
Architecting
and Operating
OpenShift Clusters

OpenShift for Infrastructure
and Operations Teams
—
William Caban

Architecting and
Operating OpenShift

Clusters
OpenShift for Infrastructure and

Operations Teams

William Caban

Architecting and Operating OpenShift Clusters

ISBN-13 (pbk): 978-1-4842-4984-0 ISBN-13 (electronic): 978-1-4842-4985-7
https://doi.org/10.1007/978-1-4842-4985-7

Copyright © 2019 by William Caban

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249840. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

William Caban
Columbia, MD, USA

https://doi.org/10.1007/978-1-4842-4985-7

To my wife, Maria, who has always supported my constantly
traveling job and my urge to drive technical excellence.

You are, and always will be, my perfect wife and the
supermom to our wonderful children.

To my son Seth and to my daughter Juliette for their patience
with the many days and weekends I had to unplug from

everything to stay home writing. Thank you for your
understanding and support. You two are the greatest son

and the greatest daughter a father can have.

To my parents, Willie and Annie, without whom none of
my success would be possible.

v

Chapter 1: The OpenShift Architecture ��� 1

Linux Containers ��� 1

Linux Container: Under the Hood ��� 2

Container Specifications �� 5

Container Runtime and Kubernetes ��� 7

Introduction to OpenShift Architecture Components ��� 8

Kubernetes Constructs �� 9

OpenShift Constructs �� 16

Master Nodes �� 17

Infrastructure Nodes ��� 20

App Nodes ��� 21

OpenShift Consoles ��� 22

OpenShift Routers ��� 25

OpenShift Registry �� 29

Summary��� 29

Chapter 2: High Availability �� 31

Control Plane and Data Plane�� 31

HA for Control Plane �� 32

HA for ETCD ��� 32

HA for Master Services �� 36

Table of Contents

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

vi

HA for OpenShift Consoles �� 44

HA for Logging, Metrics, and Monitoring ��� 45

HA for Data Plane �� 52

HA for OpenShift Router �� 53

HA for Container Registry�� 53

Summary��� 54

Chapter 3: Networking �� 55

East-West Traffic ��� 56

OpenShift SDN ��� 57

Flannel ��� 69

OpenShift with Third-Party SDN �� 71

North-South Traffic �� 73

HAProxy Template Router �� 74

Summary��� 76

Chapter 4: Storage �� 77

OpenShift Storage ��� 77

Kubernetes Storage Constructs �� 80

PersistentVolume Status ��� 81

Reclaim Policy ��� 82

Access Modes ��� 82

OpenShift PersistentVolume Plugins ��� 83

FlexVolume �� 84

With Master-Initiated Attach/Detach ��� 86

Without Master-Initiated Attach/Detach �� 86

CSI ��� 87

OpenShift Ephemeral �� 88

OpenShift Container Storage��� 89

OCS Converged Mode �� 90

OCS Independent Mode ��� 91

OCS Storage Provisioning �� 92

Table of ConTenTs

vii

Storage Classes �� 93

OpenShift with Third-Party Storage �� 94

DriveScale Composable Platform �� 95

HPE 3PAR ��� 95

HPE Nimble �� 96

NetApp Trident ��� 96

OpenEBS (OSS, MayaData) �� 97

Summary��� 98

Chapter 5: Load Balancers ��� 99

Load Balancer Overview ��� 99

Load Balancer Considerations �� 100

Considerations for Master Nodes �� 100

Considerations for Infrastructure Nodes ��� 101

Considerations for Specialized Protocols �� 104

Summary��� 108

Chapter 6: Deployment Architectures ��� 109

Minishift �� 110

OCP 3�11 Deployment Architectures ��� 112

Prerequisites ��� 112

Activate and Assign OpenShift Subscriptions �� 116

Prepare OCP 3�11�x Installer on Bastion �� 117

Enable Password-less SSH�� 117

OpenShift Ansible Inventory File �� 117

Sample Deployment Scenarios �� 130

Single Node Deployment (All-in-One) �� 131

Non-HA Control Plane Deployment �� 140

Full-HA Control Plane Deployment �� 142

Deploying OpenShift �� 154

Uninstalling OpenShift ��� 154

Bastion Node as Admin Jumphost ��� 155

Table of ConTenTs

viii

OpenShift 4�x Deployments (AWS) �� 156

Prerequisites ��� 156

OpenShift 4�x Deployment Architecture ��� 157

OCP4 Deployment to AWS (IPI Mode) ��� 157

Installing OCP4 on AWS ��� 159

Deployment Progress �� 162

Configuring the Identity Provider ��� 164

Summary��� 167

Chapter 7: Administration �� 169

User and Groups ��� 169

Virtual Groups and Virtual Users ��� 170

Authentication, Authorization, and OpenShift RBAC �� 171

RBAC �� 172

Default Cluster Roles ��� 173

Security Context Constraints ��� 174

SECCOMP Profiles�� 177

Enabling Unsafe SYSCTL ��� 178

Identity Providers ��� 179

Managing Users and Groups ��� 181

Using Service Accounts ��� 182

Quotas and Limit Ranges �� 184

OpenShift Service Catalogs��� 187

OpenShift Templates �� 188

Summary��� 193

Chapter 8: Architecting OpenShift Jenkins Pipelines ��� 195

CI/CD Pipelines As a Service with OpenShift �� 195

Jenkins Pipeline Build Strategy �� 197

Creating the Pipeline BuildConfig �� 199

Deploying the Pipeline BuildConfig �� 202

Table of ConTenTs

ix

Jenkinsfile with Source Code ��� 208

Multiproject Pipelines �� 210

OpenShift Client Plugin ��� 218

Custom Jenkins Images �� 218

Integrating External CI/CD Pipelines ��� 220

Summary��� 220

Chapter 9: Day-2 Operations �� 221

Managing Leftover Objects ��� 221

Garbage Collection �� 224

Node Optimizations ��� 225

Node Resource Allocation �� 225

Setting Max Pods Per Node ��� 226

Using the Tuned Profile �� 227

Eviction Policy ��� 228

Pod Scheduling ��� 229

Pod Priority�� 230

Summary��� 231

Chapter 10: Advanced Network Operations �� 233

Network Optimizations �� 233

Jumbo Frames and VXLAN Acceleration �� 233

Tuning Network Devices �� 235

Routing Optimizations ��� 236

Route-Specific Optimizations Annotations �� 237

IP Whitelists ��� 238

OpenShift Router Sharding �� 238

Supporting Non-HTTP/HTTPS/TLS Applications �� 239

Using IngressIP and ExternalIP �� 240

Using NodePorts and HostPorts ��� 243

Table of ConTenTs

x

Multiple NIC per POD ��� 244

OpenShift ServiceMesh ��� 246

Summary��� 250

Chapter 11: OCP 4�1 UPI Mode Bare- Metal with PXE Boot Deployment ��������������� 253

UPI Mode ��� 253

Bare-Metal with PXE Boot Example ��� 254

UPI Bare-Metal with PXE Boot��� 255

Prerequisites ��� 255

Preparing the Installation �� 266

Considerations with UPI Mode with PXE Boot ��� 267

Downloading RHCOS and Installation Binaries �� 268

Preparing the PXE Boot Images ��� 268

Installation �� 269

Creating the Configuration��� 270

Generating the Ignition Files �� 271

Bootstrap and Master Nodes ��� 272

Worker Nodes �� 276

Summary��� 280

Index ��� 281

Table of ConTenTs

xi

About the Author

William Caban has more than 25 years of experience in

IT and has been consulting and designing large-scale

datacenter solutions in multiple vertical markets. He

has worked for diverse customers ranging from financial

institutions, healthcare institutions, and service providers.

His personal motto is “Changing the world one ‘bit’ at a

time.” He has written several courses and training guides in

the past. This is his first book with Apress.

xiii

About the Technical Reviewer

James Cryer is a Lead Principal Engineer with over 8 years

of experience working with Cloud-native solutions on

AWS, GCP, and Azure. James has a passion for architecting

and developing highly available, fault-tolerant, and secure

systems. James’ experience is broad; he has worked in a

variety of sectors with companies such as the BBC, Investec

Asset Management, and, more recently, Sophos. When away

from his laptop, James loves to travel with his wife and child,

get outdoors, and read.

xv

Acknowledgments

This book is the result of my quest to find a way to provide additional technical

information about OpenShift Container Platform (OCP) and OKD to answer the type of

questions I see from the operations teams in our customers today. The same questions

my former self had many years ago when I started migrating from upstream Kubernetes

into a supported Kubernetes distribution.

This book has been possible thanks to the support from a brilliant Red Hat

OpenShift-SME community, the Red Hat OpenShift Business Unit, and each one of the

product managers and their teams which are the ones that make the OpenShift magic

happen. From these, I would like to give a special thank you to Marc Curry, Ben Breard,

Brian Harrington, Paul Morie, and William Oliveira. Thank you for the times you took to

reply an e-mail or hop in a call to answer my many questions trying to understand the

behind-the-scenes plumbing of the many features.

Also, some of the information in this book has been possible thanks to the extended

community from which I would like to give a special thank you to Salah Chaou and

Alpika Singh (DriveScale Inc.), Christopher Kurka (HPE), and Bin Zhou (Lenovo).

xvii

Introduction

The rapid evolution of the Kubernetes platform and the ecosystem around it represents

an excellent opportunity to drive modernization inside an organization while defining

new operational paradigms.

This book is for the architects and operations teams of those organizations using

OpenShift as one of their tools in their transformation. This is for the organization’s

hidden heroes that need to have a good understanding of how different elements

interact in such a platform to be able to optimize it for their organization’s specific

workloads. This is not a book listing all the existing commands for every possible option,

but a book explaining how the platform comes together to understand the possible

locations in features into where to apply fine-tunings for their optimization.

1
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_1

CHAPTER 1

The OpenShift
Architecture
To properly architect an OpenShift cluster, we need to understand the different

components of the platform, their roles, and how they interact with each other. This

base knowledge is important to be able to fine-tune OpenShift cluster design to your

organization’s need beyond what is covered in this book.

Before going into each main component of OpenShift, it is important to understand

how it relates to Linux Containers and Kubernetes.

 Linux Containers
Nowadays, when we see the term Linux Containers, it is easy to think it only refers

to Docker, but that is not the case. The term Linux Containers denotes a group of

technologies used to package and isolate applications, their dependencies, and their

runtimes, in a portable way so it can be moved between environments while retaining

full functionality.

A source of confusion is because the term Docker refers to various elements of a

technology that popularized the Linux Containers.

First, there is Docker Inc., the name of the company that popularized the Linux

Containers technology with the Docker platform. The Docker platform was originally

built as a series of enhancements on top of the LXC technology to bring better isolation

and portability to the containers.

Second, there is Docker Daemon which is the daemon or service that serves the

Docker API, handles the API requests, and manages images, containers, networks,

and volumes.

2

Finally, there are Images and Containers respectively referred to as the Docker Images

and Docker Containers. The Image is the read-only template containing the application,

the application dependencies, and the required runtime environment. All this packaged

in a standard format used by the Docker Daemon. The Container refers to a runnable

instance of an Image.

As it can be seen in Figure 1-1, Docker is a client-server application to build and run

containers following a standardized container format. The docker client is the tool used

to interact with the docker server over the API exposed by the Docker Daemon.

Note The terms Docker Daemon and Docker Engine are used interchangeably to
refer to the docker server.

 Linux Container: Under the Hood
Beyond the conceptual definitions of containers as an artifact containing an application

and all its dependencies, or as an artifact that is built once and deployed “anywhere,”

what is a Linux Container?

To understand containers and how they work, we must explore some important

building blocks at the Linux Kernel: namespaces and cgroups.

Figure 1-1. The Docker client-server architecture

ChapTer 1 The OpenShifT arChiTeCTure

3

Linux namespaces provide process isolation. There are seven1 kinds of Kernel namespaces:

• Mount: The mount namespace isolates the set of filesystem mount

points. This enables the creation of different views of the filesystem

hierarchy or making certain mount points read-only for processes in

different mount namespaces.

• UTC: This namespace enables for each container to have its own

hostname and NIS domain name.

• IPC: This isolates interprocess communication (IPC) resources

between namespaces. This enables more than one container to

create shared memory segments and semaphores with the same

name but is not able to interact with other containers’ memory

segments or shared memory.

• PID: Each process receives PID namespace provided. The container

only sees the processes within the container and not any processes

on the host or other containers.

• Network: This allows the container to only communicate with

internal or external networks. This provides a loopback interface as

the initial network interface. Additional physical or virtual network

interfaces can be added to the namespace. Each namespace

maintains a set of IP addresses and its own routing table.

• User: This isolates the user IDs between namespaces providing

privilege isolation and user ID segregation.

• Control Group (cgroup) (the namespace): This virtualizes the view

of cgroups for a set of processes enabling better confinement of

containerized processes.

The namespaces are Kernel-level capabilities. As such, each namespace has visibility

about all the host capabilities and system resources. Namespaces isolate system

1 In some documentation, you may find a statement about the existence of six namespaces, and
in other documentations, you will find seven namespaces listed. Those lists do not count the
cgroup namespace which virtualizes the cgroup capabilities as a namespace. For details about the
namespace vs. the capability, refer to the Linux man page cgroup_namespaces, the Linux man
page for cgroups, and the Linux man page for namespaces.

ChapTer 1 The OpenShifT arChiTeCTure

4

resources by providing an abstraction layer for the processes inside the namespaces. It

does this by creating a view where it appears as the processes have the global resources.

A way to think about namespaces is going back to our science fiction world of parallel

universes. Each namespace is a parallel reality or a parallel universe inside the universe

represented by the host. These parallel universes do not know of the existence of any

other universe and cannot interfere with them.

Now, if each namespace has a full view of the host system resources, by default, it

could assume it can consume all the resources it detects, for example, all the memory

and all the CPU resources. To limit the access to the system resources is the functionality

of the next building block: Control Groups or cgroups.

Control Groups (cgroups), the Kernel feature, are used for limiting, accounting,

and controlling resources (i.e., memory, CPU, I/O, check pointing) of a collection of

processes. A container is a collection of processes under a PID namespace. To control

and limit resources for a container, we use cgroups.

Bringing all these concepts together, we can visualize containers as illustrated in

Figure 1-2.

Figure 1-2. Linux namespaces and Containers

ChapTer 1 The OpenShifT arChiTeCTure

5

To explain the details of Figure 1-2, follow the numbers from the illustration with the

numbers of this list:

 1. Each Container has a unique PID namespace running its

group of process. Inside the Container, the first process is seen as

PID 1. From the host perspective, the Container PID is a regular

process ID.

 2. The Namespaces exist at the Kernel level. Namespaces provide the

isolation for the system resource but are part of the same Kernel.

 3. Control Groups or cgroups, the feature, are used to limit the access

to system resources by a group of processes.

 4. In addition to the PID namespace, Containers will have other

dedicated namespaces which provide their view of system

resources or they can use the default namespace which is shared

with the host.

 Container Specifications
As can be seen from the previous section, from the technical perspective, in its core,

Linux containers are a group of Linux processes existing in namespaces using cgroups to

control and limit the access to system resources.

The core building blocks for Linux Containers are simple but powerful. Following

the popularity of Docker containers, the industry recognized the need for a set of

specifications (Figure 1-3) supported by open communities to maintain compatibility

while enabling innovation and creation of solutions on top of the capabilities provided

by Linux Containers.

ChapTer 1 The OpenShifT arChiTeCTure

6

Today, the widely recognized container specifications are

 1. Open Container Initiative (OCI): The OCI specification defines

a standard container format. This is what is usually referred as the

Docker format (Figure 1-4).

Figure 1-3. The Container specifications

Figure 1-4. The OCI-compliant container image

Note Demystifying containers—an OCi-compliant image, or an image following
the Docker format, can be seen as a Tar file of a filesystem layout containing
the application binaries, its dependencies, and some XML formatted files with
metadata describing the container namespaces. a container with multiple layers is
a Tar file of Tar files, each representing a particular layer of the container.

ChapTer 1 The OpenShifT arChiTeCTure

7

 2. Container Storage Interface (CSI): The CSI specification

describes a standardized interface to present storage resources to

a container. Prior to this specification, each storage vendor had

to create, certify, and maintain their own storage plugin for every

container solution. With CSI, vendors maintain a single plugin

which can be used by any container solution supporting the

specification.

 3. Container Network Interface (CNI): The CNI specification

standardizes an interface to provide networking services

to containers. This helped in reducing the proliferation of

networking plugins which were incompatible among themselves.

 Container Runtime and Kubernetes
The creation of the OCI specification also provided the freedom to replace the container

runtime beyond the Docker Daemon. A container runtime only needs to understand the

OCI format to be able to run the container.

Traditionally, by default, container runtime like the Docker Daemon handles

containers in a single host. Over time, some of these tools evolved into fat daemons or

services trying to include container orchestration and to solve and handle too many

things (resource consumptions, scheduling, control, etc.).

Note for the remaining of this book, we use the term Linux Container,
Containers, and Container images to refer to a Linux Container following the OCi
specification.

With Kubernetes, Google provided a way to orchestrate, manage, and operate

containers at scale across thousands of nodes. Kubernetes abstracted the management

of individual containers with the notion of managing Pods and Services. Kubernetes,

as the container orchestration platform, requires minimal actions to be handled by the

container runtimes: create Pod, start Pod, stop Pod, and remove Pod.

With this new understanding, the Kubernetes community explored ways to replace

traditional fat daemons with purpose built container runtimes. The community defined

ChapTer 1 The OpenShifT arChiTeCTure

8

the Container Runtime Interface (CRI). CRI2 provides a specification for integrating

container runtimes with the kubelet service at each Kubernetes worker node. Since

then, there has been a proliferation of CRI-compliant container runtimes for Kubernetes

optimizing for speed, isolation, and breaking dependencies to a runtime daemon.

Among these new options, we can find containerd, Kata Containers, and CRI-O.

Note OpenShift 3.x supports the Docker Daemon as the default container
runtime. Starting with OpenShift 3.10, it also supports Cri-O as the container
runtime. With OpenShift 4.0, Cri-O will be the default container runtime.

 Introduction to OpenShift Architecture Components
OpenShift is built on top of Kubernetes. While Kubernetes provides the container

orchestration capabilities, Pod resiliency, Services definitions, and Deployment

constructs to describe the desire state of a microservice-based application, there are

many other components required to make it work. For example, Kubernetes does not

provide a default Software-Defined Networking (SDN) or a default method to steer

traffic into the applications running on Kubernetes clusters. It is up to the cluster admin

to bring additional tools and projects to operate and manage the Kubernetes cluster

and any application running on it. For the developers it also means they need to learn a

new CLI or YAML specification to be able to deploy and test their applications. For the

security teams, it means figuring out ways to map the organization’s policies into new

constructs and identifying additional projects to enforce additional ones not provided by

the default capabilities of Kubernetes.

These additional capabilities are part of what is provided out of the box

with OpenShift Container Platform or OKD (the upstream community project)

(see Figure 1- 5). In fact, at the time of this writing, OpenShift is a Kubernetes superset

combining over 200 open source projects into a fully integrated solution with strong

focus on a developer experience, operational capabilities, monitoring, and management

with strong and secure defaults. All these while being pluggable so platform admins

2 The CRI specification defines four actions: CreatePod, StartPod, StopPod, and RemovePod.

ChapTer 1 The OpenShifT arChiTeCTure

9

can replace out of the box components and services with their own. For example, using

third-party SDN to provide the networking capabilities or third-party storage solutions to

provide persistent storage for the applications running in the environment.

Note in this book the term OpenShift is used to denote both the OpenShift
Container platform (OCp), which is the red hat–supported product, and OKD, the
upstream community project. unless otherwise specified, everything in this book
applies to OCp and OKD.

Kubernetes Constructs
Having Kubernetes as its foundation, OpenShift inherits all the base constructs for the

Containers’ orchestration from Kubernetes and, in addition, extends them. A great deal

of these extensions come from adding the capabilities or functionalities that are

not part of the base of Kubernetes but that are required to successfully operate the

platform. Other extensions come from enforcing prescriptive best practices designed to

comply with the stability and regulations required on enterprise environments

(i.e., RBAC, CI/CD Pipelines, etc.).

Figure 1-5. OpenShift Container Platform (OCP) vs. OKD (formerly OpenShift
Origin)

ChapTer 1 The OpenShifT arChiTeCTure

10

Some of the important Kubernetes constructs inherited by OpenShift (not an

exhaustive list) are

• Pods: A Pod is a group of one or more tightly coupled Containers

sharing a set of Linux namespaces and cgroups (Figure 1-6). Among

those, the Containers inside the Pod share the same Mount and

Network namespace (i.e., same IP address and TCP/UDP ports)

(see per-Pod IP addresses in Figure 1-6). Within a Pod each Container

may have further sub-isolations (i.e., different UTC namespaces).

Pods communicate with each other using localhost.

• Services: A Service is a Kubernetes object that maps one or more

incoming ports to targetPorts at a selected set of target of Pods.

These represent a microservice or an application running on the

cluster. The Services are discoverable by Pods running on the cluster.

Generally, Pods interact with other applications or microservice on

the cluster through the Service object (Figure 1-7).

Figure 1-6. Example of Pod configurations

ChapTer 1 The OpenShifT arChiTeCTure

11

• ReplicationController (RC): The ReplicationController (the object)

ensures the requested number of Pods are running at any given time.

If there are too many Pods, the ReplicationController terminates

any number of Pods in excess of the specified amount. If there are

too few, the ReplicationController starts additional Pods until the

specified amount. In case of a Pod failure, or if Pods are deleted or

terminated, the ReplicationController takes care of re-creating the

failed, deleted, or terminated Pods to match the requested number of

Pods.

• ReplicaSets: The ReplicaSets are considered the next generation of

ReplicationControllers. From the high-level perspective, ReplicaSets

provide the same functionalities as the ReplicationControllers

with the difference being these are intended to be managed by

Deployments.

• Deployment (the object): The Deployment object is a declarative

configuration describing the desired state, quantity, and version of

Pods to deploy. The Deployment controller defines a ReplicaSet that

creates new Pods or executes a rolling upgrade with the new version

of the Pods. The Deployment Controller changes and maintains the

state of the Pod and ReplicaSet to match the desire state (Figure 1-8).

Figure 1-7. The Kubernetes Service object abstracts one or more Pods running an
application or microservice

ChapTer 1 The OpenShifT arChiTeCTure

12

• The steps illustrated by the pseudocode in Figure 1-8 are as follows:

1. The Deployment object creates a ReplicaSet with the

information of the desired state.

2. The ReplicaSet deploys the requested version and total

number of Pods.

3. In case of Pod failure (i.e., because of node failure), the

total number of Pods will be less than the desired amount.

4. The ReplicaSet will deploy additional Pods until the

number of desired replicas specified by the Deployment.

• Volumes: The Volumes provide persistent storage for the Containers

inside a Pod. Data in a Volume is preserved across Container restarts.

Volumes outlive Containers and remain in existence for the lifetime of

a Pod.

• PersistentVolume (PV): The PersistentVolume represents the actual

storage resource provisioned for the cluster. PVs are Volume plugins

with a lifecycle independent of any Pod that uses the PV.

Figure 1-8. Deployment and ReplicaSet

ChapTer 1 The OpenShifT arChiTeCTure

13

• PersistentVolumeClaim (PVC): The PersistentVolumeClaim is the

storage request for the PV storage resources. A PVC is bind to a PV

matching the requested storage characteristics and access mode.

Refer to Figure 1-9.

The Kubernetes architecture is comprised of the following core elements (not an

exhaustive list):

• Master Nodes: The master nodes are the nodes hosting core

elements of the control plane like (not an exhaustive list) the kube-

api- server, kube-scheduler, kube-controller-manager, and in many

instances the etcd database.

• kube-api-server: This component is what is commonly referred

as the Kubernetes API. This is the frontend API to the control

plane of the Kubernetes cluster.

• kube-scheduler: This component takes care of handling the

scheduling of Pods into nodes, taking into account resource

requirements, policy constraints, affinity or anti-affinity rules,

and other filters.

Figure 1-9. Relationship between Volume, PersistentVolumeClaim, and
PersistentVolume

ChapTer 1 The OpenShifT arChiTeCTure

14

• kube-controller-manager: This component runs multiple

controller services at the master. Among these controllers, we can

find (not an exhaustive list)

• Node Controller: This controller is responsible for detecting

node failures and triggering the appropriate response.

• Replication Controller (the controller): This controller is

responsible for ensuring the correct number of Pods are

running as requested by a replication controller (the object) in

the system.

• Endpoints Controller: This manages the Endpoint objects by

associating the correct Services and Pods.

• etcd: This component is a key-value store database used

extensively by Kubernetes to store configuration data of the

cluster representing the state of the cluster (i.e., nodes, pods state,

etc.) as well as for service discovery, among other things.

• Worker Nodes: The worker nodes (formerly known as minions) host

elements like the kubelet, kube-proxy, and the container runtime.

• kubelet: Also known as the node agent, is the Kubernetes agent

that runs on each node. The kubelet ensures containers are

started and continue to run as specified by the container manifest

(a YAML file describing a Pod) and updates the node accordingly.

• kube-proxy: A simple Kubernetes network proxy agent running

on each node. The kube-proxy abstracts network services defined

on the host, forwards traffic to the appropriate Service, and

provides traffic load balancing. It does this by managing iptables

rules of the host.

• A Container Runtime: Any CRI-compliant runtime capable of

running OCI-compliant Containers (i.e., Docker Daemon, CRI-O,

containerd, etc.).

ChapTer 1 The OpenShifT arChiTeCTure

15

• Ancillary Services: Services required for the proper operation of

the Kubernetes cluster but that are not technically considered to be

part of the Kubernetes components. These services may be running

as part of the Master Nodes, Worker Nodes, or dedicated Nodes, or

even be services external to the cluster. Among these services, we can

find DNS (i.e., SkyDNS or KubeDNS), Web UI Dashboards, container

resource monitoring services, and cluster-level monitoring and

logging services.

Figure 1-10 illustrates how all these elements integrate and interact to form the

Kubernetes architecture.

Figure 1-10. The elements of the Kubernetes architecture

ChapTer 1 The OpenShifT arChiTeCTure

16

 OpenShift Constructs
The OpenShift architecture builds on top of Kubernetes and is comprised of three types

of nodes:

• Master Nodes: These nodes are Kubernetes Master Nodes which may

be providing additional functionalities like the web console with the

self-service portal as well as the developers and operations-focused

dashboards.

• Infrastructure Nodes: These are Kubernetes Worker Nodes dedicated

to host functionalities like the OpenShift Routes and the OpenShift

internal registry.

• App Nodes or Nodes: These are the Kubernetes Worker Nodes used

to run the microservices and containerized applications deployed on

OpenShift.

Note The App Nodes are also referred to just as Nodes and you will find them as
such in some documentation. To avoid confusion, the book uses App Nodes.

As a superset of Kubernetes, within these nodes, beyond the Kubernetes elements,

there can be multiple integrated components from other Open Source projects that

work together to augment Kubernetes features and capabilities and form the OpenShift

Container Platform. A special focus of this integration is toward the ease of use for

developers and application owners.

A high-level view of the OpenShift node types is shown in Figure 1-11, and more

details are going to be covered in subsequent sections.

ChapTer 1 The OpenShifT arChiTeCTure

17

 Master Nodes
The Master Nodes are the main control elements of the OpenShift control plane.

These are Kubernetes Master Nodes and they provide the services expected from any

Kubernetes Master and additionally provide a series of functionalities built on top of

Kubernetes which create OpenShift. See Figure 1-12 for reference.

Figure 1-11. The OpenShift node types

ChapTer 1 The OpenShifT arChiTeCTure

18

From Figure 1-12 we can see the Kubernetes Master Node elements are present in

the OpenShift Master Nodes. The actual list of these will be dependent on the services

enabled for the cluster as many are optional services.

• Kubernetes DNS: The OpenShift 3.x releases are using SkyDNS as

part of Kube-DNS. As of the writing of this book, this is transitioning

to CoreDNS. By default, this DNS service listens on port 8053.

• OpenShift Web Console: This is the microservice providing the self-

service portal or developer console.

• OpenShift Console: This is the microservice providing the

operations console (former Tectonic console).

• Registry Console: This is the microservice providing a basic web UI

to interact with the internal container registry.

Figure 1-12. OpenShift Master Node details

ChapTer 1 The OpenShifT arChiTeCTure

19

• Additional APIs and Consoles: Many optional cluster services

have their own API interfaces and web frontends. These APIs and

frontends are provided as containers which, by default, will be hosted

in the Master Nodes. Some examples are Template Service Brokers

and the OpenShift Container Storage (glusterfs).

In addition, in Figure 1-12 we can see a partial list of services that may be present in

every OpenShift Node. Their presence depends on the services enabled for the cluster.

Let’s go into the details of some of them (the actual service names may have slightly

variations from the containers or Pods name):

• Fluentd: The Fluentd service runs in every node. It aggregates logs

from the host Node, including logs from Pods and Projects, and sends

them to the Elasticsearch (ES) database running on the Infrastructure

Nodes.

• node-exporter and kube-state-metrics: These services are part of

the OpenShift cluster monitoring solution based on Prometheus.

The node-exporter3 agent collects node hardware and OS metrics and

makes them available for Prometheus. The kube-state-metrics agent

converts metrics from Kubernetes objects (i.e., from the kubelet) into

metrics consumable by Prometheus.

• node-problem-detector: This is a service that runs in each node to

detect multiple problems4 on the node and reports them to the API

Server.

• dnsmasq: As part of the Kube-DNS service, this service is

automatically configured on all nodes. Pods use the node hosting

them as their default DNS. When receiving a name resolution

request, dnsmasq will send the query to the Kubernetes DNS at the

Master Nodes, and if not a resolution, it will try recursive DNS to the

upstream DNS server originally configured on the node.

3 For more details, visit https://github.com/prometheus/node_exporter
4 For more details, visit https://github.com/kubernetes/node-problem-detector

ChapTer 1 The OpenShifT arChiTeCTure

https://github.com/prometheus/node_exporter
https://github.com/kubernetes/node-problem-detector

20

Note every node is running dnsmasq listening on port 53. for this reason, nodes
cannot run any other type of DnS application.

• openshift-sdn: This consists of a series of privileged containers

providing the Software-Defined Network (SDN) of the OpenShift

cluster using Open vSwitch (OVS).

 Infrastructure Nodes
These are dedicated Kubernetes Worker Nodes hosting important elements for the proper

operation of the OpenShift Cluster. Among these, we have the Container Registry and

the OpenShift Router. Figure 1-13 illustrates some additional services running on the

Infrastructure Nodes.

Figure 1-13. OpenShift Infrastructure Node details

ChapTer 1 The OpenShifT arChiTeCTure

21

From the diagram in Figure 1-13, we can deduce on Infrastructure Nodes there are

some services which seem to overlap in functionalities. This is the case with services like

Hawkular, Cassandra, and Heapster which are being deprecated in OpenShift 3.11 and

being replaced by the Prometheus-based monitoring solution which is deployed and

managed by the Prometheus Operator.

As with the Master Nodes, the exact list of services running on the Infrastructure

Nodes is completely dependent on the services enabled for the cluster. Out of the

services shown in the illustration, only few deserve mention at this point:

• OpenShift Container Registry (OCR): The OpenShift Container

Registry is a containerized Docker Registry service used internally

by the cluster. Additional details are covered in the corresponding

section.

• OpenShift Router: The OpenShift Router is used to expose a

Kubernetes Service to external clients by a FQDN. Additional details

are covered in the corresponding section.

• Elasticsearch (ES) and Kibana: Elasticsearch is used to collect

all the logs sent by the Fluentd service running in every node.

The Kibana Web UI is used to interact with the data and create

visualization and dashboards of the aggregated data.

• Prometheus, Grafana, and the Prometheus Operator: These are the

components of the new OpenShift Monitoring and Metrics solution.

These are used to collect information about the health of the cluster

and all the services and components running on it. The Grafana Web

UI is used to create dashboards visualizing the status of the elements

being monitored.

 App Nodes
The OpenShift App Nodes, or simply OpenShift Nodes, are Kubernetes Worker Nodes

dedicated to running the workloads deployed to an OpenShift cluster. These include

applications, microservices, or containerized applications.

As it can be seen in Figure 1-14, the OpenShift App Nodes are dedicated to running

the applications deployed on the OpenShift cluster. Beyond the elements of the

ChapTer 1 The OpenShifT arChiTeCTure

22

Kubernetes Nodes, it contains the common OpenShift Services to provide the network

connectivity for the Pods, the DNS resolution, node monitoring, and log aggregation.

 OpenShift Consoles
OpenShift provides developer-centric consoles and operations-centric consoles.

The first console a user of the platforms receives is the Service Catalog console

(see Figure 1- 15) which contains the self-service catalog of pre-approved container

images and templates (see #2 of Figure 1-15) available for the particular user. These

catalogs can be cluster-wide catalogs or project-specific catalogs. From this initial

console, the user can choose from a drop-down menu (see #1 of Figure 1-15) to switch to

the operations Cluster Console.

Figure 1-14. OpenShift App Node details

ChapTer 1 The OpenShifT arChiTeCTure

23

The Cluster Console (Figure 1-16), sometimes referred to as the Cluster Administrator

Console, provides access to cluster operations and functions. At first glance it provides a

cluster health and status view (see #1 and #2 of Figure 1-16).

Figure 1-15. The OpenShift self-service portal also known as the developer
console

ChapTer 1 The OpenShifT arChiTeCTure

24

For users with deep understanding of the Kubernetes, this console also exposes the

Kubernetes objects with a more traditional Container as a Service (CaaS) experience

(see #1 of Figure 1-17). From here, a cluster admin has an aggregated view into the

Kubernetes and OpenShift objects like Namespaces, Pods, Deployments, Secrets,

Deployment Configs, and ConfigMaps.

Figure 1-16. The OpenShift Cluster Console also known as the cluster admin
console

ChapTer 1 The OpenShifT arChiTeCTure

25

In addition, the Cluster Console provides a graphical interface for interacting with

Kubernetes Operators (see #2 of Figure 1-17).

 OpenShift Routers
Steering traffic to applications running on a Kubernetes cluster, until this day with

Kubernetes 1.13, it is still highly dependent on where the Kubernetes cluster is running

(i.e., on-premise vs. at a Cloud provider). When using a Kubernetes offering from a

Cloud provider, they will provide a network service that maps to the LoadBalancer object

in Kubernetes. Those load balancers provided by the Cloud infrastructure are what is

used to steer traffic to the Service objects or Pods in the cluster.

Outside these options, it is up to the cluster operator to combine Kubernetes

constructs with third-party solutions or other Open Source projects to bring the traffic

into the cluster. Until now, the options are limited to NodePort, HostPort, and Ingress

with an Ingress Controllers. The particular implementation details for each one of these

objects are beyond the scope of this book, but it’s worth having a general overview of

Figure 1-17. The OpenShift Cluster Console managing subscriptions to
Kubernetes Operators

ChapTer 1 The OpenShifT arChiTeCTure

26

these concepts to properly understand the OpenShift Router. Figure 1-18 showcases

the main difference between using OpenShift Routes or Kubernetes Ingress and using

NodePorts or HostPorts to steer traffic into the cluster.

Figure 1-18. OpenShift Routes, Kubernetes Ingress, NodePorts, and HostPorts

Note OpenShift supports OpenShift Routes and the native Kubernetes Ingress,
NodePort, and HostPort resources.

The main difference to keep in mind is that when using NodePorts5 or HostPorts,6

the user is responsible for the configuration and updates to the configuration of the

5 When using NodePorts, the requested or dynamically assigned port is allocated in all the nodes
of the particular cluster. Additional details are available at https://kubernetes.io/docs/
concepts/services-networking/service/#nodeport

6 In general the use of HostPort is discouraged. Acceptable use cases are DaemonSets or some
networking services. Upstream HostPort documentation is scarce, but functionality is similar to
NodePorts but for a subset of Nodes.

ChapTer 1 The OpenShifT arChiTeCTure

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

27

external load balancer or proxy used to steer the traffic toward all the Nodes or subset of

Nodes when using HostPorts.

The OpenShift Router and the OpenShift Routes are a predecessor of the Ingress

Controller and the Ingress object. Even when Ingress and Ingress Controllers are still

available since Kubernetes 1.1, they are still considered Beta in Kubernetes 1.13.7 There is

still no feature parity between Routes8 and Ingress objects as it can be seen from Table 1-1.

Table 1-1. OpenShift Routes vs. Kubernetes Ingress9

Feature Ingress Route

Standard Kubernetes object X

external access to services X X

persistent (sticky) sessions X X

Load-balancing strategies X X

rate-limit and throttling X X

ip whitelisting X X

TLS edge termination X X

TLS re-encryption X

TLS passthrough X

Multiple weighted backends (split traffic) X

pattern-based hostname X

Wildcard domains X

7 Kubernetes Ingress feature state: https://kubernetes.io/docs/concepts/
services-networking/ingress/#prerequisites

8 OpenShift Routes: https://docs.openshift.com/container-platform/3.11/architecture/
networking/routes.html

9 Reference https://blog.openshift.com/kubernetes-ingress-vs-openshift-route/

When using the Ingress object in OpenShift, internally, the Ingress Controller creates

one or more Route objects to satisfy the conditions specified by the Ingress configuration

file. Listing 1-1 represents the Ingress configuration file, and Listing 1-2 is the resulting

Route configuration.

ChapTer 1 The OpenShifT arChiTeCTure

https://kubernetes.io/docs/concepts/services-networking/ingress/#prerequisites
https://kubernetes.io/docs/concepts/services-networking/ingress/#prerequisites
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://blog.openshift.com/kubernetes-ingress-vs-openshift-route/

28

Listing 1-1. Define an Ingress object for example.com

kind: Ingress

apiVersion: extensions/v1beta1

metadata:

 name: example

spec:

 rules:

 - host: example.com

 http:

 paths:

 - path: /example

 backend:

 serviceName: example-svc

 servicePort: 80

Listing 1-2. Resulting Route object for example.com

kind: Route

apiVersion: route.openshift.io/v1

metadata:

 # Note: The Route name is auto generated by route object

 # using the Ingress name as prefix

 name: example-a24dc

 ownerReferences:

 - apiVersion: extensions/v1beta1

 kind: Ingress

 name: example

 controller: true

spec:

 host: example.com

 path: /example

 to:

 name: example-svc

 port:

 targetPort: 80

ChapTer 1 The OpenShifT arChiTeCTure

29

 OpenShift Registry
One of the ancillary services required by Kubernetes is a container registry where the

OCI-compliant container runtime can pull the container images. OpenShift provides an

integrated container registry known as the OpenShift Container Registry (OCR). This is

not a replacement to the organization’s enterprise container registries. The purpose of the

OCR is to provide a built-in location to store images that are deployed into the cluster or

images build by the cluster using the native build strategies10 like Source-to-Image (S2I).11

The OpenShift Container Registry is hosted on the Infrastructure Nodes (refer to

Figure 1-13). Among the additional capabilities available with the OCR is the ability to trigger

redeployments if a new version of the container image becomes available in the registry.

 Summary
In this chapter we provided a map between the Kubernetes architecture and constructs

and the OpenShift architecture. We saw how OpenShift is built on top of the Kubernetes

primitives and then augment its capabilities by integrating additional Open Source

projects. The result is an integrated multitenant Kubernetes platform which enables

developers to deploy applications into a Kubernetes cluster without understanding or

learning the specifics of Kubernetes while providing the operations teams the ability

to manage Kubernetes with a low learning curve. All of this while being a pluggable

architecture in which any of the components can be swapped by other projects or

software providing the specific capabilities.

Chapter 2 goes into the details on how high availability is achieved for the OpenShift

platform and in each one of the core components.

10 For information about build strategies, visit https://docs.openshift.com/container-
platform/3.11/architecture/core_concepts/builds_and_image_streams.html

11 Source-to-Image (S2I) is an Open Source project (https://github.com/openshift/source-
to-image) to create container images from source code. For information on how to use S2I
in OpenShift, refer to https://docs.openshift.com/container-platform/3.11/creating_
images/s2i.html

ChapTer 1 The OpenShifT arChiTeCTure

https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html
https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html

31
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_2

CHAPTER 2

High Availability
As we saw from Chapter 1, OpenShift Container Platform is comprised of multiple

elements build on top of Kubernetes. When designing production environments, we

should understand the high availability (HA) built into the different elements of the

platform. Each one of the HA elements can be scaled independently.

The desired level of HA for each platform element and how a cluster will be scaled

out over time may have a direct influence in the initial design considerations.

In this chapter, we will cover the HA configurations, what may be considered the

most relevant elements of the OCP architecture, but the reader should keep in mind

there might be many other components which are not covered here.

 Control Plane and Data Plane
From the OpenShift and Kubernetes perspective, there is a clear definition of the Control

Plane, but, when it comes to the Data Plane, it is loosely defined and its definition is

normally based on the context it is being used. To avoid confusion, this is the way we use

the terms here:

• OpenShift Control Plane: The OCP Control Plane is comprised

of the Kubernetes Control Plane1 (Kubernetes Master2 and the

kubelet process in each node). For the purpose of this book, we are

considering the OpenShift consoles, logging, metrics, and cluster

monitoring services as part of this plane.

