
Using and
Administering
Linux: Volume 2

Zero to SysAdmin: Advanced Topics
—
David Both

Using and Administering
Linux: Volume 2

Zero to SysAdmin: Advanced Topics

David Both

Using and Administering Linux: Volume 2

ISBN-13 (pbk): 978-1-4842-5454-7 ISBN-13 (electronic): 978-1-4842-5455-4
https://doi.org/10.1007/978-1-4842-5455-4

Copyright © 2020 by David Both

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484254547. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

David Both
Raleigh, NC, USA

https://doi.org/10.1007/978-1-4842-5455-4

This book – this course – is dedicated to all Linux and
open source course developers and trainers.

:(){ :|:& };:

v

Chapter 1: Logical Volume Management �� 1

Objectives ��� 1

The need for logical volume management �� 1

Running out of disk space in VirtualBox �� 2

Recovery �� 2

LVM structure �� 3

Extending a logical volume ��� 4

Extending volume groups ��� 7

Create a new volume group – 1 �� 7

Create a new volume group – 2 �� 11

Tips ��� 13

Advanced capabilities ��� 14

Chapter summary ��� 14

Exercises ��� 15

Chapter 2: File Managers ��� 17

Objectives ��� 17

Introduction ��� 17

Text-mode interface �� 18

Graphical interface �� 18

Table of Contents
About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

vi

Default file manager ��� 18

Text-mode file managers �� 20

Midnight Commander �� 20

Other text-mode file managers ��� 31

Vifm ��� 31

nnn �� 32

Graphical file managers �� 33

Krusader �� 34

Thunar ��� 37

Dolphin �� 38

XFE �� 40

Chapter summary ��� 41

Exercises ��� 41

Chapter 3: Everything Is a File�� 43

Objectives ��� 43

What is a file? ��� 43

Device files�� 44

Device file creation �� 45

udev simplification �� 45

Naming rules ��� 46

Device data flow ��� 47

Device file classification ��� 48

Fun with device files ��� 50

Randomness, zero, and more �� 55

Back up the master boot record ��� 58

Implications of everything is a file �� 65

Chapter summary ��� 65

Exercises ��� 66

Table of ConTenTs

vii

Chapter 4: Managing Processes ��� 67

Objectives ��� 67

Processes �� 67

Process scheduling in the kernel �� 67

Tools �� 68

top ��� 69

More about load averages… �� 75

…and signals �� 76

CPU hogs ��� 77

Process scheduling ��� 79

Nice numbers �� 79

Killing processes ��� 82

Other interactive tools ��� 83

atop ��� 83

htop ��� 86

Glances �� 93

Other tools ��� 96

The impact of measurement ��� 102

Chapter summary ��� 102

Exercises ��� 103

Chapter 5: Special Filesystems �� 105

Objectives ��� 105

Introduction ��� 105

The /proc filesystem ��� 106

The /sys filesystem �� 116

Swap space ��� 121

Types of Linux swap �� 122

Thrashing ��� 123

What is the right amount of swap space? ��� 123

Adding more swap space on a non-LVM disk partition ��� 126

Table of ConTenTs

viii

Adding swap to an LVM disk environment ��� 131

Other swap options with LVM �� 135

Chapter summary ��� 135

Exercises ��� 136

Chapter 6: Regular Expressions ��� 137

Objectives ��� 137

Introducing regular expressions ��� 137

Getting started �� 139

The mailing list �� 139

grep ��� 147

Data flow ��� 147

regex building blocks �� 148

Repetition �� 151

Other metacharacters �� 152

sed �� 154

Other tools that implement regular expressions ��� 156

Resources ��� 156

Chapter summary ��� 157

Exercises ��� 157

Chapter 7: Printing ��� 159

Objectives ��� 159

Introduction ��� 160

About printers ��� 160

Print languages ��� 161

Printers and Linux ��� 161

CUPS �� 164

Creating the print queue �� 166

Printing to a PDF file ��� 171

File conversion tools ��� 174

Table of ConTenTs

ix

a2ps ��� 175

ps2pdf�� 177

pr ��� 177

ps2ascii ��� 178

Operating system–related conversion tools ��� 180

unix2dos �� 181

dos2unix �� 183

unix2mac and mac2unix ��� 183

Miscellaneous tools �� 184

lpmove ��� 184

wvText and odt2txt �� 187

Chapter summary ��� 189

Exercises ��� 189

Chapter 8: Hardware Detection �� 191

Objectives ��� 191

Introduction ��� 191

dmidecode �� 193

lshw �� 201

lsusb ��� 205

usb-devices��� 207

lspci �� 209

Cleanup ��� 212

Chapter summary ��� 213

Exercises ��� 213

Chapter 9: Command-Line Programming ��� 215

Objectives ��� 215

Introduction ��� 215

Definition of a program ��� 216

Simple CLI programs ��� 217

Table of ConTenTs

x

Some basic syntax �� 217

Output to the display ��� 219

Something about variables �� 221

Control operators �� 223

Return codes ��� 224

The operators �� 225

Program flow control �� 227

true and false �� 228

Logical operators ��� 229

Grouping program statements �� 241

Expansions �� 244

Brace expansion �� 245

Tilde expansion �� 245

Pathname expansion ��� 245

Command substitution �� 247

Arithmetic expansion ��� 248

for loops �� 250

Other loops �� 255

while �� 255

until ��� 257

Chapter summary ��� 258

Exercises ��� 259

Chapter 10: Automation with Bash Scripts �� 261

Objectives ��� 261

Introduction ��� 262

Why I use shell scripts �� 262

Shell scripts ��� 263

Scripts vs� compiled programs �� 264

Updates ��� 265

About updates ��� 265

Create a list of requirements ��� 265

Table of ConTenTs

xi

The CLI program �� 267

Convert the CLI program to a script��� 267

Add some logic �� 269

Limit to root ��� 271

Add command-line options ��� 272

Check for updates ��� 274

Is a reboot required? ��� 276

Adding a Help function �� 279

Finishing the script �� 282

About testing ��� 283

Testing in production ��� 284

Fuzzy testing ��� 285

Testing the script ��� 285

Making it better ��� 288

Licensing ��� 289

Automated testing ��� 292

Security ��� 292

Additional levels of automation ��� 293

Chapter summary ��� 295

Exercises ��� 296

Chapter 11: Time and Automation �� 297

Objectives ��� 297

Introduction ��� 297

Keeping time with chrony ��� 298

The NTP server hierarchy �� 298

NTP choices ��� 299

Chrony structure �� 300

Client configuration ��� 300

chronyc as an interactive tool ��� 304

Table of ConTenTs

xii

Using cron for timely automation �� 305

The crond daemon ��� 306

crontab �� 306

Other scheduling options �� 312

/etc/cron�d ��� 312

anacron ��� 313

Thoughts about cron ��� 315

Scheduling tips �� 315

Security ��� 316

cron resources ��� 316

at ��� 317

Syntax �� 317

Time specifications�� 317

Security ��� 323

Cleanup ��� 323

Chapter summary ��� 323

Exercises ��� 324

Chapter 12: Networking �� 325

Objectives ��� 325

Introduction ��� 325

About IPv6 ��� 326

Basic networking concepts ��� 326

Definitions ��� 326

MAC address ��� 328

IP address �� 331

TCP/IP�� 334

The TCP/IP network model �� 334

A simple example �� 336

Table of ConTenTs

xiii

CIDR – Network notation and configuration �� 338

Network classes �� 338

Along came a CIDR �� 341

Variable Length Subnet Masking ��� 344

DHCP client configuration ��� 348

NIC naming conventions ��� 349

How it works – sort of ��� 349

NIC configuration files ��� 351

Create an interface configuration file �� 352

The interface configuration file ��� 354

The network file ��� 359

The route-<interface> file ��� 359

Other network files �� 360

Network startup �� 360

The NetworkManager service ��� 360

Name services �� 361

How a name search works �� 362

Using the /etc/hosts file �� 363

Introduction to network routing �� 367

The routing table ��� 367

iptraf-ng �� 373

Cleanup ��� 377

Chapter summary ��� 377

Exercises ��� 378

Chapter 13: systemd ��� 379

Objectives ��� 379

Introduction ��� 379

Controversy ��� 380

Why I prefer SystemV �� 380

Why I prefer systemd ��� 381

The real issue �� 382

Table of ConTenTs

xiv

systemd suite �� 382

Practical structure ��� 383

systemctl��� 384

Service units �� 388

Mount units ��� 391

systemd timers ��� 395

Time specification ��� 396

Timer configuration ��� 399

systemd-analyze ��� 403

Journals �� 404

Chapter summary ��� 407

References �� 408

Exercises ��� 410

Chapter 14: D-Bus and udev ��� 411

Objectives ��� 411

/dev chaos��� 411

About D-Bus �� 412

About udev �� 412

Naming rules ��� 415

Making udev work �� 416

Using Udev for your success ��� 416

Chapter summary ��� 423

Exercises ��� 424

Chapter 15: Logs and Journals ��� 425

Objectives ��� 425

Logs are your friend �� 425

SAR ��� 426

logrotate �� 429

messages �� 433

Table of ConTenTs

xv

Mail logs�� 435

dmesg ��� 436

secure ��� 438

Following log files ��� 440

systemd journals ��� 442

logwatch ��� 446

Chapter summary ��� 456

Exercises ��� 456

Chapter 16: Managing Users �� 459

Objectives ��� 459

Introduction ��� 459

The root account ��� 460

Your account ��� 460

Your home directory �� 461

User accounts and groups �� 461

The /etc/passwd file �� 463

nologin shells �� 467

The /etc/shadow file �� 467

The /etc/group file ��� 472

The /etc/login�defs file ��� 472

Account configuration files �� 472

Password security ��� 473

Password encryption ��� 474

Generating good passwords �� 476

Password quality ��� 478

Managing user accounts ��� 480

Creating new accounts �� 480

Creating new accounts by editing the files ��� 483

Locking the password ��� 486

Deleting user accounts �� 487

Table of ConTenTs

xvi

Forcing account logoff �� 488

Setting resource limits �� 489

Chapter summary ��� 493

Exercises ��� 493

Chapter 17: Security ��� 495

Objectives ��� 495

Introduction ��� 495

Security by obscurity ��� 497

What is security? ��� 497

Data protection �� 498

Security vectors �� 498

Self-inflicted problems �� 499

Environmental problems�� 499

Physical attacks��� 500

Network attacks �� 501

Software vulnerabilities ��� 502

Linux and security ��� 502

Login security ��� 503

Checking logins ��� 504

Telnet �� 508

SSH ��� 516

The SSH server �� 516

Firewalls�� 520

firewalld ��� 521

iptables �� 527

Fail2Ban �� 535

PAM ��� 538

Some basic steps �� 539

Chapter summary ��� 542

Exercises ��� 542

Table of ConTenTs

xvii

Chapter 18: Backup Everything – Frequently ��� 545

Introduction ��� 545

Backups to the rescue �� 545

The problem �� 546

Backup options ��� 552

tar �� 552

Off-site backups �� 557

Disaster recovery services �� 558

Options �� 559

What about the “frequently” part? �� 559

How frequent is “frequently?” ��� 560

What does “full” really mean? ��� 560

All vs� diff ��� 561

Considerations for automation of backups �� 561

Dealing with offline hosts �� 562

Advanced backups �� 562

Chapter summary ��� 563

Exercises ��� 563

Bibliography ��� 565

Books �� 565

Web sites �� 566

Index ��� 571

Table of ConTenTs

xix

About the Author

David Both is an open source software and GNU/Linux

advocate, trainer, writer, and speaker. He has been working

with Linux and open source software for more than 20 years

and has been working with computers for over 45 years.

He is a strong proponent of and evangelist for the “Linux

Philosophy for System Administrators.” David has been in

the IT industry for over 40 years.

Mr. Both worked for IBM for 21 years and, while working

as a Course Development Representative in Boca Raton,

FL, in 1981, wrote the training course for the first IBM PC.

He has taught RHCE classes for Red Hat and has worked at

MCI WorldCom, Cisco, and the State of North Carolina. In

most of the places he has worked since leaving IBM in 1995, he has taught classes on

Linux ranging from Lunch'n'Learns to full 5-day courses. Helping others learn about

Linux and open source software is one of his great pleasures.

David prefers to purchase the components and build his own computers from

scratch to ensure that each new computer meets his exacting specifications. Building

his own computers also means not having to pay the Microsoft tax. His latest build is an

ASUS TUF X299 motherboard and an Intel i9 CPU with 16 cores (32 CPUs) and 64GB of

RAM in a Thermaltake Core X9 case.

He has written articles for magazines including Linux Magazine, Linux Journal, and

OS/2 back when there was such a thing. His article “Complete Kickstart,” co-authored

with a colleague at Cisco, was ranked 9th in the Linux Magazine Top Ten Best System

Administration Articles list for 2008. He currently writes prolifically and is a volunteer

community moderator for Opensource.com. He particularly enjoys learning new things

while researching his articles.

David currently lives in Raleigh, NC, with his very supportive wife and a strange rescue

dog that is mostly Jack Russell. David also likes reading, travel, the beach, old M*A*S*H

reruns, and spending time with his two children, their spouses, and four grandchildren.

David can be reached at LinuxGeek46@both.org or on Twitter @LinuxGeek46.

xxi

About the Technical Reviewer

Jason Baker has been a Linux user since the early 2000s,

ever since stuffing a Slackware box under his desk and trying

to make the darn thing work. He is a writer and presenter

on a variety of open source projects and technologies,

many of which can be found on Opensource.com. A Red

Hat Certified Systems Administrator, he is currently the

managing editor of Enable SysAdmin, Red Hat's community

publication for system administrators. When he's not at

work, he enjoys tinkering with hardware and using open

source tools to play with maps and other visualizations of

cool data sets. He lives in Chapel Hill, NC, with his wife, Erin,

and their rescue cat, Mary.

xxiii

Acknowledgments

Writing a book is not a solitary activity, and this massive three-volume Linux training

course required a team effort so much more than most.

The most important person in this effort has been my awesome wife, Alice, who

has been my head cheerleader and best friend throughout. I could not have done this

without your support and love.

I am grateful for the support and guidance of Louise Corrigan, senior editor for open

source at Apress, who believed in me and my vision for this book. This book would not

have been possible without her.

To my coordinating editor, Nancy Chen, I owe many thanks for her hours of work,

guidance, and being there to discuss many aspects of this book. As it grew and then

continued to grow some more, our discussions were invaluable in helping to shape the

final format of this work.

And to Jim Markham, my development editor, who quietly kept an eye and a guiding

hand on the vast volume of material in these three volumes to ensure that the end result

would meet the needs of you – my readers – and most importantly, you as the student.

Jason Baker, my intrepid technical reviewer, has done an outstanding job to ensure

the technical accuracy of all three volumes of this course. Due to the major changes

made in some parts of the course as its final form materialized, he retested some

chapters in their entirety to help ensure that I had not screwed anything up. Jason also

made important suggestions that have significantly enhanced the quality and scope

of the entire three-volume work. These volumes are much better for his contributions.

Jason’s amazing work and important contributions to this book and the course of which

it is part have helped to make it far better than it might have been.

Of course any remaining errors and omissions are my responsibility alone.

xxv

Introduction

First, thank you for purchasing Using and Administering Linux: Volume 2 – Zero to

SysAdmin: Advanced Topics. The Linux training course upon which you have embarked

is significantly different from other training that you could purchase to learn about Linux.

 About this course
This Linux training course, Using and Administering Linux – Zero to SysAdmin, consists

of three volumes. Each of these three volumes is closely connected and they build

upon each other. For those new to Linux, it’s best to start here with Volume 1, where

you’ll be guided through the creation of a virtual laboratory – a virtual network and a

virtual machine – that will be used and modified by many of the experiments in all three

volumes. More experienced Linux users can begin with later volumes and download

the script that will set up the VM for the start of Volumes 2 and 3. Instructions provided

with the script will provide specifications for configuration of the virtual network and the

virtual machine.

Refer to the following volume overviews to select the volume of this course most

appropriate for your current skill level.

This Linux training course differs from others because it is a complete self-study

course. Newcomers should start at the beginning of Volume 1 and read the text, perform

all of the experiments, and complete all of the chapter exercises through to the end of

Volume 3. If you do this, even if you are starting from zero knowledge about Linux, you

can learn the tasks necessary to becoming a Linux system administrator, a SysAdmin.

Another difference this course has over others is that all of the experiments are

performed on one or more virtual machines (VMs) in a virtual network. Using the free

software, VirtualBox, you will create this virtual environment on any reasonably sized

host, whether Linux or Windows. In this virtual environment, you are free to experiment

on your own, make mistakes that could damage the Linux installation of a hardware

host, and still be able to recover completely by restoring the Linux VM host from any one

of multiple snapshots. This flexibility to take risks and yet recover easily makes it possible

to learn more than would otherwise be possible.

xxvi

I have always found that I learn more from my mistakes than I ever have when things

work as they are supposed to. For this reason I suggest that rather than immediately

reverting to an earlier snapshot when you run into trouble, you try to figure out how the

problem was created and how best to recover from it. If, after a reasonable period of

time, you have not resolved the problem, that would be the point at which reverting to a

snapshot would make sense.

Inside, each chapter has specific learning objectives, interactive experiments, and

review exercises that include both hands-on experiments and some review questions.

I learned this format when I worked as a course developer for IBM from 1978 through

1981. It is a tried and true format that works well for self-study.

These course materials can also be used as reference materials. I have used my

previous course materials for reference for many years and they have been very useful in

that role. I have kept this as one of my goals in this set of materials.

Note not all of the review exercises in this course can be answered by simply
reviewing the chapter content. for some questions you will need to design your
own experiment in order to find a solution. In many cases there will very probably
be multiple solutions, and all that produce the correct results will be the “correct”
ones.

 Process
The process that goes with this format is just as important as the format of the course –

really even more so. The first thing that a course developer must do is generate a list of

requirements that define both the structure and the content of the course. Only then can

the process of writing the course proceed. In fact, many times I find it helpful to write the

review questions and exercises before I create the rest of the content. In many chapters

of this course I have worked in this manner.

These courses present a complete, end-to-end Linux training course for students

like you who know before you start that you want to learn to be a Linux system

administrator – a SysAdmin. This Linux course will allow you to learn Linux right from

the beginning with the objective of becoming a SysAdmin.

InTroduCTIon

xxvii

Many Linux training courses begin with the assumption that the first course a

student should take is one designed to start them as users. Those courses may discuss

the role of root in system administration, but ignore topics that are important to future

SysAdmins. Other courses ignore system administration altogether. A typical second

course will introduce the student to system administration, while a third may tackle

advanced administration topics.

Frankly, this baby step approach did not work well for many of us who are now Linux

SysAdmins. We became SysAdmins, in part at least, due to our intense desire – our deep

need – to learn as much as possible as quickly as possible. It is also, I think in large part,

due to our highly inquisitive natures. We learn a basic command and then start asking

questions and experimenting with it to see what its limits are, what breaks it, and what

using it can break. We explore the man(ual) pages and other documentation to learn the

extreme usages to which it might be put. If things don’t break by themselves, we break

them intentionally to see how they work and to learn how to fix them. We relish our own

failures because we learn more from fixing them than we do when things always work as

they are supposed to.

In this course we will dive deep into Linux system administration almost from the

very beginning. You will learn many of the Linux tools required to use and administer

Linux workstations and servers – usually multiple tools that can be applied to each of

these tasks. This course contains many experiments to provide you with the kind of

hands-on experiences that SysAdmins appreciate. All of these experiments guide you

one step at a time into the elegant and beautiful depths of the Linux experience. You will

learn that Linux is simple and that simplicity is what makes it both elegant and knowable.

Based on my own years working with Unix and Linux, the course materials contained

in these three volumes are designed to introduce you to the practical daily tasks you

will perform as a Linux user and, at the same time, as a Linux system administrator –

SysAdmin. But I do not know everything – that is just not possible – no SysAdmin

does. Further, no two SysAdmins know exactly the same things because that too is

impossible. We have each started with different knowledge and skills; we have different

goals; we have different experiences because the systems on which we work have failed

in different ways, had different hardware, were embedded in different networks, had

different distributions installed, and many other differences. We use different tools and

approaches to problem-solving because the many different mentors and teachers we

had used different sets of tools from each other; we use different Linux distributions; we

think differently; and we know different things about the hardware on which Linux runs.

Our past is much of what makes us what we are and what defines us as SysAdmins.

InTroduCTIon

xxviii

So I will show you things in this course – things that I think are important for you

to know – things that, in my opinion, will provide you with the skills to use your own

curiosity and creativity to find solutions that I would never think of to problems I have

never encountered.

 What this course is not
This course is not a certification study guide. It is not designed to help you pass a

certification test of any type. This course is intended purely to help you become a good

or perhaps even great SysAdmin, not to pass a test.

There are a few good certification tests. Red Hat and Cisco certifications are among

the best because they are based on the test taker’s ability to perform specific tasks. I am

not familiar with any of the other certification tests because I have not taken them. But

the courses you can take and books you can purchase to help you pass those tests are

designed to help you pass the tests and not to administer a Linux host or network. That

does not make them bad – just different from this course.

 Content overview
Because there are three volumes to this course and because I reference other chapters,

some of which may be in other volumes, we need a method for specifying in which

volume the referenced material exists. If the material is in another volume, I will always

specify the volume number, that is, “Chapter 2 in Volume 3” or “Volume 2, Chapter 5.” If

the material is in the same volume as the reference to it, I may simply specify the chapter

number; however, I may also reference the current volume number for clarity.

This quick overview of the contents of each volume should serve as a quick

orientation guide if you need to locate specific information. If you are trying to decide

whether to purchase this book and its companion volumes, it will give you a good

overview of the entire course.

InTroduCTIon

xxix

 Using and Administering Linux: Volume 1
Zero to SysAdmin: Getting Started
Volume 1 of this training course introduces operating systems in general and Linux in

particular. It briefly explores The Linux Philosophy for SysAdmins1 in preparation for the

rest of the course.

Chapter 4 then guides you through the use of VirtualBox to create a virtual machine

(VM) and a virtual network to use as a test laboratory for performing the many

experiments that are used throughout the course. In Chapter 5, you will install the Xfce

version of Fedora – a popular and powerful Linux distribution – on the VM. In Chapter 6

you will learn to use the Xfce desktop which will enable you to leverage your growing

command-line interface (CLI) expertise as you proceed through the course.

Chapters 7 and 8 will get you started using the Linux command line and introduce

you to some of the basic Linux commands and their capabilities. In Chapter 9 you

will learn about data streams and the Linux tools used to manipulate them. And in

Chapter 10 you will learn a bit about several text editors which are indispensable to

advanced Linux users and system administrators.

Chapters 11 through 13 start your work as a SysAdmin and take you through some

specific tasks such as installing software updates and new software. Chapters 14 and 15

discuss more terminal emulators and some advanced shell skills. In Chapter 16 you will

learn about the sequence of events that take place as the computer boots and Linux

starts up. Chapter 17 shows you how to configure your shell to personalize it in ways that

can seriously enhance your command line efficiency.

Finally, Chapters 18 and 19 dive into all things file and filesystems:

 1. Introduction

 2. Introduction to operating systems

 3. The Linux Philosophy for SysAdmins

 4. Preparation

 5. Installing Linux

 6. Using the Xfce desktop

 7. The Linux command line

1 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018

InTroduCTIon

xxx

 8. Core utilities

 9. Data streams

 10. Text editors

 11. Working as root

 12. Installing updates and new software

 13. Tools for problem-solving

 14. Terminal emulator mania

 15. Advanced shell topics

 16. Linux boot and startup

 17. Shell configuration

 18. Files, directories, and links

 19. Filesystems

 Using and Administering Linux: Volume 2
Zero to SysAdmin: Advanced Topics
Volume 2 of Using and Administering Linux introduces you to some incredibly powerful

and useful advanced topics that every SysAdmin must know.

In Chapters 1 and 2 you will experience an in-depth exploration of logical volume

management – and what that even means – as well as the use of file managers to

manipulate files and directories. Chapter 3 introduces the concept that, in Linux,

everything is a file. You will also learn some fun and interesting uses of the fact that

everything is a file.

In Chapter 4 you will learn to use several tools that enable the SysAdmin to manage

and monitor running processes. Chapter 5 enables you to experience the power of the

special filesystems, such as /proc, that enable us as SysAdmins to monitor and tune the

kernel while it is running – without a reboot.

Chapter 6 will introduce you to regular expressions and the power that using them for

pattern matching can bring to the command line, while Chapter 7 discusses managing

printers and printing from the command line. In Chapter 8 you will use several tools to

unlock the secrets of the hardware in which your Linux operating system is running.

InTroduCTIon

xxxi

Chapters 9 through 11 show you how to do some simple – and not so simple –

command-line programming and how to automate various administrative tasks.

You will begin to learn the details of networking in Chapter 12, and Chapters 13

through 15 show you how to manage the many services that are required in a Linux

system. You will also explore the underlying software that manages the hardware and

can detect when hardware devices such as USB thumb drives are installed and how the

system reacts to that.

Chapter 16 shows you how to use the logs and journals to look for clues to problems

and confirmation that things are working correctly.

Chapters 17 and 18 show you how to enhance the security of your Linux systems,

including how to perform easy local and remote backups:

 1. Logical volume management

 2. File managers

 3. Everything is a file

 4. Managing processes

 5. Special filesystems

 6. Regular expressions

 7. Printing

 8. Hardware detection

 9. Command-line programming

 10. Automation with BASH scripts

 11. Time and automation

 12. Networking

 13. systemd

 14. dbus and udev

 15. Using logs and journals

 16. Managing users

 17. Security

 18. Backups

InTroduCTIon

xxxii

 Using and Administering Linux: Volume 3
Zero to SysAdmin: Network Services
In Volume 3 of Using and Administering Linux, you will start by creating a new VM on

the existing virtual network. This new VM will be used as a server for the rest of this

course and it will replace some of the functions performed by the virtual router that is

part of our virtual network.

Chapter 2 begins this transformation from simple workstation to server by adding

a new network interface card (NIC) to the VM so that it can act as a firewall and router,

then changing its network configuration from DHCP to static. This includes configuring

both NICs so that one is connected to the existing virtual router so as to allow

connections to the outside world and so that the other NIC connects to the new “inside”

network that will contain the existing VM.

Chapters 3 and 4 guide you through setting up the necessary services, DHCP and

DNS, that are required to support a managed, internal network, and Chapter 5 takes you

through configuration of SSHD to provide secure remote access between Linux hosts.

In Chapter 6 you will convert the new server into a router with a simple yet effective

firewall.

You will learn to install and configure an enterprise class email server that can

detect and block most spam and malware in Chapters 7 through 9. Chapter 10 takes you

through setting up a web server, and in Chapter 11 you will set up WordPress, a flexible

and powerful content management system.

In Chapter 12 you return to email by setting up a mailing list using Mailman.

Then Chapter 13 guides you through sharing files to both Linux and Windows hosts.

Sometimes accessing a desktop remotely is the only way to do some things, so in

Chapter 14 you will do just that.

Chapter 15 shows you how to set up a time server on your network and how to

determine its accuracy. Although we have incorporated security in all aspects of what

has already been covered, Chapter 16 covers some additional security topics.

Chapter 17 discusses package management from the other direction by guiding you

through the process of creating an RPM package for the distribution of your own scripts

and configuration files.

InTroduCTIon

xxxiii

Finally, Chapter 18 will get you started in the right direction because I know you are

going to ask, “Where do I go from here?”

 1. Preparation

 2. Server configuration

 3. DHCP

 4. Name services – DNS

 5. Remote access with SSH

 6. Routing and firewalls

 7. Introducing email

 8. Email clients

 9. Combating spam

 10. Apache web server

 11. WordPress

 12. Mailing lists

 13. File sharing with NFS and SAMBA

 14. Using remote desktop access

 15. Does anybody know what time it is?

 16. Security

 17. Advanced package management

 18. Where do I go from here?

 Taking this course
Although designed primarily as a self-study guide, this course can be used effectively in

a classroom environment. This course can also be used very effectively as a reference.

Many of the original course materials I wrote for Linux training classes I used to teach

as an independent trainer and consultant were valuable to me as references. The

experiments became models for performing many tasks and later became the basis for

InTroduCTIon

xxxiv

automating many of those same tasks. I have used many of those original experiments in

parts of this course, because they are still relevant and provide an excellent reference for

many of the tasks I still need to do.

You will see as you proceed through the course that it uses many software programs

considered to be older and perhaps obsolete like Sendmail, Procmail, BIND, the Apache

web server, and much more. Despite their age, or perhaps because of it, the software

I have chosen to run my own systems and servers and to use in this course has been

well-proven and is all still in widespread use. I believe that the software we will use in

these experiments has properties that make it especially valuable in learning the in-

depth details of how Linux and those services work. Once you have learned those details,

moving to any other software that performs the same tasks will be relatively easy. In any

event, none of that “older” software is anywhere near as difficult or obscure as some

people seem to think that it is.

 Who should take this course
If you want to learn to be an advanced Linux user and SysAdmin, this course is for you.

Most SysAdmins have an extremely high level of curiosity and a deep-seated need to

learn Linux System Administration. We like to take things apart and put them back

together again to learn how they work. We enjoy fixing things and are not hesitant about

diving in to fix the computer problems that our friends and coworkers bring us.

We want to know what happens when some part of computer hardware fails so we

might save defective components such as motherboards, RAM memory, and hard drives.

This gives us defective components with which we can run tests. As I write this, I have

a known defective hard drive inserted in a hard drive docking station connected to my

primary workstation and have been using it to test failure scenarios that will appear later

in this course.

Most importantly, we do all of this for fun and would continue to do so even if we

had no compelling vocational reason for doing so. Our intense curiosity about computer

hardware and Linux leads us to collect computers and software like others collect stamps

or antiques. Computers are our avocation – our hobby. Some people like boats, sports,

travel, coins, stamps, trains, or any of thousands of other things, and they pursue them

relentlessly as a hobby. For us – the true SysAdmins – that is what our computers are.

That does not mean we are not well rounded and do not do other things. I like to travel,

InTroduCTIon

xxxv

read, go to museums and concerts, and ride historical trains, and my stamp collection is

still there, waiting for me when I decide to take it up again.

In fact, the best SysAdmins, at least the ones I know, are all multifaceted. We are

involved in many different things, and I think that is due to our inexhaustible curiosity

about pretty much everything. So if you have an insatiable curiosity about Linux and

want to learn about it – regardless of your past experience or lack thereof – then this

course is most definitely for you.

 Who should not take this course
If you do not have a strong desire to learn about or to administer Linux systems, this

course is not for you. If all you want – or need – to do is use a couple apps on a Linux

computer that someone has put on your desk, this course is not for you. If you have no

curiosity about what superpowers lie underneath the GUI desktop, this course is not for

you.

 Why this course
Someone asked me why I want to write this course. My answer is simple – I want to give

back to the Linux community. I have had several amazing mentors over the span of my

career and they taught me many things – things I find worth sharing with you along with

much that I have learned for myself.

This course – all three volumes of it – started its existence as the slide presentations

and lab projects for three Linux courses I created and taught. For a number of reasons, I

do not teach those classes any more. However, I would still like to pass on my knowledge

and as many of the tips and tricks I have learned for the administration of Linux as

possible. I hope that with this course I can pass on at least some of the guidance and

mentoring that I was fortunate enough to have in my own career.

InTroduCTIon

1
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_1

CHAPTER 1

Logical Volume
Management
 Objectives
In this chapter you will learn

• The advantages of logical volume management (LVM)

• The structure of LVM

• To manage LVM systems

• To create new volume groups and logical volumes

• To add space to existing volume groups and logical volumes

 The need for logical volume management
Managing disk space has always been a significant task for SysAdmins. Running out

of disk space used to be the start of a long and complex series of tasks to increase the

space available to a disk partition. It also required taking the system offline. This usually

involved installing a new hard drive, booting to recovery or single-user mode, creating a

partition and a filesystem on the new hard drive, using temporary mount points to move

the data from the too small filesystem to the new, larger one, changing the content of the

/etc/fstab file to reflect the correct device name for the new partition, and rebooting to

remount the new filesystem on the correct mount point.

I have to tell you that when LVM first made its appearance in Fedora, I resisted

it rather strongly. My initial reaction was that I did not need this additional layer of

abstraction between me and the hard drives. It turns out that I was wrong and that

logical volume management is very useful.

2

Logical volume management, LVM, allows for very flexible disk space management.

It provides features like the ability to add (or remove) disk space to a filesystem, and

it allows for the collection of multiple physical hard drives and partitions into a single

volume group which can then be divided into logical volumes. LVM also allows us to

create entirely new volume groups and logical volumes. It can do all of this without

rebooting or unmounting the existing filesystems, so long as drive space is available or a

device can be hot-plugged.

 Running out of disk space in VirtualBox
I always like to run new distributions in a VirtualBox virtual machine for a few days or

weeks to ensure that I will not run into any devastating problems when I start installing it

on my production machines.

The morning, after the Fedora 11 release, I started installing Fedora 11 in a new

virtual machine on my primary workstation, thinking I had enough disk space allocated

to the filesystem of the host computer in which it was being installed. I did not. About

a third of the way through the installation I ran out of space on that host’s filesystem.

Fortunately VirtualBox is great software itself. It detected the out of space condition,

paused the virtual machine, and even displayed an error message indicating the exact

cause of the problem.

 Recovery
Since Fedora and most modern distributions use logical volume management and

I had some free space available on the hard drive, I was able to assign additional

disk space to the appropriate filesystem on the fly. This means that I did not have to

reformat the entire hard drive and reinstall the operating system or even reboot. I simply

assigned some of the available space to the appropriate logical volume and resized the

filesystem – all while the filesystem was mounted and active, and the running program,

VirtualBox was using the filesystem and waiting. I resumed running the virtual machine

and the installation continued as if nothing had occurred.

Running out of disk space while a critical program is running has happened many

times to almost all SysAdmins. And while many programs are not as well written

and resilient as VirtualBox, Linux logical volume management made it possible to

recover without losing any data and without having to restart the time-consuming VM

installation.

Chapter 1 LogiCaL VoLume management

3

 LVM structure
The structure of a logical volume manager (LVM) disk environment is illustrated in

Figure 1-1. Logical volume management enables the combining of multiple individual

hard drives and/or disk partitions into a single volume group. That volume group can

then be subdivided into logical volumes or used as a single large volume. Regular

filesystems, such as EXT3 or EXT4, can then be created on a logical volume.

Logical volume management allows combining partitions and entire hard drives into

volume groups. In Figure 1-1, two complete physical hard drives and one partition from

a third hard drive have been combined into a single volume group. Two logical volumes

have been created from the space in the volume group, and a filesystem, such as an EXT4

filesystem, has been created on each of the two logical volumes.

To add space to a logical volume, we can extend the (LV) into existing space on the

volume group (VG) if there is any available. If not, we might need to install a new hard

drive and extend an existing VG to include at least part of the new drive. Then we can

extend the LV within the VG.

Note that a logical volume cannot be larger than the volume group in which it

resides. A volume group may contain multiple partitions and physical volumes that

encompass parts or all of multiple hard drives. This enables overall more efficient use

of the physical disk space available. Volume groups may also be extended to provide

additional disk space for the contained logical volumes.

Figure 1-1. Logical volume management allows combining partitions and entire
hard drives into volume groups

Chapter 1 LogiCaL VoLume management

4

 Extending a logical volume
The need to resize – especially to expand – an existing filesystem has been around since

the beginnings of Unix and probably back to the very first filesystems and has not gone

away with Linux. It has gotten easier, however, with logical volume management and the

ability to expand an active, mounted filesystem. The steps required to do this are fairly

simple but will differ depending upon specific circumstances.

Let’s start with a simple logical volume extension where space is already available in

the volume group. This section covers extending an existing logical volume in an LVM

environment using the command-line interface (CLI). This is the simplest situation in

which we might find ourselves and the easiest to accomplish.

This procedure can be used on a mounted, live filesystem only with the Linux 2.6

Kernel (and higher) and EXT3 and EXT4 filesystems. These requirements should not be

hard to meet because the most recent kernel series is 5.x.x and most distributions use

EXT3 or EXT4 filesystems by default.

I do not recommend that you resize a mounted and active volume on any critical

system, but it can be done and I have done so many times, even on the root (/)

filesystem. Use your judgment but consider how much pain might be experienced if

there were a failure during the resizing vs. the pain related to taking an active system

offline to perform the resizing.

Warning not all filesystem types can be resized. the eXt3, eXt4, BtrFS, and
XFS filesystems can be resized on an active, mounted filesystem. other filesystems
may not be able to be resized. Be sure to check the documentation for the
filesystem you want to resize to ensure that it can be done.

Note that volume groups and logical volumes can be extended while the system is up

and running; and the filesystem being expanded can be mounted and active during this

process. Let’s add 2GB of space to the /home filesystem.

All of the experiments in this chapter must be performed as root.

Chapter 1 LogiCaL VoLume management

5

EXPERIMENT 1-1

in a real-world environment, we would need to explore a little to determine whether the

volume group on which our /home logical volume exists has enough space on which to do so.

Let’s start with that. the vgs command lists all volume groups and the lvs command lists all

logical volumes.

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 2G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

|-sdb1 8:17 0 2G 0 part

`-sdb2 8:18 0 2G 0 part

sr0

[root@studentvm1 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 fedora_studentvm1 1 6 0 wz--n- <59.00g <21.00g

[root@studentvm1 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log

Cpy%Sync Convert

 home fedora_studentvm1 -wi-ao---- 2.00g

 root fedora_studentvm1 -wi-ao---- 2.00g

 swap fedora_studentvm1 -wi-ao---- 4.00g

 tmp fedora_studentvm1 -wi-ao---- 5.00g

 usr fedora_studentvm1 -wi-ao---- 15.00g

 var fedora_studentvm1 -wi-ao---- 10.00g

[root@studentvm1 ~]#

Chapter 1 LogiCaL VoLume management

6

these commands show that /home filesystem is located on the fedora_studentvm1 volume

group and that there is 21gB of space available on that Vg. that makes this task very simple.

First expand the logical volume from existing free space within the volume group. the

following command expands the LV by 2gB. the volume group name is fedora_studentvm1

and the logical volume name is home.

[root@studentvm1 ~]# lvextend -L +2G /dev/fedora_studentvm1/home

 Size of logical volume fedora_studentvm1/home changed from 2.00 GiB (512

extents) to 4.00 GiB (1024 extents).

 Logical volume fedora_studentvm1/home successfully resized.

[root@studentvm1 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log

Cpy%Sync Convert

 home fedora_studentvm1 -wi-ao---- 4.00g

 root fedora_studentvm1 -wi-ao---- 2.00g

 swap fedora_studentvm1 -wi-ao---- 4.00g

 tmp fedora_studentvm1 -wi-ao---- 5.00g

 usr fedora_studentvm1 -wi-ao---- 15.00g

 var fedora_studentvm1 -wi-ao---- 10.00g

[root@studentvm1 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 2.0G 0 2.0G 0% /dev

tmpfs 2.0G 0 2.0G 0% /dev/shm

tmpfs 2.0G 1.1M 2.0G 1% /run

tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup

/dev/mapper/fedora_studentvm1-root 2.0G 33M 1.8G 2% /

/dev/mapper/fedora_studentvm1-usr 15G 4.1G 9.9G 30% /usr

/dev/mapper/fedora_studentvm1-home 2.0G 7.7M 1.8G 1% /home

/dev/mapper/fedora_studentvm1-var 9.8G 1.2G 8.2G 13% /var

/dev/mapper/fedora_studentvm1-tmp 4.9G 21M 4.6G 1% /tmp

/dev/sda1 976M 179M 731M 20% /boot

tmpfs 395M 8.0K 395M 1% /run/user/992

tmpfs 395M 0 395M 0% /run/user/0

/dev/sdb1 2.0G 6.0M 1.8G 1%

[root@studentvm1 ~]#

Chapter 1 LogiCaL VoLume management

7

that extends the size of the logical volume but does not change the size of the eXt4

filesystem. notice the logical volume has increased to 4gB but the filesystem is still 2gB

in size. the following command expands the size of the filesystem to fill the space on the

volume.

[root@studentvm1 ~]# resize2fs /dev/fedora_studentvm1/home ; df -h

resize2fs 1.44.3 (10-July-2018)

Filesystem at /dev/fedora_studentvm1/home is mounted on /home; on-line

resizing required

old_desc_blocks = 1, new_desc_blocks = 1

The filesystem on /dev/fedora_studentvm1/home is now 1048576 (4k) blocks

long.

Filesystem Size Used Avail Use% Mounted on

<snip>

/dev/mapper/fedora_studentvm1-home 3.9G 9.7M 3.7G 1% /home

<snip>

[root@studentvm1 ~]#

We have added 2gB of space to the /home filesystem without rebooting or unmounting /home.

 Extending volume groups
The use of volume groups provides us a great deal of flexibility in managing disk space,

especially when we need to add more space to one or more logical volumes.

In this section we explore multiple options for expanding disk space using volume

groups. We will extend existing volume groups and create new ones to provide additional

space for logical volumes. We will then create a new volume or extend an existing one.

 Create a new volume group – 1
There are times when it will be necessary to create a new volume group to contain

one or more new logical volumes. Sometimes there is already space available on an

existing hard drive which is on /dev/sdb. We have one unused partition of 2GB and

approximately 16GB of as yet partitioned space.

In Experiment 1-2 we use an existing but unused partition to create a volume group.

Chapter 1 LogiCaL VoLume management

8

EXPERIMENT 1-2

Before beginning, verify the amount of space left on /dev/sdb. i know that we just did this in

experiment 1-1, but we should never make any assumptions about the current state of the

system, so i make it a practice to check before doing anything.

 [root@studentvm1 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 4G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

|-sdb1 8:17 0 2G 0 part /TestFS

`-sdb2 8:18 0 2G 0 part

the lsblk command tells us that the /dev/sdb drive has a total of 20gB of space and that the

/testFS partition, /dev/sdb1, that we created in Chapter 19 of Volume 1 uses 2gB as does the

used partition, /dev/sdb2. the remaining unallocated space is about 16gB in size. note that if

you unmounted the /testFS filesystem, the mount point would not show up, but it would be

/dev/sdb1.

i want to allocate the rest of the space on the /dev/sdb drive to this new volume group.

normally i would just delete the /dev/sdb2 partition to allow me to create a new partition

consisting of the rest of the space on the hard drive. that would be too easy and definitely

much less fun and informative. We will create a third partition on the drive, and these two

partitions will be combined into a single volume group on which we will create a logical

volume.

Create a new primary partition on /dev/sdb that uses the rest of the space on the drive. You

should be able to do this now without explicit instructions. then verify that the partition was

created.

Chapter 1 LogiCaL VoLume management

9

Create two physical volumes (pV) on each /dev/sdb2 and /dev/sdb3. We can do this with a

single command. the pvcreate command will warn that the btrfs partition you created in

Volume 1, Chapter 19, is detected and be sure you want to delete it, if you didn’t remove it

then.

[root@studentvm1 ~]# pvcreate /dev/sdb2 /dev/sdb3

 Physical volume "/dev/sdb2" successfully created.

 Physical volume "/dev/sdb3" successfully created.

now create a volume group encompassing both of the partitions /dev/sdb2 and /dev/sdb3.

[root@studentvm1 ~]# vgcreate NewVG-01 /dev/sdb2 /dev/sdb3

 Volume group "NewVG-01" successfully created

Verify the new volume group.

[root@studentvm1 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 NewVG-01 2 0 0 wz--n- 17.99g 17.99g

 fedora_studentvm1 1 6 0 wz--n- <59.00g <19.00g

notice that the combined size of the volume group newVg-01 is almost 18gB, all of which is

available. now create a new logical volume on this volume group. the -L 2g option defines the

size of the new volume. obviously, newVg-01 is the name of the volume group on which the

volume is to be created and --name testVol1 specifies the name of the new logical volume.

[root@studentvm1 ~]# lvcreate -L 2G NewVG-01 --name TestVol1

 Logical volume "TestVol1" created.

[root@studentvm1 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move

Log Cpy%Sync Convert

 TestVol1 NewVG-01 -wi-a----- 2.00g

 home fedora_studentvm1 -wi-ao---- 4.00g

 root fedora_studentvm1 -wi-ao---- 2.00g

 swap fedora_studentvm1 -wi-ao---- 4.00g

 tmp fedora_studentvm1 -wi-ao---- 5.00g

 usr fedora_studentvm1 -wi-ao---- 15.00g

 var fedora_studentvm1 -wi-ao---- 10.00g

Chapter 1 LogiCaL VoLume management

10

that was easy. however, the man page for lvcreate is long and complex, and it is not clear,

even from the examples, that this simple command can create a new volume.

now create an eXt4 filesystem on the new volume, mount it temporarily on /mnt, and test it by

creating a few files with some test data there. there is no need to create a permanent mount

point for this filesystem or to add an entry in /etc/fstab because this filesystem will not be used

for anything more than a bit of testing. note that this is the exact type of use case for which the

/mnt mount point is intended by the Linux FhS as we saw in Chapter 19 in Volume 1.

[root@studentvm1 ~]# mkfs -t ext4 /dev/mapper/NewVG--01-TestVol1

mke2fs 1.44.3 (10-July-2018)

Creating filesystem with 524288 4k blocks and 131072 inodes

Filesystem UUID: 7f14a6c7-b425-4307-8103-58e5b0bd593d

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information: done

[root@studentvm1 ~]# mount /dev/mapper/NewVG--01-TestVol1 /mnt

[root@studentvm1 ~]# ll /mnt

total 16

drwx------. 2 root root 16384 Jan 22 12:05 lost+found

[root@studentvm1 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 4G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

|-sdb1 8:17 0 2G 0 part /TestFS

|-sdb2 8:18 0 2G 0 part

Chapter 1 LogiCaL VoLume management

11

`-sdb3 8:19 0 16G 0 part

 `-NewVG--01-TestVol1 253:6 0 2G 0 lvm /mnt

sr0 11:0 1 1024M 0 rom

[root@studentvm1 ~]#

it is not necessary to spend a lot of time, but do a bit of testing on this new volume. Just

create a few files with some data in them and verify that all is working. When you are finished

testing, unmount the volume.

Although the two partitions we used to create the new volume group in

Experiment 1-2 are both on the same hard drive, it does illustrate that multiple partitions

and even entire hard drives can be combined into a single volume group.

 Create a new volume group – 2
In situations in which there is no existing space to be found, it will be necessary to add a

new drive in order to create that space. Experiment 1-3 takes us through the process of

adding a new hard drive and then creating a volume group and a logical volume in the

new space.

EXPERIMENT 1-3

in experiment 19-8 we created a new virtual hard drive for the Vm. as part of that process, you

increased the total number of ports on the Sata controller to at least 5 so we could add more

virtual hard drives to that controller. We added one hard drive in that experiment, and now we

add another virtual hard drive to that controller. if necessary you can refer to the illustrations in

experiment 19-8.

in the VirtualBox manager, open the Settings dialog and go to the Storage tab. on the Sata

controller line, click the rightmost icon to add a new hard drive. hover over the icon and the

hint says, “adds hard disk.” Click the Adds hard disk icon. then click the Create new disk

button. Leave VDi as the hard disk file type and click Next to continue. Leave the storage as

Dynamically allocated and click the Next button.

Chapter 1 LogiCaL VoLume management

12

on the File location and size dialog, we won’t change the default location but we will change

the file name to StudentVM1-2 and set the size to 2gB. We won’t need much space for this.

Click the Create button to complete creation of the new virtual hard drive. Click the OK button

to close the settings dialog.

use the lsblk command to determine the drive identifier. on my StudentVm1 host, it is /dev/

sdc and it should be on your virtual machine as well. You should be sure to use the correct

device for your computer.

now create a new physical volume (pV) on the new hard drive.

[root@studentvm1 ~]# pvcreate /dev/sdc

 Physical volume "/dev/sdc" successfully created.

extend the newVg-01 volume group to include the new physical volume.

[root@studentvm1 ~]# vgextend NewVG-01 /dev/sdc

 Volume group "NewVG-01" successfully extended

[root@studentvm1 ~]#

extend the logical volume. this command extends the logical volume by adding all of the

space on the new /dev/sdc physical volume.

[root@studentvm1 ~]# lvextend /dev/NewVG-01/TestVol1 /dev/sdc

 Size of logical volume NewVG-01/TestVol1 changed from 2.00 GiB (512

extents) to <4.00 GiB (1023 extents).

 Logical volume NewVG-01/TestVol1 successfully resized.

[root@studentvm1 ~]#

Finally, resize the filesystem.

[root@studentvm1 ~]# resize2fs /dev/NewVG-01/TestVol1

resize2fs 1.44.3 (10-July-2018)

Filesystem at /dev/NewVG-01/TestVol1 is mounted on /mnt; on-line resizing

required

old_desc_blocks = 1, new_desc_blocks = 1

The filesystem on /dev/NewVG-01/TestVol1 is now 1047552 (4k) blocks long.

if the resize2fs command fails, run e2fsck -f /dev/NewVG-01/TestVol1 and then

retry the resizing.

Chapter 1 LogiCaL VoLume management

13

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm [SWAP]

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 4G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

|-sdb1 8:17 0 2G 0 part /TestFS

|-sdb2 8:18 0 2G 0 part

`-sdb3 8:19 0 16G 0 part

 `-NewVG--01-TestVol1 253:6 0 4G 0 lvm /mnt

sdc 8:32 0 2G 0 disk

`-NewVG--01-TestVol1 253:6 0 4G 0 lvm /mnt

sr0 11:0 1 1024M 0 rom

[root@studentvm1 ~]#

We have expanded the capacity of a logical volume by adding space to the volume group from

a new drive.

Notice that none of the experiments in this chapter required rebooting the computer.

All of the experiments were performed with the system fully functional.

 Tips
Using LVM is already quite easy, but I have found a few things that can make it even

more so.

I use the extended filesystems unless there is clear reason to use another filesystem.

Not all filesystems support resizing, but XFS, BTRFS, EXT3, and EXT4 do. The EXT

filesystems are also very fast and efficient. The EXT filesystems can be tuned by a

knowledgeable SysAdmin to meet the needs of most environments if the default tuning

parameters do not.

Chapter 1 LogiCaL VoLume management

14

I use meaningful volume and volume group names to help make identification of

groups and volumes easy while working on them. I also use EXT filesystem labels for

the same reason. Filesystem labels can make mounting filesystems easy by reducing the

amount of typing required to mount them manually or to add the specification to the

/etc/fstab file.

Be aware that volume groups that span multiple physical volumes will fail

completely if one of the physical devices composing them fails. LVM is not inherently

fault tolerant although a properly designed software RAID system using LVM can be.

As always, make frequent backups of everything; see Chapter 18 in this volume of the

course.

 Advanced capabilities
LVM has some additional very powerful and interesting advanced features that are

beyond the scope of this course. It is possible to create hybrid volumes that consist of

rotating hard drives along with SSDs in which the SSD acts as a data cached for the

slower hard disk drive. LVM can be used to create RAID volumes, mirror volumes, and

snapshot volumes.

 Chapter summary
Logical volume management (LVM) provides a high-level tool for the advanced

management of disk space on modern Linux hosts. By abstracting the hardware into

volume groups and logical volumes, it enables the SysAdmin to create volumes that are

not limited by the physical space on individual hard drives. It provides the capability

to manage logical volumes by adding space when and where it is needed without

disturbing ongoing operations.

The LVM facility has many more functions than we have used in this chapter. They

enable capabilities such as creating and restoring backups of volume groups, deleting,

renaming, resizing, and more of the groups and volumes that make up the total of an

LVM system.

I suggest reading the man pages for these commands to at least get a fair idea of

the vast amount of control that can be exerted over an LVM system. You can use tab

completion to locate other LVM-related commands: lv<tab><tab>.

Chapter 1 LogiCaL VoLume management

15

 Exercises
Perform these exercises to complete this chapter:

 1. What are some of the reasons for using logical volume

management?

 2. How does the information available with the vgdisplay command

differ from that of the vgs command?

 3. I sometimes use a drive docking station to test hard drives I

suspect may have errors or that I want to attempt data recovery

from. How would I access the data on a hard drive if the drive had

been configured as the only member of a volume group?

 4. Expand the /tmp filesystem by 5GB onto some of the remaining

and yet unused space on /dev/sdc.

Chapter 1 LogiCaL VoLume management

17
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_2

CHAPTER 2

File Managers
 Objectives
In this chapter you will learn

• The functions of a file manager

• Basic usage of Midnight Commander (MC), a text-mode file manager

• Basic usage of Krusader, a graphical file manager based on Midnight

Commander

• Basic usage of Thunar, the graphical default file manager for the Xfce

desktop

• Short introductions to a few other file managers

 Introduction
One of the most common administrative tasks that end users and administrators alike

need to perform is file management. Managing files can consume a major portion of

your time. Locating files, determining which files and folders (directories) are taking

the most disk space, deleting files, moving files, and simply opening files for use in an

application are some of the most basic yet frequent tasks we do as computer users. File

management programs are tools that are intended to streamline and simplify those

necessary chores.

This chapter will be mostly about learning the Midnight Commander text-mode file

manager. The reason for this is that, as SysAdmins, we work mostly on the command line

and Midnight Commander will be available even if it might need to be installed. We will

also look at the Thunar graphical file manager which is the default for the Xfce desktop,

and we will take a very brief look at some other available file managers.

18

As with every aspect of Linux, there are many options available for file managers.

A few of those provided by my usual distribution, Fedora, are listed in the following.

Some are text and others are graphical interfaces.

 Text-mode interface
• Midnight Commander

• Vifm

• nnn

 Graphical interface
• Thunar

• Krusader

• Dolphin

• XFE

I have used each of these at different times for various reasons, and they all have

qualities to recommend them. Ranging from very simple to feature-packed, there is a file

manager available that will meet your needs. This chapter looks briefly at each of the file

managers listed.

 Default file manager
Like most Linux distributions, Fedora has a default graphical desktop file manager,

currently Thunar for the Xfce desktop. The Linux desktop usually has an icon that looks

like a little house; that is your "home" directory, that is, folder. Click the Home icon and

the default file manager opens with your home directory as the PWD, or Present Working

Directory. The Home icon is located on the desktop along with the Trash icon and some

drive icons, as shown in Figure 2-1.

Chapter 2 File Managers

19

Each desktop such as Xfce, KDE Plasma, Cinnamon, LXDE, and so on has a

default graphical file manager. In Xfce the default file manager can be changed using

Applications ➤ Settings ➤ Preferred Applications ➤ Utilities ➤ File Manager. We will

cover Thunar in more detail later in this chapter along with installing and using some of

the other graphical file managers.

Figure 2-1. The Xfce desktop with the Home icon and the Thunar file manager
open

Chapter 2 File Managers

20

 Text-mode file managers
Because we SysAdmins spend so much time using the command-line interface, we

will spend most of our time in this chapter on text-mode file managers. Text-mode file

managers are particularly useful when a GUI is not available, but they can also be used

as a primary file manager in a desktop terminal emulator session even when you are

using a GUI.

There are several fine text-mode file managers to choose from. My personal favorite

is Midnight Commander, but there are others that are also powerful, usable, and well

respected.

 Midnight Commander
Midnight Commander1 is a text-based program that I use frequently because I often have

need to interact with local and remote Linux computers using the CLI. It can be used

with almost any of the common shells and remote terminals through SSH.

Midnight Commander provides an interactive, visually based, text-mode program for

navigating the filesystem and managing files. It can be used to copy, edit, move, or delete

files and complete directory trees. It can also be used to expand archive files of various

types and explore their contents.

You can start Midnight Commander from the CLI with the mc command. Figure 2- 2

shows Midnight Commander in the Konsole terminal emulator program. The user

interface for Midnight Commander is two text-mode panels, left and right, which each

displays the contents of a directory. Along the very top of the Midnight Commander

(a.k.a. MC) interface is a menu bar containing menu items for configuring Midnight

Commander the current panel and a selection bar that highlights one line of the current

directory is displayed in the current panel.

The top of each panel displays the name of the current directory for that panel. The

directory entry for the current panel is highlighted.

Navigation is accomplished with the arrow and tab keys. The Enter key can be used

to enter a highlighted directory. The bottom portion of the interface displays information

about the file or directory highlighted in each panel, a hint feature and a line of function

key labels; you can simply press the function key on your keyboard that corresponds

1 Midnight Commander, https://midnight-commander.org/

Chapter 2 File Managers

https://midnight-commander.org/

21

to the function you want to perform. Between the hint line and the function keys is a

command line. You can type any CLI command here you would at the standard Bash or

other shell prompt; it is, after all, a Bash prompt.

EXPERIMENT 2-1

as the root user, install Midnight Commander.

[root@studentvm1 ~]# dnf -y install mc

then as the user student, ensure that the pWD is your home directory. start Midnight

Commander with the mc command.

Midnight Commander starts with two open panels. switch between the panels using the Tab

key. Use the arrow keys to move the highlight bar (cursor) up and down the list of files and

directories on the current panel. highlight the Documents directory in the right panel and press

the enter key to change into that directory.

Figure 2-2. Midnight Commander can be used to move, copy, and delete files

Chapter 2 File Managers

22

Note i started Midnight Commander using the -a option which uses asCii plain
text characters to draw lines instead of advanced line drawing characters as
shown in Figure 2-2. those line drawing characters do not line up quite as well
when copied from the terminal session into a document.

Moving up to the parent directory can be accomplished by highlighting the double-dot (..) entry

at the top of the list in the panel and pressing the enter key. in the left panel in Figure 2-3, this

entry is shown at the top and the size column shows “Up—Dir.” But don’t do that now.

Figure 2-3. Midnight Commander with two panels open. The Tab key switches
between panels

Chapter 2 File Managers

23

to enter a command at the Midnight Commander command prompt, just start typing. let’s

look at the value of the $shell variable.

|-----------------------------------||------------------------------------|
|UP--DIR ||UP--DIR |
+--------------- 3690M/3968M (92%) -++---------------- 3690M/3968M (92%) -+

Hint: Want your plain shell? Press C-o, and get back to MC with C-o again.

[student@studentvm1 ~]$ echo $SHELL [^]

 1Help 2Menu 3View 4Edit 5Copy 6RenMov 7Mkdir 8Delete 9PullDn 10Quit

the result is shown in a sub-shell. press enter to exit the sub-shell and return to MC.

in the right panel, scroll down to highlight one of the files that has some content. the size

of a file is shown in the size column. View the file content by pressing the F3 key as seen in

Figure 2-4. this is a viewer only and you cannot edit the file from within this window. the F4

key would open the file in an editor.

/home/student/Documents/testfile03 1902/41876 4%

[0.000000] Linux version 4.19.10-300.fc29.x86_64 (mockbuild@bkernel03.phx2.fedoraproj

ect.org) (gcc version 8.2.1 20181105 (Red Hat 8.2.1-5) (GCC)) #1 SMP Mon Dec 17 15:34:44

UTC 2018

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-4.19.10-300.fc29.x86_64 root=/dev/mapper

/fedora_studentvm1-root ro resume=/dev/mapper/fedora_studentvm1-swap rd.lvm.lv=fedora_stu

dentvm1/root rd.lvm.lv=fedora_studentvm1/swap rd.lvm.lv=fedora_studentvm1/usr rhgb quiet

LANG=en_US.UTF-8

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'

[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256

[0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'st

andard' format.

[0.000000] BIOS-provided physical RAM map:

<snip>

[0.000000] SMBIOS 2.5 present.

[0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006

[0.000000] Hypervisor detected: KVM

[0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00

1Help 2UnWrap 3Quit 4Hex 5Goto 6 7Search 8Raw 9Format 10Quit

Figure 2-4. Press the F3 key to view the content of a file

Chapter 2 File Managers

24

the top line of the viewer shows the path and file name, the distance into the file being viewed

compared to the total amount of data in the file (1902/41876), and the percentage of the

distance into the file being viewed.

there are navigation, search, and viewing options that can be accessed using the Function

keys as shown on the bottom line. press F3 again or F10 to quit the viewer and return to the

main MC window.

notice the function key assignments at the bottom of the MC window. F1 will display some

help. there are also function keys for move, copy, delete, and quit, among others. press the

corresponding function key on the keyboard to perform that function.

Be sure that the F1 and F10 keys are not being captured by the terminal emulator. Use the

menu bar of the Xfce4-terminal emulator session and select Edit ➤ Preferences and then

select the Advanced tab. add check marks to the “Disable menu shortcut key (F10 by
default)” and “Disable help window shortcut key (F1 by default)” options to allow Midnight

Commander to capture these keystrokes.

this should not be an issue for virtual consoles, and if you’re using a gUi terminal emulator,

you can also click the F1 or F10 using the mouse.

highlight one of the files in the right panel and press F5 to start the copy of the file. this opens

the Copy dialog shown in Figure 2-5.

Chapter 2 File Managers

25

Multiple files can be selected on which to perform move, copy, or delete operations. highlight

each file and press the Insert key to select each desired file. in this case we only want to copy

one file. Use the down arrow key to sequence through the options and highlight OK, then press

Enter to complete the operation.

switch to the left panel and scroll down until you can see the file you copied to verify that it is

in the directory there. highlight the copied file in the left panel and press F8 to delete that file.

a dialog opens to allow verification that you want to delete the selected file or files. select Yes

and press Enter.

switch back to the right panel and select several non-adjacent files using the insert key.

highlight each desired file and press the insert key to “tag” it, as the MC documentation terms

selecting a file or directory. Your results should be similar to those in Figure 2-6.

Figure 2-5. The Copy dialog provides some options for the copy command

Chapter 2 File Managers

26

after tagging some files in the right directory panel, press the F8 key and then verify that you

want to delete the files. all of the tagged files will be deleted. if the selection bar is highlighting

an untagged file, that file will not be deleted. We could have copied or moved the files instead

of deleting them. You could also simply run the commands from the MC command line.

new directories can be created in a couple ways. First just type the following command at the

Midnight Commander command line as shown in Figure 2-7. Just start typing as the selection

bar is only used within the directory panels. press Enter.

Figure 2-6. Select – or “tag” – several files in the right panel

+---------------------- 3758M/3968M (94%) -++----------------------- 3758M/3968M (94%) -+

Hint: Do you want Lynx-style navigation? Set it in the Configuration dialog.

[student@studentvm1 Documents]$ mkdir Directory01 [^]

1Help 2Menu 3View 4Edit 5Copy 6RenMov 7Mkdir 8Delete 9PullDn 10Quit

Figure 2-7. Commands can be entered on the MC command line

Chapter 2 File Managers

27

another way to create a directory is to use the F7 key and use the dialog box in Figure 2-8.

the name of the directory or file that is under the selection bar will be displayed in the dialog.

Delete that, type in the directory name, and select OK and press Enter to complete creating

the directory.

let’s take a few moments to look at the menu items across the top of the MC interface. the

left and right menus allow you to personalize the display of data in the left and right panels,

respectively. the File menu allows file operations such as creating links, changing the file

mode and ownership, displaying only files that match a filter, making new directories, deleting

and copying files, and more. some of these functions are duplicated by the function keys.

there are a couple changes i like to make to the MC interface. i do like to view the file mode

(permissions) and size when the selection bar is on them. this data is shown in the mini status

line. it is necessary to make this configuration change to each panel separately. in Figure 2-9

i have already made this change to the left panel, and you can see mode and size of the file

dmesg1.txt at the bottom of the left panel. although the selection bar is in the right panel at

the moment, the last selection in the left panel is the one shown in the mini status line.

to access the top menu bar, press the F9 key. Use the right and left arrow keys to move the

highlight between the main menu items; select the Right menu and then use the down arrow

key to open the drop-down menu under the right menu as shown in Figure 2-9. Continue to

use the down arrow key to select the Listing format menu item and press Enter.

Figure 2-8. Type a new directory name in this dialog

Chapter 2 File Managers

28

the listing format dialog is shown in Figure 2-10. Use the arrow keys to highlight User mini
status. press the space bar to place an X in the check box. select OK and press enter. now

do this for the left panel as well.

Figure 2-9. To view the file mode and size, press F9 to access the top menu and
select Listing format for the left and right panel settings

Figure 2-10. Place an X in the User mini status check box to view file size and
mode

Chapter 2 File Managers

29

i also like to use the Vim editor rather than the default MC internal editor. that internal editor is

perfectly fine, but my fingers prefer the Vim key combinations because they remember them

after 20 years working with Vi and Vim. this can be changed too.

From the top menu bar, select Options ➤ Configuration and you will see the Configure
options dialog in Figure 2-11. Use the arrow keys to select Use internal edit and press the

space bar to remove the X from the check box. select OK and press Enter to complete this

change.

Figure 2-11. Remove the X from “Use internal edit” to use an external editor
instead

Chapter 2 File Managers

30

the F4 key is used to edit an existing, selected file. if you have an F14 key on your

keyboard, it can be used to start the editor with a new, empty file, or you can use shift+F4

to simulate the F14 key. these keys invoke the Vim editor now that we have changed

the editor option to external. a different external editor may be specified in the $eDitOr

environment variable.

there are other options i sometimes change, such as the colors. Select Options ➤

Appearance as shown in Figure 2-12. the resulting dialog has the current skin (color

combination) highlighted. to choose a new skin, press Enter to view the list. scroll to the one

you want and press Enter. the change is immediate, and if it looks like it will be what you

want, select OK and press Enter.

Figure 2-12. The Options ➤ Appearance dialog allows selection of “skins” for
various colors

Chapter 2 File Managers

31

any changes you make to viewing modes or options must be saved because they are only

temporary otherwise and will no longer be in effect the next time Midnight Commander is

started. save the changes you have made by accessing the top menu bar then Options ➤

Save setup.

MC is very powerful with many features that make it one of the most useful tools i have in my

toolbox. Midnight Commander has a man page (man mc) that is over 2600 lines long. Be sure

to read it to discover all of the capabilities and options available.

like the rest of linux, there is much more to MC than we have time for in this experiment. You

should spend more time experimenting on your own with MC to learn more about it.

exit from Midnight Commander by pressing the F10 key. You may need to then press Enter to

answer “Yes” to the question.

Midnight Commander has a virtual filesystem that enables connecting a local

instance with remote hosts using FTP, SMB (SAMBA), and SSH protocols. This allows

files to be copied from one host to another. Files on a remote host can be managed

locally with MC.

 Other text-mode file managers
There are a number of other text-mode file managers available. Other than while

researching this chapter, I have never used any of them because I find MC meets all

of my text-mode file manager needs. We will only look at a couple that have Fedora

packages available which makes them easy to install and which are, in my opinion at

least, reasonably easy to use.

 Vifm
Vifm is a dual-pane file manager that provides a Vim-like environment. If you like Vim

and its commands are embedded in your muscle memory, this is the file manager

for you. Figure 2-13 illustrates the very minimalistic interface. The panes can be split

horizontally or vertically.

Chapter 2 File Managers

32

You can highlight a file and use a command like dd to delete a file. Vifm pops up

a verification dialog, and you can respond Yes or No to complete the action. The yy

command yanks (copies) a file in one pane and the p command pastes it in the other

pane. The Tab key is used to switch active panes. Select a file and press the Enter key to

open the file for editing with Vim. Exit from Vim in the normal manner. You can also exit

from Vifm using the same keystrokes as used to exit from Vim itself. Vifm supports multi-

file operations like delete, move, and copy.

The Fedora package name is Vifm if you want to install it.

 nnn
The nnn file manager, as shown in Figure 2-14, is a very simple, single pane tool that

offers no frills. Only one directory and its content is displayed at a time. Use the arrow

keys to select a directory and press the Enter key to make that directory the PWD. Select

a file and press e to edit the file in Vim.

Figure 2-13. Vifm is a dual-pane file manager that uses Vim-like key
combinations

Chapter 2 File Managers

33

A press of the n key opens a dialog to create a new file or directory. The package

name is nnn to install this file manager.

 Graphical file managers
Like all Linux tools, there are plenty of choices when it comes to graphical file managers.

We will discuss a few of these here, but these are not all of the ones from which you

might choose.

[1 2 3 4] /home/student/Documents

2019-01-27 13:52 / Directory01/
2019-01-27 13:53 / Directory02/
2018-12-30 16:32 0B file01
2018-12-30 16:32 0B file02
2018-12-30 16:32 0B file03

> 2018-12-30 16:32 0B file04
2018-12-30 16:32 0B file05
2018-12-30 16:32 0B file06
2018-12-30 16:32 0B file07
2018-12-30 16:32 0B file08
2018-12-30 16:33 13B file09
2018-12-30 16:32 0B file10
2018-12-30 16:32 0B file11
2018-12-30 16:32 0B file12
2018-12-30 16:32 0B file13
2018-12-30 16:32 0B file14
2018-12-30 16:32 0B file15
2018-12-30 16:32 0B file16
2018-12-30 16:32 0B file17
2018-12-30 16:32 0B file18
2018-12-30 16:32 0B file19
2018-12-30 16:32 0B file20

6/55 [file04]

Figure 2-14. nnn is a single pane file manager with a very simple interface

Chapter 2 File Managers

34

 Krusader
Krusader is an exceptional file manager that is modeled after Midnight Commander. It

uses a similar two-panel layout but in a graphical interface as shown in Figure 2- 15

instead of a text-mode interface. Krusader allows you to use the same keyboard

navigation and command structure as Midnight Commander and also allows you to

use the mouse or trackball to navigate and perform all of the standard drag-and-drop

operations you would expect on files.

The primary user interface for Krusader, much like that of Midnight Commander, is

two text-mode panels, left and right, which each displays the contents of a directory. The

top of each panel contains the name of the current directory for that panel. In addition,

tabs can be opened for each panel and a different directory can be open in each tab.

Navigation is accomplished with the arrow and tab keys or with the mouse. The Enter

Figure 2-15. Krusader is much like Midnight Commander, but uses a GUI and
provides significantly more flexibility

Chapter 2 File Managers

35

key can be used to enter a highlighted directory or you can double-click the desired

directory. Each tab and panel can be configured to show files in one of two different

modes. In Figure 2-15, files are displayed in the detailed view which, in addition to the

file name and an icon or preview, shows the file size, the date it was last modified, the

owner, and the file permissions.

Along the very top of the Krusader graphical user interface are a menu bar and tool

bar containing menu items for configuring Krusader and managing files. The bottom

portion of the interface displays a line of function key labels; you can simply press the

function key on your keyboard that corresponds to the function you want to perform.

By default Krusader saves the current tab and directory locations as well as other

configuration items when you exit so that you will always return to the last configuration

and set of directories when restarting the application. This configuration can be changed

so that your home or some other directories are always the ones opened at startup.

EXPERIMENT 2-2

as root, install Krusader.

[root@studentvm1 ~]# dnf install -y krusader

this command installed over 75 packages on my studentVM1 virtual machine although that

number may be significantly different for you. Krusader was written to integrate with the KDe

desktop. Many of the packages are needed to support the KDe base functions of Krusader.

start Krusader on the Xfce desktop: Applications ➤ Accessories ➤ Krusader.

since this is the first time you will have used Krusader, it will show you a Welcome dialog and

then take you through a dialog to help you perform a starting configuration. it is not necessary

to make any changes at this time, so click the OK buttons and then the Close button to

proceed directly to the Krusader window.

Krusader, like Midnight Commander, starts with two open panels. switch between the panels

using the Tab key or clicking with the mouse.

highlight the Documents directory in the right panel and press the Enter key or just double-

click it.

Chapter 2 File Managers

36

Change directories by double-clicking the desired directory. Moving up to the parent directory

can be accomplished by double-clicking the double-dot (..) entry. You can also move to the

parent of the directory in the highlighted panel by clicking the arrow icon on the tool bar.

notice the function key assignments at the bottom of the Krusader window. these function

keys provide functions similar to those of Midnight Commander. F1 will display some help.

there are also function keys for move, copy, delete, and quit, among others. simply press the

corresponding function key on the keyboard or click the button to perform that function. You

can also pop up a context menu by right-clicking a desired file and then taking one of the

actions from the menu.

Figure 2-16 shows how to configure Krusader to display the embedded Konsole terminal

session and the command line. go ahead and configure those both now.

Figure 2-16. Configuring Krusader to show both the built-in command-line
interface and the Konsole terminal window panel

Chapter 2 File Managers

37

after having configured the terminal session and the simple command line, you can issue

Cli commands simply by typing them; the Cli entry text box is at the bottom, just above the

function key assignment line. the cursor there is always active while you are in navigation

mode. to change the pWD of the current panel to the /tmp directory, type cd /tmp and press

the Enter key, just as you would from the shell prompt.

Using the gUi, navigate to your ~/Documents directory. highlight the file dmesg1.txt and press

F3. this shows the contents of that file. scroll up and down the file using the page Up and

page Down keys or using the scrollbar. Click the X in the View tab to close the view of the file

and return to the main Krusader window. in order to edit a file, the Kate gUi text editor would

need to be installed.

locate the dmesg2.txt or similar file and press F8 to delete it. Click the Delete button to

complete the deletion.

take some time to explore Krusader on your own.

press the F10 key to exit from Krusader.

I use Krusader as one of my main GUI file managers. It is powerful and easy to use,

especially to someone familiar with Midnight Commander. The biggest drawback to

Krusader is the large number of other KDE programs required to support it.

 Thunar
Thunar is a lightweight file manager that is the default for the Xfce desktop. Thunar,

shown in Figure 2-17, has a single directory pane with which to work. It also has a

sidebar for navigation. Thunar is a simple, decent file manager that is good for many

beginners due to its simplicity.

Chapter 2 File Managers

38

The primary user interface for Thunar is fairly simple with a navigation sidebar and a

single directory window in which to work. It does support multiple tabs but not splitting

the panel into two. Navigation is accomplished with the arrow and tab keys or the

mouse. The Enter key can be used to enter a highlighted directory.

 Dolphin
Dolphin is somewhat like Krusader. It can be configured for two directory navigation

panels and it adds a sidebar that allows for easy filesystem navigation. It also supports

tabs; however, when restarted, it always reverts to the default of one pair of directory

panels that display your home directory.

Figure 2-17. Thunar is the default file manager for the Xfce desktop

Chapter 2 File Managers

39

The primary user interface for Dolphin can be configured to be very similar to

Krusader. Navigation is accomplished with the arrow and tab keys or the mouse. The

Enter key can be used to enter a highlighted directory. Dolphin also supports expanding

the directory trees (folders) in both the sidebar navigation panel and the directory

panels.

Dolphin is not installed by default from the Xfce live image so it needs to be installed

manually. Dolphin requires about 35 additional dependencies which are also installed.

The package name is “dolphin” in case you want to install and test it. I did find that

Dolphin has problems with display of some icons; you can see this in Figure 2-18. I did

not try to fix this problem.

Figure 2-18. After some configuration, the Dolphin file manager uses two
directory navigation panels and a navigation sidebar

Chapter 2 File Managers

40

 XFE
XFE, seen in Figure 2-19, is one of the more interesting of the file managers as it has an

interface all its own and is a bit more flexible than some of the other file managers.

XFE may be configured to display one or two directory panels and the navigation bar

which is optional. It performs all the expected drag-and-drop functions, but it requires

some manual configuration to link some desired applications like LibreOffice with

specific file types. It has a reasonable set of configuration options, but nowhere near

those of Krusader.

XFE is also quite restrictive about retaining its own set of "themes" and has no option

to use the desktop color scheme, icons, decorations, or widgets.

Install the “xfe” package to experiment with this file manager.

Figure 2-19. The XFE file manager

Chapter 2 File Managers

http://en.wikipedia.org/wiki/Xfe

41

 Chapter summary
There are many file managers, and that one which I have not covered may already be

your favorite. Your choice of file manager should be the one that works best for you.

GNU/Linux provides several viable choices and one will most likely meet most of your

needs. If your favorite does not meet your needs for a particular task, you can always use

the one that does.

All of these file managers are free of charge and distributed under some form of

open source license. All are available from common, trusted repositories for Fedora and

CentOS.

 Exercises
Perform these exercises to complete this chapter:

 1. For single-panel GUI file managers like Thunar, is it possible to

use a second instance to drag and drop actions such as copy or

move?

 2. Configure the right pane of Midnight Commander to view the Info

of the file highlighted by the selection bar in the left panel. What

information does this Info panel display about the filesystem?

 3. Is this configuration, you have just done in Exercise 2 persistent

between restarts of MC?

 4. Continuing with Midnight Commander, switch the two panels so

that the Info panel is on the right.

 5. Convert the MC Info panel to show a directory tree. Are the

subdirectories displayed when the directory tree is first entered?

Chapter 2 File Managers

43
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_3

CHAPTER 3

Everything Is a File
 Objectives
In this chapter you will learn

• The definition of a file

• To understand what “everything is a file” really means and why it is

important

• The implications of “everything is a file”

• How to use common Linux file management tools to access hardware

as files

This is one of the most important concepts that make Linux especially flexible and

powerful: everything is a file. That is, everything can be the source of a data stream,

the target of a data stream, or in many cases both. In this chapter you will explore what

“everything is a file” really means and learn to use that to advantage as a SysAdmin.

The whole point with "everything is a file" is ... the fact that you can use
common tools to operate on different things.

—Linus Torvalds in an email.

 What is a file?
Here is a trick question for you. Which of the following are files?

• Directories

• Shell scripts

• Running terminal emulators

44

• LibreOffice documents

• Serial ports

• Kernel data structures

• Kernel tuning parameters

• Hard drives – /dev/sda

• /dev/null

• Partitions – /dev/sda1

• Logical volumes (LVM) – /dev/mapper/volume1-tmp

• Printers

• Sockets

To Unix and Linux, they are all files and that is one of the most amazing concepts

in the history of computing. It makes possible some very simple yet powerful methods

for performing many administrative tasks that might otherwise be extremely difficult or

impossible.

Linux handles almost everything as a file. This has some interesting and amazing

implications. This concept makes it possible to copy an entire hard drive, boot record

included, because the entire hard drive is a file, just as are the individual partitions.

“Everything is a file” is possible because all devices are implemented by Linux

as these things called device files. Device files are not device drivers, rather they are

gateways to devices that are exposed to the user.

 Device files
Device files are technically known as device special files.1 Device files are employed

to provide the operating system and the users an interface to the devices that they

represent. All Linux device files are located in the /dev directory, which is an integral

part of the root (/) filesystem because they must be available to the operating system

during early stages of the boot process – before other filesystems are mounted.

1 Wikipedia, Device File, https://en.wikipedia.org/wiki/Device_file

Chapter 3 everything is a File

https://en.wikipedia.org/wiki/Device_file

45

 Device file creation
Over the years, chaos overtook the /dev directory with huge numbers of mostly

unneeded devices. The udev daemon was created to simplify this problem.

Understanding how udev works is key to dealing with devices, especially hot-plug

devices and how they can be managed.

The /dev/directory has always been the location for the device files in all Unix and

Linux operating systems. In the past, device files were created at the time the operating

system was created. This meant that all possible devices that might ever be used on a

system needed to be created in advance. In fact, tens of thousands of device files needed

to be created to handle all of the possibilities. It became very difficult to determine which

device file actually related to a specific physical device or if one were missing.

 udev simplification
udev is designed to simplify this problem by creating entries in /dev only for those devices

that actually currently exist at boot time or which have a high probability of actually

existing on the host. This significantly reduces the total number of device files required.

In addition, udev assigns names to devices when they are plugged into the system,

such as USB storage and printers, and other non-USB types of devices as well. In fact,

udev treats all devices as plug and play (PnP), even at boot time. This makes dealing with

devices consistent at all times, whether at boot time or when they are hot-plugged later. It

is not necessary for us as SysAdmins to do anything else for the device files to be created.

The Linux kernel takes care of everything. It is only possible to mount the partition in

order to access its contents after the device file such as /dev/sdb1 has been created.

Kernel developer and maintainer Greg Kroah-Hartman, one of the creators of udev,

has written a paper2 that provides some insight into the details of udev and how it is

supposed to work. Note that udev has matured since the article was written and some

things have changed, such as the udev rule locations and structure. Regardless, this

paper provides some deep and important insight into udev and current device naming

strategies which I’ll attempt to summarize in this chapter.

2 Greg Kroah-Hartman, Linux Journal, Kernel Korner – udev – Persistent Naming in User Space,
www.linuxjournal.com/article/7316

Chapter 3 everything is a File

https://www.linuxjournal.com/article/7316

46

 Naming rules
In modern versions of Fedora and CentOS, udev stores its default naming rules in files in

the /usr/lib/udev/rules.d directory and its local rules and configuration files in the /etc/

udev/rules.d directory. Each file contains a set of rules for a specific device type. CentOS

6 and earlier stored the global rules in /lib/udev/rules.d/. The location of the udev rules

files may be different on your distribution.

In earlier versions of udev, there were many local rule sets created, including a set

for network interface card (NIC) naming. As each NIC was discovered by the kernel and

renamed by udev for the very first time, a rule was added to the rule set for the network

device type. This was initially done to ensure consistency before names had changed

from “ethX” to more consistent ones.

RULE CHANGE BLUES

One of the main consequences of using udev for persistent plug and play naming is that it

makes things much easier for the average non-technical user. this is a good thing in the long

run; however, there have been migration problems, and many sysadmins were – and still

are – not happy with these changes.

the rules changed over time and there were at least three significantly different naming

conventions for network interface cards. that naming disparity caused a great deal of

confusion, and many configuration files and scripts had to be rewritten multiple times during

the period of these changes.

For example, the name of a niC that was originally eth0 would have changed from that to em1

or p1p2 and finally to eno1. i wrote an article3 on my web site that goes into some detail about

these naming schemes and the reasons behind them.

now that udev has multiple consistent default rules for determining device names, especially

for niCs, storing the specific rules for each device in local configuration files is no longer

required to maintain that consistency.

3 David Both, Network Interface Card (NIC) name assignments, www.linux-databook.
info/?page_id=4243

Chapter 3 everything is a File

https://www.linux-databook.info/?page_id=4243
https://www.linux-databook.info/?page_id=4243

47

 Device data flow
Let's look at the data flow of a typical command to visualize how device special files

work. Figure 3-1 illustrates a simplified data flow for a simple command. Issuing the

cat /etc/resolv.conf command from a GUI terminal emulator such as Konsole

or xterm causes the resolv.conf file to be read from the disk with the disk device driver

handling the device-specific functions such as locating the file on the hard drive and

reading it. The data is passed through the device file and then from the command to the

device file and device driver for pseudo-terminal 6 where it is displayed in the terminal

session.

Of course the output of the cat command could have been redirected to a file in

the following manner, cat /etc/resolv.conf > /etc/resolv.bak, in order to create a

backup of the file. In that case the data flow on the left side of Figure 3-1 would remain

the same, while the data flow on the right would be through the /dev/sda2 device file,

the hard drive device driver, and then back onto the hard drive in the /etc directory as

the new file, resolv.bak.

Figure 3-1. Simplified data flow with device special files

These device special files make it very easy to use standard streams (STDIO) and

redirection to access any and every device on a Linux or Unix computer. They provide a

consistent and easy to access interface to every device. Simply directing a data stream to

a device file sends the data to that device.

Chapter 3 everything is a File

48

One of the most important things to remember about these device special files is that

they are not device drivers. They are most accurately described as portals or gateways

to the device drivers. Data is passed from an application or the operating system to the

device file which then passes it to the device driver which then sends it to the physical

device.

By using these device files which are separate from the device drivers, it is possible for

users and programs to have a consistent interface to every device on the host computer.

This is how common tools can be used to operate on different things as Linus says.

The device drivers are still responsible for dealing with the unique requirements of

each physical device. That is, however, outside the scope of this book.

 Device file classification
Device files can be classified in at least two ways. The first and most commonly used

classification is that of the type of data stream commonly associated with the device. For

example, tty and serial devices are considered to be character based because the data

stream is transferred and handled one character or byte at a time. Block-type devices

such as hard drives transfer data in blocks, typically a multiple of 256 bytes.

Let's take a look at the /dev/directory and some of the devices in it.

EXPERIMENT 3-1

this experiment should be performed as the user student.

Open a terminal session and display a long listing of the /dev/directory.

[student@studentvm1 ~]$ ls -l /dev | less

<snip>

brw-rw----. 1 root disk 8, 0 Jan 30 06:53 sda

brw-rw----. 1 root disk 8, 1 Jan 30 06:53 sda1

brw-rw----. 1 root disk 8, 2 Jan 30 06:53 sda2

brw-rw----. 1 root disk 8, 16 Jan 30 06:53 sdb

brw-rw----. 1 root disk 8, 17 Jan 30 06:53 sdb1

brw-rw----. 1 root disk 8, 18 Jan 30 06:53 sdb2

brw-rw----. 1 root disk 8, 19 Jan 30 06:53 sdb3

brw-rw----. 1 root disk 8, 32 Jan 30 06:53 sdc

Chapter 3 everything is a File

49

<snip>

crw-rw-rw-. 1 root tty 5, 0 Jan 30 06:53 tty

crw--w----. 1 root tty 4, 0 Jan 30 06:53 tty0

crw--w----. 1 root tty 4, 1 Jan 30 11:53 tty1

crw--w----. 1 root tty 4, 10 Jan 30 06:53 tty10

crw--w----. 1 root tty 4, 11 Jan 30 06:53 tty11

crw--w----. 1 root tty 4, 12 Jan 30 06:53 tty12

<snip>

the results from this command are too long to show here in full, but you will see a list of

device files with their file permissions and their major and minor identification numbers.

the voluminous output of the ls -l command is piped through the less utility to allow you

to page through the results; use the page Up, page Down, and up and down arrow keys to

move around. type q to quit and get out of the less display.

The pruned listing of device files shown in Experiment 3-1 are just a few of the ones

in the /dev/directory on my StudentVM1 virtual machine. The ones on your VM should

be very similar if not identical. They represent disk and tty type devices among many

others. Notice the leftmost character of each line in the output. The ones that have a “b”

are block-type devices and the ones that begin with “c” are character devices.

The more detailed and explicit way to identify device files is using the device major

and minor numbers. The disk devices have a major number of 8 which designates

them as SCSI block devices. Note that all parallel ATA (PATA)4 and serial ATA (SATA)5

hard drives and SSDs have been managed by the SCSI subsystem because the old ATA

subsystem was deemed many years ago as not maintainable due to the poor quality of its

code. As a result, hard drives that would previously be designated as “hd[a-z]” are now

referred to as “sd[a-z]”.

You can probably infer the pattern of disk drive minor numbers in the small sample

shown earlier. Minor numbers 0, 16, 32, and so on up through 240 are the whole disk

numbers. So major/minor 8/16 represents the whole disk /dev/sdb and 8/17 is the

device file for the first partition, /dev/sdb1. Numbers 8/34 would be /dev/sdc2.

4 Wikipedia, Parallel ATA, https://en.wikipedia.org/wiki/Parallel_ATA
5 Wikipedia, Serial ATA, https://en.wikipedia.org/wiki/Serial_ATA

Chapter 3 everything is a File

https://en.wikipedia.org/wiki/Parallel_ATA
https://en.wikipedia.org/wiki/Serial_ATA

50

The tty device files in the preceding list are numbered a bit more simply from tty0

through tty63. I find the number of tty devices a little incongruous because the whole

point of the new udev system is to create device files for only those devices that actually

exist; I am not sure why it is being done this way. The device files on your host should

have a timestamp that is the same as the last boot time.

The Linux Allocated Devices6 file at Kernel.org is the official registry of device types

and major and minor number allocations. It can help you understand the major/minor

numbers for all currently defined devices.

 Fun with device files
Let's take a few minutes now and have some fun with some of these device files. We will

perform a couple fun experiments that illustrate the power and flexibility of the Linux

device files.

Most Linux distributions have multiple virtual consoles, 1 through 7, that can be

used to log in to a local console session with a shell interface. These can be accessed

using the key combinations HostKey-F1 for console 1, HostKey-F2 for console 2, and so

on. Virtual consoles were introduced in Volume 1, Chapter 7, of this course. The default

HostKey is the right Control key, but I have reconfigured mine to be the left Win key,

a.k.a. the super key, because I find it easier. You can change the default HostKey with the

VirtualBox manager.

EXPERIMENT 3-2

in this experiment we will show that simple commands can be used to send data between

devices, in this case, different console and terminal devices. perform this experiment as the

student user.

On the studentvM1 desktop window, press HostKey-F2 to switch to console 2. On some

distributions like Fedora, the login information includes the tty (teletype) device associated

with this console, but some do not. it should be tty2 because you are in console 2.

6 Kernel.org, Linux Allocated Devices, www.kernel.org/doc/html/v4.11/admin-guide/devices.
html

Chapter 3 everything is a File

https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html

51

log in to console 2 as the student user. then use the who am i command – yes, just like

that, with spaces – to determine which tty device is connected to this console.

[student@studentvm1 ~]$ who am i

student tty2 2019-01-30 15:32

this command also shows the date and time that the user on the console logged in.

Before we proceed any further with this experiment, let's look at a listing of the tty2 and tty3

devices in /dev. We do that by using a set [23] so that only those two devices are listed.

[student@studentvm1 ~]$ ls -l /dev/tty[23]

crw--w----. 1 student tty 4, 2 Jan 30 15:39 /dev/tty2

crw--w----. 1 root tty 4, 3 Jan 30 06:53 /dev/tty3

there are a large number of tty devices defined at boot time, but we do not care about most of

them for this experiment, just the tty2 and tty3 devices. as device files there is nothing special

about them; they are simply character type devices; note the “c” in the first column of the

results. We will use these two tty devices for this experiment. the tty2 device is attached to

virtual console 2, and the tty3 device is attached to virtual console 3.

press HostKey-F3 to switch to console 3 and log in again as the student user. Use the who am i

command again to verify that you really are on console 3 and then enter the echo command.

[student@studentvm1 ~]$ who am i

student tty3 2019-01-30 15:38

[student@studentvm1 ~]$ echo "Hello world" > /dev/tty2

press HostKey-F2 to return to console 2. the string "hello world" (without quotes) should be

displayed on console 2.

this experiment can also be performed with terminal emulators on the gUi desktop. terminal

sessions on the desktop use pseudo-terminal devices in the /dev tree, such as /dev/pts/1,

where pts stands for “pseudo-terminal session.”

return to your graphical desktop using hostKey-F1. Open at least two terminal sessions on the

gUi desktop using Konsole, tilix, Xterm, or your other favorite graphical terminal emulator. you

may open several if you wish. Determine which pseudo-terminal device files they are connected

to with the who am i command and then choose one pair of terminal emulators to work with

for this experiment. Use one to send a message to the another with the echo command.

[student@studentvm1 ~]$ who am i

student pts/9 2017-10-19 13:21 (192.168.0.1)

Chapter 3 everything is a File

52

however, it is possible that you will get no result from the who am i command. this occurs

because who am i only seems to work on login terminal sessions and not on a non-login

session such as one started from the desktop. so a virtual console session or a remote ssh

login session would work with this. But there are at least two ways to circumvent this – as is

usual in linux.

We will use the w command. the w command lists the tasks being run on each terminal

session so the terminal session that shows w in the What column is the one you are looking

for. in my case it is pts/6, as shown in the following.

[student@studentvm1 ~]$ w

 08:47:38 up 1 day, 20:12, 6 users, load average: 0.11, 0.06, 0.01

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

student tty1 Wed12 2days 14.16s 0.06s /bin/sh /etc/xdg/xfce4/

xinitrc -- vt

root pts/1 Thu17 10:50m 0.03s 0.03s /bin/bash

root pts/2 Thu17 15:18m 0.02s 0.02s /bin/bash

root pts/3 Thu17 10:48m 0.02s 0.02s /bin/bash

student pts/5 08:45 47.00s 0.02s 0.00s less

student pts/6 08:45 0.00s 0.03s 0.00s w

[student@studentvm1 ~]$

[student@studentvm1 ~]$ echo "Hello world" > /dev/pts/5

On my test host, i sent the text “hello world” from /dev/pts/6 to /dev/pts/5. your terminal

devices will be different from the ones i have used on my test vM. Be sure to use the correct

devices for your environment for this experiment.

Another interesting experiment is to print a file directly to the printer using the cat

command. If you do not have a printer attached to your physical host that is available to

the VM, you can skip Experiment 3-3.

EXPERIMENT 3-3

this experiment should be performed as the student user on studentvM1.

if you have a UsB printer available, plug it into the physical host. then use the studentvM1

window’s menu bar to open the Devices ➤ USB menu and then add a check to the printer in

the listed UsB devices in order to make it available to your vM.

Chapter 3 everything is a File

53

you may need to determine which device is your printer. if your printer is a UsB printer which

almost all are these days, look in the /dev/usb directory for lp0 which is usually the default

printer. you may find other printer device files in that directory as well.

i used libreOffice Writer to create a short document which i then exported as a pDF file, test.

pdf. any linux word processor will do so long as it can export to the pDF format.

We will assume that your printer device is /dev/usb/lp0, and that your printer can print pDF

files directly, as most can. Be sure to use a pDF file and change the name test.pdf in the

command to the name of your own file.

[student@studentvm1 ~]$ cat test.pdf > /dev/usb/lp0

this command should print the pDF file test.pdf on your printer.

The /dev directory contains some very interesting device files that are portals to

hardware that one does not normally think of as a device like a hard drive or display. For

one example, system memory – RAM – is not something that is normally considered as a

“device,” yet /dev/mem is the device special file through which direct access to memory

can be achieved.

EXPERIMENT 3-4

this experiment must be run as the root user. Because you are only reading the contents of

memory, this experiment poses little danger.

if a root terminal session is not already available, open a terminal emulator session and log in

as root. the next command will dump the first 200K of raM to stDOUt.

[root@studentvm1 ~]# dd if=/dev/mem bs=2048 count=100

it may not look like that much and what you do see will be unintelligible. to make it a bit more

intelligible – to at least display the data in a decent format that might be interpreted by an

expert – pipe the output of the previous command through the od utility.

[root@studentvm1 ~]# dd if=/dev/mem bs=2048 count=100 | od -c

root has more access to read memory than a non-root user, but most memory is protected

from being written by any user, including root.

Chapter 3 everything is a File

54

The dd command provides significantly more control than simply using the cat

command to dump all of memory, which I have also tried. The dd command provides

the ability to specify how much data is read from /dev/mem and would also allow me to

specify the point at which to start reading data from memory. Although some memory

was read using the cat command, the kernel eventually responded with the error in

Figure 3-2.

You can also log in as a non-root user, student, and try this command. You will get

an error message because the memory you are trying to access does not belong to your

user. This is a memory protection feature of Linux that keeps other users from reading or

writing memory that does not belong to them.

These memory errors mean that the kernel is doing its job by protecting memory

that belongs to other processes which is exactly how it should work. So, although you

can use /dev/mem to display data stored in RAM memory, access to most memory space

is protected and will result in errors. Only that virtual memory which is assigned by the

kernel memory manager to the bash shell running the dd command should be accessible

without causing an error. Sorry, but you cannot snoop in memory that does not belong

to you unless you find a vulnerability to exploit.

Many types of malware depend upon privilege escalation to allow them to read the

contents of memory that they would not normally be able to access. This allows the

malware to find and steal personal data such as account numbers, user ID, and stored

passwords. Fortunately, Linux protects against memory access by non-root users. It

Figure 3-2. The error on the last line was displayed when the cat command
attempted to dump protected memory to STDOUT

Chapter 3 everything is a File

55

also protects against privilege escalation. But even Linux security is not perfect. It is

important to install security patches to protect against vulnerabilities that allow privilege

escalation. You should also be aware of human factors such as the tendency people have

to write down their passwords, but that is all another book.7

You can now see that memory is also considered to be a file and can be treated as

such using the memory device file.

 Randomness, zero, and more
There are some other very interesting device files in /dev. The device special files null,

zero, random, and urandom are not associated with any physical devices. These device

files provide sources of zeros, nulls, and random numbers.

The null device /dev/null can be used as a target for the redirection of output from

shell commands or programs so that they are not displayed on the terminal.

EXPERIMENT 3-5

i frequently use /dev/null in my bash scripts to prevent users from being presented with

output that is irrelevant or that might be confusing to them. enter the following command to

redirect the output to the null device. nothing will be displayed on the terminal. the data is just

dumped into the big bit bucket in the sky.

[student@studentvm1 ~]$ echo "Hello world" > /dev/null

there is really no visible output from the /dev/null because the null device simply returns an

end of file (eOF) character. note that the byte count is zero. the null device is much more

useful as a place to redirect unwanted output so that it is removed from the data stream.

7 Apress has a number of good books on security at www.apress.com/us/security.

Chapter 3 everything is a File

https://www.apress.com/us/security

56

The /dev/random and /dev/urandom devices are both useful as data stream

sources. As their names imply, they both produce essentially random output – not just

numbers but any and all byte combinations. The /dev/urandom device produces a

deterministic8 stream of random output and is very fast while /dev/random produces a

non-deterministic9 stream but is slower.

EXPERIMENT 3-6

Use this command to view typical output from /dev/urandom. you can use Ctrl-c to break out.

i have shown only a part of the data stream from the command, but it should give you a sense

for what you should see on your system.

You could also pipe the output of Experiment 3-6 through the od (Octal Display)

command to make it a little more human readable just for this experiment. That makes

little sense for most real-world applications because it is, after all, random data.

The man page for od shows that it can be used to obtain data directly from a file as

well as specify the amount of data to be read.

8 Deterministic means the output is determined by a known algorithm and uses a seed string as
a starting point. Each unit of output is dependent upon the previous output and the algorithm,
so if you know both the seed and the algorithm, the entire data stream can be reproduced. As a
result, it is possible, although difficult, for a hacker to reproduce the output if the original seed is
known.

9 Non-deterministic results are not dependent upon the previous data in the random data stream.
Thus, they are more truly random than if they were deterministic.

Chapter 3 everything is a File

57

EXPERIMENT 3-7

in this case i have used -n 128 to limit the output to 128 bytes.

[student@studentvm1 ~]$ od /dev/urandom -N 128

0000000 043514 022412 112660 052071 161447 057027 114243 061412

0000020 154627 105675 154470 110352 135013 127206 103057 136555

0000040 033417 011054 014334 040457 157056 165542 027255 121710

0000060 125334 065600 165447 165245 020756 101514 042377 132156

0000100 116024 027770 000537 014743 170561 011122 173454 102163

0000120 074301 104771 123476 054643 105211 151753 166617 154313

0000140 103720 147660 012644 037363 077661 076453 104161 033220

0000160 056501 001771 113557 075046 102700 043405 132046 045263

0000200

the dd command could also be used to specify a limit to the amount of data taken from the

[u]random devices, but it cannot directly format the data.

The /dev/random device file produces non-deterministic random output, but it

produces output more slowly. This output is not determined by an algorithm that is

dependent only upon the previous number that was generated, but it is generated in

response to keystrokes and mouse movements. This method makes it far more difficult

to duplicate a specific series of random numbers. Use the cat command to view some of

the output from the /dev/random device file. Try moving the mouse to see how it affects

the output.

The random data generated from /dev/random and /dev/urandom, regardless of

how it is read from those devices, is usually redirected to a file on some storage media

or to STDIN of another program. Random data seldom needs to be viewed by the

SysAdmin, developer, or the end user. But it does make a good demonstration for this

experiment.

As its name implies, the /dev/zero device file produces an unending string of zeros

as output. Note that these are octal zeros and not the ASCII character zero (0).

Chapter 3 everything is a File

58

EXPERIMENT 3-8

Use the dd command to view some output from the /dev/zero device file. note that the byte

count for this command is non-zero.

[student@studentvm1 ~]$ dd if=/dev/zero bs=512 count=500 | od -c

0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

∗
500+0 records in

500+0 records out

256000 bytes (256 kB, 250 KiB) copied, 0.00126996 s, 202 MB/s

0764000

 Back up the master boot record
Consider, for example, the simple task of making a backup of the master boot record

(MBR) of a hard drive. I have had, on occasion, needed to restore or recreate my MBR,

particularly the partition table. Recreating it from scratch is very difficult. Restoring it

from a saved file is easy. So let's back up the boot record of the hard drive.

Note that all of the experiments in this section must be performed as root.

EXPERIMENT 3-9

perform this experiment as the root user. We are going to create a backup of the master boot

record (MBr), but we will not attempt to restore it.

the dd command must be run as root because for security reasons non- root users do not

have access to the hard drive device files in the /dev directory. the bs value is not what you

might think; it stands for block size. Count is the number of blocks to read from the source file.

[root@studentvm1 ~]# dd if=/dev/sda of=/tmp/myMBR.bak bs=512 count=1

this command creates a file, myMBr.bak, in the /tmp directory. the file is 512 bytes in size

and contains the contents of the MBr including the bootstrap code and partition table. look at

the contents of the file you just created.

Chapter 3 everything is a File

59

Because there is no end of line character at the end of the boot sector, the command prompt is

on the same line as the end of the boot record.

If the MBR were damaged, it would be necessary to boot to a rescue disk and use the

command in Figure 3-3 which would perform the reverse operation of the preceding

one. Notice that it is not necessary to specify the block size and block count as in the first

command because the dd command will simply copy the backup file to the first sector of

the hard drive and stop when it reaches the end of the source file.

[root@studentvm1 ~]# dd if=/tmp/myMBR.bak of=/dev/sda

Figure 3-3. This command would restore the backup of the boot record

So now that you have performed a backup of the boot record of your hard drive and

verified the contents of that backup, let's move to a safer environment to destroy the boot

record and then restore it.

EXPERIMENT 3-10

this is a rather long experiment and it must be performed as root. you will create a new virtual

hard drive add a partition, and create a filesystem on it. you will then make a backup of the

MBr, and damage the MBr on the device. then you will try to read the device which will fail,

and then restore the MBr and read it again to verify that it works.

start by creating a new virtual hard drive of 2gB in size using the virtualBox manager. this

virtual hard drive should be dynamically allocated and be named studentvM1-3.vdi. after

creating the new virtual hard drive, verify that its device special file is /dev/sdd. if your new

virtual disk is not /dev/sdd, be sure to use the device special file for the one you just created.

Chapter 3 everything is a File

60

the output from dmesg looks like this.

[68258.690964] ata4: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

[68258.691148] ata4.00: ATA-6: VBOX HARDDISK, 1.0, max UDMA/133

[68258.691173] ata4.00: 4194304 sectors, multi 128: LBA48 NCQ (depth 32)

[68258.691300] ata4.00: configured for UDMA/133

[68258.691499] scsi 3:0:0:0: Direct-Access ATA VBOX

HARDDISK 1.0 PQ: 0 ANSI: 5

[68258.692828] sd 3:0:0:0: [sdd] 4194304 512-byte logical blocks: (2.15

GB/2.00 GiB)

[68258.692876] sd 3:0:0:0: [sdd] Write Protect is off

[68258.692897] sd 3:0:0:0: [sdd] Mode Sense: 00 3a 00 00

[68258.692909] sd 3:0:0:0: [sdd] Write cache: enabled, read cache: enabled,

doesn't support DPO or FUA

[68258.693888] sd 3:0:0:0: Attached scsi generic sg4 type 0

[68258.700966] sd 3:0:0:0: [sdd] Attached SCSI disk

the new drive will also show up with the lsblk command as /dev/sdd.

look at the boot record to provide a basis for later comparison. note that there is no data in

the boot record of this new drive.

[root@studentvm1 ~]# dd if=/dev/sdd bs=512 count=1

1+0 records in

1+0 records out

512 bytes copied, 0.000348973 s, 1.5 MB/s

Create a partition that fills the entire 2gB of the virtual drive and save the new partition table.

[root@studentvm1 ~]# fdisk /dev/sdd

Welcome to fdisk (util-linux 2.32.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Device does not contain a recognized partition table.

Created a new DOS disklabel with disk identifier 0x39dfcf64.

Command (m for help): p

Disk /dev/sdd: 2 GiB, 2147483648 bytes, 4194304 sectors

Units: sectors of 1 ∗ 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

Chapter 3 everything is a File

61

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x39dfcf64

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

Select (default p): <press Enter>

Using default response p.

Partition number (1-4, default 1): <press Enter>

First sector (2048-4194303, default 2048): <press Enter>

Last sector, +sectors or +size{K,M,G,T,P} (2048-4194303, default 4194303):

<press Enter>

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

Check the boot record again, which is no longer completely empty.

[root@studentvm1 ~]# dd if=/dev/sdd bs=512 count=1 | od -c

1+0 records in

1+0 records out

512 bytes copied, 0.0131589 s, 38.9 kB/s

0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

∗
0000660 \0 \0 \0 \0 \0 \0 \0 \0 f 222 371 261 \0 \0 \0

0000700 ! \0 203 025 P 005 \0 \b \0 \0 \0 370 ? \0 \0 \0

0000720 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

∗
0000760 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 U 252

0001000

Chapter 3 everything is a File

62

verify that the partition is /dev/sdd1 and then create an eXt4 filesystem on the partition.

[root@studentvm1 ~]# mkfs -t ext4 /dev/sdd1

mke2fs 1.44.3 (10-July-2018)

Creating filesystem with 524032 4k blocks and 131072 inodes

Filesystem UUID: 3e031fbf-99b9-42e9-a920-0407a8b34513

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

Mount the new filesystem on the /mnt mount point and store some data on the device. this

will verify that the new filesystem is working as it should.

[root@studentvm1 ~]# mount /dev/sdd1 /mnt ; ll /mnt

total 16

drwx------. 2 root root 16384 Jan 31 08:08 lost+found

[root@studentvm1 ~]# dmesg > /mnt/testfile001 ; ll /mnt

total 60

drwx------. 2 root root 16384 Jan 31 08:08 lost+found

-rw-r--r--. 1 root root 44662 Jan 31 08:12 testfile001

[root@studentvm1 ~]#

Copy the MBr.

now is the fun part. We unmount the partition, overwrite the MBr of the device with one 512-

byte block of random data, then view the new content of the MBr to verify the change.

[root@studentvm1 ~]# umount /mnt

[root@studentvm1 ~]# dd if=/dev/urandom of=/dev/sdd bs=512 count=1

512+0 records in

512+0 records out

Chapter 3 everything is a File

63

let's try a couple more things to test out this state of affairs before we restore this MBr. First

we use fdisk to verify that the UsB drive no longer has a partition table, which means that

the MBr has been overwritten.

[root@studentvm1 ~]# fdisk -l /dev/sdd

Disk /dev/sdd: 2 GiB, 2147483648 bytes, 4194304 sectors

Units: sectors of 1 ∗ 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

[root@studentvm1 ~]#

an attempt to mount the original partition will fail. the error message indicates that the

special device does not exist. this shows that most of the special device files are created and

removed as necessary, on demand.

[root@studentvm1 ~]# mount /dev/sdd1 /mnt

mount: /mnt: special device /dev/sdd1 does not exist.

Chapter 3 everything is a File

64

it is time to restore the boot record you backed up earlier. Because you used the dd command

to carefully overwrite with random data only the MBr which contains the partition table for

the drive, all of the other data remains intact. restoring the MBr will make it available again.

restore the MBr, view the MBr on the device, then mount the partition and list the contents.

[root@studentvm1 ~]# dd if=/tmp/sddMBR.bak of=/dev/sdd

1+0 records in

1+0 records out

512 bytes copied, 0.0261115 s, 19.6 kB/s

[root@studentvm1 ~]# fdisk -l /dev/sdd

Disk /dev/sdd: 2 GiB, 2147483648 bytes, 4194304 sectors

Units: sectors of 1 ∗ 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xb1f99266

Device Boot Start End Sectors Size Id Type

/dev/sdd1 2048 4194303 4192256 2G 83 Linux

[root@studentvm1 ~]#

the fdisk command shows that the partition table has been restored. now mount the partition

and verify that the data we stored there still exists.

[root@studentvm1 ~]# mount /dev/sdd1 /mnt ; ll /mnt

total 60

drwx------. 2 root root 16384 Jan 31 08:08 lost+found

-rw-r--r--. 1 root root 44662 Jan 31 08:12 testfile001

[root@studentvm1 ~]#

Wow – how cool is that! this series of experiments is designed to illustrate that you can use

the fact that all devices can be treated like files and therefore use some very common but

powerful Cli tools in some very interesting ways.

it is not necessary to specify the amount of data to be copied with the sb= and count=

parameters because the dd command only copies the amount of data available, in this case a

single 512-byte sector.

Unmount the /dev/sdd1 device because we are finished with it.

Chapter 3 everything is a File

65

 Implications of everything is a file
The implications of “everything is a file” are far-reaching and much greater than can be

listed here. You have already seen some examples in the preceding experiments. But

here is a short list that encompasses those and more:

• Clone hard drives.

• Back up partitions.

• Back up the master boot record (MBR).

• Install ISO images onto USB thumb drives.

• Communicate with users on other terminals.

• Print files to a printer.

• Change the contents of certain files in the /proc pseudo-filesystem to

modify configuration parameters of the running kernel.

• Overwrite files, partitions, or entire hard drives with random data or

zeros.

• Redirect unwanted output from commands to a null device where it

disappears forever.

• etc., etc., etc.

There are so many possibilities here that any list can really only scratch the surface.

I am sure that you have – or will – figure out many ways to use this tenet of the Linux

Philosophy far more creatively than I have discussed here.

 Chapter summary
It is all part of a filesystem. Everything on a Linux computer is accessible as a file in the

filesystem space. The whole point of this is to be able to use common tools to operate

on different things – common tools such as the standard GNU/Linux utilities and

commands that work on files will also work on devices – because, in Linux, they are files.

Chapter 3 everything is a File

66

 Exercises
Perform the following exercises to complete this chapter:

 1. Why does even root have restricted access to RAM memory?

 2. What is the difference between the device special files /dev/sdc

and /dev/sdc1?

 3. Can the cat command be used to dump the data from a partition?

 4. Can the cat command be used to dump the data from a hard

drive?

 5. Is it possible to use standard Linux commands to clone complete

hard drives in the manner of tools like Ghost, CloneZilla, or

Paragon Drive Copy 15 Professional? Don’t worry – skip this

question if you are not familiar with any of these tools.

 6. Create a backup file of the entire partition /dev/sdd1 (or the

equivalent device on your VM) and store the data file on /tmp

which should have more than enough space to contain this

backup file.

 7. What would happen if the backup file from #6 were restored to

a new partition that was created to be larger than the original

partition?

Chapter 3 everything is a File

67
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_4

CHAPTER 4

Managing Processes
 Objectives
In this chapter you will learn

• What a process is

• How processes are represented to the kernel

• Kernel process scheduling

• How processes use system resources

• To use common Linux tools for exploring and managing processes

 Processes
The function of an operating system like Linux is to run programs that perform tasks for

the users. Behind the scenes, the operating system runs its own programs that are used

to manage the computer hardware, the devices attached to it, and the running programs

themselves.

Each program consists of one or more processes. A process is a running program and

consumes resources such as memory and CPU time. In this chapter we will look at how

the kernel schedules processes to receive CPU time.

 Process scheduling in the kernel
The Linux kernel provides scheduling services that determine which processes get CPU

time, how much, and when. Most Linux distributions of the last decade use the Completely

Fair Scheduler (CFS) which was introduced into the kernel in October of 2007.1

1 Wikipedia, Completely Fair Scheduler, https://en.wikipedia.org/wiki/
Completely_Fair_Scheduler

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

68

The overall objective of CPU scheduling in a modern operating system is to ensure

that critical processes such as memory allocation or emptying a communications buffer

get CPU time immediately when they need it while ensuring that system administration

and user-level processes get CPU time and are responsive to the users including the

root user. The scheduling of processes for access to CPU time is managed by a complex

algorithm that considers many factors.

Each process has its existence in a kernel data structure as an abstraction consisting

of data about the process including its process ID (PID) number, memory locations

assigned to it, its priority and nice number, how much CPU time it has recently used,

how long ago it was actually on CPU, files opened by the process, as well as other

necessary data. Like the processes they represent, the kernel data structures that form

the abstraction are ephemeral and the RAM memory assigned to them is reassigned to

the pool of free memory.

Opensource.com has published an excellent article2 that provides a good overview of

the CFS scheduler and compares it to the older and more simple preemptive scheduler.

For a more detailed description of the Linux CFS, Nikita Ishkov, a graduate student at the

University of Tampere School of Information Sciences in Finland has written his master’s

thesis, “A complete guide to Linux process scheduling,”3 about this.

 Tools
We SysAdmins have access to tools that allow us to view and manage the running

processes. For me, these are top, atop, htop, and glances. All of these tools monitor CPU

and memory usage, and most of them list information about running processes at the

very least. Some monitor other aspects of a Linux system as well. All provide near real-

time views of system activity. Although these tools can generally be run by any non-root

user, the root user has more control over all processes, while non-root users can only

manage their own processes and have some limitations on that.

2 Kalin, Marty, CFS: Completely fair process scheduling in Linux, https://opensource.com/
article/19/2/fair-scheduling-linux

3 Ishkov, Nikita, University of Tampere School of Information Sciences, A complete guide to
Linux process scheduling, https://tampub.uta.fi/bitstream/handle/10024/96864/GRADU-
1428493916.pdf, 2015

Chapter 4 Managing proCesses

https://opensource.com/article/19/2/fair-scheduling-linux
https://opensource.com/article/19/2/fair-scheduling-linux
https://tampub.uta.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf
https://tampub.uta.fi/bitstream/handle/10024/96864/GRADU-1428493916.pdf

69

Processes sometimes misbehave and need to be brought under control. Sometimes

we just want to satisfy our curiosity in our efforts to more fully understand the workings

of a properly functioning Linux computer so that we will be able to identify when it is

malfunctioning. These tools can help us do both.

Let’s start by looking at top, arguably the oldest of these tools and the one which is

most likely to be always available on a modern Linux host. I will use top in the chapter

to introduce a number of concepts pertaining to process management and to familiarize

you with its use, then move on to other tools that you will find useful in monitoring and

managing processes.

 top
One of the first tools I use when performing problem determination is top. I like it

because it has been around since forever – well, 1984, anyway – and is always available,

while the other tools may not be installed. The top program is a very powerful utility

that provides a great deal of information about your running system. This includes data

about memory usage, CPU loads, and a list of running processes including the amount of

CPU time and memory being utilized by each process. Top displays system information

in near real time, updating (by default) every 3 seconds. Fractional seconds are allowed

by top, although very small values can place a significant load on the system. It is also

interactive and the data columns to be displayed and the sort column can be modified.

The output from top, shown in Figure 4-1, is divided into two sections – the

“summary” section, which is the upper section of the output, and the “process” section

which is the lower portion of the output; I will use this terminology for top, atop, htop,

and glances in the interest of consistency.

Chapter 4 Managing proCesses

70

EXPERIMENT 4-1

in order to more fully understand the descriptions of top and the other process management

tools that will be covered in this chapter, start top as root in a terminal session on the

desktop.

[root@studentvm1 ~]# top

refer to this instance of top as we proceed through the following sections that describe its

output.

