -O---- 100 100 000 - 0

222 Loaded_Hours -O--CK 051 051 000 - 19891

223 Load_Retry_Count -O--CK 100 100 000 - 0

224 Load_Friction -O---K 100 100 000 - 0

226 Load-in_Time -OS--K 100 100 000 - 210

240 Head_Flying_Hours P----- 100 100 001 - 0

 ||||||_ K auto-keep

 |||||__ C event count

 ||||___ R error rate

 |||____ S speed/performance

 ||_____ O updated online

 |______ P prefailure warning

General Purpose Log Directory Version 1

SMART Log Directory Version 1 [multi-sector log support]

Address Access R/W Size Description

0x00 GPL,SL R/O 1 Log Directory

0x01 SL R/O 1 Summary SMART error log

0x02 SL R/O 51 Comprehensive SMART error log

0x03 GPL R/O 64 Ext. Comprehensive SMART error log

0x04 GPL,SL R/O 8 Device Statistics log

0x06 SL R/O 1 SMART self-test log

0x07 GPL R/O 1 Extended self-test log

0x08 GPL R/O 2 Power Conditions log

0x09 SL R/W 1 Selective self-test log

0x10 GPL R/O 1 NCQ Command Error log

0x11 GPL R/O 1 SATA Phy Event Counters log

0x24 GPL R/O 12288 Current Device Internal Status Data log

0x30 GPL,SL R/O 9 IDENTIFY DEVICE data log

0x80-0x9f GPL,SL R/W 16 Host vendor specific log

0xa7 GPL VS 8 Device vendor specific log

0xe0 GPL,SL R/W 1 SCT Command/Status

0xe1 GPL,SL R/W 1 SCT Data Transfer

Chapter 13 tools for problem solving

382

SMART Extended Comprehensive Error Log Version: 1 (64 sectors)

No Errors Logged

SMART Extended Self-test Log Version: 1 (1 sectors)

No self-tests have been logged. [To run self-tests, use: smartctl -t]

SMART Selective self-test log data structure revision number 1

 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS

 1 0 0 Not_testing

 2 0 0 Not_testing

 3 0 0 Not_testing

 4 0 0 Not_testing

 5 0 0 Not_testing

Selective self-test flags (0x0):

 After scanning selected spans, do NOT read-scan remainder of disk.

If Selective self-test is pending on power-up, resume after 0 minute delay.

SCT Status Version: 3

SCT Version (vendor specific): 1 (0x0001)

SCT Support Level: 1

Device State: Active (0)

Current Temperature: 36 Celsius

Power Cycle Min/Max Temperature: 34/45 Celsius

Lifetime Min/Max Temperature: 24/45 Celsius

Under/Over Temperature Limit Count: 0/0

SCT Temperature History Version: 2

Temperature Sampling Period: 1 minute

Temperature Logging Interval: 1 minute

Min/Max recommended Temperature: 5/55 Celsius

Min/Max Temperature Limit: 5/55 Celsius

Temperature History Size (Index): 478 (197)

Index Estimated Time Temperature Celsius

 198 2018-10-31 01:02 37 ******************
(12 skipped). .. ******************
 211 2018-10-31 01:15 37 ******************
 212 2018-10-31 01:16 36 *****************
(137 skipped). .. *****************
<snip>

Chapter 13 tools for problem solving

383

 16 2018-10-31 05:58 35 ****************
 17 2018-10-31 05:59 36 *****************
(179 skipped). .. *****************
 197 2018-10-31 08:59 36 *****************

SCT Error Recovery Control:

 Read: Disabled

 Write: Disabled

Device Statistics (GP Log 0x04)

Page Offset Size Value Flags Description

0x01 ===== = = === == General Statistics (rev 2) ==

0x01 0x008 4 132 --- Lifetime Power-On Resets

0x01 0x010 4 19898 --- Power-on Hours

0x01 0x018 6 37056039193 --- Logical Sectors Written

0x01 0x020 6 31778305 --- Number of Write Commands

0x01 0x028 6 46110927573 --- Logical Sectors Read

0x01 0x030 6 256272184 --- Number of Read Commands

0x02 ===== = = === == Free-Fall Statistics (rev 1) ==

0x02 0x010 4 63 --- Overlimit Shock Events

0x03 ===== = = === == Rotating Media Statistics (rev 1) ==

0x03 0x008 4 19897 --- Spindle Motor Power-on Hours

0x03 0x010 4 19891 --- Head Flying Hours

0x03 0x018 4 162 --- Head Load Events

0x03 0x020 4 0 --- Number of Reallocated Logical Sectors

0x03 0x028 4 0 --- Read Recovery Attempts

0x03 0x030 4 0 --- Number of Mechanical Start Failures

0x04 ===== = = === == General Errors Statistics (rev 1) ==

0x04 0x008 4 0 --- Number of Reported Uncorrectable Errors

0x04 0x010 4 1 --- Resets Between Cmd Acceptance and

Completion

0x05 ===== = = === == Temperature Statistics (rev 1) ==

0x05 0x008 1 36 --- Current Temperature

0x05 0x010 1 37 N-- Average Short Term Temperature

0x05 0x018 1 38 N-- Average Long Term Temperature

0x05 0x020 1 45 --- Highest Temperature

0x05 0x028 1 24 --- Lowest Temperature

0x05 0x030 1 41 N-- Highest Average Short Term Temperature

0x05 0x038 1 30 N-- Lowest Average Short Term Temperature

Chapter 13 tools for problem solving

384

0x05 0x040 1 39 N-- Highest Average Long Term Temperature

0x05 0x048 1 32 N-- Lowest Average Long Term Temperature

0x05 0x050 4 0 --- Time in Over-Temperature

0x05 0x058 1 55 --- Specified Maximum Operating Temperature

0x05 0x060 4 0 --- Time in Under-Temperature

0x05 0x068 1 5 --- Specified Minimum Operating Temperature

0x06 ===== = = === == Transport Statistics (rev 1) ==

0x06 0x008 4 1674 --- Number of Hardware Resets

0x06 0x018 4 0 --- Number of Interface CRC Errors

0x07 ===== = = === == Solid State Device Statistics

(rev 1) ==

 |||_ C monitored condition met

 ||__ D supports DSN

 |___ N normalized value

Pending Defects log (GP Log 0x0c) not supported

SATA Phy Event Counters (GP Log 0x11)

ID Size Value Description

0x0001 4 0 Command failed due to ICRC error

0x0002 4 0 R_ERR response for data FIS

0x0003 4 0 R_ERR response for device-to-host data FIS

0x0004 4 0 R_ERR response for host-to-device data FIS

0x0005 4 0 R_ERR response for non-data FIS

0x0006 4 0 R_ERR response for device-to-host non-data FIS

0x0007 4 0 R_ERR response for host-to-device non-data FIS

0x0008 4 0 Device-to-host non-data FIS retries

0x0009 4 15 Transition from drive PhyRdy to drive PhyNRdy

0x000a 4 16 Device-to-host register FISes sent due to a COMRESET

0x000b 4 0 CRC errors within host-to-device FIS

0x000d 4 0 Non-CRC errors within host-to-device FIS

0x000f 4 0 R_ERR response for host-to-device data FIS, CRC

0x0010 4 0 R_ERR response for host-to-device data FIS, non-CRC

0x0012 4 0 R_ERR response for host-to-device non-data FIS, CRC

0x0013 4 0 R_ERR response for host-to-device non-data FIS, non-

CRC

[root@david ~]#

Chapter 13 tools for problem solving

385

one easy to understand part of this long and complex result is the start of reaD smart

Data seCtion. the preceding result shown is

SMART overall-health self-assessment test result: PASSED

the specific data shown for a particular hard drive will vary depending upon the device

vendor and model. and more recent versions of the software can take advantage of additional

information stored by newer hard drives.

The SMART11 reports contain a great deal of information which can be useful if it can

be understood. At first glance the data can be very confusing, but a little knowledge can

be very helpful. Contributing to the confusion is the fact that there are no standards for

the information being displayed and different vendors implement SMART in different

ways.

One large cloud storage company has been keeping records of close to 40,000 hard

drives over the last few years and posting their data on the Web. According to an article12

on the Computer World web site, the company identified the following five data points

that can predict hard drive failures:

• SMART 5: Reallocated_Sector_Count

• SMART 187: Reported_Uncorrectable_Errors

• SMART 188: Command_Timeout

• SMART 197: Current_Pending_Sector_Count

• SMART 198 : Offline_Uncorrectable

Each of these attributes is listed in the SMART Attributes section of the output, and

low numbers are good. If any one – or especially more than one – of these attributes have

high numbers, then it would be a good idea to replace the hard drive.

11 Wikipedia, S.M.A.R.T., https://en.wikipedia.org/wiki/S.M.A.R.T.
12 Mearian, Lucas, The 5 SMART stats that actually predict hard drive failure, Computer World,
www.computerworld.com/article/2846009/the-5-smart-stats-that-actually-predict-
hard-drive-failure.html

Chapter 13 tools for problem solving

https://en.wikipedia.org/wiki/S.M.A.R.T
http://www.computerworld.com/article/2846009/the-5-smart-stats-that-actually-predict-hard-drive-failure.html
http://www.computerworld.com/article/2846009/the-5-smart-stats-that-actually-predict-hard-drive-failure.html

386

 System statistics with SAR
The sar command is one of my favorite tools when it comes to resolving problems. SAR

stands for System Activity Reporter. Its primary function is to collect system performance

data for each day and store it in log files for later display. Data is collected as ten-minute

averages, but more granular collection can also be configured. Data is retained for one

month.

The only time I have made any changes to the SAR configuration is when I needed to

collect data every minute instead of every ten minutes in order to get a better handle on

the exact time a particular problem was occurring. The SAR data is stored in two files per

day in the /var/log/sa directory. Collecting data more frequently than every ten minutes

can cause these files to grow very large.

In one place I worked, we had a problem that would start and escalate so quickly

that the default ten-minute interval was not very helpful in determining which occurred

first, CPU load, high disk activity, or something else. Using a one-minute interval, we

determined that not only was CPU activity high but that it was preceded by a short

interval of high network activity as well as high disk activity. It was ultimately determined

that this was an unintentional denial of service (DOS) attack on the web server that was

complicated by the fact that there was too little RAM installed in the computer to handle

the temporary overload. Adding 2GB of RAM to the existing 2GB resolved the problem,

and further DOS attacks have not caused problems.

 Installation and configuration
SAR is installed as part of the sysstat package in Red Hat-based distributions; however,

it is not installed by default in at least some of the current Fedora distributions. We

installed it in Chapter 7. By now the SAR data collection has been running long enough

to accumulate a significant amount of data for us to explore.

After installing SAR as part of the sysstat package, there is normally nothing that

needs to be done to alter its configuration or to start it collecting data. Data is collected

on every ten- minute mark of each hour.

 Examining collected data
The output from the sar command can be very detailed. A full day of data on my primary

workstation, the one with 16 Intel cores and 32 CPUs, produced 14,921 lines of data.

Chapter 13 tools for problem solving

387

You can deal with this in multiple ways. You can choose to limit the data displayed by

specifying only certain subsets of data, you can grep out the data you want, or you can

pipe it through the less tool and page through the data using less’s built-in search

feature.

EXPERIMENT 13-12

perform this experiment as the student user. the root privileges are not required to run the

sar command. because of the very large amount of data that can be emitted by sar, i will not

reproduce it all here except for headers and a few lines of data to illustrate the results.

Note some options for the sar command are in uppercase as shown. Using
lowercase will result in an error, or incorrect data being displayed.

first, just enter the sar command with no options which displays only aggregate CpU

performance data. the sar command uses the current day by default, starting at midnight or

the time in the current day when the system was booted. if the host was rebooted during the

current day, there will be a notification in the results. note that some of the output of the sar

command can be very wide:

[student@studentvm1 ~]$ sar

Linux 4.18.9-200.fc28.x86_64 (studentvm1) 11/01/2018 _x86_64_ (2 CPU)

08:44:38 LINUX RESTART (2 CPU)

08:50:01 AM CPU %user %nice %system %iowait %steal %idle

09:00:05 AM all 0.01 0.03 0.13 1.54 0.00 98.28

09:10:05 AM all 0.01 0.00 0.09 0.95 0.00 98.95

09:20:05 AM all 0.01 0.00 0.08 1.14 0.00 98.77

09:30:02 AM all 0.02 0.00 0.09 1.17 0.00 98.72

09:40:05 AM all 0.01 0.00 0.08 0.95 0.00 98.96

09:50:02 AM all 0.01 0.00 0.09 1.04 0.00 98.86

10:00:01 AM all 0.01 0.01 0.09 1.29 0.00 98.61

10:10:01 AM all 0.01 0.00 0.08 0.93 0.00 98.98

10:20:05 AM all 6.26 3.91 82.39 0.18 0.00 7.26

Average: all 0.68 0.42 8.89 1.02 0.00 88.98

Chapter 13 tools for problem solving

388

11:10:03 AM LINUX RESTART (2 CPU)

11:20:31 AM CPU %user %nice %system %iowait %steal %idle

11:30:31 AM all 18.41 10.15 71.34 0.00 0.00 0.10

11:40:07 AM all 20.07 10.93 68.83 0.00 0.00 0.17

11:50:18 AM all 18.68 10.32 70.88 0.00 0.00 0.13

12:00:31 PM all 17.83 10.09 71.98 0.00 0.00 0.09

12:10:31 PM all 17.87 10.95 71.07 0.00 0.00 0.11

Average: all 18.55 10.48 70.84 0.00 0.00 0.12

[student@studentvm1 ~]$

all of this data is an aggregate for all CpUs, in this case two, for each ten-minute time period.

it also is the same data you would see in top, htop, and atop for CpU usage. Use the next

command to view details for each individual CpU:

[student@studentvm1 ~]$ sar -P ALL

Linux 4.18.9-200.fc28.x86_64 (studentvm1) 11/01/2018 _x86_64_ (2 CPU)

08:44:38 LINUX RESTART (2 CPU)

08:50:01 AM CPU %user %nice %system %iowait %steal %idle

09:00:05 AM all 0.01 0.03 0.13 1.54 0.00 98.28

09:00:05 AM 0 0.02 0.00 0.12 0.24 0.00 99.61

09:00:05 AM 1 0.01 0.05 0.14 2.85 0.00 96.95

09:00:05 AM CPU %user %nice %system %iowait %steal %idle

09:10:05 AM all 0.01 0.00 0.09 0.95 0.00 98.95

09:10:05 AM 0 0.02 0.00 0.08 0.10 0.00 99.80

09:10:05 AM 1 0.01 0.00 0.10 1.80 0.00 98.09

<snip>

12:20:31 PM CPU %user %nice %system %iowait %steal %idle

12:30:31 PM all 15.4% 13.6% 70.8% 0.0% 0.0% 0.2%

12:30:31 PM 0 16.9% 15.3% 67.7% 0.0% 0.0% 0.1%

12:30:31 PM 1 13.9% 11.8% 73.9% 0.0% 0.0% 0.4%

Average: CPU %user %nice %system %iowait %steal %idle

Average: all 18.3% 10.7% 70.9% 0.0% 0.0% 0.1%

Average: 0 18.8% 15.6% 65.6% 0.0% 0.0% 0.0%

Average: 1 17.8% 5.9% 76.1% 0.0% 0.0% 0.2%

Chapter 13 tools for problem solving

389

no
w

 u
se

 th
e

fo
llo

w
in

g
co

m
m

an
d

to
 v

ie
w

 d
is

k
st

at
is

tic
s.

 t
he

 -
h

op
tio

n
m

ak
es

 th
e

da
ta

 m
or

e
ea

si
ly

 re
ad

ab
le

 b
y

hu
m

an
s

an
d,

 fo
r

bl
oc

k
de

vi
ce

s
(d

is
ks

),
al

so
 s

ho
w

s
th

e
na

m
e

of
 th

e
de

vi
ce

. t
he

 -
d

op
tio

n
sp

ec
ifi

es
 th

at
 s

ar
 is

 to
 d

is
pl

ay
 d

is
k

ac
tiv

ity
:

[s
tu
de
nt
@s
tu
de
nt
vm
1
~]
$
sa
r
-d
h

Li
nu
x
4.
18
.9
-2
00
.f
c2
8.
x8
6_
64
 (
st
ud
en
tv
m1
)

 1
1/
01
/2
01
8

_x
86
_6
4_

(2
 C
PU
)

08
:4
4:
38

 L
IN
UX
 R
ES
TA
RT

(2
 C
PU
)

08
:5
0:
01
 A
M

tp
s

rk
B/
s

wk
B/
s

ar
eq
-s
z

 a
qu
-s
z

aw
ai
t

sv
ct
m

%u
ti
l
DE
V

09
:0
0:
05
 A
M

 8
.1
2

 1
68
.8
k

13
.5
k

22
.5
k

 0
.0
7

 7
.8
8

 4
.4
9

 3
.6
%
sd
a

09
:0
0:
05
 A
M

 0
.0
0

 0
.0
k

 0
.0
k

 0
.0
k

 0
.0
0

 0
.0
0

 0
.0
0

 0
.0
%
fe
do
ra
_s
tu
de
nt
vm
1-
po
ol
00
_t
me
ta

09
:0
0:
05
 A
M

 0
.0
9

 0
.5
k

 0
.1
k

 7
.1
k

 0
.0
0

15
.5
3

 9
.1
3

 0
.1
%
fe
do
ra
_s
tu
de
nt
vm
1-
po
ol
00
_t
da
ta

09
:0
0:
05
 A
M

 0
.0
9

 0
.5
k

 0
.1
k

 7
.1
k

 0
.0
0

15
.5
3

 9
.1
3

 0
.1
%
fe
do
ra
_s
tu
de
nt
vm
1-
po
ol
00
-t
po
ol

09
:0
0:
05
 A
M

 0
.0
9

 0
.7
k

 0
.2
k

 9
.5
k

 0
.0
0

15
.5
3

 9
.1
3

 0
.1
%
fe
do
ra
_s
tu
de
nt
vm
1-
ro
ot

09
:0
0:
05
 A
M

 0
.0
0

 0
.0
k

 0
.0
k

 0
.0
k

 0
.0
0

 0
.0
0

 0
.0
0

 0
.0
%
fe
do
ra
_s
tu
de
nt
vm
1-
sw
ap

09
:0
0:
05
 A
M

 0
.8
6

14
.3
k

 1
.1
k

18
.1
k

 0
.0
1

10
.2
5

 4
.4
1

 0
.4
%
fe
do
ra
_s
tu
de
nt
vm
1-
us
r

09
:0
0:
05
 A
M

 0
.0
0

 0
.0
k

 0
.0
k

 0
.0
k

 0
.0
0

 0
.0
0

 0
.0
0

 0
.0
%
fe
do
ra
_s
tu
de
nt
vm
1-
ho
me

09
:0
0:
05
 A
M

 7
.7
1

 1
54
.0
k

12
.3
k

21
.6
k

 0
.0
6

 8
.3
9

 4
.2
1

 3
.2
%
fe
do
ra
_s
tu
de
nt
vm
1-
va
r

09
:0
0:
05
 A
M

 0
.0
6

 0
.0
k

 0
.2
k

 4
.0
k

 0
.0
0

27
.3
7

23
.7
1

 0
.1
%
fe
do
ra
_s
tu
de
nt
vm
1-
tm
p

09
:1
0:
05
 A
M

 1
.7
4

 0
.4
k

 8
.3
k

 5
.0
k

 0
.1
0

55
.0
5

14
.0
6

 2
.4
%
sd
a

09
:1
0:
05
 A
M

 0
.0
0

 0
.0
k

 0
.0
k

 0
.0
k

 0
.0
0

 0
.0
0

 0
.0
0

 0
.0
%
fe
do
ra
_s
tu
de
nt
vm
1-
po
ol
00
_t
me
ta

09
:1
0:
05
 A
M

 0
.0
2

 0
.0
k

 0
.1
k

 3
.7
k

 0
.0
0

34
.2
5

34
.2
5

 0
.1
%
fe
do
ra
_s
tu
de
nt
vm
1-
po
ol
00
_t
da
ta

09
:1
0:
05
 A
M

 0
.0
2

 0
.0
k

 0
.1
k

 3
.7
k

 0
.0
0

34
.2
5

34
.2
5

 0
.1
%
fe
do
ra
_s
tu
de
nt
vm
1-
po
ol
00
-t
po
ol

<s
ni
p>

Chapter 13 tools for problem solving

390

try the preceding command without the -h option.

run the following command to view all of the output for the current day or at least since the

host was booted for the first time during the current day:

[student@studentvm1 ~]$ sar -A | less

Use the man page for the sar command to interpret the results and to get an idea of the many

options available. many of those options allow you to view specific data such as network and

disk performance.

i typically use the sar -A command because many of the types of data available are

interrelated and sometimes i find something that gives me a clue to a performance problem in

a section of the output that i might not have looked at otherwise.

You can limit the total amount of data to just the total CpU activity. try that and notice that you

only get the composite CpU data, not the data for the individual CpUs. also try the -r option for

memory and -s for swap space. it is also possible to combine these options so the following

command will display CpU, memory, and swap space:

[student@studentvm1 ~]$ sar -urS

if you want only data between certain times, you can use -s and -e to define the start and

end times, respectively. the following command displays all CpU data, both individual and

aggregate for the time period between 7:50 am and 8:11 am today:

[student@studentvm1 ~]$ sar -P ALL -s 07:50:00 -e 08:11:00

note that all times must be specified in 24-hour format. if you have multiple CpUs, each CpU is

detailed individually, and the average for all CpUs is also given.

the next command uses the -n option to display network statistics for all interfaces:

[student@studentvm1 ~]$ sar -n ALL | less

Data collected for previous days can also be examined by specifying the desired log file.

assume that you want to see the data for the second day of the month, the following

command displays all collected data for that day. the last two digits of each file name are the

day of the month on which the data was collected.

Chapter 13 tools for problem solving

391

i used the file sa02 in the following example, but you should list the contents of the /var/log/sa

directory and choose a file that exists there for your host:

[student@studentvm1 ~]$ sar -A -f /var/log/sa/sa02 | less

You can also use sar to display (nearly) real-time data. the following command displays

memory usage in five-second intervals for ten iterations:

[student@studentvm1 ~]$ sar -r 5 10

this is an interesting option for sar as it can provide a series of data points for a defined period

of time that can be examined in detail and compared.

the sar utility is very powerful and has many options. We have merely touched on a few of

them, and all are listed in the man page. i suggest you familiarize yourself with sar because

it is very useful for locating those performance problems that occur when no one is around to

see them.

If you are not very familiar with Intel and related hardware, some of the output from

the sar command may not be particularly meaningful to you. Over time SysAdmins are

pretty much bound to learn a great deal about hardware, and you will, too. The best way

I can suggest to do this in a relatively safe manner is to use the tools you are learning in

this course to explore all of the VMs and physical hosts you have available to you. I also

like to build my own computers from parts I purchase at my local computer store and on

the Internet. I also fix my own hardware.

 Cleanup
A little cleanup may be required at this point. We want to kill the cpuHogs, and you

may also want to close many but not all of the terminal sessions you opened during the

course of the experiments in this chapter.

Use top to kill one of the CPU hog processes using signal 2. Now use htop to kill the

other CPU hog process with signal 15. Quit the top, htop, and atop programs, and close

all but one or two of the terminal sessions.

Chapter 13 tools for problem solving

392

 Chapter summary
This chapter has introduced you to some of the most common tools that SysAdmins

use for determining the source of many types of performance problems. Each tool that

we explored provides useful information that can help locate the source of a problem.

Although I start with top, I also depend upon all of the other tools as well because they

are useful and valuable. Each one has enabled me to resolve a problem when the others

could not.

There are many other tools available, and a good number of them are tools that can

be used on a GUI desktop to display pretty graphs of many types. We have looked at

these specific tools because they are the ones that are most likely to be available or easily

installed on almost any Linux host. As you progress in your experience as a SysAdmin,

you will find other tools that will be useful to you.

In no way should you try to memorize every option of every tool. Just knowing that

these tools are there and that they each have useful and interesting capabilities gives you

a place to start when trying to solve problems. You can explore more as time permits,

and having a specific task, such as fixing a broken system, can focus your efforts on the

specifics needed for that problem.

In my opinion it is completely unnecessary to purchase expensive tools that merely

repackage the content of the /proc filesystem – because that is exactly what they do.

Nothing can give you any more information than what is already available to you using

standard Linux tools. Linux even has many GUI tools from which to choose that can

display graphs of all of the data we have looked at here and more and can do it with both

local and remote hosts.

And finally – by now you should be used to viewing the man and info pages as well

as the available help options on most commands we are using to learn more about them.

So I suspect you are as tired of reading those suggestions as I am of writing them. Let’s

just stipulate that one thing you should always do when you read about a new command

is to use those tools to assist you in learning more.

Chapter 13 tools for problem solving

393

 Exercises
Perform the following exercises to complete this chapter:

 1. Can you set the refresh delay for the top command to sub-second,

such as .2 or .5 seconds?

 2. Define the three load average numbers.

 3. Using top, how much memory and swap space are free on the

StudentVM1 virtual host?

 4. List at least three other tools that you can find the memory usage

information.

 5. What does the TIME+ value in the top display tell you?

 6. How much memory and swap space are free on this VM?

 7. What is the default sort column for top?

 8. Change the top sort column first to PID and then to TIME+. What

is the PID of the process with the most CPU time?

 9. What is the original source of data for top and every other tool we

have explored in this chapter?

 10. Is it possible to buffer data from more than one program in the

same named pipe before reading any data from it?

 11. Which of the tools discussed in this chapter provides network I/O

information?

 12. Which of the tools discussed in this chapter allows operations

such as renicing to be performed simultaneously on multiple

processes?

 13. Using htop, on which column would you sort to determine which

processes have accumulated the most total CPU time?

 14. What is the difference between total and actual disk reads and

writes as displayed by iotop?

 15. Use the setup feature of htop to add the hostname and the time of

day clock to the top of the right-hand header column.

Chapter 13 tools for problem solving

394

 16. What command would you use to obtain a time-domain graph of

the internal temperatures of a hard drive?

 17. Use SAR to view the network statistics for the current day.

 18. View all of the recorded system activity for yesterday as of this

reading and if your VM was running at that time. If not, choose

another day in the SAR data collection.

 19. What type of CPU is installed in your VM? Make: _________

Model:_____________Speed: __________GHz

Chapter 13 tools for problem solving

395
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_14

CHAPTER 14

Terminal Emulator Mania
 Objectives
In this chapter you will learn

• To use multiple different terminal emulators

• To use advanced features of these terminal emulators to work more

efficiently

• To use advanced Bash shell tools like wildcards, sets, brace

expansion, meta-characters, and more to easily locate and act upon

single or multiple files

The function of the terminal emulator is to provide us with a window on the GUI

desktop that allows us to access the Linux command line where we can have unfettered

access to the full power of Linux. In this chapter we will explore several terminal

emulators in some detail as a means to better understand how these terminal emulators

can make our use of the CLI more productive.

 About terminals
To refresh our memories, a terminal emulator is a software program that emulates a

hardware terminal. Most terminal emulators are graphical programs that run on any Linux

graphical desktop environment like Xfce, KDE, Cinnamon, LXDE, GNOME, and others.

In Chapter 7 we explored the command-line interface (CLI) and the concept of the

terminal emulator1 in some detail. We specifically looked at the xfce4-terminal to get us

started on the command line, but we did not explore it in much depth. We will look at its

features more closely along with several other terminal emulators.

1 Wikipedia, Terminal Emulator, https://en.wikipedia.org/wiki/Terminal_emulator

https://en.wikipedia.org/wiki/Terminal_emulator

396

PREPARATION 14-1

Not all distributions install all of the terminal emulators we will use during this chapter, so

we will install them now. Do this as root. Enter the following command to install the terminal

emulators we will be exploring:

dnf -y install tilix lxterminal konsole5 rxvt terminator

You will notice that there were lots of dependencies installed in addition to the emulators

themselves.

All of these terminal emulators should now appear in the System Tools submenu of

the system launcher on your desktop.

 My requirements
As a Linux SysAdmin with many systems to manage in multiple locations, my life is all

about simplification and making access to and monitoring of those systems easy and

flexible. I have used many different terminal emulators in the past, all the way from the

venerable Xterm to Terminator and Konsole.

With as many as 25 or 30 terminal sessions open simultaneously much of the time,

having a few windows in which to manage those sessions prevents having large numbers

of windows open on my desktop. As a person who generally keeps a messy physical

desktop – they do say that is the sign of high intelligence, cough, cough – and lots of open

windows on my Linux desktop, wrangling all of my terminal sessions into a three or four

windows is a great step forward in terms of decluttering.

Figure 14-1 shows the desktop of my own primary workstation as I write this chapter.

I have three different emulators open. I understand that it is impossible to discern any

details in Figure 14-1, but it does give you a good image of the flexibility provided by

having multiple terminal emulators open on a single GUI desktop.

ChaptEr 14 tErmiNal Emulator maNia

397

There are many terminal emulators available for Linux. Their different approaches

to this task were defined by the needs, likes, dislikes, and philosophies of the developers

who created them. One web site has an article entitled “35 Best Linux Terminal

Emulators for 2018”2 which should give you an idea of how many options there are.

Unfortunately there are too many for us to examine all of them here. The emulators we

will explore in this chapter have features that enable us to massively leverage the power

of the command line to become more efficient and effective in performing our jobs. I

have used all of these terminal emulators at one time or another, and they all provide

powerful features to do that. Sometimes I use more than one terminal emulator at the

same time because each may fit the way I work better for a specific task. So while my –

current – favorite terminal emulator happens to be xfce4-terminal and I have multiple

instances of that open, I may also have instances of other terminal emulators open, too.

But let’s do look more closely at a few of these terminal emulators.

2 35 Best Linux Terminal Emulators for 2018, www.slant.co/topics/794/~best-linux-terminal-
emulators

Figure 14-1. My main workstation desktop with multiple terminal emulators open

ChaptEr 14 tErmiNal Emulator maNia

http://www.slant.co/topics/794/~best-linux-terminal-emulators
http://www.slant.co/topics/794/~best-linux-terminal-emulators

398

 rxvt
There are some very minimalistic terminals out there. The rxvt terminal emulator

is one of these. It has no features like tabs or multiple panes that can be opened in a

single window. Its font support is primitive, and a specific font must be specified on the

command line, or the very basic default font will be used.

EXPERIMENT 14-1

open an rxvt instance on the desktop of your Vm. the rxvt window has no menu or icon bars.

right-click in the window does nothing. But you can use it as a basic terminal emulator.

Experiment with rxvt for a few minutes just to get a feel for a truly old-style but functional

terminal emulator.

The reason I included this terminal emulator in our exploration is to give you a

baseline for comparing the advanced features of some of the other terminal emulators.

Also, you may prefer this type of terminal emulator. There are people who do, and that is

your choice and perfectly fine.

The rxvt terminal executable is 197,472 bytes in size, and it uses 226MB of virtual

memory when running. This is the smallest memory footprint of any terminal emulators

I looked at for this chapter. But it is also a minimalist project. It has no features of any kind

other than the fact that it works as a terminal emulator. It does have some options that can

be used as part of the command line used to launch it, but these, too, are very minimal.

 xfce4-terminal
The xfce4-terminal emulator is my current favorite. It is a powerful emulator that uses tabs

to allow multiple terminals in a single window. It is flexible and easy to use. This terminal

emulator is simple compared to emulators like Tilix, Terminator, and Konsole, but it gets

the job done. And, yes, xfce4-terminal is the name of the executable for this emulator.

ChaptEr 14 tErmiNal Emulator maNia

399

One of my favorite features of the xfce4-terminal are the tabs. You can open many

tabs in a single window, and each tab can be logged in as a different user, or as root, or

into different hosts. Think of each tab as a separate terminal session. This provides a

huge amount of flexibility to run multiple terminal sessions while maintaining a single

window on the desktop.

I especially like the tabs on the xfce4-terminal emulator because they display the

name of the host to which they are connected regardless of how many other hosts are

connected through to make that connection, for example, host1 → host2 → host3 →

host4 properly shows host4 in the tab. Other emulators show host2 at best. Like other

components of the Xfce desktop, this terminal emulator uses very little in the way of

system resources. You can also use the mouse to drag the tabs and change their order;

a tab can also be dragged completely out of the window and onto the desktop which

places it in a window of its own where you can then add more tabs if you like.

Let’s try it now. Because we are using the Xfce desktop, you should have already been

using the xfce4-terminal up to this point. You should, therefore, already be somewhat

familiar with it.

EXPERIMENT 14-2

perform this experiment as the student user. if you do not already have an available

instance of the xfce4-terminal open on your desktop, open one now. Figure 14-2 shows an

xfce4- terminal window with three tabs open.

ChaptEr 14 tErmiNal Emulator maNia

400

Figure 14-2. The xfce4-terminal emulator sports an easy-to-use interface that
includes tabs for switching between emulator sessions. Each tab may be logged in
as a different user, to a different host, or any combination

there should still be only be a single tab open in your instance. perform a simple task just to

have some content in this first terminal session, such as the ll command.

in addition to the standard menu bar, the xfce4-terminal emulator also has an icon bar which

can be used to open another tab or another emulator window. We need to turn on the icon bar

in order to see it. on the menu bar, select View ➤ Show toolbar. hover the mouse pointer over

the leftmost icon in the icon bar. the tool tip indicates that this icon will launch another tab in

the current window. Click the tab icon. the new tab is inserted in the rightmost position of the

tab bar which is created if there was only one terminal session open previously. open a couple

more tabs and su - to root in one of them.

ChaptEr 14 tErmiNal Emulator maNia

401

the tab names can be changed, and the tabs can be rearranged by drag and drop or by selecting

the options on the menu bar. Double-click one of the tabs to open a small dialog that allows you

to specify a new static name for the tab. type in the name “my tab.” Drag “my tab” to a new

location in the tab bar. Now drag one tab completely away from the xfce4-terminal window, and

drop it somewhere else on the desktop. this creates a new window that contains only that tab.

the new window now acts just the same as the original, and you can open new tabs in it as well.

many aspects of function and appearance can be easily configured to suit your needs. opening

the terminal preferences configuration menu shown in Figure 14-3 gives access to five tabs

that enable you to configure various aspects of the xfce4-terminal’s look and feel. open the

terminal Edit ➤ Preferences dialog, and select the Appearance tab. Choose different fonts

and font sizes to view the differences. the htop utility uses bold text for some types of data, so

remove the check mark from the Allow bold text item to see how that looks.

Figure 14-3. The xfce4-terminal Terminal Preferences dialog allows configuration
of many aspects of its look and feel

ChaptEr 14 tErmiNal Emulator maNia

402

i sometimes fuss with the options in the Colors tab to enable some colors to be more

readable. the Colors tab also has some presets from where you can start your modifications.

i usually start with green or white on black and modify some of the individual colors to

improve readability. Select the Colors tab. load a couple of the different presets to view the

differences. Feel free to experiment with this tab for a short time.

Select the tab with htop running in it. press the F1 key to see the htop help.

press F1 again to close the htop help page. Close all of the open xfce4-terminal windows.

In my opinion, the xfce4-terminal emulator is the best overall terminal emulator

I have used. It just works, and it has the features that work for me. So long as there is

horizontal space available in the emulator window, the tabs are wide enough to show the

entire host and directory name or certainly enough to figure out the rest. Other terminal

emulators with tabs usually have fixed size tabs that restrict the view of the available

information in the tab.

The xfce4-terminal executable is just a little over 255KB in size. This emulator uses

576MB of virtual memory when running which is the second least of the advanced

emulators I tested.

 LXTerminal
The LXTerminal emulator uses the least amount of RAM and has the smallest executable

file of any of the other terminal emulators I have used. It has few extraneous features, but

it does have tabs to enable multiple sessions in a single emulator window.

The LXTerminal window has no icon bar; it uses only a menu bar and pop-up menus

and dialog boxes when you right-click the window.

EXPERIMENT 14-3

open an instance of lXterminal as the student user. run a short command such as ll to

show some content in the first session. No tabs are displayed yet.

right-click the existing session to display a pop-up menu, and select New tab to open second

tab. two tabs should now be visible at the top of the terminal emulator window. Now open the

File menu from the menu bar, and open a new tab. there should now be three open tabs as

you can see in Figure 14-4.

ChaptEr 14 tErmiNal Emulator maNia

403

use the menu bar, and open Edit ➤ Preferences to display the minimalistic configuration

options. You can change the terminal font and adjust the colors and cursor style on the Style

tab. i sometimes adjust one or more of these colors to make certain colorized text a bit more

readable. Choose a couple of the color palettes to see what is available, and then modify by

using that as a starting point.

Notice that no preference changes take effect until you click the OK button which also

closes the preferences dialog. this is one thing i dislike. Save your current changes to see how

that looks.

open Preferences again and select the Display tab. i like having the tabs at the top, but you

may prefer to have them at the bottom of the window. Select Bottom and save the change.

the Display tab also allows changing the number of scrollback lines, which i usually do not

change, and the default window size when a new lXterminal window is opened. i currently

Figure 14-4. The LXTerminal window with three tabs open

ChaptEr 14 tErmiNal Emulator maNia

404

have this adjusted to 130 columns by 65 lines. i have a lot of screen real estate, so that is fine

on my wide screen. play around with the window size, and start a new session of lXterminal

to see how that works for you.

other options on this tab enable you to hide various tools like the scroll bar and the menu bar.

play around with this to see how you might work in an environment without those tools.

i never hide any of them.

Switch to the Advanced tab. the only thing i ever do on this tab is disable the F10 menu

shortcut key. the shortcuts tab provides the ability to change that key to something else,

but i never change the defaults there, either.

Spend some time exploring lXterminal on your own so you can get a better feel for how it

works for you. When finished, close all instances of lXterminal.

LXTerminal is a very lightweight terminal emulator which is reflected in its small

size and relatively few configuration options. The important thing with this terminal

emulator is that it has all of the things we need as SysAdmins to do our jobs quickly and

easily. These two facts make LXTerminal perfect for small systems such as smaller and

older laptops with low amounts of RAM but also powerful enough to be just as perfect in

big systems like my primary workstation.

The lxterminal executable is 98,592 bytes in size, and it consumes 457MB of virtual

memory when running. Both of these numbers are the smallest of any of the advanced

emulators that I have tested.

 Tilix
Tilix helps me organize at least a bit by allowing me to keep all – or at least a large

number – of my terminal sessions in one very flexible window. I can organize my

terminal sessions in many different ways due to the extreme power and flexibility of Tilix.

Figure 14-5 shows a typical – at least for me – Tilix window with one of the three active

sessions that contains four terminals. Each terminal in this session – session 2 of 2 – is

connected to a different host using SSH. Note that the title bar in each terminal displays

the user, hostname, and current directory for that terminal.

ChaptEr 14 tErmiNal Emulator maNia

405

The Tilix instance in Figure 14-5 is running on my personal workstation. I have used

SSH to log in to three different hosts in the student virtual network. The left half of the

screen is a host that I use for testing, testvm1. The top right terminal is logged in to a VM

server, studentvm2, which I have installed on my virtual test network.3 The terminal at

the bottom right is logged into studentvm1. This can make it easy for me to monitor all

three hosts in my virtual network. Some of the details may be difficult to see in

Figure 14- 5, but you can see how this ability to have multiple terminals open in a single

emulator window can allow easy comparison of multiple systems or multiple utilities on

a single host can be very useful.

Let's ensure that we keep our terminology straight because it can be confusing.

In Tilix, a “session” is a page in a Tilix window that contains one or more terminals.

Opening a new session opens a new page with a single terminal emulation session.

Tilix sessions can be created or subdivided horizontally and vertically, and general

3 The referenced server is created in Volume 3.

Figure 14-5. This Tilix instance has two sessions active with three terminals open
in session 2

ChaptEr 14 tErmiNal Emulator maNia

406

configuration can be performed using the tools in the Tilix title bar. Placing the window

and session controls in the window title bar saves the space usually used for separate

menu and icon bars.

EXPERIMENT 14-4

as the student user, start by opening an instance of tilix on your Vm desktop. like the other

terminal emulators that provide for multiple terminal sessions in a single window, only one

session is opened when the emulator is launched.

Figure 14-6 shows the top portion of the tilix window with only one emulator session open.

You can open another terminal in a new session, as defined earlier, or in this session. For this

instance, let’s open a new terminal in this session vertically next to the existing terminal.

on the left side of the title bar are the icons that let us open new terminals in various ways.

the two icons in Figure 14-7 open a new terminal in the current session.

Figure 14-6. The title bar of the Tilix window contains a nonstandard set of icons
that are used to help manage the terminal sessions

Figure 14-7. Use these icons to open new termianl sessions beside or belo the
current ones

ChaptEr 14 tErmiNal Emulator maNia

407

Click the left icon of this pair to open a terminal to the right of the existing one. the session

window will be split down the middle and will now contain two terminals one on the left and

one on the right. the result looks like that in Figure 14-8.

these two side-by-side terminals allow you to do things like use top to watch the effects of

commands executed in one terminal on system resources in the other.

Now select the terminal on the left, and click the button on the right of Figure 14-9. this

opens a new terminal such that terminal 1 is on the top and terminal 3 is on the bottom, with

terminal 2 still taking the entire right side of the session.

Figure 14-8. The Tilix session after creation of a second terminal

ChaptEr 14 tErmiNal Emulator maNia

408

You can move the splitters between the terminals to adjust their relative size. adjust both the

horizontal and vertical splitters to see how they work.

So far we have worked with only a single session. to create a second session in this tilix

window, click the plus sign (+) icon shown in Figure 14-10.

Figure 14-9. The Tilix window now has three terminals in this one session

Figure 14-10. Use the + icon to open a new session

the new session is created and is now the focus. the first session with its three terminals is

now hidden. the count in the icon now shows “2/2” because we are in the second session.

Click anywhere in the left part of this icon to show the sidebar. Displayed on the left of the tilix

window, the sidebar displays smaller images of the open sessions. Click the desired session to

switch to it.

ChaptEr 14 tErmiNal Emulator maNia

409

the icon on the far left of the title bar looks like a terminal screen, and we would normally

expect that to be the standard System menu. For tilix windows, that would be incorrect. tilix

places its own menu in that icon. one of the choices on that menu is Preferences. open the

Preferences dialog.

i will let you find your own way through this preferences dialog. i do suggest that you try

switching from use of the sidebar to using tabs to switch between sessions. try that for a

while and see which you like better.

there is one default profile for configuring the look and feel of tilix, and other profiles can be

added as needed. Each profile sets alternate values for the functions and appearance of tilix.

Existing profiles can be cloned to provide a starting place for new ones.

to select from a list of profiles for an already open window, click the name of the terminal

window, select Profiles, and then the profile you want to change to. You can also select one

profile to be the one used when a new tilix session or terminal is launched.

For me, using a terminal emulator on a GUI desktop adds the power of a GUI to that

of the command line. When using a terminal emulator like Tilix, Terminator, or Konsole

that allow multiple pages and split screens, my ability to work efficiently is increased

exponentially. Although there are other powerful terminal emulators out there that allow

multiple terminal sessions in a single window, I have found that Tilix meets my needs

better than any I have tried so far.

Tilix offers me most standard features that xfce4-terminal, LXTerm, Konsole,

Terminator, and other terminal emulation software do, while providing me some that

they do not. It implements those features in a classy interface that is easy to learn,

configure, and navigate, and it maximizes the use of onscreen real estate. I find that Tilix

fits my desktop working style very nicely and that is what it is all about, isn't it. The Tilix

executable is 2.9MB in size, and it consumes 675MB of virtual memory when running.

There are other options for managing multiple terminal emulator sessions in a

single window. We have already explored one of those, the GNU screen utility, and

tmux (terminal multiplexer) is another. Both of these tools can be run in any terminal

session using a single window, virtual console, or remote connection to provide creation

of and access to multiple terminal emulator sessions in that one window. These two

command-line tools are completely navigable by simple – or at least moderately simple –

keystrokes. They do not require a GUI of any kind to run.

ChaptEr 14 tErmiNal Emulator maNia

410

The terminal emulators we are discussing in this chapter, as well as many we are

not, are GUI tools that use multiple tabs or the ability to split an emulator window into

multiple panes, each with a terminal emulator session. Some of these GUI terminal

emulators, like Tilix, can divide the screen into multiple panes and use tabs, too. One

of the advantages of having multiple panes is that it is easy to place sessions we want

to compare or to observe together in a single window. It is easy, however, to split the

screen into so many panes that there is not enough space in them to really see what is

happening.

So we can use the fancy multipaned, tabbed terminal emulators and then run screen

or tmux in one or more of those emulator sessions. The only disadvantage I find to any of

this is that I sometimes lose track of the existing sessions that are open and so forget that

I already have one open already for a task I need to do. The combinations can get to be

very complex.

All of these interesting features make it possible to manage a large number of

terminal sessions in a few windows which keep my desktop less cluttered. Finding

a particular session might be a bit problematic, though. It can also be easy to type a

command into the wrong terminal session which could create chaos.

 Konsole
Konsole is the default terminal emulator for the KDE desktop environment. It can be

installed and used with any desktop, but it does install a large number of KDE libraries

and packages that are not needed by other terminal emulators.

EXPERIMENT 14-5

open a Konsole terminal emulator instance. let’s make one configuration change before we go

any further. Open Settings ➤ Configure Konsole and choose the Tab Bar tab. Change Tab Bar
Visibility to Always Show Tab Bar, and place a check box in Show ‘New Tab’ and ‘Close Tab’
buttons. Click the OK button to make these change take effect. Konsole does not need to be restarted.

Now you can see that Konsole provides icons to open and close the tabs on either side of the

tab bar, and it allows us to simply double-click in the empty space in the tab bar to open a new

tab. New tabs can also be opened in the File menu.

open a second tab using one of the methods just mentioned. Your Konsole window should now

look like Figure 14-11.

ChaptEr 14 tErmiNal Emulator maNia

411

Konsole has a very flexible profiles capability which can be accessed through Settings ➤ Manage
Profiles... which opens the Configure dialog. Select the Profiles tab, and click New Profile... to create

a new profile using this tab and configure it in different ways to explore the options here. Be sure to

place a check mark in the Show column of the profiles list to enable the new profile(s). Click OK to

save the changes. Now open Settings ➤ Switch Profile, and click the name of your new profile.

there are many other aspects of Konsole that you can explore. take some additional time, and

let your curiosity take you to some of those interesting places.

I like Konsole very much because it provides tabs for multiple terminal sessions

while maintaining a clean and simple user interface. I do have a concern about the KDE

Figure 14-11. The Konsole terminal emulator with two tabs open. A double-click
on the empty space in the tab bar opens a new tab

ChaptEr 14 tErmiNal Emulator maNia

412

Plasma workspace because it seems to be expanding and becoming bloated and slow

in general. I have experienced performance issues and crashes with the KDE Plasma

desktop, but I have not had any performance problems with Konsole.

An instance of Konsole uses 859MB of virtual memory.

 Terminator
Terminator is another powerful and feature-rich terminal emulator. Although it is based

upon the GNOME terminal, its objective is to provide a tool for SysAdmins that can be

used to many simultaneous terminals in tabs and grids within each tab.

EXPERIMENT 14-6

as the student user, open an instance of terminator. Now right-click the window to open the

menu as seen in Figure 14-12. Choose Split Vertically to split the window in half, and open a

new terminal in the right half.

Figure 14-12. All interaction with the Terminator features is through the pop-up menu

ChaptEr 14 tErmiNal Emulator maNia

413

You may want to resize the terminator window to make it larger as you proceed through the

rest of this experiment.