1 See official definition here: https://kubernetes.io/docs/concepts/#kubernetes-
control-plane

2 API Server, Controllers, Scheduler, and etcd database

https://kubernetes.io/docs/concepts/#kubernetes-control-plane
https://kubernetes.io/docs/concepts/#kubernetes-control-plane

32

• OpenShift Data Plane: The term OCP Data Plane, even when not

officially defined in the OKD and OCP documentation, is normally

used to describe the traffic forwarding plane of the SDN layer.

Note The terms Control Plane, Management Plane, and Data Plane have
a clear separation of concerns when used in computing, networking, and
telecommunications systems. There is no direct mapping of the Kubernetes
constructs into these concepts. Kubernetes, as a project, does not provide a clear
separation of concerns between the functions that would normally go into the
Control Plane and those that go into the Management Plane. When considering
the OpenShift architecture, we could clearly map OpenShift components for
each one of these planes. For example, the OpenShift Cluster Console is what
would normally be considered part of the Management Plane. Unfortunately, for
those of us used to architecting solutions with these differentiations, the terms
Management Plane and Data Plane have not been officially adopted by the OKD
and OpenShift community.

 HA for Control Plane
The elements of the OpenShift Control Plane are protected in different ways, and as

such, to achieve high availability differs for each one.

 HA for ETCD
The etcd database is one of the critical components of the Kubernetes. It is used to store

status and details of the Kubernetes objects, store information and status of the Nodes,

scheduler results, and much more.

From the technical point of view, etcd is a distributed key-value store using the RAFT

consensus algorithm.

Because of the consensus required by the RAFT algorithm (see details in section

“RAFT Consensus Algorithm”), the etcd service must be deployed in odd numbers

to maintain quorum. For this reason, the minimum number of etcd instances for

production environments is three.

ChapTer 2 high availabiliTy

33

Note Using one instance is considered a testing or demo environment as it is a
single point of failure.

From the operational aspects of etcd, the etcd service is considered an active-active

cluster. Meaning, an etcd Client can write to any of the etcd nodes and the cluster will

replicate the data and maintain consistency of the data across the instances.

Failures of the etcd database can be classified under one of the following scenarios:

 1. Losing the etcd Leader or losing less than (N-1)/2 nodes of an
N size etcd cluster: These are considered temporary failures from

which the cluster recovers automatically.

 2. Losing etcd quorum: This failure happens when the cluster loses

more than (N-1)/2 nodes of the etcd cluster. This is a major failure

as once the quorum is lost, the cluster is incapable of reaching

consensus and cannot accept any additional update. When

this failure happens, applications already running on OCP are

unaffected. However, the platform functionality is limited to read-

only operations. Under this failure scenario, it is not possible to

take actions such as scaling an application up or down, changing

deployment objects, and running or modifying builds.

 3. Losing the data of etcd cluster: Losing the data from the etcd

cluster will render the Kubernetes and OCP cluster unusable. The

only way to recover from this failure scenario is by restoring the

etcd data from backup.

From the deployment aspect, the etcd service can be colocated in the Master Nodes

with other master services. It is a common practice to colocate the etcd service in the

Master Nodes. In this case, a minimum of three Master nodes is required. The minimum

of three Masters is because the etcd deployment must guarantee quorum so the etcd

RAFT protocol can reach consensus in the case of a Node failure.

Note Up to OpenShift 3.11, there is the option to have external dedicated etcd
Nodes. Starting with OpenShift 4.0, the etcd service will always be on the cluster.

ChapTer 2 high availabiliTy

34

From the implementation perspective, in OpenShift 3.11 the etcd instances

are deployed as a series of privileged Pods running in the kube-system project3 or

namespace.4 Additional details are covered in “HA for Masters Services” section.

 RAFT Consensus Algorithm

The basis of the RAFT algorithm states that for any action (add, remove, update, etc.)

to be accepted, there needs to be quorum. Quorum is decided by having a number of

voting members greater than 50% of the total number of etcd instances or Nodes. For

example, with three etcd Nodes, a minimum of two etcd Nodes are required to have

quorum and achieve consensus.

The RAFT Consensus Algorithm consists of three states:

 1. Follower

 2. Candidate

 3. Leader

There are two timeout settings which control the process of the election of a Leader

node in the RAFT algorithm:

 1. Election Timeout: The time a Follower waits before becoming a

Candidate. This is a random number between 150ms and 300ms.

 2. Heartbeat Timeout: Regular interval of time a Leader sends

Append Entries messages to Followers to replicate logs.

All nodes start in the Follower state (see Step 1 of Figure 2-1). The nodes wait for

Election Timeout. If a Follower doesn’t hear from a Leader in Election Timeout, they

can become Candidate (see Step 2 of Figure 2-1) and initiate new Election Term. The

Candidate node votes for itself and Request Votes from the other nodes. If the receiving

node hasn’t voted yet in this Election Term, then it votes for the candidate and resets its

3 OpenShift Projects are Kubernetes Namespaces used to organize and manage content in
isolation for a community of users. https://docs.openshift.com/container-platform/3.11/
dev_guide/projects.html

4 Kubernetes Namespaces are used to divide cluster resources among multiple projects and users.
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/dev_guide/projects.html
https://docs.openshift.com/container-platform/3.11/dev_guide/projects.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

35

Election Timeout. A Candidate becomes Leader if it gets the majority of the votes from

the nodes (see Step 3 of Figure 2-1).

Once a Leader is elected, all changes to the system go through the Leader. A client

sends a change to the Leader. The Leader appends this to the Replication Log (see Step 1

of Figure 2-2). The change is sent to the Followers on the next Heartbeat (see Step 2

of Figure 2-2). Once an entry is committed and acknowledged by the majority of the

Followers (see Step 3 of Figure 2-2), the cluster has reached Consensus. A response is sent

to the client (see Step 4 of Figure 2-2).

Figure 2-1. The RAFT algorithm Leader election process

ChapTer 2 high availabiliTy

36

 HA for Master Services
When we talk about Master services, we are referring mainly to the API Server, the

Controllers, and the etcd service. In OpenShift these services are deployed as privileged

containers and pods (see Figure 2-3).

Figure 2-2. Update value in RAFT algorithm

ChapTer 2 high availabiliTy

37

From what can be seen in Figure 2-3, the kube-system namespace or project host

the containers Pods for the API Server (see #2 of Figure 2-3), the Controllers (see #3 of

Figure 2-3), and the etcd (see #4 of Figure 2-3) instances. Each Master Node contains an

API Server Pod, a Controller Pods and an etcd Pods.

Note The reader may notice the output in Figure 2-3 is the same when using
the kubectl or the oc5 command-line interfaces. The kubectl is the official
Kubernetes Cli and oc is the OpenShift Cli. The oc Cli includes the kubectl and
shares the same syntax. in addition to the standard features, the oc Cli extends
capabilities and brings native support to OCp features like authentication, routes,
DeploymentConfigs, imageStreams, and others.

Looking into the details of one of these Pods, the etcd Pods, we can clearly see they

are running as privileged containers (see #3 of Figure 2-4), and they are running in the

kube-system (see #2 of Figure 2-4) namespace or project.

Figure 2-3. The kube-system namespace or project

5 For details about the differences between oc and kubectl, visit https://docs.openshift.com/
container-platform/3.11/cli_reference/differences_oc_kubectl.html

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/cli_reference/differences_oc_kubectl.html
https://docs.openshift.com/container-platform/3.11/cli_reference/differences_oc_kubectl.html

38

Figure 2-4. Details of the etcd Pod definition highlighting the privileged mode

One of the reasons these Pods need the privileged access is because they access host

resources. As we can see in Figures 2-5, 2-6, and 2-7, some host resources are mapped as

volumes to the containers.

The details of the etcd Pod in Figure 2-5 highlight how paths from the Master Node

(see #1 and #3) are mapped as volumes for the container (see #1).

ChapTer 2 high availabiliTy

39

Figure 2-6 (see #4 and #5) provides the detail of the host paths mounted by the

API server Pod from the Master Nodes.

Figure 2-5. Details of etcd Pod highlighting host path mounts as volumes

Figure 2-6. Details of API server Pod highlighting host path mounts as volumes

ChapTer 2 high availabiliTy

40

Similarly, Figure 2-7 highlights the host paths from the Master Node (see #4 and #5)

mounted by the Controllers Pod.

Figure 2-7. Details of Controllers Pod highlighting host path mounts as volumes

In all these cases, the configuration files, certificates, and other information reside

on the Master Node but are consumed directly by these privileged Pods which are core

components of the Control Plane.

One of the missing elements of the Control Plane not running as a Pod or as

privileged Container is the kubelet service. The kubelet service runs as a traditional

privileged process on the Master Node (see Figure 2-8).

Note The reader may notice the hyperkube binary used to invoke the kubelet
service (see #1 of Figure 2-8). The hyperkube6 is the all-in-one binary with all the
Kubernetes server components: kube-apiproxy, kubelet, kube-scheduler,
kube- controller- manager, kube-proxy.

6 Refer to the GitHub project for additional details: https://github.com/kubernetes/
kubernetes/tree/master/cluster/images/hyperkube

ChapTer 2 high availabiliTy

https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube
https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube

41

Figure 2-8. Details of the kubelet process running in a node

In a multimaster deployment, the default is to use native high availability (HA) to

determine how to load balance the API requests across the Master Nodes. This native HA

method takes advantage of the built-in native HA master capabilities in OCP and can be

used with any load balancing solution.

Each Master Node runs all the master server components. Accessing the API server

at Master Nodes does not require session awareness or stickiness. Each Master Node

answers to the cluster internal name, the cluster external name, and its own hostname.

The OpenShift advanced installation using openshift-ansible supports the definition

of an [lb] section in the inventory file which automatically installs and configures an

HAProxy to act as the load balancing solution for the Master Nodes.

Note The [lb] definition ONly manages or load balances traffic toward the
Master Nodes. it does NOT load balance traffic toward the Infrastructure Nodes or
applications running on the OpenShift cluster.

To better illustrate this configuration, refer to Figure 2-9. As seen in Figure 2-9, there

is the concept of an External Cluster Name and Internal Cluster Name, and each Master

Node has their own assigned FQDN.

ChapTer 2 high availabiliTy

42

The External Cluster Name is defined in the advanced installation inventory file by

the openshift_master_cluster_public_hostname variable. Similarly, the internal cluster

name is specified by the openshift_master_cluster_hostname variable.

Figure 2-9. The native HA and load balancing for Master Nodes

Any external load balancer can be used to load balance the traffic among the Master

Nodes. The requirements for using external load balancer are simple:

 1. Define a virtual IP or VIP to represent the cluster.

 2. Configure the VIP for SSL passthrough.

 3. Configure the VIP to listen to the port specified by the openshift_

master_api_port variable of the inventory file. If no port is specified,

the API server will listen in port 8443 in every Master Node.

Note in some load balancer might require a different external VIP and an internal
VIP. Other load balancers will handle both external and internal cluster names with
a single vip.

ChapTer 2 high availabiliTy

43

 4. Configure the DNS to resolve the External Cluster Name to the

external VIP and the Internal Cluster Name to the internal VIP.

The HA styles for each of the master services can be summarized as in Table 2-1.

Some services handle their internal HA, while others are completely active-active HA.

Table 2-1. The Native HA of Master Services

Role HA Style Notes

etcd active- active The etcd service is highly redundant and using the raFT algorithm

to maintain data replication and consistency. by default, in

OpenShift, this is only accessible from within the cluster. There is no

external access or exposure to the etcd service.

api Server active- active any Master Node can handle requests to the api Server. The

external load balancer can choose the preferred method to

distributing the load.

When using the [lb] host, the HAProxy distributes the traffic using

the source balancing mode which is based on the hash of the

source ip address making the request.

Controllers

and

Schedulers

active-

passive

One Controller instance is elected as the cluster leader at a time.

each api Server handling a request interacts with their local

Controller instance. The local Controller instance is aware and

communicates with the leader Controller which is the only instance

scheduling and controlling pods in the cluster at any given time.

The specific configuration for the [lb] hosts is shown in Figure 2-10. As it can be seen,

the HAProxy is deployed to listen on openshift_master_api_port, in this example port 443

(#2 of Figure 2-10). The load balancing is a simple TCP passthrough (#3 of Figure 2-10)

toward the Master Nodes. The load balancing mode is a source (#4 of Figure 2-10) which

balances based on the resulting hash of the source IP address making the request.

ChapTer 2 high availabiliTy

44

Figure 2-10. Relevant HAProxy configuration for the [lb] host

Beyond what can be achieved by the load balancers, the system takes care of

restarting any of the Containers and Pods providing the master services just like it will

do to remediate deviations from the desired configuration or state for any other Pod

running an application in Kubernetes.

 HA for OpenShift Consoles
The OpenShift consoles are deployed as Kubernetes objects and use Services,

ReplicationController, or Deployment objects to maintain HA. Consider the output

shown in Figure 2-11. #1 of Figure 2-11 lists the Pods corresponding to each of the

Consoles: registry-console, openshift-web-console, and openshift-console.

The HA for the Container Registry Console is achieved by the Service named

registry- console and the ReplicationController named registry-console-1 (see #2 of

Figure 2- 11). The HA for the developer console (openshift-web-console) is achieved

by a Service named webconsole and a Deployment object named webconsole with its

corresponding ReplicaSet (see #3 of Figure 2-11). Finally, the HA for the OpenShift

operations console (openshift-console) is achieved by a Service named console and a

Deployment object named console with its corresponding ReplicaSet (see #4 of

Figure 2-11).

ChapTer 2 high availabiliTy

45

Figure 2-11. OpenShift Console Pods, ReplicationControllers, and
Deployments

With the use of the native Kubernetes constructs to protect these Consoles, there is

no additional configuration required for its HA.

 HA for Logging, Metrics, and Monitoring
The OpenShift Monitoring, Logging, and Metrics services are comprised of multiple

elements, all of which are deployed and managed as Kubernetes objects: Service,

DaemonSet, Deployment, ReplicationController, and DeploymentConfig. As such, these

mechanisms take care of maintaining the high availability for each one of these services.

The OpenShift Monitoring components are deployed on the openshift-monitoring

Namespace or Project.

ChapTer 2 high availabiliTy

46

Note a DeploymentConfig or OpenShift Deployment Configuration7 is
an OpenShift-specific object that predates Kubernetes Deployment. The
DeploymentConfig was built on ReplicationController to support the development
and deployment lifecycle of an application. in addition to the capabilities of the
Deployment, the DeploymentConfig provides the ability to specify deployment
strategies (i.e., rolling strategy, recreate strategy, etc.) to change or upgrade an
application; ability to set up triggers to automatically change, redeploy, or upgrade
an application and the deployment strategy to use during the transition; and the
ability to define hooks to be run before or after creating the ReplicationController.

Even when the system takes care of maintaining the availability of these services,

it is good to understand how these services are deployed should there be a need for

troubleshooting.

 OpenShift Monitoring

The OpenShift Monitoring is a cluster monitoring solution comprised of Prometheus8

with its plugin ecosystem and Grafana for the dashboards. OpenShift uses the Cluster

Monitoring Operator9 to configure, deploy, and maintain the OpenShift Monitoring stack.

The elements of OpenShift Monitoring are illustrated in Figure 2-12. The details of

each component are described in the following list:

• Prometheus: Prometheus itself is an Open Source project for

monitoring and alerting.

7 For more information about Deployments and deployment strategies, visit https://docs.
openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.
html

8 Prometheus is an Open Source project for monitoring and alerting. Additional information can
be found at https://prometheus.io/docs/introduction/overview/

9 The Cluster Monitoring Operator is an Open Source Kubernetes Operator to manage a
Prometheus-based cluster monitoring stack. More information can be found here:
https://github.com/openshift/cluster-monitoring-operator

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html
https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html
https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html
https://prometheus.io/docs/introduction/overview/
https://github.com/openshift/cluster-monitoring-operator

47

• Prometheus Operator: A Kubernetes Operator to create, configure,

and manage Prometheus and Alertmanager instances. In OpenShift

Monitoring, this component is deployed as a Deployment which

creates a ReplicaSet (RC). The RC maintains one prometheus-operator

Pod running in any of the Infrastructure Nodes.

• Cluster Monitoring Operator: Watches the deployed monitoring

components and resources of the OpenShift Monitoring and ensures

they are up to date. This element is deployed as a Deployment

which creates the ReplicaSet (RC). The RC maintains one cluster-

monitoring- operator Pod running in any of the Infrastructure Nodes.

• prometheus-k8s: The actual Prometheus instances responsible for

monitoring and alerting on cluster and OpenShift components. This

component is deployed as a StatefulSet and maintains a copy in every

Infrastructure Node.

• Alertmanager: A global cluster component for handling alerts

generated by all the Prometheus instances in the particular cluster.

This element is deployed as a StatefulSet and maintains two

prometheus-k8s Pods across any of the Infrastructure Nodes.

• node-exporter: Prometheus exporter or agent deployed on every

Node to collect metrics from its hardware and Operating System. This

element is deployed as a DaemonSet. There is one node-exporter Pod

in every Node of the cluster.

• kube-state-metrics10: Prometheus exporter or plugin to convert

metrics from Kubernetes objects into metrics consumable by

Prometheus. This is deployed as a Deployment which creates

a ReplicaSet and runs a kube-state-metric Pod in any of the

Infrastructure Nodes.

10 Additional details about the metrics collected by this agent can be found at https://github.
com/prometheus/node_exporter

ChapTer 2 high availabiliTy

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter

48

Figure 2-12. The OpenShift Monitoring architecture

11 Additional information can be found at https://grafana.com/grafana
12 Kubernetes Horizontal Pod Autoscaler (HPA) automatically scales the number of Pods.

For more information, visit https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

• Grafana11: An extensible Open Source metrics analytics and visualization

suite. This element is deployed as a Deployment which creates a

ReplicaSet and runs a Grafana Pod in any of the Infrastructure Nodes.

 Metrics

What is considered OpenShift Metrics are the original OpenShift components used to collect

metrics information from Containers, Pods, and Nodes across the entire OpenShift cluster.

These collected metrics are then available over the OpenShift Console or can be exported

to an external system. These metrics can also be used for the Horizontal Pod Autoscaler

(HPA)12 to scale the number of Pods in a ReplicationController or ReplicaSet based.

ChapTer 2 high availabiliTy

https://grafana.com/grafana
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

49

Note OpenShift 3.11 is the last version supporting the traditional OpenShift
Metrics service.13 These are being deprecated in OpenShift 4.0. Most of the
functionalities are replaced by the OpenShift Monitoring solution based on
the prometheus project, and the remaining functionality is superseded by the
Kubernetes Metrics Server.

All the components of the traditional OpenShift Metrics are deployed as Kubernetes

ReplicationControllers on the openshift-infra Namespace or Project. This service consists

of the following components:

 1. Heapster14: A service for the monitoring and analysis of compute,

memory, and network resource utilization and performance for

Kubernetes. Collects the information from the Kubelet APIs.

Note Kubernetes kubelet embeds cAdvisor15 which autodiscovers all containers
in the machine and collects CpU, memory, filesystem, and network usage statistics.
cAdvisor also provides the overall machine usage by analyzing the “root” Container
on the machine.

 2. Hawkular Metrics: This is the metric storage engine for Hawkular.

It uses the Cassandra database as the metric datastore.

 3. Cassandra: The Cassandra database is used to store the

metrics data.

13 See Release Notes for OpenShift 3.11 at https://docs.openshift.com/
container-platform/3.11/release_notes/ocp_3_11_release_notes.
html#ocp-311-major-changes-in-40

14 Heapster was deprecated in Kubernetes 1.11 in favor of Metrics Server and has been retired
in Kubernetes 1.13. Additional details are available here: https://github.com/kubernetes-
retired/heapster/blob/master/docs/deprecation.md

15 Additional information on how cAdvisors are embedded in kubelet is available
at https://kubernetes.io/docs/tasks/debug-application-cluster/
resource-usage-monitoring/#cadvisor

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40
https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md
https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

50

The interaction between all these components is illustrated in Figure 2-13.

16 For more details about the Kubernetes Metrics Server, visit https://kubernetes.io/docs/
tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server

17 Additional information on use cases and scalability of the Metrics Server is available at https://
github.com/kubernetes/community/blob/master/contributors/design-proposals/
instrumentation/metrics-server.md

Figure 2-13. The OpenShift Metrics architecture (deprecated in OCP 4.0)

 Metrics Server

Metrics Server16 is a cluster-wide aggregator of resource usage data like Container CPU

and memory utilization. The Metrics Server collects metrics from the Kubelet API of

each node. The resource usage metrics are made available in Kubernetes through the

Metrics API. It supersedes the Heapster service in OpenShift 4.0 and beyond.

The Metrics Server is considered the prerequisite for some advanced Kubernetes

features or capabilities like the Horizontal Pod Autoscaler (HPA), the Kubernetes

scheduler, and other functionalities that require access to metrics17 from nodes and

Pods. In OpenShift, this service runs as a Deployment which creates a ReplicaSet to

maintain a metrics-server Pod in one of the Master Nodes.

ChapTer 2 high availabiliTy

https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md

51

 Logging

The OpenShift Logging service aggregates logs for the OpenShift platform services,

Nodes, Containers, and applications. The OpenShift Logging service shown in

Figure 2- 14 is comprised of the following components:

• Elasticsearch (ES): A NoSQL database with multitenant full-text

search and analytics engine. This component is deployed in the

openshift-logging Namespace or Project as DeploymentConfig which

creates a ReplicationController to run the requested number of

Pods. The cluster administrator should rightsize18 the Elasticsearch

deployment to the requirements of the specific environment.

• FluentD: Data collection software that gathers logs from the Nodes

and feeds them to the Elasticsearch database. This element is

deployed in the openshift-logging Namespace as a DaemonSet. There

is a logging-fluentd Pod in every Node of the cluster.

• Kibana: An analytics and visualization Web UI for Elasticsearch. It

enables the creation of visualizations and dashboards for monitoring

Container and Pods logs by Deployment, Namespace, Pod, and

Container. Kibana is deployed in the openshift-logging Namespace as

a DeploymentConfig which creates a ReplicationController to run and

maintain the logging-kibana Pod running on an Infrastructure Node.

• Curator19: Allows administrators to configure scheduled maintenance

operations for the Elasticsearch database. These are performed

automatically on per-project basis. This component is deployed into

the openshift-logging Namespace as a Kubernetes CronJob object and

runs the logging-curator Pod on one of the Infrastructure Nodes.

18 For guidelines on rightsizing the Elasticsearch database, visit https://docs.openshift.com/
container-platform/3.11/install_config/aggregate_logging_sizing.html

19 For details on how to configure and use Curator, visit https://docs.openshift.com/
container-platform/3.11/install_config/aggregate_logging.html#configuring-curator

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging_sizing.html
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging_sizing.html
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#configuring-curator
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#configuring-curator

52

• Eventrouter: Watches Kubernetes events, formats them to JSON,

and outputs them to STDOUT to be ingested by FluentD.

The logging- eventrouter Pod is deployed to default Namespace

or Project as a DeploymentConfig where it creates a

ReplicationController and runs the Pod on an Infrastructure Node.

The first three components together (Elasticsearch, FluentD, and Kibana) are known

as the EFK stack.

Figure 2-14. The OpenShift Logging Service

 HA for Data Plane
As mentioned before, there is no official definition of the OpenShift Data Plane even

though the term is normally used to refer to the traffic forwarding plane of the SDN layer.

As with any other networking architecture, from the SDN layer perspective, we can

talk about north-south traffic and east-west traffic. From the OpenShift perspective, the

north-south traffic refers to the external traffic arriving into the cluster or the inbound

traffic toward the applications hosted on the platform. The east-west traffic refers to the

traffic within the cluster.

In a future chapter, we will go into details on how the different SDN options and

capabilities move traffic within the cluster (east-west traffic) and the specific features

they may provide. For now, this section focuses on the inbound traffic (north-south

ChapTer 2 high availabiliTy

53

traffic) arriving to the applications deployed on the cluster. By default, the traffic toward

the applications running on the cluster goes through the OpenShift Routers.

 HA for OpenShift Router
The OpenShift Router is an OpenShift component used to expose Services running on

the cluster to external clients. It does this by generating a unique FQDN and handling

requests to it by steering the traffic to the appropriate Service. The OpenShift Routers

are deployed in the default Namespace or Project as a DeploymentConfig which creates

a ReplicationController. The ReplicationController maintains the number of router Pod

specified by openshift_hosted_router_replicas in the inventory file. These Routers are

deployed to the Infrastructure Nodes. This behavior can be modified by specifying a

different Node label selector for the Pods using the openshift_router_selector variable in

the inventory file. If not specified, the default number of replicas is set to one.

In case of failure of a Router, the DeploymentConfig takes care of correcting the

environment by creating a new one.

In a later chapter, we will cover the OpenShift Router Sharding capabilities, and we

are going to see some of the advanced techniques that can be used to distribute Routes

among different Routers or even dedicate Routers to specific Namespaces or Projects.

 HA for Container Registry
The OpenShift Container Registry (OCR) is the default internal Container image registry

used by the cluster to store Container images built with one of the supported build

strategies, or among other things, to maintain a copy of Container images running in the

environment.

The OpenShift Container Registry is deployed into the default Namespace or Project

using a DeploymentConfig which creates a ReplicationController used to run and

maintain the desired number of docker-registry Pod running. Alternatively, the cluster

admin can choose to deploy the OCR as a DaemonSet.20

20 Deploying the Registry as a DaemonSet:https://docs.openshift.com/container-
platform/3.11/install_config/registry/deploy_registry_existing_clusters.
html#registry-daemonset

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset

54

When not specified, by default, the installer will deploy one docker-registry Pod

running on the Infrastructure Nodes. The number of docker-registry Pods to deploy and

the Nodes selectors to use to deploy the Pod can be specified by using the openshift_

hosted_registry_replicas and openshift_registry_selector variables, respectively, in the

advanced installer inventory file.

If no persistent storage options are specified for the registry, the default is to use

ephemeral storage and all data will be lost when the Pod is restarted.

When using multiple replicas, the persistent storage must support the

ReadWriteMany21 storage access mode. The supported storage22 backends for the

Registry range from GlusterFS to S3 compatible services.

Caution in production environments, the OpenShift Container registry should
NOT use NFS as the storage backend.

 Summary
The OpenShift architecture is designed for high availability of every one of its

components. Since these elements are built on top of Kubernetes using the Kubernetes

constructs, they benefit from the resiliency provided by these. As it can be seen from this

chapter, when the OpenShift cluster is deployed with multiple Master, Infrastructure,

and Application Nodes, the availability of all the other internal elements of the platform

is achieved with Kubernetes itself.

With the abstraction layers created by Kubernetes and the OpenShift platform,

Chapter 3 describes the traffic flow with different overlay SDNs when components

communicate inside the platform vs. when applications communicate outside the

platform.

21 Persistent volume access modes supported by OpenShift are described here: https://docs.
openshift.com/container-platform/3.11/architecture/additional_concepts/storage.
html#pv-access-modes

22 The full list of supported storage for registry is available at https://docs.openshift.com/
container-platform/3.11/install_config/registry/deploy_registry_existing_
clusters.html#storage-for-the-registry

ChapTer 2 high availabiliTy

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry

55
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_3

CHAPTER 3

Networking
Chapter 2 covers how high availability is achieved for the core components of

the platform. The communication for specific control plane components like the

synchronization of the etcd database, external connections to the OpenShift Console

(in OCP 3.11.x), the communication from the Kubelet to the Kubernetes APIs, and

external connections to the cluster’s Kubernetes API goes directly to Master’s Nodes IPs.

Any other intercommunication among components in the cluster uses the OpenShift

Networking service.

When considering the OpenShift Networking as a whole, there are the OpenShift SDN

plugins to handle the east-west traffic or the traffic within the cluster and the OpenShift

Router plugins to handle the north-south traffic, or the inbound traffic destined to

Services in the cluster.

The default OpenShift software-defined networking (SDN) solution is built on top

of Open vSwitch (OVS). With OpenShift, the cluster admin is free to choose to deploy

with one of the OpenShift native SDN plugins or they can opt to deploy the cluster using

a third-party SDN from the supported ecosystem. Should a different SDN is desired,

OpenShift supports Kubernetes CNI-compliant SDN solutions.

There are multiple Kubernetes CNI-compliant SDN solutions in the market. If

considering a third-party SDN, something to keep in mind is the alignment of the release

cycle between OpenShift and the third-party SDN solution. The alignment or lack

thereof, between the two, will have a direct impact in the supported upgrade cycle for the

whole platform.

This chapter provides an overview of the main OpenShift SDN solutions and

documents the traffic flow among Pods inside the cluster as well as how these

communicate to destination outside the cluster.

56

 East-West Traffic
For the east-west traffic, out of the box, OpenShift provides the following SDN plugins:

• OpenShift ovs-subnet

• OpenShift ovs-multitenant

• OpenShift ovs-networkpolicy

• OpenShift OVN1 (future)

• Flannel2 (limited)

In addition to the native SDN options, at the time of this writing, the following SDN

solutions are validated and supported on OpenShift directly by the third-party vendors3:

• Big Switch4

• Cisco Contiv

• Cisco ACI CNI5

• Juniper Contrail

• Nokia Nuage

• Tigera Calico

• VMware NSX-T

• Kuryr SDN6 (or Kuryr-Kubernetes)

1 The OpenShift Open Virtual Networking (OVN) plugin is considered a development preview.
The current capabilities for OCP OVN are similar to the ovs-networkpolicy. More information
about OVN can be found at the Kubernetes OVN upstream project under the Open vSwitch
project: https://github.com/openvswitch/ovn-kubernetes

2 Flannel is only supported when OCP is deployed over OpenStack environments which are
using a VXLAN-based SDN to work around issues with the possible VXLAN over VXLAN
encapsulation.

3 For an updated list of the supported third-party vendor, visit https://docs.
openshift.com/container-platform/3.11/install_config/configuring_sdn.
html#admin-guide-configuring-sdn-available-sdn-providers

4 Additional information about Big Switch Big Cloud Fabric Enterprise Cloud (BCF-EC) integration
with OpenShift is available here: www.bigswitch.com/tech-partner/red-hat

5 For more information about the Cisco ACI CNI Plugin for OCP, refer to www.cisco.com/c/en/
us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-
OpenShift-Architecture-and-Design-Guide.pdf

Chapter 3 NetworkiNg

https://github.com/openvswitch/ovn-kubernetes
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers
http://www.bigswitch.com/tech-partner/red-hat
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf

57

 OpenShift SDN
The native OpenShift Software-Defined Networking (SDN) configures an Open

vSwitch (OVS)–based overlay network to provide communication between Pods in

the cluster. This overlay network uses the VXLAN protocol as the SDN encapsulation

protocol.

Tip Standard VLaNs provide up to 4094 VLaN iDs to segregate ethernet traffic,
but it requires for every device between two endpoints to be Layer2 devices
supporting the ieee 802.1Q protocol and maintaining the same configuration;
hence its support in Cloud and hyperscaled datacenter environments is limited.
By default, VLaNs cannot work over the internet, and stretched Layer2 networks
are limited. on the other hand, the VXLaN protocol provides 224 or 16,777,216
VXLaN Network iDs (VNis or VNiDs) and works over any Layer2 or Layer3 transport
(including the internet). it only requires ip reachability between the two endpoints.
Because of this and other properties, VXLaN has become the preferred transport
protocol for SDN solutions.

Independent from the OpenShift SDN plugin in use, there are some default

behaviors. For every node registered into the cluster, OpenShift SDN allocates

a /23 subnet (see #2 of Figure 3-1) from the cluster network specified by the osm_

cluster_network_cidr variable in the inventory file of the openshift-ansible advanced

installer. If not specified, the default cluster network is 10.128.0.0/14.

The cluster network subnet assigned to each node is used to assign IPs to the Pods

at the node.

6 At the time of this writing, the Kuryr SDN is considered Technology Preview; for more
information, refer to https://docs.openshift.com/container-platform/3.11/install_
config/configuring_kuryrsdn.html

Chapter 3 NetworkiNg

https://docs.openshift.com/container-platform/3.11/install_config/configuring_kuryrsdn.html
https://docs.openshift.com/container-platform/3.11/install_config/configuring_kuryrsdn.html

58

Caution when considering the value for osm_cluster_network_cidr, keep in
mind that once a cluster is deployed, the cluster network cannot be arbitrarily
reconfigured.

Tip the osm_host_subnet_length variable in the inventory file can be used to
specify a different subnet length size, in bits, for the subnets to allocate to each
registered node. the default subnet length is 9 which is a subnet of size /23. this
is why, by default, openShift SDN allocates /23 per node, equivalent to two /24, to
each node.

Caution the host subnet length is one of the attributes that has a direct impact
in the maximum number of pods that can run per node, and its value cannot be
reconfigured after deployment.

To identify the cluster network subnet allocated to each Node, execute the “oc get

hostsubnet” command with a user with cluster-admin privilege. The resulting output will

be similar to Figure 3-1. The Host IP column (#1 in Figure 3-1) is the Nodes physical IP

address (i.e., the IP Address of eth0 in the Node) and the Subnet column (#2 in Figure 3-1)

is the cluster network subnet allocated to the corresponding Node.

Figure 3-1. Sample output showing the cluster network subnet allocation

Chapter 3 NetworkiNg

59

When removing or deleting a node from the cluster, the OpenShift SDN frees

the corresponding cluster network subnet. This subnet becomes available for future

allocations to new nodes.

Note Unless Master Nodes are also configured as Nodes, the openShift SDN
will not configure or allocate a cluster network subnet for the Master Nodes. if the
Master Nodes are not configured as Nodes, they do not have access to Pods via
the SDN.

In every Node that is registered as part of a cluster, the OpenShift SDN registers

the Node with the SDN Master. The SDN Master allocates a cluster network subnet for

the new Node (see #2 in Figure 3-1). This subnet is stored in the etcd database of the

cluster (see #2 in Figure 3-2). The OpenShift SDN at the Node creates the local host Open

vSwitch (OVS) named br0 with two interfaces: the vxlan_sys_4789 in port 1 and tun0 in

port 2 of the OVS br0 (refer to #4, #5, #8, #9, and #10 in Figure 3-2).

For each Pod in the Node, the local OpenShift SDN creates a vethXX interface and

assigns it to the OVS br0 (refer to #6 and #8 in Figure 3-2).

Figure 3-2. Diagram of the OpenShift SDN

Chapter 3 NetworkiNg

60

During the initialization, the local OpenShift SDN instance injects an OpenFlow

entry for every cluster network subnet that has been allocated by the SDN Master. After

this, the local OpenShift SDN of each Node monitors the SDN Master for subnet updates.

Upon detecting an update (i.e., new subnet allocation or deletion of a subnet), the local

OpenShift SDN injects or removes a corresponding OpenFlow entry in the ovsdb in br0.

The vxlan_sys_4789 of br0 is the interface that defines the VXLAN tunnels, or the

overlay network, that enables the communication between local Pods with Pods in

remote Nodes (refer to #1 of Figure 3-3). This interface is known as vxlan0 interface

inside the OVS and that is the name used in the OpenFlow entries.

Figure 3-3. Details of the vxlan0 and tun0 interfaces of OpenShift SDN

The tun0 interface gets the local cluster network subnet gateway address (see #4 of

Figure 3-4). This is the interface (see #2 of Figure 3-3) that provides NAT access from the

cluster network subnet to the external network (see #2 of Figure 3-4).

In addition to the local cluster network subnet gateway address, on each Node

the Kubernetes Service objects network is also pointed to the tun0 interface (see #1 of

Figure 3-4).

Chapter 3 NetworkiNg

61

In OpenShift, the Service network configuration is set by the openshift_portal_net

variable in the inventory file. If this variable is not defined, the default Service network is

172.30.0.0/16.

Tip after the initial installation of the cluster, the service network can be
expanded as long as the existing network is at the beginning of the new network
range.7

As new Pods are created on a host, the local OpenShift SDN allocates and assigns

an IP Address from the cluster network subnet assigned to the Node and connects the

vethXX interface to a port in the br0 switch. At the same time, the OpenShift SDN injects

new OpenFlow entries into the ovsdb of br0 to route traffic addressed to the newly

allocated IP Address to the correct OVS port connecting the Pod.

Figure 3-4. Details of routes and NAT for tun0

7 For details on expanding the Service network, refer to https://docs.openshift.
com/container-platform/3.11/install_config/configuring_sdn.
html#expanding-the-service-network

Chapter 3 NetworkiNg

https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network

62

 OpenShift ovs-subnet

The OpenShift ovs-subnet is the original OpenShift SDN plugin. This plugin provides

basic connectivity for the Pods. In the OpenShift official documentation, this network

connectivity is sometimes referred to as a “flat” Pod network. That may cause some

confusion with season network engineers. For any network engineer, the term “flat”

network will be interpreted as a network where there are no subnetting and sharing of

the same broadcast domain. That would be a very bad network design and would be

prone to constant broadcast storms. Fortunately, that is not the case with ovs-subnet.

With the OpenShift SDN ovs-subnet plugin, each Node still receives a dedicated /23

cluster network subnet (see #1, #2, and #3 of Figure 3-5). Then, the local OpenShift SDN

instance sets up OpenFlow entries for each cluster network subnet defined by the SDN

Master (#4, #5, and #6 of Figure 3-5 provide a conceptual representation of these).

The reason it is described as a “flat” Pod network is because there are no filters or

restrictions and every Pod can communicate with every other Pod and Service in the

cluster. So, from the networking perspective, this will be a fully meshed and unfiltered

network. In this case, any Pod in Node 1 (#8 of Figure 3-5) will have reachability to the

Pods in Node 2 and Node 3 (see #9 and #10 in Figure 3-5) and vice versa.

Note even when Pods may have reachability to any other Pod in the cluster, they
will only see open the Ports explicitly enabled by the destination Pod definition. For
example, a Pod definition opening tCp port 8080 will only allow traffic to tCp 8080
to arrive to the container inside the pod and will block everything else.

Chapter 3 NetworkiNg

63

 OpenShift ovs-multitenant

With OpenShift ovs-multitenant plugin, each Project receives a unique VXLAN ID, also

known as a Virtual Network ID (VNID). All the Pods and Services of a Project are assigned

to the corresponding VNID. By doing this, it maintains project-level traffic isolation.

Meaning, Pods and Services of one Project can only communicate with Pods and Services

in the same Project. By definition, there is no way for Pods or Services from one Project to

send traffic into another Project.

The underlying cluster network subnet allocation remains the same. Each Node

receives a dedicated /23 cluster network subnet (see #1, #2, and #3 of Figure 3- 6). After

this, the local OpenShift SDN instance sets up the OpenFlow entries for each cluster

network subnet defined by the SDN Master (see #4, #5, and #6 of Figure 3- 6).

After this point, it starts differencing from the other plugins. When using

ovs- multitenant, the OpenShift SDN Master monitors the creation and deletion of

Projects. Upon the creation of a new Project, it allocates and assigns a VXLAN ID to the

Project. This VXLAN ID is the one used to isolate the traffic of the Project (see #11 of

Figure 3-6).

Figure 3-5. Representation of OpenShift SDN ovs-subnet plugin

Chapter 3 NetworkiNg

64

When a new Pod is instantiated in a cluster using the ovs-multitenant plugin, during

the process of injecting the OpenFlow entries into br0, the OpenShift SDN includes

OpenFlow rules to tag traffic coming from the br0 port connecting the Pod with the VNID

corresponding to its Project. In addition, it adds explicit rules to only allow traffic into the

Pod if traffic’s VNID matches the Pod’s VNID or is coming from a privileged VNID 0.

Note when using ovs-multitenant, the VNiD=0 is considered privileged traffic
that can communicate with any Project, and any Project can send traffic to a
Project with VNID=0. openShift assigns Project “default” to VNiD=0 (see #11 of
Figure 3-6). among other Pods and Services, Project “default” contains the Pods
and Services for the internal Container Registry (OCR) and the OpenShift Router.

When sending traffic across the vxlan0 interface to a remote Node, the traffic is

tagged with the correct VNID matching the source Pod Project VNID. The VNID is used

as the VXLAN Tunnel ID (see #7 of Figure 3-6 where the colors represent the different

VNIDs). The receiving Node uses the VXLAN Tunnel ID as the VNID tag for the traffic.

This guarantees end-to-end isolation of traffic from different projects.

Figure 3-6. Representation of OpenShift SDN ovs-multitenant plugin

Chapter 3 NetworkiNg

65

 OpenShift ovs-networkpolicy

The OpenShift ovs-networkpolicy plugin, fully supported since OpenShift 3.7, is a

modern SND that implements the Kubernetes Network Policies8 capabilities. In the

default configuration, all Pods have reachability to any other Pod or Service in the cluster.

To restrict traffic to or from a Pod or to isolate Pods, a NetworkPolicy resource must

be defined (see #8 in Figure 3-7). Once a NetworkPolicy is configured in a Project or

Namespace selecting a particular Pod, there will be an implicit deny-all rule rejecting all

the traffic to that Pod and only allowing traffic from connections explicitly allowed by

the NetworkPolicy. These policies will not impact or affect any other Pods in the same

Project, and those will continue to receive all traffic directed to them.