Much of the description to the display generated by top is similar to that of the other

tools covered in this chapter. We will spend the most time with top for this reason and

because it is always available while the other tools may need to be installed. We will then

cover some of the differences between top and the other tools.

top - 21:49:11 up 1 day, 9:55, 6 users, load average: 0.00, 0.00, 0.00
Tasks: 201 total, 1 running, 200 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.3 sy, 0.0 ni, 98.7 id, 0.0 wa, 0.3 hi, 0.7 si, 0.0 st
MiB Mem : 3942.5 total, 234.4 free, 468.9 used, 3239.2 buff/cache
MiB Swap: 4096.0 total, 4094.7 free, 1.3 used. 3230.5 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1738 student 20 0 293564 3156 2708 S 0.3 0.1 2:03.22 VBoxClient
2845 root 20 0 40128 6512 4236 S 0.3 0.2 0:01.47 sshd

11630 root 20 0 0 0 0 I 0.3 0.0 0:00.17 kworker/0:2-events_powe
11901 root 20 0 228752 4532 3912 R 0.3 0.1 0:00.05 top

1 root 20 0 171396 14216 9120 S 0.0 0.4 0:13.70 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.21 kthreadd
3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_gp
4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_par_gp
6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0:0H
8 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu_wq
9 root 20 0 0 0 0 S 0.0 0.0 0:05.03 ksoftirqd/0
10 root 20 0 0 0 0 I 0.0 0.0 0:04.95 rcu_sched
11 root 20 0 0 0 0 I 0.0 0.0 0:00.00 rcu_bh
12 root rt 0 0 0 0 S 0.0 0.0 0:00.04 migration/0
14 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/0
15 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/1

Figure 4-1. Typical output from the top utility

Chapter 4 Managing proCesses

71

 Summary section

The summary section of the output from top is an overview of the system status. The

first line shows the system uptime and the 1-, 5-, and 15-minute load averages. We will

discuss load averages in more detail later in this chapter.

The second line shows the number of process currently active and the status of each.

The lines containing CPU statistics are shown next. There can be a single line which

combines the statistics for all CPUs present in the system or, as in the following example,

one line for each CPU; in the case of the VM used for the example, this is a single dual-

core CPU. Press the 1 key to toggle between the consolidated display of CPU usage and

the display of the individual CPUs. The data in these lines is displayed as percentages of

the total CPU time available.

The other fields for these CPU data have changed over time and I had a difficult

time locating information about the last three as they are relatively new. So here is a

description of all of these fields:

• us: userspace: Applications and other programs running in user

space, that is, not in the kernel.

• sy: system calls: Kernel level functions. This does not include CPU

time taken by the kernel itself, just the kernel system calls.

• ni: nice: Processes that are running at a positive nice level.

• id: idle: Idle time, that is, time not used by any running process.

• wa: wait: CPU cycles that are spent waiting for I/O to occur. This is

wasted CPU time.

• hi: hardware interrupts: CPU cycles that are spent dealing with

hardware interrupts.

• si: software interrupts: CPU cycles spent dealing with software-

created interrupts such as system calls.

• st: steal time: The percentage of CPU cycles that a virtual CPU

waits for a real CPU while the hypervisor is servicing another virtual

processor.

The last two lines in the summary section are memory usage. They show the physical

memory usage including both RAM and swap space.

Chapter 4 Managing proCesses

72

 Process section

The process section of the output from top is a listing of the running processes in the

system — at least for the number of processes for which there is room on the terminal

display. The default columns displayed by top are described in the following. Several

other columns are available and each can usually be added with a single keystroke; refer

to the top man page for details.

• PID: The process ID.

• USER: The username of the process owner.

• PR: The priority of the process.

• NI: The nice number of the process.

• VIRT: The total amount of virtual memory allocated to the process.

• RES: Resident size (in KB unless otherwise noted) of non-swapped

physical memory consumed by a process.

• SHR: The amount of shared memory in KB used by the process.

• S: The status of the process. This can be R for running, S for sleeping,

and Z for zombie. Less frequently seen statuses can be T for traced or

stopped and D for uninterruptable sleep.

• %CPU: The percentage of CPU cycles or time used by this process

during the last measured time period.

• %MEM: The percentage of physical system memory used by the

process.

• TIME+: Total CPU time to 100ths of a second consumed by the

process since the process was started.

• COMMAND: This is the command that was used to launch the

process.

Now that we know a little about the data displayed by top, let’s do an experiment to

illustrate some of its basic capabilities.

Chapter 4 Managing proCesses

73

EXPERIMENT 4-2

the top program should already be running in a root terminal session. if not, make it so. start

by observing the summary section.

the top program has a number of useful interactive commands you can use to manage the

display of data and to manipulate individual processes. Use the h key to view a brief help page

for the various interactive commands. Be sure to press h twice to see both pages of the help.

Use the q command to quit top.

Use the 1 (one) key to display CpU statistics as a single, global number as shown in

Figure 4- 1 or by individual CpU as seen in Figure 4-2. the l (el) key turns load averages on and

off. Use the t and m keys to rotate the process/CpU and memory lines of the summary section,

respectively, through off, text only, and a couple types of bar graph formats.

the d or s keys are interchangeable and can be used to set the delay interval between

updates. the default is 3 seconds, but i prefer a 1-second interval. interval granularity can be

as low as one-tenth (0.1) of a second, but this will consume more of the CpU cycles you are

trying to measure. try setting the delay interval to 5, 1, .5, and other intervals you think might

be interesting. When you have finished, set the delay interval to 1 second.

Use the Page Up and Page Down keys to scroll through the list of running processes.

By default the running processes are sorted by CpU usage. You can use the < and >

keystrokes to sequence the sort column to the left or right. By default there is no highlight

or other mark to indicate by which column the results are being sorted. You can add

highlighting – press the x key which will show the current sort column in bold – the entire

column.

Chapter 4 Managing proCesses

74

Use the > key to move the column all the way to the right and then the < key to move it back

to the desired column. Move the sort index to various columns. When finished, set the CpU

usage as the sort column again.

if you alter the top display configuration, you can use the W (in uppercase) key to write the

changes to the configuration file, ~/.toprc, in your home directory. Leave top running.

top - 10:23:10 up 1 day, 22:29, 6 users, load average: 0.00, 0.00, 0.00
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
%Cpu0 : 0.7/2.6 3[||]
%Cpu1 : 0.3/1.3 2[|]
MiB Mem : 18.4/3942.5[||||||||||||||]
MiB Swap: 0.0/4096.0 []

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 171396 14224 9120 S 0.7 0.4 0:17.96 systemd

799 root 20 0 231324 2860 2044 S 0.3 0.1 0:09.38 screen
900 dbus 20 0 42300 6052 4428 S 0.3 0.1 0:21.26 dbus-daemon
962 root 20 0 588844 14960 13264 S 0.3 0.4 0:00.27 abrt-dump-journ

1006 root 20 0 273668 35524 34192 S 0.3 0.9 0:11.58 sssd_nss
1054 root 20 0 547304 19192 16336 S 0.3 0.5 0:10.18 NetworkManager
2054 root 20 0 253960 11900 10172 S 0.3 0.3 0:01.11 abrt-dbus

11940 root 20 0 228752 4960 4092 R 0.3 0.1 1:30.09 top
27130 root 20 0 0 0 0 I 0.3 0.0 0:00.01 kworker/u4:0-events_unbound

2 root 20 0 0 0 0 S 0.0 0.0 0:00.31 kthreadd
3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_gp
4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_par_gp
6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0:0H
8 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu_wq
9 root 20 0 0 0 0 S 0.0 0.0 0:07.30 ksoftirqd/0
10 root 20 0 0 0 0 I 0.0 0.0 0:06.84 rcu_sched
11 root 20 0 0 0 0 I 0.0 0.0 0:00.00 rcu_bh
12 root rt 0 0 0 0 S 0.0 0.0 0:00.05 migration/0
14 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/0
15 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/1
16 root rt 0 0 0 0 S 0.0 0.0 0:00.22 migration/1

Figure 4-2. Use the t and m keys to change the CPU and memory summaries to
bar graphs

Chapter 4 Managing proCesses

75

 More about load averages…
Before we continue, it is important to discuss load averages in more detail. Load averages

arean important criteria for measuring CPU usage. But what does this really mean when

I say that the 1- (or 5- or 10-) minute load average is 4.04, for example? Load average

can be considered a measure of demand for the CPU; it is a number that represents the

average number of instructions waiting for CPU time. So this is a true measure of CPU

performance, unlike the standard “CPU percentage” which includes I/O wait times

during which the CPU is not really working.

For example, a fully utilized single processor system CPU would have a load average

of 1. This means that the CPU is keeping up exactly with the demand; in other words, it

has perfect utilization. A load average of less than 1 means that the CPU is underutilized

and a load average of greater than 1 means that the CPU is overutilized and that there is

pent-up, unsatisfied demand. For example, a load average of 1.5 in a single CPU system

indicates that one-third of the CPU instructions are forced to wait to be executed until

the one preceding it has completed.

This is also true for multiple processors. If a 4-CPU system has a load average of 4,

then it has perfect utilization. If it has a load average of 3.24, for example, then three of its

processors are fully utilized and one is utilized at about 24%. In the preceding example,

a 4-CPU system has a 1-minute load average of 4.04, meaning that there is no remaining

capacity among the 4 CPUs and a few instructions are forced to wait. A perfectly utilized

4-CPU system would show a load average of 4.00 so that the system in the example is

fully loaded but not overloaded.

The optimum condition for load average is for it to equal the total number of CPUs

in a system. That would mean that every CPU is fully utilized and yet no instruction

must be forced to wait. But reality is messy and optimum conditions are seldom met.

If a host were running at 100% utilization, this would not allow for spikes in CPU load

requirements.

The longer-term load averages provide indication of the overall utilization trend.

Linux Journal has an excellent article4 describing load averages, the theory, the math

behind them, and how to interpret them in the December 1, 2006, issue.

4 Linux Journal, Examining Load Average, www.linuxjournal.com/article/9001?page=0,0

Chapter 4 Managing proCesses

https://www.linuxjournal.com/article/9001?page=0,0

76

 …and signals
The top utility and all of the other monitors discussed here allow you to send signals5 to

running processes. Each of these signals has a specific function though some of them

can be defined by the receiving program using signal handlers.

The separate kill command can also be used to send signals to processes outside

of the tools like top. The kill -l can be used to list all possible signals that can be sent.

Three of these signals can be used to kill a process:

• SIGTERM (15) Signal 15, SIGTERM, is the default signal sent by top

and the other monitors when the k key is pressed. It may also be the

least effective because the program must have a signal handler built

into it. The program’s signal handler must intercept incoming signals

and act accordingly. So for scripts, most of which do not have signal

handlers, SIGTERM is ignored. The idea behind SIGTERM is that by

simply telling the program that you want it to terminate itself, it will

take advantage of that and clean up things like open files and then

terminate itself in a controlled and nice manner.

• SIGKILL (9) Signal 9, SIGKILL, provides a means of killing even the

most recalcitrant programs, including scripts and other programs

that have no signal handlers. For scripts and other programs with no

signal handler, however, it not only kills the running script but it also

kills the shell session in which the script is running; this may not be

the behavior that you want. If you want to kill a process and you don’t

care about being nice, this is the signal you want. This signal cannot

be intercepted by a signal handler in the program code.

• SIGINT (2) Signal 2, SIGINT, can be used when SIGTERM does

not work and you want the program to die a little more nicely, for

example, without killing the shell session in which it is running.

SIGINT sends an interrupt to the session in which the program

is running. This is equivalent to terminating a running program,

particularly a script, with the Ctrl-C key combination.

5 Wikipedia, Unix Signals, https://en.wikipedia.org/wiki/Unix_signal

Chapter 4 Managing proCesses

https://en.wikipedia.org/wiki/Unix_signal

77

 CPU hogs
Now that we know a bit more, let’s experiment. We will create a program that hogs CPU

cycles and then run multiple instances of it so that we can use our tools on it, starting

with top.

EXPERIMENT 4-3

start two terminal sessions on the desktop as the student user. in one terminal session, run

top and position this window so you can see it as you perform the following tasks in the

second terminal session. observe the load averages displayed in top as you progress through

this experiment.

Create a Bash shell program file in your home directory named cpuhog and make it

executable with the permissions rwxr_xr_x.

[student@studentvm1 ~]$ touch ./cpuHog

[student@studentvm1 ~]$ chmod 755 cpuHog

edit the file with Vim and add the content shown in Figure 4-3 to it. Using while [1] forces

this program to loop forever. also the Bash syntax is very picky; be sure to leave spaces around

the “1” in this expression; [1] will work but [1] will not work. save the file and exit from Vim.

this program simply counts up by one and prints the current value of X to stDoUt. and it

sucks up CpU cycles. the terminal session in which cpuhog is running should show a very

high CpU usage in top. observe the effect this has on system performance in top. CpU usage

should immediately go way up and the load averages should also start to increase over time. if

you want, you can open additional terminal sessions and start the cpuhog program in them so

that you have multiple instances running.

#!/bin/bash
This little program is a cpu hog
X=0;while [1];do echo $X;X=$((X+1));done

Figure 4-3. The cpuHog program will enable us to explore the tools used to
manage processes

Chapter 4 Managing proCesses

78

now start the cpuhog program.

[student@studentvm1 ~]$./cpuHog

this program will run until we stop it. Use the top program to show CpU usage. as you can

see in Figure 4-4, this should show that one cpuhog instance is taking up a very large amount

of CpU time. record the piD – 5036 in Figure 4-4, but it will be different on your VM – for this

instance of the cpuhog. You should also notice that the nice number of this instance is 0.

open four new screens or terminal sessions and start an instance of cpuhog in each. Both

CpUs should be running at 100%. You will also notice that other programs such as screen, if

you are using it, also take CpU time.

Watch the load averages as they climb over time.

Note if you need to go do other things while working in this chapter, it would be
fine - but not necessary - to terminate any running cpuhog instances and restart
them later when you come back.

top - 21:05:39 up 2 days, 9:12, 8 users, load average: 0.71, 0.44, 0.19
Tasks: 206 total, 5 running, 201 sleeping, 0 stopped, 0 zombie
%Cpu0 : 36.0/64.0 100[]
%Cpu1 : 2.2/89.1 91[]
MiB Mem : 18.6/3942.5 []
MiB Swap: 0.0/4096.0 []

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 5036 student 20 0 216332 3188 2940 R 97.1 0.1 0:09.51 cpuHog
30678 student 20 0 231284 2876 2044 R 72.5 0.1 0:34.54 screen
7964 root 20 0 0 0 0 I 7.8 0.0 0:07.59 kworker/u4:0-events_unbound
7833 root 20 0 0 0 0 R 6.9 0.0 0:04.94 kworker/u4:2-events_unbound
8144 student 20 0 228752 5000 4136 R 1.0 0.1 0:00.75 top

1 root 20 0 171396 14228 9120 S 0.0 0.4 0:21.80 systemd
<snip>

Figure 4-4. One instance of cpuHog is running and takes over 97% of CPU cycles
on one CPU

Chapter 4 Managing proCesses

79

 Process scheduling
Linux schedules each task for time on the CPU using an algorithm that considers some

basic factors, including its nice number. These factors are combined into a priority by the

algorithm. The factors considered by the Linux kernel scheduler include the following

for each process:

• Length of time waiting for CPU time

• Amount of CPU time recently consumed

• Nice number

• The priority of the process in question

• The priorities of the other processes waiting for CPU time

The algorithm, which is a part of the kernel scheduler, determines the priority of

each process running in the system. Programs or processes with higher priorities are

more likely to be allocated CPU time. Priorities are very dynamic and can change rapidly

based on the factors listed previously.

Linux process priorities run from 0 through 39 with 39 being the lowest priority and 0

the highest. This seems to be reversed from common logic, but you should consider that

higher numbers mean a “nicer” priority.

There is also an RT, or RealTime, priority which is used by some processes that need

to get CPU time immediately when some event occurs. This might be a process that

handles hardware interrupts for the kernel. In order to ensure that data is not lost as

it arrives from a disk drive or network interface, for example, a high priority process is

used to empty the data buffer when it becomes full and store the data in some specific

memory location where it can be accessed as needed. Meanwhile, the empty input

buffer can be used to store more incoming data from the device.

 Nice numbers
Nice numbers are the mechanism used by administrators to affect the priority of a

process. It is not possible to change the priority of a process directly, but changing the

nice number can modify the results of the kernel scheduler’s priority setting algorithm.

Nice numbers run from -20 to +19 where higher numbers are nicer.

Chapter 4 Managing proCesses

80

The default nice number is 0 and the default priority is 20. Setting the nice number

higher than zero increases the priority number somewhat, thus making the process nicer

and therefore less greedy of CPU cycles. Setting the nice number to a more negative

number results in a lower priority number making the process less nice. Nice numbers

can be changed using the renice command or from within top, atop, and htop.

Now that we know a bit more about priorities and nice numbers, we can explore

them in this next experiment.

EXPERIMENT 4-4

start this experiment in the terminal session that is already running top as the student user.

Be sure to use the piD numbers that pertain to your VM rather than the ones i used on my VM.

set the sort column to tiMe+ so that you can more easily observe the steadily increasing total

amount of CpU time accumulated by the cpuhogs.

renice the oldest process, in my case the one with piD 5036, from within top. simply type r
and top asks you which process to renice. enter the piD of the process and hit the Enter key.

in my case the piD is 5036; the piD will definitely be different for you. then it asks “renice piD

5036 to value:”. now type the number 10 and hit the Enter key.

Verify that the nice number is now 10 and look at the priority number. on my VM the priority

is now 30 which is lower than the default priority of 20. switch to a different terminal session,

one that is not running top or the cpuhog, and change the nice number from the command line.

[student@studentvm1 ~]$ renice 15 5036

5036 (process ID) old priority 10, new priority 15

[student@studentvm1 ~]$

Verify that the new nice number is 15. What is the priority number for this process now? on

my VM the priority is now 35.

now use the renice command and set the nice number of piD 5036 to -20.

[student@studentvm1 ~]$ renice -20 5036

renice: failed to set priority for 5036 (process ID): Permission denied

[student@studentvm1 ~]$

Chapter 4 Managing proCesses

81

You will receive an error indicating that you don't have permission to do this. a non-root user

cannot renice their own processes to a lower (less nice) number. Why do you think that this

might be the case?

start top in a root terminal session. now, as root, reset the nice number of the cpuhog on your

VM to -20. this will work this time because root can do anything. observe the nice number

of this process. again the system is no more or less responsive, but in a real environment, a

program that has a -20 nice number might cause the rest of the system to become sluggish.

open another terminal session – as a new tab, a new window, or in a screen session – it does

not matter which. start another instance of the cpuhog program, but let’s do it a bit differently.

[student@studentvm1 ~]$ nice -n +20 ./cpuHog

When we know we want to start a program with a different nice number than the default of 0

(zero), we can use the nice command to start it and specify the nice number. Verify the nice

number and the priority number in the top display.

note that any nice number higher than 19 is interpreted to be 19 regardless of which tool is

used to set it. although the system is no more or less responsive because this is a shell script

and there is plenty of CpU available, this is one way to make a process behave more nicely.

open more terminal sessions as the student user and start at least five more instances of the

cpuhog without changing the nice number. allow all of these processes to run. as you watch

these cpuhog processes you should observe that our artificial environment, all of the cpuhog

processes receive from about 15% to 24% of the overall CpU time.

I found in my own experiments that little changed in terms of the amount of CPU

time the accrued to the cpuHog with the highest nice number vs. the cpuHog with the

lowest. This experiment does show how to set nice numbers and the resultant changes

in the priority of the processes, but there are other factors that the kernel uses in its

allocation of CPU resources. Those factors make it impossible to state with certainty

that changing the nice number of a particular process will have a specific effect. This is

especially true in an artificially created situation such as an experiment like this one.

With that said, however, in a production environment, I have found that increasing

the nice number of a particularly greedy hog process can improve the responsiveness of

other processes.

Chapter 4 Managing proCesses

82

 Killing processes
Sometimes a process must be killed because it cannot otherwise be controlled. There are

a number of ways to do this.

EXPERIMENT 4-5

Be sure that you can see the top utility running in a separate terminal session. switch to one

terminal session that is running an instance of cpuhog as the student user.

as the student user, choose one current instance of the cpuhog and determine its piD. now

let’s kill this newest cpuhog process from within top.

in the screen session in which top is running as the student user, type k. now top asks

“piD to kill:”. type in the piD of the process and press the Enter key. on my VM i chose a

cpuhog with piD 5257, but you must use the piD of one of your cpuhog instances. the top

program now displays “Kill piD 5257 with signal [15]:”. at this point you could choose another

signal or just press enter. For now, just press Enter and the program disappears from the top

process list.

signal 15 is used to terminate a program nicely and give it a chance to clean up after itself

and close open files if there are any. this is the nicest way of killing a process if it has no

option to terminate itself within its own interface.

For processes that are a bit more recalcitrant and that don’t respond to signal 15, we can use

signal 9 which tells the kernel to just kill the program without being nice. go to an unused

screen session and enter the command and locate the piD of one of the cpuhogs. on my VM

this was 7533, but be sure to use the correct piD for one of the cpuhogs on your system. this

time we will use the kill command to send signal 9.

[student@testvm1 ~]$ kill -9 7533

Choose another running cpuhog instance and let’s use signal 2 with the kill command.

[student@testvm1 ~]$ kill -2 12503

this sends the sigint (2) signal to process 12503. switch to the screen session in which the

program was running and verify that it has been killed. note the message that says “Killed.”

Chapter 4 Managing proCesses

83

While still in that same terminal session, restart the program. after it has run for a couple

seconds, press Ctrl-c. note that the running program is killed.

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

^C

[student@studentvm1 ~]$

Using kill -2 is the same as pressing Ctrl-c from within the session running the program.

You should still have some cpuHogs running on your VM. Let them run for now as

we can use them while exploring other tools for process management.

 Other interactive tools
As we have seen with other tools, Linux provides plenty of options for managing

processes. The following tools are also interactive tools that provide different approaches

and data displays. All are good and these only represent some of the many tools

available.

 atop
The atop tool, shown in Figure 4-5, is an excellent monitor to use when you need more

details about I/O activity. The default refresh interval is 10 seconds, but this can be

changed using the interval (i) command to whatever is appropriate for what you are

trying to do. atop cannot refresh at sub-second intervals like top can.

Chapter 4 Managing proCesses

84

Use the h key to display help. Be sure to notice that there are multiple pages of help

and you can use the space bar to scroll down to see the rest.

One nice feature of atop is that it can save raw performance data to a file and then

play it back later for close inspection. This is handy for tracking down intermittent

problems, especially ones that occur during times when you cannot directly monitor the

system. The atopsar program is used to play back the data in the saved file.

 Summary section

atop contains much of the same information as top but also displays information about

network, raw disk, and logical volume activity. Figure 4-5 shows these additional data

in the columns at the top of the display. Note that if you have the horizontal screen real

ATOP - studentvm1 2019/02/06 08:57:36 -------------- 10s elapsed
PRC | sys 16.15s | user 2.78s | #proc 211 | #tslpu 0 | #zombie 0 | #exit 2 |
CPU | sys 166% | user 24% | irq 10% | idle 0% | wait 0% | curscal ?% |
cpu | sys 78% | user 16% | irq 6% | idle 0% | cpu000 w 0% | curscal ?% |
cpu | sys 88% | user 8% | irq 4% | idle 0% | cpu001 w 0% | curscal ?% |
CPL | avg1 6.95 | avg5 7.01 | avg15 7.00 | csw 1744707 | intr 460106 | numcpu 2 |
MEM | tot 3.9G | free 2.3G | cache 713.3M | buff 188.2M | slab 222.4M | hptot 0.0M |
SWP | tot 4.0G | free 4.0G | | | vmcom 1.8G | vmlim 5.9G |
LVM | udentvm1-var | busy 3% | read 0 | write 20 | MBw/s 0.0 | avio 12.9 ms |
DSK | sda | busy 3% | read 0 | write 7 | MBw/s 0.0 | avio 37.1 ms |
NET | transport | tcpi 3 | tcpo 5 | udpi 6 | udpo 2 | tcpao 0 |
NET | network | ipi 9 | ipo 5 | ipfrw 0 | deliv 9 | icmpo 0 |
NET | enp0s8 0% | pcki 5 | pcko 7 | sp 1000 Mbps | si 0 Kbps | so 3 Kbps |
NET | enp0s3 0% | pcki 2 | pcko 0 | sp 1000 Mbps | si 0 Kbps | so 0 Kbps |

PID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK RUID ST EXC THR S CPUNR CPU CMD 1/2
5096 2.70s 0.40s 0K 0K 0K 0K student -- - 1 R 0 38% cpuHog
4939 2.49s 0.60s 0K 0K 0K 0K student -- - 1 R 0 37% screen
5162 2.57s 0.52s 0K 0K 0K 0K student -- - 1 R 0 37% cpuHog
5036 1.87s 0.37s 0K 0K 0K 0K student -- - 1 R 1 27% cpuHog
5314 1.85s 0.38s 0K 0K 0K 0K student -- - 1 R 1 27% cpuHog
5285 1.75s 0.48s 0K 0K 0K 0K student -- - 1 R 1 27% cpuHog

30591 1.43s 0.00s 0K 0K 0K 0K root -- - 1 I 1 17% kworker/u4:3-e
32018 1.42s 0.00s 0K 0K 0K 0K root -- - 1 I 1 17% kworker/u4:2-e
5087 0.04s 0.01s 0K 0K 0K 0K root -- - 1 S 0 1% top
558 0.02s 0.01s 8824K 4812K 0K 0K root -- - 1 R 0 0% atop

26067 0.00s 0.01s 0K 0K 0K 0K student -- - 3 S 0 0% VBoxClient
552 0.01s 0.00s 0K 0K 0K 0K root -- - 1 I 0 0% kworker/0:2-ev

Figure 4-5. The atop system monitor provides information about disk and
network activity in addition to CPU and process data. Click the image for a full
size version

Chapter 4 Managing proCesses

85

estate to support a wider display, additional columns will be displayed. Conversely, if

you have less horizontal width, fewer columns are displayed. I also like that atop displays

the current CPU frequency and scaling factor – something I have not seen on any other

of these monitors – on the second line in the rightmost two columns in Figure 4-5.

 Process section

The atop process display includes some of the same columns as that for top, but it also

includes disk I/O information and thread count for each process as well as virtual and

real memory growth statistics for each process. As with the summary section, additional

columns will display if there is sufficient horizontal screen real estate. For example, in

Figure 4-5, the RUID (Real User ID) of the process owner is displayed. Expanding the

display will also show the EUID (Effective User ID) which might be important when

programs run SUID (Set User ID).

atop can also provide detailed information about disk, memory, network, and

scheduling information for each process. Just press the d, m, n, or s keys respectively to

view that data. The g key returns the display to the generic process display.

Sorting can be accomplished easily by using C to sort by CPU usage, M for memory

usage, D for disk usage, N for network usage, and A for automatic sorting. Automatic

sorting usually sorts processes by the most busy resource. The network usage can only

be sorted if the netatop kernel module is installed and loaded.

You can use the k key to kill a process, but there is no option to renice a process.

By default, network and disk devices for which no activity occurs during a given time

interval are not displayed. This can lead to erroneous assumptions about the hardware

configuration of the host. The f command can be used to force atop to display the idle

resources.

Chapter 4 Managing proCesses

86

EXPERIMENT 4-6

install atop and then start it.

[root@studentvm1 ~]# dnf -y install atop ; atop

observe the atop display for a few minutes. start a couple cpuhogs and kill them after observing

their effects on the system. Do not delete the cpuhogs that have been running for a long time.

Be sure to look at the csw (Context switches) and intr (interrupts) data. Context switches

are the number of times per interval that the CpU switches from one program to another.

interrupts displays the number of times per interval that software or hardware interrupts occur

and cause the CpU to handle those interrupts.

read the man page for atop to learn more about any data items and interactive commands

that you find interesting.

Do not kill the remaining cpuhog instances. exit from atop.

 Configuration

The atop man page refers to global- and user-level configuration files, but none can

be found in my own Fedora or CentOS installations. There is also no command to

save a modified configuration and a save does not take place automatically when the

program is terminated. So there appears to be no way to make configuration changes

permanent.

 htop
The htop program is much like top on steroids, as you can see in Figure 4-6. It does look a

lot like top, but it also provides some capabilities that top does not. Unlike atop, however,

it does not provide any disk, network, or I/O information of any type.

Chapter 4 Managing proCesses

87

If you get into a menu or dialog that you want to get out of without making any

changes, you can always press the Escape (Esc) key once to back up.

 Summary section

The summary section of htop is displayed in two columns. It is very flexible and can be

configured with several different types of information in pretty much any order you like.

htop has a number of different options for the CPU display, including a single combined

bar, a bar for each CPU, and various combinations in which specific CPUs can be

grouped together into a single bar.

I think this is a cleaner summary display than some of the other system monitors and

it is easier to read. The drawback to this summary section is that some information is not

available in htop that is available in the other monitors, such as CPU percentages by user,

idle, and system time.

1 [||||||||||||||||||||||||||||||||100.0%] Tasks: 122, 126 thr; 2 running
2 [||||||||||||||||||||||||||||||||100.0%] Load average: 6.93 6.97 6.99
Mem[||||||||||||||||| 523M/3.85G] Uptime: 3 days, 18:18:35
Swp[0K/4.00G]

PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
5036 student 0 -20 211M 1132 988 R 35.9 0.0 19h37:26 /bin/bash ./cpuHog
4939 student 20 0 227M 4236 2048 S 35.2 0.1 21h36:44 SCREEN
5285 student 20 0 211M 1072 924 R 32.8 0.0 19h35:32 /bin/bash ./cpuHog
5314 student 20 0 211M 1136 988 R 31.2 0.0 19h29:25 /bin/bash ./cpuHog
5162 student 20 0 211M 1132 988 R 27.3 0.0 19h33:59 /bin/bash ./cpuHog
5096 student 32 12 211M 3152 2912 R 27.3 0.1 19h41:37 /bin/bash ./cpuHog
866 root 0 -20 17044 16984 12580 S 2.3 0.4 3:02.08 atop

4962 root 20 0 220M 4392 3712 R 1.6 0.1 0:00.07 htop
1 root 20 0 103M 14660 9196 S 0.8 0.4 0:32.39 /usr/lib/systemd/systemd --switch

653 root 20 0 197M 125M 112M S 0.8 3.2 0:20.94 /usr/lib/systemd/systemd-journald
901 root 20 0 665M 78208 76220 S 0.8 1.9 0:20.35 /usr/sbin/rsyslogd -n
930 dbus 20 0 42272 6632 4856 S 0.8 0.2 0:40.63 /usr/bin/dbus-daemon --system --a

4967 root 20 0 159M 8656 7692 S 0.8 0.2 0:00.01 /usr/libexec/nm-dispatcher
4797 root 20 0 39180 5040 3804 S 0.0 0.1 2:47.35 sshd: root@pts/0
5068 root 20 0 225M 2908 1900 S 0.0 0.1 1:52.78 SCREEN
678 root 20 0 33300 12232 8008 S 0.0 0.3 0:02.01 /usr/lib/systemd/systemd-udevd
879 root 16 -4 104M 1824 1220 S 0.0 0.0 0:00.01 /sbin/auditd
881 root 16 -4 104M 1824 1220 S 0.0 0.0 0:00.21 /sbin/auditd
878 root 16 -4 104M 1824 1220 S 0.0 0.0 0:01.22 /sbin/auditd
880 root 16 -4 7068 3412 3016 S 0.0 0.1 0:00.47 /usr/sbin/sedispatch
926 root 20 0 308M 9796 8368 S 0.0 0.2 0:00.00 /usr/sbin/ModemManager

Figure 4-6. htop has nice bar charts to indicate resource usage and it can show the
process tree

Chapter 4 Managing proCesses

88

The F2 (Setup) key is used to configure the summary section of htop. A list of

available data displays is shown, and you can use various keys to add them to the left or

right column and to move them up and down within the selected column.

Be sure to look at the csw (Context Switches) and intr (Interrupts) data. Context

switches are the number of times per interval that the CPU switches from one program to

another. Interrupts displays the number of times per interval that software or hardware

interrupts occur and cause the CPU to handle those interrupts.

 Process section

The process section of htop is very similar to that of top. As with the other monitors,

processes can be sorted any of several factors, including CPU or memory usage, user, or

PID. Note that sorting is not possible when the tree view is selected.

The F6 key allows you to select the sort column; it displays a list of the columns

available for sorting, and you select the column you want and press the Enter key.

You can use the Up and Down arrow keys to select a process. The cursor bar moves

up and down to highlight individual processes. The Space bar can be used to tag

multiple processes on which commands may be performed.

To kill a process, use the arrow keys to select the target process and press the F9

or the k key. A list of signals to send the process is displayed down the left side of the

terminal session with 15, SIGTERM, selected. You can specify the signal to use, if

different from SIGTERM using the Up and Down arrow keys. You could also use the F7

and F8 keys to renice the selected process.

One option I especially like is F5 which displays the list of running processes in a tree

format making it easy to determine the parent/child relationships of running processes.

EXPERIMENT 4-7

perform this experiment as root. install htop and then start it.

[root@studentvm1 ~]# dnf -y install htop ; htop

observe the htop display for a few minutes. press the T (uppercase) key to sort the processes

on their total accumulated CpU time. start at least four new cpuhogs. if the new cpuhog

instances are not immediately visible, it may take a few minutes but the new cpuhogs will

climb up the list of running processes so that they are. their positions in the list will be more

stable this way and make it easier to select one or more of them.

Chapter 4 Managing proCesses

89

But we do not need to wait in order to locate these cpuhog instances. We could just use the

Page Down and Page Up keys to do an eyeball search, but there is a better way.

press the F3 key and type in the search term “cpuh” (without the quotes) and the cursor will

move to the first hpuhog instance and will be highlighted. press F3 to search through the list

of running processes to locate the other cpuhog instances. pressing any other key will exit

from search mode and leave the cursor on the selected process.

now use the Up and Down arrow keys to move the cursor to another of the new cpuhog

instances. on my VM this is the cpuhog with a piD of 2325. notice that the cursor remains on

this process even if it changes position in the display. the piD of your cpuhog instance will be

different.

We are going to kill this process so press F9 to list the signals that can be sent to the

highlighted cpuhog process. Move the cursor up to SIGKILL (signal 9) as shown in Figure 4-7,

and press Enter to kill this process.

Move the cursor to one of the remaining new cpuhogs. press the Space bar to tag this

process. tag two more of the new cpuhogs. Do not tag any of the cpuhog instances that have

been running for a longer time.

Kill the tagged cpuhogs. press the k key. this time leave the cursor on sigterM (signal 15)

and press Enter to kill all of the tagged processes. Look through the terminal sessions in

which you started these cpuhogs to verify that they have been killed.

it is possible to set the delay interval but only from the command line. there is not interactive

command that provides this capability. the -d option sets the delay time in 10ths of a

second – that is 10ths, not full seconds.

press q to quit from htop. then enter the following command to start htop with a 1-second

interval.

[root@studentvm1 ~]# htop -d 10

Chapter 4 Managing proCesses

90

read the man page for htop to learn more about any data items and interactive commands

that you find interesting.

Do not kill the remaining cpuhog instances and leave htop running.

Figure 4-7. Select a cpuHog instance and press F9 to list the signals that can be sent

Chapter 4 Managing proCesses

91

 Configuration

Each user has their own configuration file, ~/.config/htop/htoprc, and changes to the

htop configuration are stored there automatically. There is no global configuration file

for htop.

The htop utility has a very flexible configuration. The CPU and memory meters in the

header section can be configured in the F2 Setup dialog page as seen in Figure 4-8.

Let’s take some time to explore this setup capability in Experiment 4-8.

EXPERIMENT 4-8

perform this experiment as the root user, but everything will work the same way with a non-

root user except that non-root users will be unable to change nice numbers in a negative

direction.

press the F2 key to open the setup dialog which is shown in Figure 4-8. the Meters options in

the setup column allows us to add, delete, and configure the various available meters.

Use the up and down arrow keys to select one of the four setup dialogs. after you check that

out, return the cursor to the Meters dialog and look at the meters in each of the left and right

columns.

on your display the CpU’s meter will be at the top. ensure that it is highlighted and press

Enter. the CpU’s meter is highlighted with a different color and a double Up/Down arrow

symbol (↕). First, press the Space bar to rotate through the available meter types. Choose

one you like. Use the Up and Down keys on the keyboard to move this meter to a location you

prefer in the current column. Use the Right arrow and Left Arrow keys to change the column

in which the meter is displayed. press the Enter again to lock the meter into position.

Chapter 4 Managing proCesses

92

the rightmost column in the Meters dialog displays all of the available meters. Move the

highlight bar to the hostname meter and press Enter. Use the arrow keys to move the

hostname meter to the top of the right column and press enter to lock it into position.

Move the cursor back to the setup column and place it on Display options. Move the cursor

to the Display options column and remove the x from Hide kernel threads. this enables htop

to display kernel-related process threads. You could also press K (uppercase) when in the

main htop screen to toggle the showing of kernel threads. the kthr item now appears in the

tasks line of the summary section.

i also like to enable Leave a margin around header, Detailed CPU time, and Count CPUs
from 0 instead of 1. try these and some of the other options in this dialog.

Figure 4-8. The htop setup dialog showing some different meter styles in the
summary section

Chapter 4 Managing proCesses

93

try out some of the different color schemes in the Colors dialog. the Columns dialog allows

you to configure the specific columns to be displayed in the process list and in what sequence

they appear.

Be sure to spend plenty of time experimenting with htop because it is very useful. exit from

htop when you are finished.

 Glances
The Glances utility can display more information about your computer than any of

the other text-mode monitors I am currently familiar with. This includes filesystem

I/O, network I/O, and sensor readouts that can display CPU and other hardware

temperatures as well as fan speeds and disk usage by hardware device and logical

volume.

The drawback to having all of this information is that Glances uses a significant

amount of CPU resources itself. On my systems I find that it can use from about 10% to

18% of CPU cycles. That is a lot so you should consider that impact when you choose

your monitor. Glances can also explore your network using snmp protocols to discover

and query other network nodes.

Glances is cross-platform because it is written in Python. It can be installed on

Windows and other hosts that have current versions of Python installed.

 Summary section

The summary section of Glances contains most of the same information as the summary

sections of the other monitors. If you have enough horizontal screen real estate, it can

show CPU usage with both a bar graph and a numeric indicator; otherwise, it will show

only the number.

I like this summary section better than those of the other monitors; I think it provides

the right information in an easily understandable format. As with atop and htop, you can

press the 1 key to toggle between a display of the individual CPU cores and a global one

with all of the CPU cores as a single average as shown in Figure 4-9.

Chapter 4 Managing proCesses

94

 Process section

The process section displays the standard information about each of the running

processes. Processes can be sorted automatically (a) or by CPU (c), memory (m),

command name (p), user (u), I/O rate (i), or time (t). When sorted automatically

processes are first sorted by the most used resource. In Figure 4-9 the default sort

column, TIME+, is highlighted. As with htop TIME+ is the accumulated CPU time for

the process.

Figure 4-9. The Glances interface with network, filesystem, and sensor
information

Chapter 4 Managing proCesses

95

Glances also shows warnings and critical alerts at the very bottom of the screen,

including the time and duration of the event. This can be helpful when attempting to

diagnose problems when you cannot stare at the screen for hours at a time. These alert

logs can be toggled on or off with the l (El) key, warnings can be cleared with the w key,

while alerts and warnings can all be cleared with x.

It is interesting that Glances is the only one of these monitors that cannot be used to

either kill or renice a process. It is intended strictly as a monitor. You can use the external

kill and renice commands to manage processes.

 Sidebar

Glances has a very nice sidebar that displays information that is not available in top or

htop. atop does display some of this data, but Glances is the only monitor that displays

the sensor data. Sometimes it is nice to see the temperatures inside your computer.

The individual modules, disk, filesystem, network, and sensors can be toggled on

and off using the d, f, n, and s commands, respectively. The entire sidebar can be toggled

using 2. Docker stats can be displayed in the sidebar with D.

Note that the hardware sensors are not displayed when Glances is running on a

virtual machine. For this reason, I have used a screenshot of Glances on one of my

physical hosts.

 Configuration

Glances does not require a configuration file to work properly. If you choose to have

one, the system-wide instance of the configuration file would be located in /etc/

glances/glances.conf. Individual users can have a local instance at ~/.config/glances/

glances.conf which will override the global configuration. The primary purpose of these

configuration files is to set thresholds for warnings and critical alerts.

There is a document, /usr/share/doc/Glances/Glances-doc.html, that provides a

great deal of information about using Glances, and it explicitly states that you can use the

configuration file to configure which modules are displayed.

Chapter 4 Managing proCesses

96

EXPERIMENT 4-9

perform this experiment as the root user. to begin, install glances and then start it.

[root@studentvm1 ~]# dnf -y install glances ; glances

note that, due to the CpU load overhead incurred by glances, there may be some delay

before the glances display appears. View the glances output for a few minutes and locate the

various types of data that you have already seen in the previous monitors. press the h key to

display a help menu. Most of the options here simply show/hide various data displays or select

a sort column. press h again to exit from the help menu.

press the f key to hide the filesystem usage statistics. press f again to display them again.

note that the disk i/o statistics are not shown – i am not sure why this is the case. Because

this is a VM, the sensor data will not be displayed because there is no physical hardware.

take some time to experiment with glances until you feel comfortable with it.

press q or esc to exit from glances.

Despite its lack of interactive capabilities such as the ability to renice or kill processes

and its own high CPU load, I find Glances to be a very useful tool. The complete Glances

documentation6 is available on the Internet, and the Glances man page has startup

options and interactive command information.

 Other tools
Sometimes the static tools like the ps (process list) tend to get overlooked in our efforts to

observe system performance in as near to real time as we can get. The ps command can

produce a static list of processes. It can list all processes or it can list only the running

processes for the user that issues the command. The kill command is used to kill running

processes, and it can also send other signals that enable the user or SysAdmin to interact

with them.

6 Glances, Glances, https://Glances.readthedocs.io/en/latest/index.html

Chapter 4 Managing proCesses

https://glances.readthedocs.io/en/latest/index.html

97

EXPERIMENT 4-10

perform this experiment as the student user. if there are not already some cpuhogs running,

start four or five for use in this experiment.

the following command lists the currently running processes that belong to the user. this

provides an easy way to find the piDs of running processes that we might be interested in

when troubleshooting performance problems.

[student@studentvm1 ~]$ ps -r

 PID TTY STAT TIME COMMAND

 5036 pts/6 RN+ 193:24 /bin/bash ./cpuHog

 8531 pts/7 R<+ 192:47 /bin/bash ./cpuHog

 8650 pts/8 R+ 187:52 /bin/bash ./cpuHog

 8712 pts/9 R+ 189:08 /bin/bash ./cpuHog

 8736 pts/10 R+ 189:18 /bin/bash ./cpuHog

23463 pts/12 R+ 0:00 ps -r

[student@studentvm1 ~]$

i like the next command because it lists all processes whether running or not.

[student@studentvm1 ~]$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Feb02 ? 00:00:55 /usr/lib/systemd/systemd

--switched-root --system --deserialize 33

root 2 0 0 Feb02 ? 00:00:00 [kthreadd]

root 3 2 0 Feb02 ? 00:00:00 [rcu_gp]

root 4 2 0 Feb02 ? 00:00:00 [rcu_par_gp]

root 6 2 0 Feb02 ? 00:00:00 [kworker/0:0H-kblockd]

root 8 2 0 Feb02 ? 00:00:00 [mm_percpu_wq]

root 9 2 0 Feb02 ? 00:02:03 [ksoftirqd/0]

root 10 2 0 Feb02 ? 00:03:08 [rcu_sched]

root 11 2 0 Feb02 ? 00:00:00 [rcu_bh]

root 12 2 0 Feb02 ? 00:00:00 [migration/0]

root 14 2 0 Feb02 ? 00:00:00 [cpuhp/0]

root 15 2 0 Feb02 ? 00:00:00 [cpuhp/1]

root 16 2 0 Feb02 ? 00:00:00 [migration/1]

root 17 2 0 Feb02 ? 00:01:33 [ksoftirqd/1]

<snip>

Chapter 4 Managing proCesses

98

student 25882 1408 0 Feb03 ? 00:00:00 /bin/sh /etc/xdg/xfce4/

xinitrc -- vt

student 25966 4873 0 Feb03 ? 00:00:00 /usr/libexec/imsettings-daemon

student 25969 4873 0 Feb03 ? 00:00:00 /usr/libexec/gvfsd

student 25976 4873 0 Feb03 ? 00:00:00 /usr/lib64/xfce4/xfconf/xfconfd

student 26042 1 0 Feb03 ? 00:00:00 /usr/bin/VBoxClient --clipboard

student 26043 26042 0 Feb03 ? 00:00:00 /usr/bin/VBoxClient --clipboard

student 26053 1 0 Feb03 ? 00:00:00 /usr/bin/VBoxClient --display

student 26054 26053 0 Feb03 ? 00:00:00 /usr/bin/VBoxClient --display

student 26059 1 0 Feb03 ? 00:00:00 /usr/bin/VBoxClient --seamless

student 26073 25882 0 Feb03 ? 00:00:01 /usr/bin/ssh-agent /bin/sh -c

exec -l /bin/bash -c "startxfce4"

student 26103 25882 0 Feb03 ? 00:00:01 xfce4-session

student 26104 4873 0 Feb03 ? 00:00:00 /usr/libexec/at-spi-bus-launcher

student 26110 26104 0 Feb03 ? 00:00:00 /usr/bin/dbus-daemon

<snip>

root 26363 1 0 Feb03 ? 00:00:03 /usr/sbin/abrt-dbus -t133

student 26415 4873 0 Feb03 ? 00:00:00 /usr/libexec/bluetooth/obexd

student 26483 26141 0 Feb03 ? 00:00:04 orage

i can use grep and other commands to locate specific processes using appropriate filters.

[root@studentvm1 ~]# ps -ef | grep xfce

student 1311 1283 0 Jul17 ? 00:00:00 /bin/sh /etc/xdg/xfce4/

xinitrc -- vt

student 1399 1290 0 Jul17 ? 00:00:00 /usr/lib64/xfce4/xfconf/xfconfd

student 1501 1311 0 Jul17 ? 00:00:00 /usr/bin/ssh-agent /bin/sh -c

exec -l /bin/bash -c "startxfce4"

student 1531 1311 0 Jul17 ? 00:00:00 xfce4-session

student 1554 1 0 Jul17 ? 00:00:05 xfce4-panel

student 1584 1531 0 Jul17 ? 00:00:00 /usr/libexec/xfce-polkit

student 1595 1 0 Jul17 ? 00:00:00 xfce4-power-manager

student 1723 1290 0 Jul17 ? 00:00:00 /usr/lib64/xfce4/notifyd/

xfce4-notifyd

student 1944 1554 0 Jul17 ? 00:00:01 /usr/lib64/xfce4/panel/

wrapper-2.0 /usr/lib64/xfce4/panel/

plugins/libsystray.so 6 23068680

systray Notification Area Area where

notification icons appear

Chapter 4 Managing proCesses

99

student 1950 1554 0 Jul17 ? 00:00:00 /usr/lib64/xfce4/panel/

wrapper-2.0 /usr/lib64/xfce4/panel/

plugins/libactions.so 2 23068681

actions Action Buttons Log out, lock

or other system actions

student 1951 1554 0 Jul17 ? 00:00:00 /usr/lib64/xfce4/panel/

wrapper-2.0 /usr/lib64/xfce4/panel/

plugins/libnotification-plugin.

so 18 23068682 notification-plugin

Notification Plugin Notification

plugin for the Xfce panel

student 2019 1 0 Jul17 ? 00:00:05 /usr/bin/xfce4-terminal

root 5051 22865 0 12:19 pts/3 00:00:00 grep --color=auto xfce

the next command displays all processes running that belong to the user student. note that

this is not all of the processes that belong to the student user, just the ones that are running

when the command is issued. the options are a for all and u for user. note the interesting

syntax that there must not be a space between the u option and the username, student.

[student@studentvm1 ~]$ ps -austudent

 PID TTY TIME CMD

 2272 pts/7 06:23:28 cpuHog

 2273 pts/8 06:23:42 cpuHog

 2277 pts/11 06:23:14 cpuHog

 2278 pts/14 00:00:00 bash

 2302 pts/15 00:00:00 bash

 2692 pts/16 00:00:00 bash

 2845 pts/14 06:17:17 cpuHog

 2848 pts/16 06:20:10 cpuHog

 4873 ? 00:00:00 systemd

 4875 ? 00:00:00 (sd-pam)

 4880 ? 00:00:00 pulseaudio

What do we do once we have found the process(es) that we are looking for? We usually kill or

renice them. You have already used both of these so you won’t do that again. Let’s look at a

couple additional useful and interesting commands.

Chapter 4 Managing proCesses

100

You should have a few cpuhogs still running and we want to find just those. the pgrep

command lists the piD numbers for each process whose name matches the pattern specified

as the argument.

[student@studentvm1 ~]$ pgrep cpuHog

2272

2273

2277

2845

2848

5096

5162

5285

5314

6006

[student@studentvm1 ~]$

that is all – nothing else, just the piDs. You could use the -i option to ignore case in the names

which would mean not having to be case specific when typing the argument. the -l (lowercase

el) to list the names as well. it might be good to do this if several types of running processes

might match the argument.

[student@studentvm1 ~]$ pgrep -l cpu

8 mm_percpu_wq

14 cpuhp/0

15 cpuhp/1

2272 cpuHog

2273 cpuHog

2277 cpuHog

2845 cpuHog

2848 cpuHog

5096 cpuHog

5162 cpuHog

5285 cpuHog

5314 cpuHog

6006 cpuHog

[student@studentvm1 ~]$

Chapter 4 Managing proCesses

101

Just be careful that you know what will be killed or altered with some other commands, like

this next one.

[student@studentvm1 ~]$ renice +4 $(pgrep cpuH)

What do you think that the preceding command does? Use one of the interactive monitors like

top or htop to verify this. here are the results from my VM.

2272 (process ID) old priority 0, new priority 4

2273 (process ID) old priority 0, new priority 4

2277 (process ID) old priority 0, new priority 4

2845 (process ID) old priority 0, new priority 4

2848 (process ID) old priority 0, new priority 4

renice: failed to set priority for 5096 (process ID): Permission denied

5162 (process ID) old priority 0, new priority 4

5285 (process ID) old priority 0, new priority 4

5314 (process ID) old priority 0, new priority 4

6006 (process ID) old priority 0, new priority 4

i had one cpuhog that was not killed because it was running as root and the student user does

not have the authority to kill root or any other user’s processes. note that the pgrep command

found all of the cpuhogs, but we could have used the -U option to specify that we only wanted

to list those matching processes that were also running as the student user. For this reason,

it is wise to be very careful when running commands like these as root so that you do not kill

processes that belong to a user who does not want them terminated.

We have one more interesting command that we can use to kill multiple processes even if the

number of them that are running and their piDs are unknown. the pkill utility has the same

matching capabilities as pgrep, but it simply sends the specified signals to the matching

processes. the default is signal 15, sigterM. the following command kills all running

processes that match the string “cpuh.”

[student@studentvm1 ~]$ pkill cpuH

at this point there should be no cpuhog instances running that belong to the student user.

Chapter 4 Managing proCesses

102

 The impact of measurement
The observer effect7 is a theory in the scientific discipline of physics that states, “simply

observing a situation or phenomenon necessarily changes that phenomenon.” This is

also true when measuring Linux system performance.

The act of using these monitoring tools alters the system’s use of resources including

memory and CPU time. top and most of these monitors use perhaps 2% or 3% of a system’s

CPU time. The Glances utility has much more impact than the others and can use between

10% and 20% of CPU time; I have seen it use as much as 40% of one CPU in a very large

and active system with 32 CPUs. Be sure to consider this when choosing your tools.

 Chapter summary
As we proceeded through this chapter, you probably observed some things about the

processes running on your VM and the total amount of time that accrued to each.

The cpuHogs together accumulated most of the CPU time, while the kernel threads

accumulated very little by comparison. This is because most of the kernel threads do

not need to run frequently and take very little time when they do. Other tools that don’t

accumulate much time, such as LibreOffice, simply spend most of their time waiting for

the users to type or select tasks from menus or icon bars.

Be sure to read the man pages for each of the monitors we have experimented with

in this chapter because there is a large amount of information about configuring and

interacting with them. These tools are the ones I like best for managing processes but

there are more.

These programs can tell you a great deal when you are looking for the cause of a

problem. They can tell you when a process, and which one, is sucking up CPU time,

whether there is enough free memory, whether processes are stalled while waiting for

I/O such as disk or network access to complete, and much more.

I also highly recommend that you spend time watching these monitoring programs

while they run on a system that is functioning normally. This way you will be able to

differentiate those things that may be abnormal while you are looking for the cause of a

problem. This is one of those tasks that may look to others like you are just sitting there

doing nothing but which is an important part of being the lazy SysAdmin.

7 Wikipedia, Observer effect (physics), https://en.m.wikipedia.org/wiki/
Observer_effect_(physics)

Chapter 4 Managing proCesses

https://en.m.wikipedia.org/wiki/Observer_effect_(physics)
https://en.m.wikipedia.org/wiki/Observer_effect_(physics)

103

 Exercises
Complete the following exercises to finish this chapter:

 1. There is a specification in the Linux FHS that defines a location for

personal executable files that is within your own home directory

structure. This allows typing the executable name without a

directory path preceding it. What is it?

 2. Set up your home directory structure in accordance with the FHS

and move the executable files to that location. Test launching the

cpuHog script from this new location without using a path.

 3. Start an instance of top and set the refresh delay to 1 second, then

observe the output for a few minutes. How much memory and

swap space are free?

 4. As both root and the student user, use the nice command to start

instances of the cpuHog program with negative numbers. Does it

work as you expected?

 5. Why are non-root users restricted from lowering the nice numbers

of their own processes?

 6. What default PID is used by top when you use k to kill or r to

renice a process?

 7. What is the result of reducing the number of virtual CPUs

allocated to the StudentVM1 virtual machine and then rerunning

Experiment 4-4?

 8. When using atop, what key would you use to freeze the display for

longer inspection than the current interval would allow?

 9. The htop utility allows filtering the process list so that only those

that match the filter specification are displayed. Use that function

to display only the running cpuHog instances.

 10. Can multiple processes be terminated with a single kill command?

 11. Do the accumulated times in the TIME+ columns of top and htop

add up to the total uptime? Why?

Chapter 4 Managing proCesses

105
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_5

CHAPTER 5

Special Filesystems
 Objectives
In this chapter you will learn

• What constitutes a special filesystem

• Practical uses for two of the special filesystems, /proc and /sys

• The use of some of the tools that allow easy access to view system

data in these special filesystems

• How to create and manage swap files

• Some differing recommendations for swap size

 Introduction
In Chapter 4, we looked at some tools like top that allow SysAdmins to look inside the

running Linux kernel. We also discussed the observer effect1 which is a theory in the

scientific discipline of physics that states, “simply observing a situation or phenomenon

necessarily changes that phenomenon.” This is also true when measuring Linux system

performance. The act of using those monitoring tools alters the system’s use of resources

including memory and CPU time.

Collecting data does not impact the overall performance in a Linux host. The Linux

kernel is designed to always collect and store the performance data that is merely

accessed and displayed by any and all performance monitoring tools. It is the tools’

access of that data to read it and then to manipulate it and display it in a meaningful

format that further affects the system performance.

1 Wikipedia, Observer effect (physics), https://en.m.wikipedia.org/wiki/
Observer_effect_(physics)

https://en.m.wikipedia.org/wiki/Observer_effect_(physics)
https://en.m.wikipedia.org/wiki/Observer_effect_(physics)

106

Linux has some special filesystems that it creates at each boot, two of which are

particularly interesting to SysAdmins: the /proc and /sys filesystems. It is in these

filesystems that the kernel stores the performance data of the running kernel and much

more. The data is always there and it is easy to access. These are virtual filesystems that

exist only in RAM while the Linux host is running; they do not exist on any physical disk.

Because they exist only in RAM, these filesystems are not persistent like filesystems that

are stored on the hard drive. They disappear when the computer is turned off and are

recreated anew each time Linux starts up.

The /proc, /sys, and swap filesystems are ones with which you will become well

acquainted as a SysAdmin so we are going to explore them in some detail in this chapter.

 The /proc filesystem
The /proc filesystem is defined by the FHS, which we explored in Chapter 19, as the

location for Linux to store information about the system, the kernel, and all processes

running on the host. It is intended to be a place for the kernel to expose information

about itself in order to facilitate access to data about the system. It is also designed to

provide access to view kernel configuration parameters and to modify many of them

when necessary in order to allow the SysAdmin to tune the running system without

needing to perform reboots after making changes.

When used as a window into the state of the operating system and its view of the

system and hardware, it provides easy access to virtually every bit of information you

might want as a SysAdmin.

EXPERIMENT 5-1

For best results with this experiment, it must be performed as root.

Let’s first look at the top-level contents of the /proc filesystem of a running Linux host. On your

host you may see color coding to differentiate files from directories.

First, look at the numeric entries. The names of these directories are a PID, or process ID

number. Each of those PID directories contains information about the running process that it

represents. We will look at these directories in more detail in Experiment 5-2.

ChaPTEr 5 SPECIaL FILESySTEmS

https://doi.org/10.1007/978-1-4842-5455-4_19

107

[root@studentvm1 proc]# cd /proc ; ls

1 124 20 26122 2692 4940 836 946 driver pagetypeinfo

10 1256 21 26141 27 4968 846 95 execdomains partitions

100 14 22 26143 28 5037 847 950 fb sched_debug

1007 1408 2278 26153 29 5135 848 96 filesystems schedstat

1008 14402 23 26158 3 516 849 961 fs scsi

101 14831 2302 26159 30 5163 851 963 interrupts self

102 14844 24 26166 31 5230 852 968 iomem slabinfo

103 15 25 26167 32 5258 874 97 ioports softirqs

104 16 25882 26171 33 526 875 98 irq stat

105 17 25966 26174 34 5287 878 987 kallsyms swaps

1060 17105 25969 26175 35 537 880 99 kcore sys

107 17517 25976 26179 36 554 899 994 keys sysrq-trigger

1075 17518 26 26180 386 555 9 995 key-users sysvipc

109 17559 26042 26186 39 593 900 996 kmsg thread-self

1090 17607 26043 26189 394 594 901 997 kpagecgroup timer_list

1092 17649 26053 26191 4 6 902 acpi kpagecount tty

1096 17653 26054 26194 40 653 903 asound kpageflags uptime

11 17700 26059 26203 450 678 905 buddyinfo latency_stats version

1105 17704 26060 26205 4868 747 906 bus loadavg vmallocinfo

111 17706 26066 26209 4873 765 907 cgroups locks vmstat

113 17711 26067 26216 4875 767 908 cmdline mdstat zoneinfo

11594 17712 26073 26220 4880 769 909 consoles meminfo

11598 17779 26103 26228 4881 794 929 cpuinfo misc

117 17780 26104 26282 4882 8 930 crypto modules

118 18218 26110 26363 4932 833 931 devices mounts

12 19 26116 26415 4938 834 932 diskstats mtrr

1233 2 26121 26483 4939 835 94 dma net

[root@studentvm1 proc]#

Each of the files in the /proc directory contains information about some part of the kernel. Let’s

take a look at a couple of these files, cpuinfo and meminfo.

The cpuinfo file is mostly static. It contains the specifications for all installed CPUs.

[root@studentvm1 proc]# cat cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

ChaPTEr 5 SPECIaL FILESySTEmS

108

model : 58

model name : Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

stepping : 9

microcode : 0x19

cpu MHz : 3392.345

cache size : 8192 KB

physical id : 0

siblings : 1

core id : 0

cpu cores : 1

apicid : 0

initial apicid : 0

fpu : yes

fpu_exception : yes

cpuid level : 13

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca

cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp lm constant_tsc

rep_good nopl xtopology nonstop_tsc cpuid pni pclmulqdq monitor ssse3 cx16

sse4_1 sse4_2 popcnt aes xsave avx rdrand lahf_lm

bugs :

bogomips : 6784.69

clflush size : 64

cache_alignment : 64

address sizes : 36 bits physical, 48 bits virtual

power management:

<snip>

The data from the cpuinfo file includes the processor ID and model, its current speed in mhz,

and the flags that can be used to determine the CPU features. Now let’s look at memory. First

cat the meminfo file and then use the free command to do a comparison.

[root@studentvm1 proc]# cat meminfo

MemTotal: 4044740 kB

MemFree: 2936368 kB

MemAvailable: 3484704 kB

Buffers: 108740 kB

Cached: 615616 kB

ChaPTEr 5 SPECIaL FILESySTEmS

109

SwapCached: 0 kB

Active: 676432 kB

Inactive: 310016 kB

Active(anon): 266916 kB

Inactive(anon): 316 kB

Active(file): 409516 kB

Inactive(file): 309700 kB

Unevictable: 8100 kB

Mlocked: 8100 kB

SwapTotal: 4182012 kB

SwapFree: 4182012 kB

Dirty: 0 kB

Writeback: 0 kB

AnonPages: 270212 kB

Mapped: 148088 kB

Shmem: 988 kB

Slab: 80128 kB

SReclaimable: 64500 kB

SUnreclaim: 15628 kB

KernelStack: 2272 kB

PageTables: 11300 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 6204380 kB

Committed_AS: 753260 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

HardwareCorrupted: 0 kB

AnonHugePages: 0 kB

ShmemHugePages: 0 kB

ShmemPmdMapped: 0 kB

CmaTotal: 0 kB

CmaFree: 0 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

ChaPTEr 5 SPECIaL FILESySTEmS

110

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 73664 kB

DirectMap2M: 4120576 kB

[root@studentvm1 proc]# free

 total used free shared buff/cache available

Mem: 4044740 304492 2935748 988 804500 3484100

Swap: 4182012 0 4182012

There is a lot of information in the /proc/meminfo file. a few bits of that data are used by

programs like the free command. If you want the complete picture of memory usage, look

in /proc/meminfo. The free command, like top, htop, and many other core utilities, gets its

data from the /proc filesystem.

run the cat meminfo command several times in quick succession to see that the /proc/

meminfo file is continuously changing. That indicates the file is being updated. you can do this

with the watch command.

[root@studentvm1 proc]# watch cat meminfo

Note While doing research for this experiment, I discovered that a method I had
used before to determine that files were being updated, even when the content had
not changed, no longer worked. The command that I used was stat /proc/meminfo
which should have shown continuously changing mtime, atime, and ctime, but
which no longer did. This does work correctly in CentOS and Fedora 27 but not
Fedora 28 or 29. I reported this problem as bug 1675440 on the red hat Bugzilla
web site. It is very important that we Sysadmins report bugs when we find them.

Because the data in /proc is a nearly instantaneous picture of the state of the Linux kernel and

the computer hardware, the data may change rapidly. Look at the interrupts file several times

in a row.

Spend a little time to compare the data in the /proc/meminfo file against the

information you get when using commands like free and top. Where do you think these

utility tools and many others get their information? Right here in the /proc filesystem,

that's where.

ChaPTEr 5 SPECIaL FILESySTEmS

111

Let’s look a little bit deeper into PID 1. Like all of the process directories, it contains

information about the process with that ID. So let’s look at some of that information.

EXPERIMENT 5-2

Start this experiment as root.

Let’s enter and look at the contents of the /proc/1 directory. Then view the contents of the

cmdline file.

[root@studentvm1 proc]# cd /proc/1 ; cat cmdline

/usr/lib/systemd/systemd--switched-root--system--deserialize24

We can see from the contents of the cmdline that this is systemd, the mother of all programs.

On all older and some current versions of Linux, PID 1 will be the init program.

If there are no cpuhogs running, start one instance in a terminal session as the student user.

Use one of the monitoring tools like top to determine the PID of this cpuhog process. On my

Vm, the PID is 18107, but it will be different on your Vm. Be sure to use the correct PID for the

cpuhog on your Vm.

make the directory corresponding to the PID of your cpuhog instance the PWD. Then list the

contents.

[root@studentvm1 18107]# cd /proc/18107 ; ll | less

total 0

dr-xr-xr-x. 2 student student 0 Feb 11 20:29 attr

--w-------. 1 student student 0 Feb 11 20:29 clear_refs

-r--r--r--. 1 student student 0 Feb 11 20:29 cmdline

-rw-r--r--. 1 student student 0 Feb 11 20:29 comm

-rw-r--r--. 1 student student 0 Feb 11 20:29 coredump_filter

-r--r--r--. 1 student student 0 Feb 11 20:29 cpuset

lrwxrwxrwx. 1 student student 0 Feb 11 20:29 cwd -> /home/student

-r--------. 1 student student 0 Feb 11 20:29 environ

lrwxrwxrwx. 1 student student 0 Feb 11 20:29 exe -> /usr/bin/bash

dr-x------. 2 student student 0 Feb 11 20:29 fd

<snip>

Note the entries for cwd and exe. The cwd entry points to the current working directory, a.k.a.

the PWD, for the process. The exe entry points to the executable file for the process, which is

the Bash shell. But look at the content of the cmdline file.

ChaPTEr 5 SPECIaL FILESySTEmS

112

It does show all three instances of the cpuhog, really. It is just not easy to identify two of them.

To make it obvious, press the c key to display the complete command. The result can be seen

in Figure 5-2.

[root@studentvm1 18107]# cat cmdline

/bin/bash./cpuHog

This tells us that the program that is running is the cpuhog. It also gives us some insight into

the manner in which programs – at least shell scripts – are run in Linux. When starting a shell

program, the systemd2 program first launches a shell, the default being Bash unless otherwise

specified, and the shell program, cpuhog, is provided as an argument to the command.

If you are not already using top to monitor the ongoing activities on your Vm, start an instance

of it now. Look for the COmmaND column which, as you can see in Figure 5-1, shows the

three running instances of the cpuhog.

2 systemd is the program that deals with starting, stopping, and managing all other running
processes. We will cover systemd in detail in Volume 2, Chapter 13.

top - 09:02:58 up 9 days, 14:54, 16 users, load average: 5.22, 5.15, 5.10

Tasks: 212 total, 5 running, 207 sleeping, 0 stopped, 0 zombie

%Cpu0 : 36.0 us, 60.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 2.0 hi, 2.0 si, 0.0 st

%Cpu1 : 11.2 us, 74.5 sy, 0.0 ni, 0.0 id, 0.0 wa, 8.2 hi, 6.1 si, 0.0 st

MiB Mem : 21.9/3942.5 [|||||||||||||]

MiB Swap: 0.0/4096.0 []

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1105 root 20 0 398352 85676 38904 R 8.9 2.1 7:33.78 Xorg

17 root 20 0 0 0 0 S 0.0 0.0 6:27.09 ksoftirqd/1

11969 student 20 0 231608 3276 2048 R 29.7 0.1 5:41.53 screen

12019 student 20 0 216336 3188 2940 R 23.8 0.1 5:35.10 bash

11993 student 20 0 216336 1200 1052 R 32.7 0.0 5:32.69 cpuHog

12043 student 20 0 216336 3132 2880 R 22.8 0.1 5:28.42 cpuHog

12070 student 20 0 218500 3000 2720 R 30.7 0.1 5:04.96 ksh

<snip>

Figure 5-1. The top command showing three cpuHogs. They are there but are not
easy to identify

ChaPTEr 5 SPECIaL FILESySTEmS

113

The c key toggles display of the complete command line on and off. Now that we can see the

command line, it is obvious that the cpuhogs have PIDs of 12019, 11993, 12043, and 12070.

The htop utility displays the command line by default so start htop and look at the Command

column. you can immediately see the three cpuhogs. Be sure to make a note of the three PIDs

for the cpuhogs. Now press F5 to show the process tree which allows us to see the process

hierarchy as in Figure 5-3.

top - 09:11:56 up 9 days, 15:03, 16 users, load average: 5.46, 5.27, 5.14

Tasks: 212 total, 5 running, 207 sleeping, 0 stopped, 0 zombie

%Cpu0 : 47.1 us, 49.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 2.0 hi, 2.0 si, 0.0 st

%Cpu1 : 10.9 us, 74.3 sy, 0.0 ni, 0.0 id, 0.0 wa, 8.9 hi, 5.9 si, 0.0 st

MiB Mem : 21.9/3942.5 [|||||||||||||]

MiB Swap: 0.0/4096.0 []

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

11969 student 20 0 231608 3276 2048 R 26.5 0.1 5:13.00 SCREEN

12019 student 20 0 216336 3188 2940 R 35.3 0.1 5:07.35 bash cpuHog

11993 student 20 0 216336 1200 1052 R 28.4 0.0 5:07.29 /bin/bash ./cpuHog

12043 student 20 0 216336 3132 2880 R 27.5 0.1 5:02.09 /bin/bash ./cpuHog

12070 student 20 0 218500 3000 2720 S 30.4 0.1 4:37.82 ksh ./cpuHog

<snip>

Figure 5-2. After pressing the c key, all three cpuHogs are easy to identify

Figure 5-3. The htop process tree view clarifies the process hierarchy

ChaPTEr 5 SPECIaL FILESySTEmS

114

Once again, this helps us to understand a bit more about how Linux launches command-

line programs. We can see that in all three cases that systemd starts a sub-shell and then

launches the program within that sub-shell.

another tool that allows us to view the process tree is the pstree utility. Use the pstree utility

to view the process tree.

[root@studentvm1 ~]# pstree -Acp | less

Figure 5-4 shows portions of the data stream from the pstree command. Scroll through

the output and find the cpuhogs. you should check the man page for pstree to discover the

meanings of the options we used for this command.

Our real purpose here was to learn the PID of the cpuhogs in order to explore them in the

/proc filesystem. Now that we know multiple ways to do that, let’s get back to our original

objective.

Pick one of the cpuhogs and, as root, make /proc/<PID> the PWD. I chose PID 12070, but

you should use the PID for an instance of cpuhog on your Vm, and then list the contents of the

directory.

[root@studentvm1 ~]# cd /proc/12070 ; ls
attr cpuset latency mountstats personality smaps_rollup timerslack_ns
autogroup cwd limits net projid_map stack uid_map
auxv environ loginuid ns root stat wchan
cgroup exe map_files numa_maps sched statm
clear_refs fd maps oom_adj schedstat status

[root@studentvm1 ~]# pstree -Acp | less
systemd(1)-+-ModemManager(899)-+-{ModemManager}(926)

| `-{ModemManager}(962)
|-NetworkManager(1060)-+-dhclient(1233)
| |-dhclient(1256)
| |-{NetworkManager}(1072)
| `-{NetworkManager}(1074)
|-VBoxClient(26042)---VBoxClient(26043)---{VBoxClient}(26049)
|-VBoxClient(26053)---VBoxClient(26054)

<snip>
|-screen(11969)-+-bash(11970)---cpuHog(11993)
| |-bash(11994)---bash(12019)
| |-bash(12020)---cpuHog(12043)
| `-bash(12044)---ksh(12070)
|-smartd(929)

<snip>

Figure 5-4. The pstree utility can also show the process tree

ChaPTEr 5 SPECIaL FILESySTEmS

115

cmdline fdinfo mem oom_score sessionid syscall
comm gid_map mountinfo oom_score_adj setgroups task
coredump_filter io mounts pagemap smaps timers

Take some time to explore the content of some of these files and subdirectories. Be sure to

view the content of the status, limits, loginuid, and maps files. The maps file is a memory

map that lists executable and library locations in virtual memory. The status file contains a

great deal of information including some interesting data about virtual memory usage. also

take some time to explore a few of the other files and subdirectories in this and other PID

directories.

There is a huge amount of information available in the /proc filesystem, and it can

be used to good advantage to solve problems. In fact, the capability to make changes

to the running kernel on the fly and without a reboot is a powerful tool. It allows you to

make instant changes to the Linux kernel to resolve a problem, enable a function, or tune

performance. Let's look at one example.

Linux is very flexible and can do many interesting things. One of those cool things is

that any Linux host with multiple network interface cards (NICs) can act as a router. All it

takes is a little knowledge, a simple command, and some changes to the firewall.

Routing is a task managed by the kernel. So turning it on (or off) requires that we

change a kernel configuration parameter. Fortunately, we do not need to recompile

the kernel, and that is one of the benefits of exposing the kernel configuration in the /

proc filesystem. We are going to turn on IP forwarding which provides the kernel's basic

routing functionality.

EXPERIMENT 5-3

This little command-line program makes the /proc/sys/net/ipv4 directory the PWD, prints the

current state of the ip_forward file which should be zero (0), sets it to “1,” and then prints its

new state which should be 1. routing is now turned on. Be sure to enter the command on a

single line.

[root@studentvm1 ipv4]# cd /proc/sys/net/ipv4 ; cat ip_forward ; echo 1 >

ip_forward ; cat ip_forward

0

1

ChaPTEr 5 SPECIaL FILESySTEmS

116

Warning I intentionally chose to modify a kernel parameter that I am familiar
with and that won’t cause any harm to your Linux Vm. as you explore the /proc
filesystem, you should not make any further changes.

Congratulations! you have just altered the configuration of the running kernel.

In order to complete the configuration of a Linux host to full function as a router,

additional changes would need to be made to the iptables firewall, or to whatever

firewall software you may be using, and to the routing table. Those changes will define

the specifics of the routing such as which packets get routed where. Although beyond

the scope of this book, I have written an article3 with some detail about configuring the

routing table to which you can refer if you want more information. I also wrote an article4

which briefly covers all of the steps required to turn a Linux host into a router, including

making IP forwarding persistent after a reboot.

While you are here in the /proc filesystem, look around some more – follow your own

curiosity to explore different areas of this important filesystem.

 The /sys filesystem
The /sys directory is another virtual filesystem that is used by Linux to maintain specific

data for use by the kernel and SysAdmins. The /sys directory maintains the list of

hardware hierarchically for each bus type in the computer hardware.

A quick look at the /sys filesystem shows us its basic structure.

3 David Both, “An introduction to Linux network routing,” https://opensource.com/
business/16/8/introduction-linux-network-routing

4 David Both, “Making your Linux Box Into a Router,” https://www.linux-databook.
info/?page_id=697

ChaPTEr 5 SPECIaL FILESySTEmS

https://opensource.com/business/16/8/introduction-linux-network-routing
https://opensource.com/business/16/8/introduction-linux-network-routing
https://www.linux-databook.info/?page_id=697
https://www.linux-databook.info/?page_id=697

117

EXPERIMENT 5-4

In this experiment we look briefly at the contents of the /sys directory and then one of its

subdirectories, /sys/block.

[root@studentvm1 sys]# cd /sys

[root@studentvm1 sys]# ls

block bus class dev devices firmware fs hypervisor kernel module power

[root@studentvm1 sys]# ls block

dm-0 dm-1 sda sr0

There are different types of disk (block) devices in /sys/block, and the sda device is one of

them. Let’s take a quick look at some of the contents of the sda directory.

[root@studentvm1 sys]# ls block/sda

alignment_offset events_async queue slaves

bdi events_poll_msecs range stat

capability ext_range removable subsystem

dev holders ro trace

device inflight sda1 uevent

discard_alignment integrity sda2

events power size

[root@studentvm1 sys]# cat block/sda/dev

8:0

[root@studentvm1 sys]# ls block/sda/device

block ncq_prio_enable

bsg power

delete queue_depth

device_blocked queue_ramp_up_period

device_busy queue_type

dh_state rescan

driver rev

eh_timeout scsi_device

evt_capacity_change_reported scsi_disk

evt_inquiry_change_reported scsi_generic

evt_lun_change_reported scsi_level

evt_media_change state

evt_mode_parameter_change_reported subsystem

evt_soft_threshold_reached sw_activity

ChaPTEr 5 SPECIaL FILESySTEmS

118

generic timeout

inquiry type

iocounterbits uevent

iodone_cnt unload_heads

ioerr_cnt vendor

iorequest_cnt vpd_pg80

modalias vpd_pg83

model wwid

[root@studentvm1 sys]# cat block/sda/device/model

VBOX HARDDISK

For a bit more realistic information from this last command, I also performed this on my own

physical hard drive rather than the Vm I have been using for these experiments and that looks

like this.

[root@david proc]# cat /sys/block/sda/device/model

ST320DM000-1BD14

This information is more like what you would see on one of your own hardware hosts rather

than a Vm. Now let’s use the smartctl command to show that same bit of information and

more. I used my physical host for this due to the more realistic data. I have also trimmed a

large amount of output from the end of the results.

[root@david proc]# smartctl -x /dev/sda

smartctl 6.5 2016-05-07 r4318 [x86_64-linux-4.13.16-302.fc27.x86_64] (local

build)

Copyright (C) 2002-16, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: Seagate Barracuda 7200.14 (AF)

Device Model: ST320DM000-1BD14C

Serial Number: Z3TT43ZK

LU WWN Device Id: 5 000c50 065371517

Firmware Version: KC48

User Capacity: 320,072,933,376 bytes [320 GB]

Sector Sizes: 512 bytes logical, 4096 bytes physical

Rotation Rate: 7200 rpm

Device is: In smartctl database [for details use: -P show]

ATA Version is: ATA8-ACS T13/1699-D revision 4

SATA Version is: SATA 3.0, 6.0 Gb/s (current: 6.0 Gb/s)

ChaPTEr 5 SPECIaL FILESySTEmS

119

Local Time is: Wed Dec 13 13:31:36 2017 EST

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

AAM level is: 208 (intermediate), recommended: 208

APM feature is: Unavailable

Rd look-ahead is: Enabled

Write cache is: Enabled

ATA Security is: Disabled, frozen [SEC2]

Wt Cache Reorder: Enabled

=== START OF READ SMART DATA SECTION ===

SMART overall-health self-assessment test result: PASSED

General SMART Values:

<snip>

had I not cut of the end of the results from this last command, it would also show things like

failure indicators and a temperature history which can be helpful in determining the source

of hard drive problems. The data for a virtual hard drive on your Vm would be different and

significantly less interesting.

The smartctl utility obtains the data it uses from the /sys filesystem, just as other utility

programs obtain their data from the /proc filesystem.

The /sys filesystem contains data about the PCI and USB system bus hardware and

any attached devices. The kernel can use this information to determine which device

drivers to use for one example.

EXPERIMENT 5-5

Let’s look at some information about one of the buses on the computer, the USB bus. I am

going to skip right to the locations of the devices in the /sys filesystem; you may need to do a

little exploring on your own to find the items that interest you.

[root@studentvm1 ~]# ls /sys/bus/usb/devices/usb2

2-0:1.0 bMaxPacketSize0 driver quirks

authorized bMaxPower ep_00 removable

authorized_default bNumConfigurations idProduct remove

avoid_reset_quirk bNumInterfaces idVendor serial

ChaPTEr 5 SPECIaL FILESySTEmS

120

bcdDevice busnum interface_authorized_default speed

bConfigurationValue configuration ltm_capable subsystem

bDeviceClass descriptors manufacturer uevent

bDeviceProtocol dev maxchild urbnum

bDeviceSubClass devnum power version

bmAttributes devpath product

The preceding results show some of the files and directories which provide data about that

particular device. But there is an easier way by using the core utilities so that we don’t have to

do all that exploration on our own. Once again this is from my own physical workstation.

If you do not have a usb2 directory or it is empty, that might be because the VirtualBox

extensions were not installed. In that case, try this experiment in the /sys/bus/usb/

devices/usb directory.

[root@david ~]# lsusb

Bus 002 Device 005: ID 1058:070a Western Digital Technologies, Inc. My

Passport Essential (WDBAAA), My Passport for Mac (WDBAAB), My Passport

Essential SE (WDBABM), My Passport SE for Mac (WDBABW)

Bus 002 Device 004: ID 05e3:0745 Genesys Logic, Inc. Logilink CR0012

Bus 002 Device 003: ID 1a40:0201 Terminus Technology Inc. FE 2.1 7-port Hub

Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 006 Device 005: ID 0bc2:ab1e Seagate RSS LLC Backup Plus Portable Drive

Bus 006 Device 003: ID 2109:0812 VIA Labs, Inc. VL812 Hub

Bus 006 Device 002: ID 2109:0812 VIA Labs, Inc. VL812 Hub

Bus 006 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 005 Device 007: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 005 Device 004: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 005 Device 006: ID 04f9:0042 Brother Industries, Ltd HL-2270DW Laser Printer

Bus 005 Device 005: ID 04f9:02b0 Brother Industries, Ltd MFC-9340CDW

Bus 005 Device 003: ID 050d:0234 Belkin Components F5U234 USB 2.0 4-Port Hub

Bus 005 Device 002: ID 2109:3431 VIA Labs, Inc. Hub

Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 005: ID 046d:c52b Logitech, Inc. Unifying Receiver

Bus 001 Device 006: ID 17f6:0822 Unicomp, Inc

Bus 001 Device 003: ID 051d:0002 American Power Conversion Uninterruptible

Power Supply

Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub

ChaPTEr 5 SPECIaL FILESySTEmS

121

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 003 Device 010: ID 0424:4063 Standard Microsystems Corp.

Bus 003 Device 009: ID 0424:2640 Standard Microsystems Corp. USB 2.0 Hub

Bus 003 Device 008: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub

Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Go ahead and try the lspci command on your own.

I sometimes find it helpful to find specific hardware devices, especially the newly

added ones. As with the /proc directory, there are some core utilities like lsusb and lspci

that make it easy for us to view information about the devices connected to the host.

 Swap space
Swap space is a common aspect of computing today, regardless of operating system.

Linux uses swap space to increase the amount of virtual memory available to a host. It

can use one or more dedicated swap partitions or a swap file on a regular filesystem or

logical volume.

There are two basic types of memory in a typical computer. Random Access Memory

(RAM) is used to store data and programs while they are being actively used by the

computer. Programs and data cannot be used by the computer unless they are stored in

RAM. RAM is volatile memory; that is, the data stored in RAM is lost if the computer is

turned off.

Hard drives are magnetic media used for long-term storage of data and programs,

and SSDs are the solid state equivalent. Magnetic and SSD media are nonvolatile; the

data stored on a disk5 remains even when power is removed from the computer. The

CPU cannot directly access the programs and data on the hard drive; it must be copied

into RAM first and that is where the CPU can access its programming instructions and

the data to be operated on by those instructions. During the boot process, a computer

copies specific operating system programs such as the kernel and init or systemd and

5 I use the term “disk” to refer to both spinning hard drives and SSDs.

ChaPTEr 5 SPECIaL FILESySTEmS

122

data from the hard drive into RAM where it is accessed directly by the computer’s

processor, the CPU (Central Processing Unit).

Swap space is the second type of memory in modern Linux systems. The primary

function of swap space is to substitute disk space for RAM memory when real RAM fills

up and more space is needed. For example, assume you have a computer system with

8GB of RAM. If you start up programs that don’t fill that RAM, everything is fine and no

swapping is required. But say that a hypothetical very large spreadsheet you are working

on grows when you add more rows to it, and that plus everything else you have running

now fills all of RAM. Without swap space available, you would have to stop work on the

spreadsheet until you could free up some of your limited RAM by closing down some

other programs.

The kernel uses a memory management program that locates blocks, a.k.a. pages, of

memory in which the contents have not been used recently. The memory management

program swaps enough of these relatively infrequently used pages of memory out to a

special partition on the hard drive specifically designated for “paging” or swapping. This

frees up RAM and makes room for more data to be entered into your spreadsheet. Those

pages of memory swapped out to the hard drive are tracked by the kernel’s memory

management code and can be paged back into RAM if they are needed.

The total amount of memory in a Linux computer is the RAM plus active swap space

and is referred to as virtual memory. Linux supports up to 32 swap areas, any or all of

which can be online at the same time. A swap area can be a disk partition, a logical

volume, or a file in a non-swap partition or volume. Multiple swap areas are usually

referred to collectively as “swaps,” such as “all active swaps.”

 Types of Linux swap
Linux provides two types of swap area. By default, most Linux installations create a

swap partition or volume, but it is also possible to use a specially configured file as a

swap file. A swap partition is just what its name implies – a standard disk partition that

is designated as swap space by the mkswap command. A logical volume used as a swap

area works just like a standard disk partition for use as a swap area, but its size can be

extended like any logical volume.

A swap file can be used if there is no free disk space in which to create a new swap

partition or space in a volume group in which a logical volume can be created for

swap space. This is just a regular file that is created and preallocated to a specified size.

ChaPTEr 5 SPECIaL FILESySTEmS

123

Then the mkswap command is run to configure it as swap space. I don’t recommend

using a file for swap space unless absolutely necessary. A swap file may be a reasonable

choice on systems with a lot of physical memory that never approaches filling up. Disk

space is so cheap and plentiful now; there’s no reason not to set up a permanent swap

partition.

 Thrashing
Thrashing can occur when total virtual memory, both RAM and swap space, become

nearly full. The system spends so much time paging blocks of memory between swap

space and RAM and back; that little time is left for real work.

The typical symptoms of this are fairly obvious; the system becomes completely

unresponsive or quite slow, and the hard drive activity light is on almost constantly.

If you can manage to issue a command like free that shows CPU load and memory

usage, you will see that the CPU load is very high, perhaps as much as 30 to 40 times the

number of CPU cores in the system. Another symptom is that both RAM and swap space

are almost completely allocated.

After the fact, looking at SAR (System Activity Report) data can also show these

symptoms. I install SAR on every system I work on and use it for post-repair forensic

analysis. We explored SAR in Volume 1, Chapter 13.

 What is the right amount of swap space?
Many years ago, the rule of thumb for the amount of swap space that should be allocated

on the hard drive was 2X the amount of RAM installed in the computer. Of course

that was when computers typically had RAM amounts measured in KB or MB. So if a

computer had 64KB of RAM, a swap partition of 128KB would be an optimum size. This

rule of thumb took into account the fact that RAM memory sizes were typically quite

small at that time and the fact that allocating more than 2X RAM for swap space did not

improve performance. With more than twice RAM for swap, most systems spent more

time thrashing than actually performing useful work.

RAM memory has become a relatively inexpensive commodity, and most computers

these days have amounts of RAM that extend into tens of gigabytes. Most of my newer

computers have at least 8GB of RAM, one has 32GB, and my main workstation has

64GB. My older computers have from 4GB to 8GB of RAM.

ChaPTEr 5 SPECIaL FILESySTEmS

124

When dealing with computers having huge amounts of RAM, the limiting

performance factor for swap space is far lower than the 2X multiplier. The Fedora 28

online Installation Guide, which can be found online in the Fedora user documentation6

site in the Fedora Installation Guide, defines current thinking about swap space

allocation. I have included in the following some discussion and the table of

recommendations from that document.

Figure 5-5 provides the recommended size of a swap partition depending on the

amount of RAM in your system and whether you want sufficient memory for your system

to hibernate. The recommended swap partition size is established automatically during

installation. To allow for hibernation, however, you will need to edit the swap space in

the custom partitioning stage.

6 Fedora Documentation, https://docs.fedoraproject.org/en-US/docs/

Amount of system RAM Recommended swap space Recommended swap with hibernation

less than 2 GB 2 times the amount of RAM 3 times the amount of RAM

2 GB - 8 GB Equal to the amount of RAM 2 times the amount of RAM

8 GB - 64 GB 0.5 times the amount of RAM 1.5 times the amount of RAM

more than 64 GB workload dependent hibernation not recommended

Figure 5-5. Recommended system swap space in Fedora 28 documentation

At the border between each range listed earlier (e.g., a system with 2GB, 8GB, or

64GB of system RAM), discretion can be exercised with regard to chosen swap space and

hibernation support. If your system resources allow for it, increasing the swap space may

lead to better performance.

Of course most Linux administrators have their own ideas about the appropriate

amount of swap space – as well as pretty much everything else. Figure 5-6 contains my

own recommendations based on my personal experiences in multiple environments.

These may not work for you but, along with Figure 5-5, they may help you get started.

ChaPTEr 5 SPECIaL FILESySTEmS

https://docs.fedoraproject.org/en-US/docs/

125

One consideration in both tables is that as the amount of RAM increases, beyond a

certain point adding more swap space simply leads to thrashing well before the swap

space even comes close to being filled. If you have too little virtual memory while

following these recommendations, you should add more RAM, if possible, rather than

more swap space. As with all recommendations that affect system performance, you

should use what works best for your specific environment. This will take time and effort

to experiment and make changes based on the conditions in your Linux environment.

I mentioned that all Linux SysAdmins have their own ideas about swap space;

Chris Short, one of my friends and a fellow community moderator at Opensource.com,

pointed me to an old article7 where he recommended using 1GB for swap space. Chris

told me that he now recommends zero swap space.

So I got curious and created a poll8 that was published on Opensource.com. Read the

article and especially the comments to more fully understand the range of thought about

swap space, but the 2164 votes tallied as of this writing pretty much tell the story. The

results of that poll are shown in Figure 5-7.

You can formulate your own opinion about how much swap space is the right

amount, but sometimes the amount currently available may not be enough. Let’s look at

how to add more swap space.

Amount of RAM Recommended swap space

2X RAM

2GB – 8GB = RAM

>8GB 8GB

Figure 5-6. Recommended system swap space per the author

7 Short, Chris, Moving to Linux – Partitioning, https://chrisshort.net/
moving-to-linux-partitioning/

8 Both, David, Opensource.com, What’s the right amount of swap space for a modern Linux
system?, https://opensource.com/article/19/2/swap-space-poll

ChaPTEr 5 SPECIaL FILESySTEmS

https://chrisshort.net/moving-to-linux-partitioning/
https://chrisshort.net/moving-to-linux-partitioning/
https://opensource.com/article/19/2/swap-space-poll

126

 Adding more swap space on a non-LVM disk partition
Due to changing requirements for swap space on hosts with Linux already installed, it

may become necessary to modify the amount of swap space defined for the system. This

procedure can be used for any general case where the amount of swap space needs to

be increased. It assumes sufficient available disk space is available. This procedure also

assumes that the disks are partitioned in “raw” EXT4 and swap partitions and do not use

logical volume management (LVM).

The basic steps to take are simple and a reboot should not be necessary:

 1. Turn off the existing swap space.

 2. Create a new swap partition of the desired size.

Amount of Swap Space Votes

Zero

<1GB

1GB

2GB

4GB

8GB

Something similar to Figure 5-5

Something similar to Figure 5-6

Whatever my distro creates at installation time

What is swap space?

I don't care

Other—please explain in the comment section

Figure 5-7. Opensource.com swap space poll results

ChaPTEr 5 SPECIaL FILESySTEmS

127

 3. Re-read the partition table.

 4. Configure the partition as swap space.

 5. Add the new partition/etc/fstab.

 6. Turn on swap.

For safety sake, before turning off swap, at the very least you should ensure that no

applications are running and that no swap space is in use. The free or top commands

can tell you whether swap space is in use. To be even more safe, you could revert to the

systemd rescue target which is the same as runlevel 1 using the old SystemV init system.

EXPERIMENT 5-6

Perform this experiment as root. although it would be safer in a production environment to

take the system down to the rescue.target, it is not necessary in our student virtual machines.

Turn off the swap partition with the swapoff command. The -a option turns off all swap

space.

 [root@studentvm1 ~]# swapoff -a

Find the current swap partition and look for a partition in which to create a new swap partition.

[root@studentvm1 ~]# lsblk -i

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

|-sda1 8:1 0 1G 0 part /boot

`-sda2 8:2 0 59G 0 part

 |-fedora_studentvm1-root 253:0 0 2G 0 lvm /

 |-fedora_studentvm1-swap 253:1 0 4G 0 lvm

 |-fedora_studentvm1-usr 253:2 0 15G 0 lvm /usr

 |-fedora_studentvm1-home 253:3 0 4G 0 lvm /home

 |-fedora_studentvm1-var 253:4 0 10G 0 lvm /var

 `-fedora_studentvm1-tmp 253:5 0 5G 0 lvm /tmp

sdb 8:16 0 20G 0 disk

|-sdb1 8:17 0 2G 0 part /TestFS

|-sdb2 8:18 0 2G 0 part

`-sdb3 8:19 0 16G 0 part

 `-NewVG--01-TestVol1 253:6 0 4G 0 lvm

ChaPTEr 5 SPECIaL FILESySTEmS

128

sdc 8:32 0 2G 0 disk

`-NewVG--01-TestVol1 253:6 0 4G 0 lvm

sdd 8:48 0 2G 0 disk

`-sdd1 8:49 0 2G 0 part

sr0 11:0 1 1024M 0 rom

The results of the lsblk command show that our current swap partition is part of the

fedora_studentvm1 volume group. There are also a couple options for our new swap partition.

We used the sdb1 partition for a demonstration of creating new partitions, and it is currently

mounted with an entry in /etc/fstab although we are not using it for anything at this time. The

sdd1 partition is also available, and it is not mounted nor is there an entry in the fstab. Let’s

take the easy way and use /dev/sdd1 for our additional swap space.

We first need to change the partition type of sdd1, so start fdisk in interactive mode with the

following command. Be sure to use the correct device based on the output from the lsblk

command.

 [root@studentvm1 ~]# fdisk /dev/sdd

Welcome to fdisk (util-linux 2.32.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help):

The sub-command t allows you to specify the type of partition. So enter t and press Enter.
Then type L to get a list of all available partition types supported by Linux. Because there is

only one partition in this small virtual drive, fdisk automatically selects partition 1.

Command (m for help): t

Selected partition 1

Hex code (type L to list all codes): L

 0 Empty 24 NEC DOS 81 Minix / old Lin bf Solaris

 1 FAT12 27 Hidden NTFS Win 82 Linux swap / So c1 DRDOS/sec (FAT-

 2 XENIX root 39 Plan 9 83 Linux c4 DRDOS/sec (FAT-

 3 XENIX usr 3c PartitionMagic 84 OS/2 hidden or c6 DRDOS/sec (FAT-

 4 FAT16 <32M 40 Venix 80286 85 Linux extended c7 Syrinx

 5 Extended 41 PPC PReP Boot 86 NTFS volume set da Non-FS data

 6 FAT16 42 SFS 87 NTFS volume set db CP/M / CTOS / .

 7 HPFS/NTFS/exFAT 4d QNX4.x 88 Linux plaintext de Dell Utility

ChaPTEr 5 SPECIaL FILESySTEmS

129

 8 AIX 4e QNX4.x 2nd part 8e Linux LVM df BootIt

 9 AIX bootable 4f QNX4.x 3rd part 93 Amoeba e1 DOS access

 a OS/2 Boot Manag 50 OnTrack DM 94 Amoeba BBT e3 DOS R/O

 b W95 FAT32 51 OnTrack DM6 Aux 9f BSD/OS e4 SpeedStor

 c W95 FAT32 (LBA) 52 CP/M a0 IBM Thinkpad hi ea Rufus alignment

 e W95 FAT16 (LBA) 53 OnTrack DM6 Aux a5 FreeBSD eb BeOS fs

 f W95 Ext'd (LBA) 54 OnTrackDM6 a6 OpenBSD ee GPT

10 OPUS 55 EZ-Drive a7 NeXTSTEP ef EFI (FAT-12/16/

11 Hidden FAT12 56 Golden Bow a8 Darwin UFS f0 Linux/PA-RISC b

12 Compaq diagnost 5c Priam Edisk a9 NetBSD f1 SpeedStor

14 Hidden FAT16 <3 61 SpeedStor ab Darwin boot f4 SpeedStor

16 Hidden FAT16 63 GNU HURD or Sys af HFS / HFS+ f2 DOS secondary

17 Hidden HPFS/NTF 64 Novell Netware b7 BSDI fs fb VMware VMFS

18 AST SmartSleep 65 Novell Netware b8 BSDI swap fc VMware VMKCORE

1b Hidden W95 FAT3 70 DiskSecure Mult bb Boot Wizard hid fd Linux raid auto

1c Hidden W95 FAT3 75 PC/IX bc Acronis FAT32 L fe LANstep

1e Hidden W95 FAT1 80 Old Minix be Solaris boot ff BBT

Hex code (type L to list all codes):

When it asks for the hex code partition type, type in 82, which is the Linux swap partition type,

and press Enter. I then use the p sub-command to list the partitions to ensure that the new

partition type is correct.

Hex code (type L to list all codes): 82

Changed type of partition 'Linux' to 'Linux swap / Solaris'.

Command (m for help): p

Disk /dev/sdd: 2 GiB, 2147483648 bytes, 4194304 sectors

Units: sectors of 1 ∗ 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xb1f99266

Device Boot Start End Sectors Size Id Type

/dev/sdd1 2048 4194303 4192256 2G 82 Linux swap / Solaris

Command (m for help):

ChaPTEr 5 SPECIaL FILESySTEmS

130

When you are satisfied with the partition you have created, use the w sub-command to write

the new partition table to the disk. The fdisk program will exit and return you to the command

prompt after it completes writing the revised partition table.

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

at this point in the real world, you might get an error message that the re-read of the partition

table failed. If so, use the partprobe command to force the kernel to re-read the partition

table. It is not necessary to perform a reboot to force the kernel to re-read partition table.

you should now be able to use the command fdisk -l /dev/sdd to list the partitions, and

the new swap partition should be listed. Be sure that the partition type is “Linux swap.”

It is necessary to modify the /etc/fstab file to point to the new swap partition. add a new line to

identify the new swap partition.

 /dev/sdd1 swap swap defaults 0 0

Be sure to use the correct partition number. Now you can perform the final step in creating the

swap partition. Use the mkswap command to define the partition as a swap partition.

[root@studentvm1 ~]# mkswap /dev/sdd1

mkswap: /dev/sdd1: warning: wiping old ext4 signature.

Setting up swapspace version 1, size = 2 GiB (2146430976 bytes)

no label, UUID=dc4802a7-bb21-4726-a20b-be0fbf906b24

The final step is to turn swap on using the swapon command. The -a parameter turns on all

swap partitions that are not already turned on.

[root@studentvm1 ~]# swapon -a

your new swap partition is now online along with the previously existing swap partition. you

can use some of the utility commands we have learned previously to verify this. These utilities

should now show 6GB of swap space.

ChaPTEr 5 SPECIaL FILESySTEmS

131

 Adding swap to an LVM disk environment
If your disk setup uses LVM, adding swap space will be fairly easy. Again, this assumes

that space is available in the volume group in which the current swap volume is located.

By default, the installation procedures for Fedora in an LVM environment creates the

swap partition as a logical volume. This makes it easy because we can simply extend the

size of the swap volume.

These are the basic steps required to extend the amount of swap space in an LVM

environment:

 1. Turn off all swap.

 2. Add a new hard drive or SSD if necessary.

 3. Prepare the new device if one was installed and extend the

existing volume group on which the swap volume resides to

include the new space.

 4. Increase (extend) the size of the logical volume designated for

swap.

 5. Configure the resized volume as swap space.

 6. Turn on swap.

We will assume in Experiment 5-7 that we do not need to add another drive device

because, if we followed the directions when creating the VM, installing Linux, and

performing the rest of these experiments, there should be plenty of space available.

EXPERIMENT 5-7

This experiment must be performed as root on StudentVm1.

First, since it is always wise to verify things before we start rather than to rely upon our

assumptions, let’s verify that swap exists and at least some of it is a logical volume using

the lvs command (list logical volume). We did create some additional swap space on a raw

partition in Experiment 5-6.

ChaPTEr 5 SPECIaL FILESySTEmS

132

[root@studentvm1 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move

Log Cpy%Sync Convert

 TestVol1 NewVG-01 -wi-a----- <4.00g

 home fedora_studentvm1 -wi-ao---- 4.00g

 root fedora_studentvm1 -wi-ao---- 2.00g

 swap fedora_studentvm1 -wi-ao---- 4.00g

 tmp fedora_studentvm1 -wi-ao---- 5.00g

 usr fedora_studentvm1 -wi-ao---- 15.00g

 var fedora_studentvm1 -wi-ao---- 10.00g

[root@studentvm1 ~]#

you can see from this that the current size of the LVm swap volume is 4GB. In this case we

want to extend this swap volume by 2GB. We also should check to see if there is space

available in the volume group to extend the swap volume.

[root@studentvm1 ~]# vgs

 VG #PV #LV #SN Attr VSize VFree

 NewVG-01 3 1 0 wz--n- <19.99g 15.99g

 fedora_studentvm1 1 6 0 wz--n- <59.00g <19.00g

We can see that there is about 19GB of space available on the fedora_studentvm1 volume

group. That is plenty of space to add 2GB to our swap volume and still leave space for

extending the other volumes, if that were ever needed.

We now want to stop existing swap for only the swap volume and leave the raw swap partition

running. Nothing we do would affect the swap space we created on /dev/sdd1 so we can

allow that to continue to be active.

however, we need to know how to address the swap device we want to turn off and I have

discovered that the best – and possibly the coolest – way to do this is to use the data from /

proc/swaps.

[root@studentvm1 ~]# cat /proc/swaps

Filename Type Size Used Priority

/dev/dm-1 partition 4194300 0 -2

/dev/sdd1 partition 2096124 0 -3

[root@studentvm1 ~]#

ChaPTEr 5 SPECIaL FILESySTEmS

133

another command we could use for this purpose is the swapon command.

[root@studentvm1 ~]# swapon -s

Filename Type Size Used Priority

/dev/sdd1 partition 2096124 0 -2

/dev/dm-1 partition 6291452 0 -3

[root@studentvm1 ~]#

We can also use the /dev directory to verify that. In this case we see that the swap partition

points to /dev/dm-1. The good thing about using the /proc/swaps file is that it tells us which

swap partitions, volumes, or files are active. It seems pretty obvious that the swapon -s

command just uses the data in the /proc/swaps file and sends it to STDOUT.

[root@studentvm1 ~]# ll /dev/mapper/

total 0

crw-------. 1 root root 10, 236 Feb 2 13:08 control

lrwxrwxrwx. 1 root root 7 Feb 2 13:08 fedora_studentvm1-home -> ../dm-3

lrwxrwxrwx. 1 root root 7 Feb 2 13:08 fedora_studentvm1-root -> ../dm-0

lrwxrwxrwx. 1 root root 7 Feb 14 11:50 fedora_studentvm1-swap -> ../dm-1

lrwxrwxrwx. 1 root root 7 Feb 2 13:08 fedora_studentvm1-tmp -> ../dm-5

lrwxrwxrwx. 1 root root 7 Feb 2 13:08 fedora_studentvm1-usr -> ../dm-2

lrwxrwxrwx. 1 root root 7 Feb 2 13:08 fedora_studentvm1-var -> ../dm-4

lrwxrwxrwx. 1 root root 7 Feb 2 13:08 NewVG--01-TestVol1 -> ../dm-6

[root@studentvm1 ~]#

When referring to the swap – or any other volume, for that matter – in commands, we can use

/dev/dm-X or /dev/mapper/fedora_studentvm1-<LV Name>. We cannot refer to swap volumes

or partitions by a mount point because they are not mounted like other filesystems.

Now we turn off the swap volume and verify that the swap volume is no longer active while

the swap partition at /dev/sdd1 is still active.

[root@studentvm1 ~]# swapoff /dev/dm-1 ; cat /proc/swaps

Filename Type Size Used Priority

/dev/sdd1 partition 2096124 0 -2

[root@studentvm1 ~]#

Now we can increase the size of the logical volume and verify the result.

[root@studentvm1 ~]# lvextend -L +2G /dev/mapper/fedora_studentvm1-swap

ChaPTEr 5 SPECIaL FILESySTEmS

134

 Size of logical volume fedora_studentvm1/swap changed from 4.00 GiB (1024

extents) to 6.00 GiB (1536 extents).

 Logical volume fedora_studentvm1/swap successfully resized.

[root@studentvm1 ~]# lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move

Log Cpy%Sync Convert

 TestVol1 NewVG-01 -wi-a----- <4.00g

 home fedora_studentvm1 -wi-ao---- 4.00g

 root fedora_studentvm1 -wi-ao---- 2.00g

 swap fedora_studentvm1 -wi-a----- 6.00g

 tmp fedora_studentvm1 -wi-ao---- 5.00g

 usr fedora_studentvm1 -wi-ao---- 15.00g

 var fedora_studentvm1 -wi-ao---- 10.00g

[root@studentvm1 ~]#

run the mkswap command to make this entire 6GB partition into swap space.

[root@studentvm1 ~]# mkswap /dev/mapper/fedora_studentvm1-swap

mkswap: /dev/mapper/fedora_studentvm1-swap: warning: wiping old swap

signature.

Setting up swapspace version 1, size = 6 GiB (6442446848 bytes)

no label, UUID=696bc20e-71d6-45ef-a2b8-ef49b55a6a90

[root@studentvm1 ~]#

Turn swap back on. We could use the device file as the argument, but it is easier just to use -a

for all to turn on any swaps that are off. you might use the

[root@studentvm1 ~]# swapon -a

[root@studentvm1 ~]# cat /proc/swaps

Filename Type Size Used Priority

/dev/dm-1 partition 6291452 0 -3

/dev/sdd1 partition 2096124 0 -2

[root@studentvm1 ~]#

Notice the priority settings in the rightmost column. This allows setting priorities for different

swaps. For example, you might want the swap on a fast device to be the highest priority

so that it gets used before other slower swaps. By default, higher priorities are used by the

swapping mechanism before the lower priorities. higher numbers mean higher priority. also,

when creating new swap areas, newer swap areas are always assigned a lower priority than

the lowest existing one.

ChaPTEr 5 SPECIaL FILESySTEmS

135

Before we proceed any further, read the parts on priority in the man pages in both Sections 2

and 8 for swapon

[root@studentvm1 ~]# man 2 swapon

and

[root@studentvm1 ~]# man 8 swapon

In neither document does it mention priority numbers less than -1 so I am not sure whether

the -3 and -2 priorities are bugs or an undocumented extension. Change the swap lines in

/etc/fstab to add priorities to the mount options as shown in the following.

/dev/mapper/fedora_studentvm1-swap swap swap pri=5,defaults 0 0

/dev/sdd1 swap swap pri=2,defaults 0 0

Now stop all swaps and then start all swaps. Verify the new swap priorities.

 Other swap options with LVM
When the need arises to add swap space to an existing system, there may be no available

disk space. In such a case, it is necessary to install a new disk device to hold the new

swap space. This could be added as an extension of an existing logical volume already

being used for a swap volume, or it could be used as a separate volume or partition.

My preference would be to add the new space as a logical volume and make it a

higher priority than the existing swap area. This enables you to expand that swap as part

of the new volume and eventually deactivate the old swap.

 Chapter summary
It is not possible to cover all of the possibilities that exist in these special filesystems.

Hopefully this chapter will have at least helped you understand the vast amount of

information that is available and the essential openness of Linux as an open source

operating system that makes it possible to expose all of its internal data and the ability it

gives us to alter the configuration of the running kernel.

ChaPTEr 5 SPECIaL FILESySTEmS

136

Swap space and the philosophies and preferences that have accumulated around

it have given rise to a situation in which every SysAdmin you ask will probably have a

different answer to questions about how much swap space is the right amount. Many

SysAdmins even recommend zero swap space.

My opinion is that regardless of how much RAM is installed in a system, having some

minimal amount of swap space is a good idea. It is better to have the system slow down

when RAM fills and swapping starts than it is to have a program or the entire system

crash. I consider swap as an early warning system that tells me when I need to add more

RAM memory. Of course there are limits on the amount of memory that can be added to

even modern Linux hosts.

 Exercises
Perform the following exercises to complete this chapter:

 1. Where do the utilities that display data about the running Linux

system get all of their data?

 2. What is the overall function of the /proc filesystem?

 3. What type of overhead is incurred by utilities like swap and

glances when they are running?

 4. Does the sequence in which swap partitions appear in /etc/fstab

affect their priority if no priorities are assigned in fstab?

 5. What size swap space would you use for the StudentVM1 virtual

machine based on the recommendations in this chapter?

 6. Assume hypothetically that you are installing a new Linux host

with 12GB of RAM installed. How much swap space would you

create during installation?

 7. If no priorities are specified in /etc/fstab for all swaps, does the

sequence in which the swaps are started affect their priority?

ChaPTEr 5 SPECIaL FILESySTEmS

137
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_6

CHAPTER 6

Regular Expressions
 Objectives
In this chapter you will learn

• To define the term “regular expression”

• To describe the purpose of regular expressions and extended regular

expressions

• To differentiate between different styles of regular expressions as

used by different tools

• To state the difference between basic regular expressions and

extended regular expressions

• To identify and use many of the metacharacters and expressions used

to build regular expressions for typical administrative tasks

• To use regular expressions and extended regular expressions with

tools like grep and sed

 Introducing regular expressions
In Volume 1 of this course, we explored the use of file name globbing using wildcard

characters like ∗ and ? as a means to select specific files or lines of data from a data

stream. We have also seen how to use brace expansion and sets to provide more

flexibility in matching more complex patterns. These tools are powerful and I use them

many times a day. Yet there are things that cannot be done with wildcards.

138

Regular expressions (REGEXes or REs) provide us with more complex and flexible

pattern matching capabilities. Just as certain characters take on special meaning when

using file globbing, REs also have special characters. There are two main types of regular

expressions (REs), basic regular expressions (BREs) and extended regular expressions

(EREs).

The first thing we need are some definitions. There are many definitions for the term

“regular expressions,” but many are dry and uninformative. Here are mine:

• Regular expressions are strings of literal and metacharacters that

can be used as patterns by various Linux utilities to match strings of

ASCII plain text data in a data stream. When a match occurs, it can

be used to extract or eliminate a line of data from the stream or to

modify the matched string in some way.

• Basic regular expressions (BREs) and extended regular expressions
(EREs) are not significantly different in terms of functionality.1 The

primary difference is in the syntax used and how metacharacters are

specified. In basic regular expressions, the metacharacters “?”, “+”, “{”,

“|”, “(”, and “)” lose their special meaning; instead, it is necessary to use

the backslash versions “\?”, “\+”, “\{”, “\|”, “\(”, and “\)”. The ERE syntax

is believed by many users to be easier to use.

Regular expressions (REs)2 take the concept of using metacharacters to match

patterns in data streams much further than file globbing and give us even more control

over the items we select from a data stream. REs are used by various tools to parse3 a

data stream to match patterns of characters in order to perform some transformation on

the data.

1 See the grep info page in Section 3.6 Basic vs. Extended Regular Expressions.
2 When I talk about regular expressions, in a general sense I usually mean to include both basic
and extended regular expressions. If there is a differentiation to be made, I will use the acronyms
BRE for basic regular expression and ERE for extended regular expression.

3 One general meaning of parse is to examine something by studying its component parts. For
our purposes, we parse a data stream to locate sequences of characters that match a specified
pattern.

Chapter 6 regular expressions

139

Regular expressions have a reputation for being obscure and arcane incantations

that only those with special wizardly SysAdmin powers use. Figure 6-1 would seem

to confirm this. The command pipeline appears to be an intractable sequence of

meaningless gibberish to anyone without the knowledge of regex. It certainly seemed

that way to me the first time I encountered something similar early in my career. As you

will see, it is actually relatively simple once it is all explained.

We can only begin to touch upon all of the possibilities opened to us by regular

expressions in a single chapter. There are entire books devoted exclusively to regular

expressions so we will explore the basics in this chapter – just enough to get started with

tasks common to SysAdmins.

 Getting started
Now we need a real-world example to use as a learning tool. Here is one I encountered

several years ago.

 The mailing list
This example highlights the power and flexibility of the Linux command line, especially

regular expressions, for their ability to automate common tasks. I have administered

several listservs during my career and still do. People send me lists of email addresses

to add to those lists. In more than one case, I have received a list of names and email

addresses in a Word format that were to be added to one of the lists.

The list itself was not really very long, but it was very inconsistent in its formatting.

An abbreviated version of that list, with name and domain changes, is shown in

Figure 6- 2. The original list has extra lines, characters like brackets and parentheses that

need to be deleted whitespace such as spaces and tabs, and some empty lines.

The format required to add these emails to the list is first last <email@example.com>.

Our task is to transform this list into a format usable by the mailing list software.

cat Experiment_6-1.txt | grep -v Team | grep -v "^\s*$" | sed -e "s/[Ll]eader//" -e "s/\[//g"
-e "s/\]//g" -e "s/)//g" | awk '{print $1" "$2" <"$3">"}' > addresses.txt

Figure 6-1. A real-world sample of the use of regular expressions. It is actually a
single line that I used to transform a file that was sent to me into a usable form

Chapter 6 regular expressions

140

It was obvious that I needed to manipulate the data in order to mangle it into an

acceptable format for inputting to the list. It is possible to use a text editor or a word

processor such as LibreOffice Writer to make the necessary changes to this small file.

However, people send me files like this quite often so it becomes a chore to use a word

processor to make these changes. Despite the fact that Writer has a good search and

replace function, each character or string must be replaced singly and there is no way

to save previous searches. Writer does have a very powerful macro feature, but I am not

familiar with either of its two languages, LibreOffice Basic or Python. I do know Bash

shell programming.

Team 1 Apr 3

Leader Virginia Jones vjones88@example.com

Frank Brown FBrown398@example.com

Cindy Williams cinwill@example.com

Marge smith msmith21@example.com

[Fred Mack] edd@example.com

Team 2 March 14

leader Alice Wonder Wonder1@example.com

John broth bros34@example.com

Ray Clarkson Ray.Clarks@example.com

Kim West kimwest@example.com

[JoAnne Blank] jblank@example.com

Team 3 Apr 1

Leader Steve Jones sjones23876@example.com

Bullwinkle Moose bmoose@example.com

Rocket Squirrel RJSquirrel@example.com

Julie Lisbon julielisbon234@example.com

[Mary Lastware) mary@example.com

Figure 6-2. A partial, modified listing of the document of email addresses to add
to a listserv

Chapter 6 regular expressions

141

 The first solution

I did what comes naturally to a SysAdmin – I automated the task. The first thing I did was

to copy the address data to a text file so I could work on it using command-line tools. After

a few minutes of work, I developed the Bash command-line program in Figure 6-1 that

produced the desired output as the file, addresses.txt. I used my normal approach to writing

command-line programs like this by building up the pipeline one command at a time.

Let’s break this pipeline down into its component parts to see how it works and fits

together. All of the experiments in this chapter are to be performed as the student user.

EXPERIMENT 6-1

First we download the sample file experiment_6-1.txt from the apress github web site. let’s

do all of this work in a new directory so we will create that too.

[student@studentvm1 ~]$ mkdir chapter6 ; cd chapter6

[student@studentvm1 chapter6]$ wget https://raw.githubusercontent.com/Apress/

using-and-administering-linux-volume-2/master/Experiment_6-1.txt

now we just take a look at the file and see what we need to do.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt

Team 1 Apr 3

Leader Virginia Jones vjones88@example.com

Frank Brown FBrown398@example.com

Cindy Williams cinwill@example.com

Marge smith msmith21@example.com

 [Fred Mack] edd@example.com

Team 2 March 14

leader Alice Wonder Wonder1@example.com

John broth bros34@example.com

Ray Clarkson Ray.Clarks@example.com

Kim West kimwest@example.com

[JoAnne Blank] jblank@example.com

Chapter 6 regular expressions

142

Team 3 Apr 1

Leader Steve Jones sjones23876@example.com

Bullwinkle Moose bmoose@example.com

Rocket Squirrel RJSquirrel@example.com

Julie Lisbon julielisbon234@example.com

[Mary Lastware) mary@example.com

[student@studentvm1 chapter6]$

the first things i see that can be done are a couple easy ones. since the team names and

dates are on lines by themselves, we can use the following to remove those lines that have the

word “team.” i place the end of sentence period outside the quotes for clarity to ensure that

only the intended string is inside the quotes.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt | grep -v Team

i won’t reproduce the results of each stage of building this Bash program, but you should be

able to see the changes in the data stream as it shows up on stDout, the terminal session.

We won’t save it in a file until the end.

in this first step in transforming the data stream into one that is usable, we use the grep

command with a simple literal pattern, “team.” literals are the most basic type of pattern

we can use as a regular expression because there is only a single possible match in the data

stream being searched, and that is the string “team”.