Start the top program in the right terminal session. open the man page for terminator in the

left terminal.

Split the right-side terminal horizontally. the terminal with top running should be the upper

one, and the new terminal should be on the bottom. run a simple program like ll in the

bottom right terminal. Split the bottom right terminal vertically.

it may help to adjust the relative sizes of the terminal sessions to make some larger in order

to see better. the terminal sessions are delineated by drag bars. move the mouse pointer over

the vertical drag bar between the left and right sides. then drag the bar to the left to make

more room for the terminal sessions on the right.

Note the double-arrow icons are used unlike any other application. When the
pointer encounters a vertical drag bar, the up/down double-arrow icon is displayed.
all other terminal emulators would use the right/left arrow to indicate the direction
in which movement is possible.

Your terminator instance should look similar to Figure 14-13. Now open a second tab, and split

that tab into at least three terminal sessions.

ChaptEr 14 tErmiNal Emulator maNia

414

terminal sessions can be rearranged in the window using drag and drop. Select the title bar

for one of the windows in the first tab. Drag that terminal session to another location in the

window. move the terminals around in the window to get a feel for how this feature works.

terminal sessions cannot be dragged to the desktop to open another terminator window; they

can be only dragged to other locations within the window in which they already exist.

right-click to open the terminator menu, and choose Preferences. here is where you can

make configuration changes and create new profiles. try creating a new profile using a green

on black color scheme and a slightly larger font. Create a third profile using a color scheme of

your own choosing. Switch between profiles. Each open terminal must be switched individually

to the new scheme.

Spend some time exploring terminator on your own, especially the various preferences.

Figure 14-13. A Terminator instance with two tabs open and four sessions in the
visible tab

ChaptEr 14 tErmiNal Emulator maNia

415

I find it very useful when I need to have many terminal sessions open and to have

several of them visible at the same time. I do find that I sometimes end up with many

small windows, so I need to rearrange them to enable me to view the more important

terminals.

An instance of Terminator typically consumes 753MB of virtual RAM by itself, and

programs running in it will consume more.

 Chapter summary
As with almost every other aspect of Linux, there are many choices available to users

and SysAdmins with respect to terminal emulators. I have tried many, but the ones I

discussed in this chapter are those I have used the most and which provide me with the

means to work most efficiently. If you already have a favorite terminal emulator and I

have not included it here, I apologize – there are just too many to include all of them.

I keep using each of these repeatedly because I like them, even if for different

features. I also keep searching for other terminal emulators that I have not previously

encountered because it is always good to learn about new things and one of them might

be the terminal emulator that I could use to the exclusion of all others.

You should spend some time using each of these terminal emulators outside the

bounds of the experiments. Use different terminal emulators for the experiments in the

rest of this course. That way you will have an opportunity to understand better how they

can help leverage your use of the command line. Do not think that you must use any of

these terminal emulators if they do not meet your needs. By all means try others you find

and use the ones you like best.

 Exercises
Perform the following exercises to complete this chapter:

 1. Why are there so many choices for terminal emulators?

 2. Add a profile to Tilix that configures it so that it meets your needs

and wants better than the default. You might want to change

colors, fonts, and the default terminal size.

ChaptEr 14 tErmiNal Emulator maNia

416

 3. Use DNF and the Internet to find new terminal emulators that

were not explored in this chapter. Install at least two of them, and

explore their capabilities.

 4. Of the terminal emulator features we have explored in this

chapter, which ones are most important to you at this time?

 5. Choose an appropriate terminal emulator and open terminal

sessions in it so that you can start and view the following programs

all at the same time – top, iotop, and sar to view network statistics

in real time.

 6. Have you developed a preference for a particular terminal

emulator yet? If so, which one? Why?

ChaptEr 14 tErmiNal Emulator maNia

417
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_15

CHAPTER 15

Advanced Shell Topics
 Objectives
In this chapter you will learn

• The advanced usage of the Bash shell

• The use of shell options

• The difference between internal and external commands

• How to plan for when commands fail

• How to determine whether an internal command or an external

command will be used

• How to specify that the external command be used

• The use of globbing to match multiple file names to be acted upon by

commands

• How the PATH variable affects which commands can be used

• Where to place shell scripts for use by one user or all users

• The use of compound commands

• The use of basic flow control in simple compound commands

• To use grep advanced pattern matching to extract lines from a data

stream

• How to use find to locate files based on simple or complex criteria

In Chapter 7 we looked briefly at the use of the Bash shell and defined some terms to

ensure that we have the same understanding of what a terminal emulator is vs. a shell vs.

the command line and many more potentially confusing terms. In Chapter 9 we looked

at some basic Linux commands and the use of some simple pipelines and redirection.

418

In this chapter we look more closely at the Bash shell. We will explore in some detail

the Bash internal commands and the environment and the variables contained there.

We explore the effect of the environment on the execution of shell commands. We will

also make a start with command-line programming by exploring the capabilities of

compound commands and then moving on to some advanced tools, grep and find.

 The Bash shell
We have already been using the Bash shell and it should now seem at least a little

familiar in the sense that we know a bit about how it works. A shell – any shell – is a

command-line interpreter. The function of a shell is to take commands entered on the

command line, expand any file globs, that is, wildcard characters * and ?, and sets, into

complete file or directory names, convert the result into tokens for use by the kernel, and

then pass the resulting command to the kernel for execution. The shell then sends any

resulting output from execution of the command to STDOUT.

Bash is both a command interpreter and a programming language. It can be

used to create large and complex programs that use all of the common programming

language structures such as flow control and procedures. The Bash shell is like any other

command-line program. It can be called using command-line options and arguments. It

also has an extensive man page to describe those and other aspects including its internal

commands.

 Shell options
Bash shell options can be set when the Bash executable is launched, but we as users

do not usually have access to the command that launches the shell. So the creators of

Bash have provided us with the shopt (shell options) command that lets us view and

alter many of the options that define the details of the shell’s behavior while the shell is

running.

The shopt command allows the user access to a superset of the options available

with the Bash set command. I have not found it necessary to change any of the options

accessible to the shopt command, but I do use the set command to set command-line

editing to vi mode.

Chapter 15 advanCed Shell topiCS

419

The shopt command can be used without options to list the current state of the

Bash options that have been explicitly set to enabled or disabled. It does not list all of the

options available. The Bash man page has details of both set and shopt including all of

the options they can be used to set.

EXPERIMENT 15-1

perform this experiment as the student user. We will just take a quick look at the shell options

but won’t change any of them. list the shell options by using the shopt command without

any options or arguments:

[student@studentvm1 ~]$ shopt

autocd off

cdable_vars off

cdspell off

checkhash off

checkjobs off

checkwinsize on

cmdhist on

compat31 off

<snip>

nullglob off

progcomp on

promptvars on

restricted_shell off

shift_verbose off

sourcepath on

xpg_echo off

i have pruned the preceding list, so you should see more output than shown here. as i

mentioned, i have never had the need to change any of these shell options.

Chapter 15 advanCed Shell topiCS

420

 Shell variables
We will explore environment and shell variables in more detail in Chapter 17, but let’s

take a quick look now.

A variable is a named entity that represents a location in memory which contains

a value. The value of a variable is not fixed and can be changed as a result of various

numeric or string operations. Bash shell variables are not typed; that is, they can be

manipulated as a number or a string.

EXPERIMENT 15-2

perform this experiment as the student user. First let’s print the value of the $hoStnaMe

variable in the shell because it already exists. any time we wish to access the value of

a variable in a script or from a Cli command, we use the $ sign to refer to it. the $ sign

indicates to the Bash shell that the name that follows (with no empty spaces) is the name of a

variable:

[student@studentvm1 ~]$ echo $HOSTNAME

studentvm1

now let’s look at another variable – one that does not already exist that we will name MYvar:

[student@studentvm1 ~]$ echo $MYVAR

[student@studentvm1 ~]$

Because this variable does not yet exist, it is null, so the shell prints a null line. let’s assign a

value to this variable and then print the variable again:

[student@studentvm1 ~]$ MYVAR="Hello World!"

[student@studentvm1 ~]$ echo $MYVAR

Hello World!

[student@studentvm1 ~]$

So you can see that we use the variable name without the preceding $ sign to set a value into

a variable. in this case the Bash shell can infer from the context that the name following the

equal sign is a variable name.

Chapter 15 advanCed Shell topiCS

421

Tip the Bash shell syntax is very strict and sometimes requires spaces or
requires no spaces. in the case of a variable assignment, there must be no spaces
on either side of the equal sign.

I sometimes use “PATH” or “path” as a reference to the path as a general concept, but

when I use $PATH, it will always refer to the variable or its value.

 Commands
The purpose of the shell is to make human interaction with the computer easy and

efficient. Shells take the commands we type, modify them so the kernel will understand

them, and pass them to the operating system which then executes them. Shells provide

the tools to enable this interaction.

Commands fall into two categories. There are internal commands that are an integral

part of the shell program and external commands that are those with separate existence,

which have their own executable files, such as the GNU and Linux core utilities. Other

external commands are tools provided separately or by various Linux components such

as logical volume management (LVM).

This distinction is important because shell internal commands are executed before

an external command with the same name. For example, there is a Bash internal echo

command and the external echo command. Unless you specify the path to the external

command as part of the command line, the Bash internal echo command will be used.

This may be a problem if the commands work a bit differently.

Let’s get very specific about how the Bash shell works when a command is entered:

 1. Type in the command and press Enter.

 2. Bash parses the command to see if there is a path prepended to

the command name. If there is, skip to step 4.

 3. Bash checks to see if the command is internal. If it is, the Bash

shell runs the command immediately.

 4. If a path is used as part of the command, Bash forks a new

subprocess in which to execute the command and then runs the

command. This forking takes time as well as system resources

such as CPU, I/O, and RAM.

Chapter 15 advanCed Shell topiCS

422

 5. If no path to the command is specified, and this is not an internal

command, Bash searches the list of aliases and shell functions –

system and user created procedures. If one is found, it forks a new

shell subprocess and executes the function or alias. Again this all

takes time although very small amounts.

 6. If no alias or function is located, Bash then searches the list of

directories specified in the $PATH shell variable to locate the

command. When the command is located, Bash forks a new

subshell to execute the command. More time is consumed.

 7. If a command is run in a subshell, the subshell terminates and

execution returns to the parent shell.

 The PATH
The $PATH is a very important environment variable for the shell. It defines a colon

separated list of directories in which the system and the shell look for executable files.

The shell looks in each directory listed in $PATH for executable files when a non-internal

command is entered.

The $PATH environment variable can be altered for the current shell or for all shell

instances for a specific user or even for all users. This is usually neither necessary nor

desirable because the default $PATH takes into consideration the need of individual

users to maintain executable files like shell scripts on their own home directory tree as

we will see.

EXPERIMENT 15-3

perform this experiment as the student user. let’s start by discovering the default value of

$path:

[student@studentvm1 ~]$ echo $PATH

/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/student/.local/bin:/

home/student/bin

Consider the elements of this path. the first is /usr/local/bin which is a specifically defined

location for storing locally created executable files such as shell scripts for Sysadmins or

Chapter 15 advanCed Shell topiCS

423

use by all users. the /usr/local/etc directory is used for storing configuration files for the

executables in /usr/local/bin.

the second element is /usr/bin. this is for most user-executable binary files and is intended

for use by all users. the third is /usr/sbin which is for standard but nonessential system

binaries for use by the Sysadmin.

the last two directory specifiers are in the user’s directory tree. So if a user had some private

executables, again such as personal shell scripts, those would usually be stored in ~/bin

where the kernel will search for them because they are in the user’s $path.

the $path saves a good bit of typing. remember how we were required to start the cpuhog

program?

./cpuHog

the reason we had to precede the command with ./ (dot-slash) is that the cpuhog executable

shell script is in the student user’s home directory, /home/student/ which is not part of $path.

try it with the student user’s home directory as the pWd and without specifying the home

directory in some manner:

[student@studentvm1 ~]$ cpuHog

Bash: /home/student/bin/cpuHog: No such file or directory

We receive an error, so we need to specify the path using, in this case, the relative path of

the current directory. the dot (.) notation is a shortcut for the current directory. We could have

issued this command in the following ways:

• ./cpuHog

• ~/cpuHog

• /home/cpuHog

terminate any currently running instances of the cpuhog. ensure that the pWd for the student

user is the home directory (~). then let’s try the two methods we have not yet used.

Method #1 assumes that the cpuhog script is in the pWd. Method #2 makes no assumptions

about the current pWd and uses the ~ (tilde) shortcut for the user’s home directory. Switch to

a different directory, and start the cpuhog using method #2:

[student@studentvm1 ~]$ cd /tmp ; ~/cpuHog

Chapter 15 advanCed Shell topiCS

424

Use Ctrl-C to terminate this instance of the cpuhog. remain in the /tmp/ directory and use

method #3:

[student@studentvm1 tmp]$ /home/student/cpuHog

this method also works, but it does require much more typing. all of these methods require

more typing than simply placing the cpuhog file in the user’s private executable file directory,

~/bin. don’t forget that the lazy Sysadmin does everything possible to type as few keystrokes

as necessary.

Change the pWd to the home directory and find ~/bin. it is not there, so we have to create it.

We can do that, move the cpuhog into it, and launch the program, all in a single compound

command:

[student@studentvm1 ~]$ cd ; mkdir ~/bin ; mv cpuHog ./bin ; cpuHog

the function of the $path is to provide defined locations in which executable files can be

stored so that it is not necessary to type out the path to them.

We will talk more about compound commands later in this chapter.

 Internal commands
Linux shells have a large number of internal, built-in, commands of their own. The Bash

shell is no exception. The man and info pages provide a list of these commands, but

which ones are the internal commands can be a bit difficult to dig out of all the other

information.

These internal commands are part of the shell itself and do not have an existence

outside the Bash shell. This is why they are defined as “internal.”

EXPERIMENT 15-4

perform this experiment as the student user. the help command is the easiest way to list the

internal Bash commands:

[student@studentvm1 ~]$ help

GNU Bash, version 4.4.23(1)-release (x86_64-redhat-linux-gnu)

These shell commands are defined internally. Type `help' to see this list.

Type `help name' to find out more about the function `name'.

Chapter 15 advanCed Shell topiCS

425

Use `info Bash' to find out more about the shell in general.

Use `man -k' or `info' to find out more about commands not in this list.

A star (*) next to a name means that the command is disabled.

 job_spec [&] history [-c] [-d offset] [n]

or history -anr>

 ((expression)) if COMMANDS; then COMMANDS;

[elif COMMANDS;>

 . filename [arguments] jobs [-lnprs] [jobspec ...]

or jobs -x comma>

 : kill [-s sigspec | -n signum

| -sigspec] pid>

 [arg...] let arg [arg ...]

 [[expression]] local [option] name[=value] ...

 alias [-p] [name[=value] ...] logout [n]

 bg [job_spec ...] mapfile [-d delim] [-n

count] [-O origin] [->

 bind [-lpsvPSVX] [-m keymap] [-f filename] [-> popd [-n] [+N | -N]

 break [n] printf [-v var] format [arguments]

 builtin [shell-builtin [arg ...]] pushd [-n] [+N | -N | dir]

 caller [expr] pwd [-LP]

 case WORD in [PATTERN [| PATTERN]...) COMMAND> read [-ers] [-a array]

[-d delim] [-i text] >

 cd [-L|[-P [-e]] [-@]] [dir] readarray [-n count]

[-O origin] [-s count] >

 command [-pVv] command [arg ...] readonly [-aAf]

[name[=value] ...] or readon>

 compgen [-abcdefgjksuv] [-o option] [-A actio> return [n]

 complete [-abcdefgjksuv] [-pr] [-DE] [-o opti> select NAME [in WORDS ... ;]

do COMMANDS; do>

 compopt [-o|+o option] [-DE] [name ...] set [-abefhkmnptuvxBCHP]

[-o option-name] [->

 continue [n] shift [n]

 coproc [NAME] command [redirections] shopt [-pqsu] [-o] [optname ...]

 declare [-aAfFgilnrtux] [-p] [name[=value] ..> source filename [arguments]

 dirs [-clpv] [+N] [-N] suspend [-f]

 disown [-h] [-ar] [jobspec ... | pid ...] test [expr]

Chapter 15 advanCed Shell topiCS

426

 echo [-neE] [arg ...] time [-p] pipeline

 enable [-a] [-dnps] [-f filename] [name ...] times

 eval [arg ...] trap [-lp] [[arg] signal_

spec ...]

 exec [-cl] [-a name] [command [arguments ...]> true

 exit [n] type [-afptP] name [name ...]

 export [-fn] [name[=value] ...] or export -p typeset [-aAfFgilnrtux] [-p]

name[=value] .>

 false ulimit [-SHabcdefiklm

npqrstuvxPT] [limit]

 fc [-e ename] [-lnr] [first] [last] or fc -s > umask [-p] [-S] [mode]

 fg [job_spec] unalias [-a] name [name ...]

 for NAME [in WORDS ...] ; do COMMANDS; done unset [-f] [-v] [-n] [name ...]

 for ((exp1; exp2; exp3)); do COMMANDS; don> until COMMANDS; do COMMANDS;

done

 function name { COMMANDS ; } or name () { COM> variables - Names and

meanings of some shell>

 getopts optstring name [arg] wait [-n] [id ...]

 hash [-lr] [-p pathname] [-dt] [name ...] while COMMANDS; do COMMANDS;

done

 help [-dms] [pattern ...] { COMMANDS ; }

[student@studentvm1 ~]$

Note the greater than character, gt (>), at the ends of some lines in each column
of the help output indicates that the line was truncated for lack of space.

For details on each command, use the man page for Bash, or just type help with the name of

the internal command. For example:

[student@studentvm1 ~]$ help echo

echo: echo [-neE] [arg ...]

 Write arguments to the standard output.

 Display the ARGs, separated by a single space character and followed by a

 newline, on the standard output.

<snip>

Chapter 15 advanCed Shell topiCS

427

the man pages provide information for external commands only. the information for the

internal commands is only located in the man and info pages for Bash itself:

[student@studentvm1 ~]$ man Bash

to find the shell internal commands, use the following search. Yes, in all caps:

/^SHELL BUILTIN

the forward slash (/) starts the search. the caret (^) is an anchor character which indicates

that the search should only find this string if it starts at the beginning of the line. this string

does appear in many places, but those all refer to the single location where it starts the

section at the beginning of the line, saying: “see Shell BUiltin CoMMandS below.”

each internal command is listed in the Shell BUiltin CoMMandS section along with its

syntax and possible options and arguments. Many of the Bash internal commands, such as

for, continue, break, declare, getopts, and others, are for use in scripts or command-

line programs rather than as stand-alone commands on the command line. We will look at

some of these later in this chapter. Scroll through the Shell BUiltin CoMMandS section of

the Bash man page.

let’s take three of these commands and use the type utility to identify them:

[student@studentvm1 ~]$ type echo getopts egrep

echo is a shell builtin

getopts is a shell builtin

egrep is aliased to `egrep --color=auto'

the type command enables us to easily identify those commands that are shell internals. like

many linux commands, it can take a list of arguments.

 External commands
External commands are those that exist as executable files and which are not part of the

shell. The executable files are stored in locations like /bin, /usr/bin, /sbin, and so on.

Chapter 15 advanCed Shell topiCS

428

EXPERIMENT 15-5

First, make /bin the pWd and do a long list of the files there:

[student@studentvm1 bin]$ ll | less

Scroll through the list and locate some familiar commands. You will also find both echo and

getopts in these external commands. Why did the type command not show us this? it can if

we use the -a option which locates commands in any form, even aliases:

[student@studentvm1 bin]$ type -a echo getopts egrep

echo is a shell builtin

echo is /usr/bin/echo

getopts is a shell builtin

getopts is /usr/bin/getopts

egrep is aliased to `egrep --color=auto'

egrep is /usr/bin/egrep

[student@studentvm1 bin]$

the type command searches for executables in the same sequence as the shell would

search if it were going to execute the command. Without the -a option, type stops at the first

instance, thus showing the executable that would run if the command were to be executed.

the -a option tells it to display all instances.

What about our cpuHog shell script? What does type tell us about that? try it and find out.

 Forcing the use of external commands
As we have seen, it is possible for both internal and external versions of some commands

to be present at the same time. When this occurs, one command may work a bit

differently from the other – despite having the same name – and we need to be aware of

that possibility in order to use the command that provides the desired result.

If it becomes necessary to ensure that the external command runs and that the

internal command with the same name does not, simply add the path to the command

name as in /usr/bin/echo. This is where an understanding of how the Bash shell

searches for and executes commands is helpful.

Chapter 15 advanCed Shell topiCS

429

 Compound commands
We have already used some very simple compound commands. The simplest form of

compound command is just stringing several commands together in a sequence on the

command line; such commands are separated by a semicolon which defines the end of a

command.

You can build up compound commands in the same way as you built complex

pipelines of commands. To create a simple series of commands on a single line, simply

separate each command using a semicolon, like this:

command1 ; command2 ; command3 ; command4 ; ... etc. ;

No final semicolon is required because pressing the Enter key implies the end of the

final command. Adding that last semicolon for consistency is fine. This list of several

commands might be something like we did at the end of Experiment 15-1 in which we

created a new directory, moved the cpuHog file into that directory, and then executed

the cpuHog. In such a case, the ability of later commands do depend upon the correct

result of the preceding commands:

cd ; mkdir ~/bin ; mv cpuHog ./bin ; cpuHog

Those commands will all run without a problem so long as no errors occur. But what

happens when an error occurs? We can anticipate and allow for errors using the && and

|| built-in Bash control operators. These two control operators provide us with some flow

control and enable us to alter the sequence of code execution. The semicolon is also

considered to be a Bash control operator as is the newline character.

The && operator simply says that if command1 is successful, then run command2. If

command1 fails for any reason, then command2 is skipped. That syntax looks like this:

command1 && command2

This works because every command sends a return code (RC) to the shell that

indicates whether it completed successfully or whether there was some type of failure

during execution. By convention, a return code of zero (0) indicates success, while any

positive number indicates some type of failure. Some of the tools we use as SysAdmins

return only a one (1) to indicate a failure, but many can return other codes as well to

further define the type of failure that occurred.

The Bash shell has a variable, $?, which can be checked very easily by a script, the

next command in a list of commands, or even us SysAdmins.

Chapter 15 advanCed Shell topiCS

430

EXPERIMENT 15-6

First let’s look at return codes. We can run a simple command and then immediately check the

return code. the return code will always be for the last command that was run before we look

at it:

[student@studentvm1 ~]$ ll ; echo "RC = $?"

total 284

-rw-rw-r-- 1 student student 130 Sep 15 16:21 ascii-program.sh

drwxrwxr-x 2 student student 4096 Nov 10 11:09 bin

drwxr-xr-x. 2 student student 4096 Aug 18 17:10 Desktop

-rw-rw-r--. 1 student student 1836 Sep 6 09:08 diskusage.txt

-rw-rw-r--. 1 student student 44297 Sep 6 10:52 dmesg1.txt

<snip>

drwxrwxr-x. 2 student student 4096 Sep 6 14:48 testdir7

drwxr-xr-x. 2 student student 4096 Aug 18 10:21 Videos

RC = 0

[student@studentvm1 ~]$

the return code (rC) is zero (0) which means the command completed successfully. now try

the same command on a directory for which we do not have permissions:

[student@studentvm1 ~]$ ll /root ; echo "RC = $?"

ls: cannot open directory '/root': Permission denied

RC = 2

[student@studentvm1 ~]$

Where can you find the meaning of this return code?

let’s try the && control operator as it might be used in a command-line program. We start with

something simple. our objective is to create a new directory and create a new file in it. We

only want to do this if the directory can be created successfully.

We can use ~/testdir which was created in a previous chapter for this experiment. the

following command is intended to create a new directory in ~/testdir which should currently

be empty:

[student@studentvm1 ~]$ mkdir ~/testdir/testdir8 && touch ~/testdir/testdir8/

testfile1

[student@studentvm1 ~]$ ll ~/testdir/testdir8/

Chapter 15 advanCed Shell topiCS

431

total 0

-rw-rw-r-- 1 student student 0 Nov 12 14:13 testfile1

[student@studentvm1 ~]$

everything worked as it should because the testdir directory is accessible and writable.

Change the permissions on testdir so it is no longer accessible to the student user. We will

explore file ownership and permissions in Chapter 18 of this volume:

[student@studentvm1 ~]$ chmod 076 testdir ; ll | grep testdir

d---rwxrw-. 3 student student 4096 Nov 12 14:13 testdir

drwxrwxr-x. 3 student student 4096 Sep 6 14:48 testdir1

drwxrwxr-x. 2 student student 4096 Sep 6 14:48 testdir6

drwxrwxr-x. 2 student student 4096 Sep 6 14:48 testdir7

[student@studentvm1 ~]$

Using the grep command after the long list (ll) shows us the listing for all directories with

testdir in their names. You can see that the user student no longer has any access to the

testdir directory.1 now let’s run almost the same commands as before but with a different

directory name to create in testdir:

[student@studentvm1 ~]$ mkdir ~/testdir/testdir9 && touch ~/testdir/testdir9/

testfile1

mkdir: cannot create directory '/home/student/testdir/testdir9': Permission

denied

[student@studentvm1 ~]$

Using the && control operator prevents the touch command from running because there was

an error in creating testdir9. this type of command-line program flow control can prevent

errors from compounding and making a real mess of things. But let’s get a little more

complicated.

the || control operator allows us to add another program statement that executes when the

initial program statement returns a code larger than zero.

the || control operator allows us to add another program statement that executes when the

initial program statement returns a code greater than zero. the basic syntax looks like this:

command1 || command2

1 We will explore file and directory permissions in detail in Chapter 17.

Chapter 15 advanCed Shell topiCS

432

this syntax reads, if command1 fails, execute command2. that implies that if command1

succeeds, command2 is skipped. let’s try this with our attempt to create a new directory:

[student@testvm1 ~]$ mkdir ~/testdir/testdir9 || echo "testdir9 was not

created."

mkdir: cannot create directory '/home/student/testdir/testdir9': Permission

denied

testdir9 was not created.

[student@testvm1 ~]$

this is exactly what we expected. Because the new directory could not be created, the first

command failed which resulted in execution of the second command.

Combining these two operators gives us the best of both:

[student@studentvm1 ~]$ mkdir ~/testdir/testdir9 && touch ~/testdir/testdir9/

testfile1 || echo "."

mkdir: cannot create directory '/home/student/testdir/testdir9': Permission

denied

[student@studentvm1 ~]$

now reset the permissions on ~/testdir to 775, and try this last command again.

Our compound command syntax using some flow control now takes this general

form when we use both of the && and || control operators:

preceding commands ; command1 && command2 || command3 ; following commands

This syntax can be stated like so: if command1 exits with a return code of 0, then

execute command2; otherwise execute command3. The compound command using the

control operators may be preceded and followed by other commands that can be related

to the ones in the flow control section but which are unaffected by the flow control. All

of the preceding and following commands will execute without regard to anything that

takes place inside the flow control compound command.

Chapter 15 advanCed Shell topiCS

433

 Time-saving tools
There are some additional tools that we have available both as SysAdmins and non-

privileged users that give us a lot of flexibility when performing a wide range of tasks.

The use of globbing and sets enable us to match character strings in file names and data

streams in order to perform further transformations or actions on them. Brace expansion

lets us expand strings that have some commonalities into multiple but different strings.

We have already seen several of the meta-characters available in Bash; they provide

programming capabilities that greatly enhance the functionality of the shell.

 Brace expansion
Let’s start with brace expansion because we will use this tool to create a large number of

files to use in experiments with special pattern characters. Brace expansion can be used

to generate lists of arbitrary strings and insert them into a specific location within an

enclosing static string or at either end of a static string. This may be hard to visualize, so

let’s just do it.

EXPERIMENT 15-7

First let’s just see what a brace expansion does:

[student@studentvm1 ~]$ echo {string1,string2,string3}

string1 string2 string3

Well, that is not very helpful, is it? But look what happens when we use it just a bit differently:

[student@studentvm1 ~]$ echo "Hello "{David,Jen,Rikki,Jason}.

Hello David. Hello Jen. Hello Rikki. Hello Jason.

that looks like something we might be able to use because it can save a good deal of typing.

now try this:

[student@studentvm1 ~]$ echo b{ed,olt,ar}s

beds bolts bars

Chapter 15 advanCed Shell topiCS

434

here is how we can generate file names for testing:

[student@studentvm1 ~]$ echo testfile{0,1,2,3,4,5,6,7,8,9}.txt

testfile0.txt testfile1.txt testfile2.txt testfile3.txt testfile4.txt

testfile5.txt testfile6.txt testfile7.txt testfile8.txt testfile9.txt

and here is an even better method for creating sequentially numbered files:

[student@studentvm1 ~]$ echo test{0..9}.file

test0.file test1.file test2.file test3.file test4.file test5.file test6.file

test7.file test8.file test9.file

the {x..y} syntax, where x and y are integers, expands to be all integers between and including

x and y. the following is a little more illustrative of that:

[student@studentvm1 ~]$ echo test{20..54}.file

test20.file test21.file test22.file test23.file test24.file test25.

file test26.file test27.file test28.file test29.file test30.file test31.

file test32.file test33.file test34.file test35.file test36.file test37.

file test38.file test39.file test40.file test41.file test42.file test43.

file test44.file test45.file test46.file test47.file test48.file test49.file

test50.file test51.file test52.file test53.file test54.file

now try this one:

[student@studentvm1 ~]$ echo test{0..9}.file{1..4}

and this one:

[student@studentvm1 ~]$ echo test{0..20}{a..f}.file

and this one which prepends leading zeros to keep the length of the numbers and thus the

length of the file names equal. this makes for easy searching and sorting:

[student@studentvm1 ~]$ echo test{000..200}{a..f}.file

So far all we have done is to create long lists of strings. Before we do something more or less

productive, let’s move into a directory in which we can play around ... i mean experiment with

creating and working with files. if you have not already done so, make the directory ~/testdir7

the pWd. verify that there are no other files in this directory and delete them if there are.

Chapter 15 advanCed Shell topiCS

435

now let’s change the format just a bit and then actually create files using the results as file

names:

[student@studentvm1 testdir7]$ touch {my,your,our}.test.file.{000..200}

{a..f}.{txt,asc,file,text}

that was fast. i want to know just how fast, so let’s delete the files we just created and use

the time command to, well, time how long it takes:

[student@studentvm1 testdir7]$ rm * ; time touch {my,your,our}.test.file.

{000..200}{a..f}.{txt,asc,file,text}

real 0m0.154s

user 0m0.038s

sys 0m0.110s

[student@studentvm1 testdir7]$

that .154 seconds of real time really is fast to create 14,472 empty files. verify that using the

wc command. if you get 14,473 as the result, why? Can you find a simple way to obtain the

correct result?

We will use these files in some of the following experiments. do not delete them.

 Special pattern characters
Although most SysAdmins talk about file globbing,2 we really mean special pattern

characters that allow us significant flexibility in matching file names and other strings

when performing various actions. These special pattern characters allow matching

single, multiple, or specific characters in a string:

? Matches only one of any character in the specified location

within the string.

* Zero or more of any character in the specified location within the

string.

In all likelihood you have used these before. Let’s experiment with some ways we can

use these effectively.

2 Wikipedia, Glob, https://en.wikipedia.org/wiki/Glob_(programming)

Chapter 15 advanCed Shell topiCS

https://en.wikipedia.org/wiki/Glob_(programming)

436

EXPERIMENT 15-8

You might have used file globbing to answer the question i posed in experiment 15-5:

[student@studentvm1 testdir7]$ ls *test* | wc

 14472 14472 340092

[student@studentvm1 testdir7]$

in order to achieve this result, we must understand the structure of the file names we created.

they all contain the string “test,” so we can use that. the command uses the shell’s built-in

file globbing to match all files that contain the string “test” anywhere in their names, and that

can have any number of any character both before and after that one specific string. let’s just

see what that looks like without counting the number of lines in the output:

[student@studentvm1 testdir7]$ ls *test*

i am sure that “you” don’t want any of “my” files in your home directory. First see how many

of “my” files there are, and then delete them all and verify that there are none left:

[student@studentvm1 testdir7]$ ls my* | wc ; rm -v my* ; ls my*

the -v option of the rm command lists every file as it deletes it. this information could be

redirected to a log file for keeping a record of what was done. this file glob enables the ls

command to list every file that starts with “my” and perform actions on them.

Find all of “our” files that have txt as the ending extension:

[student@studentvm1 testdir7]$ ls our*txt | wc

locate all files that contain 6 in the tens position of the three-digit number embedded in the

file names, and that end with asc:

[student@studentvm1 testdir7]$ ls *e.?6?*.asc

We must do this with a little extra work to ensure that we specify the positioning of the “6”

carefully to prevent listing all of the files that only contain a 6 in the hundreds or ones position

but not in the tens position of the three-digit number. We know that none of the file names

contains 6 in the hundreds position, but this makes our glob a bit more general so that it

would work in both of those cases.

Chapter 15 advanCed Shell topiCS

437

We do not care whether the file name starts with our or your, but we use the final “e.” of

“file.” – with the dot – to anchor the next three characters. after “e.” in the file name, all of

the files have three digits. We do not care about the first and third digits, just the second one.

So we use the ? to explicitly define that we have one and only one character before and after

the 6. We then use the * to specify that we don't care how many or which characters we have

after that but that we do want to list files that end with “asc”.

We want to add some content to some of the files. the file pattern specification we have now

is almost where we want it. let’s add content to all files that have a 6 in the middle position

of the three-digit number but which also has an “a” after the number, as in x6xa. We want all

files that match this pattern regardless of the trailing extension, asc, txt, text, or file.

First, let’s make certain that our pattern works correctly:

[student@studentvm1 testdir7]$ ls *e.?6?a.*
our.test.file.060a.asc our.test.file.163a.text your.test.file.067a.asc

our.test.file.060a.file our.test.file.163a.txt your.test.file.067a.file

our.test.file.060a.text our.test.file.164a.asc your.test.file.067a.text

our.test.file.060a.txt our.test.file.164a.file your.test.file.067a.txt

our.test.file.061a.asc our.test.file.164a.text your.test.file.068a.asc

our.test.file.061a.file our.test.file.164a.txt your.test.file.068a.file

our.test.file.061a.text our.test.file.165a.asc your.test.file.068a.text

<snip>

our.test.file.162a.file your.test.file.065a.txt your.test.file.169a.file

our.test.file.162a.text your.test.file.066a.asc your.test.file.169a.text

our.test.file.162a.txt your.test.file.066a.file your.test.file.169a.txt

our.test.file.163a.asc your.test.file.066a.text

our.test.file.163a.file your.test.file.066a.txt

that looks like what we want. the full list is 160 files. We want to store some arbitrary data

in these files, so we need to install a little program to generate random passwords, pwgen.

normally this tool would be used to generate decent passwords, but we can just as easily use

this random data for other things, too:

[root@studentvm1 ~]# dnf -y install pwgen

test the pwgen tool. the following Cli command generates 50 lines of 80 random characters

each:

[root@studentvm1 ~]# pwgen 80 50

Chapter 15 advanCed Shell topiCS

438

now we will build a short command-line program to place a little random data into each

existing file that matches the pattern:

[student@studentvm1 testdir7]$ for File in `ls *e.?6?a.*` ; do pwgen 80 50 >

$File ; done

to verify that these files contain some data, we check the file sizes:

[student@studentvm1 testdir7]$ ll *e.?6?a.*

Use cat to view the content of a few of the files.

File globbing – the use of special pattern characters to select file names from a list – is

a powerful tool. However there is an extension of these special patterns that give us more

flexibility and which makes things we could do with complex patterns much easier. This

tool is the set.

 Sets
Sets are a form of special pattern characters. They give us a means of specifying that a

particular one-character location in a string contains any character from the list inside

the square braces []. Sets can be used alone or in conjunction with other special pattern

characters.

A set can consist of one or more characters that will be compared against the

characters in a specific, single position in the string for a match. The following list shows

some typical example sets and the string characters they match:

[0-9] Any numerical character

[a-z] Lowercase alpha

[A-Z] Uppercase alpha

[a-zA-Z] Any uppercase or lowercase alpha

[abc] The three lowercase alpha characters, a, b, and c

[!a-z] No lowercase alpha

[!5-7] No numbers 5, 6, or 7

[a-gxz] Lowercase a through g, x, and z

[A-F0-9] Uppercase A through F, or any numeric

Once again, this will be easier to explain if we just go right to the experiment.

Chapter 15 advanCed Shell topiCS

439

EXPERIMENT 15-9

perform this experiment as the student user. the pWd should still be ~/testdir7. Start by

finding the files that contain a 6 in the center of the three-digit number in the file name:

[student@studentvm1 testdir7]$ ls *[0-9][6][0-9]*

We could use this alternate pattern because we know that the leftmost digit must be 0 or 1.

Count the number of file names returned for both cases to verify this:

[student@studentvm1 testdir7]$ ls *[01][6][0-9]*

now let’s look for the file names that contain a 6 in only the center position, but not in either of

the other two digits:

[student@studentvm1 testdir7]$ ls *[!6][6][!6]*

Find the files that match the pattern we have so far but which also end in t:

[student@studentvm1 testdir7]$ ls *[!6][6][!6]*t

now find all of the files that match the preceding pattern but which also have “a” or “e”

immediately following the number:

[student@studentvm1 testdir7]$ ls *[!6][6][!6][ae]*t

these are just a few examples of using sets. Continue to experiment with them to enhance

your understanding even further.

Sets provide a powerful extension to pattern matching that gives us even more

flexibility in searching for files. It is important to remember, however, that the primary

use of these tools is not merely to “find” these files so we can look at their names. It is to

locate files that match a pattern so that we can perform some operation on them, such

as deleting, moving, adding text to them, searching their contents for specific character

strings, and more.

Chapter 15 advanCed Shell topiCS

440

 Meta-characters
Meta-characters are ones that have special meaning to the shell. The Bash shell has

defined a number of these meta-characters, many of which we have already encountered

in our explorations:

$ Shell variable

~ Home directory variable

& Run command in background

; Command termination/separation

>,>>,< I/O redirection

| Command pipe

‘,”,\ Meta quotes

`...` Command substitution

(), {} Command grouping

&&, || Shell control operators. Conditional command execution

As we progress further through this course, we will explore the meta-characters we

already know in more detail, and we will learn about the few we do not already know.

 Using grep
Using file globbing patterns can be very powerful, as we have seen. We have been able

to perform many tasks on large numbers of files very efficiently. As its name implies,

however, file globbing is intended for use on file names so it does not work on the

content of those files. It is also somewhat limited in its capabilities.

There is a tool, grep, that can be used to extract and print to STDOUT all of the lines

from a data stream based on matching patterns. Those patterns can range from simple

text patterns to very complex regular expressions (regex). Written by Ken Thompson3

and first released in 1974, the grep utility is provided by the GNU Project4 and is installed

by default on every version of Unix and Linux distribution I have ever used.

3 Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson
4 The GNU Project, www.gnu.org

Chapter 15 advanCed Shell topiCS

https://en.wikipedia.org/wiki/Ken_Thompson
http://www.gnu.org

441

In terms of globbing characters, which grep does not understand, the default search

pattern for the grep command is *PATTERN*. There is an implicit wildcard match

before and after the search pattern. Thus, you can assume that any pattern you specify

will be found no matter where it exists in the lines being scanned. It could be at the

beginning, anywhere in the middle, or at the end. Thus, it is not necessary to explicitly

state that there are characters in the string before and/or after the string for which we are

searching.

EXPERIMENT 15-10

perform this experiment as root. although non-privileged users have access to some of the

data we will be searching, only root has access to all of it.

one of the most common tasks i do that requires the use of the grep utility is scanning through

log files to find information pertaining to specific things. For example, i may need to determine

information about how the operating system sees the network interface cards (niCs) starting

with their BioS names,5 ethX. information about the niCs installed in the host can be found

using the dmesg command as well as in the messages log files in /var/log.

We’ll start by looking at the output from dmesg. First, just pipe the output through less and

use the search facility built into less:

[root@studentvm1 ~]# dmesg | less

You can page through the screens generated by less and use the Mark i eyeball6 to locate

the “eth” string, or you can use the search. initiate the search facility by typing the slash (/)

character and then the string for which you are searching: /eth. the search will highlight the

string, and you can use the “n” key to find the next instance of the string and the “b” key to

search backward for the previous instance.

Searching through pages of data, even with a good search facility, is easier than eyeballing

it, but not as easy as using grep. the -i option tells grep to ignore case and display the “eth”

string regardless of the case of its letters. it will find the strings eth, eth, eth, eth, and so on,

which are all different in linux:

5 Most modern Linux distributions rename the NICs from the old BIOS names, ethX, to something
like enp0s3. That is a discussion we will encounter in Chapters 33 and 36.

6 Wikipedia, Visual Inspection, https://en.wikipedia.org/wiki/Visual_inspection

Chapter 15 advanCed Shell topiCS

https://doi.org/10.1007/978-1-4842-5049-5_33
https://doi.org/10.1007/978-1-4842-5049-5_36
https://en.wikipedia.org/wiki/Visual_inspection

442

[root@studentvm1 ~]# dmesg | grep -i eth

[1.861192] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:a9:e6:b4

[1.861199] e1000 0000:00:03.0 eth0: Intel(R) PRO/1000 Network Connection

[2.202563] e1000 0000:00:08.0 eth1: (PCI:33MHz:32-bit) 08:00:27:50:58:d4

[2.202568] e1000 0000:00:08.0 eth1: Intel(R) PRO/1000 Network Connection

[2.205334] e1000 0000:00:03.0 enp0s3: renamed from eth0

[2.209591] e1000 0000:00:08.0 enp0s8: renamed from eth1

[root@studentvm1 ~]#

these results show data about the BioS names, the pCi bus on which they are located, the

MaC addresses, and the new names that linux has given them. now look for instances of the

string that begins the new niC names, “enp.” did you find any?

Note these numbers enclosed in square braces, [2.205334], are timestamps
that indicate the log entry was made that number of seconds after the kernel took
over control of the computer.

in this first example of usage, grep takes the incoming data stream using Stdin and then

sends the output to StdoUt. the grep utility can also use a file as the source of the data

stream. We can see that in this next example in which we grep through the message log files

for information about our niCs:

[root@studentvm1 ~]$ cd /var/log ; grep -i eth messages*
<snip>

messages-20181111:Nov 6 09:27:36 studentvm1 dbus-daemon[830]: [system]

Rejected send message, 2 matched rules; type="method_call", sender=":1.89"

(uid=1000 pid=1738 comm="/usr/bin/pulseaudio --daemonize=no ")

interface="org.freedesktop.DBus.ObjectManager" member="GetManagedObjects"

error name="(unset)" requested_reply="0" destination="org.bluez" (bus)

messages-20181111:Nov 6 09:27:36 studentvm1 pulseaudio[1738]: E:

[pulseaudio] bluez5-util.c: GetManagedObjects() failed: org.freedesktop.

DBus.Error.AccessDenied: Rejected send message, 2 matched rules;

type="method_call", sender=":1.89" (uid=1000 pid=1738 comm="/usr/bin/

pulseaudio --daemonize=no ") interface="org.freedesktop.DBus.ObjectManager"

member="GetManagedObjects" error name="(unset)" requested_reply="0"

destination="org.bluez" (bus)

Chapter 15 advanCed Shell topiCS

443

messages-20181118:Nov 16 07:41:00 studentvm1 kernel: e1000 0000:00:03.0 eth0:

(PCI:33MHz:32-bit) 08:00:27:a9:e6:b4

messages-20181118:Nov 16 07:41:00 studentvm1 kernel: e1000 0000:00:03.0 eth0:

Intel(R) PRO/1000 Network Connection

messages-20181118:Nov 16 07:41:00 studentvm1 kernel: e1000 0000:00:08.0 eth1:

(PCI:33MHz:32-bit) 08:00:27:50:58:d4

messages-20181118:Nov 16 07:41:00 studentvm1 kernel: e1000 0000:00:08.0 eth1:

Intel(R) PRO/1000 Network Connection

<snip>

the first part of each line in our output data stream is the name of the file in which the

matched lines were found. if you do a little exploration of the current messages file, which

is named just that with no appended date, you may or may not find any lines matching our

search pattern. i did not with my vM, so using the file glob to create the pattern “messages*”

searches all of the files starting with messages. this file glob matching is performed by the

shell and not by the grep tool:

You will notice also that on this first try, we found more than we wanted. Some lines that have

the “eth” string in them were found as part of the word, “method.” So let’s be a little more

explicit and use a set as part of our search pattern:

[root@studentvm1 log]# grep -i eth[0-9] messages*

this is better, but what we really care about are the lines that pertain to our niCs after they

were renamed. So we now know the names that our old niC names were changed to, so we

can also search for those. But the grep tool allows multiple search patterns. Fortunately for us,

grep provides some interesting options such as using -e to specify multiple search expressions.

each search expression must be specified using a separate instance of the -e option:

[root@studentvm1 log]# grep -i -e eth[0-9] -e enp0 messages*

that does work, but there is also an extension which allows us to search using extended

regular expressions.7 the grep patterns we have been using so far are basic regular

expressions (Bre). to get more complex, we can use extended regular expressions (ere). to

do this, we can use the -e option which turns on eres:

[root@studentvm1 log]# grep -Ei "eth[0-9]|enp0" messages*

7 Chapter 26 explores this subject in detail.

Chapter 15 advanCed Shell topiCS

https://doi.org/10.1007/978-1-4842-5049-5_26

444

You may wish to use the wc (word count) command to verify that both of the last two

commands produce the same number of line for their results.

this is functionally the same as using the egrep command which is deprecated and may

not be available in the future. For now, egrep is still available for backward compatibility for

scripts that use it and which have not been updated to use grep -E. note that the extended

regular expression is enclosed in double quotes.

now make /etc the pWd. Sometimes i have needed to list all of the configuration files in the /

etc directory. these files typically end with a .conf or .cnf extension or with rc. to do this, we

need an anchor to specify that the search string is at the end of the string being searched. We

use the dollar sign ($) for that. the syntax of the search string in the following command finds

all the configuration files with the listed endings. the -r option for the ll or ls command

causes the command to recurse into all of the subdirectories:

[root@studentvm1 etc]# ls -aR | grep -E "conf$|cnf$|rc$"

We can also use the caret (^) to anchor the beginning of the string. Suppose that we want to

locate all files in /etc that begin with kde because they are used in the configuration of the

Kde desktop:

[root@studentvm1 etc]# ls -R | grep -E "^kde"

kde

kde4rc

kderc

kde.csh

kde.sh

kdebugrc

One of the advanced features of grep is the ability to read the search patterns from

a file containing one or more patterns. This is very useful if the same complex searches

must be performed on a regular basis.

The grep tool is powerful and complex. The man page offers a good amount of

information, and the GNU Project provides a free 36-page manual8 to assist with learning

and using grep. That document is available in HTML, so it can be read online with a web

browser, ASCII text, an info document, a downloadable PDF file, and more.

8 GNU Project, GNU grep, www.gnu.org/software/grep/manual/

Chapter 15 advanCed Shell topiCS

http://www.gnu.org/software/grep/manual/

445

 Finding files
The ls command and its aliases such as ll are designed to list all of the files in a directory.

Special pattern characters and the grep command can be used to narrow down the list of

files sent to STDOUT. But there is still something missing. There is a bit of a problem with

the command, ls -R | grep -E "^kde", which we used in Experiment 15-8. Some of

the files it found were in subdirectories of /etc/ but the ls command does not display the

names of the subdirectories in which those files are stored.