8 Additional detail of Kubernetes Network Policies is available at https://kubernetes.io/docs/
concepts/services-networking/network-policies/

Figure 3-7. Representation of the OpenShift SDN ovs-networkpolicy plugin

For each Node, these network policies are enforced by OpenFlow entries in the bro0

switch (see #1 in Figure 3-7 for representation).

Chapter 3 NetworkiNg

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

66

The NetworkPolicy resource provides robust network policy mechanisms. As such,

it is up to the cluster-admin or Project admin to define the desired policies for a Project.

The additive property of these objects enables for multiple NetworkPolicy objects to be

combined together to create advanced and complex network policies.

As with any other Kubernetes resource, the NetworkPolicy resource is expressed in

YAML format.

Consider Listing 3-1 for an example NetworkPolicy definition to deny all traffic from

and to any Pod in a Project or Namespace. After applying this policy, all Pods in the

particular Project become isolated.

Listing 3-1. NetworkPolicy to deny all traffic and isolate Pods

Deny All Traffic (isolate all Pods in namespace)

oc create -f 3.1_deny-all.yaml -n <your-namespace>

kind: NetworkPolicy

apiVersion: networking.k8s.io/v1

metadata:

 name: deny-all

spec:

 podSelector:

 ingress: []

Figure 3-8 shows the process of applying this NetworkPolicy. On #1 in

Figure 3- 8, the output shows there are two Pods. In #2 in Figure 3-8, a tcpping Python

function is used to demonstrate a TCP connection to the PostgreSQL Pod is possible.

Then the policy is applied in #3 in Figure 3-8. On #4 and #5 in Figure 3-8, there is a

validation that the NetworkPolicy has been created. Finally, #6 in Figure 3-8 shows the

execution of tcpping, and this time the connection is blocked.

Chapter 3 NetworkiNg

67

Figure 3-8. Applying NetworkPolicy to isolate Pods by blocking all traffic to them

Following the same exercise, consider Listing 3-2. This NetworkPolicy allows every

Pod to communicate to any other Pod in the same Project and enables access to the

default Project.

Note when using NetworkPolicy resources, the communication with Project
“default” is required to get to the OpenShift Routers. this rule must be explicitly
allowed by the defined policy.

Listing 3-2. NetworkPolicy to allow traffic within Pods in the Project and with

the default Namespace

Allow traffic between Pods in the same Project and with the default

project (i.e. to access the routers)

oc label namespace default name=default

oc create -f 3.2_allow-same-project-and-default.yaml -n <your-namespace>

kind: NetworkPolicy

apiVersion: extensions/v1beta1

Chapter 3 NetworkiNg

68

metadata:

 name: allow-same-and-default-namespace

spec:

 ingress:

 - from:

 - podSelector: {}

 - from:

 - namespaceSelector:

 matchLabels:

 name: default

Figure 3-9 documents the application of Listing 3-2 NetworkPolicy (#1) to restore the

communication with the PostgreSQL Pod (#3).

Figure 3-9. Applying NetworkPolicy to allow traffic among Pods and with Project
default

Chapter 3 NetworkiNg

69

 Flannel
Flannel is one of the simplest SDN implementations of the Kubernetes network model.

It supports various overlay protocols (or backends) ranging from VXLAN to host-gw,

and many others.9 The OpenShift-supported Flannel configuration uses the host-gw

backend.10

Note in openShift, the support of the Flannel plugin is limited to deployments of
OpenShift Container Platform over the red hat openStack platform.11

The host-gw backend requires Layer2 connectivity between the Nodes so flanneld

can forward the packets to the corresponding Node as next-hop. The Flannel SDN

initialization in OpenShift is as follows:

• Each Node runs a flanneld agent which reads the configuration from

the etcd database (see #11 of Figure 3-10).

• The flanneld agent allocates a unique /24 subnet from the configured

Network and registers the allocated Node host subnet into the etcd

database (see #12 of Figure 3-10).

• The first IP of the subnet is assigned as the interface docker0 (#1 of

Figure 3-10) which becomes the default gateway for the local Pods.

• For each allocated host subnet in etcd, Flannel host-gw backend

injects a subnet route with the remote Node eth0 IP Address as the

next-hop gateway address to reach that subnet (see #2 of Figure 3-10).

9 For a complete list of the backend protocols supported by the Flannel SDN, refer to
https://github.com/coreos/flannel/blob/master/Documentation/backends.md

10 Additional details about OpenShift and Flannel are available at the following URL
(note: a valid Red Hat support subscription is required to access this link): https://
access.redhat.com/documentation/en-us/reference_architectures/2018/html/
deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/
components_and_considerations#key_considerations

11 For more information of OpenShift Flannel, see https://docs.openshift.com/container-
platform/3.11/install_config/configuring_sdn.html#using-flannel

Chapter 3 NetworkiNg

https://github.com/coreos/flannel/blob/master/Documentation/backends.md
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#using-flannel
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#using-flannel

70

With Flannel host-gw backend, the traffic flow from a Pod in one Node to a Pod in

another Pod is as follows:

 1. The Pod sends traffic to its default gateway. For example, Pod 1A

in Node 1 sends traffic to Pod 2C in Node 2 (Figure 3-10). Pod

1A sends traffic to its default gateway, which happens to be the

docker0 interface (#1 of Node 1 in Figure 3-10).

 2. From the docker0 interface, the traffic is routed by the host routing

table (#5 in Figure 3-10). Since there is a specific route for the

destination subnet (#2 in Figure 3-10), the traffic is sent to the

registered next-hop address (#7 in Figure 3- 10) which, in this

example, happens to be Node 2 eth0 IP Address.

 3. Once the traffic is received by the remote Node (Node 2), the

destination IP Address is evaluated by the host routing table (#9 in

Figure 3-10) so the traffic is sent to docker0 interface which finally

forwards the traffic to Pod 2C (#10 in Figure 3-10).

Figure 3-10. Flannel SDN with host-gw backend in OpenShift

Chapter 3 NetworkiNg

71

Because Flannel with the host-gw backend does not use additional encapsulations,

it maintains certain level of performance, and the host-gw backend is considered a good

option when deploying Kubernetes over virtualized platforms that have their own SDN

solutions. This is to avoid the performance penalties which might be experienced when

using SDNs over SDNs, resulting in what is known as double encapsulation.

 OpenShift with Third-Party SDN
OpenShift configurations with third-party SDN are maintained by their respective

third- party vendors. To illustrate the use of third-party SDNs with OpenShift in this

section, we focus on the Open Source Calico12 SDN solution.

 OpenShift with Calico SDN

The Calico SDN CNI provides another SDN alternative supporting NetworkPolicy

resources for ingress and egress policy rules. Calico can be used with or without an

encapsulated overlay network. In OpenShift, by default it uses IP over IP encapsulation.

Calico relies on routing principles from the native Linux network stack to move

traffic from one Node to another. It can be used with Nodes using Layer2 or Layer3

connectivity.

As with other Kubernetes SDN solutions, Calico maintains its configuration and state

in the cluster etcd database and relies on the BGP protocol at each Node to communicate

the routing information.

Tip a best practice for large-scale cluster deployments with Calico is to have a
dedicated etcd instance for it, different from the cluster etcd.

Note if Bgp is supported by the top-of-rack (TOR) switches interconnecting the
cluster, Calico can peer with the TOR over Bgp. the default Bgp aSN is 64512. this
aSN value is configurable by CLi.13

12 Additional information about project Calico can be found at www.projectcalico.org
13 For information on customizing the BGP ASN number, visit https://docs.projectcalico.org/
v3.4/usage/configuration/bgp#configuring-the-default-node-as-number

Chapter 3 NetworkiNg

http://www.projectcalico.org
https://docs.projectcalico.org/v3.4/usage/configuration/bgp#configuring-the-default-node-as-number
https://docs.projectcalico.org/v3.4/usage/configuration/bgp#configuring-the-default-node-as-number

72

By default, Calico allocates a /26 subnet to each Node, and as IPs are consumed by

the Node, it dynamically allocates additional blocks to the Node. This is possible thanks

to the use of a dynamic routing protocol, in this case BGP, on each Node.

Various components come together to create the Calico architecture (see Figure 3- 11):

 1. CNI Plugin:

 a. Calico-CNI: The Calico CNI plugin implements the Kubernetes CNI

specification.

 b. Calico-IPAM: The Calico IPAM assigns IP address to the Pods.

 2. calico-node: The calico-node is a privileged container running as

DaemonSet in every Node (see #1 of Figure 3-11). This container

has three elements:

 a. confd: Monitors the etcd database for state updates and generates the

corresponding new BGP configuration for BIRD.

 b. BIRD and BIRD6: BGP agents running at each Node and distribute the

routes across. BIRD is for IPv4 addresses and BIRD6 for IPv6 IP addresses.

 c. Felix: Agent doing the routing and policy calculation. It writes the

corresponding routes and ACLs to the Node host routing table and iptables,

respectively.

 3. calico-kube-controller: This container runs as a Pod on top of

Kubernetes and maintains Calico in sync with Kubernetes when

using NetworkPolicy.

Chapter 3 NetworkiNg

73

Figure 3-11. Representation of Calico SDN in OpenShift

From #3 in Figure 3-11, we can see an extract of the resulting host routing table

when using Calico. Local Pod-to-Pod traffic has direct communication inside the host.

To reach a Pod in a remote Node, the traffic from a Pod gets to the local tunl0 interface

(#4 in Figure 3-11) and gets routed by the host routing table to the next-hop IP Address

which is the remote Node. At the remote Node, the packet is routed by the host routing

table and delivered to the tunl0 interface (#6 in Figure 3-11) where it finally reaches the

remote Pod.

 North-South Traffic
When considering the north-south traffic, out of the box, the available OpenShift Router

plugins14 are

• HAProxy Template Router (default plugin)

• F5 BIG-IP Router plugin

14 For an updated list of available Router plugins, visit https://docs.openshift.com/container-
platform/3.11/architecture/networking/assembly_available_router_plugins.html

Chapter 3 NetworkiNg

https://docs.openshift.com/container-platform/3.11/architecture/networking/assembly_available_router_plugins.html
https://docs.openshift.com/container-platform/3.11/architecture/networking/assembly_available_router_plugins.html

74

These Router container images are based on HAProxy (see #6 of Pod definition

extract shown in Figure 3-13). These Pods are defined to share the Network Namespace

with the host Infrastructure Node (see #5 and #8 of extract shown in Figure 3-13).

In addition to the official supported plugins, at the time of this writing, a third-party

supported OpenShift Router plugin is

• NGINX and NGINX Plus Router15

 HAProxy Template Router
The default OpenShift Router is one or more Router Pods running on Infrastructure

Nodes (see #1 of output shown in Figure 3-12) and is deployed as a Deployment Config

(see #5 of output shown in Figure 3-12).

Figure 3-12. Output showing the elements comprising the OpenShift Router service

15 Additional details about the NGINX and NGINX Plus OpenShift Routers are available at NGINX
Inc Git repo: https://github.com/nginxinc/nginx-openshift-router

Chapter 3 NetworkiNg

https://github.com/nginxinc/nginx-openshift-router

75

Sharing the Network Namespace enables these Router Pods to receive traffic over

the host-network. By default, the OpenShift Router listens on TCP ports 80 (HTTP),

443 (HTTPS), and 1936 (HAProxy Stats) (see #3 and #7 in Figure 3-13). Once the traffic

arrives to the Pod, it will match the corresponding Route object (see #1 and #2 of

Figure 3-14).

During the creation of the Route resource (#1 in Figure 3-14) and at the addition or

removal of a Pod, the OpenShift Router queries the Service resource (#3 in Figure 3-14)

for the Endpoints associated to the Service based on label selectors (#5 in Figure 3-14).

From here it obtains Endpoint information like name and IP of the Pods. The OpenShift

Router uses this information to create the corresponding HAProxy configuration to load

balance the traffic (#6 in Figure 3-14) destined to the particular Route (i.e., myapp-demo-

app.example.com) across the available Pods.

Figure 3-13. Extract of an OpenShift Router Service and Pod definition

Chapter 3 NetworkiNg

76

 Summary
OpenShift Networking is comprised of multiple elements that can be grouped into two

types of solutions: the solutions that provide the Software-Defined Networking (SDN)

to move the east-west traffic, or traffic within the cluster, and the solutions that handle

the north-south traffic, or the inbound traffic to applications hosted on the OpenShift

cluster.

For both cases, for the east-west traffic and for the north-south traffic, there are the

OpenShift native supported plugins and third-party validated plugins supported by

those third-party vendors.

The next chapter, Chapter 4, explores the available options for providing storage to

components and applications running on the platform.

Figure 3-14. OpenShift Route to Service details

Chapter 3 NetworkiNg

77
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_4

CHAPTER 4

Storage
Once the networking options are defined for Containers as described in Chapter 3,

another essential service is storage. Container storage is ephemeral by design. Initially,

Containers were designed for immutable and stateless workloads. Later, the advantages

of containerizing stateful applications became apparent. With that came the need to

support persistent storage. A similar paradigm happened with Kubernetes; initially, it

was designed for stateless applications, but it was rapidly extended to support stateful

workloads. Supporting these new types of workloads drove the need to support multiple

storage options. The storage options for Kubernetes and OpenShift environments are

grouped under two classifications: ephemeral storage and persistent storage.

 OpenShift Storage
With Kubernetes and OpenShift, the on-disk files representing the instance of a Container

are ephemeral. Meaning, once the Pod is destroyed or reinstantiated (i.e., during rolling

upgrade), any changes to files or data stored inside those Container are destroyed.

The default mount point for the ephemeral storage representing the filesystem and

the data inside the Containers is determined by the Container Runtime in use. See

Tables 4-1 and 4-2 for the default mount points used by OpenShift when using Docker

runtime or CRI-O runtime.

78

Table 4-1. OpenShift Mount Points for OpenShift 3.11

Directory Notes

/var/lib/docker When using Docker runtime, this mount point is used by active Containers

and Pods. This is the local storage where the Node maintains a copy of

Container images pulled from a Container Registry. This mount point is

managed by docker- storage.

It uses the following naming format:

/var/lib/docker/overlay2/<layer-id>

/var/lib/docker/containers/<container-id>

Note: When using the CRI-O runtime, this folder is a symbolic link to /var/lib/

containers.

/var/lib/

containers

When using the CRI-O runtime, this is the mount point used by active

Containers and Pods. This is the local storage where the Node maintains a

copy of Container images pulled from a Container Registry.

It uses the following naming format:

/var/run/containers/storage/overlay-containers/<layer-id>

/var/lib/containers/<container-name>/<container-id>

/var/lib/

origin/

openshift.

local.volumes

This is the mount point of the ephemeral volume storage for Pods including

anything external that is mounted into a Container at runtime. This is also the

mount point for environment variables, kube secrets, and any data volumes

not backed by a persistent storage volume (PV).

It uses the following naming format:

/var/lib/origin/openshift.local.volumes/pods/<pod-id>/

containers/<container-name>/<container-id>

/var/lib/origin/openshift.local.volumes/pods/<pod-id>/

volumes/<volume-type>/<volume-name>

ChaPTeR 4 STORage

79

Beyond the default ephemeral storage of the on-disk files representing the instance

of a Container, Kubernetes has the concept of a Volume.2 A Kubernetes Volume is an

object that provides a mechanism to provide persistent storage for the Containers. A

Volume and the data on it are preserved across Container restarts and it even outlives

any Containers within a Pod.

Note a Volume is created to provide persistent storage for Containers in a Pod.
There is a special Volume type, emptyDir,3 that is ephemeral in nature as it is
created when a Pod is assigned to a Node but is deleted when the Pod is removed
from the Node.

Table 4-2. OpenShift Mount Points for OpenShift 4.01

Directory Notes

/var/lib/

containers

When using the CRI-O runtime with Red hat CoreOS (RhCOS), this is the mount

point used by active Containers and Pods. This is the local storage where the

Node maintains a copy of Container images pulled from a Container Registry.

It uses the following naming format:

/run/containers/storage/overlay-containers/<pod-id>

/var/lib/containers/storage/overlay/<layer-id>

/var/lib/

kubelet/pods

With Red hat CoreOS (RhCOS), this is the mount point of the ephemeral volume

storage for Pods including anything external that is mounted into a Container at

runtime. This is also the mount point for environment variables, kube secrets,

and any data volumes not backed by a persistent storage volume (PV).

It uses the following naming format:

/var/lib/kubelet/pods/<pod-uid>/volumes/<volume-

type>/<volume- name>

1 This information applies to OpenShift 4.0 Beta release. Paths may be subject to change during
development and may be different for final release.

2 Additional information and definitions of Volume from the upstream Kubernetes community are
available at https://kubernetes.io/docs/concepts/storage/volumes/

3 For use cases and details about emptyDir, refer to the Kubernetes upstream documentation at
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

ChaPTeR 4 STORage

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

80

 Kubernetes Storage Constructs
Kubernetes maintains strict separations of concerns between the definitions

of a PersistentVolume (PV), making it available to the Cluster (see #1 and #12 in

Figure 4-1), to the moment the PV is associated to a Project or Namespace through a

PersistentVolumeClaim (PVC) (see #6 and #13 in Figure 4-1). Once the PVC is created

associating the PV to the Project or Namespace, it then can be associated as a Volume

and binds to a mount point in the Container (see #10 and #14 in Figure 4-1).

Note a PersistentVolume (PV) is not tied to any Namespace.
a PersistentVolumeClaim (PVC) is associated and created inside a Project or
Namespace.

PersistentVolumes (PV) can be provisioned manually by the cluster administrator

or the cluster administrator can enable dynamic provisioner plugins which take care of

dynamically creating PVs for any PVC’s definition configured in a Namespace.

Figure 4-1. PersistentVolume, PersistentVolumeClaim, and Volumes

ChaPTeR 4 STORage

81

Tip a PVC storage size request (see #9 in Figure 4-1) can bind to a PV with equal
or larger storage size (see #3 in Figure 4-1) defined by a PV.

Caution If there is no PV capable of fulfilling the PVC storage size request, the
PVC remain unbound indefinitely.

When the Volume is disconnected from the Container, the PVC is available for any

other Container in the same Namespace to use. The data remains on the Volume and will

be available to any future Container using the PVC.

When the PVC definition is deleted, the PV is considered to be released. The data is

handled based on the reclaimPolicy of the PV.

 PersistentVolume Status
A PersistentVolume (PV) will be in one of the following status (see #5 in Figure 4-2):

• Available: The PV has not been claimed by a PVC.

• Bound: The PV is associated and claimed by a PVC.

• Released: The PVC was deleted but the resource has not been

reclaimed by the cluster according to the reclaimPolicy.

• Failed: The automatic reclamation of the PV has failed.

Figure 4-2. Output showing PV’s Access Modes, reclaimPolicy, and Status

ChaPTeR 4 STORage

82

 Reclaim Policy
PersistentVolumes (PV) have an associated Reclaim Policy (see #4 in Figure 4-2) which

dictates how to handle data after the PV is not Bound to a PVC. Kubernetes supports the

following Reclaim Policies4:

• Retain: With this policy the PV is kept after the PV is no longer Bound

to a PVC and enables manual reclamation of the resources.

• Recycle: (Depreciated in favor of dynamic provisioning) This policy

performs a basic scrub doing a "rm -rf /<volume-path>/*" on the

Volume, then makes the Volume available again for new PVCs.

• Delete: This policy removes the PV and the associated storage asset

(i.e., AWS EBS, GCE PD, Cinder Volume, Gluster Volume, etc.) when

the PV is no longer Bound to a PVC.

Note When no reclaimPolicy is specified or when using dynamically provisioned
Volumes, the default reclaim policy is Delete.

 Access Modes
The access mode (see #3 in Figure 4-2) capabilities of a PersistentVolume (PV) are

dependent on the modes supported by the provider of the storage resource. For example,

NFS supports the three available access modes, while AWS EBS only supports one.

The available access modes are detailed in Table 4-3.

Note a Volume Access Mode describes the Volume’s capability but does not
enforce constraints. It is up to the storage provider to enforce this at runtime.

4 Additional details and utilization of the Reclaim Policies are available at the upstream
Kubernetes documentation: https://kubernetes.io/docs/concepts/storage/persistent-
volumes/#reclaiming

ChaPTeR 4 STORage

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming

83

 OpenShift PersistentVolume Plugins
OpenShift supports multiple storage plugins.5 Some of these plugins and the access

modes are listed in Table 4-4.

Table 4-3. Volume Access Modes

Access Mode Abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write only by a single Node

at a time.

ReadOnlyMany ROX The volume can be mounted as read-only by many Nodes at a time.

ReadWriteMany RWX The volume can be mounted as read-write by many Nodes at a time.

Table 4-4. OpenShift PersistentVolume (PV) Plugins and Supported Access Modes

PV Plugin Name Access Mode Mount Options

NFS RWO, ROX, RWX Yes

HostPath RWO No

GlusterFS RWO, ROX, RWX Yes

Ceph RBD RWO, ROX Yes

OpenStack Cinder RWO Yes

AWS EBS RWO Yes

GCE Persistent Disk RWO Yes

iSCSI RWO, ROX Yes

FibreChannel RWO, ROX No

Azure Disk RWO Yes

Azure File RWO, ROX, RWX Yes

VMWare vSphere RWO Yes

(continued)

5 For an updated list of the supported plugins, visit https://docs.openshift.com/container-
platform/3.11/install_config/persistent_storage/index.html#install-config-
persistent-storage-index

ChaPTeR 4 STORage

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index

84

Since Kubernetes 1.8, the upstream Kubernetes project decided to stop accepting

in-tree storage Volume plugins. Before this, Volume plugins were linked and distributed

as part of the core binaries of Kubernetes. To enable vendors to develop Volume plugins

independently from Kubernetes and with their own release cadence, nowadays, instead,

it promoted the use of the FlexVolume plugin interface or the use of the Container

Storage Interface (CSI) plugin.

The FlexVolume plugin interface has been available since Kubernetes 1.2. The

Container Storage Interface (CSI) plugin was introduced in Kubernetes 1.9 and GA in

1.13. These two options are covered in detail in the following sections.

 FlexVolume
FlexVolume is known as an out-of-tree plugin interface because it is developed outside

the main Kubernetes source code. The FlexVolume interface enables users to write their

own drivers. These drivers can be written in any programming or scripting language.

User-provided driver binaries must be installed in a predefined Volume plugin path6

in every Node of the cluster (see #1 in Figure 4-3). The FlexVolume driver performing

the attach and detach operations must be a self-contained executable with no external

dependencies.

PV Plugin Name Access Mode Mount Options

Local RWO No

FlexVolume FlexVolume is an out-of-tree plugin interface that enables users to write

their own drivers. Because of this, the supported Access Modes and

Mount Options are implementation specific.

Container Storage

Interface (CSI)

CSI is an industry standard that enables vendors to develop storage

plugins for container orchestration systems (i.e., Kubernetes) in a way

that it is portable across CSI-compliant container orchestration systems.

Because of this, the supported Access Modes and Mount Options are

implementation specific.

Table 4-4. (continued)

6 The standard path for FlexVolume is /usr/libexec/kubernetes/kubelet-plugins/volume/
exec/<vendor>~<driver>/<driver>.

ChaPTeR 4 STORage

85

Kubernetes is shipped with a FlexVolume in-tree plugin that kubelet uses to interact

with the user-provided drivers using an exec-based model (see #2 in Figure 4-3). When

invoking the binary of the driver, the first command-line argument is an operation name

followed by parameters for the operation.

The FlexVolume driver works in one of two modes:

• FlexVolume driver with master-initiated attach/detach operation

• FlexVolume driver without the master-initiated attach/detach

operation

Figure 4-3. FlexVolume plugin architecture

ChaPTeR 4 STORage

86

 With Master-Initiated Attach/Detach
A FlexVolume driver with master-initiated attach/detach operation7 must implement the

following operations:

• init: Initializes the driver

• getvolumename: Returns the unique name of the volume

• attach: Attaches a volume to a given Node

• waitforattach: Waits until the Volume is attached to a Node and the

device is recognized by the OS

• detach: Detaches the Volume from a Node

• isattached: Checks if a particular Volume is attached to a Node

• mountdevice: Mounts a Volume device to a directory in a Node

• umountdevice: Unmounts a Volume’s device from a directory in

a Node

 Without Master-Initiated Attach/Detach
A FlexVolume driver that does not support master-initiated attach/detach operations8 is

only executing at the specific target Node and must implement the following operations:

• init: Initializes the driver.

• mount: Mounts a Volume to a directory in the Node. This operation is

responsible for finding the device, attaching the device to the Node,

and mounting the device to the correct mount point.

• umount: Unmounts a Volume from a directory in the Node. This

operation should take care of cleaning up the Volume and detaching

the device from the Node.

7 Additional details can be found at https://docs.openshift.com/container-platform/3.11/
install_config/persistent_storage/persistent_storage_flex_volume.html#flex-
volume-drivers-with-master-initiated-attach-detach

8 Additional details can be found at https://docs.openshift.com/container-
platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.
html#flex-volume-drivers-without-master-initiated-attach-detach

ChaPTeR 4 STORage

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach

87

 CSI
The Container Storage Interface (CSI) was designed to provide a way for vendors to

develop storage plugins for any container orchestration platform following the CSI

specification. This means these plugins are not tied to Kubernetes but any CSI-compliant

platform. CSI was introduced into Kubernetes as a way to decouple plugin development

from Kubernetes releases and prevent bugs from a plugin from affecting other

Kubernetes critical components.

Contrary to FlexVolume plugins that use an exec-based API and assume plugins have

access to the root filesystem, the CSI plugins use a gRPC interface over a unix domain

socket.

To support CSI plugins, a CSI-compliant plugin interface recommended9

architecture was defined (Figure 4-4). The CSI plugin interface was included starting in

Kubernetes 1.9 and was made GA in Kubernetes 1.13.

Figure 4-4. CSI plugin recommended architecture

9 Details about recommended deployment mechanisms for CSI plugin on Kubernetes are
available at https://github.com/kubernetes/community/blob/master/contributors/design-
proposals/storage/container-storage-interface.md#recommended-mechanism-for-
deploying-csi-drivers-on-kubernetes

ChaPTeR 4 STORage

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes

88

The Kubernetes CSI volume plugin implements the following internal volume

interfaces:

• VolumePlugin: Mount and unmount of a Volume to a specific path.

During the mount operation, Kubernetes generates a unique path

and passes it to the CSI Driver DaemonSet (see #4, #5, and #8 in

Figure 4-4) for the CSI plugin to mount the volume (see #9 and #11 in

Figure 4-4).

• AttachableVolumePlugin: Attach and detach of a volume to a given

node. This action is handled by the CSI External Controller (see

#2, #3, and #6 in Figure 4-4). It is up to the CSI external controller

to determine when a CSI Volume must be attached or detached

from a particular Node (see #7 and #10 in Figure 4-4). Once the CSI

controller determines a Volume should be attached to a Node, it

generates a PersistentVolume (PV) and eventually the corresponding

PersistentVolumeClaim (PVC) to be consumed by the container

(see #12 in Figure 4-4).

 OpenShift Ephemeral
The OpenShift Ephemeral framework is a Technology Preview (TechPreview) capability to

allow administrators to limit and manage the ephemeral local storage consumed by Pods

and Containers running in the particular Node.

Without the Ephemeral framework, Pods are not aware how much local storage is

available to be consumed by the Container’s writable layers or EmptyDir Volumes, and

the Pod cannot request guaranteed local storage. Because of this, if the Node runs out of

local storage, Pods can be evicted, losing all the data stored in the ephemeral volumes.

Enabling this capability requires manually enabling the feature on the Master Nodes

configurations and the ConfigMaps associated with all the other Nodes. The feature-

specific capabilities require to set LocalStorageCapacityIsolation=true.10

10 For the specific steps toward enabling the LocalStorageCapacityIsolation, refer to https://
docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.
html#ephemeral-storage-enabling-ephemeral-storage

ChaPTeR 4 STORage

https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage
https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage
https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage

89

 OpenShift Container Storage
The OpenShift Container Storage (OCS)11 brings the software-defined storage

capabilities of the Gluster12 and Heketi13 open source projects as a native storage solution

into Containers environments. It does this by adding a REST API interface to front end

the Gluster services.

The OpenShift Container Storage (OCS) supports two deployment modes: converged

mode and independent mode (see Figure 4-5).

Note During the installation of OCS using the OpenShift advanced installer
(openshift-ansible), only one of the OCS modes can be specified. Should both
modes be required in a cluster, one of the modes can be installed with the ansible
workflow and the other must be manually configured.14

Figure 4-5. OpenShift Container Storage deployment modes

11 Additional information about OCS is available at (an active Red Hat subscription is
required to access this link) https://access.redhat.com/documentation/en-us/
red_hat_openshift_container_storage/3.11/

12 The upstream Gluster project is available at www.gluster.org
13 The Heketi RESTful API for Gluster project is available at https://github.com/heketi/heketi
14 The Red Hat OpenShift Container Storage (OCS) Deployment Guide provides step-by-

step instructions for manual installation of the OCS deployment modes (an active Red Hat
subscription is required to access this link): https://access.redhat.com/documentation/
en-us/red_hat_openshift_container_storage/3.11/html/deployment_guide/

ChaPTeR 4 STORage

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/
http://www.gluster.org
https://github.com/heketi/heketi
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/deployment_guide/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/deployment_guide/

90

 OCS Converged Mode
The OCS Converged Mode deploys a hyperconverged environment with an end result

where the Nodes are providing Compute and storage services to the cluster.

From the technical perspective, OCS Converged Mode deploys an environment

where the Gluster storage Containers reside in Nodes where it mounts raw disks attached

to these Nodes that are then used for the Gluster service (see #1 and #2 in Figure 4-5).

There are two common deployment patterns with OCS Converged Mode:

 1. Worker Nodes running OCS Pods and also running application

Pods (#1 in Figure 4-5)

 2. Dedicated OCS worker Nodes (#2 in Figure 4-5)

In both of these deployment patterns, the Gluster services are deployed as Containers

(see Figure 4-6). A minimum of three nodes are required for the Converged deployment.

Tip OCS Converged Mode is commonly illustrated using Application Nodes
as the Converged Nodes, but it is not limited to those. With the proper planning
and design considerations, another option is to deploy OCS Converged Mode to
Infrastructure Nodes instead.

Figure 4-6. OCS Converged Mode

ChaPTeR 4 STORage

91

 Raw Disks for OCS Converged Mode

The raw block devices for the Gluster service Pods can be provided by Kernel using any

supported technology to provide raw block devices to the Node (see Figure 4-7).

 OCS Independent Mode
OCS Independent Mode uses an external or standalone Gluster cluster managed by an

instance of Heketi REST API (#3 and #8 Figure 4-8).

Figure 4-7. OCS Converged Mode block device

Figure 4-8. OCS Independent Mode

ChaPTeR 4 STORage

92

Note even when the Heketi service can run either as a regular system service
or as a Container, the recommendation is for Heketi to be deployed as a Pod on
OpenShift so it can benefit from the ha capabilities of the platform.

 OCS Storage Provisioning
OCS supports static or dynamic GlusterFS storage volume provisioning. The desired

provisioning mode is configured during the deployment of OCS. The PVC and PV

provisioning workflow varies the configured provisioning mode. With static storage

provisioning15:

 1. The GlusterFS administrator creates a GlusterFS volume.

 2. A user with cluster-admin privileges creates the corresponding

GlusterFS Kubernetes Endpoints in the cluster.

 3. A user with cluster-admin privileges creates a PV definition.

 4. A user creates the corresponding PVC request.

With dynamic provisioning16:

 1. (If dynamic provisioning was not selected during the deployment

of OCS or if doing a manual OCS deployment.) A cluster

administrator creates a GlusterFS StorageClass.

 2. A user creates a PVC request.

With dynamic provisioning enabled, when there is a creation of a PVC request,

the kube-api-server sends a request for a new volume to the Heketi REST API (#2 in

Figure 4-6 or Figure 4-8) which communicates with the Gluster service (#3 in Figure 4-6

or Figure 4-8) to create a new Gluster Volume. With the confirmation of the volume, the

creation of the kube-api-server generates a PV which is bound to the PVC request.

15 Step-by-step instructions on how to configure OCS static provisioning are available at
https://docs.openshift.com/container-platform/3.11/install_config/persistent_
storage/persistent_storage_glusterfs.html#provisioning-static

16 Instructions for configuring OCS dynamic provisioning on an existing cluster are available at
https://docs.openshift.com/container-platform/3.11/install_config/persistent_
storage/persistent_storage_glusterfs.html#provisioning-dynamic

ChaPTeR 4 STORage

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-static
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-static
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-dynamic
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-dynamic

93

When the Kubelet service (#4 in Figure 4-6 or Figure 4-8) receives the mount request,

it invokes the mount.glusterfs system command (#5 and #6 in Figure 4-6 or Figure 4- 8)

with the appropriate parameters to mount the volume to the Container. When the

Kubelet receives an unmount volume request, it uses the umount system command.

When the PVC is deleted, the PV is destroyed and a notification is sent to the Heketi

service (#2 in Figure 4-6 or Figure 4-8) which in turn notifies Gluster service (#3 in

Figure 4-6 or Figure 4-8).

Note after the PVC and PV objects are destroyed and do not exist in the Kubernetes
environment, from the Gluster cluster perspective, it might not be the case as the
action of completely deleting and recycling a Gluster volume may take additional time.

 Storage Classes
A StorageClass is a Kubernetes construct for cluster administrators to create storage

profiles describing the storage options available for the platform. Cluster administrators

are free to use the StorageClass to represent storage types, or backup policies, or quality-

of- service levels, or replication policies, or encryption policies, or any other arbitrary

characteristic or service determined relevant for the organization.

A StorageClass17 configuration consists of a YAML file with the following options:

• Provisioner: (#3 in Figure 4-9) Determines the volume plugin to use

for provisioning PVs under the specified StorageClass.

• Reclaim Policy: (#5 in Figure 4-9) Tells the cluster what to do with

the Volume after it is released. The policy can be either Delete, Retain,

or Recycle.18 With dynamically provisioned volumes, the Reclaim

Policy is Delete.

• Mount Options (optional): (#6 in Figure 4-9) Mount options for

dynamically created PVs.

17 The details of StorageClass resources are described in the upstream Kubernetes documentation:
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-
resource

18 The Recycle Reclaim Policy is considered deprecated. https://kubernetes.io/docs/
concepts/storage/persistent-volumes/#recycle

ChaPTeR 4 STORage

https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recycle
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recycle

94

• Volume Binding Mode: (#7 in Figure 4-9) This parameter controls

the Volume binding and dynamic Volume provisioning.

• Allowed Topologies (optional): Used to restrict provisioning to

specific topologies.

• Parameters (optional): (#4 in Figure 4-9) This section is used to set

Provisioner-specific parameters.

Note a StorageClass definition is required for enabling dynamic storage provisioning.

 OpenShift with Third-Party Storage
Beyond the list19 of supported OpenShift software-defined storage (SDS) plugins,

because of the availability of the FlexVolume and CSI plugins, there are many third-

party traditional or modern storage solutions supported for OpenShift. This section is

a reference (nonexhaustive) list of additional third-party storage vendors. Additional

vendors can be found at the OpenShift Primed20 web site.

Figure 4-9. Sample StorageClass definition

19 OpenShift Persistent Volume plugins: https://docs.openshift.com/container-platform/
3.11/install_config/persistent_storage/index.html

20 OpenShift Primed technical readiness: www.openshift.com/learn/partners/primed/

ChaPTeR 4 STORage

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html
http://www.openshift.com/learn/partners/primed/

95

 DriveScale Composable Platform
The DriveScale Composable Platform21 by DriveScale is a composable storage platform

that aggregates JBOD chassis behind the DriveScale Composer. From there, the raw disks

are presented as iSCSI targets.

DriveScale supports dynamic storage provisioning in OpenShift. At the moment of this

writing, DriveScale has a FlexVolume and a CSI plugin. The DriveScale FlexVolume plugin

is available at the Red Hat ISV registry22 and the CSI23 plugin is provided directly by them.

From the OpenShift perspective, at the creation of a new PVC, the DriveScale

FlexVolume plugin interacts with the DriveScale Composer and dynamically allocates

disks from the JBOD. It then proceeds to present them directly to the Node running the

Container and mount them as a Volume into the Container. If the Pod is reinstantiated

into another Node, the plugin takes care of unmounting the disk from the Node and

mounting it into the new Node.

 HPE 3PAR
The HPE 3PAR24 storage by HPE is an all-flash or hybrid storage array platform with

support for data services and quality of services guaranteed for the storage. The LUNs

are presented to the Nodes over FibreChannel (FC) or iSCSI protocols.

HPE 3PAR supports dynamic storage provisioning in OpenShift. At the time of this

writing, HPE provides a FlexVolume plugin25 for OpenShift. The HPE FlexVolume driver

is named Dory, and the dynamic provisioner is named Doryd. The configuration for

the plugin can either be set for FibreChannel (FC) or iSCSI, not both at the time. The

FibreChannel (FC) protocol is supported for OpenShift bare-metal deployments, and

the iSCSI protocol is supported for OpenShift bare-metal or OpenShift over virtualization

environments.

21 Additional information about the DriveScale Composable Platform is available at
https://drivescale.com/composable-platform/

22 DriveScale Composable Platform FlexVolume plugin: https://access.redhat.com/
containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume

23 DriveScale CSI plugin: https://github.com/DriveScale/k8s-plugins
24 Additional information about the HPE 3PAR storage is available at
www.hpe.com/us/en/storage/3par.html

25 Additional information about the HPE 3PAR FlexVolume plugin is available at
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_
docker_plugin/README.md

ChaPTeR 4 STORage

https://drivescale.com/composable-platform/
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume
https://github.com/DriveScale/k8s-plugins
http://www.hpe.com/us/en/storage/3par.html
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md

96

From the OpenShift perspective, at the creation of a new PVC, the HPE 3PAR

FlexVolume plugin interacts with the Doryd and dynamically allocates LUNs from

the HPE 3PAR storage array. Dory presents them directly to the Node running the

Container and mounts them as a Volume into the Container. If the Pod is reinstantiated

into another Node, the plugin takes care of unmounting the disk from the Node and

mounting it into the new Node.

 HPE Nimble
The HPE Nimble26 storage by HPE is an all-flash high-performance storage platform with

support for data-at-rest encryption, extreme availability, and sub-millisecond response

time. The LUNs are presented to the Nodes over the iSCSI protocol.

HPE Nimble supports dynamic storage provisioning in OpenShift. At the time of

this writing, HPE provides a FlexVolume plugin27 for OpenShift. The HPE FlexVolume is

available from the Red Hat ISV registry.28

From the OpenShift perspective, at the creation of a new PVC, the HPE Nimble

FlexVolume plugin interacts with the Nimble Dynamic Provisioner and dynamically

allocates LUNs from the HPE Nimble storage. This LUN is presented directly to the

Node running the Container and mounts as a Volume into the Container. If the Pod is

reinstantiated into another Node, the plugin takes care of unmounting the disk from the

Node and mounting it into the new Node.

 NetApp Trident
NetApp Trident29 is an open source project maintained by NetApp designed to support

the NetApp storage portfolio in Docker and Kubernetes environments. The plugin

supports the NFS or iSCSI protocols.

26 Additional information about the HPE 3PAR storage is available at www.hpe.com/us/en/
storage/3par.html

27 Additional information about the HPE 3PAR FlexVolume plugin is available at https://github.
com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/
README.md

28 The HPE Nimble Kube Storage Controller is available at https://access.redhat.
com/containers/?tab=overview#/registry.connect.redhat.com/nimble/
kube-storage-controller

29 Additional information about NetApp Trident is available in the upstream documentation:
https://netapp-trident.readthedocs.io/en/stable-v19.01/

ChaPTeR 4 STORage

http://www.hpe.com/us/en/storage/3par.html
http://www.hpe.com/us/en/storage/3par.html
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller
https://netapp-trident.readthedocs.io/en/stable-v19.01/

97

NetApp Trident supports dynamic storage provisioning in OpenShift. At the

time of this writing, by default, NetApp Trident provides a plugin which uses the

native Kubernetes iSCSI and NFS plugins and provides an experimental CSI plugin30

implementation.

From the OpenShift perspective at the creation of a new PVC, the NetApp Trident

plugin provisions the corresponding LUN or Volume in the storage array and relies in the

native Kubernetes iSCSI or NFS plugins for mounting the Volume into the Container.

 OpenEBS (OSS, MayaData)
OpenEBS31 is an open source project supported by MayaData to provide block storage

with tiering and replica policies. While it can use any block devices as the backend

storage, the OpenEBS Volumes are presented to the Nodes over the iSCSI protocol.

OpenEBS supports dynamic storage provisioning in OpenShift. At the time of this

writing, OpenEBS provides a FlexVolume plugin available from the Red Hat ISV registry32

or directly from the upstream33 project.

From the OpenShift perspective at the creation of a PVC, the OpenEBS plugin creates

a volume. A volume is represented by a series of Pods. First there is Pod that works as the

iSCSI target34 for the particular volume. This is the target that is presented to the Node

running the Container and mounts as a Volume into the Container. Supporting the iSCSI

target volume, there is one Pod per replica. For example, if the configuration is set to

have three replicas, there will be three Pods, each one representing one of the replicas.