We need to discard empty lines so we can use another grep statement to eliminate them.

i find that enclosing the regular expression for the second grep command ensures that it gets

interpreted properly.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt | grep -v Team | grep

-v "^\s*$"
Leader Virginia Jones vjones88@example.com

Frank Brown FBrown398@example.com

Cindy Williams cinwill@example.com

Marge smith msmith21@example.com

 [Fred Mack] edd@example.com

leader Alice Wonder Wonder1@example.com

John broth bros34@example.com

Ray Clarkson Ray.Clarks@example.com

Kim West kimwest@example.com

[JoAnne Blank] jblank@example.com

Chapter 6 regular expressions

143

Leader Steve Jones sjones23876@example.com

Bullwinkle Moose bmoose@example.com

Rocket Squirrel RJSquirrel@example.com

Julie Lisbon julielisbon234@example.com

[Mary Lastware) mary@example.com

[student@studentvm1 chapter6]$

the expression "^\s*$" illustrates anchors and using the backslash (\) as an escape

character to change the meaning of a literal, “s” in this case, to a metacharacter that means

any whitespace such as spaces, tabs, or other characters that are unprintable. We cannot see

these characters in the file, but it does contain some of them. the asterisk, a.k.a. splat (∗),

specifies that we are to match zero or more of the whitespace characters. this would match

multiple tabs or multiple spaces or any combination of those in an otherwise empty line.

i configured my Vim editor to display whitespace using visible characters. Do this by

adding the following line to your own ~.vimrc or the global /etc/vimrc files. then start – or

restart – Vim.

set listchars=eol:$,nbsp:_,tab:<->,trail:~,extends:>,space:+

i found a lot of bad, very incomplete, and contradictory information on the internet in my

searches on how to do this. the built-in Vim help has the best information, and the data line i

have created from that here is one that works for me.

the result, before any operation on the file, is shown in Figure 6-3. regular spaces are shown

as +; tabs are shown as <, <>, or <-->, and fill the length of the space that the tab covers.

the end of line (eol) character is shown as $.

Chapter 6 regular expressions

144

You can see that there are a lot of whitespace characters that need to be removed from our

file. We also need to get rid of the work “leader” which appears twice and is capitalized once.

let’s get rid of “leader” first. this time we will use sed (stream editor) to perform this task

by substituting a new string – or a null string in our case – for the pattern it matches. adding

sed -e "s/[Ll]eader//" to the pipeline does this.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt | grep -v Team | grep

-v "^\s*$" | sed -e "s/[Ll]eader//"

in this sed command, -e means that the quote enclosed expression is a script that produces

a desired result. in the expression the s means that this is a substitution. the basic form

of a substitution is s/regex/replacement string/. so /[Ll]eader/ is our search

string. the set [Ll] matches l or l so [Ll]eader matches leader or leader. in this case

the replacement string is null because it looks like this - // - a double forward slash with no

characters or whitespace between the two slashes.

Team+1<>Apr+3~$

Leader++Virginia+Jones++vjones88@example.com<-->$

Frank+Brown++FBrown398@example.com<---->$

Cindy+Williams++cinwill@example.com<--->$

Marge+smith+++msmith21@example.com~$

+[Fred+Mack]+++edd@example.com<>$

$

Team+2<>March+14$

leader++Alice+Wonder++Wonder1@example.com<----->$

John+broth++bros34@example.com<>$

Ray+Clarkson++Ray.Clarks@example.com<-->$

Kim+West++++kimwest@example.com>$

[JoAnne+Blank]++jblank@example.com<---->$

$

Team+3<>Apr+1~$

Leader++Steve+Jones++sjones23876@example.com<-->$

Bullwinkle+Moose+bmoose@example.com<--->$

Rocket+Squirrel+RJSquirrel@example.com<>$

Julie+Lisbon++julielisbon234@example.com<------>$

[Mary+Lastware)+mary@example.com$

Figure 6-3. The Experiment_6-1.txt file showing all of the embedded whitespace

Chapter 6 regular expressions

145

now let’s get rid of some of the extraneous characters like []() that will not be needed.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt | grep -v Team | grep

-v "^\s*$" | sed -e "s/[Ll]eader//" -e "s/\[//g" -e "s/]//g" -e "s/)//g" -e
"s/(//g"

We have added four new expressions to the sed statement. each one removes a single

character. the first of these additional expressions is a bit different. Because the left square

brace [character can mark the beginning of a set, we need to escape it to ensure that sed

interprets it correctly as a regular character and not a special one.

We could use sed to remove the leading spaces from some of the lines, but the awk command

can do that as well as reorder the fields if necessary, and add the <> characters around the

email address.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt | grep -v Team | grep

-v "^\s*$" | sed -e "s/[Ll]eader//" -e "s/\[//g" -e "s/]//g" -e "s/)//g" -e

"s/(//g" | awk '{print $1" "$2" <"$3">"}'

the awk utility is actually a very powerful programming language that can accept data

streams on its stDin. this makes it extremely useful in command-line programs and scripts.

the awk utility works on data fields and the default field separator is spaces – any amount of

whitespace. the data stream we have created so far has three fields separated by whitespace,

first, last, and email. this little program awk '{print $1" "$2" <"$3">"}' takes each

of the three fields, $1, $2, and $3, and extracts them without leading or trailing whitespace.

it then prints them in sequence adding a single space between each as well as the <>

characters needed to enclose the email address.

the last step here would be to redirect the output data stream to a file, but that is trivial so i

leave it with you to perform that step. it is not really necessary that you do so.

I saved the Bash program in an executable file and now I can run this program any

time I receive a new list. Some of those lists are fairly short, as is the one in Figure 6-3,

but others have been quite long, sometimes containing up to several hundred addresses

and many lines of “stuff” that do not contain addresses to be added to the list.

Chapter 6 regular expressions

146

 The second solution

But now that we have a working solution, one that is a step-by-step exploration of

the tools we are using, we can do quite a bit more to perform the same task in a more

compact and optimized command-line program.

EXPERIMENT 6-2

in this experiment we explore ways in which we can shorten and simplify the command-

line program from experiment 6-1. the final result of that experiment was the following Cli

program.

cat Experiment_6-1.txt | grep -v Team | grep -v "^\s*$" | sed -e "s/[Ll]

eader//" -e "s/\[//g" -e "s/]//g" -e "s/)//g" -e "s/(//g" | awk '{print $1"

"$2" <"$3">"}'

let’s start near the beginning and combine the two grep statements. the result is shorter

and more succinct. it also means faster execution because grep only needs to parse the data

stream once.

Tip When the stDout from grep is not piped through another utility and when
using a terminal emulator that supports color, the regex matches are highlighted in
the output data stream. the default for the xfce4-terminal is a black background,
white text, and highlighted text in red.

in the revised grep command, grep -vE "Team|^\s*$", we add the e option which

specifies extended regex. according to the grep man page, “in gnu grep there is no

difference in available functionality between basic and extended syntaxes.” this statement

is not strictly true because our new combined expression fails without the e option. run the

following to see the results.

[student@studentvm1 chapter6]$ cat Experiment_6-1.txt | grep -vE "Team|^\s*$"

try it without the e option.

the grep tool can also read data from a file so we eliminate the cat command.

[student@studentvm1 chapter6]$ grep -vE "Team|^\s*$" Experiment_6-1.txt

Chapter 6 regular expressions

147

this leaves us with the following, somewhat simplified Cli program.

grep -vE "Team|^\s*$" Experiment_6-1.txt | sed -e "s/[Ll]eader//" -e "s/\

[//g" -e "s/]//g" -e "s/)//g" -e "s/(//g" | awk '{print $1" "$2" <"$3">"}'

We can also simplify the sed command, and we will do so in experiment 6-6 after we learn

more about regular expressions.

It is important to realize that my solution is not the only one. There are different

methods in Bash for producing the same output; there are other languages like Python

and Perl that can also be used. And, of course, there are always LibreOffice Writer

macros. But I can always count on Bash as part of any Linux distribution. I can perform

these tasks using Bash programs on any Linux computer, even one without a GUI

desktop or that does not have LibreOffice installed.

 grep
Because GNU grep is one of the tools I use the most that provides a more or less

standardized implementation of regular expressions, I will use that set of expressions as

the basis for the next part of this chapter. We will then look at sed, another tool that uses

regular expressions.

Throughout this self-study course, you will have already encountered globs and

regexes. Along with the previous experiments in this chapter, you should have at least a

basic understanding of regexes and how they work. However, there are many details that

are important to understanding some of the complexity and of regex implementations

and how they work.

 Data flow
All implementations of regular expressions are line based. A pattern created by a

combination of one or more expressions is compared against each line of a data stream.

When a match is made, an action is taken on that line as prescribed by the tool being

used. For example, when a pattern match occurs with grep, the usual action is to pass

that line on to STDOUT and lines that do not match the pattern are discarded. As we have

seen, the -v option reverses those actions so that the lines with matches are discarded.

Chapter 6 regular expressions

148

Each line of the data stream is evaluated on its own, and the results of matching the

expressions in the pattern with the data from previous lines are not carried over. It might

be helpful to think of each line of a data stream as a record and that the tools that use

regexes process one record at a time. When a match is made, an action defined by the

tool in use is take on the line that contains the matching string.

 regex building blocks
Figure 6-4 contains a list of the basic building block expressions and metacharacters

implemented by the GNU grep command and their descriptions. When used in a

pattern, each of these expressions or metacharacters matches a single character in the

data stream being parsed.

Expression Description

Alphanumeric characters
Literals
A-Z,a-z,0-9

All alphanumeric and some punctuation characters are considered as literals.
Thus the letter “a” in a regex will always match the letter “a” in the data stream
being parsed. There is no ambiguity for these characters. Each literal character
matches one and only one character.

. (dot) The dot (.) metacharacter is the most basic form of expression. It matches any
single character in the position it is encountered in a pattern. So the pattern b.g
would match big, bigger, bag, baguette, and bog, but not dog, blog, hug, lag,
gag, or leg, etc.

Bracket expression
[list of characters]

GNU grep calls this a bracket expression and it is the same as a set for the Bash
shell. The brackets enclose a list of characters to match for a single character
location in the pattern. [abcdABCD] matches the letters a, b, c, or d in either
upper or lower case. [a-dA-D] specifies a range of characters that creates the
same match. [a-zA-Z] matches the alphabet in upper and lower case.

[:class name:]
Character classes

This is a POSIX* attempt at regex standardization. The class names are
supposed to be obvious. For example the [:alnum:] class matches all
alphanumeric characters. Other classes are [:digit:] which matches any one
digit 0-9, [:alpha:], [:space:], and so on. Note that there may be issues due to
differences in the sorting sequences in different locales. Read the grep man
page for details.

^ and $
Anchors

These two metacharacters match the beginning and ending of a line,
respectively. They are said to anchor the rest of the pattern to either the
beginning or ending of a line. The expression ^b.g would only match big,
bigger, bag, etc., as shown above, if they occur at the beginning of the line
being parsed. The pattern b.g$ would match big or bag only if they occur at the
end of the line, but not bigger.

*Wikipedia, POSIX, https://en.wikipedia.org/wiki/POSIX

Figure 6-4. These expressions and metacharacters are implemented by grep and
most other regex implementations

Chapter 6 regular expressions

149

Let’s explore these building blocks before continuing on with some of the modifiers.

The text file we will use for Experiment 6-3 is from a lab project I created for an old Linux

class I used to teach. It was originally in a LibreOffice Writer ODT file, but I saved it to an

ASCII text file. Most of the formatting of things like tables was removed, but the result is a

long ASCII text file that we can use for this series of experiments.

EXPERIMENT 6-3

We must download the sample file from the apress github web site. if the directory

~/chapter6 is not the pWD, make it so. this is a document containing lab projects from

which i used to teach.

[student@studentvm1 chapter6]$ wget https://raw.githubusercontent.com/Apress/

using-and-administering-linux-volume-2/master/Experiment_6-3.txt

to begin, just use the less command to look at and explore the experiment_6-3.txt file for a

few minutes so you have an idea of its content.

now we will use some simple expressions in grep to extract lines from the input data stream.

the table of Contents (toC) contains a list of projects and their respective page numbers in

the pDF document. let’s extract the toC starting with lines ending in two digits.

[student@studentvm1 chapter6]$ grep [0-9][0-9]$ Experiment_6-3.txt

that is not really what we want. it displays all lines that end in two digits and misses toC

entries with only one digit. We will look at how to deal with an expression for one or more

digits in a later experiment. looking at the whole file in less, we could do something like this.

[student@studentvm1 chapter6]$ grep "^Lab Project" Experiment_6-3.txt | grep

"[0-9]$"

this is much closer to what we want but it is not quite there. We get some lines from later in

the document that also match these expressions. if you study the extra lines and look at those

in the complete document, you can see why they match while not being part of the toC. this

also misses toC entries that do not start with “lab project.” sometimes this is the best you

can do, but it does give a better look at the toC than we had before. We will look at how to

combine these two grep instances into a single one in a later experiment in this chapter.

Chapter 6 regular expressions

150

now let’s modify this a bit and use the posix expression. notice the double square braces

around the posix expression. single braces generate an error message.

[student@studentvm1 chapter6]$ grep "^Lab Project" Experiment_6-3.txt | grep

"[[:digit:]]$"

this gives the same results as the previous attempt. let’s look for something different.

[student@studentvm1 chapter6]$ grep systemd Experiment_6-3.txt

this lists all occurrences of “systemd” in the file. try using the -i option to ensure that you

get all instances including those that start with uppercase.4 or you could just change the literal

expression to systemd. Count the number of lines with the string systemd contained in them.

i always use -i to ensure that all instances of the search expression are found regardless

of case.

[student@studentvm1 chapter6]$ grep -i systemd Experiment_6-3.txt | wc

 20 478 3098

as you can see i have 20 lines and you should have the same number.

here is an example of matching a metacharacter. the left bracket ([). First let’s try it without

doing anything special.

[student@studentvm1 chapter6]$ grep -i "[" Experiment_6-3.txt

grep: Invalid regular expression

this occurs because [is interpreted as a metacharacter. We need to “escape” this character

with a backslash so that it is interpreted as literal character and not as a metacharacter.

[student@studentvm1 chapter6]$ grep -i "\[" Experiment_6-3.txt

Most metacharacters lose their special meaning when used inside bracket expressions. to

include a literal], place it first in the list. to include a literal ^, place it anywhere but first. to

include a literal [, place it last.

4 The official form of systemd is all lowercase.

Chapter 6 regular expressions

151

 Repetition
Regular expressions may be modified using some operators that allow specification of

zero, one, or more repetitions of a character or expression. These repetition operators,

shown in Figure 6-5, are placed immediately following the literal character or

metacharacter used in the pattern.

Operator Description

? In regexes the ? means zero or one occurrence at most of the preceding character. So for
example, "drives?" matches drive, and drives but not driver. Using “drive” for the
expression would match drive, drives, and driver. This is a bit different from the behavior
of ? in a glob.

* The character preceding the * will be matched zero or more times without limit. In this
example, "drives*" matches drive, drives, and drivesss but not driver. Again this is a bit
different from the behavior of * in a glob.

+ The character preceding the + will be matched one or more times. The character must exist
in the line at least once for a match to occur. As one example, "drives+" matches drives,
and drivesss but not drive or driver.

{n} This operator matches the preceding character exactly n times. The expression “drives{2}”
matches drivess but not drive, drives, drivesss, or any number of trailing “s” characters.
However, because drivesssss contains the string drivess, a match occurs on that string so
the line would be a match by grep.

{n,} This operator matches the preceding character n or more times. The expression
“drives{2,}” matches drivess but not drive, drives, drivess, drives, or any number of
trailing “s” characters. Because drivesssss contains the string drivess, a match occurs.

{,m} This operator matches the preceding character no more than m times. The expression
“drives{,2}” matches drive, drives, and drivess, but not drivesss, or any number of trailing
“s” characters. Once again, because drivesssss contains the string drivess, a match occurs.

{n,m} This operator matches the preceding character at least n times but no more than m times.
The expression “drives{1,3}” matches drives, drivess, and drivesss, but not drivessss or
any number of trailing “s” characters. Once again, because drivesssss contains a matching
string, a match occurs.

Figure 6-5. Metacharacter modifiers that specify repetition

Chapter 6 regular expressions

152

EXPERIMENT 6-4

run each of the following commands and examine the results carefully so that you understand

what is happening.

[student@studentvm1 chapter6]$ grep -E files? Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ei "drives*" Experiment_6-3.txt
[student@studentvm1 chapter6]$ grep -Ei "drives+" Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ei "drives{2}" Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ei "drives{2,}" Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ei "drives{,2}" Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ei "drives{2,3}" Experiment_6-3.txt

Be sure to experiment with these modifiers on other text in the sample file.

 Other metacharacters
There are still some interesting and important modifiers that we need to explore. These

metacharacters are listed and described in Figure 6-6.

Modifier Description

\< This special expression matches the empty string at the beginning of a word. The
expression "\<fun" would match on “ fun” and “Function” but not “refund”.

\> This special expression matches the normal space, or empty “ ” string at the end of a word
as well as punctuation that typically appears in the single character string at the end of a
word. So “environment\>” matches “environment”, “environment,”, and environment.”
but not environments or environmental.

^ In a character class expression, this operator negates the list of characters. Thus, while the
class [a-c] matches a, b , or c, in that position of the pattern, the class [^a-c] matches
anything but a, b, or c.

| When used in a regex, the | metacharacter is a logical “or” operator. It is officially called
the “infix” or “alternation” operator. We have already encountered this in Experiment 6-2,
where we saw that the regex "Team|^\s*$" means, “a line with ‘Team’ or (|) an empty
line including one that has zero, one, or more whitespace characters such as spaces, tabs,
and other unprintable characters.”

(and) The parentheses (and) allow us to ensure a specific sea
might be used for logical comparisons in a programming language.

Figure 6-6. Metacharacter modifiers

Chapter 6 regular expressions

153

We now have a way to specify word boundaries with the \< and \> metacharacters.

This means we can now be even more explicit with our patterns. We can also use some

logic in more complex patterns.

EXPERIMENT 6-5

start with a couple simple patterns. this first one selects all instances of drives but not drive,

drivess, or additional trailing “s” characters.

[student@studentvm1 chapter6]$ grep -Ei "\<drives\>" Experiment_6-3.txt

now let’s build up a search pattern to locate references to tar, the tape archive command, and

related references. the first two iterations display more than just tar-related lines.

[student@studentvm1 chapter6]$ grep -Ei "tar" Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ei "\<tar" Experiment_6-3.txt

[student@studentvm1 chapter6]$ grep -Ein "\<tar\>" Experiment_6-3.txt

the -n option in the last command displays the line numbers of each line in which a match

occurred. this can assist in locating specific instances of the search pattern.

Tip Matching lines of data can extend beyond a single screen, especially when
searching a large file. You can pipe the resulting data stream through the less utility
and then use the less search facility which implements regexes too to highlight
the occurrences of matches to the search pattern. the search argument in less is
\<tar\>.

this next pattern searches for “shell script” or “shell program” or “shell variable” or “shell

environment” or “shell prompt” in our test document. the parentheses alter the logical order in

which the pattern comparisons are resolved.

[student@studentvm1 chapter6]$ grep -Eni "\<shell (script|program|variable|en

vironment|prompt)" Experiment_6-3.txt

remove the parentheses from the preceding command and run it again to see the difference.

Chapter 6 regular expressions

154

Although we have now explored the basic building blocks of regular expressions

in grep, there are an infinite variety of ways in which they can be combined to create

complex yet elegant search patterns. However, grep is a search tool and does not provide

any direct capability to edit or modify the contents of a line of text in the data stream

when a match is made.

 sed
The sed utility not only allows searching for text that matches a regex pattern, it can

also modify, delete, or replace the matched text. I use sed at the command line and

in Bash shell scripts as a fast and easy way to locate and text and alter it in some way.

The name sed stands for stream editor because it operates on data streams in the same

manner as other tools that can transform a data stream. Most of those changes simply

involve selecting specific lines from the data stream and passing them on to another

transformer5 program.

We have already seen sed in action, but now, with an understanding of regular

expressions, we can better analyze and understand our earlier usage.

EXPERIMENT 6-6

in experiment 6-2 we simplified the Cli program we used to transform a list of names and

email addresses into a form that can be used as input to a listserv. that Cli program looks like

this after some simplification.

grep -vE "Team|^\s*$" Experiment_6-1.txt | sed -e "s/[Ll]eader//" -e "s/\

[//g" -e "s/]//g" -e "s/)//g" -e "s/(//g" | awk '{print $1" "$2" <"$3">"}'

it is possible to combine four of the five expressions used in the sed command into a single

expression. the sed command now has two expressions instead of five.

sed -e "s/[Ll]eader//" -e "s/[]()\[]//g"

5 Many people call tools like grep “filter” programs because they filter unwanted lines out of the
data stream. I prefer the term “transformers” because ones such as sed and awk do more than
just filter. They can test the content for various string combinations and alter the matching
content in many different ways. Tools like sort, head, tail, uniq, fmt, and more all transform the
data stream in some way.

Chapter 6 regular expressions

155

this makes it a bit difficult to understand the more complex expression. note that no matter

how many expressions a single sed command contains, the data stream is only parsed once

to match all of the expressions.

let’s examine the revised expression, -e "s/[]()\[]//g", more closely. By default,

sed interprets all [characters as the beginning of a set and the last] character as the

end of that set, -e "s/[]()\[]//g". the intervening] characters are not interpreted as

metacharacters. since we need to match [as a literal character in order to remove it from the

data stream and sed normally interprets that as a metacharacter, we need to escape it so that

it is interpreted as a literal], -e "s/[]()\[]//g". so now all of the metacharacters in this

expression are highlighted. let’s plug this into the Cli script and test it.

[student@studentvm1 chapter6]$ grep -vE "Team|^\s*$" Experiment_6-1.txt |
sed -e "s/[Ll]eader//" -e "s/[]()\[]//g"

i know that you are asking “Why not place the \[after the [that opens the set and before the]

character.” try it as i did.

[student@studentvm1 chapter6]$ grep -vE "Team|^\s*$" Experiment_6-1.txt |
sed -e "s/[Ll]eader//" -e "s/[\[]()]//g"

i think that should work but it does not. little unexpected results like this make it clear that

we must be careful and test each regex carefully to ensure that it actually does what we

intend. after some experimentation of my own, i discovered that the escaped left square

brace \[works fine in all positions of the expression except for the first one. this behavior

is noted in the grep man page which i probably should have read first. however, i find that

experimentation reinforces the things i read and i usually discover more interesting things than

that for which i was looking.

adding the last component, the awk statement, our optimized program looks like this and the

results are exactly what we want.

[student@studentvm1 chapter6]$ grep -vE "Team|^\s*$" Experiment_6-1.txt |
sed -e "s/[Ll]eader//" -e "s/[]()\[]//g" | awk '{print $1" "$2" <"$3">"}'

Chapter 6 regular expressions

156

 Other tools that implement regular expressions
Many Linux tools implement regular expressions. Most of those implementations are

very similar to that of awk, grep, and sed so that it should be easy to learn the differences.

Although we have not looked in detail at awk, it is a powerful text processing language

that also implements regexes.

Most of the more advanced text editors use regexes. Vim, gVim, Kate, and GNU

Emacs are no exceptions. The less utility implements regexes as does the search and

replace facility of LibreOffice Writer.

Programming languages like Perl, awk, and Python also contain implementations of

regexes which makes them well suited to writing tools for text manipulation.

 Resources
I have found some excellent resources for learning about regular expressions. There are

more than I have listed here, but these are the ones I have found to be particularly useful.

The grep man page has a good reference but is not appropriate for learning about

regular expressions. The O’Reilly book, Mastering Regular Expressions,6 is a very good

tutorial and reference for regular expressions. I recommend it for anyone who is or wants

to be a Linux SysAdmin because you will use regular expressions. Another good O’Reilly

book is sed & awk7 which covers both of these powerful tools, and it also has an excellent

discussion of regular expressions.

There are also some good web sites that can help you learn about regular expressions

and which provide interesting and useful cookbook-style regex examples. There are

some that ask for money in return for using them. Jason Baker, my technical reviewer

for Volumes 1 and 2 of this course, suggests https://regexcrossword.com/ as a good

learning tool.

6 Friedl, Jeffrey E. F., Mastering Regular Expressions, O’Reilly, 2012, Paperback ISBN-13:
978-0596528126

7 Robbins, Arnold, and Dougherty, Dale, sed & awk: UNIX Power Tools (Nutshell Handbooks),
O’Reilly, 2012, ISBN-13: 978-1565922259

Chapter 6 regular expressions

https://regexcrossword.com/

157

 Chapter summary
This chapter has provided a very brief introduction to the complex world of regular

expressions. We have explored the regex implementation in the grep utility in

just enough depth to give you an idea of some of the amazing things that can be

accomplished with regexes. We have also looked at several Linux tools and programming

languages that also implement regexes.

But make no mistake! We have only scratched the surface of these tools and regular

expressions. There is much more to learn and there are some excellent resources for

doing so.

 Exercises
Perform these exercises to complete this chapter:

 1. In Experiment 6-1 we included a sed search for the (character

even though there was not one in the Experiment_6-1.txt data file.

Why do you think that might be a good idea?

 2. Consider the following problem regarding Experiments 6-1 and 6-2.

What would happen to the resulting data stream if one or more

lines had a different data format such as first, middle, last, or if it

were last, first?

 3. The following regex is used in Experiment 6-5: grep -Eni

"\<shell (script|program|variable|environment|prompt)"

Experiment_6-3.txt. Create a statement of the logic defined by

this regex. Then create a statement of the logic of this regex with

the parentheses removed.

 4. The grep utility has an option that can be used to specify that only

words are to be matched so that the \< and \> metacharacters

are not required. In Experiment 6-6, eliminate the word

metacharacters using that option and test the result.

 5. Use the sed command to replace the grep command in the

last iteration of the CLI program in Experiment 6-6: grep -vE

"Team|^\s*$" Experiment_6-1.txt | sed -e "s/[Ll]eader//"

-e "s/[]()\[]//g" | awk '{print $1" "$2" <"$3">"}'.

Chapter 6 regular expressions

159
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_7

CHAPTER 7

Printing
 Objectives
In this chapter you will learn

• How to install a printer and make it available to the VM

• To describe the flow of a print data stream

• To determine how well a printer is supported by CUPS under Linux

• To select an appropriately well-supported printer for Linux

• To select an appropriate PPD file for a printer when an exact match is

not available

• To configure a print queue from the command line using CUPS

• To manage print queues; to enable and disable them and to move

print jobs from one queue to another

• To create print queue that converts printer data streams to PDF

format for storage as a file

• To convert ASCII plain text files to Postscript and PDF formats

• To convert Postscript and PDF files to ASCII text format

• To convert data files between Linux/Unix formats, DOS/Windows

formats, and Apple formats

160

 Introduction
We have already explored many Linux tools that enable us to do some pretty amazing

things. In this chapter we will look at some additional command-line tools that are all

designed to manipulate text files and data streams in order to prepare them for printing.

Some of these tools can convert data streams from ASCII text to PDF, Postscript, and

back; some can convert MS Word and LibreOffice Writer documents to ASCII; other

tools can convert from Apple or DOS text files to Linux text files.

We also look at command-line tools that enable us to create and manage print

queues.

 About printers
Printers are hardware devices that are used to produce images or text on sheets of paper.

Well, duh. But it is important to understand that printers build up an image of the page

to be printed one line at a time. 3D printers can print objects one line at a time, but we

will stick with printing words and images on paper for this course.

If you have an ink jet printer, you can watch the process as it takes place. The print

head travels horizontally across the paper laying down the image of the text or graphic

one line at a time. To be very clear, I don’t necessarily mean one line of text at a time.

I mean that one line of the print image that is as tall as the vertical size of the print head.

This may encompass a single line of text, but it also may be the bottom of one line of text

and the top of the next line of text or a combination of text and image.

If you try to equate the operation of a modern printer with that of an old dot matrix

printer that printed one line of text at a time, you will not understand today’s printers.

At least some understanding of how a printer works is important to understanding how

Linux prints and the tools used to print documents to paper as well as tools that create

images that can be both printed to paper and viewed on a graphical display.

Even when printing text, modern printers, whether ink jet or laser, all print page

images of the page or pages being printed. The ink jet printer builds up the image one

line at a time directly onto the paper, while the laser printer generates the entire image

on a drum inside the printer and then transfers it to the paper an entire page at a time.

Chapter 7 printing

161

 Print languages
To create the images to be printed, applications such as office suites, web browsers,

financial software, and every other bit of software that can print to a printer must generate

a data stream that can be interpreted and converted to an image for printing. These data

streams are created using one of the common page description languages (PDL).

The function of these PDLs is to describe the appearance of the page when it is

printed. They use commands like draw a box at this location with height and width

and background color and center some specified text in it using a specific font face in

a specific size and so on. Page description languages are designed to be independent

of the hardware, application software, and operating systems on which they are used.

This helps standardize the processes and tools used for printing. I won’t afflict you with

a historical discussion of the vast number of printer drivers that used to be required for

each and every application program.

There are many page description languages, at least some of which are listed on

Wikipedia,1 but there are only three that are in common use by most of today’s printers:

• PCL:2 Hewlett-Packard’s Printer Command Language.

• Postscript:3 Adobe Systems first page description language.

• PDF:4 Adobe Systems Portable Document Format. PDF has become a

very common format for exchanging documents.

 Printers and Linux
If you have access to a physical printer from your virtual machine, you will be able to

perform the experiments in this chapter, most of which relate to printing the files or

preparing files for printing. I personally use Brother, HP, and Xerox printers because I

have always found them to be well supported by Linux. I recommend reading “Choosing

1 Wikipedia, Page Description Language, https://en.wikipedia.org/wiki/Page_description_
language

2 Wikipedia, PCL, https://en.wikipedia.org/wiki/Printer_Command_Language
3 Wikipedia, Postscript, https://en.wikipedia.org/wiki/PostScript. This page also contains
some of the history that explains how the current print architecture came to be.

4 Wikipedia, PDF, https://en.wikipedia.org/wiki/PDF

Chapter 7 printing

https://en.wikipedia.org/wiki/Page_description_language
https://en.wikipedia.org/wiki/Page_description_language
https://en.wikipedia.org/wiki/Printer_Command_Language
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/PDF

162

a printer for Linux,5” and then you can check the Open Printing Database6 at the Linux

Foundation document wiki. The Open Printing Database lists printers by manufacturer

in four categories that represent their level of compatibility with Linux:

• Perfectly: All printer functions work as expected.

• Mostly: Some printer features may not work as expected. For

example, dual-sided printing or secondary tray paper selection may

not work.

• Partially: It probably prints some documents, but others will not

print correctly and many features don’t work as expected.

• Paperweight: Not good for anything except being used to hold down

documents printed by printers that do work with Linux.

Clearly, printers from one of the first two groups are to be preferred over those in

the last two groups. If you need to purchase or recommend a printer for purchase that is

compatible with Linux, the Open Printing Database is the place to start looking.

Just as a point of reference, Jason, my intrepid technical reviewer, tested this chapter

with an HP Color LaserJet CP2025dn. It’s about 10 years old, and he had to dig it out from

a pile because it almost never gets used. It is marked as “Perfect” in the Open Printing

Database.

Most printers are recognized automatically when you plug them into a USB port7 on

a Linux host, but they are not necessarily automatically configured. If possible, locate a

printer that is compatible with Linux by searching the Open Printing Database. Plug that

printer into a USB port on the physical host.

If you cannot locate a supported printer, you should skip Experiment 7-1, the second

part of Experiment 7-2, and parts of some of the other experiments. Nevertheless, you

should at least follow along and read these experiments to better understand the later

experiments. Many of the later experiments in this chapter are still accessible to you

because it is possible to print to a file, which we will do much of the time anyway, in

order to save some trees.

5 Watkins, Don, Opensource.com, Choosing a printer for Linux, https://opensource.com/
article/18/11/choosing-printer-linux

6 The Linux Foundation, Open Printing Database, https://www.openprinting.org/printers
7 The role of D-Bus and udev in recognizing devices like printers when they are plugged in will be
covered in Chapter 14 of this volume.

Chapter 7 printing

https://opensource.com/article/18/11/choosing-printer-linux
https://opensource.com/article/18/11/choosing-printer-linux
https://www.openprinting.org/printers

163

EXPERIMENT 7-1

Caution if you do not have a physical printer, you should read this experiment
but there is no part of it that you can perform.

Let’s start by connecting a printer to the physical host and then making it available to your VM.

if the printer is not already set up, do so and plug it into a power source. Using a USB cable,

plug the compatible printer into a USB port on the physical host. it is not necessary to

configure the printer on the physical host.

in the window for StudentVM1, click Devices ➤ USB to view all of the USB devices attached

to your physical host as shown in Figure 7-1. Click the USB printer. Your printer will probably

be different but it should be listed. this is all that needs to be done to make the printer

available to the VM.

if by some chance your desktop gUi sees the printer and tries to configure it, ignore that, quit

the configuration, and proceed with the manual configuration when you get to experiment 7-2.

Figure 7-1. In the USB Settings menu, select the printer connected to the physical
host to make it available to the virtual Applehine

Chapter 7 printing

164

 CUPS
CUPS is the Common Unix Printing System.8 Developed in the late 1990s by Michael

Sweet, who was later hired by Apple, CUPS is a modular printing system that makes

configuring and printing with most modern printers easy and nearly painless.

CUPS uses Postscript as the final printer data stream. Figure 7-2 illustrates the

flow of data from the application programs through the layers of the CUPS subsystem.

CUPS accepts input in ASCII text, PDF, HP/GL, and raster image formats and runs them

through a filter that transforms the data stream into Postscript. If an incoming data

stream is Postscript, no change is required. The data stream, now in Postscript form,

then passes to a software layer that converts the data to a rasterized format that can be

converted by various drivers to printer-specific language formats. The data stream is

then passed to the back-end filters that transfer the printer commands to the printers or

other printing devices.

If the input data stream is already in Postscript format, the initial conversion to

Postscript is skipped. If the target printer uses Postscript as its print language, the data

stream bypasses the rasterization stage and is sent to the back-end filters.

8 WikiPedia, CUPS, https://en.wikipedia.org/wiki/CUPS

Chapter 7 printing

https://en.wikipedia.org/wiki/CUPS

165

Figure 7-2. The Common Unix Printing System (CUPS) logical diagram.
Glenn Davis (SVG), Ta bu shi da yu (PNG), and Kurt Pfeifle (ASCII) Creative Commons9

Attribution-Share Alike 3.0 Unported10 license.

9 https://en.wikipedia.org/wiki/en:Creative_Commons
10 https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chapter 7 printing

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en

166

CUPS uses Postscript Printer Description (PPD)11 files to define the features available

in each supported printer. Each PPD file contains information about the features and

capabilities of the printer. This allows CUPS to interact with the various features such as

paper trays with different paper sizes, print quality, duplex, color or black and white, and

more. Although they are not true device drivers, PPD files perform somewhat the same

functions.

 Creating the print queue
A print queue is a directory that is used to store the print job data stream while it is being

spooled to the printer. Although modern-day printers have internal memory, large print

jobs may fill that and more. In a high-volume print environment, many jobs may be

queued up faster than the printer can print them so they remain in the queue until the

printer is ready for them.

In general, the /var/spool directory contains data that is temporarily stored for later

processing.12 CUPS has a queue in /var/spool/cups which contains data about the print

jobs as well as the data for the jobs themselves. The /var/spool/lpd/ directory contains

a subdirectory for each printer which is used only to store lock files to prevent multiple

overlapping attempts to access each printer.

Skip this experiment if you do not have a supported printer connected to the physical

host. In Experiment 7-2 we use the command line to configure our printer. It is possible

to perform this configuration using the desktop GUI, but there will be times when a GUI

will not be available. Many servers do not use a GUI desktop so it will be necessary to

use the CLI. However, when you have configured a printer using the CLI, you will also be

able to configure one using the GUI tools on the desktop or the web interface that runs

on port 631.

11 Wikipedia, Postscript Printer Description, https://en.wikipedia.org/wiki/
PostScript_Printer_Description

12 Refer to the Linux Filesystem Hierarchical Standard (FHS) which we explored in Chapter 19.

Chapter 7 printing

https://en.wikipedia.org/wiki/PostScript_Printer_Description
https://en.wikipedia.org/wiki/PostScript_Printer_Description
https://doi.org/10.1007/978-1-4842-5455-4_19

167

Many of the commands we will encounter begin with “lp” which is a holdover from

the early days of printing and refers to a “line printer.” Note that what we are actually

doing is creating a print queue for the printer.

EXPERIMENT 7-2

if you do not have a physical printer connected to the virtual machine through the physical

host, you can still perform the first part of this experiment. this experiment should be

performed as root. We will use the command line to create a print queue for the attached

printer.

First, let’s find the printer on the USB bus just to verify that it has been recognized. the printer

i am using is a Brother hL-2270DW. You will probably have a different printer. if you do not

have a physical printer, nothing will show up here.

[root@studentvm1 ~]# lsusb

Bus 001 Device 002: ID 04f9:0042 Brother Industries, Ltd HL-2270DW Laser

Printer

Bus 001 Device 001: IDd6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: IDd6b:0001 Linux Foundation.1 root hub

[root@studentvm1 ~]#

and then find the uniform resource identifier (Uri) that we will need to create the print queue.

the lpinfo -v command is used to list all of the available buses, protocols, and any printers

attached to each.

[root@studentvm1 ~]# lpinfo -v

network https

network ipp

network http

network ipps

network beh

direct usb://Brother/HL-2270DW%20series?serial=C1J695917

network socket

network lpd

network smb

Chapter 7 printing

168

the following command provides a more detailed listing and describes the bus or protocol for

each possibility.

[root@studentvm1 ~]# lpinfo -lv

We also need to find the postscript printer Definition (ppD) file to use for this printer so we can

pass that as an option argument when we create the print queue. First let’s list all of the ppD

files located in the printer model directory.

[root@studentvm1 ~]# lpinfo -m | less

Scroll through these results to get an idea of the printers that are supported by CUpS. there

are well over 15,000 – yes fifteen thousand – entries in this file, although many of them are

intended to support the same printers using different printer languages such as supporting a

Xerox WorkCentre 7345 with hp pCL5C, LaserJet 4, LaserJet 4d, or postscript.

Find the entries for the Brother hL-22 series of printers and notice that there is no entry for the

hL-2270. in such a case, i always use a ppD file that seems to come the closest to the attached

printer. For my system i am using the ppD file for the hL-2250. On my physical host, using this

ppD and printer combination works fine including all of the functions such as double sided.

Caution if you do not have a physical printer attached to your VM, you should
read the rest of this experiment but you should not actually enter these commands.

now let’s add the new print queue using the following options:

• -p specifies the name of the printer. this is a text name with no spaces and is

how we identify the printer in commands.

• -E enables the printer so that it will accept print jobs.

• -v specifies the printer Uri. this is the target Uri to which the data streams for

this print queue are sent.

• -m is the name of the standard postscript printer Definition (ppD) file contained

in the model directory. if a ppD file is provided by the vendor and not by the

standard CUpS model directory, as is the case with some commercial high-

capacity Xerox printers that i have encountered, use the -p (uppercase) option

and the fully qualified file name instead of the -m option.

Be sure to use the printer name, Uri, and ppD file that matches the printer connected to your

virtual machine.

Chapter 7 printing

169

Tip Where the -e flag is in the lpadmin command matters greatly, according to
the man page. if you put it at the beginning, you'll encrypt the connection to the
printer instead of enabling it.

[root@studentvm1 ~]# lpadmin -p Brother-HL-2270DW -E -v usb://Brother/HL-

2270DW%20series?serial=C1J695917 -m gutenprint.5.2://brother- hl- 2250dn/simple

at this point the print queue should be displayed in the gUi print Settings. as another point of

comparison, Jason’s command entry here was

lpadmin -p HP-Color-LaserJet-CP2025dn -E -v usb://HP/Color%20LaserJet%20

CP2025dn?serial=00JPBFR09471 -m gutenprint.5.2://hp- clj_cp2025dn/simple

it is OK to verify this, but do not make any changes using the gUi. We can use the lpstat

command to verify that the print queue has been created.

[root@studentvm1 ~]# lpstat -t

scheduler is running

no system default destination

device for Brother-HL-2270DW: usb://Brother/HL-2270DW%20

series?serial=C1J695917

Brother-HL-2270DW accepting requests since Thu4 Mar 2019 09:05:36 PM EDT

printer Brother-HL-2270DW is idle. enabled since Thu4 Mar 2019 09:05:36 PM

EDT

We can also use the lpstat command to list the names of all print queues and whether

the CUpS server is running on our localhost. the -e option lists the print queue names and -r

displays the status of the server.

[root@studentvm1 ~]# lpstat -er

Brother-HL-2270DW

scheduler is running

We should test the printer and the newly created queue before we proceed. We can send an

aSCii plain text file to the printer as our first test. Be sure to use the printer name exactly as it

appears in the output from the lpstat command.

Chapter 7 printing

170

Tip Some printer commands use -p (uppercase) and some use -p (lowercase)
options to specify the target print queue.

[root@studentvm1 ~]# lpr -P Brother-HL-2270DW /etc/fstab

a somewhat related part of the Sysadmin’s job is to deal with broken and recalcitrant

hardware. it is not all about dealing with software. While reviewing this chapter, Jason was

delayed for a while by a troublesome bit of hardware. he says, “it also took a while because

my jam sensor [on the printer] is overly sensitive and i had to use a piece of tape to fix it, but

that’s probably out of scope for this [course].”

actually not so much – it is in the scope of this course. in fact, hardware problems like this are

relatively frequent. Many times they can appear to be software problems and we need to track

them down and fix them too. Mechanical devices fail rather too frequently for my liking. things

like fans, hard drives, and printers are all mechanical and have a tendency to fail when it is

most inopportune.

the printer has now been created and tested, but we don’t want to have to type its name

every time we print a document. Just because we have only one printer does not make that

printer the default. So we need to explicitly make it the default printer using the lpoptions

command with the -d option.

[root@studentvm1 ~]# lpoptions -d Brother-HL-2270DW

this command sets the target printer as the default. now we can print to the default printer

without explicitly specifying the destination. the following command prints the /etc/bashrc file

to the default printer.

[root@studentvm1 ~]# lpr /etc/bashrc

Let’s use one of the print options to format a text file for printing. this is the prettyprint option

which prints a small heading on each sheet of paper with the file name, the data and time, and

a page number. Setting this option is easy.

[root@studentvm1 ~]# lpoptions -p Brother-HL-2270DW -o prettyprint=true

it should not be necessary to restart CUpS to make this change. as the student user, print the

cpuhog file.

[student@studentvm1 ~]$ lpr cpuHog

Chapter 7 printing

171

now, again as student, print the /etc/bashrc file. in this case the file does not print in

prettyprint format as the cpuhog did. although the man page does not state the reason, a bit

of experimentation has led me to the conclusion that only Bash programs that begin with the

shebang line, #!/bin/bash, will print in pretty format.

We could add multiple print queues if we have more than one printer, but only one can be the

default. all print jobs are sent to the default queue unless a different one is specified.

The lpr and lpoptions commands have a number of options that can be used to set

things such as print job priorities so that important jobs are printed first; specify text that

describes the location of the printer; the number of copies of a print job to print; how

many pages of the print job to print on a sheet of paper, for example, two pages of the

print job on a side of each sheet of paper; whether to print in duplex mode, that is, front

and back of the paper; banner pages to begin and end print jobs as a way to separate

them in high-volume environments; and much more. These are all the same items that

can be configured using the GUI printer settings interface.

 Printing to a PDF file
Now since at least some of us do not have a physical printer to use, we will install

the cups-pdf RPM package that will allow us to print directly to a PDF file. Many GUI

applications allow export to a PDF file, and the GUI print manager interface has an

option to print to a file. This package accomplishes the same thing for us for printing

from the command line.

Note everyone should perform experiment 7-3 because we will use the pDF print
queue to do all further printing for the rest of the experiments in this chapter.

Chapter 7 printing

172

EXPERIMENT 7-3

Start to perform this experiment as root; we will switch between the root and student users.

First, as root, install the cups-pdf rpM package and verify the new print queue has been

created.

[root@studentvm1 ~]# dnf -y install cups-pdf

<snip>

[root@studentvm1 ~]# lpstat -a

Brother-HL-2270DW accepting requests since Fri5 Mar 2019 04:17:14 PM EDT

Cups-PDF accepting requests since Fri5 Mar 2019 04:26:33 PM EDT

now we make the Cups-pDF queue the default.

[root@studentvm1 ~]# lpoptions -d Cups-PDF

and verify

[root@studentvm1 ~]# lpq

Cups-PDF is ready

no entries

[root@studentvm1 ~]#

or

[root@studentvm1 ~]# lpstat -d

system default destination: Cups-PDF

Unfortunately, cups-pdf has been configured to place the pDF print files in the user’s desktop

directory, ~/Desktop, which is not what we want and, in my opinion, putting things like files

and directories on the desktop is a horrible idea anyway. So we will change this to a new

directory that we will create for the student user, ~/chapter7.

as the student user, create the new directory.

[student@studentvm1 ~]$ mkdir ~/chapter7

We need to change the /etc/cups/cups-pdf.config file to use this new directory. as root, edit

the /etc/cups-pdf.config file.

Comment out the following line – shown as already commented out here.

Out ${DESKTOP}

Chapter 7 printing

173

and add the following line immediately below it.

Out ${HOME}/chapter7

restart CUpS.

[root@studentvm1 ~]# systemctl restart cups

as the student user, print a test file and verify that it was created in the ~/chapter7 directory.

[student@studentvm1 ~]$ lpr cpuHog ; ll chapter7

total 7172

-rw------- student student 20169 Mar5 22:36 cpuHog.pdf

as the student user, open the file manager using the home icon on the desktop, if it is not

already open. navigate to the ~/chapter7 directory and double-click the cpuhog.pdf file. this

opens the evince document viewer and displays the content.

Figure 7-3 shows the two print queues we have created so far. it also shows the cpuhog.pdf

file in the ~/chapter7 directory and the evince document viewer showing the content of the

print file.

Figure 7-3. The two print queues created and the Evince document viewer
showing the content of the cpuHog.pdf print file

Chapter 7 printing

174

now, in order to see the status of the print queue for the physical printer, in my case the

hL-2270, i need to specify the desired print queue using the -p option.

[root@studentvm1 ~]# lpq -P Brother-HL-2270DW

Brother-HL-2270DW is ready

all print jobs sent to the default – Cups-pDF – print queue will now be saved as pDF files in

the /home/student/chapter7 directory so they can be easily found.

The system-wide printer configuration files are located in the /etc/cups/ directory.

This includes the lpoptions file that contains options settings that the root user has made

from the command line. The printers.conf file contains the current status information for

all defined print queues.

 File conversion tools
As SysAdmins, we frequently work with ASCII13 plain text files and text files encoded

as UTF-8 or UTF-16. ASCII text files, such as configuration files and those created by

editors like Vim, can be printed directly from the command line, but they may not always

be formatted well for printing. There are also times when it may be necessary – it has

been for me – to convert a word processing document from MS Word or LibreOffice

Writer format to ASCII text. In this section we will explore tools that can perform those

conversions and more.

Tip Many non-US users perform operations on UtF-8 or UtF-16 plain text
files. that’s less of an issue with system files since they will always be encoded
as aSCii, but once you get into file conversion and printing, it’s something to
watch out for. the lpr program won’t print the parts in encodings that it doesn’t
recognize, because postscript doesn’t (natively) support those other encodings.

Let’s start by installing a tool that is not installed by default.

13 Wikipedia, ASCII, https://en.wikipedia.org/wiki/ASCII

Chapter 7 printing

https://en.wikipedia.org/wiki/ASCII

175

EXPERIMENT 7-4

perform this experiment and begin as the root user to one new package. note that a large

number of packages needed to meet dependencies are also installed.

[root@studentvm1 ~]# dnf -y install a2ps

This tool and some that are already installed provide us with the ability to

manipulate and convert files into various formats. Although there can be many reasons

for making these conversions, in this chapter we mostly use them to prepare files for

printing. Although plain ASCII text files can be printed directly to a printer, the results

are not always aesthetically pleasing because there are no margins, line wrap may be

quite random, and some lines may be split with the top half of the characters printed at

the bottom of one page and the bottom half printed at the top of the next. This makes

reading the file difficult and frustrating so I like to prepare text files a bit so that they print

in a more readable format.

 a2ps
The a2ps utility is my favorite for preparing text files for printing. It converts plain ASCII

text files to Postscript files suitable for printing. By default, the resulting data stream in

Postscript format is sent to the default printer. The original file is not altered.

The features I like most about a2ps are the page formatting ones. They allow me

great flexibility to define the page format if I do not like the default format. This tool does

not require the prettyprint option to be set and is more predictable in its results.

The default format is to print two pages per side of paper and to place a frame

around the text. The top area of the frame contains the date the file was last modified,

the file name, and the page number with the total number of pages. The bottom area of

the frame contains the date the file was printed, the fully qualified file and path, and the

sheet number and the total number of sheets.

Chapter 7 printing

176

EXPERIMENT 7-5

this experiment should be performed as the student user. Be sure that ~/chapter7 is the pWD.

this command converts the data in the data stream from the /etc/bashrc file to postscript. the

-o (output file) option sends the resulting postscript data stream to the file bashrc.ps. the .ps

extension is for postscript files.

[student@studentvm1 chapter7]$ a2ps /etc/bashrc -o bashrc.ps

[/etc/bashrc (plain): 2 pages on 1 sheet]

[Total: 2 pages on 1 sheet] saved into the file `bashrc.ps'

[3 lines wrapped]

now verify the postscript file was created.

[student@studentvm1 chapter7]$ ll

total 44

-rw-rw-r-- 1 student student 21326 Mar 17 22:10 bashrc.ps

-rw------- 1 student student 20169 Mar 17 15:02 cpuHog.pdf

the resulting bashrc.ps file can be sent to the printer. ensure that Cups-pDF is the default print

queue for the student user.

[student@studentvm1 chapter7]$ lpoptions -d Cups-PDF

Tip Because we have run the preceding lpoptions command as the student
user, any options set by this command override – for the student user only – the
system-wide option settings for the target printer. the local options are stored
in the ~/.cups/lpoptions configuration file. each user can have their own printer
option settings. to return to use of the system-wide options, delete this file.

We can now print the postscript file from the command line.

[student@studentvm1 chapter7]$ lpr bashrc.ps ; ll

total 60

-rw------- 1 student student 16369 Mar 18 12:29 bashrc.pdf

-rw-rw-r-- 1 student student 21326 Mar 17 22:10 bashrc.ps

-rw------- 1 student student 20169 Mar 17 15:02 cpuHog.pdf

Chapter 7 printing

177

Use the thunar gUi file manager to double-click the bashrc.ps and bashrc.pdf files to open

the evince document viewer and look at each of these two documents. they are in different

formats but they should appear identical.

remember that the Cups-pDF printer queue converts files to pDF, and we reconfigured it to

store them in the /home/student/chapter7 directory. had we sent the bashrc.ps file to the print

queue for the physical printer, it would have been printed.

I suggest reading the a2ps man page in order to understand the full range of its

capabilities.

 ps2pdf
The ps2pdf utility converts Postscript files to PDF using Ghostscript.14 Ghostscript is a

tool that is typically used to rasterize page description languages into images that can be

displayed on a graphical terminal or desktop or printed on a printer.

EXPERIMENT 7-6

this experiment should be performed as the student user.

Use the following command to convert the bashrc.ps file to bashrc-2.pdf. add the -2 to the

name because we already have bashrc.pdf in this directory and we do not want to overwrite

the existing file.

[student@studentvm1 chapter7]$ ps2pdf bashrc.ps bashrc-2.pdf

Use the evince viewer to check the results. You might find it interesting to compare the two

files using the cmp (compare) and diff (difference) commands.

 pr
The pr utility converts plain ASCII text files into something a little prettier for printing. It

simply paginates the text and adds a header to each page of text. The header consists of

the date and time the file was run through the pr utility, the name of the file, and a page

14 Wikipedia, Ghostscript, https://en.wikipedia.org/wiki/Ghostscript

Chapter 7 printing

https://en.wikipedia.org/wiki/Ghostscript

178

number. The result is still an ASCII text data stream which can be redirected to a file, sent

directly to a printer, or viewed with the less utility.

The pr utility has a few options that can be used to control things like page length,

indent (left margin), line width for truncation, and more, but the essential function is still

very simple.

EXPERIMENT 7-7

this experiment should be performed as the student user.

the following command does some very basic modification to the /etc/bashrc file to make it

print with a little nicer formatting than to just print the raw data stream.

[student@studentvm1 ~]$ pr /etc/bashrc | less

page through the data and view the headers and pagination. print the same file using a bit of

left margin.

[student@studentvm1 ~]$ pr -o 4 /etc/bashrc | less

 ps2ascii
The ps2ascii is a Ghostscript translator that can extract the ASCII text from Postscript

or PDF files. It does not always work very well, sometimes producing no output when

there should be some. Most of the time it just extracts the text without regard to any

formatting. That does not mean it might not be useful. The output from this tool is in

ASCII text to STDOUT.

EXPERIMENT 7-8

perform this experiment as the student user. this is what the bashrc.ps file looks like after

being run through the ps2ascii utility. i have removed much of the data stream to save space.

[student@studentvm1 chapter7]$ ps2ascii bashrc.ps 1/1

 Page 2/2

 Printed by Student User

 bashrc

 Mar 17, 19 14:55

Chapter 7 printing

179

 PATH=$1:$PATH fi esac } #

By default, we want umask to get set. This sets it for non−login
shell. # Current threshold for system reserved uid/gids is 200 # You

could check uidgid reservation validity in # /usr/share/doc/setup−∗/
uidgid file if [$UID −gt 199] && ["‘id −gn‘" = "‘id −un‘"];
then umask 002 else umask 022 fi SHELL=/bin/bash #

Only display echos from profile.d scripts if we are no login shell #

and interactive − otherwise just process them to set envvars for i in /
etc/profile.d/∗.sh; do if [−r "$i"]; then if ["$PS1"
]; then . "$i" else . "$i" >/dev/

null fi fi done unset i unset −f pathmunge fifi#
vim:ts=4:sw=4

 /etc/bashrc

 Page 1/2

 bashrc

 Mar 17, 19 14:55

 # /etc/bashrc# System wide functions and aliases# Environment stuff

goes in /etc/profile# It’s NOT a good idea to change this file

unless you know what you# are doing. It’s much better to

<snip>

If you want to do so, just add e.g. # if ["$PS1"]; then # PS1="[\

u@\h:\l \W]\\$ " # fi # to your custom modification shell script in

/etc/profile.d/ directory fi if ! shopt −q login_shell ; then # We’re
not a login shell # Need to redefine pathmunge, it gets undefined

at the end of /etc/profile pathmunge () { case ":${PATH}:"

in ∗:"$1":∗) ;; ∗) if
["$2" = "after"] ;

then PATH=$PATH:$1 elseSunday March 17, 2019

For obvious reasons, i always keep the original aSCii plain text versions of any files i convert to

other formats.

Chapter 7 printing

180

 Operating system–related conversion tools
Different operating systems use slightly different non-text codes when storing ASCII

text files. For example, DOS and Windows use a carriage-return/line-feed (CR-LF)

sequence at the end of each line where Unix and Linux use a single line-feed character,

which is called a newline in Unix and Linux. And Apple uses carriage return at the end

of a line of text. These characters are not normally displayed using tools like editors and

paging tools such as less. Thus, they are called whitespace characters because they are

invisible.

We will use the cpuHog program we created earlier for these experiments because it

is short.

EXPERIMENT 7-9

perform this experiment as the student user. Use the od command to view the cpuhog file as

rendered into aSCii characters including whitespace character codes. the newline character is

rendered as a \n.

[student@studentvm1 chapter7]$ od -c ../cpuHog

0000000 # ! / b i n / b a s h \n # T h

0000020 i s l i t t l e p r o g r a

0000040 m i s a c p u h o g \n X

0000060 = 0 ; w h i l e [1] ; d

0000100 o e c h o $ X ; X = $ ((X

0000120 + 1)) ; d o n e \n \n \n

0000134

notice the \n (newline) characters. now look at it as hexadecimal (hex) code. the -x option

specifies hex.

[student@studentvm1 chapter7]$ od -x ../cpuHog

0000000 2123 622f 6e69 622f 7361 0a68 2023 6854

0000020 7369 6c20 7469 6c74 2065 7270 676f 6172

0000040 206d 7369 6120 6320 7570 6820 676f 580a

0000060 303d 773b 6968 656c 5b20 3120 5d20 643b

0000100 206f 6365 6f68 2420 3b58 3d58 2824 5828

0000120 312b 2929 643b 6e6f 0a65 0a0a

0000134

Chapter 7 printing

181

Can you decode the hex into aSCii? You could use the tables in the Wikipedia article on aSCii

referenced in footnote 11, but a good Sysadmin always has an aSCii table available. You can

always find one on the aSCii man page.

Tip Some tools, such as the printf command which can be used to produce a
formatted print in command-line programs and scripts, use aSCii codes like \n for
newline and \t for a tab.

 unix2dos
Now that we can see the newline characters, let’s convert this file (without changing the

original) to a DOS format.

EXPERIMENT 7-10

perform this experiment as the student user. Convert the cpuhog file into a DOS format without

changing the original. the default for the unix2dos utility is to convert the original file to the

new format, and this is not what we want for this experiment.

[student@studentvm1 ~]$ unix2dos -n cpuHog cpuHog.dos

unix2dos: converting file cpuHog to file cpuHog.dos in DOS format…

[student@studentvm1 ~]$ od -c cpuHog.dos

0000000 # ! / b i n / b a s h \r \n # T

0000020 h i s l i t t l e p r o g r

0000040 a m i s a c p u h o g \r

0000060 \n X = 0 ; w h i l e [1]

0000100 ; d o e c h o $ X ; X = $ (

0000120 (X + 1)) ; d o n e \r \n \r \n \r

0000140 \n

0000141

[student@studentvm1 ~]$ od -x cpuHog.dos

0000000 2123 622f 6e69 622f 7361 0d68 230a 5420

0000020 6968 2073 696c 7474 656c 7020 6f72 7267

0000040 6d61 6920 2073 2061 7063 2075 6f68 0d67

0000060 580a 303d 773b 6968 656c 5b20 3120 5d20

Chapter 7 printing

182

0000100 643b 206f 6365 6f68 2420 3b58 3d58 2824

0000120 5828 312b 2929 643b 6e6f 0d65 0d0a 0d0a

0000140 000a

0000141

the newline characters have been converted to Cr-LF format.

We can use the diff command to verify that the files are different. See what the developers

did with the name there?

[student@studentvm1 ~]$ diff cpuHog cpuHog.dos

1,5c1,5

< #!/bin/bash

< # This little program is a cpu hog

< X=0;while [1];do echo $X;X=$((X+1));done

<

<

> #!/bin/bash

> # This little program is a cpu hog

> X=0;while [1];do echo $X;X=$((X+1));done

>

>

although this result shows that there is a difference in every line of the files, it does not show

the actual differences because they are in the whitespace and cannot be directly displayed by

this tool. We can however eliminate whitespace from comparison which will now show that

there are no differences.

[student@studentvm1 ~]$ diff -Z cpuHog cpuHog.dos

[student@studentvm1 ~]$

this result tells us that the differences in the two files are all in the whitespace.

i find it unusual and somewhat less than helpful that the output data stream from the unix2dos

utility cannot be sent to StDOUt and especially so that it does not use StDiO at all. this tool,

while useful in a mixed operating system environment, does not follow the Linux philosophy.

refer to the unix2dos man page for details of its capabilities and syntax.

Chapter 7 printing

183

 dos2unix
The dos2unix utility performs the reverse of the unix2dos tool by converting Linux text

files into ones suitable for DOS.

EXPERIMENT 7-11

perform this experiment as student. the syntax and lack of StDiO capabilities for dos2unix

are the same as those of unix2dos.

[student@studentvm1 ~]$ dos2unix -n cpuHog.dos cpuHog.Linux

dos2unix: converting file cpuHog.dos to file cpuHog.Linux in Unix format...

now use the od command to view the cpuhog.Linux file in aSCii columnar mode using the

-c option and look for the newlines (\n). note also the sizes of the cpuhog.Linux file and the

original cpuhog files compared to the cpuhog.dos file. it is also informative to use the diff

command to compare the original cpuhog file and the cpuhog.Linux file after the latter has

been through two transitions.

[student@studentvm1 ~]$ diff cpuHog cpuHog.Linux

You can see that there are no differences.

 unix2mac and mac2unix
The unix2mac utility does just what its name implies; it converts text files from Linux

formats to Apple formats. The mac2unix tool obviously performs the reverse process.

EXPERIMENT 7-12

perform this first part of the experiment as the student user. the syntax of these commands

are the same as that for the previous commands. Let’s convert the cpuhog file to apple format

and then view the content.

[student@studentvm1 ~]$ od -c cpuHog.mac

0000000 # ! / b i n / b a s h \r # T h

0000020 i s l i t t l e p r o g r a

0000040 m i s a c p u h o g \r X

Chapter 7 printing

184

0000060 = 0 ; w h i l e [1] ; d

0000100 o e c h o $ X ; X = $ ((X

0000120 + 1)) ; d o n e \r \r \r

0000134

apple text files use only the carriage-return (Cr), the \r character at the end of a line of text.

there is a little secret here. Let’s look at the /usr/bin directory which is where these binary

files are kept.

[student@studentvm1 ~]# ll /usr/bin | grep unix

-rwxr-xr-x. 1 root root 55192 Jul 23 2018 dos2unix

lrwxrwxrwx. 1 root root 8 Jul 23 2018 mac2unix -> dos2unix

-rwxr-xr-x. 1 root root 55184 Jul 23 2018 unix2dos

lrwxrwxrwx. 1 root root 8 Jul 23 2018 unix2mac -> unix2dos

think about what that means.

 Miscellaneous tools
There are some additional tools that I have found interesting and useful. Let’s look at

three of them.

 lpmove
The lpmove command can be used to move a print job from one queue to another. This

might be necessary if you print a file to a print queue and the printer is out of paper or

toner and is not accepting print jobs. The jobs will enter the queue and stay there until

the printer is resupplied and once again accepting print jobs.

Moving a print job from one queue to another allows completion of your print job

without the need to wait for the original printer to become ready again. To set up this

next experiment so that everyone can do it, we will create a dummy printer that sends all

print jobs to /dev/null.

A dummy printer can also be useful for testing code that sends a data stream to a

printer but where you don’t care about the print job itself. You don’t want to waste paper

on a real printer, and you don’t want to clean up a bunch of files that were created during

testing. In such an instance, you will test the contents of the print jobs at a different time

to verify that they are correct.

Chapter 7 printing

185

EXPERIMENT 7-13

Start this experiment as the root user. Because some of you do not have access to a physical

printer, we are going to create a dummy printer that sends all of the print jobs directly to the /

dev/null device special file. We explored device special files and /dev/null in Chapter 3 of this

volume.

this gives us another queue to work with for this experiment so that everyone can do this. add

the new dummy print queue and verify it.

[root@studentvm1 ~]# lpadmin -p DummyPrinter -E -v file:/dev/null

[root@studentvm1 ~]# lpstat -t

scheduler is running

system default destination: Cups-PDF

device for Brother-HL-2270DW: usb://Brother/HL-2270DW%20

series?serial=C1J695917

device for Cups-PDF: cups-pdf:/

device for DummyPrinter: /dev/null

Brother-HL-2270DW accepting requests since Sun 17 Mar 2019 02:51:32 PM EDT

Cups-PDF accepting requests since Mon 18 Mar 2019 12:29:36 PM EDT

DummyPrinter accepting requests since Thu 21 Mar 2019 01:33:26 PM EDT

printer Brother-HL-2270DW is idle. enabled since Sun 17 Mar 2019 02:51:32 PM EDT

printer Cups-PDF is idle. enabled since Mon 18 Mar 2019 12:29:36 PM EDT

printer DummyPrinter is idle. enabled since Thu 21 Mar 2019 01:33:26 PM EDT

now let’s print a test to our dummy printer. nothing should be printed but we should also get

no errors. Do this as the student user.

[student@studentvm1 ~]# lpr -P DummyPrinter cpuHog

[student@studentvm1 ~]# lpq -P DummyPrinter

DummyPrinter is ready

no entries

now, as root, let’s disable the dummy printer.

[root@studentvm1 ~]# cupsdisable DummyPrinter

[root@studentvm1 ~]# lpstat -t

scheduler is running

system default destination: Cups-PDF

Chapter 7 printing

186

device for Brother-HL-2270DW: usb://Brother/HL-2270DW%20

series?serial=C1J695917

device for Cups-PDF: cups-pdf:/

device for DummyPrinter: /dev/null

Brother-HL-2270DW accepting requests since Sun 17 Mar 2019 02:51:32 PM EDT

Cups-PDF accepting requests since Mon 18 Mar 2019 12:29:36 PM EDT

DummyPrinter accepting requests since Thu 21 Mar 2019 02:06:07 PM EDT

printer Brother-HL-2270DW is idle. enabled since Sun 17 Mar 2019 02:51:32 PM EDT

printer Cups-PDF is idle. enabled since Mon 18 Mar 2019 12:29:36 PM EDT

printer DummyPrinter disabled since Thu 21 Mar 2019 02:06:07 PM EDT -

 Paused

as the student user, send a job to the dummy printer now that it is disabled and then check

the queue.

[student@studentvm1 ~]$ lpr -P DummyPrinter cpuHog

[student@studentvm1 ~]$ lpq -P DummyPrinter

DummyPrinter is not ready

Rank Owner Job File(s) Total Size

1st student 32 cpuHog 1024 bytes

[student@studentvm1 ~]$

Our print job is still in the queue belonging to the Dummyprinter. the print job would “print”

to /dev/null if we re-enable the Dummyprinter, but we are going to move it to the Cups-pDF

queue instead.

[student@studentvm1 ~]$ lpmove 32 Cups-PDF

[student@studentvm1 ~]$ lpq

Cups-PDF is ready

no entries

Chapter 7 printing

187

remember that print jobs sent to the Cups-pDF printer are processed and sent as pDF files to

~/chapter7, so we can look there for the resulting “print” document. the date on the cpuhog.

pdf file should be only a few seconds old, which tells us that it was just printed. You should

delete this file and then do this part of the experiment over just to verify that.

[student@studentvm1 ~]$ ll chapter7

total 76

-rw-rw-r-- 1 student student 16286 Mar 19 08:19 bashrc-2.pdf

-rw------- 1 student student 16369 Mar 18 12:29 bashrc.pdf

-rw-rw-r-- 1 student student 21326 Mar 17 22:10 bashrc.ps

-rw------- 1 student student 20169 Mar 21 15:27 cpuHog.pdf

Look at the print Settings gUi tool on the desktop. there are now three print queues and the

newest, Dummyprinter, is one of them. notice that the Dummyprinter print queue is paused

because the icon for that queue has a pause symbol (||) superimposed on it. Leave that

Dummyprinter disabled.

 wvText and odt2txt
The wvText tool can be used to convert MS Word documents to text format and odt2txt

converts LibreOffice documents from OpenDocument Text format to plain ASCII text. I

have not used wvText, but I have used odt2txt.

Sometimes I need to determine whether I have discussed a particular topic in

another chapter of this book. Each chapter is a separate LibreOffice Writer file. So I do

something like that in Figure 7-4 to search all of these chapters for a word or phrase.

Chapter 7 printing

188

[dboth@david RevisionsCompleted]$ for I in `ls *odt`; do echo "### Working on $I" ; odt2txt
$I ; done | grep -Ei "columns|## Working"

Working on Chapter-01.odt

Working on Chapter-02.odt

Working on Chapter-03.odt

Working on Chapter-04.odt

on your screen if there are not enough columns in your terminal

your screen if there are not enough columns in your terminal

Working on Chapter-05.odt

Working on Chapter-06.odt

Working on Chapter-07.odt

Working on Chapter-08.odt

Working on Chapter-09.odt

Working on Chapter-10.odt

Working on Chapter-11.odt

Working on Chapter-12.odt

Working on Chapter-13.odt

load the system. It is also interactive and the data columns to

terminal display. The default columns displayed by top are

described below. Several other columns are available and each

any of the displayed columns including CPU and memory usage. By

enough width (columns) the output may be misaligned and

Working on Chapter-14.odt

is opened. I currently have this adjusted to 130 columns by 65

Working on Chapter-15.odt

Working on Chapter-16.odt

Working on Chapter-17.odt

What is the value of the COLUMNS variable in each of the open

Figure 7-4. Using the odt2txt utility to search for specific words

Chapter 7 printing

189

By using the echo command to list the chapters as they are converted and scanned,

it is easy to identify in which chapter each instance was found. I used the time utility to

perform this task to see how long it takes. The conversions and content search took less

than 2 seconds of real time. This is much faster than opening each LibreOffice file and

using the LibreOffice search tool. Way faster.

Neither of these tools deal with tables well. The data in the tables is converted but

the organization is lost.

 Chapter summary
This chapter has explored in some detail the creation and use of print queues and

printing from the command line. Although all of this can be accomplished from the GUI

and GUI applications, using the command line to perform these tasks fosters a more

complete understanding of how printing works in Linux.

We looked at the tools used in this chapter primarily from the standpoint of printing

or preparing ASCII plain text files for printing. However, these same tools can be used to

manipulate text files in various ways to produce PDF and Postscript files for sending to

others as well as long-term retention of text document files in forms that are easy to read

and understand. These tools can also be used to allow ASCII text file sharing between

operating systems that use somewhat different encoding standards.

Because of the large number of options that the tools we have explored in this

chapter can use to control print jobs, it is a good idea to read the man pages for each.

There are many possibilities.

Leave the external physical printer connected, if you have one. It will be used in the

next chapter.

 Exercises
Perform the following exercises to complete this chapter:

 1. If you have a physical printer, add some text to the printer queue

that describes the printers’ physical location.

 2. If you have a physical printer, reprint the /etc/bashrc file and

format it for two sided on the long edge and with a double border.

Chapter 7 printing

190

 3. Print (to the display) the list of all printer queues on the VM.

 4. If you have a physical printer, devise and conduct an experiment

which proves that the prettyprint option only works on Bash files

with the shebang line.

 5. Does prettyprint work when using the Cups-PDF print queue?

 6. Can users set different default printers from each other and from

the root user?

 7. Which Hex character represents a newline?

 8. What is the ASCII representation for a tab character and the Hex

code for it?

 9. In Experiment 7-12 you looked at the unix2dos, unix2mac,

dos2unix, and mac2unix executable files. What did you conclude

from that observation?

 10. What happens to the print queue for a printer when the physical

printer is disconnected from the VM?

Chapter 7 printing

191
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_8

CHAPTER 8

Hardware Detection
 Objectives
In this chapter you will learn

• To use common Linux tools to detect and identify the hardware

installed in a Linux host.

• To determine the motherboard information such as vendor, make,

model, and serial number

• To determine the memory type, speed, and size

• To find and list peripheral hardware connected to the system such as

printers, mice, keyboards, and more

• To generate a list of the hardware attached to the USB and PCI buses

 Introduction
What exactly do I mean by hardware detection? For me, hardware detection is the ability

to identify what hardware is installed in a Linux host and other information such as

vendor, model, serial number, memory and hard/SSD drive sizes, and other specific

identifying information that might be useful. And I specifically mean without having to

take the system apart to do so.

When upgrading memory for a Linux host, for example, I have used the tools we will

explore in this chapter to determine the maximum memory supported by a motherboard

and what type, as well as how many open memory DIMM slots were available. I could

order online or go to my local computer store – a real computer store with people who

know what I am talking about, not a big box monstrosity – and tell them what I want,

knowing that it will work when I get home and install it.

192

In Chapter 7 we saw how to use one of these tools to determine that a printer was

installed and what make and model. Another useful purpose for these tools is to use

them in automated scripts to document the hardware and software installed in a Linux

host. We will look at that application for these tools in the next two chapters.

We have already looked briefly at these tools in Chapter 13 of Volume 1, but we will

now explore them in more detail. Although the experimental output from these tools

will be for the VM, I will sometimes also include data from one or more of my hardware

systems so that you can see the results of these commands on physical hardware.

I mentioned this in Chapter 13 of Volume 1 and it bears repeating here. The lshw

(list hardware) and dmidecode (Desktop Management Interface1 decode) commands

both display as much hardware information as is available in SMBIOS.2 The man page

for dmidecode states, “SMBIOS stands for System Management BIOS, while DMI stands

for Desktop Management Interface. These two standards are tightly related and were

developed by the DMTF (Desktop Management Task Force).”

These two utilities use data stored in SMBIOS which is a data storage area on

system motherboards that allows the BIOS boot process to access data about the system

hardware. This hardware data is collected from the SMBIOS and stored in the running

system in the /sysfs special filesystem.

Because the task of collecting hardware data is performed by BIOS during the initial

BIOS boot, the operating system does not need to probe the hardware directly in order

to collect information. The information collected can be used to perform tasks such

as determination of which hardware-related kernel modules to load during the Linux

kernel portion of the boot and startup process. We will explore this particular usage with

udev and D-Bus in Chapter 14 in this volume.

Much of the data stored in SMBIOS is text data placed there explicitly by the

hardware vendors. It is not obtained by actually probing the hardware. The data may be

missing some information or some may even be incorrect. I have not found this to be

common but it is possible. Nevertheless, the vendors have good reason to ensure that

the essential data is accurate. Other data, the actual hardware information such as CPU,

memory, and installed devices, is obtained at each boot and stored in the SMBIOS.

1 Wikipedia, Desktop Management Interface, https://en.wikipedia.org/wiki/
Desktop_Management_Interface

2 Wikipedia, System Management BIOS, https://en.wikipedia.org/wiki/
System_Management_BIOS

Chapter 8 hardware deteCtion

https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/Desktop_Management_Interface
https://en.wikipedia.org/wiki/System_Management_BIOS
https://en.wikipedia.org/wiki/System_Management_BIOS

193

 dmidecode
Let’s start our hardware exploration with the dmidecode utility which can provide us

with an amazing amount of hardware information. It does have some limitations as we

will see.

EXPERIMENT 8-1

perform this experiment as root. if you have disabled the print queue for the physical printer,

reattach the printer to your VM and re-enable the print queue. Be sure to use the name of your

printer.

[root@studentvm1 ~]# cupsenable Brother-HL-2270DW

[root@studentvm1 ~]# lpstat -t

scheduler is running

system default destination: Cups-PDF

device for Brother-HL-2270DW: usb://Brother/HL-2270DW%20

series?serial=C1J695917

device for Cups-PDF: cups-pdf:/

device for DummyPrinter: /dev/null

Brother-HL-2270DW accepting requests since Sun 24 Mar 2019 09:22:04 AM EDT

Cups-PDF accepting requests since Thu 21 Mar 2019 03:27:41 PM EDT

DummyPrinter accepting requests since Thu 21 Mar 2019 02:08:37 PM EDT

printer Brother-HL-2270DW is idle. enabled since Sun 24 Mar 2019 09:22:04 AM EDT

printer Cups-PDF is idle. enabled since Thu 21 Mar 2019 03:27:41 PM EDT

printer DummyPrinter disabled since Thu 21 Mar 2019 02:08:37 PM EDT -

 Paused

Starting very simply, we look at the information supplied by dmidecode with no options, which

is to say, all the information available in SMBioS.

[root@studentvm1 ~]# dmidecode | less

there is too much data to reproduce here, so you will need to refer to the results from your

VM. as we proceed through this experiment, i will use data from my primary workstation to

illustrate data that would be seen on a physical host. You can follow along using data from

your VM or from another physical Linux host if you have root access to one.

Chapter 8 hardware deteCtion

194

Let’s explore some of the individual dMi types starting with BioS itself, dMi type 0. You can

find the type codes for all hardware types in the dmidecode man page.

[root@david ~]# dmidecode -t 0

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0000, DMI type 0, 24 bytes

BIOS Information

 Vendor: American Megatrends Inc.

 Version: 0503

 Release Date: 07/11/2017

 Address: 0xF0000

 Runtime Size: 64 kB

 ROM Size: 16 MB

 Characteristics:

 PCI is supported

 APM is supported

 BIOS is upgradeable

 BIOS shadowing is allowed

 Boot from CD is supported

 Selectable boot is supported

 BIOS ROM is socketed

 EDD is supported

 5.25"/1.2 MB floppy services are supported (int 13h)

 3.5"/720 kB floppy services are supported (int 13h)

 3.5"/2.88 MB floppy services are supported (int 13h)

 Print screen service is supported (int 5h)

 8042 keyboard services are supported (int 9h)

 Serial services are supported (int 14h)

 Printer services are supported (int 17h)

 ACPI is supported

 USB legacy is supported

 BIOS boot specification is supported

 Targeted content distribution is supported

 UEFI is supported

 BIOS Revision: 5.13

Chapter 8 hardware deteCtion

195

this information lists the aMi as the BioS vendor along with the BioS version number and

release date. this information might be useful when making a determination of whether a

BioS upgrade is needed along with the information that the BioS is upgradable.

it lists the device types supported by this BioS but that are not necessarily installed. For

example, various types of floppy diskettes are supported, but i have not installed a floppy drive

on any of my system since … well, i cannot remember when because it has been so long.

dMi type 1 contains data about the assembled system. i built my own system so there is

only default data for this type on my workstation. the information on your VM should be more

informative.

[root@david ~]# dmidecode -t 1

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0001, DMI type 1, 27 bytes

System Information

 Manufacturer: System manufacturer

 Product Name: System Product Name

 Version: System Version

 Serial Number: System Serial Number

 UUID: 27191c80-d7da-11dd-9360-b06ebf3a431f

 Wake-up Type: Power Switch

 SKU Number: SKU

 Family: To be filled by O.E.M.

type 2 contains data for the motherboard, in this case, an aSUSteK tUF X299.

[root@david ~]# dmidecode -t 2

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0002, DMI type 2, 15 bytes

Base Board Information

 Manufacturer: ASUSTeK COMPUTER INC.

 Product Name: TUF X299 MARK 2

 Version: Rev 1.xx

 Serial Number: 170807951700403

Chapter 8 hardware deteCtion

196

 Asset Tag: Default string

 Features:

 Board is a hosting board

 Board is replaceable

 Location In Chassis: Default string

 Chassis Handle: 0x0003

 Type: Motherboard

 Contained Object Handles: 0

dMi type 4 contains a great deal of information about the processor installed in the host. it has

data about the vendor, the CpU flags which help define its functional capabilities, the product

version or name, and the current and maximum clock speeds. Most guest systems will show

very little data from this command.

[root@david ~]# dmidecode -t 4

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0057, DMI type 4, 48 bytes

Processor Information

 Socket Designation: LGA 2066 R4

 Type: Central Processor

 Family: Xeon

 Manufacturer: Intel(R) Corporation

 ID: 54 06 05 00 FF FB EB BF

 Signature: Type 0, Family 6, Model 85, Stepping 4

 Flags:

 FPU (Floating-point unit on-chip)

 VME (Virtual mode extension)

 DE (Debugging extension)

 PSE (Page size extension)

 TSC (Time stamp counter)

 MSR (Model specific registers)

 PAE (Physical address extension)

 MCE (Machine check exception)

 CX8 (CMPXCHG8 instruction supported)

Chapter 8 hardware deteCtion

197

 APIC (On-chip APIC hardware supported)

 SEP (Fast system call)

 MTRR (Memory type range registers)

 PGE (Page global enable)

 MCA (Machine check architecture)

 CMOV (Conditional move instruction supported)

 PAT (Page attribute table)

 PSE-36 (36-bit page size extension)

 CLFSH (CLFLUSH instruction supported)

 DS (Debug store)

 ACPI (ACPI supported)

 MMX (MMX technology supported)

 FXSR (FXSAVE and FXSTOR instructions supported)

 SSE (Streaming SIMD extensions)

 SSE2 (Streaming SIMD extensions 2)

 SS (Self-snoop)

 HTT (Multi-threading)

 TM (Thermal monitor supported)

 PBE (Pending break enabled)

 Version: Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz

 Voltage: 1.6 V

 External Clock: 100 MHz

 Max Speed: 4000 MHz

 Current Speed: 2800 MHz

 Status: Populated, Enabled

 Upgrade: Other

 L1 Cache Handle: 0x0054

 L2 Cache Handle: 0x0055

 L3 Cache Handle: 0x0056

 Serial Number: Not Specified

 Asset Tag: UNKNOWN

 Part Number: Not Specified

 Core Count: 16

 Core Enabled: 16

 Thread Count: 32

Chapter 8 hardware deteCtion

198

 Characteristics:

 64-bit capable

 Multi-Core

 Hardware Thread

 Execute Protection

 Enhanced Virtualization

 Power/Performance Control

even on a physical host, some dMi types are empty. notice that the dmidecode utility always

prints the fact that it is obtaining its SMBioS data from the /sysfs filesystem.

[root@david ~]# dmidecode -t 5

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

[root@david ~]#

as you can see from the dmidecode man page, dMi type 16 contains data for the physical

memory array. in the case of my main workstation, it is telling us that there are two physical

arrays – sets – of four memory slots for a total of eight diMM3 slots.

the maximum capacity stated for each array is 1536GB for a total of 3072GB of raM – 3tB.

however, the official aSUS specification is for 8 diMMs with a capacity of 128GB each for a

total of 1024GB.

[root@david ~]# dmidecode -t 16

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0044, DMI type 16, 23 bytes

Physical Memory Array

 Location: System Board Or Motherboard

 Use: System Memory

 Error Correction Type: None

 Maximum Capacity: 1536 GB

 Error Information Handle: Not Provided

 Number Of Devices: 4

3 Dual Inline Memory Module

Chapter 8 hardware deteCtion

199

Handle 0x004C, DMI type 16, 23 bytes

Physical Memory Array

 Location: System Board Or Motherboard

 Use: System Memory

 Error Correction Type: None

 Maximum Capacity: 1536 GB

 Error Information Handle: Not Provided

 Number Of Devices: 4

the aSUS web site4 has a marketing description and pictures of this motherboard in case you

want to see what it looks like.

now let’s look at the actual memory that is installed. dMi type 17 contains information about

each memory slot, whether it is empty or specific data about the installed diMM. i won’t

reproduce all eight sets of slot data here, just the first two which are then duplicated for the

rest of the slots.

[root@david ~]# dmidecode -t 17

dmidecode 3.2

Getting SMBIOS data from sysfs.

SMBIOS 3.0.0 present.

Handle 0x0046, DMI type 17, 40 bytes

Memory Device

 Array Handle: 0x0044

 Error Information Handle: Not Provided

 Total Width: 72 bits

 Data Width: 64 bits

 Size: 16384 MB

 Form Factor: DIMM

 Set: None

 Locator: DIMM_A1

 Bank Locator: NODE 1

 Type: DDR4

 Type Detail: Synchronous

 Speed: 2133 MT/s

4 ASUS, TUF X299 Mark 2 Motherboard, https://www.asus.com/us/Motherboards/
TUF-X299-MARK-2/

Chapter 8 hardware deteCtion

https://www.asus.com/us/Motherboards/TUF-X299-MARK-2/
https://www.asus.com/us/Motherboards/TUF-X299-MARK-2/

200

 Manufacturer: Corsair

 Serial Number: 00000000

 Asset Tag:

 Part Number: CMK64GX4M4B3600C18

 Rank: 2

 Configured Memory Speed: 2133 MT/s

 Minimum Voltage: 1.2 V

 Maximum Voltage: 1.2 V

 Configured Voltage: 1.2 V

Handle 0x0048, DMI type 17, 40 bytes

Memory Device

 Array Handle: 0x0044

 Error Information Handle: Not Provided

 Total Width: Unknown

 Data Width: Unknown

 Size: No Module Installed

 Form Factor: DIMM

 Set: None

 Locator: DIMM_A2

 Bank Locator: NODE 1

 Type: Unknown

 Type Detail: Synchronous

 Speed: Unknown

 Manufacturer: NO DIMM

 Serial Number: NO DIMM

 Asset Tag:

 Part Number: NO DIMM

 Rank: Unknown

 Configured Memory Speed: Unknown

 Minimum Voltage: 1.2 V

 Maximum Voltage: 1.2 V

 Configured Voltage: 1.2 V

Chapter 8 hardware deteCtion

201

the bottom line for memory is that i have installed four 16GB ddr45 diMMs, and there are

four empty memory slots. You can also see the speed of 2133 Mt/s (Megatransfers per

second), voltage specs, and a “Locator” which tells us which slot the diMM is installed in.

we have not looked at all of the dMi types in this experiment that the dmidecode tool

exposes to us. if you want to save some time and dump only the dMi types that actually have

some usable data, you can use the following command.

[root@david ~]# dmidecode -q

You should explore those that we skipped. of course the results will be more interesting on a

physical host.

Have you figured out the limitations to DMI? It can be hard to see what is missing so

let’s continue.

 lshw
The lshw utility is similar in function to the dmidecode utility, but it produces output that

is a bit more terse.

EXPERIMENT 8-2

perform this experiment as the root user. install the lshw package if it is not already.

[root@studentvm1 ~]# dnf install -y lshw

this program lists data about the motherboard, CpU, and other installed hardware. run the

following command to list the hardware on your host. Look through the data to see all of

the (virtual) hardware in your VM. My personal workstation is more interesting, but i won’t

reproduce it all here. i just have enough so you can see some differences and the similarities.

First, note that the lshw utility shows the hostname. SMBioS does not have that information

because that data is scanned for long before the operating system startup sequence sets the

hostname.

5 Wikipedia, Double data rate, https://en.wikipedia.org/wiki/Double_data_rate. This article
also contains a link to Transfer Rates, (MT/s).

Chapter 8 hardware deteCtion

https://en.wikipedia.org/wiki/Double_data_rate

202

[root@studentvm1 ~]# lshw | less

david

 description: Desktop Computer

 product: System Product Name (SKU)

 vendor: System manufacturer

 version: System Version

 serial: System Serial Number

 width: 64 bits

 capabilities: smbios-3.0.0 dmi-3.0.0 smp vsyscall32

 configuration: boot=normal chassis=desktop family=To be filled by O.E.M.

sku=SKU uuid=801C1927-DAD7-DD11-

9360-B06EBF3A431F

the motherboard and memory information are essentially the same, but lshw has a nice

summary of installed raM.

 *-core

 description: Motherboard

 product: TUF X299 MARK 2

 vendor: ASUSTeK COMPUTER INC.

 physical id: 0

 version: Rev 1.xx

 serial: 170807951700403

 slot: Default string

 *-firmware

 description: BIOS

 vendor: American Megatrends Inc.

 physical id: 0

 version: 0503

 date: 07/11/2017

 size: 64KiB

 capacity: 16MiB

 capabilities: pci apm upgrade shadowing cdboot bootselect

socketedrom edd int13floppy1200 int13flop

Chapter 8 hardware deteCtion

203

py720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer

acpi usb biosbootspecification ue

fi

 *-memory

 description: System Memory

 physical id: 44

 slot: System board or motherboard

 size: 64GiB

 *-bank:0

 description: DIMM DDR4 Synchronous 2133 MHz (0.5 ns)

 product: CMK64GX4M4B3600C18

 vendor: Corsair

 physical id: 0

 serial: 00000000

 slot: DIMM_A1

 size: 16GiB

 width: 64 bits

 clock: 2133MHz (0.5ns)

 *-bank:1

 description: DIMM Synchronous [empty]

 product: NO DIMM

 vendor: NO DIMM

 physical id: 1

 serial: NO DIMM

 slot: DIMM_A2

 *-bank:2

 description: DIMM DDR4 Synchronous 2133 MHz (0.5 ns)

 product: CMK64GX4M4B3600C18

 vendor: Corsair

 physical id: 2

 serial: 00000000

 slot: DIMM_B1

 size: 16GiB

 width: 64 bits

 clock: 2133MHz (0.5ns)

<snip>

Chapter 8 hardware deteCtion

204

we also see external devices such as the keyboard

 *-usb:0

 description: Keyboard

 product: Corsair Gaming K70 LUX RGB Keyboard

 vendor: Corsair

 physical id: 2

 bus info: usb@1:2

 version: 3.08

 serial: 1602B030AF0E98A8596A6476F5001BC6

 capabilities: usb-2.00

 configuration: driver=usbfs maxpower=500mA speed=12Mbit/s

<snip>

and attached printers that were not shown in the dMi database. i did see the printers on my

physical workstation but not the one attached to the VM. So, you may see the printer on your

VM or not.

 *-usb:0 UNCLAIMED

 description: Printer

 product: MFC-9340CDW

 vendor: Brother Industries, Ltd

 physical id: 1

 bus info: usb@1:a.1

 version: 1.00

 serial: U63481A5J631227

 capabilities: usb-2.00 bidirectional

 configuration: maxpower=2mA speed=480Mbit/s

 *-usb:1

 description: Printer

 product: HL-2270DW series

 vendor: Brother

 physical id: 3

 bus info: usb@1:a.3

 version: 1.00

 serial: C1J695917

 capabilities: usb-2.00 bidirectional

 configuration: driver=usblp maxpower=2mA speed=480Mbit/s

Chapter 8 hardware deteCtion

205

 lsusb
There are some commands available to list devices connected on the Universal Serial

Bus6 (USB). Let’s start with lsusb – list USB devices – which lists devices on the USB bus,

including USB hubs and the devices connected to them.

EXPERIMENT 8-3

perform this experiment as the root user. You won’t see much on the VM you are using for this

course, just a couple virtual USB hubs and probably a printer if you have one attached to the

VM. But here are the results from my workstation.

[root@david ~]# lsusb

Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 006: ID 0bc2:ab1e Seagate RSS LLC Backup Plus Portable Drive

Bus 002 Device 003: ID 2109:0812 VIA Labs, Inc. VL812 Hub

Bus 002 Device 002: ID 2109:0812 VIA Labs, Inc. VL812 Hub

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 001 Device 005: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 001 Device 003: ID 2109:2812 VIA Labs, Inc. VL812 Hub

Bus 001 Device 002: ID 1b1c:1b33 Corsair

Bus 001 Device 015: ID 1058:070a Western Digital Technologies, Inc. My

Passport Essential (WDBAAA), My Passport for Mac (WDBAAB), My Passport

Essential SE (WDBABM), My Passport SE for Mac (WDBABW

Bus 001 Device 014: ID 05e3:0745 Genesys Logic, Inc. Logilink CR0012

Bus 001 Device 012: ID 046d:c52b Logitech, Inc. Unifying Receiver

Bus 001 Device 010: ID 1a40:0201 Terminus Technology Inc. FE 2.1 7-port Hub

Bus 001 Device 013: ID 0424:4063 Standard Microsystems Corp.

Bus 001 Device 011: ID 0424:2640 Standard Microsystems Corp. USB 2.0 Hub

Bus 001 Device 008: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub

Bus 001 Device 006: ID 051d:0002 American Power Conversion Uninterruptible

Power Supply

Bus 001 Device 017: ID 04f9:0042 Brother Industries, Ltd HL-2270DW Laser Printer

6 Wikipedia, USB, https://en.wikipedia.org/wiki/USB

Chapter 8 hardware deteCtion

https://en.wikipedia.org/wiki/USB

206

Bus 001 Device 007: ID 04f9:02b0 Brother Industries, Ltd MFC-9340CDW

Bus 001 Device 004: ID 050d:0234 Belkin Components F5U234 USB 2.0 4-Port Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

You can see that there are multiple hubs here, some, like the root hubs, are internal and others

like the terminus technology 7-port hub is an external add-on USB 3.0 hub. the apC UpS is

listed as are both of my Brother laser printers.

You can also use the -t option to display the output in a tree format.

[root@david ~]# lsusb -t

/: Bus 04.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/2p, 10000M

/: Bus 03.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/2p, 480M

/: Bus 02.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/10p, 5000M

 |__ Port 8: Dev 2, If 0, Class=Hub, Driver=hub/4p, 5000M

 |__ Port 1: Dev 3, If 0, Class=Hub, Driver=hub/4p, 5000M

 |__ Port 2: Dev 6, If 0, Class=Mass Storage, Driver=uas, 5000M

/: Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci_hcd/16p, 480M

 |__ Port 2: Dev 2, If 0, Class=Human Interface Device, Driver=usbfs, 12M

 |__ Port 2: Dev 2, If 1, Class=Human Interface Device, Driver=usbfs, 12M

 |__ Port 8: Dev 3, If 0, Class=Hub, Driver=hub/4p, 480M

 |__ Port 1: Dev 5, If 0, Class=Hub, Driver=hub/4p, 480M

 |__ Port 10: Dev 4, If 0, Class=Hub, Driver=hub/4p, 480M

 |__ Port 3: Dev 17, If 0, Class=Printer, Driver=usblp, 480M

 |__ Port 1: Dev 7, If 2, Class=Vendor Specific Class, Driver=, 480M

 |__ Port 1: Dev 7, If 0, Class=Printer, Driver=, 480M

 |__ Port 1: Dev 7, If 1, Class=Vendor Specific Class, Driver=, 480M

 |__ Port 11: Dev 6, If 0, Class=Human Interface Device, Driver=usbhid, 12M

 |__ Port 12: Dev 8, If 0, Class=Hub, Driver=hub/3p, 480M

 |__ Port 1: Dev 11, If 0, Class=Hub, Driver=hub/3p, 480M

 |__ Port 1: Dev 13, If 0, Class=Mass Storage, Driver=usb- storage, 480M

 |__ Port 14: Dev 10, If 0, Class=Hub, Driver=hub/7p, 480M

 |__ Port 1: Dev 12, If 2, Class=Human Interface Device, Driver=usbhid, 12M

 |__ Port 1: Dev 12, If 0, Class=Human Interface Device, Driver=usbhid, 12M

 |__ Port 1: Dev 12, If 1, Class=Human Interface Device, Driver=usbhid, 12M

 |__ Port 2: Dev 14, If 0, Class=Mass Storage, Driver=usb-storage, 480M

 |__ Port 4: Dev 15, If 0, Class=Mass Storage, Driver=usb-storage, 480M

Chapter 8 hardware deteCtion

207

the physical printer does show up on both my workstation and the VM in this experiment.

this view makes it easier to follow the device connections through multiple hubs and to

see which root hub each device is ultimately connected to. this second syntax shows less

information about the connected devices, but that can be cross-referenced with the first

syntax using the bus, port, and device numbers.

 usb-devices
The usb-devices utility performs the same task as lsusb, that of listing devices attached

to the bus, but it can provide more information about each device.

EXPERIMENT 8-4

perform this experiment as root. You will only get two entries – or three if you have a physical

printer attached – so i have reproduced some of the output from my workstation because it

has some interesting entries you won’t see on your VM.

[root@david ~]# usb-devices

T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh=16

D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS=64 #Cfgs= 1

P: Vendor=1d6b ProdID=0002 Rev=04.20

S: Manufacturer=Linux 4.20.14-200.fc29.x86_64 xhci-hcd

S: Product=xHCI Host Controller

S: SerialNumber=0000:00:14.0

C: #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=0mA

I: If#=0x0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub

T: Bus=01 Lev=01 Prnt=01 Port=09 Cnt=01 Dev#= 4 Spd=480 MxCh= 4

D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=02 MxPS=64 #Cfgs= 1

P: Vendor=050d ProdID=0234 Rev=00.00

C: #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=2mA

I: If#=0x0 Alt= 1 #EPs= 1 Cls=09(hub) Sub=00 Prot=02 Driver=hub

Chapter 8 hardware deteCtion

208

<snip>

T: Bus=01 Lev=02 Prnt=04 Port=02 Cnt=02 Dev#= 17 Spd=480 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=04f9 ProdID=0042 Rev=01.00

S: Manufacturer=Brother

S: Product=HL-2270DW series

S: SerialNumber=C1J695917

C: #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr=2mA

I: If#=0x0 Alt= 0 #EPs= 2 Cls=07(print) Sub=01 Prot=02 Driver=usblp

T: Bus=01 Lev=01 Prnt=01 Port=10 Cnt=02 Dev#= 6 Spd=12 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=051d ProdID=0002 Rev=00.90

S: Manufacturer=American Power Conversion

S: Product=Back-UPS XS 1500G FW:866.L8 .D USB FW:L8

S: SerialNumber=3B1551X04045

C: #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=2mA

I: If#=0x0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=00 Prot=00 Driver=usbhid

<snip>

T: Bus=01 Lev=03 Prnt=11 Port=00 Cnt=01 Dev#= 13 Spd=480 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0424 ProdID=4063 Rev=01.91

S: Manufacturer=Generic

S: Product=Ultra Fast Media Reader

S: SerialNumber=000000264001

C: #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=96mA

I: If#=0x0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-storage

<snip>

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=05 Dev#= 2 Spd=12 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=1b1c ProdID=1b33 Rev=03.08

S: Manufacturer=Corsair

S: Product=Corsair Gaming K70 LUX RGB Keyboard

S: SerialNumber=1602B030AF0E98A8596A6476F5001BC6

Chapter 8 hardware deteCtion

209

C: #Ifs= 2 Cfg#= 1 Atr=a0 MxPwr=500mA

I: If#=0x0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=01 Driver=usbfs

I: If#=0x1 Alt= 0 #EPs= 2 Cls=03(HID) Sub=00 Prot=00 Driver=usbfs

i have removed the entries for most of the USB hubs for my workstation, but this data shows

the physical devices such as external USB hard drives, a media reader, and the keyboard.

 lspci
The lspci utility lists devices on the Peripheral Component Interconnect7 (PCI) bus and

its extensions, PCI-X, and PCI Express (PCIe). This includes many motherboard devices

such as memory and bus controllers, as well as devices like audio, Ethernet, SATA, and

video devices.

EXPERIMENT 8-5

perform this experiment as root. without any options, the lspci command provides a list of

pCi hardware that starts with the pCi bus address of each device and a simple description.

this results in a little more interesting output on the VM, but i have also reproduced a

shortened list from my workstation.

[root@david ~]# lspci

00:00.0 Host bridge: Intel Corporation Sky Lake-E DMI3 Registers (rev 04)

00:04.0 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)

00:04.1 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)

<snip>

00:04.7 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)

00:05.0 System peripheral: Intel Corporation Sky Lake-E MM/Vt-d Configuration

Registers (rev 04)

00:05.2 System peripheral: Intel Corporation Sky Lake-E RAS (rev 04)

00:05.4 PIC: Intel Corporation Sky Lake-E IOAPIC (rev 04)

00:08.0 System peripheral: Intel Corporation Sky Lake-E Ubox Registers (rev 04)

7 Wikipedia, Peripheral Component Interconnect, https://en.wikipedia.org/wiki/
Conventional_PCI

Chapter 8 hardware deteCtion

https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/Conventional_PCI

210

00:08.1 Performance counters: Intel Corporation Sky Lake-E Ubox Registers (rev 04)

00:08.2 System peripheral: Intel Corporation Sky Lake-E Ubox Registers (rev 04)

00:14.0 USB controller: Intel Corporation 200 Series/Z370 Chipset Family USB 3.0

xHCI Controller

00:14.2 Signal processing controller: Intel Corporation 200 Series PCH Thermal

Subsystem

00:16.0 Communication controller: Intel Corporation 200 Series PCH CSME HECI #1

00:17.0 SATA controller: Intel Corporation 200 Series PCH SATA controller [AHCI mode]

00:1c.0 PCI bridge: Intel Corporation 200 Series PCH PCI Express Root Port #1 (rev f0)

00:1c.2 PCI bridge: Intel Corporation 200 Series PCH PCI Express Root Port #3 (rev f0)

00:1c.4 PCI bridge: Intel Corporation 200 Series PCH PCI Express Root Port #5 (rev f0)

00:1f.0 ISA bridge: Intel Corporation X299 Chipset LPC/eSPI Controller

00:1f.2 Memory controller: Intel Corporation 200 Series/Z370 Chipset Family Power

Management Controller

00:1f.3 Audio device: Intel Corporation 200 Series PCH HD Audio

00:1f.4 SMBus: Intel Corporation 200 Series/Z370 Chipset Family SMBus Controller

00:1f.6 Ethernet controller: Intel Corporation Ethernet Connection (2) I219-V

02:00.0 SATA controller: Marvell Technology Group Ltd. Device 9215 (rev 11)

03:00.0 USB controller: ASMedia Technology Inc. ASM2142 USB 3.1 Host Controller

16:05.0 System peripheral: Intel Corporation Sky Lake-E VT-d (rev 04)

16:05.2 System peripheral: Intel Corporation Sky Lake-E RAS Configuration

Registers (rev 04)

16:05.4 PIC: Intel Corporation Sky Lake-E IOxAPIC Configuration Registers (rev 04)

16:08.0 System peripheral: Intel Corporation Sky Lake-E CHA Registers (rev 04)

16:08.1 System peripheral: Intel Corporation Sky Lake-E CHA Registers (rev 04)

<snip>

64:0d.2 System peripheral: Intel Corporation Sky Lake-E LMS Channel 2 (rev 04)

64:0d.3 System peripheral: Intel Corporation Sky Lake-E LMDP Channel 2 (rev 04)

65:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Barts XT

[Radeon HD 6870]

65:00.1 Audio device: Advanced Micro Devices, Inc. [AMD/ATI] Barts HDMI Audio

[Radeon HD 6790/6850/6870 / 7720 OEM]

<snip>

Using the -v option for verbose output produces several lines of data for each device. the total

output for this command is very long so you should pipe it through the less paging tool. i

have only reproduced a few stanzas from my workstation in order to save space.

[root@studentvm1 ~]# lspci -v | less

Chapter 8 hardware deteCtion

211

0:00.0 Host bridge: Intel Corporation Sky Lake-E DMI3 Registers (rev 04)

 Subsystem: ASUSTeK Computer Inc. Device 873c

 Flags: fast devsel, NUMA node 0

 Capabilities: [90] Express Root Port (Slot-), MSI 00

 Capabilities: [e0] Power Management version 3

 Capabilities: [100] Vendor Specific Information: ID=0002 Rev=0 Len=00c <?>

 Capabilities: [144] Vendor Specific Information: ID=0004 Rev=1 Len=03c <?>

 Capabilities: [1d0] Vendor Specific Information: ID=0003 Rev=1 Len=00a <?>

 Capabilities: [250] Secondary PCI Express <?>

 Capabilities: [280] Vendor Specific Information: ID=0005 Rev=3 Len=018 <?>

 Capabilities: [300] Vendor Specific Information: ID=0008 Rev=0 Len=038 <?>

<snip>

00:17.0 SATA controller: Intel Corporation 200 Series PCH SATA controller

[AHCI mode] (prog-if 01 [AHCI 1.0])

 Subsystem: ASUSTeK Computer Inc. Device 873c

 Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 29, NUMA node 0

 Memory at 92f68000 (32-bit, non-prefetchable) [size=8K]

 Memory at 92f6c000 (32-bit, non-prefetchable) [size=256]

 I/O ports at 3050 [size=8]

 I/O ports at 3040 [size=4]

 I/O ports at 3020 [size=32]

 Memory at 92f6b000 (32-bit, non-prefetchable) [size=2K]

 Capabilities: [80] MSI: Enable+ Count=1/1 Maskable- 64bit-

 Capabilities: [70] Power Management version 3

 Capabilities: [a8] SATA HBA v1.0

 Kernel driver in use: ahci

<snip>

00:1f.0 ISA bridge: Intel Corporation X299 Chipset LPC/eSPI Controller

 Subsystem: ASUSTeK Computer Inc. Device 873c

 Flags: bus master, medium devsel, latency 0, NUMA node 0

00:1f.2 Memory controller: Intel Corporation 200 Series/Z370 Chipset Family

Power Management Controller

 Subsystem: ASUSTeK Computer Inc. Device 873c

 Flags: fast devsel, NUMA node 0

 Memory at 92f44000 (32-bit, non-prefetchable) [disabled] [size=16K]

<snip>

65:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI]

Barts XT [Radeon HD 6870] (prog-if

Chapter 8 hardware deteCtion

212

00 [VGA controller])

 Subsystem: Gigabyte Technology Co., Ltd Device 21fa

 Flags: bus master, fast devsel, latency 0, IRQ 42, NUMA node 0

 Memory at c0000000 (64-bit, prefetchable) [size=256M]

 Memory at d8e20000 (64-bit, non-prefetchable) [size=128K]

 I/O ports at b000 [size=256]

 Expansion ROM at 000c0000 [disabled] [size=128K]

 Capabilities: [50] Power Management version 3

 Capabilities: [58] Express Legacy Endpoint, MSI 00

 Capabilities: [a0] MSI: Enable+ Count=1/1 Maskable- 64bit+

 Capabilities: [100] Vendor Specific Information: ID=0001 Rev=1 Len=010 <?>

 Capabilities: [150] Advanced Error Reporting

 Kernel driver in use: radeon

 Kernel modules: radeon

<snip>

now try this to get a tree view.

[root@studentvm1 ~]# lspci -tv

the motherboard chip set information provided by the lspci tool can be used to determine

memory and CpU compatibility. it could also be used to help determine whether to purchase a

used computer or explore a new one without having to take it apart.

 Cleanup
Let’s clean up a little. We no longer need the physical printer so we can disable it and

remove it from the VM.

CLEANUP

perform this cleanup as root. First we disable the printer. Be sure to use the correct printer

name for your physical printer.

[root@studentvm1 spool]# cupsdisable Brother-HL-2270DW

refer to Figure 7-1 if necessary and remove the check mark from the printer so that it is no

longer associated with the VM.

Chapter 8 hardware deteCtion

213

 Chapter summary
The commands we have explored in this chapter can provide an easy way to examine

the hardware components of any computer. It is possible to discover information about

a computer that cannot be obtained even by taking it apart. If the computer does not

have Linux installed, just boot to a live Linux USB thumb drive and use these tools to

examine the hardware in detail not available in any other way. I have used these tools as

part of a first look when people have asked me to “fix” their computers or when making

a determination of whether I wanted to purchase a specific model that was on display at

the local computer store.

All of this information is available using the /proc and /sys filesystems, but these

tools make it easier because you don’t need to search for it.

 Exercises
Perform the following exercises to complete this chapter:

 1. What is the motherboard serial number of your VM?

 2. If you have root access to a physical Linux host, what is the

motherboard serial number?

 3. What type of device is reported by DMI type 5?

 4. Why do you think that external devices like printers, pointing

devices, and keyboards show up in the lshw data but are not in the

DMI database?

 5. What other devices are missing from the DMI database that

appear in the lshw output?

 6. What make and model Ethernet controller is virtualized for your VM?

 7. What happens to the queue for the physical printer if you

disconnect the printer from the VM without first having disabled

the queue?

 8. What happens if a print job is then sent to an enabled print queue

that has no printer?

Chapter 8 hardware deteCtion

215
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_9

CHAPTER 9

Command-Line
Programming
 Objectives
In this chapter you will learn

• A definition for command-line programs

• To create Bash command-line programs

• To use logical comparisons to alter the execution path of command-

line programs

• To use “for” loops to iterate over a code segment a specified list of

items

• To use “while” and “until” to loop over a portion of code a specified

number of times.

 Introduction
We have already used command-line programs in earlier chapters of this course. Those

were all fairly simple and straightforward with simple requirements. There are many

times when SysAdmins create simple command-line programs to perform a series of

tasks. They are a common tool and can save time and effort.

My personal objective when writing CLI programs is to save time and to “be the

lazy SysAdmin.” CLI programs allow me to accomplish this by listing several commands

in a specific sequence so that they will execute one after another. As a result, I do not

need to watch the progress of one command and, when it has finished, type in the next

216

command. I can go do other things and not be concerned about having to continually

monitor the progress of each command.

It is not possible to include a complete training course on Bash command-line

programming and shell scripts in this course which is already quite lengthy. This chapter

and Chapter 10 are intended as an introduction to these concepts and many of the

tools available for Bash programming. There are numerous books and courses available

that do provide in-depth instruction on Bash usage and programming and, if you are

interested, you should use one of those to learn more.

Also, I do not set up some sort of bogus objective to provide a framework for building

an application that you will never use. I find that my best learning experiences are when

I am working on my own projects. My objective in this chapter is to introduce you to

many of the typical forms and structures used in Bash command-line programming and

scripts. When you encounter a task that requires CLI programming or a script, you will

likely remember that you have seen a method for accomplishing that task and at least

know where to start looking for details.

One excellent source is the Bash Manual1 which can be found at www.gnu.org and

which is sponsored by the Free Software Foundation (FSF) at www.fsf.org/. This free

manual is available in many formats and can be downloaded or browsed online.

 Definition of a program
Let’s define what we mean by a program. The Free On-line Dictionary of Computing2

(FOLDOC) defines a program as “The instructions executed by a computer, as opposed

to the physical device on which they run.” Other sources such as Princeton University’s

WordNet3 define a program as “…a sequence of instructions that a computer can

interpret and execute….” Wikipedia also has a good article about computer programs.4

1 GNU https://www.gnu.org/software/bash/manual/
2 You can install the “dict” package and then use the command dict <word> to look up any word –
without the <>. Results are presented from one or more of several online dictionaries including
the FOLDOC. Or you can go to http://foldoc.org/ to look up computing terms. I find it helpful
to use the dict command which enables me to see multiple definitions for many terms.

3 WordNet, https://wordnet.princeton.edu/
4 Wikipedia, Computer Program, https://en.wikipedia.org/wiki/Computer_program

Chapter 9 Command-Line programming

http://www.gnu.org/
https://www.fsf.org/
https://www.gnu.org/software/bash/manual/
http://foldoc.org/
https://wordnet.princeton.edu/
https://en.wikipedia.org/wiki/Computer_program

217

Based on these definitions, a program can consist of one or more instructions that

perform a specific related task. A computer program instruction is also called a program

statement. For SysAdmins, a program is usually a sequence of shell commands. All of

the shells available for Linux, at least the ones with which I am familiar, have at least

some basic form of programming capability, and Bash, the default shell for most Linux

distributions, is no exception. This chapter uses Bash because it is so ubiquitous. You

may already prefer or later learn about and come to prefer a different shell. If so, the

programming concepts will be the same though the constructs and syntax may differ

somewhat. Some shells may support some features that others do not. But they all

provide some programming capability.

These shell programs can be stored in a file for repeated use, or they may be simply

created on an ad hoc basis at the command line as needed. In this chapter we will start

working directly at the command line. In Chapter 10, we will discuss storing our simple

programs in files for sharing and reuse and more complex and lengthy programs.

 Simple CLI programs
The simplest command-line programs are one or two consecutive program statements,

which may be related or not, that are entered on the command line before the Enter key

is pressed. For example, the second statement, if there is one, may be dependent upon

the actions of the first but it does not need to be.

There is also one bit of syntactical punctuation that needs to be clearly stated. When

entering a single command on the command line, pressing the Enter key terminates

the command with an implicit semicolon (;). When used in a CLI shell program entered

on the command line, the semicolon must be used to terminate each statement and

separate it from the next one. The last statement in a CLI shell program can use an

explicit or implicit semicolon.

 Some basic syntax
Let’s look at a couple examples which will clarify this syntax. All of the experiments in

this chapter should be performed as the student user.

Chapter 9 Command-Line programming

218

EXPERIMENT 9-1

For now we will use the explicit semicolon to terminate our program statements. the echo

command is used to print data to the screen. this terminology is a legacy of the old teletype

machines when all of the output from a program was printed to a roll of paper.

First ensure that we are in the student user’s home directory. then enter the following

program.

[student@studentvm1 ~]$ echo "Hello world." ;

Hello world.

that may not seem like much of a program, but it is the same first program i have

encountered with every new programming language i have ever learned. the syntax may be a

bit different for each language but the result is the same.

Let’s expand on this trivial but ubiquitous program a little.

[student@studentvm1 ~]$ echo "Hello world." ; ls ;

Hello world.

chapter25 cpuHog.Linux dmesg2.txt Downloads newfile.txt softlink1 testdir6

chapter26 cpuHog.mac dmesg3.txt file005 Pictures Templates testdir7

cpuHog Desktop dmesg.txt link3 Public testdir Videos

cpuHog.dos dmesg1.txt Documents Music random.txt testdir1

oK, that is interesting but the initial statement is not very meaningful in this context so let’s

change it a bit.

[student@studentvm1 ~]$ echo "My home directory." ; ls ;

My home directory.

chapter25 cpuHog.Linux dmesg2.txt Downloads newfile.txt softlink1 testdir6

chapter26 cpuHog.mac dmesg3.txt file005 Pictures Templates testdir7

cpuHog Desktop dmesg.txt link3 Public testdir Videos

cpuHog.dos dmesg1.txt Documents Music random.txt testdir1

Chapter 9 Command-Line programming

219

that makes a bit more sense. the results are related, but the individual program statements

are independent of each other. notice that i like spaces before and after the semicolon which

makes the code a bit easier to read. try this little CLi program again without an explicit

semicolon at the end.

[student@studentvm1 ~]$ echo "My home directory." ; ls

there is no difference in the output data.

 Output to the display
Many CLI programs are intended to produce output of some type. The echo command is

commonly used in a simple manner as seen in Experiment 9-1. We can use the -e option

to enable escape codes that allow us to do a little more complex output. For example,

we might want to print multiple lines of output. It is not necessary to use multiple echo

commands to do this.

EXPERIMENT 9-2

enter and run the following single statement program.

[student@studentvm1 ~]$ echo "Twinkle, twinkle, little star How I wonder what

you are Up above the world so high Like a diamond in the sky" ;

Twinkle, twinkle, little star How I wonder what you are Up above the world so

high Like a diamond in the sky

that is not easy to read so we could break it up like this into four separate echo statements.

[student@studentvm1 ~]$ echo "Twinkle, twinkle, little star" ; echo "How

I wonder what you are" ; echo "Up above the world so high" ; echo "Like a

diamond in the sky" ;

Twinkle, twinkle, little star

How I wonder what you are

Up above the world so high

Like a diamond in the sky

Chapter 9 Command-Line programming

220

But this next method is, if not easier, at least cleaner.

[student@studentvm1 ~]$ echo -e "Twinkle, twinkle, little star\nHow I wonder

what you are\nUp above the world so high\nLike a diamond in the sky\n" ;

Twinkle, twinkle, little star

How I wonder what you are

Up above the world so high

Like a diamond in the sky

this method of using a single echo command to print multiple lines can save typing as well so

that we can be the lazy Sysadmin. in this case, 19 characters fewer are required. it not only

saves typing, it also saves disk space, memory space, and CpU time. one command executes

faster than four. i know that these are all relatively cheap commodities these days, but many

of us inherit or are gifted with perfectly good, old computers whose specifications are not

nearly as generous as newer ones we might purchase.

in my book The Linux Philosophy for SysAdmins5 i devote a whole chapter to simplicity. one

command is always simpler than four commands.

the printf command (print formatted) provides even more capabilities because it allows

more complex data formatting. it can do the same thing as we did previously too because it

recognizes the same escape codes, but without needing an option.

[student@studentvm1 ~]$ printf "Twinkle, twinkle, little star\nHow I wonder

what you are\nUp above the world so high\nLike a diamond in the sky\n" ;

Twinkle, twinkle, little star

How I wonder what you are

Up above the world so high

Like a diamond in the sky

the printf command can also use all of the C language printf format specifications so that very

complex formats such as numerical field widths, decimal precision, and locale formatting can

be specified. those capabilities are beyond the scope of this course, but details can be found

using man 3 printf.

the echo man page contains a complete list of the escape codes that it recognizes.

5 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, Chapter 18.

Chapter 9 Command-Line programming

221

 Something about variables
Like all programming languages, the Bash shell can deal with variables. A variable is a

symbolic name that refers to a specific location in memory which contains a value of

some sort. The value of a variable is changeable, that is, it is variable.