Fortunately the find command is designed explicitly to search for files in a directory

tree using patterns and to either list the files and their directories or to perform some

operation on them. The find command can also use attributes such as the date and time

a file was created or accessed, files that were created or modified before or after a date

and time, its size, permissions, user ID, group ID, and much more. These attributes can

be combined to become very explicit, such as all files that are larger than 12M in size,

that were created more than five years ago, that have not been accessed in more than a

year, that belong to the user with UID XXXX, that are regular files (in other words – not

directories, symbolic links, sockets, named pipes, and more) – and more.

Once these files are found, the find command has the built-in options to perform

actions such as to list, delete, print, or even to execute system commands using the file

name as an option, such as to move or copy them. This is a very powerful and flexible

command.

EXPERIMENT 15-11

perform this experiment as the root user. the following command finds all files in /etc and its

subdirectories that start with “kde” and, because it uses -iname instead of -name, the search

is not case sensitive:

[root@studentvm1 ~]# find /etc -iname "kde*"

/etc/xdg/kdebugrc

/etc/profile.d/kde.csh

/etc/profile.d/kde.sh

/etc/kde4rc

/etc/kderc

/etc/kde

[root@studentvm1 ~]#

Chapter 15 advanCed Shell topiCS

446

perform the rest of these commands as the student user. Make the student user’s home

directory (~) the pWd.

Suppose you want to find all of the empty (zero length) files that were created in your home

directory as part of our earlier experiments. the next command does this. it starts looking at

the home (~) directory for files (type f) that are empty and that contain in the file names the

string “test.file”:

[student@studentvm1 ~]$ find . -type f -empty -name "*test.file*" | wc -l

 9488

[student@studentvm1 ~]$

i have 9,488 empty files from previous experiments in my home directory, but your number may

be different. this large number is to be expected since we created a very large number of files

that are empty for some earlier experiments. run this same command, except do not run the data

stream through the wc command. Just list the names. notice that the file names are not sorted.

But let’s also see if there are any of these files that are not part of our previous experiments

so we want to look for empty files whose file names do not contain the string “test.file”. the

“bang” (!) character inverts the meaning of the -name option so that only files that do not

match the string we supply for the file name are displayed:

[student@studentvm1 ~]$ find . -type f -empty ! -name "*test.file*"

./link3

./.local/share/ranger/tagged

./.local/share/vifm/Trash/000_file02

./.local/share/vifm/Trash/000_file03

./.local/share/orage/orage_persistent_alarms.txt

./.local/share/mc/filepos

./.local/share/user-places.xbel.tbcache

./.cache/abrt/applet_dirlist

./file005

./newfile.txt

./testdir/file006

./testdir/file077

./testdir/link2

./testdir/file008

./testdir/file055

./testdir/file007

<snip>

Chapter 15 advanCed Shell topiCS

447

let’s also find the files that are not empty:

[student@studentvm1 ~]$ find . -type f ! -empty -name "*test.file*" | wc -l

160

[student@studentvm1 ~]$

We now know that 160 files that contain the string “test.file” in their names are not empty.

now we know that performing an action on the files we found in the previous command such

as deleting them will not effect any other important files. So let’s delete all of the empty files

with the string “test.file” in their names. then verify that none of these empty files remain and

that the non-empty files are still there:

[student@studentvm1 ~]$ find . -type f -empty -name "*test.file*" -delete

[student@studentvm1 ~]$ find . -type f -empty -name "*test.file*"

[student@studentvm1 ~]$ find . -type f ! -empty -name "*test.file*" | wc -l

 160

here are a couple more interesting things to try. First, create a file that is quite large for our

next example, so create a file that is over 1GB in size and that contains random data. it took

about 15 minutes to generate this file on my vM, so be patient:

[student@studentvm1 ~]$ pwgen -s 80 14000000 > testdir7/bigtestfile.txt

Use the -ls option to provide a sorted listing of the files found and provides information like the

ls -dils command. note that the inode9 number will be the leftmost column, which means

that the data is sorted by inode number:

[student@studentvm1 ~]$ find . -type f ! -empty -name "*test.file*" -ls

We must do something a bit different to sort the results by size. this is where the -exec option

of the find command is useful. this next command finds all files larger than 3K in size,

generates a listing of them, and then pipes that data stream through the sort command which

uses options -n for numeric sort and -k 7 to sort on the 7th field of the output lines which is

the file size in bytes. White space is the default field separator.

[student@studentvm1 ~]$ find -type f -size +3k -ls | sort -nk 7

We will see more of the find command later.

9 iNodes will be covered in Chapter 18.

Chapter 15 advanCed Shell topiCS

448

I use the find command frequently because of its ability to locate files based on very

exacting criteria. This gives me very exacting yet flexible control over the files I can use

automation to choose on which to perform some SysAdmin tasks.

 Chapter summary
This chapter has provided an exploration of the Bash shell and using shell tools such as

file globbing, brace expansion, control operators, and sets. It has also introduced us to

some important and frequently used command-line tools.

We have looked at many aspects of using the Bash shell and understanding how to

perform some powerful and amazing things. For even more detail on the Bash shell,

gnu.org has the complete GNU Bash Manual10 available in several formats including

PDF and HTML.

This is most certainly not a complete exploration of Bash and some of the advanced

command-line tools available to us as SysAdmins. It should be enough to get you started

and to interest you in learning more.

 Exercises
Perform the following exercises to complete this chapter:

 1. In Chapter 7 we installed some other shells. Choose one of those,

and spend a little time performing simple tasks with it to gain

a little knowledge of the grammar and syntax. Read the man

page for the shell you chose to determine which commands are

internal.

 2. Do Bash and the shell you chose in exercise 1 have some of the

same internal commands?

 3. What does the type command do if the cpuHog shell script is

located in your home directory rather than ~/bin?

 4. What is the function of the $PATH environment variable?

10 Free Software Foundation, GNU Bash Manual, www.gnu.org/software/Bash/manual/

Chapter 15 advanCed Shell topiCS

http://www.gnu.org/software/Bash/manual/

449

 5. Generally speaking, why might you want to use an external

command instead of a shell internal command that performs the

same function and which has the same name?

 6. Locate all of the configuration files in your home directory and all

of its subdirectories.

 7. What is the largest file in the /etc directory?

 8. What is the largest file in the entire filesystem (/)?

Chapter 15 advanCed Shell topiCS

451
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_16

CHAPTER 16

Linux Boot and Startup
 Objectives
In this chapter you will learn

• The difference between Linux boot and startup

• What happens during the hardware boot sequence

• What happens during the Linux boot sequence

• What happens during the Linux startup sequence

• How to manage and modify the Linux boot and startup sequences

• The function of the display and window managers

• How the login process works for both virtual consoles and a GUI

• What happens when a user logs off

This chapter explores the hardware boot sequence, the bootup sequence using the

GRUB2 bootloader, and the startup sequence as performed by the systemd initialization

system. It covers in detail the sequence of events required to change the state of the

computer from off to fully up and running with a user logged in.

This chapter is about modern Linux distributions like Fedora and other Red Hat–

based distributions that use systemd for startup, shutdown, and system management.

systemd is the modern replacement for init and SystemV init scripts.

 Overview
The complete process that takes a Linux host from an off state to a running state is

complex, but it is open and knowable. Before we get into the details, a quick overview of

the time the host hardware is turned on until the system is ready for a user to log in will

452

help orient us. Most of the time we hear about “the boot process” as a single entity, but it

is not. There are, in fact, three parts to the complete boot and startup process:

• Hardware boot which initializes the system hardware

• Linux boot which loads the Linux kernel and systemd

• Linux startup in which systemd makes the host ready for productive

work

It is important to separate the hardware boot from the Linux boot process from

the Linux startup and to explicitly define the demarcation points between them.

Understanding these differences and what part each plays in getting a Linux system to

a state where it can be productive makes it possible to manage these processes and to

better determine the portion in which a problem is occurring during what most people

refer to as “boot.”

 Hardware boot
The first step of the Linux boot process really has nothing whatever to do with Linux.

This is the hardware portion of the boot process and is the same for any Intel-based

operating system.

When power is first applied to the computer, or the VM we have created for this

course, it runs the power-on self-test (POST)1 which is part of BIOS2 or the much newer

Unified Extensible Firmware Interface3 (UEFI). BIOS stands for Basic I/O System, and

POST stands for power-on self-test. When IBM designed the first PC back in 1981, BIOS

was designed to initialize the hardware components. POST is the part of BIOS whose task

is to ensure that the computer hardware functioned correctly. If POST fails, the computer

may not be usable, and so the boot process does not continue.

Most modern motherboards provide the newer UEFI as a replacement for

BIOS. Many motherboards also provide legacy BIOS support. Both BIOS and UEFI

perform the same functions – hardware verification and initialization, and loading the

boot loader. The VM we created for this course uses a BIOS interface which is perfectly

fine for our purposes.

1 Wikipedia, Power On Self Test, http://en.wikipedia.org/wiki/Power-on_self-test
2 Wikipedia, BIOS, http://en.wikipedia.org/wiki/BIOS
3 Wikipedia, Unified Extensible Firmware Interface, https://en.wikipedia.org/wiki/
Unified_Extensible_Firmware_Interface

Chapter 16 Linux Boot and Startup

http://en.wikipedia.org/wiki/Power-on_self-test
http://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface

453

BIOS/UEFI POST checks basic operability of the hardware. Then it locates the boot

sectors on all attached bootable devices including rotating or SSD hard drives, DVD or

CD-ROM, or bootable USB memory sticks like the live USB device we used to install the

StudentVM1 virtual machine. The first boot sector it finds that contains a valid master

boot record (MBR)4 is loaded into RAM, and control is then transferred to the RAM copy

of the boot sector.

The BIOS/UEFI user interface can be used to configure the system hardware for

things like overclocking, specifying CPU cores as active or inactive, specific devices

from which the system might boot, and the sequence in which those devices are to

be searched for a bootable boot sector. I do not create or boot from bootable CD or

DVD devices any more. I only use bootable USB thumb drives to boot from external,

removable devices.

Because I sometimes do boot from an external USB drive – or in the case of a VM, a

bootable ISO image like that of the live USB device – I always configure my systems to

boot first from the external USB device and then from the appropriate internal disk drive.

This is not considered secure in most commercial environments, but then I do a lot of

boots to external USB drives. If they steal the whole computer or if it is destroyed in a

natural disaster, I can revert to backups5 I keep in my safe deposit box.

In most environments you will want to be more secure and set the host to boot from

the internal boot device only. Use a BIOS password to prevent unauthorized users from

accessing BIOS to change the default boot sequence.

Hardware boot ends when the boot sector assumes control of the system.

 Linux boot
The boot sector that is loaded by BIOS is really stage 1 of the GRUB6 boot loader. The

Linux boot process itself is composed of multiple stages of GRUB. We consider each

stage in this section.

4 Wikipedia, Master Boot Record, https://en.wikipedia.org/wiki/Master_boot_record
5 Backups are discussed in Chapter 18 of Volume 2.
6 GNU, GRUB, www.gnu.org/software/grub/manual/grub

Chapter 16 Linux Boot and Startup

https://en.wikipedia.org/wiki/Master_boot_record
http://www.gnu.org/software/grub/manual/grub

454

 GRUB
GRUB2 is the newest version of the GRUB bootloader and is used much more frequently

these days. We will not cover GRUB1 or LILO in this course because they are much older

than GRUB2.

Because it is easier to write and say GRUB than GRUB2, I will use the term GRUB in

this chapter, but I will be referring to GRUB2 unless specified otherwise. GRUB2 stands

for “GRand Unified Bootloader, version 2,” and it is now the standard bootloader for

most current Linux distributions. GRUB is the program which makes the computer just

smart enough to find the operating system kernel and load it into memory, but it takes

three stages of GRUB to do this. Wikipedia has an excellent article on GNU GRUB.7

GRUB has been designed to be compatible with the multiboot specification which

allows GRUB to boot many versions of Linux and other free operating systems. It can

also chain load the boot record of proprietary operating systems. GRUB can allow the

user to choose to boot from among several different kernels for your Linux distribution

if there are more than one present due to system updates. This affords the ability to boot

to a previous kernel version if an updated one fails somehow or is incompatible with an

important piece of software. GRUB can be configured using the /boot/grub/grub.conf file.

GRUB1 is now considered to be legacy and has been replaced in most modern

distributions with GRUB2, which is a complete rewrite of GRUB1. Red Hat-based distros

upgraded to GRUB2 around Fedora 15 and CentOS/RHEL 7. GRUB2 provides the same

boot functionality as GRUB1, but GRUB2 also provides a mainframe-like command-

based pre-OS environment and allows more flexibility during the pre-boot phase.

The primary function of GRUB is to get the Linux kernel loaded into memory and

running. The use of GRUB2 commands within the pre-OS environment is outside the

scope of this chapter. Although GRUB does not officially use the stage terminology for its

three stages, it is convenient to refer to them in that way, so I will.

 GRUB stage 1

As mentioned in the BIOS/UEFI POST section, at the end of POST, BIOS/UEFI searches

the attached disks for a boot record, which is located in the master boot record (MBR);

it loads the first one it finds into memory and then starts execution of the boot record.

7 Wikipedia, GNU GRUB, www.gnu.org/software/grub/grub-documentation.html

Chapter 16 Linux Boot and Startup

http://www.gnu.org/software/grub/grub-documentation.html

455

The bootstrap code, that is GRUB stage 1, is very small because it must fit into the first

512-byte sector on the hard drive along with the partition table.8 The total amount of

space allocated for the actual bootstrap code in a classic, generic MBR is 446 bytes. The

446-byte file for stage 1 is named boot.img and does not contain the partition table. The

partition table is created when the device is partitioned and is overlaid onto the boot

record starting at byte 447.

In UEFI systems, the partition table has been moved out of the MBR and into the

space immediately following the MBR. This provides more space for defining partitions,

so it allows a larger number of partitions to be created.

Because the boot record must be so small, it is also not very smart and does not

understand filesystem structures such as EXT4. Therefore the sole purpose of stage 1 is

to load GRUB stage 1.5. In order to accomplish this, stage 1.5 of GRUB must be located in

the space between the boot record and the UEFI partition data and the first partition on

the drive. After loading GRUB stage 1.5 into RAM, stage 1 turns control over to stage 1.5.

EXPERIMENT 16-1

Log in to a terminal session as root if there is not one already available. as root in a terminal

session, run the following command to verify the identity of the boot drive on your VM. it

should be the same drive as the boot partition:

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 6G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 4G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

[root@studentvm1 ~]#

8 Wikipedia, GUID Partition Table, https://en.wikipedia.org/wiki/GUID_Partition_Table

Chapter 16 Linux Boot and Startup

https://en.wikipedia.org/wiki/GUID_Partition_Table

456

use the dd command to view the boot record of the boot drive. For this experiment i assume

it is assigned to the /dev/sda device. the bs= argument in the command specifies the block

size, and the count= argument specifies the number of blocks to dump to Stdio. the if=

argument (inFile) specifies the source of the data stream, in this case, the uSB device:

this prints the text of the boot record, which is the first block on the disk – any disk. in this

case, there is information about the filesystem and, although it is unreadable because it is

stored in binary format, the partition table. Stage 1 of GruB or some other boot loader is

located in this sector but that, too, is mostly unreadable by us mere humans. We can see a

couple messages in aSCii text that are stored in the boot record. it might be easier to read

these messages if we do this a bit differently. the od command (octal display) displays the

data stream piped to it in octal format in a nice matrix that makes the content a bit easier to

read. the -a option tells the command to convert into readable aSCii format characters where

possible. the last – at the end of the command tells od to take input from the Stdin stream

rather than a file:

[root@studentvm1 ~]# dd if=/dev/sda bs=512 count=1 | od -a -

1+0 records in

1+0 records out

0000000 k c dle dle so P < nul 0 8 nul nul so X so @

0000020 { > nul | ? nul ack 9 nul stx s $ j ! ack nul

0000040 nul > > bel 8 eot u vt etx F dle soh ~ ~ bel u

0000060 s k syn 4 stx 0 soh ; nul | 2 nul nl t soh vt

0000100 L stx M dc3 j nul | nul nul k ~ nul nul nul nul nul

0000120 nul nul nul nul nul nul nul nul nul nul nul nul soh nul nul nul

0000140 nul nul nul nul del z dle dle v B nul t enq v B p

0000160 t stx 2 nul j y | nul nul 1 @ so X so P <

Chapter 16 Linux Boot and Startup

457

0000200 nul sp { sp d | < del t stx bs B R > enq |

0000220 1 @ ht D eot @ bs D del ht D stx G eot dle nul

0000240 f vt rs \ | f ht \ bs f vt rs ` | f ht

0000260 \ ff G D ack nul p 4 B M dc3 r enq ; nul p

0000300 k stx k K ` rs 9 nul soh so [1 v ? nul nul

0000320 so F | s % us a ` 8 nul ; M sub f enq @

0000340 u gs 8 bel ; ? nul nul f 1 v f ; T C P

0000360 A f 9 nul stx nul nul f : bs nul nul nul M sub a

0000400 del & Z | > us } k etx > . } h 4 nul >

0000420 3 } h . nul M can k ~ G R U B sp nul G

0000440 e o m nul H a r d sp D i s k nul R e

0000460 a d nul sp E r r o r cr nl nul ; soh nul 4

0000500 so M dle , < nul u t C nul nul nul nul nul nul nul

0000520 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*
0000660 nul nul nul nul nul nul nul nul \ ; ^ . nul nul nul eot

0000700 soh eot etx ~ B del nul bs nul nul nul nul sp nul nul ~

0000720 B del so ~ B del nul bs sp nul nul x _ bel nul nul

0000740 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

0000760 nul nul nul nul nul nul nul nul nul nul nul nul nul nul U *
0001000

note the star (*) (splat/asterisk) between addresses 0000520 and 0000660. this indicates

that all of the data in that range is the same as the last line before it, 0000520, which is all

null characters. this saves space in the output stream. the addresses are in octal, which is

base 8.

a generic boot record that does not contain a partition table is located in the /boot/grub2/

i386-pc directory. Let’s look at the content of that file. it would not be necessary to specify

the block size and the count if we used dd because we are looking at a file that already has a

limited length. We can also use od directly and specify the file name rather than using the dd

command, although we could do that, too.

Note in Fedora 30 and above, the boot.img files are located in the /usr/lib/grub/
i386-pc/ directory. Be sure to use that location when performing the next part of
this experiment.

Chapter 16 Linux Boot and Startup

458

[root@studentvm1 ~]# od -a /boot/grub2/i386-pc/boot.img

0000000 k c dle nul nul nul nul nul nul nul nul nul nul nul nul nul

0000020 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*
0000120 nul nul nul nul nul nul nul nul nul nul nul nul soh nul nul nul

0000140 nul nul nul nul del z k enq v B nul t enq v B p

0000160 t stx 2 nul j y | nul nul 1 @ so X so P <

0000200 nul sp { sp d | < del t stx bs B R > enq |

0000220 1 @ ht D eot @ bs D del ht D stx G eot dle nul

0000240 f vt rs \ | f ht \ bs f vt rs ` | f ht

0000260 \ ff G D ack nul p 4 B M dc3 r enq ; nul p

0000300 k stx k K ` rs 9 nul soh so [1 v ? nul nul

0000320 so F | s % us a ` 8 nul ; M sub f enq @

0000340 u gs 8 bel ; ? nul nul f 1 v f ; T C P

0000360 A f 9 nul stx nul nul f : bs nul nul nul M sub a

0000400 del & Z | > us } k etx > . } h 4 nul >

0000420 3 } h . nul M can k ~ G R U B sp nul G

0000440 e o m nul H a r d sp D i s k nul R e

0000460 a d nul sp E r r o r cr nl nul ; soh nul 4

0000500 so M dle , < nul u t C nul nul nul nul nul nul nul

0000520 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*
0000760 nul nul nul nul nul nul nul nul nul nul nul nul nul nul U *
0001000

there is second area of duplicated data in this output, between addresses 0000020 and

0000120. Because that area is different from the actual boot record and it is all null in this file,

we can infer that this is where the partition table is located in the actual boot record. there is

also an interesting utility that enables us to just look at the aSCii text strings contained in a file:

[root@studentvm1 ~]# strings /boot/grub2/i386-pc/boot.img

TCPAf

GRUB

Geom

Hard Disk

Read

 Error

Chapter 16 Linux Boot and Startup

459

this tool is easier to use to locate actual text strings than sorting through many lines of the

occasional random aSCii characters to find meaningful strings. But note that like the first line

of the preceding output, not all text strings have meaning to humans.

the point here is that the GruB boot record is installed in the first sector of the hard drive

or other bootable media, using the boot.img file as the source. the partition table is then

superimposed on the boot record in its specified location.

 GRUB stage 1.5

As mentioned earlier, stage 1.5 of GRUB must be located in the space between the boot

record and the UEFI partition data and the first partition on the disk drive. This space

was left unused historically for technical and compatibility reasons and is sometimes

called the “boot track” or the “MBR gap.” The first partition on the hard drive begins at

sector 63, and with the MBR in sector 0, that leaves 62 512-byte sectors – 31,744 bytes –

in which to store stage 1.5 of GRUB which is distributed as the core.img file. The core.

img file is 28,535 bytes as of this writing, so there is plenty of space available between the

MBR and the first disk partition in which to store it.

EXPERIMENT 16-2

the file containing stage 1.5 of GruB is stored as /boot/grub2/i386-pc/core.img. You can

verify this as we did earlier with stage 1 by comparing the code in the file from that stored in

the MBr gap of the boot drive:

[root@studentvm1 ~]# dd if=/dev/sda bs=512 count=1 skip=1 | od -a -

1+0 records in

1+0 records out

512 bytes copied, 0.000132697 s, 3.9 MB/s

0000000 R ? t soh f 1 @ vt E bs f A ` ht f #

0000020 l soh f vt - etx } bs nul si eot d nul nul | del

0000040 nul t F f vt gs f vt M eot f 1 @ 0 del 9

0000060 E bs del etx vt E bs) E bs f soh enq f etx U

0000100 eot nul G eot dle nul ht D stx f ht \ bs f ht L

0000120 ff G D ack nul p P G D eot nul nul 4 B M dc3

0000140 si stx \ nul ; nul p k h f vt E eot f ht @

Chapter 16 Linux Boot and Startup

460

0000160 si enq D nul f vt enq f 1 R f w 4 bs T nl

0000200 f 1 R f w t eot bs T vt ht D ff ; D bs

0000220 si cr $ nul vt eot * D nl 9 E bs del etx vt E

0000240 bs) E bs f soh enq f etx U eot nul nl T cr @

0000260 b ack nl L nl ~ A bs Q nl l ff Z R nl t

0000300 vt P ; nul p so C 1 [4 stx M dc3 r q ff

0000320 C so E nl X A ` enq soh E nl ` rs A ` etx

0000340 ht A 1 del 1 v so [| s % us > V soh h

0000360 ack nul a etx } bs nul si enq " del etx o ff i dc4

0000400 del ` 8 bel ; ; nul nul so C f 1 del ? nul stx

0000420 f ; T C P A f > l soh nul nul g f vt so

0000440 f 1 v f : ht nul nul nul M sub a > X soh h

0000460 F nul Z j nul stx nul nul > [soh h : nul k ack

0000500 > ` soh h 2 nul > e soh h , nul k ~ l o

0000520 a d i n g nul . nul cr nl nul G e o m nul

0000540 R e a d nul sp E r r o r nul nul nul nul nul

0000560 ; soh nul 4 so M dle F nl eot < nul u r C nul

0000600 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*
0000760 nul nul nul nul stx nul nul nul nul nul nul nul o nul sp bs

0001000

 [root@studentvm1 ~]# dd if=/boot/grub2/i386-pc/core.img bs=512 count=1 |

od -a -

1+0 records in

1+0 records out

512 bytes copied, 5.1455e-05 s, 10.0 MB/s

0000000 R ? t soh f 1 @ vt E bs f A ` ht f #

0000020 l soh f vt - etx } bs nul si eot d nul nul | del

0000040 nul t F f vt gs f vt M eot f 1 @ 0 del 9

0000060 E bs del etx vt E bs) E bs f soh enq f etx U

0000100 eot nul G eot dle nul ht D stx f ht \ bs f ht L

0000120 ff G D ack nul p P G D eot nul nul 4 B M dc3

0000140 si stx \ nul ; nul p k h f vt E eot f ht @

0000160 si enq D nul f vt enq f 1 R f w 4 bs T nl

0000200 f 1 R f w t eot bs T vt ht D ff ; D bs

0000220 si cr $ nul vt eot * D nl 9 E bs del etx vt E

0000240 bs) E bs f soh enq f etx U eot nul nl T cr @

Chapter 16 Linux Boot and Startup

461

0000260 b ack nl L nl ~ A bs Q nl l ff Z R nl t

0000300 vt P ; nul p so C 1 [4 stx M dc3 r q ff

0000320 C so E nl X A ` enq soh E nl ` rs A ` etx

0000340 ht A 1 del 1 v so [| s % us > V soh h

0000360 ack nul a etx } bs nul si enq " del etx o ff i dc4

0000400 del ` 8 bel ; ; nul nul so C f 1 del ? nul stx

0000420 f ; T C P A f > l soh nul nul g f vt so

0000440 f 1 v f : ht nul nul nul M sub a > X soh h

0000460 F nul Z j nul stx nul nul > [soh h : nul k ack

0000500 > ` soh h 2 nul > e soh h , nul k ~ l o

0000520 a d i n g nul . nul cr nl nul G e o m nul

0000540 R e a d nul sp E r r o r nul nul nul nul nul

0000560 ; soh nul 4 so M dle F nl eot < nul u r C nul

0000600 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*
0000760 nul nul nul nul stx nul nul nul nul nul nul nul 7 nul sp bs

0001000

[root@studentvm1 ~]#

the first sector of each will do for verification, but you should feel free to explore more of the

code if you like. there are tools that we could use to compare the file with the data in GruB

stage 1.5 on the hard drive, but it is obvious that these two sectors of data are identical.

at this point we know the files that contain stages 1 and 1.5 of the GruB bootloader and

where they are located on the hard drive in order to perform their function as the Linux

bootloader.

Because of the larger amount of code that can be accommodated for stage 1.5 than

for stage 1, it can have enough code to contain a few common filesystem drivers, such as

the standard EXT, XFS, and other Linux filesystems like FAT and NTFS. The GRUB2 core.

img is much more complex and capable than the older GRUB1 stage 1.5. This means that

stage 2 of GRUB2 can be located on a standard EXT filesystem, but it cannot be located

on a logical volume because it needs to be read from a specific location on the bootable

volume before the filesystem drivers have been loaded.

Chapter 16 Linux Boot and Startup

462

Note that the /boot directory must be located on a filesystem that is supported

by GRUB such as EXT4. Not all filesystems are. The function of stage 1.5 is to begin

execution with the filesystem drivers necessary to locate the stage 2 files in the /boot

filesystem and load the needed drivers.

 GRUB stage 2

All of the files for GRUB stage 2 are located in the /boot/grub2 directory and its

subdirectories. GRUB2 does not have an image file like stages 1 and 2. Instead, it consists

of those files and runtime kernel modules that are loaded as needed from the /boot/

grub2 directory and its subdirectories. Some Linux distributions may store these files in

the /boot/grub directory.

The function of GRUB stage 2 is to locate and load a Linux kernel into RAM and turn

control of the computer over to the kernel. The kernel and its associated files are located

in the /boot directory. The kernel files are identifiable as they are all named starting with

vmlinuz. You can list the contents of the /boot directory to see the currently installed

kernels on your system.

EXPERIMENT 16-3

Your list of Linux kernels should be similar to the ones on my VM, but the kernel versions and

probably the releases will be different. You should be using the most recent release of Fedora

on your VM, so it should be release 29 or even higher by the time you installed your VMs. that

should make no difference to these experiments:

Chapter 16 Linux Boot and Startup

463

[r
oo
t@
st
ud
en
tv
m1
 ~
]#
 l
l
/b
oo
t

to
ta
l
18
77
16

-r
w-
r-
-r
--
.
1
ro
ot
 r
oo
t

19
63
76

 A
pr
 2
3

 2
01
8

co
nf
ig
-4
.1
6.
3-
30
1.
fc
28
.x
86
_6
4

-r
w-
r-
-r
--
.
1
ro
ot
 r
oo
t

19
61
72

Au
g
15

 0
8:
55

 c
on
fi
g-
4.
17
.1
4-
20
2.
fc
28
.x
86
_6
4

-r
w-
r-
-r
--

1
ro
ot
 r
oo
t

19
79
53

 S
ep
 1
9

23
:0
2

co
nf
ig
-4
.1
8.
9-
20
0.
fc
28
.x
86
_6
4

dr
wx
--
--
--
.
4
ro
ot
 r
oo
t

40
96

 A
pr
 3
0

 2
01
8

ef
i

-r
w-
r-
-r
--
.
1
ro
ot
 r
oo
t

18
43
80

 J
un
 2
8

10
:5
5

el
f-
me
mt
es
t8
6+
-5
.0
1

dr
wx
r-
xr
-x
.
2
ro
ot
 r
oo
t

40
96

 A
pr
 2
5

 2
01
8

ex
tl
in
ux

dr
wx
--
--
--
.
6
ro
ot
 r
oo
t

40
96

 S
ep
 2
3

21
:5
2

gr
ub
2

-r
w-
--
--
--
.
1
ro
ot
 r
oo
t

72
03
20
25

 A
ug
 1
3

16
:2
3

 in
it
ra
mf
s-
0-
re
sc
ue
-7
f1
25
24
27
8b
d4
0e
9b
10
a0
85
bc
82
dc
50
4.
im
g

-r
w-
--
--
--
.
1
ro
ot
 r
oo
t

24
76
85
11

 A
ug
 1
3

16
:2
4

in
it
ra
mf
s-
4.
16
.3
-3
01
.f
c2
8.
x8
6_
64
.i
mg

-r
w-
--
--
--
.
1
ro
ot
 r
oo
t

24
25
14
84

 A
ug
 1
8

10
:4
6

in
it
ra
mf
s-
4.
17
.1
4-
20
2.
fc
28
.x
86
_6
4.
im
g

-r
w-
--
--
--

1
ro
ot
 r
oo
t

24
31
39
19

 S
ep
 2
3

21
:5
2

in
it
ra
mf
s-
4.
18
.9
-2
00
.f
c2
8.
x8
6_
64
.i
mg

dr
wx
r-
xr
-x
.
3
ro
ot
 r
oo
t

40
96

 A
pr
 2
5

 2
01
8

lo
ad
er

dr
wx
--
--
--
.
2
ro
ot
 r
oo
t

 1
63
84

 A
ug
 1
3

16
:1
6

lo
st
+f
ou
nd

-r
w-
r-
-r
--
.
1
ro
ot
 r
oo
t

18
27
04

 J
un
 2
8

10
:5
5

me
mt
es
t8
6+
-5
.0
1

-r
w-
--
--
--
.
1
ro
ot
 r
oo
t

 3
88
86
20

 A
pr
 2
3

 2
01
8

Sy
st
em
.m
ap
-4
.1
6.
3-
30
1.
fc
28
.x
86
_6
4

-r
w-
--
--
--
.
1
ro
ot
 r
oo
t

 4
10
56
62

 A
ug
 1
5

08
:5
5

Sy
st
em
.m
ap
-4
.1
7.
14
-2
02
.f
c2
8.
x8
6_
64

-r
w-
--
--
--

1
ro
ot
 r
oo
t

 4
10
24
69

 S
ep
 1
9

23
:0
2

Sy
st
em
.m
ap
-4
.1
8.
9-
20
0.
fc
28
.x
86
_6
4

-r
wx
r-
xr
-x
.
1
ro
ot
 r
oo
t

 8
28
63
92

 A
ug
 1
3

16
:2
3

 vm
li
nu
z-
0-
re
sc
ue
-7
f1
25
24
27
8b
d4
0e
9b
10
a0
85
bc
82
dc
50
4

-r
wx
r-
xr
-x
.
1
ro
ot
 r
oo
t

 8
28
63
92

 A
pr
 2
3

 2
01
8

vm
li
nu
z-
4.
16
.3
-3
01
.f
c2
8.
x8
6_
64

-r
wx
r-
xr
-x
.
1
ro
ot
 r
oo
t

 8
55
27
28

 A
ug
 1
5

08
:5
6

vm
li
nu
z-
4.
17
.1
4-
20
2.
fc
28
.x
86
_6
4

-r
wx
r-
xr
-x

1
ro
ot
 r
oo
t

 8
60
59
76

 S
ep
 1
9

23
:0
3

vm
li
nu
z-
4.
18
.9
-2
00
.f
c2
8.
x8
6_
64

[r
oo
t@
st
ud
en
tv
m1
 ~
]#

Yo
u

ca
n

se
e

th
at

 th
er

e
ar

e
fo

ur
 k

er
ne

ls
 a

nd
 th

ei
r s

up
po

rti
ng

 fi
le

s
in

 th
is

 li
st

. t
he

 S
ys

te
m

.m
ap

 fi
le

s
ar

e
sy

m
bo

l t
ab

le
s

th
at

 m
ap

 th
e

ph
ys

ic
al

 a
dd

re
ss

es
 o

f t
he

 s
ym

bo
ls

 s
uc

h
as

 v
ar

ia
bl

es
 a

nd
 fu

nc
tio

ns
. t

he
 in

itr
am

fs
 fi

le
s

ar
e

us
ed

 e
ar

ly
 in

 th
e

Li
nu

x
bo

ot
 p

ro
ce

ss

be
fo

re
 th

e
fil

es
ys

te
m

 d
riv

er
s

ha
ve

 b
ee

n
lo

ad
ed

 a
nd

 th
e

fil
es

ys
te

m
s

m
ou

nt
ed

.

Chapter 16 Linux Boot and Startup

464

GRUB supports booting from one of a selection of installed Linux kernels. The Red

Hat Package Manager, DNF, supports keeping multiple versions of the kernel so that if

a problem occurs with the newest one, an older version of the kernel can be booted. As

shown in Figure 16-1, GRUB provides a pre-boot menu of the installed kernels, including

a rescue option and, if configured, a recovery option for each kernel.

The default kernel is always the most recent one that has been installed during

updates, and it will boot automatically after a short timeout of five seconds. If the up and

down arrows are pressed, the countdown stops, and the highlight bar moves to another

kernel. Press Enter to boot the selected kernel.

If almost any key other than the up and down arrow keys or the “e” or “c” keys are

pressed, the countdown stops and waits for more input. Now you can take your time

to use the arrow keys to select a kernel to boot and then press the Enter key to boot

from it. Stage 2 of GRUB loads the selected kernel into memory and turns control of the

computer over to the kernel.

The rescue boot option is intended as a last resort when attempting to resolve boot

severe problems – ones which prevent the Linux system from completing the boot

process. When some types of errors occur during boot, GRUB will automatically fall back

to boot from the rescue image.

Figure 16-1. The GRUB boot menu allows selection of a different kernel

Chapter 16 Linux Boot and Startup

465

The GRUB menu entries for installed kernels has been useful to me. Before I

became aware of VirtualBox I used to use some commercial virtualization software that

sometimes experienced problems when the Linux was updated. Although the company

tried to keep up with kernel variations, they eventually stopped updating their software

to run with every kernel version. Whenever they did not support a kernel version to

which I had updated, I used the GRUB menu to select an older kernel which I knew

would work. I did discover that maintaining only three older kernels was not always

enough, so I configured the DNF package manager to save up to ten kernels. DNF

package manager configuration is covered in Volume 1, Chapter 12.

 Configuring GRUB
GRUB is configured with /boot/grub2/grub.cfg, but we do not change that file because

it can get overwritten when the kernel is updated to a new version. Instead, we make

modifications to the /etc/default/grub file.

EXPERIMENT 16-4

Let’s start by looking at the unmodified version of the /etc/default/grub file:

[root@studentvm1 ~]# cd /etc/default ; cat grub

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_studentvm1-swap rd.lvm.

lv=fedora_studentvm1/root rd.lvm.lv=fedora_studentvm1/swap rd.lvm.lv=fedora_

studentvm1/usr rhgb quiet"

GRUB_DISABLE_RECOVERY="true"

[root@studentvm1 default]#

Chapter 6 of the GruB documentation referenced in footnote 6 contains a complete listing of all

the possible entries in the /etc/default/grub file, but there are three that we should look at here.

i always change GruB_tiMeout, the number of seconds for the GruB menu countdown, from

five to ten which gives a bit more time to respond to the GruB menu before the countdown

hits zero.

Chapter 16 Linux Boot and Startup

466

i also change GruB_diSaBLe_reCoVerY from “true” to “false” which is a bit of reverse

programmer logic. i have found that the rescue boot option does not always work. to

circumvent this problem, i change this statement to allow the grub2-mkconfig command to

generate a recovery option for each installed kernel; i have found that when the rescue option

fails, these options do work. this also provides recovery kernels for use in case a particular

tool or software package that needs to run on a specific kernel version is able to do so.

Note Changing GruB_diSaBLe_reCoVerY in the grub default configuration
no longer works starting in Fedora 30. the other changes, GruB_tiMeout and
removing “rhgb quiet” from the GruB_CMdLine_Linux variable, still work.

the GruB_CMdLine_Linux line can be changed, too. this line lists the command-line

parameters that are passed to the kernel at boot time. i usually delete the last two parameters

on this line. the rhgb parameter stands for red hat Graphical Boot, and it causes the little

graphical animation of the Fedora icon to display during the kernel initialization instead of

showing boot time messages. the quiet parameter prevents the display of the startup messages

that document the progress of the startup and any errors that might occur. delete both of these

entries because Sysadmins need to be able to see these messages. if something goes wrong

during boot, the messages displayed on the screen can point us to the cause of the problem.

Change these three lines as described so that your grub file looks like this:

[root@studentvm1 default]# cat grub

GRUB_TIMEOUT=10

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora_studentvm1-swap rd.lvm.

lv=fedora_studentvm1/root rd.lvm.lv=fedora_studentvm1/swap rd.lvm.lv=fedora_

studentvm1/usr"

GRUB_DISABLE_RECOVERY="false"

[root@studentvm1 default]#

Check the current content of the /boot/grub2/grub.cfg file. run the following command to

update the /boot/grub2/grub.cfg configuration file:

Chapter 16 Linux Boot and Startup

467

[root@studentvm1 grub2]# grub2-mkconfig > /boot/grub2/grub.cfg

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-4.18.9-200.fc28.x86_64

Found initrd image: /boot/initramfs-4.18.9-200.fc28.x86_64.img

Found linux image: /boot/vmlinuz-4.17.14-202.fc28.x86_64

Found initrd image: /boot/initramfs-4.17.14-202.fc28.x86_64.img

Found linux image: /boot/vmlinuz-4.16.3-301.fc28.x86_64

Found initrd image: /boot/initramfs-4.16.3-301.fc28.x86_64.img

Found linux image: /boot/vmlinuz-0-rescue-7f12524278bd40e9b10a085bc82dc504

Found initrd image: /boot/initramfs-0-rescue-7f12524278bd40e9b10a085bc82dc504.img

done

[root@studentvm1 grub2]#

recheck the content of /boot/grub2/grub.cfg which should reflect the changes we made. You

can grep for the specific lines we changed to verify that the changes occurred. We could also

use an alternative form of this command to specify the output file. grub2-mkconfig -o

/boot/grub2/grub.cfg either form works, and the results are the same.

reboot the StudentVM1 virtual machine. press the Esc key when the GruB menu is displayed.

the first difference you should notice in the GruB menu is that the countdown timer started at

ten seconds. the GruB menu should now appear similar to that shown in Figure 16-2 with a

recovery option for each kernel version. the details of your menu will be different from these.

Figure 16-2. After changing /etc/default/grub and running grub2-mkconfig, the
GRB menu now contains a recovery mode option for each kernel

Chapter 16 Linux Boot and Startup

468

use the down arrow key to highlight the recovery option for the default kernel – the second

option – and press the Enter key to complete the boot and startup process. this will take you

into recovery mode using that kernel. You will also notice many messages displayed on the

screen as the system boots and goes through startup. Some of these messages can be seen in

Figure 16-3 along with messages pertaining to the rescue shell.

Based on these messages, we can conclude that “recovery” mode is a rescue mode in which

we get to choose the kernel version. the system displays a login message:

Give root password for maintenance

(or press Control-D to continue):

type the root password to log in. there are also instructions on the screen in case you want to

reboot or continue into the default runlevel target.

notice also at the bottom of the screen in Figure 16-3 that the little trail of messages we will

embed in the bash startup configuration files in Chapter 17 shows here that the /etc/bashrc

and /etc/profile.d/myBashConfig.sh files – along with all of the other bash configuration files in

/etc/profile.d – were run at login. i have skipped ahead a bit with this, but i will show you how

to test it yourself in Chapter 17. this is good information to have because you will know what

to expect in the way of shell configuration while working in recovery mode.

While in recovery mode, explore the system while it is in the equivalent of what used to be

called single user mode. the lsblk utility will show that all of the filesystems are mounted

in their correct locations and the ip addr command will show that networking has not been

started. the computer is up and running, but it is in a very minimal mode of operation. only the

most essential services are available to enable pxroblem solving. the runlevel command

will show that the host is in the equivalent of the old SystemV runlevel 1.

Chapter 16 Linux Boot and Startup

469

Before completing this experiment, reboot your VM to one of the older regular kernels, and

log in to the desktop. test a few programs, and then open a terminal session to test some

command-line utilities. everything should work without a problem because the kernel version

is not bound to specific versions of the rest of the Linux operating system. running an

alternate kernel is easy and commonplace.

to end this experiment, reboot the system and allow the default kernel to boot. no intervention

will be required. Youx will see all of the kernel boot and startup messages during this normal

boot.

There are three different terms that are typically applied to recovery mode: recovery,

rescue, and maintenance. These are all functionally the same. Maintenance mode is

typically used when the Linux host fails to boot to its default target due to some error that

Figure 16-3. After booting to a recovery mode kernel, you use the root password to
enter maintenance mode

Chapter 16 Linux Boot and Startup

470

occurs during the boot and startup. Being able to see the boot and startup messages if an

error occurs can also provide clues as to where the problem might exist.

I have found that the rescue kernel, the option at the bottom of the GRUB menu

in Figures 16-1, 16-2, and 16-3, almost never works and I have tried it on a variety of

physical hardware and virtual machines, and it always fails. So I need to use the recovery

kernels, and that is why I configure GRUB to create those recovery menu options.

In Figure 16-2, after configuring GRUB and running the grub2-mkconfig -o /boot/

grub2/grub.cfg command, there are two rescue mode menu options. In my testing I

have discovered that the top rescue mode menu option fails but that the bottom rescue

mode menu option, the one we just created, does work. But it really does not seem to

matter because, as I have said, both rescue and recovery modes provide exactly the same

function. This problem is a bug, probably in GRUB, so I reported it to Red Hat using

Bugzilla.9

Part of our responsibility as SysAdmins, and part of giving back to the open source

community, is to report bugs when we encounter them. Anyone can create an account

and log in to report bugs. Updates will be sent to you by e-mail whenever a change is

made to the bug report.

 The Linux kernel
All Linux kernels are in a self-extracting, compressed format to save space. The kernels

are located in the /boot directory, along with an initial RAM disk image and symbol

maps. After the selected kernel is loaded into memory by GRUB and begins executing, it

must first extract itself from the compressed version of the file before it can perform any

useful work. The kernel has extracted itself, loads systemd, and turns control over to it.

This is the end of the boot process. At this point, the Linux kernel and systemd are

running but unable to perform any productive tasks for the end user because nothing

else is running, no shell to provide a command line, no background processes to manage

the network or other communication links, and nothing that enables the computer to

perform any productive function.

9 Red Hat Bugzilla, https://bugzilla.redhat.com

Chapter 16 Linux Boot and Startup

https://bugzilla.redhat.com/

471

 Linux startup
The startup process follows the boot process and brings the Linux computer up to an

operational state in which it is usable for productive work. The startup process begins

when the kernel transfers control of the host to systemd.

 systemd
systemd10,11 is the mother of all processes, and it is responsible for bringing the Linux

host up to a state in which productive work can be done. Some of its functions, which are

far more extensive than the old SystemV12 init program, are to manage many aspects of a

running Linux host, including mounting filesystems and starting and managing system

services required to have a productive Linux host. Any of systemd’s tasks that are not

related to the startup sequence are outside the scope of this chapter, but we will explore

them in Volume 2, Chapter 13.

First systemd mounts the filesystems as defined by /etc/fstab, including any swap

files or partitions. At this point, it can access the configuration files located in /etc,

including its own. It uses its configuration link, /etc/systemd/system/default.target, to

determine which state or target, into which it should boot the host. The default.target file

is a symbolic link to the true target file. For a desktop workstation, this is typically going

to be the graphical.target, which is equivalent to runlevel 5 in SystemV. For a server, the

default is more likely to be the multi-user.target which is like runlevel 3 in SystemV. The

emergency.target is similar to single user mode. Targets and services are systemd units.

Figure 16-4 is a comparison of the systemd targets with the old SystemV

startup runlevels. The systemd target aliases are provided by systemd for backward

compatibility. The target aliases allow scripts — and many SysAdmins like myself —

to use SystemV commands like init 3 to change runlevels. Of course the SystemV

commands are forwarded to systemd for interpretation and execution.

10 Wikipedia, systemd, https://en.wikipedia.org/wiki/Systemd
11 Yes, systemd should always be spelled like this without any uppercase even at the

beginning of a sentence. The documentation for systemd is very clear about this.
12 Wikipedia, Runlevel, https://en.wikipedia.org/wiki/Runlevel

Chapter 16 Linux Boot and Startup

https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Runlevel

472

SystemV
Runlevel

systemd target systemd target
aliases

Description

Figure 16-4. Comparison of SystemV runlevels with systemd targets and some
target aliases

Each target has a set of dependencies described in its configuration file. systemd

starts the required dependencies. These dependencies are the services required to run

the Linux host at a specific level of functionality. When all of the dependencies listed

in the target configuration files are loaded and running, the system is running at that

target level.

Chapter 16 Linux Boot and Startup

473

systemd also looks at the legacy SystemV init directories to see if any startup files

exist there. If so, systemd used those as configuration files to start the services described

by the files. The deprecated network service is a good example of one of those that still

use SystemV startup files in Fedora.

Figure 16-5 is copied directly from the bootup man page. It shows a map of the

general sequence of events during systemd startup and the basic ordering requirements

to ensure a successful startup.

The sysinit.target and basic.target targets can be considered as checkpoints in the

startup process. Although systemd has as one of its design goals to start system services

in parallel, there are still certain services and functional targets that must be started

before other services and targets can be started. These checkpoints cannot be passed

until all of the services and targets required by that checkpoint are fulfilled.

The sysinit.target is reached when all of the units on which it depends are completed.

All of those units, mounting filesystems, setting up swap files, starting udev, setting

the random generator seed, initiating low-level services, and setting up cryptographic

services if one or more filesystems are encrypted, must be completed, but within the

sysinit.target, those tasks can be performed in parallel.

The sysinit.target starts up all of the low-level services and units required for the

system to be marginally functional, and that are required to enable moving on to the

basic.target.

After the sysinit.target is fulfilled, systemd next starts the basic.target, starting all of

the units required to fulfill it. The basic target provides some additional functionality by

starting units that are required for all of the next targets. These include setting up things

like paths to various executable directories, communication sockets, and timers.

Finally, the user-level targets, multi-user.target, or graphical.target can be initialized.