This replica Pods provide the actual backend storage for the Volume. The backend

storage can be supported by any block device.

30 CSI Trident for Kubernetes: https://netapp-trident.readthedocs.io/en/stable-v19.01/
kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes

31 OpenEBS: www.openebs.io
32 OpenEBS API Server and volume exporter: https://access.redhat.com/containers/#/
product/54cd9cf908d9f6b7

33 OpenEBS project documentation: https://docs.openebs.io/docs/next/installation.html
34 For additional information around the constructs of OpenEBS, refer to the upstream

documentation in GitHub: https://github.com/openebs/openebs/blob/master/contribute/
design/README.md#openebs-volume-container-aka-jiva-aka-data-plane

ChaPTeR 4 STORage

https://netapp-trident.readthedocs.io/en/stable-v19.01/kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes
https://netapp-trident.readthedocs.io/en/stable-v19.01/kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes
http://www.openebs.io
https://access.redhat.com/containers/#/product/54cd9cf908d9f6b7
https://access.redhat.com/containers/#/product/54cd9cf908d9f6b7
https://docs.openebs.io/docs/next/installation.html
https://github.com/openebs/openebs/blob/master/contribute/design/README.md#openebs-volume-container-aka-jiva-aka-data-plane
https://github.com/openebs/openebs/blob/master/contribute/design/README.md#openebs-volume-container-aka-jiva-aka-data-plane

98

 Summary
The use of storage in Kubernetes and OpenShift environments can be grouped under

two classifications: ephemeral storage and persistent storage. The different use cases of

ephemeral storage rely on the underlying Node filesystem. When working with persistent

storage, there are new constructs in play. OpenShift and Kubernetes provide an

extensible plugin framework that enables third-party storage providers to onboard their

solutions developing plugins at their own phase and independently, without having to

coordinate releases with the Kubernetes core project.

There are many more persistent storage providers and plugins for OpenShift. The

OpenShift Primed web site is good place to find additional ones understanding the

ecosystem supporting OpenShift and Kubernetes is much larger than the list there.

Once the Containers have networking and storage services, containerized

applications can start serving requests. To benefit from the HA capabilities of the

platform, the traffic to these applications should consider the use of load balancers.

Chapter 5 explores various configuration options to steer traffic to the cluster using load

balancers.

ChaPTeR 4 STORage

99
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_5

CHAPTER 5

Load Balancers
As seen in Chapters 1 through 4, the OpenShift platform integrates and builds on top

of Kubernetes to provide an environment to run and scale containerized applications

reliably. To maintain the most resiliency and benefit the most from the HA capabilities

of the platform, the infrastructure hosting the cluster should use load balancers to steer

the traffic to the Nodes in the cluster serving the application at a given time. This chapter

explores various configuration options when using load balancers with OpenShift.

 Load Balancer Overview
When considering the use of external Load Balancers with the OpenShift platform,

there are general target areas or traffic types. Each type of traffic will have different

requirements based on the desired outcome and the capabilities of the external device or

virtual appliance used at load balancing. The use cases for load balancer can be grouped

in, at least, the following three types:

• Load balancing traffic to the Master Nodes (#1 in Figure 5-1): This

load balancer should be present for any highly available deployment.

For small deployments and lab environments, OpenShift provides the

option to deploy a software load balancer based on HAProxy. (Refer

to “HA for Masters Services” section in Chapter 2).

• Load balancing traffic to the Infrastructure Nodes (#2 in Figure 5- 1):

This is the load balancer handling the traffic to applications running

on the cluster and using the OpenShift Router as their ingress endpoint.

This load balancer is recommended for any highly available deployment

even though it can be as simple as a round- robin DNS resolution for the

apps wildcard subdomain.

100

• Load balancing traffic directly to Application Nodes or Pods (#3, #4,

and #5 in Figure 5-1): This load balancer only exists in nonstandard

deployments requiring specialized networking interaction between

the client and the application Nodes or directly with the Pods.

Figure 5-1. OpenShift and Load Balancers

 Load Balancer Considerations
There are many load balancer options in the market. Instead of focusing on a particular

software or hardware solution, let’s focus on the basic requirements for each type of

traffic and destination in an OpenShift cluster.

 Considerations for Master Nodes
As presented during the discussion of High Availability for Master Nodes in Chapter 2,

these Nodes are the ones exposing the Kubernetes APIs, the web interface for the Developer

or Application Console, the Service Portal, and the Operations Console (see #1 in

Figure 5-1). From the perspective of web sessions, the Master Nodes are stateless, meaning

it does not matter which Master receives the request during interactions with the API.

There are no special requirements for persistent sessions or sticky sessions. Because of

Chapter 5 Load BaLanCers

101

this, the load balancing service functioning as the front end for the Master Nodes can use

simple load balancing algorithms (i.e., source IP, round- robin, etc.) to distribute the load

among the Master Nodes.

Refer to Chapter 2 for details on the requirements for load balancers for Master Nodes.

 Considerations for Infrastructure Nodes
Traffic load balancing for the Infrastructure Nodes refers to a load balancer handling the

traffic destined to the OpenShift Routers (see #2 in Figure 5-1) which serve as the main

ingress point for any external traffic destined to applications and services running on

the cluster. A simple DNS round-robin resolution can be used to spread traffic across

Infrastructure Nodes and, from that perspective, an external load balancer for traffic

destined to these Nodes is optional. Normally, production environments prefer to have

more advanced load balancing capabilities to distribute the traffic among the OpenShift

Routers. In those cases, an external load balancer is used.

This external load balancer for the OpenShift Routers should be configured in

passthrough mode (see Listings 5-1 and 5-2). This means the load balancer will do

connection tracking and Network Address Translation (NAT), but the TCP connections

are not terminated by the load balancer; instead, they are forwarded to one of the Router

instances at the Infrastructure Nodes (see #1 in Figure 5-2).

Listing 5-1. Passthrough configuration example with NGINX

NOTE: extract from nginx.conf

<snip>

stream {

 # Passthrough required for the routers

 upstream ocp-http {

 # Worker Nodes running OCP Router

 server worker-0.ocp.example.com:80;

 server worker-1.ocp.example.com:80;

 }

 upstream ocp-https {

 # Worker Nodes running OCP Router

 server worker-0.ocp.example.com:443;

 server worker-1.ocp.example.com:443;

 }

Chapter 5 Load BaLanCers

102

 server {

 listen 443;

 proxy_pass ocp-https;

 }

 server {

 listen 80;

 proxy_pass ocp-http;

 }

}

<snip>

Listing 5-2. Passthrough configuration example with HAProxy

NOTE: extract from haproxy.cfg

<snip>

frontend ocp-http

 bind *:8080

 default_backend ocp-http

 mode tcp

 option tcplog

backend ocp-http

 balance source

 mode tcp

 server worker-0 192.168.1.15:80 check

 server worker-1 192.168.1.16:80 check

frontend ocp-https

 bind *:443

 default_backend ocp-https

 mode tcp

 option tcplog

backend ocp-https

 balance source

 mode tcp

Chapter 5 Load BaLanCers

103

 server worker-0 192.168.1.15:443 check

 server worker-1 192.168.1.16:443 check

<snip>

At the OpenShift Router, this traffic is matched with a Route (see #3 in Figure 5-2), and it

is load balanced among the Pods of the corresponding Service object (see #4 in Figure 5-2).

The OpenShift Router supports roundrobin, leastconn, and source as the load

balancing algorithms or load balancing strategies.1 The source is considered the default

load balancing strategy.

The default load balancing strategy and other OpenShift Router parameters can be

configured by setting the corresponding Environment Variable for the OpenShift Router

DeploymentConfig.2

1 The supported load balancing strategies are described here: https://docs.openshift.com/
container-platform/3.11/architecture/networking/routes.html#load-balancing

2 A list of available Environment Variables to fine-tune the OpenShift Router is available at
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.
html#env-variables

Figure 5-2. Traffic flow from external load balancers to OpenShift Routers

Chapter 5 Load BaLanCers

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#load-balancing
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#load-balancing
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#env-variables
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#env-variables

104

Note the specific behavior of the traffic at the Router level may be different if
using third-party Router plugins.

The OpenShift Router supports the following protocols:

• HTTP

• HTTPS with SNI3

• WebSockets

• TLS with SNI

Any traffic for protocols outside these web protocols cannot make use of the

OpenShift Router and Routes capabilities. Those cases are covered in the following

section.

 Considerations for Specialized Protocols
As we saw in the previous section, the OpenShift Router cannot be used with traffic using

non-web-based protocols or with traffic using the UDP protocol. This book aggregates

all these cases under the “specialized protocols” category. The details on how to

provide load balancing to these protocols are highly dependent on the Kubernetes and

OpenShift options used to expose these services.

As illustrated in Figure 5-3, some configuration options will rely on the native

capabilities of kube-proxy, while others may depend on the capabilities provided by the

specific SDN solution used in the cluster.

3 Standard Name Indication (SNI) is an extension of the TLS protocol. With this extension, the
client indicates the hostname it is trying to contact at the start of the handshaking process.

Chapter 5 Load BaLanCers

105

Figure 5-3. Representation of load balancer for non-HTTP/HTTPS/TLS protocols

Chapter 5 Load BaLanCers

106

OpenShift provides several options to support non-web-based or UDP-based traffic.

The following list provides a general description of the options and their functionalities:

• Service External IP: This option allocates an External IP for the

Service from the CIDR defined by externalIPNetworkCIDRs in the

Master Nodes configuration.4 When using this option, the ExternalIP

is defined and managed by the kube-proxy agent in each node (see

#2 in Figure 5-3). From a load balancer perspective, the traffic can be

directed to any of the Application or Infrastructure Nodes. Once the

traffic arrives to the Node, the incoming traffic is forwarded internally

by kube-proxy to the corresponding Pods as it does for any other

Service communication.

• LoadBalancer: The LoadBalancer option behaves differently

when used in a Cloud provider vs. when used locally. At a Public

Cloud provider, this option will allocate an ExternalIP for the

Cloud provider Load Balancing service. When this option is used

in non-Cloud environments, it allocates an ExternalIP from the

ingressIPNetworkCIDR network. When this variable is not specified in

the Master Nodes configuration,5 the default network for this type of

Service is 172.29.0.0/16. From a load balancer perspective, the traffic

can be directed to any of the Application or Infrastructure Nodes. The

incoming traffic to the Nodes is forwarded by the kube-proxy to the

selected Pods (see #2 in Figure 5-3).

• nodePort: This option allows the user to specify a port for the Service

from the default nodePort range of 30000–32767. When the Service

is created with this option, kube-proxy starts listening to that port

in every Node. From a load balancer perspective, the traffic can

4 To use this option, the externalIPNetworkCDIRs must be configured and enabled:
https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/
expose_internal_ip_service.html

5 To customize the ExternalIPs for this option, use the ingressIPNetworkCIDR variable in the
Master Node configuration: https://docs.openshift.com/container-platform/3.11/
admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-
configure-cluster

Chapter 5 Load BaLanCers

https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/expose_internal_ip_service.html
https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/expose_internal_ip_service.html
https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster
https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster
https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster

107

be directed to any of the Application or Infrastructure Nodes. The

incoming traffic to the Nodes is forwarded by the kube-proxy to the

selected Pods (see #2 in Figure 5-3).

• hostPort: This option allows the user to bind a Pod to any Port of

the Node, and the Container will be exposed to the external network

as <hostIP>:<hostPort>, where hostIP is the physical IP of the Node

running the particular Pod, and hostPort is the port number specified

in the Pod definition. The load balancer for this option needs to be

configured to send traffic to the physical IP of the Node running the

Pod (see #3 in Figure 5-3). A consideration when using this option is

that the hostIP of the <hostIP>:<hostPort> pair will change if the Pod

recreated in another Node.

• hostNetwork: This option enables the Pod to have full visibility of the

Node network interfaces. This is the equivalent of the Pod sharing the

network namespace with the Node. This option is not recommended

for running application. It is normally used by SDN plugins and other

network functions deployed as DaemonSets or privileged containers.

• IP Failover: The IP Failover6 option is an OpenShift-specific

capability which enables the creation of a Virtual IP address (VIP)

for the applications. When this configuration is enabled, OpenShift

deploys Keepalived privileged containers to handle the particular

VIP. These Keepalived Pods for the IP Failover capability can be

deployed cluster-wide or in a subset of Nodes matching a particular

label. These Pods use the VRRP protocol to maintain the VIP address

active. Only one of the Keepalived Pods will be active or in MASTER

state serving the VIP address at a time; the others will be on standby

or in BACKUP state. The VRRP protocol is used to determine which

Pod gets to be active for a particular VIP. From a load balancer

perspective, the Node with the active Pod serving the VIP address

is the only one capable of handling the traffic destined to that VIP

address.

6 For configuration requirements for the OpenShift IP Failover capability, refer to
https://docs.openshift.com/container-platform/3.11/admin_guide/high_availability.
html#configuring-ip-failover

Chapter 5 Load BaLanCers

https://docs.openshift.com/container-platform/3.11/admin_guide/high_availability.html#configuring-ip-failover
https://docs.openshift.com/container-platform/3.11/admin_guide/high_availability.html#configuring-ip-failover

108

In addition to the options described here, there are other techniques which are

more relevant to Cloud environments. One of these options is the LoadBalancer which

requires external support by a Cloud provider. In this case, Kubernetes interacts with the

Cloud platform to provision a Cloud Load Balancer with an External IP for the Service.

Another option are SDNs like Calico or MacVLAN which can be configured to expose the

Pods IPs to the upstream networking equipment enabling direct access to the Pods from

the external networks (see #4 in Figure 5-3). In this case, it is up to the networking team

to manage the network traffic directed to the Pods.

 Summary
Configuring a load balancer service in OpenShift for Master Nodes and OpenShift Routers

at the Infrastructure Nodes can be a simple pass-through load balancing configuration.

These can be considered web-friendly protocols: HTTP, HTTPS, TLS, and WebSockets.

Supporting UDP or non-web-friendly protocols with Kubernetes and OpenShift requires

the use of a different set of objects and capabilities. The particular load balancer

configuration for these use cases requires an understanding of the workload, the option

being used, and the level of exposure of the Services and Pods to the external networks.

Having a base understanding of how the networking, storage, and traffic routing

options work for OpenShift, Chapter 6 will focus on putting all this knowledge together

for a successful deployment of a cluster.

Chapter 5 Load BaLanCers

109
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_6

CHAPTER 6

Deployment Architectures
Having an understanding of the OpenShift components and platform as seen in the

previous chapters provides the basis for understanding some of the configuration

options that are set during the installation.

OpenShift (OCP) provides the ability to customize the deployment architecture. The

exact customization is highly dependent on the version and release, so it is necessary to

group the deployment process in two main categories:

• OCP 3.11 release: This is considered a long-term release. At the time

of this writing, the latest subrelease is 3.11.99.1 The 3.11.x advanced

deployment methodology uses the OpenShift Ansible installer, and it

is supported in any x86 platform where RHEL is supported.

Note At the time of this writing, version 3.11.x is considered to be Technology
Preview or Development Preview for Microsoft Windows Server 2019, Power
8 and Power 9. This book does not cover any of these operating systems and
architectures.

• OCP 4.0 release: This is considered the new major release of

OpenShift that brings a new deployment and management paradigm.

At the time of this writing, the latest version is 4.0 Beta 3. This means

OCP 4.0 is still in active development and has not reached the general

availability (GA).

1 For details about the latest 3.11.x release, visit https://docs.openshift.com/container-
platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-3-11-98

https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-3-11-98
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-3-11-98

110

Note At the time of this writing, 4.0 is considered beta and it is available for AWS
with minimal customization. This book covers the AWS deployment architecture.

This chapter presents the most common scenarios that can be used to start

deploying OpenShift clusters, and as you’ll see, both versions have their advantages and

disadvantages, and independent from the deployment methodology, each one provides

ways to highly customize the environment to fit the organization’s need.

Before going into the two deployment approaches, let’s quickly review Minishift, a

development tool for Windows, MacOS, and Linux that enables developers to run an

OpenShift environment in their workstations.

Minishift
Currently the Minishift development tool is a distribution based on OCP 3.11.x or OKD

3.11.x that runs as a Virtual Machine (VM).

Minishift can be downloaded as part of the Red Hat Container Development Kit

(CDK),2 which includes additional Red Hat development tools and middleware.

Alternatively, the upstream Minishift from the OKD community can be obtained from

the Minishift Git3 repository.

Visit the Minishift documentation4 for installation details for a specific platform.

The following are common steps to fine-tune Minishift:

• Allocate a minimum of two vCPUs to Minishift (see #2 in Figure 6-1).

• Allocate at least 8 GB to Minishift (see #2 in Figure 6-1).

• To access additional software from the Red Hat Subscription, define and

export the corresponding environment variables (see #4 in Figure 6-1).

2 For information of and to download the Red Hat CDK, refer to https://developers.redhat.
com/products/cdk/overview/

3 The upstream Minishift project documentation is available at https://github.com/minishift/
minishift/releases

The Red Hat CDK documentation is available at (requires access to the Red Hat portal) https://
access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.7/
4 Upstream Minishift documentation: https://docs.okd.io/latest/minishift/getting-
started/index.html

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://developers.redhat.com/products/cdk/overview/
https://developers.redhat.com/products/cdk/overview/
https://github.com/minishift/minishift/releases
https://github.com/minishift/minishift/releases
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.7/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.7/
https://docs.okd.io/latest/minishift/getting-started/index.html
https://docs.okd.io/latest/minishift/getting-started/index.html

111

• Activate additional add-ons as needed (see #5 in Figure 6-1).

Minishift provides the developer experience similar to OCP (see Figure 6-2). From

the platform perspective, there are certain Minishift defaults and characteristics that

are different from an actual OCP cluster. For example, by default, Minishift enables

any user to run Containers in privilege mode. In OCP, this behavior is discouraged

and the cluster administrator must disable security for a user or group to allow them

to run Containers in privilege mode. Another distinct characteristic is that the default

identity provider with Minishift allows users to log in with any username and using any

password. If the username does not exist, Minishift will automatically provision that user

in the environment. In an OCP cluster, the user authentication is handled by the identity

provider, and when the access is granted, if the functionality is enabled, it proceeds to

create the user.

Figure 6-1. Minishift configuration

ChAPTer 6 DePloyMenT ArChiTeCTureS

112

 OCP 3.11 Deployment Architectures
The examples in this section have been tested and validated with OpenShift (OCP)

3.11.69, 3.11.82, and 3.11.98. To identify the latest subrelease of 3.11, refer to the last

section of the Release Notes5 as these are updated regularly with any new subrelease.

 Prerequisites
OpenShift requires certain preparation of the infrastructure and configuration of

ancillary datacenter services before deployment. Refer to Table 6-1 for a summary of a

prescribed VM configuration used by this section. This table is a recommendation and

it does not represent the minimum requirements. The list of minimum requirements is

available at the official OpenShift prerequisites6 documentation.

5 For details about the latest 3.11.x releases, visit https://docs.openshift.com/container-
platform/3.11/release_notes/ocp_3_11_release_notes.html

6 OpenShift prerequisites: https://docs.openshift.com/container-platform/3.11/install/
prerequisites.html

Figure 6-2. Minishift developer experience

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html

113

Table 6-1. OpenShift 3.11 Nodes Configurations (Recommendation)

Node Node Requirements

Masters • 8 vCPus

• Minimum 16GB rAM (recommended 32GB rAM)

• Disk 100GB

• /var should have 80GB free

App nodes • 8 vCPus

• 32GB rAM (recommended 64GB rAM)

• Disk 100GB

• /var should have 80GB free

A Converged or hyperconverged App nodes must include at least a dedicated disk

for oCS:

• oCS Disk 500GB raw/unformatted (any block device)

Note: A minimum of three hyperconverged or converged nodes are required for
OpenShift Container Storage (OCS)

infrastructure • 8 vCPus

• 32GB rAM

• Disk 100GB

• /var should have 80GB free

Bastion • 2 vCPus

• 8GB rAM

• Disk 40GB

lB • 2 vCPus

• 8GB rAM

• Disk 40GB

ChAPTer 6 DePloyMenT ArChiTeCTureS

114

 Operating System—Minimal Installation

All Nodes must be configured with the following setup:

• RHEL 7.6 Minimum installation (using Red Hat standard image).

• Recommended “Minimum” profile installation

• RHEL image should not have customizations from post-installation

scripts.

• SELinux must be set to enforcing.

• Firewall should be enabled and running.

• Time synchronization enabled.

 General Requirements for the Cluster

• All Nodes should7 be on the same network.

• All Nodes must have identical MTU.

• All Nodes must have unfiltered communication to each other.

• All Nodes require Internet access during the installation.8

• Nodes access and download RPMs and Containers from the Red

Hat repository and Red Hat Container registries.

• Nodes must use static IP address.

• Nodes must have an FQDN resolvable to their IP by the DNS servers

in /etc/resolv.conf.

7 OpenShift supports deployment across multiple networks. There must be unrestricted
reachability among the nodes for a deployment across networks. To avoid issues with external
routing or firewalls, this section assumes the nodes are in the same network.

8 Disconnected install is possible following the official documentation: https://docs.openshift.
com/container-platform/3.11/install/disconnected_install.html

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://docs.openshift.com/container-platform/3.11/install/disconnected_install.html
https://docs.openshift.com/container-platform/3.11/install/disconnected_install.html

115

• Allocate a wildcard subdomain for application (i.e., ∗.apps.ocp.

example.com). DNS servers in /etc/resolv.conf must be able to

resolve any name under the application subdomain (i.e., test.apps.

ocp.example.com) to the Infrastructure Nodes or the Nodes hosting

the OpenShift Router.

Note installation requires root or sudo SSh access to Nodes from Bastion (or
Master Node when not using Bastion Node).

 SDN Subnets

OpenShift SDN uses an internal default network address. Validate there are no conflicts

with the default IP address range of the internal SDN networks:

• Containers Network (osm_cluster_network_cidr): 10.1.0.0/16

• Services Network (openshift_portal_net): 172.30.0.0/16

These subnets are internal to the OCP cluster. These are NOT visible outside the

cluster. Should there be an existing IP subnet within the range of any of these two

subnets, a new set of private /16 networks should be designated for these purposes.

 (Optional) Subnets for Hosting Apps with Non-Web-Based or
Specialized Protocols

If the cluster will be hosting applications that need to present non-HTTP/HTTPS/TLS

protocols to services outside the cluster, there are two additional CIDR network ranges to

consider:

• 172.29.0.0/16 (ingressIPNetworkCIDR)

• <undefined CIDR> (externalIPNetworkCIDR)

These subnets are NOT internal to the OCP cluster. When deploying on-premise, the

external network devices must be configured to route them to the OCP Nodes.

ChAPTer 6 DePloyMenT ArChiTeCTureS

116

 Registry Service Account and Token

When deploying the Red Hat OpenShift Container Platform (OCP), the installation

requires a Service Account and a Token to access and download OCP containers from

registry.redhat.io. Before the installation, create a new Registry Service Account and

generate a Token at https://access.redhat.com/terms-based-registry/

The username will have the format "<number>|<custom_string>" and a

corresponding Token string will be generated. These credentials are required for the

installation.

Note This step is not necessary when deploying the oKD upstream project.

 Activate and Assign OpenShift Subscriptions
Each Node must have an active RHEL and OpenShift subscription. Register each Node

with a subscription following the steps in Listing 6-1.

Listing 6-1. Register RHEL and OpenShift subscriptions

Register each Node with RHSM

$ subscription-manager register --username=<user_name>

--password=<password>

Pull subscriptions

$ subscription-manager refresh

Identify the available OpenShift subscriptions

$ subscription-manager list --available --matches '*OpenShift*'

Assign a subscription to the node

$ subscription-manager attach --pool=<pool_id>

Disable all RHSM repositories

$ subscription-manager repos --disable="*"

Enable only repositories required by OpenShift

$ subscription-manager repos \

 --enable="rhel-7-server-rpms" \

 --enable="rhel-7-server-extras-rpms" \

 --enable="rhel-7-server-ose-3.11-rpms" \

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://access.redhat.com/terms-based-registry/

117

 --enable="rhel-7-server-ansible-2.6-rpms"

Upgrade each Node to the latest version of the OS

$ yum -y update

 Prepare OCP 3.11.x Installer on Bastion
Install the OpenShift Ansible installer on the Bastion Node as per Listing 6-2.

Listing 6-2. Install OpenShift Ansible installer on Bastion

$ yum -y install atomic-openshift-clients openshift-ansible

 Enable Password-less SSH
Enable password-less SSH for the OpenShift Ansible installer from the Bastion Node to

all the other Nodes as per Listing 6-3.

Listing 6-3. (Example) Enable password-less SSH from Bastion

Generate key pair at Bastion Node

$ ssh-keygen

Install public key to all Nodes

$ for host in master.ocp.example.com \

inf1.ocp.example.com \

inf2.ocp.example.com \

app1.ocp.example.com \

app2.ocp.example.com \

app3.ocp.example.com \

do ssh-copy-id -i ~/.ssh/id_rsa.pub $host; \

Done

 OpenShift Ansible Inventory File
The OpenShift Ansible installer uses a series of Ansible Playbooks to deploy an OpenShift

Cluster. Ansible uses a hosts inventory file to group managed target and set variables for

Ansible Roles and Playbooks.

ChAPTer 6 DePloyMenT ArChiTeCTureS

118

This provides the ability to highly customize the deployment of an OpenShift cluster.

The official OpenShift inventory9 file documentation provides a list of variables available

for the customization of the inventory file. There are far more variables than the ones

documented in the referenced document. These are additional variables that can be

used to fine-tune an inventory file. These additional customizations are documented in

the corresponding section of each one of the feature or capabilities.

The fact that there cannot be a single page with all the possible variables available for

customization speaks to the degree of fine-tuning that can be achieved for an OpenShift

cluster. At the same time, having too many options may be cumbersome for someone

new to OpenShift.

This book describes the configurations for the most common features and the most

relevant variables that may be used in the organizations starting with OpenShift. There

are multiple approaches for deploying these—from starting with a bare minimum

deployment of OCP and enabling features over time to the option of doing a deployment

enabling all the desired features at the install time.

The following subsections use a single inventory file enabling the most common

features in an OCP cluster at install time. During production configurations, the

infrastructure and operations teams can choose a more layered approach for the

deployment.

 Defining the OpenShift Release

The inventory_file is an Ansible inventory configuration. The first part of it is used

to configure some basic information for Ansible itself and for the openshift-ansible

playbooks. Lines 13–15 on Figure 6-3 are Ansible parameters to identify the username

Ansible will use to connect to the Nodes. This user should be root or have sudo privileges.

When using a regular user with sudo privileges, line 15 on Figure 6-3 configures Ansible

to use sudo when connecting to the target Node.

9 For additional details on how to configure the inventory file, visit the official documentation at
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_
file.html

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html

119

Line 21 on Figure 6-3 is identifying the deployment as OpenShift Container Platform

(OCP) by setting the value to openshift-enterprise. When using OKD, this value is set

to origin.

Line 27 on Figure 6-3 is identifying the exact subrelease to use. In this example, it is

using OCP 3.11.98. This value should be as specific as possible to ease cluster upgrades

among minor releases.

Tip When specifying the openShift release, avoid the use of generic version
numbers (i.e., 3.11) or generic tags like latest.

Figure 6-3. Inventory file—defining OpenShift Type and Release

ChAPTer 6 DePloyMenT ArChiTeCTureS

120

Even when considered Technology Preview in OCP 3.11.x, it is recommended to

enable the OpenShift Operator Lifecycle Manager (Line 30 on Figure 6-3) to take full

advantage of the benefits from the Kubernetes Operators capabilities.

By default OpenShift uses iptables for internal functionalities and Kubernetes

resources like firewall, kube-proxy, and Services, among others. By enabling the

configuration in line 33 on Figure 6-3, OpenShift can use firewallD instead.

 Registry Definitions and Access

During the installation, the openshift-ansible installer pulls a series of Container Images

from Red Hat repositories. To access these repositories requires a valid subscription, a

service account and subscription (see “Registry Service Account and Token” section at the

beginning of this chapter).

Figure 6-4. Inventory file—Container Registries and Registry Service Account

The Registry Service Account and the corresponding token should be set in the

variables shown in lines 41, 42, and 45 on Figure 6-4.

To support dynamic storage provisioning with OCS or any other supported storage

plugin, the configuration in line 62 on Figure 6-4 must be enabled. When dynamic

provisioning is not enabled, a user with cluster-admin privileges must manually create

and define the Persistent Volumes (PV) resources.

ChAPTer 6 DePloyMenT ArChiTeCTureS

121

 Red Hat OpenShift Container Storage

The Red Hat OpenShift Container Storage (RHOCS or OCS) provides Container-native

Gluster-based storage. OCS can be deployed during the OCP installation as the default

storage class (see line 74 on Figure 6-5).

Figure 6-5. Inventory file—Red Hat OpenShift Container Storage (RHOCS or
OCS)

ChAPTer 6 DePloyMenT ArChiTeCTureS

122

OCS can be deployed supporting GlusterFS (line 73 on Figure 6-5), Gluster-Block

(line 77 on Figure 6-5), and Glusterfs S3 (line 89 on Figure 6-5).

Note The Gluster-Block and Glusterfs S3 modes require GlusterFS.

The release cadence of OCS is not tied to OCP. When deploying OCS as part of the

deployment, it is highly recommended to specify the exact subrelease tag to use for the

corresponding service containers (lines 111, 114, 117, and 120 on Figure 6-6).

Figure 6-6. Inventory file—setting up specific subrelease tag for OCS containers

 Web Console Access and Wildcard Apps Domain

The default setup in OCP is for the web console and the Kubernetes API to listen on port

8443 on each Master node. This can be modified to match the standard HTTPS port (see

lines 132 and 133 on Figure 6-7).

In addition to the listening port, the Master configuration requires an FQDN the

Master Node or cluster of Master Nodes (if using multimaster configuration) will answer

to handle requests to the API or web consoles. This variable is the openshift_master_

cluster_hostname (see line 136 on Figure 6-7). When using a single Master, this value

can be the FQDN of the Master Node. When using multimaster configuration, this value

must be set to an FQDN that represents all the Masters (usually this can be a Virtual IP or

VIP address load balancing the traffic toward the Master Nodes).

ChAPTer 6 DePloyMenT ArChiTeCTureS

123

When using an external Load Balancer service or device, the FQDN of the

northbound VIP address must be specified in the inventory file using the variable

openshift_master_cluster_public_hostname (see line 140 on Figure 6-7).

Figure 6-7. Inventory file—web console and wildcard domains

The OpenShift Routers at Infrastructure Nodes require a wildcard subdomain it will

use to dynamically build a URL or Route for applications running on the platform and

exposing a service outside the cluster (see line 143 on Figure 6-7).

 Audit Logs

When audit logs are required as part of the deployment, the inventory file provides a

way to enable this functionality with the desired specific configuration (see line 150 on

Figure 6-7).

 Configuring the SDN

The OpenShift SDN default configuration uses the 10.1.0.0/16 network as the overlay

network and 172.30.0.0/16 as the network for the Service Kubernetes resources. These

networks can be set to something different before the installation by defining the

ChAPTer 6 DePloyMenT ArChiTeCTureS

124

variables osm_cluster_network_cidr and openshift_portal_net (see lines 156 and 157

on Figure 6-8).

Figure 6-8. Inventory file—OpenShift SDN parameters

OpenShift SDN supports multiple modes. The recommended OpenShift SDN mode

is the OVS with NetworkPolicy support (see line 160 on Figure 6-8).

Alternatively, there are other CNI plugins, like Calico SDN, which can be enabled as

the SDN provider (see lines 163–165 on Figure 6-8).

 Identity Providers

OpenShift supports multiple identity providers. To prevent installation failures due to

missing parameters or configurations with external identity providers, the deployment

can use the htpasswd identity provider (line 177 on Figure 6-9) with inline user

definitions (line 181 on Figure 6-9) or using an external htpassword file (see line 184 on

Figure 6-9).

ChAPTer 6 DePloyMenT ArChiTeCTureS

125

 Cluster Monitoring (Prometheus)

To enable Cluster Monitoring using the Prometheus Operator, set the openshift_

cluster_monitoring_operator_install variable (see line 196 on Figure 6-10).

Figure 6-9. Inventory file—configuration for identity providers

Figure 6-10. Inventory file—Cluster Monitoring with Prometheus Operator

ChAPTer 6 DePloyMenT ArChiTeCTureS

126

 Cluster Metrics (EFK Stack) and Logging

The traditional OpenShift Cluster Metrics are collected by the EFK Stack (ElasticSearch,

FluentD, and Kibana). After OCP 3.11, the Hawkular API functionality (see line 225 on

Figure 6-11) is being superseded by the Prometheus API.

The Horizontal Pod Autoscaler (HPA) functionality depends on the openshift-

metrics- server which is deployed by enabling the metrics install in the inventory file

(see line 220 on Figure 6-11).

Note in oCP 4.x releases, the metrics-server uses metrics from Prometheus
instead.

Figure 6-11. Inventory file—Cluster Metrics (with EFK Stack)

Installing the Cluster logging capabilities (line 246 on Figure 6-12) also provides the

ability to enable the event-router (line 247 on Figure 6-12) which watches for Kubernetes

events and streams them into the ElasticSearch in the EFK Stack.

ChAPTer 6 DePloyMenT ArChiTeCTureS

127

By default, the backend components of the metrics and logging services are

deployed to the Infrastructure Nodes. Configuring the variables in lines 225 to 227 and

the variables in lines 259 to 262 on Figure 6-12, these components can be deployed to

other Nodes.

 OpenShift Router and OpenShift Container Registry

The OpenShift Router and the OpenShift Container Registries are deployed to the

Infrastructure Nodes. To select different Nodes, specify different Node selectors (see

lines 272, 273, and 285 on Figure 6-13).

For the default OpenShift Router configurations, the number of Routers should be

equal to the number of Infrastructure Nodes (see line 276 on Figure 6-13).

To determine the number of Container Registry replicas, consult the documentation

as it should take the Container backend storage into consideration. If unsure, set it to

one (see line 278 on Figure 6-13).

Note in this case (see line 283 on Figure 6-13), when using Glusterfs as the
storage backend for the Container Registry, the storage stores three copies of
every container stored in the Registry.

Figure 6-12. Inventory file—Cluster Logging

ChAPTer 6 DePloyMenT ArChiTeCTureS

128

 OpenShift Service Catalog and Service Brokers

The Service Catalog (line 292 on Figure 6-14) is required for the Template Service

Broker (TSB) (line 296 on Figure 6-14) and the Ansible Service Broker (ASB) (line 301 on

Figure 6-14).

Figure 6-13. Inventory file—OpenShift Router and Registry

Figure 6-14. Inventory file—OpenShift Service Catalog and Template Service
Broker

ChAPTer 6 DePloyMenT ArChiTeCTureS

129

 OpenShift Nodes

The core definition of the inventory file is the definition of the Nodes and their respective

roles. Each Node type configuration is invoked by the definition of the groups in lines

309 to 313 on Figure 6-15. The required section or group definitions are masters, etcd,

and nodes.

Figure 6-15. Inventory file—OpenShift Node definition

ChAPTer 6 DePloyMenT ArChiTeCTureS

130

The [lb] section and group (lines 309, 315, and 316 on Figure 6-15) are required when

deploying a multimaster configuration and using openshift-ansible to deploy and configure

the optional software load balancer for the cluster of Master Nodes. Comment this section

when using a third-party load balancer or deploying a single Master configuration.

The [masters] and [etcd] sections (lines 318 to 326 on Figure 6-15) must list all the

Master Nodes.

Note The most common configurations use the Master Nodes as the etcd Nodes.
Should dedicated etcd nodes required, they should be listed in the [etcd] section.

The [nodes] section should list all the Master, Infrastructure, and Application Nodes

in the cluster. The Master Nodes should be tagged with the node-config-master group

name (see details in lines 330 to 332 on Figure 6-15). The Infrastructure Nodes should

be tagged with the node-config-infra group name (see details in lines 335 to 337 on

Figure 6-15). The Application Nodes should be tagged with the node-config-compute

group name (see details in lines 340 to 342 on Figure 6-15).

When deploying OCS in converged or hyperconverged mode, the [glusterfs] section

should be defined (see lines 313 and 347 to 351 on Figure 6-15) listing the Nodes

providing the raw devices or disks, to be used by OCS (see details in lines 349 to 351 on

Figure 6-15).

 Sample Deployment Scenarios

Note This section will focus on three common infrastructure setups (see Table 6-2)
and document a prescribed deployment configuration for each one of them. There
are many other possible configurations not covered in this book.

Table 6-2. Sample OpenShift 3.11 Deployment Architectures in This Section

Masters App Nodes Infr Nodes LB

All-in-one 1 n/A n/A n/A

non-hA 1 3 or more 1 n/A

Full hA 3 3 or more 2 or 3 1 or more

ChAPTer 6 DePloyMenT ArChiTeCTureS

131

 Single Node Deployment (All-in-One)

Note This All-in-one (Aio) (see Figure 6-16) is not an officially supported
oCP deployment. The Aio configuration is considered a testing or development
environment. The Master, infrastructure and Application roles are deployed to a
single node (see Table 6-3).

Figure 6-16. OCP 3.11.x All-in-One configuration

Table 6-3. Sample OpenShift 3.11 All-in-One

Node Role FQDN Node IP Address

Master, infra., and App nodes ocp.example.com 192.168.1.10

Bastion bastion.ocp.example.com 192.168.1.5

Apps wildcard domain *.apps.ocp.example.com CnAMe MASTer

ChAPTer 6 DePloyMenT ArChiTeCTureS

132

The All-in-One configuration executes all the OCP roles in a single Node. This particular

example is using an internal NFS server as the persistent storage. The openshift-ansible

installer will configure additional exports for the NFS based on the inventory file.

The corresponding Ansible inventory file for the All-in-One deployment will be

similar to Listing 6-4.

Note using nFS as the persistent storage for infrastructure components like
Registry, Metrics, Logging, and so on is an unsupported configuration.