Bash does not type variables like C and related languages, defining them as integers,

floating point, or string types. In Bash, all variables are strings. A string that is an integer

can be used in integer arithmetic which is all that Bash has the capability of doing. If

more complex maths are required, the bc command can be used in CLI programs and

scripts.

Variables are assigned values and can then be used to refer to this values in CLI

programs and scripts. The value of a variable is set using its name but not preceded by a

$ sign. The assignment VAR=10 sets the value of the variable VAR to 10. To print the value

of the variable, we can use the statement echo $VAR. Let’s start with text variables, that is,

non-numeric.

Bash variables become part of the shell environment until they are unset.

EXPERIMENT 9-3

to start, we check the initial value of a variable that has not been assigned. it should be null.

then we will assign a value to the variable and print it to verify its value. We will do all of this

in a single CLi program.

Note the syntax of variable assignment is very strict. there must be no spaces
on either side of the equal (=) sign in the assignment statement.

[student@studentvm1 ~]$ echo $MyVar ; MyVar="Hello World" ; echo $MyVar ;

Hello World

the empty line indicates that the initial value of myVar is null. Changing the value of a variable

is the same as setting it in the first place. in this example, we can see both the original and the

new value.

Chapter 9 Command-Line programming

222

[student@studentvm1 ~]$ echo $MyVar ; MyVar="Hello World; Welcome to Linux" ;

echo $MyVar ;

Hello World

Hello World; Welcome to Linux

Variables can also be “unset” and returned to a null value.

[student@studentvm1 ~]$ unset MyVar ; echo $MyVar ;

[student@studentvm1 ~]$

text string variables can also be combined in various ways.

[student@studentvm1 ~]$ Var1="Hello World!" ; Var2="Welcome to Bash CLI

programming." ; printf "$Var1\n$Var2\n" ;

Hello World!

Welcome to Bash CLI programming.

note that these variables remain set in the shell environment until they are unset as we did

with $myVar.

Note i will no longer use the explicit semicolon (;) at the end of a command-line
program and will rely on the one implied by pressing the enter key at the end of
the line.

[student@studentvm1 ~]$ echo "$Var1 $Var2"

Hello World! Welcome to Bash CLI programming.

[student@studentvm1 ~]$ set | grep Var

Var1='Hello World!'

Var2='Welcome to Bash CLI programming.'

reliance upon specific variables to already be set in the shell environment from one instance

of running a CLi program to the next is poor practice. it is usually a best practice to set those

variables needed by a program within the program itself – unless the intent is to check the

current value of a shell variable.

now let’s look at doing a bit of math in Bash. as i have mentioned, Bash can only perform

integer math but that can be sufficient for many purposes. in this little program, we reassign

$Var1 and $Var2 and then use them in a Bash integer calculation.

Chapter 9 Command-Line programming

223

[student@studentvm1 ~]$ Var1="7" ; Var2="9" ; echo "Result = $((Var1∗Var2))"
Result = 63

What happens when we perform a math operation that results in a floating-point number?

[student@studentvm1 ~]$ Var1="7" ; Var2="9" ; echo "Result = $((Var1/Var2))"

Result = 0

[student@studentvm1 ~]$ Var1="7" ; Var2="9" ; echo "Result = $((Var2/Var1))"

Result = 1

[student@studentvm1 ~]$

the result is the nearest integer. Be sure to notice that the calculation was performed as part

of the echo statement; no intermediate result is required, but we could have done something

like the following if we wanted to keep the result for use more than once in a later part of the

program.

[student@studentvm1 ~]$ Var1="7" ; Var2="9" ; Result=$((Var1∗Var2)) ; echo
"Result = $Result"

Result = 63

Use variables wherever possible in CLI programs instead of hard-coded values. Even

if you think you will only use a particular value once, such as a directory name or a file

name, create a variable and use the variable where you would have placed the hard-

coded name.

 Control operators
Shell control operators are one of the syntactical operators that allow us to create some

interesting command-line programs. We have seen that the simplest form of CLI program

is just stringing several commands together in a sequence on the command line.

command1 ; command2 ; command3 ; command4 ; . . . ; etc. ;

Those commands will all run without a problem so long as no errors occur. But what

happens when an error occurs? We can anticipate and allow for errors using the && and

|| built-in bash control operators. These two control operators provide us with some flow

control and enable us to alter the sequence of code execution. The semicolon is also

considered to be a bash control operator as is the newline character.

Chapter 9 Command-Line programming

224

The && operator simply says that if command1 is successful then run command2. If

command1 fails for any reason, then command2 is skipped. That syntax looks like this.

command1 && command2

 Return codes
The command1 && command2 syntax works because every command sends a return code

(RC) to the shell that indicates whether it completed successfully or whether there was

some type of failure during execution. By convention, a return code of zero (0) indicates

success and any positive number indicates some type of failure. Some of the tools we use

as SysAdmins return only a one (1) to indicate a failure, but many can return other codes

as well to further indicate the type of failure that occurred.

The bash shell has a variable $? which contains the return code from the last

command. This return code can be checked very easily by a script, the next command in

a list of commands, or even us SysAdmins.

EXPERIMENT 9-4

Let’s start by looking at return codes. We can run a simple command and then immediately

check the return code. the return code will always be for the last command that was run

before we look at it.

[student@studentvm1 ~]$ ll ; echo "RC = $?"

total 1264

drwxrwxr-x 2 student student 4096 Mar 2 08:21 chapter25

drwxrwxr-x 2 student student 4096 Mar 21 15:27 chapter26

-rwxr-xr-x 1 student student 92 Mar 20 15:53 cpuHog

<snip>

drwxrwxr-x. 2 student student 663552 Feb 21 14:12 testdir7

drwxr-xr-x. 2 student student 4096 Dec 22 13:15 Videos

RC = 0

[student@studentvm1 ~]$

the return code (rC) in this case is zero (0) which means the command completed

successfully. now try the same command on a directory for which we do not have

permissions, root’s home directory.

Chapter 9 Command-Line programming

225

[student@studentvm1 ~]$ ll /root ; echo "RC = $?"

ls: cannot open directory '/root': Permission denied

RC = 2

[student@studentvm1 ~]$

in this case the return code is 2 which specifically means that permission was denied for a

non-root user to access a directory to which the user is not permitted access. the control

operators use these return codes to enable us to alter the sequence of program execution.

 The operators
Let’s try the control operators as they might be used in a command-line program. In this

simple case, we want to create a new directory and add a new, empty file to it.

EXPERIMENT 9-5

We start with something simple. our objective is to create a new directory and create a file in

it. We only want to do this if the directory has been created successfully.

[student@studentvm1 ~]$ Dir=chapter9 ; mkdir $Dir && touch $Dir/testfile1 ; ll $Dir

total 0

-rw-rw-r-- 1 student student 0 Mar 29 15:18 testfile1

everything worked as it should because the chapter9 directory is accessible and writable.

Change the permissions on chapter9 so it is no longer accessible to the student user.

[student@studentvm1 ~]$ Dir=chapter9 ; chmod 076 $Dir ; ls -l | grep chapter9

d---rwxrw- 2 student student 4096 Mar 29 15:18 chapter9

[student@studentvm1 ~]$

You can see from the listing that the user student no longer has any access to the chapter9

directory. now let’s run some commands that will create a new directory in the chapter9

directory and then – if the new directory creation is successful – it will create a new file in that

subdirectory. this time we will also use the && control operator.

Chapter 9 Command-Line programming

226

[student@studentvm1 ~]$ Dir=chapter9 ; mkdir $Dir/subdirectory && touch $Dir/

subdirectory/testfile

mkdir: cannot create directory ‘chapter9/subdirectory’: Permission denied

[student@studentvm1 ~]$

the error seen in the preceding example was emitted by the mkdir command. We did not receive

an error indicating that the file could not be created because creation of the directory failed. the

&& control operator sensed the non-zero return code so the touch command was skipped. Using

the && control operator prevents the touch command from running because there was an error

in creating the directory. this type of command-line program flow control can prevent errors from

compounding and making a real mess of things. But let’s get a little more complicated.

the || control operator allows us to add another program statement that executes when the

initial program statement returns a code greater than zero. the basic syntax looks like this.

command1 || command2

this syntax reads, “if command1 fails, execute command2.” that implies that if command1

succeeds, command2 is skipped. Let’s try this with our attempt to create a new directory.

[student@studentvm1 ~]$ Dir=chapter9 ; mkdir $Dir/subdirectory || echo "New

file was not created."

mkdir: cannot create directory ‘chapter9/subdirectory’: Permission denied

New file was not created.

[student@studentvm1 ~]$

this is exactly what we expected. Because the new directory could not be created, the first

command failed which resulted in execution of the second command.

Combining these two operators gives us the best of both. our control operator syntax using

some flow control now takes this general form when we use the && and || control operators.

preceding commands ; command1 && command2 || command3 ; following commands

this syntax can be stated like so: if command1 exits with a return code of 0 then execute

command2, otherwise execute command3. Let’s try it.

[student@studentvm1 ~]$ Dir=chapter9 ; mkdir $Dir/subdirectory && touch $Dir/

subdirectory/testfile || echo "New file was not created."

mkdir: cannot create directory ‘chapter9/subdirectory’: Permission denied

New file was not created.

[student@studentvm1 ~]$

Chapter 9 Command-Line programming

227

now reset the permissions on ~/chapter9 to 755 and try this last command again.

[student@studentvm1 ~]$ chmod 755 chapter9

[student@studentvm1 ~]$ Dir=chapter9 ; mkdir $Dir/subdirectory && touch $Dir/

subdirectory/testfile || echo "New file was not created."

[student@studentvm1 ~]$ ll $Dir/subdirectory/

total 0

-rw-rw-r-- 1 student student 0 Mar 29 15:40 testfile

[student@studentvm1 ~]$

the program using the control operators may be preceded and followed by other commands

that can be related to the ones in the flow control section but which are unaffected by the flow

control. all of the preceding and following commands will execute without regard to anything

that takes place inside the flow control command.

These control operators provide us some interesting and powerful capabilities for

doing program flow control on the command line. These Bash control operators can also

be used in scripts. I use these operators quite frequently both on the command line and

in scripts because – automate everything.

Commands that use these operators for flow control are also called compound

commands.

 Program flow control
Every programming language I have ever used has some form of an “if” flow control

structure and Bash is no exception. The Bash if statement can be used to test whether

a condition is true or false in order to determine which execution path to take. This flow

control structure is flexible and can be adjusted to meet needs ranging from very simple

to quite complex.

We will start with some simple examples and move up in complexity. However, this

structure can be less suitable for use in CLI programs as it becomes more complex. So

we will keep things fairly simple here.

The logical syntax for this control statement is

if condition1; then list1; [elif condition2; then list2;] ... [else

list3;] fi

Chapter 9 Command-Line programming

228

where “condition” is a list of one or more conditions to be tested and “list” is a list

of shell program statements that are to be executed if the condition is true. The elif and

else phrases in this construct are optional. I like to read this syntax as “If condition1 is

true, then execute the statements in list1, or else if condition2 is true, then execute the

statements in list2, or else execute the statements in list3.”

The fi statement at the end of the if control structure provides an explicit syntactical

ending to the if statement. It is not optional.

Regardless of how many conditional expressions are contained in an if-elif...

else compound command, only one list of program statements is executed, the ones

associated with the first conditional to return “true.”

 true and false
Before we get further into the subject of flow control, we need to explicitly define some

things that were not always made clear when I was learning Unix and Linux.

First, there is always only one return code that indicates “true” or “success.” Zero (0)

is always returned when a command or program completes successfully. Any positive

integer when used as a return code represents an error, or a failure, with the specific

number representing a particular type of error. For logical operations zero (0) is always

true and one (1) is always false.

And of course, because Linux is so amazingly cool, it has two commands that can

be used for testing or for obtaining specific true or false return code results in a CLI

program or a script. What do you think they are? Naturally, they are true and false. The

true command always generates a return code of zero (0), which is true, and the false

command always generates a return code of one (1), which is false.

EXPERIMENT 9-6

Let’s just look at the return codes from the true and false commands. remember that the

shell variable $? always contains the return code from the last command that was run.

[dboth@david trunk]$ true ; echo $?

0

[dboth@david trunk]$ false ; echo $?

1

Chapter 9 Command-Line programming

229

now let’s use true and false with the control operators with which we are already familiar.

[dboth@david trunk]$ true && echo "True" || echo "False"

True

[dboth@david trunk]$ false && echo "True" || echo "False"

False

i frequently use these two simple commands to test the logic of a complex command with

control operators when i absolutely need to know whether the rC was true or false.

 Logical operators
Bash has a large set of logical operators that can be used in conditional expressions. The

most basic form of the if control structure is to test for a condition and then execute a

list of program statements if the condition is true. There are three types of operators, file,

numeric, and non-numeric operators. Each operator returns true (0) as its return code if

the condition is met and false (1) if the condition is not met.

The operators and their descriptions are listed in the following section and are taken

from the Bash man page. I have added some additional explanations in some instances

to help clarify the meanings.

 Syntax

The functional syntax of these comparison operators is one or two arguments with an

operator that are placed within square braces. Then we have a list of program statements

that are executed if the condition is true, and an optional list of program statements if the

condition is false.

if [arg1 operator arg2] ; then list

or

if [arg1 operator arg2] ; then list ; else list ; fi

Chapter 9 Command-Line programming

230

The spaces in the comparison are required as shown. The single square braces, [and],

are the traditional Bash symbols that are equivalent to the test command.

if test arg1 operator arg2 ; then list

There is also a more recent syntax that offers a few advantages and which some

SysAdmins prefer. This format is a bit less compatible with different versions of Bash and

other shells such as ksh (Korn shell).

if [[arg1 operator arg2]] ; then list

 File operators

File operators provide easy determination of various file tests. For example, these tests

can determine whether a file exists and is empty or contains some data, whether it is

a regular file, a link, or a directory. These operators can also be used to detect various

attributes such as user and group ID (ownership) and file permissions.

Figure 9-1 lists these file operators.

Chapter 9 Command-Line programming

231

Operator Description

-a filename True if the file exists. It can be empty or have some content but so long as it exists this
will be true.

-b filename True if file exists and is a block special file such as a hard drive like /dev/sda or
/dev/sda1.

-c filename True if the file exists and is a character special file such as a TTY device like /dev/TTY1.

-d filename This is true if the file exists and is a directory.

-e filename True if file exists. This is the same as -a, above.

-f filename True if the file exists and is a regular file as opposed to a directory a device special file
or a link, among others.

-g filename True if the file exists and is set-group-id, SETGID.

-h filename This is true if file exists and is a symbolic link.

-k filename True if file exists and its ``sticky'' bit is set.

-p filename True if file exists and is a named pipe (FIFO).

-r filename True if file exists and is readable, i.e., has its read bit set.

-s filename True if file exists and has a size greater than zero. A file that exists but that has a size of
zero will return false.

-t fd True if the file descriptor fd is open and refers to a terminal.

-u filename True if file exists and its set-user-id bit is set.

-w filename True if file exists and is writable.

-x filename True if file exists and is executable.

-G filename True if file exists and is owned by the effective group id.

-L filename True if file exists and is a symbolic link.

-N filename True if file exists and has been modified since it was last read.

-O filename True if file exists and is owned by the effective user id.

-S filename True if file exists and is a socket.

file1 -ef file2 True if file1 and file2 refer to the same device and iNode numbers.

file1 -nt file2 True if file1 is newer (according to modification date) than file2, or if file1 exists and
file2 does not.

file1 -ot file2 True if file1 is older than file2, or if file2 exists and file1 does not.

Figure 9-1. File operators

Let’s explore a few of these file operators to get an idea on how we might use them in

CLI programs and scripts.

Chapter 9 Command-Line programming

232

EXPERIMENT 9-7

You should already have the files we will need for this experiment in your home directory.

make your home directory the pWd.

First we simply look to see if a file exists

[student@studentvm1 ~]$ File="cpuHog" ; if [-e $File] ; then echo "The file

$File exists." ; fi

The file cpuHog exists.

or

[student@studentvm1 ~]$ File="cpuHog" ; if [[-e $File]] ; then echo "The

file $File exists." ; fi

The file cpuHog exists.

or

[student@studentvm1 ~]$ File="cpuHog" ; if test -e $File ; then echo "The

file $File exists." ; fi

The file cpuHog exists.

now add a bit of code in case the file does not exist. in this case it does exist so the end result

is the same as the previous test.

[student@studentvm1 ~]$ File="cpuHog" ; if [-e $File] ; then echo "The file

$File exists." ; else echo "The file $File does not exist." ; fi

The file cpuHog exists.

But let’s change the file name to one that we know does not exist. and note how easy it is to

change the value of the $File variable rather than a text string for the file name in multiple

locations in this short CLi program.

[student@studentvm1 ~]$ File="Non-ExistentFile" ; if [-e $File] ; then echo

"The file $File exists." ; else echo "The file $File does not exist." ; fi

The file Non-ExistentFile does not exist.

now let’s determine whether a file exists and has a non-zero length which means it contains

data. We will work in the ~/chapter9 directory for this. We have three conditions we want to

test for so we need a more complex set of tests. the three conditions are (1) the file does not

exist, (2) the file exists and is empty, and (3) the file exists and contains data. to accomplish

Chapter 9 Command-Line programming

233

this, we need to use the elif stanza in the if-elif-else construct to test for all of the conditions.

But let’s build up the logic a step at a time.

our first step is to simply see if the file exists or not and print a message to StdoUt if it does.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; if [-s $File] ; then echo

"$File exists and contains data." ; fi

[student@studentvm1 chapter9]$

We get no output because the file does not exist and we have not added an explicit test for

that. the other possibility in the real world is that the file exists but does not contain data. But

let’s create the empty file first and see what happens.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; touch $File ; if [-s $File] ;

then echo "$File exists and contains data." ; fi

[student@studentvm1 chapter9]$

in this case, the file exists but does not contain any data. Let’s add some data and try again.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; echo "This is file $File" >

$File ; if [-s $File] ; then echo "$File exists and contains data." ; fi

Exp-9-7 exists and contains data.

[student@studentvm1 chapter9]$

that works but it is only truly accurate for one specific condition out of the three possible ones

we have identified. Let’s add an else stanza so we can be somewhat more accurate and delete

the file so that we can fully test this new code.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; rm $File ; if [-s $File] ;

then echo "$File exists and contains data." ; else echo "$File does not exist

or is empty." ; fi

Exp-9-7 does not exist or is empty.

now let’s create an empty file to test.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; touch $File ; if [-s $File] ;

then echo "$File exists and contains data." ; else echo "$File does not exist

or is empty." ; fi

Exp-9-7 does not exist or is empty.

[student@studentvm1 chapter9]$

Chapter 9 Command-Line programming

234

Finally, let’s add some content to the file and test again.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; echo "This is file $File" >

$File ; if [-s $File] ; then echo "$File exists and contains data." ; else

echo "$File does not exist or is empty." ; fi

Exp-9-7 exists and contains data.

[student@studentvm1 chapter9]$

now we add the elif stanza to discriminate between a file that does not exist and one that is

empty.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; touch $File ; if [-s $File]

; then echo "$File exists and contains data." ; elif [-e $File] ; then echo

"$File exists and is empty." ; else echo "$File does not exist." ; fi

Exp-9-7 exists and is empty.

[student@studentvm1 chapter9]$ File="Exp-9-7" ; echo "This is $File" > $File

; if [-s $File] ; then echo "$File exists and contains data." ; elif [-e

$File] ; then echo "$File exists and is empty." ; else echo "$File does not

exist." ; fi

Exp-9-7 exists and contains data.

[student@studentvm1 chapter9]$

So now we have a Bash CLi program that can test for these three different conditions but the

possibilities are endless.

It is easier to see the logic structure of the more complex compound commands like

we used in Experiment 9-7 if we arrange the program statements more like we would in

a script that we saved in a file. Figure 9-2 shows how this would look. The indents of the

program statements in each stanza of the if-elif-else structure help clarify the logic.

Note that we are not using explicit statement termination with semicolons because

we are using ones implicit in a newline at the end of each statement. In this example,

each program statement is on a line by itself. We also used a variable for the file name

because it appears in seven places in this little program.

Chapter 9 Command-Line programming

235

Logic of this complexity becomes too lengthy for most CLI programs. Although any

Linux or Bash built-in commands may be used in CLI programs, as the CLI programs

get longer and more complex, it makes sense to create a script that is stored in a file and

which can be executed at any time now or in the future. We will explore scripts in more

detail in Chapter 10.

 String comparison operators

String comparison operators enable comparison of alphanumeric strings of characters.

There are only a few of these operators which are listed in Figure 9-3.

File="Exp-9-7"

echo "This is $File" > $File

if [-s $File]

then

echo "$File exists and contains data."

elif [-e $File]

then

echo "$File exists and is empty."

else

echo "$File does not exist."

fi

Figure 9-2. This line-by-line listing of the Bash CLI program we used in
Experiment 9-7 enables us to see the logic more clearly

Chapter 9 Command-Line programming

236

EXPERIMENT 9-8

First, let’s look at string length. notice that the quotes around $myVar in the comparison itself

must be there for the comparison to work.

[student@studentvm1 ~]$ MyVar="" ; if [-z ""] ; then echo "MyVar is zero

length." ; else echo "MyVar contains data" ; fi

MyVar is zero length.

[student@studentvm1 ~]$ MyVar="Random text" ; if [-z ""] ; then echo "MyVar

is zero length." ; else echo "MyVar contains data" ; fi

MyVar is zero length.

We could also do it this way.

[student@studentvm1 ~]$ MyVar="Random text" ; if [-n "$MyVar"] ; then echo

"MyVar contains data." ; else echo "MyVar is zero length" ; fi

MyVar contains data.

[student@studentvm1 ~]$ MyVar="" ; if [-n "$MyVar"] ; then echo "MyVar

contains data." ; else echo "MyVar is zero length" ; fi

MyVar is zero length

Operator Description

-z string True if the length of string is zero.

-n string True if the length of string is non-zero.

string1 == string2

or

string1 = string2

True if the strings are equal. = should be used with the test command for POSIX
conformance. When used with the [[command, this performs pa�ern matching as
described above (Compound Commands)

string1 != string2 True if the strings are not equal.

string1 < string2 True if string1 sorts before string2 lexicographically6.

string1 > string2 True if string1 sorts a�er string2 lexicographically.

Figure 9-3. Bash string logical operators

Chapter 9 Command-Line programming

237

Since we are already talking about strings and whether they are zero length or more than zero,

it might make sense that we sometimes need to know the exact length. although this is not a

comparison, it is related to them.

Unfortunately, there is no simple way to determine the length of a string. there are a couple

ways to do this, but i think using the expr (evaluate expression) is the easiest. read the man

page for expr for more of what it can do. Quotes are required around the string or variable

being tested.

[student@studentvm1 ~]$ MyVar="" ; expr length "$MyVar"

0

[student@studentvm1 ~]$ MyVar="How long is this?" ; expr length "$MyVar"

17

[student@studentvm1 ~]$ expr length "We can also find the length of a literal

string as well as a variable."

70

Back to our comparison operators, i use a lot of testing in my scripts to determine whether two

strings are equal, that is, identical. i use the non-poSiX version of this comparison operator.

[student@studentvm1 ~]$ Var1="Hello World" ; Var2="Hello World" ; if [

"$Var1" == "$Var2"] ; then echo "Var1 matches Var2" ; else echo "Var1 and

Var2 do not match." ; fi

Var1 matches Var2

[student@studentvm1 ~]$ Var1="Hello World" ; Var2="Hello world" ; if [

"$Var1" == "$Var2"] ; then echo "Var1 matches Var2" ; else echo "Var1 and

Var2 do not match." ; fi

Var1 and Var2 do not match.

Chapter 9 Command-Line programming

238

 Numeric comparison operators

These numeric operators make comparisons between two numeric arguments. Like the

other operator classes, most of these are easy to understand.

Operator Description

arg1 -eq arg2 True if arg1 equals arg2.

arg1 -ne arg2 True if arg1 is not equal to arg2.

arg1 -lt arg2 True if arg1 is less than arg2.

arg1 -le arg2 True if arg1 is less than or equal to arg2.

arg1 -gt arg2 True if arg1 is greater than arg2.

arg1 -ge arg2 True if arg1 is greater than or equal to arg2.

Figure 9-4. Bash numeric comparison logical operators

EXPERIMENT 9-9

Let’s start with some simple examples in this experiment. in the first instance, we set the

variable $X to 1 and then test to see if $X is equal to 1. it is, so the message does not get

printed. in the second instance, X is set to 0 so the comparison is not true so the message is

not printed.

[student@studentvm1 ~]$ X=1 ; if [$X -eq 1] ; then echo "X equals 1" ; fi

X equals 1

[student@studentvm1 ~]$ X=0 ; if [$X -eq 1] ; then echo "X equals 1" ; fi

[student@studentvm1 ~]$

Let’s add an else stanza to this.

[student@studentvm1 ~]$ X=1 ; if [$X -eq 1] ; then echo "X equals 1" ; else

echo "X does not equal 1" ; fi

X equals 1

Chapter 9 Command-Line programming

239

[student@studentvm1 ~]$ X=0 ; if [$X -eq 1] ; then echo "X equals 1" ; else

echo "X does not equal 1" ; fi

X does not equal 1

[student@studentvm1 ~]$

We used “-eq” which is a numeric comparison operator. We could have used “==” for a string

comparison and the functional result would be the same.

[student@studentvm1 ~]$ X=0 ; if [$X == 1] ; then echo "X equals 1" ; else

echo "X does not equal 1" ; fi

X does not equal 1

[student@studentvm1 ~]$ X=1 ; if [$X == 1] ; then echo "X equals 1" ; else

echo "X does not equal 1" ; fi

X equals 1

[student@studentvm1 ~]$

We can also invert the meaning of the comparison using the ! character. We also must change

the then and else lists.

[student@studentvm1 ~]$ X=0 ; if ! [$X -eq 1] ; then echo "X does not equal

1" ; else echo "X equals 1" ; fi

X does not equal 1

[student@studentvm1 ~]$ X=1 ; if ! [$X -eq 1] ; then echo "X does not equal

1" ; else echo "X equals 1" ; fi

X equals 1

[student@studentvm1 ~]$

and we also want to ensure that our logic works for other values of the variable $X as well.

[student@studentvm1 ~]$ X=7 ; if ! [$X -eq 1] ; then echo "X does not equal

1" ; else echo "X equals 1" ; fi

X does not equal 1

[student@studentvm1 ~]$

Chapter 9 Command-Line programming

240

 Miscellaneous operators

The miscellaneous operators described in Figure 9-5 allow us to see if a shell option is

set or a shell variable has a value, but it does not discover the value of the variable, just

whether it has one.

Operator Description

-o optname True if the shell option optname is enabled. See the list of options under the
description of the -o option to the Bash set builtin in the Bash man page.

-v varname True if the shell variable varname is set (has been assigned a value).

-R varname True if the shell variable varname is set and is a name reference.

Figure 9-5. Miscellaneous Bash logical operators

EXPERIMENT 9-10

in this experiment we look to see if a variable has been set. notice the unusual syntax; there

are no quotes around Var1 and there is no $ to distinguish it as a variable rather than a fixed

string. Just the use of -v and the syntax of the comparison tells Bash that Var1 is a variable.

[student@studentvm1 ~]$ Var1="Hello World" ; echo $Var1 ; if [-v Var1] ;

then echo "Var1 has been assigned a value." ; else echo "Var1 does not have a

value." ; fi

Hello World

Var1 has been assigned a value.

[student@studentvm1 ~]$ unset Var1 ; echo $Var1 ; if [-v Var1] ; then echo

"Var1 has been assigned a value." ; else echo "Var1 does not have a value." ; fi

Var1 does not have a value.

the general rule for using the $ character to specify a variable is that it should be used when

accessing – reading – the value of the variable. it should not be used when setting the value or

when using logical operators.

You should experiment with all of these logical comparison operators, especially

the ones not covered explicitly in any of these experiments. However, it is not necessary

to memorize all of them along with all of their options and forms. I always find it most

Chapter 9 Command-Line programming

241

beneficial to explore specific operators – and Linux commands in general – while

working on a project that requires them. I learn and retain more that way. Over time I

have also learned which ones I use frequently and which I almost never use. I see little

point in memorizing information that I may never use.

 Grouping program statements
Sometimes, to get the results you want, it is necessary to group program statements together.

For example, I sometimes want to know how much time running a program takes to run on

one host so I know what to expect on the rest of the hosts on which I need to run the same

program. The time utility shows me the amount of real time, user time, and system time.

Real time is obvious; it is the total amount of clock time used by a program. User

time is the amount of time spent by the system to execute the user code that was entered.

System (sys) is the amount of time spent running system code and libraries.

EXPERIMENT 9-11

Let’s look first at the time utility to see how that works. it can also illustrate a bit about the

time delays introduced by input/output (i/o). do this part as the student user.

[student@studentvm1 ~]$ time cat dmesg.txt

<snip>

[40368.982838] IPv6: ADDRCONF(NETDEV_UP): enp0s3: link is not ready

[40371.049241] e1000: enp0s3 NIC Link is Up 1000 Mbps Full Duplex, Flow

Control: RX

[40371.049584] IPv6: ADDRCONF(NETDEV_CHANGE): enp0s3: link becomes ready

real 0m0.026s

user 0m0.001s

sys 0m0.002s

the last three lines show the results from the time utility. the result can be interpreted that a

total of 0.003 seconds was used in executing code. the rest of the time, 0.023 seconds, was

spent waiting for i/o to occur.

if you run this program several times, the amount of real time usually will be significantly

reduced due to caching the results of the disk read in memory where it can be accessed

faster. i ended up with something like this.

Chapter 9 Command-Line programming

242

real 0m0.007s

user 0m0.001s

sys 0m0.001s

however, if i then run this little program and redirect the output to the /dev/null, i get the

following results, and you should see something quite similar.

[student@studentvm1 ~]$ time cat dmesg.txt > /dev/null

real 0m0.002s

user 0m0.001s

sys 0m0.000s

So we can see that sending data to the display screen (i/o activity) takes a relatively large

amount of real time. When we send the data to /dev/null instead, the whole thing takes much

less time.

now let’s move on to the real purpose of this experiment. Suppose that we want to run

multiple program statements and measure the total time that it takes to do so. that might look

like Figure 9-6 in which i want to know how much time is used by the pair of commands i

normally use to destroy the content of a storage drive and then test it for errors.

[root@david ~]# time (shred -n 3 -v /dev/sdk ; dd if=/dev/sdk of=/dev/null)

shred: /dev/sdk: pass 1/3 (random)...

shred: /dev/sdk: pass 1/3 (random)...147MiB/466GiB 0%

shred: /dev/sdk: pass 1/3 (random)...322MiB/466GiB 0%

<snip>

7814037167+0 records in
7814037167+0 records out
4000787029504 bytes (4.0 TB, 3.6 TiB) copied, 39041.5 s, 102 MB/s
real 1986m28.783s
user 85m49.873s
sys 127m49.951s

Figure 9-6. Grouping the shred and dd commands so that the time command
measures elapsed time for both commands

Chapter 9 Command-Line programming

243

if you have been performing all of the experiments in this course, your Vm should have some

virtual storage devices we can use for this. perform the rest of this experiment as the root user.

the lsblk command should show that /dev/sdd is 2gB in size and has one partition, /dev/

sdd1, that is configured as a swap partition. We can also see this with these two commands.

if you don’t see two swap partitions, you may have turned off the one we created in Chapter 5

of this volume. if you did, turn all swap space on, then redo this command.

[root@studentvm1 home]# cat /proc/swaps

Filename Type Size Used Priority

/dev/dm-1 partition 6291452 0 6

/dev/sdd1 partition 2096124 0 3

[root@studentvm1 home]# swapon -s

Filename Type Size Used Priority

/dev/dm-1 partition 6291452 0 6

/dev/sdd1 partition 2096124 0 3

Where do you think that the swapon -s (-s for summary) command obtains its information?

Let’s turn off /dev/sdd1 as swap and verify that it is off.

[root@studentvm1 home]# swapoff /dev/sdd1 ; swapon -s

Filename Type Size Used Priority

/dev/dm-1 partition 6291452 0 6

and comment out the following line as shown in /etc/fstab.

/dev/sdd1 swap swap pri=3,defaults 0 0

now the Vm won’t try to start /dev/sdd1 as swap space when rebooting.

Let’s shred the entire storage device, not just the partition. By doing it this way, we also shred

the boot record, partition table, and the entire data area of the device.

[root@studentvm1 home]# time shred -vn 3 /dev/sdd ; dd if=/dev/sdd of=/dev/null

shred: /dev/sdd: pass 1/3 (random)...

shred: /dev/sdd: pass 1/3 (random)...564MiB/2.0GiB 27%

shred: /dev/sdd: pass 1/3 (random)...1.0GiB/2.0GiB 50%

<snip>

shred: /dev/sdd: pass 3/3 (random)...1.6GiB/2.0GiB 84%

shred: /dev/sdd: pass 3/3 (random)...2.0GiB/2.0GiB 100%

Chapter 9 Command-Line programming

244

real 0m56.186s

user 0m0.831s

sys 0m3.722s

4194304+0 records in

4194304+0 records out

 2147483648 bytes (2.1 GB, 2.0 GiB) copied, 13.3271 s, 161 MB/s

notice where the data from the time command appears – between the output from the shred

and dd commands. So the time shown is only for the shred command. What result would we

get using the following command?

shred -vn 3 /dev/sdd ; time dd if=/dev/sdd of=/dev/null

We know that won’t give us the time for the entire operation. try it like this, which gives us the

total time for both program statements that are enclosed in the parentheses.

[root@studentvm1 home]# time (shred -vn 3 /dev/sdd ; dd if=/dev/sdd of=/dev/null)

shred: /dev/sdd: pass 1/3 (random)...

shred: /dev/sdd: pass 1/3 (random)...571MiB/2.0GiB 27%

<snip>

shred: /dev/sdd: pass 3/3 (random)...1.6GiB/2.0GiB 81%

shred: /dev/sdd: pass 3/3 (random)...2.0GiB/2.0GiB 100%

4194304+0 records in

4194304+0 records out

2147483648 bytes (2.1 GB, 2.0 GiB) copied, 13.1474 s, 163 MB/s

real 1m6.207s

user 0m1.149s

sys 0m9.872s

 Expansions
Bash supports a number of types of expansions and substitutions which can be quite

useful. According to the Bash man page, Bash has seven (7) forms of expansions. We will

look at tilde (~) expansion, arithmetic expansion, and pathname expansion.

Chapter 9 Command-Line programming

245

 Brace expansion
Brace expansion is a method to use for generating arbitrary strings. We have already

discussed brace expansion in Chapter 15 of Volume 1 so there is no need to explore that

any further here.

 Tilde expansion
Arguably the most common expansion we run into is the tilde (~) expansion. When

we use this in a command like cd ~/Documents, the Bash shell actually expands that

shortcut to the full home directory of the user.

EXPERIMENT 9-12

as the student user, use these Bash programs to observe the effects of the tilde expansion.

[student@studentvm1 ~]$ echo ~

/home/student

[student@studentvm1 ~]$ echo ~/Documents

/home/student/Documents

[student@studentvm1 ~]$ Var1=~/Documents ; echo $Var1 ; cd $Var1

/home/student/Documents

[student@studentvm1 Documents]$

 Pathname expansion
Pathname expansion is fancy term for expansion of file globbing patterns using the

characters ? and ∗ into the full names of directories which match the pattern. As we

discussed in Chapter 15 of Volume 1, globbing means special pattern characters that

allow us significant flexibility in matching file names, directories, and other strings when

performing various actions. These special pattern characters allow matching single,

multiple, or specific characters in a string:

?: Matches only one of any character in the specified location

within the string

∗: Zero or more of any character in the specified location within

the string

Chapter 9 Command-Line programming

246

In this case we apply this expansion to matching directory names.

EXPERIMENT 9-13

as the student user, let’s see how this works. ensure that your home directory, ~, is the pWd

and start with a plain listing.

[student@studentvm1 ~]$ ls

chapter7 dmesg1.txt Documents newfile.txt testdir Videos

chapter9 dmesg2.txt Downloads Pictures testdir1

cpuHog dmesg3.txt hello.txt Public testdir6

Desktop dmesg4.txt Music random.txt testdir7

diskusage.txt dmesg.txt mypipe Templates umask.test

[student@studentvm1 ~]$

now list the directories that start with “do”, ~/documents, and ~/downloads.

[student@studentvm1 ~]$ ls Do∗
Documents:

Directory01 file07 file15 test02 test10 test20 testfile13 TextFiles

Directory02 file08 file16 test03 test11 testfile01 testfile14

file01 file09 file17 test04 test12 testfile04 testfile15

file02 file10 file18 test05 test13 testfile05 testfile16

file03 file11 file19 test06 test14 testfile09 testfile17

file04 file12 file20 test07 test15 testfile10 testfile18

file05 file13 Student1.txt test08 test16 testfile11 testfile19

file06 file14 test01 test09 test18 testfile12 testfile20

Downloads:

[student@studentvm1 ~]$

Well that did not do what we want. it listed the contents of the directories that begin with do.

to list only the directories and not their contents, we can use the -d option.

[student@studentvm1 ~]$ ls -d Do∗
Documents Downloads

[student@studentvm1 ~]$

Chapter 9 Command-Line programming

247

So what happens here – in both cases – is that the Bash shell expands the do* pattern into

the names of the two directories that match the pattern. But what if there are also files that

match the pattern, which there currently are not.

[student@studentvm1 ~]$ touch Downtown ; ls -d Do∗
Documents Downloads Downtown

[student@studentvm1 ~]$

that shows the file too. So any files that match the pattern are also expanded to their full

names.

 Command substitution
Command substitution is a form of expansion. Command substitution is a tool that

allows the STDOUT data stream of one command to be used as the argument of another

command, for example, as a list of items to be processed in a loop. The Bash man page

says, “Command substitution allows the output of a command to replace the command

name.” I find that to be accurate, if a bit obtuse.

There are two forms of this substitution, `command` and $(command). In the older

form using back tics (`), a backslash (\) used in the command retains its literal meaning.

However, when used in the new parenthetical form, the backslash takes on its meaning

as a special character. Note also that the parenthetical form uses only single parentheses

to open and close the command statement.

I frequently use this capability in command-line programs and scripts where the

results of one command can be used as an argument for another command.

EXPERIMENT 9-14

as the student user, let’s start with a very simple example using both forms of this expansion.

ensure that ~ is the pWd.

[student@studentvm1 testdir7]$ echo "Todays date is `date`"

Todays date is Sun Apr 7 14:42:46 EDT 2019

[student@studentvm1 testdir7]$ echo "Todays date is $(date)"

Todays date is Sun Apr 7 14:42:59 EDT 2019

[student@studentvm1 testdir7]$

Chapter 9 Command-Line programming

248

We have seen the seq utility previously. it is used to generate a sequence of numbers.

[student@studentvm1 ~]$ seq 5

1

2

3

4

5

[student@studentvm1 ~]$ echo `seq 5`

1 2 3 4 5

[student@studentvm1 testdir7]$

notice that by using command substitution we lose the newlines at the end of each number

in the sequence. We have already used this when creating new files for testing in previous

experiments. Let’s look at it again. make ~/chapter9 the pWd and we will create some new

files in that directory. the -w option to the seq utility adds leading zeros to the numbers

generated to that they are all the same width, that is, number of digits regardless of the value.

this makes it easier to sort them in numeric sequence. We have done this before, but this time

let’s focus on the function of the command substitution.

[student@studentvm1 chapter9]$ for I in $(seq -w 5000) ; do touch file-$I ;

done

in this usage, the statement seq -w 5000 generates a list of numbers from 1 to 5000. By

using command substitution as part of the for statement, the list of numbers is used by the

for statement to generate the numerical part of the file names.

List the files in the directory to ensure that they were properly created.

[student@studentvm1 chapter9]$ ls | column | less

We will explore the use of the for statement just a little further on in this chapter.

 Arithmetic expansion
Bash does do integer math but it is rather cumbersome to do so, as you will soon see.

The syntax for arithmetic expansion is $((arithmetic-expression)) using double

parentheses to open and close the expression.

Chapter 9 Command-Line programming

249

Arithmetic expansion works like command substitution in a shell program or script –

the value calculated from the expression replaces the expression for further evaluation

by the shell.

EXPERIMENT 9-15

once again we will start with something simple.

[student@studentvm1 chapter9]$ echo $((1+1))

2

[student@studentvm1 chapter9]$ Var1=5 ; Var2=7 ; Var3=$((Var1∗Var2)) ; echo
"Var 3 = $Var3"

Var 3 = 35

the following division results in zero because the result would be a decimal value of less than

one.

[student@studentvm1 chapter9]$ Var1=5 ; Var2=7 ; Var3=$((Var1/Var2)) ; echo

"Var 3 = $Var3"

Var 3 = 0

here is a simple calculation that i do in a script or CLi program that tells me how much total

virtual memory i have in a Linux host. the free command does not provide that data.

[student@studentvm1 chapter9]$ RAM=`free | grep ^Mem | awk '{print $2}'` ;

Swap=`free | grep ^Swap | awk '{print $2}'` ; echo "RAM = $RAM and Swap =

$Swap" ; echo "Total Virtual memory is $((RAM+Swap))" ;

RAM = 4037080 and Swap = 6291452

Total Virtual memory is 10328532

note that i used the ` character to delimit the sections of code that were used for command

substitution.

i use Bash arithmetic expansion mostly for checking system resource amounts in a script and

then choosing a program execution path based on the result.

Chapter 9 Command-Line programming

250

 for loops
Every programming language I have ever used has some version of the for command.

The Bash implementation of this structure is, in my opinion, a bit more flexible than

most because it can handle non-numeric values while the standard C language for loop,

for example, can only deal with numeric values.

The basic structure of the Bash version of the for command is simple – for Var in

list1 ; do list2 ; done. This translates to, “For each value in list1, set the $Var to that

value and then perform the program statements in list2 using that value; when all of the

values in list1 have been used, we are done, so exit the loop.” The values in list1 can be

a simple explicit string of values or it can be the result of a command substitution as we

have seen in Experiment 9-14 and many others throughout this course.

As you can see from previous experiments in this course, I use this construct

frequently.

EXPERIMENT 9-16

as the student user, ensure that ~/chapter9 is still the pWd. Let’s clean up and then look at

a trivial example of the for loop starting with an explicit list of values. this list is a mix of

alphanumeric values but do not forget that all variables are strings and can be treated as such.

[student@studentvm1 chapter9]$ rm -rf ∗
[student@studentvm1 chapter9]$ for I in a b c d 1 2 3 4 ; do echo $I ; done

a

b

c

d

1

2

3

4

a bit more useful version along with a more meaningful variable name.

and even more useful…

Chapter 9 Command-Line programming

251

[student@studentvm1 chapter9]$ for Dept in "Human Resources" Sales Finance

"Information Technology" Engineering Administration Research ; do echo

"Department $Dept" ; done

Department Human Resources

Department Sales

Department Finance

Department Information Technology

Department Engineering

Department Administration

Department Research

Let’s make some directories.

[student@studentvm1 chapter9]$ for Dept in "Human Resources" Sales Finance

"Information Technology" Engineering Administration Research ; do echo

"Working on Department $Dept" ; mkdir "$Dept" ; done

Working on Department Human Resources

Working on Department Sales

Working on Department Finance

Working on Department Information Technology

Working on Department Engineering

Working on Department Administration

Working on Department Research

[student@studentvm1 chapter9]$ ll

total 28

drwxrwxr-x 2 student student 4096 Apr 8 15:45 Administration

drwxrwxr-x 2 student student 4096 Apr 8 15:45 Engineering

drwxrwxr-x 2 student student 4096 Apr 8 15:45 Finance

drwxrwxr-x 2 student student 4096 Apr 8 15:45 'Human Resources'

drwxrwxr-x 2 student student 4096 Apr 8 15:45 'Information Technology'

drwxrwxr-x 2 student student 4096 Apr 8 15:45 Research

drwxrwxr-x 2 student student 4096 Apr 8 15:45 Sales

note that it is necessary to enclose $dept in quotes in the mkdir statement, or the two-

part department names such as “information technology” will be treated as two separate

departments. that highlights a best practice that i like to follow and that is all file and directory

names should be a single word. although most modern operating systems can deal with

spaces in those names, it takes extra work for Sysadmins to ensure that those special cases

Chapter 9 Command-Line programming

252

are considered in scripts and CLi programs. But they almost certainly should be considered,

even if they’re annoying, because you never know what files you’re actually going to have.

So delete everything in ~/chapter9 – again – and let’s do this one more time.

[student@studentvm1 chapter9]$ rm -rf ∗ ; ll
total 0

[student@studentvm1 chapter9]$ for Dept in Human-Resources Sales Finance

Information-Technology Engineering Administration Research ; do echo "Working

on Department $Dept" ; mkdir "$Dept" ; done

Working on Department Human-Resources

Working on Department Sales

Working on Department Finance

Working on Department Information-Technology

Working on Department Engineering

Working on Department Administration

Working on Department Research

[student@studentvm1 chapter9]$ ll

total 28

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Administration

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Engineering

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Finance

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Human-Resources

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Information-Technology

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Research

drwxrwxr-x 2 student student 4096 Apr 8 15:52 Sales

Suppose someone asks for a list of all RPMs on a particular Linux computer and

a short description of each. This happened to me while I worked at the State of North

Carolina. Since Open Source was not “approved” for use by state agencies at that time

and I only used Linux on my desktop computer, the pointy haired bosses (PHBs) needed

a list of each piece of software that was installed on my computer so that they could

“approve” an exception.

How would you approach that? Here is one way, starting with the knowledge that the

rpm –qi command provides a complete description of an RPM including the two items

we want, the name and a brief summary.

Chapter 9 Command-Line programming

253

EXPERIMENT 9-17

We will build up to the final result one step at a time. this experiment should be performed as

the student user. First we list all rpms.

[student@studentvm1 chapter9]$ rpm -qa

perl-HTTP-Message-6.18-3.fc29.noarch

perl-IO-1.39-427.fc29.x86_64

perl-Math-Complex-1.59-429.fc29.noarch

lua-5.3.5-2.fc29.x86_64

java-11-openjdk-headless-11.0.ea.28-2.fc29.x86_64

util-linux-2.32.1-1.fc29.x86_64

libreport-fedora-2.9.7-1.fc29.x86_64

rpcbind-1.2.5-0.fc29.x86_64

libsss_sudo-2.0.0-5.fc29.x86_64

libfontenc-1.1.3-9.fc29.x86_64

<snip>

adding the sort and uniq commands sorts the list and then prints only the unique ones.

there is a slight possibility that some rpms with identical names are installed.

[student@studentvm1 chapter9]$ rpm -qa | sort | uniq

a2ps-4.14-39.fc29.x86_64

aajohan-comfortaa-fonts-3.001-3.fc29.noarch

abattis-cantarell-fonts-0.111-1.fc29.noarch

abiword-3.0.2-13.fc29.x86_64

abrt-2.11.0-1.fc29.x86_64

abrt-addon-ccpp-2.11.0-1.fc29.x86_64

abrt-addon-coredump-helper-2.11.0-1.fc29.x86_64

abrt-addon-kerneloops-2.11.0-1.fc29.x86_64

abrt-addon-pstoreoops-2.11.0-1.fc29.x86_64

abrt-addon-vmcore-2.11.0-1.fc29.x86_64

<snip>

Since this gives the correct list of rpms you want to look at, we can use this as the input list to

a loop that will print all of the details of each rpm.

[student@studentvm1 chapter9]$ for RPM in `rpm -qa | sort | uniq` ; do rpm

-qi $RPM ; done

Chapter 9 Command-Line programming

254

this code produces way more data than was desired. note that our loop is actually complete.

the next step is to extract only the information that was requested. now we add an egrep

command which is used to select ^name or ^Summary. thus, any line with name or

Summary at the beginning of the line (the carat ^ specifies the beginning of the line) is

displayed.

[student@studentvm1 chapter9]$ for RPM in `rpm -qa | sort | uniq` ; do rpm

-qi $RPM ; done | egrep -i "^Name|^Summary"

Name : a2ps

Summary : Converts text and other types of files to PostScript

Name : aajohan-comfortaa-fonts

Summary : Modern style true type font

Name : abattis-cantarell-fonts

Summary : Humanist sans serif font

Name : abiword

Summary : Word processing program

Name : abrt

Summary : Automatic bug detection and reporting tool

<snip>

You can try grep instead of egrep in the preceding command but it does not work. You could

also pipe the output of this command through the less filter so you can explore these results.

the final command sequence looks like this.

[student@studentvm1 chapter9]$ for RPM in `rpm -qa | sort | uniq` ; do rpm

-qi $RPM ; done | egrep -i "^Name|^Summary" > RPM-summary.txt

it uses pipelines, redirection, and a for loop – all on a single line. it redirects the output of our

little CLi program to a file that can be used in an email or as input for other purposes.

this process of building up the program one step at a time allows you to see the results of

each step and to ensure that it is working as you expect and provides the desired results.

Note that the PHBs received a list of over 1900 separate RPM packages. I seriously

doubt that anyone actually read that list. But I gave them exactly what they asked for and

I never heard another word from them about this.

Chapter 9 Command-Line programming

255

 Other loops
There are two more types of loop structures available in Bash: the while and until

structures, which are very similar to each other in both syntax and function. The basic

syntax of these loop structures is simple.

while [expression] ; do list ; done

and

until [expression] ; do list ; done

The logic of these reads as follows: “While the expression evaluates as true, execute

the list of program statements. When the expression evaluates as false, exit from the

loop.” And “Until the expression evaluates as true, execute the list of program statements.

When the expression evaluates as true, exit from the loop.”

 while
The while loop is used to execute a series of program statements, while (so long as) the

logical expression evaluates to true. We used this as part of the cpuHog programs we

wrote in Chapter 4. Let’s look at the while loop again in more detail.

EXPERIMENT 9-18

as the student user, make ~ the pWd.

the simplest form of the while loop is one that runs forever. in the following form, we use the

true statement to always generate a “true” return code. We could use a simple “1” as we did

in the original cpuhog and that would work just the same, but this illustrates the use of the

true statement.

Let’s pipe the results through the head statement to limit output to the first ten lines of the

data stream.

[student@studentvm1 ~]$

0

1

2

3

Chapter 9 Command-Line programming

256

4

5

<snip>

this CLi program should make more sense now that we have studied its parts. First we set

$X to zero just in case it had some leftover value from a previous program or CLi command.

then, since the logical expression [true] always evaluates to 1, which is true, the list of

program instructions between do and done is executed forever – or until we press Ctrl-C or

otherwise send a signal 2 to the program. those instructions are an arithmetic expansion that

prints the current value of $X and then increments it by one.

one of the tenets of The Linux Philosophy for SysAdmins is to strive for elegance and that

one way to achieve elegance is simplicity. We can simplify this program by using the variable

increment operator, ++. in this first instance, the current value of the variable is printed

and then the variable is incremented. this is indicated by placing the ++ operator after the

variable.

[student@studentvm1 ~]$ X=0 ; while [true] ; do echo $((X++)) ; done | head

0

1

2

3

4

5

6

now delete | head from the end of the program and run it again.

in this next version, the variable is incremented before its value is printed. this is specified by

placing the ++ operator before the variable. Can you see the difference?

[student@studentvm1 ~]$ X=0 ; while [true] ; do echo $((++X)) ; done | head

1

2

3

4

5

6

We have reduced two statements into a single one that both print the value of the variable and

increment that value. there is also a decrement operator, --.

Chapter 9 Command-Line programming

257

We need a method for stopping the loop at a specific number. to accomplish that, we can

change the true expression to an actual numeric evaluation expression. So let’s have our

program loop to 5 and stop. in Figure 9-4 you can see that -le is the logical numeric operator

for “less than or equal to.” this means that so long as $X is less than or equal to 5, the loop

will continue. When $X increments to 6, the loop terminates.

[student@studentvm1 ~]$ X=0 ; while [$X -le 5] ; do echo $((X++)) ; done

0

1

2

3

4

5

[student@studentvm1 ~]$

 until
The until command is very much like the while command. The difference is that it will

continue to loop until the logical expression evaluates to “true.”

EXPERIMENT 9-19

as the student user, make ~ the pWd. as in experiment 9-18, let’s look at the simplest form of

this construct.

[student@studentvm1 ~]$ X=0 ; until false ; do echo $((X++)) ; done | head

0

1

2

3

4

5

6

7

8

9

[student@studentvm1 ~]$

Chapter 9 Command-Line programming

258

now we use a logical comparison to count to a specific value.

[student@studentvm1 ~]$ X=0 ; until [$X -eq 5] ; do echo $((X++)) ; done

0

1

2

3

4

[student@studentvm1 ~]$ X=0 ; until [$X -eq 5] ; do echo $((++X)) ; done

1

2

3

4

5

[student@studentvm1 ~]$

 Chapter summary
We have explored the use of many powerful tools that we can use to build command-

line programs and Bash shell scripts. Despite the interesting things we have done in this

chapter, Bash command-line programs and shell scripts can do so much more. We have

barely scratched the surface.

All we have done here is to inform you of the many possibilities of Bash command-

line programming. The rest is up to you. I have discovered over time that the best way to

learn Bash programming is to actually do it. Find a simple project that requires multiple

Bash commands and make a CLI program out of them. SysAdmins do many tasks that

lend themselves to CLI programming this way so I am sure that you will easily find tasks

to automate.

Despite being familiar with other shell languages and Perl, many years ago, I made

the decision to use Bash for all of my SysAdmin automation tasks. I have discovered

that – perhaps with a bit of searching – I have been able to accomplish everything I need.

Chapter 9 Command-Line programming

259

 Exercises
Perform the following exercises to complete this chapter:

 1. Write a short command-line program to count from 0 to 5000 by

increments of 5, and print the resulting data in two columns.

 2. What happens when quotes are not used when assigning a value

to a variable?

 3. How do the variables $PATH and $Path differ?

 4. Devise and run an experiment to determine whether the -r file

operator returns true if any of User, Group, or Other, ownership for

a given file has the read bit set, as opposed to specifically the read

bit for User.

 5. Create two versions of an “if” compound command that tests

if two variables are equal and print “The variables are equal” if

they are and “The variables are not equal” if they are not. One

version should use the == operator and the other should use the !=

operator. Use test cases for both versions where the variables are

equal and where they are not.

 6. Is the CLI program Var1="7" ; Var2="9" ; echo "Result =

$Var1∗$Var2" valid? What about Var1="7" ; Var2="9" ; echo

"Result = $Var1∗$Var2"? Why?

 7. What happens when you use a decimal such as 5.5 in an

arithmetic expansion?

 8. Which of these works and which does not? Why?

RAM=`free | grep ^Mem | awk '{print $2}'` ; echo $RAM

RAM=$((free | grep ^Mem | awk '{print $2}')) ; echo $RAM

 9. Create a CLI program to count down from 10 to 0 and print the

resulting numbers to the screen.

Chapter 9 Command-Line programming

261
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_10

CHAPTER 10

Automation with
Bash Scripts
 Objectives
In this chapter you will learn

• The advantages of automation with Bash shell scripts

• Why using shell scripts is a better choice for SysAdmins than

compiled languages like C or C++

• To create a set of requirements for new scripts

• To create simple Bash shell scripts from CLI programs

• To use the file ownership and permissions to impose a layer of

security on who can run the script

• To further enhance security through the use of the UID of the user

running the script

• To use logical comparison tools to provide execution flow control for

both command-line programs and scripts

• To use command-line options to control various script functionality

• To create Bash functions that can be called from one or more

locations within a script

• Why and how to license your code as open source

• To create a simple test plan

• To test early and test often

262

 Introduction
My question to you is “What is the function of computers?” In my opinion, the right

answer is “to automate mundane tasks in order to allow us humans to concentrate on

the tasks that the computers cannot – yet – do.” For SysAdmins, those of us who run and

manage the computers most closely, we have direct access to the tools that can help us

work more efficiently. We should use those tools to maximum benefit.

In this chapter we explore using automation in the form of Bash shell scripts to make

our own lives as SysAdmins easier. This chapter is only partly about creating the scripts

and making them work. It is also about some of the philosophy of automation and shell

scripting.

 Why I use shell scripts
In Chapter 9 of my book, The Linux Philosophy for SysAdmins,1 I state:

“A SysAdmin is most productive when thinking – thinking about how to solve existing

problems and about how to avoid future problems; thinking about how to monitor Linux

computers in order to find clues that anticipate and foreshadow those future problems;

thinking about how to make her job more efficient; thinking about how to automate all

of those tasks that need to be performed whether every day or once a year.”

“SysAdmins are next most productive when creating the shell programs that

automate the solutions that they have conceived while appearing to be unproductive.

The more automation we have in place the more time we have available to fix real

problems when they occur and to contemplate how to automate even more than we

already have.”

Have you ever performed a long and complex task at the command line thinking

"Glad that's done – I never have to worry about it again"? I have – very frequently. I

ultimately figured out that almost everything that I ever need to do on a computer,

whether mine, one that belongs to an employer, or a consulting customer, will need to be

done again sometime in the future.

Of course I always think that I will remember how I did the task in question. But the

next time I need to do it is far enough out into the future that I sometimes even forget

that I have ever done it at all, let alone how to do it. For some tasks I started writing down

1 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, 165

Chapter 10 automation with Bash sCripts

263

the steps required on a bit of paper. I thought, "How stupid of me!" So I then transferred

those scribbles to a simple notepad-type application on my computer. Suddenly one day

I thought again, "How stupid of me!" If I am going to store this data on my computer, I

might as well create a shell script and store it in a standard location, /usr/local/bin or

~/bin, so that I can just type the name of the shell program and it does all of the tasks I

used to do manually.

For me automation also means that I don't have to remember or recreate the details

of how I performed that task in order to do it again. It takes time to remember how to

do things and time to type in all of the commands. This can become a significant time

sink for tasks that require typing large numbers of long commands. Automating tasks by

creating shell scripts reduces the typing necessary to perform my routine tasks.

 Shell scripts
Shell scripts can also be an important aid to newer SysAdmins to enable them to keep

things working while the senior SysAdmin – or whoever knows more or has more

experience than those who are left, which is usually us – is out on vacation or ill. Figuring

out how to do things takes time, even if it’s a faster process for the more experienced.

Because shell programs are inherently open to view and change, they can be an

important tool for less experienced SysAdmins to learn the details of how to perform

these tasks when they need to be responsible for them.

Writing shell programs – also known as scripts – provides the best strategy for

leveraging my time. Once having written a shell program, it can be rerun as many times

as needed. I can update my shell scripts as needed to compensate for changes from

one release of Linux to the next. Other factors that might require making these changes

are the installation of new hardware and software, changes in what I want or need to

accomplish with the script, adding new functions, removing functions that are no longer

needed, and fixing the not-so-rare bugs in my scripts. These kinds of changes are just

part of the maintenance cycle for any type of code.

Every task performed via the keyboard in a terminal session by entering and

executing shell commands can and should be automated. SysAdmins should automate

everything we are asked to do or that we decide on our own needs to be done. Many

times I have found that doing the automation up front saves time the first time.

One bash script can contain anywhere from a few commands to many thousands. In

fact, I have written bash scripts that have only one or two commands in them. Another

script I have written contains over 2700 lines, more than half of which are comments.

Chapter 10 automation with Bash sCripts

264

 Scripts vs. compiled programs
When writing programs to automate – well, everything – always use shell scripts.

Because shell scripts are stored in ASCII text format, they can be easily viewed and

modified by humans just as easily as they can by computers. You can examine a shell

program and see exactly what it does and whether there are any obvious errors in the

syntax or logic. This is a powerful example of what it means to be open.

I know some developers tend to consider shell scripts something less than true

programming. This marginalization of shell scripts and those who write them seems to

be predicated on the idea that the only true programming language is one that must be

compiled from source code to produce executable code. I can tell you from experience

this is categorically untrue.

I have used many languages including BASIC, C, C++, Pascal, Perl, Tcl/Expect, REXX,

and some of its variations including Object REXX; many shell languages including

Korn, csh, and Bash; and even some assembly language. Every computer language ever

devised has had one purpose – to allow humans to tell computers what to do. When you

write a program, regardless of the language you choose, you are giving the computer

instructions to perform specific tasks in a specific sequence.

Scripts can be written and tested far more quickly than compiled languages.

Programs usually must be written quickly to meet time constraints imposed by

circumstances or the PHB. Most of the scripts we write are to fix a problem, to clean up

the aftermath of a problem, or to deliver a program that must be operational long before

a compiled program could be written and tested.

Writing a program quickly requires shell programming because it allows quick

response to the needs of the customer whether that be ourselves or someone else. If

there are problems with the logic or bugs in the code, they can be corrected and retested

almost immediately. If the original set of requirements was flawed or incomplete, shell

scripts can be altered very quickly to meet the new requirements. So, in general, we can

say that the need for speed of development in the SysAdmin’s job overrides the need

to make the program run as fast as possible or to use as little as possible in the way of

system resources like RAM.

Most things we do as SysAdmins take longer to figure out how to do than they do to

execute. Thus, it might seem counter-productive to create shell scripts for everything we

do. Writing the scripts and making them into tools that produce reproducible results and

which can be used as many times as necessary takes some time. The time savings come

every time we can run the script without having to figure out again how to perform the task.

Chapter 10 automation with Bash sCripts

265

You may encounter a situation when the execution of a script takes an excessive

amount of time or when the problem is so general that it will be done thousands or even

millions of times, in which case compiled languages make more sense. But those are

extremely rare cases.

 Updates
Most of the time my scripts start with short CLI programs that I use multiple times daily

and that are morphing into more complex forms. So let’s take a CLI program we have

already used and turn it into a script.

One task I do frequently is to install updates on all of my computers. In fact, I have

been doing updates this morning. This is a task that requires only a couple decisions and

can be easily automated. “But that is so simple, why automate a task that requires only a

command or two?” It turns out that updates are not so simple. Let’s think about this for a

minute.

 About updates
There are two important things to understand about updates as we enter into this

programming task. First, installing updates does not preclude using your computer at

the same time. With Linux, we can install updates while also performing the other tasks

necessary to get our regular work done.

Second, there are times when rebooting after installing updates is a good idea. Linux

does not automatically reboot for us – it leaves us to decide when to perform that reboot.

Although I usually reboot right after the updates are completed, it is not necessary to do

so. But if certain packages are updated, it is a very good idea to reboot soon. The point is

that Linux lets us make these choices.

 Create a list of requirements
So what are the requirements for this script? You should always create a set of

requirements for every project. I always create a set of requirements for my scripts, even

if it is a simple list with only two or three items on it.

Chapter 10 automation with Bash sCripts

266

First I must determine whether any updates are available. Then I need to determine

whether a package that requires a reboot is being updated, such as the kernel, glibc,

or systemd. At this point I can install the update. Before I do a reboot, assuming one is

required, I run the mandb utility to update the man pages; if this is not done, new and

replacement man pages won’t be accessible and old ones that have been removed will

appear to be there even though they are not. Then, if the kernel has been updated, I

rebuild the grub boot loader configuration file so that it includes recovery options for

each installed kernel. Finally, if a reboot is needed, I do that.

That is a non-trivial set of individual tasks and commands that require some

decisions. Doing those tasks manually requires paying attention and intervention to

enter new commands when the previous ones complete. Because of the need to babysit

while waiting to enter the next command, this would take a great deal of my time to

monitor each computer as it went through the procedures. There was room for error as I

was reminded occasionally when I would enter the wrong command on a host.

Using the statement of requirements I created earlier, because that is what that

paragraph really is, it was easy to automate this to eliminate all of those issues. I wrote a

little script that I call doUpdates. It provides options like help, verbose mode, printing the

current version number, and an option to reboot only if the kernel, systemd, or glibc has

been updated.

Over half of the lines in this program are comments so I can remember how the

program works the next time I need to work on it to fix a bug or add a little more

function. I arbitrarily chose this as the program to illustrate creating scripts because

it offers many opportunities to expand and implement fun and useful features. It is

also illustrative of the process I went through as it grew and became more than a CLI

program.

As we work through the series of experiments in this chapter, we will start out very

simply. To begin, we will only do the check for updates and some items such as a help

facility. Because it may be a few days after doing an actual update that another is needed,

we will wait until near the end to actually perform the update. This is, in fact, how I

develop my scripts anyway – so that they start out harmless.

The program we will create together in this chapter will be a shorter and more

efficient version of the one I have created for myself.

Chapter 10 automation with Bash sCripts

267

 The CLI program
There are four steps required to actually do the updates in the CLI program. We first do

the update, update the man page database, rebuild the grub config files, and reboot the

host. Refer to Chapter 16 of Volume 1 to review grub configuration and why we need to

rebuild the grub configuration.

Let’s make some assumptions for our initial command-line program. We will assume

that the man database will always be rebuilt, that a reboot is always required – although

we won’t always do that in our testing – and that the grub configuration file needs to be

updated.

EXPERIMENT 10-1

as the root user, start with this little CLi program. remember that we are only checking for

updates and not yet doing them. this will leave something for the script to do when it is

complete. enter and run the following CLi program and observe the results.

[root@studentvm1 ~]# dnf check-update ; mandb ; grub2-mkconfig > /boot/grub2/

grub.cfg ; reboot

it gives us a list of the rpm packages that need to be updated, rebuilds the man database,

regenerates the grub configuration file, and then reboots the Vm.

 Convert the CLI program to a script
We now understand the basic steps required to do the job. That does not seem like a

lot, but if you have tens or hundreds of computers to update, it would amount to a lot of

typing. So let’s create a very minimal script to do these steps.

Chapter 10 automation with Bash sCripts

268

EXPERIMENT 10-2

as the root user, ensure that root’s home directory is the pwD. then create a new file named

doupdates and make it executable for root and the root group but with no permissions of any

kind for other users.

[root@studentvm1 ~]# cd ; touch doUpdates ; chmod 770 doUpdates ; ll

total 8

-rw-------. 1 root root 2118 Dec 22 11:07 anaconda-ks.cfg

-rwxrwx--- 1 root root 0 Apr 10 16:15 doUpdates

-rw-r--r--. 1 root root 2196 Dec 22 12:47 initial-setup-ks.cfg

[root@studentvm1 ~]#

use Vim to edit the new file and add the code shown in Figure 10-1 to the file.

we have commented the reboot command so that the program will not reboot every time it is

run. this will save time, and it serves as a reminder that we will eventually need to deal with

the code that determines whether a reboot is required.

without exiting Vim, open another root terminal session and run the program.

[root@studentvm1 ~]# ./doUpdates

in this initial version of our program, we have not started with the shebang (#!) which defines

which shell to use to run this program if Bash is not the default shell. so let’s add the shebang

that defines Bash as the first line of the script. this just ensures that the program is always

run in a Bash shell.

Figure 10-2 shows our script now. run this program again but the results should be exactly

the same.

dnf check-update
mandb
grub2-mkconfig > /boot/grub2/grub.cfg
reboot

Figure 10-1. The first version of our doUpdates script

Chapter 10 automation with Bash sCripts

269

 Add some logic
The first thing I added to my script was some basic logic that allowed me to skip around

certain tasks. For now the actual updates are not actually performed. We will also do the

same with rebooting. This will make further testing easier.

EXPERIMENT 10-3

First we need to define variables we shall call $Check and $doreboot and then add some logic

around the dnf and reboot commands. we will initially set these variables so that the we do

the check but not the actual updates and that the reboot is not performed. we should also start

adding some comments.

i have also added a message that will print if the reboot is skipped. this helps test the one

branch of the logic with some positive feedback. it will also be a nice verification that the logic

is working when in actual use.

after adding the new code so that it looks like Figure 10-3, test the program and fix any errors

that you might encounter.

#!/usr/bin/bash
#
dnf check-update
mandb
grub2-mkconfig > /boot/grub2/grub.cfg
reboot

Figure 10-2. Adding the shebang ensures that the script always runs in a Bash
shell

Chapter 10 automation with Bash sCripts

270

#!/usr/bin/bash
#

###
Initialize variables
###
Check=1
doReboot=0

###
Main body of the program
###
First we decide whether to do the updates or just check whether any are available

if [$Check == 1]
then

Check for updates
dnf check-update

fi

Update the man database
mandb

update the grub configuration
grub2-mkconfig > /boot/grub2/grub.cfg

Reboot if necessary
if [$doReboot == 1]
then

reboot
else

echo "Not rebooting."
fi

Figure 10-3. We have added some simple logic to control which tasks we want to
perform

For now these settings are built-in, but we will next look at ways to control program flow from

the command line. this also does not look at both factors that would initiate a reboot. it only

looks at the CLi option -r, but it is fine for now. it doesn’t process any command-line options at

this point; it only checks the variable.

Chapter 10 automation with Bash sCripts

271

 Limit to root
This program should be limited to usage by the root user. We can do this partially

through ownership and permission settings, but we should also add some code to check

for this. Remember that the root user ID (UID) is zero (0) and all other users have UIDs

greater than zero.

EXPERIMENT 10-4

add the code in Figure 10-4 to our program just below the variable initialization and before the

main body of the program. this code checks the uiD of the user account attempting to run the

program. it only allows the root user to continue and dumps everyone else out with an error.

now test the program as root to ensure that it still works for root, then make a copy of the

program in /tmp, and try to run it as the student user. You should first get a permissions error.

[student@studentvm1 tmp]$./doUpdates

-bash: ./doUpdates: Permission denied

as root, set the permissions for the copy in /tmp to 777 – which is never a good thing in

reality. then try to run it again as the student user.

[student@studentvm1 tmp]$./doUpdates

You must be root user to run this program

[student@studentvm1 tmp]$

this result is exactly what we want.

###
Check for root
###
if [`id -u` != 0]
then

echo "You must be root user to run this program"
exit

fi

Figure 10-4. Checking for root as the only authorized user

Chapter 10 automation with Bash sCripts

272

Of course a knowledgeable non-root user could modify the code if it is in /tmp with

permissions of 777, but every bit of security we can build into our scripts helps deter the

casual user from wreaking unexpected havoc.

 Add command-line options
We now have some logic in our program but no way to control it other than editing the

variable settings in the code itself. That is not very practical so we need a way to set

options at the command line. We also want to determine whether the kernel or glibc2 is

to be updated. It is always a good idea to reboot after one or both of those are updated.

Fortunately, Bash as a couple tools that we can use for this purpose. The getops

command gets options from the command line and, along with while and the case

structure, allows us to set variables or perform other tasks based on the options read

from the command line.

EXPERIMENT 10-5

First we need to add some new variables. the revised variables section of our code now looks

like Figure 10-5.

the original $doreboot variable will be set to true to cause a reboot if the user enters -r on

the command line. the $needsreboot variable will be set to true if either the kernel or glibc

is to be updated. the system will be rebooted only if both of these variables are true. the

$updatesavailable variable will be set to true if one or more updates are available from the

Fedora repositories.

2 The glibc package contains the general C libraries that are needed by almost every program that
runs as part of the Linux operating system and application programs.

Chapter 10 automation with Bash sCripts

273

now we can add the code that allows us to capture the command options that are input at the

CLi, evaluate them, and act accordingly. Figure 10-6 shows a very basic version of this. we will

add more to this as we proceed.

the getops command gets the list of options the user entered on the command line such as

doUpdates -c. it creates a list of options for the while command which loops until there

are no more options left in the list. the case structure evaluates each possible option and

executes a list of program statements for each valid option.

the two options we are adding now, -c and -r, are used to set variables in the case structure. if

any invalid option is entered at the command line, the last case in the case structure executes.

in this case the exit command exits from the program.

notice that each case ends with a double semicolon. the esac statement ends the case

structure, and the done statement closes out the while structure.

enter the code in Figure 10-6 just below our test for the root user.

###

Initialize variables

###

Check=1

doReboot=0

NeedsReboot=0

UpdatesAvailable=0

Figure 10-5. We added three new variables to enable better control of the
doUpdates program

Chapter 10 automation with Bash sCripts

274

Before we proceed any further, some testing is needed. Let’s first test for an invalid option. the

-x is not a valid option so we should get the error message and the program should exit.

[root@studentvm1 ~]# ./doUpdates -x

Error: Invalid option.

[root@studentvm1 ~]#

Because we don’t have real logic around the -r option, using it will cause your Vm to reboot

after doing the check for updates, updating the man pages, and generating the new grub

configuration file. at the moment, this is the expected result.

[root@studentvm1 ~]# ./doUpdates -r

we now have the ability to control program flow using options on the command line. we will

add more options and more logic around these existing options.

 Check for updates
We need to do a real check to see if updates are available and then determine whether a

reboot is needed.

##
Process the input options
##
Get the options
while getopts ":cr" option; do

case $option in
c) # Check option

Check=1;;
r) # Reboot option

doReboot=1;;
\?) # incorrect option

echo "Error: Invalid option."
exit;;

esac
done

Figure 10-6. Getting the command-line options

Chapter 10 automation with Bash sCripts

275

EXPERIMENT 10-6

we need to add some code and make some logic changes to check for any available updates.

add the new variable, updatesFile, to the initialization section as shown in Figure 10-7.

Delete the following comment line which is now obsolete.

First we decide whether to do the updates or just check whether any are

available

we will also move our logic for the -c option into the “else” branch of this new if structure. so

we can remove the code fragment in Figure 10-8 from our program.

add the code in Figure 10-9 immediately after the option processing code. it checks whether

updates are available at all while saving a file containing the list of updates that can be parsed

for specific packages that require a reboot. this new code will exit the program if no updates

are available.

###
Initialize variables
###
Check=1
doReboot=0
NeedsReboot=0
UpdatesAvailable=0
UpdatesFile="/tmp/updates.list"

Figure 10-7. Add the new variable $UpdatesFile

if [$Check == 1]

then

Check for updates

dnf check-update

fi

Figure 10-8. Remove this code from the program

Chapter 10 automation with Bash sCripts

276

notice that i have also added a temporary exit command so that we do not need to run any of

the code beyond this new section. this saves time by not running code that has not yet been

completed with all of the logic necessary. also note the use of the Bash environment variable,

$hostname, which always contains the name of the Linux host.

testing this new bit of code results in the following. we will not be able to test the “then”

branch of the new code until we have installed all of the current updates.

[root@studentvm1 ~]# ./doUpdates

Updates ARE available for host studentvm1.

[root@studentvm1 ~]#

 Is a reboot required?
Now that we know that updates are available, we can use the data in the file we created

to determine whether any of the packages we have specified as making it a good idea to

reboot are in the list. This is easily done.

However, even though a reboot might be a good thing to do, Linux is far more

flexible than other operating systems which force one or more reboots during each

update. We can put that Linux reboot off until it is more convenient, such as 02:00 AM or

##
Are updates available? Just quit with message if not.
RC from dnf check-update = 100 if available and 0 if none available.
One side effect is to create list of updates that can be searched for
items that trigger a reboot.
##
dnf check-update > $UpdatesFile
UpdatesAvailable=$?
if [$UpdatesAvailable == 0]
then

echo "Updates are NOT available for host $HOSTNAME at this time."
exit

else
echo "Updates ARE available for host $HOSTNAME."
if [$Check == 1]
then

exit
fi

fi

Temporary exit
exit

Figure 10-9. Testing to see if any updates are available and exit if not

Chapter 10 automation with Bash sCripts

277

over a weekend. To do that, we look at two variables, $NeedsReboot, which is

determined by looking for the trigger packages that are being updated, and $doReboot,

which is set from the command line with the -r option. The -r option is our way of

maintaining control over what happens after the update itself is complete.

EXPERIMENT 10-7

in this experiment we add a series of if statements to determine whether any of the packages

that typically need a reboot are being updated. add the code in Figure 10-10 below the code

we added in experiment 10-6 and just above the temporary exit code.

we also need to change the default entry on the -c (check) option from 1 to zero in the variable

initialization settings.

after adding the code in Figure 10-10 and changing the initial value of the $Check variable to

0, run some tests to verify that it is correct and working as expected.

[root@studentvm1 ~]# ./doUpdates -c

Updates ARE available for host studentvm1.

[root@studentvm1 ~]# ./doUpdates

Updates ARE available for host studentvm1.

Does the update include a new kernel
if grep ^kernel $UpdatesFile > /dev/null
then

NeedsReboot=1
echo "Kernel update for $HOSTNAME."

fi
Or is there a new glibc
if grep ^glibc $UpdatesFile > /dev/null
then

NeedsReboot=1
echo "glibc update for $HOSTNAME."

fi
Or is there a new systemd
if grep ^systemd $UpdatesFile > /dev/null
then

NeedsReboot=1
echo "systemd update for $HOSTNAME."

fi

Temporary exit
exit

Figure 10-10. Checking for updates to packages that indicate the need for a reboot

Chapter 10 automation with Bash sCripts

278

Kernel update for studentvm1.

glibc update for studentvm1.

systemd update for studentvm1.

[root@studentvm1 ~]#

Change the reboot logic at the bottom of the program to that in Figure 10-11. note that we

have made this fairly verbose, especially in the event of a failure. the “else” entry in the if

structure is there in case none of the other expected logical combinations are met.

now reboot after updates are installed only if the $needsreboot and $Doreboot variables are

set to “true,” that is, one (1).

we will test this code in later experiments after we remove the temporary exit.

Reboot if necessary
if [$NeedsReboot == 0]
then

echo
echo "##"
echo "A reboot is not required."
echo "##"

elif [$doReboot == 1] && [$NeedsReboot == 1]
then

reboot
elif [$doReboot == 0] && [$NeedsReboot == 1]
then

echo
echo "##"
echo "A reboot is needed."
echo "Be sure to reboot at the earliest opportunity."
echo "##"
echo

else
echo
echo "##"
echo "An error has occurred and I cannot determine whether"
echo "to reboot or not. Intervention is required."
echo "##"
echo

fi

Figure 10-11. Change the reboot logic code to this

Chapter 10 automation with Bash sCripts

279

 Adding a Help function
Shell functions are lists of Bash program statements that are stored in the shell

environment and which can be executed like any other command by typing its name

at the command line. Shell functions may also be known as procedures or subroutines

depending upon which other programming language you might be using.

Functions are called in our scripts or from the CLI by using their names, just as

we would for any other command. In a CLI program or a script, the commands in the

function are executed when called and then the sequence of program flow returns to the

calling entity and the next series of program statements in that entity is executed.

The syntax of a function is

FunctionName(){list}

Before we add our help function, let’s explore how functions work.

EXPERIMENT 10-8

perform this experiment as the student user. start by creating a simple function at the CLi. the

function is stored in the shell environment for the shell instance in which it is created. we are

going to create a function called “hw” which stands for hello world.

enter the following code at the CLi and press Enter. then enter hw as you would any other

shell command.

[student@studentvm1 ~]$ hw(){ echo "Hi there kiddo"; }

[student@studentvm1 ~]$ hw

Hi there kiddo

[student@studentvm1 ~]$

oK, so i am a little tired of the standard “hello world” we usually start with.

now let’s list all of the currently defined functions. there are a lot of them so i have shown just

the new hw function.

Chapter 10 automation with Bash sCripts

280

[student@studentvm1 ~]$ declare -f | less

<snip>

hw ()

{

 echo "Hi there kiddo"

}

<snip>

now let’s remove that function because we do not need it any more. we can do that with the

unset command.

[student@studentvm1 ~]$ unset -f hw ; hw

bash: hw: command not found

[student@studentvm1 ~]$

Verify that the function has been removed from the environment.

Now that we know a little about how functions work we can add our help facility.

EXPERIMENT 10-9

as root again, add the function in Figure 10-12 to the doupdates script. place it after the

shebang line and before the variable initialization section.

Chapter 10 automation with Bash sCripts

281

now add an option for help to the case statement. Be sure to add the “h” to the getops option
string. Figure 10-13 shows the revised option processing code that includes the new “h”

option.

Get the options
while getopts ":hcr" option; do

case $option in
c) # Check option

Check=1;;
h) # Help function

Help
exit;;

r) # Reboot option
doReboot=1;;

\?) # incorrect option
echo "Error: Invalid option."
exit;;

esac
done

Figure 10-13. Add the Help function to the option processing code

###
Help function
###
Help()
{

echo "doUpdates"
echo ""
echo "Installs all available updates from Fedora repositories. Can reboot"
echo "after updates if certain packages are updated. Those packages are:"
echo ""
echo "1. The kernel"
echo "2. glibc"
echo "3. systemd"
echo ""
echo "Syntax: doUpdates [-c|h|r]"
echo "Options:"
echo "-c Check whether updates are available and exit."
echo "-h Print this Help and exit."
echo "-r Reboot if specific trigger packages are updated"
echo ""

} # end of Help()

Figure 10-12. The Help() function

Chapter 10 automation with Bash sCripts

282

we now test again and fix any errors we find. i neglected to add the double semicolon (;;) at

the end of the help function processing so i received the following error.

[root@studentvm1 ~]# ./doUpdates -h

./doUpdates: line 55: syntax error near unexpected token `)'

./doUpdates: line 55: ` r) # Reboot option'

after fixing the problem, i reran the test and the help function worked as expected.

[root@studentvm1 ~]# ./doUpdates -h

doUpdates

Installs all available updates from Fedora repositories. Can reboot

after updates if certain packages are updated. Those packages are:

1. The kernel

2. glibc

3. systemd

Syntax: doUpdates [-c|h|r]

Options:

-c Check whether updates are available and exit.

-h Print this Help and exit.

-r Reboot if specific trigger packages are updated

Be sure to test using the -c option to ensure that nothing else is broken. For now we will skip

testing the -r (reboot) option for expediency.

 Finishing the script
So there is now only one thing we need to do in order to finish this script – at least

for now. We need to add the code that actually performs the update and remove the

temporary exit. We also need to add some logic to the reboot at the end of the program.

Chapter 10 automation with Bash sCripts

283

EXPERIMENT 10-10

we need to do three things before our program is ready. First, remove the two lines in

Figure 10-14.

then add the code in Figure 10-15 to replace what we just deleted.

so now we are ready to test version 0.0.1 of our program. But before we do that, let’s discuss

testing in more detail.

 About testing
There is always one more bug.

—Lubarsky’s Law of Cybernetic Entomology

Lubarsky – whoever that might be – is correct. We can never find all of the bugs in our

code. For every bug I find, there always seems to be another that crops up usually at a

very inopportune time.

Testing is not just about programs. It is also about verification that problems –

whether caused by hardware, software, or the seemingly endless ways that users

can find to break things – that we are supposed to have resolved actually have been.

These problems can be with application or utility software we wrote, system software,

applications, and hardware. Just as importantly, testing is also about ensuring that the

code is easy to use and the interface makes sense to the user.

Perform the update
dnf -y update

Figure 10-15. ...and add this code in its place

Temporary exit
exit

Figure 10-14. Remove the temporary exit code

Chapter 10 automation with Bash sCripts

284

Following a well-defined procedure when writing and testing shell scripts can

contribute to consistent and high-quality results. My procedures are simple:

 1. Create a simple test plan.

 2. Start testing right at the beginning of development.

 3. Perform a final test when the code is complete.

 4. Move to production and test more.

You have undoubtedly noticed that we have run multiple tests at every step of

creating this program. One of the tenets of The Linux Philosophy for SysAdmins is to “Test

Early, Test Often.”3

 Testing in production
Huh – what?

Not until a program has been in production for at least six months will the
most harmful error be discovered.

—Troutman’s Programming Postulates

Yes, testing in production is now considered normal and desirable. Having been a

tester myself, this actually does seem reasonable. “But wait! That’s dangerous,” you say.

My experience is that it is no more dangerous than extensive and rigorous testing in a

dedicated test environment. In some cases, there is no choice because there is no test

environment – only production.

SysAdmins are no strangers to the need to test new or revised scripts in production.

Any time a script is moved into production that becomes the ultimate test. The

production environment itself constitutes the most critical part of that test. Nothing

that can be dreamed up by testers in a test environment can fully replicate the true

production environment.

The allegedly new practice of testing in production is just the recognition of what we

SysAdmins have known all along. The best test is production – so long as it is not the only

test.

3 op cit, Chapter 11

Chapter 10 automation with Bash sCripts

285

 Fuzzy testing
This is another of those buzzwords that caused me to roll my eyes when I first heard it.

I learned that its essential meaning is simple – have someone bang on the keys until

something happens and see how well the program handles it. But there really is more to

it than that.

Fuzzy testing is a bit like the time my son broke the code for a game in less than a minute

with his random input. That pretty much ended my attempts to write games for him.

Most test plans utilize very specific input that generates a specific result or output.

Regardless of whether the test is for a positive or negative outcome as success, it is still

controlled and the inputs and results are specified and expected, such as a specific error

message for a specific failure mode.

Fuzzy testing is about dealing with randomness in all aspects of the test such as

starting conditions, very random and unexpected input, random combinations of

options selected, low memory, high levels of CPU contention with other programs,

multiple instances of the program under test, and any other random conditions that you

can think of to be applied to the tests.

I try to do some fuzzy testing right from the beginning. If the Bash script cannot deal

with significant randomness in its very early stages, then it is unlikely to get better as we

add more code. This is also a good time to catch these problems and fix them while the

code is relatively simple. A bit of fuzzy testing at each stage of completion is also useful

in locating problems before they get masked by even more code.

After the code is completed, I like to do some more extensive fuzzy testing. Always

do some fuzzy testing. I have certainly been surprised by some of the results I have

encountered. It is easy to test for the expected things, but users do not usually do the

expected things with a script.

 Testing the script

EXPERIMENT 10-11

Before we start this final test, let’s take a snapshot of the studentVm1 host so that we can

return to a known working state in which there are definitely updates to be performed and

some that require a reboot. this will give us a good bit of flexibility if we have some fixes to

be made to our code. we can boot the snapshot, make the changes, and test again, as many

times as necessary to get our script working correctly.

Chapter 10 automation with Bash sCripts

286

oh, yes, there are always improvements and functional changes we might want to make that

would benefit from having this capability. hint, hint.

save the doupdates program, power off studentVm1, and make the snapshot. You can refer

to Volume 1, Chapter 5, for details of creating the snapshot. i added the following text to the

snapshot description. “near end of Chapter 10. Can be used to roll back to a state where

updates are available.” save the snapshot.

Tip From this point on, when you make changes to the doupdates script, make a
copy of it on an external usB thumb drive or other device. then you can restart the
latest snapshot in which updates are available, copy the latest version of the script
into /root, and rerun the test. using this procedure, you can make changes and
rerun the test as many times as necessary.

now reboot and proceed with the rest of this experiment.

now we test, but we will not immediately test the update portion of this code. we will start

our test using the options that do not lead down that execution path. that way we know those

options have not been broken by our latest additions.

[root@studentvm1 ~]# ./doUpdates -c

Updates ARE available for host studentvm1.

[root@studentvm1 ~]# ./doUpdates -h

doUpdates

Installs all available updates from Fedora repositories. Can reboot

after updates if certain packages are updated. Those packages are:

1. The kernel

2. glibc

3. systemd

Syntax: doUpdates [-c|h|r]

Options:

-c Check whether updates are available and exit.

-h Print this Help and exit.

-r Reboot if specific trigger packages are updated

[root@studentvm1 ~]#

Chapter 10 automation with Bash sCripts

287

it is now time to test the primary function of our script. we will do this first with a manual

reboot. we will then reboot studentVm1 to the last snapshot and run the script again and do a

programmatic reboot using the -r option at the command line.

First run the script with no options.

[root@studentvm1 ~]# time ./doUpdates

Depending upon how many packages need to be updated, the speed of your Vm, and the

speed of your internet connection, this process may take a long time. on my Vm there were

622 packages to update, and it took just over 47 minutes. Jason, my technical reviewer for

this volume, let me know that it only took 10 minutes for his updates to complete. it will

depend upon how recently you last updated and how many new updates there are.

Do a manual reboot to verify that the Vm can at least do that, and then power it off.

So we have done one test of our Bash script. We now need to roll back to the last

snapshot and retest using the -r option. Let’s first do the rollback.

EXPERIMENT 10-12

this experiment should be performed in the Gui of the host system for the Vm. these

instructions guide you through reverting to the most recent snapshot.

open the VirtualBox window and select studentVm1. Click the menu icon on the right side of

the studentVm1 bar, then select Snapshots. select the most recent snapshot which should

have been taken earlier in this chapter. right-click it and then click Restore. uncheck the box

“Create a snapshot of the current machine state,” then click restore.

hover over the “Current state” line. a little text box opens with the message “the current

state is identical to the state stored in the current snapshot.” this is exactly right. Be sure that

“Current state” is selected and reboot the Vm.

You can check to verify that you have successfully reverted by running dnf check-update

to list all of the available updates. You could also run uname -a both before and after

rollbacks and compare the release levels.

We can now finish our testing.

Chapter 10 automation with Bash sCripts

288

EXPERIMENT 10-13

as the root user, run the doupdates program again, this time using the -r option.

[root@studentvm1 ~]# ./doUpdates -r

this should install all of the available updates, rebuild the man database, generate a new

GruB configuration file, and reboot the Vm. after the reboot, log in and run some basic tests to

verify that the Vm is working and responding to simple commands.

power off, revert to the most recent snapshot, and reboot the Vm.

 Making it better
Guess what! Our script is not really finished.

Yes, it does the job we specified for it so, technically, it is complete in that sense, but

there are some ways in which it can be improved. As in real life, additional requirements

may be discovered.

When doUpdates is run with the -c option, it simply indicates that there are updates

available but not whether a reboot would be required; it might also be nice to know

which packages are being updated that prompt the reboot.

EXPERIMENT 10-14

add or modify the code of the doupdates Bash script to meet the following additional

requirement:

when run with the -c option, the program should also list which packages require the reboot

and should state clearly that a reboot will be required.

test extensively.

Chapter 10 automation with Bash sCripts

289

 Licensing
One of the best ways I know to give back to the open source community that provides us

with all of these incredible programs like the GNU Utilities, the Linux kernel, LibreOffice,

WordPress, and thousands more is to open source our own programs and scripts with an

appropriate license.

Just because we write a program and we believe in open source and agree that our

programs should be open source code does not make it so. As SysAdmins we do write a lot

of code, but how many of us ever consider the issue of licensing our own code? We must

make the choice and explicitly state that the code is open source and under which license

it is being distributed. Without this critical step, the code we create is subject to becoming

fettered with proprietary licenses so that the community cannot take advantage of our work.

We should include the GPLv2 (or your other preferred) license header statement

as a command-line option that would print the license header on the terminal. When

distributing code, I also recommend that we make it practice to include a text copy of the

entire license with the code – which is a requirement of some licenses.

I find it very interesting that in all of the books I have read and all of the classes I have

attended, not once did any of them tell me to be sure to license any code I wrote in my

tasks as a SysAdmin. All of these sources completely ignored the fact that SysAdmins

write code too. Even in the conference sessions on licensing that I have attended, the

focus was on application code, kernel code, or even GNU-type utilities. None of the

presentations even so much as hinted at the fact that we SysAdmins write huge amounts

of code to automate our work or that we should even consider licensing it in any way.

Perhaps you have had a different experience, but this has been mine. At the very least,

this frustrates me; at the most it angers me.

We devalue our code when we neglect to license it. Most of us SysAdmins don’t even

think about licensing, but it is important if we want our code to be available to the entire

community. This is neither about credit nor is it about money. This is about ensuring that our

code is now and always will be available to others in the best sense of free and open source.

Eric Raymond, author of 2003 book The Art of Unix Programming, writes that in the

early days of computer programming and especially in the early life of Unix, sharing

code was a way of life.4 In the beginning this was simply reusing existing code. With the

advent of Linux and the open source licensing, this became much easier. It feeds the

needs of system administrators to be able to legally share and reuse open source code.

4 Raymond, Eric S., The Art of Unix Programming, Addison-Wesley (2004), 380, ISBN 0-13-13-142901-9

Chapter 10 automation with Bash sCripts

https://en.wikipedia.org/wiki/The_Art_of_Unix_Programming

290

Raymond states, “Software developers want their code to be transparent.

Furthermore, they don’t want to lose their toolkits and their expertise when they

change jobs. They get tired of being victims, fed up with being frustrated by blunt tools

and intellectual property fences and having to repeatedly reinvent the wheel.”5 This

statement also applies to SysAdmins.

I read an interesting article recently, “The source code is the license,6” that helps

explain the reasoning behind this.

So let’s add a licensing statement to our code that can be displayed with a new option.

EXPERIMENT 10-15

as root, edit the doupdates program. First let’s add the function shown in Figure 10-16

immediately after the help function.

5 Ibid.
6 Scott K Peterson, The source code is the license, Opensource.com, https://opensource.com/
article/17/12/source-code-license

##
Print the GPL license header
##
gpl()
{

echo
echo "##"
echo "# Copyright (C) 2019 David Both #"
echo "# http://www.both.org #"
echo "# #"
echo "# This program is free software; you can redistribute it and/or modify #"
echo "# it under the terms of the GNU General Public License as published by #"
echo "# the Free Software Foundation; either version 2 of the License, or #"
echo "# (at your option) any later version. #"
echo "# #"
echo "# This program is distributed in the hope that it will be useful, #"
echo "# but WITHOUT ANY WARRANTY; without even the implied warranty of #"
echo "# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #"
echo "# GNU General Public License for more details. #"
echo "# #"
echo "# You should have received a copy of the GNU General Public License #"
echo "# along with this program; if not, write to the Free Software #"
echo "# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #"
echo "##"
echo

} # End of gpl()

Figure 10-16. Add a function that prints the GPL V2 license header

Chapter 10 automation with Bash sCripts

https://opensource.com/article/17/12/source-code-license
https://opensource.com/article/17/12/source-code-license

291

now we need to add an option to the option processing code. since this is the GpL,

i chose “g.” Figure 10-17 shows the revised option processing code. i like to place the

new case sections in alphabetical order to make them a bit easier to find when performing

maintenance.

Finally, we need to add a line to the help function. add the line shown in Figure 10-18 in the

options section. i like to try and keep these in alphabetical order too, but you can place them in

any order that makes sense to you.

now test this new option and make sure nothing else has been broken.

##
Process the input options
##
Get the options
while getopts ":ghcr" option; do

case $option in
c) # Check option

Check=1;;
g) # display the GPL header

gpl
exit;;

h) # Help function
Help
exit;;

r) # Reboot option
doReboot=1;;

\?) # incorrect option
echo "Error: Invalid option."
exit;;

esac
done

Figure 10-17. Add the g option to the case structure

echo "-g Print the GPL license notification."

Figure 10-18. Add a line to the Help function that describes the -g option

Chapter 10 automation with Bash sCripts

292

 Automated testing
Testing is important and, if your Bash programs are more than just a few lines, you may

want to explore some automated testing tools. Although I have worked as a tester in one

of my jobs and used Tcl/Expect to automate our application testing, that type of tool is

way overkill for the SysAdmin. We work on tight schedules with little or no time to use

complex, and possibly expensive, tools, whether open source or not.

I have found one interesting tool that you might wish to explore. BATS7 is a tool

specifically designed for testing Bash programs. There are undoubtedly other tools that

can be useful to testing Bash program. Most of the time manual testing works just fine for

the Bash programs I write.

 Security
This program should only be run by root and will fail if any other user tries to run it.

We have looked at security a bit already and seen the effect of using permissions of 750

and 777. We have also looked at using a bit of code to exit from the program if the UID of

the account attempting to run the program is not zero, that is, the root user.

Root is the only user that needs access to this program so it can be placed in /root/

bin. This also makes it available at all times even if other filesystems are not mounted.

Placing it in root’s own ~/bin directory makes the program inaccessible to non-root

users.

EXPERIMENT 10-16

perform this experiment as the root user.

if the doupdates script is currently open for editing, close it. ensure that /root is the

pwD. Create the /root/bin directory because it is not created by default. move the doupdates

file to /root/bin. run the program to test its new location.

[root@studentvm1 ~]# cd ; mkdir bin ; mv doUpdates bin ; doUpdates -h

7 Opensource.com, Testing Bash with BATS, https://opensource.com/article/19/2/
testing-bash-bats

Chapter 10 automation with Bash sCripts

https://opensource.com/article/19/2/testing-bash-bats
https://opensource.com/article/19/2/testing-bash-bats

293

 Additional levels of automation
Now I have this incredibly wonderful and useful script. I have copied it to /root/bin on

all of my computers. All I have to do now is run it at appropriate times on each of my

Linux hosts to do the updates. I can do this by using SSH to log in to each host and run

the program.

But wait! There’s more! Have I told you yet how absolutely cool SSH is?

The ssh command is a secure terminal emulator that allows one to log in to a

remote computer to access a remote shell session and run commands. So I can log in

to a remote computer and run the doUpdates command on the remote computer as

shown in Figure 10-19. The results are displayed in the ssh terminal emulator window

on my localhost. The Standard Output (STDOUT) from the command is displayed on my

terminal window.

For this course we do not have a second VM to work with so we cannot do lab

projects for this. I will describe the steps and the CLI programs and scripts will be shown

as figures. We will look at SSH in more detail in the next course in this series, Advanced

Linux System and Server Administration.

That part is trivial and everyone does that. But the next step is a bit more interesting.

Rather than maintain a terminal session on the remote computer, I can simply use a

command on my local computer such as that in Figure 10-19 to run the command on the

remote computer with the results being displayed on the localhost. This assumes that

SSH public/private keypairs8 (PPKP) are in use and I do not have to enter a password

each time I issue a command to the remote host.

So now I run a single command on my localhost that sends a command through the

SSH tunnel to the remote host. OK, that is good, but what does it mean?

It means that what I can do for a single computer, I can also do for several – or several

hundred. The Bash command-line program in Figure 10-20 illustrates the power I now

have.

8 How to Forge, www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

ssh hostname doUpdates -r

Figure 10-19. Using SSH to perform remote updates with the doUpdates script

Chapter 10 automation with Bash sCripts

https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

294

This little command-line program is now doing the type of function that advanced

tools like Ansible9 can do. It is important to understand automation with Bash in order to

fully understand and appreciate the role and capabilities of tools like Ansible.

Think we’re done? No, we are not! The next step is to create a short Bash script of this

CLI program so we don’t have to retype it every time we want to install updates on our

hosts. This does not have to be fancy; the script can be as simple as the one in Figure 10- 21.

This script could be named “updates” or something else depending on how you

like to name scripts and what you see as its ultimate function. I think we should call this

script “doit”. Now we can just type a single command and run a smart update program

on as many hosts as we have in the list of the for statement. Our script should be located

in the /usr/local/bin directory so it can be easily run from the command line.

Our little doit script looks like it could be the basis for more general application. We

could add more code to doit that would enable it to take arguments or options such as

the name of a command to run on all of the hosts in the list. This enables us to run any

command we want on a list of hosts, and our command to install updates might be doit

doUpdates -r or doit myprogram to run “myprogram” on each host.

The next step might be to take the list of hosts out of the program itself and place

them in a doit.conf file located in /usr/local/etc – again in compliance with the Linux

FHS. That command would look like Figure 10-22 for our simple doit script. Notice

the back tics (`) that create the list used by the for structure from the results of the cat

command.

9 Jonathan Lozada De La Matta, A sysadmin’s guide to Ansible: How to simplify tasks, https://
opensource.com/article/18/7/sysadmin-tasks-ansible, Opensource.com

for I in host1 host2 host3 ; do ssh $I doUpdates -r ; done

Figure 10-21. This Bash script contains the command-line program that runs the
doUpdates program on three remote hosts

for I in host1 host2 host3 ; do ssh $I doUpdates -r ; done

Figure 10-20. Using a simple CLI program to perform remote updates on multiple
computers

Chapter 10 automation with Bash sCripts

https://opensource.com/article/18/7/sysadmin-tasks-ansible
https://opensource.com/article/18/7/sysadmin-tasks-ansible

295

By keeping the list of hosts separate, we can allow non-root users to modify the list

of hosts while protecting the program itself against modification. It would also be easy

to add an -f option to the doit program so that the users could specify the name of a file

containing their own list of hosts on which to run the specified program.

Finally, we might want to set this up as a cron job so that we don’t have to remember

to run it on whatever schedule we want. Setting up cron jobs is worthy of its own section

in this chapter so that is coming up next.

 Chapter summary
Computers are designed to automate various mundane tasks, and why should that not

also be applied to the SysAdmin's work? We lazy SysAdmins use the capabilities of the

computers on which we work to make our jobs easier. Automating everything that we

possibly can means that the time we free up by creating that automation can now be

used to respond to some real or perceived emergency by others, especially by the PHB. It

can also provide us with time to automate even more.

If you reflect on what we have done in this chapter, you can see that automation is

not merely about creating a program to perform every task. It can be about making those

programs flexible so that they can be used in multiple ways such as the ability to be

called from other scripts and to be called as a cron job.

My programs almost always use options to provide flexibility. The doit program

used in this chapter could easily be expanded to be more general than it is while still

remaining quite simple. It could still do one thing well if its objective were to run a

specified program on a list of hosts.

My shell scripts did not just spring into existence with hundreds or thousands of

lines. In most cases they start as a single ad hoc command-line program. I create a shell

script from the ad hoc program. Then another command-line program is added to the

short script, then another. As the short script becomes longer, I add comments, options,

and a help feature.

#!/bin/bash

for I in `cat /usr/local/etc/doit.conf` ; do ssh $I doUpdates ; done

Figure 10-22. We have now added a simple external list that contains the
hostnames on which the script will run the specified command

Chapter 10 automation with Bash sCripts

296

Then, sometimes, it makes sense to make a script more general so that it can handle

more cases. In this way the doit script becomes capable of “doing it” for more than just a

single program that does updates.

As far as this chapter is concerned, this script is complete and it can be used in

production. But as you use it, you will undoubtedly find more refinements you might

want to make. Clearly you should feel free to do so.

 Exercises
Complete the following exercises to finish this chapter:

 1. List at least three advantages to creating and using scripts.

 2. What happens when you change the string comparison operator

(==) to the numeric operator (-eq)?

 3. Running doUpdates displays a list of the packages being updated

for which a reboot is required. It does not list those packages if the

-c option is used. Revise the script so that these three packages are

also listed with the -c option – assuming that they are in the list of

updates.

 4. There is at least one set of conditions under which we have not

tested our doUpdates shell program. Devise and implement a way

to test the doUpdates program in that circumstance.

 5. Add one line of code to the “Incorrect option” case stanza that will

display the help text before exiting.

Chapter 10 automation with Bash sCripts

297
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_11

CHAPTER 11

Time and Automation
 Objectives
In this chapter you will learn

• To use chrony to maintain accurate system time

• To create a crontab file for root using the crontab command

• To add necessary statements to the crontab file that set up the

environment for cron jobs

• To interpret the time specifications for cron and configure cron jobs

to run at different recurring intervals

• To create cron jobs using crontab

• To create cron jobs for hourly, daily, weekly, and monthly periods

• To use the at command to run scripts or commands once at a specific

time in the future

 Introduction
In previous chapters we have looked at some examples of using command-line programs

and Bash scripts to automate tasks we perform as SysAdmins. All of that is well and good,

but what happens when tasks need to be performed at times that are not convenient for

us as humans? For example, if we do backups at 01:01 AM every day or run a maintenance

script at 03:00 AM every Sunday, I do not want to get out of bed to perform those tasks.

Linux provides multiple tools and ways in which we can use those tools to run

those tasks at specified times in the future, repeating as needed or just for a one-time

occurrence. However, keeping accurate time is critical to ensuring that scheduled jobs

run at the correct times.

298

 Keeping time with chrony
Does anybody really know what time it is? Does anybody really care?

—Chicago, 1969

Perhaps that rock group didn’t care what time it was, but our computers really need to

know the exact time. Timekeeping is very important to computer networks. In banking,

stock markets, and other financial businesses, transactions must be maintained in the

proper order and exact time sequences are critical for that. For SysAdmins and DevOps

following the trail of email through a series of servers or determining the exact sequence

of events using log files on geographically dispersed hosts can be much easier when

exact times are kept on the computers in question.

I used to work at one organization that received over 20 million emails per day and

which had four servers just to accept and do a basic filter on the incoming flood of email.

From there, emails were sent to one of four more servers to perform more complex anti-

spam assessments and then deliver the email to one of several additional servers where

the messages were placed in the correct inboxes. At each layer, the emails would be sent

to one of the servers at the next level selected only by the randomness of round-robin

DNS. Sometimes we needed to trace the arrival of a new message through the system

until we could determine where it “got lost,” according to the pointy haired bosses. We

had to do this with frightening regularity.

Most of that email turned out to be spam. Some people actually complained that

their [Joke, cat pic, recipe, inspirational saying, and a few even more strange emails]-of-

the-day was missing and asked us to find it. We did reject those opportunities.

Our email searches, as well as other transactional searches, were all aided by log

entries with timestamps that – today – can resolve down to the nanosecond in even the

slowest of modern Linux computers. In very high-volume transaction environments, the

difference of a few microseconds of difference in the system clocks can mean thousands

of transactions to be sorted through in order to find the correct ones.

 The NTP server hierarchy
NTP is the Network Time Protocol, and it is used by computers worldwide to

synchronize their times with Internet standard reference clocks via a hierarchy of NTP

servers. The NTP server hierarchy is built in layers called strata. Each stratum is a layer

Chapter 11 time and automation

299

of NTP servers. The primary servers are at stratum 1, and they are connected directly

to various national time services at stratum 0 via satellite, radio, or even modems over

phone lines in some cases. Those time services at stratum 0 may be an atomic clock, a

radio receiver that is tuned to the signals broadcast by an atomic clock, or a GPS receiver

using the highly accurate clock signals broadcast by GPS satellites.

To prevent time requests from time servers lower in the hierarchy, that is with a

higher stratum number, from overwhelming the primary reference servers, there are

several thousand public NTP stratum 2 servers that are open and available for all to

use. Many users and organizations, myself included, with large numbers of their own

hosts that need an NTP server, set up their own time servers so that only one localhost

actually accesses the stratum 2 time servers. The remaining hosts in our networks are all

configured to use the local time server which, in my case, is a stratum 3 server.

 NTP choices
The original NTP daemon, ntpd, has been joined by a newer one, chronyd. Both perform

the task of keeping the time of the localhost synchronized with the time server. Both

services are available and I have seen nothing to indicate that this will change any time

soon.

Chrony has some features which make it the better choice for most environments.

Some of the primary advantages of using chrony are shown in this list:

• Chrony can synchronize to the time server much faster than ntp. This

is good for laptops or desktops that do not run constantly.

• It can compensate for fluctuating clock frequencies such as when

a host hibernates or enters a sleep mode or when the clock speed

varies due to frequency stepping that slows clock speeds when loads

are low.

• It handles intermittent network connections and bandwidth

saturation.

• It adjusts for network delays and latency.

Chapter 11 time and automation

300

• After the initial time sync is accomplished, Chrony never steps the

clock. This ensures stable and consistent time intervals for many

system services and applications that require that.

• Chrony can work even without a network connection of any type. In

this case the localhost or server could be updated manually.

Both the ntp and chrony RPM packages are available from standard Fedora

repositories. It is possible to install both and switch between them, but modern

releases of Fedora, CentOS, and RHEL have moved from NTP to Chrony as the default

timekeeping implementation. I have found that Chrony works well, provides a better

interface for the SysAdmin, and presents much more information and increases control.

I see no reason to use the old NTP service when Chrony is so much better.

So just to make it clear, NTP is a protocol that is implemented with either NTP or

Chrony. We will explore only Chrony for both client and server configuration on a Fedora

host. Configuration for current releases of CentOS and RHEL is the same.

 Chrony structure
The Chrony daemon, chronyd, runs in the background and monitors the time and status

of the time server specified in the chrony.conf file. If the local time needs to be adjusted,

chronyd does so smoothly without the programmatic trauma that would occur if the

clock were to be instantly reset to a new time.

Chrony also provides the chronyc tool that allows us to monitor the current status of

Chrony and to make changes if necessary. The chronyc utility can be used as a command

that accepts sub-commands, or it can be used as an interactive text-mode program. We

will use it both ways in this article.

 Client configuration
The NTP client configuration is simple and requires little or no change. The NTP server

can be defined by the SysAdmin during the Linux installation, or it can be provided by

the DHCP server at boot time. The default /etc/chrony.conf file shown in its entirety in

Figure 11-1 requires no alterations to work properly as a client. For Fedora, Chrony uses

the Fedora NTP pool. CentOS and RHEL also have their own NTP server pools. Like

many Red Hat-based distributions, the configuration file is well commented.

Chapter 11 time and automation

301

Let’s look at the current status of NTP on our student virtual machines.

Use public servers from the pool.ntp.org project.
Please consider joining the pool (http://www.pool.ntp.org/join.html).
pool 2.fedora.pool.ntp.org iburst

Record the rate at which the system clock gains/losses time.
driftfile /var/lib/chrony/drift

Allow the system clock to be stepped in the first three updates
if its offset is larger than 1 second.
makestep 1.0 3

Enable kernel synchronization of the real-time clock (RTC).

Enable hardware timestamping on all interfaces that support it.
#hwtimestamp *

Increase the minimum number of selectable sources required to adjust
the system clock.
#minsources 2

Allow NTP client access from local network.
#allow 192.168.0.0/16

Serve time even if not synchronized to a time source.
#local stratum 10

Specify file containing keys for NTP authentication.
keyfile /etc/chrony.keys

Get TAI-UTC offset and leap seconds from the system tz database.
leapsectz right/UTC

Specify directory for log files.
logdir /var/log/chrony

Select which information is logged.
#log measurements statistics tracking

Figure 11-1. The default chrony.conf configuration file

Chapter 11 time and automation

302

EXPERIMENT 11-1

perform this experiment as the root user.

the chronyc command when used with the tracking sub-command provides statistics that

tell us how far off the local system is from the reference server.

[root@studentvm1 ~]# chronyc tracking

Reference ID : C0A80034 (yorktown.both.org)

Stratum : 5

Ref time (UTC) : Fri May 17 19:36:00 2019

System time : 0.000000017 seconds fast of NTP time

Last offset : -0.000012977 seconds

RMS offset : 0.000012977 seconds

Frequency : 0.035 ppm fast

Residual freq : -2.894 ppm

Skew : 0.046 ppm

Root delay : 0.031905096 seconds

Root dispersion : 0.008672087 seconds

Update interval : 2.0 seconds

Leap status : Normal

[root@studentvm1 ~]#

the reference id in the first line of the result is the server to which our host is synchronized.

that server is a server in my own network which was last contacted by our host at may 17,

19:36:00 2019. the rest of these lines are described in the chronyc(1) man page. the stratum

line indicates which stratum our local Vm is at so the yorktown host is at stratum 4.

the other sub-command i find interesting and useful is sources which provides information

about the time sources configured in chrony.conf.

[root@studentvm1 ~]# chronyc sources

210 Number of sources = 5

Chapter 11 time and automation

303

MS Name/IP address Stratum Poll Reach LastRx Last sample

===

^∗ yorktown.both.org 4 6 17 4 -775us[-1085us] +/- 25ms
^- 192.138.210.214 2 6 17 3 +1573us[+1573us] +/- 30ms

^- ntp1.wiktel.com 1 6 17 3 -415us[-415us] +/- 36ms

^- dev.smatwebdesign.com 3 6 17 4 -4245us[-4245us] +/- 101ms

^+ time.tritn.com 2 6 17 5 +1227us[+918us] +/- 38ms

[root@studentvm1 ~]#

the first source in the list is the time server that i set up for my personal network. the

rest were provided by the pool. even though my ntp server does not appear in the Chrony

configuration file shown earlier, the dhCp server provides this ip address for the ntp server.

note that the “S” column – Source State – indicates that the server with an asterisk (*) in that

line is the one to which our host is currently synchronized. this is consistent with the data

from the tracking sub-command.

note that the -v option provides a nice description of the fields in this output.

[root@studentvm1 ~]# chronyc sources -v

210 Number of sources = 5

 .-- Source mode '^' = server, '=' = peer, '#' = local clock.

 / .- Source state '∗' = current synced, '+' = combined , '-' = not combined,
| / '?' = unreachable, 'x' = time may be in error, '~' = time too variable.

|| .- xxxx [yyyy] +/- zzzz

|| Reachability register (octal) -. | xxxx = adjusted offset,

|| Log2(Polling interval) --. | | yyyy = measured offset,

|| \ | | zzzz = estimated error.

|| | | \

MS Name/IP address Stratum Poll Reach LastRx Last sample

===

^∗ yorktown.both.org 4 6 177 45 +905us[+160us] +/- 25ms
^+ 192.138.210.214 2 6 177 44 -3770us[-3770us] +/- 35ms

^? ntp1.wiktel.com 0 6 0 - +0ns[+0ns] +/- 0ns

^- dev.smatwebdesign.com 3 6 177 46 +1955us[+1955us] +/- 93ms

^+ time.tritn.com 2 6 177 48 -2290us[-3034us] +/- 43ms

Chapter 11 time and automation

304

If I wanted my own server to be the preferred reference time source for this host, I

would add the following line to the /etc/chrony.conf file. I usually place this line just

above the first pool server statement near the top of the file. There is no special reason

for this except that I like to keep the server statements together. It would work just as well

at the bottom of the file and I have done that on several hosts. This configuration file is

not sequence sensitive.

server 192.168.0.51 iburst prefer

The “prefer” option marks this as the preferred reference source. As such, this

host will always be synchronized with this reference source so long as it is available.

You could also use the fully qualified hostname for a remote reference server or the

hostname only without the domain name for a local reference time source so long as

the search statement is set in the /etc/resolv.conf file. I prefer the IP address to ensure

that the time source is accessible even if DNS is not working. In most environments the

server name is probably the better option because NTP will continue to work even if the

IP address of the server is changed.

You may not have a specific reference source with which you want to synchronize so

it is fine to use the defaults.

 chronyc as an interactive tool
I mentioned near the beginning of this section that chronyc can be used as an interactive

command tool. Let’s explore that.

EXPERIMENT 11-2

perform this experiment as root. Let’s look at the chronyc command in more detail. Simply

run the command without a sub-command and you get a chronyc command prompt.

[root@studentvm1 ~]# chronyc

chrony version 3.4

Copyright (C) 1997-2003, 2007, 2009-2018 Richard P. Curnow and others

chrony comes with ABSOLUTELY NO WARRANTY. This is free software, and

you are welcome to redistribute it under certain conditions. See the

GNU General Public License version 2 for details.

chronyc>

Chapter 11 time and automation

305

now you can enter just the sub-commands. try using the tracking, ntpdata, and sources

sub-commands. the chronyc command line allows command recall and editing for chronyc

sub-commands. You can use the help sub-command to get a list of possible commands and

their syntax.

one thing i like to do after my client computers have synchronized with the ntp server is

to set the system hardware clock from the system (oS) time using the following system

command. note that it is not a chronyc command.

[root@studentvm1 ~]# /sbin/hwclock --systohc

this command can be added as a cron job, as a script in cron.daily, or as a systemd timer to

keep the hardware clock synced with the system time.

Chrony is a powerful tool for synchronizing the times of client hosts whether they

are all on the local network or scattered around the globe. It is easy to configure because,

despite the large number of configuration options available, only a few are required in

most circumstances.

Chrony and NTP (the old service) both use the same configuration, and the files’

contents are interchangeable. The man pages for chronyd, chronyc, and chrony.conf

contain an amazing amount of information that can help you get started or learn about

some esoteric configuration option.

 Using cron for timely automation
There are many tasks that need to be performed off-hours when no one is expected to be

using the computer or, even more importantly, on a regular basis at specific times. In this

chapter we explore the cron service and how to use it.