The multi-user.target must be reached before the graphical target dependencies can

be met. The underlined targets in Figure 16-5 are the usual startup targets. When one

of these targets is reached, then startup has completed. If the multi-user.target is the

default, then you should see a text mode login on the console. If graphical.target is the

default, then you should see a graphical login; the specific GUI login screen you see will

depend upon the default display manager.

Chapter 16 Linux Boot and Startup

474

Figure 16-5. The systemd startup map

Chapter 16 Linux Boot and Startup

475

The bootup man page also describes and provides maps of the boot into the initial

RAM disk and the systemd shutdown process.

EXPERIMENT 16-5

So far we have only booted to the graphical.target, so let’s change the default target to multi-

user.target to boot into a console interface rather than a Gui interface.

as the root user on StudentVM1, change to the directory in which systemd configuration is

maintained and do a quick listing:

[root@studentvm1 ~]# cd /etc/systemd/system/ ; ll

drwxr-xr-x. 2 root root 4096 Apr 25 2018 basic.target.wants

<snip>

lrwxrwxrwx. 1 root root 36 Aug 13 16:23 default.target -> /lib/systemd/

system/graphical.target

lrwxrwxrwx. 1 root root 39 Apr 25 2018 display-manager.service -> /usr/

lib/systemd/system/lightdm.service

drwxr-xr-x. 2 root root 4096 Apr 25 2018 getty.target.wants

drwxr-xr-x. 2 root root 4096 Aug 18 10:16 graphical.target.wants

drwxr-xr-x. 2 root root 4096 Apr 25 2018 local-fs.target.wants

drwxr-xr-x. 2 root root 4096 Oct 30 16:54 multi-user.target.wants

<snip>

[root@studentvm1 system]#

i have shortened this listing to highlight a few important things that will help us understand

how systemd manages the boot process. You should be able to see the entire list of directories

and links on your VM.

the default.target entry is a symbolic link13 (symlink, soft link) to the directory, /lib/systemd/

system/graphical.target. List that directory to see what else is there:

[root@studentvm1 system]# ll /lib/systemd/system/ | less

13 Hard and soft links are covered in detail in Chapter 18 in this volume. A symlink is the same as a
soft link.

Chapter 16 Linux Boot and Startup

476

You should see files, directories, and more links in this listing, but look for multi-user.target

and graphical.target. now display the contents of default.target which is a link to /lib/systemd/

system/graphical.target:

[root@studentvm1 system]# cat default.target

SPDX-License-Identifier: LGPL-2.1+

#

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Graphical Interface

Documentation=man:systemd.special(7)

Requires=multi-user.target

Wants=display-manager.service

Conflicts=rescue.service rescue.target

After=multi-user.target rescue.service rescue.target display-manager.service

AllowIsolate=yes

[root@studentvm1 system]#

this link to the graphical.target file now describes all of the prerequisites and needs that the

graphical user interface requires. to enable the host to boot to multiuser mode, we need to

delete the existing link and then create a new one that points to the correct target. Make pWd

/etc/systemd/system if it is not already:

[root@studentvm1 system]# rm -f default.target

[root@studentvm1 system]# ln -s /lib/systemd/system/multi-user.target

default.target

List the default.target link to verify that it links to the correct file:

[root@studentvm1 system]# ll default.target

lrwxrwxrwx 1 root root 37 Nov 28 16:08 default.target -> /lib/systemd/system/

multi-user.target

[root@studentvm1 system]#

Chapter 16 Linux Boot and Startup

477

if your link does not look exactly like that, delete it and try again. List the content of the

default.target link:

[root@studentvm1 system]# cat default.target

SPDX-License-Identifier: LGPL-2.1+

#

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

AllowIsolate=yes

[root@studentvm1 system]#

the default.target has different requirements in the [unit] section. it does not require the

graphical display manager.

reboot. Your VM should boot to the console login for virtual console 1 which is identified on the

display as tty1. now that you know what is necessary to change the default target, change it

back to the graphical.target using a command designed for the purpose. Let’s first check the

current default target:

[root@studentvm1 ~]# systemctl get-default

multi-user.target

[root@studentvm1 ~]# systemctl set-default graphical.target

Removed /etc/systemd/system/default.target.

Created symlink /etc/systemd/system/default.target → /usr/lib/systemd/

system/graphical.target.

[root@studentvm1 ~]#

Chapter 16 Linux Boot and Startup

478

type the following command to go directly to the display manager login page without having

to reboot:

[root@studentvm1 system]# systemctl isolate default.target

i am unsure why the term “isolate” was chosen for this subcommand by the developers of

systemd. however the effect is to switch targets from one run target to another, in this case

from the emergency target to the graphical target. the preceding command is equivalent to

the old init 5 command in the days of SystemV start scripts and the init program.

Log in to the Gui desktop.

We will explore systemd in more detail in Chapter 13 of Volume 2.

GRUB and the systemd init system are key components in the boot and startup

phases of most modern Linux distributions. These two components work together

smoothly to first load the kernel and then to start up all of the system services required to

produce a functional GNU/Linux system.

Although I do find both GRUB and systemd more complex than their predecessors,

they are also just as easy to learn and manage. The man pages have a great deal of

information about systemd, and freedesktop.org has a web site that describes the

complete startup process14 and a complete set of systemd man pages15 online.

 Graphical login screen
There are still two components that figure in to the very end of the boot and startup

process for the graphical.target, the display manager (dm) and the window manager

(wm). These two programs, regardless of which ones you use on your Linux GUI desktop

system, always work closely together to make your GUI login experience smooth and

seamless before you even get to your desktop.

14 Freedesktop.org, systemd bootup process, www.freedesktop.org/software/systemd/man/
bootup.html

15 Freedesktop.org, systemd index of man pages, www.freedesktop.org/software/systemd/man/
index.html

Chapter 16 Linux Boot and Startup

http://www.freedesktop.org/software/systemd/man/bootup.html
http://www.freedesktop.org/software/systemd/man/bootup.html
http://www.freedesktop.org/software/systemd/man/index.html
http://www.freedesktop.org/software/systemd/man/index.html

479

16 Wikipedia, X Display Manager, https://en.wikipedia.org/
wiki/X_display_manager_(program_type)

17 Wikipedia, Simple desktop Display Manager, https://en.wikipedia.org/wiki/
Simple_Desktop_Display_Manager

 Display manager

The display manager16 is a program with the sole function of providing the GUI login

screen for your Linux desktop. After you log in to a GUI desktop, the display manager

turns control over to the window manager. When you log out of the desktop, the display

manager is given control again to display the login screen and wait for another login.

There are several display managers; some are provided with their respective

desktops. For example, the kdm display manager is provided with the KDE desktop.

Many display managers are not directly associated with a specific desktop. Any of the

display managers can be used for your login screen regardless of which desktop you are

using. And not all desktops have their own display managers. Such is the flexibility of

Linux and well-written, modular code.

The typical desktops and display managers are shown in Figure 16-6. The display

manager for the first desktop that is installed, that is, GNOME, KDE, etc., becomes the

default one. For Fedora, this is usually gdm which is the display manager for GNOME. If

GNOME is not installed, then the display manager for the installed desktop is the default.

If the desktop selected during installation does not have a default display manager, then

gdm is installed and used. If you use KDE as your desktop, the new SDDM17 will be the

default display manager.

Chapter 16 Linux Boot and Startup

https://en.wikipedia.org/wiki/X_display_manager_(program_type)
https://en.wikipedia.org/wiki/X_display_manager_(program_type)
https://en.wikipedia.org/wiki/Simple_Desktop_Display_Manager
https://en.wikipedia.org/wiki/Simple_Desktop_Display_Manager

480

Regardless of which display manager is configured as the default at installation

time, later installation of additional desktops does not automatically change the display

manager used. If you want to change the display manager, you must do it yourself from

the command line. Any display manager can be used, regardless of which window

manager and desktop are used.

 Window manager

The function of a window manager18 is to manage the creation, movement, and

destruction of windows on a GUI desktop including the GUI login screen. The window

manager works with the Xwindow19 system or the newer Wayland20 to perform these

tasks. The Xwindow system provides all of the graphical primitives and functions to

generate the graphics for a Linux or Unix graphical user interface.

The window manager also controls the appearance of the windows it generates. This

includes the functional decorative aspects of the windows, such as the look of buttons,

sliders, window frames, pop-up menus, and more.

As with almost every other component of Linux, there are many different window

managers from which to choose. The list in Figure 16-7 represents only a sample of the

available window managers. Some of these window managers are stand-alone, that is,

Desktop Display Manager Comments

Figure 16-6. A short list of display managers

18 Wikipewdia, X Window Manager, https://en.wikipedia.org/wiki/X_window_manager
19 Wikipedia, X Window System, https://en.wikipedia.org/wiki/X_Window_System
20 Wikipedia, Wayland, https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

Chapter 16 Linux Boot and Startup

https://en.wikipedia.org/wiki/X_window_manager
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)

481

they are not associated with a desktop and can be used to provide a simple graphical

user interface without the more complex, feature-rich, and more resource-intensive

overhead of a full desktop environment. Stand-alone window managers should not be

used with any of the desktop environments.

Figure 16-7. A short list of window managers

Most window managers are not directly associated with any specific desktop. In

fact some window managers can be used without any type of desktop software, such as

KDE or GNOME, to provide a very minimalist GUI experience for users. Many desktop

environments support the use of more than one window manager.

Chapter 16 Linux Boot and Startup

482

 How do I deal with all these choices?

In most modern distributions, the choices are made for you at installation time and

are based on your selection of desktops and the preferences of the packagers of your

distribution. The desktop and window managers and the display manager can be easily

changed.

Now that systemd has become the standard startup system in many distributions,

you can set the preferred display manager in /etc/systemd/system which is where the

basic system startup configuration is located. There is a symbolic link (symlink) named

display-manager.service that points to one of the display manager service units in /usr/

lib/systemd/system. Each installed display manager has a service unit located there. To

change the active display manager, remove the existing display-manager.service link,

and replace it with the one you want to use.

EXPERIMENT 16-6

perform this experiment as root. We will install additional display managers and stand-alone

window managers then switch between them.

Check and see which display managers are already installed. the rpMs in which the window

managers are packaged have inconsistent naming, so it is difficult to locate them using a

simple dnF search unless you already know their rpM package names which, after a bit of

research, i do:

[root@studentvm1 ~]# dnf list compiz fluxbox fvwm icewm xorg-x11-twm xfwm4

Last metadata expiration check: 1:00:54 ago on Thu 29 Nov 2018 11:31:21 AM

EST.

Installed Packages

xfwm4.x86_64 4.12.5-1.fc28 @updates

Available Packages

compiz.i686 1:0.8.14-5.fc28 fedora

compiz.x86_64 1:0.8.14-5.fc28 fedora

fluxbox.x86_64 1.3.7-4.fc28 fedora

fvwm.x86_64 2.6.8-1.fc28 updates

icewm.x86_64 1.3.8-15.fc28 fedora

xorg-x11-twm.x86_64 1:1.0.9-7.fc28 fedora

[root@studentvm1 ~]#

Chapter 16 Linux Boot and Startup

483

now let’s look for the display managers:

[root@studentvm1 ~]# dnf list gdm kdm lightdm lxdm sddm xfdm xorg-x11-xdm

Last metadata expiration check: 2:15:20 ago on Thu 29 Nov 2018 11:31:21 AM

EST.

Installed Packages

lightdm.x86_64 1.28.0-1.fc28 @updates

Available Packages

gdm.i686 1:3.28.4-1.fc28 updates

gdm.x86_64 1:3.28.4-1.fc28 updates

kdm.x86_64 1:4.11.22-22.fc28 fedora

lightdm.i686 1.28.0-2.fc28 updates

lightdm.x86_64 1.28.0-2.fc28 updates

lxdm.x86_64 0.5.3-10.D20161111gita548c73e.fc28 fedora

sddm.i686 0.17.0-3.fc28 updates

sddm.x86_64 0.17.0-3.fc28 updates

xorg-x11-xdm.x86_64 1:1.1.11-16.fc28 fedora

[root@studentvm1 ~]#

each dm is started as a systemd service, so another way to determine which ones are

installed is to check the /usr/lib/systemd/system/ directory. the lightdm display manager

shows up twice as installed and available because there is an update for it:

[root@studentvm1 ~]# cd /usr/lib/systemd/system/ ; ll *dm.service

-rw-r--r-- 1 root root 1059 Sep 1 11:38 lightdm.service

[root@studentvm1 system]#

Like my VM, yours should have only a single dm, the lightdm. Let’s install lxdm and xorg-

x11-xdm as the additional display managers, with FVWM, fluxbox, and icewm for window

managers:

[root@studentvm1 ~]# dnf install -y lxdm xorg-x11-xdm compiz fvwm fluxbox

icewm

now we must restart the display manager service so that the newly installed window

managers in the display manager selection tool. the simplest way is to log out of the desktop

and restart the dm from a virtual console session:

[root@studentvm1 ~]# systemctl restart display-manager.service

Chapter 16 Linux Boot and Startup

484

or we could do this by switching to the multiuser target and then back to the graphical target.

do this, too, just to see what switching between these targets looks like:

[root@studentvm1 ~]# systemctl isolate multi-user.target

[root@studentvm1 ~]# systemctl isolate graphical.target

But this second method is a lot more typing. Switch back to the lightdm login on vc1, and look

in the upper right corner of the lightdm login screen. the leftmost icon, which on my VM looks

like a sheet of paper with a wrench,21 allows us to choose the desktop or window manager we

want to use before we log in. Click this icon and choose FVWM from the menu in Figure 16-8,

then log in.

Figure 16-8. The lightdm display manager menu now shows the newly installed
window managers

21 The icon on your version of lightdm might be different. It changed for me at least once after
installing updates.

explore this window manager. open an xterm instance, and locate the menu option that gives

access to application programs. Figure 16-9 shows the Fvwm desktop (this is not a desktop

environment like Kde or GnoMe) with an open xterm instance and a menu tree that is opened

with a left click on the display. a different menu is opened with a right-click.

Fvwm is a very basic but usable window manager. Like most window managers, it provides

menus to access various functions and a graphical display that supports simple windowing

functionality. Fvwm also provides multiple windows in which to run programs for some task

management capabilities.

notice that the xdGMenu in Figure 16-9 also contains xfce applications. the Start here menu

item leads to the Fvwm menus that include all of the standard Linux applications that are

installed on the host.

Chapter 16 Linux Boot and Startup

485

after spending a bit of time exploring the Fvwm interface, log out. Can’t find the way to

do that? neither could i as it is very nonintuitive. Left-click the desktop and open the

FvwmConsole. then type in the command Quit – yes, with the uppercase Q – and press Enter.

We could also open an xterm session and use the following command which kills all instances

of the Fvwm window manager belonging to the student user:

[student@studentvm1 ~]# killall fvwm

try each of the other window managers, exploring the basic functions of launching

applications and a terminal session. When you have finished that, exit whichever window

manager you are in, and log in again using the xfce desktop environment.

Figure 16-9. The Fvwm window manager with an Xterm instance and some of the
available menus

Chapter 16 Linux Boot and Startup

486

now let’s change the display manager to one of the new ones we have installed. each dm

has the same function, to provide a Gui for login and some configuration such as the desktop

environment or window manager to start as the user interface. Change into the /etc/systemd/

system/ directory, and list the link for the display manager service:

[root@studentvm1 ~]# cd /etc/systemd/system/ ; ll display-manager.service

total 60

lrwxrwxrwx. 1 root root 39 Apr 25 2018 display-manager.service -> /usr/

lib/systemd/system/lightdm.service

Locate all of the display manager services in /usr/lib/systemd/system/:

[root@studentvm1 system]# ll /usr/lib/systemd/system/*dm.service

-rw-r--r-- 1 root root 1059 Sep 26 11:04 /usr/lib/systemd/system/lightdm.

service

-rw-r--r-- 1 root root 384 Feb 14 2018 /usr/lib/systemd/system/lxdm.service

-rw-r--r-- 1 root root 287 Feb 10 2018 /usr/lib/systemd/system/xdm.service

and make the change:

[root@studentvm1 system]# rm -f display-manager.service

[root@studentvm1 system]# [root@studentvm1 system]# ln -s /usr/lib/systemd/

system/xdm.service display.manager.service

[root@studentvm1 system]# ll display-manager.service

lrwxrwxrwx 1 root root 35 Nov 30 09:03 display.manager.service -> /usr/lib/

systemd/system/xdm.service

[root@studentvm1 system]#

as far as i can tell at this point, rebooting the host is the only way to reliably activate the new

dm. Go ahead and reboot your VM now to do that.

there is a tool, system-switch-displaymanager, which is supposed to make the necessary

changes, and it does seem to work sometimes. But this tool does not restart the dm, and many

times that step fails when performed. unfortunately, my own experiments have determined

that restarting the display manager service does not activate the new dm. the following steps

are supposed to work; try it to see if it works for you as you switch back to the lightdm display

manager:

[root@studentvm1 ~]# dnf -y install system-switch-displaymanager

[root@studentvm1 ~]# system-switch-displaymanager lightdm

[root@studentvm1 ~]# systemctl restart display-manager.service

Chapter 16 Linux Boot and Startup

487

if the second two steps in this sequence does not work, then reboot. Jason Baker, my

technical reviewer, says, “this seemed to work for me, but then it failed to actually log in to

lightdm, so i had to reboot.”

Different distributions and desktops have various means of changing the window

manager, but, in general, changing the desktop environment also changes the window

manager to the default one for that desktop. For current releases of Fedora Linux, the

desktop environment can be changed on the display manager login screen. If stand-

alone display managers are also installed, they also appear in the list with the desktop

environments.

There are many different choices for display and window managers available. When

you install most modern distributions with any kind of desktop, the choices of which

ones to install and activate are usually made by the installation program. For most

users, there should never be any need to change these choices. For others who have

different needs, or for those who are simply more adventurous, there are many options

and combinations from which to choose. With a little research, you can make some

interesting changes.

 About the login
After a Linux host is turned on, it boots and goes through the startup process. When the

startup process is completed, we are presented with a graphical or command-line login

screen. Without a login prompt, it is impossible to log in to a Linux host.

How the login prompt is displayed and how a new one is displayed after a user logs

out are the final stage of understanding the Linux startup.

 CLI login screen
The CLI login screen is initiated by a program called a getty, which stands for GET TTY.

The historical function of a getty was to wait for a connection from a remote dumb

terminal to come in on a serial communications line. The getty program would spawn

the login screen and wait for a login to occur. When the remote user would log in, the

getty would terminate, and the default shell for the user account would launch and allow

the user to interact with the host on the command line. When the user would log out, the

init program would spawn a new getty to listen for the next connection.

Chapter 16 Linux Boot and Startup

488

Today’s process is much the same with a few updates. We now use an agetty, which is

an advanced form of getty, in combination with the systemd service manager, to handle

the Linux virtual consoles as well as the increasingly rare incoming modem lines. The

steps listed in the following show the sequence of events in a modern Linux computer:

 1. systemd starts the systemd-getty-generator daemon.

 2. The systemd-getty-generator spawns an agetty on each of the

virtual consoles using the serial-getty@.service.

 3. The agettys wait for virtual console connection, which is the user

switching to one of the VCs.

 4. The agetty presents the text mode login screen on the display.

 5. The user logs in.

 6. The shell specified in /etc/passwd is started.

 7. Shell configuration scripts run.

 8. The user works in the shell session.

 9. The user logs off.

 10. The systemd-getty-generator spawns an agetty on the logged out

virtual console.

 11. Go to step 3.

Starting with step 3, this is a circular process that repeats as long as the host is up and

running. New login screens are displayed on a virtual console immediately after the user

logs out of the old session.

 GUI login screen
The GUI login screen as displayed by the display manager is handled in much the same

way as the systemd-getty-generator handles the text mode login:

 1. The specified display manager (dm) is launched by systemd at the

end of the startup sequence.

 2. The display manager displays graphical login screen, usually on

virtual console 1.

Chapter 16 Linux Boot and Startup

489

 3. The dm waits for a login.

 4. The user logs in.

 5. The specified window manager is started.

 6. The specified desktop GUI, if any, is started.

 7. The user performs work in the window manager/desktop.

 8. The user logs out.

 9. systemd respawns the display manager.

 10. Go to step 2.

The steps are almost the same, and the display manager functions as a graphical

version of the agetty.

 Chapter summary
We have explored the Linux boot and startup processes in some detail. This chapter

explored reconfiguration of the GRUB bootloader to display the kernel boot and startup

messages as well as to create recovery mode entries, ones that actually work, for the

GRUB menu. Because there is a bug when attempting to boot to the rescue mode kernel,

we discussed our responsibility as SysAdmins to report bugs through the appropriate

channels.

We installed and explored some different window managers as an alternative to

more complex desktop environments. The desktop environments do depend upon at

least one of the window managers for their low-level graphical functions while providing

useful, needed, and sometimes fun features. We also discovered how to change the

default display manager to provide a different GUI login screen as well as how the GUI

and command-line logins work.

This chapter has also been about learning the tools like dd that we used to extract the

data from files and from specific locations on the hard drive. Understanding those tools

and how they can be used to locate and trace data and files provides SysAdmins with

skills that can be applied to exploring other aspects of Linux.

Chapter 16 Linux Boot and Startup

490

 Exercises

 1. Describe the Linux boot process.

 2. Describe the Linux startup process.

 3. What does GRUB do?

 4. Where is stage 1 of GRUB located on the hard drive?

 5. What is the function of systemd during startup?

 6. Where are the systemd startup target files and links located?

 7. Configure the StudentVM1 host so that the default.target is reboot.

target and reboot the system.

After watching the VM reboot a couple times, reconfigure the

default.target to point to the graphical.target again and reboot.

 8. What is the function of an agetty?

 9. Describe the function of a display manager.

 10. What Linux component attaches to a virtual console and displays

the text mode login screen?

 11. List and describe the Linux components involved and the

sequence of events that take place when a user logs in to a virtual

console until they log out.

 12. What happens when the display manager service is restarted

from a root terminal session on the desktop using the command

systemctl restart display-manager.service?

Chapter 16 Linux Boot and Startup

491
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_17

CHAPTER 17

Shell Configuration
 Objectives
In this chapter you will learn

• How the Bash shell is configured

• How to modify the configuration of the Bash shell so that your

changes won’t be overwritten during updates

• The names and locations of the files used to configure Linux shells at

both global and user levels

• Which shell configuration files should not be changed

• How to set shell options

• The locations in which to place or find supplementary

configuration files

• How to set environment variables from the command line

• How to set environment variables using shell configuration files

• The function of aliases and how to set them

In this chapter we will learn to configure the Bash shell because it is the default shell

for almost every Linux distribution. Other shells have very similar configuration files,

and many of them coexist with the Bash configuration files in both the /etc directory for

global configuration and in the users’ home directories for local configuration.

We will explore environment variables and shell variables and how they contribute to

the behavior of the shell itself and the programs that run in a shell. We will discover the files

that can be used to configure the Bash shell globally and for individual users. This chapter

is not about learning every possible environment variable. It is more about learning where

the files used to configure the Bash shell are located and how to manage them.

492

We have looked at the $PATH and $? environment variables, but there are many

more variables than just those. The $EDITOR variable, for example, defines the name of

the default text mode editor to be used when programs call for an editor, and, as we have

already seen, the $PATH environment variable defines a list of directories in which the

shell will look for commands.

Most of these variables are used to help define how the shell and the programs

running in the shell behave. Running programs, whether command line or GUI, can

extract the values of one or more environment variables in order to determine specific

behaviors.

 Starting the shell
The sequence of events that takes place when we start a shell provides us with the

information we need to understand its configuration. This sequence begins with global

configuration files and then proceeds to the local configuration files which allow users

to override global configuration settings. All of the files we encounter in this section

are ASCII text files, so they are open and knowable. Some of these files should not be

changed, but their content can be overridden in local configuration files.

Before we can explore any further, we need to define a couple terms. There are

multiple ways that one can start a shell, and this results in multiple sets of circumstances

under which the shell might be started. There are two circumstances that we are

concerned about here, and they do result in different environments and a somewhat

different sequence in which the shell initialization is performed:

• Login shell: A login shell is one that you needed to use a user ID and

password to gain access. This is the case with a virtual console or

when you log in remotely using SSH. The GUI desktop1 constitutes a

login shell.

1 In many ways, a GUI desktop can be considered a shell, and its login sequence is very similar to
that of a login to a virtual console.

Chapter 17 Shell Configuration

493

• Non-login shell: A non-login shell is one that is spawned or launched

from within another, already running shell. This parent shell can

be a login shell or another non-login shell. Non-login shells can be

launched from within a GUI desktop, by the screen command, from

within a terminal emulator where multiple tabs or windows can each

contain a shell instance.

There are five main files and one directory that are used to configure the Bash

environment. We will look at each of these in a bit more detail, but they are listed here

along with their main functions:

• /etc/profile: System-wide environment and startup programs.

• /etc/bashrc: System-wide functions and aliases.

• /etc/profile.d/: This directory contains system-wide scripts for

configuring various CLI tools such as vim and mc. The SysAdmin can

also place custom configuration scripts in this directory.

• ~/.bash_profile: User-specific environment and startup programs.

• ~/.bashrc: User-specific aliases and functions.

• ~/.bash_logout: User-specific commands to execute when the user

logs out.

All user shell configuration files that are located in the /etc/skel directory, such as

~/.bash_profile and ~/.bashrc, are copied into the new account home directory when

each new user account is created. We will explore managing users and the creation of

new accounts in Volume 2, Chapter 16.

The sequence of execution for all of the Bash configuration files is shown in

Figure 17-1. It can seem convoluted, and it is. But once we unravel it, you will understand

how Bash is configured. You will know where you can make changes that can override the

defaults, add to the $PATH, and prevent future updates from overwriting the changes you

have made. Note that the global configuration files are located in /etc or a subdirectory,

and local Bash configuration files are located in the login user’s home directory (~).

Let’s walk through the sequence using the flowchart in Figure 17-1 and then do

a couple experiments that will enable you to understand how to follow the sequence

yourself if that should ever be necessary. Note that the dashed lines in Figure 17-1

indicate that the script calls an external script and then control returns to the calling

Chapter 17 Shell Configuration

494

script. So /etc/profile and /etc.bashrc both call the scripts located in /etc/profile.d and

~/.bash_profile calls ~/.bashrc and, when those script have completed, control returns to

the script that called them.

Figure 17-1. The Bash shell configuration sequence of shell programs

Chapter 17 Shell Configuration

495

 Non-login shell startup
We start with the non-login shell because it is a bit simpler. Starting on the upper left-

hand corner of Figure 17-1, we launch the shell. A determination is made that it is a non-

login shell, so we take the No path out of the decision diamond. This is the case because

we are already logged in to the desktop.

This path leads us through execution of ~/.bashrc which calls /etc.bashrc. The /etc.

bashrc program contains code that calls each of the files ending with *.sh and the file

sh.local that are located in /etc/profile.d. These are not the only files in that directory, as

other shells also store configuration files there. After all of the Bash configuration files in

/etc/profile.d complete their execution, control returns to /etc.bashrc which performs a

bit of cleanup and then exits. At this point the Bash shell is fully configured.

 Login shell startup
The startup and configuration sequence through these shell scripts is more complex for

a login shell than it is for a non-login shell. Yet almost all of the same configuration takes

place.

This time we take the Yes path out of the first decision point in the upper left corner

of Figure 17-1. This causes the /etc/profile script to execute. The /etc/profile script

contains some of its own code that executes all of the files ending with *.sh and the file

sh.local that are located in /etc/profile.d. After these files have finished running, control

returns to /etc/profile which finishes its own execution.

The shell looks now for three files in sequence, ~/.bash_profile, ~/.Bash_login, and

~/.profile. It runs the first one it finds and ignores the others. Fedora home directories

typically contain the ~/.bash_profile file so that is the one which is executed. The other

two files do not exist because there is no point to that. These two files, ~/.Bash_login

and ~/.profile, are considered by some to be possible alternate files that might exist in

some old legacy hosts, so the shell continues to look for them so as to maintain backward

compatibility. Some software such as the Torch machine learning framework stores its

environment variables in ~/.profile, and other software might also use these legacy files.

The ~/.bash_profile configuration file also calls the ~/.bashrc file which is also

executed and then control returns to ~.bash_profile. When ~.bash_profile finishes

execution, the shell configuration is complete.

Chapter 17 Shell Configuration

496

 Exploring the global configuration scripts
The scripts in /etc, /etc/profile and /etc.bashrc, as well as all of the *.sh scripts in /etc/

profile.d, are the global configuration scripts for the Bash shell. Global configuration is

inherited by all users. A little knowledge of the content of these scripts helps us better

understand how it all fits together.

EXPERIMENT 17-1

perform this experiment as the student user. Set /etc as the pWD, then look at the permissions

of /etc/profile:

[root@studentvm1 ~]# cd /etc ; ll profile

-rw-r--r--. 1 root root 2078 Apr 17 2018 profile

it is readable by all but can only be modified by root. note that its execute permission is not

set. in fact, none of these configuration files are marked as executable despite the fact that

the commands in them must be executed in order to set up the environment. that is because

the shell “sources” /etc/profile which then sources other setup files. after sourcing the file,

which and be done with the source command or the much shorter alternative, dot (.), the

instructions in the file are executed. use less to look at the content of /etc/profile to see what

it does.

it is not necessary to analyze this entire file in detail. But you should be able to see where

some of the environment variables are set programmatically. Search for instances of path

to see how the $path is set. the first thing you see after the comments describing the file is

a procedure named “pathmunge” which is called by code further down when the initial path

needs to be modified:

pathmunge () {

 case ":${PATH}:" in

 :"$1":)

 ;;

 *)

 if ["$2" = "after"] ; then

 PATH=$PATH:$1

Chapter 17 Shell Configuration

497

 else

 PATH=$1:$PATH

 fi

 esac

}

after this there is some code that determines the effective user iD, $euiD, of the user

launching the shell. then here is the code that sets the first elements of the $path

environment variable based on whether the $euiD is root with a value of zero (0), or another

non-root, nonzero user:

Path manipulation

if ["$EUID" = "0"]; then

 pathmunge /usr/sbin

 pathmunge /usr/local/sbin

else

 pathmunge /usr/local/sbin after

 pathmunge /usr/sbin after

fi

the path is different for root than it is for other users, and this is the Bash shell code that

makes that happen. now let’s look at some code down near the bottom of this file. the next bit

of code is the part that locates and executes the Bash configuration scripts in /etc/profile.d:

for i in /etc/profile.d/*.sh /etc/profile.d/sh.local ; do

 if [-r "$i"]; then

 if ["${-#*i}" != "$-"]; then

 . "$i"

 else

 . "$i" >/dev/null

 fi

 fi

done

list the files in the /etc/profile.d directory:

[student@studentvm1 ~]$ ll /etc/profile.d/*.sh

-rw-r--r--. 1 root root 664 Jun 18 06:41 /etc/profile.d/Bash_completion.sh

-rw-r--r--. 1 root root 201 Feb 7 2018 /etc/profile.d/colorgrep.sh

-rw-r--r--. 1 root root 1706 May 29 12:30 /etc/profile.d/colorls.sh

Chapter 17 Shell Configuration

498

-rw-r--r--. 1 root root 56 Apr 19 2018 /etc/profile.d/colorsysstat.sh

-rw-r--r--. 1 root root 183 May 9 2018 /etc/profile.d/colorxzgrep.sh

-rw-r--r--. 1 root root 220 Feb 9 2018 /etc/profile.d/colorzgrep.sh

-rw-r--r--. 1 root root 757 Dec 14 2017 /etc/profile.d/gawk.sh

-rw-r--r-- 1 root root 70 Aug 31 08:25 /etc/profile.d/gnome-ssh-askpass.sh

-rw-r--r-- 1 root root 288 Mar 12 2018 /etc/profile.d/kde.sh

-rw-r--r--. 1 root root 2703 May 25 07:04 /etc/profile.d/lang.sh

-rw-r--r--. 1 root root 253 Feb 17 2018 /etc/profile.d/less.sh

-rwxr-xr-x 1 root root 153 Aug 3 2017 /etc/profile.d/mc.sh

-rw-r--r-- 1 root root 488 Oct 3 13:49 /etc/profile.d/myBashConfig.sh

-rw-r--r--. 1 root root 248 Sep 19 04:31 /etc/profile.d/vim.sh

-rw-r--r--. 1 root root 2092 May 21 2018 /etc/profile.d/vte.sh

-rw-r--r--. 1 root root 310 Feb 17 2018 /etc/profile.d/which2.sh

[student@studentvm1 ~]$

Can you see the file i added? it is myBashConfig.sh which does not exist on your VM. here is

the content of myBashConfig.sh. i have set some aliases set vi editing mode for my Bash shell

command line and set a couple environment variables:

###

The following global changes to Bash configuration added by me

###

alias lsn='ls --color=no'

alias vim='vim -c "colorscheme desert" '

alias glances='glances -t1'

Set vi for Bash editing mode

set -o vi

Set vi as the default editor for all apps that check this

Set some shell variables

EDITOR=vi

TERM=xterm

You should also look at the content of some of the other Bash configuration files in /etc/

profile.d to see what they do.

and this last bit of code in /etc/profile is to source and run the /etc/bashrc file if it exists and if

the $Bash_VerSion- variable is not null:

if [-n "${Bash_VERSION-}"] ; then

 if [-f /etc/bashrc] ; then

Chapter 17 Shell Configuration

499

 # Bash login shells run only /etc/profile

 # Bash non-login shells run only /etc/bashrc

 # Check for double sourcing is done in /etc/bashrc.

 . /etc/bashrc

 fi

fi

So now look at the content of /etc/bashrc. as the first comment in this file states, its function is

to set system-wide functions and aliases. this includes setting the terminal emulator type, the

command prompt string, the umask which defines the default permissions of new files when

they are created, and – very importantly – the $Shell variable which defines the fully qualified

path and name of the Bash shell executable. We will explore umask in Chapter 18 in this volume.

None of the default files used for global configuration of the Bash shell should be

modified. To modify or add to the global configuration, you should add a custom file to

the /etc/profile.d directory that contains the configuration mode you wish to make. The

name of the file is unimportant other than it must end in “.sh” but I suggest naming it

something noticeable.

 Exploring the local configuration scripts
The local Bash configuration files are located in each user’s home directory. Each

user can modify these files in order to configure the shell environment to their own

preferences. The local configuration files, .bashrc and .bash_profile, contain some very

basic configuration items.

EXPERIMENT 17-2

When a login shell is started, Bash first runs /etc/profile, and when that finishes, the shell runs

~/.bash_profile. View the ~/.bash_profile file. the local files we are viewing in this experiment

are small enough to reproduce here in their entirety:

[student@studentvm1 ~]$ cat .bash_profile

.bash_profile

Get the aliases and functions

if [-f ~/.bashrc]; then

Chapter 17 Shell Configuration

500

 . ~/.bashrc

fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

first, ~/.bash_profile runs ~/.bashrc to set the aliases and functions into the environment. it

then sets the path and exports it. that means that the path is then available to all future non-

login shells.

the ~/.bashrc config file is called by ~/.bash_profile. this file, as shown in the following, calls

/etc.bashrc:

[student@studentvm1 ~]$ cat .bashrc

.bashrc

Source global definitions

if [-f /etc.bashrc]; then

 . /etc.bashrc

fi

Uncomment the following line if you don't like systemctl's auto-paging

feature:

export SYSTEMD_PAGER=

User specific aliases and functions

[student@studentvm1 ~]$

the comments in these files inform the users where they can insert any local configuration

such as environment variables or aliases.

 Testing it
That explanation is all nice and everything, but what does it really mean? There is

one way to find out, and this is a technique I use frequently to test for the sequence

of execution of a complex and interrelated system of shell programs or of procedures

within shell programs. I just add an echo statement at the beginning of each of the

programs in question stating which shell program is running.

Chapter 17 Shell Configuration

501

EXPERIMENT 17-3

edit each of the following shell programs, and add one line to the beginning of the program.

i have highlighted the lines to be added in bold so you know where to place them. for this

experiment, it is safe to ignore the warning comments embedded in each program against

changing them.

these first three programs need to be modified by root:

 1. edit /etc/profile:

/etc/profile

System wide environment and startup programs, for login setup

Functions and aliases go in /etc.bashrc

It's NOT a good idea to change this file unless you know what you

are doing. It's much better to create a custom.sh shell script in

/etc/profile.d/ to make custom changes to your environment, as this

will prevent the need for merging in future updates.

pathmunge () {

 case ":${PATH}:" in

 :"$1":)

 ;;

 *)

 if ["$2" = "after"] ; then

 PATH=$PATH:$1

 else

 PATH=$1:$PATH

 fi

 esac

}

echo "Running /etc/profile"

if [-x /usr/bin/id]; then

 if [-z "$EUID"]; then

 # ksh workaround

 EUID=`id -u`

Chapter 17 Shell Configuration

502

 UID=`id -ru`

 fi

 USER="`id -un`"

 LOGNAME=$USER

 MAIL="/var/spool/mail/$USER"

fi

note that in the case of /etc/profile, we add our bit of code after the pathmunge procedure.

this is because all procedures must appear before any in-line code.2

 2. edit /etc.bashrc:

/etc.bashrc

System wide functions and aliases

Environment stuff goes in /etc/profile

It's NOT a good idea to change this file unless you know what you

are doing. It's much better to create a custom.sh shell script in

/etc/profile.d/ to make custom changes to your environment, as this

will prevent the need for merging in future updates.

echo "Running /etc/bashrc"

Prevent doublesourcing

if [-z ".bashrcSOURCED"]; then

 .bashrcSOURCED="Y"

 3. add a new program, /etc/profile.d/myBashConfig.sh, and add the following two

lines to it:

/etc/profile.d/myBashConfig.sh

echo "Running /etc/profile.d/myBashConfig.sh"

the files .bash_profile and .bashrc should be altered by the student user for the student user’s

account.

2 We will discuss Bash coding, procedures, and program structure in Volume 2, Chapter 10.

Chapter 17 Shell Configuration

503

 4. edit ~/.bash_profile:

.bash_profile

echo "Running ~/.bash_profile"

Get the aliases and functions

if [-f ~/.bashrc]; then

 . ~/.bashrc

fi

User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

 5. edit ~/.bashrc:

.bashrc

echo "Running ~/.bashrc"

Source global definitions

if [-f /etc.bashrc]; then

 . /etc.bashrc

fi

Uncomment the following line if you don't like systemctl's auto-

paging feature:

export SYSTEMD_PAGER=

User specific aliases and functions

after all of the files have been modified as shown earlier, open a new terminal session on the

desktop. each file that executes should print its name on the terminal. that should look like this:

Running ~/.bashrc

Running /etc/bashrc

Running /etc/profile.d/myBashConfig.sh

[student@studentvm1 ~]$

Chapter 17 Shell Configuration

504

So you can see by the sequence of shell config scripts that were run that this is a non-login

shell as shown in figure 17-1. Switch to virtual console 2, and log in as the student user. You

should see the following data:

Last login: Sat Nov 24 11:20:41 2018 from 192.178.0.1

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running ~/.bash_profile

Running ~/.bashrc

Running /etc/bashrc

[student@studentvm1 ~]$

this experiment shows exactly which files are run and in what sequence. it verifies most

of what i have read in other documents and my analysis of the code in each of these files.

however, i have intentionally left one error in my analysis and the diagram in figure 17-1. Can

you figure out what the difference is and why?3

 Exploring the environment
We have already looked at some environment variables and learned that they affect

how the shell behaves under certain circumstances. Environment variables are just like

any other variable, a variable name and a value. The shell or programs running under

the shell check the content of certain variables and use the values of those variables to

determine how they respond to specific input, data values, or other triggering factors.

A typical variable looks like this:

VARIABLE_NAME=value

The actual content of the environment can be explored and manipulated with simple

tools. Permanent changes need to be made in the configuration files, but temporary

changes can be made with basic commands from the command line.

3 Hint: Look for duplicates.

Chapter 17 Shell Configuration

505

EXPERIMENT 17-4

perform this experiment in a terminal session as the student user. Close all currently open

terminal sessions, and then open a new terminal session. View the current environment

variables using the printenv command:

[student@studentvm1 ~]$ printenv | less

Some environment variables such as lS_ColorS and terMCap contain very long strings of

text. the lS_ColorS string defines the colors used for display of specific text when various

commands are run if the terminal is capable of displaying color. the terMCap (terMinal

Capabilities) variable defines the capabilities of the terminal emulator.

look at some individual values. What is the value of hoMe?

[student@studentvm1 ~]$ echo $HOME

/home/student

Do you think that this might be how the shell knows which directory to make the pWD using

the command cd ~? What are the values of lognaMe, hoStnaMe, pWD, olDpWD, and

uSer?

Why is olDpWD empty, that is, null? Make /tmp the pWD, and recheck the values of pWD and

olDpWD. What are they now?

 User shell variables
Shell variables are part of the local environment. That is, they are accessible to programs,

scripts, and user commands. Users can create environment variables within a shell

which then become part of the environment for that one shell. No other shells have

access to these local user variables.

If a change is made to a user shell variable or a new one created, it must be explicitly

“exported” in order for any subprocesses forked after the new variable is created and

exported to see the change. Recall that shell variables are local to the shell in which they

were defined. A modified or added shell variable is only available in the current shell. To

make a shell variable available as an environment variable for shells launched after the

change, use the export VARNAME command without the dollar $ sign.

Chapter 17 Shell Configuration

506

Note By convention, environment variable names are all uppercase, but they can
be mixed or all lowercase if that works for you. Just remember that linux is case
sensitive, so Var1 is not the same as Var1 or var1.

Let’s now look at setting new user shell variables.

EXPERIMENT 17-5

in the existing terminal session as the student user, start by ensuring that a new environment

variable named MyVar does not exist, and set it. then verify that it now exists and contains the

correct value:

[student@studentvm1 ~]$ echo $MyVar ; MyVar="MyVariable" ; echo $MyVar

MyVariable

[student@studentvm1 ~]$

open another Bash terminal session as the student user, and verify that the new variable you

created does not exist in this shell:

[student@studentvm1 ~]$ echo $MyVar

[student@studentvm1 ~]$

exit from this second shell. in the first terminal session in which the $MyVar variable exists,

verify that it still exists and start a screen session:

[student@studentvm1 ~]$ echo $MyVar

MyVariable

[student@studentvm1 ~]$ screen

now check for $MyVar:

[student@studentvm1 ~]$ echo $MyVar

[student@studentvm1 ~]$

note that $MyVar does not exist in this screen instance of the Bash shell. type the exit

command once to exit from the screen session.

now run the export command, and then start another screen session:

Chapter 17 Shell Configuration

507

[student@studentvm1 ~]$ export MyVar="MyVariable" ; echo $MyVar

MyVariable

[student@studentvm1 ~]$ screen

now check for $MyVar again while in the screen session:

[student@studentvm1 ~]$ echo $MyVar

MyVariable

[student@studentvm1 ~]$

exit from the screen session again, and unset MyVar:

[student@studentvm1 ~]$ exit

[screen is terminating]

[student@studentvm1 ~]$ unset MyVar

[student@studentvm1 ~]$ echo $MyVar

[student@studentvm1 ~]$

let’s try one last thing. the env utility allows us to set an environment variable temporarily

for a program or in this case a subshell. the Bash command must be an argument of the env

command in order for this to work:

[student@studentvm1 ~]$ env MyVar=MyVariable Bash

[student@studentvm1 ~]$ echo $MyVar

MyVariable

[student@studentvm1 ~]$ exit

exit

[student@studentvm1 ~]$

this last tool can be useful when testing scripts or other tools that require an environment a

bit different from the one in which you normally work.

perform a little cleanup – exit from all terminal sessions.

We have now discovered empirically that when local variables are set, they become

part of the environment for that shell only. Even after exporting the variable, it only

becomes part of the environment of a new shell if that is launched via the screen

command.

Chapter 17 Shell Configuration

508

I have very seldom had any reason to temporarily create a local user environment

variable. I usually add my variable creation statements to the ~/.bashrc file if it is for my

login account only, or I add it to a custom shell configuration script in /etc/profile.d if it

is intended for all users of the system.

 Aliases
I dislike typing. I grew up and went to school in a time when boys did not learn typing, so

I have really horrible typing skills. Therefore I prefer to type as little as possible. Of course

lazy SysAdmins like to minimize typing just to save time regardless of the state of their

typing skills.

Aliases are a good way to reduce typing which will, therefore, reduce errors. They

are a method for substituting a long command for a shorter one that is easier to type

because it has fewer characters. Aliases are a common way to reduce typing by making

it unnecessary to type in long options that we might use constantly by including them in

the alias.

EXPERIMENT 17-6

as the student user, enter the alias command to view the current list of aliases. i did not

know until i looked at these aliases that the ls command was already aliased. So when i enter

“ls” on the command line, the shell expands that to "ls --color=auto" which would be a

lot of extra typing:

[student@testvm1 ~]$ alias

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias glances='glances -t1'

alias grep='grep --color=auto'

alias l.='ls -d .* --color=auto'

alias ll='ls -l --color=auto'

alias ls='ls --color=auto'

alias lsn='ls --color=no'

alias mc='. /usr/libexec/mc/mc-wrapper.sh'

alias vi='vim'

alias vim='vim -c "colorscheme desert" '

Chapter 17 Shell Configuration

509

alias which='(alias; declare -f) | /usr/bin/which --tty-only --read-alias

--read-functions --show-tilde --show-dot'

alias xzegrep='xzegrep --color=auto'

alias xzfgrep='xzfgrep --color=auto'

alias xzgrep='xzgrep --color=auto'

alias zegrep='zegrep --color=auto'

alias zfgrep='zfgrep --color=auto'

alias zgrep='zgrep --color=auto'

Your results should look similar to mine, but i have added some additional aliases. one is for

the glances utility which is not a part of most distributions.

Since vi has been replaced by vim, and a lot of Sysadmins like myself have legacy muscle

memory and continue to type vi, vi is aliased to vim. another alias is for vim to use the

“desert” color scheme. So when i type vi on the command line and press the enter key, the

Bash shell first expands vi to vim, and then it expands vim to vim -c "colorscheme

desert" and then executes that command.

Note for the root user in fedora, vi is not automatically aliased to vim.

although these aliases are almost all added to the global environment by the shell

configuration files in /etc/profile.d, you can add your own using your local configuration files

as well as by adding them at the command line. the command-line syntax is identical to that

shown earlier.

The aliases shown in Experiment 17-6 are primarily intended to set up default

behavior such as color and some standard options. I particularly like the ll alias because

I like the long listing of directory contents and instead of typing ls -l, I can just type

ll. I use the ll command a lot, and it saves typing three characters every time I use

it. For slow typists like me, that can amount to a lot of time. Aliases also enable me to

use complex commands without the need to learn and remember a long and complex

command with lots of options and arguments.

I strongly recommend that you do not use aliases to alias Linux commands to those

you used in another operating system like some people have done. You will never learn

Linux that way.

Chapter 17 Shell Configuration

510

In Experiment 17-5 the alias for the vim editor sets a color scheme which is not the

default. I happen to like the desert color scheme better than the default, so aliasing the

vim command to the longer command that also specifies my favorite color scheme is

one way to get what I want with less typing.

You can use the alias command to add your own new aliases to the ~/.bashrc file to

make them permanent between reboots and logout/in. To make the aliases available to

all users on a host, add them to a customization file in /etc/profile.d as discussed earlier.

The syntax in either case is the same as from the command line.