Listing 6-4. Ansible inventory file for All-in-One deployment

###

#

All-in-One (AIO) SERVER WITH EMBEDDED NFS:

- assume AIO node name: ocp.example.com

- assume app wildcard name: *.apps.ocp.example.com

- assume NFS server configure to export /srv/nfs

- using docker or CRI-O

#

NOTE 2: Some services have been set to use *ephemeral* storage

#

###

Configuring your inventory file

https://docs.openshift.com/container-platform/3.11/install/configuring_

inventory_file.html

[OSEv3:vars]

###

Ansible Vars

###

timeout=60

ansible_user=root

#ansible_become=yes

ChAPTer 6 DePloyMenT ArChiTeCTureS

133

###

OpenShift Basic Vars

###

Deployment type

openshift_deployment_type=openshift-enterprise

#openshift_deployment_type=origin

WARNING: only disable these checks in LAB/TEST environments(Do not use in

production)

openshift_disable_check="disk_availability,memory_availability"

OpenShift Version(Always use sub-release for smoother upgrades):

openshift_release=3.11.98

Deploy Operator Lifecycle Manager (Tech Preview)

openshift_enable_olm=true

Enable NFS support for infrastructure components (unsupported)

openshift_enable_unsupported_configurations=true

###

Enable CRI-O

###

#openshift_use_crio=True

#openshift_use_crio_only=False

#openshift_crio_enable_docker_gc=True

###

OpenShift Registries Locations

###

NOTE: Need credentials from: https://access.redhat.com/terms-based-

registry/

oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}

oreg_auth_user={{REGISTY_USER}}

oreg_auth_password={{REGISTRY_TOKEN}}

ChAPTer 6 DePloyMenT ArChiTeCTureS

134

For Operator Framework Images

openshift_additional_registry_credentials=[{'host':'registry.connect.

redhat.com','user':'{{REGISTY_USER}}','password':'{{REGISTRY_

TOKEN}}','test_image':'mongodb/enterprise-operator:0.3.2'}]

Update examples to point to oreg_url

NOTE: change this if using disconnected install

openshift_examples_modify_imagestreams=false

NOTE: accept insecure registries and registries with self-signed certs

setup for lab environment

openshift_docker_hosted_registry_insecure=true

###

OpenShift Master Vars

###

openshift_master_api_port=8443

openshift_master_console_port=8443

Internal cluster name

openshift_master_cluster_hostname=ocp.example.com

Default wildcard domain for applications

openshift_master_default_subdomain=apps.ocp.example.com

###

OpenShift Network Vars

###

Defaults

#osm_cluster_network_cidr=10.1.0.0/16

#openshift_portal_net=172.30.0.0/16

os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

###

OpenShift Authentication Vars

###

ChAPTer 6 DePloyMenT ArChiTeCTureS

135

htpasswd Authentication(Non-Priviledge UI User until formal identity

provider is used. For now htpasswd identity provider)

NOTE: read initial identities in htpasswd format from /root/htpasswd.

openshift

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':

'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

Using an external htpasswd file use this:

#openshift_master_htpasswd_file=/home/cloud-user/htpasswd.openshift

Embedding users in the configuration file use this syntax

Note: user==password for this example

openshift_master_htpasswd_users={'ocpadmin':'$apr1$ZuJlQr.Y$6abuePAhKG0iY8Q

DNWoq80','developer':'$apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew.'}

###

OpenShift Metrics and Logging Vars

###

#########################

Prometheus Cluster Monitoring

#########################

https://github.com/openshift/openshift-docs/blob/master/install_config/

monitoring/configuring-openshift-cluster-monitoring.adoc

https://github.com/openshift/openshift-docs/tree/enterprise-3.11/install_

config/monitoring

openshift_cluster_monitoring_operator_install=true

 #openshift_prometheus_node_selector={"node-role.kubernetes.io/

infra":"true"}

NOTE: Setup for lab environment

Enable persistent storage of Prometheus time-series data (default false)

openshift_cluster_monitoring_operator_prometheus_storage_enabled=false

Enable persistent storage of Alertmanager notifications (default false)

openshift_cluster_monitoring_operator_alertmanager_storage_enabled=false

ChAPTer 6 DePloyMenT ArChiTeCTureS

136

########################

Cluster Metrics

########################

https://github.com/openshift/openshift-docs/blob/enterprise-3.11/install_

config/cluster_metrics.adoc

openshift_metrics_install_metrics=true

Store Metrics for 1 days

openshift_metrics_duration=1

openshift_metrics_storage_kind=nfs

openshift_metrics_storage_access_modes=['ReadWriteOnce']

openshift_metrics_storage_nfs_directory=/srv/nfs

openshift_metrics_storage_nfs_options='*(rw,root_squash)'

openshift_metrics_storage_volume_name=metrics

openshift_metrics_storage_volume_size=10Gi

openshift_metrics_storage_labels={'storage': 'metrics'}

cassandra -- ephemeral storage (for testing)

openshift_metrics_cassandra_storage_type=emptydir

openshift_metrics_cassandra_replicas=1

openshift_metrics_cassandra_limits_memory=2Gi

openshift_metrics_cassandra_limits_cpu=800m

openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra":

"true"}

hawkular

openshift_metrics_hawkular_limits_memory=2Gi

openshift_metrics_hawkular_limits_cpu=800m

openshift_metrics_hawkular_replicas=1

openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra":

"true"}

heapster

openshift_metrics_heapster_limits_memory=2Gi

openshift_metrics_heapster_limits_cpu=800m

openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra":

"true"}

ChAPTer 6 DePloyMenT ArChiTeCTureS

137

########################

Cluster Logging

########################

https://github.com/openshift/openshift-docs/blob/enterprise-3.11/install_

config/aggregate_logging.adoc

install logging

openshift_logging_install_logging=true

logging curator

openshift_logging_curator_default_days=1

openshift_logging_curator_cpu_limit=500m

openshift_logging_curator_memory_limit=1Gi

openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra":

"true"}

Configure a second ES+Kibana cluster for operations logs

Fluend splits the logs accordingly

openshift_logging_use_ops=false

Fluentd

openshift_logging_fluentd_cpu_limit=500m

openshift_logging_fluentd_memory_limit=1Gi

collect audit.log to ES

openshift_logging_fluentd_audit_container_engine=false

persistent storage for logs

openshift_logging_storage_kind=nfs

openshift_logging_storage_access_modes=['ReadWriteOnce']

openshift_logging_storage_nfs_directory=/srv/nfs

openshift_logging_storage_nfs_options='*(rw,root_squash)'

openshift_logging_storage_volume_name=logging

openshift_logging_storage_volume_size=10Gi

openshift_logging_storage_labels={'storage': 'logging'}

eventrouter

openshift_logging_install_eventrouter=true

ChAPTer 6 DePloyMenT ArChiTeCTureS

138

openshift_logging_eventrouter_nodeselector={"node-role.kubernetes.io/

infra": "true"}

Elasticsearch (ES)

ES cluster size (HA ES >= 3)

openshift_logging_es_cluster_size=1

replicas per shard

#openshift_logging_es_number_of_replicas=1

shards per index

#openshift_logging_es_number_of_shards=1

openshift_logging_es_cpu_limit=500m

openshift_logging_es_memory_limit=1Gi

PVC size omitted == ephemeral vols are used

#openshift_logging_es_pvc_siz=10G

openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}

Kibana

openshift_logging_kibana_cpu_limit=500m

openshift_logging_kibana_memory_limit=1Gi

openshift_logging_kibana_replica_count=1

expose ES? (default false)

openshift_logging_es_allow_external=false

openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra":

"true"}

###

OpenShift Router and Registry Vars

###

NOTE: Qty should NOT exceed the number of infra nodes

openshift_hosted_router_replicas=1

openshift_hosted_registry_replicas=1

openshift_hosted_registry_pullthrough=true

openshift_hosted_registry_acceptschema2=true

openshift_hosted_registry_enforcequota=true

ChAPTer 6 DePloyMenT ArChiTeCTureS

139

openshift_hosted_registry_storage_kind=nfs

openshift_hosted_registry_storage_access_modes=['ReadWriteMany']

openshift_hosted_registry_storage_nfs_directory=/srv/nfs

openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'

openshift_hosted_registry_storage_volume_name=registry

openshift_hosted_registry_storage_volume_size=10Gi

openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###

OpenShift Service Catalog Vars

###

default=true

openshift_enable_service_catalog=true

default=true

template_service_broker_install=true

openshift_template_service_broker_namespaces=['openshift']

default=true

ansible_service_broker_install=true

ansible_service_broker_local_registry_whitelist=['.*-apb$']

###

OpenShift Cockpit Vars and plugins

###

Disable cockpit

osm_use_cockpit=false

###

OpenShift Hosts

###

[OSEv3:children]

nfs

masters

etcd

nodes

ChAPTer 6 DePloyMenT ArChiTeCTureS

140

[nfs]

ocp.example.com

[masters]

ocp.example.com

[etcd]

ocp.example.com

[nodes]

All-In-One with CRI-O

#ocp.example.com openshift_node_group_name='node-config-all-in-one-crio'

openshift_node_problem_detector_install=true

ocp.example.com openshift_node_group_name='node-config-all-in-one'

openshift_node_problem_detector_install=true

#

END OF FILE

#

 Non-HA Control Plane Deployment

Table 6-4. Sample OpenShift 3.11 Non-HA Control Plane

Node Role FQDN Node IP Address

Master ocp.example.com 192.168.1.10

infr node inf1.ocp.example.com 192.168.1.15

App node node1.ocp.example.com 192.168.1.21

App node node2.ocp.example.com 192.168.1.22

App node node3.ocp.example.com 192.168.1.23

Bastion bastion.ocp.example.com 192.168.1.5

Apps wildcard domain *.apps.ocp.example.com CnAMe inFr noDe

ChAPTer 6 DePloyMenT ArChiTeCTureS

141

Listing 6-5. Ansible Inventory file for Non-HA Control Plane deployment

(fragment)

Use the inventory file from Listing 6-6 with the following modifications

#<snip>

###

OpenShift Master Vars

###

#<snip>

Internal cluster name

openshift_master_cluster_hostname=ocp.example.com

#<snip>

#openshift_master_cluster_public_hostname=ocp-ext.example.com

#<snip>

NOTE: Qty should match number of infra nodes

openshift_hosted_router_replicas=1

#<snip>

[OSEv3:children]

#lb

masters

etcd

nodes

glusterfs

Figure 6-17. OCP 3.11.x Non-HA Control Plane configuration

ChAPTer 6 DePloyMenT ArChiTeCTureS

142

#[lb]

#lb1.example.com

[masters]

ocp.example.com

[etcd]

ocp.example.com

[nodes]

Master Nodes

ocp.example.com openshift_node_group_name='node-config-master' openshift_

node_problem_detector_install=true

Infrastructure Nodes

inf1.example.com openshift_node_group_name='node-config-infra' openshift_

node_problem_detector_install=true

#<snip>

#

END OF FILE

#

 Full-HA Control Plane Deployment

Table 6-5. Sample OpenShift 3.11 Full-HA Control Plane

Node Role FQDN Node IP Address

lB lb.ocp.example.com 192.168.1.10

(public_hostname) console.ocp.example.com CnAMe lB (outside)

(cluster_hostname) ocp-int.ocp.example.com CnAMe lB (inside)

Master node master1.ocp.example.com 192.168.1.11

Master node master2.ocp.example.com 192.168.1.12

Master node master3.ocp.example.com 192.168.1.13

infr node inf1.ocp.example.com 192.168.1.15

infr node inf2.ocp.example.com 192.168.1.16

(continued)

ChAPTer 6 DePloyMenT ArChiTeCTureS

143

Listing 6-6. Ansible inventory file for Full-HA Control Plane deployment

#

openshift-ansible inventory file for OpenShift Container

Platform 3.11.98

#

Details on configuring your inventory file

https://docs.openshift.com/container-platform/3.11/install/configuring_

inventory_file.html

[OSEv3:vars]

Node Role FQDN Node IP Address

infr node inf3.ocp.example.com 192.168.1.17

App node node1.ocp.example.com 192.168.1.21

App node node2.ocp.example.com 192.168.1.22

App node node3.ocp.example.com 192.168.1.23

App node nodeX.ocp.example.com 192.168.1.XX

Bastion bastion.ocp.example.com 192.168.1.5

Apps wildcard domain *.apps.ocp.example.com CnAMe enT lB

Table 6-5. (continued)

Figure 6-18. OCP 3.11.x Full-HA Control Plane configuration

ChAPTer 6 DePloyMenT ArChiTeCTureS

144

###

Ansible Vars

###

timeout=60

ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}

ansible_become=yes

###

OpenShift Basic Vars

###

Deployment type

openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments

#openshift_disable_check="disk_availability,memory_availability"

OpenShift Version:

openshift_release=3.11.98

Deploy Operator Lifecycle Manager (OLM)

openshift_enable_olm=true

firewalld recommended for new installations (default is iptables)

#os_firewall_use_firewalld=true

###

OpenShift Registries Locations

###

NOTE: Need credentials from: https://access.redhat.com/terms-based-

registry/

oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}

oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}

oreg_auth_password={{CHANGEME_SERVICE_KEY}}

For Operator Framework Images

openshift_additional_registry_credentials=[{'host':'registry.connect.

redhat.com','user':'{{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}','password':'{{CH

ANGEME_SERVICE_KEY}}','test_image':'mongodb/enterprise-operator:0.3.2'}]

ChAPTer 6 DePloyMenT ArChiTeCTureS

145

NOTE: accept insecure registries and registries with self-signed certs

setup for lab environment

openshift_docker_hosted_registry_insecure=true

#openshift_docker_insecure_registries=<registry_hostname>

#openshift_docker_blocked_registries=<registry_hostname>

Update examples to point to oreg_url -- enable if using disconnected

install

#openshift_examples_modify_imagestreams=false

###

Enable dynamic storage provisioning

###

https://docs.openshift.com/container-platform/3.11/install_config/

persistent_storage/dynamically_provisioning_pvs.html

Note: required for OCS dynamic provisioning

openshift_master_dynamic_provisioning_enabled=true

###

OpenShift Container Storage (OCS)

###

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/

openshift_storage_glusterfs

Deploy OCS glusterfs and create StorageClass

Note: default namespace = glusterfs

#openshift_storage_glusterfs_namespace=openshift-storage

openshift_storage_glusterfs_storageclass=true

openshift_storage_glusterfs_storageclass_default=true

Enable Glusterfs Block Storageclass

openshift_storage_glusterfs_block_deploy=false

#openshift_storage_glusterfs_block_host_vol_create=true

NOTE: host_vol_size is effectively an upper limit on the size of

glusterblock volumes

unless you manually create larger GlusterFS block-hosting volumes

#openshift_storage_glusterfs_block_host_vol_size=100

ChAPTer 6 DePloyMenT ArChiTeCTureS

146

#openshift_storage_glusterfs_block_storageclass=true

#openshift_storage_glusterfs_block_storageclass_default=false

#

Enable Glusterfs S3 (Tech Preview)

#

#openshift_storage_glusterfs_s3_deploy=true

#openshift_storage_glusterfs_s3_account=s3testvolume

#openshift_storage_glusterfs_s3_user=s3adminuser

#openshift_storage_glusterfs_s3_password=s3adminpass

#openshift_storage_glusterfs_s3_pvc=dynamic

Size (Gi) of glusterfs backed PVC used for S3 object data storage

#openshift_storage_glusterfs_s3_pvc_size=2

Size (Gi) of glusterfs backed PVC used for S3 object metadata storage

#openshift_storage_glusterfs_s3_meta_pvc_size=1

GlusterFS version

openshift_storage_glusterfs_version=v3.11

openshift_storage_glusterfs_block_version=v3.11

openshift_storage_glusterfs_s3_version=v3.11

openshift_storage_glusterfs_heketi_version=v3.11

NOTE: https://docs.openshift.com/container-platform/3.11/install_config/

persistent_storage/persistent_storage_glusterfs.html#install-advanced-

installer

NOTE: Using specific sub-releases tags for fixed bugs

https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.

com/rhgs3/rhgs-server-rhel7

Container image to use for glusterfs pods

openshift_storage_glusterfs_image="registry.access.redhat.com/rhgs3/rhgs-

server- rhel7:v3.11.2"

Container image to use for glusterblock-provisioner pod

openshift_storage_glusterfs_block_image="registry.access.redhat.com/rhgs3/

rhgs-gluster-block-prov-rhel7:v3.11.2"

ChAPTer 6 DePloyMenT ArChiTeCTureS

147

Container image to use for Gluster S3

openshift_storage_glusterfs_s3_image="registry.redhat.io/rhgs3/rhgs-s3-

server-rhel7:v3.11.2"

Container image to use for heketi pods

openshift_storage_glusterfs_heketi_image="registry.access.redhat.com/rhgs3/

rhgs-volmanager-rhel7:v3.11.2"

If using a dedicated glusterfs_registry storage cluster

openshift_storage_glusterfs_registry_version=v3.11

openshift_storage_glusterfs_registry_block_version=v3.11

openshift_storage_glusterfs_registry_s3_version=v3.11

openshift_storage_glusterfs_registry_heketi_version=v3.11

###

OpenShift Master Vars

###

openshift_master_api_port=443

openshift_master_console_port=443

Internal cluster name

openshift_master_cluster_hostname=ocp-int.example.com

Note: use if using different internal & external FQDN (i.e. using LB)

set the external cluster name here

openshift_master_cluster_public_hostname=ocp-ext.example.com

NOTE: Specify default wildcard domain for applications

openshift_master_default_subdomain=apps.example.com

Configure custom certificates

https://docs.openshift.com/container-platform/3.11/install_config/

certificate_customization.html

Audit log

https://docs.openshift.com/container-platform/3.11/install_config/master_

node_configuration.html#master-node-config-audit-config

ChAPTer 6 DePloyMenT ArChiTeCTureS

148

openshift_master_audit_config={"enabled": true, "auditFilePath": "/

var/lib/origin/audit-ocp.log", "maximumFileRetentionDays": 7,

"maximumFileSizeMegabytes": 10, "maximumRetainedFiles": 3}

###

OpenShift Network Vars

###

Defaults

#osm_cluster_network_cidr=10.1.0.0/16

#openshift_portal_net=172.30.0.0/16

OpenShift SDN with NetworkPolicy

os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

If using Calico SDN

#os_sdn_network_plugin_name=cni

#openshift_use_calico=true

#openshift_use_openshift_sdn=false

###

OpenShift Authentication Vars

###

Available Identity Providers

https://docs.openshift.com/container-platform/3.11/install_config/

configuring_authentication.html

#########################

htpasswd Authentication

#########################

NOTE: read initial identities in htpasswd format from /root/htpasswd.

openshift

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login':

'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

To define initial users directly in the inventory file:

Note: user==password for this example

openshift_master_htpasswd_users={'ocpadmin':'$apr1$ZuJlQr.Y$6abuePAhKG0iY8Q

DNWoq80','developer':'$apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew.'}

ChAPTer 6 DePloyMenT ArChiTeCTureS

149

To use external htpassword file:

#openshift_master_htpasswd_file=/root/htpasswd.openshift

###

OpenShift Cluster Monitoring, Metrics and Logging Vars

###

#########################

Cluster Monitoring

#########################

https://docs.openshift.com/container-platform/3.11/install_config/

prometheus_cluster_monitoring.html

Enable Prometheus, Grafana & Alertmanager

openshift_cluster_monitoring_operator_install=true

openshift_cluster_monitoring_operator_node_selector={"node-role.kubernetes.

io/infra":"true"}

Setup storage allocation for Prometheus services

openshift_cluster_monitoring_operator_prometheus_storage_capacity=20Gi

openshift_cluster_monitoring_operator_alertmanager_storage_capacity=2Gi

Enable persistent dynamic storage for Prometheus services

openshift_cluster_monitoring_operator_prometheus_storage_enabled=true

openshift_cluster_monitoring_operator_alertmanager_storage_enabled=true

Storage class to use if persistent storage enabled

NOTE: it will use storageclass default if storage class not specified

#openshift_cluster_monitoring_operator_prometheus_storage_class_

name='glusterfs-storage-block'

#openshift_cluster_monitoring_operator_alertmanager_storage_class_

name='glusterfs-storage-block'

For custom config Alertmanager

https://docs.openshift.com/container-platform/3.11/install_config/

prometheus_cluster_monitoring.html#configuring-alertmanager

ChAPTer 6 DePloyMenT ArChiTeCTureS

150

########################

Cluster Metrics

########################

Deploy Metrics Server (used by HPA)

openshift_metrics_install_metrics=true

Start metrics cluster after deploying the components

openshift_metrics_start_cluster=true

openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra":

"true"}

openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra":

"true"}

openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra":

"true"}

Store Metrics for 2 days

openshift_metrics_duration=2

Settings for Lab environment

openshift_metrics_cassandra_pvc_size=10Gi

openshift_metrics_cassandra_replicas=1

openshift_metrics_cassandra_limits_memory=2Gi

openshift_metrics_cassandra_limits_cpu=1000m

User gluster-block or glusterfs (dynamic)

#openshift_metrics_cassandra_pvc_storage_class_name='glusterfs-storage- block'

openshift_metrics_cassandra_storage_type=dynamic

########################

Cluster Logging

########################

openshift_logging_install_logging=true

openshift_logging_install_eventrouter=true

openshift_logging_es_pvc_dynamic=true

openshift_logging_es_pvc_size=20Gi

#openshift_logging_es_pvc_storage_class_name='glusterfs-storage-block'

ChAPTer 6 DePloyMenT ArChiTeCTureS

151

openshift_logging_es_memory_limit=4Gi

openshift_logging_es_cluster_size=1

minimum age (in days) Curator uses for deleting log records

openshift_logging_curator_default_days=1

openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra":

"true"}

openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra":

"true"}

openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}

openshift_logging_eventrouter_nodeselector={"node-role.kubernetes.io/

infra": "true"}

NOTE: If want to config a dedicated Elasticsearch for operation logs

https://docs.openshift.com/container-platform/3.11/install_config/

aggregate_logging.html#aggregated-ops

###

OpenShift Router and Registry Vars

###

default selectors for router and registry services

openshift_router_selector='node-role.kubernetes.io/infra=true'

openshift_registry_selector='node-role.kubernetes.io/infra=true'

NOTE: Qty should match number of infra nodes

openshift_hosted_router_replicas=3

openshift_hosted_registry_replicas=1

openshift_hosted_registry_pullthrough=true

openshift_hosted_registry_acceptschema2=true

openshift_hosted_registry_enforcequota=true

openshift_hosted_registry_storage_kind=glusterfs

openshift_hosted_registry_storage_volume_size=10Gi

openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

ChAPTer 6 DePloyMenT ArChiTeCTureS

152

###

OpenShift Service Catalog

###

Servie Catalog

openshift_enable_service_catalog=true

Template Service Broker (TSB)

Note: requires Service Catalog

template_service_broker_install=true

openshift_template_service_broker_namespaces=['openshift']

Ansible Service Broker (ASB)

Note: requires TSB

ansible_service_broker_install=true

ansible_service_broker_local_registry_whitelist=['.*-apb$']

###

OpenShift Hosts

###

[OSEv3:children]

lb

masters

etcd

nodes

glusterfs

[lb]

lb1.example.com

[masters]

master1.example.com

master2.example.com

master3.example.com

[etcd]

master1.example.com

master2.example.com

master3.example.com

ChAPTer 6 DePloyMenT ArChiTeCTureS

153

[nodes]

Master Nodes

master1.example.com openshift_node_group_name='node-config-master'

openshift_node_problem_detector_install=true

master2.example.com openshift_node_group_name='node-config-master'

openshift_node_problem_detector_install=true

master3.example.com openshift_node_group_name='node-config-master'

openshift_node_problem_detector_install=true

Infrastructure Nodes

inf1.example.com openshift_node_group_name='node-config-infra' openshift_

node_problem_detector_install=true

inf2.example.com openshift_node_group_name='node-config-infra' openshift_

node_problem_detector_install=true

inf3.example.com openshift_node_group_name='node-config-infra' openshift_

node_problem_detector_install=true

App/Worker nodes

node1.example.com openshift_node_group_name='node-config-compute'

openshift_node_problem_detector_install=true

node2.example.com openshift_node_group_name='node-config-compute'

openshift_node_problem_detector_install=true

node3.example.com openshift_node_group_name='node-config-compute'

openshift_node_problem_detector_install=true

Node Groups and custom Node Groups

https://docs.openshift.com/container-platform/3.11/install/configuring_

inventory_file.html#configuring-inventory--node-group-configmaps

[glusterfs]

App/Worker nodes with OCS hyperconverged

node1.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'

node2.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'

node3.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'

#

END OF FILE

#

ChAPTer 6 DePloyMenT ArChiTeCTureS

154

 Deploying OpenShift
Once the openshift-ansible inventory file is defined, the process to install OpenShift from

the Bastion Node is as shown in Listing 6-7.

Listing 6-7. Deploying OpenShift

The following steps assume the openshift-inventory file configuration is

saved as ./inventory_file in the local directory

Step 1: Validate Bastion Node can reach all the Nodes

$ ansible all -i inventory_file -m ping

Step 2: Once Step 1 completes without errors, install pre-requisites

$ ansible-playbook -i inventory_file /usr/share/ansible/openshift-ansible/

playbooks/prerequisites.yml

Step: 3: Once Step 2 completes without errors, deploy the OpenShift

cluster

$ansible-playbook -i inventory_file /usr/share/ansible/openshift-ansible/

playbooks/deploy_cluster.yml

Tip if the installation process fails during the initial deployment, it is
recommended to follow the uninstall procedure, correct the inventory file, and
redeploy again.

 Uninstalling OpenShift
The openshift-ansible provides playbooks to uninstall an OpenShift deployment. To

remove any traces of OpenShift, follow the steps described in Listing 6-8.

Tip if the installation process fails during the initial deployment, it is
recommended to uninstall and redeploy again.

ChAPTer 6 DePloyMenT ArChiTeCTureS

155

Listing 6-8. Uninstalling OpenShift

The following steps assume the openshift-inventory file configuration is

saved as ./inventory_file in the local directory

Step 1: Uninstall the OpenShift deployment and delete data on OCS disks.

ansible-playbook -i inventory_file -e "openshift_storage_glusterfs_wipe=true"

/usr/share/ansible/openshift-ansible/playbooks/adhoc/uninstall.yml

Step 2: Remove any leftovers configuration files

ansible nodes -i inventory_file -m file -a "dest=/etc/origin state=absent"

#(optional): If the installation was using 3rd party CNI plugins remove any

leftovers from the CNI configuration

ansible nodes -i inventory_file -m file -a "dest=/etc/cni state=absent"

 Bastion Node as Admin Jumphost
Once the deployment is completed, OpenShift has a special account “system:admin”

with cluster-admin privileges that can be used to configure the platform. By default, this

privileged account is only available when logged in as root to a Master Node.

To use the Bastion Node for cluster-admin configurations, it is possible to copy the

certificate credentials (/root/.kube/config) from a Master Node into the Bastion Node

to enable the use of the “system:admin” account from the Bastion Node. Listing 6-9

documents a way to copy these credentials to the Bastion Node using the information

from the inventory file.

Listing 6-9. Bastion Node

The following step assume the openshift-inventory file configuration is

saved as ./inventory_file in the local directory

$ ansible -i inventory_file masters[0] -b -m fetch -a "src=/root/.kube/

config dest=/root/.kube/config flat=yes"

ChAPTer 6 DePloyMenT ArChiTeCTureS

156

 OpenShift 4.x Deployments (AWS)
The examples in this section have been tested and validated with OpenShift (OCP) 4.0

Developer Preview 3 on AWS.

 Prerequisites
OpenShift 4.0 on AWS requires minimum preparation of the AWS environment.

 1. Create a new DNS zone for OCP in AWS Route5310 service.

a. Note: Entries created in the Route53 zone are expected to have

full resolution from the Nodes.

 2. Prepare Bastion Node.

a. Configure the AWS credentials in the Bastion Node as per AWS

CLI11 documentation.

b. Test the AWS configuration executing a query to validate the

DNS zone is listed of the following command:

i. aws route53 list-hosted-zones

c. Download the OpenShift 4 installer12 from the OpenShift

portal.

i. At the time of this writing, the official portal to download

the installer is https://cloud.openshift.com/clusters/

install

ii. Note: The OpenShift 4 installer is a single Go binary that

can be executed from any Linux or MacOS machine.

10 AWS Route53: https://console.aws.amazon.com/route53
11 AWS CLI Configuration: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-
configure.html#cli-quick-configuration

12 The latest beta installer is available at https://github.com/openshift/installer/releases

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://cloud.openshift.com/clusters/install
https://cloud.openshift.com/clusters/install
https://console.aws.amazon.com/route53
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://github.com/openshift/installer/releases

157

d. Download the Pull Secret for the OpenShift subscriptions.

i. At the time of this writing, the Pull Secret is generated and

available at the Developer Preview site:

 https://cloud.openshift.com/clusters/install

e. Download and install the OpenShift 4 client (the oc client)

from the official mirror13 site.

 OpenShift 4.x Deployment Architecture
The OpenShift 4.x deployment architecture uses the openshift-install command to

deploy OCP 4.x to the desired environment using one of two modes:

• User Provisioned Infrastructure (UPI): In this mode, the Nodes

are manually provisioned with a set of prerequisites. Then, by

a configuration process that has not been published, feed this

information to the openshift-install for it to deploy the OpenShift cluster.

• At the time of this writing, this mode is not yet available under the

Developer Preview release.

• Installer Provisioned Infrastructure (IPI): In this mode, the Nodes

are provisioned by the installer, and OpenShift is deployed as a series

of Kubernetes Operators on top of the provisioned Nodes.

• During the IPI installation, the installer provisions a bootstrap Node

it will use to instantiate the Master Nodes and the Worker Nodes.

Once the cluster is instantiated, the bootstrap Node is destroyed.

 OCP4 Deployment to AWS (IPI Mode)
When deploying OCP4 into AWS, it uses the IPI mode. By default, this process deploys

an architecture of three Master Nodes and three Worker Nodes. The deployment

automatically distributes these Nodes across different AWS Availability Zones (AZ) in the

same AWS Region (see Figure 6-19).

13 OpenShift 4 client can be downloaded from https://mirror.openshift.com/pub/
openshift-v4/clients/oc/4.1/

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://cloud.openshift.com/clusters/install
https://mirror.openshift.com/pub/openshift-v4/clients/oc/4.1/
https://mirror.openshift.com/pub/openshift-v4/clients/oc/4.1/

158

Note in oCP4 the Application Nodes are known as Worker Nodes. Both terms are
interchangeable.

As seen in Figure 6-19, the basic deployment does not use dedicated Infrastructure

Nodes and instead deploys two OpenShift Router instances into the Worker Nodes. The

Service resource definition for the Routers uses the Kubernetes LoadBalancer resource to

provision a classic AWS ELB load balancer to distribute the traffic among the OpenShift

Routers. This ELB receives the HTTP and HTTPS traffic to applications served by the

wildcard subdomain.

Note The wildcard subdomain is automatically configured by the installer
following the format *.apps.<ocp-route53-dns-zone>

Another difference from the OCP 3.11.x architecture is that only the Kubernetes API

server is exposed to the outside world directly from the Master Nodes. All other services,

including the Web Consoles, are published as Routes.

Figure 6-19. OCP4 Deployment to AWS (IPI Mode)

ChAPTer 6 DePloyMenT ArChiTeCTureS

159

Note There is an openshift-config-server service that is accessible directly on
Master nodes but, when using iPi mode, this is not exposed outside the cluster.

 Installing OCP4 on AWS
 Standard Deployment

The standard OCP4 deployment is the single liner described in Listing 6-10 which will

prompt for basic information and proceed with the deployment.

Listing 6-10. Installing OpenShift 4 (standard)

Assuming prerequisites in place.

$ openshift-install create cluster

? SSH Public Key /Users/wcabanba/.ssh/id_rsa.pub

? Platform aws

? Region us-west-2

? Base Domain example.com

? Cluster Name ocp4demo1

? Pull Secret [? for help] ****<snip>*******
INFO Creating infrastructure resources...

INFO Waiting up to 30m0s for the Kubernetes API at https://api.ocp.example.

com:6443...

INFO API v1.12.4+0ba401e up

INFO Waiting up to 30m0s for the bootstrap-complete event...

INFO Destroying the bootstrap resources...

INFO Waiting up to 30m0s for the cluster at https://api.ocp.example.

com:6443 to initialize...

INFO Waiting up to 10m0s for the openshift-console route to be created...

INFO Install complete!

INFO Run 'export KUBECONFIG=/path/to/ocp4demo1/auth/kubeconfig' to manage

the cluster with 'oc', the OpenShift CLI.

INFO The cluster is ready when 'oc login -u kubeadmin -p <snip>' succeeds

(wait a few minutes).

ChAPTer 6 DePloyMenT ArChiTeCTureS

160

INFO Access the OpenShift web-console here: https://console-openshift-

console.apps.ocp.example.com

INFO Login to the console with user: kubeadmin, password: <snip>

 Customizing Standard Deployment

There is some minor customization possible by generating the installer configuration file

and editing parameters on it before running the installation.

The OCP4 installer provides the --dir flag to read or write the configuration

parameters to it. This provides a way to maintain multiple configurations on different

folders. To generate the installation configuration, follow the steps in Listing 6-11.

Listing 6-11. Generating the OCP4 installation file

Assuming prerequisites in place.

$ openshift-install create install-config --dir ocp4demo1

? SSH Public Key /Users/wcabanba/.ssh/id_rsa.pub

? Platform aws

? Region us-west-2

? Base Domain example.com

? Cluster Name ocp

? Pull Secret [? for help] ****<snip>*******

This command will prompt for any missing information it requires to generate the

configuration. The resulting configuration is similar to Listing 6-12.

Listing 6-12. The OCP4 installation file

apiVersion: v1beta4

baseDomain: example.com

compute:

- name: worker

 platform: {}

 replicas: 3

controlPlane:

 name: master

 platform: {}

 replicas: 3

ChAPTer 6 DePloyMenT ArChiTeCTureS

161

metadata:

 creationTimestamp: null

 name: ocp

networking:

 clusterNetwork:

 - cidr: 10.128.0.0/14

 hostPrefix: 23

 machineCIDR: 10.0.0.0/16

 networkType: OpenShiftSDN

 serviceNetwork:

 - 172.30.0.0/16

platform:

 aws:

 region: us-west-2

 type: m4.large

pullSecret: <snip>

sshKey: |

 ssh-rsa <snip>

From the output shown in Listing 6-12, it is relatively easy to identify core areas that

can be modified. From the output, it is clear where to change the number of replicas

to have more workers or change the Workers instance type. Additional customization

attributes can be found in the official OCP4 documentation.14.

To deploy using the customization, point the installer to the directory when executing

the installation. The exact flags when invoking the command are shown in Listing 6-13.

Listing 6-13. The deploying OCP4 with customizations

Assuming prerequisites are in place

$ openshift-install create cluster --dir ocp4demo1

INFO Consuming "Install Config" from target directory

INFO Creating infrastructure resources.

<snip>

The rest of the output and process is similar to the one shown in Listing 6-10.

14 AWS Customizations: https://docs.openshift.com/container-platform/4.0/installing/
installing_aws/installing-aws-customizations.html

ChAPTer 6 DePloyMenT ArChiTeCTureS

https://docs.openshift.com/container-platform/4.0/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.0/installing/installing_aws/installing-aws-customizations.html

162

 Deployment Progress
As part of the initial configuration for the environment, the installer extends the

DNS zone on AWS Route53 designated for OCP (see #1 on Figure 6-20) and creates a

subdomain for the new cluster using the cluster name as the subdomain (see #2 on

Figure 6-20).

In addition to the default AWS resources in the VPC (see #3 on Figure 6-20), the

installer allocates Elastic IPs, creates an ELB load balancer, and creates security groups

for the Nodes (see #4 on Figure 6-20).

Figure 6-20. OCP4 installation—allocating subdomain and EC2 resources

The installer continues by creating the Bootstrap and Master Nodes (see #1 on

Figure 6-21). The process takes several minutes.

ChAPTer 6 DePloyMenT ArChiTeCTureS

163

Figure 6-22. OCP4 installation—Worker Nodes

Figure 6-21. OCP4 installation—BootStrap and Master Nodes

ChAPTer 6 DePloyMenT ArChiTeCTureS

164

Once the Checks under Status Checks are successful and all the instances in running

state (see #3 on Figure 6-21), the installer proceeds with the instantiation of the Worker

Nodes (see #1 on Figure 6-22).

After the Worker Nodes are in running state and have passed the Status Checks (see

#3 on Figure 6-22), it proceeds to terminate the Bootstrap Node (see #4 on Figure 6-22).

 Configuring the Identity Provider
Once the cluster is successfully deployed, the installer displays the credentials for

the kubeadmin user (see Listing 6-10). This is a cluster-admin user equivalent to the

system:admin user in the OCP3.11.x clusters, but the kubeadmin user can log in to the

web console.

In OCP4, this is the user that configures and sets up the environment to enable other

services or functionalities. To enable other users to access the new OCP cluster, the

kubeadmin user must define a new identity provider.

Identify the console URL returned by the installer (see Listing 6-10) and access it

using a browser (see Figure 6-23).

Figure 6-23. OCP4 login screen—kubeadmin

While no identity provider is configured, when logged in as kubeadmin, there will be

a message indicating the need to configure an identity provider (see #2 on Figure 6-24).

ChAPTer 6 DePloyMenT ArChiTeCTureS

165

From the same message, there is a link to the OAuth configuration (see #3 on

Figure 6-24).

At the OAuth configuration, the existing identity provider can be modified or a

new identity provider can be added (see Figure 6-25). At the time of this writing, the

Developer Preview version provides a wizard to configure the htpasswd and the OpenID

identity providers.

Figure 6-24. OCP4 OAuth configuration

Figure 6-25. OCP4 adding identity provider

ChAPTer 6 DePloyMenT ArChiTeCTureS

166

To add the htpasswd identity provider, select from the dropdown options (see

Figure 6-25), and a simple screen will provide a way to set up the name for the identity

provider and to upload the htpasswd file with the new user identities (see Figure 6-26).

The uploaded htpasswd file is converted into a Secret object and associated to the

corresponding identity provider resource definition (see Figure 6-26).

Figure 6-26. OCP4 configuring htpasswd identity provider

After a new identity provider is added to the system, the login screen will present

the options for a user to choose the identity provider they want to use to log in to the

platform.

ChAPTer 6 DePloyMenT ArChiTeCTureS

167

Figure 6-27. OCP4 login screen with htpasswd identity provider

 Summary
There are many ways to deploy OpenShift 3.11.x and OpenShift 4 clusters. This chapter

presented the most common scenarios that can be used to start deploying OpenShift

clusters.

With OCP 3.11.x, there is the option of using a huge single inventory file to set up the

parameters and features required for the deployment. The deployment model of OCP

3.11.x requires the pre-provisioning of the Nodes before starting a deployment. This

model allows for the cluster administrators to have fine control of the deployment and

features to enable since the very beginning.

OCP 4.x brings a paradigm shift which focuses on deploying the core components

in an HA configuration without much customization during the installation. Once the

cluster is operational, the cluster-admin user kubeadmin can be used to configure and

set up the parameters for all the features and elements required by the implementation.

Both deployment approaches have their advantages and disadvantages.

Independent from the deployment methodology, both provide ways to highly customize

the environment to fit the organization’s need.

Once the cluster is deployed, new users can be created, and further tuning of

the platform is possible. OpenShift supports granular role-based access control

(RBAC) capabilities while supporting self-service for regular users. These and other

administrative tasks are covered in Chapter 7.

ChAPTer 6 DePloyMenT ArChiTeCTureS

169
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_7

CHAPTER 7

Administration
After deploying OpenShift platform as presented in Chapter 6, the administrative tasks

of the platform start. The interaction with an OpenShift cluster is governed by the

role-based access control (RBAC) objects. The RBAC determines whether a User is

authorized to perform a given action within a Project. A User is an account that is used to

interact with the OpenShift API. A User will be associated to one or more Groups that are

used to assign privileges to multiple users at the same time.

This chapter focuses on the main tasks of user management (basic user

management, groups, virtual users, and service accounts), security, quotas, and

templates, which are powerful features for enabling self-service capabilities.

 User and Groups
There are several types of users in OpenShift. The default user types are documented in

Table 7-1.

170

Examples of some of the system users created during the deployment of OpenShift are

• Cluster administrators (i.e., system:admin)

• Per-node users (i.e., system:node:node1.ocp.example.com)

• An anonymous user (system:anonymous)

During the creation of a new Project, OpenShift creates three service accounts that

are used when executing certain actions in the Project:

• system:serviceaccount:<project-name>:deployer

• system:serviceaccount:<project-name>:builder

• system:serviceaccount:<project-name>:default

To access OpenShift, every user must be authenticated (i.e., using access tokens,

certificates, etc.). The policy associated to the User object determines what the user is

authorized to do in the cluster. When the user is authenticated, the policy associated

to the User dictates the authorizations. When the API receives a request with no

authentication or invalid authentication, these requests are processed as a request by the

anonymous user system:anonymous.

 Virtual Groups and Virtual Users
OpenShift provisions a series of system groups as the base classification for any user

interacting with the platform. These special groups are referred to as Virtual Groups.

Similarly, there is a special Virtual User used to identify for anonymous interactions.

Table 7-2 lists the Virtual Groups and Virtual Users.

Table 7-1. OpenShift Virtual Groups

User Type Description

Regular

users

Regular users are represented by the User object. This is the most common way users

interact with OpenShift.

System

users

This type of user is usually created automatically during the deployment and is used

by the platform to interact with the OpenShift API.

Service

accounts

The service accounts users are represented by the ServiceAccount object. These are

special system users associated with projects. The service accounts can be created

automatically during Project creation or by a Project administrator.

ChAPTeR 7 AdmInISTRATIOn

http://node1.ocp.example.com

171

 Authentication, Authorization, and OpenShift RBAC
The OpenShift Master has a built-in OAuth server1 used by the users to obtain an access

token to interact with the API. The request for an OAuth token must specify the OAuth

client that will receive and use the token (see Table 7-3).

When a new OAuth Token request arrives to the OAuth server (#2 on Figure 7-1), the

OAuth server uses the identity provider to determine the identity of the user making the

request (#3 on Figure 7-1). Once the user identity is established, it maps the identity to

the corresponding User (#4 on Figure 7-1). After successfully mapping the identity to the

User, the OAuth server creates a token for that User and returns it to the original requester.

Table 7-2. OpenShift Virtual Groups

Virtual Group or Virtual User Description

system:authenticated This Virtual Group represents all the authenticated users.

system:authenticated:oauth This Virtual Group represents authenticated users with an OAuth

access token.

system:unauthenticated This Virtual Group represents all the unauthenticated users.

system:anonymous This Virtual User is used in conjunction with the

system:unauthenticated Virtual Group to represent an

unauthenticated user interacting with the OpenShift API.

Table 7-3. OpenShift OAuth Clients

OAuth Clients Description

openshift-web-console Request tokens to use for the web console

openshift-browser- client Token requests at https://<master>/oauth/token/request with a

user-agent that can handle interactive logins

openshift-challenging- client Token requests with a user-agent that supports OAuth

WWW-Authenticate challenges.

1 OpenShift OAuth Server: https://docs.openshift.com/container-platform/3.11/
architecture/additional_concepts/authentication.html#oauth

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth

172

Note OpenShift supports the use of Service Account as OAuth clients2 and the
addition of OAuth client3 definitions.

 RBAC
The RBAC objects determine if a user is allowed to perform a specific action within a

Project. The RBAC authorization is comprised of Rules, Roles, and Bindings (see Table 7- 4

for more details).

Figure 7-1. Sample flow for an OAuth Token request

Table 7-4. Authorization Constructs

Construct Description

Rules Represent the Verbs permitted on a set of Kubernetes and OpenShift objects.

Roles Represent a collection of policy Rules. Users and Groups can be associated to multiple

Roles at the same time.

Bindings Represent the association of Users or Groups with a Role.

Verb The Verbs are get, list, create, update, delete, delete collection, or watch.

Identity Represents the User Name and the list of Groups the User belongs to.