I use the cron service to schedule obvious things like regular backups that occur

every day at 01:01 AM. I also do a couple less obvious things. All of my many computers

have their system times, that is, the operating system time, set using NTP – the Network

Time Protocol. NTP sets the system time; it does not set the hardware time which can

drift and become inaccurate. I use cron to run a command that sets the hardware time

using the system time. I also have a bash program I run early every morning that creates

a new “message of the day” (MOTD) on each computer that contains information such

as disk usage that should be current in order to be useful. Many system processes use

cron to schedule tasks as well. Services like logwatch and rkhunter all use the cron

service to run programs every day.

Chapter 11 time and automation

306

 The crond daemon
The crond daemon is the background service that enables cron functionality. The cron

service checks for files in the /var/spool/cron and /etc/cron.d directories and the /etc/

anacrontab file. The contents of these files define cron jobs that are to be run at various

intervals.

The individual user cron files are located in /var/spool/cron, and system services

and applications generally add cron job files in the /etc/cron.d directory. The /etc/

anacrontab file is a special case that will be covered a bit further on in this chapter.

 crontab
Each user, including root, can have a crontab file. The term crontab derives from the

Greek word chronos, for time, and the term table, because the file is a table of tasks set to

perform at specific times and days.

Note the terms cron file and crontab file are sometimes used interchangeably.

By default, no file exists, but using the crontab -e command as shown in Figure 11-2

to edit a crontab file creates them in the /var/spool/cron directory. I strongly recommend

that you not use a standard editor such as vi, vim, emacs, nano, or any of the many other

editors that are available. Using the crontab command not only allows you to edit the

command, it also restarts the crond daemon when you save and exit from the editor. The

crontab command uses vi as its underlying editor because vi is always present on even

the most basic of installations.

All cron files are empty the first time you edit it so you must create it from scratch. I

always add the job definition example in Figure 11-2 to my own cron files just as a quick

reference. This help and initial setup section is comprised of the top part of the crontab

file down to the line of “#” characters. The rest of the file consists of the cron jobs I have

set up.

Tip the crontab job definition help is located in the /etc/crontab file so you can
copy that to your own crontab.

Chapter 11 time and automation

307

In Figure 11-2 the first three lines set up a default environment. Setting the

environment to that necessary for a given user is required because cron does not

provide an environment of any kind. The SHELL variable specifies the shell to use when

commands are executed. In this case it specifies the bash shell. The MAILTO variable

sets the email address to which cron job results will be sent. These emails can provide

the status of backups, updates, or whatever, and consist of the output from the programs

that you would see if you ran them manually from the command line. The last of these

three lines sets up the PATH for this environment. Regardless of the path set here,

however, I always like to prepend the fully qualified path to each executable file name.

crontab -e

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

For details see man 4 crontabs

Example of job definition:
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * user-name command to be executed
##
backup using the rsbu program to the internal HDD then the external USB HDD
01 01 * * * /usr/local/bin/rsbu -vbd1 ; /usr/local/bin/rsbu -vbd2
Set the hardware clock to keep it in sync with the more accurate system clock
03 05 * * * /sbin/hwclock --systohc
Perform monthly updates on the first of the month
25 04 1 * * /usr/local/bin/doit

Figure 11-2. The crontab command is used to edit the cron files

There are several comment lines that detail the syntax required to define a cron

job. The entries in the crontab files are checked every minute by the crond daemon.

Figure 11-3 defines each of the fields and the values allowed in each.

Chapter 11 time and automation

308

Interval field Values allowed Comments

Minute 0-59

Hour 0-23

Day of month 1-31

Month 0-12 or month abbrevia�ons jan, feb, mar, etc, in lowercase.

Day of the week 0-7 or day abbrevia�ons Zero (0) and 7 are both Sunday. sun, mon, tue, in lowercase.

Figure 11-3. The crontab time fields

 cron examples

Each interval field of the crontab entries also supports lists and ranges of values as well

as calculated values. For example, suppose we want to run a task on the 1st and 15th of

each month at 01:00 AM. That cron entry would look like this.

00 01 ∗ 1,15 ∗ /usr/local/bin/mycronjob.sh

We can get more creative using a little math. For example, if we want to run a task

every 5 minutes, the minute field could be set as ∗/5 to denote that. The way this works

is that for each minute, the value is divided by 5. If the remainder of the division is zero,

that is, the minute is evenly divisible by 5, that is considered a match. Of course the other

time intervals must match too. These are called step values.

∗/5 ∗ ∗ ∗ ∗ /usr/local/bin/mycronjob.sh

Suppose that we want to mycronjob.sh once every 3 hours on the hour during the

day. This specification would run the task at 03:00 AM, 06:00 AM, 09:00 AM, and so on

throughout the day.

00 ∗/3 ∗ ∗ ∗ /usr/local/bin/mycronjob.sh

In a more complex scheduling task, the next example shows one way to run a task

on the first Sunday of each month. The logic here is that one and only one Sunday must

always fall in the first 7 days of the month

00 01 1-7 ∗ sun /usr/local/bin/mycronjob.sh

Chapter 11 time and automation

309

or

00 01 1-7 ∗ 0 /usr/local/bin/mycronjob.sh

or because Sunday can be either 0 or 7

00 01 1-7 ∗ 7 /usr/local/bin/mycronjob.sh

Now let’s complicate this even more and imagine that we want this cron job to run

only in the months of summer which we designate as June through September

00 01 1-7 jun,jul,aug,sept sun /usr/local/bin/mycronjob.sh

or

00 01 1-7 6,7,8,9 0 /usr/local/bin/mycronjob.sh

or

00 01 1-7 6-9 0 /usr/local/bin/mycronjob.sh

The crontab(5)1 man page has a good description of how this all works. It also has

some additional examples.

 crontab entries

There are three sample crontab entries in Figure 11-2 so we will explore those now that

we know how to interpret them.

The following line shown runs one of my bash shell scripts, rsbu, to perform backups

of all my systems. This job is kicked off at 1 minute after 01:00 AM every day. The splat/

star/asterisks (∗) in positions 3, 4, and 5 of the time specification are like file globs for

those time divisions; they match every day of the month, every month, and every day of

the week. This line runs my backups twice, once to backup onto an internal dedicated

backup hard drive and once to backup onto an external USB hard drive that I can take to

the safe deposit box.

01 01 ∗ ∗ ∗ /usr/local/bin/rsbu -vbd1 ; /usr/local/bin/rsbu -vbd2

1 Use the command form man 5 crontab.

Chapter 11 time and automation

310

This next cron entry sets the hardware clock on the computer using the system clock

as the source of an accurate time. This line is set to run at 3 minutes after 05:00 AM

every day.

03 05 ∗ ∗ ∗ /sbin/hwclock --systohc

The last cron job is the one we are especially interested in. It is used to install Fedora

updates at 04:25 AM on the first day of each month. The cron service has no option for

“The last day of the month,” so we use the first day of the following month.

25 04 1 ∗ ∗ /usr/local/bin/doit

Let’s try a couple things to get a feel for using cron for task scheduling using the cron

service.

EXPERIMENT 11-3

perform this experiment as root. Let’s look at the crontab file for root using the crontab

command. the -l option just prints the current crontab file while -e edits the cron file.

[root@studentvm1 ~]# crontab -l

no crontab for root

We can see from this result that there is no default crontab file for root. this is also true of all

users because there are no crontab files at all. So let’s create our own crontab file.

[root@studentvm1 ~]# crontab -e

this opens Vim with an empty file. We can start by importing the help file using the following

vim command. the “r” stands for read, and the file name follows immediately with no space

between the command and the file name. Vim must be in command mode for this, and it is so

when it is first launched so we do not need to press esc to switch to command mode.

:r/etc/crontab

So now we have the beginnings of a crontab file with built-in help. now we add a simple

command to illustrate how cron works with repetitive tasks. i like to use a trivial example for

this and repeat it every minute. add the following two lines to the bottom of the crontab file.

this cron job runs the free utility once each minute and stores it in the /tmp/freemem.log file.

Chapter 11 time and automation

311

Run the free program and store the results in /tmp/freemem.log

∗ ∗ ∗ ∗ ∗ /usr/bin/free >> /tmp/freemem.log

use the command Esc :wq to write the data to the disk and exit from Vim to activate the

changes. You should receive the message shown next.

"/tmp/crontab.YOLBoe" 19L, 566C written

crontab: installing new crontab

open a root terminal session and make /tmp the pWd. use ls to check that the file is present,

but it will not be until a second or so after the first minute changes to the next. So if you saved

the crontab file at 13:54:32, the first entry will be made at about 13:55.01. You can use the

stat command to get the exact time precisely.

We can use the tail -f command to follow the file. that is, using this command shows the

current content of the file, and whenever new lines are added to the file, they are displayed

immediately. this makes it unnecessary to use commands like cat every minute or so to see

the file as it changes.

[root@studentvm1 tmp]# tail -f freemem.log

 total used free shared buff/cache available

Mem: 4036976 222640 3101688 3012 712648 3577336

Swap: 6291452 0 6291452

 total used free shared buff/cache available

Mem: 4036976 222276 3101948 3016 712752 3577696

Swap: 6291452 0 6291452

 total used free shared buff/cache available

Mem: 4036976 222096 3101956 3012 712924 3577828

Swap: 6291452 0 6291452

<snip>

this does not tell us the date or time that the entries were made. We can add another

statement to our existing cron job, as shown in the following, to make that happen.

Run the free program and store the results in /tmp/freemem.log

∗ ∗ ∗ ∗ ∗ /usr/bin/date >> /tmp/freemem.log ; /usr/bin/free >> /tmp/
freemem.log

Save the revised crontab and tail the freemem.log file for a few minutes to observe the revised

results.

Chapter 11 time and automation

312

[root@studentvm1 tmp]# tail -f freemem.log

 total used free shared buff/cache available

Mem: 4036976 223200 3099652 3012 714124 3576724

Swap: 6291452 0 6291452

 total used free shared buff/cache available

Mem: 4036976 222944 3099904 3012 714128 3576996

Swap: 6291452 0 6291452

Thu Apr 18 15:14:01 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 223600 3094012 3012 719364 3576220

Swap: 6291452 0 6291452

 Other scheduling options
There are some other options provided by the cron service that we can also use to

schedule programs to run on a regular basis.

 /etc/cron.d
The directory /etc/cron.d is where some applications install cron files when there are no

users under which the programs would run, these programs need a place to locate cron

files so they are placed in /etc/cron.d. These cron files have the same format as a user

cron file. The crontab files located in this directory are each. The root user can also place

crontab files in this directory.

The /etc/cron.d directory should contain three files. We are particularly interested in

the 0hourly crontab file.

EXPERIMENT 11-4

perform this experiment as root. make /etc/cron.d the pWd. then list the contents of the

directory and view the contents of 0hourly.

[root@studentvm1 ~]# cd /etc/cron.d ; ll ; cat 0hourly

total 12

-rw-r--r--. 1 root root 128 Mar 18 06:56 0hourly

-rw-r--r--. 1 root root 78 Feb 9 2018 atop

-rw-r--r--. 1 root root 108 Sep 13 2018 raid-check

Chapter 11 time and automation

313

Run the hourly jobs

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

01 ∗ ∗ ∗ ∗ root run-parts /etc/cron.hourly
[root@studentvm1 cron.d]#

the run-parts command in the 0hourly crontab file runs all of the files in the /etc/cron.hourly

directory in alphanumeric sorted sequence beginning at 1 minute after each hour. We explore

the reason for this in the next section.

 anacron
The crond service assumes that the host computer runs all the time. What that means is

that if the computer is turned off for a period of time and cron jobs were scheduled for

that time, they will be ignored and will not run until the next time they are scheduled.

This might cause problems if the cron jobs that did not run were critical. So there is

another option for running jobs at regular intervals when the computer is not expected

to be on all the time.

The anacron program performs the same function as crond, but it adds the ability to

run jobs that were skipped if the computer was off or otherwise unable to run the job for

one or more cycles. This is very useful for laptops and other computers that get turned

off or put in sleep mode.

As soon as the computer is turned on and booted, anacron checks to see whether

configured jobs have missed their last scheduled run. If they have, those jobs are run

almost immediately, but only once no matter how many cycles have been missed. For

example, if a weekly job was not run for 3 weeks because the system was shut down

while you were away on vacation, it would be run soon after you turn the computer on,

but it would be run once, not three times.

The anacron program provides some easy options for running regularly scheduled

tasks. Just install your scripts in the /etc/cron.[hourly|daily|weekly|monthly] directories,

depending on how frequently they need to be run.

How does this work? The sequence is simpler than it first appears. The crond service

runs the cron job specified in /etc/cron.d/0hourly as seen in Figure 11-4.

Chapter 11 time and automation

314

Run the hourly jobs
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
01 * * * * root run-parts /etc/cron.hourly

Figure 11-4. The contents of /etc/cron.d/0hourly cause the shell scripts located in
/etc/cron.hourly to run

The cron job specified in /etc/cron.d/0hourly runs the run-parts program once

per hour. The run-parts program runs all of the scripts located in the /etc/cron.hourly

directory. The /etc/cron.hourly directory contains the 0anacron script which runs the

anacron program using the /etdc/anacrontab configuration file shown in Figure 11-5.

/etc/anacrontab: configuration file for anacron
See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
the maximal random delay added to the base delay of the jobs
RANDOM_DELAY=45
the jobs will be started during the following hours only
START_HOURS_RANGE=3-22

#period in days delay in minutes job-identifier command
1 5 cron.daily nice run-parts /etc/cron.daily
7 25 cron.weekly nice run-parts /etc/cron.weekly
@monthly 45 cron.monthly nice run-parts /etc/cron.monthly

Figure 11-5. The contents of /etc/anacrontab file run the executable files in the
cron.[daily|weekly|monthly] directories at the appropriate times

The anacron program runs the programs located in /etc/cron.daily once per day; it

runs the jobs located in /etc/cron.weekly once per week and the jobs in cron.monthly

once per month. Note the specified delay times in each line that helps prevent these jobs

from overlapping themselves and other cron jobs.

Files that are located in the /etc/cron.X directories are not executable from the

command line unless used with the full path. So instead of placing complete bash

programs in the cron.X directories, I install them in the /usr/local/bin directory which

allows me to run them easily from the command line. Then I add a symlink in the

appropriate cron directory, such as /etc/cron.daily.

Chapter 11 time and automation

315

The anacron program is not designed to run programs at specific times. Rather, it

is intended to run programs at intervals that begin at the specified times such as 03:00

AM (see the START_HOURS_RANGE in Figure 11-5) of each day, on Sunday to begin the

week, and the first day of the month. If any one or more cycles are missed, then anacron

will run the missed jobs one time as soon as possible.

 Thoughts about cron
I use most of these methods for scheduling various tasks to run on my computers. All of

those tasks are ones that need to run with root privileges. I have seen only a few times

when non-root users had a real need for any type of cron job, one of those being for a

developer to kick off a daily compile in a development lab.

It is important to restrict access to cron functions by non-root users. However, there

are circumstances when it may be necessary for a user to set tasks to run at specified

times and cron can allow users to do that when necessary. SysAdmins realize that many

users do not understand how to properly configure these tasks using cron and the users

make mistakes in the configuration. Some of those mistakes may be harmless, but others

can cause problems for themselves and other users. By setting procedural policies that

cause users to interact with the SysAdmin, those individual cron jobs are much less likely

to interfere with other users and other system functions.

 Scheduling tips
Some of the times I have set in the crontab files for my various systems seem rather

random and to some extent they are. Trying to schedule cron jobs can be challenging

especially as the number of jobs increases. I usually only have a few tasks to schedule

on each of my own computers so it is a bit easier than some of the production and lab

environments I have worked.

One system for which I was the SysAdmin usually had around a dozen cron jobs that

needed to run every night and an additional three or four that had to run on weekends

or the first of the month. That was a challenge because if too many jobs ran at the same

time, especially the backups and compiles, the system would run out of RAM and then

nearly fill the swap file which resulted in system thrashing while performance tanked

so that nothing got done. We added more memory and were able to do a better job of

scheduling tasks. Adjusting the task list included removing one of the tasks which was

very poorly written and which used large amounts of memory.

Chapter 11 time and automation

316

 Security
Security is always important and that is no different for cron jobs. I recommend that

non-root users be prohibited from creating cron jobs. A badly designed script or

program that is launched unintentionally multiple times by a cron job can bring a host to

a very quick and unexpected stop.

It is considered a best practice to deny use of the cron system to non-root users in

order to help eliminate rogue cron jobs. This can be accomplished using the files cron.

allow and cron.deny. The logic of these two files is summarized in Figure 11-6. The root

user can always use cron.

All cron jobs should be thoroughly inspected and tested before being added by the

root user.

 cron resources
The man pages for cron, crontab, anacron, anacrontab, and run-parts all have excellent

information and descriptions of how the cron system works.

Not present Present Users listed in cron.deny are denied access to
cron.

cron.allow cron.deny Effect

Not present Not present Only root can use cron.

Present but empty Not present Only root can use cron.

Present Not present User ID must be listed in cron.allow to use cron.

Not present Present but empty All non-root users can use cron.

Figure 11-6. Using cron.allow and cron.deny to control access to using cron

Chapter 11 time and automation

317

 at
The tasks we have discussed so far are repetitive and need to occur on a repeating

schedule of some type. There are times, however, when the need is to run a job only once

at some time in the future. The at command can be used for this.

For example, I have had the need to install updates during a 02:00 AM maintenance

window for which I did not want to be awake or even on site. Actually, to be a bit more

specific, the updates could be performed during the day, but the reboot required by a

new kernel would need to be performed during the maintenance period. This is possible

because a Linux system can be updated without an immediate reboot, and that is the

default. Additionally, performing the update does not normally affect the other tasks

so users would not even know that the updates are being installed. The only time a side

effect such as slowed response time might be noted is if the host is already running at

nearly 100% of CPU capacity.

In my case it was totally unnoticeable so I did the updates during the day. I then set

an at job to run during the maintenance window and perform the reboot.

 Syntax
The syntax of the at command is simple.

Type at <time specification> and press the Enter key. We look at time

specifications immediately in the following data. This starts a new line indicated by the

prompt, at>. Type in a series of commands to be executed at the specified time, and then

press the Ctrl-D key combination to exit and activate the job. As far as I know, this is the

only Linux command that uses Ctrl-D to perform a save and exit sequence.

The atq command lists the jobs in the queue, and the atrm <job number> command

allows removal of jobs from the queue.

 Time specifications
The at command provides some interesting ways to specify times and dates, both

explicit and fuzzy. Some examples of these methods are listed in Figure 11- 7. Note that if

a time of day (TOD) is specified, but not a specific day, the job will run today if that time

is still in today’s future. If that time for today has already passed, the job will run the next

instance of that time, which would be tomorrow.

Chapter 11 time and automation

318

We can generalize that any at job time specification will execute the first time the

specification matches a future time. If the specification matches a time that exists only in

the past, it will run as soon as possible, usually within a few minutes.

Time specification Description

at 05:00 A specific �me with no day or date supplied. At 5:00am. Today if the current �me is
before 5am and tomorrow if the current �me is a�er 5am. 5am and 5:00am also work.

at 5pm At 5pm today if the current �me is before 5pm and tomorrow if the current �me is
a�er 5pm.

at 11am tuesday A �me and day of the week is specified. If the current day is Tuesday but the �me is
a�er 11am, the job will run on 11am Tuesday in 7 days from now. If today is Monday,
the job will run at 11am tomorrow.

at 3pm + 5 days This job will run at 3pm five days from now regardless of which day today is.

at now + 10 minutes If the �me this job is added to the queue is 11:27am, it will run at 11:37am.

at tomorrow At this �me tomorrow. If the job is entered into the queue at 09:48 today, it will run at
09:48 tomorrow.

at 21:05 January 15 This job will run on a specific month and day at 9pm.

at noon This sets a job to run at the next 12pm (noon), today if the current �me is before noon
and tomorrow if it is already a�er noon.

at midnight This job will run at the next occurrence of midnight, 12:00AM.

At tea�me A job with this specifica�on will run at 4pm.

at 15:35 05/21/2019 This job will be run at the date and �me specified of 15:35 (3:35pm) on May 21 of
2019. Acceptable date specifica�on formats are MMDD[CC]YY, MM/DD/[CC]YY,
DD.MM.[CC]YY, and [CC]YY-MM-DD.

Figure 11-7. Examples of time/date specifications for the at command.

Chapter 11 time and automation

319

By now you get the idea and should be able to specify time and date for the at

command in any number of different ways. I like the flexibility this command provides

in the time and date specifications. This is an excellent example of the Linux Philosophy

tenet that programs should do one thing and do it well.

EXPERIMENT 11-5

Let’s start with something simple and see how it works. Start this experiment as the student

user. eot means end of text, which is issued with the Ctrl-d key combination.

[student@studentvm1 ~]$ at now +2 minutes

warning: commands will be executed using /bin/sh

at> free

at> <EOT>

job 1 at Thu May 2 15:06:00 2019

note that the job number is displayed and the date and time the job will be run. We can also

use the atq command to see this. the atq command also shows the username that the job

belongs to. there is only a single queue for at jobs and all jobs go into that queue. the atq

command shows all at jobs for all users.

[student@studentvm1 ~]$ atq

1 Thu May 2 15:06:00 2019 a student

[student@studentvm1 ~]$

now wait until after the runtime shown in the atq results. What happens? Why do we not

see anything? does the job even run? use the atq command to verify that the queue is now

empty.

We can verify the job ran by looking in the cron log. as root, do the following.

[root@studentvm1 ~]# tail /var/log/cron

May 2 14:01:01 studentvm1 CROND[22490]: (root) CMD (run-parts /etc/cron.hourly)

May 2 14:01:01 studentvm1 run-parts[22490]: (/etc/cron.hourly) starting 0anacron

May 2 14:01:01 studentvm1 run-parts[22490]: (/etc/cron.hourly) finished 0anacron

May 2 15:01:01 studentvm1 CROND[23351]: (root) CMD (run-parts /etc/cron.hourly)

May 2 15:01:01 studentvm1 run-parts[23351]: (/etc/cron.hourly) starting 0anacron

May 2 15:01:01 studentvm1 run-parts[23351]: (/etc/cron.hourly) finished 0anacron

May 2 15:06:00 studentvm1 atd[26634]: Starting job 3 (a00003018bebba) for user

'student' (1000)

Chapter 11 time and automation

320

May 2 15:08:24 studentvm1 atd[26691]: Starting job 4 (a00004018bebbc) for user

'student' (1000)

May 2 15:10:00 studentvm1 atd[26763]: Starting job 5 (a00005018bebbe) for user

'student' (1000)

May 2 15:15:00 studentvm1 atd[26883]: Starting job 6 (a00006018bebc3) for user

'student' (1000)

[root@studentvm1 log]#

You should see at least one entry indicating that the at job has started. this verifies the job

ran, but what happened to the output? the answer is nowhere. We do not have all of the parts

in place to receive the emails that it would normally send to the user as its default way of

communicating the results. We need to install sendmail, which is a mail handling and transfer

agent, and mailx, which is a text-mode email client that can be used from the command line.

as root, install these two tools. this may also install a few dependencies on your Vm.

[root@studentvm1 log]# dnf -y install mailx sendmail

activate Sendmail. We use the systemctl command here to manage the Sendmail server. the

start sub-command obviously starts the server, while the enable sub-command configures it

to start at every system boot. the systemctl command is used to manage system services

and background processes (daemons) and is part of systemd. We will explore systemd and the

systemctl command in Chapter 13.

[root@studentvm1 log]# systemctl status sendmail

● sendmail.service - Sendmail Mail Transport Agent

 Loaded: loaded (/usr/lib/systemd/system/sendmail.service; disabled; vendor

preset: disabled)

 Active: inactive (dead)

[root@studentvm1 log]# systemctl start sendmail ; systemctl enable sendmail

Created symlink /etc/systemd/system/multi-user.target.wants/sendmail.service

→ /usr/lib/systemd/system/sendmail.service.

Created symlink /etc/systemd/system/multi-user.target.wants/sm-client.service

→ /usr/lib/systemd/system/sm-client.service.

[root@studentvm1 log]#

now let’s do the same at job as before.

[student@studentvm1 ~]$ at now + 2 minutes

warning: commands will be executed using /bin/sh

at> free

Chapter 11 time and automation

321

at> <EOT>

job 7 at Thu May 2 16:23:00 2019

[student@studentvm1 ~]$ atq

7 Thu May 2 16:23:00 2019 a student

after 2 minutes have passed, use atq to verify the job queue is now empty. then type mailx to

view the email in your mailq.

[student@studentvm1 ~]$ mailx

Heirloom Mail version 12.5 7/5/10. Type ? for help.

"/var/spool/mail/student": 1 message 1 new

>N 1 Student User Thu May 2 16:23 19/937 "Output from your

job 7"

&

the ampersand (&) is the command prompt for mailx. We can see that there is one message in

the inbox. it has the number 1, that we can use to manage it. type 1 at the prompt and press

Enter. the message should look very similar to the following one. it shows the standard email

message headers, a subject, and the output from our job.

& 1

Message 1:

From student@studentvm1.both.org Thu May 2 16:23:01 2019

Return-Path: <student@studentvm1.both.org>

Date: Thu, 2 May 2019 16:23:00 -0400

From: Student User <student@studentvm1.both.org>

Subject: Output from your job 7

To: student@studentvm1.both.org

Status: R

 total used free shared buff/cache available

Mem: 4036976 252396 2866344 3116 918236 3537948

Swap: 6291452 0 6291452

&

type q and Enter to exit from mailx.

& q

Held 1 message in /var/spool/mail/student

You have mail in /var/spool/mail/student

[student@studentvm1 ~]$

Chapter 11 time and automation

322

this is a trivial example, but it does show you how the at command works and how to deal

with the data stream from the jobs.

there are two more fun things that we can do with the at command. the wall command

writes a message to all users. We can use that to send a message to all users at a specified

time. Be sure you have more than one terminal session open for the student user.

[student@studentvm1 ~]$ at now + 2 minutes

warning: commands will be executed using /bin/sh

at> wall "Hello World."

at> <EOT>

job 8 at Thu May 2 21:42:00 2019

[student@studentvm1 ~]$

and the results of the preceding code at job look like this. this message will appear in every

terminal session of the student user. if this is done as root, it will appear in all terminal

sessions for all users.

[student@studentvm1 ~]$

Broadcast message from student@studentvm1 (somewhere) (Thu May 2

21:42:00 2019

Hello World.

Broadcast message from student@studentvm1 (somewhere) (Thu May 2 21:42:00 2019

Hello World.

You have new mail in /var/spool/mail/student

[student@studentvm1 ~]$

notice that we also get a message indicating that the student user has received the email

notification.

We can also send a message to a specific terminal. First let’s determine which pseudo-

terminal we are using as the student user.

[student@studentvm1 ~]$ who am i

student pts/4 2019-05-02 13:08 (:pts/2:S.1)

[student@studentvm1 ~]$

Chapter 11 time and automation

323

now let’s create an at job that sends a message only to that terminal. You might normally set

something like this to ensure you leave work on time at the end of the day.

[student@studentvm1 ~]$ at now + 5 minutes

warning: commands will be executed using /bin/sh

at> echo "It is time to go home." > /dev/pts/4

at> <EOT>

job 9 at Thu May 2 21:53:00 2019

[student@studentvm1 ~]$

the result looks like this, but it only appears on the specified terminal session, not all of them.

[student@studentvm1 ~]$ It is time to go home.

[student@studentvm1 ~]$

Sending messages like this to all or to a single terminal session can also be done using cron

for repeating tasks.

 Security
The at command uses the files at.allow and at.deny to specify which users have access

to the at command. The logic is the same as with cron.allow and cron.deny as discussed

earlier.

 Cleanup
If you have any cron jobs still active, delete them.

 Chapter summary
This chapter has explored methods for running tasks at specific times using various

repetitive time periods or only a single future time. The ability to run tasks at specified

times can make the SysAdmin’s job easier by removing the need to be present – or even

awake – when the tasks need to be run.

Chapter 11 time and automation

324

Note that systemd has its own tools called timers that are designed to be used in the

same manner as cron and at. Because these timers are so closely integrated with and

managed by systemd, we will cover them in Chapter 13 of this volume.

 Exercises
Perform the following exercises to complete this chapter:

 1. Create a crontab entry that runs /usr/local/bin/mycronjob.sh at

09:00 AM and 05:00 PM on the 7th and 21st of each month.

 2. Where are cron files – those created by the crontab command –

stored?

 3. Describe the difference between cron and anacron.

 4. Why might some cron files be stored in /etc/cron.d?

 5. When is the first time after a host is booted that the files managed

by anacron are executed?

 6. Create a script that generates a listing of the filesystems, their

sizes, and how much space is used and/or available. The result

should be appended to a file in /etc. This does not need to be

fancy, just a single command can do this. Place the script in /usr/

local/bin. Use at least three different cron methods to run this job

once per hour. After testing that, use three different ways to run it

once per day.

 7. When entering at jobs and using a specification like now +

5 minutes, assume the time is 09:04 AM when the command at

now + 5 minutes is issued and the time is 09:06 AM when Ctrl-D

is entered to add the job to the queue. At what time does the at

job execute?

Chapter 11 time and automation

325
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_12

CHAPTER 12

Networking
 Objectives
In this chapter you will learn

• Some basic networking concepts

• To define and describe the TCP/IP five-layer network model

• The structure of IPv4 and IPv6 addresses

• To define and use Classless Inter-Domain Routing (CIDR) network

notation

• How to use simple tools to explore network ranges and subnetting

• Basic client-side DHCP network configuration

• How to use Linux CLI tools to explore and understand the host

network configuration

• The basics of routing

• To manage firewalls using IPtables and ufw

 Introduction
Today, in 2019, nearly every electronic device on the planet is connected to the Internet.

Devices such as computers, smart phones, and tablets are more or less obvious. But it

goes even further because we have thermostats, refrigerators, and security systems, and

even our cars are connected.

Linux-based computers are no exception. At the beginning of this course, you

downloaded VirtualBox and the Xfce version of Fedora and you had to be connected

to the Internet to do so. You also configured a virtual network for the virtual machine

326

you created and tested it to ensure that your VM had connectivity to the outside world

through that virtual network.

In this chapter we discuss client-side networking and explore how our VM is

configured automatically at boot time. We will look at the functional aspects of routing

and firewalls on the client side. We will discuss servers and services such as DHCP, DNS,

and routing in more detail from the server side in Volume 3 of this course.

 About IPv6
We will concentrate on IPv4 (IP version 4) in this course because it is still far more

common than IPv6 (IP version 6) at the end user side. Many ISPs use IPv6 for their

backbone networks and are slowly progressing with IPv6 to the end user. Very slowly. We

will discuss some of the IPv6 concepts but will base our experiments on IPv4.

 Basic networking concepts
Although this course is intended to provide a practical approach to Linux and

networking, some important concepts are a necessary foundation on which to build

further understanding.

 Definitions
Let’s start with some important definitions. We will encounter other terms and their

definitions as we proceed through this chapter:

• A node is any device connected to and accessible on a network

including computers, routers, printers, and any other network-

attached device.

• A host is a node that is specifically a computer attached to the

network.

• IP stands for Internet Protocol. It is a group of network layer

protocols that allow computers to communicate with each other. IP is

a best-effort packet-switching protocol used to transmit data packets

from one network node to another. It is not considered reliable

because data packets can be lost or intentionally dropped for any of a

number of reasons.

Chapter 12 NetworkiNg

327

• TCP is Transmission Control Protocol that sits on top of IP. TCP

provides reliable communications and flow control including full

duplex which means that communication can go in both directions

over the transmission medium at the same time.

• A network (of any kind) is a web- or net-like structure of

communications systems that allow connected nodes to

communicate with each other. There is a good physical model for

this. It is inexact but a good starting point for further understanding.

This model is the system of roadways for automobiles and trucks (vehicles) to carry

passengers and freight from one location to another. The main end points are the cities

and specific homes or businesses in the cities. Each vehicle is analogous to a data packet

in a computer network, and the passengers and freight are like the data contained in a

packet.

These vehicles start from a location such as a house and travel the roads through

surface intersections and large highway interchanges, switching from one route to

another as required to get to the final destination. The intersections and interchanges

along the way are similar to the routers used to switch data packets from one path on the

Internet to another. However, in a computer network, the router makes the decisions,

and for these vehicles, the driver makes the decisions about where to turn onto another

route.

In this model each packet or vehicle is transported independently of surrounding

packets from source to destination:

• A NIC is a network interface controller1 that is either built in to a

computer motherboard or which can be added as a pluggable device

card. A NIC provides the computer with a hardware connection to a

network.

• A network node is any device connected to a network and which is

addressable by other devices such that a connection can be made.

1 Wikipedia, Network interface controller, http://en.wikipedia.org/wiki/
Network_Interface_Controller

Chapter 12 NetworkiNg

http://en.wikipedia.org/wiki/Network_Interface_Controller
http://en.wikipedia.org/wiki/Network_Interface_Controller

328

• A switch is a hardware device that is used to connect multiple

nodes together on a logical network segment. Two or more nodes

or hosts have Ethernet cable connecting them to the switch so that

they can communicate with each other. It is possible to connect

two computers together using a special crossover cable, but that is

unusual and limiting because only two computers can be connected

that way. Switches are not visible to the TCP/IP protocols and operate

only on the physical layer.

• A router is a device that routes data packets between two or more

networks based on the destination IP address contained in the data

packets. Routers have IP addresses for each network to which they

connect and are visible to other devices on those networks.

• At least one router on the network is the default gateway to other

networks or the rest of the Internet. If a data packet is sent by a host

and there are no other routes defined, the default gateway sends the

packet to the next router on the way to its final destination.

• A connection is a logical link between two nodes on a network.

Connections exist at each layer of the TCP/IP stack.

• The term stack refers to the stacked layers of the TCP/IP network

model. These layers form a stack of hardware and the software

protocols that create links between network nodes. We explore the

TCP/IP network model in some detail a bit further on in this chapter.

 MAC address
A MAC address2 is a unique hardware address assigned to each network interface

card (NIC) that provides the hardware a means of identification. The MAC address is

configured permanently in the hardware by the device vendor and cannot be changed.

This is called a universally administered address (UAA) and is sometimes referred to as

the “burned-in address” or the “hardware address.”

2 Wikipedia, MAC address, https://en.wikipedia.org/wiki/MAC_address

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/MAC_address

329

There are, however, software methods that can be used to assign different MAC

addresses to an interface, but the reasons for doing so are beyond the scope of this book

and I strongly recommend against doing so in any event for wired devices.3 This is a

locally administered address (LAA).

Xerox Network Systems created the original 48-bit Ethernet addressing scheme. The

48-bit address space contains 281,474,976,710,656 (2^48) possible MAC addresses.

MAC addresses consist of six two-digit Hexadecimal (Hex) numbers separated by

colons, such as 08:00:27:81:ec:cc, which is the MAC address of my VM. The first three

pairs are the Organizational Unique Identifier (OUI) and can be used to identify the

vendor of the NIC.4 The last three pairs are the hardware ID for that specific NIC. The

OUI numbers are assigned to vendors by the Institute of Electrical and Electronic

Engineers5 (IEEE).

EXPERIMENT 12-1

this experiment should be performed as the student user; root access is not required.

identify the installed network interface cards and their MaC addresses. this also shows the ip

addresses, but we will ignore that for now.

[student@studentvm1 ~]$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

group default qlen 1000

 link/ether 08:00:27:e1:0c:10 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.7/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

 valid_lft 1057sec preferred_lft 1057sec

3 It is probably a good security practice to alter the MAC address of wireless devices if you want to
prevent your device from being tracked.

4 AJ Arul’s Utilities, https://aruljohn.com/mac.pl
5 IEEE, https://www.ieee.org/

Chapter 12 NetworkiNg

https://aruljohn.com/mac.pl

330

 inet6 fe80::b7f2:97cf:36d2:b13e/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

the first entry is the local (lo) interface which is used by many Linux kernel tasks and

applications to communicate within the host. every Linux computer has a local interface even

if it is not connected to a network or even if it does not have a NiC installed. this interface is

an absolute requirement for any Linux (or Unix) computer to function properly.

the second entry, enp0s3 (0 = zero), is how Linux sees the first virtual network adapter on a

VirtualBox VM. the second NiC, if configured in the VirtualBox manager for this VM, would be

enp0s8. the link/ether line in this second entry shows 08:00:27:e1:0c:10 as the MaC address.

all networked devices have a MaC address, and the ip command enables us to see the MaC

and ip addresses of the “neighbor” hosts with which our host has communicated.

[student@studentvm1 ~]$ ip neigh

10.0.2.1 dev enp0s3 lladdr 52:54:00:12:35:00 REACHABLE

You should see one line as the result of this command which should contain the ip

address 10.0.2.1. if you do not see this line, ensure that the StudentVM1 host has recently

communicated with the router/gateway. then retry the ip neigh command.

[root@studentvm1 ~]# ping -c2 _gateway ; ip neigh

PING _gateway (10.0.2.1) 56(84) bytes of data.

64 bytes from _gateway (10.0.2.1): icmp_seq=1 ttl=255 time=0.152 ms

64 bytes from _gateway (10.0.2.1): icmp_seq=2 ttl=255 time=0.219 ms

--- _gateway ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 56ms

rtt min/avg/max/mdev = 0.152/0.185/0.219/0.036 ms

this is the virtual router in our virtual network. reaChaBLe means that the NiC on that device

is reachable and has been accessed recently. another thing you might see as the last field in

the line is StaLe which means the connection has not been used for some time. the ip man

page does not specify what that time might be. You might also encounter DeLaY as this last

field. that means that there was a delay, probably small, the last time that connection was

used.

we can also use the arp command to view the MaC addresses that are known to our host.

Using arp without options displays the DNS names of any nodes that have an entry in

DNS. Using the -n option displays the ip addresses.

Chapter 12 NetworkiNg

331

[student@studentvm1 ~]$ arp

Address HWtype HWaddress Flags Mask Iface

_gateway ether 52:54:00:12:35:00 C enp0s3

[student@studentvm1 ~]$ arp -n

Address HWtype HWaddress Flags Mask Iface

10.0.2.1 ether 52:54:00:12:35:00 C enp0s3

MAC addresses are limited in scope to the physical network segment on which they

reside. They are not routable and cannot be accessed outside the local network segment.

The ip command is designed to replace the ifconfig, arp, and some other network-

related commands, so Red Hat has published a very nice IP command cheat sheet6 that

I use frequently. The man page for the arp command contains the following note, “This

program is obsolete. For replacement check ip neigh” and man page for the ifconfig

command has a similar one.

For now, those commands are still available, and it may be years before they

disappear completely.

 IP address
The IPv4 address7 is composed of four sets of Hexadecimal pairs, called octets because

they each contain eight (8) binary bits, for a total of 32 bits. The octets are separated by

periods, such as 192.168.25.36. Each octet can have a maximum value of 2^8-1, or 255.

Computers and network routing and management equipment deal with the binary

forms of IP addresses, but our devices are smart enough to display them to us in a

human-readable form.

Any computer or other device that needs to be accessible on a network or the

Internet must have an IP address assigned to it. IP addresses are routable and can be

accessed from other network segments through a router. Some IP address ranges are

reserved for internal, private use by organizations. These private IP address ranges are

well defined, and we will explore this and more about IP addresses in some detail later in

this chapter.

6 Red Hat, IP Command Cheat Sheet, https://access.redhat.com/sites/default/files/
attachments/rh_ip_command_cheatsheet_1214_jcs_print.pdf

7 Wikipedia, IP Address, https://en.wikipedia.org/wiki/IP_address

Chapter 12 NetworkiNg

https://access.redhat.com/sites/default/files/attachments/rh_ip_command_cheatsheet_1214_jcs_print.pdf
https://access.redhat.com/sites/default/files/attachments/rh_ip_command_cheatsheet_1214_jcs_print.pdf
https://en.wikipedia.org/wiki/IP_address

332

Because IPv4 was running out of assignable addresses and as a way to implement

more efficient routing through the Internet, IPv6 was developed. IPv6 uses 128 bits

for addressing, divided into eight sections of four Hexadecimal digits. A typical IPv6

address looks like this, 2001:0db8:0000:0000:0000:ff00:0042:8329, which looks

rather daunting, but which can be shortened by omitting leading zeros and eliminating

consecutive sections of zeros. The result looks like this, 2001:db8::ff00:42:8329.

EXPERIMENT 12-2

perform this experiment as the student user. Let’s use the ip command again, but this time

look at the ip addresses it reveals.

[root@studentvm1 ~]# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

group default qlen 1000

 link/ether 08:00:27:e1:0c:10 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.7/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

 valid_lft 1099sec preferred_lft 1099sec

 inet6 fe80::b7f2:97cf:36d2:b13e/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

the loopback ipv4 address is 127.0.0.1 and, as previously mentioned, this network interface

and its ip address is used by many Linux kernel processes and other applications. the ipv6

address is ::1/128. we can ping both addresses. the ping command sends a special iCMp8

data packet to the target ip address that simply says, “hi – please respond,” and is a way to

determine whether another host is on the network and active.

Chapter 12 NetworkiNg

333

[root@studentvm1 ~]# ping -c2 ::1

PING ::1(::1) 56 data bytes

64 bytes from ::1: icmp_seq=1 ttl=64 time=0.067 ms

64 bytes from ::1: icmp_seq=2 ttl=64 time=0.111 ms

--- ::1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 73ms

rtt min/avg/max/mdev = 0.067/0.089/0.111/0.022 ms

[root@studentvm1 ~]# ping -c2 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.063 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.069 ms

--- 127.0.0.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 103ms

rtt min/avg/max/mdev = 0.063/0.066/0.069/0.003 ms

we can also ping remote hosts. we use the example.com domain which is a legitimate domain

set up specifically for testing. DNS (Domain Name System) converts the human-readable

domain name into an ip address which is then used as the destination address in the ping

command.

[root@studentvm1 ~]# ping -c2 www.example.com

PING www.example.com (93.184.216.34) 56(84) bytes of data.

64 bytes from 93.184.216.34 (93.184.216.34): icmp_seq=1 ttl=54 time=37.10 ms

64 bytes from 93.184.216.34 (93.184.216.34): icmp_seq=2 ttl=54 time=151 ms

--- www.example.com ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 148ms

rtt min/avg/max/mdev = 37.968/94.268/150.568/56.300 ms

8 Wikipedia, Internet Control Message Protocol, https://en.wikipedia.org/wiki/
internet_Control_Message_Protocol

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

334

 IP address assignments

The Internet Assigned Numbers Authority (IANA)9 is responsible for global coordination

and management of IP address and autonomous system (AS) number assignments. This

organization coordinates the assignments of IP addresses to large geographic-political

entities. Registries within those divisions are responsible for assigning addresses to

customers such as ISPs. The IANA web site has a great deal of information that you may

find useful.

 TCP/IP
Before we get into networking any further, it helps understand a little bit about how

packets find their way to the correct host on a network. The TCP/IP network model

defines a five-layer stack that describes the mechanisms necessary to move data packets

from one host to another, whether that host is on the local network or someplace else on

the planet.

Tip Some versions of this model use a four-layer stack in which the bottom two
layers, datalink and physical, are combined into a single layer. i prefer the five-
layer version because i think it provides more clarity.

 The TCP/IP network model
Each of the five layers in the following description of this model is numbered and also

contains the names of the data units that are handled by that layer. The diagram in

Figure 12-1 shows each layer and the protocols typically encountered at that layer. This

list describes the layers of the stack in vertical order from top to bottom:

 1. Application layer – Message: This layer consists of the

connection protocols required for various network applications to

communicate, such as HTTP, DHCP, SSH, FTP, SMTP, IMAP, and

others. When you request a web page from a remote web site, a

9 Internet Assigned Numbers Authority (IANA), http://www.iana.org/

Chapter 12 NetworkiNg

http://www.iana.org/

335

connection request is sent to the web server and the response is

sent back to your host at this layer and then your browser displays

the web page in its window.

 2. Transport layer – TCP segment: The transport layer provides

end-to-end data transport and flow management services that are

independent of the data and types of protocols being transported.

It uses ports such as 80 for HTTP and 25 for SMTP to make

connections between the sending host and the remote host.

 3. Internet layer – Packet: Packet routing is performed on the

Internet layer. This layer is responsible for routing packets across

two or more different networks in order to reach their final

destination. This layer uses IP addresses and the routing table to

determine which device to send the packets to next. If sent to a

router, each router is responsible for sending the data packets only

to the next router in the series and not for mapping out the entire

route from the localhost to the target host. The Internet layer is

mostly about routers talking to routers in order to determine the

next router in the chain.

 4. Data link layer – Frame: The link layer manages the direct

connections between hardware hosts on a single, local, logical,

physical network. This layer uses the media access control (MAC)

addresses embedded in the network interface cards (NICs) to

identify the physical devices attached to the local network. This

layer cannot access hosts that are not on the local network.

 5. Physical layer – Bits: This is the hardware layer and consists of

the NICs and the physical network (usually Ethernet) cable as well

as the hardware-level protocols used to transmit individual bits

that make up the data between any two hosts or other network

nodes that are locally connected.

Chapter 12 NetworkiNg

336

Figure 12-1. The TCP/IP network model

 A simple example
So what does that look like when a host is actually sending data on the network using the

TCP/IP network model? Here is my own made-up description of how data are moved

from one network to another. In this example my computer is sending a request to a

remote server for a web page.

Chapter 12 NetworkiNg

337

Figure 12-1 can be used to follow the flow of data through the various layers of the

TCP/IP model as you proceed through this example:

 1. On the application layer, the browser, for example, initiates an

HTTP or HTTPS connection request message to the remote host,

www.example.com, to send back the data comprising the contents

of a web page. This is the message, and it includes only the IP

address of the remote web server.

 2. The transport layer encapsulates the message containing the web

page request in a TCP datagram with the IP address of the remote

web server as the destination. Along with the original request

packet, this packet now includes the source port from which the

request will originate, usually a very high number random port, so

that the return data knows which port the browser is listening on,

and the destination port on the remote host, port 80 in this case.

 3. The Internet layer encapsulates the TCP datagram in a packet that

also contains both the source and destination IP addresses.

 4. The data link layer uses the Address Resolution Protocol (ARP)

to identify the physical MAC address of the default router and

encapsulates the Internet packet in a frame that includes both the

source and destination MAC addresses.

 5. The frame is send over the wire – usually CAT510 or CAT611 – from

the NIC on the localhost to the NIC on the default router. In a

wireless environment, the wireless NIC sends the frame over the

air to the receiver in the wireless router. In this case the wireless

router is the default, that is, the gateway router.

10 Wikipedia, Category 5 cable, https://en.wikipedia.org/wiki/Category_5_cable
11 Wikipedia, Category 6 cable, https://en.wikipedia.org/wiki/Category_6_cable

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/Category_5_cable
https://en.wikipedia.org/wiki/Category_6_cable

338

 6. The default router opens the datagram and determines the

destination IP address. The router uses its own routing table to

identify the IP address of the next router that will take the frame

on the next step of its journey. The router then re-encapsulates the

frame in a new datagram that contains its own MAC as the source

and the MAC address of the next router and then sends it on

through the appropriate interface. The router performs its routing

task at layer 3, the Internet layer.

Switches are invisible to all protocols at layers 2 and above, so they do not affect the

transmission of data in any logical manner. The function of switches is merely to provide

a simple means to connect multiple hosts into a single physical network via lengths of

network cable.

There is also an OSI network model, but that is more complex than the TCP/IP

model and that additional complexity adds nothing to our understanding. The OSI

model is irrelevant for our needs.

 CIDR – Network notation and configuration
CIDR stands for Classless Inter-Domain Routing.12 It defines a notation methodology for

network addressing that is used to specify the network portion of an IP address.

 Network classes
Before examining how CIDR actually works, let’s first look at the classful network notation

that CIDR replaces. Introduced in 1981, the classful methodology defined five network

classes to be used for identification and addressing devices on the Internet. The network

class is defined by the four leading bits of the address. Figure 12-2 shows the five

network classes defined by classful network addressing, including both the subnet

mask and CIDR notation for each class.

12 Wikipedia, Classless Inter-Domain Routing, https://en.wikipedia.org/wiki/
Classless_Inter-Domain_Routing

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

339

Class Start End Subnet Mask CIDR No of
Networks

IP Addresses /
Network

A 0.0.0.0 127.255.255.255 255.0.0.0 /8 128 16,177,216 (2
24

)

B 128.0.0.0 191.255.255.255 255.255.0.0 /16 16,384 65,536 (2
20

)

C 192.0.0.0 223.255.255.255 255.255.255.0 /24 2,097,152 256 (2
8
)

D 224.0.0.0 239.255.255.255 Undefined Undefined

E 240.0.0.0 255.255.255.255 Undefined Undefined

Figure 12-2. Classful Internet addressing defines five classes

Classes A, B, and C are the commonly used unicast address ranges that were

assigned to organizations. Unicast means that the data packets are sent to a single

target host. Class D was the so-called multicast range of addresses. In this range, data

packets would be sent to all hosts on a defined network. This range of IP addresses was

essentially unused. The class E address range was reserved for future expansion but was

also never used.

Note that there are only three possible subnet masks that match each class of the

classful networks, 255.0.0.0 (8 bits), 255.255.0.0 (16 bits), and 255.255.255.0 (24 bits),

divided on the octet boundaries. This is one of the limiting factors in public address

allocation due to the relatively limited number of networks that the classes define.

Unfortunately, classful networking assignments led to major waste. Organizations

would apply for a number of addresses, but if they needed more than the number of

addresses in a class C network, for example, they would be applied for and be assigned

an entire class B network whether they needed all of the addresses in that network or

not. The same is true for class B networks; a few large organizations needed more than a

class B network, so they were assigned class A networks. Thus, a few large organizations

became assigned very large numbers of IP addresses.13 See RFC790, “Historic allocation

of class A networks,”14 for the complete list of the assigns of the current /8 blocks and

historical class A networks.

13 Wikipedia, List of assigned /8 blocks networks, https://en.wikipedia.org/wiki/
List_of_assigned_/8_IPv4_address_blocks

14 The Internet Engineering Task Force (IETF®): RFC790 Historic allocation of class A networks

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/List_of_assigned_/8_IPv4_address_blocks
https://en.wikipedia.org/wiki/List_of_assigned_/8_IPv4_address_blocks
https://tools.ietf.org/html/rfc790

340

The four leading (leftmost) bits of the address define the class of the network, not the

subnet mask or the CIDR equivalent of the subnet mask. In practical terms, this meant

that large networks could not be broken down into smaller subnets at the Internet level

because the Internet routers could only have a single route to each assigned classful

network. Further, although the large, classful networks could be divided into subnets

by the organizations that owned them, routing packets to other geographical locations

on the same network then required the organization to use private internal networks or

public VPNs at a very high cost premium.

For a simple example, imagine that a company that has six departments and requires

about 400 IP addresses for each. This requires more than a single class C network of 256

IP addresses, a total of 2400 addresses. The company has a class B network of 65,536

addresses assigned to it. As a result, the remaining 63,136 IP addresses would be wasted

because they could not be assigned to other organizations.

Note For the purposes of these experiments, it is necessary to use a portion
of the current private 10.0.0.0/8 CiDr block of addresses as if it were a public
class B address. this is to protect public addresses that may belong to some real
organization.

The sipcalc command provides a great deal of information about an IP address or

address ranges. As you will see later, it also has the capability to generate a list of subnets

in a given address range given a subnet mask. You may have to install the sipcalc

program; it was not installed by default on my Fedora system.

EXPERIMENT 12-3

First, as the root user, install the sipcalc rpM package.

[root@studentvm1 ~]# dnf -y install sipcalc

Now as the student user, we can use sipcalc to explore ip addressing.

Use the sipcalc CLi program to provide the network data for this randomly selected class B

network from the pseudo-public address range.

[student@studentvm1 ~]$ sipcalc 10.125.0.0/16

-[IPv4 : 10.125.0.0/16] - 0

Chapter 12 NetworkiNg

341

[CIDR]

Host address - 10.125.0.0

Host address (decimal) - 175964160

Host address (hex) - A7D0000

Network address - 10.125.0.0

Network mask - 255.255.0.0

Network mask (bits) - 16

Network mask (hex) - FFFF0000

Broadcast address - 10.125.255.255

Cisco wildcard - 0.0.255.255

Addresses in network - 65536

Network range - 10.125.0.0 - 10.125.255.255

Usable range - 10.125.0.1 - 10.125.255.254

the output from the sipcalc command shows, among other things, the network address, the

netmask, the network address range, as well as the available addresses in that range. the

address 10.125.0.0 is the network address, and 10.125.255.254 is the broadcast address for

this network. those two addresses cannot be used for hosts.

another option would have been to assign multiple class C networks to the company. that

would significantly reduce the number of wasted ip addresses, but configuring the routing

for this organization would be more complex than it would otherwise need to be with a single

network. this option would also reduce the number of class C address blocks available for

other organizations.

 Along came a CIDR
Classless Inter-Domain Routing15 (CIDR) notation was introduced in 1993 as a means

of extending the lifetime of IPv416 which was running out of assignable addresses. It

accomplishes this by making it possible for organizations to more efficiently utilize

the public IPv4 address ranges assigned to them and by opening up some previously

reserved address ranges.

15 Wikipedia, Classless Inter-Domain Routing, https://en.wikipedia.org/wiki/Classless_Inter-
Domain_Routing

16 Bandel, David A., Linux Journal, CIDR: A Prescription for Shortness of Address Space,
 www.linuxjournal.com/article/3017. Linux Journal has ceased publication. This article is no
longer available as their web site is no longer on line. The article can be viewed at this location:
http://www.ipst-info.net/LinuxJournal/LJ/056/3017.html

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://www.ipst-info.net/LinuxJournal/LJ/056/3017.html
http://www.ipst-info.net/LinuxJournal/LJ/056/3017.html

342

In 1996, RFC1918 enhanced CIDR with the assignments of reserved, externally non-

routable networks in each of the old A, B, and C class ranges. These private networks,17

shown in Figure 12-3, can be used freely by any organization for their internal networks;

no longer is it necessary for every computer to have an assigned public IP address. This

feature provides a significant portion of the solution to multiple problems.

CIDR Block Address Range No. of IP Addresses

10.0.0.0/8 10.0.0.0 – 10.255.255.255 16,777,216

172.16.0.0/12 172.16.0.0 – 172.31.255.255 1,048,576

192.168.0.0/16 192.168.0.0 – 192.168.255.255 65,536

Figure 12-3. IPv4 address ranges reserved for use as private internal networks

The use of these private internal networks allows organizations to be assigned one

or possibly a few public IP addresses for access to the outside Internet while providing

large private address spaces for internal networks. To be absolutely clear, each of these

address ranges can be used by many different organizations because these private

network addresses are not routable through the Internet; of course organizations can

route internally between private networks.

Returning to our example company, let’s make the assumption that it only requires

a single public IP address to connect it to the outside world. The company’s Internet

provider only assigns minimum blocks of four addresses, two of which are reserved for

the network address and the broadcast address, thus leaving two usable addresses. This

provides a balance between unusable addresses due to excessive subnetting, wasted

addresses, and cost to the customer.

17 The Internet Engineering Task Force (IETF®), RFC1918 Address Allocation for Private Internets,
https://tools.ietf.org/html/rfc1918

Chapter 12 NetworkiNg

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918

343

EXPERIMENT 12-4

as the student user, we will now use sipcalc to explore using the smallest assignable ip

address space to our fictional organization. assume that the iSp assigns the company a public

network address, 10.125.16.32/30. remember that, for this example, we are using part of the

10.0.0.0/8 private network as if it were public. this assignment provides the company with the

following public network which uses a network mask of 30 bits.

[student@studentvm1 ~]$ sipcalc 10.125.16.32/30

-[IPv4 : 10.125.16.32/30] - 0

[CIDR]

Host address - 10.125.16.32

Host address (decimal) - 175968288

Host address (hex) - A7D1020

Network address - 10.125.16.32

Network mask - 255.255.255.252

Network mask (bits) - 30

Network mask (hex) - FFFFFFFC

Broadcast address - 10.125.16.35

Cisco wildcard - 0.0.0.3

Addresses in network - 4

Network range - 10.125.16.32 - 10.125.16.35

Usable range - 10.125.16.33 - 10.125.16.34

this provides our organization with four ip addresses. two of these addresses are used by the

network address and the broadcast address, which leaves two ip addresses for use by our

network, 10.125.16.33 and 10.125.16.34.

our example company is free to choose to use any of the private network ranges for their

internal networks. they can use Network address translation (Nat) to access the outside world

from their internal, private network.

at first glance, the straightforward thing to do might be to choose a network from the private

172.16.0.0/12 range to provide a large enough range for a single internal network. For our

example, they could choose the 172.16.0.0/12 network which would provide the following

internal network space for them.

Chapter 12 NetworkiNg

344

[student@studentvm1 ~]$ sipcalc 172.16.0.0/12

-[IPv4 : 172.16.0.0/12] - 0

[CIDR]

Host address - 172.16.0.0

Host address (decimal) - 2886729728

Host address (hex) - AC100000

Network address - 172.16.0.0

Network mask - 255.240.0.0

Network mask (bits) - 12

Network mask (hex) - FFF00000

Broadcast address - 172.31.255.255

Cisco wildcard - 0.15.255.255

Addresses in network - 1048576

Network range - 172.16.0.0 - 172.31.255.255

Usable range - 172.16.0.1 - 172.31.255.254

Note that this network does not conform to the old class B network as it has fewer network

bits in the netmask, thus providing more space for host address bits. the 12 network bits

leaves 20 bits for hosts or 1,048,576 hosts. that is far more hosts available than an old class

B network would provide for a network. it is also more space than the organization actually

needs for its network.

 Variable Length Subnet Masking
CIDR also brings with it a new approach to the old netmask, called Variable Length

Subnet Masking, or VLSM. The use of a 12-bit netmask for the private address range

defined by the CIDR block in Experiment 12-4 hints at this.

VLSM allows our example company to easily create more manageable subnets from

the large private address space available to them by adding bits to the netmask. Using

the 12-bit netmask encompasses this entire available private address range, so in order

to be more conservative about the address space that the company actually needs, they

decide to increase the number of bits in the netmask they will use.

The sipcalc -s xx command, where xx is the number of bits in the subnet mask,

can be used to calculate the subnets in this private address range.

Chapter 12 NetworkiNg

345

EXPERIMENT 12-5

perform this experiment as the student user. Calculate the 16 subnets of 172.16.0.0/12 that

have a 16-bit subnet mask.

[student@studentvm1 ~]$ sipcalc 172.16.0.0/12 -s 16

-[IPv4 : 172.16.0.0/12] - 0

[Split network]

Network - 172.16.0.0 - 172.16.255.255

Network - 172.17.0.0 - 172.17.255.255

Network - 172.18.0.0 - 172.18.255.255

Network - 172.19.0.0 - 172.19.255.255

Network - 172.20.0.0 - 172.20.255.255

Network - 172.21.0.0 - 172.21.255.255

Network - 172.22.0.0 - 172.22.255.255

Network - 172.23.0.0 - 172.23.255.255

Network - 172.24.0.0 - 172.24.255.255

Network - 172.25.0.0 - 172.25.255.255

Network - 172.26.0.0 - 172.26.255.255

Network - 172.27.0.0 - 172.27.255.255

Network - 172.28.0.0 - 172.28.255.255

Network - 172.29.0.0 - 172.29.255.255

Network - 172.30.0.0 - 172.30.255.255

Network - 172.31.0.0 - 172.31.255.255

Use sipcalc to calculate the number of addresses provided by various numbers of bits in the

netmask of the 172.16.0.0/12 network. You should be able to determine and verify the data

shown in Figure 12-4.

Chapter 12 NetworkiNg

346

as mentioned before, the company currently needs about 2400 ip addresses. to allow plenty

of room for growth while reducing the total number of addresses to a manageable level, the

company chooses to use a 19-bit netmask that provides 8192 addresses. they calculate the

available 19-bit subnets using sipcalc.

[student@studentvm1 ~]$ sipcalc 172.16.0.0/12 -s 19

-[IPv4 : 172.16.0.0/12] - 0

[Split network]

Network - 172.16.0.0 - 172.16.31.255

Network - 172.16.32.0 - 172.16.63.255

Network - 172.16.64.0 - 172.16.95.255

Network - 172.16.96.0 - 172.16.127.255

Network - 172.16.128.0 - 172.16.159.255

Network - 172.16.160.0 - 172.16.191.255

Network - 172.16.192.0 - 172.16.223.255

Network - 172.16.224.0 - 172.16.255.255

<snip>

Network - 172.31.96.0 - 172.31.127.255

Network - 172.31.128.0 - 172.31.159.255

Network - 172.31.160.0 - 172.31.191.255

Network - 172.31.192.0 - 172.31.223.255

Network - 172.31.224.0 - 172.31.255.255

Bits in netmask Number of addresses

12 1,048,576

16 65,536

17 32,768

18 16,384

19 8,192

20 4,096

Figure 12-4. Number of addresses in various subnet ranges for network
172.16.0.0/12

Chapter 12 NetworkiNg

347

the company randomly decides to use the 172.30.64.0/19 subnet. So their network

specification can be calculated.

[student@studentvm1 ~]$ sipcalc 172.30.64.0/19

-[IPv4 : 172.30.64.0/19] - 0

[CIDR]

Host address - 172.30.64.0

Host address (decimal) - 2887663616

Host address (hex) - AC1E4000

Network address - 172.30.64.0

Network mask - 255.255.224.0

Network mask (bits) - 19

Network mask (hex) - FFFFE000

Broadcast address - 172.30.95.255

Cisco wildcard - 0.0.31.255

Addresses in network - 8192

Network range - 172.30.64.0 - 172.30.95.255

Usable range - 172.30.64.1 - 172.30.95.254

of course this is only one possible 19-bit subnet out of 128 in the private address range. the

company could have chosen any of the 19-bit subnets calculated in Figure 12-5, any of which

would work equally well.

another option would be to use the 192.168.0.0/16 private address range and select one of

the 19-bit subnets available in that range. i leave the task of determining how many and which

subnets would be available in that range as an exercise for the reader.

Using CIDR notation along with the reorganization of previously allocated addresses

by CIDR block, as well as the use of VLSM, provides more usable public IP addresses and

increased flexibility in the assignment of public addresses. The design of CIDR notation

with VLSM respects the old classful networking scheme while providing significantly

more flexibility and IP address availability for private internal use by organizations of all

sizes. Private address spaces as well as assigned public address spaces can be easily split

into subnets by adding bits to the netmask without consideration for network classes.

CIDR notation can be used when referring to classful networks but only as a

notational shorthand.

Chapter 12 NetworkiNg

348

 DHCP client configuration
Each network interface controller (NIC) on your computer provides a physical

connection to your network. Most computers have only one NIC, while others may have

several. Laptops usually have a NIC for a wired connection and a NIC for a wireless

connection. Some laptops may also have a NIC for a cellular network connection.

Some Linux desktop or tower computers have multiple wired NIC cards and are used

as inexpensive routers for internal networks; such is the case with a couple of my own

systems.

In most instances, and with current releases of Fedora, 29, 30, and later, the default

is to use Dynamic Host Configuration Protocol18 (DHCP) configuration for all network

interfaces. This requires a DHCP server to be located on the local network. The virtual

router on our virtual network also provides DHCP services.

The DHCP server can provide a large number of network configuration data

components, but those in the following list are the only ones that are absolutely required.

These are the minimum data required for a host to access the network:

• An IP address

• The IP address of the router/gateway device

• The IP address of at least one name server

Some other configuration data that the DHCP server might provide are listed as

follows but not limited to

• Up to two additional name server IP addresses

• The domain name of the local network so that using a command like

ping does not require typing the complete domain name

• The subnet mask

18 Wikipedia, Dynamic Host Configuration Protocol, https://en.wikipedia.org/wiki/
Dynamic_Host_Configuration_Protocol

Chapter 12 NetworkiNg

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

349

 NIC naming conventions
The naming conventions for network interface controllers used to be simple,

uncomplicated, and, I thought, easy. Using ethX made sense to me and was easy to type.

It also did not require extra steps to figure out what long and obscure name belonged to a

NIC. Unfortunately, adding a new NIC could force the renaming of existing ones, causing

issues with startup configuration of all the NICs.

That has all changed – more than once. After a short stint with some very long

and unintelligible NIC names that apparently made some sense to a small group of

programmers, we now have a third set of naming conventions which seemed only

marginally better until I came to understand it better.

 How it works – sort of
The udev device manager detects when a new device has been added to the system, such

as a new NIC, and creates a rule to identify and name it if one does not already exist. The

details of how this works have changed in more recent versions of Fedora, CentOS, and

RHEL.

During the early part of the startup phase, the Linux kernel via udev identifies

connected devices including network interface controllers. At this stage the devices

are still known by their traditional names of ethX. A very short time after that, systemd

renames the devices according to a series of hierarchical naming schemes.

EXPERIMENT 12-6

perform this experiment as root.

 [root@studentvm1 ~]# dmesg | grep eth

[4.791454] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:e1:0c:10

[4.791520] e1000 0000:00:03.0 eth0: Intel(R) PRO/1000 Network Connection

[5.294678] e1000 0000:00:03.0 enp0s3: renamed from eth0

So this shows that at a little over 4 seconds into the Linux startup sequence, the eth0 network

device is located and less than a second later eth0 is renamed to enp0s3.

Chapter 12 NetworkiNg

350

Chapter 11 of the RHEL 7 “Networking Guide” describes how this renaming works.

The following is excerpted from that document:

• Scheme 1: Names incorporating Firmware or BIOS provided index

numbers for on-board devices (example: eno1), are applied if that

information from the firmware or BIOS is applicable and available,

else falling back to scheme 2.

• Scheme 2: Names incorporating Firmware or BIOS provided PCI

Express hot-plug slot index numbers (example: ens1) are applied

if that information from the firmware or BIOS is applicable and

available, else falling back to scheme 3.

• Scheme 3: Names incorporating physical location of the connector of

the hardware (example: enp2s0), are applied if applicable, else falling

directly back to scheme 5 in all other cases.

• Scheme 4: Names incorporating interface's MAC address (example:

enx78e7d1ea46da), is not used by default, but is available if the user

chooses.

• Scheme 5: The traditional unpredictable kernel naming scheme, is

used if all other methods fail (example: eth0).

In scheme 1, eno is used in which the letter “o” means on-board, that is, an integral

part of the motherboard. In scheme 2, ens is used and the letter “s” indicates that the

device is plugged into a PCI Express slot. Back in Experiment 12-1, we looked at the

VM’s installed NIC and found that it was named enp0s3. This is consistent with naming

scheme 3 which is based on the physical location of the connectors, whether virtual or

physical, on the hardware.

The primary function of the revised naming schemes is to provide a consistent

set of NIC names so that installing a new NIC or even just a reboot would not cause

the NIC names to change. This by itself is well worth the changes. I have had plenty

of opportunity to fight with apparently random renaming of several ethX devices on a

single host. That was much less fun than learning the revised naming schemes.

The newest NIC naming conventions are used by RHEL 7 and 8, CentOS 7 and

probably CentOS 8 when it is released, and the current releases of Fedora. The NIC

naming conventions for these distributions are described in detail in the RHEL 7

Chapter 12 NetworkiNg

351

document “Networking Guide19” along with a description of how the names are derived.

Using the NetworkManager tools to manage networking is covered in the RHEL 8

document, “Configuring and Managing Networking.20”

 NIC configuration files
By default, all current releases of Fedora default to DHCP configuration. No options are

provided during installation to configure any aspect of the network interface. Starting

with Fedora 29, Linux hosts using DHCP for network configuration no longer require

interface configuration files if all of the DHCP default configurations are sufficient.

However, non-standard configuration of the NICs for each network connection is still

accomplished with ifcfg-X files in the /etc/sysconfig/network-scripts directory. Each NIC

can have an interface configuration file named ifcfg-enp0s3, or something similar, where

enp0s3 is the interface name assigned by the udev daemon. Each interface configuration

file is bound to a specific physical NIC. Using the nmcli tool (network manager

command-line interface) to configure an interface creates the interface configuration file

for that interface.

The current strategy is to use the contents of the interface configuration files to

generate the rules. However, if an interface configuration file does not exist, plugging

in a new device or connecting with a new wireless network causes udev to notify

NetworkManager of the new device or wireless connection. Then, in Fedora up through

release 28, NetworkManager creates the new interface configuration file. As of Fedora

29 and higher, the Network Manager only creates the connection but does not create an

interface configuration file.

The udev daemon creates an entry for each NIC installed in the system in the

network rules file. The Network Manager uses these entries, along with information

in the interface configuration files in the /etc/sysconfig/network-scripts/ directory to

initialize each NIC.

19 Red Hat, Networking Guide, https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/7/html/networking_guide/
ch-consistent_network_device_naming

20 Red Hat, Configuring and Managing Networking, https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/
Configuring-Networking-with-nmcli_configuring-and-managing-networking

Chapter 12 NetworkiNg

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/ch-consistent_network_device_naming
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/ch-consistent_network_device_naming
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/ch-consistent_network_device_naming
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/Configuring-Networking-with-nmcli_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/Configuring-Networking-with-nmcli_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/Configuring-Networking-with-nmcli_configuring-and-managing-networking

352

Other distributions may keep their network configuration files in the /etc/

NetworkManager/system-connections directory, with the name of the network as the

file name. For example, my System76 laptop uses POP!_OS which is based on Ubuntu.

The /etc/NetworkManager/system-connections directory on that laptop contains files

for the wired network as well as each of the wireless networks I have connected with. The

structure of these files is different from the ifcfg files we will explore later in this chapter,

but they are in ASCII plain text format and are readable and easily understandable.

 Create an interface configuration file
Let’s do a quick experiment to see why creating an interface configuration file might be a

good idea.

EXPERIMENT 12-7

perform this experiment as the root user.

Suppose that our VM host is being attacked in some way via the network. one way to ensure

that a network attack is thwarted is to turn off the host’s network connection. if we were

local to a host and it was a physical device, then we could unplug the network cable. But

when remote we need to turn down the network interface. we can use the ifdown or the ip

commands to do that.

First verify that enp0s3 currently has an ip address assigned.

[root@studentvm1 ~]# ip addr show enp0s3

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

group default qlen 1000

 link/ether 08:00:27:e1:0c:10 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.7/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

 valid_lft 1143sec preferred_lft 1143sec

 inet6 fe80::c33:30e7:314e:e83e/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

Now turn enp0s3 off.

[root@studentvm1 ~]# ip link set enp0s3 down

Chapter 12 NetworkiNg

353

and verify.

[root@studentvm1 ~]# ip addr show enp0s3

2: enp0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc fq_codel state DOWN group

default qlen 1000

 link/ether 08:00:27:e1:0c:10 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.7/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

 valid_lft 1118sec preferred_lft 1118sec

[root@studentvm1 ~]#

the link is still up and active. and that is the problem.

After some experimentation of my own, I have learned that it is not possible to turn

off an active link or to turn on an inactive one unless there is an interface configuration

file for it. So let’s create one.

EXPERIMENT 12-8

this experiment must be performed as the root user.

we could actually create an interface configuration file, ifcfg-enp0s3, for this interface

using an editor like Vim, but that is actually the hard way. instead we will use the nmcli

(NetworkManager command-line interface) to do this.

open a terminal session and make /etc/sysconfig/network-scripts the pwD. then list the

contents. the directory should be empty.

[root@studentvm1 ~]# cd /etc/sysconfig/network-scripts/ ; ll

total 4

[root@studentvm1 network-scripts]#

the following command adds the new connection and saves the interface configuration file

in /etc/sysconfig/network-scripts/. Note that it is not necessary for this to be the pwD, it just

makes it easier to see the before and after, with and without the file.

[root@studentvm1 network-scripts]# nmcli connection add save yes type

ethernet ifname enp0s3 con-name enp0s3

Connection 'enp0s3' (9e08333c-4458-4c7e-9632-16e3afe41f93) successfully

added.

[root@studentvm1 network-scripts]# ll

Chapter 12 NetworkiNg

354

total 8

-rw-r--r-- 1 root root 282 May 8 16:09 ifcfg-enp0s3

[root@studentvm1 network-scripts]#

Now stop the enp0s3 network connection and verify that it is now down. the lack of an ip

address indicates that the interface is down.

[root@studentvm1 network-scripts]# ip link set enp0s3 down

it can take a few moments for the link to go down, so if the next command still shows it as up,

wait a few seconds and try it again.

[root@studentvm1 network-scripts]# ip addr show enp0s3

2: enp0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc fq_codel state DOWN group

default qlen 1000

 link/ether 08:00:27:e1:0c:10 brd ff:ff:ff:ff:ff:ff

[root@studentvm1 network-scripts]#

Now bring interface enp0s3 back up again.

I find that remembering these commands is somewhat difficult because I don’t use

them very often. Using tab completion will always give me a hint as to what the next

possible entry might be.

 The interface configuration file
Now let’s look at the contents of the ifcfg-enp0s3.

EXPERIMENT 12-9

as root, cat the /etc/sysconfig/network-scripts/ifcfg-enp0s3 file.

[root@studentvm1 network-scripts]# cat ifcfg-enp0s3

TYPE=Ethernet

PROXY_METHOD=none

BROWSER_ONLY=no

BOOTPROTO=dhcp

Chapter 12 NetworkiNg

355

DEFROUTE=yes

IPv4_FAILURE_FATAL=no

IPv6INIT=yes

IPv6_AUTOCONF=yes

IPv6_DEFROUTE=yes

IPv6_FAILURE_FATAL=no

IPv6_ADDR_GEN_MODE=stable-privacy

NAME=enp0s3

UUID=4a527023-daa4-4dfb-9775-dbe9fb00fb0b

DEVICE=enp0s3

ONBOOT=yes

this is a typical interface configuration file as created by the nmcli command. it contains the

bare minimum necessary for such a file. the primary purpose for creating this file is that it

allows the Sysadmin to control the interface.

Figure 12-5 lists the configuration options shown previously and some common ones

that aren’t in that file we just created, along with some brief explanations for each. Many

of the IPv6 options are similar to those of the similarly named IPv4 ones. Note that local

configuration variable settings override those provided by a DHCP server.

Chapter 12 NetworkiNg

356

Figure 12-5. Some of the more common configuration items found in network
interface configuration files

Configuration variable Description

TYPE Type of network such as Ethernet or token ring.

PROXY_METHOD Proxy configuration method. “none” means no proxy is in use.

BROWSER_ONLY Whether a proxy configuration is for browsers only.

BOOTPROTO Options are dhcp, bootp, none, and static.

DEFROUTE This interface is the default route for this host to the outside world.

IPv4_FAILURE_FATAL If this is set to “no” failure to obtain an IPv4 connection will not affect any attempt
to make an IPv6 connection.

IPv6INIT Whether to initialize IPv6 or not. The default is yes.

IPv6_AUTOCONF Yes means use DHCP for configuration of IPv6 on this interface.

IPv6_DEFROUTE This interface is the IPv6 default route for this host to the outside world.

IPv6_FAILURE_FATAL If this is set to “no” failure to obtain an IPv6 connection will not affect any attempt
to make an IPv4 connection.

IPv6_ADDR_GEN_MODE Configure IPv6 Stable Privacy addressing.

NAME The interface name, such as enp0s3.

UUID A Universally Unique Identifier for the interface. It is created with a hash of the
interface name.

DEVICE The name of the interface to which this configuration file bound.

ONBOOT If yes, this starts the interface at boot (really startup time. If no, the interface is
not started until a user logs in at the GUI or manually starts the inteface. I always
set this to yes if it is not already.

HWADDR The MAC address of the interface.

DNS1, DNS2 Up to two name servers may be specified.

USERCTL Specifies whether non-privileged users may start and stop this interface. Options
are yes/no.

IPADDR The IP Address assigned to this NIC

BROADCAST The broadcast address for this network such as 10.0.2.255

NETMASK The netmask for this subnet such as 255.255.255.0

NETWORK The network ID for this subnet such as 10.0.2.0

SEARCH The DNS domain name to search when doing lookups on unqualified hostnames
such as using studentvm1 instead of studentvm1.example.com.

Chapter 12 NetworkiNg

357

The lines in the interface configuration files are not sequence sensitive and work just

fine in any order. By convention the option names are in uppercase and the values are in

lowercase. Option values can be enclosed in quotes, but that is not necessary unless the

value is more than a single word or number.

Let’s make some minor changes to the interface configuration file. We can do this in

three ways at the command line, by editing the files directly, by using the nmtui program,

and by using the nmcli command. We will use the command line for this.

EXPERIMENT 12-10

perform this experiment as the root user. Use the already open root terminal session with /etc/

sysconfig/ as the pwD.

we will add an external DNS server as DNS2. it is necessary to provide DNS1 in the interface

configuration file due to the fact that the nmcli program does not allow for adding only DNS2.

the ip address of the virtual router which is also our virtual DhCp server is 10.0.2.1, and the ip

address of one of the google public name servers is 8.8.8.8.

[root@studentvm1 network-scripts]# nmcli connection modify enp0s3 IPv4.dns

"10.0.2.1 8.8.8.8"

Now view the contents of the ifcfg-enp0s3 file.

[root@studentvm1 network-scripts]# cat ifcfg-enp0s3

TYPE=Ethernet

PROXY_METHOD=none

BROWSER_ONLY=no

BOOTPROTO=dhcp

DEFROUTE=yes

IPv4_FAILURE_FATAL=no

IPv6INIT=yes

GATEWAY The network router or default gateway for this subnet, such as 10.0.2.1.

PEERDNS The yes option indicates that /etc/resolv.conf is to be modified by inserting the
DNS server entries specified by DNS1 and DNS2 options in this file. No means do
not alter the resolv.conf file. Yes is the default when DHCP is specified in the
BOOTPROTO line.

Figure 12-5. (continued)

Chapter 12 NetworkiNg

358

IPv6_AUTOCONF=yes

IPv6_DEFROUTE=yes

IPv6_FAILURE_FATAL=no

IPv6_ADDR_GEN_MODE=stable-privacy

NAME=enp0s3

UUID=4a527023-daa4-4dfb-9775-dbe9fb00fb0b

DEVICE=enp0s3

ONBOOT=yes

DNS1=10.0.2.1

DNS2=8.8.8.8

the two new DNS entries are at the bottom of the ifcfg file. however, the VirtualBox DhCp

server settings use the physical host’s DNS settings. those are configured first, and then

these entries are added at the bottom of /etc/resolv.conf making this change irrelevant in the

VM. however, it would work fine when working on a physical host and not a VM. i did try to

find a way to make VirtualBox ignore the host’s settings but was unable. of course this does

make sense because the DNS servers of the host computer are generally the ones that would

also be available to the virtual network.

we cannot test this in our VM – at the moment – so edit the /etc/sysconfig/network-scripts/

ifcfg-enp0s3 file and remove the two line items that were just added.

we do have an alternate, brute force method for setting and keeping the desired name servers

listed in /etc/resolv.conf.

First edit /etc/resolv.conf, and whatever was there to start, change it to look like this.

Generated by NetworkManager

nameserver 10.0.2.1

nameserver 8.8.8.8

Now we can use a new tool to make this file immutable so that it cannot be changed by any

process or any user including root. if we do not do this, it will change at the next boot. the

chattr (change attributes) command can set some file attributes that are not accessible

using the normal file mode settings. Most of these attributes are rarely used, but i do use the -i

(immutable) attribute for times like this.

with /etc as the pwD, enter the following commands.

[root@studentvm1 etc]# chattr +i resolv.conf ; lsattr resolv.conf

----i---------e---- resolv.conf

Chapter 12 NetworkiNg

359

Notice the i in the attribute list that tells us the file is now immutable. Leave it that way for now.

in Volume 3 of this course, we will set up DhCp and name servers that will perform as we want

and which will enable us to bypass the DhCp and name services of the virtual network. the

limitations i discovered while creating this experiment are a good reason to consider using our

own servers – to ensure that we have total control over how our network environment works.

For more information about configuration files, the file /usr/share/doc/initscripts/

sysconfig.txt contains a list of all the files that can be found in the /etc/sysconfig

directory and its subdirectories. This includes the network ifcfg-<interface> files. The

descriptions of each file list all of the possible configuration variables and their possible

values along with terse explanations.

 The network file
There is one old and now deprecated file you might encounter. The network file usually

contains only a single comment line for current releases of Fedora, RHEL, and CentOS. It

is located in /etc/sysconfig and was used in the past to enable or disable networking. It

was also used to set the networking hostname as shown in the following example.

NETWORKING=yes

HOSTNAME=host.example.com

This file has been present but unused in Fedora since release 19 and is still present

in Fedora 30. It is still used in RHEL/CentOS 6.x but no longer in RHEL/CentOS 7.x. The

network hostname is now set in the /etc/hostname file.

 The route-<interface> file
The only other network configuration file you might find in /etc/sysconfig/network-

scripts is the route-<interface> file. If you want to set up static routes on a multi-homed21

system, you would create a route file for each interface. For example, a file might be

named route-enp0s3 and would contain information defining routes to entire networks

or specific hosts for that interface. Each interface would have its own route file.

21 A system with multiple NICs, typically used as a router

Chapter 12 NetworkiNg

360

The use of this file is uncommon in Linux clients. However, if you are using the host

as a router or have some special routing needs, you would use this file to configure those

complex routes. Therefore, the details of this routing configuration file are beyond the

scope of this course. It will be covered in the next course in this series, Advanced Linux

System and Server Administration.

 Other network files
The /etc/sysconfig/network-scripts directory used to contain many other files, all of

which were usually executable BASH scripts rather than configuration files. This was,

to me at least, one of the bothersome exceptions to the Linux Filesystem Hierarchical

Standard22 (FHS) which explicitly states that only configuration files and not executable

files are to be located in the /etc tree. The use of NetworkManager has finally resulted in

removal of all the executable files from this directory and, as of Fedora 29, used solely for

configuration files.

 Network startup
With the advent of wireless networks and mobile devices, reconfiguring the network

interfaces for each new wireless network became very complicated and time-

consuming, which is not a good thing for people who are less technical. It could also

be a problem when adding a new NIC to a server or other host with multiple network

interfaces.

The NetworkManager service starts the network services during startup and provides

a management interface while the host is running.

 The NetworkManager service
Red Hat introduced the Network Manager in 2004 as a way to simplify and automate

network configuration and connections, especially wireless connections. The intent is to

prevent the user from having to manually configure each new wireless network before

using it.

22 See Volume 1, Chapter 19, for a description of the Linux FHS.

Chapter 12 NetworkiNg

361

The NetworkManager service makes network management better and easier

for non-technical users because it integrates well with udev and D-Bus to deal with

pluggable devices and various wireless networks. It requires some adjustment by the

Linux SysAdmins who have been around for a while because many of the configuration

functions we have been familiar with are now handled by a new layer of configuration

files, scripts, and commands. I found it fairly easy to make this switch.

Our primary interface with NetworkManager are the ip and nmcli commands. We

can also use nmtui, the NetworkManager text user interface, a menu driven interface

that I find cumbersome compared to the command line. Others, like Jason, my technical

reviewer, find it to be “awesome.” You should try it yourself, but for this course, we will

stick to the command line.

 Name services
Surfing the Web is fun and easy, but think what it would be like if you had to type

in the IP address of every web site you wanted to view. For example, locating a web

site would look like this when you type it in, https://93.184.216.34, which would be

nearly impossible for most of us to remember. Of course using bookmarks would

help, but suppose your friend tells you about a cool new web site and tells you to go to

93.184.216.34. How would you remember that? Telling someone to go to “example.com”

is far easier to remember.

The Domain Name System provides the database to be used in the translation

from human-readable hostnames, such as www.example.com, to IP addresses, like

93.184.216.34 so that your Internet-connected computers and other devices and

access them. The primary function of the BIND software, the Berkeley Internet Name

Domain, is that of a domain name resolver which utilizes that database. There is other

name resolver software, but BIND is currently the most widely used DNS software

on the Internet. I will use the terms name server, DNS, and resolver pretty much

interchangeably throughout this article.

Without these name resolver services, it would be nearly impossible to surf the Web

as freely and easily as we do. As humans, we tend to do better with names like example.

com, while computers do much better with numbers like 93.184.216.34. So we need a

translation service to convert the names that are easy for us to the numbers that are easy

for our computers. This process is called name resolution.

Chapter 12 NetworkiNg

362

In small networks the /etc/hosts file on each host can be used as a name resolver.

Maintaining copies of this file on several hosts can become very time- consuming and

errors can cause much confusion and wasted time before they are found. I did this

for several years on my own network, and it ultimately became too much trouble to

maintain even with the usual 8 to 12 computers I have operational. So I ultimately

converted to running my own name server to resolve both internal and external

hostnames.

Most networks of any size require centralized management of this service with name

services software such as the Berkeley Internet Name Domain (BIND). BIND is called

that because it was developed by the University of California Berkeley (UCB) in the early

1980s. Hosts use the Domain Name System (DNS) to locate IP addresses from the names

given in software such as web browsers, email clients, SSH, FTP, and many other Internet

services.

 How a name search works
Let's take a look at a simplified example of what happens when a name request for a

web page is made by a client service on your computer. For this example, I will use www.

example.com as the web site I want to view in my browser. I also assume that there is a

local name server on the network, as is the case with my own network:

 1. First, I type in the URL or select a bookmark containing that

URL. In this case, the URL is www.example.com.

 2. The browser client, whether it is Opera, Firefox, Chrome, Lynx,

Links, or any other browser, sends the request to the operating

system.

 3. The operating system first checks the /etc/hosts file to see if the

URL or hostname is there. If so, the IP address of that entry is

returned to the browser. If not, we proceed to the next step. In this

case we assume that it is not.

 4. The URL is then sent to the first name server specified in /etc/

resolv.conf. In this case the IP address of the first name server is

my own internal name server. For this example, my name server

does not have the IP address for www.example.com cached and

must look further afield. So we go on to the next step.

Chapter 12 NetworkiNg

363

 5. The local name server sends the request to a remote name server.

This can be one of two destination types, one type of which is a

forwarder. A forwarder is simply another name server such as the

ones at your ISP or a public name server such as Google at 8.8.8.8

or 8.8.4.4. The other destination type is that of the top-level root

name servers. The root servers don't usually respond with the

desired target IP address or www.example.com; they respond with

the authoritative name server for that domain. The authoritative

name servers are the only ones that have the authority to maintain

and modify name data for a domain.

 6. The local name server is configured to use the root name servers

so the root name server for the .com top-level domain returns the

IP address of the authoritative name server for example.com. That

IP address could be for any one of the three (at the time of this

writing) name servers, a.iana-servers.net or b.iana-servers.net.

 7. The local name server then sends the query to the authoritative

name server which returns the IP address for www.example.com.

 8. The browser uses the IP address for www.example.com to send a

request for a web page which is downloaded to my browser.

One of the important side effects of this name search is that the results are cached

for a period of time by my local name server. That means that the next time I, or anyone

on my network, want to access example.com, the IP address is probably already stored

locally which prevents the need to perform a remote lookup.

 Using the /etc/hosts file
Most computers need little configuration to enable them to access name services. That

usually consists of adding the IP addresses of one to three name servers to the /etc/

resolv.conf file. And that is typically performed at boot time on most home and laptop

computers because they are configured using the DHCP protocol which provides them

with their IP address, gateway address, and the IP addresses of the name servers. For

hosts that are configured statically, the /etc/resolv.conf file is usually generated during

installation from information entered by the SysAdmin during the installation.

Chapter 12 NetworkiNg

364

Many of the name servers provided by ISPs in my home office and for remote

connections in public places such as hotels, coffee shops, and even friends' personal

WiFi connections can be unreliable and in some cases can use forwarders that

intentionally censor results or redirect queries to pages of advertisements. So I always

add at least one of the Google public name servers on my hosts. We did this using brute

force in Experiment 12-10. If you are interested in more privacy, you could also try

Cloudflare at 1.1.1.1.

Adding entries to the /etc/hosts file can make accessing remote hosts by name

possible in the absence of centralized name services. So let’s look at the default version

of the file and add some hosts to it.

EXPERIMENT 12-11

perform this experiment as root. Start by examining the default version of the /etc/hosts file. it

has only two lines and those are both for the localhost.

[root@studentvm1 ~]# cd /etc ; cat hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.

localdomain4

::1 localhost localhost.localdomain localhost6 localhost6.

localdomain6

these entries allow us to address commands using the names for the localhost.

[root@studentvm1 etc]# ping -c2 localhost

PING localhost(localhost (::1)) 56 data bytes

64 bytes from localhost (::1): icmp_seq=1 ttl=64 time=0.076 ms

64 bytes from localhost (::1): icmp_seq=2 ttl=64 time=0.077 ms

--- localhost ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 43ms

rtt min/avg/max/mdev = 0.076/0.076/0.077/0.008 ms

[root@studentvm1 etc]# ping -c2 localhost4

PING localhost (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.046 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.074 ms

--- localhost ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 31ms

Chapter 12 NetworkiNg

365

rtt min/avg/max/mdev = 0.046/0.060/0.074/0.014 ms

[root@studentvm1 etc]# ping -c2 localhost6

PING localhost6(localhost (::1)) 56 data bytes

64 bytes from localhost (::1): icmp_seq=1 ttl=64 time=0.066 ms

64 bytes from localhost (::1): icmp_seq=2 ttl=64 time=0.083 ms

--- localhost6 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 66ms

rtt min/avg/max/mdev = 0.066/0.074/0.083/0.012 ms

that works, but suppose we want to ping the localhost by its actual hostname? For this we will

use the current ip address of enp0s3 rather than the loopback address. this ip address may

change in the future – and will in the next course.

First verify the current ip address.

[root@studentvm1 ~]# ip addr show enp0s3

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

group default qlen 1000

 link/ether 08:00:27:e1:0c:10 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.7/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3

 valid_lft 824sec preferred_lft 824sec

 inet6 fe80::68da:2fbe:6325:4f3f/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

this shows the ip address for StudentVM1 as 10.0.2.7.

add the following lines to the /etc/hosts file. i use the comment like i do in Bash scripts, so i

know what i did and why at later times and for other Sysadmins who will take over my job in

the future. Be sure to use the ip address for your own VM because it can be different.

Added the following lines for testing 2019-05-09

10.0.2.7 studentvm1 svm1 vm1 s1

Note that you can have multiple hostnames for each ip address. this makes it possible to use

both the full hostname as well as any nicknames you may have for a particular host. Notice

that the /etc/hosts file is generally not used to provide services for fully qualified domain

names (FQDN) such as studentvm1.example.com; rather, only the unqualified hostnames

themselves are typically used.

[root@studentvm1 ~]# ping -c2 studentvm1

PING studentvm1 (10.0.2.7) 56(84) bytes of data.

Chapter 12 NetworkiNg

366

64 bytes from studentvm1 (10.0.2.7): icmp_seq=1 ttl=64 time=0.069 ms

64 bytes from studentvm1 (10.0.2.7): icmp_seq=2 ttl=64 time=0.088 ms

--- studentvm1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 60ms

rtt min/avg/max/mdev = 0.069/0.078/0.088/0.013 ms

[root@studentvm1 ~]# ping -c2 svm1

PING studentvm1 (10.0.2.7) 56(84) bytes of data.

64 bytes from studentvm1 (10.0.2.7): icmp_seq=1 ttl=64 time=0.081 ms

64 bytes from studentvm1 (10.0.2.7): icmp_seq=2 ttl=64 time=0.098 ms

--- studentvm1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 35ms

rtt min/avg/max/mdev = 0.081/0.089/0.098/0.012 ms

[root@studentvm1 ~]# ping -c2 vm1

PING studentvm1 (10.0.2.7) 56(84) bytes of data.

64 bytes from studentvm1 (10.0.2.7): icmp_seq=1 ttl=64 time=0.085 ms

64 bytes from studentvm1 (10.0.2.7): icmp_seq=2 ttl=64 time=0.079 ms

--- studentvm1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 11ms

rtt min/avg/max/mdev = 0.079/0.082/0.085/0.003 ms

Now let’s add an entry for the virtual router. add the following line to the bottom of the /etc/

hosts file.

10.0.2.1 router gateway

Now ping the router.

[root@studentvm1 ~]# ping -c2 router

PING router (10.0.2.1) 56(84) bytes of data.

64 bytes from router (10.0.2.1): icmp_seq=1 ttl=255 time=0.254 ms

64 bytes from router (10.0.2.1): icmp_seq=2 ttl=255 time=0.266 ms

--- router ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 31ms

rtt min/avg/max/mdev = 0.254/0.260/0.266/0.006 ms

[root@studentvm1 ~]# ping -c2 gateway

PING router (10.0.2.1) 56(84) bytes of data.

64 bytes from router (10.0.2.1): icmp_seq=1 ttl=255 time=0.246 ms

64 bytes from router (10.0.2.1): icmp_seq=2 ttl=255 time=0.253 ms

Chapter 12 NetworkiNg

367

--- router ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 33ms

rtt min/avg/max/mdev = 0.246/0.249/0.253/0.016 ms

i highly recommend against adding entries for any hosts outside the local network. it can be

done, but that links an ip address to the external hostname on our local systems. the actual

ip address may change at a later time, and you will not be able to access the host. it can

be difficult to troubleshoot such a problem unless you remember that an entry exists in the

localhosts file. Yes, i have done this and it took a couple hours to resolve this problem.

Close the editor session, leaving the changes to /etc/hosts in place.

 Introduction to network routing
Every computer attached to a network requires some type of routing instructions

for network TCP/IP packets when they leave the localhost. This is usually very

straightforward because many network environments are very simple and there are only

two options for departing packets. All packets are sent either to a device on the local

network or to some other remote network.

Let’s be sure to define the “local” network as the logical, and usually also the

physical, network in which the localhost resides. Logically that means the local subnet in

which the host is assigned one of the range of the local subnet’s IP addresses. Physically

that means the host is physically connected to one or more switches that are also

connected to the rest of the local network.

 The routing table
All network devices, whether they are hosts, routers, or other types of network nodes

such as network-attached printers, need to make decisions about where to route TCP/IP

data packets. The routing table provides the configuration information required to make

those decisions. The routing table for any host on the network is used to define the single

route available to that localhost and to determine whether to send packets to the default

gateway router.

For hosts connected to the network using DHCP, the DHCP server provides that

configuration information for the default route along with DNS, the hosts’ IP address,

and possibly other information such as the IP address for a NTP server.

Chapter 12 NetworkiNg

368

EXPERIMENT 12-12

perform this experiment as the student user. root privileges are not required.

the route -n command lists the routing table; the -n option displays the results as ip

addresses only and does not attempt to perform a DNS lookup which would replace the ip

address with hostnames if they are available.

[student@studentvm1 ~]$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.0.2.1 0.0.0.0 UG 100 0 0 enp0s3

10.0.2.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s3

the netstat –rn command produces very similar results. Both the netstat and route

commands are obsolete and are replaced by the ip command.

the default gateway is always shown with the destination 0.0.0.0 when the -n option is used.

if -n is not used, the word “Default” appears in the Destination column of the output. the ip

address in the gateway column is that of the outbound gateway router. the netmask of 0.0.0.0

for the default gateway means that any packet not addresses to the local network or another

outbound router by additional entries in the routing table are to be sent to the default gateway

regardless of the network class.

the iface (interface) column in the output from the route command is the name of the

outbound NiC, in this case, eno1. For hosts that are acting as routers, there will likely be at

least two and sometimes more NiCs used. each NiC used as a route will be connected to a

different physical and logical network. the flags in the Flag column indicate that the route is

Up (U) and which is the default gateway (g). other flags may also be present.

on my own StudentVM1 host, i do have two virtual interfaces. each interface is on a different

network and so each has a different default gateway as shown in the following. My VM is not a

router, but it would take very little to turn it into one. we will explore how to configure a Linux

host as a router in the next book in this series.

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.0.2.1 0.0.0.0 UG 100 0 0 enp0s3

0.0.0.0 192.168.0.254 0.0.0.0 UG 101 0 0 enp0s8

Chapter 12 NetworkiNg

369

10.0.2.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s3

192.168.0.0 0.0.0.0 255.255.255.0 U 101 0 0 enp0s8

i like these older commands, but let’s explore using the ip command.

[student@studentvm1 ~]$ ip route

default via 10.0.2.1 dev enp0s3 proto dhcp metric 100

10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.7 metric 100

this result is not as pretty and a bit harder to read because of it, but it does have all of the

information we need to describe the routing table.

what happens when there is a network problem and a web site or remote host cannot be

reached? we need to do some problem determination. we can use the traceroute tool to

view the complete route our packets will take to a remote host.

[root@studentvm1 ~]# traceroute www.example.org

traceroute to www.example.org (93.184.216.34), 30 hops max, 60 byte packets

 1 studentvm2.example.com (192.168.56.1) 0.323 ms 0.796 ms 0.744 ms

 2 10.0.2.1 (10.0.2.1) 1.106 ms 1.089 ms 1.063 ms

 3 ∗ ∗ ∗
 4 ∗ ∗ ∗
 5 ∗ ∗ ∗
 6 ∗ ∗ ∗
 7 ∗ ∗ ∗
 8 ∗ ∗ ∗
 9 ∗ ∗ ∗
10 ∗ ∗ ∗
11 ∗ ∗ ∗
12 ∗ ∗ ∗
13 ∗ ∗^C

that does not help much. this tool used to work very nicely, and it is not deprecated so it

should work better than this. we could force it to use iCMp instead of UDp. this seems to work

better, but traceroute is still deprecated.

[root@studentvm1 ~]# traceroute -I www.example.org

traceroute to www.example.org (93.184.216.34), 30 hops max, 60 byte packets

 1 router.example.com (192.168.56.1) 4.825 ms 4.823 ms 4.808 ms

 2 10.0.2.1 (10.0.2.1) 5.423 ms 5.428 ms 5.408 ms

 3 192.168.0.254 (192.168.0.254) 5.464 ms 5.450 ms 5.439 ms

Chapter 12 NetworkiNg

370

 4 rrcs-24-199-159-57.midsouth.biz.rr.com (24.199.159.57) 7.583 ms 9.298 ms 9.653 ms

 5 142.254.207.205 (142.254.207.205) 26.082 ms 26.092 ms 26.068 ms

 6 cpe-174-111-105-178.triad.res.rr.com (174.111.105.178) 24.964 ms 18.706 ms

18.774 ms

 7 cpe-024-025-062-106.ec.res.rr.com (24.25.62.106) 22.292 ms 20.565 ms 21.236 ms

 8 be31.chrcnctr01r.southeast.rr.com (24.93.64.186) 24.967 ms 26.658 ms 26.683 ms

 9 bu-ether11.atlngamq46w-bcr00.tbone.rr.com (66.109.6.34) 37.310 ms 35.686 ms

35.631 ms

10 152.195.80.196 (152.195.80.196) 35.450 ms 42.214 ms 42.651 ms

11 152.195.80.141 (152.195.80.141) 42.003 ms 34.385 ms 33.853 ms

12 93.184.216.34 (93.184.216.34) 36.722 ms 32.929 ms 33.293 ms

[root@studentvm1 ~]#

Besides, my preferred tool for this is mtr. this tool started out as Matt’s traceroute because

Matt wrote it and it was designed as a dynamic replacement for the old traceroute tool.

Because Matt no longer maintains this and someone else has taken over, it is now referred to

as “my traceroute.”

[student@studentvm1 ~]$ mtr example.com
 My traceroute [v0.92]
studentvm1 (10.0.2.7) 2019-05-10T09:16:05-0400
Keys: Help Display mode Restart statistics Order of fields quit
 Packets Pings
 Host Loss% Snt Last Avg Best Wrst StDev
 1. _gateway 0.0% 11 0.3 0.3 0.3 0.4 0.0
 2. wally1.both.org 0.0% 11 0.5 0.5 0.5 0.6 0.0
 3. rrcs-24-199-159-57.midsouth.biz.rr.com 0.0% 11 29.6 7.8 1.9 29.6 7.6
 4. 142.254.207.205 0.0% 11 18.9 30.1 11.9 82.3 20.0
 5. cpe-174-111-105-178.triad.res.rr.com 0.0% 11 24.9 28.1 19.9 65.0 12.6
 6. cpe-024-025-062-106.ec.res.rr.com 0.0% 11 24.1 25.9 16.2 39.0 6.5
 7. be31.chrcnctr01r.southeast.rr.com 0.0% 11 29.6 43.2 26.9 108.2 22.3
 8. bu-ether11.atlngamq46w-bcr00.tbone.rr.com 0.0% 10 36.4 38.8 29.5 56.8 8.4
 9. 152.195.80.196 0.0% 10 32.1 35.7 32.1 39.9 2.9
10. 152.195.80.131 0.0% 10 31.8 37.7 25.9 47.8 6.1
11. 93.184.216.34 0.0% 10 36.4 33.1 29.6 40.8 3.4

this provides good results and shows us the path that our data packets are taking to the

remote host. this is a dynamic display, and it keeps checking the route until you press q to

quit. Because of this, mtr can display statistics for each hop along the way to the destination

including response times and packet loss at each intermediate router along the way.

Chapter 12 NetworkiNg

371

another thing you might see for any given hop number (the sequential numbers down the left

side of the display) is multiple routers indicating that the path to the remote host is not always

through the same sequence of routers.

Using the -n option displays only the ip addresses of the routers. the routers shown in your

results will be different from my results until the last few hops, as it gets closer to the target host.

[student@studentvm1 ~]$ mtr -n example.org
 My traceroute [v0.92]
studentvm1 (10.0.2.7) 2019-05-10T09:25:41-0400
Keys: Help Display mode Restart statistics Order of fields quit
 Packets Pings
 Host Loss% Snt Last Avg Best Wrst StDev
 1. 10.0.2.1 0.0% 25 0.3 0.3 0.2 0.4 0.1
 2. 192.168.0.254 0.0% 25 0.5 0.6 0.4 0.9 0.1
 3. 24.199.159.57 0.0% 25 3.7 6.3 2.1 13.4 3.4
 4. 142.254.207.205 0.0% 25 69.3 23.6 12.0 69.3 11.9
 5. 174.111.105.178 0.0% 25 25.3 24.0 12.6 38.9 6.5
 6. 24.25.62.106 0.0% 25 28.1 24.9 17.7 36.4 4.5
 7. 24.93.64.186 0.0% 25 30.4 43.3 26.5 161.2 29.0
 8. 66.109.6.34 8.3% 24 35.5 47.8 27.5 158.8 30.9
 9. 152.195.80.196 0.0% 24 45.7 45.7 26.1 156.3 30.5
10. 152.195.80.131 0.0% 24 37.3 56.8 27.4 238.1 50.8
11. 93.184.216.34 0.0% 24 32.3 43.0 26.4 142.0 26.9

Note the packet loss at hop 8. although this could indicate a problem, it is more likely that the

router is programmed to discard unimportant packets such as iCMp if the router is heavily

loaded. if you try this at another time, the packet loss will probably be zero.

Now we can use another tool to learn more about who owns that ip address. Sometimes

communicating with the abuse contact for the remote network can be useful in tracking down

and stopping some types of attacks. Some contacts will go out of their way to help but, in

some areas of the world, don’t expect any help.

[student@studentvm1 ~]$ whois 93.184.216.34

[Querying whois.ripe.net]

[whois.ripe.net]

% This is the RIPE Database query service.

% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.

% See http://www.ripe.net/db/support/db-terms-conditions.pdf

Chapter 12 NetworkiNg

372

% Note: this output has been filtered.

% To receive output for a database update, use the "-B" flag.

% Information related to '93.184.216.0 - 93.184.216.255'

% Abuse contact for '93.184.216.0 - 93.184.216.255' is 'abuse@

verizondigitalmedia.com'

inetnum: 93.184.216.0 - 93.184.216.255

netname: EDGECAST-NETBLK-03

descr: NETBLK-03-EU-93-184-216-0-24

country: EU

admin-c: DS7892-RIPE

tech-c: DS7892-RIPE

status: ASSIGNED PA

mnt-by: MNT-EDGECAST

created: 2012-06-22T21:48:41Z

last-modified: 2012-06-22T21:48:41Z

source: RIPE # Filtered

person: Derrick Sawyer

address: 13031 W Jefferson Blvd #900, Los Angeles, CA 90094

phone: +18773343236

nic-hdl: DS7892-RIPE

created: 2010-08-25T18:44:19Z

last-modified: 2017-03-03T09:06:18Z

source: RIPE

mnt-by: MNT-EDGECAST

% This query was served by the RIPE Database Query Service version 1.94

(WAGYU)

Routing decisions are fairly simple for most hosts:

 1. If the destination host is on the local network, send the data

directly to the destination host.

 2. If the destination host is on a remote network that is reachable via

a local gateway listed in the routing table, send it to the explicitly

defined gateway.

Chapter 12 NetworkiNg

373

 3. If the destination host is on a remote network and there is no

other entry that defines a route to that host, send the data to the

default gateway.

These rules simply mean that if all else fails because there is no match, send the

packet to the default gateway.

 iptraf-ng
In troubleshooting network connection problems, it can be helpful to use a tool such

as iptraf-ng (IP traffic next generation) to monitor the network traffic on one or more

interfaces. This is an easy tool to use, and it employs a text-mode menu style interface.

This is probably not a tool that anyone who has been a SysAdmin for a short time

would be likely to use on a regular basis. In order to interpret the results in a meaningful

way, it would be necessary to understand networking in far more depth than we cover

here. However, I think that it is an interesting tool and knowing that it exists can be

helpful. I found that just watching the traffic helped me learn about networking and it

became easier to see when a host was not responding. This is a tool that takes some time

to build experience with.

EXPERIMENT 12-13

perform this experiment as the root user. the iptraf-ng program will not run when launched

by a non-root user. install iptraf-ng if it is not already installed.

[root@studentvm1 ~]# dnf -y install iptraf-ng

in one terminal, ping the router. Do not limit the ping count as we want this to continue until

we have completed this experiment. Notice that we are using the name we assigned to the

router in /etc/hosts.

[root@studentvm1 ~]# ping router

PING router (10.0.2.1) 56(84) bytes of data.

64 bytes from router (10.0.2.1): icmp_seq=1 ttl=255 time=0.231 ms

64 bytes from router (10.0.2.1): icmp_seq=2 ttl=255 time=0.272 ms

64 bytes from router (10.0.2.1): icmp_seq=3 ttl=255 time=0.240 ms

64 bytes from router (10.0.2.1): icmp_seq=4 ttl=255 time=0.266 ms

64 bytes from router (10.0.2.1): icmp_seq=5 ttl=255 time=0.281 ms

<snip>

Chapter 12 NetworkiNg

374

In another terminal session, start iptraf-ng.

[root@studentvm1 ~]# iptraf-ng

this command launches the menu-driven interface shown in Figure 12-6, which allows

selection of various options.

Figure 12-6. The main menu of iptraf-ng

highlight the “ip traffic monitor” line and press the Enter key. then select the enp0s3

interface to monitor and press Enter.

after selecting the enp0s3 interface, the bottom portion of the resulting screen contains a

continuous display of the iCMp packets and the responses from the router. Figure 12-7 also

shows the total number of iCMp packets.

Chapter 12 NetworkiNg

375

But that really does not show us very much. Leave iptraf-ng and ping running as they

are. on the desktop as the student user, open the browser and go to my web page at www.

both.org or the example.com web site. or, to be horrified, go to your local newspaper or tV

station’s home page and watch all of the ad and tracking connections pile up. while doing so,

watch the iptraf-ng session. Figure 12-8 shows a sample of the results you might expect.

Figure 12-7. The ICMP traffic resulting from the ping command

Chapter 12 NetworkiNg

http://www.both.org
http://www.both.org

376

Figure 12-8. The results get more interesting when other activity is taking place, in
this case, using the web browser

Chapter 12 NetworkiNg

377

port 80 is the http port used by web servers. in the first line of the output in the tCp

Connections section of iptraf-ng, you can see the source address and port of the request from

the host VM as 10.0.2.7:60868. the next line is the destination ip address and port number

which is 23.45.181.162:80. So we are sending a request to port 80 (http) at ip address

23.45.181.162.

You can see other conversations taking place with other servers as the embedded images and

links are accessed by the browser.

the UDp entries in the bottom section are domain name services (DNS) requests looking for

the ip addresses of other web servers to supply the linked content.

press x twice to exit from iptraf-ng.

There are plenty of GUI tools available for performing these types of analysis, such

as Wireshark, but iptraf-ng will work without a GUI while providing a lot of valuable

information.

 Cleanup
Let’s perform a bit of cleanup.

CLEANUP

remove the immutable attribute bit from /etc/resolv.conf.

[root@studentvm1 etc]# cd /etc ; chattr -i resolv.conf ; lsattr resolv.conf

--------------e---- resolv.conf

 Chapter summary
In this chapter we have explored some of the basics of networking and been introduced

to some common tools that enable exploration of networking on a Linux host.

We have explored basic network configuration of the client host in a DHCP

environment and created an interface configuration file that allows us to turn a

connection on and off. We have explored name services, CIDR notation, a bit about IPv6,

Chapter 12 NetworkiNg

378

and routing. We have also used a simple tool, sipcalc, to explore CIDR notation and

how to use it to determine the variable data for a network, such as the number of usable

IP addresses, the network address, and more.

We have just scratched the surface and there is much more to learn. More of

networking will be covered in the next course in this series, Advanced Linux System and

Server Administration.

 Exercises
Perform the following exercises to complete this chapter:

 1. Name the layers of the TCP/IP network model and list the

protocols used in each.

 2. Describe the flow of data from one network host to another using

the TCP/IP model.

 3. In Step 4 of Experiment 12-1, the results of the arp command are

shown as IP addresses for those hosts connected to the network

on NIC enp0s3 but as their respective hostnames on the network

connected to NIC enp0s8. Why?

 4. How many usable network addresses are available to the

10.125.16.32/31 network?

 5. What is the function of name services?

 6. Describe how you could use the /etc/hosts file to provide name

services for a small network.

 7. Describe the function of the default route.

 8. Determine the route from your host to www.apress.com. Is there

any packet loss?

 9. Geographically, where is the server for www.apress.com located?

Chapter 12 NetworkiNg

http://www.apress.com
http://www.apress.com

379
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_13

CHAPTER 13

systemd
 Objectives
In this chapter you will learn

• To describe the functions of systemd

• To state the reasons for the controversy surrounding SystemV vs.

systemd

• To list running services

• To list all active systemd units

• To use systemd to start, manage, and stop Linux services

• To manage filesystem mounts using systemd

• To create and activate a .mount unit file

• To use systemd timers to launch programs in a manner similar to

using cron

• To select and display journal entries using journalctl

 Introduction
We have already explored systemd in the context of the Linux startup process in Chapter 16,

and one might be tempted to think that we have covered the greater part of systemd and

that there is no reason for a full chapter about it.

That would be incorrect. There is much left to explore.

380

systemd1,2 is the mother of all processes, and it is responsible for bringing the Linux

host up to a state in which productive work can be done. Some of the functions assumed

by systemd, which is far more extensive than the old init program, are to manage many

aspects of a running Linux host, including mounting filesystems, managing hardware,

and starting and managing system services required to have a productive Linux host. In

this chapter we explore the functions of systemd that begin after startup is completed.

 Controversy
SystemV and systemd are two different methods of performing the Linux startup

sequence. SystemV start scripts and the init program are the old method, and systemd

using targets is the new method.

Just to ensure that we are all on the same page here, the Linux startup sequence

begins after the kernel has loaded either init or systemd, depending upon whether the

distribution uses the new or old startup, respectively. The init and systemd programs

start and manage all of the other processes, that is, programs, and are both known as the

mother of all processes on their respective systems.

Although most modern Linux distributions use the newer systemd for startup,

shutdown, and process management, there are still some that do not. One reason for

this is that some of the distribution maintainers and some SysAdmins prefer the older

SystemV method over the newer systemd.

I think both have their advantages so let me explain my reasoning.

 Why I prefer SystemV
I prefer SystemV because it is more open. Startup is accomplished using bash scripts.

After the kernel starts the init program, which is a compiled binary, init launches the

rc.sysinit script which performs many system initialization tasks. After rc.sysinit has

completed, init launches the /etc/rc.d/rc script which in turn starts the various services

as defined by the SystemV start scripts in the /etc/rc.d/rcX.d, where “X” is the number of

the runlevel that is being started.

1 Wikipedia, systemd, https://en.wikipedia.org/wiki/Systemd
2 Yes, systemd should always be spelled like this without any uppercase even at the beginning of a
sentence. The documentation for systemd is very clear about this.

Chapter 13 systemd

https://en.wikipedia.org/wiki/Systemd

381

All of these programs are open and easily knowable scripts. It is possible to read

through these scripts and learn exactly what is taking place during the entire startup

process. Each script is numbered so that it starts the service for which it is intended in a

specific sequence. Services are started serially and only one service is started at a time.

systemd is a complex system of large compiled binary executables that are not

understandable without access to the source code. Although it’s open source, so “access

to the source code” isn’t hard, just less convenient. It represents a significant refutation

of multiple tenets of the Linux Philosophy. As a binary, systemd is not directly open to

view or easy to change by the SysAdmin. systemd tries to do everything such as manage

running services while providing significantly more status information than SystemV. It

also manages hardware, processes and groups of processes, filesystem mounts, and

much more. systemd is present in almost every aspect of the modern Linux host making

it the one-stop tool for system management. All of this is a clear violation of the tenets

that programs should be small and that each program should do one thing and do it well.

 Why I prefer systemd
I prefer systemd as my startup mechanism because it starts as many services as possible

in parallel, depending upon the current stage in the startup process. This speeds the

overall startup and gets the host system to a login screen faster than SystemV. This was

discussed in Volume 1, Chapter 16.

systemd manages almost every aspect of a running Linux system. Like the obsolete

SystemV tools, it can manage running services while providing significantly more status

information than SystemV. It also manages hardware, processes and groups of processes,

filesystem mounts, and much more. systemd is present in almost every aspect of the

modern Linux host making it the one-stop tool for system management. Does this sound

familiar?

systemd is open because all of the configuration files are ASCII text files. Startup

configuration can be modified through various GUI and command-line tools, as well

as adding or modifying various configuration files to suit the needs of the specific local

computing environment.

Chapter 13 systemd

382

 The real issue
Did you think I could not like both startup systems? I do and I can work with either one.

The real issue and the root cause of most of the controversy between SystemV and

systemd is that there is no choice on the SysAdmin level.3 The choice of whether to

use SystemV or systemd has already been made by the developers, maintainers, and

packagers of the various distributions. However, this is with good reason. Scooping out

and replacing an init system, by its extreme, invasive nature, has a lot of consequences,

and that would be hard to tackle outside of the distribution design process.

Despite the fact that this particular choice has been made for us, our Linux hosts

boot up and work, which is what I usually care the most about. As an end user and even

as a SysAdmin, my primary concern is whether I can get my work done – work such as

writing this book, installing updates, and writing scripts to automate everything. So long

as I can do my work, I don’t really care about the start sequence used on my distro.

However, I do care when there is a problem during startup or service management.

Regardless of which startup system is used on any host, I know enough and am able to

follow the sequence of events to find the failure and fix it.

Also, despite the fact that most Linux developers agree that replacing the old

SystemV startup is a good idea, many of them dislike systemd for that.4

 systemd suite
The fact is systemd is more than just a single program. It is a large suite of programs all

designed to work together in order to manage nearly every aspect of a running Linux

system. In Figure 13-1 we can see many of components belonging to systemd. This is a

simplified diagram designed to provide a high-level overview so it does not include all of

the individual programs or files. Nor does it provide any insight into data flow which is so

complex as to be a useless exercise within the context of this course.