 Chapter summary
Does shell startup and configuration seem arcane and confusing to you? I would not be

surprised because I was – and sometimes still am – confused. I learned and relearned a

lot during my research for this chapter.

The primary thing to remember is that there are specific files used for permanent

configuration and that they are executed in different sequences depending upon

whether a login or non-login shell is launched. We have explored the shell startup

sequence, and we have looked at the content of the Bash configuration files and at the

proper methods for changing the environment.

We have also learned to use aliases to reduce the amount of typing we need to do.

 Exercises
Perform the following exercises to complete this chapter:

 1. What is the difference between shell and environment variables?

Why is this distinction important?

 2. When starting a non-login Bash shell, which configuration file is

run first?

 3. Can a non-privileged user set or change their own shell variables?

 4. Which configuration file is the first one to be executed by a newly

launched shell on the desktop?

Chapter 17 Shell Configuration

511

 5. What is the value of the COLUMNS variable in each of the open

terminal sessions on your current desktop? If you don’t see a

difference, resize one or more terminal windows and recheck the

values. What might this variable be used for?

 6. What is the sequence of shell configuration files run when you log

in using a virtual console?

 7. Why is it important to understand the sequence in which Bash

configuration files are executed?

 8. Add an alias that launches vim with a different color scheme and

that is used only for the student user. The color schemes and an

informative README.txt file are located in the directory, /usr/

share/vim/vim81/colors. Try a couple different color schemes,

and test them by opening one of the Bash configuration files.

 9. Where did you add the alias in question 8?

 10. What sequence of Bash configuration files is run when you use the

su command to switch to the root user?

 11. What sequence of Bash configuration files is run when you use the

sudo command?

 12. You have an environment variable to add so that it becomes part

of the environment for all users. In what file do you add it?

 13. Which shell configuration files are executed when the system is

booted into recovery mode for the latest kernel?

Chapter 17 Shell Configuration

513
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_18

CHAPTER 18

Files, Directories,
and Links
 Objectives
In this chapter you will learn

• To define the term “file”

• To describe the purpose of files

• To read and describe file permissions

• How the umask command and settings affect the creation of files by

users

• To set file permissions

• The structure of the metadata for files including the directory entry

and the inode

• To describe the three types of Linux file timestamps

• To find, use, and set the three timestamps of a Linux file

• The easy way to identify what type a file is, binary or text

• To obtain the metadata for a file

• To define hard and soft links

• How to use and manage links

514

 Introduction
We usually think of files as those things that contain data and that are stored on some

form of storage media such as a magnetic or solid-state hard drive. And this is true – as

far as it goes in a Linux environment.

The Free On-line Dictionary of Computing1 provides a good definition for “computer

file” that I will paraphrase here in a way that refers specifically to Linux files. A computer

file is a unit of storage consisting of a single sequence of data with a finite length that is

stored on a nonvolatile storage medium. Files are stored in directories and are accessed

using a file name and an optional path. Files also support various attributes such as

permissions and timestamps for creation, last modification, and last access.

Although this definition is basically what I said, it provides more detail about the

characteristics that are an intrinsic part of Linux files. I would amend the FOLDOC definition

to say that files are usually stored on some nonvolatile medium. Files can also be stored on

volatile media such as virtual filesystems which we will explore in Volume 2, Chapter 5.

In this chapter we will explore these characteristics, the data meta-structures that

provide these capabilities, and more.

 Preparation
We did create a few directories and files in Chapter 7, but because there are no user files

in the ~/Documents directory for us to experiment with during this chapter, let’s create

some there.

1 Free On-line Dictionary of Computing, http://foldoc.org/, Editor Denis Howe

Chapter 18 Files, DireCtories, anD links

http://foldoc.org/

515

EXPERIMENT 18-1

We will create some new files and a new user to help illustrate some aspects of file

permissions.

start this experiment as the student user. Make the pWD the ~/Documents directory. enter the

following command on a single line:

[student@studentvm1 Documents]$ for I in `seq -w 20`;do dmesg >

testfile$I;touch test$I file$I;done

the seq utility prints a sequence of numbers, in this case from 0 to 20. the back-tics (`)

around that command cause the results to be expanded into a list that can be used by the

for command. the -w option specifies that all numbers will have the same length, so if the

largest number is two digits in length, the single-digit numbers are padded with zeros so that

1 becomes 01 and so on.

Display a long list of files, and display their sizes in human-readable format rather than an

exact byte count:

[student@studentvm1 Documents]$ ll -h

total 880K

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file01

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file02

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file03

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file04

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file05

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file06

<snip>

-rw-rw-r-- 1 student student 0 Dec 4 09:47 test18

-rw-rw-r-- 1 student student 0 Dec 4 09:47 test19

-rw-rw-r-- 1 student student 0 Dec 4 09:47 test20

-rw-rw-r-- 1 student student 44K Dec 4 09:47 testfile09

-rw-rw-r-- 1 student student 44K Dec 4 09:47 testfile02

-rw-rw-r-- 1 student student 44K Dec 4 09:47 testfile03

<snip>

-rw-rw-r-- 1 student student 44K Dec 4 09:47 testfile19

-rw-rw-r-- 1 student student 44K Dec 4 09:47 testfile20

Chapter 18 Files, DireCtories, anD links

516

now we have a few files to work with. But we will also need another user for testing, so log

in to a terminal session as root, if one is not already available, and add a new user. Using a

simple password is fine:

[root@studentvm1 ~]# useradd -c "Student user 1" student1

[root@studentvm1 ~]# passwd student1

Changing password for user student1.

New password: <Enter the password>

BAD PASSWORD: The password is shorter than 8 characters

Retype new password: <Enter the password again>

passwd: all authentication tokens updated successfully.

now we are ready.

 User accounts and security
User accounts are the first line of security on your Linux computer and are used in the

Linux world to provide access to the computer, to keep out people who should not have

access, and to keep valid users from interfering with each other’s data and usage of the

computer. We will explore more aspects of user accounts in Chapter 16 of Volume 2.

The security of the computer and the data stored there are based on the user

accounts created by the Linux system administrator or some form of centralized

authorization system.2 A user cannot access any resources on a Linux system without

logging on with an account ID and password. The administrator creates an account for

each authorized user and assigns an initial password.

The attributes of permissions and file ownership are one aspect of security provided

by Linux. Each file and directory on a Linux system has an owner and a set of access

permissions. Setting the ownership and permissions correctly allows users to access the

files that belong to them but not to files belonging to others.

2 Centralized authentication systems are beyond the scope of this course.

Chapter 18 Files, DireCtories, anD links

517

 File attributes
The listing of the files created in Experiment 18-1 shows a number of file attributes that

are important to security and access management. The file permissions, the number of

hard links, the user and group3 ownership both shown here as “student,” the file size, the

date and time it was last modified, and the file name itself are all shown in this listing.

There are more attributes that are not displayed in this listing, but we will explore all of

them as we proceed through this chapter.

 File ownership
The sample file listing shown in Figure 18-1 and extracted from the listing in Experiment

18-1 shows the details of a single file. We will use this file to explore the structure and

attributes of a file. File ownership is one of the attributes that is part of the Linux file

security protocols.

There are two owners associated with every file, the User who owns the file and the

Group ownership. The user who created the file is always the owner of a file – at least

until ownership is changed. In Red Hat–based distributions, each user has their own

private group and files created by them also belong to that group. This is the Red Hat

Private Group method and is used to improve security. In many older Unix and some

Linux systems, all users, and thus the files they created, belonged to a common group,

usually group 100, “users.” This meant that all users could, in theory at least, access files

belonging to other users, so long as directory permissions allowed it. This is a holdover

from a time when data security and privacy on computers was much less of an issue

than it is now. This Red Hat Private Group scheme is intended to improve security by

reducing the number of users who have access to the files by default to one – the file

owner.

3 I capitalize User, Group, and Other here and many places throughout this course in order to
explicitly refer to the ownership classes shown in Figure 18-2.

-rw-rw-r-- 1 student student 44K Dec 4 09:47 testfile09

Figure 18-1. The long listing of a sample file

Chapter 18 Files, DireCtories, anD links

518

So the file in Figure 18-1 is owned by the user student, and the group ownership is

student. The user and group ownership can be expressed using the notation User.Group.

The root user can always change user and group ownership – or anything else.

The User (owner) of a file can only change the Group ownership under certain

circumstances.

There are some standards that we need to consider when adding users and groups.

When adding group IDs for things like shared directories and files, I like to choose

numbers starting at 5000 and above. This allows space for 4,000 users with identical UID

and GID numbers. We will explore UID and GID assignments and standards in Chapter 16

of Volume 2.

Let’s explore file ownership and its implications in Experiment 18-2.

EXPERIMENT 18-2

perform this experiment as the student user. look at one of the files we created in our ~/

Documents directory in experiment 18-1, file09:

[student@studentvm1 Documents]$ ll file09

-rw-rw-r-- 1 student student 0 Dec 4 09:47 file09

this file, like all of the others in our Documents directory, has the ownership student.student.

let’s try to change it to ownership of student1.student user using the chown (Change

oWnersip) command:

[student@studentvm1 Documents]$ chown student1 file09

chown: changing ownership of 'file09': Operation not permitted

the student user does not have authority to change the user ownership of a file to any other user.

now let’s try to change the group ownership. if you are changing the User ownership of the file

and not the group ownership, it is not necessary to specify the group with the chown command.

We can use the chgrp (Change Group) command to attempt changing the group ownership:

[student@studentvm1 Documents]$ chgrp student1 file09

chgrp: changing group of 'file09': Operation not permitted

once again we are not authorized to change the ownership on this file. linux prevents users

from changing the ownership of files to protect us from other users and to protect those other

users from us. the root user can change the ownership of any file.

Chapter 18 Files, DireCtories, anD links

519

It looks like the user cannot change the file’s user and group ownership at all. This

is a security feature. It prevents one user from creating files in the name of another

user. But what if I really do want to share a file with someone else? There is one way to

circumvent the ownership issue. Copy the file to /tmp. Let’s see how that works.

EXPERIMENT 18-3

as the student user, let’s first add a bit of data to file09:

[student@studentvm1 Documents]$ echo "Hello world." > file09

[student@studentvm1 Documents]$ cat file09

Hello world.

now copy the file to /tmp:

[student@studentvm1 Documents]$ cp file09 /tmp

open a terminal session, and use the su command to switch user to student1:

[student@studentvm1 ~]$ su - student1

Password: <Enter password for student1>

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/Bashrc

Running /etc/Bashrc

[student1@studentvm1 ~]

now view the contents of the file that is located in /tmp. then copy the file from /tmp to the

student1 home directory, and view it again:

[student1@studentvm1 ~]$ cat /tmp/file09

Hello world.

[student1@studentvm1 ~]$ cp /tmp/file09 . ; cat file09

Hello world.

Why does this work? let’s look at file permissions to find out:

[student1@studentvm1 ~]$ ll /tmp/file09 file09

-rw-rw-r-- 1 student1 student1 13 Apr 1 09:00 file09

-rw-rw-r-- 1 student student 13 Apr 1 08:56 /tmp/file09

[student1@studentvm1 ~]$

Chapter 18 Files, DireCtories, anD links

520

 File permissions
The file permissions, also called the file mode, along with file ownership, provide a

means of defining which users and groups have specific types of access to files and

directories. For now we just look at files and will examine directory permissions later.

Figure 18-2 shows the three types of permissions and their representation in symbolic

(rwx) and octal (421) formats. Octal is only a bit different from Hex – literally. Hex

characters are composed of four binary bits, and octal is composed of three binary bits.

User, Group, and Other define the classes of users that the permissions affect.

The User is the primary owner of the file. So the User student owns all files with user

ownership of student. Those files may or may not have group ownership of student, but

in most circumstances, they will. So the User permissions define the access rights of the

User who “owns” the file. The Group permissions define the access rights of the Group

that owns the file, if it is different from the User ownership. And Other is everyone else.

All other users fall into the Other category, so access by all other users on the system is

defined by the Other permissions.

r w x r w x r w x

1 1 1 1 1 1 1 1 1

4 2 1 4 2 1 4 2 1

Figure 18-2. File permission representations and their octal values

There are three permissions bits for each class, User, Group, and Other. Each bit has

a meaning, (r)ead, (w)rite, and e(x)ecute, and a corresponding octal positional value. We

can simplify the class notation by using “UGO” either together or separately in this text.

These classes are expressed in lowercase in the commands that affect them:

• Read means that the file can be read by members of that class.

• Write means that the file can be written by members of the class.

• Execute means that the file is executable by members of that class.

Chapter 18 Files, DireCtories, anD links

521

Using file09 from Experiment 18-3 as our example, the permissions shown for

that file in Figure 18-3 should now be easier to decipher. The permissions of rw-rw-r--

(420,420,400 which equals 664) mean that the student user can read and write the file

and it is not executable. The student group can also read and write this file. And all other

users can read the file but cannot write to it which means they cannot alter it in any way.

rw-rw-r-- 1 student student 0 Dec 4 09:47 file09

Figure 18-3. The long listing of file09

You see what is possible here? The file is readable by any user. That means that

copying it from the /tmp directory, which is universally accessible, to the student1 home

directory by student1 will work so long as the file has the read permission set for Other.

EXPERIMENT 18-4

as the user student, change the permissions on /tmp/file09 to rw-rw---- so that other does

not have permissions to read the file:

[student@studentvm1 ~]$ cd /tmp ; ll file*
-rw-rw-r-- 1 student student 13 Dec 6 14:05 file09

[student@studentvm1 tmp]$ chmod 660 file09 ; ll file*
-rw-rw---- 1 student student 13 Dec 6 14:05 file09

now as the student1 user try to read the file:

[student1@studentvm1 ~]$ cat /tmp/file09

cat: /tmp/file09: Permission denied

even though the file is located in a directory that is accessible by all users, users other than

student no longer have access to the file. they cannot now view its content, and they cannot

copy it.

In Experiment 18-4 we changed the files using the octal representation of the

permissions we want, which is the shortest command and so the least amount of typing.

How did we get 660 for the permissions? Let’s start with the permissions for the User

which is one octal digit.

Chapter 18 Files, DireCtories, anD links

522

Each octal digit can be represented by three bits, r,w,x, with the positional values of

4,2,1. So if we want read and write but not execute, that is 110 in binary which translates

to 4+2+0=6. We perform the same operation for the Group ownership. Full read, write,

execute translates to 111 in binary which becomes 4+2+1=7 in octal.

We will discuss file permissions and methods for changing them a bit later in this

chapter.

 Directory permissions
Directory permissions are not all that different from file permissions:

• The read permission on a directory allows access to list the content of

the directory.

• Write allows the users of a class to create, change, and delete files in

the directory.

• Execute allows the users of a class to make the directory the present

working directory (PWD).

There are two additional permissions, called special mode bits, which are used

extensively by the system but that are usually functionally invisible to non-root users.

These are the setgid and setuid bits. We will use the setgid permission later in this

chapter.

 Implications of Group ownership
We still need a way for users to share files with some other users but not all users. This

is where groups can provide an answer. Group ownership in Linux is all about security

while also being able to allow sharing access to files with other users. One of the Unix

legacies that Linux has inherited is file ownership and permissions. This is good, but a

bit of explanation is in order.

A group is an entity defined in the /etc/group file with a meaningful name, such as

“development” or “dev” that lists the user IDs, like “student,” of the members of the that

group. So by making group ownership of a file to be “development,” all members of the

development group can access the file based on its Group permissions.

Let’s see how this is done in Experiment 18-5 and learn a few other things along the

way.

Chapter 18 Files, DireCtories, anD links

523

EXPERIMENT 18-5

this experiment will require working as different users including root. We will create a new

user to use for testing and a group for developers. We will use the short version, dev, for the

name. We will then create a directory, also called dev, where shared files can be stored and

add two of our now three non-root users to the dev group.

start as root and create the new user. again, it is fine to use a short password on your VM for

these experiments:

[root@studentvm1 ~]# useradd -c "Student User 2" student2

[root@studentvm1 ~]# passwd student2

Changing password for user student2:

New password: <Enter new password>

BAD PASSWORD: The password is shorter than 8 characters

Retype new password: <Enter new password>

passwd: all authentication tokens updated successfully.

add the new group. there are some loose standards for group iD numbers which we will

explore in a later chapter, but the bottom line is that we will use GiD (Group iD) 5000 for this

experiment:

[root@studentvm1 ~]# groupadd -g 5000 dev

We now add two of the existing users to the dev group, student and student1, using the

usermod (user modify) utility. the -G option is a list of the groups to which we are adding the

user. in this case the list of groups is only one in length, but we could add a user to more than

one group at a time:

[root@studentvm1 ~]# usermod -G 5000 student

[root@studentvm1 ~]# usermod -G 5000 student1

another option for adding the users to the new group would be to use gpasswd instead of

usermod. either of these methods creates the same result so that both users are added to the

dev group:

[root@studentvm1 ~]# gpasswd -M student,student1 dev

Chapter 18 Files, DireCtories, anD links

524

look at the /etc/group file. the tail command shows the last ten lines of the data stream:

[root@studentvm1 ~]# tail /etc/group

vboxsf:x:981:

dnsmasq:x:980:

tcpdump:x:72:

student:x:1000:

screen:x:84:

systemd-timesync:x:979:

dictd:x:978:

student1:x:1001:

student2:x:1002:

dev:x:5000:student,student1

as the root user, create the shared directory /home/dev, and set the group ownership to dev

and the permissions to 770 (rwxrwx---) which will prevent users who are not members of the

dev group from accessing the directory:

[root@studentvm1 ~]# cd /home ; mkdir dev ; ll

total 32

drwxr-xr-x 2 root root 4096 Dec 9 10:04 dev

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

drwx------. 22 student student 4096 Dec 9 09:35 student

drwx------ 4 student1 student1 4096 Dec 9 09:26 student1

drwx------ 3 student2 student2 4096 Dec 7 12:37 student2

[root@studentvm1 home]# chgrp dev dev ; chmod 770 dev ; ll

total 32

drwxrwx--- 2 root dev 4096 Dec 9 10:04 dev

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

drwx------. 22 student student 4096 Dec 9 09:35 student

drwx------ 4 student1 student1 4096 Dec 9 09:26 student1

drwx------ 3 student2 student2 4096 Dec 7 12:37 student2

as the student user, make /home/dev the pWD:

[student@studentvm1 ~]$ cd /home/dev

-Bash: cd: /home/dev: Permission denied

this fails because the new group membership has not been initialized:

[student@studentvm1 ~]$ id

Chapter 18 Files, DireCtories, anD links

525

uid=1000(student) gid=1000(student) groups=1000(student)

Group memberships are read and set by the shell when it is started in a terminal session or a

virtual console. to make this change, you need to exit from all of your terminal sessions, log

out, log back in, and start new terminal sessions in order for the shells to initialize the new

group settings. after starting a new shell, verify that the new group has been initialized for

your user iD.

the key to understanding this is that linux only reads the /etc/group file when a login shell is

started. the GUi desktop is the login shell, and the terminal emulator sessions that you start

on the desktop are not login shells. remote access using ssh is a login shell as are the virtual

consoles. the shells that run in screen sessions are not login shells.

remember the startup sequences we followed in Chapter 17 of this volume? login shells run

a different set of shell configuration scripts during their startup. refer to Figure 17-1:

[student@studentvm1 ~]$ id

uid=1000(student) gid=1000(student) groups=1000(student),5000(dev)

Make /home/dev the pWD and verify that the directory is empty:

[student@studentvm1 ~]$ cd /home/dev ; ll -a

total 8

drwxrwx--- 2 root dev 4096 Dec 9 10:04 .

drwxr-xr-x. 7 root root 4096 Dec 9 10:04 ..

as the student user, create a file in the /home/dev directory, change the Group ownership to

dev, and set permissions to 660 to prevent other users from having access to the file:

[student@studentvm1 dev]$ echo "Hello World" > file01 ; chgrp dev file01 ; ll

total 4

-rw-rw-r-- 1 student dev 12 Dec 9 13:09 file01

now open a new terminal session and switch user to student1:

[student@studentvm1 ~]$ su - student1

Password: <Enter password for student1>

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/Bashrc

Running /etc/Bashrc

[student1@studentvm1 ~]

Chapter 18 Files, DireCtories, anD links

526

as the student1 user, make /home/dev the pWD, and add some text to the file:

[student1@studentvm1 ~]$ cd ../dev ; echo "Hello to you, too" >> file01 ; cat

file01

Hello World

Hello to you, too

now we have a way to share files among users. But there is still one more thing we can do to

make it even easier. When we created the file in the shared dev directory, it had the group iD

that belonged to the user that created, it but we changed that to the group dev. We can add

the setgid (set Group iD) bit, or sGiD, on the directory which informs linux to create files in the

/home/dev directory with the GiD being the same as the GiD of the directory. set the sGiD bit

using symbolic notation. it can be done with octal mode, but this is easier:

[root@studentvm1 home]# chmod g+s dev ; ll

total 36

drwxrws--- 2 root dev 4096 Dec 9 13:09 dev

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

drwx------. 22 student student 4096 Dec 9 15:16 student

drwx------ 4 student1 student1 4096 Dec 9 12:56 student1

drwx------ 4 student2 student2 4096 Dec 9 13:03 student2

[root@studentvm1 home]#

notice the lowercase s in the group permissions of the dev directory. lowercase s means that

both the setgid and execute bits are on, and an uppercase s means that the setgid bit is on,

but the execute bit is off.

For those who want to try this using octal mode, the octal mode settings we usually use

consist of three octal digits, from 0 to 7, as User, Group, and other sets of permissions. But

there is a fourth octal digit that can precede these three more common digits, but if it is not

specified, it is ignored. the sGiD bit is octal 2 (010 in binary), so we know we want the octal

permissions settings to be 2770 on the dev directory. that can be set like this:

[root@studentvm1 home]# ll | grep dev ; chmod 2770 dev ; ll | grep dev

drwxrwx--- 2 root dev 4096 Apr 1 13:39 dev

drwxrws--- 2 root dev 4096 Apr 1 13:39 dev

Chapter 18 Files, DireCtories, anD links

527

as both student and student1 users, make /home/dev the pWD, and create some new files.

notice that the files were created with dev as the group owner, so it was not necessary to

change it with the chgrp command.

in a terminal session, switch user to student2, and make /home/dev the pWD:

[student2@studentvm1 ~]$ cd /home/dev

-Bash: cd: /home/dev: Permission denied

[student2@studentvm1 ~]$

permission is denied because student2 is not a member of the dev group and the directory

permissions do not allow access to the directory by nonmembers.

We now have an easy way for the users in the group to share files securely. This could

be one group that shares files on a host. Other groups might be accounting, marketing,

transportation, test, and so on.

 umask
When a user creates a new file using commands like touch, or redirecting the output

of a command to a file, or using an editor like Vim, the permissions of the file are -rw-

rw- r--. Why? Because umask.

The umask is a setting that Linux uses to specify the default permissions of all new

files. The umask is set in /etc/profile, one of the Bash shell configuration files that we

covered in Chapter 17. The umask for root is 0022, and the umask for unprivileged users

is 0002. The tricky element of umask is that it is a form of reverse logic. It does not specify

the bits of the file privileges we want to set to on, it specifies the ones we want to set to off

when the file is created.

The execute bit is never set to on for new files. Therefore the umask setting only

applies to the read and write permissions. With a umask of 000, and considering that the

execute bit is never set to on for new files, the default permissions of a new file would be

rw-rw-rw-, but with the umask 2-bit on for Other, the write permission is rw-rw-r-- so

that Other users can read the file but not delete or change it.

The umask command is used to set the umask value.

Chapter 18 Files, DireCtories, anD links

528

EXPERIMENT 18-6

this experiment should be performed as the student user. since we have already seen the

permissions on plenty of new files using the default umask, we start by viewing the current

umask value:

[student@studentvm1 ~]$ umask

0002

there are four digits there, and the three right ones are User, Group, and other. What is the

first one? although this is meaningless for linux files when using this command, the leading

zero can be used in some commands to specify the special mode bits, setgid and setuid as we

have just seen. this can be safely ignored when using the umask command. the info setgid

command can provide a link to more information about these special mode bits.

now let’s change the umask and run a quick test. there is probably already a file01 in your

home directory, so we will create the file umask.test as a test of the new umask:

[student@studentvm1 ~]$ umask 006 ; umask

0006

[student@studentvm1 ~]$ touch umask.test ; ll umask.test

-rw-rw---- 1 student student 0 Apr 2 08:50 umask.test

[student@studentvm1 ~]$

the umask is only set for the shell in which the command is issued. to make it persistent

across all new shell sessions and after reboots, it would need to be changed in /etc/profile.

the new file was created with permissions that do not allow any access for users in the other

class. set the umask back to 002.

I have never personally encountered a situation in which changing the umask for

any of my Linux systems made sense for me, but I know of situations in which it did for

some other users. For example, it might make sense to set the umask to 006 to prevent

Other users from any access to the file even when it is located in a commonly accessible

directory, as we did in Experiment 18-6. It might also make sense to change it before

performing operations on many files in a script so that it would not be necessary to

perform a chmod on every file.

Chapter 18 Files, DireCtories, anD links

529

 Changing file permissions
You have probably noticed that the methods for setting file and directory permissions

are flexible. When setting permissions, there are two basic ways of doing so: symbolic

and octal numeric. We have used both in setting permissions, but it is necessary to delve

a little further into the chmod command to fully understand its limitations as well as the

flexibility it provides.

EXPERIMENT 18-7

perform this experiment as the student user. let’s first look at setting permissions using

numeric notation. suppose we want to set a single file’s permissions to rw-rw-r. this is simple.

let’s use ~/umask.test for this. Verify the current permissions, and then set the new ones:

[student@studentvm1 ~]$ ll umask.test ; chmod 664 umask.test ; ll umask.test

-rw-rw---- 1 student student 0 Apr 2 08:50 umask.test

-rw-rw-r-- 1 student student 0 Apr 2 08:50 umask.test

[student@studentvm1 ~]$

this method of setting permissions ignores any existing permissions. regardless of what they

were before the command, they are now what was specified in the command. there is no

means to change only one or some permissions. this may not be what we want if we need to

add a single permission to multiple files.

in order to test this, we need to create some additional files and set some differing

permissions on them. Make the ~/testdir the pWD:

[student@studentvm1 ~]$ cd ~/testdir

[student@studentvm1 testdir]$ for I in `seq -w 100` ; do touch file$I ; done

You can list the directory content to verify that the new files all have permissions of rw-

rw-r--. if the width of your terminal is 130 columns or more, you can pipe the output like this:

[student@studentvm1 testdir]$ ll | column

total 0 -rw-rw---- 1 student

student 0 Dec 12 21:56 file051

-rw-rw---- 1 student student 0 Dec 12 21:56 file001 -rw-rw---- 1 student

student 0 Dec 12 21:56 file052

Chapter 18 Files, DireCtories, anD links

530

-rw-rw---- 1 student student 0 Dec 12 21:56 file002 -rw-rw---- 1 student

student 0 Dec 12 21:56 file053

-rw-rw---- 1 student student 0 Dec 12 21:56 file003 -rw-rw---- 1 student

student 0 Dec 12 21:56 file054

-rw-rw---- 1 student student 0 Dec 12 21:56 file004 -rw-rw---- 1 student

student 0 Dec 12 21:56 file055

<snip>

We could also do something like this to display just the file names and their permissions which

leaves enough space to format the output data stream into columns:

[student@studentvm1 testdir]$ ll | awk '{print $1" "$9}' | column

total -rw-rw---- file026 -rw-rw---- file052 -rw-rw---- file078

-rw-rw---- file001 -rw-rw---- file027 -rw-rw---- file053 -rw-rw---- file079

-rw-rw---- file002 -rw-rw---- file028 -rw-rw---- file054 -rw-rw---- file080

-rw-rw---- file003 -rw-rw---- file029 -rw-rw---- file055 -rw-rw---- file081

<snip>

-rw-rw---- file019 -rw-rw---- file045 -rw-rw---- file071 -rw-rw---- file097

-rw-rw---- file020 -rw-rw---- file046 -rw-rw---- file072 -rw-rw---- file098

-rw-rw---- file021 -rw-rw---- file047 -rw-rw---- file073 -rw-rw---- file099

-rw-rw---- file022 -rw-rw---- file048 -rw-rw---- file074 -rw-rw---- file100

-rw-rw----file023 -rw-rw---- file049 -rw-rw---- file075

-rw-rw----file024 -rw-rw---- file050 -rw-rw---- file076

-rw-rw----file025 -rw-rw---- file051 -rw-rw---- file077

[student@studentvm1 testdir]$

the awk command uses the whitespaces, to determine the fields in the original data stream

from the ll command. We then use variables with a list of the fields we want to print, in this

case fields $1 and $9. then we pipe the result of that through the column utility to enable

better use of the terminal width.

let’s change the permissions on some of these files. First we change all of them. Be sure to

verify the results after each change:

[student@studentvm1 testdir]$ chmod 760 *

now let’s add read to other for a subset of the files. and then a few more changes:

[student@studentvm1 testdir]$ chmod 764 file06* ; ll

[student@studentvm1 testdir]$ chmod 764 file0*3 ; ll

[student@studentvm1 testdir]$ chmod 700 file0[2-5][6-7] ; ll

Chapter 18 Files, DireCtories, anD links

531

[student@studentvm1 testdir]$ chmod 640 file0[4-7][2-4] ; ll

there should be several differing sets of permissions. so far we have mostly been using brute

force to change all of the permissions on various files filtered by the file globbing and sets.

this is the best we can do using numeric formats for our changes.

now we become a bit more targeted. suppose we want to turn on the G (group) execute bit for

files file013, file026, file027, file036, file053, and file092. also, a file cannot be executed if the

read bit for the G class is not also set to on, so we need to turn that bit on, too, for these files.

note that some of these files already have some of these bits set, but that is ok; setting them

to the same value again does not cause any problems. We also want to ensure that the write

bit is off for all of these files so that users in the same group cannot change the files. We can

do this all in one command without changing any of the other permissions on these files or

any other files:

[student@studentvm1 testdir]$ chmod g+rx,g-w file013 file026 file027 file036

file053 file092

[student@studentvm1 testdir]$ ll | awk '{print $1" "$9}' | column

We have used the symbolic mode to both add and remove permissions from a list of files

having a range of existing permissions that we needed to keep unchanged.

 Applying permissions
Permissions can sometimes be tricky. Given a file with ownership of student.student and

the permissions --- rw- rw-, would you expect the student user to be able to read this

file? You probably would, but permissions do not work like that.

The permissions are scanned from left to right with the first match in the sequence

providing permissions access. In this case, the student user attempts to read the file, but

the scan of the permissions finds permissions --- for the User of the file. This means that

the User has no access to this file.

Chapter 18 Files, DireCtories, anD links

532

EXPERIMENT 18-8

as the student user in ~/testdir, change the permissions of file001 to 066 then try to read it:

[student@studentvm1 testdir]$ chmod 066 file001 ; ll file001 ; cat file001

----rw-rw- 1 student student 0 Dec 12 21:56 file001

cat: file001: Permission denied

Despite the fact that Group and others have read and write access to the file, the User cannot

access it. the user can, however, change the permissions back by adding u+rw.

now as the student user make /home/dev the pWD and create a file with a bit of content

there, set the permissions to 066, and read the file:

[student@studentvm1 dev]$ echo "Hello World" > testfile-01.txt ; ll ; cat

testfile-01.txt

total 4

-rw-rw-r-- 1 student dev 12 Apr 2 09:19 testfile-01.txt

Hello World

note that the group ownership of this file is dev. then as the student1 user, make /home/dev/

the pWD, and read the file:

[student1@studentvm1 ~]$ cd /home/dev ; cat testfile-01.txt

Hello World

this shows that we can create a file to which the owner has no access but members of a

common group (dev in this case) or anyone else can have access to read and write it.

 Timestamps
All files are created with three timestamps: access, atime; modify, mtime; and ctime,

change. These three timestamps can be used to determine the last time a file was

accessed, the permissions or ownership changed, or the content modified.

Note that the time displayed in a long file listing is the mtime which is the time that

a file or directory was last modified. This time in the listing is truncated to the nearest

second, but all of the timestamps are maintained to the nanosecond. We will look at this

information in more detail when we look at the “File information” section.

Chapter 18 Files, DireCtories, anD links

533

 File meta-structures
All of these file attributes are all stored in the various meta-structures on the hard drive.

Each file has a directory entry that points to an inode for the file. The inode contains

most of the information pertaining to the file including the location of the data on the

hard drive. We will look in detail at the meta-structures of the EXT4 filesystem, which is

the default for many distributions, in Chapter 19 of this volume.

 The directory entry
The directory entry is very simple. It resides in a directory such as your home directory

and contains the name of the file and the pointer to the inode belonging to the file. This

pointer is the inode number.

 The inode
The inode is more complex than the directory entry because it contains all of the

other metadata pertaining to the file. This metadata includes the User and Group

IDs, timestamps, access permissions, what type of file such as ASCII text or binary

executable, pointers to the data on the hard drive, and more. Each inode in a filesystem –

a partition or logical volume – is identified with a unique inode number. We will discuss

the inode in more detail later in this chapter because it is a very important part of the

EXT filesystem meta-structure.

 File information
There are a number of different types of files that you can run into in a Linux

environment. Linux has some commands to help you determine a great deal of

information about files. Most of the information provided by these tools is stored in the

file inode.

Chapter 18 Files, DireCtories, anD links

534

EXPERIMENT 18-9

the file command tells what type of file it is. the following command tells us that the .bash_

profile file is asCii text file:

[student@studentvm1 ~]$ file .bash_profile

.bash_profile: ASCII text

and the following command tells us that /bin/ls is a compiled executable binary file that is

dynamically linked:

[student@studentvm1 ~]$ file /bin/ls

/bin/ls: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically

linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, Build

ID[sha1]=d6d0ea6be508665f5586e90a30819d090710842f, stripped, too many notes

(256)

the strings command extracts all of the text strings from any file including binary

executables. Use the following command to view the text strings in the ls executable. You may

need to pipe the output through the less filter:

[student@studentvm1 ~]$ strings /bin/ls

the strings command produces a lot of output from a binary file like ls. Much of the

asCii plain text is just random text strings that appear in the binary file, but some are actual

messages.

the stat command provides a great deal of information about a file. the following command

shows atime, ctime, and mtime, the file size in bytes and blocks, its inode, the number of

(hard) links, and more:

[student@studentvm1 ~]$ stat /bin/ls

 File: /bin/ls

 Size: 157896 Blocks: 312 IO Block: 4096 regular file

Device: fd05h/64773d Inode: 787158 Links: 1

Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2018-12-13 08:17:37.728474461 -0500

Modify: 2018-05-29 12:33:21.000000000 -0400

Change: 2018-08-18 10:35:22.747214543 -0400

 Birth: -

Chapter 18 Files, DireCtories, anD links

535

look at one of the files in ~/testdir that we just changed the permissions for:

[student@studentvm1 testdir]$ stat file013

 File: file013

 Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: fd07h/64775d Inode: 411 Links: 1

Access: (0754/-rwxr-xr--) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-12 21:56:04.645978454 -0500

Modify: 2018-12-12 21:56:04.645978454 -0500

Change: 2018-12-13 09:56:19.276624646 -0500

 Birth: -

this shows that the ctime (Change) records the date and time that the file attributes such as

permissions or other data stored in the inode were changed. now let’s change the content by

adding some text to the file and check the metadata again:

[student@studentvm1 testdir]$ echo "Hello World" > file013 ; stat file013

 File: file013

 Size: 12 Blocks: 8 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 411 Links: 1

Access: (0754/-rwxr-xr--) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-12 21:56:04.645978454 -0500

Modify: 2018-12-13 12:33:29.544098913 -0500

Change: 2018-12-13 12:33:29.544098913 -0500

 Birth: -

the mtime has changed because the file content was changed. the number of blocks

assigned to the file has changed, and these changes are stored in the inode, so the ctime is

changed, too. note that the empty file had 0 data blocks assigned to it, and after adding 12

characters, 8 blocks have been assigned which is way more than needed. But this illustrates

that file space on the hard dive is preallocated when the file is created in order to help reduce

file fragmentation which can reduce file access efficiency.

let’s read the data in the file and check the metadata one more time:

[student@studentvm1 testdir]$ cat file013 ; stat file013

Hello World

 File: file013

 Size: 12 Blocks: 8 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 411 Links: 1

Access: (0754/-rwxr-xr--) Uid: (1000/ student) Gid: (1000/ student)

Chapter 18 Files, DireCtories, anD links

536

Access: 2018-12-13 12:44:47.425748206 -0500

Modify: 2018-12-13 12:33:29.544098913 -0500

Change: 2018-12-13 12:33:29.544098913 -0500

 Birth: -

First we see the content of the file, then we can see that this access to the file changed the atime.

spend some time exploring the results from other files including some of the ones in your

home directory and the ~/testdir.

 Links
Links are an interesting feature of Linux filesystems that can make some tasks easier

by providing access to files from multiple locations in the filesystem directory tree

without the need for typing long pathnames. There are two types of links: hard and soft.

The difference between the two types of links is significant, but both types are used to

solve similar problems. Both types of links provide multiple directory entries, that is,

references, to a single file, but they do it quite differently. Links are powerful and add

flexibility to Linux filesystems.

I have found in the past that some application programs required a particular version

of a library. When an upgrade to that library replaced the old version, the program would

crash with an error specifying the name of the old library that was missing. Usually the

only change in the library name was the version number. Acting on a hunch, I simply

added a link to the new library but named the link after the old library name. I tried the

program again, and it worked perfectly. And, OK, the program was a game, and everyone

knows the lengths that gamers will go to to keep their games running.

In fact almost all applications are linked to libraries using a generic name with only

a major version number in the link name, while the link points to the actual library file

that also has a minor version number. In other instances, required files have been moved

from one directory to another in order to be in compliance with the Linux Filesystem

Hierarchical Standard (FHS) that we will learn about in Chapter 19. In this circumstance,

links have been provided in the old directories to provide backward compatibility for

those programs that have not yet caught up with the new locations. If you do a long

listing of the /lib64 directory, you can find many examples of both. A shortened listing

can be seen in Figure 18-4.

Chapter 18 Files, DireCtories, anD links

537

The leftmost character of some of the entries in the long file listing in Figure 18-4

is an “l” which means that this is a soft or symbolic link, but the arrow syntax in the file

name section is even more noticeable. So, to select one file as an example, libacl.so.1 is

the name of the link, and -> libacl.so.1.1.0 points to the actual file. Short listings using

ls do not show any of this. On most modern terminals, links are color coded. This figure

does not show hard links, but let’s start with hard links as we go deeper.

 Hard links
A hard link is a directory entry that points to the inode for a file. Each file has one inode

that contains information about that file including the location of the data belonging to

that file. Each inode is referenced by at least one and sometimes more directory entries.

In Figure 18-5 multiple directory entries point to single inode. These are all hard

links. I have abbreviated the locations of three of the directory entries using the tilde (~)

convention for home directory, so that ~ is equivalent to /home/user in this example.

lrwxrwxrwx. 1 root root 36 Dec 8 2016 cracklib_dict.hwm -
> ../../usr/share/cracklib/pw_dict.hwm

lrwxrwxrwx. 1 root root 36 Dec 8 2016 cracklib_dict.pwd -
> ../../usr/share/cracklib/pw_dict.pwd

lrwxrwxrwx. 1 root root 36 Dec 8 2016 cracklib_dict.pwi -
> ../../usr/share/cracklib/pw_dict.pwi

lrwxrwxrwx. 1 root root 27 Jun 9 2016 libaccountsservice.so.0 ->
libaccountsservice.so.0.0.0

-rwxr-xr-x. 1 root root 288456 Jun 9 2016 libaccountsservice.so.0.0.0

lrwxrwxrwx 1 root root 15 May 17 11:47 libacl.so.1 -> libacl.so.1.1.0

-rwxr-xr-x 1 root root 36472 May 17 11:47 libacl.so.1.1.0

lrwxrwxrwx. 1 root root 15 Feb 4 2016 libaio.so.1 -> libaio.so.1.0.1

-rwxr-xr-x. 1 root root 6224 Feb 4 2016 libaio.so.1.0.0

-rwxr-xr-x. 1 root root 6224 Feb 4 2016 libaio.so.1.0.1

lrwxrwxrwx. 1 root root 30 Jan 16 16:39 libakonadi-calendar.so.4 -> libakonadi-
calendar.so.4.14.26

-rwxr-xr-x. 1 root root 816160 Jan 16 16:39 libakonadi-calendar.so.4.14.26

lrwxrwxrwx. 1 root root 29 Jan 16 16:39 libakonadi-contact.so.4 -> libakonadi-
contact.so.4.14.26

Figure 18-4. This very short listing of the /lib64 directory contains many examples
of the use of symbolic links

Chapter 18 Files, DireCtories, anD links

538

Note that the fourth directory entry is in a completely different directory, /home/shared,

which represents a location for sharing files between users of the computer.

Figure 18-5 provides a good illustration of the meta-structures that contain the

metadata for a file and provide the operating system with the data needed to access the

file for reading and writing.

Figure 18-5. For hard links, multiple directory entries point to the same inode
using the inode number that is unique for the filesystem

In figure 18-6 we see from a long listing with the -i option, which lists the inode

numbers, which all of these directory entries point to the same inode.

Chapter 18 Files, DireCtories, anD links

539

We will explore this figure in detail in Chapter 19. For now we will learn about links.

EXPERIMENT 18-10

as the student user, make ~/testdir the pWD, and delete all of the files contained there:

[student@studentvm1 testdir]$ cd ~/testdir ; rm -rf * ; ll

total 0

Create a single file with a bit of plain text content, and list the directory contents:

[student@studentvm1 testdir]$ echo "Hello World" > file001 ; ll

total 4

-rw-rw---- 1 student student 12 Dec 13 18:43 file001

notice the number 1 between the permissions and the user and group owners. this is the

number of hard links to this file. Because there is only one directory entry pointing to this file,

there is only one link. Use the stat command to verify this:

[student@studentvm1 testdir]$ stat file001

 File: file001

 Size: 12 Blocks: 8 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 157 Links: 1

Access: (0660/-rw-rw----) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-13 18:43:48.199515467 -0500

Modify: 2018-12-13 18:43:48.199515467 -0500

Change: 2018-12-13 18:43:48.199515467 -0500

 Birth: -

[student@studentvm1 ~]$ ll -i Documents/TextFiles/file.txt ~/tmp/file* /home/shared/file.txt

434 -rw-rw-r-- 4 student student 12 Apr 2 12:32 Documents/TextFiles/file.txt

434 -rw-rw-r-- 4 student student 12 Apr 2 12:32 /home/shared/file.txt

434 -rw-rw-r-- 4 student student 12 Apr 2 12:32 /home/student/tmp/file2.txt

434 -rw-rw-r-- 4 student student 12 Apr 2 12:32 /home/student/tmp/file.txt

Figure 18-6. A long listing of the files shown in Figure 18-5. The inode number of
434 is the first field. All of these directory entries share the same inode

Chapter 18 Files, DireCtories, anD links

540

the inode number for this file on my VM is 157 but it will probably be different on your

VM. now create a hard link to this file. the ln utility defaults to creation of a hard link.

[student@studentvm1 testdir]$ ln file001 link1 ; ll

total 8

-rw-rw---- 2 student student 12 Dec 13 18:43 file001

-rw-rw---- 2 student student 12 Dec 13 18:43 link1

the link count is now 2 for both directory entries. Display the content of both files and then

stat them both:

[student@studentvm1 testdir]$ cat file001 link1

Hello World

Hello World

[student@studentvm1 testdir]$ stat file001 link1

 File: file001

 Size: 12 Blocks: 8 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 157 Links: 2

Access: (0660/-rw-rw----) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-13 18:51:27.103658765 -0500

Modify: 2018-12-13 18:43:48.199515467 -0500

Change: 2018-12-13 18:49:35.499380712 -0500

 Birth: -

 File: link1

 Size: 12 Blocks: 8 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 157 Links: 2

Access: (0660/-rw-rw----) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-13 18:51:27.103658765 -0500

Modify: 2018-12-13 18:43:48.199515467 -0500

Change: 2018-12-13 18:49:35.499380712 -0500

 Birth: -

all of the metadata for both files is identical including the inode number and the number of

links. Create another link in the same directory. it does not matter which existing directory

entry we use to create the new link because they both point to the same inode:

[student@studentvm1 testdir]$ ln link1 link2 ; ll

total 12

-rw-rw---- 3 student student 12 Dec 13 18:43 file001

-rw-rw---- 3 student student 12 Dec 13 18:43 link1

Chapter 18 Files, DireCtories, anD links

541

-rw-rw---- 3 student student 12 Dec 13 18:43 link2

[student@studentvm1 testdir]$

You should stat all three of these files to verify that the metadata for them is identical. let’s

create a link to this inode in your home directory:

[student@studentvm1 testdir]$ ln link1 ~/link3 ; ll ~/link*
-rw-rw---- 4 student student 12 Dec 13 18:43 /home/student/link3

You can see from the listing that we now have 4 hard links to this file. it is possible to view the

inode number with the ls -li or ll -i command. the number 157 at the left side of each

file listing is the inode number:

[student@studentvm1 testdir]$ ll -i

total 12

157 -rw-rw---- 4 student student 12 Dec 13 18:43 file001

157 -rw-rw---- 4 student student 12 Dec 13 18:43 link1

157 -rw-rw---- 4 student student 12 Dec 13 18:43 link2

let’s create another link from /tmp/:

[student@studentvm1 testdir]$ link file001 /tmp/link4

link: cannot create link '/tmp/link4' to 'file001': Invalid cross-device link

this attempt to create a hard link from /tmp to a file in /home fails because these directories

are separate filesystems.

Hard links are limited to files contained within a single filesystem. Filesystem is used

here in the sense of a partition or logical volume that is mounted on a specified mount

point, such as in this case, /home. This is because inode numbers are unique only within

each filesystem and a different filesystem, /var or /opt, for example, will have inodes with

the same number as the inode for our file.

Because all of the hard links point to the single inode which contains the metadata

about the file, all of these attributes are part of the file, such as ownerships, permissions,

and the total number of hard links to the inode, and cannot be different for each hard

link. It is one file with one set of attributes. The only attribute that can be different is the

file name, which is not contained in the inode. Hard links to a single file/inode that are

located in the same directory must have different names due to the fact that there can be

no duplicate file names within a single directory.

Chapter 18 Files, DireCtories, anD links

542

One of the interesting consequences of hard links is that deleting the actual file

inode and data requires deleting all of the links. The problem with this is that it may not

be obvious where all of the links are located. A normal file listing does not make this

immediately obvious. So we need a way to search for all of the links for a specific file.

 Locating files with several hard links

The find command can locate files with multiple hard links. It can locate all files with a

given inode number which means we can find all of the hard links to a file.

