
[image: A978-1-4842-4985-7_CoverFigure.jpg]

 William Caban
Architecting and Operating OpenShift ClustersOpenShift for Infrastructure and Operations Teams
[image: A478307_1_En_BookFrontmatter_Figa_HTML.png]

William CabanColumbia, MD, USA

 Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at
 www.​apress.​com/​9781484249840
 . For more detailed information, please visit
 http://​www.​apress.​com/​source-code
 .

					ISBN 978-1-4842-4984-0e-ISBN 978-1-4842-4985-7
https://doi.org/10.1007/978-1-4842-4985-7
© William Caban 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

 To my wife, Maria, who has always supported my constantly traveling job and my urge to drive technical excellence. You are, and always will be, my perfect wife and the supermom to our wonderful children.

 To my son Seth and to my daughter Juliette for their patience with the many days and weekends I had to unplug from everything to stay home writing. Thank you for your understanding and support. You two are the greatest son and the greatest daughter a father can have.

 To my parents, Willie and Annie, without whom none of my success would be possible.

Introduction
The rapid evolution of the Kubernetes platform and the ecosystem around it represents an excellent opportunity to drive modernization inside an organization while defining new operational paradigms.
This book is for the architects and operations teams of those organizations using OpenShift as one of their tools in their transformation. This is for the organization’s hidden heroes that need to have a good understanding of how different elements interact in such a platform to be able to optimize it for their organization’s specific workloads. This is not a book listing all the existing commands for every possible option, but a book explaining how the platform comes together to understand the possible locations in features into where to apply fine-tunings for their optimization.

Acknowledgments

 This book is the result of my quest to find a way to provide additional technical information about
 OpenShift Container Platform (OCP)
 and
 OKD
 to answer the type of questions I see from the operations teams in our customers today. The same questions my former self had many years ago when I started migrating from upstream Kubernetes into a supported Kubernetes distribution.

This book has been possible thanks to the support from a brilliant Red Hat OpenShift-SME community, the Red Hat OpenShift Business Unit, and each one of the product managers and their teams which are the ones that make the OpenShift magic happen. From these, I would like to give a special thank you to Marc Curry, Ben Breard, Brian Harrington, Paul Morie, and William Oliveira. Thank you for the times you took to reply an e-mail or hop in a call to answer my many questions trying to understand the behind-the-scenes plumbing of the many features.
Also, some of the information in this book has been possible thanks to the extended community from which I would like to give a special thank you to Salah Chaou and Alpika Singh (DriveScale Inc.), Christopher Kurka (HPE), and Bin Zhou (Lenovo).