3 OSnews, “Editorial: Thoughts on Systemd [sic] and the Freedom to Choose,” www.osnews.com/
story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose

4 Steven J. Vaughan-Nichols, ZDNet, Linus Torvalds and others on Linux’s systemd,
www.zdnet.com/article/linus-torvalds-and-others-on-linuxs-systemd/

Chapter 13 systemd

https://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
https://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
https://www.zdnet.com/article/linus-torvalds-and-others-on-linuxs-systemd/

383

A full exposition of systemd would take a book all on its own. We do not need to

understand all of the details of how the systemd components shown in Figure 13-1 fit

together, so our explorations will consist of those programs and components that enable

us to manage various Linux services and to deal with log files and journals.

 Practical structure
The structure of systemd – outside of its executable files – is contained in its many

configuration files. Although these files have different names and identifier extensions,

they are all called “Unit” files. The basis of everything systemd is in units.

Unit files are ASCII plain text files that are accessible and which can be modified or

created by the SysAdmin. There are a number of unit file types, each of which has its own

man page. Figure 13-2 lists some of these unit file types along with a short description of

each.

Figure 13-1. A simplified view of the structure of the systemd environment
“Architecture of systemd” by Shmuel Csaba Otto Traian is licensed under Creative Commons
Attribution-Share Alike 3.0 Unported https://creativecommons.org/licenses/by-sa/3.0/

deed.en

Chapter 13 systemd

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

384

 systemctl
Having already looked at its startup functions in Chapter 16 of Volume 1, we start further

exploration of systemd with its service management functions. systemd provides the

systemctl command that is used to start and stop services, configure them to launch –

or not – at system startup, and to monitor the current status of running services.

All of the experiments in this chapter should be performed as the root user unless

otherwise specified. Some of the commands that simply list various systemd units can be

performed by non-root users, but those that make changes cannot.

systemd Unit Description

.automount The .automount units are used to implement on-demand, i.e., plug and play, mounting as well as
mounting of filesystem units in parallel during startup.

.device The .device unit files define hardware and virtual devices that are exposed to the SysAdmin in
the /dev/directory. Not all devices have unit files, Typically block devices such as hard drives, and
network devices have unit files, as well as some others.

.mount The .mount unit defines a mount point on the Linux filesystem directory structure.

.scope This unit defines and manages a set of system processes. This unit is not configured using unit
files, but is created programmatically. Per the systemd.scope man page, “The main purpose of
scope units is grouping worker processes of a system service for organization and for managing
resources.”

.service .service unit files define processes that are managed by systemd. These include service such as
crond cups (Common Unix Printing System), IPTables, multiple logical volume management (LVM)
services, NetworkManager, and more.

.slice The .slice unit defines a “slice,” which is a conceptual division of system resources that are
related to a group of processes. You can think of all system resources as a pie and this subset of
resources as a “slice” out of that pie.

.socket .socket units define inter-process communication sockets such as network sockets.

.swap Defines swap devices or files.

.target .target units define groups of unit files that define startup synchronization points, runlevels, and
services. Target units define the services and other units that must be active in order to start
successfully.

.timer This unit defines timers that can initiate programs at specified times.

Figure 13-2. A list of systemd unit file types

Chapter 13 systemd

385

EXPERIMENT 13-1

In a terminal session as root user, ensure that root’s home directory (~) is the pWd. Let’s start

by just looking at units in various ways.

List all of the loaded and active systemd units. systemctl automatically pipes its stdOUt

data stream through the less pager so we do not need to do so.

[root@studentvm1 ~]# systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
proc-sys-fs-binfmt_misc.automount loaded active running Arbitrary Executable File>
sys-devices-pci0000:00-0000:00:01.1-ata7-host6-target6:0:0-6:0:0:0-block-sr0.device loaded a>
sys-devices-pci0000:00-0000:00:03.0-net-enp0s3.device loaded active plugged 82540EM Gigabi>
sys-devices-pci0000:00-0000:00:05.0-sound-card0.device loaded active plugged 82801AA AC'97>
sys-devices-pci0000:00-0000:00:08.0-net-enp0s8.device loaded active plugged 82540EM Gigabi>
sys-devices-pci0000:00-0000:00:0d.0-ata1-host0-target0:0:0-0:0:0:0-block-sda-sda1.device loa>
sys-devices-pci0000:00-0000:00:0d.0-ata1-host0-target0:0:0-0:0:0:0-block-sda-sda2.device loa>
<snip – removed lots of lines of data from here>

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

206 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

as you scroll through the data in your terminal session, look for the following specific things.

the first section lists devices such as hard drives, sound cards, network interface cards,

and tty devices. another section shows the filesystem mount points. Other sections include

various services and a list of all loaded and active targets.

the sysstat timers, along with other timers, at the very bottom of the output, are used to

collect and generate daily system activity summaries for sar, the system activity reporter. We

covered sar in Volume 1, Chapter 13, as a very useful problem-solving tool.

Chapter 13 systemd

386

Near the very bottom, three lines describe the meanings of the status, loaded, active, and sub.

press q to exit from the pager.

Use the following command, as suggested by the last line of the preceding output, to see all

units that are installed, whether they are loaded or not. I won’t reproduce more than a very

few lines here, because you can scroll through them on your own. the systemctl program has

an excellent tab completion facility that makes it easy to enter complex commands without the

need to memorize each of the many options.

[root@studentvm1 ~]# systemctl list-unit-files

UNIT FILE STATE

proc-sys-fs-binfmt_misc.automount static

-.mount generated

boot.mount generated

dev-hugepages.mount static

dev-mqueue.mount static

home.mount generated

you will see that some units are disabled. table 1 in the man page for systemctl lists and

provides short descriptions of the entries you might see in this listing. Let’s use the -t (type)

option to view only the timer units.

[root@studentvm1 ~]# systemctl list-unit-files -t timer

Or we could do the same thing like this.

[root@studentvm1 ~]# systemctl list-timers

Or list the mount points. there is no option to do systemctl list-mounts, but we can list

the mount point unit files.

[root@studentvm1 ~]# systemctl list-unit-files -t mount

Now let’s look at the service units. this command will show all services installed on the host

whether they are active or not.

[root@studentvm1 ~]# systemctl --all -t service

at the bottom of this listing of service units, it displays 166 as the total number of loaded units

on my host. your number will very probably be different from that.

Chapter 13 systemd

387

Unit files do not have a file name extension such as .unit to help identify them. rather we

can generalize that most configuration files belonging to systemd are unit files of one type or

another. the few remaining files are mostly .conf files located in /etc/systemd.

Unit files are stored in the /usr/lib/systemd directory and its subdirectories, while the /etc/

systemd/ directory and its subdirectories contain symbolic links to the unit files necessary to

the local configuration of this host.

make /etc/systemd the pWd and list its contents. then make /etc/systemd/system the pWd

and list its contents. also list the contents of at least a couple of the subdirectories of the

current pWd.

Let’s explore one-unit file. the default.target file determines which runlevel target the system

will boot to. Chapter 16 discussed how to change the default target from the GUI (graphical.

target) to command-line-only (multi-user) target. the default.target file is simply a symlink to /

usr/lib/systemd/system/graphical.target.

take a few minutes to examine the contents of the /etc/systemd/system/default.target file.

[root@studentvm1 system]# cat default.target

SPDX-License-Identifier: LGPL-2.1+

#

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Graphical Interface

Documentation=man:systemd.special(7)

Requires=multi-user.target

Wants=display-manager.service

Conflicts=rescue.service rescue.target

After=multi-user.target rescue.service rescue.target display-manager.service

AllowIsolate=yes

Notice that it requires the multi-user.target. the graphical.target cannot be started if the multi-

user.target is not already up and running. It also says it “wants” the display- manager.service

unit.

Chapter 13 systemd

388

a “want” does not need to be fulfilled in order for the unit to be started successfully. If the

“want” cannot be fulfilled, it will be ignored by systemd and the rest of the target will be

started regardless.

the subdirectories in /etc/systemd/system are lists of wants for various targets. take a few

minutes to explore the files and their contents in the /etc/systemd/system/graphical.target.

wants directory.

The systemd.unit man page contains much good information about unit files, their

structure, the sections into which they can be divided, and lists of the options that can be

used. It also lists many of the unit types, all of which have man pages of their own. If you

want to interpret a unit file, this would be one good place to start.

We will continue our exploration of the systemctl as well as other related commands

throughout the rest of this chapter.

 Service units
Now that we know a bit about unit files and targets, let’s explore some other units.

Much of the time a Fedora installation installs and enables services that are not

needed for normal operation for a particular host or, conversely, other services may need

to be installed, enabled, and started. Services that are not needed for the Linux host to

function as desired but which are installed and possibly running represent a security risk

and should be stopped and disabled at the least and at best uninstalled.

The systemctl command is used to manage systemd units including services,

targets, mounts, and more.

Chapter 13 systemd

389

EXPERIMENT 13-2

perform this experiment as the root user.

In experiment 13-1 we looked at a list of services. Let’s take a closer look because we can

easily find services that will never be used.

[root@studentvm1 ~]# systemctl --all -t service

UNIT LOAD ACTIVE SUB DESCRIPTION

<snip>

chronyd.service loaded active running NTP client/server

crond.service loaded active running Command Scheduler

cups.service loaded active running CUPS Scheduler

dbus-daemon.service loaded active running D-Bus System Message Bus

<snip>

● ip6tables.service not-found inactive dead ip6tables.service

● ipset.service not-found inactive dead ipset.service

● iptables.service not-found inactive dead iptables.service

<snip>

firewalld.service loaded active running firewalld - dynamic

firewall daemon

<snip>

● ntpd.service not-found inactive dead ntpd.service

● ntpdate.service not-found inactive dead ntpdate.service

pcscd.service loaded active running PC/SC Smart Card Daemon

I have pruned out all but a few lines of output from the command to save space. the services

that show as “loaded active running” are obvious.

the “not-found” services are ones of which systemd is aware but which are not installed on

the Linux host. If you want to run those services, the packages that contain them must be

installed first.

Notice the pcscd.service unit. this is the pC/sC smart card daemon. Its function is to

communicate with smart card readers. many Linux hosts – including our virtual machines –

have no need for such a reader or the service that is loaded and taking up memory and CpU

resources. We can stop this service and disable it so it will not start again on the next boot.

First we will simply check its status.

Chapter 13 systemd

390

[root@studentvm1 ~]# systemctl status pcscd.service

● pcscd.service - PC/SC Smart Card Daemon

 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect; vendor

preset: disabled)

 Active: active (running) since Fri 2019-05-10 11:28:42 EDT; 3 days ago

 Docs: man:pcscd(8)

 Main PID: 24706 (pcscd)

 Tasks: 6 (limit: 4694)

 Memory: 1.6M

 CGroup: /system.slice/pcscd.service

 └─24706 /usr/sbin/pcscd --foreground --auto-exit

May 10 11:28:42 studentvm1 systemd[1]: Started PC/SC Smart Card Daemon.

this data is what I mean about the additional information provided by systemd; systemV

would tell us only that the service was running or not. Note that specifying the .service unit

type is optional. Now stop and disable the service. then re-check its status.

[root@studentvm1 ~]# systemctl stop pcscd ; systemctl disable pcscd

Warning: Stopping pcscd.service, but it can still be activated by:

 pcscd.socket

Removed /etc/systemd/system/sockets.target.wants/pcscd.socket.

[root@studentvm1 ~]# systemctl status pcscd

● pcscd.service - PC/SC Smart Card Daemon

 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect; vendor

preset: disabled)

 Active: failed (Result: exit-code) since Mon 2019-05-13 15:23:15 EDT; 48s ago

 Docs: man:pcscd(8)

 Main PID: 24706 (code=exited, status=1/FAILURE)

May 10 11:28:42 studentvm1 systemd[1]: Started PC/SC Smart Card Daemon.

May 13 15:23:15 studentvm1 systemd[1]: Stopping PC/SC Smart Card Daemon...

May 13 15:23:15 studentvm1 systemd[1]: pcscd.service: Main process exited,

code=exited, status=1/FAIL>

May 13 15:23:15 studentvm1 systemd[1]: pcscd.service: Failed with result

'exit-code'.

May 13 15:23:15 studentvm1 systemd[1]: Stopped PC/SC Smart Card Daemon.

the short log entry display for most services prevents us having to search through various log

files to locate this type of information.

Chapter 13 systemd

391

Check the status of the system runlevel targets. Notice that specifying the “target” unit type is

required for this.

[root@studentvm1 ~]# systemctl status multi-user.target

● multi-user.target - Multi-User System

 Loaded: loaded (/usr/lib/systemd/system/multi-user.target; static; vendor

preset: disabled)

 Active: active since Thu 2019-05-09 13:27:22 EDT; 4 days ago

 Docs: man:systemd.special(7)

May 09 13:27:22 studentvm1 systemd[1]: Reached target Multi-User System.

[root@studentvm1 ~]# systemctl status graphical.target

● graphical.target - Graphical Interface

 Loaded: loaded (/usr/lib/systemd/system/graphical.target; indirect; vendor

preset: disabled)

 Active: active since Thu 2019-05-09 13:27:22 EDT; 4 days ago

 Docs: man:systemd.special(7)

May 09 13:27:22 studentvm1 systemd[1]: Reached target Graphical Interface.

[root@studentvm1 ~]# systemctl status default.target

● graphical.target - Graphical Interface

 Loaded: loaded (/usr/lib/systemd/system/graphical.target; indirect; vendor

preset: disabled)

 Active: active since Thu 2019-05-09 13:27:22 EDT; 4 days ago

 Docs: man:systemd.special(7)

May 09 13:27:22 studentvm1 systemd[1]: Reached target Graphical Interface.

Note that the default target is the graphical target. the status of any unit can be checked in

this way.

 Mount units
A mount unit is one that defines all of the parameters required to mount a filesystem on

a designated mount point.

systemd can manage mount units with more flexibility than those using the /etc/

fstab filesystem configuration file. Despite this, systemd still uses the /etc/fstab file for

filesystem configuration and mounting purposes. systemd uses the systemd-fstab-

generator tool to create transient mount units from the data in the fstab file.

Chapter 13 systemd

392

EXPERIMENT 13-3

perform this experiment as root. In experiment 13-1 we listed, among other units, the mount

units. the testFs.mount unit was one of those. so let’s explore mounts in much more detail.

Let’s start with our testFs filesystem and mount.

[root@studentvm1 ~]# systemctl status TestFS.mount

● TestFS.mount - /TestFS

 Loaded: loaded (/etc/fstab; generated)

 Active: active (mounted) since Tue 2019-05-14 09:18:51 EDT; 2h 17min ago

 Where: /TestFS

 What: /dev/sdb1

 Docs: man:fstab(5)

 man:systemd-fstab-generator(8)

 Tasks: 0 (limit: 4694)

 Memory: 68.0K

 CGroup: /system.slice/TestFS.mount

May 13 21:51:00 studentvm1 systemd[1]: Mounting /TestFS...

May 13 21:51:00 studentvm1 systemd[1]: Mounted /TestFS.

this shows that the unit file for this device was generated and that the device is mounted,

which may not be the case on your Vm, so mount it if it is not. We could use the mount and

umount commands to unmount this unit, but let’s use systemctl instead. First let’s stop

(umount) testFs.mount and check its status.

[root@studentvm1 ~]# systemctl stop TestFS.mount ; systemctl status TestFS.mount

● TestFS.mount - /TestFS

 Loaded: loaded (/etc/fstab; generated)

 Active: inactive (dead) since Tue 2019-05-14 11:40:57 EDT; 13ms ago

 Where: /TestFS

 What: /dev/sdb1

 Docs: man:fstab(5)

 man:systemd-fstab-generator(8)

May 13 21:59:44 studentvm1 systemd[1]: Mounting /TestFS...

May 13 21:59:44 studentvm1 systemd[1]: Mounted /TestFS.

May 13 22:00:00 studentvm1 systemd[1]: Unmounting /TestFS...

May 13 22:00:00 studentvm1 systemd[1]: Unmounted /TestFS.

Chapter 13 systemd

393

and restart (mount) it.

[root@studentvm1 ~]# systemctl start TestFS.mount ; systemctl status TestFS.

mount

● TestFS.mount - /TestFS

 Loaded: loaded (/etc/fstab; generated)

 Active: active (mounted) since Tue 2019-05-14 11:42:52 EDT; 12ms ago

 Where: /TestFS

 What: /dev/sdb1

 Docs: man:fstab(5)

 man:systemd-fstab-generator(8)

 Tasks: 0 (limit: 4694)

 Memory: 96.0K

 CGroup: /system.slice/TestFS.mount

May 13 22:00:31 studentvm1 systemd[1]: Mounting /TestFS...

May 13 22:00:31 studentvm1 systemd[1]: Mounted /TestFS.

We can also use the systemd-mount and systemd-umount commands. the advantage

of using these commands is that systemd-mount, for example, can take into account any

prerequisite mount units and mount them as required.

suppose that we have two mounts, mount1 and mount2, and that mount1 contains a mount

point, mount2, on which the mount2 unit will be mounted. Using the traditional mount

command, we would first need to mount the mount1 unit on its mount point, /mount1, and

then we could mount the mount2 unit on /mount1/mount2. the systemd-mount command

automatically does that for us when we mount the mount2 unit.

mount units may be configured either with the traditional /etc/fstab file or with systemd units.

Fedora uses the fstab file as it is created during the installation. however, systemd uses the

systemd-fstab-generator program to translate the fstab file into systemd units for each

entry in the fstab file.

Now that we know that we can use systemd .mount unit files for filesystem mounting, let’s try

that out. We will create a mount unit for this filesystem.

First, unmount /testFs. edit the /etc/fstab file and comment out the testFs line. Now create a

new file with the name testFs.mount in the /etc/systemd/system directory. edit it to contain

the following configuration data. It is required that the unit file name and the name of the

mount point be identical or the mount will fail.

Chapter 13 systemd

394

the description line in the [Unit] section is for us humans, and it provides the name we see

when we list mount units with systemctl -t mount. the data in the [mount] section of this

file contains essentially the same data that would be found in the fstab file.

This mount unit is for the TestFS filesystem created in the course

"Using and Administering Linux"

By David Both

Licensed under GPL V2

#

[Unit]

Description=TestFS Mount

[Mount]

What=/dev/sdb1

Where=/TestFS

Type=ext4

Options=defaults

[Install]

WantedBy=multi-user.target

Now enable and then start the mount unit.

[root@studentvm1 etc]# systemctl enable TestFS.mount

Created symlink /etc/systemd/system/multi-user.target.wants/TestFS.mount → /

etc/systemd/system/TestFS.mount.

[root@studentvm1 ~]# systemctl start TestFS.mount

Verify that the filesystem has been mounted.

[root@studentvm1 ~]# systemctl status TestFS.mount

● TestFS.mount - TestFS Mount

 Loaded: loaded (/etc/systemd/system/TestFS.mount; enabled; vendor preset:

disabled)

 Active: active (mounted) since Tue 2019-05-14 11:58:07 EDT; 18s ago

 Where: /TestFS

 What: /dev/sdb1

 Tasks: 0 (limit: 4694)

Chapter 13 systemd

395

 Memory: 88.0K

 CGroup: /system.slice/TestFS.mount

May 14 09:18:51 studentvm1 systemd[1]: Mounting TestFS Mount...

May 14 09:18:51 studentvm1 systemd[1]: Mounted TestFS Mount.

this experiment has been specifically about creating a unit file for a mount, but it can be applied

to other types of unit files as well. the details will be different but the concepts are the same.

 systemd timers
Having already explored the use of cron and at to run commands and scripts in Chapter 11,

we now turn to systemd timers to accomplish a similar function. systemd timers are similar

to cron jobs and provide no equivalent to the at command for one-time execution.

systemd timers have additional capabilities that are not present with cron which

only triggers on specific real-time dates and times. systemd timers can be configured to

trigger based on the status changes of other systemd units. For example, a timer might

be configured to trigger a specific elapsed time after system boot, after startup,5 or after

activation of a defined service unit. These are called monotonic6 timers. Figure 13-3 lists

the monotonic timers along with a short definition of each, as well as the OnCalendar

timer which is used to specify particular times in the future. This information is taken

from the systemd.timer man page.

5 Remember that boot and startup are different things. In this case startup refers to the startup of
systemd itself.

6 A count or sequence that continually increases

Chapter 13 systemd

396

Configuring systemd timers is a bit different than using crontab. Each timer requires

a timer file which refers to a service unit file that defines the script or commands.

 Time specification
systemd itself and its timers use a different style for time and date specifications than the

format used in crontab. It is more flexible than crontab and allows fuzzy dates and times

in the manner of the at command. It should also be familiar enough that it will be easy

to understand.

The basic format for systemd timers is DOW YYYY-MM-DD HH:MM:SS. The DOW

(day of week) is optional and other fields can use an asterisk (∗) to match any value for

that position. All of the various calendar time forms are converted to a normalized form

for use. If the time is not specified, it is assumed to be 00:00:00. If the date is not specified

but the time is, the next match may be today or tomorrow.

systemd provides us with an excellent tool for validating and examining calendar

time events that are to be used in a specification. The systemd-analyze calendar tool

will parse a calendar time events specification and provide the normalized form as well

as other interesting information such as the date and time of the next “elapse,” that is,

match, and the approximate amount of time before the trigger time is reached.

The systemd.time man page has a complete explanation of these time specifications.

OnCalendar= Defines realtime (i.e. wallclock) timers with calendar event expressions. See
systemd.time(7) for more information on the syntax of calendar event
expressions. Otherwise, the semantics are similar to OnActiveSec= and
related settings.

Timer Monotonic Definition

OnActiveSec= X Defines a timer relative to the moment the timer itself is activated.

OnBootSec= X Defines a timer relative to when the machine was booted up.

OnStartupSec= X Defines a timer relative to when systemd was first started.

OnUnitActiveSec= X Defines a timer relative to when the unit the timer is activating was last
activated.

OnUnitInactiveSec= X Defines a timer relative to when the unit the timer is activating was last
deactivated.

Figure 13-3. A list of systemd timer definitions

Chapter 13 systemd

397

EXPERIMENT 13-4

this experiment should be performed as the student user. In this experiment we will explore

the use of the systemd-analyze calendar tool.

Tip If the current date on which you are performing this experiment is past the
date used in these experiments, add 2 years to the current year to ensure that
these dates are in the future.

First, let’s look at a date in the future without a time.

Tip the times for “Next elapse” and “UtC” will differ based on your local time
zone.

[student@studentvm1 ~]$ systemd-analyze calendar 2030-06-17

 Original form: 2030-06-17

Normalized form: 2030-06-17 00:00:00

 Next elapse: Mon 2030-06-17 00:00:00 EDT

 (in UTC): Mon 2030-06-17 04:00:00 UTC

 From now: 11 years 1 months left

Now let’s add a time. Note that the date and time are analyzed separately as non-related

entities.

[student@studentvm1 ~]$ systemd-analyze calendar 2030-06-17 15:21:16

 Original form: 2030-06-17

Normalized form: 2030-06-17 00:00:00

 Next elapse: Mon 2030-06-17 00:00:00 EDT

 (in UTC): Mon 2030-06-17 04:00:00 UTC

 From now: 11 years 1 months left

 Original form: 15:21:16

Normalized form: ∗-∗-∗ 15:21:16
 Next elapse: Fri 2019-05-17 15:21:16 EDT

 (in UTC): Fri 2019-05-17 19:21:16 UTC

 From now: 23h left

Chapter 13 systemd

398

to analyze the date and time as a single unit, enclose them together in quotes.

[student@studentvm1 ~]$ systemd-analyze calendar "2030-06-17 15:21:16"

Normalized form: 2030-06-17 15:21:16

 Next elapse: Mon 2030-06-17 15:21:16 EDT

 (in UTC): Mon 2030-06-17 19:21:16 UTC

 From now: 11 years 1 months left

Now just specify a time earlier than the current time and one later. In this case the current

time was 16:16 on 2019-05-15.

[student@studentvm1 ~]$ systemd-analyze calendar 15:21:16 22:15

 Original form: 15:21:16

Normalized form: ∗-∗-∗ 15:21:16
 Next elapse: Fri 2019-05-17 15:21:16 EDT

 (in UTC): Fri 2019-05-17 19:21:16 UTC

 From now: 23h left

 Original form: 22:15

Normalized form: ∗-∗-∗ 22:15:00
 Next elapse: Thu 2019-05-16 22:15:00 EDT

 (in UTC): Fri 2019-05-17 02:15:00 UTC

 From now: 5h 59min left

the systemd-analyze calendar tool – despite the systemd.time(7) man page to the contrary –

does not work with all timestamps or calendar time specifications. any specification that does

not result in a distinct time will not work. so things like “tomorrow” or “today” cause errors.7

Despite its limitations, the systemd-analyze calendar tool can still help you

understand the structure of the calendar time specifications used by systemd timers.

I strongly recommend reading the systemd.time(7) man page for a more complete

understanding of the time formats that can be used with systemd timers.

7 I reported this limitation on May 16, 2019, as bug number 1711065 on the Red Hat Bugzilla web
site. The response was that a new tool would be added to systemd-analyze. Within 24 hours, new
code was submitted via GitHub and the man page was rewritten a bit to clarify the difference
between timestamps and time specifications. All of the discussion and a link to the GitHub page
for this bug is at https://bugzilla.redhat.com/show_bug.cgi?id=1711065. This is an excellent
example of how those of us who are not developers can contribute to the betterment of open
source software. It is not clear how long testing will take and when the revised code will appear in
updates to released versions of Fedora.

Chapter 13 systemd

https://bugzilla.redhat.com/show_bug.cgi?id=1711065

399

 Timer configuration
Let’s configure a timer that will perform the same task as that in Experiment 11-3 and log

the results of the free command to the file, freemem.log.

EXPERIMENT 13-5

this experiment must be performed as the root user.

First let’s create the shell program that will be executed by the service. Create the shell

program /usr/local/bin/freemem.sh and make it executable. add the following content to

freemem.sh.

#!/usr/bin/bash

This timer unit is for testing timer units in the course

"Using and Administering Linux"

By David Both

Licensed under GPL V2

#

/usr/bin/date >> /tmp/freemem.log

/usr/bin/free >> /tmp/freemem.log

Now create the service unit that will run this shell program. In the /etc/systemd/system/

directory, create the file freemem.service. It does not need to be executable. add the following

content to the freemem.service file.

This service unit is for testing timer units in the course

"Using and Administering Linux"

By David Both

Licensed under GPL V2

#

[Unit]

Description=Logs free memory to /tmp/freemem.log

Wants=freemem.timer

[Service]

ExecStart=/usr/local/bin/freemem.sh

Chapter 13 systemd

400

[Install]

WantedBy=multi-user.target

Finally create the freemem.timer unit file in /etc/systemd/system and add the following

content. this file does not need to be executable.

This timer unit is for testing timer units in the course

"Using and Administering Linux"

By David Both

Licensed under GPL V2

#

[Unit]

Description=Logs free memory to /tmp/freemem.log

Requires=freemem.service

[Timer]

Unit=freemem.service

OnCalendar=∗-∗-∗ ∗:∗:00

[Install]

WantedBy=timers.target

the OnCalendar time specification in the freemem.timer file *-*-* *:*:00 should trigger the

timer to execute the freemem.service unit every minute.

Now let’s activate the timer.

[root@studentvm1 system]# systemctl start freemem.timer

[root@studentvm1 system]# systemctl -t timer

UNIT LOAD ACTIVE SUB DESCRIPTION

dnf-makecache.timer loaded active waiting dnf makecache --timer

freemem.timer loaded active waiting Logs free memory to /tmp/

freemem.log

mlocate-updatedb.timer loaded active waiting Updates mlocate database

every day

sysstat-collect.timer loaded active waiting Run system activity

accounting tool every 10 minutes

sysstat-summary.timer loaded active waiting Generate summary of

yesterday's process accounting

Chapter 13 systemd

401

systemd-tmpfiles-clean.timer loaded active waiting Daily Cleanup of Temporary

Directories

unbound-anchor.timer loaded active waiting daily update of the root

trust anchor for DNSSEC

[root@studentvm1 system]# systemctl status freemem.timer

● freemem.timer - Logs free memory to /tmp/freemem.log

 Loaded: loaded (/etc/systemd/system/freemem.timer; enabled; vendor preset:

disabled)

 Active: active (waiting) since Fri 2019-05-17 09:51:21 EDT; 10min ago

 Trigger: Fri 2019-05-17 10:02:00 EDT; 29s left

May 17 09:51:21 studentvm1 systemd[1]: Started Logs free memory to /tmp/

freemem.log.

Check that the timer is updating the log file.

[root@studentvm1 tmp]# tail -f freemem.log

Mem: 4036976 493316 1346668 8800 2196992 3287784

Swap: 6291452 0 6291452

Fri May 17 09:52:56 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 492256 1347700 8800 2197020 3288844

Swap: 6291452 0 6291452

Fri May 17 09:53:19 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 492084 1347692 8800 2197200 3288948

Swap: 6291452 0 6291452

What do you notice about the results? Hint: look at the timestamps. they are not consistent

every minute on the minute. this illustrates that the default accuracy is 1 minute. that means

that any given timer may elapse +/- 1 minute off from its ideal configured time. that is fine for

many tasks but not for any that require very fine accuracy.

this flexible accuracy is intentional, and it is designed to optimize power consumption to

suppress unnecessary CpU wake-ups.

there is an optional variable that I discovered in the systemd.timer(5) man page. We can add

accuracysec to the timer unit file, which allows us to define the desired accuracy down to 1

microsecond (1μs).

Chapter 13 systemd

402

Of course, there is also a variable that allows setting of the maximum random delay time,

randomizeddelaysec. Its default setting is 0.

together, these two variables prevent multiple timers from elapsing at the exact same

moment. this randomization is meant to ensure that the tasks launched by timers do not

interfere with each other.

Let’s set the accuracysec variable to .01 seconds to improve accuracy. add the following line

to the end of the [timer] section of the freemem.timer unit file.

AccuracySec=.01s

We do not need to restart the timer for this to take effect, although we could do that. It is

easier to use the following command which forces systemd to reload all of its unit files and to

rerun all of its generators for devices that do not have explicit unit files.

[root@studentvm1 system]# systemctl daemon-reload

may 17 09:51:21 studentvm1 systemd[1]: started Logs free memory to /tmp/freemem.log.

you should still be using tail to follow the changes to the freemem.log file so the changes will

look like this.

Fri May 17 12:49:36 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 494380 1341448 8800 2201148 3286668

Swap: 6291452 0 6291452

Fri May 17 12:50:56 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 495272 1340116 9000 2201588 3285584

Swap: 6291452 0 6291452

Fri May 17 12:51:00 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 494928 1340468 8800 2201580 3286080

Swap: 6291452 0 6291452

Fri May 17 12:52:00 EDT 2019

 total used free shared buff/cache available

Mem: 4036976 494016 1341312 8800 2201648 3286996

Swap: 6291452 0 6291452

this is exactly what we want.

If we want the timer to run after a reboot, we can enable it.

Chapter 13 systemd

403

[root@studentvm1 system]# systemctl enable freemem.timer

Created symlink /etc/systemd/system/timers.target.wants/freemem.timer →

/etc/systemd/system/freemem.timer.

Close the editor sessions and reboot the studentVm1 host. after logging back in, verify that the

timer is working. to clean up, stop and disable the timer.

[root@studentvm1 tmp]# systemctl stop freemem.timer

[root@studentvm1 tmp]# systemctl disable freemem.timer

Removed /etc/systemd/system/timers.target.wants/freemem.timer.

 systemd-analyze
The systemd-analyze tool also allows us to look at which processes take the most time

during startup as well as output of system data to various types of graphics files that can

be used by other viewing tools for visual analysis.

EXPERIMENT 13-6

this experiment can be performed as the student user. Let’s start with a simple look at startup

to see which services take the most time to initialize.

[root@studentvm1 ~]# systemd-analyze blame

 13.514s firewalld.service

 13.004s udisks2.service

 7.437s sssd.service

 6.741s abrtd.service

 6.000s plymouth-quit-wait.service

 5.595s polkit.service

 5.410s ModemManager.service

 4.555s NetworkManager-wait-online.service

 2.932s accounts-daemon.service

 2.598s initrd-switch-root.service

 2.337s lvm2-monitor.service

 2.199s gssproxy.service

 2.183s avahi-daemon.service

 2.137s sysstat.service

<snip>

Chapter 13 systemd

404

this could be helpful if the startup takes a long time. If you check this out before problems

arise, you will have something to compare when you are seeking the cause of a problem. any

service that has a significantly longer startup time than normal might have a configuration

or other problem that is causing the delay. Note that service startup times will vary from one

startup to another.

a more complex look at startup can be achieved by creating graphics files that can be viewed on

the desktop. these files display timelines of when each service began its startup sequence and

finished it. these graphics can be created in formats suitable for viewing in a web browser or

one of the graphics programs like LibreOffice draw or a pdF viewer like Okular. In this example

we will create an svg vector graphics file and then use the Firefox browser to view it.

Ensure that the student home directory (~) is the PWD.

[student@studentvm1 ~]$ systemd-analyze plot > system.svg

Click the “home” icon on the desktop to open the thunar file manager. Locate the file we just

created, system.svg, and right-click it. Click through the menu items Open with ➤ Open
with other application to get to the Open With window. scroll down as necessary and select

Firefox. Click the Open button or just double-click Firefox.

scroll to the lower left side of the image to view the legend which will make interpreting the

graph easier. you can then see that the dark red portions of each bar are the startup times for

the services.

this is a large image so take some time to scroll around it. you can also use the key

combinations Ctrl+ and Ctrl- to enlarge or reduce the size of the image on the screen to get an

overall view.

this view of the system startup also shows all of the services that start making it easier to

find some background processes that may not be necessary. For example, I always stop and

disable the avahi daemon.

 Journals
Log files are a SysAdmin’s best friend, and Fedora has a /var/log directory full of log files

and subdirectories with even more log files. All of the log files are composed of ASCII

plain text and can be perused with standard text tools.

Chapter 13 systemd

405

systemd keeps its “logs” in files called journals with an extension of “.journal” for

ease of identification. These journals are stored in a binary format in the /var/log/journal

directory and are accessed and processed into readable format by the journalctl utility.

The systemd journals contain entries from services controlled by systemd.

EXPERIMENT 13-7

perform this experiment as the root user. although non-root users have some access to the

data in these journals, some, such as kernel entries, are only accessible by root.

start by listing all journal entries. Notice that the pager, less, is automatically invoked. entries

are listed from the oldest at the top to the newest at the bottom.

[root@studentvm1 ~]# journalctl

-- Logs begin at Sat 2019-03-30 05:34:48 EDT, end at Wed 2019-05-15 14:05:37 EDT. --

Mar 30 05:34:48 studentvm1 audit[1]: SERVICE_START pid=1 uid=0 auid=4294967295

ses=4294967295 msg='un>

Mar 30 05:34:48 studentvm1 dbus-daemon[914]: [system] Successfully activated service

'org.freedesktop>

Mar 30 05:34:48 studentvm1 systemd[1]: Started Network Manager Script Dispatcher

Service.

Mar 30 05:34:48 studentvm1 nm-dispatcher[25225]: req:1 'dhcp4-change' [enp0s8]: new

request (3 script>

Mar 30 05:34:48 studentvm1 nm-dispatcher[25225]: req:1 'dhcp4-change' [enp0s8]:

start running ordered>

Mar 30 05:34:48 studentvm1 rsyslogd[902]: imjournal: sd_journal_get_cursor() failed:

Cannot assign re>

Mar 30 05:34:48 studentvm1 dhclient[1320]: bound to 192.168.0.181 -- renewal in 257

seconds.

Mar 30 05:34:49 studentvm1 rsyslogd[902]: imjournal: journal reloaded... [v8.39.0

try http://www.rsys>

Mar 30 05:34:58 studentvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 msg='uni>

Mar 30 05:35:07 studentvm1 dhclient[1302]: DHCPREQUEST on enp0s3 to 10.0.2.11 port

67 (xid=0x33207958)

Mar 30 05:35:07 studentvm1 dhclient[1302]: DHCPACK from 10.0.2.11 (xid=0x33207958)

Mar 30 05:35:07 studentvm1 NetworkManager[1040]: <info> [1553938507.6748] dhcp4

(enp0s3): address >

Chapter 13 systemd

406

Mar 30 05:35:07 studentvm1 NetworkManager[1040]: <info> [1553938507.6748] dhcp4

(enp0s3): plen 24 >

Mar 30 05:35:07 studentvm1 NetworkManager[1040]: <info> [1553938507.6749] dhcp4

(enp0s3): gateway >

Mar 30 05:35:07 studentvm1 NetworkManager[1040]: <info> [1553938507.6749] dhcp4

(enp0s3): lease ti

<snip>

the journal files are rotated on a regular basis and older ones are deleted. this prevents any

single file from getting too large and also prevents these journal files from filling up all of the

space on the /var filesystem.

press G (uppercase) to go to the end of the list. It may take a few seconds for all of the files to

load in order to get to the end.

May 15 14:05:26 studentvm1 nm-dispatcher[24400]: req:2 'dhcp4-change'

[enp0s8]: start running ordered>

May 15 14:05:26 studentvm1 dhclient[1207]: bound to 192.168.0.181 -- renewal

in 270 seconds.

May 15 14:05:37 studentvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 msg='uni>

lines 777688-777726/777726 (END)

the last line is highlighted and shows the total number of lines in the journal listing. that

amounts to 777,726 lines in this journal on my Vm. that is a lot of data.

to make it easier to locate specific data, we can use the -t option to specify a syslog identifier

such as a service name. Look at the entries for the kernel.

[root@studentvm1 ~]# journalctl -t kernel

search for “reboot” in this data to locate places where reboots occurred. the data stored here

looks very much like the data found in the output data stream from the dmesg command. We

could also do this.

[root@studentvm1 ~]# journalctl -k

the -k option shows all of the kernel entries but does not explicitly mark the reboots.

We can also specify a message priority using the -pX where X ranges from 0 (emergency)

to 6 (info) and 7 (debug). Check the journalctl man page for more information on these

priorities.

Chapter 13 systemd

407

[root@studentvm1 ~]# journalctl -p2

try other priority levels as well.

do you want to see a list of every time that the host was booted?

[root@studentvm1 ~]# journalctl --list-boots

Or all entries between two specified times? the -s option is “since” a specified time and -U is

“until” a specified time. Omitting a date implies “today.”

[root@studentvm1 ~]# journalctl -S 01:00:00 -U 01:10:05

Or

[root@studentvm1 ~]# journalctl -S "2019-05-10 01:00:00" -U "2019-05-10 01:10:05"

the date and time specification must be in double quotes due to the space used to separate

the date from the time. Omitting the time specification implies a time of 00:00:00.

Options can be combined. In this next example, we select all of the journal entries for the

dhCp client (dhclient) between 01:00:00 and 01:10:05 on may 10, 2019.

[root@studentvm1 ~]# journalctl -S "2019-05-10 01:00:00" -U "2019-05-10

01:10:05" -t dhclient

If you get no results for this, expand the time differential by making the “Until” option a later time.

 Chapter summary
The systemd suite of tools is very complex and quite powerful. We have learned how

to use systemctl to explore the unit structure and how to manage services. We have

explored mount units in some detail and created a custom unit file with which we can

manage the new mount unit. We have also learned to use the journalctl program to

view systemd journals.

We have seen that systemd can provide more status information than the old

SystemV tools. Despite the controversy still surrounding systemd, it is a powerful and

very flexible tool for managing many aspects of a running Linux host.

There is much more to systemd than we have been able to explore in this course,

including both Chapter 16 of Volume 1 and this one. You should now have enough basic

knowledge of systemd, its functions, configuration structure, and tools to be able to

perform further exploration on your own.

Chapter 13 systemd

408

 References
There is a great deal of information about systemd available on the Internet, but much of

it can be terse, obtuse, or even misleading. In addition to the resources referred to in the

various footnotes throughout this chapter, I have compiled here a list of web pages with

more detailed and reliable information about systemd startup:

• There is a good practical guide at systemd – Fedora Project. This site

has pretty much everything you need to know in order to configure,

manage, and maintain a Fedora computer using systemd.

https://docs.fedoraproject.org/en-US/quick-docs/

understanding-and-administering-systemd/index.html

• For detailed technical information about systemd and the reasons for

creating it, check out this “Description of systemd” at Freedesktop.org.

www.freedesktop.org/wiki/Software/systemd

• A basic introduction to systemd at Linux.com.

www.linux.com/learn/tutorials/524577-here-we-go-again-

another-linux-init-intro-to-systemd

• Managing services on systemd at Linux.com.

www.linux.com/learn/tutorials/527639-managing-services-

on-linux-with-systemd

• More advanced systemd information and tips at Linux.com.

www.linux.com/learn/tutorials/539856-more-systemd-fun-

the-blame-game-and-stopping-services-with-prejudice

There is also a series of articles written by Lennart Poettering, the designer and

primary developer behind systemd. These are deeply technical articles that are meant

for Linux system administrators. These articles were written between April 2010 and

September 2011, but they are just as relevant now as they were then. Much of everything

else good that has been written about systemd and its ecosystem is based on these

papers:

Chapter 13 systemd

https://docs.fedoraproject.org/en-US/quick-docs/understanding-and-administering-systemd/index.html
https://docs.fedoraproject.org/en-US/quick-docs/understanding-and-administering-systemd/index.html
http://freedesktop.org
http://www.freedesktop.org/wiki/Software/systemd
https://www.linux.com/learn/tutorials/524577-here-we-go-again-another-linux-init-intro-to-systemd
https://www.linux.com/learn/tutorials/524577-here-we-go-again-another-linux-init-intro-to-systemd
https://www.linux.com/learn/tutorials/527639-managing-services-on-linux-with-systemd
https://www.linux.com/learn/tutorials/527639-managing-services-on-linux-with-systemd
https://www.linux.com/learn/tutorials/539856-more-systemd-fun-the-blame-game-and-stopping-services-with-prejudice
https://www.linux.com/learn/tutorials/539856-more-systemd-fun-the-blame-game-and-stopping-services-with-prejudice

409

• Rethinking PID1

http://0pointer.de/blog/projects/systemd.html

• systemd for Administrators, Part 1

http://0pointer.de/blog/projects/systemd-for-admins-1.

html

• systemd for Administrators, Part II

http://0pointer.de/blog/projects/systemd-for-admins-2.html

• systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemd-for-admins-3.html

• systemd for Administrators, Part IV

http://0pointer.de/blog/projects/systemd-for-admins-4.html

• systemd for Administrators, Part V

http://0pointer.de/blog/projects/three-levels-of-off.html

• systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changing-roots

• systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blame-game.html

• systemd for Administrators, Part VIII

http://0pointer.de/blog/projects/the-new-configuration-

files.html

• systemd for Administrators, Part IX

http://0pointer.de/blog/projects/on-etc-sysinit.html

• systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html

• systemd for Administrators, Part XI

http://0pointer.de/blog/projects/inetd.html

Chapter 13 systemd

http://0pointer.de/blog/projects/systemd.html
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/systemd-for-admins-4.html
http://0pointer.de/blog/projects/three-levels-of-off.html
http://0pointer.de/blog/projects/changing-roots
http://0pointer.de/blog/projects/blame-game.html
http://0pointer.de/blog/projects/the-new-configuration-files.html
http://0pointer.de/blog/projects/the-new-configuration-files.html
http://0pointer.de/blog/projects/on-etc-sysinit.html
http://0pointer.de/blog/projects/instances.html
http://0pointer.de/blog/projects/inetd.html

410

 Exercises
Complete the following exercises to finish this chapter:

 1. Define a unit file.

 2. How many loaded units are there on your VM host?

 3. How many active units are there on your VM host?

 4. Does the TestFS.mount unit file mount the TestFS filesystem after

a reboot?

 5. What unit files are required to implement a timer?

 6. Use systemd-analyze to determine the total amount of time it took

for startup at the last boot.

 7. What does avahi do?

 8. How long did avahi take to start?

 9. Terminate avahi and disable it.

 10. Are there any emergency level entries in the systemd journal?

Chapter 13 systemd

411
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_14

CHAPTER 14

D-Bus and udev
 Objectives
In this chapter you will learn

• How Linux treats all devices as plug and play

• What D-Bus and udev are

• How D-Bus and udev work together to make device access easy

• How to write rules for udev

 /dev chaos
The /dev directory has always been the location for the device files in all Unix and Linux

operating systems. Note that device files are not the same as device drivers. Each device

file represents one actual or potential physical device connected to the host.

In the past, device files were created at the time the operating system was created.

This meant that all possible devices that might ever be used on a system needed to be

created in advance. In fact, tens of thousands of device files needed to be created to

handle all of the possibilities. It became very difficult to determine which device file

actually related to a specific physical device.

The development of two very important tools, D-Bus and udev, has provided Linux

with the ability to create device files only when they are needed by a device that is

already installed or one that is hot-plugged into the running system.

412

 About D-Bus
D-Bus1 is a Linux software interface used for inter-process communications (IPC). It was

first released in 2006. We looked at one form of IPC in Volume 1, Chapter 13, the named

pipe, in which one program would push data into the named pipe and another program

would extract the data.

D-Bus is a system-wide and more complex form of IPC that allows many kernel- and

system-level processes to send messages to the logical message bus. Other processes

listen to the messages on the bus and may choose to react to those messages or not.

 About udev
The udev2 daemon is designed to simplify the chaos that had overtaken the /dev

directory with huge numbers of mostly unneeded devices. At startup, udev creates

entries in /dev only for those devices that actually currently exist or which have a high

probability of actually existing on the host. This significantly reduces the number of

device files required.

In addition to detecting devices, udev assigns names to those devices when they are

plugged into the system, such as USB storage and printers, and other non-USB types of

devices as well. In fact, udev treats all devices as plug and play, even at boot time. This

makes dealing with devices consistent at all times. udev also moves device naming out of

kernel space and into user space.

Greg Kroah-Hartman, one of the authors of udev, wrote an interesting and

informative article3 for Linux Journal. It provides insight into the details of udev and how

it is supposed to work. That article discusses udev, a program that replaces and improves

upon the functionality of the old devfs. It provides /dev entries for devices in the system

at any moment in time. It also provides features previously unavailable through devfs

alone, such as persistent naming for devices when they move around the device tree, a

flexible device naming scheme, notification of external systems of device changes, and

moving all naming policy out of the kernel.

1 Wikipedia, D-Bus, https://en.wikipedia.org/wiki/D-Bus
2 Wikipedia, udev, https://en.wikipedia.org/wiki/Udev
3 Greg Kroah-Hartman, Kernel Korner – udev — Persistent Naming in User Space, Linux Journal,
June, 2004, www.linuxjournal.com/article/7316

Chapter 14 D-Bus anD uDev

https://en.wikipedia.org/wiki/D-Bus
https://en.wikipedia.org/wiki/Udev
https://www.linuxjournal.com/article/7316

413

Note that udev has matured since the article was written and some things have

changed, such as the udev rule location and structure, but the overall objectives and

architecture are the same.

One of the main consequences of using udev for persistent plug'n'play naming is

that it makes things much easier for the average non-technical user. This is a good thing

in the long run; however, there have been migration problems.

EXPERIMENT 14-1

perform this experiment as the student user on the GuI desktop. this experiment assumes that

the usB stick is formatted and has one partition.

Open the thunar file manager and ensure that the side panel is visible. It does not matter

whether it is in shortcuts or tree mode because the storage devices are visible in both.

plug a usB thumb drive that is known to be working into the physical host. then, on the

virtualBox window for studentvM1, use the menu bar to open Devices ➤ usB and, while

watching the thunar window, place a check mark next to the usB device you just plugged in.

the device will now be available to the vM, and it will be shown in the thunar side panel.

verify that the new device special file has been created in /dev/.

[root@studentvm1 ~]# ll /dev | grep sd

brw-rw---- 1 root disk 8, 0 May 17 11:35 sda

brw-rw---- 1 root disk 8, 1 May 17 11:35 sda1

brw-rw---- 1 root disk 8, 2 May 17 11:35 sda2

brw-rw---- 1 root disk 8, 16 May 17 11:35 sdb

brw-rw---- 1 root disk 8, 17 May 17 11:35 sdb1

brw-rw---- 1 root disk 8, 18 May 17 11:35 sdb2

brw-rw---- 1 root disk 8, 32 May 17 11:35 sdc

brw-rw---- 1 root disk 8, 48 May 17 11:35 sdd

brw-rw---- 1 root disk 8, 64 May 20 08:29 sde

brw-rw---- 1 root disk 8, 65 May 20 08:29 sde1

Chapter 14 D-Bus anD uDev

414

You should see that the new devices, /dev/sde and /dev/sde1, have been created within the

last couple minutes or so. One device special file was created for the entire device, /dev/

sde, and one was created for the partition on the device, /dev/sde1. the device name may be

different on your vM depending upon how closely you have been performing the experiments

in the preceding chapters of this course.

the D-Bus and udev services work together to make this happen.

Here is a simplified version of what takes place when a new device is connected to

the host. I stipulate here that the host system is already booted and running at multi-

user.target (runlevel 3) or graphical.target (runlevel 5):

 1. The user plugs in a new device, usually into an external USB,

SATA, or eSATA connector.

 2. The kernel detects this and sends a message on D-Bus to

announce the new device.

 3. udev reads the message proffered on D-Bus.

 4. Based on the device properties and its location in the hardware

bus tree, udev creates a name for the new device if one does not

already exist.

 5. The udev system creates the device special file in /dev.

 6. If a new device driver is required, it is loaded.

 7. The device is initialized.

 8. udev may send a notification to the desktop so that the desktop

may display an icon for the new device to the user.

The process of hot-plugging a new hardware device into a running Linux system

and making it ready is very complex – for the operating system. It is very simple for

the user who just wants to plug in a new device and have it work. This simplifies

things immensely for the end user. For USB and SATA hard drives, USB thumb drives,

keyboards, mice, printers, displays, and nearly anything else, all that a user needs to do is

to plug the device into the appropriate USB or SATA port and it will work.

Chapter 14 D-Bus anD uDev

415

 Naming rules
udev stores its default naming rules in files in the /usr/lib/udev/rules.d directory, and

it’s local configuration files in the /etc/udev/rules.d directory. Each file contains a set of

rules for a specific device type. These rules should not be changed.

In earlier versions of udev, there were many local rule sets created, including a set

for NIC naming. As each NIC was discovered by the kernel and renamed by udev for

the very first time, a rule was added to the rule set for the network device type. This was

initially done to ensure consistency before names had changed from “ethX” to more

consistent ones.

Now that udev has multiple consistent default rules for determining device names,

especially for NICs, storing the specific rules for each device in local configuration files is

not required to maintain that consistency.

EXPERIMENT 14-2

perform this experiment as the student user. We can look at the startup log for our vM and

see where the nIC names were changed. You may also encounter some other messages that

match the search pattern.

[student@studentvm1 ~]$ dmesg | grep -i eth

[5.014594] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:e1:0c:10

[5.014643] e1000 0000:00:03.0 eth0: Intel(R) PRO/1000 Network Connection

[5.592516] e1000 0000:00:08.0 eth1: (PCI:33MHz:32-bit) 08:00:27:f6:b0:68

[5.592559] e1000 0000:00:08.0 eth1: Intel(R) PRO/1000 Network Connection

[5.595377] e1000 0000:00:03.0 enp0s3: renamed from eth0

[5.614190] e1000 0000:00:08.0 enp0s8: renamed from eth1

this result is from my vM which has two nICs so there are lines for both. You should have only

a single nIC so only one set of entries in the dmesg data stream.

the first line for eth0 shows when the nIC was “discovered,” at 5.014594 seconds after

startup. the second line shows the ID of the device as an (virtual) Intel network device. the

last line for eth0 records the renaming from eth0 to enp0s3.

Chapter 14 D-Bus anD uDev

416

 Making udev work
This section first appeared as an article4 by Seth Kenlon at Opensource.com. It was

published there under a CC-by-SA 45 license and is used here with permission of the author.

I thought about writing this section myself, but this is such a well-written piece and it covers

everything I wanted to do myself, so I decided to use it here. The only changes I have made

are to remove the use of sudo and to better incorporate it into the format of this book.

This is an excellent example of authors who share their work using a Creative

Commons license I did not legally need to ask permission because the license does not

require that, but I felt that was the appropriate thing to do.

§§

 Using Udev for your success
Udev is the subsystem in Linux that supplies your computer with device events. In

plain English, that means it’s the code that detects when you have things plugged into

your computer, like a network card, external hard drives (including USB thumb drives),

mice, keyboards, joysticks and gamepads, DVD-ROM drives, and so on. That makes it a

potentially useful utility, and it’s well enough exposed to a standard user such that you

can manually script it to, for instance, perform certain tasks when a certain hard drive is

plugged in.

This article teaches you how to create a udev script triggered by some udev event, such

as plugging in a specific thumb drive. Once you understand the process for working with

udev, you can use it to do all manner of things, like loading a specific driver when a gamepad

is attached or performing an automatic backup when your backup drive is attached.

 A basic script

The best way to work with udev is in small chunks. Don’t write the entire script up front,

but instead start with something that simply confirms that udev does indeed trigger

some custom event.

4 Kenlon, Seth, An introduction to Udev: The Linux subsystem for managing device events,
https://opensource.com/article/18/11/udev

5 http://creativecommons.org/licenses/by-sa/4.0/

Chapter 14 D-Bus anD uDev

https://opensource.com/article/18/11/udev
http://creativecommons.org/licenses/by-sa/4.0/

417

Depending on the ultimate goal of your script, you won’t be able to guarantee that

you will ever see the results of a script with your own eyes, so make your script log that it

was successfully triggered. The usual place for log files is in the /var directory, but that’s

mostly the root user’s domain, so for testing, use /tmp, which is accessible by normal

users and also usually gets cleaned out every so often.

Open your favorite text editor as root and enter this simple script.

#!/usr/bin/bash

/usr/bin/date >> /tmp/udev.log

Place this in /usr/local/bin or some such place in the default executable path. Call it

trigger.sh and, of course, make it executable with chmod +x.

[root@studentvm1 bin]# chmod +x /usr/local/bin/trigger.sh

This script has nothing to do with udev. When this script is executed, this script

places a timestamp in the file /tmp/udev.log. Test the script yourself.

[root@studentvm1 ~]# trigger.sh ; cat /tmp/udev.log

Mon May 20 17:03:25 EDT 2019

The next step is to make udev, rather than yourself, trigger the script.

 Unique device identification

In order for your script to be triggered by a device event, udev must know under what

conditions it should call the script. In real life, you can identify a thumb drive by its

color, the manufacturer, and the fact that you just plugged it into your computer. Your

computer, however, obviously needs a different set of criteria.

Udev identifies devices by serial numbers, manufacturers, and even vendor ID and

product ID numbers. Since this is early in the life span of your udev script, be as broad,

non-specific, and all-inclusive as possible. In other words, you want first to catch nearly

any valid udev event to trigger your script.

With the udevadm monitor command, you can tap into udev in real time and see what

it sees when you plug in different devices. Try it as root.

[root@studentvm1 ~]# udevadm monitor

Chapter 14 D-Bus anD uDev

418

The monitor function prints received events for

• UDEV: The event which udev sends out after rule processing

• KERNEL: The kernel uevent

With udevadm monitor running, plug in a thumb drive and watch as all kinds of

information are spewed out onto your screen. Notice, particularly, that the type of event

is an ADD event. That’s a good way of identifying what type of event you want.

The udevadm monitor command provides a lot of good info, but you can see it with

prettier formatting with the command udevadm info, assuming you know where your

thumb drive is currently located in your /dev tree. If not, unplug and then plug your

thumb drive back in and then immediately issue this command.

[root@studentvm1 ~]# dmesg | tail | grep -i sd∗
[265211.509658] scsi host7: usb-storage 1-1:1.0

[265212.528687] scsi 7:0:0:0: Direct-Access JetFlash TS512MJF150

8.07 PQ: 0 ANSI: 2

[265212.529157] sd 7:0:0:0: Attached scsi generic sg5 type 0

[265212.550431] sd 7:0:0:0: [sde] 1003520 512-byte logical blocks: (514

MB/490 MiB)

[265212.556999] sd 7:0:0:0: [sde] Write Protect is off

[265212.557006] sd 7:0:0:0: [sde] Mode Sense: 03 00 00 00

[265212.563576] sd 7:0:0:0: [sde] No Caching mode page found

[265212.563582] sd 7:0:0:0: [sde] Assuming drive cache: write through

[265212.610157] sde: sde1

[265212.647708] sd 7:0:0:0: [sde] Attached SCSI removable disk

Assuming that command returned sde: sde1, for instance, then your thumb drive is

being assigned the sde label by the kernel. Alternately, you can use the lsblk command

to see all drives, including sizes and partitions, attached to your system. Now that you

have established where your drive is currently located in your filesystem, you can view

udev information about that device.

[root@studentvm1 ~]# udevadm info -a -n /dev/sde | less

This returns a lot of information. Focus on the first block of info for now. Your job is

to pick out parts of udev’s report about a device that are most unique to that device and

then tell udev to trigger your script when those unique attributes are detected.

Chapter 14 D-Bus anD uDev

419

What’s happening on a technical level is that the udevadm info process reports on

a device (specified by the device path) and then “walks” up the chain of parent devices.

For every device found, it prints all possible attributes using a key-value format. You can

compose a rule to match according to the attributes of a device plus attributes from one

single parent device.

 looking at device '/devices/pci0000:00/0000:00:0b.0/usb1/1-1/1-1:1.0/

host7/target7:0:0/7:0:0:0/block/sde':

 KERNEL=="sde"

 SUBSYSTEM=="block"

 DRIVER==""

 ATTR{alignment_offset}=="0"

 ATTR{capability}=="51"

 ATTR{discard_alignment}=="0"

 ATTR{events}=="media_change"

 ATTR{events_async}==""

 ATTR{events_poll_msecs}=="-1"

 ATTR{ext_range}=="256"

 ATTR{hidden}=="0"

 ATTR{inflight}==" 0 0"

 ATTR{range}=="16"

 ATTR{removable}=="1"

 ATTR{ro}=="0"

 ATTR{size}=="1003520"

 ATTR{stat}== " 109 0 4184 1434 0 0 0

 0 0 116 1369 0 0 0 0

A udev rule must contain one attribute from one single parent device.

Parent attributes are things that describe a device from the most basic level, such as

it’s something that has been plugged into a physical port or it is something with a size or

this is a removable device. Since the KERNEL label of sde can change depending upon

how many other drives you happen to have plugged in before you plug that thumb drive

in, that’s not the optimal parent attribute for a udev rule. However, it works for a proof

of concept, so you could use it. An even better candidate is the SUBSYSTEM attribute,

which identifies that this is a “block” system device (which is why the lsblk command

lists the device).

Chapter 14 D-Bus anD uDev

420

Create a new file called 80-local.rules in /etc/udev/rules.d and enter this code.

SUBSYSTEM=="block", ACTION=="add", RUN+="/usr/local/bin/trigger.sh"

Save the file, unplug your test thumb drive, and then reboot.

Wait, reboot on a Linux machine?

Theoretically, you can just issue udevadm control --reload, which should load all

rules, but at this stage in the game, it’s best to eliminate all variables. Udev is complex

enough without wondering if that rule didn’t work because of a syntax error or if you just

should have rebooted. So reboot regardless of what your POSIX pride tells you.

Tip although rebooting your studentvM1 host at this juncture is still a very good
idea, I did try using the udevadm control --reload command and the trigger.
sh script did trigger as expected, leaving a new entry in /tmp/udev.log.

When your system is back online, switch to a text console (with Ctrl-Alt-F3 or similar)

and plug your thumb drive in. If you are running a recent kernel, you will probably see a

bunch of output in your console when you plug the drive in. If you see an error message

such as “Could not execute /usr/local/bin/trigger.sh,” then you probably forgot to make

the script executable. Otherwise, hopefully all you see is that a device was plugged in and

that it got some kind of kernel device assignment and so on. Now, the moment of truth.

[root@studentvm1 rules.d]# cat /tmp/udev.log

Mon May 20 17:03:25 EDT 2019

Tue May 21 07:58:30 EDT 2019

If you see a very recent date and time returned from /tmp/udev.log, then the udev

has successfully triggered your script.

 Refining the rule into something useful

The problem with the rule right now is that it’s very generic. Plugging in a mouse, a

thumb drive, or someone else’s thumb drive will all indiscriminately trigger your script.

Now is the time to start focusing in on the exact thumb drive you want to trigger your

script.

Chapter 14 D-Bus anD uDev

421

One way to do this is with the vendor ID and product ID. To get these numbers, you

can use the lsusb command.

[root@studentvm1 rules.d]# lsusb

Bus 001 Device 006: ID 058f:6387 Alcor Micro Corp. Flash Drive

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

In this example, the 058f:6387 before “Alcor Micro Corp. Flash Drive” denotes the

idVendor and idProduct attributes. You can now include these attributes in your rule. Be

sure to use the IDs for your device and not the ones for my device.

SUBSYSTEM=="block", ATTRS{idVendor}=="058f", ACTION=="add", RUN+="/usr/

local/bin/trigger.sh"

Test this (yes, you should still reboot, just to make sure you’re getting fresh reactions

from udev), and it should work the same as before, only now if you plug in, say, a thumb

drive manufactured by a different company (therefore with a different idVendor) or a

mouse or a printer, the script is not triggered.

Keep adding in new attributes to further focus in on that one unique thumb drive

that you actually want to have trigger your script. Using udevadm info -a -n /dev/

sde, you can find out things like the vendor name, or sometimes a serial number, or the

product name, and so on.

For your own sanity, be sure to add only one new attribute at a time. Most mistakes I

have made and have seen other people make are to throw a bunch of attributes into their

udev rule and wonder why the thing no longer works. Testing attributes one by one is the

safest way to ensure udev can identify your device successfully.

 Security

This brings up the security concerns of writing udev rules to automatically do something

when a drive is plugged in.

On my machines, I don’t even have automount turned on, and yet this article

proposed scripts and rules that execute commands just by having something plugged in.

Two things to bear in mind here.

Focus your udev rules once you have them working so that they only trigger scripts

when you really want them to. Executing a script that blindly copies data to or from your

computer is a bad idea if anyone who happens to be carrying a thumb drive of the same

Chapter 14 D-Bus anD uDev

422

brand as yours comes along and plugs it into your box. Do not write your udev rule and

scripts and then forget about them. I know which computers have my udev rules on

them, and those boxes are much more my personal computers than the ones that I take

around to conferences or have in my office at work. The more “social” a computer is, the

less likely it is to get a udev rule on it that could potentially result in my data ending up

on someone else’s device or someone else’s data or malware on my device.

In other words, as with so much of the power that a GNU system provides you, it is

your job to be mindful of how you are wielding that power. If you abuse it or fail to treat it

with respect, then it very well could go horribly wrong.

 Udev in the real world

Now that you can confirm that our script is triggered by udev, you can turn your attention

to the function of the script. Right now, it is useless, doing nothing more than logging

the fact that it has been executed. I use udev to trigger automated backups of my thumb

drives. The idea is that the master copies of my active documents are on my thumb drive

(since it goes everywhere I go and could be worked on at any moment), and those master

documents get backed up to my computer each time I plug the drive into that machine.

In other words, my computer is the backup drive and my production data is mobile.

Since that’s what I use udev for the most, it’s the example I’ll use here, but udev

can grab lots of other things, like gamepads (this is useful on systems that aren’t set to

load the xboxdrv module when a gamepad is attached) and cameras and microphones

(useful to set inputs when a specific mic is attached), so don’t think that this one

example is all it’s good for.

A simple version of my backup system is a two-command process.

SUBSYSTEM=="block", ATTRS{idVendor}=="03f0", ACTION=="add",

SYMLINK+="safety%n"

SUBSYSTEM=="block", ATTRS{idVendor}=="03f0", ACTION=="add", RUN+="/usr/

local/bin/trigger.sh"

The first line detects my thumb drive with the attributes already discussed and

then assigns the thumb drive a symlink within the device tree. The symlink it assigns is

safety%n. The %n is a udev macro that resolves to whatever number the kernel gives to

the device, such as sdb1, sdb2, sdb3, and so on. So %n would be the 1 or the 2 or the 3.

Chapter 14 D-Bus anD uDev

423

This creates only a symlink in the dev tree, so it does not interfere with the normal

process of plugging in a device. This means that if you do use a desktop environment

that likes to automount devices, you won’t be causing problems for it. The second line

runs the script.

My backup script looks like this.

#!/usr/bin/bash

 mount /dev/safety1 /mnt/hd

sleep 2

rsync -az /mnt/hd/ /home/seth/backups/ && umount /dev/safety1

The script uses the symlink, which avoids the possibility of udev naming the drive

something unexpected (for instance, if I have a thumb drive called DISK plugged into my

computer already, and I plug in my other thumb drive also called DISK, the second one

will be labelled DISK_, which would foil my script). It mounts safety1 (the first partition

of the drive) at my preferred mount point of /mnt/hd.

Once safely mounted, it uses rsync to back up the drive to my backup folder (my

actual script uses rdiff-backup, and yours can use whatever automated backup solution

you prefer).

 Udev is your Dev

Udev is a very flexible system and enables you to define rules and functions in ways that

few other systems dare provide users. Learn it and use it, and enjoy the power of POSIX.

§§

 Chapter summary
In this chapter we have explored how D-Bus and udev work together to enable a very

powerful and flexible plug and play feature for Linux. We have looked at how udev works

to provide names for newly plugged-in devices and how it created device special files in

the /dev directory.

We have also created custom udev rules of our own that are used to trigger events

of various types. This capability enables us to exercise control over what happens when

a device is plugged in to our Linux hosts to a degree that is impossible in most other PC

operating systems.

Chapter 14 D-Bus anD uDev

424

This chapter once again merely provides a very brief experience with D-Bus and

udev. There is much more that can be done using udev rules, but you should now at least

be aware of some of the possibilities.

 Exercises
Perform the following exercises to complete this chapter:

 1. Describe the relationship between D-Bus and udev when a new

hardware device is plugged into a Linux host.

 2. List the steps taken by D-Bus and udev from when a USB thumb

drive is plugged into a host until the device icon appears on the

desktop.

 3. Given that the udev action when a device like the USB drive used

in this chapter is unplugged from the host is “removed”. Write a

udev rule that adds a timestamp to the /tmp/udev.log file when

the USB thumb drive is removed. Test to verify that this new rule

works as expected.

Chapter 14 D-Bus anD uDev

425
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_15

CHAPTER 15

Logs and Journals
 Objectives
In this chapter you will learn

• To use the System Activity Report (SAR) to monitor system

performance and potential problems using historical performance

data

• To use log files to monitor system performance and events

• To configure and use logrotate to manage log files

• To use systemd journals to monitor system events and performance

• To configure and use Logwatch to provide a daily summary of log and

journal entries for use in problem determination

 Logs are your friend
Use the log files to help determine the source of problems and performance issues. They

contain large amounts of data that can be used to track down many types of problems.

The most common error I make when troubleshooting is not going to the log files sooner.

Almost all of the log files are located in /var/log and can be accessed either directly

or with simple commands. The most current of each type of log file has no date as part

of its name, while older log file names have dates to differentiate them. In general and by

default, the log files are maintained for a period of 1 month with each log file containing

a maximum of 1 week of data. If the amount of data in a file passes a pre-configured

threshold, the file may be rotated when it reaches that threshold rather than waiting for

the full 7-day time period to pass.

The logrotate facility manages log rotation and deletion.

426

 SAR
My long-time favorite tool for problem determination is System Activity Report, or

SAR. SAR is an excellent place to start looking for information about a Linux computer’s

performance and performance-related problems.

SAR has a daemon that runs in the background collecting data. Every 10 minutes, the

collected data is stored in the /var/log/sa directory. These logs are in a binary format and

cannot be read directly. The sar command is used to view these records.

One of the advantages of SAR is the fact that it reports historical data for up to 30

days. This enables us to go back in time and see if we can locate patterns or specific

periods when the load on one or more resources was very high. None of the other

performance monitoring tools available from the Fedora repositories provide this type of

historical data. Commands like top, iostat, vmstat, and so on all provide only instant-

in-time views of the data they monitor.

Note SAR is not installed or enabled on some distributions. Recent releases of
Fedora do install and enable SAR.

PREPARATION FOR EXPERIMENT 15-1

Perform this preparation section as root to install SAR if it is not already installed. First, test to

see if SAR is installed and enabled.

[root@studentvm1 log]# sar
Linux 5.0.7-200.fc29.x86_64 (studentvm1) 05/21/2019 _x86_64_ (2 CPU)

12:00:01 AM CPU %user %nice %system %iowait %steal %idle
12:10:04 AM all 0.10 0.00 1.41 1.88 0.00 96.61
12:20:17 AM all 0.08 0.00 1.36 1.35 0.00 97.21
12:30:17 AM all 0.08 0.00 1.36 1.16 0.00 97.40
<snip>

If the sar command results in a data stream similar to this, skip the rest of this preparation;

otherwise, continue with the rest of this preparation.

The package we need to install is sysstat.

[root@studentvm1 ~]# dnf -y install sysstat

ChAPTeR 15 LogS And JouRnALS

427

enable the sysstat service and start it. This also enables the sysstat timers.

[root@studentvm1 log]# systemctl enable sysstat

Created symlink /etc/systemd/system/multi-user.target.wants/sysstat.service

→ /usr/lib/systemd/system/sysstat.service.

Created symlink /etc/systemd/system/sysstat.service.wants/sysstat-collect.

timer → /usr/lib/systemd/system/sysstat-collect.timer.

Created symlink /etc/systemd/system/sysstat.service.wants/sysstat-summary.

timer → /usr/lib/systemd/system/sysstat-summary.timer.

[root@studentvm1 log]# systemctl start sysstat

SAR is now installed and the system data collection processes have been started.

If you just installed the sysstat package, there will not be any data collected until after

the next 10-minute time increment, like on the hour, 10 after, 20 after, and so on. If you

had to install the sysstat package, I suggest you wait for an hour or so to allow some data

to accumulate. You can check the contents of the /var/log/sa directory to verify that data

is being collected. You could also check the messages file to look for entries pertaining to

sysstat.

In current versions of Fedora, the data aggregation is managed by systemd and the

several control files are located in the /usr/lib/systemd/system directory. SAR data

collection is performed every 10 minutes, and the daily aggregation is done once per

day. These data collections used to be triggered by cron jobs but are now triggered by

systemd timers.

EXPERIMENT 15-1

This experiment can be performed as the student user. In its simplest form, the sar command

displays CPu statistics in 10-minute summary increments since midnight or the last boot.

[student@studentvm1 ~]$ sar | head -25
Linux 5.0.7-200.fc29.x86_64 (studentvm1) 05/21/2019 _x86_64_ (2 CPU)

12:00:01 AM CPU %user %nice %system %iowait %steal %idle
12:10:04 AM all 0.10 0.00 1.41 1.88 0.00 96.61
12:20:17 AM all 0.08 0.00 1.36 1.35 0.00 97.21
12:30:17 AM all 0.08 0.00 1.36 1.16 0.00 97.40
12:40:11 AM all 0.07 0.02 1.34 1.09 0.00 97.49
12:50:17 AM all 0.07 0.00 1.31 1.51 0.00 97.11
01:00:17 AM all 0.08 0.00 1.33 1.29 0.00 97.30

ChAPTeR 15 LogS And JouRnALS

428

01:10:17 AM all 0.08 0.00 1.36 1.73 0.00 96.83
01:20:17 AM all 0.10 0.00 1.43 1.29 0.00 97.18
01:30:17 AM all 0.20 0.00 1.43 1.57 0.00 96.80
01:40:14 AM all 0.07 0.03 1.36 1.52 0.00 97.03
01:50:00 AM all 0.07 0.00 1.31 1.41 0.00 97.22
02:00:17 AM all 0.07 0.00 1.39 1.35 0.00 97.20
02:10:07 AM all 0.08 0.00 1.38 1.79 0.00 96.74
02:20:17 AM all 0.09 0.00 1.40 1.30 0.00 97.21
02:30:17 AM all 0.07 0.00 1.34 1.28 0.00 97.31
02:40:17 AM all 0.10 0.31 1.61 2.06 0.00 95.92
02:50:14 AM all 0.07 0.00 1.32 1.44 0.00 97.18
03:00:17 AM all 0.10 0.00 1.43 1.52 0.00 96.95
03:10:17 AM all 0.12 0.00 1.48 1.46 0.00 96.94
03:20:03 AM all 0.08 0.00 1.38 2.13 0.00 96.41
03:30:09 AM all 0.07 0.00 1.34 1.57 0.00 97.02
03:40:00 AM all 0.07 0.01 1.36 1.19 0.00 97.38

I have used the head utility to truncate the output after 25 lines for this experiment. each line

in the output displays the averages of all the data collected during each 10-minute period. So

for the period ending at 03:10:17, the idle time for the CPu was 96.4%.

now run the sar command using the -A option to display all of the data types collected by

SAR. Run it through the less utility so you can page through the data which is far too long

for me to reproduce here. The -A option also displays more information for some sections,

including the CPu usage section. You may need to widen the terminal session window to show

it all on one line so that it is more easily readable; at least one section, memory statistics, is

171 columns in width. You can also shrink the terminal session font size to aid in achieving

this. of course there are limits and some of my older monitors are just too small.

[student@studentvm1 ~]$ sar -A | less

By default the sar command shows the data collected for today up to the current time. data

for days up to 1 month in the past can be located in files in the /var/log/sa directory. The files

are named saXX where XX is the day of the month. To see data from a previous day, use the

following command. It is not necessary to do this as the root user, although I have done so. Be

sure to use the name of a file that is present in your own sa directory.

[root@studentvm1 sa]# cd /var/log/sa ; ls

sa01 sa04 sa07 sa10 sa13 sa16 sa19 sa22 sa25 sar03 sar06 sar09

sar12 sar15 sar18 sar22

sa02 sa05 sa08 sa11 sa14 sa17 sa20 sa23 sar01 sar04 sar07 sar10

sar13 sar16 sar19 sar23

ChAPTeR 15 LogS And JouRnALS

429

sa03 sa06 sa09 sa12 sa15 sa18 sa21 sa24 sar02 sar05 sar08 sar11

sar14 sar17 sar20 sar24

[root@studentvm1 sa]# sar -A -f sa07 | less

The preceding command displays all of the data for the 7th day of the month and pipes it to

the less command.

The large amount of data produced by SAR can be daunting to try to interpret, but I have found

it to be very useful in locating various types of problems.

I suggest that you spend some time on a regular basis to look through the SAR

results. This will provide you with some knowledge of what your system should look like

when it is running correctly. That will make performance problems easier to spot when

they do occur.

The SAR man page has a lot of information about the data collected and how to

display specific types of data such as disk, CPU, network, and others. Despite that, many

of the headings in the SAR reports can be difficult to decipher at first. Much googling has

turned up very little in the way of decoding keys for the SAR report column headings, but

I did find one web site that has the best descriptions that I have discovered anywhere.1

The best book I have found in my own Linux reference collection, one that contains

many references to SAR and its use, is The Unix and Linux System Administration

Handbook.2 Most other books that cover SAR stick to CPU statistics, but SAR provides far

more data than that and this book covers at least some of that.

We covered SAR in some detail in Volume 1, Chapter 13, so there is no need to spend

more time on it here.

 logrotate
Before we examine other log files, we need to explore the logrotate facility. Many system

services and programs dump log entries into log files which enable us as SysAdmins to

view them and locate the causes of some types of system problems. That is a good thing.

1 Computer Hope web site, www.computerhope.com/unix/usar.htm
2 Nemeth, Evi, et al, The Unix and Linux System Administration Handbook, Pearson Education,
Inc., ISBN 978-0-13-148005-6. This title is also available on Amazon in Kindle format.

ChAPTeR 15 LogS And JouRnALS

https://www.computerhope.com/unix/usar.htm

430

But what if those log files were to grow to many gigabytes in size and perhaps

ultimately fill up the /var filesystem? That would not be so good. I have had that happen

and many errors are generated, but they cannot be stored in the log files because there is

no more room on the filesystem for them. Other symptoms include programs refusing to

start because there is no room to create their PID files on /var or running programs being

unable to perform certain tasks because they cannot open files due to being unable to

create lock files on /var. It gets messy very quickly.

The logrotate facility is designed to prevent these potential problems. It

accomplishes this by rotating the logs on a regular basis, as its name implies. Log

rotation can be triggered by time parameters such as weekly or monthly, as well as by log

file size.

The task of log rotation consists of renaming a file such as messages by appending

the date the file was “closed” to further additions such as messages- 20190501 and

starting a new messages file. The maximum number of older files to be retained is

defined in the configuration files for each service, and if the creation of the new log file

results in more than the maximum specified number, the oldest file is deleted.

By default, Fedora specifies four as the maximum number of older files to keep. The

system defaults for logrotate are defined in /etc/logrotate.conf. Individual services can

override the defaults.

EXPERIMENT 15-2

This experiment should be performed as the student user because we will not be making any

changes to the logrotate configuration, just exploring it.

First, cat the /etc/logrotate.conf file. This file is not long so it should fit in your terminal

session. This file is well commented so it should be self-explanatory. one of the options is that

of compression. I do not typically compress my log files so I leave this option commented out.

Make /etc/logrotate.d the PWd. List the contents of this directory and you can see the

configuration files for several different services. Several services do not have separate files in

this directory, but they are all aggregated into the single file, rsyslog. The syslog service is the

system logger and is responsible for logging messages that are sorted into the appropriate log

files listed in the beginning of the configuration file.

ChAPTeR 15 LogS And JouRnALS

431

Look at the contents of the rsyslog file.

[student@studentvm1 logrotate.d]$ cd /etc/lograte.d ; cat rsyslog

/var/log/cron

/var/log/maillog

/var/log/messages

/var/log/secure

/var/log/spooler

{

 missingok

 sharedscripts

 postrotate

 /usr/bin/systemctl kill -s HUP rsyslog.service >/dev/null 2>&1 ||

true

 endscript

}

First, we have a list of the log files for which this is the configuration file, then a list of

directives contained within curly braces {}. The man page for logrotate lists over 60 directives,

but we will only look at the most common ones:

• missingok: This means that if any log file is missing, to simply ignore that fact

and to not throw an error message. Logrotate is to continue with the next file.

• sharedscripts: Instead of running the script that is contained between the

postrotate and endscript directives once for each log that is rotated, the script is

run once. If there are no scripts that need rotating, the script is not run.

• postrotate: This designates that the following script is to be run after the log

files are rotated.

• endscript: This defines the end of the script.

• create mode owner group: This specifies the file mode and ownership of the

new log file when it is created.

• nocreate: This prevents new log files from being created. The /etc/logrotate.d/

chrony file uses this directive to prevent logrotate from creating a new log file.

The chronyc program uses its own cyclelogs directive in the script to generate

its own new log files.

ChAPTeR 15 LogS And JouRnALS

432

• compress: This specifies that the rotated log file is to be compressed. The

current log file is not compressed.

• delaycompress: This delays compression of the newly rotated log file until the

next rotation cycle so that not only the current log file but also the most recently

rotated one is uncompressed and can be easily viewed without having to be

decompressed.

• notifempty: do not rotate the log if the file is empty.

• rotate X: This defines the number, specified by X, of old log files to keep.

• size Y: This rotates a log based on a specified size (Y) if that size is exceeded

before the specified rotation time is reached. Thus, if a log file is to be rotated

weekly but it reaches the size, Y, before the week is complete, the log is rotated

anyway.

• Time-related options such as hourly, daily, weekly, monthly, and yearly define

the time intervals at which the logs are to be rotated. Be sure to check the man

page for special considerations if a log needs to be rotated hourly.

View the contents of the dnf file in the logrotate.d directory. It manages several dnf-related

log files, but each has its own stanza despite the fact that they are all configured identically.

now let’s look at the log files themselves. Make /var/log the PWd and list the contents of the

directory.

[student@studentvm1 ~]$ cd /var/log ; ls

anaconda dnf.rpm.log-20190501 messages-20190519

atop dnf.rpm.log-20190505 pluto

audit dnf.rpm.log-20190512 ppp

blivet-gui dnf.rpm.log-20190519 private

boot.log firewalld README

btmp grubby sa

btmp-20190501 hawkey.log samba

chrony hawkey.log-20190501 secure

cron hawkey.log-20190505 secure-20190501

cron-20190501 hawkey.log-20190512 secure-20190505

cron-20190505 hawkey.log-20190519 secure-20190512

cron-20190512 iptraf-ng secure-20190519

cron-20190519 journal speech-dispatcher

ChAPTeR 15 LogS And JouRnALS

433

cups lastlog spooler

dnf.librepo.log lightdm spooler-20190501

dnf.librepo.log-20190501 mail spooler-20190505

dnf.librepo.log-20190505 maillog spooler-20190512

dnf.librepo.log-20190512 maillog-20190501 spooler-20190519

dnf.librepo.log-20190519 maillog-20190505 sssd

dnf.log maillog-20190512 tallylog

dnf.log-20190501 maillog-20190519 wtmp

dnf.log-20190505 messages Xorg.0.log

dnf.log-20190512 messages-20190501 Xorg.0.log.old

dnf.log-20190519 messages-20190505 Xorg.9.log

dnf.rpm.log messages-20190512

This shows the log files with the file name extension .log-YYYYMMdd or just the date. These

are the older, rotated log files. Some of these entries are directories, and that should be

obvious on your terminal session.

The logrotate man page has a description of all the options available for use in the

configuration files.

 messages
The /var/log/messages log files contain kernel and other system-level messages of

various types and is another of the files I frequently use to assist me with problem

determination. The entries found in the messages logs are not usually performance

related and are more informational.

Entries from the kernel, systemd, the DHCP client, and many of the running

services are logged here. Each log entry begins with the date and time to make it easy to

determine the sequence of events and to locate entries made at specific times in the log

file. The messages log files are full of interesting and useful information:

• User logins and logouts

• DHCP client requests for network configuration

• The resulting DHCP configuration information as shown by the

NetworkManager

• Data logged by systemd during startup and shutdown

ChAPTeR 15 LogS And JouRnALS

434

• Kernel data about things such as USB memory devices when they are

plugged in

• USB hub information

• And much more

The messages file is usually the first place I look when working on non-performance

issues. It can also be useful for performance issues, but I start with SAR for that.

Because it is so important, let’s take a quick look at the messages file.

EXPERIMENT 15-3

Perform this experiment as the root user. Make /var/log the PWd. use the less command to

view the messages log file.

[root@studentvm1 ~]# cd /var/log ; less messages

<snip>

May 21 07:56:49 studentvm1 dhclient[1211]: DHCPREQUEST on enp0s3 to 10.0.2.3

port 67 (xid=0xb11eed75)

May 21 07:56:49 studentvm1 dhclient[1211]: DHCPACK from 10.0.2.3 (xid=0xb11eed75)

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2008]

dhcp4 (enp0s3): address 10.0.2.7

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2009]

dhcp4 (enp0s3): plen 24 (255.255.255.0)

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2009]

dhcp4 (enp0s3): gateway 10.0.2.1

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2009]

dhcp4 (enp0s3): lease time 1200

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2009]

dhcp4 (enp0s3): nameserver '192.168.0.52'

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2009]

dhcp4 (enp0s3): nameserver '8.8.8.8'

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2009]

dhcp4 (enp0s3): nameserver '8.8.4.4'

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2010]

dhcp4 (enp0s3): domain name 'both.org'

ChAPTeR 15 LogS And JouRnALS

435

May 21 07:56:49 studentvm1 NetworkManager[1048]: <info> [1558439809.2010]

dhcp4 (enp0s3): state changed bound -> bound

May 21 07:56:49 studentvm1 dbus-daemon[902]: [system] Activating via systemd:

service name='org.freedesktop.nm_dispatcher' unit='dbus- org.freedesktop.

nm-dispatcher.service' requested by ':1.15' (uid=0 pid=1048 comm="/usr/sbin/

NetworkManager --no-daemon ")

May 21 07:56:49 studentvm1 systemd[1]: Starting Network Manager Script

Dispatcher Service...

May 21 07:56:49 studentvm1 dbus-daemon[902]: [system] Successfully activated

service 'org.freedesktop.nm_dispatcher'

May 21 07:56:49 studentvm1 audit[1]: SERVICE_START pid=1 uid=0

auid=4294967295 ses=4294967295 msg='unit=NetworkManager-dispatcher

comm="systemd" exe="/usr/lib/systemd/systemd" hostname=? addr=? terminal=?

res=success'

<snip>

You can see the dhCP request from enp0s3 to the dhCP server and the data provided back to

the client including the IP address, gateway, name servers, and more.

Locate and view networkManager and uSB device messages.

I have included only a little output from my own StudentVM1 host because of the large amount

of data that is displayed. Browse through the contents of the messages file to get a feel for the

types of messages you will typically encounter. use Ctrl-C to terminate less.

 Mail logs
I run my own personal mail server and frequently use the logs to resolve problems. In

the case of email, problems tend to be related to the non-delivery of mail or blocking

desired email while failing to block spam and other unwanted email.

I find log entries in the /var/log/maillog files that tell me whether an email was

delivered or not and sometimes enough information to tell me why it was not delivered.

If you run a mail server, you should become very familiar with the maillog files. We will

explore mail and maillog files in detail in the third volume of this course, but even our

workstation virtual machines will have some entries in the maillog files.

ChAPTeR 15 LogS And JouRnALS

436

EXPERIMENT 15-4

Because the maillog files are not accessible to non-root users, this experiment must be

performed as root. Make /var/log the PWd. List the contents and find a maillog file that has a

size greater than zero.

[root@studentvm1 log]$ ll mail∗
-rw------- 1 root root 0 May 19 03:46 maillog

-rw------- 1 root root 0 Apr 21 03:31 maillog-20190501

-rw------- 1 root root 2809 May 2 21:42 maillog-20190505

-rw------- 1 root root 7017 May 9 13:27 maillog-20190512

-rw------- 1 root root 2874 May 17 15:37 maillog-20190519

mail:

total 4

-rw------- 1 root root 1448 May 2 21:42 statistics

List the contents of the maillog file that has some content. This information is pretty

meaningless right now, but we will look at it in the next course in this series.

 dmesg
dmesg is not a log file; it is a command. At one time in the past, there was a log file, /var/

log/dmesg, which contained all of the messages generated by the kernel during boot

and most messages generated during startup. The startup process begins when the boot

process ends, when init or systemd take control of the host.

The dmesg command displays all of the messages generated by the kernel including

massive amounts of data about the hardware it discovers during the boot process. I

always start with this command when looking for bootup problems and hardware issues.

Tip Much of the hardware data found in the output from dmesg can be found in
the /proc filesystem.

Let’s look at a bit of the output from the dmesg command.

ChAPTeR 15 LogS And JouRnALS

437

EXPERIMENT 15-5

This experiment can be performed as either the root or the student user.

[root@studentvm1 log]# dmesg | less

[0.000000] Linux version 4.14.5-300.fc27.x86_64 (mockbuild@bkernel01.phx2.

fedoraproject.org) (gcc version 7.2.1 20170915 (Red Hat 7.2.1-2)

(GCC)) #1 SMP Mon Dec 11 16:00:36 UTC 2017

[0.000000] Command line: BOOT_IMAGE=/vmlinuz-4.14.5-300.fc27.x86_64 root=/dev/

mapper/fedora_studentvm1-root ro rd.lvm.lv=fedora_

studentvm1/root rd.lvm.lv=fedora_studentvm1/swap

[0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point

registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'

[0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'

[0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256

[0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,

using 'standard' format.

[0.000000] e820: BIOS-provided physical RAM map:

[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable

[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved

[0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved

[0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable

[0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfffffff] ACPI data

[0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved

[0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved

[0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved

[0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000011fffffff] usable

<snip>

each line of data starts with a timestamp accurate to within a microsecond. The timestamp

represents the time since the kernel started. The data in this stream can be used to determine

whether the kernel recognizes certain devices.

For one example, when a new uSB device is plugged in, a number of lines are added to the

dmesg data buffer. You should see something similar to that in the following data from near

the end of the dmesg data. This data shows the sequence of events as the kernel detects the

ChAPTeR 15 LogS And JouRnALS

438

new device and the kernel, d-Bus, and udev determine what type of device it is and assign

a device name to it. Search for “uSB device” in this data stream to locate similar entries for

your VM.

[319346.149478] usb 1-1: new high-speed USB device number 7 using ehci-pci

[319346.545482] usb 1-1: New USB device found, idVendor=058f, idProduct=6387,

bcdDevice= 1.41

[319346.545994] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[319346.546430] usb 1-1: Product: Mass Storage Device

[319346.546987] usb 1-1: Manufacturer: Generic

[319346.547457] usb 1-1: SerialNumber: 1VXLET08

[319346.550084] usb-storage 1-1:1.0: USB Mass Storage device detected

[319346.550545] usb-storage 1-1:1.0: Quirks match for vid 058f pid 6387: 400

[319346.551785] scsi host7: usb-storage 1-1:1.0

[319347.564454] scsi 7:0:0:0: Direct-Access JetFlash TS512MJF150

8.07 PQ: 0 ANSI: 2

[319347.566749] sd 7:0:0:0: Attached scsi generic sg5 type 0

[319347.588842] sd 7:0:0:0: [sde] 1003520 512-byte logical blocks: (514 MB/490 MiB)

[319347.595467] sd 7:0:0:0: [sde] Write Protect is off

[319347.596164] sd 7:0:0:0: [sde] Mode Sense: 03 00 00 00

[319347.602145] sd 7:0:0:0: [sde] No Caching mode page found

[319347.602668] sd 7:0:0:0: [sde] Assuming drive cache: write through

[319347.651234] sde: sde1

[319347.695786] sd 7:0:0:0: [sde] Attached SCSI removable disk

[320800.360638] usb 1-1: USB disconnect, device number 7

Scroll through the data to familiarize yourself with the many different types of data to be found here.

The data displayed by the dmesg command is located in RAM rather than on the hard

drive. No matter how much RAM memory you have in your host, the space allocated to

the dmesg buffer is limited. When it fills up, the oldest data is discarded as newer data is

added.

 secure
The /var/log/secure log file contains security-related entries. This includes information

about successful and unsuccessful attempt to log in to the system. Let’s look at some of

the entries you might see in this file.

ChAPTeR 15 LogS And JouRnALS

439

EXPERIMENT 15-6

This experiment must be performed as root. use the less command to view the contents of

the secure log file. ensure that /var/log is the PWd.

[root@studentvm1 log]# less secure

May 19 22:23:30 studentvm1 lightdm[1335]: pam_unix(lightdm-greeter:session):

session closed for user lightdm

May 19 22:23:30 studentvm1 systemd[16438]: pam_unix(systemd-user:session):

session opened for user student by (uid=0)

May 19 22:23:31 studentvm1 lightdm[1477]: pam_unix(lightdm:session): session

opened for user student by (uid=0)

May 19 22:23:34 studentvm1 polkitd[990]: Registered Authentication Agent for

unix-session:4 (system bus name :1.1357 [/usr/libexec/xfce- polkit], object

path /org/freedesktop/PolicyKit1/AuthenticationAgent, locale en_US.utf8)

May 20 11:18:54 studentvm1 sshd[29938]: Accepted password for student from

192.168.0.1 port 52652 ssh2

May 20 11:18:54 studentvm1 sshd[29938]: pam_unix(sshd:session): session

opened for user student by (uid=0)

May 20 17:08:52 studentvm1 sshd[3380]: Accepted publickey for root from

192.168.0.1 port 56306 ssh2: RSA SHA256:4UDdGg3FP5sITB8ydfCb5JDg2QCIrsW4cfoN

gFxhC5A

May 20 17:08:52 studentvm1 sshd[3380]: pam_unix(sshd:session): session opened

for user root by (uid=0)

May 21 07:49:05 studentvm1 sshd[3382]: Received disconnect from 192.168.0.1

port 56306:11: disconnected by user

May 21 07:49:05 studentvm1 sshd[3382]: Disconnected from user root

192.168.0.1 port 56306

May 21 07:49:05 studentvm1 sshd[3380]: pam_unix(sshd:session): session closed

for user root

May 21 08:17:15 studentvm1 login[18310]: pam_unix(login:auth): authentication

failure; logname=LOGIN uid=0 euid=0 tty=tty2 ruser= rhost= user=root

May 21 08:17:15 studentvm1 login[18310]: pam_succeed_if(login:auth):

requirement "uid >= 1000" not met by user "root"

May 21 08:17:17 studentvm1 login[18310]: FAILED LOGIN 1 FROM tty2 FOR root,

Authentication failure

May 21 08:17:23 studentvm1 login[18310]: pam_unix(login:session): session

opened for user root by LOGIN(uid=0)

ChAPTeR 15 LogS And JouRnALS

440

May 21 08:17:23 studentvm1 login[18310]: ROOT LOGIN ON tty2

May 21 13:31:16 studentvm1 sshd[24111]: Accepted password for student from

192.168.0.1 port 54202 ssh2

May 21 13:31:16 studentvm1 sshd[24111]: pam_unix(sshd:session): session

opened for user student by (uid=0)

Most of the data in /var/log/secure pertains to records of user logins and logouts and

information about whether a password or public key was used for authentication.

This log also contains failed password attempts as shown in the data below the line where I

snipped out much of the data in this file.

My primary use for the secure log file is to identify break-in attempts from hackers.

But I don’t even do that – I use automation tools for that too, in this case, the logwatch

tool which we will explore a bit later in this chapter.

 Following log files
Searching through log files can be a time-consuming and cumbersome task even when

using tools like grep to help isolate the desired lines. Many times while troubleshooting

it can be helpful to continuously view the contents of a text format log file especially

to see the newest entries as they arrive. Using cat or grep to view log files displays the

contents at the moment in time the command was entered.

I like to use the tail command to view the end of the file, but it can be time-

consuming and disruptive to my problem determination process to rerun the tail

command to see new lines. Use tail -f to enable the tail command to “follow” the file

and immediately display new lines of data as they are added to the end of the log file.

EXPERIMENT 15-7

Perform this experiment as root. We need two terminal sessions with root logins. These

terminal sessions should be in separate windows and arranged so you can see both of them

at the same time. If your terminal emulator supports multiple panes, like Tilix does, use two

panes for this experiment. In one root terminal session, make /var/log the PWd, then follow the

messages file.

ChAPTeR 15 LogS And JouRnALS

441

[root@studentvm1 ~]# cd /var/log

[root@studentvm1 log]# tail -f messages

Dec 24 09:30:21 studentvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 msg='unit=sysstat-collect comm="systemd" exe="/usr/lib/

systemd/systemd" hostname=? addr=? terminal=? res=success'

<snip>

Dec 24 09:37:58 studentvm1 systemd[1]: Starting dnf makecache...

Dec 24 09:37:59 studentvm1 dnf[29405]: Metadata cache refreshed recently.

Dec 24 09:37:59 studentvm1 systemd[1]: Started dnf makecache.

Dec 24 09:40:21 studentvm1 audit[1]: SERVICE_STOP pid=1 uid=0 auid=4294967295

ses=4294967295 msg='unit=sysstat-collect comm="systemd" exe="/usr/lib/

systemd/systemd" hostname=? addr=? terminal=? res=success'

Tail displays the last ten lines of the log file and then sits there waiting for more data to be

appended. I have deleted some of these lines for brevity.

Let’s make some log entries appear. There are several ways to do this, but the easiest is to use

the logger command. In the second window, enter this command as root to log a new entry

to the messages file.

[root@studentvm1 ~]# logger "This is test message 1."

The following line should have appeared in the other terminal at the end of the messages log file.

Dec 24 13:51:46 studentvm1 root[1048]: This is test message 1.

We can also use STdIo for this.

[root@studentvm1 ~]# echo "This is test message 2." | logger

And the results are the same – the message appears in the messages log file.

Dec 24 13:56:41 studentvm1 root[1057]: This is test message 2.

note that your VM may pop additional messages on this log file while you are performing this

experiment; in real life log messages are added to these files quite frequently. use Ctrl-C to

terminate following the log file.

ChAPTeR 15 LogS And JouRnALS

442

 systemd journals
systemd has its own set of logs – journals, actually – many of which replace the

traditional ASCII text files found in the /var/log directory. The journald daemon collects

and manages messages for services managed by systemd. The journalctl command is

used by SysAdmins to view and manipulate the systemd logs.

The intent of using systemd to manage the logs is to provide a central point of control

for all of the log-producing entities in a Linux host.

Let’s explore the basics of using journalctl.

EXPERIMENT 15-8

This experiment must be run as root. First let’s look at the output we get with no options. By

default, the results are piped through the less utility.

[root@studentvm1 ~]# journalctl

-- Logs begin at Sat 2017-04-29 18:10:23 EDT, end at Wed 2017-12-27 11:30:07 EST. --

Apr 29 18:10:23 studentvm1 systemd-journald[160]: Runtime journal (/run/log/

journal/) is 8.0M, max 197.6M,

Apr 29 18:10:23 studentvm1 kernel: Linux version 4.8.6-300.fc25.x86_64

(mockbuild@bkernel02.phx2.fedorapro

Apr 29 18:10:23 studentvm1 kernel: Command line: BOOT_IMAGE=/vmlinuz-

4.8.6-300.fc25.x86_64 root=/dev/mappe

Apr 29 18:10:23 studentvm1 kernel: x86/fpu: Supporting XSAVE feature 0x001:

'x87 floating point registers'

Apr 29 18:10:23 studentvm1 kernel: x86/fpu: Supporting XSAVE feature 0x002:

'SSE registers'

Apr 29 18:10:23 studentvm1 kernel: x86/fpu: Supporting XSAVE feature 0x004:

'AVX registers'

I have only shown a small portion of the output from the journalctl command. It should

look somewhat familiar because it is. This is much of the same information as the dmesg

command provides. The main differences are that the timestamp for dmesg is in seconds

since boot and the timestamps for journalctl are in a standard date and time format and that

journalctl will probably go further back in time than dmesg. The dmesg data only goes back to

the most recent boot, and even some of the oldest messages may get dropped off if new ones

fill the dmesg buffer which is fixed in size. The systemd journal entries can cover months of

ChAPTeR 15 LogS And JouRnALS

443

time through multiple reboots. While viewing the journal, look at the first line which tells you

the journal date ranges and then search on “Reboot” to locate the instances where the host

was rebooted.

May 30 14:34:46 studentvm1 pulseaudio[4524]: E: [pulseaudio] bluez5-util.c:

GetManagedObjects() failed: org.freed>

May 30 14:36:46 studentvm1 systemd[4517]: Starting Mark boot as successful...

May 30 14:36:46 studentvm1 systemd[4517]: Started Mark boot as successful.

May 30 14:39:56 studentvm1 sshd[4764]: Received disconnect from 192.168.0.1

port 53532:11: disconnected by user

May 30 14:39:56 studentvm1 sshd[4764]: Disconnected from user student1

192.168.0.1 port 53532

-- Reboot --

May 31 17:20:33 studentvm1 kernel: Linux version 5.0.7-200.fc29.x86_64

(mockbuild@bkernel04.phx2.fedoraproject.or>

May 31 17:20:33 studentvm1 kernel: Command line: BOOT_IMAGE=/

vmlinuz-5.0.7-200.fc29.x86_64 root=/dev/mapper/fedor>

May 31 17:20:33 studentvm1 kernel: x86/fpu: Supporting XSAVE feature 0x001:

'x87 floating point registers'

May 31 17:20:33 studentvm1 kernel: x86/fpu: Supporting XSAVE feature 0x002:

'SSE registers'

May 31 17:20:33 studentvm1 kernel: x86/fpu: Supporting XSAVE feature 0x004:

'AVX registers'

Take some time to page through the results and explore the types of log entries.

one of the features I learned about while researching this experiment is the ability to define a

specific time frame in which to search for log entries. one example is shown here. Be sure to

use dates that make sense for your VM host.

[root@studentvm1 ~]# journalctl --since 2017-12-20 --until 2017-12-24

It is also possible to specify times of day and to use fuzzy times like “yesterday” and

usernames to further define the results.

[root@studentvm1 ~]# journalctl --since yesterday -u NetworkManager

-- Logs begin at Sat 2017-04-29 18:10:23 EDT, end at Wed 2017-12-27 11:50:07 EST. --

Dec 26 00:09:23 studentvm1 dhclient[856]: DHCPREQUEST on enp0s3 to

192.168.0.51 port 67 (xid=0xaa5aef49)

Dec 26 00:09:23 studentvm1 dhclient[856]: DHCPACK from 192.168.0.51

(xid=0xaa5aef49)

ChAPTeR 15 LogS And JouRnALS

444

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5813]

dhcp4 (enp0s3): address 192.168.0.101

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5819]

dhcp4 (enp0s3): plen 24 (255.255.255.0)

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5821]

dhcp4 (enp0s3): gateway 192.168.0.254

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5823]

dhcp4 (enp0s3): lease time 21600

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5825]

dhcp4 (enp0s3): nameserver '192.168.0.51'

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5826]

dhcp4 (enp0s3): nameserver '8.8.8.8'

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5828]

dhcp4 (enp0s3): nameserver '8.8.4.4'

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5830]

dhcp4 (enp0s3): domain name 'both.org'

Dec 26 00:09:23 studentvm1 NetworkManager[731]: <info> [1514264963.5831]

dhcp4 (enp0s3): state changed bound -> bound

Dec 26 00:09:23 studentvm1 dhclient[856]: bound to 192.168.0.101 -- renewal

in 9790 seconds.

Dec 26 02:52:33 studentvm1 dhclient[856]: DHCPREQUEST on enp0s3 to

192.168.0.51 port 67 (xid=0xaa5aef49)

Dec 26 02:52:33 studentvm1 dhclient[856]: DHCPACK from 192.168.0.51

(xid=0xaa5aef49)

<snip>

It is possible to list the previous boots for the system and to view only log entries from the

current or a previous boot.

[root@studentvm1 ~]# journalctl --list-boots

-26 0b92905fe10b48d59649ade083497994 Mon 2019-04-01 08:59:01 EDT—Tue 2019-04-

09 13:02:03 EDT

-25 2094cec4d589434b8dad3afa864ac031 Tue 2019-04-09 14:15:14 EDT—Wed 2019-04-

10 16:05:13 EDT

-24 2214806f5f414263be6ccad96e30f140 Wed 2019-04-10 16:05:47 EDT—Wed 2019-04-

10 16:39:51 EDT

-23 b37a0ebda1054788a32d8e047c611645 Wed 2019-04-10 16:40:24 EDT—Thu 2019-04-

11 21:40:32 EDT

ChAPTeR 15 LogS And JouRnALS

445

-22 a40dede07aed4376a4e76d65b760021b Thu 2019-04-11 21:41:06 EDT—Sun 2019-04-

14 09:22:49 EDT

-21 ab3f94c93a9c4746bdbc378acd471bde Tue 2019-04-16 04:16:04 EDT—Tue 2019-04-

16 08:18:34 EDT

-20 3d6bd2a0322d44fd844cd1e29eed0d02 Tue 2019-04-16 08:19:58 EDT—Tue 2019-04-

16 08:31:24 EDT

<snip>

 -8 d62a1f3edd144e4fbf54b3b3b2f90785 Thu 2019-05-09 13:07:00 EDT—Thu 2019-05-

09 13:10:50 EDT

 -7 72bebaf81cae439a8b4b2e312825e12e Thu 2019-05-09 13:24:26 EDT—Thu 2019-05-

09 13:26:08 EDT

 -6 cb4e21351e1a4e2fa9cf9aa70659266b Thu 2019-05-09 13:27:03 EDT—Tue 2019-05-

14 08:37:08 EDT

 -5 4b5eb7872593428da0bf5e19cdc8ac5d Tue 2019-05-14 08:37:41 EDT—Tue 2019-05-

14 09:14:05 EDT

 -4 65862e8a9cfc4bc1ab89caf13b460635 Tue 2019-05-14 09:14:38 EDT—Tue 2019-05-

14 11:45:53 EDT

 -3 be199a0240a34a70b105366ce62fc99e Tue 2019-05-14 11:46:26 EDT—Tue 2019-05-

14 12:12:05 EDT

 -2 a8fcd3957ed84a798aace5e7bda41edc Tue 2019-05-14 12:12:39 EDT—Tue 2019-05-

14 15:31:31 EDT

 -1 871499e9ce4a4ddaba3ef6a478592808 Tue 2019-05-14 15:33:17 EDT—Fri 2019-05-

17 15:34:53 EDT

 0 f0f0956fd3e8419b8696a0e2d9df38b3 Fri 2019-05-17 15:35:34 EDT—Wed 2019-05-

22 21:49:06 EDT

[root@studentvm1 ~]# journalctl -b d62a1f3edd144e4fbf54b3b3b2f90785

The identifier for the boot that this command would list is from line 8 in the boot list. Be sure

to use an identifier from your own system for this last command.

You could also do the following to see all of the information for a specific boot by its number in

the list.

[root@studentvm1 ~]# journalctl -b 8

I don’t show any of the output from the last command because it is long and it has already

appeared before in this course. Be sure to spend some time looking through the data from this

last command.

ChAPTeR 15 LogS And JouRnALS

446

As you can see in Experiment 15-8, the systemd logging facilities collect data from

the beginning of the boot process to the end of the shutdown. All types of logs are

located in the journal database. You can use the search facility of the less utility to locate

specific entries or you can use the options available within journalctl itself.

If you are interested in finding out more about managing systemd logs, you can

start with the man page for journalctl. DigitalOcean has an excellent discussion of

journalctl.3

 logwatch
Using tools like grep and tail to view a few lines from a log file while working on a

problem is fine. But what if you need to search through a large number of log files? That

can be tedious even when using those tools.

Logwatch is a tool that can analyze the system log files and detect anomalous entries

that the SysAdmin should look at. It generates a report every night around 03:30 AM

that is triggered by a shell script in /etc/cron.daily. The Logwatch report condenses

thousands of lines of log files into a report that can be scanned by the SysAdmin to more

easily locate those entries that may constitute a problem.

The default configuration is for Logwatch to email a report of what it finds in the log

files to root. There are various methods for ensuring that the email gets sent to someone

and someplace other than root on the localhost. One option is to set the mailto address

in the local configuration file in the /etc/logwatch directory. The default configuration

files are located in /usr/share/logwatch.

Logwatch can also be run from the command line and the data is sent to STDOUT.

EXPERIMENT 15-9

This experiment must be performed as root. our objective is to run Logwatch from the

command line and view the results. First we need to install it.

[root@studentvm1 log]# dnf -y install logwatch

3 DigitalOcean, How To Use Journalctl to View and Manipulate Systemd Logs, www.digitalocean.
com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs

ChAPTeR 15 LogS And JouRnALS

https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs

447

I have used output from Logwatch from my personal workstation because there is more to see

than there is on my instance of StudentVM1. note that logwatch always scans the previous

day’s log entries by default although other dates can be specified.

In this command we specify a detail level of 10, which provides the most detail. I have once

again removed a few pages and some empty lines of data to save space.

[root@david ~]# logwatch --detail 10 | less

 ################### Logwatch 7.5.1 (01/22/19) ####################

 Processing Initiated: Wed May 22 22:04:13 2019

 Date Range Processed: yesterday

 (2019-May-21)

 Period is day.

 Detail Level of Output: 10

 Type of Output/Format: stdout / text

 Logfiles for Host: david

 ##

 --------------------- Kernel Audit Begin ------------------------

 ∗∗Unmatched Entries∗∗
 audit[376]: CRYPTO_KEY_USER pid=376 uid=0 auid=4294967295 ses=4294967295

msg='op=destroy kind=server fp=SHA256:30:1c:bc:f3:39:14:d0:98:26:08:42:17:42:

df:55:01:0f:65:b9:7b:28:a3:7b:f9:df:39:15:af:8a:16:4c:a7 direction=? spid=376

suid=0 exe="/usr/sbin/sshd" hostname=? addr=? terminal=? res=success': 1

Time(s)

 audit[32194]: CRED_DISP pid=32194 uid=0 auid=0 ses=124

msg='op=PAM:setcred grantors=pam_env,pam_fprintd acct="root" exe="/usr/sbin/

crond" hostname=? addr=? terminal=cron res=success': 1 Time(s)

 audit[32310]: USER_END pid=32310 uid=0 auid=0 ses=126 msg='op=login id=0

exe="/usr/sbin/sshd"

<snip>

 audit[377]: CRYPTO_KEY_USER pid=377 uid=0 auid=0 ses=127 msg='op=destroy

kind=server fp=SHA256:30:1c:bc:f3:39:14:d0:98:26:08:42:17:42:df:55:01:0f:65:b

9:7b:28:a3:7b:f9:df:39:15:af:8a:16:4c:a7 direction=? spid=377 suid=0 exe="/

usr/sbin/sshd" hostname=? addr=? terminal=? res=success': 1 Time(s)

 ---------------------- Kernel Audit End -------------------------

ChAPTeR 15 LogS And JouRnALS

448

 --------------------- Cron Begin ------------------------

 Commands Run:

 User root:

 /sbin/hwclock --systohc --localtime: 1 Time(s)

 run-parts /etc/cron.hourly: 24 Time(s)

 systemctl try-restart atop: 1 Time(s)

 time /usr/local/bin/rsbu -vbd1 ; time /usr/local/bin/rsbu -vbd2: 1

Time(s)

 ---------------------- Cron End -------------------------

 --------------------- Kernel Begin ------------------------

 17 Time(s): radeon_dp_aux_transfer_native: 74 callbacks suppressed

 3 Time(s): scsi 14:0:0:0: Direct-Access JetFlash TS512MJF150 8.07

PQ: 0 ANSI: 2

 3 Time(s): scsi host14: usb-storage 1-3:1.0

 3 Time(s): sd 14:0:0:0: Attached scsi generic sg5 type 0

 3 Time(s): sd 14:0:0:0: [sdi] 1003520 512-byte logical blocks: (514 MB/490 MiB)

 3 Time(s): sd 14:0:0:0: [sdi] Assuming drive cache: write through

 3 Time(s): sd 14:0:0:0: [sdi] Attached SCSI removable disk

 3 Time(s): sd 14:0:0:0: [sdi] No Caching mode page found

 3 Time(s): sd 14:0:0:0: [sdi] Write Protect is off

 3 Time(s): sdi: sdi1

 1 Time(s): test1

 1 Time(s): test2

 1 Time(s): usb 1-3: USB disconnect, device number 22

 7 Time(s): usb 1-3: reset high-speed USB device number 22 using xhci_hcd

 3 Time(s): usb-storage 1-3:1.0: Quirks match for vid 058f pid 6387: 400

 3 Time(s): usb-storage 1-3:1.0: USB Mass Storage device detected

 1 Time(s): usblp 1-10.4:1.0: usblp0: USB Bidirectional printer dev 16 if 0

alt 0 proto 2 vid 0x04F9 pid 0x0042

 1 Time(s): usblp0: removed

 ---------------------- Kernel End -------------------------

 --------------------- pam_unix Begin ------------------------

 sshd:

 Sessions Opened:

 root: 2 Time(s)

ChAPTeR 15 LogS And JouRnALS

449

 systemd-user:

 Sessions Opened:

 root: 2 Time(s)

<snip>

 --------------------- sendmail Begin ------------------------

 STATISTICS

 Messages To Recipients: 8

 Addressed Recipients: 8

 Bytes Transferred: 165419

 Messages No Valid Rcpts: 0

 Message Size Distribution:

 Range # Msgs KBytes

 0 - 10k 2 1

 10k - 20k 0 0

 20k - 50k 6 160

 TOTAL 8 161

 Avg. Size 20

 Message recipients per delivery agent:

 Name # Rcpts

 relay 4

 TOTAL: 4

 in addition to 4 relay

 submission(s) from MSP

 Top 10 Email Recipients

 david@both.org 3 Times

 root 2 Times

 dboth@millennium-technology.com 2 Times

 root@localhost 1 Time

 STARTTLS used the following encryption mechanisms

 ---------------------- sendmail End -------------------------

ChAPTeR 15 LogS And JouRnALS

450

 --------------------- SSHD Begin ------------------------

 Users logging in through sshd:

 root:

 192.168.0.1 (david.both.org): 2 Times

 ---------------------- SSHD End -------------------------

 --------------------- Systemd Begin ------------------------

 Reached target Exit the Session: 2 Time(s)

 Started:

 Cleanup of Temporary Directories: 1 Time(s)

 Exit the Session: 2 Time(s)

<snip>

 system activity accounting tool: 144 Time(s)

 update of the root trust anchor for DNSSEC validation in unbound: 1

Time(s)

 User Sessions:

 root: 124 126 127 128

<snip>

 unbound-anchor.service: Succeeded.: 1 Time(s)

 user-runtime-dir@0.service: Succeeded.: 2 Time(s)

 user@0.service: Succeeded.: 2 Time(s)

 ---------------------- Systemd End -------------------------

 --------------------- Disk Space Begin ------------------------

 Filesystem Size Used Avail Use% Mounted on

 /dev/mapper/vg_david1-root 9.8G 431M 8.9G 5% /

 /dev/mapper/vg_david1-usr 45G 16G 27G 38% /usr

 /dev/mapper/vg_david2-Experiments 492G 26G 441G 6% /Experiments

 /dev/mapper/vg_david3-home 246G 49G 187G 21% /home

 /dev/mapper/vg_david2-stuff 246G 122G 112G 53% /stuff

 /dev/mapper/vg_david2-Virtual 787G 463G 284G 62% /Virtual

 /dev/mapper/vg_david1-tmp 45G 84M 42G 1% /tmp

 /dev/mapper/vg_david1-var 20G 9.7G 9.0G 52% /var

 /dev/sdb2 4.9G 440M 4.2G 10% /boot

 /dev/sdb1 5.0G 18M 5.0G 1% /boot/efi

 /dev/mapper/vg_Backups-Backups 3.6T 1.7T 1.8T 49% /media/Backups

ChAPTeR 15 LogS And JouRnALS

451

 /dev/sdh1 458G 213G 223G 49% /run/media/dboth/

USB-X47GF

 /dev/sde1 3.6T 1.3T 2.2T 39% /media/4T-Backup

 ---------------------- Disk Space End -------------------------

 --------------------- lm_sensors output Begin ------------------------

 asus-isa-0000

 Adapter: ISA adapter

 cpu_fan: 0 RPM

 radeon-pci-6500

 Adapter: PCI adapter

 temp1: +41.5 C (crit = +120.0 C, hyst = +90.0 C)

 nct6796-isa-0290

 Adapter: ISA adapter

 Vcore: +0.93 V (min = +0.00 V, max = +1.74 V)

 in1: +1.00 V (min = +0.00 V, max = +0.00 V) ALARM

 AVCC: +3.38 V (min = +2.98 V, max = +3.63 V)

 +3.3V: +3.33 V (min = +2.98 V, max = +3.63 V)

 in4: +1.02 V (min = +0.00 V, max = +0.00 V) ALARM

 in5: +0.00 V (min = +0.00 V, max = +0.00 V)

 in6: +0.60 V (min = +0.00 V, max = +0.00 V) ALARM

 3VSB: +3.38 V (min = +2.98 V, max = +3.63 V)

 Vbat: +3.18 V (min = +2.70 V, max = +3.63 V)

 in9: +1.03 V (min = +0.00 V, max = +0.00 V) ALARM

 in10: +0.60 V (min = +0.00 V, max = +0.00 V) ALARM

 in11: +0.42 V (min = +0.00 V, max = +0.00 V) ALARM

<snip>

 coretemp-isa-0000

 Adapter: ISA adapter

 Package id 0: +53.0 C (high = +86.0 C, crit = +96.0 C)

 Core 0: +50.0 C (high = +86.0 C, crit = +96.0 C)

 Core 1: +53.0 C (high = +86.0 C, crit = +96.0 C)

 Core 2: +49.0 C (high = +86.0 C, crit = +96.0 C)

 Core 3: +52.0 C (high = +86.0 C, crit = +96.0 C)

 Core 4: +49.0 C (high = +86.0 C, crit = +96.0 C)

 Core 5: +51.0 C (high = +86.0 C, crit = +96.0 C)

 Core 6: +40.0 C (high = +86.0 C, crit = +96.0 C)

ChAPTeR 15 LogS And JouRnALS

452

 Core 7: +48.0 C (high = +86.0 C, crit = +96.0 C)

 Core 8: +52.0 C (high = +86.0 C, crit = +96.0 C)

 Core 9: +53.0 C (high = +86.0 C, crit = +96.0 C)

 Core 10: +53.0 C (high = +86.0 C, crit = +96.0 C)

 Core 11: +50.0 C (high = +86.0 C, crit = +96.0 C)

 Core 12: +50.0 C (high = +86.0 C, crit = +96.0 C)

 Core 13: +48.0 C (high = +86.0 C, crit = +96.0 C)

 Core 14: +53.0 C (high = +86.0 C, crit = +96.0 C)

 Core 15: +51.0 C (high = +86.0 C, crit = +96.0 C)

 ---------------------- lm_sensors output End -------------------------

 ###################### Logwatch End #########################

Page through the data produced by Logwatch and be sure to look for the kernel, cron, disk

space, and systemd sections. If you have a physical host on which to run this experiment and

if the lm_sensors package is installed, you may also see a section showing temperatures in

various parts of the hardware, including that for each CPu.