EXPERIMENT 18-11

as root let’s look for all files with 4 hard links. We could also use +4 or -4 to find all files with

more or less than 4 hard links, respectively, but we will look for exactly 4:

[root@studentvm1 ~]# find / -type f -links 4

/home/student/link3

/home/student/testdir/link2

/home/student/testdir/file001

/home/student/testdir/link1

/usr/sbin/fsck.ext2

/usr/sbin/mkfs.ext3

/usr/sbin/mke2fs

/usr/sbin/mkfs.ext4

/usr/sbin/e2fsck

/usr/sbin/fsck.ext3

/usr/sbin/mkfs.ext2

/usr/sbin/fsck.ext4

<snip>

this shows the hard links we created in experiment 18-9, as well as some other interesting

files such as the programs for creating filesystems like eXt3 and eXt4. exploring this a

little more, we look for the inode numbers of the mkfs files. the -exec option executes the

command that follows. the curly braces – {} – in this command substitute the file names

found into the ls -li command so that we get a long listing of just the found files. the -i option

displays the inode number. the last part of this command is an escaped semicolon (\;) which

us used to terminate the -exec command list. Using an unescaped semicolon would be used

to separate individual commands for the -exec option if there were more:

Chapter 18 Files, DireCtories, anD links

543

[root@studentvm1 ~]# find / -type f -name mkfs*[0-9] -links 4 -exec ls -li {} \;

531003 -rwxr-xr-x. 4 root root 133664 May 24 2018 /usr/sbin/mkfs.ext3

531003 -rwxr-xr-x. 4 root root 133664 May 24 2018 /usr/sbin/mkfs.ext4

531003 -rwxr-xr-x. 4 root root 133664 May 24 2018 /usr/sbin/mkfs.ext2

all three of these files have the same inode (531003) so that they are really the same file with

multiple links. But there are 4 hard links to this file, so let’s find all of them by searching for

files with the inode number 531003. Be sure to use the inode number that matches the one

for this file on your VM – it will be different from the one shown here:

[root@studentvm1 ~]# find /usr -inum 531003

/usr/sbin/mkfs.ext3

/usr/sbin/mke2fs

/usr/sbin/mkfs.ext4

/usr/sbin/mkfs.ext2

We could also use the -samefile option to accomplish the same thing without knowing the

inode number. this option finds both hard and soft links:

[root@studentvm1 ~]# find /usr -samefile /usr/sbin/mkfs.ext3

/usr/sbin/mkfs.ext3

/usr/sbin/mke2fs

/usr/sbin/mkfs.ext4

/usr/sbin/mkfs.ext2

the result shows that the name search we were doing previously would not find the fourth link.

 Symbolic (soft) links

In Experiment 18-11 we found experimentally that hard links do not work across

filesystem boundaries. Soft links, also known as symbolic or symlinks, can circumvent that

problem for us. A symlink can be used in most of the same places as a hard link and more.

The difference between a hard link and a soft link is that while hard links point

directly to the inode belonging to the file, soft links point to a directory entry, that is,

one of the hard links. Because soft links point to a hard link for the file and not the

inode, they are not dependent upon the inode number and can work across filesystems,

spanning partitions, and logical volumes. And, unlike hard links, soft links can point to

the directory itself, which is a common use case for soft links.

Chapter 18 Files, DireCtories, anD links

544

The downside to this is that if the hard link to which the symlink points is deleted or

renamed, the symlink is broken. The symbolic link is still, there but it points to a hard

link that no longer exists. Fortunately the ls command highlights broken links with

flashing white text on a red background in a long listing.

EXPERIMENT 18-12

as the student user in a terminal session, make ~/testdir directory the pWD. there are three

hard links there, so let’s create a symlink to one of the hard links, and then list the directory:

student@studentvm1 testdir]$ ln -s link1 softlink1 ; ll

total 12

-rw-rw---- 4 student student 12 Dec 13 18:43 file001

-rw-rw---- 4 student student 12 Dec 13 18:43 link1

-rw-rw---- 4 student student 12 Dec 13 18:43 link2

lrwxrwxrwx 1 student student 5 Dec 14 14:57 softlink1 -> link1

the symbolic link is just a file that contains a pointer to the target file to which it is linked. this

can be further tested by the following command:

[student@studentvm1 testdir]$ stat softlink1 link1

 File: softlink1 -> link1

 Size: 5 Blocks: 0 IO Block: 4096 symbolic link

Device: fd07h/64775d Inode: 159 Links: 1

Access: (0777/lrwxrwxrwx) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-14 14:58:00.136339034 -0500

Modify: 2018-12-14 14:57:57.290332274 -0500

Change: 2018-12-14 14:57:57.290332274 -0500

 Birth: -

 File: link1

 Size: 12 Blocks: 8 IO Block: 4096 regular file

Device: fd07h/64775d Inode: 157 Links: 4

Access: (0660/-rw-rw----) Uid: (1000/ student) Gid: (1000/ student)

Access: 2018-12-14 15:00:36.706711371 -0500

Modify: 2018-12-13 18:43:48.199515467 -0500

Change: 2018-12-13 19:02:05.190248201 -0500

 Birth: -

Chapter 18 Files, DireCtories, anD links

545

the first file is the symlink, and the second is the hard link. the symlink has a different set of

timestamps, a different inode number, and even a different size than the hard links which are

still all the same because they all point to the same inode.

now we can create a link from /tmp to one of these files and verify the content:

[student@studentvm1 testdir]$ cd /tmp ; ln -s ~/testdir/file001 softlink2 ;

ll /tmp

total 92

<snip>

drwx------. 2 root root 16384 Aug 13 16:16 lost+found

lrwxrwxrwx 1 student student 29 Dec 14 15:18 softlink2 -> /home/

student/testdir/file001

<snip>

[student@studentvm1 tmp]$ cat softlink2

Hello World

this enables to access the file by placing a link of it in /tmp, but, unlike a copy of the file, the

current version of the file is always there.

now let’s delete the original file and see what happens:

lrwxrwxrwx 1 student student 5 Dec 14 14:57 softlink1 -> link1

[student@studentvm1 testdir]$ rm file001 ; ll

total 8

-rw-rw---- 3 student student 12 Dec 13 18:43 link1

-rw-rw---- 3 student student 12 Dec 13 18:43 link2

lrwxrwxrwx 1 student student 5 Dec 14 14:57 softlink1 -> link1

[student@studentvm1 testdir]$ ll /tmp/soft*
lrwxrwxrwx 1 student student 29 Dec 14 15:18 /tmp/softlink2 ->

/home/student/testdir/file001

notice what happens to the soft link. Deleting the hard link to which the soft link points leaves

a broken link in /tmp. on my system the broken link is highlighted, and the target hard link is

flashing.

if the broken link needs to be fixed, you can create another hard link in the same directory

with the same name as the old one. if the soft link is no longer needed, it can be deleted with

the rm command.

Chapter 18 Files, DireCtories, anD links

546

The unlink command can also be used to delete files and links. It is very simple

and has no options as the rm command does. Its name does more accurately reflect the

underlying process of deletion in that it removes the link – the directory entry – to the file

being deleted.

 Chapter summary
This chapter has explored file, directories, and links in detail. We looked at file and

directory ownership and permissions, file timestamps, the Red Hat Private Group

concept and its security implications, umask for setting the default permissions on new

files, and how to obtain information about files. We also created a directory in which

users can easily share files with enough security to prevent other users from accessing

them.

We learned about file metadata, its locations, and the metadata structures like the

directory entry and the file inode. We explored hard and soft links, how they differ, how

they relate to the metadata structures, and some uses for them.

Don’t forget that permissions and ownership are mostly irrelevant to the root user.

The root user can do anything even if that sometimes takes a bit of hacking such as

changing permissions.

 Exercises
Complete these exercises to finish this chapter:

 1. If the student user, who is a member of the ops group, sets the

permissions of file09 in the /tmp or other shared directory to 066

and group ownership to ops, who has what type of access to it and

who does not? Explain the logic of this in detail.

 2. If the development group uses a shared directory, /home/dev,

to share files, what specific permission needs to be set on the

dev directory to ensure that files created in that directory are

accessible by the entire group without additional intervention?

 3. Why are the permissions for your home directory, /home/student,

set to 700?

Chapter 18 Files, DireCtories, anD links

547

 4. For file09 in exercise 1, how can the student user regain access to

the file?

 5. Why did we set the shared directory permissions to 770 in

Experiment 18-5?

 6. What would be different if we set the permissions of the shared

directory to 774?

 7. Given that the directory, ~/test, has ownership of student.student

and the file permissions are set to --xrwxrwx (177), which of the

following tasks can the student user perform? Listing the content

of the directory? Creating and deleting files in the directory?

Making the directory the PWD?

 8. Create a file in a publicly accessible directory such as /tmp, and

give it permissions so that all users except those belonging to the

dev group can access it for read and write. Users in the dev group

should have no access at all.

 9. Create file as the student user, and set the permissions on a file

such that the root user has no access but the student user, who

created the file, has full read/write access and Other users can

read the file.

 10. Which type of link is required when linking from one filesystem to

another? Why?

 11. The umask for the root user is 022. What are the permissions for

new files created by root?

 12. Why does a hard link not break if one of the links is moved to

another directory in the same filesystem? Demonstrate this.

 13. Fix the symlink in /tmp that we broke when we deleted file001.

Chapter 18 Files, DireCtories, anD links

549
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5_19

CHAPTER 19

Filesystems
 Objectives
In this chapter you will learn

• Three definitions for the term “Filesystem”

• The meta-structures of the EXT4 filesystem.

• How to obtain information about an EXT4 filesystem

• To resolve problems that prevent a host from booting due to errors

in configuration files

• To detect and repair filesystem inconsistencies that might result in

data loss

• To describe and use the Linux Filesystem Hierarchical

Standard (FHS)

• To create a new partition and install an EXT4 filesystem on it

• Configure /etc/fstab to mount a new partition on boot

 Overview
Every general purpose computer needs to store data of various types on a hard disk

drive (HDD), a solid-state drive (SSD), or some equivalent such as a USB memory stick.

There are a couple reasons for this. First, RAM loses its contents when the computer is

switched off so that everything stored in RAM gets lost. There are nonvolatile types of

RAM that can maintain the data stored there after power is removed, such as flash RAM

that is used in USB memory sticks and solid-state drives (SSD).

550

The second reason that data needs to be stored on hard drives is that even standard

RAM is still less expensive than disk space. Both RAM and disk costs have been dropping

rapidly, but RAM still leads the way in terms of cost per byte. A quick calculation of the

cost per byte, based on costs for 16GB of RAM vs. a 2TB hard drive, shows that the RAM

is about 71 times more expensive per unit than the hard drive. A typical cost for RAM is

around $0.0000000043743750 per byte as of this writing.

For a quick historical note to put present RAM costs in perspective, in the very early

days of computing, one type of memory was based on dots on a CRT screen. This was

very expensive at about $1.00 per bit!

 Definitions
You may hear people talk about the term “filesystems” in a number of different and

possibly confusing ways. The word itself can have multiple meanings, and you may have

to discern the correct meaning from the context of a discussion or document.

So I will attempt to define the various meanings of the word, “filesystem,” based on

how I have observed it being used in different circumstances. Note that while attempting

to conform to standard “official” meanings, my intent is to define the term based on its

various usages. These meanings will be explored in more detail in the following sections

of this chapter:

 1. A specific type of data storage format such as EXT3, EXT4, BTRFS,

XFS, and so on. Linux supports almost 100 types of filesystems

including some very old ones, as well as some of the newest.

Each of these filesystem types uses its own metadata structures to

define how the data is stored and accessed.

 2. The entire Linux hierarchical directory structure starting at the

top (/) root directory.

 3. A partition or logical volume formatted with a specific type of

filesystem that can be mounted on a specified mount point on a

Linux filesystem.

This chapter covers all three meanings of the term, “filesystem.”

Chapter 19 Filesystems

551

 Filesystem functions
Disk storage is a necessity that brings with it some interesting and inescapable details.

Disk filesystems are designed to provide space for nonvolatile storage of data. There are

many other important functions that flow from that requirement.

A filesystem is all of the following:

 1. Data storage: A structured place to store and retrieve data; this is

the primary function of any filesystem.

 2. Namespace: A naming and organizational methodology that

provides rules for naming and structuring data.

 3. Security model: A scheme for defining access rights.

 4. Application programming interface (API): System function calls

to manipulate filesystem objects like directories and files.

 5. Implementation: The software to implement the above.

All filesystems need to provide a namespace, that is, a naming and organizational

methodology. This defines how a file can be named, specifically the length of a file

name and the subset of characters that can be used for file names out of the total set of

characters available. It also defines the logical structure of the data on a disk, such as the

use of directories for organizing files instead of just lumping them all together in a single,

huge data space.

Once the namespace has been defined, a metadata structure is necessary to provide

the logical foundation for that namespace. This includes the data structures required to

support a hierarchical directory structure, structures to determine which blocks of space

on the disk are used and which are available, structures that allow for maintaining the

names of the files and directories, information about the files such as their size and times

they were created, modified or last accessed, and the location or locations of the data

belonging to the file on the disk. Other metadata is used to store high-level information

about the subdivisions of the disk such as logical volumes and partitions. This higher-

level metadata and the structures it represents contain the information describing the

filesystem stored on the drive or partition but are separate from and independent of the

filesystem metadata.

Chapter 19 Filesystems

552

Filesystems also require an application programming interface (API) that provides

access to system function calls which manipulate filesystem objects like files and

 directories. APIs provide for tasks such as creating, moving, and deleting files. It also

provides functions that determine things like where a file is placed on a filesystem. Such

functions may account for objectives such as speed or minimizing disk fragmentation.

Modern filesystems also provide a security model which is a scheme for defining

access rights to files and directories. The Linux filesystem security model helps to ensure

that users only have access to their own files and not those of others or the operating

system itself.

The final building block is the software required to implement all of these functions.

Linux uses a two-part software implementation as a way to improve both system and

programmer efficiency which is illustrated in Figure 19-1.

The first part of this two-part implementation is the Linux virtual filesystem. This

virtual filesystem provides a single set of commands for the kernel and developers, to

access all types of filesystems. The virtual filesystem software calls the specific device

driver required to interface to the various types of filesystems. The filesystem-specific

device drivers are the second part of the implementation. The device driver interprets

the standard set of filesystem commands to ones specific to the type of filesystem on the

partition or logical volume.

Figure 19-1. The Linux two-part filesystem structure

Chapter 19 Filesystems

553

 The Linux Filesystem Hierarchical Standard
As a usually very organized Virgo, I like things stored in smaller, organized groups rather

than in one big bucket. The use of directories helps me to store and then locate the files

I want when I want them. Directories are also known as folders because they can be

thought of as folders in which files are kept in a sort of physical desktop analogy.

In Linux, and many other operating systems, directories can be structured in a

tree-like hierarchy. The Linux directory structure is well defined and documented in

the Linux Filesystem Hierarchy Standard (FHS).1 This standard has been put in place

to ensure that all distributions of Linux are consistent in their directory usage. Such

consistency makes writing and maintaining shell and compiled programs easier for

SysAdmins because the programs, their configuration files, and their data, if any, should

be located in the standard directories.

 The standard
The latest Filesystem Hierarchical Standard (3.0)2 is defined in a document maintained

by the Linux Foundation.3 The document is available in multiple formats from their web

site, as are historical versions of the FHS. I suggest that you set aside some time and at

least scan the entire document in order to better understand the roles played by the

many subdirectories of these top-level ones.

Figure 19-2 provides a list of the standard, well known, and defined top-level Linux

directories and their purposes. These directories are listed in alphabetical order.

1 Linux Foundation, Linux Filesystem Hierarchical Standard, http://refspecs.linuxfoundation.
org/fhs.shtml

2 http://refspecs.linuxfoundation.org/fhs.shtml
3 The Linux Foundation maintains documents defining many Linux standards. It also sponsors the
work of Linus Torvalds.

Chapter 19 Filesystems

http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml

554

Figure 19-2. The top level of the Linux Filesystem Hierarchical Standard4

4 Note that /bin and /sbin are now just links to /usr/bin and /usr/sbin, respectively. They are no
longer generally split into “essential” and “non-essential” as they used to be.

Chapter 19 Filesystems

555

The directories shown in Figure 19-2, along with their subdirectories, that have a

Yes in column 2 are considered to be an integral part of the root filesystem. That is, they

cannot be created as a separate filesystem and mounted at startup time. This is because

they, specifically their contents, must be present at boot time in order for the system to

boot properly. The /media and /mnt directories are part of the root filesystem, but they

should never contain any data. Rather, they are simply temporary mount points.

The rest of the directories do not need to be present during the boot sequence but

will be mounted later, during the startup sequence that prepares the host to perform

useful work.

Figure 19-2. (continued)

Chapter 19 Filesystems

556

Wikipedia also has a good description of the FHS.5 This standard should be followed

as closely as possible to ensure operational and functional consistency. Regardless of

the filesystem types, that is, EXT4, XFS, etc., used on a host, this hierarchical directory

structure is the same.

 Problem solving
One of the best reasons I can think of for adhering to the Linux FHS is that of making

the task of problem solving as easy as possible. Many applications expect things to be in

certain places, or they won’t work. Where you store your cat pictures and MP3s doesn’t

matter, but where your system configuration files are located does.

Using the Linux Filesystem Hierarchical Standard promotes consistency and

simplicity which makes problem solving easier. Knowing where to find things in the

Linux filesystem directory structure has saved me from endless failing about on more

than just a few occasions.

I find that most of the core utilities, Linux services, and servers provided with

the distributions I use are consistent in their usage of the /etc directory and its

subdirectories for configuration files. This means that finding a configuration file for a

misbehaving program or service supplied by the distribution should be easy to find.

I typically use a number of the ASCII text files in /etc to configure Sendmail, Apache,

DHCP, NFS, NTP, DNS, and more. I always know where to find the files I need to modify

for those services, and they are all open and accessible because they are in ASCII text

which makes them readable to both computers and humans.

 Using the filesystem incorrectly
One situation involving the incorrect usage of the filesystem occurred while I was

working as a lab administrator at a large technology company. One of our developers

had installed an application in the wrong location, /var. The application was crashing

because the /var filesystem was full and the log files, which are stored in /var/log on that

filesystem, could not be appended with new messages that would indicate that the /var

5 Wikipedia, Filesystem Hierarchy Standard, https://en.wikipedia.org/wiki/
Filesystem_Hierarchy_Standard

Chapter 19 Filesystems

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

557

filesystem was full due to the lack of space in /var. However the system remained up and

running because the critical / (root) and /tmp filesystems did not fill up. Removing the

offending application and reinstalling it in the /opt filesystem, where it was supposed to

be, resolved that problem. I also had a little discussion with the developer who did the

original installation.

 Adhering to the standard
So how do we as SysAdmins adhere to the Linux FHS? It is actually pretty easy, and

there is a hint way back in Figure 19-2. The /usr/local directory is where locally created

executables and their configuration files should be stored. By local programs, the FHS

means those that we create ourselves as SysAdmins to make our work or the work of

other users easier. This includes all of those powerful and versatile shell programs we

write. Our programs should be located in /usr/local/bin and the configuration files, if

any, in /usr/local/etc. There is also a /var/local directory in which the database files for

local programs can be stored.

I have written a fair number of shell programs over the years, and it took me at least

five years before I understood the appropriate places to install my own software on

host computers. In some cases I had even forgotten where I installed them. In other

cases, I installed the configuration files in /etc instead of /usr/local/etc, and my file was

overwritten during an upgrade. It took a few hours to track that down the first time it

happened.

By adhering to these standards when writing shell programs, it is easier for me to

remember where I have installed them. It is also easier for other SysAdmins to find

things by searching only the directories that we as SysAdmins would have installed those

programs and their files.

 Linux unified directory structure
The Linux filesystem unifies all physical hard drives and partitions into a single directory

structure. It all starts at the top – the root (/) directory. All other directories and their

subdirectories are located under the single Linux root directory. This means that there is

only one single directory tree in which to search for files and programs.

Chapter 19 Filesystems

558

This can work only because a filesystem such as /home, /tmp, /var, /opt, or /usr can

be created on separate physical hard drives, a different partition, or a different logical

volume from the / (root) filesystem and then be mounted on a mount point (directory)

as part of the root filesystem tree. Even removable drives such as a USB thumb drive

or an external USB or ESATA hard drive will be mounted onto the root filesystem and

become an integral part of that directory tree.

One reason to do this is apparent during an upgrade from one version of a Linux

distribution to another, or changing from one distribution to another. In general, and

aside from any upgrade utilities like dnf-upgrade in Fedora, it is wise to occasionally

reformat the hard drive(s) containing the operating system during an upgrade to

positively remove any cruft that has accumulated over time. If /home is part of the root

filesystem, it will be reformatted as well and would then have to be restored from a

backup. By having /home as a separate filesystem, it will be known to the installation

program as a separate filesystem, and formatting of it can be skipped. This can also apply

to /var where database, e-mail inboxes, web site, and other variable user and system

data are stored.

You can also be intentional about which files reside on which disks. If you’ve got a

smaller SSD and a large piece of spinning rust, put the important frequently accessed

files necessary for booting on the SSD. Or your favorite game, or whatever. Similarly,

don’t waste SSD space on archival storage of large files that you rarely access.

As another example, a long time ago, when I was not yet aware of the potential issues

surrounding having all of the required Linux directories as part of the / (root) filesystem,

I managed to fill up my home directory with a large number of very big files. Since

neither the /home directory nor the /tmp directory was separate filesystems but simply

subdirectories of the root filesystem, the entire root filesystem filled up. There was no

room left for the operating system to create temporary files or to expand existing data

files. At first the application programs started complaining that there was no room to

save files, and then the OS itself started to act very strangely. Booting to single user mode

and clearing out the offending files in my home directory allowed me to get going again;

I then reinstalled Linux using a pretty standard multi-filesystem setup and was able to

prevent complete system crashes from occurring again.

I once had a situation where a Linux host continued to run but prevented the user

from logging in using the gui desktop. I was able to log in using the command-line

interface (CLI) locally using one of the virtual consoles and remotely using SSH. The

problem was that the /tmp filesystem had filled up, and some temporary files required

Chapter 19 Filesystems

559

by the gui desktop could not be created at login time. Because the CLI login did not

require files to be created in /tmp, the lack of space there did not prevent me from

logging in using the CLI. In this case the /tmp directory was a separate filesystem, and

there was plenty of space available in the volume group of which the /tmp logical volume

was a part. I simply expanded the /tmp logical volume to a size that accommodated my

fresh understanding of the amount of temporary file space needed on that host, and the

problem was solved. Note that this solution did not require a reboot, and as soon as

the /tmp filesystem was enlarged, the user was able to log in to the desktop.

 Filesystem types
Linux supports reading around 100 partition types; it can create and write to only a few

of these. But it is possible – and very common – to mount filesystems of different types on

the same root filesystem. In this context, we are talking about filesystems in terms of the

structures and metadata required to store and manage the user data on a partition of a

hard drive or a logical volume. The complete list of filesystem partition types recognized

by the Linux fdisk command is provided in Figure 19-3, so that you can get a feel for the

high degree of compatibility that Linux has with very many types of systems.

Chapter 19 Filesystems

560

The main purpose in supporting the ability to read so many partition types is to allow

for compatibility and at least some interoperability with other filesystems. The choices

available when creating a new filesystem with Fedora are shown in the following list:

• btrfs

• cramfs

• ext2

• ext3

• ext4

• fat

• gfs2

• hfsplus

• minix

• msdos

Figure 19-3. The list of filesystems supported by Linux

Chapter 19 Filesystems

561

• ntfs

• reiserfs

• vfat

• xfs

Other Linux distributions support creating different filesystem types. For example,

CentOS 6 supports creating only those filesystems highlighted in bold in the preceding list.

 Mounting
The term to “mount” a filesystem in Linux refers back to the early days of computing

when a tape or removable disk pack would need to be physically mounted on an

appropriate drive device. After being physically placed on the drive, the filesystem on the

disk pack would be “mounted” by the operating system to make the contents available

for access by the OS, application programs, and users.

A mount point is simply an empty directory, like any other, which is created as part

of the root filesystem. So, for example, the home filesystem is mounted on the directory

/home. Filesystems can be mounted at mount points on non-root filesystems in the

directory tree, but this is less common.

The Linux root filesystem is mounted on the root directory (/) very early in the boot

sequence. Other filesystems are mounted later, by the Linux startup programs, either rc

under SystemV or by systemd in newer Linux releases. Mounting of filesystems during

the startup process is managed by the /etc/fstab configuration file. An easy way to

remember that is that fstab stands for “filesystem table,” and it is a list of filesystems that

are to be mounted, their designated mount points, and any options that might be needed

for specific filesystems.

Filesystems are mounted on an existing directory/mount point using the mount

command. In general, any directory that is used as a mount point should be empty and

not have any other files contained in it. Linux will not prevent users from mounting one

filesystem over one that is already there or on a directory that contains files. If you mount

a filesystem on an existing directory or filesystem, the original contents will be hidden,

and only the content of the newly mounted filesystem will be visible.

Chapter 19 Filesystems

562

 The Linux EXT4 filesystem
Although written for Linux, the EXT filesystem has its roots in the Minix operating

system and the Minix filesystem which predate Linux by about five years, having been

first released in 1987. When writing the original Linux kernel, Linus Torvalds needed a

filesystem and did not want to write one at that point. So he simply included the Minix

filesystem6 which had been written by Andrew S. Tanenbaum7 and which was a part of

Tanenbaum’s Minix8 operating system. Minix was a Unix-like operating system written

for educational purposes. Its code was freely available and was appropriately licensed to

allow Torvalds’ to include it in his first version of Linux.

The original EXT filesystem9 (Extended) was written by Rémy Card10 and released

with Linux in 1992 in order to overcome some size limitations of the Minix filesystem.

The primary structural changes were to the metadata of the filesystem which was based

on the Unix filesystem, UFS, also known as the Berkeley Fast File System or FFS. The

EXT2 filesystem quickly replaced the EXT filesystem; EXT3 and EXT4 followed with

additional fixes and features. The current default filesystem for Fedora is EXT4.

The EXT4 filesystem has the following meta-structures:

• A boot sector11 in the first sector of the hard drive on which it is

installed. The boot block includes a very small boot record and a

partition table that supports up to four primary partitions.

• After the boot sector has some reserved space which spans the space

between the boot record and the first partition on the hard drive

which is usually on the next cylinder boundary. The GRUB212 boot

loader uses this space for the majority of its boot code.

6 Wikipedia, Minix Filesystem, https://en.wikipedia.org/wiki/MINIX_file_system
7 Wikipedia, Andrew S. Tanenbaum, https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
8 Wikipedia, Minix, https://en.wikipedia.org/wiki/MINIX
9 Wikipedia, Extended Filesystem, https://en.wikipedia.org/wiki/Extended_file_system
10 Wikipedia, Rémy Card, https://en.wikipedia.org/wiki/Rémy_Card
11 Wikipedia, Boot sector, https://en.wikipedia.org/wiki/Boot_sector
12 Both, David, Opensource.com, An introduction to the Linux boot and startup processes,
https://opensource.com/article/17/2/linux-boot-and-startup

Chapter 19 Filesystems

https://en.wikipedia.org/wiki/MINIX_file_system
https://en.wikipedia.org/wiki/Andrew_S._Tanenbaum
https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/Extended_file_system
https://en.wikipedia.org/wiki/R%C3%A9my_Card
https://en.wikipedia.org/wiki/Boot_sector
http://opensource.com
https://opensource.com/article/17/2/linux-boot-and-startup

563

• The space in each EXT4 partition is divided into cylinder groups

that allow for more granular management of the data space. In my

experience, the group size usually amounts to about 8 MB.

• Each cylinder group contains

• A superblock which contains the metadata that defines the

other filesystem structures and locates them on the physical disk

assigned to the group.

• An inode bitmap block that is used to determine which inodes

are used and which are free.

• The inodes which have their own space on the disk. Each inode

contains information about one file, including the locations of the

data blocks, that is, zones belonging to the file.

• A zone bitmap to keep track of the used and free data zones.

• A journal13 which records in advance the changes that will be

performed to the filesystem and which helps to eliminate data loss

due to crashes and power failures.

 Cylinder groups
The space in each EXT4 filesystem is divided into cylinder groups that allow for more

granular management of the data space. In my experience, the group size can vary

from about 8 MiB for older systems and software versions with newer hosts, larger hard

drives, and newer versions of the EXT filesystem creating cylinder groups of about

34MiB. Figure 19-4 shows the basic structure of a cylinder group. The data allocation

unit in a cylinder is the block, which is usually 4K in size.

13 Wikipedia, Journaling file system, https://en.wikipedia.org/wiki/Journaling_file_system

Chapter 19 Filesystems

https://en.wikipedia.org/wiki/Journaling_file_system

564

The first block in the cylinder group is a superblock which contains the metadata

that defines the other filesystem structures and locates them on the physical disk.

Some of the additional groups in the partition will have backup superblocks, but not

all. A damaged superblock can be replaced by using a disk utility such as dd to copy the

contents of a backup superblock to the primary superblock. It does not happen often,

but I have experienced a damaged superblock once many years ago, and I was able to

restore its contents using that of one of the backup superblocks. Fortunately I had been

foresighted and used the dumpe2fs command to dump the descriptor information of the

partitions on my system.

Each cylinder group has two types of bitmaps. The inode bitmap is used to

determine which inodes are used and which are free within that group. The inodes

have their own space, the inode table in each group. Each inode contains information

about one file, including the locations of the data blocks belonging to the file. The block

bitmap keeps track of the used and free data blocks within the filesystem. On very large

filesystems, the group data can run to hundreds of pages in length. The group metadata

includes a listing of all of the free data blocks in the group. For both types of bitmaps, one

bit represents one specific data zone or one specific inode. If the bit is zero, the zone or

inode is free and available for use, while if the bit is one, the data zone or inode is in use.

Let’s take a look at the metadata for the root filesystem of our VMs. The details and

values of yours will probably be different from mine.

Figure 19-4. The structure of a cylinder group

Chapter 19 Filesystems

565

EXPERIMENT 19-1

perform this experiment as root. We use the dumpe2fs utility to dump the data from the

primary superblock of the root (/) filesystem. you may need to run the output data stream from

the dumpe2fs command through the less utility to see it all:

[root@studentvm1 ~]# dumpe2fs -h /dev/mapper/fedora_studentvm1-root

dumpe2fs 1.44.3 (10-July-2018)

Filesystem volume name: root

Last mounted on: /

Filesystem UUID: f146ab03-1469-4db0-8026-d02192eab170

Filesystem magic number: 0xEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext_attr resize_inode dir_index

filetype needs_recovery extent 64bit flex_bg sparse_super large_file huge_

file dir_nlink extra_isize metadata_csum

Filesystem flags: signed_directory_hash

Default mount options: user_xattr acl

Filesystem state: clean

Errors behavior: Continue

Filesystem OS type: Linux

Inode count: 131072

Block count: 524288

Reserved block count: 26214

Free blocks: 491265

Free inodes: 129304

First block: 0

Block size: 4096

Fragment size: 4096

Group descriptor size: 64

Reserved GDT blocks: 255

Blocks per group: 32768

Fragments per group: 32768

Inodes per group: 8192

Inode blocks per group: 512

Flex block group size: 16

Filesystem created: Sat Dec 22 11:01:11 2018

Chapter 19 Filesystems

566

Last mount time: Thu Dec 27 10:54:26 2018

Last write time: Thu Dec 27 10:54:21 2018

Mount count: 9

Maximum mount count: -1

Last checked: Sat Dec 22 11:01:11 2018

Check interval: 0 (<none>)

Lifetime writes: 220 MB

Reserved blocks uid: 0 (user root)

Reserved blocks gid: 0 (group root)

First inode: 11

Inode size: 256

Required extra isize: 32

Desired extra isize: 32

Journal inode: 8

Default directory hash: half_md4

Directory Hash Seed: 838c2ec7-0945-4614-b7fd-a671d8a40bbd

Journal backup: inode blocks

Checksum type: crc32c

Checksum: 0x2c27afaa

Journal features: journal_64bit journal_checksum_v3

Journal size: 64M

Journal length: 16384

Journal sequence: 0x000001fa

Journal start: 1

Journal checksum type: crc32c

Journal checksum: 0x61a70146

there is a lot of information here, and what you see on your Vm should be similar. there are

some specific data that are of special interest.

the first two entries give the filesystem label and the last mount point. that makes it easy

to see that this is the root (/) filesystem. if your /etc/fstab uses UUiDs to mount one or more

partitions, such as /boot, this is that UUiD as it is stored in the filesystem’s primary superblock.

the current filesystem state is “clean” which means that all of the data has been written from

buffers and the journal to the data space and the filesystem is consistent. if the filesystem

were not clean, then not all data has been written to the data area of the hard drive yet.

Note that this and some other data in the superblock may not be current if the filesystem is

mounted.

Chapter 19 Filesystems

567

this also tells us that the filesystem type is “linux” which is type 83 as shown in Figure 19-3.

this is a non-lVm partition. type 8e would be a linux lVm partition.

you can also see the inode and block counts which tell us how many files and how much

total data can be stored on this filesystem. since each file uses one inode, this filesystem

can hold 131,072 files. along with the block size of 4096 bytes, the total block count gives

1,073,741,824 total bytes of storage with 53,686,272 bytes in reserved blocks. When a data

block is found by various error detection mechanisms to have errors, the data is moved to one

of the reserved blocks, and the regular data block is marked as defective and unavailable for

future data storage. the number of free blocks tells us that 1,006,110,720 bytes are free and

available.

the directory hash and hash seed are used by the htree14 directory tree structure

implementation to hash directory entries so that they can be easily found during file seek

operations. much of the rest of the superblock information is relatively easy to extract and

understand. the man page for eXt4 has some additional information about the filesystem

features listed near the top of this output.

Now use the following command to view both the superblock and the group data for this

partition:

[root@studentvm1 ~]# dumpe2fs /dev/mapper/fedora_studentvm1-root | less

<snip>

Group 0: (Blocks 0-32767) csum 0x6014 [ITABLE_ZEROED]

 Primary superblock at 0, Group descriptors at 1-1

 Reserved GDT blocks at 2-256

 Block bitmap at 257 (+257), csum 0xa86c6430

 Inode bitmap at 273 (+273), csum 0x273ddfbb

 Inode table at 289-800 (+289)

 23898 free blocks, 6438 free inodes, 357 directories, 6432 unused inodes

 Free blocks: 8870-32767

 Free inodes: 598, 608, 1661, 1678, 1683, 1758, 1761-8192

Group 1: (Blocks 32768-65535) csum 0xa5fe [ITABLE_ZEROED]

 Backup superblock at 32768, Group descriptors at 32769-32769

 Reserved GDT blocks at 32770-33024

 Block bitmap at 258 (bg #0 + 258), csum 0x21a5f734

14 This Wikipedia entry needs a lot of work but can give you a slightly more accurate description of
HTree. https://en.wikipedia.org/wiki/HTree

Chapter 19 Filesystems

https://en.wikipedia.org/wiki/HTree

568

 Inode bitmap at 274 (bg #0 + 274), csum 0x951a9172

 Inode table at 801-1312 (bg #0 + 801)

 28068 free blocks, 8190 free inodes, 2 directories, 8190 unused inodes

 Free blocks: 33039, 33056-33059, 33067, 33405, 33485, 33880-33895, 34240-

34255, 34317-34318, 34374-34375, 34398-34415, 34426-34427, 34432-34447,

34464-34479, 34504-34507, 34534-34543, 34546-34681, 34688-34820, 34822- 36071,

36304-36351, 36496-36529, 36532-36546, 36558-36575, 36594-36697, 36704,

36706-36708, 36730, 36742, 36793, 36804-36807, 36837, 36840, 36844- 37889,

37895-38771, 38776-38779, 38839-38845, 38849-38851, 38855, 38867, 38878,

38881-38882, 38886, 38906-38910, 38937, 38940-38941, 38947, 38960- 39423,

39440-39471, 39473, 39483-39935, 39938-39939, 39942-39951, 39954- 39955,

39957-39959, 39964-40447, 40454-40965, 40971-41472, 41474-45055, 47325-47615,

47618-47620, 47622-65535

 Free inodes: 8195-16384

Group 2: (Blocks 65536-98303) csum 0x064f [ITABLE_ZEROED]

 Block bitmap at 259 (bg #0 + 259), csum 0x2737c1ef

 Inode bitmap at 275 (bg #0 + 275), csum 0x951a9172

 Inode table at 1313-1824 (bg #0 + 1313)

 30727 free blocks, 8190 free inodes, 2 directories, 8190 unused inodes

 Free blocks: 67577-98303

 Free inodes: 16387-24576

<snip>

i have pruned the output from this command to show data for the first three groups. each

group has its own block and inode bitmaps and an inode table. the listing of free blocks in

each group enables the filesystem to easily locate free space in which to store new files or

to add to existing ones. if you compare the block number range for the entire group against

the free blocks, you will see that the file data is spread through the groups rather than being

jammed together starting from the beginning. We will see more about this later in this chapter

in the section, “Data allocation strategies.”

Group 2 in the preceding output has no data stored in it because all of the data blocks

assigned to this group are free. if you scroll down toward the end of the data for this

filesystem, you will see that the remaining groups have no data stored in them either.

Chapter 19 Filesystems

569

 The inode
What is an inode? Short for index node, an inode is one 256-byte block on the disk

that stores data about a file. This includes the size of the file, the user IDs of the user

and group owners of the file, and the file mode, that is, the access permissions, three

timestamps specifying the time and date that the file was last accessed and modified and

that the data in the inode itself was last modified.

The inode has been mentioned previously as a key component of the metadata of

the Linux EXT filesystems. Figure 19-5 shows the relationship between the inode and

the data stored on the hard drive. This diagram is the directory and inode for a single file

which, in this case, is highly fragmented. The EXT filesystems work actively to reduce

fragmentation, so it is very unlikely you will ever see a file with this many indirect data

blocks or extents. In fact fragmentation is extremely low in EXT filesystems, so most

inodes will use only one or two direct data pointers and none of the indirect pointers.

Figure 19-5. The inode stores information about each file and enables the EXT
filesystem to locate all data belonging to it

Chapter 19 Filesystems

570

The inode does not contain the name of the file. Access to a file is via the directory

entry which itself is the name of the file and which contains a pointer to the inode. The

value of that pointer is the inode number. Each inode in a filesystem has a unique ID

number, but inodes in other filesystems on the same computer and even hard drive

can have the same inode number. This has implications for links that were discussed in

Chapter 18. For files that have significant fragmentation, it becomes necessary to have

some additional capabilities in the form of indirect nodes. Technically these are not

really inodes, so I use the name node here for convenience.

An indirect node is a normal data block in the filesystem that is used only for

describing data and not for storage of metadata. Thus more than 15 entries can be

supported. For example, a block size of 4K can support 512 4-byte indirect nodes thus

allowing 12(Direct)+512(Indirect)=524 extents for a single file. Double and triple indirect

node support is also supported, but files requiring that many extents are unlikely to be

encountered in most environments.

In Minix and the EXT1-3 filesystems, the pointers to the data is in the form of a list

of data zones or blocks. For EXT4, the inode lists the extents that belong to the file. An

extent is a list of contiguous data blocks that belong to a file. Files may be comprised of

more than one extent. The only limit on the number of data blocks in a single extent is

the total size of a cylinder group. Practically, the limit is the amount of contiguous free

space available in a group at the time the file is created.

 Journal
The journal, introduced in the EXT3 filesystem, had the singular objective of overcoming

the massive amounts of time that the fsck program required to fully recover a disk

structure damaged by an improper shutdown that occurred during a file update

operation. The only structural addition to the EXT filesystem to accomplish this was the

journal15 which records in advance the changes that will be performed to the filesystem.

Instead of writing data to the disk data areas directly, the journal provides for writing

of file data to a specified area on the disk along with its metadata. Once the data is safe

on the hard drive, it can be merged in or appended to the target file with almost zero

chance of losing data. As this data is committed to the data area of the disk, the journal

is updated so that the filesystem will still be in a consistent state in the event of a system

15 Wikipedia, Journaling File System,https://en.wikipedia.org/wiki/Journaling_file_system

Chapter 19 Filesystems

https://en.wikipedia.org/wiki/Journaling_file_system

571

failure before all of the data in the journal is committed. On the next boot, the filesystem

will be checked for inconsistencies, and data remaining in the journal will then be

committed to the data areas of the disk to complete the updates to the target file.

Journaling does impact data write performance; however there are three options

available for the journal that allow the user to choose between performance and data

integrity and safety. The EXT4 man page has a description of these settings:

• Journal: Both metadata and file contents written to the journal

before commit to the main filesystem. This offers the greatest

reliability with a performance penalty because the data written twice.

• Writeback: The metadata is written to the journal, but the file

contents are not. This is a faster option but subject to possible of out-

of- order writes in which files being appended to during a crash may

gain a tail of garbage on the next mount.

• Ordered: This option is a bit like writeback, but it forces file contents

to be written before associated metadata is marked as committed in

the journal. It is an acceptable compromise between reliability and

performance and is the default for new EXT3 and EXT4 filesystems.

My personal preference is the middle ground because my environments do not

require heavy disk write activity, so performance should not normally be an issue. I go

with the default which provides reliability with a bit of a performance hit. This choice

can be set in /etc/fstab as a mount option or as a boot parameter by passing the option

to the kernel by editing the GRUB2 kernel options line.

The journaling function reduces the time required to check the hard drive for

inconsistencies after a failure from hours or even days to mere minutes at the most.

Of course these times may vary significantly depending upon many factors, especially

the size and type of drives. I have had many issues over the years that have crashed my

systems. The details could fill another chapter but suffice it to say that most were self-

inflicted like kicking out a power plug. Fortunately the EXT journaling filesystems have

reduced that boot up recovery time to two or three minutes. In addition, I have never

had a problem with lost data since I started using EXT3 with journaling.

The journaling feature of EXT4 may be turned off, and it then functions as an EXT2

filesystem. The journal itself still exists, empty and unused. Simply remount the partition

with the mount command using the type parameter to specify EXT2. You may be able to

do this from the command line, depending upon which filesystem you are working with,

Chapter 19 Filesystems

572

but you can change the type specifier in the /etc/fstab file and then reboot. I strongly

recommend against mounting an EXT3 or EXT4 filesystem as EXT2 because of the

additional potential for lost data and extended recovery times.

An existing EXT2 filesystem can be upgraded with the addition of a journal using

the following command where /dev/sda1 is the drive and partition identifier. Be sure to

change the file type specifier in /etc/fstab and remount the partition to have the change

take effect:

tune2fs -j /dev/sda1

This should seldom be necessary because the EXT2 filesystem was superseded by

EXT3 with a journal in 2001.16

 Data allocation strategies
The EXT filesystem implements several data allocation strategies that ensured minimal

file fragmentation. Reducing fragmentation results in improved filesystem performance.

Data allocation for the EXT4 filesystem is managed using extents. An extent is

described by its starting and ending place on the hard drive. This makes it possible to

describe very long physically contiguous files in a single inode pointer entry which can

significantly reduce the number of pointers required to describe the location of all the

data in larger files. Other allocation strategies have been implemented in EXT4 to further

reduce fragmentation.

EXT4 reduces fragmentation by scattering newly created files across the disk so that

they are not bunched up in one location at the beginning of the disk as many early PC

filesystems such as FAT did. The file allocation algorithms attempt to spread the files as

evenly as possible among the cylinder groups and, when fragmentation is necessary,

to keep the discontinuous file extents close to the others belonging to the same file to

minimize head seek and rotational latency as much as possible. Additional strategies are

used to preallocate extra disk space when a new file is created or when an existing file is

extended. This helps to ensure that extending the file will not automatically result in its

becoming fragmented. New files are never allocated immediately following the end of

existing files which also reduces or prevents fragmentation of the existing files.

16 Wikipedia, EXT3, https://en.wikipedia.org/wiki/Ext3

Chapter 19 Filesystems

https://en.wikipedia.org/wiki/Ext3

573

Aside from the actual location of the data on the disk, EXT4 uses functional strategies

such as delayed allocation to allow the filesystem to collect all of the data being written

to the disk before allocating the space to it. This can improve the likelihood that the

allocated data space will be contiguous.

 Data fragmentation
For many older PC filesystems such as FAT and all its variants and NTFS, fragmentation

has been a significant problem resulting in degraded hard drive performance.

Defragmentation became an industry in itself with different brands of defragmentation

software that ranged from very effective to only marginally so.

Hard drives use magnetic disks that rotate at high speed and moving heads to

position the data read/write transducers over the correct track. It is this wait for the

heads to seek to a specific track and then the wait for the desired data block to be read

by the read/write heads that causes the delays when files are fragmented. Although SSD

drives can experience file fragmentation, there is no performance penalty because, like

all solid-state memory, even though SSDs emulate a hard drive, they do not have the

spinning platters and moving heads of a traditional hard drive.

Linux’s Extended filesystems use data allocation strategies that help to minimize

fragmentation of files on the hard drive and reduce the effects of fragmentation when

it does occur. You can use the fsck command on EXT filesystems to check the total

filesystem fragmentation. The following example is to check the home directory of

my main workstation which was only 1.5% fragmented. Jason, my diligent technical

reviewer, reports 1.2% fragmentation on his home desktop workstation:

fsck -fn /dev/mapper/vg_01-home

Let’s see how fragmented our VM home directories are.

EXPERIMENT 19-2

let’s look at the amount of file fragmentation on the hard drive of your Vm. perform this

experiment as root.

the fsck (filesystem check) command is usually used to repair filesystems after a crash

or other incident which may make them inconsistent. it can also be used to report on

fragmentation. the -f option forces checking of the filesystem even if it is marked as clean and

Chapter 19 Filesystems

574

the -n option tells fsck to not fix problems it finds. this results in a report, hopefully short, of

the current state of the filesystem:

[root@studentvm1 ~]# fsck -fn /dev/mapper/fedora_studentvm1-home

fsck from util-linux 2.32.1

e2fsck 1.44.3 (10-July-2018)

Warning! /dev/mapper/fedora_studentvm1-home is mounted.

Warning: skipping journal recovery because doing a read-only filesystem

check.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

home: 289/131072 files (0.0% non-contiguous), 26578/524288 blocks

[root@studentvm1 ~]#

some problems may occasionally be reported such as inconsistencies in the inode or data

block counts. this can occur during normal operation on a virtual hard drive just as it can on

a physical one. i have on occasion simply powered off the Vm without a proper shutdown. it is

unlikely that you will have errors like this.

For now, look at the last line of the output from fsck. this shows that there are 0.0%

noncontiguous blocks which implies that there is 0% fragmentation. Jason reported 1.9%

fragmentation on his studentVm1 host. that may not be exactly true because the actual

number may be very small and not within the granularity of a single decimal place. From a

practical standpoint, 0.0% is essentially zero fragmentation.

the other numbers on this line are rather obscure. after reading the man page for fsck and

many online searches, i have found that these numbers are not explicitly defined. i think that

the first pair means that 114 inodes from a total of 131,072 have been used. this would

mean that there are 114 files and directories – directories are just files with directory entries

contained in them.

Cross-checking with the output of dumpe2fs in experiment 19-1, the number 131,072 is

correct for the total number of inodes, and the free inode count is 130,958, with the difference

being 114. the total block count of 524,288 also matches up as does the difference between

that and the free blocks, so we can conclude that my initial assumptions were correct.

Check all of these numbers on your own Vm to verify that they are correct.

Chapter 19 Filesystems

575

I once performed some theoretical calculations to determine whether disk

defragmentation might result in any noticeable performance improvement. While I

did make some assumptions, the disk performance data I used were from a then new

300GB, Western Digital hard drive with a 2.0ms track to track seek time. The number of

files in this example was the actual number that existed in the filesystem on the day I did

the calculation. I did assume that a fairly large amount of the fragmented files would be

touched each day, 20%.

Total files 271,794

% Fragmentation 5.00%

Discontinuities 13,590

% fragmented files touched per day
(assumption)

20%

Number of additional seeks 2,718

Average seek time 10.90ms

Total additional seek time per day 29.63Sec

Track to Track seek time 2.00ms

Total additional seek time per day 5.44Sec

Figure 19-6. The theoretical effects of fragmentation on disk performance

I have done two calculations for the total additional seek time per day, one based

on the track to track seek time, which is the more likely scenario for most files due to the

EXT file allocation strategies, and one for the average seek time which I assumed would

make a fair worst-case scenario.