Table of Contents

 Chapter 1:​ The OpenShift Architecture
 1

 Linux Containers
 1

 Linux Container:​ Under the Hood
 2

 Container Specifications
 5

 Container Runtime and Kubernetes
 7

 Introduction to OpenShift Architecture Components
 8

 Kubernetes Constructs
 9

 OpenShift Constructs
 16

 Master Nodes
 17

 Infrastructure Nodes
 20

 App Nodes
 21

 OpenShift Consoles
 22

 OpenShift Routers
 25

 OpenShift Registry
 29

 Summary
 29

 Chapter 2:​ High Availability
 31

 Control Plane and Data Plane
 31

 HA for Control Plane
 32

 HA for ETCD
 32

 HA for Master Services
 36

 HA for OpenShift Consoles
 44

 HA for Logging, Metrics, and Monitoring
 45

 HA for Data Plane
 52

 HA for OpenShift Router
 53

 HA for Container Registry
 53

 Summary
 54

 Chapter 3:​ Networking
 55

 East-West Traffic
 56

 OpenShift SDN
 57

 Flannel
 69

 OpenShift with Third-Party SDN
 71

 North-South Traffic
 73

 HAProxy Template Router
 74

 Summary
 76

 Chapter 4:​ Storage
 77

 OpenShift Storage
 77

 Kubernetes Storage Constructs
 80

 PersistentVolume​ Status
 81

 Reclaim Policy
 82

 Access Modes
 82

 OpenShift PersistentVolume​ Plugins
 83

 FlexVolume
 84

 With Master-Initiated Attach/​Detach
 86

 Without Master-Initiated Attach/​Detach
 86

 CSI
 87

 OpenShift Ephemeral
 88

 OpenShift Container Storage
 89

 OCS Converged Mode
 90

 OCS Independent Mode
 91

 OCS Storage Provisioning
 92

 Storage Classes
 93

 OpenShift with Third-Party Storage
 94

 DriveScale Composable Platform
 95

 HPE 3PAR
 95

 HPE Nimble
 96

 NetApp Trident
 96

 OpenEBS (OSS, MayaData)
 97

 Summary
 98

 Chapter 5:​ Load Balancers
 99

 Load Balancer Overview
 99

 Load Balancer Considerations
 100

 Considerations for Master Nodes
 100

 Considerations for Infrastructure Nodes
 101

 Considerations for Specialized Protocols
 104

 Summary
 108

 Chapter 6:​ Deployment Architectures
 109

 Minishift
 110

 OCP 3.​11 Deployment Architectures
 112

 Prerequisites
 112

 Activate and Assign OpenShift Subscriptions
 116

 Prepare OCP 3.​11.​x Installer on Bastion
 117

 Enable Password-less SSH
 117

 OpenShift Ansible Inventory File
 117

 Sample Deployment Scenarios
 130

 Single Node Deployment (All-in-One)
 131

 Non-HA Control Plane Deployment
 140

 Full-HA Control Plane Deployment
 142

 Deploying OpenShift
 154

 Uninstalling OpenShift
 154

 Bastion Node as Admin Jumphost
 155

 OpenShift 4.​x Deployments (AWS)
 156

 Prerequisites
 156

 OpenShift 4.​x Deployment Architecture
 157

 OCP4 Deployment to AWS (IPI Mode)
 157

 Installing OCP4 on AWS
 159

 Deployment Progress
 162

 Configuring the Identity Provider
 164

 Summary
 167

 Chapter 7:​ Administration
 169

 User and Groups
 169

 Virtual Groups and Virtual Users
 170

 Authentication, Authorization, and OpenShift RBAC
 171

 RBAC
 172

 Default Cluster Roles
 173

 Security Context Constraints
 174

 SECCOMP Profiles
 177

 Enabling Unsafe SYSCTL
 178

 Identity Providers
 179

 Managing Users and Groups
 181

 Using Service Accounts
 182

 Quotas and Limit Ranges
 184

 OpenShift Service Catalogs
 187

 OpenShift Templates
 188

 Summary
 193

 Chapter 8:​ Architecting OpenShift Jenkins Pipelines
 195

 CI/​CD Pipelines As a Service with OpenShift
 195

 Jenkins Pipeline Build Strategy
 197

 Creating the Pipeline BuildConfig
 199

 Deploying the Pipeline BuildConfig
 202

 Jenkinsfile with Source Code
 208

 Multiproject Pipelines
 210

 OpenShift Client Plugin
 218

 Custom Jenkins Images
 218

 Integrating External CI/​CD Pipelines
 220

 Summary
 220

 Chapter 9:​ Day-2 Operations
 221

 Managing Leftover Objects
 221

 Garbage Collection
 224

 Node Optimizations
 225

 Node Resource Allocation
 225

 Setting Max Pods Per Node
 226

 Using the Tuned Profile
 227

 Eviction Policy
 228

 Pod Scheduling
 229

 Pod Priority
 230

 Summary
 231

 Chapter 10:​ Advanced Network Operations
 233

 Network Optimizations
 233

 Jumbo Frames and VXLAN Acceleration
 233

 Tuning Network Devices
 235

 Routing Optimizations
 236

 Route-Specific Optimizations Annotations
 237

 IP Whitelists
 238

 OpenShift Router Sharding
 238

 Supporting Non-HTTP/​HTTPS/​TLS Applications
 239

 Using IngressIP and ExternalIP
 240

 Using NodePorts and HostPorts
 243

 Multiple NIC per POD
 244

 OpenShift ServiceMesh
 246

 Summary
 250

 Chapter 11:​ OCP 4.​1 UPI Mode Bare-Metal with PXE Boot Deployment
 253

 UPI Mode
 253

 Bare-Metal with PXE Boot Example
 254

 UPI Bare-Metal with PXE Boot
 255

 Prerequisites
 255

 Preparing the Installation
 266

 Considerations with UPI Mode with PXE Boot
 267

 Downloading RHCOS and Installation Binaries
 268

 Preparing the PXE Boot Images
 268

 Installation
 269

 Creating the Configuration
 270

 Generating the Ignition Files
 271

 Bootstrap and Master Nodes
 272

 Worker Nodes
 276

 Summary
 280

 Index
 281

About the Author and About the Technical Reviewer

About the Author

William Caban[image: A478307_1_En_BookFrontmatter_Figb_HTML.jpg]

has more than 25 years of experience in IT and has been consulting and designing large-scale datacenter solutions in multiple vertical markets. He has worked for diverse customers ranging from financial institutions, healthcare institutions, and service providers. His personal motto is “Changing the world one ‘bit’ at a time.” He has written several courses and training guides in the past. This is his first book with Apress.