We can use options to cause Logwatch to display the log data from previous days and

for specific services. note that using ALL when specifying the services to scan results in

significantly more results than when no service is specified. The list of valid services is located

in the default configuration tree for Logwatch: /usr/share/logwatch/scripts/services.

Try this with the following commands.

[root@studentvm1 ~]# logwatch --service systemd | less

[root@studentvm1 ~]# logwatch --service systemd --detail high | less

[root@studentvm1 ~]# logwatch --detail high | less

[root@studentvm1 ~]# logwatch --detail 1 | less

[root@studentvm1 ~]# logwatch --service ALL --detail high | less

We can also tell Logwatch to report on log entries for all of the stored logs and not just for

yesterday. This one took a couple minutes for me but may be less for your VM.

[root@studentvm1 ~]# logwatch --service ALL --range All | less

The ALL specifications are not case sensitive. This is an anomaly in the usually lowercase

world of Linux.

ChAPTeR 15 LogS And JouRnALS

453

or a day or range of days in the past. The --range option takes fuzzy entries like the following list.

These should all be self-explanatory, but check the Logwatch man page in case you have questions:

• --range today

• --range yesterday

• --range “4 hours ago for that hour”

• --range “-3 days”

• --range “since 2 hours ago for those hours”

• --range “between -10 days and -2 days”

• --range “Apr 15, 2005”

• --range “first Monday in May”

• --range “between 4/23/2005 and 4/30/2005”

• --range “2005/05/03 10:24:17 for that second”

[root@studentvm1 ~]# logwatch --detail high --range "-3 days" | less

All of these options allow us to easily search for log entries using various criteria. Try some

differing combinations of your own devising.

The sections that appear in the Logwatch output depends upon the software

packages you have installed on your Linux computer. So if you are looking at the output

from Logwatch for a basic installation rather than a primary workstation or even a server,

you will see far fewer entries.

Since 2014 Logwatch has been able to search the journald database for log entries.4

This compatibility with the systemd logging facility ensures that a major source of log

entries is not ignored.

Logwatch runs once daily and is triggered by a Bash shell script in /etc/cron.daily.

This script sets the output of the logwatch command to email which, by the default,

Linux email configuration is sent to root. The /etc/aliases file defines where email

addressed to root is sent.

4 SourceForge, Logwatch repository, https://sourceforge.net/p/logwatch/patches/34/

ChAPTeR 15 LogS And JouRnALS

https://sourceforge.net/p/logwatch/patches/34/

454

EXPERIMENT 15-10

Perform this experiment as root. Make /etc/cron.daily the PWd and then look at the contents of

the file, 0logwatch. The zero at the beginning of the name ensures that this shell script is run

before any other scripts in this directory. The scripts are run in alphanumeric sorted order.

[root@studentvm1 ~]# cd /etc/cron.daily/ ; ll ; cat 0logwatch

total 8

-rwxr-xr-x 1 root root 486 Jan 28 06:22 0logwatch

-rwxr-xr-x. 1 root root 193 Jan 4 2018 logrotate

#!/usr/bin/sh

#Set logwatch executable location

LOGWATCH_SCRIPT="/usr/sbin/logwatch"

Add options to the OPTIONS variable. Most options should be defined in

the file /etc/logwatch/conf/logwatch.conf, but some are only for the

nightly cron run such as "--output mail" and should be set here.

Other options to consider might be "--format html" or "--encode base64".

See 'man logwatch' for more details.

OPTIONS="--output mail"

#Call logwatch

$LOGWATCH_SCRIPT $OPTIONS

exit 0

This script scans the log files using the default detail level of 5 where the range is from 0 to

10. We want to change that to the highest setting of 10. Although you can use text equivalents

where low = 0, med = 5, and high = 10, I prefer to use the numeric value of 10 when setting

the detail level. edit the 0logwatch file and change the $oPTIonS variable to the following to

set the detail level.

OPTIONS="--output mail --detail 10"

Save the file and make root’s home the PWd. The next run of Logwatch triggered by the script

located in cron.daily will run at the highest level of detail.

Because Logwatch will not be triggered by cron.daily until about 03:30 AM, wait until

tomorrow to perform Experiment 15-11.

ChAPTeR 15 LogS And JouRnALS

455

EXPERIMENT 15-11

Perform this task as root. In a terminal session, start the mailx email client.

[root@studentvm1 ~]# mailx

Heirloom Mail version 12.5 7/5/10. Type ? for help.

"/var/spool/mail/root": 1 message 1 unread

>U 1 logwatch@studentvm1 Thu May 23 03:32 65/2418 "Logwatch for

studentvm1 (Linux)"

&

View the email by entering its number. If your mail queue is longer than just the single

message, be sure to use the correct number for the email with “Logwatch” in the subject.

& 1

Message 1:

From root@studentvm1 Thu May 23 03:32:07 2019

Return-Path: <root@studentvm1>

Date: Thu, 23 May 2019 03:32:04 -0400

To: root@studentvm1

From: logwatch@studentvm1

Subject: Logwatch for studentvm1 (Linux)

Auto-Submitted: auto-generated

Precedence: bulk

Content-Type: text/plain; charset="UTF-8"

Status: RO

 ################### Logwatch 7.5.1 (01/22/19) ####################

 Processing Initiated: Thu May 23 03:31:04 2019

 Date Range Processed: yesterday

 (2019-May-22)

 Period is day.

 Detail Level of Output: 0

 Type of Output/Format: mail / text

 Logfiles for Host: studentvm1

 ##

exit the email. Then you can press d to delete the email. or you can keep it, if you choose.

ChAPTeR 15 LogS And JouRnALS

456

 Chapter summary
Logs and journals are a rich source of information for SysAdmins as we work to resolve

problems of many kinds. Despite knowing this, I sometimes forget to use the logs

and that has prevented me from solving those problems as quickly as I could. When I

remember to go to the logs, the answers come quickly.

We have looked at some typical logs, both traditional text ones and the journals

produced by systemd. We explored how to access and search these logs. We also used

Logwatch to assist us in locating log entries that might indicate a problem.

 Exercises
Perform the following exercises to complete this chapter:

 1. Use SAR to view disk activity for 2 days ago, displaying the device

names like sda rather than the block device IDs like dev8-16.

 2. What tools besides SAR can be used to view and analyze historical

performance and event data?

 3. What is the default data collection interval for SAR?

 4. What would cause security log entries like the following?

May 23 12:54:29 studentvm1 login[18310]: pam_

unix(login:session): session closed for user root

May 23 12:54:35 studentvm1 login[20004]: pam_unix(login:auth):

check pass; user unknown

May 23 12:54:35 studentvm1 login[20004]: pam_unix(login:auth):

authentication failure; logname=LOGIN uid=0 euid=0 tty=tty2

ruser= rhost=

May 23 12:54:37 studentvm1 login[20004]: FAILED LOGIN 1

FROM tty2 FOR (unknown), User not known to the underlying

authentication module

May 23 12:54:49 studentvm1 login[20004]: pam_unix(login:auth):

check pass; user unknown

ChAPTeR 15 LogS And JouRnALS

457

May 23 12:54:49 studentvm1 login[20004]: pam_unix(login:auth):

authentication failure; logname=LOGIN uid=0 euid=0 tty=tty2

ruser= rhost=

May 23 12:54:52 studentvm1 login[20004]: FAILED LOGIN 2

FROM tty2 FOR (unknown), User not known to the underlying

authentication module

May 23 12:56:04 studentvm1 login[20147]: pam_unix(login:auth):

authentication failure; logname=LOGIN uid=0 euid=0 tty=tty2

ruser= rhost= user=root

May 23 12:56:04 studentvm1 login[20147]: pam_succeed_

if(login:auth): requirement "uid >= 1000" not met by user "root"

May 23 12:56:05 studentvm1 login[20147]: FAILED LOGIN 1 FROM

tty2 FOR root, Authentication failure

 5. Use logwatch from the CLI to search for all logical volume

management (LVM) entries. Did you have any?

 6. What minimum detail level must be specified when using

Logwatch in order to obtain non-null output for the systemd

service?

ChAPTeR 15 LogS And JouRnALS

459
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_16

CHAPTER 16

Managing Users
 Objectives
In this chapter you will learn

• How user accounts and groups are used to provide access and

security

• The function and structures of the passwd, group, and shadow files in

/etc

• To add and delete user accounts using basic useradd and userdel

commands

• To add and delete user accounts manually

• To create user-level configurations that replicate for new users

• To lock a user account

• The difference between login shells and nologin shells

 Introduction
You are probably asking why I waited so long to talk about managing users. The answer

is that many Linux systems today are essentially single-user systems. Very seldom do we

see multiple users needing simultaneous access to a Linux computer, but it does happen.

In most cases we find that one of several users of a Linux system will log in and su - to

root in order to perform some sort of administrative task. In other environments, several

users may log in remotely as non-privileged users to a single system to perform normal

work – whatever that might be.

460

Even if you are the only human with access rights to a particular Linux host, you are

still dealing with at least two user accounts, root and your own user account. There are

also a number of user accounts that belong to various services and programs on a Linux

host.

Much of this chapter is about creating and managing user accounts. We will spend

a significant amount of time on the files used to manage user accounts, passwords, and

security.

 The root account
Your Linux computer has many accounts even if no other human actually uses your

computer on a regular basis. Most of those accounts are used by Linux when it performs

particular functions.

One of the special accounts is that of root. The root account is present on all Linux

computers, and it allows the person logged in as root to read, change, and delete any

file on the computer regardless of who owns the files. The root account is restricted

by file permissions, but root can change the permissions of any file on the computer.

The root account can do anything and everything on a Linux computer even changing

the password of any user or locking out users. To protect the integrity of the system,

the only person who should have the root password to a Linux computer is the system

administrator.

We explored working as root in Chapter 11 of Volume 1, including reasons not to use

sudo. In this chapter we are more interested in using the root account to manage other

users.

 Your account
By virtue of logging in using your account ID and password, you are granted access to

read and write files that are located in your home directory because you are the owner of

those files. You can create new files and directories in your home directory and modify

them as you see fit.

Your account does not provide you enough rights to access other user’s home

directories let alone view or modify the files located there. Your account does not have

Chapter 16 Managing Users

461

sufficient rights to alter any important system files, although you may be able to see

some of them and view the contents of some.

There is a common practice to create account names using the first letter of your

first name and your last name. Thus, the person Jo User would have an account name

of juser. Notice that it is also common practice for the account name to be all lowercase.

Case is important in Linux, so the account name JUser is not the same as juser.

 Your home directory
Your home directory is where files that belong to you are stored. Another word for

directory is folder.

When you create files in your home directory or in any of the subdirectories in your

home directory, they are created with the appropriate ownership and permissions to

allow you to read and write them. This should allow you to create new documents and

spreadsheets and so on and then to be able to modify them as needed and store them

back to the disk after they have been modified.

You can also use one of the file managers to change the permissions of the files in

your home directory, but we recommend that you do not do so unless you have a very

good reason to do so and know exactly why you are doing it.

 User accounts and groups
User accounts and groups are the first line of security on your Linux computer.

Knowledge of user accounts and file permissions will make it much less frustrating for

you as you do your work.

The root account is always UID 0 and the root group is always GID 0.

Historically, all system-level users were assigned a UID and GID between 1 and 99.

Convention defined the specific user and group IDs for various programs and services.

For a time, Red Hat, and therefore Fedora, recommended starting human user and

group IDs at UID 500 and GID 500. That was inconsistent with other Linux distributions

and caused some issues.

Today, because of a proliferation of services and system-level account needs, all of

the newer standard Linux system- and application-level users are located in the UID

Chapter 16 Managing Users

462

range between 100 and 999 which is now reserved for this purpose.1 All application-level

users – those required by installed services and applications – should be added in the

UID range between 101 and 999. All regular (human) users should be added starting at

UID 1000 and above.

The RHEL 7 System Administrator's Guide goes further and recommends starting

human user IDs at 50002 to allow for future expansion of the system IDs. However, the

current RHEL and Fedora implementations still begin at UID/GID 1000 for human users.

The guide does explain how to make this change so that new users are automatically

assigned IDs in the recommended range.

Group ID assignments should follow the same practices as UIDs to help ensure

consistency and to make troubleshooting easier.

There are some interesting historical anomalies within this structure. For example,

GID 100 is reserved for the “Users” group. In some environments it is common for all

regular users to be added to this group, but this is not recommended as it constitutes a

security risk that would allow users to have access to one another’s files.

For regular users the UID and GID should be identical, that is, a user with UID 1001

should have a GID of 1001 as well. Since each user belongs to its own group, security is

enhanced because files are not automatically shared between users. By default, users

should not all belong to a single common primary group such as the Users group (GID 100).

Making files available to other users should be accomplished by using secondary

group memberships to which the sharing users all belong and a directory where shared

files can be stored and which has group ownership by the common group. Group

membership should be limited to those who have a specific need to share related files.

This allows for more granular management of shared files. We experimented with how to

do this in Chapter 18 of Volume 1.

When adding group IDs for things like shared directories and files, I like to choose

numbers starting at 5000 and above, as we did in Chapter 18. This allows space for 4000

users with identical UID and GID numbers. That should be more than enough for most

Linux installations. Your needs may differ so you should adapt as necessary.

1 RHEL 7, System Administrator’s Guide, Red Hat, 2018, 44
2 Ibid., 44

Chapter 16 Managing Users

463

Figure 16-1 shows the conventional and currently common usage assignments for

UID and GID ranges. The range from 0 to 999 and the ID 65534 should be considered as

completely unusable for use or assignment by the SysAdmin. The range between 1000

and 65533 can be considered flexible and can be used according to local requirements.

User and group ID data are stored in the files /etc/passwd, /etc/shadow, and

/etc/group.

 The /etc/passwd file
We will start by looking at the user and group information located in the /etc/passwd file.

Here we will also look at the other information stored in this file.

Historical Linux system level accounts. These are all documented and
assigned by convention.

1 - 99 1 - 99

Accounts used by services and applications. This has changed over
the years, but this range is now consistent with Unix and other Linux
distributions.

100 - 999 100 – 999

Accounts used by regular (Human) users. 1000 – 4999 1000-4999

Miscellaneous – Shared directory and file GIDs, for example. 5000 - 9999 5000 - 9999

Open 10000 - 65533 10000 - 65533

nfsnobody – an anonymous NFS (Network File System) user that is
used for access to remote files.

65534 65534

Descrip�on User ID range Group ID range

root 0 0

Figure 16-1. Recommended UID and GID numeric ranges

Chapter 16 Managing Users

464

EXPERIMENT 16-1

Much of this experiment should be performed as root. as the root user, the id command

shows us information about our iD.

[root@studentvm1 ~]# id

uid=0(root) gid=0(root) groups=0(root)

[root@studentvm1 ~]#

this shows that the UiD and giD for root are both 0 (zero) and that the root user is a member

of the root group with a giD of 0.

now, as the root user, let’s look at the information for the student user.

[root@studentvm1 ~]# id 1000

uid=1000(student) gid=1000(student) groups=1000(student),5000(dev),5001(shared)

the student user has both UiD and giD set as 1000. the student user also has group

memberships in the dev and shared groups. these memberships allow the student user to

share files with other users. Look at the student1 user which also has memberships for these

shared groups.

[root@studentvm1 ~]# id 1001

uid=1001(student1) gid=1001(student1) groups=1001(student1),5000(dev),5001(shared)

now let’s look at the file that defines and contains user information. enter the following

command as root.

[root@studentvm1 ~]# cat /etc/passwd

the result is not sorted in any meaningful way, so let’s make it a bit easier by sorting on the

UiD. this number is located in the third field of each user. the -t option specifies the field

delimiter character and -k specifies starting the sort at field 3, the first character. the -g option

specifies the use of a general numeric sort. this results in a data stream that is much easier to

read.

[root@studentvm1 etc]# cat /etc/passwd | sort -t: -k3.1 -g

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

Chapter 16 Managing Users

465

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

games:x:12:100:games:/usr/games:/sbin/nologin

ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin

rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin

mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin

smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin

tss:x:59:59:Account used by the trousers package to sandbox the tcsd daemon:/

dev/null:/sbin/nologin

avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin

tcpdump:x:72:72::/:/sbin/nologin

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin

dbus:x:81:81:System message bus:/:/sbin/nologin

pulse:x:171:171:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin

rtkit:x:172:172:RealtimeKit:/proc:/sbin/nologin

abrt:x:173:173::/etc/abrt:/sbin/nologin

systemd-network:x:192:192:systemd Network Management:/:/sbin/nologin

systemd-resolve:x:193:193:systemd Resolver:/:/sbin/nologin

saslauth:x:976:76:Saslauthd user:/run/saslauthd:/sbin/nologin

pipewire:x:977:977:PipeWire System Daemon:/var/run/pipewire:/sbin/nologin

dictd:x:978:978:dictd dictionary server:/usr/share/dict/dictd:/sbin/nologin

systemd-timesync:x:979:979:systemd Time Synchronization:/:/sbin/nologin

dnsmasq:x:980:980:Dnsmasq DHCP and DNS server:/var/lib/dnsmasq:/sbin/nologin

vboxadd:x:987:1::/var/run/vboxadd:/sbin/nologin

colord:x:988:982:User for colord:/var/lib/colord:/sbin/nologin

setroubleshoot:x:989:983::/var/lib/setroubleshoot:/sbin/nologin

nm-openvpn:x:990:984:Default user for running openvpn spawned by

NetworkManager:/:/sbin/nologin

nm-openconnect:x:991:985:NetworkManager user for OpenConnect:/:/sbin/nologin

lightdm:x:992:986::/var/lib/lightdm:/sbin/nologin

chrony:x:993:987::/var/lib/chrony:/sbin/nologin

Chapter 16 Managing Users

466

polkitd:x:994:990:User for polkitd:/:/sbin/nologin

openvpn:x:995:991:OpenVPN:/etc/openvpn:/sbin/nologin

sstpc:x:996:992:Secure Socket Tunneling Protocol(SSTP) Client:/var/run/

sstpc:/sbin/nologin

geoclue:x:997:993:User for geoclue:/var/lib/geoclue:/sbin/nologin

unbound:x:998:995:Unbound DNS resolver:/etc/unbound:/sbin/nologin

systemd-coredump:x:999:997:systemd Core Dumper:/:/sbin/nologin

student:x:1000:1000:Student User:/home/student:/bin/bash

student1:x:1001:1001:Student1:/home/student1:/bin/bash

student2:x:1002:1002:Student User 2:/home/student2:/bin/bash

nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin

Let’s deconstruct the line for the student account, UID 1000. The field separator for

this file is the colon (:). Figure 16-2 describes each of the fields in the /etc/passwd file.

student:x:1000:1000:Student User:/home/student:/bin/bash

Field Field name Value Description

1 Account name student The user login name for the account

2 Password x
No longer used to store passwords. This field is retained for
backward compatibility.

3 User ID (UID) 1000 The User ID number for this account.

4 Group ID (GID) 1000
The primary Group ID number for this account. This is the default
and many times the only group to which a user belongs.

5 GECOS student
This is a text field that can contain multiple words for a
description of the account. GECOS stands for General Electric
Comprehensive Operating System. Yes, that GE3.

6 Home directory /home/student
The home directories for users may differ depending upon the
organizational needs, specifications, and historical usage.

7 Shell /bin/bash
The default shell for this user. Bash is the default shell for most
Linux distributions. Users can change their default shell.

Figure 16-2. Deconstructing the /etc/passwd entry for the student user

Chapter 16 Managing Users

467

The password field in account entries is no longer used. Storing a password in

this file is a security issue because the file needs to be accessible by all user accounts.

Reading a password from this file, even an encrypted password, constitutes a serious

security issue. For this reason, passwords have long ago been moved to the /etc/shadow

file which is not universally readable and thus is more secure.

 nologin shells
Many of the system users in the /etc/passwd file have a nologin shell, /sbin/nologin.

This type of shell is a small shell that does not allow a login of any type. This is a security

feature as it prevents crackers from accessing a Linux host system by escalating privileges

to or beyond these accounts.

 The /etc/shadow file
As mentioned previously, the password location for user accounts has been moved from

/etc/passwd to /etc/shadow. The shadow file is more secure because it is readable only

by root and by system processes that run with the root user ID.

EXPERIMENT 16-2

perform this experiment as the root user. We now look at the /etc/shadow file. Your root

terminal session should still have /etc as the pWD.

View the content of the /etc/shadow file. i have indented the long lines to help clarify the data.

i have also removed a number of lines to save space.

[root@studentvm1 etc]# cat shadow

root:6/VoB.UfR5MtuBi7b$Wnf7nLT/.

EFz4W4lA0vq1kSoIXhVR4Mnp8XlDJpRHjEpH2gJw348ZIUhE8rsGFRk7yIuh/

2pnKbNBbhz9n./y.::0:99999:7:::

bin:∗:17725:0:99999:7:::
daemon:∗:17725:0:99999:7:::
adm:∗:17725:0:99999:7:::
lp:∗:17725:0:99999:7:::
sync:∗:17725:0:99999:7:::
<snip>

Chapter 16 Managing Users

468

sshd:!!:17833::::::

vboxadd:!!:17833::::::

dnsmasq:!!:17833::::::

tcpdump:!!:17833::::::

student:$6$81UxQUSOXIejpASu$ovP6j8Bs/rvyq5j3q/

cWFsajWlhdN8YCySx7glnnBKYEEkBUG9SaAz.mAb8eW.

nXewOoWJx4czjIMay6zbDKq0::0:99999:7:::

systemd-timesync:!!:17889::::::

dictd:!!:17910::::::

student1:6iUF30xuKzezktM4c$Wxqik.oRHLgoxI9qwV3C02z5/

Q9p7XPgRpHt2qq6D3FlSlSLgUN36FBdIOB9UfxIJz.

b3xoQnHyirnZvisky8/:17987:0:99999:7:::

student2:6WgztalwLQSIlMM3w$6lxcmrMOXJietxHbsILmRwFfyKwrxV7

ye/ 0LPmZz7TTGVUAgHcvFMM2JX.WLTWncNTGhAGJIpnfDViJwDWAVC.:17987:0:99999:7:::

pipewire:!!:18002::::::

saslauth:!!:18018::::::

mailnull:!!:18018::::::

smmsp:!!:18018::::::

note that only root and other human user accounts have passwords.

Let’s deconstruct the shadow file entry for the student user in Figure 16-3. The

entries for this file contain 9 colon (:) separated fields.

Chapter 16 Managing Users

469

student:$6$81UxQUSOXI<snip>::0:99999:7:::

Field Field name Value Description

1 Account name student The user login name for the account

2 Password $6$81UxQUSOXI<snip>
The encrypted password, also called a hash, and
truncated here for brevity. If this field starts with an
exclamation point (!) the account is locked.

3
Date of the last
password change.

Empty

The date of the last password change in days since Jan
1, 1970 00:00 UTC. If this field is empty, the password
has never been changed. If this field is 0, then the
password must be changed at the next login.

4
Minimum password
age.

0

If this number is non-zero the user must wait that
number of days before changing the password again.
This prevents users from doing a required change and
then immediately changing the password back to their
“favorite” password.

5
Maximum password
age.

99999
The number of days that the password will remain
valid. The value of 99999 is interpreted as the
password will never expire.

6
Password warning
period.

7
The number of days left until the password expires
during which the user will be warned each day.

7
Password inactivity
period.

Empty
The number of days after password expiration during
which the old password will be accepted and the user
required to create a new password.

8
Account expiration
date.

Empty

The number of days since Jan 1, 1970 00:00 UTC at
which the account will expire. The user will not be
allowed to login to an expired account. If this field is
empty the account will never expire. This is different
from the password expiration.

9 Reserved Empty Reserved for future use.

Figure 16-3. Deconstructing the /etc/shadow entry for the student user

Fields 4 through 8 are typically used to implement password security policies by

forcing users to change their passwords on a regular basis. Notice that the student user

has not changed their password.

Chapter 16 Managing Users

470

EXPERIMENT 16-3

perform this experiment as the student user. Change the student user’s password from the

command line. Let’s start with a bad password to see what happens.

[student@studentvm1 ~]$ passwd

Changing password for user student.

Current password: <Enter the current password>

New password: mypassword

BAD PASSWORD: The password fails the dictionary check - it is based on a

dictionary word

passwd: Authentication token manipulation error

so entering a password that contains a dictionary word or a string of characters that are

typically substituted in dictionary words causes an error and does not allow the password to

be changed. try this – the 0 is a zero.

[student@studentvm1 ~]$ passwd

Changing password for user student.

Current password: <Enter the current password>

New password: myp@ssw0rd

BAD PASSWORD: The password fails the dictionary check - it is based on a

dictionary word

passwd: Authentication token manipulation error

a non-root user is not allowed to create passwords that do not pass certain minimum criteria.

the root user can set any password for any user although the same messages will be

displayed as a reminder. But root can do anything.

Let’s change the password for real.

[student@studentvm1 ~]$ passwd

Changing password for user student.

Current password: <Enter old password>

New password: Yu2iyief

Retype new password: Yu2iyief

passwd: all authentication tokens updated successfully.

Chapter 16 Managing Users

471

this works because the password is not too short – it must be at least eight characters in

length – and it is a series of random letters, upper- and lowercase, as well as a numeric digit.

now let’s see what happens when root changes the student user’s password with a dictionary

word.

[root@studentvm1 etc]# passwd student

Changing password for user student.

New password: myp@ssw0rd

BAD PASSWORD: The password is shorter than 8 characters

Retype new password: myp@ssw0rd

passwd: all authentication tokens updated successfully.

You have new mail in /var/spool/mail/root

root does not need to enter the current password and, although the bad password message is

displayed, the password is changed anyway.

Tip root has mail in the previous example. this is the daily logwatch email
report. Depending upon how fast you are working through this course, you may
have seen this already or you may not see it until later.

now look at the shadow file entry for the student user.

[root@studentvm1 etc]# grep student shadow

student:6.9B/0vGhNwsdf.cc$X/Ed1<snip>dDcB4uBHF.

HVqA1ZGkJ5L5yB2G/:18041:0:99999:7:::

<snip>

the third field, the date of the last password change, now has a number in it, 18041 on my

host. Your number will be different.

Change the password to something you choose.

Note that for a non-root user changing their own password, they must also enter

their original password before they can change it. This is a simple security procedure

that can prevent passersby from changing a user’s password. Remember, root can do

anything, including changing the password of any user without the need to know the old

password.

Chapter 16 Managing Users

472

 The /etc/group file
The /etc/group file contains a list of all of the groups on the localhost. This includes

the standard system groups as well as groups created by the system administrator for

specific local use.

We created two groups in Chapter 18 of Volume 1, dev and shared, to allow users to

have a place to share files and to work cooperatively. Having already looked at the group

file there and earlier in this chapter, there is no need to explore it more.

 The /etc/login.defs file
The /etc/login.defs file is used to set certain default configuration items that are

incorporated when adding new users. The values in this file include the starting and

maximum UIDs and GIDs for new users, the default mail directory location, and the

default password expiration options.

EXPERIMENT 16-4

perform this experiment as the root user. View the contents of the /etc/login.defs file. You can

read the comments in that file to understand it a bit, but there are two lines that need some

discussion.

PASS_MIN_LEN: the minimum length for a password is specified as five characters. this

should be set to a minimum of eight to ensure a reasonable amount of security.

PASS_MAX_DAYS: this line is set to 99999 so that the passwords never expire. in a real-

world environment, passwords should be set to expire no less frequently than every 30 days.

remember that, although the root user will still see password warnings, root can ignore them.

non-root users are not able to ignore the warnings and must create a password that meets

the length policy set in this file.

 Account configuration files
As we have already seen, there are several configuration files that are present in a new

account home directory. All user shell configuration files that are located in the /etc/skel

directory, such as ~/.bash_profile and ~/.bashrc, are copied into the new account home

directory when each new user account is created.

Chapter 16 Managing Users

473

If you have local configuration files that should be in the user’s home directories

instead of in one of the system-wide configuration files found in /etc/profile.d, you can

place them in /etc/skel and the files will be copied to the new home directory. One

reason to place them in the account home directory is so that the user can alter them as

needed.

 Password security
It is advisable as a good security precaution to change your password about once a

month. This prevents other people from using your password for very long even if they

happen to discover it. Once you have changed it, they can no longer use your previous

password to access the system. You never know when or how someone might obtain or

guess your password, so even if you do not think it has been compromised, you should

change your password regularly. Of course a password should be changed immediately

if you suspect that it has been compromised.

Passwords should be protected and never written down. If a password is stolen, it

can be used to access your computer and the network if your computer is so connected

and thus compromise your data.

Linux requires passwords to be a specified minimum length. The default is five

characters but that can be changed. I recommend that you use a longer password to

increase the difficulty of someone guessing your password. Passwords should never be

dates, initials, acronyms, words, or easy-to-remember sequences such as “ASDFG” from

the left of the middle row of the keyboard. Passwords should be composed of upper- and

lowercase alphabetic characters as well as numbers and special characters.

My personal calculations show that an automated attack of 500 access attempts per

second on a host with a five-character password can be cracked in anywhere from 6

hours to 21 days depending upon whether the password contains only lowercase alpha

or upper- and lowercase as well as numbers. The time to crack a really good randomly

generated password that includes special characters (#$%^, etc.) rises to 152 days. This

should be set to a minimum of eight to ensure a reasonable amount of security. The time

to crack an eight-character password rises to 13 years to over 325,000 years, once again

depending upon using upper- and lowercase, numbers, and special characters.

Crackers – bad hackers, people who want to get into your computer – have

dictionaries of words, common acronyms, and key sequences that they can try to

attempt to crack into your system. They also try easy-to-guess sequences that are

Chapter 16 Managing Users

474

available to anyone with a little persistence such as birthdays; anniversaries; the names

of spouses, children, pets, or significant others; Social Security numbers; and other

possible passwords of this type. The point is that when you change your password, you

should choose one that is not based on a dictionary word or one that will be easy to

guess or deduce from your personal information. Passwords based on any of these non-

random sources will likely be cracked in seconds.

There is a significant downside of changing passwords frequently and setting strict

policies that require them to be excessively long and not easily memorized. Such policies

will almost certainly result in users who write their passwords on post-it notes and

stick them on the display or under the keyboard. There is a fine line between workable

security and self-defeating security.

 Password encryption
Passwords cannot be safely stored on the hard drive in plain text format as this would

leave them open to incredibly easy hacking. In order to ensure that the user accounts are

secure, passwords are encrypted using the OpenSSL encryption libraries. The openssl

command-line tool can be used to access the encryption libraries from the command

line so that we can explore a bit about password encryption.

EXPERIMENT 16-5

perform this experiment as the student user. the openssl passwd command-line utility

allows encryption of a plain text string into an encrypted password that can be used when

creating a new account. it also lets us explore the structure of the passwords in the /etc/

shadow file.

starting with a simple example and without specifying a specific encryption method, the

password is truncated to eight characters and encrypted with the crypt algorithm which is

not particularly secure. For most of the examples in this experiment, we will use the string

“mypassword” for the password to be encrypted.

[student@studentvm1 ~]$ openssl passwd mypassword

Warning: truncating password to 8 characters

Gvp.W6K7c5FJc

Chapter 16 Managing Users

475

Compare the password generated to that of the student1 password in the /etc/shadow file,

which looks like that in the following data. this password hash is much longer than we got

from using the default settings.

student1:6wVc137Z/fbPCOdrK$VhTwe4ooOxVrYWiZp3Z1mHDSpEBGopGjTho6Odj0YEbzkSN

LeoSc5k7njmqdSYbLadnkBqCQcXHxLF.f42sG..:18046:0:99999:7:::

i have highlighted the first three characters of the password because they tell us – and the

system password and login utilities – the encryption algorithm used to create the password.

6 means that the sha512 bit algorithm was used to create this password. We can specify

the sha512 algorithm with the -6 option.

[student@studentvm1 ~]$ openssl passwd -6 mypassword

6uMdQ9QJqEgeQXEEn$mAcO.fzVdtsdLFyZPkNe6HdTI3nqYYn0rf8S9Jz3U.yiDF0oyWtbcbA

TNmwLzrUyfqsPPHeOlaDXMoax6xZME0

note the 6 characters at the beginning of this password indicating that it is sha512. now

do the same with the sha256 option.

[student@studentvm1 ~]$ openssl passwd -5 mypassword

5TwLEuxmTGPbdZyFn$6yj9vc/0OyKnU4hmZ.x3DWsfRNk5fm3ywtGNYqRLK74

notice the first three characters are now 5 and that the password is shorter.

Open the openssl-passwd man page (man openssl-passwd) and view the other encryption

options available. Create password hashes using crypt, MD5, apr1, sha256 (-5), and sha512

(-6) algorithms.

Let’s get back to the sha512 algorithm. run the command several times in sequence.

[student@studentvm1 ~]$ openssl passwd -6 mypassword

notice that the password hash is always different despite the fact that the password string is

the same. this is because the password encryption algorithms use a different random seed

for every iteration. this is called the “salt,3” presumably because it spices things up a bit.

normally, the salt is taken from the /dev/urandom data stream. this adds a bit of randomness

into the algorithm and produces a different result for every iteration.

3 The Free On-line Dictionary of Computing (FOLDOC) defines salt as “A tiny bit of near-random
data inserted where too much regularity would be undesirable;….”

Chapter 16 Managing Users

476

We also can specify a salt to use with the algorithm instead of using a random one, using the

-salt option. execute the following command several times; it will always produce the same

result.

[student@studentvm1 ~]$ openssl passwd -salt 123456 -6 mypassword

$6$123456$KKcK3jDXxn5tVYnLbMdeijnfrjaslbqj5X9bBgryaa4qLD04lrM9kswCpaZL27/

WXlbsDQcJ8kBxpjcpips781

notice that the salt string is included after the algorithm specifier, $6$123456$. Using the

same salt string removes the randomness from the algorithm to always produce the same

result, given the same password. Using a different string for the salt creates a new password

hash.

go back and look at some of the passwords you created without the -salt option and locate

the random string.

Theoretically, the well-known algorithms used to generate password hashes do so in

such a way that there is no known algorithm that can reverse the process and generate

the plain text password from the password hash. However, if a cracker has access to

the hash – which also contains the salt string – a brute force attack could conceivably

eventually find the plain text that generated the hash. This would not take long if the

password was based on dictionary words, but could take years if good passwords

were used.

 Generating good passwords
Creating good passwords is a challenge. It can take some thought and effort. Linux has at

least one tool that provides us with suggestions for good passwords.

The pwgen utility gives us the ability to specify the number and length of passwords

we want to generate as well as to make them relatively easy or impossible to remember.

By default, when used without the -s (secure) and -y (use special characters) options, the

resulting passwords are alleged to be easy for humans to memorize. My experience is

that some are and others not so much.

Chapter 16 Managing Users

477

EXPERIMENT 16-6

this experiment can be performed as the student user. We explore the pwgen utility to learn

how it can help us create reasonably secure passwords.

start by using pwgen with no options which, when stDOUt is to a terminal, generates a list of

160 random eight-character passwords using uppercase, lowercase, and numeric characters.

i can choose one of the passwords from the list to use.

[student@studentvm1 ~]$ pwgen

Iiqu4ahY Eeshu1ei raeZoo8o ahj6Sei3 Moo5ohTu ieGh6eit Is0Eisae eiVo5Ohv

Gooqu5ji ieX9VoN5 aiy3kiSo Iphaex4e Vait1thu oi5ruaPh eL7Mohch iel2Aih6

Elu5Fiqu eeZ4aeje Ienooj6v iFie2aiN ruu7ohSh foo4Chie Wai5Ap1N ohRae1lu

urahn2Oo eal6Zuey GuX3cho0 iesh1Oot eepha1Ai oe6Chaij ISaeb3ch OK7Iuchu

aeNgee6O Iequit9U OoNgi2oo cohY4Xei Ziengi3E quohTei4 eefe2ieC eong8Qui

Vo5aip8m Eishi0ei Xith9eil aongu4Ai paiFe1zo gaiPh5Ko Be7ieYu2 Fathah9h

Gu7UcePh lee7aiSh aj4AuChe Zo3caeR1 Yo8jei5x maeChe5a Id0baigh Fu4tei4e

geiLeid7 quaeK4Ro ohVoe5iZ AY2Noodi nem0tahJ ahPiw1oh gah6baeH Aa5pohCh

ahShai1h uQu3Hah1 Eth3coo5 EChoboc9 Iey0ahCh Mee3iewu Iek6oMai aePoo2ei

aeVoM8Sh IeR0hohr Duew9ogh toh8AeXu Nohgh0me ain4Ooph ooyuKoh1 huth1Mei

si4ohCao ahthae0I ohquah5F chohpe9G yoiM2noh iePh9iej aij7uXu7 Phoophi8

Bei5iLah uR3aicer oagh2OVo uThox9Xa Gu4ree0v shohNe2a weReth7A Vae4ga3b

Jee9jieX kohjoR6o Zimaish2 ut9mahJ8 ephu8Ray Iep0eiTh ooB3joom Rai1ohzu

em0Eeruv Tu7Phoh1 boh0IFee roh6Phae tauT3ohh LieFiu0a Voo9uvah pahpuiJ1

ohSiaN9a ooBahnu9 Uo2DahS0 oor6Huwe ahs6Och3 aeCai1oo ahw2Lawi oCaeboo8

oshahB8e Xu3iyohx NoX4ohCi oa5aiLih uLah7noo Thopie2a ua6iuQuo ooYab5ai

Gae5ahsh Eech1re7 feeDah4v wou7Oek4 iefoo9AJ zei4ahVi uMiel7sh jae3eiVo

zahC3Tue Eiphei6E ke6GiaJ8 oquieBa0 chi8Ohba ooZ9OC3e deiV7pae sieCho6W

nu1oba1D aiYoh2oo OoluaZ7u Ahg5pee7 Teepha6E ooch0Mod ThaiPui5 Ehui9ioF

ekuina3Z Oafaivi1 Pusuef9g aChoh2Eb Cio7aebe eoP0iepu seGh2kie fiax4Cha

pipe the data stream through the sort command. the result is a single password. Whenever

the data stream of pwgen with no options is sent through a pipe, only a single password is

generated. this is ideal for automation scripts.

[student@studentvm1 ~]$ pwgen | sort

Eaphui7K

Chapter 16 Managing Users

478

this behavior can be overridden using the -n option to specify the desired number of

passwords.

[student@studentvm1 ~]$ pwgen -N 6 | sort

boot6Ahr

Die2thah

nohSoh1T

reob9eiR

shahXoL6

Wai6aiph

instead of using options, pwgen recognizes two arguments in the syntax, pwgen pw_length

number_of_passwds.

[student@studentvm1 ~]$ pwgen 25 10

Eetahch0hiuvaedodu1iPh5Oh Ahvoosoh5Eifei8eiyahWee1s Hout4ichoh9eiBeip5ChaiRe2

aGuuquaexiet8epao1phi0thu yuwoo3pei5nooQua7koo9kube wa6ahcho8Aey1ahthaegaeB9w

ahg5oo8xeivo6fahw6shila1C een9eeG0quoov3Iegheixahde hae6IeBe1eiZoh2laa9phivae

naengeiHohshaikahghie4aer

now use the -s and -y options in various combinations.

[student@studentvm1 ~]$ pwgen -s

[student@studentvm1 ~]$ pwgen -y

[student@studentvm1 ~]$ pwgen -sy

[student@studentvm1 ~]$ pwgen -s 25 90

read the man page for pwgen and check out some of its other options. Of particular interest is

the option to remove ambiguous characters, those which can be confused for each other such

as i (eye) and 1 (one) or 0 (zero) and O (oh).

 Password quality
There is a configuration file that is used to define the quality requirements of new

passwords, /etc/security/pwquality.conf. The system defaults are defined to us humans

as commented lines in this file. Lines that need to be changed to improve security can be

uncommented and the default value for the variable changed to whatever is desired.

For one example, you might wish to change the default password length from eight

to ten. So uncomment the # minlen = 8 line and change 8 to 10.

Chapter 16 Managing Users

479

One trick many users try when required to change their passwords is to simply

change one character in the existing one. So they change the old password, password3,

to password4. The default setting of the difok = 1 allows this, but it is a bad idea.

EXPERIMENT 16-7

this experiment will be performed partly as root and partly as the student1 user. First, read

the man page for pwquality.conf to get an idea of the variables available that can be changed.

then as root, set the password for student1 to “password1234”. Log in to the student1

account using that password.

as student1, change the password to “password9876”.

edit the /etc/security/pwquality.conf file and change the line

difok = 1

to

difok = 5

now try to change the password for student1 to “password4567”. note that a reboot is not

required. these changes are activated immediately.

[student1@studentvm1 ~]$ passwd

Changing password for user student1.

Current password: password9876

New password: password4567

BAD PASSWORD: The password is too similar to the old one

passwd: Authentication token manipulation error

another trick users try is to use all one class of characters for their passwords, such as all

lowercase or all numbers. the minclass = 0 can be changed to require as many as four

classes of characters, uppercase, lowercase, numbers, and special characters. it is a good

practice to require at least three different classes of characters.

Change minclass to 3 and try to change the password for student1 to one with one or two

classes of characters. then change the password to one with three classes. this setting does

not specify which character classes are required.

Change the altered lines back to their original values and set the password for student1 to

your preferred one.

Chapter 16 Managing Users

480

 Managing user accounts
Managing user accounts is a very common task for system administrators in many

environments. This can include adding new accounts, deleting accounts that are no

longer needed, and modifying existing accounts.

There are at least three methods that can be used to create, delete, and modify user

accounts. Most desktop environments have some form of GUI tool. There are command-

line tools useradd and adduser; the latter is simply a symlink to useradd but is retained

for backward compatibility as well as commands to delete and to modify user accounts.

And there is also the very retro method of editing the required files by hand.

In the next few experiments, we will manage user accounts using the command line

and by manually editing the various files. I liked editing these files by hand when I was

first learning because it provided me with knowledge of what the commands actually do

as well as all of the files required and their structures.

 Creating new accounts
Creating new accounts is easy no matter which method is used.

 The useradd command

We start with the easy method. The useradd command is flexible and can allow the

SysAdmin to just take the defaults for things like password expiration, the default shell,

and more.

EXPERIMENT 16-8

perform this experiment as the root user.

start by checking one of the files that defines some defaults for new users, /etc/defaults/

useradd. these can be set permanently here or overridden at the command line.

[root@studentvm1 ~]# cat /etc/default/useradd

useradd defaults file

GROUP=100

HOME=/home

INACTIVE=-1

Chapter 16 Managing Users

481

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

now add a user using the default settings. the -c (comment) option adds the text in quotes to

the geCOs comment field in /etc/passwd.

[root@studentvm1 ~]# useradd -c "Test User 1" tuser1

set a password for this new user. then look at the lines for this user in /etc/passwd, /etc/

shadow, and /etc/group. Look at the contents of the home directory for tuser1, including

hidden files.

now let’s create a user account with a different shell, zsh, and home directory location, /

testFs/tuser2. We added a number of different shells in Chapter 7 of Volume 1 so the Z shell

should already be installed. the -d option specifies the complete path of the home directory. if

the base directory, in this case /testFs, does not exist, neither it nor the home directory will be

created. the -s option specifies the user’s default shell.

[root@studentvm1 etc]# useradd -c "Test User 2" -d /TestFS/tuser2 -s /usr/

bin/zsh tuser2

set the password for this user. Check the lines that were added to the passwd, shadow, and

group files. Log in or su - as this user to verify that zsh is the default shell. the command

prompt will be a bit different. notice the difference in command-line editing and the lack of tab

completion. Log out from this user account.

Let’s add a user with a password expiration date of today. the -e option specifies the

expiration date in YYYY-MM-DD format and does the conversion to days elapsed since Jan 1,

1970, 00:00 UtC. note that “today” for you will be different from “today” as i write this, so be

sure to use your today.

[root@studentvm1 etc]# useradd -c "Test User 3" -e 2019-05-28 tuser3

set a password for tuser3. as the student user, use su to log in as tuser3 from a terminal

session. You could also use a virtual console to log in as tuser3.

[student@studentvm1 ~]$ su - tuser3

Password: <Enter password for tuser3>

Your account has expired; please contact your system administrator

su: User account has expired

Chapter 16 Managing Users

482

now let’s use the usermod command to set the expiration date to a few days in the future –

your future.

[root@studentvm1 etc]# usermod -e 2019-06-05 tuser3

as the student user again, use su to log in as tuser3.

[student@studentvm1 ~]$ su - tuser3

Password: <Enter password for tuser3>

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running /etc/bashrc

[student@studentvm1 ~]$

setting the account expiration date is not tied to the password expiration date. For example,

you might hire a contractor to work on a project that will take 6 months. so you can set the

account expiration date to 6 months, while the password expiration is set to 30 days. the

password will expire every 30 days during that 6 months, but the account will expire at the

specified future date. even if the password has not expired, the user will not be able to log in

to an expired account.

Log out of the tuser3 session.

Although the password expiration date can be set using the -K option of the useradd

command, these should be system-wide settings and belong in the /etc/login.defs file to

ensure consistency in its application.

It is possible to set an initial password, already encrypted, while adding a new

account. We can use the openssl command to encrypt the password into a string called

a hash, then use the result as an option in the useradd command.

Now we get to adding a new user with an encrypted password.

EXPERIMENT 16-9

perform this experiment as the root user. add a new user using a password hash to set the

password with the useradd command. enter this command all on one line. Be sure to place

the back tics (`) around the openssl passwd command as shown.

Chapter 16 Managing Users

483

[root@studentvm1 ~]# useradd -c "Test User 4" -p `openssl passwd -salt 123456

-6 mypassword` tuser4

now look at the shadow file and verify that it looks like this. Because we used the same salt

and the same password to generate the password hash, the resulting hash should be identical.

tuser4:$6$123456$KKcK3jDXxN5TVYNLbMdEIjnfRjaSlbqj5X9bBgryaa4qLD04lrM9ksw

CpAZL27/WXlbsDQcJ8kBxPjcpips781:18044:0:99999:7:::

now log in as tuser4 using the password “mypassword” to verify that this has produced the

desired result. Log out as tuser4.

 Creating new accounts by editing the files
Although it is a bit more involved and takes a little more time than using the useradd

command, editing the files to add a new user can be a helpful learning experience. It is

really not all that difficult. It just takes time and knowledge.

Although we would never expect to add a new user in this way, I have had the need

to repair a user account. Knowing all of the files involved and how to edit them safely has

been useful to me. So this experiment is more about gaining a knowledge of the files that

comprise a user account rather than a need to ever add a new user using this method.

EXPERIMENT 16-10

this experiment must be performed as the root user. We will add a new user, test User 5,

tuser5, by editing the appropriate configuration files and creating a home directory.

start by adding the following line to the /etc/passwd file. i just used the Vim editor to copy the

line for tuser4 and made the appropriate changes. the account for tuser4 is UiD and giD 1006

so the UiD and giD for tuser5 will be 1007.

tuser5:x:1007:1007:Test User 5:/home/tuser5:/bin/bash

edit the /etc/group file by adding the following line. Once again i just copied the line for tuser4

and made the needed changes.

tuser5:x:1007:

Chapter 16 Managing Users

484

edit the /etc/shadow file and add the following line. again, i just copied the line for tuser4 and

changed the user account name to tuser5. this results in tuser5 having the same password as

tuser4.

tuser5:$6$123456$KKcK3jDXxN5TVYNLbMdEIjnfRjaSlbqj5X9bBgryaa4qLD04lrM9ksw

CpAZL27/WXlbsDQcJ8kBxPjcpips781:18044:0:99999:7:::

note that when you attempt to save this change, Vim displays an error, “e45: 'readonly' option

is set (add ! to override)”. so instead of simply using :wq, you need to add an exclamation

mark (!) to force Vim to save the changes, :wq!.

Create the new home directory and set its permissions to 700.

[root@studentvm1 home]# cd /home ; mkdir tuser5 ; ll

total 52

drwxrws--- 2 root dev 4096 Apr 2 09:19 dev

drwx------. 2 root root 16384 Dec 22 11:01 lost+found

drwxrws--- 2 root dev 4096 Apr 2 12:34 shared

drwx------. 27 student student 4096 May 28 16:09 student

drwx------ 4 student1 student1 4096 Apr 2 09:20 student1

drwx------ 3 student2 student2 4096 Apr 1 10:41 student2

drwx------ 3 tuser1 tuser1 4096 May 27 21:48 tuser1

drwx------ 3 tuser3 tuser3 4096 May 28 08:27 tuser3

drwx------ 3 tuser4 tuser4 4096 May 28 17:35 tuser4

drwxr-xr-x 2 root root 4096 May 28 21:50 tuser5

[root@studentvm1 home]# chmod 700 tuser5 ; ll

total 60

<snip>

drwx------ 2 root root 12288 May 28 21:53 tuser5

Copy the files from /etc/skel into the new home directory.

[root@studentvm1 home]# cp -r /etc/skel/.[a-z]* /home/tuser5 ; ll -a tuser5
total 40

drwx------ 3 root root 12288 May 29 07:45 .

drwxr-xr-x. 12 root root 4096 May 28 21:50 ..

-rw-r--r-- 1 root root 18 May 29 07:45 .bash_logout

-rw-r--r-- 1 root root 141 May 29 07:45 .bash_profile

-rw-r--r-- 1 root root 376 May 29 07:45 .bashrc

-rw-r--r-- 1 root root 172 May 29 07:45 .kshrc

Chapter 16 Managing Users

485

drwxr-xr-x 4 root root 4096 May 29 07:45 .mozilla

-rw-r--r-- 1 root root 658 May 29 07:45 .zshrc

set the ownership of the directory and its contents to the new user.

[root@studentvm1 home]# chown -R tuser5.tuser5 tuser5 ; ll -a tuser5

total 32

drwx------ 3 tuser5 tuser5 4096 May 29 07:51 .

drwxr-xr-x. 12 root root 4096 May 29 07:50 ..

-rw-r--r-- 1 tuser5 tuser5 18 May 29 07:51 .bash_logout

-rw-r--r-- 1 tuser5 tuser5 141 May 29 07:51 .bash_profile

-rw-r--r-- 1 tuser5 tuser5 376 May 29 07:51 .bashrc

-rw-r--r-- 1 tuser5 tuser5 172 May 29 07:51 .kshrc

drwxr-xr-x 4 tuser5 tuser5 4096 May 29 07:51 .mozilla

-rw-r--r-- 1 tuser5 tuser5 658 May 29 07:51 .zshrc

to test this new user with a login, you can use either a virtual console or use su – tuser5

from a student user terminal session. Or do both. remember that tuser5 has the same

password as tuser4, mypassword.

[student@studentvm1 ~]$ su - tuser5

Password: mypassword

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running /etc/bashrc

[tuser5@studentvm1 ~]$

that was fairly easy, but using the useradd command is even easier most of the time. Log out

of the tuser5 account.

You have now performed all of the steps necessary and modified all of the files

involved in creating a new user. This knowledge has been useful in my SysAdmin work.

I have sometimes found it easier to simply edit a group or passwd file than to use an

appropriate CLI command like usermod. It is also easier to spot a damaged entry in one

of these files having edited them by hand.

Chapter 16 Managing Users

486

 Locking the password
Is one of your users going on extended vacation? Or is a user leaving the organization or

transferring to another location? Sometimes you want to secure an account so that no

one – except for you, the SysAdmin, as root – has access, but you do not want to delete it.

The need to do this could also be for forensic reasons.

A locked password prevents the user – or anyone else – from logging into the

account, but it does not change the password hash. The password can be easily unlocked

when necessary. The user can then log in with the original password.

EXPERIMENT 16-11

parts of this experiment will be performed as root and parts as tuser5. Be sure to log out of the

tuser5 account. now lock the tuser5 account. the -l (lowercase ell) option locks the account.

[root@studentvm1 ~]# passwd -l tuser5

Locking password for user tuser5.

passwd: Success

Look at the line for tuser5 in the /etc/shadow file.

[root@studentvm1 ~]# grep tuser5 /etc/shadow

tuser5:!!$6$123456$KKcK3jDXxN5TVYNLbMdEIjnfRjaSlbqj5X9bBgryaa4qLD04lrM9

kswCpAZL27/WXlbsDQcJ8kBxPjcpips781:18044:0:99999:7:::

notice the two exclamation points (!!) at the beginning of the password hash. now log in to the

tuser5 account from a virtual console or using su from a student account terminal session.

[student@studentvm1 ~]$ su - tuser5

Password:

su: Authentication failure

now unlock the account.

[root@studentvm1 ~]# passwd -u tuser5

Unlocking password for user tuser5.

passwd: Success

Log in to it again to verify that it is unlocked.

We could also have used Vim to edit the /etc/shadow file to add and remove the “!!” from the

beginning of the password field.

Chapter 16 Managing Users

487

 Deleting user accounts
User accounts are very easy to delete. Depending upon the reason for deletion, you may

wish to retain the user’s home directory or to delete it along with the rest of the account.

EXPERIMENT 16-12

perform this experiment as the root user. Use the userdel command to delete tuser3 but

leave the home directory.

[root@studentvm1 ~]# userdel tuser3 ; ll /home

total 52

drwxrws--- 2 root dev 4096 Apr 2 09:19 dev

drwx------. 2 root root 16384 Dec 22 11:01 lost+found

drwxrws--- 2 root dev 4096 Apr 2 12:34 shared

drwx------. 27 student student 4096 May 28 16:09 student

drwx------ 4 student1 student1 4096 Apr 2 09:20 student1

drwx------ 3 student2 student2 4096 Apr 1 10:41 student2

drwx------ 3 tuser1 tuser1 4096 May 27 21:48 tuser1

drwx------ 3 1005 1005 4096 May 29 07:53 tuser3

drwx------ 3 tuser4 tuser4 4096 May 28 17:35 tuser4

drwx------ 3 tuser5 tuser5 4096 May 29 07:53 tuser5

Because the tuser3 account no longer exists, the account name is no longer shown in the long

listing of the /home directory. the directory and its contents still have UiD and giD of 1005 and

that is what we see here.

now delete the account for tuser4 along with its home directory. the -r option removes the

home directory for an account.

[root@studentvm1 ~]# userdel -r tuser4 ; ll /home

total 48

drwxrws--- 2 root dev 4096 Apr 2 09:19 dev

drwx------. 2 root root 16384 Dec 22 11:01 lost+found

drwxrws--- 2 root dev 4096 Apr 2 12:34 shared

drwx------. 27 student student 4096 May 28 16:09 student

drwx------ 4 student1 student1 4096 Apr 2 09:20 student1

drwx------ 3 student2 student2 4096 Apr 1 10:41 student2

drwx------ 3 tuser1 tuser1 4096 May 27 21:48 tuser1

Chapter 16 Managing Users

488

drwx------ 3 1005 1005 4096 May 29 07:53 tuser3

drwx------ 3 tuser5 tuser5 4096 May 29 07:53 tuser5

it is also possible to delete user accounts by editing the appropriate files to remove the lines

pertaining to the account we want to remove.

 Forcing account logoff
Sometimes it may become necessary to force a user account to log off. This may be

required because a user has left for the day and the system needs to be updated with no

users logged in, the user has left the organization, or there may be one or more runaway

processes.

Whatever the reason, there is no “logout other user” command, but there is a simple

way to deal with this need to force the termination of all processes belonging to a user.

This is, in fact, even more effective than simply forcing a logout.

EXPERIMENT 16-13

this experiment will be performed as root and the student1 user. First let’s see if the student1

user is logged in. the pgrep command can be used as root to locate the piDs of running

processes that belong to a specific user account.

[root@studentvm1 ~]# pgrep -U student1

[root@studentvm1 ~]#

in this case the student user is not logged in. if you find that there are no processes belonging

to the student1 user or you find only three or four processes, open a terminal session on your

desktop and su to the student1 user.

[student@studentvm1 ~]$ su - student1

Password:

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running /etc/bashrc

[student1@studentvm1 ~]$

Chapter 16 Managing Users

489

also log in at a virtual console as student1. as root, look for processes belonging to student1.

the specific piDs you see will be different from those listed here from my VM.

[root@studentvm1 ~]# pgrep -U student1

30774

30775

30780

30781

30785

30831

30840

now we can kill all of these processes to force the user off the system. this is not a logout; it

kills all of the user’s processes, even ones that might be left behind after a logout.

[root@studentvm1 ~]# pkill -KILL -U student1

[root@studentvm1 ~]# pgrep -U student1

[root@studentvm1 ~]#

this will also show “Killed” in the terminal window you had opened.

 Setting resource limits
You might think that with huge amounts of disk space, high CPU counts and speeds,

gigabytes of RAM, and terabytes of disk space that modern Linux hosts do not have

limited resources. That is not true, and I have seen huge systems overburdened by

programs in test or even fully released programs that were poorly written. More

frequently, I have caused myself problems where a shell script I have written sucks

up most or all of some critical resource. You saw how easy that was when we did it

intentionally earlier in this course. It seems to be even easier when it is unintentional.

So imagine for a moment that you are the system administrator for a Linux box that

has a large number of users. And that one of those user accounts is running resource

hogs – large jobs that suck up CPU time and memory which slows the tasks being run by

other users to a crawl. They all come complaining to you. What do you do?

These issues can be corrected immediately by killing all of the processes – or at least

the offending ones – belonging to the user owning them.

Chapter 16 Managing Users

490

It is even better to prevent these problems by setting limits on the amount of system

resources that a user, users, or groups can consume. The /etc/security/limits.conf file

can be used to set limits for system resources to levels that will affect other users not at

all or at least only marginally. A related option is to add a local config file to the /etc/

security/limits.d directory. This prevents making changes to the main configuration file

such as might occur during updates or complete reinstallations.

There are soft and hard limits that can be set. A soft limit sends a message when it is

met or exceeded, while a hard limit prevents completion of the command that caused

it. Both hard and soft limits can be set on a resource so that the user first receives a

message and then is prevented from continuing. The limits set in this file are monitored

and enforced by the pluggable authentication module (PAM) system which we will

encounter again in Chapter 17 of this volume.

Limits can be applied to individual users, to groups such as dev or accounting, and to

lists of users or groups, as well as to all users or groups.

EXPERIMENT 16-14

this experiment is performed in part as the root user and in part as the student1 user.

First, as the root user, open /etc/security/limits.conf with less and just view its contents for

now. read the comment sections of this file to understand the system resources that can be

restricted using this file and its overall structure as well as the syntax used in creating a limit

specification. it is fine to leave this file open for reference.

some of the configurable resources need a bit additional clarification. so, Figure 16-4 lists all

of the resources over which we can exert some control and the descriptions as found in the

limits.conf file. in some cases i have added comments of my own.

Chapter 16 Managing Users

491

nofile max number of open file descriptors Each open file has a file descriptor. Effectively limits
the total number of open files.

rss max resident set size (KB) The maximum virtual memory, RAM + swap, that
can be allocated.

stack max stack size (KB) The stack is a temporary storage location for
programs to store some types of data during
operation. This limits the total stack space available
to the user or group.

cpu max CPU time (MIN) The maximum amount of CPU time in minutes per
day that can be allocated to a user. NO additional
CPU time can be allotted to the user after a hard
limit is reached so they would be done for the day.

nproc max number of processes

as address space limit (KB)
The total amount of address space that can be
allocated including, program, data, and stack.

maxlogins max number of logins for this user
Limits the total number of concurrent logins by
individual users.

maxsyslogins max number of logins on the system
Limits the total number of concurrent logins on the
system as a whole.

priority the priority to run user process with

Allows setting low (or high) priorities on user
processes. Usually used to lower priorities for users
that do not run critical processes, thus allowing the
more critical users to have more CPU time if it is
required.

Resource Description Comments

core Limits the core file size (KB) This refers to the core dump files in the event of a
kernel or other system error.

data max data size (KB)

fsize maximum filesize (KB)

memlock max locked-in-memory address space (KB) This type of memory is locked into RAM and cannot
be swapped out. This limits the maximum amount
of RAM that can be locked into RAM by a user’s
processes.

Figure 16-4. The system resources that can be controlled with the limits.conf file

Chapter 16 Managing Users

492

rather than change the default file, we will add a new file local.conf to the /etc/security/

limits.d/ directory. Create the local.conf file there and open it with Vim. add the following line

to set the number of logins for student1 to 3. the settings in this local file override the default

settings.

student1 - maxlogins 3

a reboot is not required. however, if a user already has the specified number or more of logins

already open, the existing logins are not affected but no additional logins will be allowed.

Use virtual consoles 2 through 5 to log in as the student1 user. if you have those consoles

logged in as another user, log out and then log in as student1. When you try to log in on VC5,

you will get the following error indicating that the number of logins has been exceeded.

student1@studentvm1's password:

Too many logins for 'student1'.

Permission denied

Look at the number of logins.

[root@studentvm1 limits.d]# w -u student1

 14:53:19 up 2 days, 22:12, 13 users, load average: 0.04, 0.03, 0.01

sigpending max number of pending signals

We looked at signals in Chapter 23. It is possible to
use Ctrl-C to exit from a process (or other signals)
mul�ple �mes but if the process is not responding,
the signals are queued. This limits the size of that
queue.

msgqueue
max memory used by POSIX message
queues (bytes)

nice
max nice priority allowed to raise to
values: [-20, 19]

rtprio max real�me priority

locks max number of file locks the user can hold

File locks allow multiple users to access a single file
while preventing all but one – the one with the lock
– from altering the file. This limits the number of
files a user can have open for modification.

Resource Descrip�on Comments

Figure 16-4. (continued)

Chapter 16 Managing Users

493

USER TTY LOGIN@ IDLE JCPU PCPU WHAT

student1 tty2 14:34 19:01 0.02s 0.02s -bash

student1 tty3 14:34 18:47 0.02s 0.02s -bash

student1 tty4 14:34 18:36 0.01s 0.01s -bash

this is the maximum number of logins allowed for this user.

Resource limitations must be considered with care, especially when applying them

to groups and multiple users. This is an excellent way to ensure that the desires of the

few do not outweigh the needs to the many.

 Chapter summary
This chapter has taken us through the processes of creation, modification, and deletion

of user accounts. We have also explored the various configuration files that support user

accounts and their creation. We have created user accounts using the command-line

tools and have also used Vim to add a new user by direct editing of the passwd, group,

and shadow files.

We have also looked at user account security in general and password security in

particular. This included exploring configuration tools that can force users to change

their passwords on a regular basis as well as to enforce some aspects of password

security policy.

We have also explored multiple methods to deal with resource allocation problems

and how to kick users off the system who are abusing resources.

 Exercises
Perform these exercises to complete this chapter:

 1. What are the file modes for /etc/passwd and /etc/shadow?

 2. Why are the user passwords stored in /etc/shadow?

 3. Why might a SysAdmin want to generate a password using the

pwgen command and pipe it directly to the useradd command,

thus creating an initial password that is not known to anyone?

Chapter 16 Managing Users

494

 4. The command cp -r /etc/skel/.[a-z]* /home/tuser5 ; ll

-a tuser5 was used to copy the files from /etc/skel to the home

directory of tuser5 in Experiment 16-9. Why is the syntax /etc/

skel/.[a-z]* used instead of just /etc/skel/.*?

 5. Remove the tuser5 account by editing the user account files. Also

remove the home directory for the account.

 6. The tuser3 account was removed in Experiment 16-12 without

also removing the account’s home directory. Remove that home

directory.

 7. Set a hard limit of 5 minutes of CPU time on a user other than the

student user. You could use the student1 user. Then start a cpuHog

program and watch what happens.

 8. Devise and run an experiment to verify that setting the number

of allowed logins on a user to a number smaller than the current

number that are open does not affect the open ones.

 9. Set the shell on the student1 account as /sbin/nologin. What

happens when you try to log in as that user?

Chapter 16 Managing Users

495
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_17

CHAPTER 17

Security
 Objectives
In this chapter you will learn

• To define the full scope of Linux security

• To identify and implement additional aspects of password security

• To use the firewalld firewall to manage access to the host on SSH and

Telnet ports

• To install and configure the Telnet server

• To use tcpdump to monitor the plain text data of a Telnet

conversation

• To enable the SSHD server and use tcpdump to verify that the

conversation is encrypted

• To describe PAM authentication

• To install and configure Fail2Ban dynamic firewall software to block

attacks

• To take some basic steps to improve security of any Linux host

 Introduction
Linux is a very secure operating system. It provides a secure environment in which to

work and store files. However, good security, by its very nature, can be a bit obtrusive.

We have already had discussions about security in many sections of this course. This

is because security must not be an afterthought; it must be an integral component of

everything we do as SysAdmins. The security of our systems and the data on them must

be a major consideration if not the prime consideration in everything we do.

496

Any device connected to the Internet is subject to attack and no operating system,

even Linux, is completely free of exploitable flaws. Linux just happens to be more secure

than other operating systems and, when it is breached, is less vulnerable to widespread

damage.

There are only four rules required to achieve complete and unbreakable security:

 1. The computer must be locked in a blast-proof room to prevent

both unauthorized access and destruction of the computer and its

contents.

 2. It must be inside a Faraday cage to prevent its own radio

frequency emissions from escaping to be captured by “The Bad

People.” This would also protect the host against an EMP blast but

assumes a power source completely within the confines of the

cage.

 3. It must have a 100% air gap – that is, it must not be connected to

any network and especially not to the Internet. This includes all

hard wired and wireless connections such as wireless, Bluetooth,

infrared, and anything else that transmits data outside of the

computer.

 4. It must be turned off and the rest of the rules don’t count.

Unfortunately, these rules mean the computer is unusable even for its intended

purpose. That, in turn, means that any computer that is turned on is vulnerable to

cracking. A cracker is the correct name for a hacker with evil intent. Hackers – the good

people who hack, that is, work on, hardware and code – are the ones who gave us things

like free and open source tools like Linux and the many applications that run on it. So we

must use our computers in an imperfect and unsafe environment at all times.

Security is not an afterthought that is appended to the end of a book – it is something

that must be considered as part of all we do as SysAdmins. We have already enabled and

used various types of security throughout this book. In this chapter we will look at some

additional security considerations.

Chapter 17 SeCurity

497

 Security by obscurity
Most computers are connected to the Internet through first a wireless or wired router

and then the router/modem supplied by the Internet Service Provider, or ISP. This

provides a couple layers of obscurity between the computer and the Internet. You may

also think that your Small Office/Home Office (SOHO) or other small organization

or even your personal home computers are too small and insignificant to attract the

attention of the crackers. You are counting on your relative obscurity to protect you from

the crackers because there are surely more lucrative and much larger and important

targets available.

NOT!
“Security by obscurity” cannot be counted on to protect your computer. In fact,

the worst assumption you can make is that some level of obscurity can protect your

computers. Some small businesses I have worked with, including my own systems, are

constantly subjected to attempts to crack into their firewall servers, hundreds of attempts

per day and thousands per month. And that is after I have instituted measures to reduce

the total number of attacks. Every computer that is connected to any network – and

especially the Internet – is a target.

There are a number of measures that can be instituted to protect your computer, but

it will never be impervious. And you must help by exercising care in the way you use the

Web and deal with spam email.

There are a number of good web sites with information on how to protect yourself

online. Although I cannot verify all of the information on them, there is one I especially

like Get Safe Online.1 It even has a section on safe Linux use.

 What is security?
Security is about far more than simply preventing unwanted people from logging in to

our Linux computers. Although good passwords and other security measures are helpful

and can help to prevent that type of security vulnerability, they are the response to only

one part of the security problem. There are many aspects to security, and it is important

to understand that fact as well as to know the things that we are using various security

protocols to protect.

1 Get Safe Online, www.getsafeonline.org/protecting-yourself/

Chapter 17 SeCurity

https://www.getsafeonline.org/protecting-yourself/

498

So what are the things we are trying to protect? Not surprisingly, a large part of

security is designed to protect our data but perhaps in ways and for reasons you have not

previously considered.

 Data protection
There are three major considerations to data protection and different tools and strategies

applied to each.

First we want to protect our data from loss in the sense that it needs to be available

to us. We need to be able to have access to it. So this is about ensuring that the data will

not be destroyed or lost so that it is no longer available. As a business owner, loss of my

financial records in a fire or natural disaster would be a disaster for my company and

that might be impossible to recover from. This is about the accessibility of our data in

order to ensure the continuity of our business.

Second we want to protect our data from unauthorized access. We need to ensure

that our company and personal data is not available to someone who might use it to steal

our identity or to steal money from us. In the case of many organizations, that data might

contain information that a competitor might use to gain advantage over us. This is about

the confidentiality of our data.

Third, we want to ensure that our data is safe from unauthorized changes or

corruption, perhaps by malware or a disgruntled employee or one who is simply a thief.

And we also want to ensure that we are not blocked from access to our own data by

malware such as ransomware which would encrypt the data and keep us from accessing

it until the ransom is paid. This is about ensuring the integrity of our data.

It’s not just about keeping the data safe, but knowing for a fact that the data was kept

safe from espionage/destruction/corruption.

 Security vectors
Security attack and danger vectors are many and varied. These vectors are all classifiable

into five major categories, self-inflicted, environmental, physical, network, and software

vulnerabilities. Although we will list a number of common security vulnerabilities of

different types, I have no intention of exploring all the responses to these problems here.

There are some things that can be done, in addition to some of the obvious ones hinted

at in this section, and we will explore those later in this chapter.

Chapter 17 SeCurity

499

In case you have not figured it out yet, this is where I try to scare you enough to apply

some common sense and freely available open source tools to improving the security of

your Linux systems.

 Self-inflicted problems
Self-inflicted data loss comes in many forms. The most common form is the semi-

intentional erasure of one or more important files or directories.

Sometimes erasing needed files is accidental. I just erase a bunch of old files in a

directory, and it turns out later that one or two are still needed. More often, for me at

least, I actually look at the files and decide they are no longer needed. A day, or two,

or a week after I delete them, it turns out that I still need at least some of the files I just

deleted. I have also made significant changes to a file and saved it. Once again I find at

some time later I made changes and especially deletions that I should not have. Clearly

it is necessary to pay attention when deleting files or making changes to them. That still

won’t keep us from deleting data we may need later.

On other occasions I have been working on the back side of a computer rack and

accidentally pulled the power plug – or plugs if there were redundant power supplies –

from the wrong computer. Although hard drives and journaling filesystems can generally

withstand a power loss, it still happens. In a somewhat less stringent environment than a

data center, I have managed to kick a power cable out of the wall.

This category also includes things like using poor passwords that can be easily

cracked and leaving a USB drive with critical data stored on it in an accessible location.

Leaving a laptop unattended in a public place like a coffee shop or using unencrypted

wireless links are also common points of data loss.

 Environmental problems
Environmental issues that can affect the security of computers systems are usually not

considered as potential problems or at least misunderstood by most people. When

we use the word environmental, we tend to think in terms of electrical power backup

units, cooling the data center so the computers will be cool, and so on. But there is

so much more that many of us don’t think about. I was fortunate that I learned about

environmental issues early in my career at IBM.

Chapter 17 SeCurity

500

Power failures can occur for many reasons. This includes momentary power failures

that can shut down the computer just as irrevocably as longer ones. Regardless of the

reason for the power failure, there is the danger of losing data especially from documents

that have not been saved. Modern hard drives and filesystems employ strategies that

help to minimize the probabilities of data loss, but it still happens.

Grounding – actually the lack thereof or improper grounding – can be a serious

issue. Good grounding is essential for the proper electronic operation and stability of

computers.

Electromagnetic interference, EMI, is various types of electromagnetic radiation

from many different sources. This radiation can interfere with the correct operation of

any electronic device including computers. Lightning, static electricity, microwaves, old

CRT displays, military radar systems, and radio frequency bursts on a ground line all

of these and more can cause problems. Good grounding can reduce the effects of all of

these types of EMI. But that does not make our computers completely immune to the

effects of strong EMI fields.

Hard drive failures also cause data loss. The most common failures in today’s

computers are devices that have moving mechanical components. Leading the

frequency list are cooling fans and hard drives are a close second. Modern hard drives

have SMART capabilities that enable predictive failure analysis. Linux can monitor these

drives and send an email to root indicating that failure is imminent. Do not ignore those

emails because replacing a hard drive before it fails is less trouble than replacing one

after it fails and then hoping the backups are up to date.

Modern computers are well protected against many aspects of environmental

problems. All we need to do is to ensure that we use battery backup units, which are also

known as Uninterruptible Power Supplies (UPS), and that they are plugged into properly

grounded outlets. Things can still happen, but this will minimize the possibilities.

 Physical attacks
Physical security is about protecting the hardware from various types of harm. Although

we tend to think in terms of keeping bad people away from the hardware on which

we run our systems, we also need to consider disaster scenarios as a major part of our

planning.

Disgruntled employees can maliciously destroy data. Proper security procedures

can mitigate this type of threat, but backups are still handy.

Chapter 17 SeCurity

501

Common theft is also a way to lose data. Soon after we moved to Raleigh, NC, in

1993, there was a series of articles in the local paper and TV that covered the tribulations

of a scientist at one of our better known universities. This scientist kept all of his data on

a single computer. He did have a backup – to another hard drive on that same computer.

When the computer was stolen from his office, all of his experimental data went missing

as well and it was never recovered.

Natural disasters occur. Fire, flood, hurricanes, tornadoes, mud slides, tsunamis, and

so many more kinds of disasters can destroy computers and locally stored backups as

well. I can guarantee that, even if I have a good backup, I will never take the time during a

fire, tornado, or natural disaster that places me in imminent danger to save the backups.

Back up everything – frequently. And keep the most recent backups someplace

off-site. I store my backups in a safe deposit box. If my home office is devastated by a

disaster, I can rebuild from my backups.

 Network attacks
Attacks via networks, both local and the Internet, are common and can be extremely

dangerous. These attacks can take many forms ranging from direct attacks from the

Internet against firewalls and servers to indirect attacks in which malware is introduced

into a host by some stealthy means such as hiding in a downloaded file, an email, or a

click-bait link on a web site.

This type of attack does not require direct physical access to your computers. Rather,

they come through your connections to the outside world.

Scripted attacks are generally used by so-called script kiddies. This derogatory

term is used because they are not usually smart or determined enough to create the

attack scripts themselves so they download them from those who are. The scripts they

use are simple brute force remote login attempts. Their malicious attacks are useless

against today’s well-protected Linux hosts because most distributions are well hardened

at installation and do not have the SSH server up and running so this type of attack is

fruitless when SSH is not available for a connection.

These attacks usually consist of automated dictionary probes against a large number

of remote hosts, usually those on a specific network range, rather than against a specific

single host or organization.

Malware is a very generic term for software that can be used for various malicious

purposes including destroying or deleting your data.

Chapter 17 SeCurity

502

Ransomware is a specific form of malware that encrypts your data and holds it for

ransom. If you pay the ransom, you may get the key that will allow you to decrypt your

data – if you are lucky.

Drive-by malware is a malicious link in an apparently innocuous advertisement

on an otherwise legitimate web page. You do not even need to click this link for your

computer to be affected.

Targeted login attempts are aimed directly at your organization. These are like

script kiddie attacks but with you as the main target. These attacks are usually carried

out by someone or some group with a specific reason to target you. If someone targets

you specifically and really wants to crack into your system, they will be able to do so,

given enough time and even just a little bit of carelessness on your part.

Always keep systems up to date so that the latest security patches are installed.

Ensure that good firewalls are in place and properly configured. And check frequently for

evidence of break-ins.

 Software vulnerabilities
Many attacks on connected computers are aided and abetted by vulnerabilities in the

host’s software. These vulnerabilities are exploited by the attackers and can be leveraged

to install malware of various types. However, just because a vulnerability exists does not

mean that an exploit is available to take advantage of it.

Always install the latest updates to ensure that the software is as secure as possible.

 Linux and security
So – did that scare you? It should have.

But the good news is that Linux in general is very secure and so is Fedora especially

when SELinux is set to enforcing. Linux is very secure immediately upon installation.

There are only a couple minor services running that do not need to run, but none

provide external access from the Internet. The remaining ones can be easily turned off.

Unneeded services can be an access point for a cracker. In Chapter 13 of this volume, we

turned off the pcscd service for this very reason.

Fedora has an excellent firewall in place and the one service I use in all of my Linux

hosts, the SSH server for secure logins to and from remote hosts is configured only for

outbound connections. The inbound SSHD server is disabled.

Chapter 17 SeCurity

503

 Login security
Login security – ensuring that only authorized users have access to log in and use the

system’s resources – is the first line of defense. Generating and using secure passwords

is the main tool we have to provide this security, whether a local or remote login. But

it seems a bit silly for me to write an entire section on password security when the

passwd(1) man page already has an excellent section on just that. So here it is, directly

from the passwd man page.

"Remember the following two principles

 Protect your password.

Don't write down your password - memorize it. In particular, don't

write it down and leave it anywhere, and don't place it in an

unencrypted file! Use unrelated passwords for systems controlled

by different organizations. Don't give or share your password, in

particular to someone claiming to be from computer support or a

vendor. Don't let anyone watch you enter your password. Don't enter

your password to a computer you don't trust or if things "look

funny"; someone may be trying to hijack your password. Use the

password for a limited time and change it periodically.

 Choose a hard-to-guess password.

passwd, through the calls to the pam_cracklib PAM module, will

try to prevent you from choosing a really bad password, but it

isn't foolproof; create your password wisely. Don't use something

you'd find in a dictionary (in any language or jargon). Don't use

a name (including that of a spouse, parent, child, pet, fantasy

character, famous person, and location) or any variation of your

personal or account name. Don't use accessible information about

you (such as your phone number, license plate, or social security

number) or your environment. Don't use a birthday or a simple

pattern (such as "qwerty", "abc", or "aaa"). Don't use any of

those backward, followed by a digit, or preceded by a digit.

Instead, use a mixture of upper- and lowercase letters, as well

as digits or punctuation. When choosing a new password, make

sure it's unrelated to any previous password. Use long passwords

Chapter 17 SeCurity

504

(say at least eight characters long). You might use a word pair with

punctuation inserted, a passphrase (an understandable sequence of

words), or the first letter of each word in a passphrase."

We explored setting passwords and generating good ones in Chapter 16 of this

volume, along with locking accounts to prevent any login access at all.

 Checking logins
Another tool we have is the list of user logins. This is made easy with the last and lastb

commands which prevent us from having to scan the /var/log/secure log files. The last

command displays all successful logins.

The lastb command displays a list of failed logins. These can be your own or other

users’ failed logins due to fumble fingers as I sometimes have, or it could be the result of

an attack on your system.

EXPERIMENT 17-1

perform this experiment as the root user. the last command can be run by a non-root user,

but lastb cannot.

Let’s start with a view of successful logins. i have piped the result through the head command

because this list can be very long and head truncates the data stream for me. you can do this

both with and without piping it through head. the specifics of your data will be different from

mine, but it should look very much similar to this.

[root@studentvm1 ~]# last | less

student pts/4 192.168.0.1 Tue Jun 4 07:59 still logged in

root pts/0 192.168.0.1 Mon Jun 3 21:37 still logged in

reboot system boot 5.0.7-200.fc29.x Mon Jun 3 17:36 still running

student pts/4 :pts/3:S.0 Sun Jun 2 14:43 - 21:35 (1+06:52)

student pts/3 192.168.0.1 Sun Jun 2 14:42 - 21:35 (1+06:52)

root pts/0 192.168.0.1 Sun Jun 2 14:41 - 21:35 (1+06:53)

reboot system boot 5.0.7-200.fc29.x Sun Jun 2 10:26 - 21:35 (1+11:09)

root pts/0 192.168.0.1 Sat Jun 1 14:06 - 14:06 (00:00)

reboot system boot 5.0.7-200.fc29.x Fri May 31 17:20 - 14:06 (20:45)

student1 pts/10 192.168.0.1 Thu May 30 14:39 - 14:39 (00:00)

<snip>

Chapter 17 SeCurity

505

You have new mail in /var/spool/mail/root

[root@studentvm1 ~]#

here we can see a number of reboots, the student and root logins, and whether they are

still logged in or not. the login times and durations are also recorded here. We also looked

previously at ways to list all of the system boots using journalctl.

[root@studentvm1 etc]# journalctl --list-boots

this information can be useful in a forensic investigation into who was logged in at the time a

specific file was changed or accessed, or some specific event took place. really experienced

crackers can cover their tracks, but this information could still have some value, especially if

you are looking for someone who is not a pro.

So now let’s look at failed logins. you may not have had any so this result will be empty as it is

for my instance of StudentVM1.

[root@studentvm1 ~]# lastb

btmp begins Tue Jun 4 08:27:54 2019

So let’s create a few bad logins. using virtual console 2, try to log in as the user root, jhgd,

!@#$%^, news, chrony, rpcuser, student, james, henry, and alice. Be sure to use completely

random and bogus passwords. Look again at the list of failed logins.

[root@studentvm1 ~]# lastb

(unknown tty2 Tue Jun 4 08:53 - 08:53 (00:00)

(unknown tty2 Tue Jun 4 08:53 - 08:53 (00:00)

(unknown tty2 Tue Jun 4 08:53 - 08:53 (00:00)

student tty2 Tue Jun 4 08:53 - 08:53 (00:00)

(unknown tty2 Tue Jun 4 08:51 - 08:51 (00:00)

rpcuser tty2 Tue Jun 4 08:50 - 08:50 (00:00)

chrony tty2 Tue Jun 4 08:49 - 08:49 (00:00)

(unknown tty2 Tue Jun 4 08:30 - 08:30 (00:00)

(unknown tty2 Tue Jun 4 08:30 - 08:30 (00:00)

(unknown tty2 Tue Jun 4 08:30 - 08:30 (00:00)

(unknown tty2 Tue Jun 4 08:28 - 08:28 (00:00)

root tty2 Tue Jun 4 08:28 - 08:28 (00:00)

root tty2 Tue Jun 4 08:27 - 08:27 (00:00)

btmp begins Tue Jun 4 08:27:54 2019

Chapter 17 SeCurity

506

the list of failed logins shows the user account that the attempt was targeted at, if it exists.

if the account does not exist, the account name is shown as (unknown) which has been

truncated.

Now let’s look at a small bit of the lastb data stream from my firewall system. i use a Linux

host as a firewall and router. these login attempts are via the internet over SSh. i use SSh

to remotely log in to my network through this firewall so i have the SShD server running and

accepting connections.

the leftmost column of this output shows the user account name that the attack targeted. the

second column shows the attack against SSh and “notty” means no tty was assigned. Column

three is the ip address from which the attack generated, although that can be spoofed. the

rest of the columns list the data and time the attack occurred. the “(00:00)” (MM:SS) column

just means that the connection lasted zero time.

karika ssh:notty 91.134.241.32 Tue Jun 4 08:12 - 08:12 (00:00)

karika ssh:notty 91.134.241.32 Tue Jun 4 08:12 - 08:12 (00:00)

gfa ssh:notty 79.6.34.129 Tue Jun 4 08:11 - 08:11 (00:00)

gfa ssh:notty 79.6.34.129 Tue Jun 4 08:11 - 08:11 (00:00)

mjestel ssh:notty 91.134.241.32 Tue Jun 4 08:09 - 08:09 (00:00)

mjestel ssh:notty 91.134.241.32 Tue Jun 4 08:09 - 08:09 (00:00)

redmine ssh:notty 128.199.170.177 Tue Jun 4 08:09 - 08:09 (00:00)

redmine ssh:notty 128.199.170.177 Tue Jun 4 08:09 - 08:09 (00:00)

cow ssh:notty 79.6.34.129 Tue Jun 4 08:08 - 08:08 (00:00)

cow ssh:notty 79.6.34.129 Tue Jun 4 08:08 - 08:08 (00:00)

alberta ssh:notty 51.75.124.76 Tue Jun 4 08:08 - 08:08 (00:00)

alberta ssh:notty 51.75.124.76 Tue Jun 4 08:08 - 08:08 (00:00)

<snip>

ec2-user ssh:notty 181.114.209.13 Sat Jun 1 00:23 - 00:23 (00:00)

ec2-user ssh:notty 181.114.209.13 Sat Jun 1 00:23 - 00:23 (00:00)

!@#$%^ ssh:notty 180.76.108.110 Sat Jun 1 00:22 - 00:22 (00:00)

!@#$%^ ssh:notty 180.76.108.110 Sat Jun 1 00:22 - 00:22 (00:00)

performe ssh:notty 180.76.108.110 Sat Jun 1 00:19 - 00:19 (00:00)

performe ssh:notty 180.76.108.110 Sat Jun 1 00:19 - 00:19 (00:00)

zhuang ssh:notty 129.204.46.170 Sat Jun 1 00:18 - 00:18 (00:00)

zhuang ssh:notty 129.204.46.170 Sat Jun 1 00:18 - 00:18 (00:00)

usp ssh:notty 181.114.209.13 Sat Jun 1 00:16 - 00:16 (00:00)

usp ssh:notty 181.114.209.13 Sat Jun 1 00:16 - 00:16 (00:00)

geminroo ssh:notty 140.143.93.31 Sat Jun 1 00:16 - 00:16 (00:00)

Chapter 17 SeCurity

507

geminroo ssh:notty 140.143.93.31 Sat Jun 1 00:16 - 00:16 (00:00)

trinity ssh:notty 218.75.102.110 Sat Jun 1 00:12 - 00:12 (00:00)

trinity ssh:notty 218.75.102.110 Sat Jun 1 00:12 - 00:12 (00:00)

fv ssh:notty 140.143.93.31 Sat Jun 1 00:12 - 00:12 (00:00)

fv ssh:notty 140.143.93.31 Sat Jun 1 00:12 - 00:12 (00:00)

script ssh:notty 129.204.46.170 Sat Jun 1 00:12 - 00:12 (00:00)

script ssh:notty 129.204.46.170 Sat Jun 1 00:12 - 00:12 (00:00)

mongo ssh:notty 5.39.88.4 Sat Jun 1 00:11 - 00:11 (00:00)

mongo ssh:notty 5.39.88.4 Sat Jun 1 00:11 - 00:11 (00:00)

zi ssh:notty 5.39.88.4 Sat Jun 1 00:08 - 00:08 (00:00)

zi ssh:notty 5.39.88.4 Sat Jun 1 00:08 - 00:08 (00:00)

btmp begins Sat Jun 1 00:08:40 2019

this output had 4600 lines in it and the last two do not count. there are 4598 lines of failed

login attempts. Look at the dates. these data run from midnight on June 1 of 2019 through

08:12 aM June 4. So we have almost 4600 failed login attempts in 3 days and a bit over 8

hours.

Note the different and sometimes strange user account names used in the attacks. Some

are those belonging to Linux system services, some are apparently legitimate user account

names, but others are clearly random and concocted. i particularly like !@#$%^ which

consists of the special characters above the 1, 2, 3, 4, 5, and 6 keys on the uS keyboard.

“Cow” is also kind of strange.

you can download the complete results from my firewall host. as the student user, download

the Chapter-17.tgz file (tarball) from the apress Github repository into your ~/Downloads

directory. then untar the file.

[student@studentvm1 ~]$ cd ~/Downloads/

[student@studentvm1 Downloads]$ wget https://github.com/Apress/using-and-

administering-linux-volume-2/blob/master/Chapter-17.tgz

a quick explanation of the tar command is that it can be used to create an archive type called

a tarball with a file extension of .tar. the files can be compressed using another Linux tool,

gzip. the file extension for a gzip’ed tarball is .tgz. We will extract the file from this tarball

with the tar command.

the -x option means to extract the files contained in the tarball. -z specifies decompression

with gunzip, the reverse of gzip. the -v option means verbose so that the command will

list the files as it extracts them. and -f is used to specify the name of the tarball from which

Chapter 17 SeCurity

508

we are going to extract the files. We will explore more aspects of the tar command, including

using it to create tarballs for backup purposes, in Chapter 18 of this volume.

[student@studentvm1 Downloads]$ tar -xzvf Chapter-36.tgz ; ll

lastb.txt

total 388

-rw-rw-r-- 1 student student 39514 Jun 4 12:07 Chapter36.tgz

-rw-r--r-- 1 student student 335692 Jun 4 08:21 lastb.txt

[student@studentvm1 Downloads]$

Look through the lastb.txt file which is quite long but which has an interesting array of

targeted account names and source ip addresses.

The full results from my firewall host in Experiment 17-1 show only some of the

many failed login attempts against my firewall. That is only partially because I snipped

most of them out of what you see here. It is also because after four failed attempts logged

from any single IP address within a period of 24 minutes (1440 seconds), I block any

further attempts from that IP for 24 minutes. Any connection attempts from blocked

IP addresses do not even get logged, they just get dropped. I use an open source tool

called Fail2Ban for this and we will explore SSH, and firewalls, and Fail2Ban in the next

sections.

The point here is that there are constant and large numbers of attacks against every

host connected to the Internet.

 Telnet
Telnet is an old and well-known terminal emulator that provided a very easy way to

connect to remote hosts. Telnet was developed in a time before the advent of the Internet

for everyone, when the only Internet was the ARPANET connecting large universities

with each other and the Department of Defense (DOD). There were few connections and

everyone was collaborative. There was no malware and it was a safe place.

As a result, Telnet was not developed with security as a prime consideration. All

communications between hosts were in plain ASCII text with no encryption – including

the user ID and password. As the Internet grew and the cast of players on the dark side

also grew, this lack of security became a problem.

Chapter 17 SeCurity

509

However, a short exploration of Telnet can provide some interesting insight into how

easily anyone with just a bit of knowledge can eavesdrop on an unencrypted connection.

Think – the typical wireless connections in public places that do not require passwords.

Before we look at Telnet, however, we need a tool that will let us explore TCP packets

and their contents. The tcpdump utility allows us do that and it is already installed.

EXPERIMENT 17-2

perform this experiment as the root user. Let’s start with a bit of preparation. previous

experiments may have launched some connections that have not been dropped and we want

to start this experiment with as few connections as possible. So reboot StudentVM1.

Now dump the headers of all the packets on the enp0s3 interface. the headers tell us what

kind of packet it is and a bit of other information about the packet. the source and destination

ip addresses that are contained in the packet are also displayed.

We need some packets to dump so let’s start a ping to the virtual router in our virtual network.

the ip route command displays the ip address of the default gateway router. Do this in a

terminal session as root. your default route should be the same as mine, 10.0.2.1, but there is

a possibility that it might be different. regardless, the ip address of the router is given on the

“default via” line of the results.

[root@studentvm1 ~]# ip route

default via 10.0.2.1 dev enp0s3 proto dhcp metric 100

10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.5 metric 100

in another terminal session as root, start tcpdump. the -i option specifies the interface we

want to view. Without the -i option tcpdump will display packets from all interfaces including

lo; specifying an interface makes it easier for us to see the packets we want.

[root@studentvm1 ~]# tcpdump -i enp0s3

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on enp0s3, link-type EN10MB (Ethernet), capture size 262144 bytes

at this point you should see only the following couple lines to indicate that tcpdump is

listening on enp0s3. Be sure to have the terminal session with tcpdump running in a location

where you can see it. Now let’s generate a bit of traffic in a different terminal session as root.

[root@studentvm1 ~]# ping 10.0.2.1

PING 10.0.2.1 (10.0.2.1) 56(84) bytes of data.

Chapter 17 SeCurity

510

64 bytes from 10.0.2.1: icmp_seq=1 ttl=255 time=0.545 ms

64 bytes from 10.0.2.1: icmp_seq=2 ttl=255 time=0.225 ms

64 bytes from 10.0.2.1: icmp_seq=3 ttl=255 time=0.363 ms

64 bytes from 10.0.2.1: icmp_seq=4 ttl=255 time=0.128 ms

<snip>

you should see results like these in the tcpdump session. First – on my system – we see

some DNS requests looking for the Ntp server. you probably will not see that unless you watch

the data stream for some time.

08:56:14.212503 IP studentvm1.34113 > ntp1.glypnod.com.ntp: NTPv4, Client, length 48

08:56:14.213202 IP studentvm1.59682 > router.domain: 12976+ PTR? 175.155.131.104.

in-addr.arpa. (46)

08:56:14.247782 IP router.domain > studentvm1.59682: 12976 ServFail 0/0/0 (46)

08:56:14.247996 IP studentvm1.35991 > google-public-dns-a.google.com.domain: 12976+

PTR? 175.155.131.104.in-addr.arpa. (46)

08:56:14.282835 IP google-public-dns-a.google.com.domain > studentvm1.35991: 12976

1/0/0 PTR ntp1.glypnod.com. (76)

08:56:14.305939 IP studentvm1.54924 > router.domain: 33356+ PTR? 8.8.8.8.in-addr.

arpa. (38)

08:56:14.306377 IP ntp1.glypnod.com.ntp > studentvm1.34113: NTPv4, Server, length 48

08:56:15.050090 IP router.domain > studentvm1.54924: 33356 1/4/8 PTR google-public-

dns-a.google.com. (330)

08:56:19.498446 ARP, Request who-has router tell studentvm1, length 28

08:56:19.498635 ARP, Reply router is-at 52:54:00:12:35:00 (oui Unknown), length 46

08:57:23.737060 IP studentvm1 > router: ICMP echo request, id 18956, seq 1, length 64

08:57:23.737207 IP router > studentvm1: ICMP echo reply, id 18956, seq 1, length 64

08:57:24.778523 IP studentvm1 > router: ICMP echo request, id 18956, seq 2, length 64

08:57:24.778708 IP router > studentvm1: ICMP echo reply, id 18956, seq 2, length 64

08:57:25.802521 IP studentvm1 > router: ICMP echo request, id 18956, seq 3, length 64

08:57:25.802707 IP router > studentvm1: ICMP echo reply, id 18956, seq 3, length 64

08:57:26.826517 IP studentvm1 > router: ICMP echo request, id 18956, seq 4, length 64

08:57:26.826673 IP router > studentvm1: ICMP echo reply, id 18956, seq 4, length 64

08:57:27.850495 IP studentvm1 > router: ICMP echo request, id 18956, seq 5, length 64

08:57:27.850683 IP router > studentvm1: ICMP echo reply, id 18956, seq 5, length 64

08:57:28.874486 IP studentvm1 > router: ICMP echo request, id 18956, seq 6, length 64

08:57:28.874660 IP router > studentvm1: ICMP echo reply, id 18956, seq 6, length 64

08:57:29.130418 ARP, Request who-has router tell studentvm1, length 28

08:57:29.130756 ARP, Reply router is-at 52:54:00:12:35:00 (oui Unknown), length 46

Chapter 17 SeCurity

511

then we see an arp2 request that indicates that our host is looking for the MaC address of the

router and the corresponding response. this is those two devices making their layer 1 physical

connection. it is a request to the router, using the router’s known ip address, that seeks the

MaC address of the router and it also sends the MaC address for the enp0s3 NiC. the router

then responds with a message targeted to the MaC address of enp0s3 on the studentvm1

host. this is the layer at which hosts actually communicate with each other when they are on

the same physical (or virtual) network segment.

after that, there are several ping (iCMp3) requests from StudentVM1 and the

corresponding responses from the router.

terminate the ping events with Ctrl-C and continue to watch the data stream for several

minutes. you will eventually see some additional traffic which should mostly be Ntp traffic

and related arp traffic. you may also see some DhCp traffic when the ip address given to

the studentvm1 host expires and it requests a new lease from the DhCp server.

this is a very basic introduction to a powerful and complex tool. all we have seen so far

are the packet headers – information about the packets – not the contents. exit tcpdump

with Ctrl-C.

Opensource.com has an excellent introductory article4 about tcpdump on their web

site. There are any number of tools, both CLI and GUI, as well as free open source and

for a fee commercial, that provide many or all of these functions. The tcpdump tool is free

and open source and has been around for a long time.

Now we can proceed with installing Telnet and xinetd. The xinetd package is

used to manage a number of older server types, including Telnet. It is not required on

most modern Linux hosts. It is configured with a main file, /etc/xinetd.conf, and with

individual service files in the /etc/xinetd.d directory.

2 ARP, Address Resolution Protocol, a protocol that enables discovery of the MAC (hardware)
address of a network interface on a remote host using the host’s IP address

3 ICMP, Free On-line Dictionary of Computing (FOLDOC), an extension to the Internet Protocol
(IP) that allows for the generation of error messages, test packets, and informational messages
related to IP. It is defined in STD 5, RFC 792.

4 Ricardo Gerardi, An introduction to using tcpdump at the Linux command line, https://
opensource.com/article/18/10/introduction-tcpdump

Chapter 17 SeCurity

https://opensource.com/article/18/10/introduction-tcpdump
https://opensource.com/article/18/10/introduction-tcpdump

512

EXPERIMENT 17-3

perform this experiment as root. install the telnet-server and xinetd packages.

[root@studentvm1 etc]# dnf -y install telnet-server xinetd

Configuring the xinetd server is a bit of a challenge because the file needed to configure xinetd

to manage the telnet service is not installed by default. So we must create it ourselves. Create

the file /etc/xinetd.d/telnet and add the content shown in the following data. the file should

have the permissions 600; having other permissions will not prevent telnet from working,

but it would be a security issue because we do not want non-privileged users to read most

configuration files including this one.

default: on

description: The telnet server serves telnet sessions; it uses \

unencrypted username/password pairs for authentication.

service telnet

{

 flags = REUSE

 socket_type = stream

 wait = no

 user = root

 server = /usr/sbin/in.telnetd

 log_on_failure += USERID

 disable = no

}

We need to allow telnet through our firewall on port 23. how do we know the port number?

the /etc/services file contains a listing of all assigned and commonly recognized ports and the

services assigned to them.

[root@studentvm1 ~]# grep -i telnet /etc/services

telnet 23/tcp

telnet 23/udp

rtelnet 107/tcp # Remote Telnet

rtelnet 107/udp

Chapter 17 SeCurity

513

telnets 992/tcp

telnets 992/udp

su-mit-tg 89/tcp # SU/MIT Telnet Gateway

su-mit-tg 89/udp # SU/MIT Telnet Gateway

the data stream from this command shows many telnet variants, many dating from early

days of computer communications. We want the first one, plain telnet, which is port 23.

Now add the firewall rule. the first command adds port 23 for tCp (not uDp) to the

firewall permanently and the second reloads the firewall configuration to activate the

new rule.

[root@studentvm1 ~]# firewall-cmd --permanent --add-port=23/tcp

success

[root@studentvm1 ~]# firewall-cmd --reload

success

[root@studentvm1 ~]#

Check the firewall status.

[root@studentvm1 ~]# firewall-cmd --list-ports

23/tcp

[root@studentvm1 ~]#

the xinetd service is managed by systemd and is enabled by default so that it will start on

boot. ensure that it is up and running.

[root@studentvm1 xinetd.d]# systemctl status xinetd

if the xinetd service is not active and running, start it.

[root@studentvm1 xinetd.d]# systemctl start xinetd

We will explore firewalld in more detail later in this chapter.

We are now ready to explore Telnet.

Chapter 17 SeCurity

514

EXPERIMENT 17-4

perform this experiment as root. in one root terminal session that should remain visible on the

desktop for the rest of this experiment, start tcpdump and monitor the lo (local) interface for

telnet communications on port 23. Start a telnet session with the localhost.

[root@studentvm1 ~]# telnet localhost

Trying ::1...

Connected to localhost.

Escape character is '^]'.

Kernel 5.0.7-200.fc29.x86_64 on an x86_64 (7)

studentvm1 login: root

Password: <enter the root password>

Last login: Mon Jun 10 21:33:49 from 192.168.0.1

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running /root/.bash_profile

Running /root/.bashrc

Running /etc/bashrc

[root@studentvm1 ~]#

the tcpdump terminal session should now contain a data stream that looks similar to this. i

have only reproduced a few lines here to save space.

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 262144 bytes

14:02:59.472466 IP6 localhost.39640 > localhost.telnet: Flags [S], seq

612902319, win 65476, options [mss 65476,sackOK,TS val 1287054799 ecr

0,nop,wscale 7], length 0

14:02:59.472496 IP6 localhost.telnet > localhost.39640: Flags [S.], seq

3258934320, ack 612902320, win 65464, options [mss 65476,sackOK,TS val

1287054799 ecr 1287054799,nop,wscale 7], length 0

14:02:59.472512 IP6 localhost.39640 > localhost.telnet: Flags [.], ack 1, win

512, options [nop,nop,TS val 1287054799 ecr 1287054799], length 0

14:02:59.473651 IP6 localhost.39640 > localhost.telnet: Flags [P.], seq 1:25,

ack 1, win 512, options [nop,nop,TS val 1287054800 ecr 1287054799], length

Chapter 17 SeCurity

515

24 [telnet DO SUPPRESS GO AHEAD, WILL TERMINAL TYPE, WILL NAWS, WILL TSPEED,

WILL LFLOW, WILL LINEMODE, WILL NEW- ENVIRON, DO STATUS [|telnet]

14:02:59.473674 IP6 localhost.telnet > localhost.39640: Flags [.], ack 25,

win 512, options [nop,nop,TS val 1287054800 ecr 1287054800], length 0

14:02:59.478708 IP6 localhost.telnet > localhost.39640: Flags [P.], seq 1:13,

ack 25, win 512, options [nop,nop,TS val 1287054805 ecr 1287054800], length

12 [telnet DO TERMINAL TYPE, DO TSPEED, DO XDISPLOC, DO NEW-ENVIRON [|telnet]

14:02:59.478736 IP6 localhost.39640 > localhost.telnet: Flags [.], ack 13,

win 512, options [nop,nop,TS val 1287054805 ecr 1287054805], length 0

Now run the ll command while watching the tcpdump data stream.

So far, we have only looked at the packet headers for this telnet session. terminate the

tcpdump command and restart it using the -a option which dumps the data contents of the

packets in aSCii format.

[root@studentvm1 ~]# tcpdump -i lo port 23 -A

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 262144 bytes

One packet you should find will look something like this one from my StudentVM1 host.

you can see the data contained in the packet. this is quite insecure and could result in the

exposure of private data to anyone on the internet who cares enough to listen in.

14:26:09.919600 IP6 localhost.telnet > localhost.39642: Flags [P.], seq

623:1175, ack 8, win 512, options [nop,nop,TS val 1288445246 ecr 1288445246],

length 552

`....H.@....................................J..c\e.......P.....

L..>L..>-rw-------. 1 root root 2118 Dec 22 11:07 anaconda-ks.cfg

drwxr-xr-x 2 root root 4096 Apr 16 17:24 .[0m.[01;34mbin.[0m

-rwxrwx--- 1 root root 3318 Apr 16 08:17 .[01;32mdoUpdates.[0m

-rw-r--r--. 1 root root 308 Dec 22 11:06 ifcfg-enp0s3

-rw-r--r--. 1 root root 2196 Dec 22 12:47 initial-setup-ks.cfg

-rw-r--r--. 1 root root 308 Dec 22 11:06 original.ifcfg-enp0s8w

-rw-r--r-- 1 root root 0 May 14 15:17 .[01;35msystemd.svg.[0m

-rw-r--r-- 1 root root 101 May 14 08:57 TestFS.automount

-rw-r--r-- 1 root root 284 Apr 18 14:59 test.log

Chapter 17 SeCurity

516

use Ctrl-C to terminate the tcpdump session. Close the telnet session using the exit

command. Stop the telnet server service.

Despite its lack of security, telnet is an excellent tool for learning about network

communications. the tcpdump command has an extensive man page that provides an

excellent reference.

It is worth noting at this point that Telnet, the venerable but totally insecure remote

terminal utility, can still have its uses as we will see in Volume 3 of this series.

 SSH
We touched very briefly on SSH in Chapter 7 of Volume 1. SSH stands for Secure Shell,

but SSH is not really a shell. The ssh command starts a secure terminal link between

itself as the client and another host with the SSHD server running on it. The actual

command shell used at the server end is whatever the default shell set for that user

account on the server side, such as the Bash shell. SSH is a network protocol that creates

a secure communications tunnel between two Linux hosts. It is like a software virtual

private network (VPN).5

The function of SSH, which is implemented in Linux by the OpenSSH package, is to

enable secure, encrypted login connections to remote hosts using the command-line

interface and a standard shell such as Bash. This prevents Internet skulkers from reading

your password and the entire connected session in plain text. The SSH client and server

work together to provide a session that is safely encrypted from start to finish.

 The SSH server
Our intent in exploring SSH is to understand the client side of this tool. However, we

do need a server to which the client can connect. I did look on the Internet for a public

server that could be used to test our clients, but I could not find one. So the next best

thing is to use our own SSH server on our StudentVM1 host. Yes, it is possible and easily

done so that we can use both client and server on the same host.

5 Wikipedia, Virtual Private Network, https://en.wikipedia.org/wiki/
Virtual_private_network

Chapter 17 SeCurity

https://en.wikipedia.org/wiki/Virtual_private_network
https://en.wikipedia.org/wiki/Virtual_private_network

517

The SSH server is always installed during a Fedora installation. Configuration of an

SSH server is fairly easy. In fact, the default configuration is fine for many environments.

The default configuration of SSHD (the SSH server daemon) allows root login, but this is

easily changed if necessary. We will use this root login when we do backups using rsync

in Chapter 18 of this volume. It is also important to note that the default configuration of

the firewalld firewall allows incoming connections to the SSH server so we do not need

to change the firewall.

We will keep this very simple for now but will go into more detail about SSH and

SSHD server configuration in Volume 3 of this series.

EXPERIMENT 17-5

Begin this experiment as the root user. perform a listing of all files (-a) in the root home

directory of your student host. you should not find a directory named ~/.ssh in the list. this

directory is where local SSh configuration files for the user are located, but it does not get

created until the first time the user connects to a remote (or local) host with SSh.

We will begin by starting the SShD server daemon and enabling it so it will start on boot.

[root@studentvm1 ~]# systemctl start sshd ; systemctl enable sshd

Created symlink /etc/systemd/system/multi-user.target.wants/sshd.service → /

usr/lib/systemd/system/sshd.service.

[root@studentvm1 ~]#

Our StudentVM1 host is now ready for us to try out an SSh connection. We use localhost for

this just as we did for our telnet connection.

[root@studentvm1 ~]# ssh localhost

The authenticity of host 'localhost (::1)' can't be established.

ECDSA key fingerprint is SHA256:NDM/B5L3eRJaalex6IOUdnJsE1sm0SiQNWgaI8BwcVs.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.

root@localhost's password: <Enter Password>

Last login: Wed Jun 5 07:21:28 2019 from david.both.org

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running /root/.bash_profile

Chapter 17 SeCurity

518

Running /root/.bashrc

Running /etc/bashrc

[root@studentvm1 ~]#

the first time an SSh connection is made to any host, the authenticity message is displayed

along with the fingerprint of the private key of the remote (in this case local) host. in a very

security conscious environment, we would have already received a copy of the remote host’s

key fingerprint. this allows comparison so that we know we are connecting to the correct

remote host. this is not the security key; it is a fingerprint that is unique to that private key. it

is impossible to reconstruct the original private key from which the fingerprint was generated.

you must type “yes” – the full word – in order for the full public key to be transmitted from the

remote host to the local one. then you must enter the password for the remote host.

you should also connect to the localhost as the student user via SSh.

Now let’s look at the /root/.ssh directory. then look at the contents of the ~/.ssh/known_hosts

file. you should see the public host key for the remote host. this file is created in the localhost,

the one we are connecting from, and not on the remote host, the one we are connecting to.

[root@studentvm1 ~]# cat .ssh/known_hosts

localhost ecdsa-sha2-nistp256

AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBMDg3AOuakzj1P14aJge0

HCRSJpsx0AlU6fXiVRlc/RwQRvFkMbl05/t7wSFcw0G8tRSiNaktVs4dxpAoMbrT3c=

after accepting this key during the first connection to the remote host, the connections

initialize a little faster because the two computers now know each other and can identify

themselves via the keys.

type exit to disconnect the SSh connection. exit from all SSh connections if there are more

than just one.

if this is just a bit confusing, that may be due to the fact that we are using the same host for

the originator (client) and the receiver (server) of the SSh connection.

Now let’s look at the content of the SSH TCP/IP packets.

Chapter 17 SeCurity

519

EXPERIMENT 17-6

perform this experiment as the root user. in one terminal session that is located where it can

be seen from other terminal sessions, start tcpdump listening to SSh on port 22 of the lo

interface. i use the tee command so that we can view the data stream on the terminal screen

as well as store it in a file for later use.

[root@studentvm1 ~]# tcpdump -i lo port 22 -A | tee /root/tcpdump-ssh.txt

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 262144 bytes

in another terminal session, ssh to the localhost and use the ll command like we did for the

telnet connection in experiment 17-4.

[root@studentvm1 ~]# ssh localhost

root@localhost's password:

Last login: Wed Jun 12 16:02:48 2019 from ::1

Running /etc/profile

Running /etc/profile.d/myBashConfig.sh

Running /etc/bashrc

Running /root/.bash_profile

Running /root/.bashrc

Running /etc/bashrc

[root@studentvm1 ~]# ll

total 44

-rw-------. 1 root root 2118 Dec 22 11:07 anaconda-ks.cfg

drwxr-xr-x 2 root root 4096 Apr 16 17:24 bin

-rwxrwx--- 1 root root 3318 Apr 16 08:17 doUpdates

-rw-r--r--. 1 root root 308 Dec 22 11:06 ifcfg-enp0s3

-rw-r--r--. 1 root root 2196 Dec 22 12:47 initial-setup-ks.cfg

-rw-r--r--. 1 root root 308 Dec 22 11:06 original.ifcfg-enp0s8w

-rw-r--r-- 1 root root 0 May 14 15:17 systemd.svg

-rw-r--r-- 1 root root 12288 Jun 12 16:07 tcpdump-ssh.txt

-rw-r--r-- 1 root root 101 May 14 08:57 TestFS.automount

-rw-r--r-- 1 root root 284 Apr 18 14:59 test.log

[root@studentvm1 ~]

Chapter 17 SeCurity

520

the data stream passed very quickly on the terminal screen. exit from the SSh session and

terminate the tcpdump collection as well and use less to view the content of the file we

created, /root/tcpdump-ssh.txt. Near the top of this file, you will see some aSCii plain text data

which are lists of security protocols that the client and the server communicate to each other

as they negotiate the best protocol to use for the connection. after that you will not find the

results of the ll command as we did in the telnet data stream, but merely encoded data.

The whole point to this series of experiments is that SSH is the secure

communication protocol and is the only choice to ensure secure terminal connections to

remote hosts. We will explore SSH communications in more detail in the next course in

this series, Advanced Linux System and Server Administration.

 Firewalls
Firewalls are a very important part of computer and network security. Firewalls can

block any and all attempts to access our Linux hosts by way of the networks to which we

are connected. firewalld is the default firewall management tool used by current releases

of Fedora. It replaced IPTables which had been around for many years. However,

firewalld and IPTables are both just management wrappers around the netfilter6

functions that are an intrinsic component of the Linux kernel.

All Linux firewalls are based on netfilter. The tools we use with many different names

simply allow us to add, modify, and remove rules that are used by netfilter to examine

each data packet and determine how to handle it.

By default, firewalld and IPTables both have rule sets that block all incoming packets

unless explicitly allowed. This, plus the fact that most services that are not needed are not

installed or not enabled, means that Linux is very secure right from the initial installation.

Outbound packets are not blocked so that we don’t need to add rules for protocols like

email, SSH, and web browsers just to access these services from our client hosts.

The flow of packets as they enter the Linux host is generally from start to finish

through the rule set. If a packet matches one of the rules, the action defined in the rule

is taken. Ultimately, each packet will be accepted, rejected, or dropped. When a packet

matches a rule that has one of these three actions, that action is taken and the packet

travels no further through the rules. These actions require just a bit of explanation:

6 Wikipedia, netfilter, https://en.wikipedia.org/wiki/netfilter

Chapter 17 SeCurity

https://en.wikipedia.org/wiki/netfilter

521

• Accept: The packet is accepted and passed to the port and a server

such as a web server, Telnet, or SSH to which it is addressed. The

dport is the destination port.

• Reject: The packet is rejected and sent back to the originator with a

message. This message allows the host on the other end to know what

happened and try again if need be or to terminate the connection.

• Drop: The packet is dropped and proceeds no further through the

rules. No message is sent back to the originator. This action maintains

the connection for the timeout period specified on the sender’s end.

This is useful when blocking IP addresses of known spammers, so

that when they attempt a connection, their sending host must wait

through the timeout to try again, thus slowing down their attacks

significantly.

 firewalld
The firewalld service provides a complex and intricate set of rules for a firewall. It uses

the concept of zones to collect related rules in such a way as to create levels of trust. Each

zone represents a level of trust that can be independently modified without affecting

other zones. firewalld has several zones predefined.

These zones are arbitrary constructs developed to meet a specific perceived set of

needs in a firewall. The firewalld tool has been designed to manage the firewall using

these zones. That is, in and of itself, neither bad nor good.

Let’s take a quick look at the firewall rules on our VMs.

EXPERIMENT 17-7

perform this experiment as the root user. We can use the iptables-save command to view

the current rule set. this command does not actually save the rules; it only prints them to the

screen. your rules should look like mine although i have pruned the following data stream by

quite a bit.