Chapter 19 Filesystems

576

You can see from Figure 19-6 that the impact of fragmentation on a modern EXT

filesystem with a hard drive of even modest performance would be minimal and

negligible for the vast majority of applications. You can plug the numbers from your

environment into your own similar spreadsheet to see what you might expect in the way

of performance impact. This type of calculation most likely will not represent actual

performance, but it can provide a bit of insight into fragmentation and its theoretical

impact on a system. Jason reports noticeable impact from fragmentation with very

large files that are very near continually accessed – usually databases or datastores – for

which the application itself is also reading nonsequentially, meaning there was enough

jumping around to begin with that disk I/O was already a limiting factor.

Most of the partitions on my primary workstation are around 1.5% or 1.6%

fragmented; I do have one 128GB filesystem on a logical volume (LV) that is 3.3%

fragmented. That is a with fewer than 100 very large ISO image files, and I have had

to expand the LV several times over the years as it got too full. This resulted in more

fragmentation than had I been able to allocate a larger amount of space to the LV in the

beginning.

Some application environments require greater assurance of even less

fragmentation. The EXT filesystem can be tuned with care by a knowledgeable admin

who can adjust the parameters to compensate for specific workload types. This can be

done when the filesystem is created or later using the tune2fs command. The results of

each tuning change should be tested, meticulously recorded, and analyzed to ensure

optimum performance for the target environment. In the worst case where performance

cannot be improved to desired levels, other filesystem types are available that may

be more suitable for a particular workload. And remember that it is common to mix

filesystem types on a single host system to match the load placed on each filesystem.

Due to the low amount of fragmentation on most EXT filesystems, it is not necessary

to defragment. In any event there is no safe defragmentation tool for EXT filesystems.

There are a few tools that allow you to check the fragmentation of an individual file,

or the fragmentation of the remaining free space in a filesystem. There is one tool,

e4defrag, which will defragment a single file, directory or filesystem as much as the

remaining free space will allow. As its name implies, it only works on files in an EXT4

filesystem, and it does have some limitations.

Chapter 19 Filesystems

577

EXPERIMENT 19-3

perform this experiment as root. run the following command to check the fragmentation

status of the filesystem:

[root@studentvm1 ~]# e4defrag -c /dev/mapper/fedora_studentvm1-home

e4defrag 1.44.3 (10-July-2018)

<Fragmented files> now/best size/ext

1. /home/student/dmesg2.txt 1/1 44 KB

2. /home/student/.xsession-errors 1/1 4 KB

3. /home/student/dmesg3.txt 1/1 44 KB

4. /home/student/.bash_history 1/1 4 KB

5. /home/student/.ssh/authorized_keys 1/1 4 KB

 Total/best extents 87/85

 Average size per extent 17 KB

 Fragmentation score 4

 [0-30 no problem: 31-55 a little bit fragmented: 56- needs defrag]

 This device (/dev/mapper/fedora_studentvm1-home) does not need

defragmentation.

 Done.

this output shows a list of fragmented files, a score, and information about how to interpret

that score. it also contains a recommendation about whether to defrag or not. it is not clear

why these files are shown as fragmented because they each only have a single extent so are

100% contiguous by definition.

let’s just defrag one of these files just to see what that would look like. Choose a file with the

most fragmentation for your test:

[root@studentvm1 ~]# e4defrag -v /home/student/dmesg2.txt

e4defrag 1.44.3 (10-July-2018)

ext4 defragmentation for /home/student/dmesg2.txt

[1/1]/home/student/dmesg2.txt: 100% extents: 1 -> 1 [OK]

 Success: [1/1]

read the man page for e4defrag for more information on its limitations.

Chapter 19 Filesystems

578

There are no safe tools for defragmenting EXT1, 2, and 3 filesystems. And,

according to its own man page, the e4defrag utility is not guaranteed to perform

complete defragmentation. It may be able to “reduce” file fragmentation. Based on the

inconsistency in its report shown in Experiment 19-3, I am disinclined to use it, and, in

any event, there is seldom any necessity to do so.

If it does become necessary to perform a complete defragmentation on an EXT

filesystem, there is only one method that will work reliably. You must move all of the files

from the filesystem to be defragmented, ensuring that they are deleted after being safely

copied to another location. If possible, you could then increase the size of the filesystem

to help reduce future fragmentation. Then copy the files back onto the target filesystem.

Even this does not guarantee that all of the files will be completely defragmented.

 Repairing problems
We can repair problems that cause the host not to boot, such as a misconfigured /etc/

fstab file, but in order to do so, the filesystem on which the configuration file being

repaired resides must be mounted. That presents a problem if the filesystem in question

cannot be mounted during Linux startup. This means that the host must be booted into

recovery mode to perform the repairs.

 The /etc/fstab file
How does Linux know where to mount the filesystems on the directory tree? The /etc/

fstab file defines the filesystems and the mount points on which they are to be mounted.

Since I have already mentioned the /etc/fstab as a potential problem, let’s look at it to

see what it does. Then we will break it in order to see how to fix it.

Figure 19-7 shows the /etc/fstab from our VM, StudentVM1. Your fstab should look

almost identical to this one with the exception value of the UUID for the boot partition.

The function of fstab is to specify the filesystems that should be mounted during startup

and the mount points on which they are to be mounted, along with any options that

might be necessary. Each filesystem has at least one attribute that we can use to refer to

in /etc/fstab in order to identify it to the startup process.

Each of the filesystem line entries in this simple fstab contains six columns of data.

Chapter 19 Filesystems

579

The first column is an identifier that identifies the filesystem so that the startup

process knows which filesystem to work with in this line. There are multiple ways to

identify the filesystem, two of which are shown here. The /boot partition in Figure 19-7

is identified using the UUID, or Universal Unique IDentifier. This is an ID that is

guaranteed to be unique so that no other partition can have the same one. The UUID

is generated when the filesystem is created and is located in the superblock for the

partition.

All of the other partitions on our VMs are identified using the path to the device

special files in the /dev directory. Another option would be to use the labels we entered

when we created the filesystems during the installation process. A typical entry in fstab

would look like that in Figure 19-8.

LABEL=boot /boot ext4 defaults 1 2

Figure 19-8. Using a label to identify the system in /etc/fstab

#

/etc/fstab

Created by anaconda on Sat Dec 22 11:05:37 2018

#

Accessible filesystems, by reference, are maintained under '/dev/disk/'.

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info.

#

After editing this file, run 'systemctl daemon-reload' to update systemd

units generated from this file.

#

/dev/mapper/fedora_studentvm1-root / ext4 defaults 1 1

UUID=9948ca04-c03c-4a4a-a9ca-a688801555c3 /boot ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-home /home ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-tmp /tmp ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-usr /usr ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-var /var ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-swap swap swap defaults 0 0

Figure 19-7. The filesystem table (fstab) for StudentVM1

Chapter 19 Filesystems

580

The filesystem label is also stored in the partition superblock. Let’s change the /boot

partition entry in the fstab to use the label we have already created to identify it.

EXPERIMENT 19-4

perform this experiment as root. Be sure to verify the device special iD for the boot partition

and then dump the content of the superblock for the /boot partition:

[root@studentvm1 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 59G 0 part
 ├─fedora_studentvm1-root 253:0 0 2G 0 lvm /
<snip>

[root@studentvm1 ~]# dumpe2fs /dev/sda1

dumpe2fs 1.44.3 (10-July-2018)

Filesystem volume name: boot

Last mounted on: /boot

Filesystem UUID: 9948ca04-c03c-4a4a-a9ca-a688801555c3

<snip>

the Filesystem Volume Name is the label. We can test this. Change the label and then check

the superblock:

[root@studentvm1 ~]# e2label /dev/sda1 MyBoot

[root@studentvm1 ~]# dumpe2fs /dev/sda1

Filesystem volume name: MyBoot

Last mounted on: /boot

Filesystem UUID: 9948ca04-c03c-4a4a-a9ca-a688801555c3

<snip>

Notice the Filesystem UUiD in the superblock is identical to that shown in the /etc/fstab file in

Figure 19-7. Use the Vim editor to comment out the current entry for the /boot partition, and

create a new entry using the label. the fstab should now look like this. i have modified it to be

a bit more tidy by aligning the columns better:

Chapter 19 Filesystems

581

<snip>

#

/dev/mapper/fedora_studentvm1-root / ext4 defaults 1 1

UUID=9948ca04-c03c-4a4a-a9ca-a688801555c3 /boot ext4 defaults 1 2

LABEL=boot /boot ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-home /home ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-tmp /tmp ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-usr /usr ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-var /var ext4 defaults 1 2

/dev/mapper/fedora_studentvm1-swap swap swap defaults 0 0

reboot studentVm1 to ensure that the change works as expected. Ooops! it did not.

Figure 19-9. An error occurred during the reboot of StudentVM1 after changing
fstab

Chapter 19 Filesystems

582

if you have followed my instructions carefully, this problem shows up during startup (after

boot)17 with the message shown on the last line in Figure 19-9. this indicates that the boot.

device (/dev/sda1) cannot be mounted.

Can you think of any reason that might be the case? i can – i intentionally skipped the step of

setting the filesystem label from myBoot back to just boot.

We can wait until the 1-minute and 30-second timeout completes and then the system, having

determined that the filesystem cannot be mounted, will automatically proceed to “emergency”

mode. type in your root password, and press the Enter key to continue.

Verify the current filesystem label, then change it to “boot”:

[root@studentvm1 ~]# e2label /dev/sda1

MyBoot

[root@studentvm1 ~]# e2label /dev/sda1 boot

[root@studentvm1 ~]# [188.3880009] EXT4-fs (sda1): mounted filesystem with

ordered data mode. Opts: (null)

as soon as the label is changed, the filesystem is mounted as shown by the resulting

message, earlier. Now bring the system up to the graphical target (run level 5):

[root@studentvm1 ~]# systemctl isolate graphical.target

Note that it was not necessary to reboot to make the repair or to raise the system from the

emergency target to the graphical target.

Let’s get back to deconstructing the fstab file. The second column in the /etc/fstab

file in Figure 19-7 is the mount point on which the filesystem identified by the data in

column 1 is mounted. These mount points are empty directories to which the filesystem

is mounted.

The third column specifies the filesystem type, in this case, EXT4 for most of the

entries. The one different entry in Figure 19-7 is for the swap partition. Figure 19-10

shows an entry for a VFAT device which is usually how USB memory sticks are formatted.

The mount point for this device is located at /media/SS-R100.

17 See Chapter 16.

Chapter 19 Filesystems

583

The fourth column of data in the fstab file is a list of options. The mount command

has many options, and each option has a default setting. In Figure 19-7 the fourth

column of fstab indicates that the filesystem is to be mounted using all defaults.

In Figure 19-10, some of the defaults are overridden. The “user” option means that

any user can mount or unmount the filesystem even if another user has already mounted

it. The “noauto” option means that this filesystem is not automatically mounted during

the Linux startup. It can be manually mounted and unmounted after startup. This is

ideal for a removable device like a USB memory stick that may be used for sharing files

or transporting them to work on at another location.

The last two columns are of numbers. In Figure 19-7, the entries for /home are 1 and

2, respectively. The first number is used by the dump command which is one possible

option for making backups. The dump command is seldom used for backups anymore,

so this column is usually ignored. If by some chance someone is still using dump to make

backups, a one (1) in this column means to back up this entire filesystem, and a zero

means to skip this filesystem.

The last column is also numeric. It specifies the sequence in which fsck is run against

filesystems during startup. Zero (0) means do not run fsck on the filesystem. One(1)

means to run fsck on this filesystem first. The root partition is always checked first as you

can see from the numbers in this column in Figure 19-7.

The rest of the entries in this column have a value of 2 which means that fsck will

not begin running against those filesystems until it has finished with checking the root

filesystem. Then all of the filesystems that have a value of 2 can be checked in parallel

rather than sequentially so that the overall check can be finished sooner.

Although it is generally considered best practice to mount filesystems on mount

points directly on the / (root) filesystem, it is also possible to use multilevel mount points.

Figure 19-11 shows what multilevel mounts look like. For example, the /usr filesystem is

mounted on the /usr directory. In Figure 19-2 the /usr/local directory is listed. It contains

locally created executables, especially scripts in /usr/local/bin and configuration files in /

usr/local/etc, as well as libraries, man pages, and more. I have encountered installations

where a filesystem, “local”, was mounted on /usr. This gives additional flexibility during

Linux upgrades because the /usr/local filesystem did not need to be formatted during an

upgrade or reinstallation like the rest of the /usr filesystem.

LABEL=SS-R100 /media/SS-R100 vfat user,noauto,defaults 0 0

Figure 19-10. An fstab entry for a USB memory stick showing some alternate
configuration possibilities

Chapter 19 Filesystems

584

.
├── bin -> usr/bin

├── boot

├── dev

├── etc

├── home

├── lib -> usr/lib

├── lib64 -> usr/lib64

├── lost+found

├── media

├── mnt

├── opt

├── proc

├── root

├── run

├── sbin -> usr/sbin

├── srv

├── sys

├── tmp

├── usr ──────────────
└── var

The usr filesystem is mounted
on the /usr mountpoint.

.

├── bin

├── games

├── include

├── lib

├── lib64

├── libexec

├── local ────────────
├── lost+found

├── sbin

├── share

├── src

└── tmp -> ../var/tmp

The local filesystem is
mounted on the /usr/local
mountpoint

.

├── bin

├── etc

├── games

├── include

├── lib

├── lib64

├── libexec

├── sbin

├── share

└── src

The root filesystem. The /usr filesystem. The /usr/local filesystem.

Figure 19-11. It is possible to do multilevel mounts although this is not considered
a good practice. Note that this illustration shows only the top-level directories of
each filesystem

Chapter 19 Filesystems

585

 Repairing damaged filesystems
Sometimes the filesystem itself is damaged due to improper shutdown or hardware

failures, and we need to fix the meta-structure inconsistencies. As mentioned in

Experiment 19-2, these may be in the form of incorrect inode or data block counts.

You may also encounter orphaned inodes. An orphaned inode is one that has become

disconnected from the list of inodes belonging to a directory or cylinder group so that it

cannot be found for use.

The best and easiest way to run fsck on all filesystems is to reboot the host. Systemd,

the system and service manager, is configured to run fsck on all filesystems at startup

if there is a nonzero number in the last column of the filesystem entry in /etc/fstab. The

fsck program first checks to see if there are any detectable problems which takes very

little time. If fsck detects a problem, it then resolves the problems.

EXPERIMENT 19-5

it is not necessary to reboot to perform this experiment, but it is necessary to do it as root.

the /var/log/messages files contain entries that record the fact that fsck was run on each

filesystem at boot time:

[root@studentvm1 log]# cd /var/log ; grep fsck messages

<snip>

Jan 8 17:34:39 studentvm1 audit[1]: SERVICE_START pid=1 uid=0

auid=4294967295 ses=4294967295 subj=system_u:system_r:init_t:s0

msg='unit=systemd-fsck-root comm="systemd" exe="/usr/lib/systemd/systemd"

hostname=? addr=? terminal=? res=success'

Jan 8 17:34:39 studentvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 subj=system_u:system_r:init_t:s0 msg='unit=systemd-fsck-root

comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=?

res=success'

<snip>

this pair of messages tells us that fsck was started on the root filesystem and then,

presumably because there were no errors or inconsistencies detected, stopped. you should

see a pair of messages like these for every filesystem at each boot.

Chapter 19 Filesystems

586

Due to the running of fsck at every startup, there should seldom be reason to run it from the

command line, if ever. Despite this, we sysadmins sometimes find the need to do things that

“should never be necessary.” so there is a way to enter rescue mode and run fsck on most

filesystems manually.

EXPERIMENT 19-6

On the physical host, download the latest Fedora server isO image from the Fedora download

page at https://getfedora.org/. Click the server image, then, on the most recent

“Download Fedora server” page, and select the proper image architecture which should be

the x86_64 DVD isO image. Download this image to the same location as you did the original

Fedora live image from which you installed Fedora on studentVm1 back in Chapter 5.

power off studentVm1.

Using the VirtualBox manager, open the Settings dialog for the studentVm1 virtual machine,

and click Storage. select the Optical device, which is probably located on the iDe controller,

and then use the Optical Drive icon in the attributes section of the dialog box to select the

new server isO image. Click the OK button.

On the System dialog of Settings, verify that the optical drive is bootable and at the top of

the list of boot devices. Click the OK button and then OK again on the main settings dialog.

Boot studentVm1. On the initial menu, shown in Figure 19-12, you can see that this is an

installation image and not a live image. this is how you can tell that this is the server isO

image.

Chapter 19 Filesystems

https://getfedora.org/

587

although i am using the Fedora 29 server image with a Fedora 29 installation, it
is possible to perform a rescue with one Fedora release installed on the host and
a different release for the isO image so long as they are reasonably close. i would
recommend the use of a higher release of isO image with a lower release installed
on the host. Of course it is always best to use the same release for rescue as is
installed on the host.

Figure 19-12. Choose the “Troubleshooting” menu item on the Fedora Server boot
menu

Chapter 19 Filesystems

588

Use the down arrow key to select the “troubleshooting” menu item, and press the Enter key.

this opens a menu, shown in Figure 19-13, which provides us with several troubleshooting

options.

the install Fedora selection would allow installation of Fedora with a very basic graphical

mode in the event that the graphics adapter encounters problems with video drivers. the

memory test can help identify the failing memory Dimm, and i have used it on a couple

occasions. you could also boot from the local drive, that is, the operating system installed on

the hard drive or ssD, or simply return to the main menu.

Figure 19-13. Select “Rescue a Fedora system,” and press Enter

Chapter 19 Filesystems

589

select, Rescue a Fedora system, and press enter to proceed with the boot process.

in Figure 19-14 we see the rescue menu. menu item 1 causes the rescue environment

to locate all of the accessible filesystems on the hard drive and mount them on the /mnt/

sysimage/ directory. this makes it possible to explore the content and integrity of the

filesystems and to modify configuration files that may be causing problems.

in this rescue environment, the hard drive filesystems are exposed through the /dev

filesystem just as they would be when booting directly from the hard drive. therefore it is

possible to run fsck -n to identify filesystems with problems. With the exception of the

root (/) filesystem, you can then unmount those filesystems with inconsistencies, run fsck to

correct the problems, and then remount them. after all problematic filesystems have been

corrected, rebooting from the hard drive presents a system with no filesystem inconsistencies.

Figure 19-14. Select menu item 1 to continue to a rescue environment

Chapter 19 Filesystems

590

read the information on the screen as shown in Figure 19-14. this tells us what the menu

options will do. menu item 3 would take you to a shell, but the filesystems on the hDD or ssD

would not be accessible because they would not have device files in the /dev directory.

to continue to the rescue shell, type 1. it is not necessary to press the enter key. Figure 19-15

shows the message telling where the system filesystems will be located, /mnt/sysimage, how

to reboot the system when you are finished, and how to use the chroot command to make

the /mnt/sysimage directory the top level system directory. more about chroot later.

Figure 19-15. Read the information about the rescue shell and then press Enter to
get to the rescue shell

Chapter 19 Filesystems

591

the rescue shell is limited. many tools available for a Bash shell, the man pages, the normal

$path, and other environment variables are not available. a limited version of Vim that

corresponds to the old vi is the only editor available. Note that the pWD is not displayed as part

of the command prompt. Command-line recall and editing is available. From this rescue shell,

we can run fsck against all of the filesystems except for root (/).

Before we do that, there is another utility that enabled me to record the steps i took while in

the rescue environment, the script command. On a host that uses a console or rescue shell

and not a GUi desktop, and in which the sshD server cannot be run, it is very difficult copy

the screen in a text format so that i can use that text and just paste it in a book or article. the

script utility, which is part of the util-linux package and thus one of the core utilities, allows

us to record the complete session and store the results in a text file which can later be copied

into a document.

Now that we are in the rescue shell, let’s start the script utility. the output file is specified on

the /tmp filesystem which is currently mounted on /mnt/sysimage/tmp. By placing the text file

output from the script program there during rescue mode, it will be available in /tmp after a

normal startup. here we have another good reason to make /tmp a separate filesystem rather

than part of the root (/) filesystem:

bash-4.4# script /mnt/sysimage/tmp/chapter-19.txt

Script started on 2019-01-12 08:36:33+00:00

We are now running in the script command’s recording environment; everything typed at

the command line and sent to stDOUt is recorded in the file we specified. take a quick look at

the filesystem directory tree structure while in rescue mode:

bash-4.4# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop0 7:0 0 481.2M 1 loop

loop1 7:1 0 2G 1 loop

|-live-rw 253:0 0 2G 0 dm /

`-live-base 253:1 0 2G 1 dm

loop2 7:2 0 32G 0 loop

`-live-rw 253:0 0 2G 0 dm /

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /mnt/sysimage/boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:2 0 2G 0 lvm /mnt/sysimage

Chapter 19 Filesystems

592

 |-fedora_studentvm1-home 253:3 0 2G 0 lvm /mnt/sysimage/home

 |-fedora_studentvm1-tmp 253:4 0 5G 0 lvm /mnt/sysimage/tmp

 |-fedora_studentvm1-usr 253:5 0 15G 0 lvm /mnt/sysimage/usr

 |-fedora_studentvm1-var 253:6 0 10G 0 lvm /mnt/sysimage/var

 `-fedora_studentvm1-swap 253:7 0 4G 0 lvm [SWAP]

sr0 11:0 1 2.9G 0 rom /run/install/repo

Unmount the /home filesystem, and verify that it is no longer mounted:

bash-4.4# umount /mnt/sysimage/home/

bash-4.4# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop0 7:0 0 481.2M 1 loop

loop1 7:1 0 2G 1 loop

|-live-rw 253:0 0 2G 0 dm /

`-live-base 253:1 0 2G 1 dm

loop2 7:2 0 32G 0 loop

`-live-rw 253:0 0 2G 0 dm /

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /mnt/sysimage/boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:2 0 2G 0 lvm /mnt/sysimage

 |-fedora_studentvm1-home 253:3 0 2G 0 lvm

 |-fedora_studentvm1-tmp 253:4 0 5G 0 lvm /mnt/sysimage/tmp

 |-fedora_studentvm1-usr 253:5 0 15G 0 lvm /mnt/sysimage/usr

 |-fedora_studentvm1-var 253:6 0 10G 0 lvm /mnt/sysimage/var

 `-fedora_studentvm1-swap 253:7 0 4G 0 lvm [SWAP]

sr0 11:0 1 2.9G 0 rom /run/install/repo

run fsck on the /home filesystem. We need to use the -f option to force fsck to perform a

complete check even though it appears to be clean. We also use the -V option to produce

verbose output. your results may be different from these:

bash-4.4# fsck -fV /dev/mapper/fedora_studentvm1-home

fsck from util-linux 2.32.1

e2fsck 1.44.3 (10-July-2018)

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Chapter 19 Filesystems

593

Pass 5: Checking group summary information

 289 inodes used (0.22%, out of 131072)

 0 non-contiguous files (0.0%)

 0 non-contiguous directories (0.0%)

 # of inodes with ind/dind/tind blocks: 0/0/0

 Extent depth histogram: 279

 26578 blocks used (5.07%, out of 524288)

 0 bad blocks

 1 large file

 225 regular files

 53 directories

 0 character device files

 0 block device files

 0 fifos

 3 links

 2 symbolic links (2 fast symbolic links)

 0 sockets

 283 files

And exit from the script command’s recording environment:

bash-4.4# exit

exit

Script done on 2019-01-12 08:40:37+00:00

had there been any errors or inconsistencies in the /home filesystem they would have been

corrected by fsck. power off the Vm, remove the server DVD isO image from the optical disk

virtual drive, and reboot studentVm1.

Chapter 19 Filesystems

594

 Finding lost files

Files can get lost by the filesystem and by the user. This can also happen during fsck

regardless of when or how it is initiated.

One reason this happens is that the directory entry for the file that points to the file

inode is damaged and no longer points to the inode for the file. You would probably see

messages about orphaned inodes during startup when this occurs.

These files are not really lost. The fsck utility has found the inode, but there is no

corresponding directory entry for that file. The fsck utility does not know the name of

the file or in what directory it was listed. It can recover the file, all it needs to do is make

up a name and add the name to a directory along with a pointer to the inode.

But where does it place the directory entry? Look in the lost+found directory of

each filesystem to locate recovered files that belong to that filesystem. These lost files

are moved to the lost+found directory simply by creating a directory entry for them in

lost+found. The file names are seemingly random and give no indication of the types

of files they are. You will have to use other tools such as file, stat, cat, and string to

make some sort of determination so that you can rename the file with a meaningful

name and extension and move it to an appropriate directory.

 Creating a new filesystem
I have had many occasions when it has become necessary to create a new filesystem.

This can be simply because I need a completely new filesystem for some specific

purpose, or it can be due to the need to replace an existing filesystem that is too small or

damaged.

This exercise takes you through the process of creating a new partition on an existing

hard drive, creating a filesystem and a mount point and mounting the new filesystem.

This is a common task, and you should become familiar with how to perform it. In many

cases you will do this by adding a new hard drive with plenty of space. In this exercise we

will use some space left free for this purpose. This exercise is about raw partitions and

filesystems and not about using logical volume management. We will cover LVM and

adding space to logical volumes in Chapter 1 of Volume 2.

Chapter 19 Filesystems

595

 Finding space
Before we can add a raw partition to our host, we need to identify some available disk

space. We currently have a single virtual hard drive available on our VM, /dev/sda. Let’s

see if there is some space available for a new partition on this device.

EXPERIMENT 19-7

perform this experiment as root on studentVm1. Use the fdisk command to determine

whether any free space exists on /dev/sda:

[root@studentvm1 ~]# fdisk -l /dev/sda

Disk /dev/sda: 60 GiB, 64424509440 bytes, 125829120 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xb449b58a

Device Boot Start End Sectors Size Id Type

/dev/sda1 * 2048 2099199 2097152 1G 83 Linux

/dev/sda2 2099200 125829119 123729920 59G 8e Linux LVM

[root@studentvm1 ~]#

We can do a quick calculation using the number of sectors shown in the preceding data. the

first line of output shows the total number of sectors on the device is 125,829,120, and the

ending sector of /dev/sda2 is 125,829,119 which is a difference of one sector – not nearly

enough to create a new partition.

We need another option if we want to add a new partition.

Notice the partition types in the ID column shown in Experiment 19-7. Partition type

83 is a standard Linux partition. Type 82 would be a Linux swap partition. Type 5 is an

extended partition, and type 8e is a Linux LVM partition. The fdisk program does not

provide any direct information on the total size of each partition in bytes, but that can be

calculated from the available information.

Chapter 19 Filesystems

596

 Add a new virtual hard drive
Because the existing virtual hard drive has no room for a new partition, we need to create

a new virtual hard drive. This is easy to do with VirtualBox but may require that the

virtual machine be shut down to reconfigure the SATA controller.

EXPERIMENT 19-8

On the physical host desktop, open the VirtualBox manager if it is not already. in Figure 19-16

check to see if there is a sata port available so we can add a new virtual disk drive while the

Vm is running. We did set the number of sata ports to 5 in Chapter 4, but verify this anyway.

Figure 19-16. Verify that the port count for the SATA controller is 5 or more

Chapter 19 Filesystems

597

We will need some additional drives in Chapter 1 of Volume 2, as well.

let’s add the new virtual disk device while the Vm is up and running. this procedure is

equivalent to installing a new hot-plug hard drive in a physical hardware system while it is

running. power on the Vm, and log in to the GUi desktop as the student user.

Open the storage settings menu, and click the Add hard disk icon as shown in Figure 19-17

to create a new disk device on the sata controller.

Figure 19-17. Click the Add hard disk icon to add a new drive to the SATA
controller

Click the OK button, and then the Create new disk button. the next dialog is a choice of hard

disk file type. Use the default of VDi which is a VirtualBox Disk image. press the Next button.

We want this disk to be dynamically allocated per the default, so do not make any changes on

this dialog and press Next to continue.

Use the dialog in Figure 19-18 to set the virtual disk name to StudentVM1-1 and the disk size

to 20GB.

Chapter 19 Filesystems

598

press the Create button to create the new virtual hard drive. the new device now shows up on

the list of storage devices in the Storage Settings dialog box. press OK to close the settings

dialog.

We have now added a second virtual hard drive to the studentVm1 virtual host.

In Experiment 19-8 we created a new 20GB virtual hard drive. The drive is now ready

for us to partition and format.

Figure 19-18. Enter the name of the virtual disk as StudentVM1-1, and set the size
to 20GB

Chapter 19 Filesystems

599

EXPERIMENT 19-9

Open a terminal session and su – to root. Display the list of current hard drives and partitions:

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 2G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

sr0 11:0 1 1024M 0 rom

the new virtual hard drive is /dev/sdb. even though it is not physical hardware, we can get

more detail about the device in order to further verify that it is the correct one:

[root@studentvm1 ~]# smartctl -x /dev/sdb

smartctl 6.6 2017-11-05 r4594 [x86_64-linux-4.19.10-300.fc29.x86_64] (local

build)

Copyright (C) 2002-17, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Device Model: VBOX HARDDISK

Serial Number: VB99cc7ab2-512a8e44

Firmware Version: 1.0

User Capacity: 21,474,836,480 bytes [21.4 GB]

Sector Size: 512 bytes logical/physical

Device is: Not in smartctl database [for details use: -P showall]

ATA Version is: ATA/ATAPI-6 published, ANSI INCITS 361-2002

Local Time is: Sun Jan 13 15:55:00 2019 EST

SMART support is: Unavailable - device lacks SMART capability.

AAM feature is: Unavailable

APM feature is: Unavailable

Rd look-ahead is: Enabled

Chapter 19 Filesystems

600

Write cache is: Enabled

DSN feature is: Unavailable

ATA Security is: Unavailable

Wt Cache Reorder: Unavailable

a mandatory smart command failed: exiting. to continue, add one or more '-t permissive'

options.

We have determined that we have a 20GB (virtual) hard drive, /dev/sdb. the next step is to

create a partition, format it, and add a partition label.

We use the fdisk utility to create a new partition:

[root@studentvm1 ~]# fdisk /dev/sdb

Welcome to fdisk (util-linux 2.32.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Device does not contain a recognized partition table.

Created a new DOS disklabel with disk identifier 0xd1acbaf8.

Command (m for help):

Because this device was just created, it has no partition table. let’s create a single new

partition of 2GB in size. We do not need a lot of space for this experiment, so the partition is

small. press the n key to begin creation of a new partition:

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

enter p to create a primary partition:

Select (default p): p

Just press Enter to create this as partition number 1:

Partition number (1-4, default 1): <Press Enter for the default partition

number (1)>

First sector (2048-41943039, default 2048):

Last sector, +sectors or +size{K,M,G,T,P} (2048-41943039, default 41943039):

+2G

Chapter 19 Filesystems

601

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Now enter the p command to print the current partition table:

Command (m for help): p

Disk /dev/sdb: 20 GiB, 21474836480 bytes, 41943040 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xd1acbaf8

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 4196351 4194304 2G 83 Linux

press w to write the revised partition table to the disk. the existing partition table, if any, is not

altered until the data is written to the disk:

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

[root@studentvm1 ~]#

Create an eXt4 filesystem on the new partition. this won’t take long because of the small

size of the partition. By default the eXt4 filesystem fills the partition; however it is possible to

specify a size smaller than the partition for the size of the filesystem:

[root@studentvm1 ~]# mkfs -t ext4 /dev/sdb1

mke2fs 1.44.3 (10-July-2018)

Creating filesystem with 524288 4k blocks and 131072 inodes

Filesystem UUID: ee831607-5d5c-4d54-b9ba-959720bfdabd

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

[root@studentvm1 ~]#

let’s add a partition label:

Chapter 19 Filesystems

602

[root@studentvm1 ~]# e2label /dev/sdb1

[root@studentvm1 ~]# e2label /dev/sdb1 TestFS

[root@studentvm1 ~]# e2label /dev/sdb1

TestFS

[root@studentvm1 ~]#

Create a mount point on the filesystem directory tree:

[root@studentvm1 ~]# mkdir /TestFS

[root@studentvm1 ~]# ll /

Mount the new filesystem:

[root@studentvm1 ~]# mount /TestFS/

mount: /TestFS/: can't find in /etc/fstab.

[root@studentvm1 ~]#

this error occurred because we did not create an entry for the new filesystem in /etc/fstab.

But let’s mount it manually first:

[root@studentvm1 ~]# mount -t ext4 /dev/sdb1 /TestFS/

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 2G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

`-sdb1 8:17 0 2G 0 part /TestFS

sr0 11:0 1 1024M 0 rom

[root@studentvm1 ~]#

it is not necessary to specify the filesystem type as we did here because the mount command

is capable of determining the common filesystem types. you may need to do this if the

filesystem is one of the more obscure types.

Chapter 19 Filesystems

603

Unmount the filesystem:

[root@studentvm1 ~]# umount /TestFS

Now add the following entry for our new filesystem to the bottom of the /etc/fstab file:

/dev/sdb1 /TestFS ext4 defaults 1 2

Now mount the new filesystem:

[root@studentvm1 ~]# mount /TestFS

[root@studentvm1 ~]# ll /TestFS/

total 16

drwx------. 2 root root 16384 Jan 14 08:54 lost+found

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 2G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

`-sdb1 8:17 0 2G 0 part /TestFS

sr0 11:0 1 1024M 0 rom

[root@studentvm1 ~]#

all of the pertinent data about the filesystem is recorded in fstab, and options specific to this

filesystem can be specified as well. For example, we may not want this filesystem to mount

automatically at startup, so we would set that option as noauto,defaults.

Unmount the TestFS filesystem:

[root@studentvm1 ~]# umount /TestFS

Change the line for this new filesystem in /etc/fstab so it looks like the following:

/dev/sdb1 /TestFS ext4 noauto,defaults 1 2

mount the filesystem manually to verify that it works as expected. Now reboot the Vm and

verify that the /testFs filesystem does not mount automatically. it should not.

Chapter 19 Filesystems

604

 Other filesystems
There are many filesystems besides EXT4 and its predecessors. Each of these has its own

advantages and drawbacks. I have tried several, like XFS, ReiserFS, and BTRFS, but I have

found that the EXT filesystems have always been perfect for my needs.

Our student virtual machines will not provide a real test to help determine which

filesystem might be better for our needs, but let’s create a filesystem with BTRFS just to

experiment with.

EXPERIMENT 19-10

perform this experiment as root. We still have space on the /dev/sdb virtual drive, so add

another partition, /dev/sdb2, with a size of 2GB on that drive. then format the new partition

partition as BtrFs:

[root@studentvm1 ~]# fdisk /dev/sdb

Welcome to fdisk (util-linux 2.32.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help): n

Partition type

 p primary (1 primary, 0 extended, 3 free)

 e extended (container for logical partitions)

Select (default p): <Press Enter for default partition as Primary>

Partition number (2-4, default 2): <Press Enter for default partition number

2>

First sector (4196352-41943039, default 4196352):

Last sector, +sectors or +size{K,M,G,T,P} (4196352-41943039, default

41943039): +2G

Created a new partition 2 of type 'Linux' and of size 2 GiB.

Command (m for help): p

Disk /dev/sdb: 20 GiB, 21474836480 bytes, 41943040 sectors

Units: sectors of 1 * 512 = 512 bytes

Chapter 19 Filesystems

605

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x0c2e07ab

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 4196351 4194304 2G 83 Linux

/dev/sdb2 4196352 8390655 4194304 2G 83 Linux

Command (m for help): w

The partition table has been altered.

Syncing disks.

[root@studentvm1 ~]# mkfs -t btrfs /dev/sdb2

btrfs-progs v4.17.1

See http://btrfs.wiki.kernel.org for more information.

Label: (null)

UUID: 54c2d286-caa9-4a44-9c12-97600122f0cc

Node size: 16384

Sector size: 4096

Filesystem size: 2.00GiB

Block group profiles:

 Data: single 8.00MiB

 Metadata: DUP 102.38MiB

 System: DUP 8.00MiB

SSD detected: no

Incompat features: extref, skinny-metadata

Number of devices: 1

Devices:

 ID SIZE PATH

 1 2.00GiB /dev/sdb2

[root@studentvm1 ~]#

mount the new BtrFs filesystem on the temporary mount point, /mnt. Create or copy some

files to /mnt. after you have experimented with this filesystem for a bit, unmount it.

Chapter 19 Filesystems

606

From a functional standpoint, the BTRFS filesystem works the same way as the EXT4

filesystem. They both store data in files, use directories for file organization, provide

security using the same file attributes, and use the same file management tools.

 Chapter summary
In this chapter we have looked at the three meanings of the term, “filesystem,” and

explored each in detail. A filesystem can be a system and metadata structure such as

EXT4 used to store data on a partition or logical volume of some storage medium; a well-

defined, logical structure of directories that establishes an organizational methodology

for data storage as set forth in the Linux Filesystem Hierarchical Standard (LFHS); and a

unit of data storage as created on a partition or logical volume which may be mounted

on a specific, defined directory as part of the LFHS.

These three uses of the term, “filesystem,” are commonly used with overlapping

meanings which contributes to potential confusion. This chapter separates and defines

the various uses of the term and the application of the term to specific functions and

data structures.

 Exercises
Perform these exercises to complete this chapter:

 1. What information about a file is contained in the inode?

 2. What information about a file is contained only in the directory

entry?

 3. What is the block size in the partitions on StudentVM1?

 4. Calculate the size of a cylinder group on all partitions of

StudentVM1. Are they all the same?

 5. How would you discover filesystem inconsistencies such as

orphaned inodes or incorrect counts of free inode and data

blocks?

 6. Describe the complete process required to resolve filesystem

inconsistencies.

Chapter 19 Filesystems

607

 7. Where should well-designed application software be installed in

the Linux filesystem?

 8. When installing locally created scripts, in which directory should

the script itself be installed?

 9. When installing locally created scripts, in which directory should

the configuration files, if any, be installed?

 10. We still should have some free space on the second virtual hard

drive, /dev/sdb, which we added to the StudentVM1 host. Use

1GB of that to create a new partition with an XFS filesystem on

it. Create a mount point, /var/mystuff, and configure it to mount

automatically on boot. Ensure that it mounts manually, and then

reboot to verify that it mounts on boot.

 11. What happens if we unmount the /TestFS filesystem and create

a file in the /TestFS directory which is a mount point for that

filesystem? Can the file be created, some content added, and then

be viewed?

 12. What happens to the test file created in the previous exercise

when the /TestFS filesystem is mounted?

 13. How does the “user” option differ from the “users” option for the

mount command?

Chapter 19 Filesystems

609
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5

 Bibliography

 Books
Binnie, Chris, Practical Linux Topics, Apress 2016, ISBN 978-1-4842-1772-6

Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, ISBN 978-1-4842-

3729-8

Gancarz, Mike, Linux and the Unix Philosophy, Digital Press – an imprint of Elsevier

Science, 2003, ISBN 1-55558-273-7

Kernighan, Brian W.; Pike, Rob (1984), The UNIX Programming Environment,

Prentice Hall, Inc., ISBN 0-13-937699-2

Libes, Don, Exploring Expect, O’Reilly, 2010, ISBN 978-1565920903

Nemeth, Evi [et al.], The Unix and Linux System Administration Handbook, Pearson

Education, Inc., ISBN 978-0-13-148005-6

Matotek, Dennis, Turnbull, James, Lieverdink, Peter; Pro Linux System

Administration, Apress, ISBN 978-1-4842-2008-5

Raymond, Eric S., The Art of Unix Programming, Addison-Wesley, September 17,

2003, ISBN 0-13-142901-9

Siever, Figgins, Love & Robbins, Linux in a Nutshell 6th Edition, (O'Reilly, 2009),

ISBN 978-0-596-15448-6

Sobell, Mark G., A Practical Guide to Linux Commands, Editors, and Shell

Programming Third Edition, Prentice Hall; ISBN 978-0-13-308504-4

van Vugt, Sander, Beginning the Linux Command Line, Apress, ISBN 978-1-4302-

6829-1

Whitehurst, Jim, The Open Organization, Harvard Business Review Press (June 2,

2015), ISBN 978-1625275271

Torvalds, Linus and Diamond, David, Just for Fun, HarperCollins, 2001,

ISBN 0-06-662072-4

https://doi.org/10.1007/978-1-4842-5049-5

610

 Web sites
BackBlaze, Web site, What SMART Stats Tell Us About Hard Drives, www.backblaze.com/

blog/what-smart-stats-indicate-hard-drive-failures/

Both, David, 8 reasons to use LXDE, https://opensource.com/article/17/3/8-

reasons-use-lxde

Both, David, 9 reasons to use KDE, https://opensource.com/life/15/4/9-

reasons-to-use-kde

Both, David, 10 reasons to use Cinnamon as your Linux desktop environment,

https://opensource.com/article/17/1/cinnamon-desktop-environment

Both, David, 11 reasons to use the GNOME 3 desktop environment for Linux, https://

opensource.com/article/17/5/reasons-gnome

Both, David, An introduction to Linux network routing, https://opensource.com/

business/16/8/introduction-linux-network-routing

Both, David, Complete Kickstart, www.linux-databook.info/?page_id=9

Both, David, Making your Linux Box Into a Router, www.linux-databook.

info/?page_id=697

Both, David, Network Interface Card (NIC) name assignments,

Both, David, Using hard and soft links in the Linux filesystem, www.linux-databook.

info/?page_id=5087

Both, David, Using rsync to back up your Linux system, https://opensource.com/

article/17/1/rsync-backup-linux

Bowen, Rich, RTFM? How to write a manual worth reading, https://opensource.

com/business/15/5/write-better-docs

Charity, Ops: It's everyone's job now, https://opensource.com/article/17/7/

state-systems-administration

Dartmouth University, Biography of Douglas McIlroy, www.cs.dartmouth.

edu/~doug/biography

DataBook for Linux, www.linux-databook.info/

Digital Ocean, How To Use journalctl to View and Manipulate Systemd Logs,

www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-

and-manipulate-systemd-logs

Edwards, Darvin, Electronic Design, PCB Design And Its Impact On Device

Reliability, www.electronicdesign.com/boards/pcb-design-and-its-impact-device-

reliability

Engineering and Technology Wiki, IBM 1800, http://ethw.org/IBM_1800

BIBLIOGRAPHY

https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/article/17/1/cinnamon-desktop-environment
https://opensource.com/article/17/5/reasons-gnome
https://opensource.com/article/17/5/reasons-gnome
https://opensource.com/business/16/8/introduction-linux-network-routing
https://opensource.com/business/16/8/introduction-linux-network-routing
http://www.linux-databook.info/?page_id=9
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=5087
http://www.linux-databook.info/?page_id=5087
https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/business/15/5/write-better-docs
https://opensource.com/business/15/5/write-better-docs
https://opensource.com/article/17/7/state-systems-administration
https://opensource.com/article/17/7/state-systems-administration
http://www.cs.dartmouth.edu/~doug/biography
http://www.cs.dartmouth.edu/~doug/biography
http://www.linux-databook.info/
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability
http://ethw.org/IBM_1800

611

Fedora Magazine, Tilix, https://fedoramagazine.org/try-tilix-new-terminal-

emulator-fedora/

Fogel, Kark, Producing Open Source Software, https://producingoss.com/en/

index.html

Free On-Line Dictionary of Computing, Instruction Set, http://foldoc.org/

instruction+set

Free Software Foundation, Free Software Licensing Resources, www.fsf.org/

licensing/education

gnu.org, Bash Reference Manual – Command Line Editing, www.gnu.org/software/

bash/manual/html_node/Command-Line-Editing.html

Harris, William, How the Scientific Method Works, https://science.

howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm

Heartbleed web site, http://heartbleed.com/

How-two Forge, Linux Basics: How To Create and Install SSH Keys on the Shell,

www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

Kroah-Hartman, Greg , Linux Journal, Kernel Korner – udev – Persistent Naming in

User Space, www.linuxjournal.com/article/7316

Krumins, Peter, Bash emacs editing, www.catonmat.net/blog/bash-emacs-editing-

mode-cheat-sheet/

Krumins, Peter, Bash history, www.catonmat.net/blog/the-definitive-guide-to-

bash-command-line-history/

Krumins, Peter, Bash vi editing, www.catonmat.net/blog/bash-vi-editing-mode-

cheat-sheet/

Kernel.org, Linux allocated devices (4.x+ version), www.kernel.org/doc/html/

v4.11/admin-guide/devices.html

Linux Foundation, Filesystem Hierarchical Standard (3.0), http://refspecs.

linuxfoundation.org/fhs.shtml

Linux Foundation, MIT License, https://spdx.org/licenses/MIT

The Linux Information Project, GCC Definition, www.linfo.org/gcc.html

Linuxtopia, Basics of the Unix Philosophy, www.linuxtopia.org/online_books/

programming_books/art_of_unix_programming/ch01s06.html

LSB Work group - The Linux Foundation, Filesystem Hierarchical Standard V3.0, 3,

https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

Opensource.com, https://opensource.com/

Opensource.com, Appreciating the full power of open, https://opensource.com/

open-organization/16/5/appreciating-full-power-open

BiBliography

https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://producingoss.com/en/index.html
https://producingoss.com/en/index.html
http://foldoc.org/instruction+set
http://foldoc.org/instruction+set
https://www.fsf.org/licensing/education
https://www.fsf.org/licensing/education
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
http://heartbleed.com/
https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell
http://www.linuxjournal.com/article/7316
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/
https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
https://spdx.org/licenses/MIT
http://www.linfo.org/gcc.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://opensource.com/
https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://opensource.com/open-organization/16/5/appreciating-full-power-open

612

Opensource.com, David Both, SpamAssassin, MIMEDefang, and Procmail: Best Trio

of 2017, Opensource.com, https://opensource.com/article/17/11/spamassassin-

mimedefang-and-procmail

Opensource.org, Licenses, https://opensource.org/licenses

opensource.org, The Open Source Definition (Annotated), https://opensource.

org/osd-annotated

OSnews, Editorial: Thoughts on Systemd and the Freedom to Choose, www.osnews.

com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose

Peterson, Christine, Opensource.com, How I coined the term ‘open source’, https://

opensource.com/article/18/2/coining-term-open-source-software

Petyerson, Scott K, The source code is the license, Opensource.com, https://

opensource.com/article/17/12/source-code-license

Princeton University, Interview with Douglas McIlroy, www.princeton.edu/~hos/

frs122/precis/mcilroy.htm

Raspberry Pi Foundation, www.raspberrypi.org/

Raymond, Eric S., The Art of Unix Programming, www.catb.org/esr/writings/

taoup/html/index.html/

Wikipedia, The Unix Philosophy, Section: Eric Raymond’s 17 Unix Rules, https://

en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond%E2%80%99s_17_Unix_Rules