2 Using Service Account as OAuth client: https://docs.openshift.com/container-platform/
3.11/architecture/additional_concepts/authentication.html#service-accounts-as-
oauth-clients

3 To define additional OAuth clients, refer to https://docs.openshift.com/container-
platform/3.11/architecture/additional_concepts/authentication.html#oauth-clients

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth-clients

173

There are two levels of RBAC authorization in an OpenShift Cluster (see Table 7-5 for

details).

 Default Cluster Roles
OpenShift predefines a series of default Cluster Roles (see Table 7-6) that can be bound to

Users or Groups. In addition, a cluster-admin user can define additional Roles.

Table 7-5. Levels of RBAC Authorizations

Construct Description

Cluster

RBAC

Refers to Roles and Bindings that are applicable cluster-wide and not scoped to a

particular Project. Cluster Role Bindings can only reference Cluster Roles (Roles that

exist cluster-wide).

Local RBAC Refers to Roles and Bindings scoped to a particular Project. Local Role Bindings can

reference Cluster Roles or Local Roles (Roles that only exist in a Project).

Table 7-6. Default Cluster Roles

Default Cluster Role Description

cluster-admin A super-user that can perform any action on any Project.

Note: When the cluster-admin Role is bound to a User with a Local Binding, that

user will have full control over quota and actions on every resource in the Project.

admin A Project manager.

Note: When used in a Local Binding, a User with admin Role will have rights

to view and modify any resource in the Project (except for Quota).

basic-user A user that can get basic information about Projects and Users.

cluster-status A user that can get basic cluster status information.

edit A user that can modify most objects in a Project but does not have rights to

view or modify Roles or Bindings.

self-provisioner A user that can create their own Projects.

view A user who can see, but not modify, most objects in a Project. They cannot

view or modify Roles or Bindings.

cluster-reader A user who can read, but not view, objects in the cluster.

ChAPTeR 7 AdmInISTRATIOn

174

 Security Context Constraints
OpenShift provides granular control of the actions and access of a Pod with the

capabilities provided by the Security Context Constraints (SCC).

The SCC objects define the conditions that a Pod must met in order to be accepted

into the system. The SCC controls the following:

 1. Ability to run privileged Containers

 2. Additional capabilities that can be requested by a Container

 3. Ability to use Host directories as Volumes

 4. SELinux context of the Container

 5. The User ID

 6. The use of Host namespaces and networking

 7. Allocating an FSGroup4 that owns the Pod’s Volumes

 8. Configuring allowable supplemental Groups

 9. Requiring the use of a read-only root filesystem

 10. Controlling the usage of Volume types

 11. Configuring allowable SECCOMP profiles

OpenShift defines seven default SCC in a cluster. These default SCC are listed on

Figure 7-2.

By default, authenticated users are granted access to the restricted SCC (line #10 on

Figures 7-2 and 7-3), while cluster administrators, Nodes, and the build controller are

granted the privileged SCC (line #9 on Figure 7-2).

Figure 7-2. List of default SCC

4 The FSGroup defines Pod’s “file system group” ID, for more information refer to the
documentation at https://docs.openshift.com/container-platform/3.11/install_config/
persistent_storage/pod_security_context.html#fsgroup

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/pod_security_context.html#fsgroup
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/pod_security_context.html#fsgroup

175

Figure 7-3. The “restricted SCC” definition

ChAPTeR 7 AdmInISTRATIOn

176

As it can be seen from the restricted SCC definition (Figure 7-3), this SCC enforces

the following restrictions:

• Pods cannot run as privileged (line #8 on Figure 7-3).

• Pods cannot use Host directory Volumes (lines #39 to #45 on Figure 7-3).

• Pods run as a user in a preallocated range of UID (lines #32 and #33

on Figure 7-3).

• Pods run with a preallocated SELinux MCS label (lines #34 and #35

on Figure 7-3).

• Pods can use any supplemental Group (lines #36 and #37 on

Figure 7- 3).

The SCC strategies5 are settings and strategies that fall into three categories:

• Controlled by a boolean (default to the most restrictive value)

• Controlled by an allowable set specifying the allowed values

• Controlled by a strategy in which a mechanism generates the value

and ensures the value is allowed (see Table 7-7)

Table 7-7. SCC Strategies

SCC Strategy Options

RUnASUSeR mustRunAs, mustRunAsRange, mustRunAsnonRoot, RunAsAny

SeLInUXCOnTeXT mustRunAs, RunAsAny

SUPPLemenTALGROUPS mustRunAs, RunAsAny

FSGROUP mustRunAs, RunAsAny

volumes azureFile, azuredisk, flocker, flexVolume, hostPath, emptydir,

gcePersistentdisk, awselasticBlockStore, gitRepo, secret, nfs, iscsi,

glusterfs, persistentVolumeClaim, rbd, cinder, cephFS, downwardAPI, fc,

configmap, vsphereVolume, quo byte, photonPersistendisk, projected,

portworxVolume, scaleIO, storageos, “*”, none

5 Details about the SCC Strategies: https://docs.openshift.com/container-platform/3.11/
architecture/additional_concepts/authorization.html#authorization-SCC-strategies

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authorization.html#authorization-SCC-strategies
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authorization.html#authorization-SCC-strategies

177

 SECCOMP Profiles
SECCOMP (secure computing mode) is a security facility in the Linux Kernel that

allows a system administrator to limit access by Containers to the system features. The

combination of restricted and allowed calls are arranged in profiles. Different profiles

can be passed to different Containers. This provides a fine-grained control over the

syscalls available from a Container.

Note SeCCOmP is a Kernel feature, and as such, it must be enabled6 on the
system.

To enable SECCOMP for a Pod, the following annotations are required in the Pod

configuration:

• seccomp.security.alpha.kubernetes.io/pod: <unconfined>

• container.seccomp.security.alpha.kubernetes.io/<container_

name>: <localhost/profile_name>

In addition, edit the /etc/origin/node/node-config.yaml to define the seccomp-

profile- root directory where the local SECCOMP profiles will be stored. (See Listing 7-1.)

Listing 7-1. Defining SECCOMP profiles directory

Edit /etc/origin/node/node-config.yaml

kubeletArguments:

 ...

 seccomp-profile-root:

 - "/path/to/seccomp/profiles"

Restart the Node services

$ sudo systemctl restart atomic-openshift-node

To control the SECCOMP profiles that may be used in the OpenShift platform and

to set the default SECCOMP profile, configure the SCC with the seccompProfiles field.

When using a custom SECCOMP profile, the format for the field is localhost/<profile-

name>. (See Listing 7-2.)

6 To check if SECCOMP is enabled, consult the documentation at https://docs.openshift.com/
container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp
https://docs.openshift.com/container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp

178

Listing 7-2. Configuring SECCOMP in SCC profiles

seccompProfiles:

- localhost/<profile-name>

 Enabling Unsafe SYSCTL
When SYSCTL are namespaced, their value can be set independently for each Pod. This

is a requirement for SYSCTLS to be accessible in a Pod within Kubernetes.

A SYSCTL is considered safe for a Pod if

• Does not influence any other Pod on the Node

• Does not harm the Node’s health

• Does not gain CPU or memory resources outside the resource limits

of a Pod

All safe7 SYSCTLS are enabled by default. All other SYSCTLS are considered unsafe

and are disabled by default. A user with cluster-admin privileges can manually enable

unsafe SYSCTLS on a per-node basis.

Enabling unsafe sysctls requires modifying the kubeletArguments on the /etc/

origin/node/node-config.yaml in the Nodes that will be supporting the unsafe

SYSCTLS (see Listing 7-3).

Listing 7-3. Enabling unsafe SYSCTLS

Edit /etc/origin/node/node-config.yaml

kubeletArguments:

 ...

 allowed-unsafe-sysctls:

 - "kernel.msg*,net.ipv4.route.min_pmtu"

Restart the Node services

$ sudo systemctl restart atomic-openshift-node

The configuration of SYSCTLS for a Pod is done by setting the values under the

securityContext in the Pod configuration (see Listing 7-4).

7 For additional information of safe vs. unsafe sysctls, refer to https://docs.openshift.com/
container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts
https://docs.openshift.com/container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts

179

Note There is no distinction between safe and unsafe sysctls in the Pod
configuration.

Listing 7-4. Example setting SYSCTLS for Pod

apiVersion: v1

kind: Pod

metadata:

 name: sysctl-example

spec:

 securityContext:

 sysctls:

 - name: kernel.shm_rmid_forced

 value: "0"

 - name: net.ipv4.route.min_pmtu

 value: "552"

 - name: kernel.msgmax

 value: "65536"

 ...

Note A Pod using unsafe SYSCTLS will fail to run on any Node where the unsafe
SYSCTLS have not been explicitly enabled.

 Identity Providers
Configuring the identity provider8 for the built-in OAuth server can be done during the

installation or after the installation.

8 Additional details on configuring identity providers: https://docs.openshift.com/container-
platform/3.11/install_config/configuring_authentication.html#identity-providers-
configuring

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring

180

The OpenShift 3.11.x supported identity providers are

• Deny All: Default identity provider. Denies access for all usernames

and passwords.

• Allow All: Allows access to any non-empty username with any non-

empty password to log in. Used for testing purposes. (Used as default

if running without a master configuration file.)

• HTPasswd: Validates usernames and passwords against a flat file

generated using htpasswd.

• Keystone: Uses the OpenStack identity project for authentication.

• LDAP: Validates usernames and password against an LDAPv3 server

using simple bind authentication.

• Basic Authentication (remote): Allows users to log in to OpenShift

with credentials validated against a remote identity provider. (Must

use an HTTPS connection to remote server.)

• Request Header: Identifies users from request header values like

X-Remote-User.

• GitHub: Uses the OAuth authentication from GitHub.

• GitLab: Uses the OAuth authentication from GitLab (versions 7.7.0 to

11.0). If using GitLab version 11.1 or later, use the OpenID Connect.

• Google: Uses Google’s OpenID Connect integration.

• OpenID Connect: Integrates with an OpenID Connect identity

provider.

The configuration of the identity provider uses a mappingMethod to define how new

identities are mapped to users when they log in to OpenShift. The value will be one of the

following:

• claim: Provisions a user with the identity’s preferred user name. Fails

if a user with that user name is already mapped to another identity.

(This is the default configuration.)

ChAPTeR 7 AdmInISTRATIOn

181

• lookup: Looks up an existing identity, user identity mapping, and

user. It does not provision users or identities if they don’t exist. Using

this method requires cluster administrators to set up identities and

users manually or by an external process.

• generate: Provisions a user with the identity’s preferred user name.

If a user with the preferred user name already exists, a unique user

name is generated (i.e., username2).

• add: Provisions a user with the identity’s preferred user name. If a

user with that user name already exists, the identity is mapped to

the existing user. (Required when multiple identity providers are

configured that identify the same set of users.)

 Managing Users and Groups
The creation of a user depends on the configuration of the mappingMethod in the identity

provider. The manual creation of a user is as shown in Listing 7-5.

Listing 7-5. Manual creation of a user

$ oc create user <username> --full-name="User Name"

Managing the roles, groups, and SCC for a user can be done with the oc client

command with the options as shown in Figure 7-4.

ChAPTeR 7 AdmInISTRATIOn

182

 Using Service Accounts
Service Accounts (SA) provide a flexible way to control API access without sharing a

regular User credential.

The user name of a Service Account (SA) is derived from its Project and name (see

Listing 7-6). The Service Account can be granted Roles (see Listing 7-6) as any other user

in the system.

Figure 7-4. Manage user roles, groups, and SCC

ChAPTeR 7 AdmInISTRATIOn

183

Listing 7-6. Assigning Roles to Service Account

Format of a Service Account name

system:serviceaccount:<project-name>:<name>

Assigning Role to a Service Account

$ oc policy add-role-to-user <role-name> system:serviceaccount:<project-

name>:<name>

Assigning Role to a Service Account from the Project it belongs to

$ oc policy add-role-to-user <role-name> -z <SA-name>

Each Service Account belongs to two groups:

• system:serviceaccount

• system:serviceaccount:<project-name>

During the creation of a new Service Account,9 the system ensures to add two secrets

to it (see Listing 7-7):

• An API token

• Credentials for the OpenShift Container Registry

Note The generated API token and registry credentials do not expire. If the secret
is deleted, a new one is automatically generated to replace it.

Listing 7-7. Creating a Service Account

Creating a Service Account name

$ oc create sa sa-demo (or) oc create serviceaccount sa-demo

serviceaccount/sa-demo created

$ oc describe sa sa-demo

Name: sa-demo

Namespace: demo

Labels: <none>

Annotations: <none>

9 Additional information about Service Accounts https://docs.openshift.com/container-
platform/3.11/dev_guide/service_accounts.html

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html
https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html

184

Image pull secrets: sa-demo-dockercfg-rj875

Mountable secrets: sa-demo-token-xph4v

 sa-demo-dockercfg-rj875

Tokens: sa-demo-token-txlcq

 sa-demo-token-xph4v

Events: <none>

To associate a ServiceAccount to a Pod, use the serviceAccountName under the Pod’s

spec definition (see Listing 7-8).

Listing 7-8. Creating a Service Account

apiVersion: v1

kind: Pod

metadata:

 name: demo-pod

spec:

 serviceAccountName: sa-demo

 ...

The API tokens from the ServiceAccount associated to the Pod are mounted as a file

at /var/run/secrets/kubernetes.io/serviceaccount/token inside the Container.

Note The default ServiceAccount is used when no explicit ServiceAccount is
specified in the Pod definition.

 Quotas and Limit Ranges
Quotas and Limit Ranges are objects that can be set by a cluster administrator to limit the

number of objects or amount of compute resources that are used by a particular Project.

While LimitRanges specify the limits of compute resources in a Project on per-object

basis, Quotas act as the upper limit for the total compute resources or number of objects

in the Project.

ChAPTeR 7 AdmInISTRATIOn

185

LimitRange object can set up compute resource constraints in a Project at the

following level:

• Pod

• Container

• Image

• ImageStream

• PersistentVolumeClaim

To apply a LimitRange10 to a Project, create the object definition with the

specification (see definition in Figure 7-5).

All resource creation or modification requests are checked against the LimitRange in

the Project. The resource creation or modification is rejected if it violates the constraints

(see Figure 7-6).

Figure 7-5. Creating and verifying LimitRange

10 Additional information about creating LimitRange: https://docs.openshift.com/container-
platform/3.11/admin_guide/limits.html#creating-a-limit-range

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/admin_guide/limits.html#creating-a-limit-range
https://docs.openshift.com/container-platform/3.11/admin_guide/limits.html#creating-a-limit-range

186

The ResourceQuota object is used to set up Project-level Quota to limit the number of

objects in a Project or the total Limits for a Project. Figure 7-7 shows an example defining

and verifying the creation of a ResourceQuota.

When a particular request for creation or modification of a resource violates a Quota,

the system will prevent the creation or modification of the resource (see Figure 7-8).

Figure 7-7. Definition and creation of ResourceQuota

Figure 7-6. LimitRange and its effect on Pod requests

ChAPTeR 7 AdmInISTRATIOn

187

 OpenShift Service Catalogs
OpenShift includes a Service Catalog which implements the Open Service API11 (OSP

API) for Kubernetes. This capability allows users to connect applications deployed in

OpenShift to services instantiated through service brokers.

A user with cluster-admin privileges registers one or more Service Brokers with

OpenShift cluster. Each Service Broker defines a set of Cluster Service Classes and Service

Plans available to users.

Users request to provision or deprovision a resource provided by a Service Class.

When provisioning a new resource, the Users bind the service instance with their local

application Pods.

OpenShift provides two Service Brokers with the Service Catalog:

• Template Service Broker (TSB) gives the visibility into the Instant

App and Quickstart Templates12 that are shipped with OpenShift. In

addition, the TSB makes available as a service any services defined as

an OpenShift Template.

• OpenShift Ansible Broker (OAB)13 is an implementation of the OSB

API that manages application defined by Ansible Playbook Bundles

(APBs).

Figure 7-8. Example of quota enforcement

11 Details about the Open Service Broker API are available at the project home page:
www.openservicebrokerapi.org

12 Additional information on using Instant App and Quickstart Templates is available at
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.
html#using-the-instantapp-templates

13 Additional details about the Ansible Service Broker is available at https://docs.openshift.com/
container-platform/3.11/architecture/service_catalog/ansible_service_broker.
html#arch-ansible-service-broker

ChAPTeR 7 AdmInISTRATIOn

https://www.openservicebrokerapi.org
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html#using-the-instantapp-templates
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html#using-the-instantapp-templates
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker

188

OpenShift Templates
OpenShift Templates provide a way to parameterize the creation of any OpenShift

and Kubernetes objects. A template can be processed to create anything the user

executing the Template has the permission to create within a Project (i.e., Services,

BuildConfig, Deployments, Routes, etc.).

Templates are one of the mechanisms used to provide self-service capabilities with

OpenShift. They provide a way for developers to deploy, on self-serve style, applications

or backend stacks, when needed, while administrators retain full control on how a

particular application or backend stack is implemented.

A Template can be executed from CLI or using the web console if the Template has

been uploaded to the Project or Global Template library. Installing a Template can be

done over GUI or CLI (see Figure 7-9).

When using the GUI to install an OpenShift Template, there are two options: an

option to immediately process the Template (#3 on Figure 7-9) and another option to

save the template to the service catalog (#4 on Figure 7-9).

Figure 7-9. Installing OpenShift Template

ChAPTeR 7 AdmInISTRATIOn

189

Note When installing a Template, it needs to be associated to a namespace. To
make the Template available cluster-wide, it should be installed into the openshift
Project.

An example of an OpenShift Template is shown in Listing 7-9.

Listing 7-9. OpenShift Template example

apiVersion: template.openshift.io/v1

kind: Template

labels:

 app: podcool-example

 template: podcool-example

metadata:

 annotations:

 description: An simple Demo Flask Python application

 iconClass: fa fa-leaf

 openshift.io/display-name: Podcool Demo App

 tags: quickstart,podcool

 name: podcool-example

objects:

- apiVersion: v1

 kind: Service

 metadata:

 annotations:

 description: Exposes and load balances the application pods

 name: podcool-example

 spec:

 ports:

 - name: web

 port: 8080

 targetPort: 8080

 selector:

 name: podcool-example

- apiVersion: v1

ChAPTeR 7 AdmInISTRATIOn

190

 kind: ImageStream

 metadata:

 annotations:

 description: Keeps track of changes in the application image

 name: podcool-example

- apiVersion: v1

 kind: BuildConfig

 metadata:

 annotations:

 description: Defines how to build the application

 name: podcool-example

 spec:

 output:

 to:

 kind: ImageStreamTag

 name: podcool-example:latest

 source:

 contextDir: ${CONTEXT_DIR}

 git:

 ref: ${SOURCE_REPOSITORY_REF}

 uri: ${SOURCE_REPOSITORY_URL}

 type: Git

 strategy:

 sourceStrategy:

 from:

 kind: ImageStreamTag

 name: python:3.6

 namespace: openshift

 type: Source

 triggers:

 - type: ConfigChange

 - github:

 secret: ${GITHUB_WEBHOOK_SECRET}

 type: GitHub

ChAPTeR 7 AdmInISTRATIOn

191

- apiVersion: v1

 kind: DeploymentConfig

 metadata:

 annotations:

 description: Defines how to deploy the application server

 name: podcool-example

 spec:

 replicas: 1

 selector:

 name: podcool-example

 strategy:

 type: Rolling

 template:

 metadata:

 labels:

 name: podcool-example

 name: podcool-example

 spec:

 containers:

 - image: podcool-example

 name: podcool-example

 ports:

 - containerPort: 8080

 env:

 - name: APP_VERSION

 value: v1

 - name: APP_MESSAGE

 value: Deployment from Template

 triggers:

 - imageChangeParams:

 automatic: true

 containerNames:

 - podcool-example

ChAPTeR 7 AdmInISTRATIOn

192

 from:

 kind: ImageStreamTag

 name: podcool-example:latest

 type: ImageChange

 - type: ConfigChange

parameters:

- description: The URL of the repository with your application source code

 name: SOURCE_REPOSITORY_URL

 value: https://github.com/williamcaban/podcool.git

- description: Set this to a branch name, tag or other ref of your

repository if you

 are not using the default branch

 name: SOURCE_REPOSITORY_REF

- description: Set this to the relative path to your project if it is not

in the root

 of your repository

 name: CONTEXT_DIR

- description: Github trigger secret. A difficult to guess string encoded

as part

 of the webhook URL. Not encrypted.

 from: '[a-zA-Z0-9]{40}'

 generate: expression

 name: GITHUB_WEBHOOK_SECRET

An OpenShift Template14 can use or create any OpenShift and Kubernetes object the

user executing it has privileges to create in a Project. That is a wide range of options and

possible objects to create with a Template. As such, the process of writing OpenShift

Templates is beyond the scope of this book.

14 Additional information about writing OpenShift Templates: https://docs.openshift.com/
container-platform/3.11/dev_guide/templates.html

ChAPTeR 7 AdmInISTRATIOn

https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html

193

 Summary
This chapter focused on the main tasks of user management, security, quotas,

and Templates. With respect to user management, this chapter covered basic user

management, groups, virtual users, and service accounts. The security topics covered

setting secure profiles, quotas, and limits. Finally, this chapter described using OpenShift

Templates with the service catalog as a mechanism to provide self-service capabilities to

the users.

The administration of OpenShift Clusters involves much more than what is covered

in the chapter, and the reader should explore additional topics that will enhance the

experience for the users while facilitating sustainable operations of the platform.

One of the OpenShift features designed to enhance the developer experience is the

native capability to support CI/CD pipelines. The OpenShift Pipelines are covered in

Chapter 8.

ChAPTeR 7 AdmInISTRATIOn

195
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_8

CHAPTER 8

Architecting OpenShift
Jenkins Pipelines
The OpenShift platform provides multiple features to enhance the developer experience.

These features are enabled and managed using the same RBAC and SCC options seen in

Chapter 7. This chapter focuses on the OpenShift Jenkins Pipelines capabilities.

The OpenShift Jenkins Pipelines capabilities in OpenShift Container Platform (OCP)

provide the ability to create advanced CI/CD pipelines that can be used to create new

CI/CD processes, or to integrate with existing organizations CI/CD processes.

OpenShift Jenkins Pipelines provide support for using CI/CD pipelines to build,

deploy, and promote applications on OpenShift. These Pipelines can use a combination

of the Jenkins Pipeline Build Strategy, Jenkinsfiles, and the OpenShift Jenkins Client

Plugin.

This chapter describes the basic configurations to start using the capabilities

provided by the OpenShift CI/CD feature.

 CI/CD Pipelines As a Service with OpenShift
When using the Jenkins Pipeline Build Strategy or using a Jenkinsfile, OpenShift CI/CD

capabilities autoprovision a Jenkins Master for the Project and the Jenkins Slaves required

to complete the stages.

This Jenkins Master will be used to execute all the Jenkins Pipelines defined at the

Project.

By default, the Jenkins Master server uses the OpenShift Jenkins-ephemeral template

to instantiate the server. To deploy a Jenkins server with persistent storage for the data

and configuration stored in /var/lib/jenkins, the Project admin can manually deploy

a Jenkins Master using the Jenkins-persistent template from the self-service catalog.

196

To change the default Jenkins template, a cluster-admin can modify the Master Nodes

configuration1 to set up the Jenkins-persistent template as the default template to use

when autoprovisioning a Jenkins server (see Listing 8-1).

Listing 8-1. Jenkins-persistent as default template for autoprovisioning of

Jenkins servers

Update /etc/origin/master/master-config.yaml to include

jenkinsPipelineConfig:

 autoProvisionEnabled: true

 templateNamespace: openshift

 templateName: jenkins-persistent

 serviceName: jenkins-persistent-svc

During the instantiation of the Jenkins Master, the process

• Deploys Jenkins into the Project using the official OpenShift Jenkins

image

• The Jenkins deployment can be done using ephemeral or

persistent storage.

• Creates Service and Route resources for the Jenkins Master

• Creates a jenkins Service Account (SA) in the Project

• Grant Project-level edit access to the new jenkins Service Account

When using an OpenShift Pipeline across Projects, the jenkins SA on the project

hosting the Jenkins Master requires edit access level on the Projects it will manage.

Listing 8-2. Grant ‘edit’ access to ‘jenkins’ Service Account

Option 1: Grant 'edit' access to 'jenkins' Service Account on specific

Projects

oc policy add-role-to-user edit system:serviceaccount:<cicd-

project>:jenkins -n <target-project>

1 Using Jenkins-persistent template: https://docs.openshift.com/container-platform/3.11/
install_config/configuring_pipeline_execution.html

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

https://docs.openshift.com/container-platform/3.11/install_config/configuring_pipeline_execution.html
https://docs.openshift.com/container-platform/3.11/install_config/configuring_pipeline_execution.html

197

Option 2: Grant 'edit' access to 'jenkins' Service Account on all

Projects

oc adm policy add-cluster-role-to-user edit system:serviceaccount:<cicd-

project>:jenkins

 Jenkins Pipeline Build Strategy
OpenShift has the notion of build configurations or BuildConfigs. A BuildConfig is a

configuration describing a single build definition. This includes information like the

triggers that will provoke a new build and the build strategy to use. The build strategy

determines the process to be used to execute a build. One of the build strategies is the

Pipeline Build Strategy.2

The Pipeline Build Strategy is an OpenShift Build3 type that enables developers to

define Jenkins pipeline workflows which are executed inside the OpenShift platform.

To use this Build Strategy, the Jenkins Pipeline is defined in a Jenkinsfile. This can

be embedded directly in the BuildConfig (see #3 on Figure 8-1) or provided on a Git

repository (see #2 on Figure 8-2) referenced by the BuildConfig (see #3 on Figure 8-2).

2 OpenShift Pipeline Build Strategy https://docs.openshift.com/container-platform/3.11/
dev_guide/builds/build_strategies.html#pipeline-strategy-options

3 OpenShift Build process https://docs.openshift.com/container-platform/3.11/
architecture/core_concepts/builds_and_image_streams.html#builds

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/build_strategies.html#pipeline-strategy-options
https://docs.openshift.com/container-platform/3.11/dev_guide/builds/build_strategies.html#pipeline-strategy-options
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html#builds
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html#builds

198

The BuildConfig with the embedded Jenkins pipeline definition is a YAML formatted

configuration file specifying the Jenkins Pipeline Strategy (see #2 on Figure 8-1). The

content of the Jenkinsfile is included as a multiline string block (see #3 on Figure 8-1) in

the definition.

Figure 8-1. OpenShift Pipeline Build Strategy with embedded Jenkinsfile
definition

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

199

The other option for the Pipeline Strategy is the BuildConfig referencing a Jenkinsfile

(see #3 on Figure 8-2) on a Git repository (see #2 on Figure 8-2). In this particular case,

the Jenkinsfile can be in any directory of the referenced Git repository and can have any

name as long as the full path and filename are specified in the corresponding Jenkinsfile

Path variable. If this variable is not defined, it will retrieve a file named Jenkinsfile from

the root directory of the Git repo.

 Creating the Pipeline BuildConfig
The BuildConfig on Figure 8-1 is for a sample pipeline that defines environment

variables at the pipeline strategy level (line 8 on Figure 8-1) and at the Jenkinsfile level

(line 21 on Figure 8-1). The embedded Jenkinsfile defines a Jenkins Pipeline (line 13

on Figure 8-1) with some sample stages (line 25 on Figure 8-1). For the purpose of this

example, there are three stages. To maintain a minimal structure to illustrate the use of

the pipeline, in this example, each stage simply displays a message.

The YAML configuration for the BuildConfig sample-pipeline from Figure 8-1 is

shown in Listing 8-3.

Figure 8-2. OpenShift Pipeline Build Strategy with Git Jenkinsfile definition

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

200

Listing 8-3. Sample Pipeline BuildConfig with embedded Jenkinsfile

kind: "BuildConfig"

apiVersion: "v1"

metadata:

 name: "sample-pipeline"

spec:

 strategy:

 jenkinsPipelineStrategy:

 env:

 - name: "MY_STRATEGY_VAR"

 value: "Demo Env Var from Pipeline Strategy"

 type: JenkinsPipeline

 jenkinsfile: |-

 pipeline {

 agent any

 options {

 // set a timeout of 5 minutes for this pipeline

 timeout(time: 5, unit: 'MINUTES')

 } //options

 environment {

 MY_PIPELINE_VAR = "Demo Env Var from Pipeline"

 }

 stages {

 stage('Build') {

 steps {

 echo "Sample Build stage with variable from

pipeline startegy >> ${MY_STRATEGY_VAR}"

 }

 } //stage

 stage('Test') {

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

201

 steps {

 echo "Sample Test stage with variable from

Jenkinsfile >> ${MY_PIPELINE_VAR}"

 }

 } //stage

 stage('Promote') {

 steps {

 echo "Sample Promote stage with OpenShift Client

Plugin DSL"

 script {

 openshift.withCluster() {

 openshift.withProject() {

 echo "Using project: ${openshift.

project()}"

 }

 }

 } // script

 } //steps

 } //stage

 } // stages

 } // pipeline

The YAML configuration for the BuildConfig sample-pipeline-2 from Figure 8-2 is

shown in Listing 8-4.

Listing 8-4. Sample Pipeline BuildConfig with Git referenced Jenkinsfile

kind: "BuildConfig"

apiVersion: "v1"

metadata:

 name: "sample-pipeline-2"

spec:

 source:

 git:

 uri: "https://git.example.com/demo/myapp"

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

202

 strategy:

 jenkinsPipelineStrategy:

 env:

 - name: "MY_STRATEGY_VAR"

 value: "Demo Env Var from Pipeline Strategy"

 jenkinsfilePath: path/to/jenkinsfile/filename

 Deploying the Pipeline BuildConfig
The BuildConfig is created at a Project level. It is up to the user to use a dedicated Project

for the Pipeline and another for the application or use the same Project for the Pipeline

and application.

From the OpenShift Application Console, import the YAML for the BuildConfig (see

#1 on Figure 8-3).

Figure 8-3. Import BuildConfig YAML definition

The Import YAML window allows for uploading a YAML file from the local machine

or for the copy and paste of the BuildConfig at the editor window (see #1 on Figure 8-4).

On the successful upload or definition of the BuildConfig, a new Pipeline is created.

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

203

The first time a Pipeline strategy is defined for a Project, OpenShift instantiates

a Jenkins Master server in that Project (see Figure 8-5). This Jenkins server is used to

execute the Pipeline definition from the BuildConfig.

Note additional Pipeline Build configurations or BuildConfigs, in the same project,
will share the same Jenkins server.

Figure 8-4. Importing the BuildConfig and creating the Pipeline

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

204

Note the instantiation of the initial Jenkins server takes some time to complete.
after about 10 minutes after the instantiation, the system will be ready to receive
triggers to execute the pipeline.

The Pipeline can be triggered by a Webhook, Image Change, Configuration Change,

or Manually. To execute a manual trigger from GUI, at the Application Console, go to

Builds ➤ Pipelines (see #1 and #2 on Figure 8-6) or from CLI (see #3 on Figure 8-6).

Figure 8-5. Instantiation of an embedded Jenkins server

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

205

Figure 8-6. Executing the Pipeline Build Strategy

A visual representation of the pipeline will be highlighting the step that is executing (see

#2 on Figure 8-7). As stages are successful, the stage representation will be colored green.

After several execution of the Pipeline, the History tab of the Pipeline pane will show

a histogram of the time it took to complete an execution and a color-coded view showing

failed and successful attempts (see #3 on Figure 8-7).

Figure 8-7. Pipeline Build History

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

206

The OpenShift integration with the Jenkins instance allows access to the logs

generated during the execution of the Pipeline Build.

Figure 8-8. View Logs from Jenkins Console

To access the Logs for a particular Build execution, select the View Log link under the

execution number (see #1 on Figure 8-8). This will redirect to the Jenkins Console where

OpenShift credentials can be used to log in to the Jenkins server and see the logs (see

Figure 8-9).

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

207

Figure 8-9. Build Logs at Jenkins Console

The logs for a particular Pipeline will include the actions and output from those

actions (see #2, #3, #4, and #5 on Figure 8-9), for each one of the Pipeline Stages defined

by the Jenkinsfile.

Note the Jenkins server must be manually deleted by the user. it will not be
automatically removed, even after deleting all pipeline build configurations.

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

208

 Jenkinsfile with Source Code
When using this option, the Jenkinsfile must be included with the application source

code at the root of the repository or at the root of the contextDir of the repository. When

deploying an application and referencing a repository containing a Jenkinsfile

• If there is not an existing Jenkins instance in the Project, OpenShift

creates a DeploymentConfig and deploys a Jenkins instance.

• OpenShift creates a BuildConfig (see #1 on Figure 8-10) with

• A jenkinsPipelineStrategy (see #5 on Figure 8-10) referring the

Jenkinsfile in the Git repository (see #5 on Figure 8-10)

• A set of Webhook triggers: GitHub and Generic (see #6 and #7 on

Figure 8-10)

Figure 8-10. Pipeline BuildConfig from Jenkinsfile on Git repository

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

209

The URL for the Webhook triggers will follow the format:

https://<ocp-cluster-fqdn>/apis/build.openshift.io/v1/namespaces/<name-

of- project>/buildconfigs/<name-of-buildconfig>/webhooks/<trigger-

token>/<trigger-type>

These Webhook triggers4 enable external tools to initiate a new pipeline execution.

Figure 8-11 shows a Webhook call (#1 on Figure 8-11) triggering a new Build for the

pipeline (#3 on Figure 8-11). #4 on Figure 8-11 clearly shows the CI/CD pipeline was

triggered by a Generic Webhook call.

Figure 8-11. Using Webhook triggers to start a Pipeline execution

4 Additional information on using Webhooks to trigger builds is available from the official
documentation: https://docs.openshift.com/container-platform/3.11/dev_guide/builds/
triggering_builds.html

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/triggering_builds.html
https://docs.openshift.com/container-platform/3.11/dev_guide/builds/triggering_builds.html

210

 Multiproject Pipelines
When using an OpenShift Jenkins Pipelines to promote an application build across

multiple projects, the jenkins Service Account must have edit access privileges on each of

the target Projects as shown in Listing 8-2.

The implementation of a CI/CD Pipeline like the one shown in Figure 8-12 involves

four different projects. In this example, the Jenkins Master is instantiated in the “cicd”

project (#2 on Figure 8-12) where it may be used by multiple Pipelines in the same

Project.

Figure 8-12. Multiproject Pipeline

In this case, “Pipeline C” (#3 on Figure 8-12) has multiple stages across three Projects.

A reference Jenkinsfile implementing this type of Pipeline is shown in Listing 8-5.

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

211

Listing 8-5. Jenkinsfile—Multiproject Pipeline

pipeline {

 agent any

 options {

 // set a timeout of 20 minutes for this pipeline

 timeout(time: 20, unit: 'MINUTES')

 } //options

 environment {

 APP_NAME = "podcicd"

 GIT_REPO = "https://github.com/williamcaban/podcicd.git"

 GIT_BRANCH = "master"

 CONTEXT_DIR = "myapp"

 CICD_PRJ = "cicd"

 CICD_DEV = "${CICD_PRJ}"+"-dev"

 CICD_PROD = "${CICD_PRJ}"+"-prod"

 CICD_STAGE = "${CICD_PRJ}"+"-staging"

 SVC_PORT = 8080

 }

 stages {

 stage('CICD Projects'){

 steps {

 echo "Making sure CI/CD projects exist"

 script {

 openshift.withCluster() {

 echo "Current Pipeline environment"

 sh 'env | sort'

 echo "Making sure required CI/CD projects

exist"

 try {

 openshift.selector("projects",CICD_DEV).

exists()

 echo "Good! Project ${CICD_DEV} exist"

 } catch (e) {

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

212

 error "Missing ${CICD_DEV} Project or RBAC

policy to work with Project"

 }

 try {

 openshift.selector("projects",CICD_STAGE).

exists()

 echo "Good! Project ${CICD_STAGE} exist"

 } catch (e) {

 error "Missing ${CICD_STAGE} Project or

RBAC policy to work with Project"

 }

 try {

 openshift.selector("projects",CICD_PROD).

exists()

 echo "Good! Project ${CICD_PROD} exist"

 } catch (e) {

 error "Missing ${CICD_PROD} Project or RBAC

policy to work with Project"

 }

 } // cluster

 } // script

 } //steps

 } // stage - projects

 stage('Build') {

 steps {

 echo "Sample Build stage using project ${CICD_DEV}"

 script {

 openshift.withCluster() {

 openshift.withProject("${CICD_DEV}")

 {

 if (openshift.selector("bc",APP_NAME).

exists()) {

 echo "Using existing BuildConfig.

Running new Build"

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

213

 def bc = openshift.startBuild(APP_NAME)

 openshift.set("env dc/${APP_NAME}

BUILD_NUMBER=${BUILD_NUMBER}")

 // output build logs to the Jenkins

conosole

 echo "Logs from build"

 def result = bc.logs('-f')

 // actions that took place

 echo "The logs operation require

${result.actions.size()} 'oc'

interactions"

 // see exactly what oc command was

executed.

 echo "Logs executed: ${result.

actions[0].cmd}"

 } else {

 echo "No proevious BuildConfig.

Creating new BuildConfig."

 def myNewApp = openshift.newApp (

 "${GIT_REPO}#${GIT_BRANCH}",

 "--name=${APP_NAME}",

 "--context-dir=${CONTEXT_DIR}",

 "-e BUILD_NUMBER=${BUILD_NUMBER}",

 "-e BUILD_ENV=${openshift.

project()}"

)

 echo "new-app myNewApp ${myNewApp.

count()} objects named: ${myNewApp.

names()}"

 myNewApp.describe()

 // selects the build config

 def bc = myNewApp.narrow('bc')

 // output build logs to the Jenkins

conosole

 echo "Logs from build"

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

214

 def result = bc.logs('-f')

 // actions that took place

 echo "The logs operation require

${result.actions.size()} 'oc'

interactions"

 // see exactly what oc command was

executed.

 echo "Logs executed: ${result.

actions[0].cmd}"

 } //else

 echo "Tag Container image with 'build

number' as version"

 openshift.tag("${APP_NAME}:latest",

"${APP_NAME}:v${BUILD_NUMBER}")

 echo "Validating Route for Service exist,

if Not create Route"

 if (!openshift.selector("route",APP_NAME).

exists()) {

 openshift.selector("svc",APP_NAME).

expose()

 }

 } // project

 } // cluster

 } // script

 } // steps

 } //stage-build

 stage('Test') {

 steps {

 echo "Testing if 'Service' resource is operational and

responding"

 script {

 openshift.withCluster() {

 openshift.withProject() {

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

215

 echo sh (script: "curl -I ${APP_

NAME}.${CICD_DEV}.svc:${SVC_PORT}/

healthz", returnStdout: true)

 } // withProject

 } // withCluster

 } // script

 } // steps

 } //stage

 stage('Promote to Staging') {

 steps {

 echo "Setup for Staging"

 script {

 openshift.withCluster() {

 openshift.withProject("${CICD_STAGE}") {

 echo "Tag new image for staging"

 openshift.tag("${CICD_DEV}/${APP_

NAME}:v${BUILD_NUMBER}", "${CICD_

STAGE}/${APP_NAME}:v${BUILD_NUMBER}")

 //openshift.tag("${CICD_STAGE}/${APP_

NAME}:v${BUILD_NUMBER}", "${CICD_

STAGE}/${APP_NAME}:latest")

 echo "Deploying to project: ${openshift.

project()}"

 def myStagingApp = openshift.newApp(

 "${APP_NAME}:v${BUILD_NUMBER}",

 "--name=${APP_NAME}-v${BUILD_NUMBER}",

 "-e BUILD_NUMBER=${BUILD_NUMBER}",

 "-e BUILD_ENV=${openshift.project()}"

)

 myStagingApp.narrow("svc").expose()

 }

 }

 } // script

 } //steps

 } //stage

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

216

 stage('Promote to Prod'){

 steps {

 echo "Promote to production? Waiting for human input"

 timeout(time:10, unit:'MINUTES'){

 input message: "Promote to Production?", ok:

"Promote"

 }

 script {

 openshift.withCluster() {

 openshift.withProject("${CICD_PROD}") {

 echo "Tag Staging Image for Production"

 openshift.tag("${CICD_STAGE}/${APP_

NAME}:v${BUILD_NUMBER}", "${CICD_

PROD}/${APP_NAME}:v${BUILD_NUMBER}")

 echo "Deploying to project: ${openshift.

project()}"

 def myProdApp = openshift.newApp(

 "${APP_NAME}:v${BUILD_NUMBER}",

 "--name=${APP_NAME}-v${BUILD_NUMBER}",

 "-e BUILD_NUMBER=${BUILD_NUMBER}",

 "-e BUILD_ENV=${openshift.project()}"

)

 if (openshift.selector("route",APP_NAME).

exists()){

 echo "Sending the traffic the the

latest version"

 openshift.set("route-backends",APP_

NAME,"${APP_NAME}-v${BUILD_

NUMBER}=100%")

 } else {

 echo "Creating new Route"

 myProdApp.narrow("svc").expose("--

name=${APP_NAME}")

 }

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

217

 } // project

 }

 } // script

 } // steps

 } //stage

 } // stages

} // pipeline

For the successful completion of the Pipeline shown in Figure 8-12 and documented

in Listing 8-5, the jenkins Service Account in the “cicd” Project must have edit privileges

in the “cicd-dev,” “cicd-staging,” and “cicd-prod” Projects (see Listing 8-6).