[root@studentvm1 ~]# iptables-save | less

Generated by iptables-save v1.8.0 on Thu Jun 13 08:04:33 2019

∗nat

Chapter 17 SeCurity

522

:PREROUTING ACCEPT [104:8914]

:INPUT ACCEPT [81:5794]

:OUTPUT ACCEPT [13539:1741469]

:POSTROUTING ACCEPT [13539:1741469]

:OUTPUT_direct - [0:0]

:POSTROUTING_ZONES - [0:0]

:POSTROUTING_ZONES_SOURCE - [0:0]

:POSTROUTING_direct - [0:0]

:POST_public - [0:0]

:POST_public_allow - [0:0]

:POST_public_deny - [0:0]

:POST_public_log - [0:0]

:PREROUTING_ZONES - [0:0]

:PREROUTING_ZONES_SOURCE - [0:0]

:PREROUTING_direct - [0:0]

:PRE_public - [0:0]

:PRE_public_allow - [0:0]

:PRE_public_deny - [0:0]

:PRE_public_log - [0:0]

-A PREROUTING -j PREROUTING_direct

-A PREROUTING -j PREROUTING_ZONES_SOURCE

-A PREROUTING -j PREROUTING_ZONES

-A OUTPUT -j OUTPUT_direct

-A POSTROUTING -j POSTROUTING_direct

-A POSTROUTING -j POSTROUTING_ZONES_SOURCE

-A POSTROUTING -j POSTROUTING_ZONES

-A POSTROUTING_ZONES -o enp0s8 -g POST_public

-A POSTROUTING_ZONES -o enp0s3 -g POST_public

-A POSTROUTING_ZONES -g POST_public

-A POST_public -j POST_public_log

-A POST_public -j POST_public_deny

-A POST_public -j POST_public_allow

-A PREROUTING_ZONES -i enp0s8 -g PRE_public

-A PREROUTING_ZONES -i enp0s3 -g PRE_public

-A PREROUTING_ZONES -g PRE_public

-A PRE_public -j PRE_public_log

-A PRE_public -j PRE_public_deny

Chapter 17 SeCurity

523

-A PRE_public -j PRE_public_allow

COMMIT

Completed on Thu Jun 13 08:04:33 2019

Generated by iptables-save v1.8.0 on Thu Jun 13 08:04:33 2019

<snip>

-A INPUT_ZONES -i enp0s8 -g IN_public

-A INPUT_ZONES -i enp0s3 -g IN_public

-A INPUT_ZONES -g IN_public

-A IN_public -j IN_public_log

-A IN_public -j IN_public_deny

-A IN_public -j IN_public_allow

-A IN_public -p icmp -j ACCEPT

-A IN_public_allow -p tcp -m tcp --dport 22 -m conntrack --ctstate

NEW,UNTRACKED -j ACCEPT

-A IN_public_allow -d 224.0.0.251/32 -p udp -m udp --dport 5353 -m conntrack

--ctstate NEW,UNTRACKED -j ACCEPT

-A IN_public_allow -p tcp -m tcp --dport 23 -m conntrack --ctstate

NEW,UNTRACKED -j ACCEPT

COMMIT

Completed on Thu Jun 13 08:06:57 2019

The data from Experiment 17-7 shows a set of firewall rules that is way more complex

than needed for most Linux hosts unless they are being used as edge routers and

firewalls to protect the internal network from the Internet crackers. Most workstations

and servers would never require firewall rules of this complexity. The entire function of

this rule set is to reject all incoming packets except for SSH and the rule we added for

Telnet.

One of the tenets I discuss in Chapter 18 of The Linux Philosophy for SysAdmins is

“Find the Simplicity.” The bottom line here is that a simple set of easy to understand and

change is better than a complex set of rules that perform the same task.

However, regardless of its complexity, it is easy to add and delete firewalld rules.

So it makes little sense to revert to IPTables except for illustrative purposes, as part of

a simplification effort, or because you will be making changes to the rule sets, or just

because you value simplicity.

Chapter 17 SeCurity

524

 Understanding the rules

We will convert firewalld to iptables a bit further on, but there is one key secret here.

All of the rules in the firewalld firewall are standard netfilter rules, just as they are with

IPTables. In fact, the iptables-save command creates a series of rules that, when prefaced

with the iptables command, become a script to create the firewall.

So the IPTables command iptables -A IN_public_allow -p tcp -m tcp --dport

23 -m conntrack --ctstate NEW,UNTRACKED -j ACCEPT -A appends this rule to the

IN_public_allow chain. It -m matches for TCP protocol for destination port 23 (Telnet)

and specifies that connection tracking is NOT being used on these packets. If the packet

is a match for Telnet/TCP, it -j jumps to the ACCEPT target which is a condition not a

rule. Specifying the TCP protocol prevents access attempts using UDP.

The COMMIT lines in the script commit the new rules to the netfilter rules in the

kernel.

The other rules can be parsed in much the same manner.

All of these high-level firewall tools like IPTables, firewalld, and others are just

wrappers around the netfilter functions of the Linux kernel. They provide us SysAdmins

with methods to manage the rules that netfilter uses to check each packet and determine

what to do with it.

 Deleting and adding rules

As an old – er, mature – SysAdmin, I tend to think in terms of ports when working with

firewalls and network services. Sometimes I need to look up a port number associated

with a particular service, but that is no big deal because they are all defined in /etc/

services, as we have already seen.

The firewalld firewall works perfectly well with port numbers, but it has many

services and their respective ports predefined, and Telnet is one of those predefined

services. So let’s remove the rule that we added earlier which allows Telnet access using

the port number 23 and add the equivalent rule using the service name instead of the

port number.

Chapter 17 SeCurity

525

EXPERIMENT 17-8

perform this experiment as root. Start by verifying the existence of the rule. you can use

iptables-save, as we did previously, or we can be a little more targeted.

[root@studentvm1 ~]# firewall-cmd --list-ports

23/tcp

[root@studentvm1 ~]# firewall-cmd --list-ports --permanent

23/tcp

Note that we list both runtime ports which are temporary and the permanent configuration

which will last through a reboot. Changes made without making them permanent will be lost

at a reboot. We need to change both the runtime rules

[root@studentvm1 ~]# firewall-cmd --remove-port=23/tcp

success

[root@studentvm1 ~]# firewall-cmd --list-ports

[root@studentvm1 ~]# firewall-cmd --list-ports --permanent

23/tcp

[root@studentvm1 ~]#

and the permanent rules.

<pre>[root@studentvm1 ~]# firewall-cmd --remove-port=23/tcp --permanent

success

[root@studentvm1 ~]# firewall-cmd --list-ports

[root@studentvm1 ~]# firewall-cmd --list-ports --permanent

[root@studentvm1 ~]#

add the telnet service to the runtime firewall and verify that it has been added there but not to

the permanent group of services.

[root@studentvm1 ~]# firewall-cmd --add-service=telnet

success

[root@studentvm1 ~]# firewall-cmd --list-services

dhcpv6-client mdns ssh telnet

[root@studentvm1 ~]# firewall-cmd --list-services --permanent

dhcpv6-client mdns ssh

Chapter 17 SeCurity

526

We can use the following command to make the runtime configuration permanent. using the

--runtime-to-permanent option is easier if you have made multiple changes to the runtime

configuration and need to make them all permanent.

[root@studentvm1 ~]# firewall-cmd --runtime-to-permanent

success

[root@studentvm1 ~]# firewall-cmd --list-services

dhcpv6-client mdns ssh telnet

[root@studentvm1 ~]# firewall-cmd --list-services --permanent

dhcpv6-client mdns ssh telnet

[root@studentvm1 ~]#

Log in to the localhost using telnet to verify that this new configuration works as it should. you

might also try rebooting to ensure that the new configuration really is permanent.

You probably noticed that a service named MDNS is open on our virtual machine;

MDNS is Multicast DNS. It is used as a hostname resolver only in small networks where

there is no explicitly defined name server. Our virtual network uses the name server built

in to the virtual router for external hostname services, and we have already added the

router and its IP address of 10.0.2.1 to the only host on our virtual network. The MDNS

service is not required so let’s remove the rule that allows access to that port from our

firewall.

EXPERIMENT 17-9

perform this experiment as root. remove the MDNS service from the firewall, make

it permanent, and verify that it has been removed from both permanent and runtime

configuration rule sets.

[root@studentvm1 ~]# firewall-cmd --remove-service=mdns

success

[root@studentvm1 ~]# firewall-cmd --list-services --permanent

dhcpv6-client mdns ssh telnet

[root@studentvm1 ~]# firewall-cmd --list-services

dhcpv6-client ssh telnet

[root@studentvm1 ~]# firewall-cmd --runtime-to-permanent

Chapter 17 SeCurity

527

success

[root@studentvm1 ~]# firewall-cmd --list-services --permanent

dhcpv6-client ssh telnet

[root@studentvm1 ~]#

When using firewalld for firewall services, it is always a good idea to be consistent

and add new rules using the service name rather than the port number. It may still be

necessary to use the port number for a service that is not predefined although it is also

possible to add a new service file to /etc/firewalld/services with a name of the form

<servicename>.service. These files are all in XML and should be easily understandable.

Most of us will never need to modify or even look at these files. That is, unless you are

running a Linux box as a router and play a lot of 90s games with their own weird, wild

expectations for how networking should work.

 iptables
I personally prefer IPTables to manage my firewalls because of the relative simplicity

of its starting rule sets. The netfilter rule types and syntax are identical to those used

with firewalld, and I could use IPTables to create a complete set of rules identical to the

firewalld defaults.

The advantage of firewalld is that it has already created the complex rule sets

that implement the arbitrary concept of zones for use in Linux hosts used as firewalls

and routers with multiple network connections. The advantage of IPTables is that it

uses a much simpler set of rules to accomplish the same objectives in less complex

environments such as workstations with a single connection to a local network. The end

result in both cases is just as secure.

 Converting to IPTables

To convert to IPTables from firewalld is simple. We need to install one package,

iptables-services, create a short set of rules, deactivate firewalld, and activate iptables.

Chapter 17 SeCurity

528

EXPERIMENT 17-10

perform this experiment as root. Start by installing the iptables-services package. this

package also includes a very brief and extremely secure set of rules for iptables.

[root@studentvm1 ~]# dnf -y install iptables-services

Look at the contents of /etc/sysconfig/iptables.

[root@studentvm1 ~]# cat /etc/sysconfig/iptables

sample configuration for iptables service

you can edit this manually or use system-config-firewall

please do not ask us to add additional ports/services to this default

configuration

∗filter
:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Note that this set of rules is very simple and it does allow SSh access. as a standard security

step, we disable the network interface to prevent crackers from accessing our host while the

firewall is down.

[root@studentvm1 ~]# ip link set enp0s3 down

Stop and disable firewalld, then start and enable iptables.

[root@studentvm1 ~]# systemctl stop firewalld ; systemctl disable firewalld

Removed /etc/systemd/system/multi-user.target.wants/firewalld.service.

Removed /etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service.

[root@studentvm1 ~]# systemctl start iptables ; systemctl enable iptables

Chapter 17 SeCurity

529

Created symlink /etc/systemd/system/basic.target.wants/iptables.service → /

usr/lib/systemd/system/iptables.service.

[root@studentvm1 ~]#

Now check the current rule set.

[root@studentvm1 ~]# iptables-save

Generated by iptables-save v1.8.0 on Thu Jun 13 16:01:53 2019

∗filter
:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [50:5676]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Thu Jun 13 16:01:53 2019

[root@studentvm1 ~]#

Connect to the localhost using SSh to verify that this works. try connecting to localhost with

telnet.

 Understanding the rule set

IPTables rules are organized in chains. There are five predefined tables consisting of

multiple chains of rules, but SysAdmins can also define their own chains. Each table has

a specific purpose:

• Filter: The filter table is the one chain defined in the tiny default rule

set. It is used to filter packets and to discard them or accept them.

This chain is the one most commonly used in very simple firewalls.

Chapter 17 SeCurity

530

• NAT: The NAT table is used for Network Address Translation.

Internal private addresses like the 10.0.0.0/8 addresses used by our

virtual router or the 192.168.0.0/16 range are not routable through

the Internet. So outbound request packets to, for example, a web

site must have the return IP address of the router at the edge of the

internal network and the Internet. NAT substitutes the routable

IP address in place of the non- routable one for outbound packets

and the non-routable IP in place of the routable one for the return

packets.

• Mangle: The mangle table is used to change – mangle – various

portions of a packet. One example is to redefine the source IP address

of the packet. Although such mangling does have legitimate uses, it

can also be used by crackers to spoof the source address of packets as

part of distributed denial of service (DDOS) attacks.

• Raw: This table would be used to configure exemptions to packet

tracking rules.

• Security: This table would be used to implement Mandatory Access

Control rules. It is generally used in conjunction with SELinux to

enhance security.

In Figure 17-1, we have a breakdown of the lines in the default iptables file. We skip

the comment lines which are ignored by IPTables.

Chapter 17 SeCurity

531

IPTables Line Description

1 *filter

The first meaningful line not a comment simply
states that the following rules are inserted into the
filter table.

2 :INPUT ACCEPT [0:0]

This is a policy rule which accepts all packets on the
input chain of the table. The [0:0] are counters for
the numbers of transmitted and received packets
for this chain. The other rules in the INPUT chain
modify the default policy.

3 :FORWARD ACCEPT [0:0]
The forward chain is used in routers for forwarding
packets to the correct network interface. This rule
sets the default policy to accept.

4 :OUTPUT ACCEPT [0:0]

This policy rule accepts all packets outbound from
the host. Should we desire to block outbound
packets of a specific type, we can do that with the
OUTPUT chain.

5
-A INPUT -m state --state RELATED,ESTABLISHED -j
ACCEPT

This rule works with stateful connec�ons. It accepts
all packets a�er the first one has been accepted by
other rules. That is packets that belong to an
already established connec�on and that are related
to an exis�ng connec�on.

All the rest of the rules in the INPUT chain are
matched only on the first packet to ini�alize the
connec�on. The rest of the packets are matched in
any allowed connec�on are matched by this rule.

6 -A INPUT -p icmp -j ACCEPT
This entry accept all ICMP (Ping) requests thus
allowing a response.

7 -A INPUT -i lo -j ACCEPT

Accepts packets from the localhost on interface lo.
Without this we would not be able to SSH or Telnet
to the localhost from the localhost.

8
-A INPUT -p tcp -m state --state NEW -m tcp --
dport 22 -j ACCEPT

This entry accepts the first packet of a new
connection on port 22, SSH. This sets up a stateful
connection all further packets of which can then be
accepted by rule #5.

Figure 17-1. A description of the rules in the IPTables firewall

Chapter 17 SeCurity

532

Although IPv6 rules are contained in a different configuration file, ip6tables, the

rules have the same syntax and uses. The primary difference is that IP addresses would

be specified with IPv6 formats.

 Managing rules with IPTables

My preferred method for interacting with iptables is by using my favorite editor to make the

changes I need to /etc/sysconfig/iptables. It is fast and easy this way. Part of the problem

with using the iptables command is the need to specify the location of the new rule in the

set of existing rules. That means a bit of counting to ensure the correct positioning. It is not

really a major problem but just provides opportunities for errors to creep in.

Let’s start with a simple change, adding a rule to allow Telnet connections.

EXPERIMENT 17-11

perform this experiment as root. in this experiment we append a rule to the iNput chain that

allows inbound telnet packets. We will start by making a backup copy of the iptables file and

then using the CLi command to append the new rule to the existing iNput chain of the filter

table.

[root@studentvm1 ~]# cp /etc/sysconfig/iptables /root

[root@studentvm1 ~]# iptables -A INPUT -p tcp -m state --state NEW -m tcp

--dport 23 -j ACCEPT

9 -A INPUT -j REJECT --reject-with icmp-host-
prohibited

This rule rejects all packets that don’t match other
rules. Essentially this rejects everything except
ICMP and SSH packets because they have already
matched other rules.

10 -A FORWARD -j REJECT --reject-with icmp-host-
prohibited

This rule rejects all packets sent to the FORWARD
chain of the filter table.

11 COMMIT

This line is not a rule. It is the last line of the filter
table and causes the previous rules for this table to
be committed to the active firewall rule set.

IPTables Line Description

Figure 17-1. (continued)

Chapter 17 SeCurity

533

Verify the addition.

[root@studentvm1 ~]# iptables-save

Generated by iptables-save v1.8.0 on Fri Jun 14 08:31:49 2019

∗filter
:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [32:3588]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A INPUT -p tcp -m state --state NEW -m tcp --dport 23 -j ACCEPT

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Fri Jun 14 08:31:49 2019

We could also list just the iNput chain. the iptables command provides a bit different view of

the running firewall rather than the rule sets.

[root@studentvm1 ~]# iptables -L INPUT

We can see that the new rule has been added, but will it work? Consider that for a moment

and then read on.

it will not work. the reason is that the iNput rule rejecting all unmatched packets would be

encountered before the new rule which would match the first packet of the telnet connection

on port 23. the rule must appear before the general rejection rule.

Let’s delete the new rule and then add it in the right place. First, we need to know the rule

number in the iNput chain. We count, starting with 1, and i come up with number 6. Do not

count the iNput chain policy rule. your number for this rule may be different.

[root@studentvm1 ~]# iptables -D INPUT 6 ; iptables-save

Generated by iptables-save v1.8.0 on Fri Jun 14 09:07:24 2019

∗filter
:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [1:88]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Chapter 17 SeCurity

534

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Fri Jun 14 09:07:24 2019

Now let’s insert this rule as rule number 5. this will insert the new rule after rule number 4

and before the current rule number 5.

[root@studentvm1 ~]# iptables -I INPUT 5 -p tcp -m state --state NEW -m tcp

--dport 23 -j ACCEPT ; iptables-save

Generated by iptables-save v1.8.0 on Fri Jun 14 09:09:59 2019

∗filter
:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [22:2400]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 23 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Completed on Fri Jun 14 09:09:59 2019

Now connect to localhost using telnet to verify that this new rule is working. after testing,

we need to save this new rule set. adding the rules using the iptables command merely adds

them to the running set in memory. you can view the /etc/sysconfig/iptables file to verify this.

Save the current active rule set.

[root@studentvm1 ~]# iptables-save > /etc/sysconfig/iptables

iptables provides the same functionality as firewalld but with a much more elegant simplicity. i

find it easy to use and modify the rules.

We will explore firewalls, specifically IPTables, in more detail in the next book of this

series.

Chapter 17 SeCurity

535

 Fail2Ban
A dynamic firewall is one that can adapt as the threats change. I needed something like

this to stem the large number of attacks via SSH I had been experiencing a few years ago.

After a good bit of exploring and research, I found fail2ban, open source software which

automates what I was previously doing manually.

Fail2Ban has a complex series of configurable matching rules and separate actions

that can be taken when attempts are made to crack into a system. It has rules for many

types of attacks that include Web, email, and many other services that might have

vulnerabilities. Fail2Ban works by detecting attacks and then adding a rule to the firewall

that will block further attempts from that specific, single IP address for a specified and

configurable amount of time. After the time has expired, it removes the blocking rule.

Let’s install Fail2Ban and see how it works.

EXPERIMENT 17-12

perform this experiment as the root user. First, install Fail2Ban. this only takes a minute or so

and does not require a reboot. the gamin package is a library of tools that monitor files for

changes and can notify other programs, such as Fail2Ban, when a log file changes.

[root@studentvm1 ~]# dnf -y install fail2ban gamin

Fail2Ban is not started by the installation so we will need to do so after we do a bit of

configuration. Make /etc/fail2ban the pWD and list the files there. the jail.conf file is the main

configuration file, but it is not used for most configuration because it might get overwritten

during an update. We will create a jail.local file in the same directory. any settings defined in

jail.local will override ones set in jail.conf.

Copy jail.conf to jail.local. edit the jail.local file and delete the comment near the beginning

that tells you not to modify this file. it is, after all, the one we will be modifying.

Find the line # ignoreself = true, remove the comment hash, and change it to ignoreself =
false. We do this so that Fail2Ban will not ignore failed login attempts from the localhost.

Scroll down to the line bantime = 10m and change that to 1 minute. Since we have no other

hosts to test from, we will test using localhost. We do not want the localhost banned for long

so that we can resume experiments quickly. in the real world, i would set this to several hours

so that the crackers cannot get more attempts for a long time.

Chapter 17 SeCurity

536

Change maxretry = 5 to 2. this is the maximum number of retries allowed after any type of

failed attempt. two retries is a good number for experimental purposes. i normally set this to

three because anyone failing three retries to get into my system using SSh does not belong

there.

We could also change both of these configuration options in the [sshd] filter section which

would limit them to sshd, while the original settings would apply to all other filters.

read the comments for the other miscellaneous options in this section of the file, then scroll

down to the [sshd] section in JaiLS.

add the highlighted line. the documentation is not clear about needing to add this line. in

previous versions the line was enabled = false so it was clear that changing false to true

would enable the sshd jail.

[sshd]

To use more aggressive sshd modes set filter parameter "mode" in jail.

local:

normal (default), ddos, extra or aggressive (combines all).

See "tests/files/logs/sshd" or "filter.d/sshd.conf" for usage example and

details.

enabled = true

#mode = normal

port = ssh

logpath = %(sshd_log)s

backend = %(sshd_backend)s

Do not enable fail2ban, but start it.

[root@studentvm1 ~]# systemctl start fail2ban

Now ssh to localhost and log in using a bad user account or password on a good user account.

it takes three failed attempts to log in, not three failed password entries. after three failed login

attempts, the following error message is displayed.

[student@studentvm1 ~]$ ssh localhost

ssh: connect to host localhost port 22: Connection refused

this means that the sshd jail is working. Look at the active firewall rules. remember that

these fail2ban rules are stored in memory and are not added to the /etc/sysconfig/iptables

file. there is a line in the following output that rejects connections from 192.168.0.1 which is

Chapter 17 SeCurity

537

my physical host system, from which i also tried this. the iptables rejection lines are removed

after 1 minute so if you don’t see that line, force the failed logins again.

[root@studentvm1 ~]# iptables-save

Generated by iptables-save v1.8.0 on Sun Jun 16 21:24:59 2019

∗filter
:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [4:296]

:f2b-sshd - [0:0]

-A INPUT -p tcp -m multiport --dports 22 -j f2b-sshd

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

-A INPUT -p tcp -m state --state NEW -m tcp --dport 23 -j ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

-A f2b-sshd -s 127.0.0.1/32 -j REJECT --reject-with icmp-port-unreachable

-A f2b-sshd -s 192.168.0.1/32 -j REJECT --reject-with icmp-port-unreachable

-A f2b-sshd -j RETURN

COMMIT

Completed on Sun Jun 16 21:24:59 2019

[root@studentvm1 ~]#

Now let’s look at a couple log files. in /var/log, first look at /var/log/secure. you should see a

number of entries indicating failed passwords. these are the log entries checked by Fail2Ban

for failures.

Look at the /var/log/fail2ban.log file. this log file shows the times that triggering entries were

found in the secure log and the ban and unban actions taken to protect the system.

Be aware that the f2b-sshd chain entries do not appear in the iptables rule set until the first

time a ban is triggered. Once there, the first and last lines of the chain are not deleted, but the

lines rejecting specific ip addresses are removed as they time out. it took me a bit of work to

figure out this bit.

Chapter 17 SeCurity

538

The installation of Fail2Ban installs the configuration files needed for logwatch

to report on Fail2Ban activity. It is possible to create your own filters and actions for

Fail2Ban, but that is beyond the scope of this course.

 PAM
PAM stands for pluggable authentication modules. It is a key component of security on

Linux hosts and provides a dynamic and flexible means to manage user access to their

accounts and resources.

PAM divides the function of authentication into four parts:

 1. Account management determines things like whether the user’s

password is expired or locked and whether the user is authorized

to access a particular service.

 2. Authentication management is the task of authenticating the user,

as in verifying that the password and user ID are correct. This can

be extended to include biometric authentication and smart card

hardware and methods.

 3. Password management is used in the process of password

updates.

 4. Session management is used to enable user access to services

such as their home directory, resource allocation, and deals with

logging for audit trails.

The PAM man page has a good explanation of PAM and references to other

resources. The man page indicates that it is not necessary for a SysAdmin to understand

the internal workings of the PAM libraries that implement this tool. The reason for this is

that the configuration file /etc/pam.conf (if it exists, which it does not in Fedora 29 and

30) and the files located in the /etc/pam.d directory are the tools used to configure PAM.

The PAM configuration items most likely to be used are mostly related to resource

management such as specifying limits on the CPU time, memory, and number of

processes that specific users or groups may consume. This capability can be used to aid

in the allocation of limited resources to those who have more need or are authorized

such access.

Chapter 17 SeCurity

539

Of course many of today’s Linux hosts have huge amounts of all of the resources

required on a modern computer system. Even then certain environments such as

development, test, large database systems, high-performance computer (HPC), high-

traffic web sites, and others may have contention among users and their running tasks

for one or more system resources. And, of course, users in many organizations don’t

have access to the huge systems that many of us do, which again leads to contention for

scarce resource.

There are also the individual users who manage to suck up as much of any resources

as they are allowed. This seems to be especially true on systems with resources already

strained to the limit. We have already explored setting resource limits and password

quality restrictions in Chapter 16 but did not link the /etc/security/limits.conf file to

PAM. It is, in fact, PAM that deals with enforcing any limits or other configurations we set

with the files in the /etc/security directory.

 Some basic steps
There are some steps that can be taken for any Linux host to harden it against attacks

of many different types. These steps range from easy to difficult, and, as mentioned

previously, the ones you choose to put in place depend upon the amount of pain you

would be in should the defenses of your systems be breached. The cost trade-off is a

judgment that must be made by those at each installation, but I recommend taking as

many of these steps as possible.

Some of these steps are included here for the sake of completeness but will not be

covered here. Some of those will be covered in Volume 3:

 1. Limit physical access to prevent unauthorized passersby from

inserting malware via a USB thumb drive or just pocketing one

that is already sitting there. It can also prevent curious fingers

from pushing reset buttons.

 2. Strong passwords are a simple security measure and easily

enforced as we have seen. This makes brute force cracking of

passwords much more difficult.

 3. Change passwords frequently to ensure that any that are cracked

are not usable for more than a short period of time. Password

aging can be used to enforce this.

Chapter 17 SeCurity

540

 4. Do not share user accounts. When multiple users have access to a

common account, it becomes more difficult to determine the user

responsible for security problems. If users must collaborate on

shared documents, create a shared directory separate from their

own home directories and use a separate group to allow access to

only the people who need it. We covered shared directories and

files in Chapter 18 of Volume 1.

 5. Deleting old user accounts is important in keeping a system

secure. Old, supposedly unused, accounts can be used to gain

access to a system. Cleaning out the cruft is a good security

practice.

 6. Strong firewalls are always an important part of any security

regimen.

 7. Use public/private keypairs (PPKP) with SSH. These are stronger

than passwords and cannot be memorized so cannot be divulged

under duress. (Yes, that happens!)

 8. Do not store sensitive data on computers that are firewalls or

routers that are directly accessible to the Internet.

 9. In larger organizations data should not be stored on any host in

the DMZ.7

 10. Intrusion detection can be used to detect when an intrusion has

occurred, hopefully before and damage has been done.

 11. Verify open ports with tools like nmap. There should be no open

ports that you are not expecting and that are not consistent with

the services that you want exposed to the outside world.

 12. Use a BIOS password to prevent changes to the hardware boot

sequence.

7 DMZ – A network segment that contains servers that respond to external requests for web pages
and so on but in which no data is stored. All data is stored in a more secure network with another
set of firewalls between it and the DMZ.

Chapter 17 SeCurity

541

 13. Use a GRUB password to prevent changes to Linux initialization

and startup.

 14. Turn off or remove unused services to prevent attacks against any

possible known vulnerabilities in those services.

 15. Use firewalls to limit in and outbound traffic to only what would

be expected on a given host.

 16. Use SELinux to prevent crackers from making changes even if

they do gain access to a host. This is an advanced tool when used

to do more than warn of potential problems and can be a bit of

a nuisance to work around when doing updates or adding new

software. It does provide very strong protection by preventing

potential system alteration rather than just reporting the changes

after the fact.

 17. Use intrusion detection software like Tripwire to report altered

files and other signs of a successful or attempted intrusion.

 18. Disable ZEROCONF (Zero Configuration) a network self-

configuration program when static configuration has not been

performed and DHCP is not available. It is on by default in earlier

Fedora releases. This service is sometimes known as Avahi. I

always remove the avahi package and its dependencies.

 19. Sync all system times using NTP to make it easier to compare log

files.

 20. Only allow root to run cron jobs.

 21. Enable only ssh2 protocol which is the default in Fedora and other

Red Hat-based distros.

 22. Do not allow root logins, especially remote ones. Log in as non-

root user and then su to root.

Chapter 17 SeCurity

542

 23. Real SysAdmins don’t use sudo. Don’t use sudo yourself as the

SysAdmin. I discuss this in Chapter 11, in my book, The Linux

Philosophy for SysAdmins,8 and in an excerpt9 from that book on

my web site.

 24. If a non-root user really does need access to a command that

requires root privilege, configure sudo for that one user to use that

one command.

 25. Back up everything – frequently. This is so important that it has a

chapter of its own and we explore it in Chapter 18.

 Chapter summary
Security is a big part of our job as SysAdmins.

Realistic security is a cost/benefit trade-off between the owner of the computer

network and the cracker. The question is, how much is our data worth? Security should

be a pain for users and they will likely complain, but it should not be enough to engender

bad behavior such as writing down passwords and sticking them under the keyboard.

A very high level of security can be achieved quite easily with Linux. Using good

passwords, a simple firewall, and the Fail2Ban program can create a very secure

environment with little trouble and no software costs.

We will look at more active security measures, such as SELinux, root kit hunters, and

intrusion detection, in Volume 3.

 Exercises
Perform the following exercises to complete this chapter:

 1. What is the best way to protect against any type of login attacks

such as dictionary-based attacks?

 2. What is the second best way to protect against any type of login

attacks such as dictionary-based attacks?

8 Both, David, The Linux Philosophy for SysAdmins, Apress, 2018, 375
9 Both, David, Real SysAdmins don’t sudo – Book excerpt, www.both.org/?p=960

Chapter 17 SeCurity

https://www.both.org/?p=960

543

 3. In Experiment 17-2, the ping and tcpdump commands both

display the hostname “router” as part of their output, instead of or

in addition to the IP address of the router, 10.0.2.1. Why does this

happen?

 4. Use tcpdump to monitor the network traffic your studentvm1 host

generates when you use a browser to connect to a remote web

page such as www.example.com. Look at the content as well as

the headers.

 5. What is the result of setting the default policy of the INPUT chain

of the filter table to REJECT?

 6. What is the function of Avahi?

 7. Is the Avahi daemon running on your StudentVM1 host? If so,

remove it.

 8. Use the logwatch program to view report on Fail2Ban activity.

 9. Are there any easy steps left that you can take to improve security

on your StudentVM1 instance? If so, take them.

Chapter 17 SeCurity

545
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4_18

CHAPTER 18

Backup
Everything – Frequently
In this chapter you will learn

• Why backups are important

• How to use S.M.A.R.T. to predict hard drive failures before they occur

• How to create simple backups using the tar command

• How to devise a simple backup strategy

 Introduction
Nothing can ever go wrong with my computer and I will never lose my data.

<sarcasm>Right</sarcasm>.

I have experienced data loss for a myriad of reasons, many of them my own fault.

Keeping decent backups has always enabled me to continue with minimal interruption.

In Chapter 17 of this volume, we looked at some of the many ways in which data can

be lost, compromised, or corrupted. This chapter discusses one method for preventing

catastrophic data loss and facilitating easy recovery.

 Backups to the rescue
Recently, very recently – while I was working on this book, actually – I encountered a

problem in the form of a hard drive crash that destroyed the data in my home directory. I

had been expecting this for some time so it came as no surprise.

546

 The problem
The first indication I had that something was wrong was a series of emails from the

S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) enabled hard drive

on which my home directory resided.1 Each of these emails indicated that one or more

sectors had become defective and that the defective sectors had been taken offline

and reserved sectors allocated in their place. This is normal operation; hard drives are

designed intentionally with reserved sectors for just this reason.

I first used the smartctl command to view the internal statistics for the hard drive in

question. The original, defective hard drive has been replaced but, yes, I keep some old,

defective devices for teachable moments like this. I installed this damaged hard drive in

my docking station to demonstrate what the results of a defective hard drive look like.

You can perform this experiment along with me, but your results will be different –

hopefully healthier than my defective drive.

The S.M.A.R.T. reports used in Experiment 18-1 can be a bit confusing. The web page

“Understanding S.M.A.R.T. Reports2” can help somewhat with that. Wikipedia also has

an interesting page on this technology.3 I recommend reading those documents before

attempting to interpret the S.M.A.R.T. results; they can be very confusing.

EXPERIMENT 18-1

This experiment must be performed as root. It will work better on a physical Linux host, but

you can follow along just the same.

After installing the drive in the docking station and turning it on, the dmesg command showed the

drive to be assigned as device special file /dev/sdi. Be sure to use the correct device special file

for your hard drive. You can use any physical hard drive installed in your host, even if it is in use.

I have divided the results of the command into sections for easier reference during the

discussion, and I have removed a large amount of irrelevant data. You should use /dev/sda for

the hard drive on your VM.

1 Your host must have a mail transfer agent (MTA) such as SendMail installed and running.
The /etc/aliases file must have an entry to send root’s email to your email address.

2 Understanding SMART Reports, https://lime-technology.com/wiki/
Understanding_SMART_Reports

3 Wikipedia, SMART, https://en.wikipedia.org/wiki/SMART

ChApTer 18 BACkup eVerYThIng – FrequenTLY

https://lime-technology.com/wiki/Understanding_SMART_Reports
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://en.wikipedia.org/wiki/SMART

547

[root@david ~]# smartctl -x /dev/sd1 | less

smartctl 6.5 2016-05-07 r4318 [x86_64-linux-4.15.6-300.fc27.x86_64] (local

build)

Copyright (C) 2002-16, Bruce Allen, Christian Franke, www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: Seagate Barracuda 7200.11

Device Model: ST31500341AS

Serial Number: 9VS2F303

LU WWN Device Id: 5 000c50 01572aacc

Firmware Version: CC1H

User Capacity: 1,500,301,910,016 bytes [1.50 TB]

Sector Size: 512 bytes logical/physical

Rotation Rate: 7200 rpm

Device is: In smartctl database [for details use: -P show]

ATA Version is: ATA8-ACS T13/1699-D revision 4

SATA Version is: SATA 2.6, 3.0 Gb/s

Local Time is: Wed Mar 14 14:19:03 2018 EDT

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

AAM level is: 0 (vendor specific), recommended: 254

APM feature is: Unavailable

Rd look-ahead is: Enabled

Write cache is: Enabled

ATA Security is: Disabled, NOT FROZEN [SEC1]

Wt Cache Reorder: Unknown

=== START OF READ SMART DATA SECTION ===

SMART Status not supported: Incomplete response, ATA output registers missing

SMART overall-health self-assessment test result: PASSED

Warning: This result is based on an Attribute check.

The first section of results, shown just earlier, provides basic information about the hard drive

capabilities and attributes such as brand, model, and serial number. This is interesting and

good information to have, but it is all you will see on your VM.

This section shows that this S.M.A.r.T. data report must be taken with a bit of skepticism.

notice that my known defective drive has passed the self-assessment test. That appears to

mean that the drive is not about to fail catastrophically even though it already has.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

548

The data we are most interested in at present is in the next two sections. notice that I have

trimmed out a great deal of the information not essential to this experiment.

=== START OF READ SMART DATA SECTION ===

<snip – removed list of SMART capabilities.>

SMART Attributes Data Structure revision number: 10

Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAGS VALUE WORST THRESH FAIL RAW_VALUE

 1 Raw_Read_Error_Rate POSR-- 116 086 006 - 107067871

 3 Spin_Up_Time PO---- 099 099 000 - 0

 4 Start_Stop_Count -O--CK 100 100 020 - 279

 5 Reallocated_Sector_Ct PO--CK 048 048 036 - 2143

 7 Seek_Error_Rate POSR-- 085 060 030 - 365075805

 9 Power_On_Hours -O--CK 019 019 000 - 71783

10 Spin_Retry_Count PO--C- 100 100 097 - 0

12 Power_Cycle_Count -O--CK 100 100 020 - 279

184 End-to-End_Error -O--CK 100 100 099 - 0

187 Reported_Uncorrect -O--CK 001 001 000 - 1358

188 Command_Timeout -O--CK 100 098 000 - 12885622796

189 High_Fly_Writes -O-RCK 001 001 000 - 154

190 Airflow_Temperature_Cel -O---K 071 052 045 - 29 (Min/Max

22/29)

194 Temperature_Celsius -O---K 029 048 000 - 29 (0 22 0 0 0)

195 Hardware_ECC_Recovered -O-RC- 039 014 000 - 107067871

197 Current_Pending_Sector -O--C- 100 100 000 - 0

198 Offline_Uncorrectable ----C- 100 100 000 - 0

199 UDMA_CRC_Error_Count -OSRCK 200 200 000 - 20

240 Head_Flying_Hours ------ 100 253 000 - 71781 (50 96 0)

241 Total_LBAs_Written ------ 100 253 000 - 2059064490

242 Total_LBAs_Read ------ 100 253 000 - 260980229

 ||||||_ K auto-keep

 |||||__ C event count

 ||||___ R error rate

 |||____ S speed/performance

 ||_____ O updated online

 |______ P prefailure warning

ChApTer 18 BACkup eVerYThIng – FrequenTLY

549

The preceding section of results from the smartctl command displays raw data

accumulated in the hardware registers on the drive. The raw values are not particularly

helpful for some of the error rates; as you can see, some of the numbers are clearly bogus.

The “Value” column is usually more helpful. read the referenced web pages to understand

a bit about why. In general, numbers like 100 in the Value column mean 100% good and low

numbers like 001 mean close to failure – sort of 99% of the useful life is used up. It is really

very strange.

In this case, 048 in the Value column for reallocated_Sector_Ct – reallocated Sector Count –

sort of might mean that about half of the sectors allocated for reallocation have been used up.

The number 001 for reported_uncorrect – reported defective sectors that are not

correctable – and high_Fly_Writes (writes in which the heads were flying further off the

recording surface of the hard drive than is optimal) means that the life of this hard drive is

effectively over. This has been shown to be the case with empirical evidence.

This next section actually lists errors and information about them when they occur. This is the

most helpful part of the output. I do not try to analyze every error; I simply look to see if there

are multiple errors. The number 1350, in the first line of the following code, is the total number

of errors detected on this hard drive.

<Snip>

Error 1350 [9] occurred at disk power-on lifetime: 2257 hours (94 days + 1 hours)

 When the command that caused the error occurred, the device was active or idle.

 After command completion occurred, registers were:

 ER -- ST COUNT LBA_48 LH LM LL DV DC

 -- -- -- == -- == == == -- -- -- -- --

 40 -- 51 00 00 00 04 ed 00 14 59 00 00 Error: UNC at LBA = 0x4ed001459 =

21156074585

 Commands leading to the command that caused the error were:

 CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name

 -- == -- == -- == == == -- -- -- -- -- --------------- ---------------------

 60 00 00 00 08 00 04 ed 00 14 58 40 00 11d+10:44:56.878 READ FPDMA QUEUED

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:56.851 READ NATIVE MAX ADDRESS

EXT [OBS-ACS-3]

 ec 00 00 00 00 00 00 00 00 00 00 a0 00 11d+10:44:56.849 IDENTIFY DEVICE

 ef 00 03 00 46 00 00 00 00 00 00 a0 00 11d+10:44:56.836 SET FEATURES [Set

transfer mode]

ChApTer 18 BACkup eVerYThIng – FrequenTLY

550

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:56.809 READ NATIVE MAX

ADDRESS EXT [OBS-ACS-3]

Error 1349 [8] occurred at disk power-on lifetime: 2257 hours (94 days + 1 hours)

 When the command that caused the error occurred, the device was active or idle.

 After command completion occurred, registers were:

 ER -- ST COUNT LBA_48 LH LM LL DV DC

 -- -- -- == -- == == == -- -- -- -- --

 40 -- 51 00 00 00 04 ed 00 14 59 00 00 Error: UNC at LBA = 0x4ed001459 =

21156074585

 Commands leading to the command that caused the error were:

 CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name

 -- == -- == -- == == == -- -- -- -- -- --------------- --------------------

 60 00 00 00 08 00 04 ed 00 14 58 40 00 11d+10:44:53.953 READ FPDMA QUEUED

 60 00 00 00 08 00 04 f4 00 14 10 40 00 11d+10:44:53.890 READ FPDMA QUEUED

 60 00 00 00 10 00 04 f4 00 14 00 40 00 11d+10:44:53.887 READ FPDMA QUEUED

 60 00 00 00 10 00 04 f3 00 14 f0 40 00 11d+10:44:53.886 READ FPDMA QUEUED

 60 00 00 00 10 00 04 f3 00 14 e0 40 00 11d+10:44:53.886 READ FPDMA QUEUED

Error 1348 [7] occurred at disk power-on lifetime: 2257 hours (94 days + 1 hours)

 When the command that caused the error occurred, the device was active or idle.

 After command completion occurred, registers were:

 ER -- ST COUNT LBA_48 LH LM LL DV DC

 -- -- -- == -- == == == -- -- -- -- --

 40 -- 51 00 00 00 04 ed 00 14 59 00 00 Error: UNC at LBA = 0x4ed001459 =

21156074585

 Commands leading to the command that caused the error were:

 CR FEATR COUNT LBA_48 LH LM LL DV DC Powered_Up_Time Command/Feature_Name

 -- == -- == -- == == == -- -- -- -- -- --------------- --------------------

 60 00 00 00 08 00 04 ed 00 14 58 40 00 11d+10:44:50.892 READ FPDMA QUEUED

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:50.865 READ NATIVE MAX

ADDRESS EXT [OBS-

ACS-3]

 ec 00 00 00 00 00 00 00 00 00 00 a0 00 11d+10:44:50.863 IDENTIFY DEVICE

 ef 00 03 00 46 00 00 00 00 00 00 a0 00 11d+10:44:50.850 SET FEATURES [Set

transfer mode]

ChApTer 18 BACkup eVerYThIng – FrequenTLY

551

 27 00 00 00 00 00 00 00 00 00 00 e0 00 11d+10:44:50.823 READ NATIVE MAX

ADDRESS EXT [OBS-

ACS-3]

Error 1347 [6] occurred at disk power-on lifetime: 2257 hours (94 days + 1 hours)

 When the command that caused the error occurred, the device was active or idle.

<Snip – removed many redundant error listings>

These errors are indicative that something really is wrong with the disk. hopefully you won’t

have any errors on your virtual disk.

Because I am naturally very curious, I decided I would wait to see what else occurred

before I replaced the hard drive. The failure numbers were not bad in the beginning. The

error count rose to 1350 at the time of the catastrophic failure.

Some testing of over 67,800 S.M.A.R.T. drives4 by a cloud company named Backblaze

provides some statistically based insight into failure rates of hard drives that experienced

various numbers of reported errors. This web page is the first I have found that

demonstrates a statistically relevant correlation between reported S.M.A.R.T. errors and

actual failure rates. Their web page also helped improve my understanding of the five

S.M.A.R.T. attributes that they found should be closely monitored.

In my opinion, the bottom line of the Backblaze analysis is that hard drives should be

replaced as soon as possible after they begin to experience error reports in any of the five

statistics they recommend monitoring. My experience seems to confirm that although

it was not even close to being statistically significant. My drive failed within a couple

months of the first indications that there was a problem. The number of errors my drive

experienced before failing beyond recovery is very high, and I had been very lucky to

have been able to recover from several errors that caused the /home filesystem to switch

to read-only (ro) mode. This only occurs when Linux determines that the filesystem is

unstable and cannot be trusted.

4 BackBlaze, Web site, What SMART Stats Tell Us About Hard Drives, www.backblaze.com/blog/
what-SMART-stats-indicate-hard-drive-failures/

ChApTer 18 BACkup eVerYThIng – FrequenTLY

https://www.backblaze.com/blog/what-SMART-stats-indicate-hard-drive-failures/
https://www.backblaze.com/blog/what-SMART-stats-indicate-hard-drive-failures/

552

 Backup options
There are many options for performing backups. In addition to old favorites like

tar, most Linux distributions are provided with one or more additional open source

programs especially designed to perform backups. There are many commercial options

available as well. However, fancy and expensive backup programs are not really

necessary to design and implement a viable backup program.

 tar
The tar command is used to make archives, more commonly referred to today as

backups. The name “tar” stands for Tape ARchive, but it can be used with any type of

recording media such as tape, hard drives, thumb drives, and more.

The tar command is simple and easy, but it does have a few things to watch for. It can

be used quite effectively by non-root users to create their own backups.

EXPERIMENT 18-2

perform this experiment as the student user. We will use tar to create a backup of the student

home directory on the localhost to the student.tar file – tar files and their compressed versions

are also called tarballs – in the /tmp directory. The -c option creates a new tarball, and the

-v option indicates verbose mode which prints the name and path of every file placed in the

tarball. The -f option specifies the file name and path for the tarball being created. The final

dot is the directory being archived and the dot (.) is our shortcut for specifying the current

directory. The tar command archives all subdirectories of the specified directory.

[student@studentvm1 ~]$ tar -cvf /tmp/student.tar .

This command created a tar file named student.tar in the /tmp directory. That file is a backup

of everything in the home directory. Well, that's nice, but also not very interesting because it is

very common.

Let’s look in the tarball we just created. There are a couple ways to do this. First we can use

tar to list the table of contents (TOC) of the tarball. This just lists the file names and their

attributes, not their contents. The contents of your directory will be different.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

553

The -t option displays the table of contents for the tarball, and -f is the input file name. The -v

option again specifies verbose.

[student@studentvm1 ~]$ tar -tvf /tmp/student.tar

drwx------ student/student 0 2019-06-13 15:41 ./

-rw-rw-r-- student/student 41936 2019-01-16 14:08 ./dmesg1.txt

drwxrwxr-x student/student 0 2018-12-30 16:36 ./testdir6/

drwxrwxr-x student/student 0 2019-03-14 16:00 ./.fvwm/

-rw------- student/student 60 2019-03-14 16:00 ./.fvwm/.FvwmConsole- History

-rw-r--r-- student/student 18 2018-10-08 09:41 ./.bash_logout

drwxrwxr-x student/student 0 2019-03-02 08:21 ./chapter6/

-rw-rw-r-- student/student 614 2019-02-23 13:10 ./chapter6/Experiment_6-1.txt

-rw-rw-r-- student/student 177878 2019-03-01 08:54 ./chapter6/Experiment_6-3.txt

-rw-r--r-- student/student 839 2019-06-13 15:41 ./.bashrc

drwxr-xr-x student/student 0 2018-12-22 13:15 ./Public/

<snip>

drwxrwxr-x student/student 0 2018-12-30 16:36 ./testdir1/testdir2/

testdir3/testdir4/testdir5/

-rw------- student/student 33523 2019-06-13 15:41 ./.bash_history

-rw-r----- student/student 5 2019-06-13 15:36 ./.vboxclient- seamless.pid

drwxr-xr-x student/student 0 2018-12-22 13:15 ./Music/

-rw-r----- student/student 5 2019-06-13 15:36 ./.vboxclient- clipboard.pid

-rw-rw-r-- student/student 0 2019-04-02 08:50 ./umask.test

-rwxr-xr-x student/student 92 2019-03-21 08:34 ./cpuHog.Linux

lrwxrwxrwx student/student 0 2018-12-30 16:48 ./softlink1 -> link1

drwxr-xr-x student/student 0 2018-12-22 13:15 ./Videos/

-rw-rw-r-- student/student 41876 2018-12-30 16:37 ./dmesg3.txt

-rw------- student/student 2935 2019-06-13 15:36 ./.xsession-errors

drwxr-xr-x student/student 0 2018-12-22 13:15 ./Templates/

-rw-rw-r-- student/student 0 2019-04-06 21:26 ./Downtown

-rw-rw-r-- student/student 41876 2018-12-30 16:37 ./dmesg2.txt

now we have a simple backup and have verified its contents. Let’s delete a single file and

restore it from the tarball we just created. Let’s just do a simple restore. Delete and restore the

~./cpuhog.Linux file.

[student@studentvm1 ~]$ rm cpuHog.Linux

ChApTer 18 BACkup eVerYThIng – FrequenTLY

554

Verify that the file is no longer present before continuing. now let’s verify that the cpuhog.

Linux file is present in the tarball.

[student@studentvm1 ~]$ tar -tvf /tmp/student.tar | grep cpuHog

-rwxr-xr-x student/student 97 2019-03-20 15:58 ./cpuHog.dos

-rwxr-xr-x student/student 92 2019-03-21 09:19 ./cpuHog.mac

-rwxr-xr-x student/student 92 2019-03-20 15:53 ./cpuHog

-rw------- student/student 20169 2019-03-21 15:27 ./chapter26/cpuHog.pdf

-rwxr-xr-x student/student 92 2019-03-21 08:34 ./cpuHog.Linux

We see all of the cpuhog files that match the pattern. note that we must specify the path, in

this case the path relative to the directory in which the file was located.

We can also use the -d option to get a list of differences between the tarball and the

filesystem.

[student@studentvm1 ~]$ tar -df /tmp/student.tar .

tar: ./cpuHog.Linux: Warning: Cannot stat: No such file or directory

now let’s restore the file. The -x option extracts the desired file or files from the tarball.

[student@studentvm1 ~]$ tar -xvf /tmp/student.tar ./cpuHog.Linux

./cpuHog.Linux

List the contents of the home directory to ensure that the file has been restored. Make ~/

tmp the pWD. Then extract the file again using the same command to illustrate a problem to

consider when restoring files.

[student@studentvm1 ~]$ cd ~/tmp ; tar -xvf /tmp/student.tar ./cpuHog.Linux ; ll

./cpuHog.Linux

total 12

-rwxr-xr-x 1 student student 92 Mar 21 08:34 cpuHog.Linux

-rw-rw-r-- 4 student student 12 Apr 2 12:32 file2.txt

-rw-rw-r-- 4 student student 12 Apr 2 12:32 file.txt

[student@studentvm1 tmp]$

note that the file is extracted to the current directory. Let’s restore a file in a subdirectory of

the student’s home directory, ./Documents/file09, but let’s keep ~/tmp as the pWD.

[student@studentvm1 tmp]$ tar -tvf /tmp/student.tar | grep file09

-rw-rw-r-- student/student 13 2018-12-30 16:33 ./Documents/file09

-rw-rw-r-- student/student 41876 2018-12-30 16:32 ./Documents/testfile09

ChApTer 18 BACkup eVerYThIng – FrequenTLY

555

[student@studentvm1 tmp]$ tar -xvf /tmp/student.tar file09

tar: file09: Not found in archive

tar: Exiting with failure status due to previous errors

note that we must specify the exact file we want including the path as it appears in the tarball.

[student@studentvm1 tmp]$ tar -xvf /tmp/student.tar ./Documents/file09

./Documents/file09

[student@studentvm1 tmp]$ ll

total 16

-rwxr-xr-x 1 student student 92 Mar 21 08:34 cpuHog.Linux

drwxrwxr-x 2 student student 4096 Jun 17 13:40 Documents

-rw-rw-r-- 4 student student 12 Apr 2 12:32 file2.txt

-rw-rw-r-- 4 student student 12 Apr 2 12:32 file.txt

The Documents directory has been created here along with file09 contained in it. One of the

important lessons to learn about using the tar command is that the files specified to be

restored are extracted into the pWD. In order to restore any file to its proper location, the pWD

during extraction must be the directory specified in the original command that created the

tarball.

If the target output file is not specified using the -f option, the output of the tar command is

sent directly to STDOuT so we can redirect it to a file.

[student@studentvm1 ~]$ cd ; tar -cv . > /tmp/tarball2.tar

This command performs the same function as the first tar command in this section, just in a

somewhat different and more interesting manner.

So far we have done this as the student user. There are files such as configuration

files that need to be backed up too. Non-root users do not have the access required to

archive most system configuration files such as those in /tmp.

Part of our job as SysAdmins is to ensure that we back up – archive – everything that

needs to be preserved in case of disaster. That includes the entire /home filesystem and

configuration files in /etc/. Although we could just target specific files to archive from /etc

and other configuration files, I think it is best to archive the entire /etc directory structure

and then I have all possible files I might ever need to restore. I can just restore the ones I

want if they are all there, and there is no danger of not having selected the file I need.

Let’s now do a backup as the root user and back up a bit more.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

556

EXPERIMENT 18-3

perform this experiment as root. We will back up the /home and /etc directories to a tarball in /

tmp. remember when we made it 5gB in size. That space will be useful for this.

Be sure to use the -p option to preserve file permissions and ownership. This should be done

for both creating the archive and extracting the files from it. Archiving multiple directories just

requires listing each one as part of the final arguments of the tar command. Also use the time

utility to get a feel for how long these backups take on our VMs.

[root@studentvm1 ~]# time tar -cvpf /tmp/backup.tar /etc /home /root

The resulting tarball which took about 1 second to create on my VM was about 100MB in

size. One of the things we can do is to compress the data to save space. So let’s do that and

compare the results.

[root@studentvm1 ~]# time tar -czvpf /tmp/backup.tgz /etc /home /root

using compression took about 4.5 seconds on my VM, but it reduced the file size to about 32

MB, a reduction of two-thirds of the original.

now use one pane of Midnight Commander (MC) to view the contents of one or both of the

tarballs. Just highlight the tarball with the Midnight Commander cursor and press Enter. You

can then navigate around the contents of the tarball just as if it were a filesystem on your

VM – and in one sense it is because it is just contained inside a single archive file.

In the other pane of MC, navigate to the /tmp directory if it is not already the pWD for that

pane. Locate the archived file /etc/sysconfig/iptables and copy it to /tmp using the F5 key.

It is very easy to navigate through archive files using MC and many other file managers in

order to find and extract a single file.

In MC, return to root’s home directory in both panes and exit from MC.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

557

 Off-site backups
Creating good backups is an important first step in a backup strategy. Keeping the

resulting backup media in the same physical location as your original data is a mistake

although we have done that in the previous experiments for experimental purposes.

We have seen that theft of a computer that has all its backups on an internal drive can

result in the complete and irrecoverable loss of important data. Fire and other disasters

can also result in the loss of original data and the backup data if it is stored in the same

location. Fireproof safes are one option that can reduce the threat from both theft and

disaster like fire. Such safes are usually rated in minutes at specified temperatures for

which they are supposed to protect their contents. I guess my personal concern here is

that I have no idea how long or hot a fire will burn. Perhaps the safe will hold out long

enough, but what if it does not?

I prefer to do for my own backups what the large companies do. I keep current off-

site backups. For me this is in the safe deposit box at my bank. For others this might be

“in the cloud” somewhere. I like the end-to-end control I have with my safe deposit box

solution. I know it is well protected. If my little home office is destroyed, the bank is likely

far enough away that it will not be affected by whatever disaster occurred.

For large companies there are services that store your backups in a remote, high-

security location with climate-controlled vaults. Most of these services will even send

armored trucks to your facilities to pick up and transport your backup media. Some

provide high-speed network connections so that backups can be made directly onto

their own storage media at their remote locations.

Many people and organizations are making backups to the cloud these days. I have

serious reservations about the so-called cloud. First, “cloud” is just another word for

someone else’s computer. Second, considering the number of hacks into allegedly secure

computing facilities that I have been reading about, I am not likely to trust my data to

any external organization that maintains online backups accessible from the Internet. I

would much prefer my remote backup data to be offline until I need it.

The concern I have with the cloud is that, aside from the marketing information the

providers put on their web sites, there is no way for me to actually know whether their

security measures are better than I can do for myself. Perhaps they can, but as a SysAdmin,

I would like some proof of this. I have no doubt that a good portion of the cloud providers

can do a better job of managing the security of the data entrusted to them than many

businesses and individuals do. How do I know which ones those are? Remember that we

are talking about cloud-based backup solutions, not application or web presence solutions.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

558

What I think I can say with some level of confidence is that the established

and recognized cloud providers, such as Amazon, Azure, Google, and others, are

certainly more trustworthy when it comes to security than are many small or medium

organizations. I am thinking about the ones don’t have a full-time SysAdmin or

outsource IT to small, local companies that are not especially reputable. I also think that

many less experienced SysAdmins are not ready to deal with the high level of security

required on the Internet in today’s world of constant cyberattack.

So for many organizations, the cloud may be a viable option. For others, an

experienced and knowledgeable SysAdmin may be the best choice. As with many IT

decisions, it is a matter of weighing the risk factors and determining how much you are

willing to accept.

 Disaster recovery services
Taking backups a step further, some of the places I have worked maintained a contract

with one or more disaster recovery services. This type of service is paid to maintain a

complete computer and network environment that can replace your own on a moment’s

notice. This usually includes everything from mainframes down to Intel-based servers

and workstations. This is, of course, in addition to keeping massive amounts of data in

off-site backup storage.

At one of the places I worked, we had quarterly assessments of our disaster recovery

plan. We shut down all of the computers from the mainframes through the Intel servers.

We notified the disaster recovery company that we were conducting a test, and they

prepared their site with the various computers we would require to get back up and

operational. We had the backup storage service transport the latest backup media from

their secure facility in Raleigh, NC, to the recovery site in Philadelphia.

A group of folks from our offices traveled up to the recovery site and restored all of

the data from our backup media, brought everything online, and tested to ensure that

everything was working properly.

There were always problems. Always. But that was the whole point of the

exercise – to find the problems with our strategies and procedures. And then to fix them.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

559

 Options
Not everyone needs a disaster recovery service or huge amounts of backup data storage.

For some individuals and very small businesses with only a single computer, a couple

USB thumb drives and a manual backup to one of those drives is more than sufficient.

For others, a relatively small external USB hard drive works well.

For my own needs, I use several 4TB external USB 3.0 hard drives and rotate them

each week. The most current backup goes to my safe deposit box, and the one in the

box comes home and goes back into the rotation. I also have a 4TB SATA hard drive in

my main workstation that I also back up to every night. This means I always have the

most recent backup right on line where and when I need it most. Two complete sets of

backups every day works best for me. Of course I have seen so many ways to lose data

that I am quite paranoid about it.

It is all in what you need for your circumstances.

 What about the “frequently” part?
What does this really mean? Because it actually opens up a wide range of questions:

• What does “frequently” really mean?

• What does “full” mean?

• If I have 24TB of movies on my NAS,5 do I make a full backup of those

every day or just a diff?6

• What should I think about in terms of setting up a cron job for a full

backup?

• What if my system is off when it’s supposed to run?

5 Network Attached Storage
6 Changes to files between one backup and the next. The difference

ChApTer 18 BACkup eVerYThIng – FrequenTLY

560

 How frequent is “frequently?”
Let’s start with this question because it is part of the chapter title, after all. Always make a

backup at least once every day. No matter what.

We are talking about the absolute minimum requirement for any system

administered by a Linux SysAdmin. This means that the most work that could be lost is

24 hours or less. This frequency will be sufficient for many office and even development

 environments.

In many other cases, a once daily frequency will not be nearly enough. Think about

banks, stock markets, high-intensity agile development environments, and scientific data

collection and processing such as weather prediction. All of these environments require

almost near-instantaneous duplication of huge amounts of data in case of hardware

failures and, even more, minute-to-minute backups of the already duplicated data.

These high-performance requirements can be met, at least partially, using various

forms and combinations of RAID arrays, high-availability network storage devices, cloud

storage, and remote storage. Those solutions are outside the scope of this course.

 What does “full” really mean?
This should include all of the files you would need to rapidly recover from a major

disaster. A full backup will obviously cover all data files, but that should not be all.

A complete and quick recovery also means making backups of system configuration

files and other system-level data.

So where are your data files? I back up the entire /home directory, thus ensuring

I can restore everything including the user application data as well as user-level

configuration files.

For the system, I also make backups of the entire /etc directory which contains

configuration files for almost every system-level tool. I have used this backup data

many times to recover from various self-inflicted forms of data loss. I do the entire

/etc directory because one never knows what data will need to such be restored after

an oopsy.

When creating a backup strategy for servers, we also want to make sure we include

the appropriate configuration and user data. For example, the MariaDB database stores

some configuration data in etc and user data such as WordPress content in /var.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

561

The specific directories to be backed up will differ between organizations and even

hosts within an organization. It will be necessary to determine what needs to be backed

up for each host.

I never back up the operating system itself, such as /boot, /usr, /bin, /sbin, and /lib,

if they exist. Some of the bin and lib files are being reconfigured into a single directory

in any event. A reinstallation can easily and quickly recover the operating system. And

snapshots make recovery of VMs particularly easy – so long as you are making them.

Some organizations use what is called bare-metal restores which means take an

empty hard drive and restore everything as a complete disk image. This takes “full” to the

ultimate level. Such a bare-metal restoration is beyond the scope of this course, but I bet

you are already thinking about how to do it with dd.

 All vs. diff
When using the tar utility as we did here in this chapter, we simply made a complete

backup of everything specified. The tar utility can also add a diff – a complete

replacement of an altered file – to the end of a tarball, but the diff consists the entirety of

the files that are altered and not just the individual portions that have changed.

Advanced tools like rsync can be used to alter the changed portions of a file in the

target backup. However, the structure of an rsync backup is significantly different as we

will see in Chapter 16 of Volume 3.

The answer in this case is another resounding, “it depends.” I have always found that

it is easier to create and recover using complete backups when utilizing tar. With rsync

a diff is better because it is faster and makes no difference in the final backup.

 Considerations for automation of backups
Backups are one of those tasks best automated to ensure consistency in the timing of

their runs. It also prevents someone forgetting to start it off.

Consideration needs to be given to things such as which automation tools to use,

for example, cron vs. systemd timers, or something else. Also, do we want to consider

commercial backup systems, advanced open source backup tools, and locally created

tools such as scripts?

Timing of the backups also needs some consideration. For example, do we start the

backups in the evening or the early morning? If they are too close together, will they

overlap and create problems?

ChApTer 18 BACkup eVerYThIng – FrequenTLY

562

I had one instance where a backup took so long that the next iteration started before

the first was finished. This caused those two instances to lock each other out as well

as the next several ones. Once discovered, it was simple to terminate all instances of

the backup programs, reset the timing of backups, and start over. A situation like this

highlights the need for warning messages in case of problems as well as the need to

check the backups on a regular basis.

 Dealing with offline hosts
This can be a problem and I have encountered it myself. Most backup systems, including

locally written scripts, will simply time out and proceed to the next remote host. This is

usually due to the attempted SSH connection timing out.

A simple system will ignore the missing backup on the next iteration and make a new

one. It could also take the more sophisticated approach in which the backup software

determines the latest successful backup, creates a new instance, and proceeds with the

current backup while transferring only altered portions of files. The latter is the approach

taken by the script I wrote for my own backups.

 Advanced backups
In Chapter 16 of Volume 3 of this course, we will explore an advanced backup technique

using a common Linux tool, rsync. This tool allows us to create a script for an automated

backup system that can perform repeated and frequent complete backups while only

copying the altered portions of files whether on the localhost or across the network. It

handles dealing with missing backups. Restores are easy for the SysAdmin and users

alike because they are in the form of copies of the original files.

The rsync utility is part of the Linux core utilities so is already installed on almost all

Linux hosts. It has some interesting and powerful features that enable those capabilities

in our script. We will explore those features in some detail in Volume 3.

ChApTer 18 BACkup eVerYThIng – FrequenTLY

563

 Chapter summary
Backups are an incredibly important part of our jobs as SysAdmins. I have experienced

many instances where backups have enabled rapid operational recovery for places I have

worked as well as for my own business and personal data.

There are many options for performing and maintaining data backups. I do what

works for me and have never had a situation where I lost more than a few hours worth of

data.

Like everything else, backups are all about what you need. Whatever you do – do

something! Figure out how much pain you would have if you lost everything – data,

computers, hard copy records – everything. The pain includes the cost of replacing the

hardware and the cost of the time required to restore data that was backed up and to

 recover data that was not backed up. Then plan and implement your backup systems

and procedures accordingly.

We will explore backups in more depth in Volume 3 of this course.

 Exercises
Perform the following exercises to complete this chapter:

 1. If you are running your VM on a Linux host, you will of necessity

have access to root. As root, run smartctl -x /dev/sda on that

physical host. Explore the output for signs of disk failure.

 2. If you are running your VM on a Windows host, create a live USB

thumb drive from the downloaded ISO image used to install

Fedora on your VM. Then boot that host using the live USB device.

As root, run smartctl -x /dev/sda on that physical host. Explore

the output for signs of disk failure.

 3. List three advantages of using the tar command for backups.

 4. Determine how much space you need to back up the /home, /

root, and /etc directories. Locate a USB drive large enough to

contain that much data and make it available to your VM. Make a

backup of those three directories on the USB drive.

 5. What advantages might there be to use “the cloud” for backups?

ChApTer 18 BACkup eVerYThIng – FrequenTLY

564

 6. Write a simple script to automate backups of /home, /root, and

/etc, and configure a systemd timer to run the script every day at

02:00 AM. Create a new filesystem from the existing space on your

volume group, fedora_studentvm1, for storage of the backup; use

this as a substitute for an external device. Test it to verify that it

works.

 7. Wipe out the /home/student home directory by deleting all of

the files in it and deleting the directory as well. Restore /home/

student from the backup you made in the previous exercise.

 8. Can the Thunar GUI file manager be used to access the archive

tarballs and extract files from them?

ChApTer 18 BACkup eVerYThIng – FrequenTLY

565
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4

 Bibliography

 Books
Binnie, Chris, Practical Linux Topics, Apress 2016, ISBN 978-1-4842-1772-6

Both, David, The Linux Philosophy for SysAdmins, Apress, 2018,

ISBN 978-1-4842-3729-8

Gancarz, Mike, Linux and the Unix Philosophy, Digital Press – an imprint of Elsevier

Science, 2003, ISBN 1-55558-273-7

Kernighan, Brian W.; Pike, Rob (1984), The UNIX Programming Environment,

Prentice Hall, Inc., ISBN 0-13-937699-2

Libes, Don, Exploring Expect, O’Reilly, 2010, ISBN 978-1565920903

Nemeth, Evi [et al.], The Unix and Linux System Administration Handbook, Pearson

Education, Inc., ISBN 978-0-13-148005-6

Matotek, Dennis, Turnbull, James, Lieverdink, Peter; Pro Linux System

Administration, Apress, ISBN 978-1-4842-2008-5

Raymond, Eric S., The Art of Unix Programming, Addison-Wesley, September 17,

2003, ISBN 0-13-142901-9

Siever, Figgins, Love & Robbins, Linux in a Nutshell 6th Edition (O'Reilly, 2009),

ISBN 978-0-596-15448-6

Sobell, Mark G., A Practical Guide to Linux Commands, Editors, and Shell

Programming Third Edition, Prentice Hall; ISBN 978-0-13-308504-4

van Vugt, Sander, Beginning the Linux Command Line, Apress,

ISBN 978-1-4302-6829-1

Whitehurst, Jim, The Open Organization, Harvard Business Review Press (June 2,

2015), ISBN 978-1625275271

Torvalds, Linus and Diamond, David, Just for Fun, HarperCollins, 2001,

ISBN 0-06-662072-4

https://doi.org/10.1007/978-1-4842-5455-4

566

 Web sites
BackBlaze, Web site, What SMART Stats Tell Us About Hard Drives, www.backblaze.com/

blog/what-smart-stats-indicate-hard-drive-failures/

Both, David, 8 reasons to use LXDE, https://opensource.com/article/17/3/8-

reasons-use-lxde

Both, David, 9 reasons to use KDE, https://opensource.com/life/15/4/9-

reasons-to-use-kde

Both, David, 10 reasons to use Cinnamon as your Linux desktop environment,

https://opensource.com/article/17/1/cinnamon-desktop-environment

Both, David, 11 reasons to use the GNOME 3 desktop environment for Linux,

https://opensource.com/article/17/5/reasons-gnome

Both, David, An introduction to Linux network routing, https://opensource.com/

business/16/8/introduction-linux-network-routing

Both, David, Complete Kickstart, www.linux-databook.info/?page_id=9

Both, David, Making your Linux Box Into a Router, www.linux-databook.

info/?page_id=697

Both, David, Network Interface Card (NIC) name assignments, www.linux-databook.

info/?page_id=4243

Both, David, Using hard and soft links in the Linux filesystem, www.linux-databook.

info/?page_id=5087

Both, David, Using rsync to back up your Linux system, https://opensource.com/

article/17/1/rsync-backup-linux

Bowen, Rich, RTFM? How to write a manual worth reading, https://opensource.

com/business/15/5/write-better-docs

Charity, Ops: It's everyone's job now, https://opensource.com/article/17/7/

state-systems-administration

Dartmouth University, Biography of Douglas McIlroy, www.cs.dartmouth.

edu/~doug/biography

DataBook for Linux, www.linux-databook.info/

Digital Ocean, How To Use journalctl to View and Manipulate Systemd Logs,

www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-

manipulate-systemd-logs

Edwards, Darvin, Electronic Design, PCB Design And Its Impact On Device

Reliability, www.electronicdesign.com/boards/pcb-design-and-its-impact-device-

reliability

BIBLIOGRAPHY

https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures/
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/article/17/3/8-reasons-use-lxde
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/life/15/4/9-reasons-to-use-kde
https://opensource.com/article/17/1/cinnamon-desktop-environment
https://opensource.com/article/17/5/reasons-gnome
https://opensource.com/business/16/8/introduction-linux-network-routing
https://opensource.com/business/16/8/introduction-linux-network-routing
http://www.linux-databook.info/?page_id=9
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=697
http://www.linux-databook.info/?page_id=4243
http://www.linux-databook.info/?page_id=4243
http://www.linux-databook.info/?page_id=5087
http://www.linux-databook.info/?page_id=5087
https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/article/17/1/rsync-backup-linux
https://opensource.com/business/15/5/write-better-docs
https://opensource.com/business/15/5/write-better-docs
https://opensource.com/article/17/7/state-systems-administration
https://opensource.com/article/17/7/state-systems-administration
http://www.cs.dartmouth.edu/~doug/biography
http://www.cs.dartmouth.edu/~doug/biography
http://www.linux-databook.info/
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability
http://www.electronicdesign.com/boards/pcb-design-and-its-impact-device-reliability

567

Engineering and Technology Wiki, IBM 1800, http://ethw.org/IBM_1800

Fedora Magazine, Tilix, https://fedoramagazine.org/try-tilix-new-terminal-

emulator-fedora/

Fogel, Kark, Producing Open Source Software, https://producingoss.com/en/

index.html

Free On-line Dictionary of Computing, Instruction Set, http://foldoc.org/

instruction+set

Free Software Foundation, Free Software Licensing Resources,

www.fsf.org/licensing/education

gnu.org, Bash Reference Manual – Command Line Editing, www.gnu.org/software/

bash/manual/html_node/Command-Line-Editing.html

Harris, William, How the Scientific Method Works, https://science.

howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm

Heartbleed web site, http://heartbleed.com/

How-two Forge, Linux Basics: How To Create and Install SSH Keys on the Shell,

www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell

Kroah-Hartman, Greg, Linux Journal, Kernel Korner – udev – Persistent Naming in

User Space, www.linuxjournal.com/article/7316

Krumins, Peter, Bash emacs editing, www.catonmat.net/blog/bash-emacs-editing-

mode-cheat-sheet/

Krumins, Peter, Bash history, www.catonmat.net/blog/the-definitive-guide-to-

bash-command-line-history/

Krumins, Peter, Bash vi editing, www.catonmat.net/blog/bash-vi-editing-mode-

cheat-sheet/

Kernel.org, Linux allocated devices (4.x+ version), www.kernel.org/doc/html/

v4.11/admin-guide/devices.html

Linux Foundation, Filesystem Hierarchical Standard (3.0), http://refspecs.

linuxfoundation.org/fhs.shtml

Linux Foundation, MIT License, https://spdx.org/licenses/MIT

The Linux Information Project, GCC Definition, www.linfo.org/gcc.html

Linuxtopia, Basics of the Unix Philosophy, www.linuxtopia.org/online_books/

programming_books/art_of_unix_programming/ch01s06.html

LSB Work group - The Linux Foundation, Filesystem Hierarchical Standard V3.0, 3,

https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

Opensource.com, https://opensource.com/

BiBliography

http://ethw.org/IBM_1800
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://fedoramagazine.org/try-tilix-new-terminal-emulator-fedora/
https://producingoss.com/en/index.html
https://producingoss.com/en/index.html
http://foldoc.org/instruction+set
http://foldoc.org/instruction+set
https://www.fsf.org/licensing/education
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://www.gnu.org/software/bash/manual/html_node/Command-Line-Editing.html
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
https://science.howstuffworks.com/innovation/scientific-experiments/scientific-method6.htm
http://heartbleed.com/
https://www.howtoforge.com/linux-basics-how-to-install-ssh-keys-on-the-shell
http://www.linuxjournal.com/article/7316
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-emacs-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/the-definitive-guide-to-bash-command-line-history/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/
http://www.catonmat.net/blog/bash-vi-editing-mode-cheat-sheet/
https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html
http://refspecs.linuxfoundation.org/fhs.shtml
http://refspecs.linuxfoundation.org/fhs.shtml
https://spdx.org/licenses/MIT
http://www.linfo.org/gcc.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
http://www.linuxtopia.org/online_books/programming_books/art_of_unix_programming/ch01s06.html
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://opensource.com/

568

Opensource.com, Appreciating the full power of open, https://opensource.com/

open-organization/16/5/appreciating-full-power-open

Opensource.com, David Both, SpamAssassin, MIMEDefang, and Procmail: Best Trio

of 2017, Opensource.com, https://opensource.com/article/17/11/spamassassin-

mimedefang-and-procmail

Opensource.org, Licenses, https://opensource.org/licenses

opensource.org, The Open Source Definition (Annotated), https://opensource.

org/osd-annotated

OSnews, Editorial: Thoughts on Systemd and the Freedom to Choose, www.osnews.

com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose

Peterson, Christine, Opensource.com, How I coined the term ‘open source,’

https://opensource.com/article/18/2/coining-term-open-source-software

Petyerson, Scott K, The source code is the license, Opensource.com,

https://opensource.com/article/17/12/source-code-license

Princeton University, Interview with Douglas McIlroy, www.princeton.edu/~hos/

frs122/precis/mcilroy.htm

Raspberry Pi Foundation, www.raspberrypi.org/

Raymond, Eric S., The Art of Unix Programming, www.catb.org/esr/writings/

taoup/html/index.html/

Wikipedia, The Unix Philosophy, Section: Eric Raymond’s 17 Unix Rules,

https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond%E2%80%99s_17_Unix_Rules

Raymond, Eric S., The Art of Unix Programming, Section The Rule of Separation,

www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777

Understanding SMART Reports, https://lime-technology.com/wiki/

Understanding_SMART_Reports

Unnikrishnan A, Linux.com, Udev: Introduction to Device Management In Modern

Linux System, www.linux.com/news/udev-introduction-device-management-modern-

linux-system

Venezia, Paul, Nine traits of the veteran Unix admin, InfoWorld, Feb 14,

2011, www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-

276?page=0,0&source=fssr

Wikipedia, Alan Perlis, https://en.wikipedia.org/wiki/Alan_Perlis

Wikipedia, Christine Peterson, https://en.wikipedia.org/wiki/Christine_Peterson

Wikipedia, Command Line Completion, https://en.wikipedia.org/wiki/Command-

line_completion

BIBLIOGRAPHY

https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://opensource.com/open-organization/16/5/appreciating-full-power-open
https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail
https://opensource.com/article/17/11/spamassassin-mimedefang-and-procmail
https://opensource.org/licenses
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
http://www.osnews.com/story/28026/Editorial_Thoughts_on_Systemd_and_the_Freedom_to_Choose
https://opensource.com/article/18/2/coining-term-open-source-software
http://opensource.com
https://opensource.com/article/17/12/source-code-license
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://www.raspberrypi.org/
http://www.catb.org/esr/writings/taoup/html/index.html/
http://www.catb.org/esr/writings/taoup/html/index.html/
https://en.wikipedia.org/wiki/Unix_philosophy#Eric_Raymond’s_17_Unix_Rules
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html#id2877777
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://lime-technology.com/wiki/Understanding_SMART_Reports
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system
https://www.linux.com/news/udev-introduction-device-management-modern-linux-system
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
http://www.infoworld.com/t/unix/nine-traits-the-veteran-unix-admin-276?page=0,0&source=fssr
https://en.wikipedia.org/wiki/Alan_Perlis
https://en.wikipedia.org/wiki/Christine_Peterson
https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Command-line_completion

569

Wikipedia, Comparison of command shells, https://en.wikipedia.org/wiki/

Comparison_of_command_shells

Wikipedia, Dennis Ritchie, https://en.wikipedia.org/wiki/Dennis_Ritchie

Wikipedia, Device File, https://en.wikipedia.org/wiki/Device_file

Wikipedia, Gnome-terminal, https://en.wikipedia.org/wiki/Gnome-terminal

Wikipedia, Hard Links, https://en.wikipedia.org/wiki/Hard_link

Wikipedia, Heartbleed, https://en.wikipedia.org/wiki/Heartbleed

Wikipedia, Initial ramdisk, https://en.wikipedia.org/wiki/Initial_ramdisk

Wikipedia, Ken Thompson, https://en.wikipedia.org/wiki/Ken_Thompson

Wikipedia, Konsole, https://en.wikipedia.org/wiki/Konsole

Wikipedia, Linux console, https://en.wikipedia.org/wiki/Linux_console

Wikipedia, List of Linux-supported computer architectures, https://en.wikipedia.

org/wiki/List_of_Linux-supported_computer_architectures

Wikipedia, Maslow's hierarchy of needs, https://en.wikipedia.org/wiki/

Maslow%27s_hierarchy_of_needs

Wikipedia, Open Data, https://en.wikipedia.org/wiki/Open_data

Wikipedia, PHP, https://en.wikipedia.org/wiki/PHP

Wikipedia, PL/I, https://en.wikipedia.org/wiki/PL/I

Wikipedia, Programma 101, https://en.wikipedia.org/wiki/Programma_101

Wikipedia, Richard M. Stallman, https://en.wikipedia.org/wiki/Richard_

Stallman

Wikipedia, Rob Pike, https://en.wikipedia.org/wiki/Rob_Pike

Wikipedia, rsync, https://en.wikipedia.org/wiki/Rsync

Wikipedia, Rxvt, https://en.wikipedia.org/wiki/Rxvt

Wikipedia, SMART, https://en.wikipedia.org/wiki/SMART

Wikipedia, Software testing, https://en.wikipedia.org/wiki/Software_testing

Wikipedia, Terminator, https://en.wikipedia.org/wiki/Terminator_(terminal_

emulator)

Wikipedia, Tony Hoare, https://en.wikipedia.org/wiki/Tony_Hoare

Wikipedia, Unit Record Equipment, https://en.wikipedia.org/wiki/Unit_

record_equipment

Wikipedia, Unix, https://en.wikipedia.org/wiki/Unix

Wikipedia, Windows Registry, https://en.wikipedia.org/wiki/Windows_Registry

Wikipedia, Xterm, https://en.wikipedia.org/wiki/Xterm

WikiQuote, C._A._R._Hoare, https://en.wikiquote.org/wiki/C._A._R._Hoare

WordPress, Home page, https://wordpress.org/

BiBliography

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Gnome-terminal
https://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Initial_ramdisk
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Konsole
https://en.wikipedia.org/wiki/Linux_console
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/List_of_Linux-supported_computer_architectures
https://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
https://en.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
https://en.wikipedia.org/wiki/Open_data
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/PL/
https://en.wikipedia.org/wiki/Programma_101
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/wiki/Rsync
https://en.wikipedia.org/wiki/Rxvt
https://en.wikipedia.org/wiki/SMART
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator
https://en.wikipedia.org/wiki/Terminator_(terminal_emulator
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Unit_record_equipment
https://en.wikipedia.org/wiki/Unit_record_equipment
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/Xterm
https://en.wikiquote.org/wiki/C._A._R._Hoare
https://wordpress.org/

571
© David Both 2020
D. Both, Using and Administering Linux: Volume 2, https://doi.org/10.1007/978-1-4842-5455-4

Index

A
anacrontab, 306, 316
ASCII, 57, 149, 160, 164, 166, 174, 177, 178,

180, 181, 183, 187, 264, 508, 520
ASCII plain text, 22, 138, 169, 179, 189,

352, 383, 404, 520
Automate everything, 227, 263, 382
Automation, 258, 261, 324, 440, 477,

561–562

B
Backblaze

study of hard drive failure rates, 551
Backup

cloud, 557
off site, 557–558
procedures, 558
recovery testing, 558
shell script, 263

Bash, 21, 54, 55, 77, 111, 112, 140–142, 145,
147, 154, 216, 217, 221–224, 227,
229, 230, 235, 236, 240, 244, 245,
247–250, 255, 261–297, 305, 307,
309, 360, 380, 453, 516

configuration files, 360
/.bash_history, 30, 553
/.bash_logout, 484, 485, 553

/.bash_profile, 472, 482, 485, 514,
517, 519

/.bashrc, 26, 28, 30, 472, 484, 485,
514, 518, 519, 553

/etc/bashrc, 170, 171, 176, 178, 179,
189, 482, 485, 488, 514, 517, 519

/etc/profile, 179, 473, 482, 485, 488,
514, 517, 519

environment, 278
external commands, 95
global configuration directory

/etc/profile.d, 179, 473, 482, 485,
514, 517, 519

history, 25, 31, 553
shell options, 240
syntax, 77
tab completion, 14, 354, 386, 481
variables, 221

Binary
executable, 381

BIOS, 192, 194, 350, 437, 540
Books

“The Art of Unix Programming”, 289
Boot, 5, 6, 8, 10, 45, 50, 51, 58–64
Boot record, 44, 58–64, 243
Brace expansion, 137, 245
BSD, 129
Bug reports, 110

https://doi.org/10.1007/978-1-4842-5455-4

572

C
Characters

meta-, 138, 145, 148, 150–154, 449
special pattern, 245

Cisco, 341, 343, 344, 347
CLI, 4, 20, 21, 37, 64, 146, 147, 154, 155,

157, 166, 215–217, 219, 221–223,
227, 228, 231, 232, 234, 235, 249,
252, 256, 258, 261, 265–269, 279,
293, 294, 340, 457, 485, 511, 532

Code
proprietary, 289
sharing, 289
source, 264, 289, 290, 381

Command, 5, 34, 47, 54, 57, 72, 83, 97, 110,
133, 141, 167, 170, 174, 243, 247,
279, 317

Command line, 17, 21, 26, 36, 37, 80, 89,
113, 115, 139, 141, 154, 160, 171,
174, 215–258, 262, 267, 272–274,
277, 279, 289, 293, 297, 307, 314,
351, 357, 361, 381, 446, 474, 480, 516

interface, 20, 36
recall and editing, 305

Command prompt, 23, 59, 130, 304,
321, 481

Comments, 125, 126, 243, 263, 266, 269,
277, 307–308, 359, 365, 393, 472,
481, 490–492, 531

Configuration files and directories
/.bash_history, 25, 31, 553
/.bash_logout, 484, 485, 553
/.bash_profile, 472, 482, 485, 514,

517, 519
/.bashrc, 26, 28, 30, 472, 484, 485, 514,

518, 519, 553
/.ssh, 517, 518
/etc/aliases, 453, 546

/etc/anacrontab, 306, 314
/etc/bashrc, 170, 171, 176, 178, 179,

189, 482, 485, 488, 514, 517, 518
/etc/chrony.conf, 300, 304
/etc/cron., 306, 310, 312–313
/etc/cron.d, 306, 312–315
/etc/cron.daily, 314, 446, 453
/etc/cron.deny, 316, 323
/etc/cron.hourly, 313, 314, 319, 448
/etc/cron.monthly, 314
/etc/crontab, 306, 310
/etc/cron.weekly, 314
/etc/cups/, 172, 174
/etc/default, 480
/etc/fstab, 1, 14, 127, 128, 130, 135, 136,

170, 243, 336, 392, 393
/etc/glances/glances.conf, 95
/etc/group, 463, 472
/etc/hosts, 362–367, 373
/etc/login.defs, 472, 482
/etc/logrotate.conf, 430
/etc/logwatch, 446, 454
/etc/pam.d, 538
/etc/passwd, 463, 464, 466, 467, 481, 483
/etc/profile, 179, 473, 482, 485, 488,

514, 517, 519
/etc/profile.d, 179, 473, 482, 485, 488,

514, 517, 519
/etc/profile.d/myBashConfig.sh, 482,

485, 488, 514, 517, 519
/etc/resolv.conf, 47, 304, 358, 362,

363, 377
/etc/security/limits.conf, 490, 539
/etc/security/pwquality.conf, 478, 479
/etc/shadow, 467, 469, 474, 475, 481,

484, 486
/etc/skel, 472, 473, 481, 484, 494
/etc/sysconfig/, 357

Index

573

/etc/sysconfig/iptables, 528, 532, 534,
536, 556

/etc/sysconfig/network-scripts, 351,
353, 354, 358–360

/etc/sysconfig/network-scripts/
ifcfg-enp0s3, 351, 353, 354, 357,
358, 515, 519

/etc/sysconfig/network-scripts/
ifcfg-enp0s8, 515, 519

/etc/systemd, 387
/etc/systemd/system, 387, 388, 393,

399, 400
/etc/systemd/system/default.target, 387
/etc/systemd/system/multi-user.

target.wants/sysstat.service, 427
/etc/systemd/system/sysstat.service.

wants/sysstat-collect.timer, 427
/etc/systemd/system/sysstat.service.

wants/sysstat-summary.timer, 427
/etc/systemd/system/TestFS.mount, 394
/etc/udev/rules.d, 46, 415, 420
/etc/xdg/xfce4/xinitrc, 52, 98

Console, 24, 50–52, 420, 481, 485, 486, 489,
492, 505

virtual, 24, 50–52, 481, 485, 486, 492,
505

CPU, 67–69, 71–75, 77–81, 84–89, 91–96,
102, 105, 107, 108, 112, 121–123,
192, 212, 220, 285, 317, 389, 401,
426–429, 489, 491, 538

usage, 71, 73, 74, 77, 78, 85, 93, 428
cron, 295, 305–316, 323, 395, 427, 446,

452–454, 541, 559, 561
crond, 305, 307, 313
cron.d, 306
crontab, 306–312
scheduling tips, 315

Cruft, 540

D
Data

center, 499
loss, 499, 500, 545, 560
random, 56, 57, 62, 64, 65, 475
stream, 43, 47, 48, 55, 56, 114, 137, 138,

142, 145–149, 153, 154, 159–161,
164, 168, 175, 176, 178, 182, 184,
247, 255, 322, 406, 415, 446, 464,
475, 504

Desktop
KDE, 19, 35, 37
LXDE, 19
Xfce, 17–19, 24, 35, 37–39, 52, 98, 99,

146, 325, 439
Developer, 45, 57, 182, 264, 290, 315, 382,

398, 408
Device

data flow, 47–48, 147, 382
disk, 47, 49, 84, 135
special file

null, 55, 65, 144, 179, 184–186, 193,
221, 222, 242–244, 277, 431, 468

pts, 51, 52, 87, 97, 99, 322, 323, 504
random, 57
tty2, 50, 51, 439, 457, 493, 505
tty3, 51, 493
urandom, 55–57, 62, 475
zero, 55–58, 62, 65

DevOps, 298
Directory

date sequence, 138, 437
Disaster recovery

plan, 558
services, 558, 559

DNF, 21, 35, 46, 86, 88, 96, 172, 175, 201,
267–269, 278, 287, 320, 373, 400,
426, 432, 433, 441, 446, 512, 528

Index

574

Documentation
template, 22, 25, 31, 218, 246

Drive
hard, 1–3, 7, 8, 11, 12, 14, 15, 44,

47–49, 58, 59, 65, 66, 118, 119,
121, 123, 131, 170, 209, 231, 316,
384, 385, 414, 416, 438, 474,
499–501, 545–547, 549, 551, 552,
559, 561

solid state, 121
SSD, 14, 49, 121, 131, 191, 403, 433
USB, 63, 424, 499, 563

DVD, 416

E
Editor, 23, 29, 30, 37, 140, 143, 144, 154,

156, 174, 306, 353, 367, 403, 417,
483, 532

emacs, 156, 306
favorite, 417, 532
Kate, 37, 156
text, 37, 140, 156, 417
vi, 29, 306, 409
Vim, 29, 31, 32, 77, 140, 156, 174,

268, 311, 353, 483, 484, 486,
492, 493

Elegance, 256
power and grounding, 500

Elegant, 154, 534
Environment, 3, 4, 13, 30, 31, 52, 59,

81, 124, 125, 131–135, 152,
166, 171, 221, 279, 284, 298,
299, 304, 307, 315, 337, 359,
367, 381, 383, 423, 459, 462,
480, 495, 498–500, 503, 517,
527, 539, 558, 560

variables, 221

F
Fail2Ban, 508, 535–538
Fedora, 1, 2, 18, 32, 86, 110, 131, 286,

300, 310, 350, 351, 359, 388, 393,
404, 408, 426, 427, 461, 462, 502,
517, 520

29, 348, 351, 360, 538
30, 359
release, 2, 300, 348, 350, 351, 359, 426,

520, 541
FHS (Filesystem Hierarchical Structure),

10, 103, 106, 294, 360
File

compatibility, 466
cpuinfo, 107, 108
device, 44, 45, 48, 50, 411
device special, 44, 47, 53, 55, 185,

413, 546
driver, 47, 48
format

ASCII text, 149, 174, 175, 178, 180,
189, 381

binary, 184, 405, 426
closed, 430
open, 32, 76, 82, 490

globbing, 137, 138, 245
handle, 45, 411
meminfo, 107, 108, 110
multiple hard links, 3
naming, 46, 415, 423
ownership, 27, 230, 259, 431, 462, 556
permissions, 28, 35, 49, 460, 461,

512, 556
timestamps

atime, 110
ctime, 110
mtime, 110

Index

575

File manager
Dolphin, 18, 38–39
Midnight Commander, 17, 20, 31,

34, 556
Thunar, 17–19, 38, 177, 404, 413

Filesystem
creating, 1, 10
directory structure

/dev, 44, 45, 48, 53, 58, 133, 384,
411, 413, 423

/etc, 47, 524, 555, 560
/etc/cron.daily, 314, 446, 454
/home, 4, 6, 551, 555, 560
/mnt, 10, 62
/proc, 65, 106, 110, 115, 119, 436
/sys, 106, 116–119
/tmp, 37, 58, 271, 417, 552,

555, 556
/usr, 314, 561
/usr/local/bin, 263, 294, 314, 417
/usr/local/etc, 294
/var, 406, 417, 430

Hierarchical Standard, 166
inode, 10, 62
journal, 404–405
Linux, 360, 384
types, 4

BTRFS, 9, 13
EXT3, 3, 4, 13
EXT4, 3, 4, 7, 10, 13, 62
FAT31, 129
HPFS, 128, 129
NFS, 463
XFS, 4, 13

Filter, 27, 164, 254, 298, 529
Firewall, 116, 497, 506, 508, 513, 521, 523,

524, 531, 535
Free Software Foundation, 216

G
GID, 461–463
GNU

core utilities, 110, 120, 121, 562
General Public License, 290

GNU/Linux, 41, 65
Graphical User Interface, 35
Group, 462
Group ID, 230, 461–463, 466
GRUB, 274, 541
GUI

desktop
Cinnamon, 19
KDE, 19, 35, 37
LXDE, 19

H
Hard drive, 1, 3, 11, 14, 44, 49, 58, 59,

119, 121, 122, 416, 474, 500,
546, 549, 551, 561

crashes, 500
Help

facility, 266, 280
option (-h), 231, 281, 282

Hex, 180, 181, 329
Hexadecimal, 180, 329, 331, 332
Hierarchy, 113, 116, 298
Host

StudentVM1, 276, 285

I, J
IBM

PC
DOS, 180, 181, 183

inode, 231

Index

576

Intel
Core i7, 108
Core i9, 197

IPTables, 384, 520, 523, 524, 527,
529–532, 534

ISO
image, 65, 563

K
Kernel, 4, 44–46, 54, 67, 68, 71, 79, 81, 85,

102, 105, 106, 115, 116, 119, 122,
192, 266, 286, 317, 350, 380, 406,
412, 414, 418, 420, 437, 442, 524

Konsole, 20, 36, 47, 51
Kroah-Hartman, Greg, 45, 412
KVM, 23

L
Languages

compiled, 264, 265
interpreted, 161
scripting, 177, 221, 264
shell, 264

Libre Office, 40, 44, 53, 140, 147, 149, 156,
160, 174, 187, 189, 289, 404

Link, 40, 60, 230, 231, 241, 328, 330, 332,
335, 337, 353, 354, 369, 501, 502,
509, 514–516, 519, 539

soft, 26, 28, 30, 218, 246, 553
symbolic, 231, 387
symlink, 25, 314, 320, 387, 394, 403,

422, 423, 427, 480, 529
Linux

boot, 106, 213, 382
command line, 139
directory tree, 20

distribution
CentOS, 46, 86, 110, 300, 349,

350, 359
Fedora, 1, 2, 18, 31, 32, 46, 50, 86,

110, 124, 131, 272, 281, 282, 286,
300, 310, 325, 340, 348–351, 359,
360, 393, 404, 408, 426, 427, 430,
461, 462, 502, 503, 517, 520, 538

Red Hat, 24, 110, 300, 331, 360,
437, 461

RHEL, 300, 349–351, 359, 462
history, 44
installation, 122, 300, 351, 462, 502
kernel, 45, 67, 79, 105, 110, 115, 192,

286, 330, 332, 349, 520, 524
startup

systemd, 379, 380
SystemV, 380, 382

unified directory structure, 384
Listserv, 139, 140, 154
Log files

following, 440–441
maillog, 435–436
messages, 433–435
secure, 438–440

Logical Volume Management (LVM),
1–14, 44, 126–135, 384, 457

volume
group, 2–14, 131, 132
logical, 2–9, 11–13, 131, 135
physical, 3, 9, 12, 14

Login
failure, 457
sucess, 504

Logrotate, 429–433
Logwatch, 305, 343, 446–455, 471, 538
LVM, see Logical Volume Management

(LVM)

Index

577

M
Man pages, 10, 14, 31, 56, 72, 86, 90, 96,

135, 146, 148, 155, 171, 177, 181,
182, 192, 194, 198, 229, 240, 244,
247, 266, 267, 274, 302, 305, 309,
316, 331, 384, 386, 388, 395, 396,
398, 429, 431, 479, 503, 538

Master boot record (MBR), 58, 59, 62–65
MBR, see Master boot record (MBR)
Memory

RAM, 54, 68, 122, 123, 136, 438
type, 121, 122
virtual, 54, 72, 116, 121–123, 125, 249, 491

Message of the day (MOTD), 305
Meta-characters, 137, 138, 143, 148, 150–155
Microsoft

windows, 180
windows Subsystem for Linux, 416

Midnight Commander, 17, 18, 20–31,
34–37, 556

MINIX, 128, 129
Motherboard, 191, 192, 195, 196, 198, 199,

201–203, 209, 212, 327, 350
Mount point, 1, 8, 10, 62, 133, 384–386,

391, 393, 423

N
NAT, 343, 530

Network, 530
Network

interface, 79, 327, 332, 348, 351, 352,
356, 360, 528

interface card (NIC), 46, 115, 327–329,
335, 337, 348–352, 360, 385, 415

interface configuration file, 351–359
Network Address Translation, see NAT
NTP, 298–305, 367, 389, 539

O
Octal, 56, 57
Open Source

definition, 381
GPL2, 289
license, 289
software, 535

Opensource.com, 68, 125, 126, 416, 511
Operating system, 44, 45, 48, 67, 68, 106,

121, 135, 161, 180–184, 189, 192,
201, 251, 276, 305, 362, 411, 414,
466, 495, 496, 561

definition, 67
distributions

CentOS, 86, 300
Fedora, 2, 300
RHEL, 300
Ubuntu, 352

flexibility, 139

P, Q
Packages, 31, 35, 175, 254, 265, 267,

275–277, 281, 282, 286, 288, 300,
453, 512

installing, 453
removing, 263
RPM, 171, 172, 254, 267, 300, 340

Partition
size, 124

Path, 24, 103, 175, 227, 249, 286, 307,
314, 327, 370, 417, 419, 481, 552,
554, 555

PCIe, see PCI Express (PCIe)
PCI Express (PCIe), 209–211, 350
Peripheral Component Interconnect

(PCI), 119, 194, 209, 211, 349, 350,
415, 451

Index

578

Permissions, 27, 35, 49, 77, 224, 225, 227,
230, 268, 271, 272, 292, 460, 461,
484, 512, 556

directory, 77, 224–225, 268, 461
file, 27, 49, 230, 461
group, 268
user, 81, 230, 268, 271, 292, 461

PHB, see Pointy-Haired Boss (PHB)
Philosophy

Linux, 65, 182, 220, 256, 262, 284, 319,
377, 523, 542

Pipe, 53, 56, 210, 254, 255, 385, 412, 429, 477
Plain text, 22, 138, 169, 174, 179, 352, 383,

404, 474, 476, 516, 520
Pointy-Haired Boss (PHB), 252, 254, 264,

295
Portable, 120, 205
POST, see Power-On Self-Test (POST)
Power-on self-test (POST), 522
Present working directory (PWD), 18, 21,

32, 37, 111, 114, 149, 176, 232,
246–248, 255, 257, 268, 292, 311,
312, 353, 357, 358, 385, 387, 430,
432, 436, 439, 454, 467, 535, 555

Printer
driver, 161
USB, 52, 53, 163

Privilege, 315, 368, 467, 542
Privilege escalation, 54, 55
Problem

determination, 69, 369, 426, 433, 440
resolution, 361

Problem solving, 385
Procedure, 4, 126, 131, 266, 279, 284, 286,

471, 500, 558
Process, 4, 11, 44, 54, 67–76, 79–85, 87–90,

92–96, 99–102, 106, 111, 113–114,
121, 148, 160, 161, 183, 192, 254,

263, 266, 270, 287, 305, 358, 361,
379–382, 412, 414, 416, 419, 422,
423, 436, 440, 446, 476, 488, 489, 538

interprocess communication, 412
IPC, 412

Processes, 54, 67–102, 106, 161, 305, 380,
381, 403, 412, 467, 488, 489, 538

Processor, 53, 71, 75, 108, 122, 140, 196
PWD, see Present working directory

(PWD)
Python, 93, 140, 147, 156

R
RAM, see Random access memory (RAM)
Random, 55–57, 62, 64, 65, 121, 175, 285,

315, 337, 350, 402, 471, 474–477,
505, 507

Random access memory (RAM), 53, 54,
68, 71, 106, 121–125, 136, 264, 315,
438, 489, 491

Randomness, 55–58, 285, 298, 475, 476
Raymond, Eric S., 289
Recovery, 1, 2, 266, 545, 551, 558–561

mode, 1
Redirection, 47, 55, 254
Repository

Fedora, 300
Requirements, 4, 48, 75, 126, 215, 264–266,

288, 289, 330, 463, 478, 560
rkhunter, 305
Router

StudentVM2, 369
Virtual, 330, 348, 357, 366, 509, 526, 530

RPM, 171, 252–254, 267, 300, 340
smartmontools, 118, 547
sysstat, 385, 400, 426, 441
using for backups, 517

Index

579

S
SAR, see System Activity Reporter (SAR)
SATA

Ports, 414
setting, 11

Satellite Server, 299
screen, 74, 78, 81, 82, 84, 92, 95, 153, 218,

242, 374, 381, 404, 418, 519–521
Script

cpuHog, 88
Script kiddie, 501, 502
Secure Shell (SSH), 20, 31, 52, 293, 294,

334, 362, 501, 503, 506, 508, 516–
521, 523, 528, 529, 532, 535, 536,
540, 562

Self-Monitoring, Analysis and Reporting
Technology (S.M.A.R.T.), 546

SELinux, 502, 530, 541
Sets, 46, 89, 115, 137, 170, 199, 201, 221,

305, 307, 310, 318, 331, 415, 453,
520, 523, 526, 527, 531, 533, 559

Shebang, 171, 268, 269, 280
Shell

Bash, 54, 77, 111, 140, 148, 154, 221,
224, 245, 247, 262, 268, 269, 307,
309, 453, 516

Korn, 230
ksh, 230
login, 179
nologin, 467
non-login, 52, 179
program, 77, 112, 153, 217, 228, 249,

263, 264, 399
scripts

comments, 295
cpuHog, 77
doit, 294

maintenance, 263
rsbu, 309
test1, 448

secure, 516
Z, 481
zsh, 481

Signals
SIGINT (2), 76, 82
SIGKILL (9), 76, 89
SIGTERM (15), 76, 88, 89, 101

SMART
failure rates, 551
High_Fly_Writes, 548, 549
Reallocated_Sector_Ct, 548, 549
Reported_Uncorrect, 548, 549
reports, 546
self-assessment test, 119, 547

Snapshot, 14, 285–287, 561
Software

open source, 535
proprietary, 289

Solaris, 128, 129
Special pattern

characters, 245
Speed

development, 264
performance, 548

Standard Input/Output (STDIO), 47, 182,
183, 441

STDIN, 57, 145
STDOUT, 54, 133, 147, 178, 233, 247,

293, 446, 477, 555
State of North Carolina, 252
Storage devices

hard drive, 47, 58
HDD, 307
RAM, 53, 54, 121, 122, 438, 489
SSD, 14, 121, 131, 191

Index

580

USB external drive, 45, 412
USB thumb drive, 65, 213, 286, 413,

414, 416, 539, 559
Stream

data, 43, 47, 48, 56, 137, 145, 147, 148,
154, 160, 164, 166, 175, 176, 184,
247, 322, 385, 406, 426, 437, 464,
475, 506, 513, 519

standard, 47
text, 138, 154

Swap
file, 121–123, 315
partition, 121–124, 126–133, 243
space, 71, 121–132, 134, 135, 243

SysAdmin
lazy, 102, 215, 220, 295

System Activity Reporter (SAR), 385
System Administrator, 289, 408, 460, 462,

472, 480, 489
systemd

default target, 387, 388
service, 452
targets, 380, 388, 391

SystemV, 127, 380–382, 390

T
Tab completion, 14, 354, 386, 481
tar

tarball, 507, 508, 552–556, 561
Tenets

use the Linux FHS, 256, 294, 360
Terminal, 20, 24, 36, 37, 47, 50–53, 65, 72,

77, 80–83, 88, 111, 177, 263, 293,
322, 353, 357, 385, 428, 430, 433,
435, 441, 447, 455, 467, 477, 481,
485, 508, 509, 515, 516, 519, 520

console, 50, 51
dump, 53
emulator, 20, 24, 47, 51, 293, 440, 508

Konsole, 20, 47, 51
Tilix, 440
xfce4-terminal, 24
Xterm, 47, 51

pseudo, 47, 51, 322
session, 36, 37, 47, 48, 51–53, 70, 73, 77,

78, 80–83, 88, 111, 142, 263, 268,
293, 311, 322, 323, 357, 385, 433,
439, 440, 449, 455, 467, 481, 488,
509, 514, 519

Teletype, 218
TTY, 52, 97, 99, 231, 493

Test
plan, 284, 285

Testing
automated, 292
final, 284, 285
fuzzy, 285–288
in production, 284

Thrashing, 123, 125, 315
Tilix, 51, 440
Torvalds, Linus, 43
Transformer, 154

U
udev, 45, 46, 50, 349, 351, 411–424
UID, 271, 292, 461–463, 466
Universal interface, 356
Unix, 4, 44, 45, 47, 164, 165, 228, 289, 330,

384, 411, 429
Updates, 265–267, 269, 276–278, 285,

287, 288, 293–295, 307, 317, 382,
490, 541

installing, 265, 382

Storage devices (cont.)

Index

581

Upgrade, 195
USB

bus, 119, 167, 205
external backup drive, 416, 422
live, 213, 563
thumb drive

prepare, 286, 413, 416–423, 563
User

ID, 54, 85, 231, 271, 466, 467,
508, 538

non-root, 53, 54, 68, 81, 91, 225, 272,
373, 470, 471, 504, 541, 542

privileged, 55, 368, 467, 542
root, 21, 53, 68, 96, 174, 175, 185, 201,

205, 243, 267, 268, 273, 274, 288,
292, 316, 322, 353, 357, 384, 389,
399, 405, 417, 464, 467, 470, 472,
482, 483, 487, 490, 504, 517, 519,
521, 535, 555

student, 21, 54, 99, 225, 505
UID, 271, 461, 466
unprivileged, 356, 459, 512

Utilities
core, 110, 120, 121, 562
GNU, 289

V
Variables

$?, 224
environment, 30, 275
$HOSTNAME, 276, 277
$MYVAR, 221, 222, 236, 237
$PATH, 179, 259
$SHELL, 23

VirtualBox
Manager, 11, 50, 59, 330

Virtual drive, 60, 128

Virtual Machine (VM), 2, 11, 12, 35,
49, 52, 80, 81, 83, 89, 95, 111,
112, 119, 127, 131, 163, 167,
168, 192, 193, 205, 207, 209,
276, 288, 293, 301, 325, 326,
329, 358, 384, 389, 392, 413–415,
443, 526, 546, 547

Virtual Memory, 54, 72, 115, 121–123, 125,
249, 491

Virtual Network, 325, 326, 330, 348, 358,
359, 509, 511, 526

VM, see Virtual Machine (VM)
Volume

Group, 2–14, 122, 128, 131, 132
Logical, 1–14, 84, 93, 121, 122, 126, 131,

133–135

W
WordPress, 289, 560

X, Y, Z
Xfce

desktop, 17–19, 35, 37, 38
panel, 99

Xterm, 47, 51

Command list
alias, 453
atop, 68, 69, 80, 83–84
awk, 145, 156
bash, 141, 169, 215, 216, 244, 258, 287
case, 275
cat, 47, 52, 54, 57, 66, 146, 294
cd, 245
chmod, 77, 225, 227, 268, 417

Index

582

chown, 485
cp, 494
date, 319, 396
dd, 53, 54, 57–59, 64, 242, 244
df, 129
dmesg, 436–438, 442, 546
dmidecode, 192–201
dnf, 269, 287
echo, 51, 218–220
egrep, 254
emacs, 306
exit, 278
fdisk, 64, 130
file, 22, 25, 26, 28, 30, 31
for, 249, 250
free, 108, 110, 249, 399
getopts, 276, 281, 291
grep, 98, 100, 142, 146–148, 154, 157,

440, 446
grub2-mkconfig, 268–270
htop, 68, 69, 86–92, 95, 101, 103,

110, 113
hwclock, 305, 307, 310
iostat, 426
journalctl, 405, 442, 443
ksh, 112, 230
ll, 515, 519, 520
logwatch, 440, 446–455
ls, 311
lsblk, 8, 12, 60, 128, 243, 418, 419
lshw, 192, 201–204
lspci, 121, 209–212
lsusb, 121, 205–207, 421
lvcreate, 10
lvextend, 6, 12, 133
lvs, 5, 131

man, 135
mandb, 266
mkdir, 226, 251
mkfs, 10, 62
mount, 63, 384, 391–394
nice, 81, 103
od, 53, 56, 180, 183
passwd, 474, 482
ps2ascii, 178, 179
pwd, 18, 21, 37, 176, 555
pwgen, 476, 477, 493
renice, 80, 85
RPM, 252, 300
rsync, 561, 562
runlevel, 387, 391
sar, 426–429
script, 153, 216, 228, 279, 446, 524
sed, 144, 154–157
sensors, 94
seq, 248
shred, 242, 244
smartctl, 118, 119, 546, 549
sort, 253, 477
stat, 97, 110, 311
strings, 138, 221, 237
su, 459, 481, 488
sudo, 542
systemctl, 320, 384–388
tail, 311, 440, 446
tar, 507, 508, 552, 561, 563
time, 242, 244
top, 69, 70, 73, 76, 82, 112, 127
touch, 226
umask, 246
umount, 392, 393
uniq, 253

Index

583

unset, 280
useradd, 480–483, 485, 493
usermod, 482, 485
vgcreate, 9
vgextend, 12
vgs, 5, 15
vi, 29, 306
vim, 29, 30, 32, 306, 310
w, 52, 130
watch, 110
who am i, 51, 52
zsh, 481

List of operators
#!, 268
&, 321
&&, 224–226
∗, 151, 245
<, 73, 74
>, 73, 74
>>
?, 137, 151
|, 152
||, 226

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Logical Volume Management
	Objectives
	The need for logical volume management
	Running out of disk space in VirtualBox
	Recovery

	LVM structure
	Extending a logical volume
	Extending volume groups
	Create a new volume group – 1
	Create a new volume group – 2

	Tips
	Advanced capabilities
	Chapter summary
	Exercises

	Chapter 2: File Managers
	Objectives
	Introduction
	Text-mode interface
	Graphical interface

	Default file manager
	Text-mode file managers
	Midnight Commander

	Other text-mode file managers
	Vifm
	nnn

	Graphical file managers
	Krusader

	Thunar
	Dolphin
	XFE
	Chapter summary
	Exercises

	Chapter 3: Everything Is a File
	Objectives
	What is a file?
	Device files
	Device file creation

	udev simplification
	Naming rules

	Device data flow
	Device file classification
	Fun with device files
	Randomness, zero, and more
	Back up the master boot record
	Implications of everything is a file
	Chapter summary
	Exercises

	Chapter 4: Managing Processes
	Objectives
	Processes
	Process scheduling in the kernel

	Tools
	top
	Summary section
	Process section

	More about load averages…
	…and signals

	CPU hogs
	Process scheduling
	Nice numbers

	Killing processes
	Other interactive tools
	atop
	Summary section
	Process section
	Configuration

	htop
	Summary section
	Process section
	Configuration

	Glances
	Summary section
	Process section
	Sidebar
	Configuration

	Other tools

	The impact of measurement
	Chapter summary
	Exercises

	Chapter 5: Special Filesystems
	Objectives
	Introduction
	The /proc filesystem
	The /sys filesystem

	Swap space
	Types of Linux swap
	Thrashing
	What is the right amount of swap space?
	Adding more swap space on a non-LVM disk partition
	Adding swap to an LVM disk environment
	Other swap options with LVM

	Chapter summary
	Exercises

	Chapter 6: Regular Expressions
	Objectives
	Introducing regular expressions
	Getting started
	The mailing list
	The first solution
	The second solution

	grep
	Data flow
	regex building blocks
	Repetition
	Other metacharacters

	sed
	Other tools that implement regular expressions
	Resources
	Chapter summary
	Exercises

	Chapter 7: Printing
	Objectives
	Introduction
	About printers
	Print languages
	Printers and Linux
	CUPS
	Creating the print queue

	Printing to a PDF file
	File conversion tools
	a2ps
	ps2pdf
	pr
	ps2ascii

	Operating system–related conversion tools
	unix2dos
	dos2unix
	unix2mac and mac2unix

	Miscellaneous tools
	lpmove
	wvText and odt2txt

	Chapter summary
	Exercises

	Chapter 8: Hardware Detection
	Objectives
	Introduction
	dmidecode
	lshw
	lsusb
	usb-devices
	lspci
	Cleanup
	Chapter summary
	Exercises

	Chapter 9: Command-Line Programming
	Objectives
	Introduction
	Definition of a program
	Simple CLI programs
	Some basic syntax
	Output to the display
	Something about variables

	Control operators
	Return codes
	The operators

	Program flow control
	true and false
	Logical operators
	Syntax
	File operators
	String comparison operators
	Numeric comparison operators
	Miscellaneous operators

	Grouping program statements
	Expansions
	Brace expansion
	Tilde expansion
	Pathname expansion
	Command substitution
	Arithmetic expansion

	for loops
	Other loops
	while
	until

	Chapter summary
	Exercises

	Chapter 10: Automation with Bash Scripts
	Objectives
	Introduction
	Why I use shell scripts
	Shell scripts
	Scripts vs. compiled programs

	Updates
	About updates
	Create a list of requirements
	The CLI program
	Convert the CLI program to a script
	Add some logic
	Limit to root
	Add command-line options
	Check for updates
	Is a reboot required?
	Adding a Help function
	Finishing the script

	About testing
	Testing in production
	Fuzzy testing
	Testing the script

	Making it better
	Licensing
	Automated testing
	Security
	Additional levels of automation
	Chapter summary
	Exercises

	Chapter 11: Time and Automation
	Objectives
	Introduction
	Keeping time with chrony
	The NTP server hierarchy
	NTP choices
	Chrony structure
	Client configuration
	chronyc as an interactive tool

	Using cron for timely automation
	The crond daemon
	crontab
	cron examples
	crontab entries

	Other scheduling options
	/etc/cron.d
	anacron

	Thoughts about cron
	Scheduling tips
	Security
	cron resources

	at
	Syntax
	Time specifications
	Security

	Cleanup
	Chapter summary
	Exercises

	Chapter 12: Networking
	Objectives
	Introduction
	About IPv6

	Basic networking concepts
	Definitions
	MAC address
	IP address
	IP address assignments

	TCP/IP
	The TCP/IP network model
	A simple example

	CIDR – Network notation and configuration
	Network classes
	Along came a CIDR
	Variable Length Subnet Masking

	DHCP client configuration
	NIC naming conventions
	How it works – sort of

	NIC configuration files
	Create an interface configuration file

	The interface configuration file
	The network file
	The route-<interface> file
	Other network files

	Network startup
	The NetworkManager service

	Name services
	How a name search works
	Using the /etc/hosts file

	Introduction to network routing
	The routing table

	iptraf-ng
	Cleanup
	Chapter summary
	Exercises

	Chapter 13: systemd
	Objectives
	Introduction
	Controversy
	Why I prefer SystemV
	Why I prefer systemd
	The real issue

	systemd suite
	Practical structure

	systemctl
	Service units
	Mount units

	systemd timers
	Time specification
	Timer configuration

	systemd-analyze
	Journals
	Chapter summary
	References
	Exercises

	Chapter 14: D-Bus and udev
	Objectives
	/dev chaos
	About D-Bus
	About udev

	Naming rules
	Making udev work
	Using Udev for your success
	A basic script
	Unique device identification
	Refining the rule into something useful
	Security
	Udev in the real world
	Udev is your Dev

	Chapter summary
	Exercises

	Chapter 15: Logs and Journals
	Objectives
	Logs are your friend
	SAR
	logrotate
	messages
	Mail logs
	dmesg
	secure
	Following log files
	systemd journals
	logwatch
	Chapter summary
	Exercises

	Chapter 16: Managing Users
	Objectives
	Introduction
	The root account
	Your account
	Your home directory

	User accounts and groups
	The /etc/passwd file
	nologin shells
	The /etc/shadow file
	The /etc/group file
	The /etc/login.defs file
	Account configuration files

	Password security
	Password encryption
	Generating good passwords
	Password quality

	Managing user accounts
	Creating new accounts
	The useradd command

	Creating new accounts by editing the files
	Locking the password
	Deleting user accounts

	Forcing account logoff
	Setting resource limits
	Chapter summary
	Exercises

	Chapter 17: Security
	Objectives
	Introduction
	Security by obscurity
	What is security?
	Data protection

	Security vectors
	Self-inflicted problems
	Environmental problems
	Physical attacks
	Network attacks
	Software vulnerabilities

	Linux and security
	Login security
	Checking logins
	Telnet
	SSH
	The SSH server

	Firewalls
	firewalld
	Understanding the rules
	Deleting and adding rules

	iptables
	Converting to IPTables
	Understanding the rule set
	Managing rules with IPTables

	Fail2Ban
	PAM
	Some basic steps
	Chapter summary
	Exercises

	Chapter 18: Backup Everything – Frequently
	Introduction
	Backups to the rescue
	The problem

	Backup options
	tar
	Off-site backups
	Disaster recovery services
	Options
	What about the “frequently” part?
	How frequent is “frequently?”
	What does “full” really mean?
	All vs. diff
	Considerations for automation of backups
	Dealing with offline hosts
	Advanced backups

	Chapter summary
	Exercises

	Bibliography
	Books
	Web sites

	Index