Raymond, Eric S., The Art of Unix Programming, Section The Rule of Separation,

www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777

Understanding SMART Reports, https://lime-technology.com/wiki/

Understanding_SMART_Reports

Unnikrishnan A, Linux.com, Udev: Introduction to Device Management In Modern

Linux System, www.linux.com/news/udev-introduction-device-management-modern-

linux-system

Venezia, Paul, Nine traits of the veteran Unix admin, InfoWorld, Feb 14, 2011,

 www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-

276?page=0,0&source=fssr

Wikipedia, Alan Perlis, https://en.wikipedia.org/wiki/Alan_Perlis

Wikipedia, Christine Peterson, https://en.wikipedia.org/wiki/Christine_

Peterson

Wikipedia, Command Line Completion, https://en.wikipedia.org/wiki/Command-

line_completion

Wikipedia, Comparison of command shells, https://en.wikipedia.org/wiki/

Comparison_of_command_shells

BIBLIOGRAPHY

https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail
https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail
https://opensource.org/licenses
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/17/12/source-code-license
https://opensource.com/article/17/12/source-code-license
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.raspberrypi.org/
http://www.catb.org/esr/writings/taoup/html/index.html/
http://www.catb.org/esr/writings/taoup/html/index.html/
https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond’s_17_Unix_Rules
https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond’s_17_Unix_Rules
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
https://en.wikipedia.org/wiki/Alan_Perlis
https://en.wikipedia.org/wiki/Christine_Peterson
https://en.wikipedia.org/wiki/Christine_Peterson
https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells

613

Wikipedia, Dennis Ritchie, https://en.wikipedia.org/wiki/Dennis_Ritchie

Wikipedia, Device File, https://en.wikipedia.org/wiki/Device_file

Wikipedia, Gnome-terminal, https://en.wikipedia.org/wiki/Gnome-terminal

Wikipedia, Hard Links, https://en.wikipedia.org/wiki/Hard_link

Wikipedia, Heartbleed, https://en.wikipedia.org/wiki/Heartbleed

Wikipedia, Initial ramdisk, https://en.wikipedia.org/wiki/Initial_ramdisk

Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson

Wikipedia, Konsole, https://en.wikipedia.org/wiki/Konsole

Wikipedia, Linux console, https://en.wikipedia.org/wiki/Linux_console

Wikipedia, List of Linux-supported computer architectures, https://en.wikipedia.

org/wiki/List_of_Linux-supported_computer_architectures

Wikipedia, Maslow's hierarchy of needs, https://en.wikipedia.org/wiki/

Maslow%27s_hierarchy_of_needs

Wikipedia, Open Data, https://en.wikipedia.org/wiki/Open_data

Wikipedia, PHP, https://en.wikipedia.org/wiki/PHP

Wikipedia, PL/I, https://en.wikipedia.org/wiki/PL/I

Wikipedia, Programma 101, https://en.wikipedia.org/wiki/Programma_101

Wikipedia, Richard M. Stallman, https://en.wikipedia.org/wiki/Richard_

Stallman

Wikipedia, Rob Pike, https://en.wikipedia.org/wiki/Rob_Pike

Wikipedia, rsync, https://en.wikipedia.org/wiki/Rsync

Wikipedia, Rxvt, https://en.wikipedia.org/wiki/Rxvt

Wikipedia, SMART, https://en.wikipedia.org/wiki/SMART

Wikipedia, Software testing, https://en.wikipedia.org/wiki/Software_testing

Wikipedia, Terminator, https://en.wikipedia.org/wiki/Terminator_(terminal_

emulator)

Wikipedia, Tony Hoare, https://en.wikipedia.org/wiki/Tony_Hoare

Wikipedia, Unit Record Equipment, https://en.wikipedia.org/wiki/Unit_

record_equipment

Wikipedia, Unix, https://en.wikipedia.org/wiki/Unix

Wikipedia, Windows Registry, https://en.wikipedia.org/wiki/Windows_Registry

Wikipedia, Xterm, https://en.wikipedia.org/wiki/Xterm

WikiQuote, C._A._R._Hoare, https://en.wikiquote.org/wiki/C._A._R._Hoare

WordPress, Home page, https://wordpress.org/

BiBliography

https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Gnome-terminal
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Initial_ramdisk
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Konsole
https://en.wikipedia.org/wiki/Linux_console
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
https://en.wikipedia.org/wiki/Open_data
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/PL/
https://en.wikipedia.org/wiki/Programma_101
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/wiki/Rsync
https://en.wikipedia.org/wiki/Rxvt
https://en.wikipedia.org/wiki/SMART
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Unit_record_equipment
https://en.wikipedia.org/wiki/Unit_record_equipment
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Xterm
https://en.wikiquote.org/wiki/C._A._R._Hoare
https://wordpress.org/

615
© David Both 2020
D. Both, Using and Administering Linux: Volume 1, https://doi.org/10.1007/978-1-4842-5049-5

Index

A
Alias, 103, 298, 425, 442, 498, 508–511

command, 230
host, 298
user, 298

ASCII, 235, 268, 274, 355, 369, 375,
430, 444, 456, 458, 459, 492,
533, 534, 556

ASCII plain text, 273, 534
Automate everything, 48, 54–55
Automation, 54, 55, 182, 448

B
Backblaze

study of hard drive failure rates, 385
Backup

shell script, 349
Bash, 20, 53, 54, 59, 63, 150, 182, 183, 198,

200, 201, 212, 220, 274–276, 280,
296, 297, 418–429, 440, 448, 493–
499, 509, 527

tab completion, 212–214
configuration files

/.bash_history, 191, 247, 577
/.bash_logout, 191, 247, 493
/.bash_profile, 191, 247, 493–495,

499, 500, 502–504, 534
/.bashrc, 191, 247, 280, 495, 496,

499, 503, 504, 508, 510

/etc/bashrc, 468, 493, 494, 498–504,
519, 525

/etc/profile, 496–499, 501–504, 510,
519, 525, 527, 528

environment, 493
external commands, 421, 427
global configuration directory

/etc/profile.d, 496
history, 220
internal commands, 418, 424, 427
shell options, 418–419
sourcing files, 496
syntax, 20, 198, 276
user configuration, 191, 212, 280, 468,

491, 493–498, 510, 511
variables, 420, 429, 491, 499, 506

Bash commands
compound, 418, 429
external, 27
internal, 421

Basic I/O System (BIOS), 188, 372, 374,
441, 452–454

POST, 452–454
Bell Labs, 37, 38, 42, 225, 226
Binary

executable, 311, 423, 534
Books

“Just for Fun”, 6, 41
“Linux and the Unix

Philosophy”, 3, 5, 40

https://doi.org/10.1007/978-1-4842-5049-5

616

“The Art of Unix Programming”, 5, 40,
50, 241

“The Unix Philosophy”, 3, 5, 40, 47, 50,
57, 62, 241, 263

Boot, 8, 52, 104, 109, 110, 118–123, 129–132,
136, 146–149, 162, 188, 197, 256,
323, 330, 372, 373, 451–489, 555,
561, 562, 571, 578–580, 587

Boot record, 52, 197, 254–256, 453–459, 462
Bourne again shell, 53, 183, 198
Bowen, Rich, 64
Brace expansion, 395, 433–435, 448
BSD, 38, 39
Bug reports, 67, 470

C
CD-ROM, 26, 36, 96, 453
Characters

meta-, 433, 440
sets, 418, 438–439
special pattern, 433, 435–438, 445

Cisco, 15, 331
Classroom, 14, 71, 326
CLI, 31, 51, 53, 181–185, 202, 204–205, 212,

223, 239, 254, 395, 420, 437, 487,
493, 558, 559

Code
proprietary, 2–4, 7, 42, 226, 454
sharing, 186, 228, 522, 538, 583
source, 3, 4, 6, 7, 12, 38, 44, 58, 60, 242,

311, 332
Command, 185
Command line

history, 184
interface, 5, 52, 184–185
recall and editing, 220–223

Command prompt, 75, 125, 184, 190, 193,
199, 203, 207, 297, 355, 356, 371,
499, 591

Comments, 298, 480, 496, 500, 501
Configuration files and

directories
/.bash_history, 191, 247, 577
/.bash_logout, 191, 247, 493
/.bash_profile, 191, 247, 493–495, 499,

500, 502–504, 534
/.bashrc, 191, 247, 280, 495, 496, 499,

503, 504, 508, 510
/.ssh, 577
/etc/, 298, 300, 445
/etc/aliases, 65
/etc/bashrc, 468, 493, 494, 498–504,

519, 525
/etc/default, 465
/etc/default/grub, 464, 465, 467
/etc/fstab, 101, 131, 471, 561, 566, 571,

572, 578–585, 602, 603
/etc/group, 103, 298, 300, 522, 524, 525
/etc/passwd, 219, 286, 488
/etc/profile, 496–499, 501–504, 510,

519, 525, 527, 528
/etc/profile.d, 280
/etc/profile.d/bash_completion.sh, 497
/etc/profile.d/colorgrep.sh, 497
/etc/profile.d/colorls.sh, 497
/etc/profile.d/colorsysstat.sh, 498
/etc/profile.d/colorxzgrep.sh, 498
/etc/profile.d/colorzgrep.sh, 498
/etc/profile.d/less.sh, 498
/etc/profile.d/mc.sh, 498
/etc/profile.d/myBashConfig.sh, 498
/etc/profile.d/vim.sh, 498
/etc/selinux/config, 279
/etc/selinux/targeted/seusers, 279

Books (cont.)

Index

617

/etc/shadow, 303
/etc/skel, 493
/etc/sudoers, 221, 294, 297
/etc/sysconfig/network-scripts/

ifcfg-enp0s3, 294, 295, 363,
441, 442

/etc/sysconfig/network-scripts/
ifcfg-enp0s8, 362, 442

/etc/systemd, 471, 476, 482, 486
/etc/systemd/system, 475, 476, 482
/etc/systemd/system/default.target,

471, 477
/etc/systemd/system/

multi-user.target.wants/
sysstat.service, 475

/etc/system-release, 465, 466
/etc/xdg/xfce4/xinitrc, 193
/etc/yum.repos.d, 329

Console, 21, 75, 184, 187–189, 192, 247,
253, 304, 473, 477

virtual, 21, 53, 182, 184, 188–195, 197,
201, 202, 223, 224, 264, 409, 477,
483, 488, 490, 492, 504, 511, 525,
558

CPU, 9, 14, 25, 26, 28–31, 33, 34, 136, 234,
343, 346, 375, 387, 390, 453

usage, 154, 342, 344–347, 349–356,
364, 388

cron, 57
crontab, 63, 280

Cruft, 331, 558
cleaning

code in scripts, old, 331
files, old, 331
packages, 331
programs, old or

unused, 331
Customer Engineer, 39

D
Data, 10, 11, 25, 26, 29, 34, 385–387,

572, 573
center, 9, 374
loss, 65, 563
open format, 48, 57–58
random, 261, 262, 269, 271, 437, 438, 447
stream, 42, 48, 50–52, 57, 62, 218–220,

225, 239–271, 320, 322, 355, 417,
433, 440, 442, 443, 446, 447, 456,
524, 530, 565

DEC, 3
PDP-7, 38, 39, 44
VAX/VMS, 3
VT100, 185, 186

Dependency, 277, 310
hell, 309–310, 315, 318

Desktop
GNOME, 94, 104, 153, 154, 159, 196,

204, 395, 413, 479, 481, 484, 498
KDE, 10, 11, 104, 153, 154, 156–158,

170, 195, 204, 230, 277, 395, 410,
411, 444, 445, 479, 481, 484

LXDE, 10, 11, 158, 195, 395
Xfce, 11, 24, 104, 117, 145, 149, 153–

179, 196, 207, 226, 399, 485
Developer, 3, 5–7, 37, 40, 42, 47, 48, 55, 63,

64, 182, 187, 204, 275, 277, 278, 281,
371, 397, 478, 523, 552, 556, 557

Device
data flow, 457, 458, 497, 498, 505, 582
disk, 97, 100, 112, 243, 597
special file

null, 420, 457, 458, 498, 505,
582, 605

pts, 193, 194, 196, 197, 200, 229
random, 247

Index

618

stty, 221, 227, 228
tty2, 192–195
tty3, 192–194
urandom, 247, 262, 267, 270
zero, 247

DevOps, 15, 40
Display manager, 157, 203, 284, 480, 482,

486–488
gdm, 479, 480, 483
kdm, 479, 483
lightdm, 157, 209, 360, 363, 475, 483,

484, 486
lxdm, 480, 483, 486
sddm, 480
xdm, 480, 486

DNF, 79, 162, 177, 183, 221, 269, 309–312,
315–318, 320–322, 324–327,
329–333, 359, 375, 396, 416, 437,
463, 464, 482, 483, 486, 558

Documentation
philosophy, 49, 64, 228
process, 340
template, 200, 208, 216

Drive
hard, 13, 14, 25, 26, 29, 31, 32, 35, 51,

52, 57, 59, 65, 81, 90, 91, 93, 95, 97,
98, 103, 104, 107, 108, 117, 123,
124, 126, 127, 129, 137, 144, 147,
197, 261, 262, 271, 366, 369, 375,
461, 489, 533, 541, 550, 557, 558,
562, 563, 566, 569–575, 588, 589,
594–600

optical, 118, 120, 121, 146, 586
partitioning, 123, 126
solid state, 26, 136, 514, 549
SSD, 14, 129, 136, 453, 549, 558, 573,

588, 590, 605

USB, 98, 100, 243, 244, 246, 250, 252,
254, 255, 258, 259, 261, 270, 296,
377, 453

DVD, 26, 122, 453, 486, 593

E
Editor, 63, 273, 276, 280, 492

emacs, 63, 276
favorite, 63, 280
gedit, 276
Kate, 277
Leafpad, 277
text, 273–280
vi, 63, 275, 277, 280, 295, 298, 509
Vim, 63, 274–278, 280, 509
xed, 277
xfw, 277

Elegance, 8, 49, 61, 153
computer, 8, 156
hardware, 61
power and grounding, 62
software, 61

Elegant, 8, 49, 61, 133, 156
End User License Agreement, 470
Environment

variables, 177, 210, 228, 284, 299, 491,
492, 495, 496, 504, 591

F
Fedora, 12, 14, 20, 64, 75, 114, 117, 121,

123–125, 138, 140, 146, 175, 275,
309, 315, 320, 327, 358, 375, 462,
466, 473, 487, 495, 558, 560, 562

release, 104, 124, 328, 359, 587
30, 457, 465
29, 74, 117, 139, 149, 328, 587

Device (cont.)

Index

619

FHS (Filesystem Hierarchical
Structure), 52, 53, 95, 536, 553,
556, 557, 606

File
compatibilty, 52
cpuinfo, 370, 371
device, 51, 52, 186, 195–197, 240, 245,

250, 262
device special, 52, 197, 229, 244, 579
driver, 52, 461, 463
finding lost, 594
format

ASCII text, 274, 369, 375, 444, 456,
458, 492, 533, 534, 556

binary, 192, 255, 423, 456, 534
closed, 57
open, 48, 57

globbing, 321, 435, 436, 438, 440, 448,
531

handle, 51, 241, 242
meminfo, 370, 371
meta-structures, 533, 538, 562
multiple hard links, 542
naming, 54
ownership, 290, 431, 516–520, 522
permissions, 209, 514, 517,

519–522, 529
sudoers, 295–301
timestamps

atime, 216, 217, 532, 534, 536
ctime, 216, 532, 534, 535
mtime, 215, 532, 534, 535

File manager
Dolphin, 156
Konqueror, 156
Midnight Commander, 312, 313, 318,

325, 332
Thunar, 155, 156, 169, 173, 174

Filesystem
creating, 542, 560, 561, 594–595
definition, 58, 130, 550
directory structure

/dev, 589
/etc, 101, 298, 445, 471, 491, 498,

522, 556
/home, 59, 130, 368, 561, 583, 592,

593
/mnt, 245, 249, 252, 253, 555, 605
/opt, 541, 557, 558
/proc, 341, 358, 365, 369–373, 392
/ (root), 129, 557, 558, 583
/sys, 373
/tmp, 104, 105, 119, 174, 207, 217,

253, 291, 312, 317, 368, 423, 505,
519, 545, 557, 558, 591

/usr, 290, 557, 558, 583
/usr/local/bin, 206, 300, 314, 422,

423, 557, 583
/usr/local/etc, 423, 557, 583
/var, 541, 556–558

full, 132, 556, 557
Hierarchical Standard, 52, 53, 536, 553,

554, 556, 606
inode, 533, 541, 546, 567,

569–570, 594
journal, 570–572
Linux, 48, 52, 58, 130, 207, 461, 536,

552, 553, 557
namespace, 551
separate for data, 58, 129, 541, 555, 558,

591
types, 36, 131, 550, 556, 559–561, 576,

582, 602
BTRFS, 130, 550, 560, 604, 606
CDFS, 36
EXT3, 130, 550, 560, 562, 570–572

Index

620

EXT4, 100, 130–132, 455, 461, 533,
550, 556, 560, 562, 563, 570–572,
576, 582, 604, 606

FAT32, 245, 255, 256
HPFS, 36
NFS, 36, 556
VFAT, 36, 242, 561, 582, 583
XFS, 130, 461, 550, 556, 561, 604, 607

Filter, 51, 240, 263, 268, 269, 378, 534
Finding files, 445–448
Firewall, 10, 14
FOSS, 2, 12
Fragmentation, 535, 552, 569, 570, 572–578

effects on disk performance, 575
Free open source software, 2, 12
Free Software Foundation, 42

G
Gancarz, Mike, 5, 40
Getty, 487, 488
GID, 194, 286, 287, 293, 518, 523, 526
GNU

core utilities, 36, 41–43, 182, 205, 225,
226, 230, 236, 247

coreutils, 42, 43, 225–230
General Public License, 44
GPL, 5, 44

GNU/Linux, 205, 478
GPU, see Graphics Processing Unit (GPU)
Graphical User Interface (GUI), 181, 204,

476, 480, 481
desktop

Cinnamon, 10, 195, 395
GNOME, 104, 153, 154, 157, 158,

195, 196, 204, 395, 412, 479, 481,
484

KDE, 10, 11, 104, 153, 156, 157, 170,
195, 204, 277, 395, 410, 412, 479,
481, 484

LXDE, 10, 11, 158, 195, 395
Graphics Processing Unit (GPU), 25, 28
Group, 209, 286, 517, 520, 522, 525, 526,

528, 532, 546
wheel, 300, 301

Group ID, 194, 286, 445, 518, 523,
526, 533

GRUB, 178, 188, 255, 322, 323, 330, 453,
454, 456, 459, 461, 463–468, 470,
478, 489

stage 1, 454–459
stage 1.5, 455, 459, 461
stage 2, 461–464

GRUB2, 451, 454, 461, 462, 571
GUI, see Graphical User Interface (GUI)

H
Hard drive, 13, 26, 35, 65, 90, 93, 98, 124,

126, 136, 254, 261, 369, 375, 377,
385, 533, 558, 572, 573, 589, 594,
596

crashes, 10, 11, 412, 558, 563
Hardware

architecture, 59
Help

facility, 178, 278, 364
option (-h), 102, 236, 251, 390

Hex, 274, 520
Hierarchy, 48, 49, 361, 553

Linux Philosophy for
SysAdmins, 49

of needs, 48
Hiring

the right people, 8

Filesystem (cont.)

Index

621

Host
naming, 157
StudentVM1, 106, 109, 125, 146, 148,

343, 405, 475, 578, 595, 598
StudentVM2, 405

HTML, 64, 444, 448
Hyper-Threading, 29, 73

I, J
IBM

Customer Engineer, 339
1401 mainframe, 44
PC

DOS, 44, 386
training course, 24, 66, 67

inode, 533, 537, 541, 542, 564, 567,
569–570

direct, 569
indirect, 569, 570

Intel
Core i7, 14, 73
Core i9, 27, 234

Interface
captive user, 182
non-restrictive, 181
restrictive, 4, 181

ISO
Fedora Xfce, 104, 117
file, 121
image, 52, 104–105, 118–120, 146, 177,

453, 576, 586, 587, 593

K
Kernel, 10, 30–32, 34, 35, 41, 43, 67, 79, 131,

136, 177, 188, 226, 243, 322, 330,
347, 353, 369, 371, 418, 454, 462,
464, 467, 469, 470, 489, 552, 571

Konsole, 156, 196, 396, 398, 409–412
Kromhout, Bridget, 68
KVM, 184, 188, 189

L
Languages

compiled, 59
interpreted, 418
scripting, 59, 275, 276
shell, 198, 418

Libre Office, 6, 7, 12, 14, 32, 60, 64, 129,
140, 173, 205, 274, 275, 310, 327

Link, 78, 201, 290, 471, 476, 486, 536–537
hard, 517, 534, 537–545
multiple hard links, 542
soft, 475, 513, 543–546
symbolic, 445, 471, 475, 482,

537, 544
symlink, 475, 482, 543–546

Linux, 1–2, 5–6
boot, 188, 323, 373, 451–489
command line, 1, 22, 32, 52, 53,

181–223, 240, 395
directory tree, 52, 132, 206
distribution

CentOS, 64, 117, 375, 454, 561
Fedora, 10, 12, 14, 20, 64, 74, 75, 77,

79, 104, 106, 114–126, 144, 188,
320, 454, 479, 558, 587

Red Hat, 64, 117, 129, 139, 188, 309,
315, 375, 451, 454, 517

RHEL, 64, 117, 315, 327, 372
history, 6, 37, 41
installation, 137, 184
kernel, 7, 30, 31, 34, 35, 41, 43, 44, 60,

140, 226, 230, 372, 452, 454, 462,
463, 470, 562

Index

622

startup
systemd, 471–478
SystemV, 471–473

supercomputers, 11, 41
unified directory

structure, 557–559
Live image

Fedora, 118–123
Log files

maillog, 209, 210
messages, 36, 441, 442

Logical Volume Management (LVM), 132,
133, 234, 421, 594

volume
group, 132, 133
logical, 132, 594
physical, 132

LVM, see Logical Volume Management
(LVM)

M
Man pages, 20, 150, 178, 230, 231, 301,

311, 324, 341, 374, 427, 478, 579,
583, 591

Maslow, 48
Master boot record (MBR), 453–455, 459
McIlroy, Doug, 42, 50, 225, 241, 262, 263
Memory

cost, 550
CRT, 550
RAM, 13, 14, 25, 26, 30, 32, 44, 73, 106,

112, 136–138, 353, 354, 373, 386,
404, 475, 549–550

type, 136
virtual, 30, 32, 137, 138, 140, 348, 365,

398, 402, 404, 409, 412

Mentor
BRuce, 378, 599

Meta-characters, 395, 433, 440
Microsoft

windows, 3
Midnight Commander, 312, 313, 318,

325, 332
MINIX, 5, 41, 230, 560, 562, 570
MOTD, 314
Motherboard, 14, 25–26, 28, 30, 44, 73,

372, 373, 375, 452
Mount point, 58, 129–132, 136, 140, 245,

250, 541, 550, 555, 558, 561, 566,
578, 582, 583, 594, 602

Multitasking, 31–35, 37, 42, 225

N
Namespace, 551
Network

interface, 84
interface card (NIC), 25, 26, 73, 441
interface configuration file, 84

Network Address Translation (NAT), 88,
89, 113, 114

Network, 88, 89, 113, 114
NTP, 556

O
Octal, 267, 291, 456, 457, 520–522,

526, 529
Open data, 58
Open Document Format (ODF), 326
Open Source

definition, 60
GPL2, 44
initiative, 13

Linux (cont.)

Index

623

license, 5, 61
project, 49, 67
software, 1, 2, 6, 7, 12–14, 22, 58,

60–61
Opensource.com, 13, 60, 64, 67
Operating system, 2–5, 7, 8, 10–18, 22–45,

48, 50, 53, 55, 59, 63, 66, 74, 81, 99,
106, 107, 136, 175, 183, 196–198,
204, 205, 226, 276, 280, 284, 286,
354, 369, 372, 421, 441, 452, 454,
469, 538, 552, 553, 558, 561, 562

DEC VAX/VMS, 3
definition, 30–31
distributions

CentOS, 64, 117, 188, 309, 315, 327,
372, 375, 454, 561

Fedora, 10, 12, 14, 20, 64, 74, 75, 77,
79, 104, 106, 114–126, 144, 188,
320, 454, 479, 558, 587

RHEL, 64, 117, 140, 309, 315, 327,
372, 454

Ubuntu, 300–302, 304
flexibility, 9–10

P, Q
Packages, 60, 79, 82, 126, 183, 287, 299,

310, 311, 315–320, 323–331, 410
installing, 317–320
orphan, 324
removing, 324–326
RPM, 299, 309–312, 315–317, 320,

323, 332
Partition

size, 128, 139
Path, 92, 497
PCI, 373, 374, 376, 442, 443
PCI Express (PCIe), 25

Permissions, 209, 227, 288, 290, 430, 431,
520–522, 529–531, 569

applying, 531–532
directory, 522
file, 520–522
group, 520, 522, 526
user, 520

Philosophy
Linux, 13, 37, 40, 47–69, 103, 182, 185,

275, 280, 335, 339
Unix, 5, 40–41, 47, 50, 57, 62, 241, 263
Unix and Linux, 37, 48

Pike, Rob, 305
Pipe, 35, 242, 256, 262–264, 354, 387
Pipeline

the pipeline challenge, 51, 240, 264–
265, 270, 429

Plain text, 55, 57, 58, 273
Pointy-Haired Bosses (PHB), 42, 47, 64,

182, 226, 293, 336
Portability, 59
Portable, 59–60
Power

unleashing vs. harnessing, 66
Power-on self-test (POST), 452–454
Present working directory (PWD), 78, 79,

103, 184, 206, 207, 215, 249, 284,
290, 522

Printer
driver, 35, 51, 240
USB, 30

Privilege, 72, 141, 142, 284, 293, 301, 302,
305

Privilege escalation, 293
Problem

determination, 205, 263, 285, 335, 337,
340–342

resolution, 337

Index

624

Problem solving, 7, 41, 189, 335–392, 556
five steps

action, 340
knowledge, 337–338
observation, 338–339
reasoning, 339–340
test, 340–341

symptom-fix, 336
using the scientific

method, 336
Procedure, 8, 74, 82, 140, 311, 320, 341,

418, 422, 500, 597
naming, 496

Process(es), 7, 29, 31, 32, 34, 40, 42, 93,
105, 125, 132, 136, 141, 188, 197,
201, 205, 248, 264, 270, 283, 311,
336, 337, 339–342, 348, 353, 354,
372, 452, 453, 464, 470, 471, 473,
478, 487, 561, 578, 579, 589, 594

interprocess
communication (IPC), 35

Processor, 9, 26–29
AMD, 9, 25
Intel, 29, 73, 77

Python, 59, 326

R
Random, 56, 163, 164, 261, 262, 437, 438,

447, 459, 473, 534, 594
Random-access memory (RAM), 13, 14,

25, 26, 30, 32, 44, 73, 106, 111, 112,
136–140, 348, 353, 354, 356, 369,
373, 386, 402, 404, 415, 421, 453,
455, 462, 470, 475, 549, 550

Randomness, 261–262
Raspberry Pi, 9, 11, 16, 25, 60
Raymond, Eric S., 5, 40

Recovery, 8, 59, 65, 73, 188, 275, 463, 465,
467, 468, 470, 571, 572, 578

mode, 8, 188, 275, 467–470, 489, 578
Redirection, 51, 62, 239, 240,

265–268, 270
Repository

adding, 327–330
EPEL, 327
Fedora, 327–329
RPMFusion, 327–329

Requirements, 13, 56, 66, 73, 74, 242, 277,
313, 396–415, 473

Ritchie, Dennis, 5, 17, 38–40, 42, 61,
187, 225

Router
StudentVM2, 405
Virtual, 88

RPM, 63, 73, 299, 309–316, 320, 323, 329
groups, 326–327
smartmontools, 377, 378
sysstat, 386
utils-1.0.0-1.noarch.rpm, 312–314

S
SAR, 386, 390
SATA, 26, 112, 113, 379, 596, 597

ports, 113
setting, 113

Scientific Method, 336, 337
screen, 201–202
Screen saver, 163, 164
Script, 6, 55, 57, 201, 275, 358, 429,

493–495, 508, 528, 591
cpuHog, 349, 351, 352, 361, 423, 429

Secure Shell (SSH), 12, 21, 53, 173, 184,
188, 193, 201, 202, 292, 404, 405,
492, 558

Index

625

Self-Monitoring, Analysis and Reporting
Technology (SMART), 65, 375, 377,
385

Reallocated_Sector_Ct,
380, 381, 385

Reported_Uncorrect, 385
reports, 385
self-assessment

test, 379, 385
SELinux, 194, 278–279, 286
Sets, 438
Settings manager, 157, 165, 167, 171
Shell, 198, 201, 417–448, 491–510

Bash, 20, 150, 198, 200, 274, 395, 417,
418, 424, 448, 491, 494, 527

Korn, 53, 183, 198, 199
ksh, 36, 53, 183, 198, 199
login, 284, 492, 495, 525
nologin, 231
non-login, 493, 495, 510
program, 48, 54, 198, 421, 494, 557
scripts

comments, 200
cpuHog, 349, 423, 428, 448
do Updates, 177
maintenance, 273
mymotd, 314
naming, 54
test1, 434

secure, 21, 184, 201
tcsh, 198
Z, 198–200
zsh, 183, 198, 199

Signals, 342, 357–359
SIGINT (2), 358
SIGKILL (9), 348, 358
SIGTERM (15),

348, 357, 358

Snapshot, 146–148
Software

open source, 2, 6, 7, 12–14, 58, 60–61
proprietary, 2–4
rights, 12–13

Solaris, 63, 280
Special pattern characters, 433, 435–438
Spock, 66
Standard Input/Output (STDIO), 48,

50–52, 62, 182, 239–242, 247, 263,
265, 270, 271

STDERR, 241, 242, 263
STDIN, 241, 263
STDOUT, 51, 239, 241, 242, 263

Storage devices
hard drive, 13, 14, 25, 26, 32, 52, 57, 65,

73, 90, 91, 103, 107, 108, 126, 129,
130, 136, 137, 261, 262, 377–386,
455, 533, 550, 558, 562, 569,
571–576, 596–603

HDD, 549, 590
RAM, 13, 14, 25, 26, 32, 44, 73, 106, 112,

136–140, 344, 353, 354, 369, 386,
402, 404, 421, 453, 462, 470, 549,
550

SSD, 14, 26, 129, 136, 453, 549, 558, 573,
588, 590

USB external drive, 35, 81, 90, 91, 93,
95, 114, 453, 558

USB thumb drive, 20, 52, 104, 118, 122,
242–246, 254, 296, 558

Stream
data, 51, 241
standard, 62
text, 50, 239, 241

StudentNetwork, 89, 90, 113, 114
sudo

bypass, 302–304

Index

626

Supercomputers, 10, 11, 25, 41
Swap

file, 137, 471, 473
partition, 32, 136–138, 140, 582, 595
space, 32, 136–140, 353, 354, 390

Switch user, 176, 284, 285, 519, 525, 527
lazy, 54, 56, 59, 166, 214, 280, 296, 304,

305, 424, 508
productivity, 2

System Activity Reporter, 386
System Administrator, 2, 5, 15, 40, 42, 48,

63, 68, 225, 275, 280, 283, 293, 295,
301, 302, 375, 516

systemd, 63, 136, 470–478, 482, 488,
561, 585

default target, 471, 475–478
service, 471–473, 478, 483, 488
targets, 471, 472

SystemV, 63, 451, 468, 471–473, 478, 561

T
Tab completion, 212, 214
Tanenbaum, Andrew, S., 5, 562
tar

tarball, 311
Teletype

ASR 33
Tenets

Always use shell
scripts, 35

Automate everything, 54–55
Follow your curiosity, 65
Test early, test often, 55–56
There is no should, 66–67
Use the Linux FHS, 52–53

Terminal, 21, 32, 50–53, 79, 94, 140,
155–157, 168, 169, 173, 175,

183–187, 195–198, 201–205,
 240, 275, 305, 348, 364, 391,
395–415, 487, 493

console, 21, 53, 75, 184, 187, 247
dumb, 185, 186, 487
emulator

Konsole, 410–412
LXTerminal, 402–404
rxvt, 398
Terminator, 412–415
Tilix, 404–410
xfce4-terminal, 398–402
Xterm, 396

pseudo, 51, 196–197, 240
session, 21, 32, 33, 50, 52, 78, 81, 173,

175, 176, 184, 197, 201, 202, 205,
240, 305, 342, 391, 396, 399, 404,
406, 409, 410

Teletype, 187
TTY, 186, 487

Test
plan, 56
sample, 6

Testing
automated, 9, 332
fuzzy, 56
in production, 56

Thinking
critical, 67

Thompson, Ken, 5, 37–40, 42, 50, 187, 225,
241, 440

Thrashing, 137–139, 353
Tilix, 21, 156, 196, 204, 398, 404–410
Time sharing, 186
Torvalds, Linus, 1, 2, 5, 6, 41, 43, 44, 52,

226, 562
Transformer, 51, 52, 239, 240, 242, 263,

264, 268

Index

627

U
udev, 473
UID, 286, 287, 293, 371, 445, 518
Unics, 37–39, 42, 44, 226
Universal interface, 50–51, 241
Unix, 5, 7, 12, 17, 37–42, 44, 47, 48, 50, 57,

61, 66, 183, 185, 186, 188, 225, 226,
240, 241, 275, 305, 480, 517, 522, 562

Updates, 2, 33, 79, 156, 161, 162, 177, 250,
299, 470, 491, 571

installing, 79, 175–178, 299, 315,
320–323

Upgrade, 13, 14, 59, 310, 320, 536,
537, 583

USB
bus, 25
external backup drive, 26, 90
Live, 104, 118, 317, 453
thumb drive

prepare, 242–247
User

ID, 75, 194, 205, 286, 304, 445, 492, 497,
522, 525, 569

non-root, 8, 19, 75, 76, 103, 140, 142,
150, 191, 256, 284, 287–289, 292,
293, 302–305, 522, 523

privileged, 72
root, 8, 72, 285, 290, 367
student, 157, 199, 207, 215, 284, 288,

294, 295, 303, 349, 371, 431, 520,
521

UID, 286
unprivileged, 224, 293, 527

Utilities
core, 7, 36, 41–45, 51, 52, 62, 73, 182,

198, 205, 225–236, 239, 240, 275,
421, 556, 591

GNU, 42, 43, 45, 226, 230

V
Variables

$?, 429, 492
content, 57
environment, 177, 206, 210, 284, 299,

422, 491, 492, 495, 504, 505, 508, 591
$HOSTNAME, 420
$MYVAR, 420, 506, 507
naming, 57
$PATH, 177, 206, 284, 285, 421, 422,

493, 496, 503
$PWD, 207, 210, 212, 215
$SHELL, 440

VirtualBox
Manager, 81, 85–87, 105, 121, 146, 148,

586, 596
Virtual drive, 146, 593, 604
Virtual Machine (VM), 14, 18, 44, 73, 86,

90, 93, 95, 105, 106, 109, 114, 121,
132, 146, 147, 159, 287, 453, 470,
596, 604

Virtual Memory, 30, 32, 137, 138, 140, 348,
365, 402, 404, 409, 412

Virtual Network, 18, 71, 72, 74, 86, 88–90, 405
VM, see Virtual Machine (VM)
Volume

group, 129, 131–135, 234, 559
logical, 58, 130–134, 234, 236, 421, 461,

533, 541, 550–552, 558, 559, 576,
594, 606

W
Window manager, 172, 478–481,

484–487, 489
Compiz, 482, 483
Fluxbox, 482, 483
FVWM, 482–485

Index

628

twm, 482
xfwm4, 482

Windows
closed, 3, 4, 9

Workspace
switcher, 154, 174, 175

X
Xfce

desktop, 11, 24, 104, 117, 145, 153–179,
196, 206, 399, 485

panel, 145
Xterm, 196, 396, 484, 485

Y, Z
YUM, 315–316, 332

Command list
adventure, 44
alias, 103, 199, 298, 299, 422, 445, 491, 493,

508–510
atop, 342, 344, 357, 358, 361, 364, 366, 391
awk, 263, 530
bash, 20, 36, 43, 53, 54, 63, 150, 181, 182,

198, 212, 226, 275, 276, 280, 418,
420, 421, 424, 427, 429, 498, 507

cal, 219, 231, 233
cat, 210, 217, 222, 268, 281, 331
cd, 207, 211, 215
chgrp, 103, 518, 527
chmod, 103, 291, 529
chown, 518
column, 230
cp, 36, 52, 215
date, 219, 297
dd, 52, 254–256, 259, 271, 456, 457

df, 95, 102, 235, 250, 251
dmesg, 97, 218, 243, 246, 441
dmidecode, 372, 373
dnf, 79, 315, 316, 322, 332
du, 227
dumpe2fs, 564, 565
e2label, 100
echo, 52, 267, 421, 428
egrep, 444
emacs, 63, 276, 280
exit, 285, 506
export, 506
fdisk, 244, 559, 595, 600
file, 534
find, 445, 447, 448, 542
for, 515
free, 365, 366
fsck, 573, 585, 594
getopts, 427, 428
gpasswd, 523
grep, 102, 210, 222, 268, 269, 431, 440–442,

445
groupadd, 523
grub2-mkconfig, 465, 467, 470
hddtemp, 375
history, 220, 222
htop, 342, 357, 359, 401
hwclock, 231
id, 194, 286
info, 205, 226
iostat, 366, 367
iotop, 367, 368
killall, 485
ksh, 36, 53, 198
ll, 103, 199, 400, 509, 530
ln, 540
ls, 36, 57, 185, 206, 217, 222, 436,

444, 445, 508

Window manager (cont.)

Index

629

lsblk, 234, 236, 355, 468
lscpu, 26–28, 44, 234
lshw, 372, 373
lspci, 373, 374
lsusb, 373, 374
lvs, 134
make, 311
man, 20, 150, 178, 205, 233
mandb, 178, 323
mkdir, 211, 212
mkfs, 230
mount, 43, 230, 231, 561, 571, 583, 602
nice, 342
od, 456
passwd, 219, 286
printenv, 505
pwd, 206, 215
pwgen, 437
renice, 231
rm, 217, 249, 436, 545, 546
rpm, 310–315
runlevel, 468
sar, 386, 387, 390, 391
screen, 189, 202, 203, 493, 507
script, 591
sed, 465, 466
sensors, 375
sensors-detect, 375
seq, 249, 515
set, 418, 419, 438
shred, 262
smartctl, 375, 377
sort, 263, 275, 447
stat, 217, 534
strings, 534
su, 78, 177, 284, 285, 305, 306, 519
sudo, 285, 293, 294, 297, 299–302, 305
systemctl, 477, 478, 483, 490

tail, 263, 524
tar, 311
time, 435
top, 342, 350, 357, 358, 366, 393, 413
touch, 431, 527
tune2fs, 576
type, 17, 53, 183, 185, 427, 428
umask, 527, 528
umount, 43, 230, 231, 270
uniq, 263, 264
unlink, 546
unset, 426, 507
useradd, 516, 523
usermod, 523
vgs, 295, 307
vi, 63, 298, 509
vim, 218, 275, 278, 509, 510, 527
w, 99, 192, 229
watch, 250, 251, 365, 366
which, 316
who, 193, 194, 229
who am i, 194
yes, 248, 250
yum, 315–316
zsh, 198

List of operators
#!, 274, 349
&, 440
&&, 429–432
∗, 321
;, 440
>>, 101, 266, 268, 440
?
[], 438
{}, 440, 542
|, 263
||, 429, 431, 432

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Objectives
	About Linux
	The birth of Windows
	Black box syndrome
	The birth of Linux
	The open box

	The Linux Truth
	Knowledge
	Flexibility
	Stability
	Scalability
	Security
	Freedom
	Our software rights

	Longevity
	Keep the hardware relevant
	Resist malware

	Should I be a SysAdmin?
	About this course
	About the experiments
	What to do if the experiments do not work
	Terminology
	How to access the command line
	Chapter summary
	Exercises

	Chapter 2: Introduction to Operating Systems
	Objectives
	Choice – Really!
	What is an operating system?
	Hardware
	Motherboard
	The processor
	Peripherals

	The operating system
	The definition

	Typical operating system functions
	Memory management
	Multitasking
	Multiuser
	Process management
	Interprocess communication
	Device management
	Error handling

	Utilities
	A bit of history
	Starting with UNICS
	UNIX
	The Berkeley Software Distribution (BSD)
	The Unix Philosophy

	A (very) brief history of Linux

	Core utilities
	GNU coreutils
	util-linux
	Copyleft

	Games
	Chapter summary
	Exercises

	Chapter 3: The Linux Philosophy for SysAdmins
	Objectives
	Background
	The structure of the philosophy
	The tenets
	Data streams are a universal interface
	Transforming data streams
	Everything is a file
	Use the Linux FHS
	Embrace the CLI
	Be the lazy SysAdmin
	Automate everything
	Always use shell scripts
	Test early test often
	Use common sense naming
	Store data in open formats
	Use separate filesystems for data
	Make programs portable
	Use open source software
	Strive for elegance
	Find the simplicity
	Use your favorite editor
	Document everything
	Back up everything – frequently
	Follow your curiosity
	There is no should
	Mentor the young SysAdmins
	Support your favorite open source project
	Reality bytes

	Chapter summary
	Exercises

	Chapter 4: Preparation
	Objectives
	Overview
	Got root?
	Hardware specifications
	Host software requirements
	Installing VirtualBox
	Install VirtualBox on a Linux host
	Install VirtualBox on a Windows host

	Creating the VM
	VirtualBox Manager
	Configuring the virtual network
	Preparing disk space
	Windows
	Linux

	Download the ISO image file
	Creating the VM

	Chapter summary
	Exercises

	Chapter 5: Installing Linux
	Objectives
	Overview
	Boot the Fedora live image

	Installing Fedora
	Start the installation
	Set the hostname
	Hard drive partitioning
	About swap space
	Types of memory
	Swap
	Types of Linux swap
	Thrashing
	What is the right amount of swap space?
	Finish partitioning

	Begin the installation
	Set the root password
	Create the student user

	Finishing the installation
	Exit the installer

	Shut down the Live system
	Reconfigure the VM

	Create a snapshot
	First boot
	What to do if the experiments do not work
	Chapter summary
	Exercises

	Chapter 6: Using the Xfce Desktop
	Objectives
	Why Xfce
	The desktop
	The file manager
	Stability
	xfce4-terminal emulator
	Configurability

	Getting started
	Login
	Exploring the Xfce desktop
	Settings Manager
	Adding launchers to Panel 2
	Preferred applications

	Desktop appearance
	Appearance

	Multiple desktops
	Installing updates
	Chapter summary
	Exercises

	Chapter 7: Using the Linux Command Line
	Objectives
	Introduction
	Preparation
	Defining the command line
	CLI terminology
	Command prompt
	Command line
	Command-line interface
	Command
	Terminal
	Console
	Virtual consoles
	Using virtual consoles

	Terminal emulator
	Pseudo-terminal
	Device special files

	Session
	Shell
	Using different shells

	Secure Shell (SSH)
	screen

	The GUI and the CLI
	Some important Linux commands
	The PWD
	Directory path notation styles
	Moving around the directory tree
	Tab completion facility
	Exploring files
	More commands

	Command recall and editing
	Chapter summary
	Exercises

	Chapter 8: Core Utilities
	Objectives
	GNU coreutils
	util-linux
	Chapter summary
	Exercises

	Chapter 9: Data Streams
	Objectives
	Data streams as raw materials
	Text streams – A universal interface
	STDIO file handles
	Preparing a USB thumb drive

	Generating data streams
	Test a theory with yes
	Exploring the USB drive
	Randomness
	Pipe dreams
	Building pipelines
	Redirection
	Just grep’ing around
	Cleanup
	Chapter summary
	Exercises

	Chapter 10: Text Editors
	Objectives
	Why we need text editors
	Vim
	Other editors
	Emacs
	gedit
	Leafpad
	Kate
	xfw
	xed

	Learning Vim
	Disabling SELinux

	Use your favorite text editor
	Chapter summary
	Exercises

	Chapter 11: Working As Root
	Objectives
	Why root?
	More about the su command
	Getting to know the root account
	Disadvantages of root
	Escalating user privilege
	The bad ways
	Using sudo
	Do do that sudo that you do so well
	The sudoers file
	Host aliases
	User aliases
	Command aliases
	Environment defaults
	Command section
	Bypassing passwords
	wheel

	Real SysAdmins don’t sudo
	sudo or not sudo
	Bypass sudo
	Valid uses for sudo

	Using su as root
	Chapter summary
	Exercises

	Chapter 12: Installing and Updating Software
	Objectives
	Dependency hell

	RPM
	YUM
	DNF
	Installing packages
	Installing updates
	Post-update tasks
	Removing packages

	Groups
	Adding repositories
	About the kernel
	Chapter summary
	Exercises

	Chapter 13: Tools for Problem Solving
	Objectives
	The art of problem solving
	The five steps of problem solving
	Knowledge
	Observation
	Reasoning
	Action
	Test

	System performance and problem solving
	top
	Summary section
	Load averages
	CPU usage

	Process section
	Things to look for with CPU usage

	Memory statistics
	The task list
	Signals
	Consistency

	Other top-like tools
	htop
	atop

	More tools
	Memory tools
	Tools that display disk I/O statistics

	The /proc filesystem
	Exploring hardware
	Monitoring hardware temperatures
	Monitoring hard drives

	System statistics with SAR
	Installation and configuration
	Examining collected data

	Cleanup
	Chapter summary
	Exercises

	Chapter 14: Terminal Emulator Mania
	Objectives
	About terminals
	My requirements
	rxvt
	xfce4-terminal
	LXTerminal
	Tilix
	Konsole
	Terminator

	Chapter summary
	Exercises

	Chapter 15: Advanced Shell Topics
	Objectives
	The Bash shell
	Shell options
	Shell variables
	Commands
	The PATH
	Internal commands
	External commands
	Forcing the use of external commands

	Compound commands
	Time-saving tools
	Brace expansion
	Special pattern characters
	Sets
	Meta-characters

	Using grep
	Finding files
	Chapter summary
	Exercises

	Chapter 16: Linux Boot and Startup
	Objectives
	Overview
	Hardware boot
	Linux boot
	GRUB
	GRUB stage 1
	GRUB stage 1.5
	GRUB stage 2

	Configuring GRUB
	The Linux kernel

	Linux startup
	systemd
	Graphical login screen
	Display manager
	Window manager
	How do I deal with all these choices?

	About the login
	CLI login screen
	GUI login screen

	Chapter summary
	Exercises

	Chapter 17: Shell Configuration
	Objectives
	Starting the shell
	Non-login shell startup
	Login shell startup
	Exploring the global configuration scripts
	Exploring the local configuration scripts
	Testing it

	Exploring the environment
	User shell variables

	Aliases
	Chapter summary
	Exercises

	Chapter 18: Files, Directories, and Links
	Objectives
	Introduction
	Preparation
	User accounts and security
	File attributes
	File ownership
	File permissions
	Directory permissions
	Implications of Group ownership
	umask
	Changing file permissions
	Applying permissions
	Timestamps

	File meta-structures
	The directory entry
	The inode

	File information
	Links
	Hard links
	Locating files with several hard links
	Symbolic (soft) links

	Chapter summary
	Exercises

	Chapter 19: Filesystems
	Objectives
	Overview
	Definitions
	Filesystem functions
	The Linux Filesystem Hierarchical Standard
	The standard
	Problem solving
	Using the filesystem incorrectly
	Adhering to the standard

	Linux unified directory structure
	Filesystem types
	Mounting
	The Linux EXT4 filesystem
	Cylinder groups
	The inode
	Journal

	Data allocation strategies
	Data fragmentation

	Repairing problems
	The /etc/fstab file
	Repairing damaged filesystems
	Finding lost files

	Creating a new filesystem
	Finding space
	Add a new virtual hard drive

	Other filesystems
	Chapter summary
	Exercises

	Bibliography
	Books
	Web sites

	Index