Listing 8-6. Deploying a Multiproject Pipeline

Step 1: Create the CI/CD Project in the OpenShift cluster

oc new-project cicd --description="CI/CD Pipeline Demo"

oc new-project cicd-dev --description="CI/CD - Dev"

oc new-project cicd-prod --description="CI/CD - Prod"

oc new-project cicd-staging --description="CI/CD - Staging"

Step 2: Give jenkins Service Account edit access to the other Projects

oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd- dev

oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd- prod

oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n

cicd- staging

Step 3: Deploy the OpenShift Pipeline from a Git repository containing the

Jenkinsfile

oc new-app https://github.com/williamcaban/podcicd.git -n cicd

Deploying the example in the listing once the Jenkins Master is running and the

Pipeline BuildConfig is ready, executing a manual trigger or simulating a Webhook

trigger should yield results similar to the ones shown in Figure 8-11.

To start a new pipeline build from GUI, go to “Application Console” ➤ Project “cicd”

➤ Builds ➤ Pipelines and click the “Start Pipeline” button. To start a new pipeline build

from CLI, execute oc start-build podcicd -n cicd. The Pipeline logs and progress

are visible at the “Application Console.”

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

218

 OpenShift Client Plugin
The OpenShift Client Plugin5 or the OpenShift Jenkins Pipeline (DSL) Plugin is a Jenkins

Plugin that provides comprehensive Fluent-style syntax for use in Jenkins Pipelines

interacting with OpenShift clusters. The plugin leverages the OpenShift “oc” client binary

and integrates with Jenkins credentials and cluster.

The OpenShift Client Plugin exposes any option available with “oc” to the Jenkins

Pipeline.

Note the OpenShift Client Plugin for Jenkins supersedes the previous OpenShift
V3 Plugin for Jenkins which is now deprecated.6

Custom Jenkins Images
The Jenkins Images can be customized by using the traditional Docker layering

capabilities with a Dockerfile or by using the OpenShift native Source-to-Image

capabilities.

To use the Source-to-Image capabilities, create a Git repository following the

structure shown in Figure 8-13.

Figure 8-13. Git repository structure for custom Jenkins Image with s2i

5 For the latest documentation and features of the OpenShift Client Plugin, refer to
https://github.com/openshift/jenkins-client-plugin

6 For reference to the legacy OpenShift Jenkins Plugin, visit the Git repository:
https://github.com/openshift/jenkins-plugin

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

https://github.com/openshift/jenkins-client-plugin
https://github.com/openshift/jenkins-plugin

219

For the creation of the custom Jenkins Image from the structure defined in a Git

repository, create a BuildConfig similar to Listing 8-7.

Listing 8-7. BuildConfig for creating custom Jenkins Images

BuildConfig to customize the Jenkins Image

apiVersion: v1

kind: BuildConfig

metadata:

 name: custom-jenkins-build

spec:

 source:

 git:

 uri: https://github.com/williamcaban/openshift-custom-jenkins.git

 type: Git

 strategy:

 sourceStrategy:

 from:

 kind: ImageStreamTag

 name: jenkins:latest

 namespace: openshift

 type: Source

 output:

 to:

 kind: ImageStreamTag

 name: custom-jenkins:latest

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

220

 Integrating External CI/CD Pipelines
External Jenkins instances can be integrated with OpenShift in one of the following ways:

• Using the Jenkins Kubernetes Plugin7 which provides the ability for

Jenkins agents to be dynamically provisioned8 on multiple Pods

• Using the OpenShift Client Plugin9 and the OpenShift Sync Plugin10

The level of integration provided by the OpenShift Client Plugin (i.e., embedding

pipeline status in the GUI) currently is only available with Jenkins, and it is maintained

by Red Hat. Other popular CI/CD tools like GitLab CI, Spinnaker, Bamboo, TeamCity,

and so on provide support for OpenShift Container Platform with a vendor-provided

plugin for OpenShift or by using their Kubernetes plugin.

 Summary
The OpenShift Jenkins Pipelines capabilities enable development teams to continue the

adoption of modern development paradigms by providing CI/CD as a first-class service

into the platform. When using Jenkins Pipeline Build Strategy, or by having a Jenkinsfile

with the source code, or by using the OpenShift Jenkins Plugin, the OpenShift Jenkins

Pipelines ease the learning curve for using CI/CD and simplify the management and

operation of the Jenkins CI/CD Pipelines.

Beyond knowing how to do the initial administrative tasks or manage value-added

features like the CI/CD Pipelines, a cluster administrator should be aware of Day-2

operations and maintenance tasks for maintaining an optimized cluster. Some of these

Day-2 tasks are covered in Chapter 9.

7 For details about the Jenkins Kubernetes Plugin, refer to https://wiki.jenkins-ci.org/
display/JENKINS/Kubernetes+Plugin

8 For configuration details, refer to the OpenShift documentation at
https://docs.openshift.com/container-platform/3.11/using_images/other_images/
jenkins.html#configuring-the-jenkins-kubernetes-plug-in

9 OpenShift Client Plugin https://docs.openshift.com/container-platform/3.11/using_
images/other_images/jenkins.html#client-plug-in

10 OpenShift Sync Plugin https://docs.openshift.com/container-platform/3.11/using_
images/other_images/jenkins.html#sync-plug-in

Chapter 8 arChiteCting OpenShift JenkinS pipelineS

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#configuring-the-jenkins-kubernetes-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#configuring-the-jenkins-kubernetes-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#client-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#client-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#sync-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#sync-plug-in

221
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_9

CHAPTER 9

Day-2 Operations
As seen in the previous chapter, OpenShift provides features or capabilities to enhance

developer experience like the CI/CD Pipelines covered in Chapter 8 and the self-service

Templates in Chapter 7. The day-to-day work of developers may leave a high number

of objects behind. In very active development environments, the garbage collection

processes might need tuning. For example, when executing CI/CD Pipelines or building

Containers using features like source to image (s2i), there might be intermediate

Containers or Image layers that get created and left behind, consuming the Node

ephemeral storage and increasing the size of the etcd database. To work with this, once

the OpenShift cluster is in operation, there are certain tasks required for the proper

maintenance, operations, and fine-tuning of the cluster. This chapter covers some of

these common tasks.

 Managing Leftover Objects
During the normal operation and utilization of the cluster and cluster services, objects

created in OpenShift can accumulate. Maintaining all previous versions of all the objects

may end up consuming significant amount of storage which may have an impact on the

performance of elements of the platform. For example:

• High storage consumption of the etcd data store may add additional

pressure on etcd response time which leads to higher latency per request.

Note The upstream OSS etcd project provides the benchmark1 tool that can be
used to measure etcd performance.

1 Measuring performance of etcd, refer to the documentation at https://github.com/etcd-io/
etcd/blob/master/Documentation/op-guide/performance.md

https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md
https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md

222

• Depending on the storage backend used by the internal Container

Registry, high storage consumption of the backend storage may yield

to slower upload (push) time for new images being build or onboard

into the platform.

Tip Using object storage as the storage backend for the internal Container Registry
regularly is the most resilient and cost-effective storage backend for this job.

• High storage utilization of /var/lib/containers which is used by the

Container Runtime to cached Container Images and for the Container

ephemeral storage will have an impact on the ability to instantiate

new Containers in the node or the ability to download new Images.

Tip Use a dedicated disk or partition to map to the /var/lib/containers
directory to avoid saturating the root disk of the Node.

The high storage consumptions can be the result of normal cluster operations by

users of the platform. This is particularly relevant when using objects like Deployments,

Builds, manipulating Images (i.e., tagging and keeping multiple releases, etc.), groups,

CronJobs, and others.

The OpenShift client CLI provides a mechanism for cluster administrator to prune2

older versions of some of this resource (see Figure 9-1).

Figure 9-1. Removing older version of resources

2 Additional details on pruning object are available at the online documentation: https://docs.
openshift.com/container-platform/3.11/admin_guide/pruning_resources.html

ChapTeR 9 Day-2 OpeRaTiOnS

https://docs.openshift.com/container-platform/3.11/admin_guide/pruning_resources.html
https://docs.openshift.com/container-platform/3.11/admin_guide/pruning_resources.html

223

The execution of the prune command will perform a dry run by default (see line #2

on Figure 9-2). During the run it identifies the resources of the particular time that will

be removed (see line #4 on Figure 9-2) during the actual process.

The “confirm” flag must be appended to the prune command for the actual process

to be executed (see line #2 on Figure 9-3). Additional flags are available to provide higher

control and granularity of which objects should be removed or maintained (see lines #4

and #7 on Figure 9-3).

Note The optional flags for the oc adm prune commands are object specific.
Refer to the CLi command help for details.

Figure 9-2. Command to prune Images

Figure 9-3. Confirming the prune command

ChapTeR 9 Day-2 OpeRaTiOnS

224

 Garbage Collection
There are two types of garbage collection3 performed by the OpenShift Nodes:

• Container garbage collection: Removes terminated containers.

This is enabled by default and it is executed automatically.

• Image garbage collection: Removes Images no longer referenced by

any running Pods. It relies on disk usage as reported by cAdvisor on

the Node to choose which Images to remove from the Node.

When the garbage collection is executed, the oldest images get deleted first until the

stopping threshold is met. Both of these garbage collection types are configurable by

modifying the Kubelet argument settings at the Node ConfigMap (see Figure 9-4).

Figure 9-4. Garbage collection settings in the Node ConfigMap

3 Additional details are available in the documentation at https://docs.openshift.com/
container-platform/3.11/admin_guide/garbage_collection.html

ChapTeR 9 Day-2 OpeRaTiOnS

https://docs.openshift.com/container-platform/3.11/admin_guide/garbage_collection.html
https://docs.openshift.com/container-platform/3.11/admin_guide/garbage_collection.html

225

 Node Optimizations
There are multiple ways to optimize Nodes to deliver the performance required for the

workloads and the experience required by an organization. The specific settings to

modify to achieve certain optimization are tied to the specifications of the Hosts and the

characteristics of the workload that will be running in those Nodes.

OpenShift provides many settings to tune the performance of the Platform. The

following subtopics are some of the common settings available for cluster administrators

to configure to achieve desired Node optimizations.

 Node Resource Allocation
OpenShift provides configuration4 parameters to allocate per Node resources to maintain

reliable scheduling of workloads to a Node while minimizing overcommitting compute

and memory resources. There are two types of resource allocations:

• kube-reserved: Allocation of resources reserved for Node

components (i.e., kubelet, kube-proxy, Container Runtime, etc.).

The default is None.

• system-reserved: Allocation of resources reserved for Host system

components (i.e., sshd, NetworkManager, etc.). The default is None.

Both of these resource reservation types are configurable by modifying the Kubelet

argument settings at the Node ConfigMap (see Figure 9-5).

4 Additional information about configuring Node resources is available at the online
documentation: https://docs.openshift.com/container-platform/3.11/admin_guide/
allocating_node_resources.html

ChapTeR 9 Day-2 OpeRaTiOnS

https://docs.openshift.com/container-platform/3.11/admin_guide/allocating_node_resources.html
https://docs.openshift.com/container-platform/3.11/admin_guide/allocating_node_resources.html

226

 Setting Max Pods Per Node
OpenShift provides two Kubelet configuration setting to control the maximum number of

Pods that can be scheduled into a Node:

• pods-per-core: Configures the maximum number of Pods the

Node can run per core on the Node. When using this parameter, the

maximum number of Pods allowed in the Node will be <pods-per-

core> x <number-of-cores-in-node>

Note To disable this limit, set pods-per-core to 0.

• max-pods: Configures a fixed number as the maximum number of

Pods that can run on the Node. The default value is 250.

Note When both of these settings are configured, the lower of the two is used.

These settings are configurable by modifying the Kubelet arguments at the Node

ConfigMap (see Figure 9-6).

Figure 9-5. Node resource reservation

ChapTeR 9 Day-2 OpeRaTiOnS

227

 Using the Tuned Profile
Tuned5 is a daemon that monitors devices connected to the Host and statically and

dynamically tunes system settings based on a selected Profile.

During the deployment of OpenShift, the installer configures the Nodes with Tuned

profiles6 for OpenShift (see Figure 9-7) and assigns them to the Nodes based on their role.

Figure 9-6. Maximum number of running Pods per Node

5 Additional information about Tuned is available at the RHEL documentation (requires a valid
RHN subscription): https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-
Performance_Tuning_Guide-Tuned

6 Additional information about the OpenShift Tuned profiles is available at the scaling and
performance documentation (Requires a valid RHN subscription) https://access.redhat.com/
documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_
performance_guide/index#scaling-performance-capacity-tuned-profile

Figure 9-7. The tuned profiles for OpenShift

ChapTeR 9 Day-2 OpeRaTiOnS

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile

228

 Eviction Policy
The Eviction Policy7 enables the Node to reclaim needed resources by failing one or more

Pods when the Node is running low on available resources. OpenShift supports two types

of eviction policy:

• hard: The Node takes immediate action to reclaim resources from a

Pod that exceeds predefined thresholds (see #1 Figure 9-8).

• soft: The Node waits for a grace period (see #3 Figure 9-8) before

reclaiming resources from a Pod exceeding the thresholds (see #2

Figure 9-8).

The Eviction Policy settings are configurable by modifying the Kubelet arguments at

the Node ConfigMap (see Figure 9-8).

Figure 9-8. Eviction Policies

7 Additional information on OpenShift Eviction Policies is available online at
https://docs.openshift.com/container-platform/3.11/admin_guide/out_of_resource_
handling.html#out-of-resource-eviction-policy

ChapTeR 9 Day-2 OpeRaTiOnS

https://docs.openshift.com/container-platform/3.11/admin_guide/out_of_resource_handling.html#out-of-resource-eviction-policy
https://docs.openshift.com/container-platform/3.11/admin_guide/out_of_resource_handling.html#out-of-resource-eviction-policy

229

 Pod Scheduling
OpenShift Pod Scheduler8 is an internal process responsible for determining the

placement of new Pods onto Nodes. It does this by identifying a Node that can provide

the Pod’s requirements while complying with configured policies.

The available Nodes are filtered by rules known as Predicates. The resulting list is

sorted by rules that rank Nodes according to preferences and determine a Priority.

The configuration for the default scheduler policy containing the default Predicates

and Priorities is on the Master Nodes at /etc/origin/master/scheduler.json.

In addition to the default scheduler, there are several ways to invoke advanced

scheduling of Pods using

• Pod Affinity and Anti-affinity9: Pods specify affinity or anti-affinity

toward a group of Pods (e.g., for an application’s latency requirement)

using labels on Nodes and label selectors on Pods to control where a

Pod can be placed.

• Node Affinity10: Pods specify affinity or anti-affinity toward a group

of Nodes using labels on Nodes and label selectors on Pods to control

where a Pod can be placed.

• Node Selectors11: Use labels on Nodes and label selectors on Pods to

control the scheduling on where a Pod can be placed.

• Taints and Tolerations12: Taints are labels on a Node to refuse

Pods to be scheduled onto the Node unless the Pod has a matching

Toleration. Tolerations are labels on a Pod. The Taints and Tolerations

labels on the Node and on the Pod must match in order to be able to

schedule the Pod onto the Node.

8 The OpenShift default scheduler is described in more detail in the online documentation: https://
docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html

9 Advanced Scheduling using Pod Affinity and Anti-Affinity: https://docs.openshift.com/
container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-
sched-pod-affinity

10 Advanced Scheduling using Node Affinity: https://docs.openshift.com/container-
platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity

11 Advanced Scheduling using Node Selector: https://docs.openshift.com/container-
platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector

12 Advanced Scheduling using Taints and Tolerations: https://docs.openshift.com/container-
platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints

ChapTeR 9 Day-2 OpeRaTiOnS

https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints

230

 Pod Priority
Pod Priority13 is used to indicate the relative importance of a Pod compared to other

Pods. The Scheduler orders Pods in queues by their Priority with higher priority Pods

ahead of other lower priority Pods.

The PriorityClass are cluster-level (non-namespaced) objects defining a mapping

between a name and an integer representing the Priority of the class. The higher the

number, the higher the priority.

The priority number is any 32-bit integer with a value smaller than or equal to

1,000,000,000 (one billion). Higher values are reserved for critical Pods that should not

be preempted or evicted.

OpenShift has two reserved PriorityClasses for critical system Pods as seen in Table 9- 1.

The PriorityClass name field is used by the Priority Admission Controller to identify

the integer value of the priority. If the named PriorityClass is not found, the Pod is

rejected. An example of the definition and utilization of a PriorityClass can be seen in

Figure 9-9.

Table 9-1. OpenShift Reserved PriorityClasses

PriorityClass Name Priority Value Description

system-node- critical 2,000,001,000 Used for all pods that should never be evicted from a

node. This includes pods like sdn-ovs, sdn, and others.

system-cluster- critical 2,000,000,000 Used with pods that are important for the normal

operations of the cluster. pods with this priority include

fluentd, descheduler, and others.

13 Additional information about Pod Priority is available at the online documentation:
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/
priority_preemption.html#priority-priority-about_priority-preemption

ChapTeR 9 Day-2 OpeRaTiOnS

https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/priority_preemption.html#priority-priority-about_priority-preemption
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/priority_preemption.html#priority-priority-about_priority-preemption

231

When a high-priority Pod disrupts the Node resource budget, the scheduler attempts to

preempt Pods, starting with lower-priority Pods, avoiding violating the Pod disruption budget.

When the scheduling of a new high-priority Pod requires the eviction of a lower-

priority Pod that has a Pod Affinity rule with a high-priority Pod running in the Node, the

scheduler attempts to identify a different Node to schedule the new high-priority Pod.

 Summary
This chapter documents some of the Day-2 operations tasks for the maintenance and

operation of OpenShift clusters. In addition, the chapter presents some of the settings a

cluster administrator can use to allocate resources for system or platform critical tasks.

There are many more settings available for the reader to discover from the official

OpenShift documentation. The settings covered in this chapter are applicable for the

most common scenarios.

The OpenShift platform provides sensible defaults optimized for what is sometimes

referred to as general Cloud-native workloads, meaning the workloads for which

Kubernetes has been designed which were expected to be TCP-based, web-enabled,

and entirely agnostic to the underlying hardware infrastructure. With the adoption of

Kubernetes outside the web-based application, there is the need to support hardware

acceleration (i.e., GPUs, FPGAs, etc.) or multiple NICs per Container, and much more.

Chapter 10 explores how some of these advanced compute and networking capabilities

are supported in OpenShift.

Figure 9-9. Defining and using a PriorityClass

ChapTeR 9 Day-2 OpeRaTiOnS

233
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_10

CHAPTER 10

Advanced Network
Operations
The OpenShift platform provides defaults optimized for Cloud-native workloads. These

have been covered throughout this book. As with many successful Open Source project,

Kubernetes is being used in setups for which it was never designed. With the adoption of

Kubernetes outside the web-based application, there is the need to support specialized

hardware acceleration (i.e., GPUs, FPGAs, etc.), multiple NICs per Container, and

much more. This chapter focuses on advanced networking features or capabilities for

increasing network performance and for the onboarding of applications or microservices

using nontraditional web protocols into OpenShift.

 Network Optimizations
OpenShift SDN uses OpenvSwitch, VXLAN tunnels, OpenFlow rules, and iptables or

firewalld rules. Some possible optimizations to this overlay network are based on best

practices for fine-tuning a system in a high-performance environment.

 Jumbo Frames and VXLAN Acceleration
The standard Ethernet Maximum Transmission Unit (MTU) is 1500 Bytes. A regular IP

UDP packet will consume 20 Bytes for the IP header (see #2 in Figure 10-1) and 8 Bytes

for the UDP header (see #3 in Figure 10-1), and the remaining 1472 Bytes are available

for payload (see #4 to #8 in Figure 10-1).

Note The outer Ethernet header (14 Bytes) (see #1 in Figure 10-1) is not counted
as part of the MTU.

234

In SDN networks using the VXLAN protocol, the whole Ethernet frame of traffic

from Pods in one Node destined to Pods in another Node is encapsulated as IP UDP

packets and forwarded to the Node running the destination Pods. For this, the VXLAN

header (see #4 in Figure 10-1) is added to the original Layer 2 Ethernet frame (see #5 in

Figure 10-1), minus its FCS, and all this content becomes the payload of the outer IP

UDP packets (see #2 and #3 in Figure 10-1) and is sent to the remote Node.

From the diagram in Figure 10-1, the effective MTU for payload (see #8) is 1422

Bytes. When working with environments with large streams of data to transfer among

Pods on different Nodes, those streams of data need to be broken into very small chunks

of 1422 Bytes or less. Each one of these packets undergoes an encapsulation process.

Under high network utilization or high network throughput, this may lead to high CPU

utilization and high latency.

To reduce the CPU utilization and latency under such circumstances, the

recommendations are

• Use Jumbo frames (i.e., MTU 9000 or more) to be able to send more

data per packet and reduce the number of packets and overhead

required to move the data from one Node to the other.

• Use NIC cards supporting VXLAN acceleration so the encapsulation

process is offloaded to hardware and CPU.

Figure 10-1. Format of a VXLAN packet

ChapTEr 10 advanCEd nETwork opEraTions

235

Caution not all the vXLan-accelerated niCs support Jumbo frames. Consult
the technical specification of your niC provider. in those cases where vXLan
acceleration is not supported with Jumbo frames, the cluster administrators should
avoid Jumbo frames as the niC driver will determine the final behavior which may
have a negative impact in performance.

 Tuning Network Devices
Advanced Linux system administrator with deep understanding of the Linux networking

stack and the available tuning options for high-performance computing may use similar

techniques with OpenShift clusters.

Caution some of the following optimizations have limited availability or configuration
options in some niC drivers. Consult your hardware and driver technical information.

Some of the optimizations that may be considered are

• Adjusting the number and size of RX and TX queues: Improved

throughput, latency, and multi-queue techniques can be used to

distribute the processing of queues across multiple CPUs.

• Interrupt coalescing: Prevents interrupt storms and increases

throughput or latency.

• Adaptive RX and TX coalescing: Interrupt delivery is optimized to

improve latency or throughput based on packet rate.

• Hardware-accelerated Receive Flow Steering (RFS): When

supported by the NIC’s driver, the NIC and the Kernel work together

to determine which flows to send to which CPU for processing.

• Adjusting IRQ affinity: Optimizes for data locality for interrupts

generated by the NIC.

• Adjusting UDP receive queue size: Increases throughput.

• Generic Receive Offloading (GRO) and Large Receive Offloading (LRO)

• Receive Packet Steering (RPS) and Receive Side Scaling (RSS)

ChapTEr 10 advanCEd nETwork opEraTions

236

Some of the Linux commands used for these optimizations are sysctl and ethtool.

These levels of optimizations are unique to each hardware and driver combination.

As such, this book highlights the existence of these capabilities but leaves it to the reader

to explore and test the ones suitable for their environment.

 Routing Optimizations
The OpenShift Router can handle the Routes for multiple applications. This can be anywhere

from one to thousands of applications. The actual number of Routes an OpenShift Router

can handle is determined by the technology in use by the applications behind the Routes.

As seen in previous chapters, the OpenShift Router is based on HAProxy. One of the

tunable parameters for HAProxy is the maxconn parameter which is configurable by

using the ROUTER_MAX_CONNECTION1 environment variable of the OpenShift Router

DeploymentConfig. This parameter sets the per-process maximum number of concurrent

connections.

Note when configuring the maxconn parameter, consider HAProxy counts of
the frontend connection and backend connection as two different connections.
Because of this, a connection from an external client to an application load
balanced by haproxy counts as two.

Additional parameters2 for the optimization of the OpenShift Router are

• CPU and interrupt affinity

• Increasing number of threads

• Setting up connection timeouts

1 Additional information about configuring the maximum number of connection is available at the
online documentation: https://docs.openshift.com/container-platform/3.11/scaling_
performance/routing_optimization.html#scaling-performance-optimizing-router-
haproxy-maxconn

2 OpenShift HAProxy optimization parameters: https://docs.openshift.com/container-
platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-
optimizing-router-haproxy

ChapTEr 10 advanCEd nETwork opEraTions

https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy

237

Note OpenShift Routers, by default, listen on ports 80 (hTTp) and 443 (hTTps),
but they can be configured to listen for hTTp and hTTps traffic on other ports. This
option is configured using the environment variable ROUTER_SERVICE_HTTP_
PORT and the environment variable ROUTER_SERVICE_HTTPS_PORT.

 Route-Specific Optimizations Annotations
In addition to the global configuration parameters of the HAProxy, OpenShift provides

the ability to modify certain behavior on per-Route basis. This is done by using Route

Annotations (see Table 10-1).

Table 10-1. OpenShift Route Annotations3

Variable Description

haproxy.router.openshift.io/balance Load balancing algorithm: source, roundrobin, or

leastconn

haproxy.router.openshift.io/disable_cookies disables the use of cookies to track related

connections

router.openshift.io/cookie_name optional cookie to use for Route

haproxy.router.openshift.io/pod- concurrent-

connections

sets the maximum number of connections allowed

for each backing Pod from a specific Router

haproxy.router.openshift.io/rate-limit-

connections.concurrent-tcp

Limits the number of concurrent TCp connections

by an ip address

haproxy.router.openshift.io/rate-limit-

connections.rate-http

Limits the rate at which an ip address can make

hTTp requests

haproxy.router.openshift.io/rate-limit-

connections.rate-tcp

Limits the rate at which an ip address can make

TCp connections

(continued)

3 Additional information and the updated list of possible Route Annotations are available from
the online documentation: https://docs.openshift.com/container-platform/3.11/
architecture/networking/routes.html#route-specific-annotations

ChapTEr 10 advanCEd nETwork opEraTions

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#route-specific-annotations
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#route-specific-annotations

238

 IP Whitelists
OpenShift supports the use of special annotations to restrict which source IP address

or network can access a specific Route. The ip_whitelist annotation (see Figure 10-2) is

a space-separated list of whitelisted source IP addresses and CIDRs that are allowed to

access the particular Route.

 OpenShift Router Sharding
To horizontally scale the routing layer, OpenShift provides the capability to define and

use Router Shards. In this case, the Routes are shared among a group of Routers based on

a selection expression defining the Shard. There are two levels of Route sharding:

• Cluster administrators configure and manage sharding at cluster-

wide level.

• Users can configure sharding for namespaces where they have admin

privileges.

When using sharding, each Router in the group handles a portion of the traffic based

on the assigned Shard.

Figure 10-2. IP Whitelist annotations for a Route

Table 10-1. (continued)

Variable Description

haproxy.router.openshift.io/timeout sets a server-side timeout for the Route

router.openshift.io/haproxy.health.check.interval sets interval for the backend health checks

haproxy.router.openshift.io/ip_whitelist (see “IP Whitelists” section)

haproxy.router.openshift.io/hsts_header sets a strict-Transport-security header for the

terminated or re-encrypt Route

ChapTEr 10 advanCEd nETwork opEraTions

239

Note Based on the selection expression, the Router Shards can be unique, in
which case a Route belongs to only one Shard, or there can be overlapping in
which case some Routes can belong to more than one Shard.

When using Router Sharding, the first Route matching a particular Shard reserves the

right to exist on that Shard permanently and even across restarts. Figure 10-3 illustrates

both ways of configuring Router Sharding.

Note when using the Namespace labels, the Service Account assigned to
the Router must have cluster-reader permission to access the labels in the
Namespaces.

 Supporting Non-HTTP/HTTPS/TLS Applications
There is a wide range of applications that cannot be classified as HTTP-, HTTPS-, or TLS-

based applications. For example:

• Applications using specialized TCP protocols (i.e., database

protocols)

• UDP-based applications

• Applications requiring direct access to the Pods IP

Figure 10-3. Router Sharding using Namespace or Route labels

ChapTEr 10 advanCEd nETwork opEraTions

240

For these applications, OpenShift provides various mechanisms:

• Using IngressIP or ExternalIP

• Using NodePorts or HostPorts

 Using IngressIP and ExternalIP
When using an ingressIP and externalIP, OpenShift uses Kube-Proxy to configure all

Nodes into accepting traffic destined to the particular IP address. When traffic destined

for a particular ExternalIP arrives to a Node, it forwards the traffic internally to the Pods

associated to the Service (see #2 and #5 on Figure 10-4).

Figure 10-4. Traffic flow for non-http/https traffic

ChapTEr 10 advanCEd nETwork opEraTions

241

At first sight, both of these objects behave similarly but have a different default or

intended purpose.

• IngressIP: This IP address is allocated from the

ingressIPNetworkCIDR (default to 172.29.0.0/16 when not defined)

for Service type LoadBalancer. This CIDR should not overlap with

other IP ranges used in the Cluster.

• ExternalIP: This IP is allocated from a CIDR defined by the

externalIPNetworkCIDRs variable in the master-config.yaml

(see Figure 10-5). This can be a public IP address range or an

organization-level visible and unique network CIDR.

Note ip addresses from the externalIP Cidr are not managed by OpenShift.
it is up to the network administrator to make sure the traffic destined to these ip
arrives to the Nodes.

Creating a service type LoadBalancer (see Listing 10-1) gets an ingressIP by default

(see Figure 10-6).

Figure 10-5. Defining an externalIPNetworkCIDR

ChapTEr 10 advanCEd nETwork opEraTions

242

Listing 10-1. Creating a Service type LoadBalancer

apiVersion: v1

kind: Service

metadata:

 name: pgsql-lb

spec:

 ports:

 - name: pgsql

 port: 5432

 type: LoadBalancer

 selector:

 name: pgsql

The LoadBalancer resource can be created using a YAML file (see #1 in Figure 10- 6)

or using the OpenShift client command (see #2 in Figure 10- 6). The resulting

LoadBalancer object will be assigned an IP from the ingressIPNetworkCIDR.

Note The CIDR for ingressIPNetworkCIDR can be modified on the master-
config.yaml.

Figure 10-6. LoadBalancer Service, IngressIP, and ExternalIP

ChapTEr 10 advanCEd nETwork opEraTions

243

Assigning an externalIP to a service is achieved by adding it to the spec.externalIPs

definitions of the services (see Figure 10-7).

 Using NodePorts and HostPorts
Another way to bring traffic into the Pods is by using a NodePort or HostPort. These two

objects are similar in their behavior with respect to allocating ports in the actual Nodes.

The difference is how the Ports are allocated in all Nodes from a range or allocated on

the Node where the Pod is running.

• NodePort: Will allocate a port from the range 30000–32767 in all

Nodes. (Note: It is possible to request a specific port in this range).

The NodePort can be allocated for a Service or a specific Pod (see

Figure 10-8).

• HostPort: Will allocate the specified port in the Node where it is

running (see Figure 10-9).

Figure 10-7. Assigning externalIP to a Service

Figure 10-8. Using NodePort

ChapTEr 10 advanCEd nETwork opEraTions

244

 Multiple NIC per POD
OpenShift 4.1 and later support the ability to provide multiple network interfaces to

Pods. This capability is provided by the Multus CNI.4

Multus CNI is a meta plugin for Kubernetes which enables the creation of multiple

network interfaces per Pod. Each interface can be using a different CNI plugin.

As seen in Figure 10-9, when Multus CNI receives the request for the creation of a

new network interface for the Pod, it sends that request to the primary Kubernetes CNI

(see #4 in Figure 10-10) for the creation of the eth0 interface. In addition, it interprets the

Pod annotations to invoke additional CNIs to add other interfaces (see #6 in Figure 10- 10)

to the Pod.

Figure 10-9. Using HostPort

4 Additional information on providing multiple network interface to Pods can be found at the
OCP 4.1 online documentation: https://docs.openshift.com/container-platform/4.1/
networking/managing-multinetworking.html

ChapTEr 10 advanCEd nETwork opEraTions

https://docs.openshift.com/container-platform/4.1/networking/managing-multinetworking.html
https://docs.openshift.com/container-platform/4.1/networking/managing-multinetworking.html

245

Multus requires the creation of a NetworkAttachmentDefinition defining the

additional CNI (see #1 in Figure 10-11). The Pod must be annotated with the additional

CNIs to use to provide additional interfaces (see #2 in Figure 10-11). At the Pod level, the

new network interface is created (see #4 in Figure 10-11).

Figure 10-10. Multus CNI logical diagram

ChapTEr 10 advanCEd nETwork opEraTions

246

 OpenShift ServiceMesh
The OpenShift ServiceMesh is based on the upstream project Maistra.5 Some of the

components of OpenShift ServiceMesh are

• Istio: Based on the Istio6 project; enables the intelligent control of

the flow of traffic; enables the authentication, authorization, and

encryption of communication between microservices; enforces

policies; and enables observability of the communication among the

microservices of an application

• Envoy: Service proxy used by Istio and based on Envoy Proxy7 project

Figure 10-11. Defining NetworkAttachmentDefinition and using Multus CNI

5 For more details of the Maistra project, refer to the online documentation at
https://maistra.io/docs/

6 Upstream Istio project is available at https://istio.io
7 Upstream Envoy Proxy project is available at www.envoyproxy.io

ChapTEr 10 advanCEd nETwork opEraTions

https://maistra.io/docs/
https://istio.io
http://www.envoyproxy.io

247

• Jaeger: Distributed tracing capability based on the Jaeger8 project

(see #2 in Figure 10-12)

• Kiali9: Graphical interface integrating the components of OpenShift

ServiceMesh (see #1 in Figure 10-12)

• Grafana: Used for the Istio mesh dashboards (see #3 and #4 in

Figure 10-12)

• Prometheus: Used to collect Istio mesh metrics

• Elasticsearch: Used as the backend storage for the Istio metrics

Note at the time of this writing, installing openshift serviceMesh10 in oCp 3.11.x
is still considered a Technology Preview capability.

Some of the OpenShift ServiceMesh consoles are shown in Figure 10-12.

8 Upstream Jaeger project is available at www.jaegertracing.io
9 Upstream Kiali project is available at www.kiali.io
10 The instructions for the installation and configuration of the OpenShift Service Mesh are available

at the online documentation: https://docs.openshift.com/container-platform/3.11/
servicemesh-install/servicemesh-install.html#installing-service-mesh

Figure 10-12. OpenShift ServiceMesh

ChapTEr 10 advanCEd nETwork opEraTions

http://www.jaegertracing.io
http://www.kiali.io
https://docs.openshift.com/container-platform/3.11/servicemesh-install/servicemesh-install.html#installing-service-mesh
https://docs.openshift.com/container-platform/3.11/servicemesh-install/servicemesh-install.html#installing-service-mesh

248

The main functionality of the OpenShift ServiceMesh requires injecting the Istio

sidecar, the Envoy proxy, into the Pod. This requires the proper annotation of the

Deployment configuration (see #1 in Figure 10-13).

Once the Istio proxy sidecar is injected into the Pod (see #5 in Figure 10-14), all traffic

incoming or outgoing to that Pod goes over the Istio-proxy sidecar container.

Figure 10-13. OpenShift ServiceMesh annotations for Istio sidecar

ChapTEr 10 advanCEd nETwork opEraTions

249

From the OpenShift ServiceMesh perspective, when using OpenShift Routes in

conjunction with the Istio Gateway resources, the traffic flow will be as follows:

• External traffic arrives to the Route (see #1 in Figure 10-15) which

points to a LoadBalancer type Service (see #2 in Figure 10-15).

• A LoadBalancer resource gets allocated an IngressIP and the

cluster administrator could also assign an ExternalIP.

• Traffic is then delivered to the Istio Gateway on the destination

Project or Namespace as seen in #3 on Figure 10-15.

• The Istio Gateway is considered the edge of the Mesh for

incoming and outgoing connections. It describes the ports and

protocol (HTTP/HTTPS/TCP) it will accept traffic for.

• Traffic accepted at the Istio Gateway is forwarded based on the

VirtualService definition (see #5 on Figure 10-15).

• The VirtualService defines one or more destinations where

the traffic should go inside the ServiceMesh to reach the actual

destination (i.e., a Service or Pod).

Figure 10-14. OpenShift ServiceMesh Istio-Proxy sidecar injection

ChapTEr 10 advanCEd nETwork opEraTions

250

• Any Service or Pod annotated for the Istio Proxy will have the Istio

sidecar injected into the Pods (see yellow pentagon shapes in

Figure 10-15).

• After this point, the metrics and visibility provided by the Istio Proxy

are available over the Kiali console.

Caution at the moment of this writing, the istio-proxy (Envoy) has limited support
for non-TCp traffic. applications relying on non-TCp protocols should investigate
the impact of these limitations to avoid service disruption.

 Summary
This chapter covers some of the advanced network optimizations available in the

OpenShift Container Platform (OCP). Some of these optimizations, like hardware

acceleration, are dependent on the availability of underlying infrastructure supporting

the capability. Other optimizations are more in the fine-tuning of configuration

attributes to increase performance and scalability of the capability, like the

optimizations available for the OpenShift Routers.

Figure 10-15. Traffic flow with OpenShift ServiceMesh

ChapTEr 10 advanCEd nETwork opEraTions

251

In addition to the optimization, this chapter describes the use of IngressIP,

ExternalIPs, NodePorts, and HostPorts to bring specialized IP protocols to Services and

Pods running on the platform.

Finally, the chapter explored advanced functionalities provided by OpenShift Multi-

Network capabilities with Multus and the OpenShift ServiceMesh with Istio, Jaeger, and

other upstream projects.

Some of the optimizations described in this chapter are intended for OpenShift bare-

metal deployments. Chapter 11 provides a glimpse of the installation of OpenShift 4.1

using the User Provisioned Infrastructure (UPI) deployment option. This new OpenShift

version provides the support for advanced networking capabilities like the multiple

network for Containers using Multus, OpenShift ServiceMesh, and many others.

ChapTEr 10 advanCEd nETwork opEraTions

253
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_11

CHAPTER 11

OCP 4.1 UPI Mode
Bare- Metal with PXE
Boot Deployment
Some of the advanced networking optimizations discussed in Chapter 10 are intended

to be used with bare-metal deployments of OpenShift. Furthermore, some of the

capabilities are now included in OpenShift 4.1.1 This chapter provides supplementary

information that goes into the details of an installation of OpenShift 4.1 in bare-metal

deployment using the User Provisioned Infrastructure (UPI) mode that was discussed in

Chapter 6.

Note At the time of this writing, the UPI mode is still in beta, but it has been
validated to work with bare-metal deployments.

 UPI Mode
With the Installer Provisioned Infrastructure (IPI) mode, covered in Chapter 6, the

openshift-installer takes care of configuring ancillary services like internal and external

load balancers, DNS records, and the provisioning of the base Operating System (OS);

with the UPI mode, all those ancillary configurations need to be in place before starting

the deployment.

1 During the development of this book, Red Hat decided to keep OpenShift 4.0 as a Developer
Preview release and instead did the release of OpenShift 4.1 as the first General Availability (GA)
release of the 4.x major version.

254

The installation of OCP 4.1 with UPI mode varies based on the infrastructure target.

For example, using UPI mode in a VMware environment, vs. an AWS environment,

vs. Bare-Metal, has different steps. The core prerequisites are the same but the

infrastructure-specific requirements will vary.

 Bare-Metal with PXE Boot Example
This chapter covers UPI mode for Bare-Metal using PXE Boot for provisioning the OS

during the installation. The diagram for the documented deployment is as shown in

Figure 11-1.

The basic deployment for OCP 4.x is a high availability (HA) configuration with three

Master or Control Nodes and at least two Workers or Compute Nodes. The Bootstrap Node

is only used during the initial deployment of the Master or Control Nodes. See Table 11-1

for details on the reference environment.

Figure 11-1. OCP 4.1 UPI standard deployment

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

255

Note the reference configuration uses ocp4poc as the cluster name and
example.com as the base domain, hence the use of ocp4poc.example.com as
the domain for the cluster.

 UPI Bare-Metal with PXE Boot
There are two ways to install the Red Hat Enterprise Linux CoreOS (RHCOS). One is

using an ISO image which then requires manual entry of parameters to load the Ignition

configuration files, and the other option is using the PXE Boot install in which case all

the Ignition parameters are passed using the PXE APPEND configuration fields.

 Prerequisites
The deployment of OpenShift 4.1 using UPI mode with PXE Boot bare-metal has the

following prerequisites:

• Designate a cluster name (i.e., cluster name = ocp4poc).

• Designate a base domain (i.e., base domain = example.com) for the

subdomain dedicated to the cluster.

• The cluster subdomain will be composed of <cluster-

name>.<based- domain>.

 ■ That is, ocp4poc.example.com

Table 11-1. Reference Environment

Node Name IP Address Mac Address

bootstrap 192.168.1.10 02:01:01:01:01:01

master-0 192.168.1.11 02:00:00:00:01:01

master-1 192.168.1.12 02:00:00:00:01:02

master-2 192.168.1.13 02:00:00:00:01:03

worker-0 192.168.1.15 02:00:00:00:02:01

worker-1 192.168.1.16 02:00:00:00:02:02

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

256

• Fully resolvable FQDN forward and reverse DNS entries for all the

Nodes (including the Bootstrap node).

• Special etcd service entries are required.

• Special Kubernetes API internal and external entries.

• Set up a Load Balancer in pass-through mode for Kubernetes API

(tcp/6443), Machine Server Config (tcp/22623), and OpenShift

Routers HTTP and HTTPS (tcp/80, tcp/443).

Note At the moment of this writing, when using UPI mode in bare-metal with PXe
Boot, the red hat enterprise linux CoreOS (rhCOS) uses reverse dnS resolution
for assigning the hostname to the nodes.

 DNS Configuration (Example)

Following the reference information from Table 11-1, the corresponding DNS

configuration must include the entry layout in Table 11-2.

Table 11-2. Reference DNS Configuration

Role FQDN

bootstrap bootstrap.<cluster_name>.<base_domain> 192.168.1.10

master-0 master-0.<cluster_name>.<base_domain> 192.168.1.11

master-1 master-1.<cluster_name>.<base_domain> 192.168.1.12

master-2 master-2.<cluster_name>.<base_domain> 192.168.1.13

worker-0 worker-0.<cluster_name>.<base_domain> 192.168.1.15

worker-1 worker-1.<cluster_name>.<base_domain> 192.168.1.16

Kubernetes API

(tcp/6443)

api.<cluster_name>.<base_domain> external load Balancer for

Master nodes

api-int.<cluster_name>.<base_domain> Internal load Balancer for

Master nodes

etcd etcd-0.<cluster_name>.<base_domain> 192.168.1.11

(continued)

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

257

The reference configurations in Listings 11-1 and 11-2 are for the Bind DNS server.

When using other DNS servers, a similar configuration is required.

Listing 11-1. Forward DNS Record

; /var/named/ocp4poc.example.com

$TTL 1D

@ IN SOA bastion.ocp4poc.example.com. root.ocp4poc.example.com. (

 2019052001 ; serial

 1D ; refresh

 2H ; retry

 1W ; expiry

 2D) ; minimum

@ IN NS bastion.ocp4poc.example.com.

@ IN A 192.168.1.1

; Ancillary services

lb IN A 192.168.1.200

lb-ex IN A 10.10.10.10

; Bastion or Jumphost

bastion IN A 192.168.1.1

; OCP Cluster

bootstrap IN A 192.168.1.10

Role FQDN

etcd-1.<cluster_name>.<base_domain> 192.168.1.12

etcd-2.<cluster_name>.<base_domain> 192.168.1.13

etcd SrV etcd-server-ssl._tcp.<cluster_name>.<base_domain>

For each Master node, OpenShift requires a SrV dnS record for etcd server

on that machine with priority 0, weight 10, and port 2380.

wildcard

Subdomain for Apps

∗.apps.<cluster_name>.<base_domain> 192.168.1.15, 192.168.1.16

Table 11-2. (continued)

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

258

master-0 IN A 192.168.1.11

master-1 IN A 192.168.1.12

master-2 IN A 192.168.1.13

worker-0 IN A 192.168.1.15

worker-1 IN A 192.168.1.16

etcd-0 IN A 192.168.1.11

etcd-1 IN A 192.168.1.12

etcd-2 IN A 192.168.1.13

_etcd-server-ssl._tcp.ocp4poc.example.com. IN SRV 0 0 2380 etcd-0.

ocp4poc.example.com.

 IN SRV 0 0 2380 etcd-1.

ocp4poc.example.com.

 IN SRV 0 0 2380 etcd-2.

ocp4poc.example.com.

api IN CNAME lb-ext ; external LB interface

api-int IN CNAME lb ; internal LB interface

apps IN CNAME lb-ext

*.apps IN CNAME lb-ext

Note the configuration of the etcd server records is required for the OpenShift
installation. the api (external VIP pointing to the Control nodes) and api-int (internal
VIP pointing to the Control nodes) records must exist pointing to the correct VIP.

Listing 11-2. Reverse DNS Record

; /var/named/1.168.192.in-addr.arpa

$TTL 1h

$ORIGIN 1.168.192.IN-ADDR.ARPA.

@ 1h IN SOA bastion.ocp4poc.example.com. root.ocp4poc.example.com. (

 2019052901 ; serial

 2H ; refresh

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

259

 15 ; retry

 1W ; expiry

 2H) ; minimum

 IN NS bastion.ocp4poc.example.com.

1 IN PTR bastion.ocp4poc.example.com.

10 IN PTR bootstrap.ocp4poc.example.com.

11 IN PTR master-0.ocp4poc.example.com.

12 IN PTR master-1.ocp4poc.example.com.

13 IN PTR master-2.ocp4poc.example.com.

15 IN PTR worker-0.ocp4poc.example.com.

16 IN PTR worker-1.ocp4poc.example.com.

100 IN PTR lb.ocp4poc.example.com.

 Load Balancer Configuration (Examples)

The load balancer configuration is divided into external-facing configuration and cluster-

facing configuration. The external-facing configuration should resolve to the external IP of

the load balancer. The cluster-facing configuration should resolve to the internal IP of the

load balancer. All the ports must be configured in pass-through mode. The ports required

by OpenShift and that should be configured in the load balancer are listed in Table 11-3.

Table 11-3. Reference Load Balancer Configuration

Service VIP Backend Port

Kubernetes

API

bootstrap.ocp4poc.example.com:6443

master-0.ocp4poc.example.com:6443

master-1.ocp4poc.example.com:6443

master-2.ocp4poc.example.com:6443

6443

the entry for the Bootstrap node should

be removed after the cluster bootstrap

installation process is completed

Machine

Server

bootstrap.ocp4poc.example.com:22623

master-0.ocp4poc.example.com:22623

master-1.ocp4poc.example.com:22623

master-2.ocp4poc.example.com:22623

22623

the entry for the Bootstrap node should

be removed after the cluster bootstrap

installation process is completed

(continued)

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

260

NGINX and HAProxy are Open Source projects commonly used as load balancers.

A reference load balancer configuration using NGINX is presented in Listing 11-3.

Listing 11-3. Load Balancer with NGINX (Example)

ngnix.conf

user nginx;

worker_processes auto;

error_log /var/log/nginx/error.log;

pid /run/nginx.pid;

events {

 worker_connections 1024;

}

Pass-through

stream {

 upstream ocp4poc-k8s-api {

 # Kubernetes API

 server bootstrap.ocp4poc.example.com:6443;

 server master-0.ocp4poc.example.com:6443;

 server master-1.ocp4poc.example.com:6443;

 server master-2.ocp4poc.example.com:6443;

 }

Service VIP Backend Port

Ingres httP worker-0.ocp4poc.example.com:80

worker-1.ocp4poc.example.com:80

80

worker-1.ocp4poc.example.com:80

Ingress

httPS

worker-0.ocp4poc.example.com:443

worker-1.ocp4poc.example.com:443

443

api-int.<cluster_name>.<base_domain> Internal load Balancer for Master nodes

Table 11-3. (continued)

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

261

 upstream ocp4poc-machine-config {

 # Machine-Config

 server bootstrap.ocp4poc.example.com:22623;

 server master-0.ocp4poc.example.com:22623;

 server master-1.ocp4poc.example.com:22623;

 server master-2.ocp4poc.example.com:22623;

 }

 server {

 listen 6443;

 proxy_pass ocp4poc-k8s-api;

 }

 server {

 listen 22623 ;

 proxy_pass ocp4poc-machine-config;

 }

 # Passthrough required for the routers

 upstream ocp4poc-http {

 # Worker Nodes running OCP Router

 server worker-0.ocp4poc.example.com:80;

 server worker-1.ocp4poc.example.com:80;

 }

 upstream ocp4poc-https {

 # Worker Nodes running OCP Router

 server worker-0.ocp4poc.example.com:443;

 server worker-1.ocp4poc.example.com:443;

 }

 server {

 listen 443;

 proxy_pass ocp4poc-http;

 }

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

262

 server {

 listen 80 ;

 proxy_pass ocp4poc-https;

 }

}

A reference load balancer configuration using HAProxy is presented in Listing 11-4.

Listing 11-4. Load Balancer with HAProxy (Example)

haproxy.cfg

defaults

 mode http

 log global

 option httplog

 option dontlognull

 option forwardfor except 127.0.0.0/8

 option redispatch

 retries 3

 timeout http-request 10s

 timeout queue 1m

 timeout connect 10s

 timeout client 300s

 timeout server 300s

 timeout http-keep-alive 10s

 timeout check 10s

 maxconn 20000

frontend openshift-api-server

 bind *:6443

 default_backend openshift-api-server

 mode tcp

 option tcplog

backend openshift-api-server

 balance source

 mode tcp

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

263

 server bootstrap 192.168.1.10:6443 check

 server master-0 192.168.1.11:6443 check

 server master-1 192.168.1.12:6443 check

 server master-2 192.168.1.13:6443 check

frontend machine-config-server

 bind *:22623

 default_backend machine-config-server

 mode tcp

 option tcplog

backend machine-config-server

 balance source

 mode tcp

 server bootstrap 192.168.1.10:22623 check

 server master-0 192.168.1.11:22623 check

 server master-1 192.168.1.12:22623 check

 server master-2 192.168.1.13:22623 check

frontend ingress-http

 bind *:8080

 default_backend ingress-http

 mode tcp

 option tcplog

backend ingress-http

 balance source

 mode tcp

 server worker-0 192.168.1.15:80 check

 server worker-1 192.168.1.15:80 check

frontend ingress-https

 bind *:8443

 default_backend ingress-https

 mode tcp

 option tcplog

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

264

backend ingress-https

 balance source

 mode tcp

 server worker-0 192.168.1.15:443 check

 server worker-1 192.168.1.15:443 check

 DHCP with PXE Boot Configuration (Example)

Listing 11-5 is a reference configuration of DHCP using DNSmasq, sending the PXE Boot

server information to the Nodes.

Listing 11-5. DHCP for PXE Boot with DNSmasq

OCP4 PXE BOOT Lab

dnsmasq configurations

disable DNS /etc/dnsmasq.conf set port=0

#

no-dhcp-interface=eth0

interface=eth1

#domain=ocp4poc.example.com

DHCP (dnsmasq --help dhcp)

dhcp-range=eth1,192.168.1.10,192.168.1.200,24h

dhcp-option=option:netmask,255.255.255.0

dhcp-option=option:router,192.168.1.1

dhcp-option=option:dns-server,192.168.1.1

dhcp-option=option:ntp-server,204.11.201.10

Bootstrap

dhcp-host=02:01:01:01:01:01,192.168.1.10

master-0, master-1, master-2

dhcp-host=02:00:00:00:01:01,192.168.1.11

dhcp-host=02:00:00:00:01:02,192.168.1.12

dhcp-host=02:00:00:00:01:03,192.168.1.13

worker-0, worker-1

dhcp-host=02:00:00:00:02:01,192.168.1.15

dhcp-host=02:00:00:00:02:01,192.168.1.16

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

265

PXE

enable-tftp

tftp-root=/var/lib/tftpboot,eth1

dhcp-boot=pxelinux.0

 PXE Boot Configuration (Example)

Listing 11-6 is a reference configuration of using DNSmasq as the PXE Boot server.

Listing 11-6. DNSmasq as PXE Boot Server

UI vesamenu.c32

DEFAULT LOCAL

PROMPT 0

TIMEOUT 200

ONTIMEOUT LOCAL

MENU TITLE PXE BOOT MENU

LABEL WORKER-BIOS

 MENU LABEL ^1 WORKER (BIOS)

 KERNEL rhcos/rhcos-kernel

 APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0

coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.

ignition_url=http://192.168.1.1:8000/worker.ign coreos.inst.image_

url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz

ip=eth1:dhcp

LABEL MASTER-BIOS

 MENU LABEL ^2 MASTER (BIOS)

 KERNEL rhcos/rhcos-kernel

 APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0

coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.

ignition_url=http://192.168.1.1:8000/master.ign coreos.inst.image_

url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz

ip=eth1:dhcp

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

266

LABEL BOOTSTRAP-BIOS

 MENU LABEL ^3 BOOTSTRAP (BIOS)

 KERNEL rhcos/rhcos-kernel

 APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0

coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.ignition_

url=http://192.168.1.1:8000/bootstrap.ign coreos.inst.image_

url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz

ip=eth1:dhcp

LABEL LOCAL

 MENU LABEL ^7 Boot from Local Disk

 MENU DEFAULT

 LOCALBOOT 0

LABEL RECOVERY1

 MENU LABEL ^8 Recovery (initqueue)

 KERNEL rhcos/rhcos-kernel

 APPEND rd.break=initqueue rd.neednet=1 initrd=rhcos/rhcos-initramfs.img

console=tty0 ip=eth1:dhcp

LABEL RECOVERY2

 MENU LABEL ^9 Recovery (pre-mount)

 KERNEL rhcos/rhcos-kernel

 APPEND rd.break=pre-mount rd.neednet=1 initrd=rhcos/rhcos-initramfs.img

console=tty0 ip=eth1:dhcp

 Preparing the Installation
The bare-metal deployment of OpenShift 4.1 using UPI mode with PXE Boot requires

special attention to the hardware configuration in use, especially the BIOS configuration

and NIC interface configured for the PXE Boot.

Note the examples in this chapter use a Bastion node in the same network
as the Cluster nodes, but this is not strictly necessary. they can be on different
networks as long as the reachability exists.

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

267

 Considerations with UPI Mode with PXE Boot
At the time of this writing, there are several considerations to have when using UPI Mode

with PXE Boot:

• When using a physical server with multiple NICs

• The PXE APPEND command must specify the exact NIC to

use during the PXE boot. For example, use a syntax similar to

ip=eth2:dhcp and NOT a generic DHCP entry like ip=dhcp.

• If the PXE APPEND uses the ip=dhcp, the DNS information from

the last NIC to come up will be used as the entry for /etc/

resolv.conf.

• If the last NIC to come up has a self-assigned IP and does not

receive a DNS, the resulting /etc/resolv.conf will be empty.

When this happens, the Node will attempt to use the localhost

[::1] as the DNS and the installation will fail. To work around

this, during the installation

 ■ When possible, avoid having NICs with active link that are not

receiving valid IPs.

 ■ Pass the nameserver=<nameserver_ip> with the PXE APPEND

command.

• When the server has many NICs, it is possible for the

NetworkManager-wait-online.service to time out before the

DHCP request over each NIC timeout. When this happens,

a cascaded failure may be triggered. To avoid this situation,

a recommended patch is to increase the timeout of this

NetworkManager service and avoid the situation.

• At the time of this writing, using the PXE APPEND to disable IPv6 using

the ipv6.disable is not supported.

• When customizing Ignition files to write custom files or

configurations in the Node, the permissions must be specified in

OCTAL mode (i.e., 384), NOT in DECIMAL mode (i.e., 600).

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

268

• If there is no valid reverse DNS resolution during the installation, the

Masters (and all the Nodes) will register as localhost.localdomain

into the Kubernetes etcd. When this happens, Kubernetes will fail to

identify the existence of multiple masters and the installation process

will fail.

 Downloading RHCOS and Installation Binaries
The installation requires the download of the Red Hat Enterprise Linux CoreOS (RHCOS)

corresponding to the 4.1 version, the OpenShift 4.1 client, and the OCP 4.1 openshift-

installer. These are available from the corresponding mirror repositories:

• Obtain the latest RHCOS images from https://mirror.openshift.

com/pub/openshift-v4/dependencies/rhcos/4.1/latest/

• Obtain the latest OpenShift client and installer binaries from

https://mirror.openshift.com/pub/openshift-v4/clients/ocp/

For the UPI mode using PXE Boot, the required images are as shown in Figure 11-2

(the specific subrelease and release will be different after GA).

 Preparing the PXE Boot Images
Copy the RHCOS PXE Boot images to the PXE server similar to #1 on Figure 11-3.

Copy the RHCOS Operating System Images to the web server to be used by the PXE

installation similar to #2 on Figure 11-3.

Figure 11-2. RHCOS and OCP 4.1 installation binaries (example)

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.1/latest/
https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.1/latest/
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/

269

 Installation
At high level, the installation process consists of creating the install-config.yaml

configuration, generating the Ignition files, and using those Ignition configurations to

bootstrap the cluster.

Any customization required for the initial installation of the cluster must be done to

those Ignition files. There are three initial Ignition files:

• bootstrap.ign: This Ignition file contains all the information the

Bootstrap Node will use to render the cluster configuration and

generate the MachineConfig configuration files for the Master Nodes.

• master.ign: This is the Ignition file the Master Nodes will use to

install the RHCOS image into the bare-metal server. It also contains

the information on how to obtain the Master Node configuration

from the Bootstrap Node.

• worker.ign: This is the Ignition file the Worker Nodes will use to

install the RHCOS image into the bare-metal server. It also contains

the information on how to obtain the Worker Node configuration

from the Master Nodes.

The discovery of the Kubernetes API to retrieve the state of the deployment process,

the discovery of the API to retrieve the configuration for the Nodes, the discovery of the

etcd database, and other access required by the Ignition process are highly dependent

on the existence of the specific DNS entries discussed previously in this chapter.

Figure 11-3. Installing RHCOS PXE Boot and OS Images

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

270

 Creating the Configuration
The OpenShift 4.1 installer UPI mode requires the creation of the install-config.yaml file

which will be used to generate the Ignition files (Listing 11-7).

Listing 11-7. Sample install-config.yaml

apiVersion: v1

baseDomain: example.com

compute:

- hyperthreading: Enabled

 name: worker

 replicas: 0

controlPlane:

 hyperthreading: Enabled

 name: master

 replicas: 3

metadata:

 name: ocp4poc

networking:

 clusterNetworks:

 - cidr: 10.128.0.0/14

 hostPrefix: 23

 networkType: OpenShiftSDN

 serviceNetwork:

 - 172.30.0.0/16

platform:

 none: {}

pullSecret: '{"auths": ...}'

sshKey: 'ssh-ed25519 AAAA...'

The pullSecret must be obtained from https://try.openshift.com. The SSH key

is the public SSH key from the key pair that is going to be used by the administration

during the installation.

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

https://try.openshift.com

271

 Generating the Ignition Files
Create a folder for the installation, copy the install-config.yaml file into it, and

proceed to generate the Ignition files, as shown in Figure 11-4.

When using UPI PXE Boot with a system with multiple NIC, it is recommended to

increase the timeout of the NetworkManager-wait-online.service (see Listing 11-8).

Listing 11-8. Increase Network Manager timeout patch

{

"systemd": {

 "units": [

 {

 "name": "NetworkManager-wait-online.service",

 "dropins": [{

 "name": "timeout.conf",

 "contents": "[Service]\nExecStart=\nExecStart=/usr/bin/nm-online -s

-q --timeout=300"

 }]

 }

]

 }

}

By default, OCP 4.1 UPI only creates a local user in the Bootstrap Node. There is no

local user in Master and Worker Nodes. To create a local user, follow Listing 11-9.

Figure 11-4. Generating Ignition files

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

272

Listing 11-9. Adding local user

{

 "passwd": {

 "users": [

 {

 "name": "core",

 "sshAuthorizedKeys": [

 "ssh-rsa"

]

 }

]

 }

}

The patches from Listings 11-8 and 11-9 must be merged with the original Ignition

file of the corresponding Node.

Note At the moment of this writing, OpenShift does not provide a tool to edit the
Ignition files and apply customization. Currently the administrator must rely on
third-party tools to edit and merge the corresponding JSOn files.

Copy the resulting Ignition files to the web server that will be used by the PXE Boot

process—for example, cp -f ./ocp4poc/*.ign /usr/share/nginx/html/

 Bootstrap and Master Nodes
The first Node to be installed is the Bootstrap Node. When using the PXE configuration

from Listing 11-6, the PXE Boot menu will be similar to Figure 11-5.

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

273

Select the Bootstrap from the menu and it will proceed with the installation of

RHCOS.

Once the RHCOS installation of Bootstrap Node completes, it will reboot. After the

Bootstrap is running, proceed to install RHCOS in the three Masters.

It is possible to use the ./openshift-install wait-for bootstrap-complete

--dir=ocp4poc --log-level debug command to have a high-level overview of the

progress of the Bootstrap process of the Master Nodes. For more granular view of the

progress, log in to the Bootstrap Node using the “core” user and the SSH key provided in

the install-config.yaml (see #1 on Figure 11-6).

Figure 11-5. PXE Boot menu (example)

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

274

Once logged in, the Bootstrap Node executes the journalctl -b -f -u bootkube.

service command to follow the detailed output messages about the progress of the

process (see #2 and #3 in Figure 11-6).

After the installation of a Master Node completes, the Node will reboot in the RHCOS

version used for the installation (see #1 on Figure 11-7). At this point, the Master requests

the Machine Configuration rendered by the Cluster Version Operator running in the

Bootstrap Node (see #2 on Figure 11-7). This will instruct the Node into downloading

and applying the latest RHCOS (see #3 on Figure 11-7) and to start downloading and

running the services corresponding to the Master Node.

Figure 11-6. Log in to the Bootstrap Node

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

275

Once the three Master Nodes are fully operational, the openshift-install wait-

for bootstrap command will notify the Bootstrap Node has completed its job and it is

time to shut down the Bootstrap Node (see #1 in Figure 11-8).

Note At this point, it is safe to remove the Bootstrap node from the load
Balancer configuration.

The log message from the Bootstrap Node will also indicate the Bootstrap process

has been completed (see #2 on Figure 11-8).

Figure 11-7. Master Node Boot and Upgrade

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

276

During the bootstrap process, the Bootstrap Node takes care of signing the certificate

requests from the Masters so they can become a single cluster (see #3 and #4 on

Figure 11-8). After this point, adding workers or any other Node into the cluster requires

for the cluster administrator to manually accept the Certificate Signing Requests (CSR)

from the new Nodes.

After the Bootstrap Node has completed its purpose, the etcd and Kubernetes APIs

are online, but the installation of the OpenShift Master Nodes is still in progress. To

monitor this progress, use the command ./openshift-install wait-for install-

complete --dir=ocp4poc --log-level debug

 Worker Nodes
Once the Bootstrap Node has been removed from the cluster, it is possible to install and

onboard the Worker Nodes.

Note even when the installation of the OpenShift Master Nodes is still in
progress, the successful completion of the OCP cluster installation requires at least
two worker nodes to be online and be part of the cluster.

Figure 11-8. Bootstrap complete

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

277

Boot and install RHCOS in the Worker Nodes using the same PXE Boot menu as

before. This time, select the Worker option. The installation will be similar as with

the Master Nodes. This time the Master Nodes are the ones providing the Machine

Configuration to the Worker Nodes. For a Worker to start this process, it generates a

Certificate Signing Request (CSR) for a node-bootstrapper Service Account which needs

to be accepted by the cluster administrator (see #1 and #2 on Figure 11-9). Then it

generates a system Node account CSR which needs to be approved for the Worker to join

the cluster (see #3 and #4 on Figure 11-9).

During this process, the Worker Nodes go over a RHCOS upgrade process and receive

information on which containers to download and which services to bring online.

With all the Master and Worker Nodes online (see #1 on Figure 11-10), the

installation will continue but will not complete to 100% until persistent storage is

assigned to the Image Registry (see #3 on Figure 11-10).

Figure 11-9. OCP CSR signing

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

278

Note Persistent storage for the Image Registry should nOt be ephemeral in
nature (like emptyDir) as images may be lost during a reboot of the node hosting
the registry. this type of ephemeral storage may only be used during testing or in
nonproduction environments.

Once the installation is successfully completed, all the Cluster Operators should be

shown as available (see Figure 11-11).

Figure 11-10. Installation progress and Image Registry

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

279

The OpenShift console (see Figure 11-12) for the new environment will be available

at https://console-openshift-console.apps.<cluster-name>.<base-domain>.

Figure 11-11. Cluster Operators running after successful installation

Figure 11-12. The OpenShift 4.1 Console

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

280

After the installation is completed, the system will have created the following Routes:

• https://console-openshift-console.apps.ocp4poc.example.

com—default URL for the OpenShift console

• https://oauth-openshift.apps.ocp4poc.example.com

• https://downloads-openshift-console.apps.ocp4poc.

example.com

• https://alertmanager-main-openshift-monitoring.apps.

ocp4poc.example.com

• https://grafana-openshift-monitoring.apps.ocp4poc.

example.com

• https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.

example.com

 Summary
As seen in this chapter, the use of OpenShift User Provisioned Infrastructure (UPI) mode

for Bare-Metal deployment may provide a way for organizations looking to retain control

of the physical infrastructure while benefiting of a modern platform capable of auto-

upgrade itself to the latest code.

The lecturer should be aware this is only one way to use the UPI mode. There are

different ways in which UPI may be used to provision bare-metal or other types of

infrastructures.

ChAPter 11 OCP 4.1 UPI MOde BAre- MetAl wIth PXe BOOt dePlOyMent

https://console-openshift-console.apps.ocp4poc.example.com—default
https://console-openshift-console.apps.ocp4poc.example.com—default
https://oauth-openshift.apps.ocp4poc.example.com
https://downloads-openshift-console.apps.ocp4poc.example.com
https://downloads-openshift-console.apps.ocp4poc.example.com
https://alertmanager-main-openshift-monitoring.apps.ocp4poc.example.com
https://alertmanager-main-openshift-monitoring.apps.ocp4poc.example.com
https://grafana-openshift-monitoring.apps.ocp4poc.example.com
https://grafana-openshift-monitoring.apps.ocp4poc.example.com
https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.example.com
https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.example.com

281
© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7

Index

A
Ansible service broker (ASB), 128
Application nodes/Pods, 100

B
BuildConfig, 197

creation
Jenkinsfile, Git, 199, 201
sample Jenkinsfile, 200, 201

deployment
access logs, 206
Jenkins Console, 206, 207
Jenkins Master, 203, 204
manual trigger, 204, 205
new pipeline, 202, 203
pipeline history, 205
YAML, import, 202

C
Certificate signing request (CSR), 276, 277
CI/CD pipelines

external integration, 220
grant edit access, 196, 197
Jenkins Master, 195
Jenkins-persistent template, 196

Cluster Monitoring, 125
Container network interface (CNI), 7, 72
Container runtime, 77

Container runtime interface (CRI), 8
Containers, 77
Container storage interface (CSI), 7, 84,

87, 88

D
Day-2 operations

garbage collection, 224
leftover objects

cluster administrator, 222
prune command, 223
storage, consume, 221, 222

Default cluster roles, 173
DriveScale composable platform, 95

E
East-west traffic

Calico SDN CN, 71–73
Openshift SDN

cluster network subnet
allocation, 58

flannel, 69, 70
node, 59
ovs-multitenant plugin, 63, 64
ovs-networkpolicy plugin, 65–68
ovs-subnet plugin, 62, 63
routes, 61
tun0 interface, 60

https://doi.org/10.1007/978-1-4842-4985-7

282

VXLAN protocol, 57
SDN plugins, 56

Ephemeral framework, 88
Eviction policy, 228

F, G
Flannel, 69, 70
FlexVolume

architecture, 85
Volume plugin, 84
with attach/detach, 86
without attach/detach, 86

H
Hawkular metrics, 49
High availability (HA)

data plane, 52
Metrics Server, 50
OCP

consoles, 44, 45
etcd database, 32, 33
RAFT algorithm, 34
services (see Master services)

OCR, 53, 54
OpenShift logging services, 51, 52
OpenShift metrics, 48–50
OpenShift monitoring, 46–48
OpenShift router, 53

Horizontal Pod Autoscaler (HPA), 48,
50, 126

HPE Nimble, 96
HPE 3PAR, 95, 96

I
Identity providers

mapping, value, 180
OpenShift 3.11.x, 180

Infrastructure nodes, 19–21, 99
Installer provisioned infrastructure

(IPI), 157, 253
Isolates interprocess communication

(IPC), 3

J
Jenkins-ephemeral template, 195
Jenkinsfile

BuildConfig, 208
CI/CD Pipeline, 210
edit access, 210
Git repository, 208
GUI, pipeline, 217
multiproject pipeline, 211–217
Webhook triggers, 209

Jenkins images, custom, 218, 219
Jenkins Kubernetes plugin, 220
Jenkins Master, 195, 210

K
Kubernetes constructs, 7, 77

core elements, 13–15
deployment, 12
Pod, 10
PVC, 13
replicaSet, 12
services, 10, 11

East-west traffic (cont.)

INDEX

283

Kubernetes storage
access mode, 82
PV status, 81
reclaim policy, 82

Kubernetes volume, 79

L
LimitRanges

resource constraints, 185
resource creation or modification,

185, 186
Linux Containers

container specifications, 6, 7
Control Groups (cgroups), 4, 5
definition, 1
Docker Daemon, 1, 2
Docker platform, 1
Kubernetes, 7
namespaces, 3, 4

Load balancer
infrastructure nodes

OpenShift Router, 103, 104
passthrough configuration, 101, 102

master nodes, 100
non-HTTP/HTTPS/TLS protocols, 105
non-web-based/UDP-based traffic,

106, 107
types, 99, 100

Load balancer configuration
external-facing, 259
HAProxy, 262, 264
cluster-facing, 259
NGINX, 260, 261
ports, 259, 260

M
Managing users and groups

oc client command, 181, 182
SA, 182–184
user, creation, 181

mappingMethod, 180, 181
Master nodes, 13, 17–20, 99
Master services

HAproxy, 43, 44
hyperkube binary, 40
kube-system namespace, 36, 37
Native HA, 43
nodes, 42
Pods, 38, 40

Maximum transmission unit
(MTU), 233, 234

Minishift, 110–112
Multus CNI, 244–246

N
NetApp Trident, 96–97
Networking

north-south traffic
HAProxy template router plugin,

73, 74
NGINX and NGINX Plus router

plugin, 74, 76
traffic flow (see East-west traffic)

Network optimizations
jumbo frames and VXLAN

acceleration, 233, 234
tuning options, 235, 236

Node ConfigMap, 224–226

Index

284

Node optimizations
cluster administrators, 225
max Pods per node, 226, 227
resource allocations, 225, 226
tuned profile, 227

Non-HTTP/HTTPS/TLS applications
using ingressIP/externalIP, 240–242
using NodePort/HostPort, 243, 244

Non-HTTP/HTTPS/TLS protocols, 115

O
OAuth

clients, 171
token request, 171

OCP 3.11 deployment architectures
active RHEL/subscriptions, 116
Ansible inventory file

All-in-One configuration, 131–140
ASB, 128
Bastion node, 155
Cluster Metrics, 126, 127
Cluster Monitoring, 125
deploying OpenShift, 154
Full-HA control plane, 142–153
htpasswd identity provider, 124, 125
nodes, 130
Non-HA control plane, 140, 141
OpenShift Router and Registry, 128
parameters, 118, 120
Registry Service Account, 120
RHOCS/OCS, 121, 122
SDN parameters, 123, 124
service catalog, 128
uninstalling OpenShift, 154, 155
web console access, 122, 123
wildcard apps domain, 122, 123

on Bastion node, 117

cluster requirements, 114, 115
nodes configurations, 113
non-HTTP/HTTPS/TLS protocols, 115
operating system, 114
password-less SSH, 117
Registry Service Account, 116
SDN subnets, 115

Open container initiative (OCI), 6
OpenEBS, 97
Open Service API (OSP API), 187
OpenShift ansible broker (OAB), 187
OpenShift architecture

components, 8, 9
constructs

app nodes, 21, 22
cluster console, 23, 25
infrastructure nodes, 20, 21
Master nodes, 16–19

Kubernetes (see Kubernetes
constructs)

OCR, 29
routers, 25, 27, 28
routes vs. Kubernetes, 27

OpenShift Client Plugin, 218
OpenShift container platform (OCP), 9, 195
OpenShift container registry (OCR), 21, 29
OpenShift container storage (OCS)

converged Mode
deployment patterns, 90
Gluster service, 90
raw disks, 91

GlusterFS storage, 92
independent mode, 91
Kubelet service, 93
REST API, 89

OpenShift control plane (OCP), 31
OpenShift 4.x deployment architecture

AWS (IPI Mode), 158

INDEX

285

identity provider, 165–167
login screen, 164

installing OCP4, 159–161
IPI, 157
prerequisites, 156
progress, 162, 163
UPI, 157

OpenShift Router, 21, 25–28, 53
OpenShift ServiceMesh

components, 246, 247
consoles, 247
Istio sidecar, 247–249
traffic flow, 250

OpenShift storage
OpenShift 3.11, mount points, 78
OpenShift 4.0, mount points, 79

Open vSwitch (OVS), 20, 55, 57, 59

P, Q
PersistentVolumeClaim (PVC), 13, 80
PersistentVolume (PV), 80

access mode, 82
cluster administrator, 80
plugins and access modes, 83, 84
reclaim policy, 82

Pipeline Build Strategy
BuildConfig, 197
defined, 197
Jenkinsfile, 198
Jenkinsfile, Git, 199

Pod priority
node resource budget, 231
PriorityClasses, 230
scheduler, 230

Pods, 10
scheduling, 229

prune command, 223
PXE Boot menu, 272

R
RAFT consensus algorithm, 32, 34–36
RBAC authorization

constructs, 172
levels, 173

Receive flow steering (RFS), 235
Receive packet steering (RPS), 235
Red Hat Enterprise Linux CoreOS

(RHCOS), 255, 268
Red Hat OpenShift Container Storage

(RHOCS/ OCS), 121
ReplicationController (RC), 11, 46, 53
ResourceQuota, 186, 187
Role-based access control (RBAC), 169
Routing optimizations

annotations, 237
IP Whitelist, 238
parameters, 236
Router Shards, 238, 239

S
SECCOMP, 177–178
Security context constraints (SCC)

control, objects, 174
default cluster, 174
restricted SCC, 174–176
strategies, 176

Service Account (SA), 182
API tokens, 184
creation, 183, 184
roles, 183

Service catalogs
OSP API, 187
service brokers, 187

Software-defined networking (SDN), 8, 55
Software-defined storage (SDS) plugins, 94
Source-to-Image (S2I), 29, 221

Index

286

StorageClass
cluster administrators, 93
sample definition, 94
YAML file, 93

SYSCTL, enable unsafe, 178, 179
System users, 170

T
Templates

defined, 188
example, 189–192
installation, 188

Template service broker (TSB), 128, 187
Tuned profile, 227

U
UPI Bare-Metal with PXE Boot

DHCP, 264, 265
DNS configuration

forward DNS record, 257, 258
reference information, 256, 257
reverse DNS record, 258

DNSmasq, 265, 266
load balancer (see Load balancer

configuration)
prerequisites, 255, 256

UPI mode with PXE Boot, installation
Bootstrap node, 272

log in, 273, 274
log message, 275, 276
RHCOS, 273

cluster operators, 278, 279
CSR, 276
ignition files, 269

generation, 271
install-config.yaml configuration,

269, 270
Master node, 274
Network Manager timeout patch,

271, 272
OpenShift console, 279
preparation

ignition files, 267
physical server, 267
RHCOS, download, 268
RHCOS PXE Boot images,

268, 269
routes, 280
worker nodes

Image Registry, 277, 278
PXE Boot menu, 277

User provisioned infrastructure (UPI)
mode, 157

Bare-Metal using PXE Boot, 254
OCP 4.1, 254
reference environment, 255

User types, 169, 170

V, W, X, Y, Z
Virtual groups, 170, 171
Virtual Network ID (VNID), 63
Virtual user, 170, 171
Volumes, 79

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The OpenShift Architecture
	Linux Containers
	Linux Container: Under the Hood
	Container Specifications
	Container Runtime and Kubernetes

	Introduction to OpenShift Architecture Components
	Kubernetes Constructs
	OpenShift Constructs
	Master Nodes
	Infrastructure Nodes
	App Nodes
	OpenShift Consoles
	OpenShift Routers
	OpenShift Registry
	Summary

	Chapter 2: High Availability
	Control Plane and Data Plane
	HA for Control Plane
	HA for ETCD
	RAFT Consensus Algorithm

	HA for Master Services
	HA for OpenShift Consoles
	HA for Logging, Metrics, and Monitoring
	OpenShift Monitoring
	Metrics
	Metrics Server
	Logging

	HA for Data Plane
	HA for OpenShift Router

	HA for Container Registry
	Summary

	Chapter 3: Networking
	East-West Traffic
	OpenShift SDN
	OpenShift ovs-subnet
	OpenShift ovs-multitenant
	OpenShift ovs-networkpolicy

	Flannel
	OpenShift with Third-Party SDN
	OpenShift with Calico SDN

	North-South Traffic
	HAProxy Template Router

	Summary

	Chapter 4: Storage
	OpenShift Storage
	Kubernetes Storage Constructs
	PersistentVolume Status
	Reclaim Policy
	Access Modes

	OpenShift PersistentVolume Plugins
	FlexVolume
	With Master-Initiated Attach/Detach
	Without Master-Initiated Attach/Detach

	CSI
	OpenShift Ephemeral
	OpenShift Container Storage
	OCS Converged Mode
	Raw Disks for OCS Converged Mode

	OCS Independent Mode
	OCS Storage Provisioning

	Storage Classes
	OpenShift with Third-Party Storage
	DriveScale Composable Platform
	HPE 3PAR
	HPE Nimble
	NetApp Trident
	OpenEBS (OSS, MayaData)

	Summary

	Chapter 5: Load Balancers
	Load Balancer Overview
	Load Balancer Considerations
	Considerations for Master Nodes
	Considerations for Infrastructure Nodes
	Considerations for Specialized Protocols

	Summary

	Chapter 6: Deployment Architectures
	Minishift
	OCP 3.11 Deployment Architectures
	Prerequisites
	Operating System—Minimal Installation
	General Requirements for the Cluster
	SDN Subnets
	(Optional) Subnets for Hosting Apps with Non-Web-Based or Specialized Protocols
	Registry Service Account and Token

	Activate and Assign OpenShift Subscriptions
	Prepare OCP 3.11.x Installer on Bastion
	Enable Password-less SSH
	OpenShift Ansible Inventory File
	Defining the OpenShift Release
	Registry Definitions and Access
	Red Hat OpenShift Container Storage
	Web Console Access and Wildcard Apps Domain
	Audit Logs
	Configuring the SDN
	Identity Providers
	Cluster Monitoring (Prometheus)
	Cluster Metrics (EFK Stack) and Logging
	OpenShift Router and OpenShift Container Registry
	OpenShift Service Catalog and Service Brokers
	OpenShift Nodes

	Sample Deployment Scenarios
	Single Node Deployment (All-in-One)
	Non-HA Control Plane Deployment
	Full-HA Control Plane Deployment
	Deploying OpenShift
	Uninstalling OpenShift
	Bastion Node as Admin Jumphost

	OpenShift 4.x Deployments (AWS)
	Prerequisites
	OpenShift 4.x Deployment Architecture
	OCP4 Deployment to AWS (IPI Mode)
	Installing OCP4 on AWS
	Standard Deployment
	Customizing Standard Deployment

	Deployment Progress
	Configuring the Identity Provider

	Summary

	Chapter 7: Administration
	User and Groups
	Virtual Groups and Virtual Users
	Authentication, Authorization, and OpenShift RBAC
	RBAC
	Default Cluster Roles
	Security Context Constraints
	SECCOMP Profiles
	Enabling Unsafe SYSCTL
	Identity Providers

	Managing Users and Groups
	Using Service Accounts

	Quotas and Limit Ranges
	OpenShift Service Catalogs
	OpenShift Templates

	Summary

	Chapter 8: Architecting OpenShift Jenkins Pipelines
	CI/CD Pipelines As a Service with OpenShift
	Jenkins Pipeline Build Strategy
	Creating the Pipeline BuildConfig
	Deploying the Pipeline BuildConfig

	Jenkinsfile with Source Code
	Multiproject Pipelines

	OpenShift Client Plugin
	Custom Jenkins Images
	Integrating External CI/CD Pipelines
	Summary

	Chapter 9: Day-2 Operations
	Managing Leftover Objects
	Garbage Collection
	Node Optimizations
	Node Resource Allocation
	Setting Max Pods Per Node
	Using the Tuned Profile

	Eviction Policy
	Pod Scheduling
	Pod Priority
	Summary

	Chapter 10: Advanced Network Operations
	Network Optimizations
	Jumbo Frames and VXLAN Acceleration
	Tuning Network Devices

	Routing Optimizations
	Route-Specific Optimizations Annotations
	IP Whitelists
	OpenShift Router Sharding

	Supporting Non-HTTP/HTTPS/TLS Applications
	Using IngressIP and ExternalIP
	Using NodePorts and HostPorts

	Multiple NIC per POD
	OpenShift ServiceMesh
	Summary

	Chapter 11: OCP 4.1 UPI Mode Bare-Metal with PXE Boot Deployment
	UPI Mode
	Bare-Metal with PXE Boot Example

	UPI Bare-Metal with PXE Boot
	Prerequisites
	DNS Configuration (Example)
	Load Balancer Configuration (Examples)
	DHCP with PXE Boot Configuration (Example)
	PXE Boot Configuration (Example)

	Preparing the Installation
	Considerations with UPI Mode with PXE Boot
	Downloading RHCOS and Installation Binaries
	Preparing the PXE Boot Images

	Installation
	Creating the Configuration
	Generating the Ignition Files
	Bootstrap and Master Nodes
	Worker Nodes

	Summary

	Index