About the Technical Reviewer

James Cryer[image: A478307_1_En_BookFrontmatter_Figc_HTML.jpg]

is a Lead Principal Engineer with over 8 years of experience working with Cloud-native solutions on AWS, GCP, and Azure. James has a passion for architecting and developing highly available, fault-tolerant, and secure systems. James’ experience is broad; he has worked in a variety of sectors with companies such as the BBC, Investec Asset Management, and, more recently, Sophos. When away from his laptop, James loves to travel with his wife and child, get outdoors, and read.

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_1

1. The OpenShift Architecture

William Caban1
(1)Columbia, MD, USA

To properly architect an OpenShift cluster, we need to understand the different components of the platform, their roles, and how they interact with each other. This base knowledge is important to be able to fine-tune OpenShift cluster design to your organization’s need beyond what is covered in this book.
Before going into each main component of OpenShift, it is important to understand how it relates to Linux Containers and Kubernetes.
Linux Containers
Nowadays, when we see the term Linux Containers, it is easy to think it only refers to Docker, but that is not the case. The term
 Linux Containers

 denotes a group of technologies used to package and isolate applications, their dependencies, and their runtimes, in a portable way so it can be moved between environments while retaining full functionality.
A source of confusion is because the term Docker refers to various elements of a technology that popularized the Linux Containers.
First, there is Docker Inc., the name of the company that popularized the Linux Containers technology with the Docker platform. The Docker platform was originally built as a series of enhancements on top of the LXC technology to bring better isolation and portability to the containers.
Second, there is
 Docker Daemon

 which is the daemon or service that serves the Docker API, handles the API requests, and manages images, containers, networks, and volumes.
Finally, there are Images and Containers respectively referred to as the Docker Images and Docker Containers. The Image is the read-only template containing the application, the application dependencies, and the required runtime environment. All this packaged in a standard format used by the
 Docker Daemon

 . The Container refers to a runnable instance of an Image.
As it can be seen in Figure 1-1, Docker is a client-server application to build and run containers following a standardized container format. The docker client is the tool used to interact with the docker server over the API exposed by the Docker Daemon.[image: A478307_1_En_1_Fig1_HTML.jpg]
Figure 1-1The Docker client-server architecture

Note
The terms Docker Daemon and Docker Engine are used interchangeably to refer to the docker server.

Linux Container: Under the Hood
Beyond the conceptual definitions of containers as an artifact containing an application and all its dependencies, or as an artifact that is built once and deployed “anywhere,” what is a Linux Container?
To understand containers and how they work, we must explore some important building blocks at the Linux Kernel: namespaces and cgroups.
Linux
 namespaces

 provide process isolation. There are seven1 kinds of Kernel namespaces:	Mount: The mount namespace isolates the set of filesystem mount points. This enables the creation of different views of the filesystem hierarchy or making certain mount points read-only for processes in different mount namespaces.

	UTC: This namespace enables for each container to have its own hostname and NIS domain name.

	IPC: This isolates interprocess communication (IPC) resources between namespaces. This enables more than one container to create shared memory segments and semaphores with the same name but is not able to interact with other containers’ memory segments or shared memory.

	PID: Each process receives PID namespace provided. The container only sees the processes within the container and not any processes on the host or other containers.

	Network: This allows the container to only communicate with internal or external networks. This provides a loopback interface as the initial network interface. Additional physical or virtual network interfaces can be added to the namespace. Each namespace maintains a set of IP addresses and its own routing table.

	User: This isolates the user IDs between namespaces providing privilege isolation and user ID segregation.

	Control Group (cgroup) (the namespace): This virtualizes the view of cgroups for a set of processes enabling better confinement of containerized processes.

The namespaces are Kernel-level capabilities. As such, each namespace has visibility about all the host capabilities and system resources. Namespaces isolate system resources by providing an abstraction layer for the processes inside the namespaces. It does this by creating a view where it appears as the processes have the global resources.
A way to think about
 namespaces

 is going back to our science fiction world of parallel universes. Each namespace is a parallel reality or a parallel universe inside the universe represented by the host. These parallel universes do not know of the existence of any other universe and cannot interfere with them.
Now, if each namespace has a full view of the host system resources, by default, it could assume it can consume all the resources it detects, for example, all the memory and all the CPU resources. To limit the access to the system resources is the functionality of the next building block: Control Groups or cgroups.
Control Groups (cgroups), the Kernel feature, are used for limiting, accounting, and controlling resources (i.e., memory, CPU, I/O, check pointing) of a collection of processes. A container is a collection of processes under a PID namespace. To control and limit resources for a container, we use cgroups.
Bringing all these concepts together, we can visualize containers as illustrated in Figure 1-2.[image: A478307_1_En_1_Fig2_HTML.jpg]
Figure 1-2Linux namespaces and Containers

To explain the details of Figure 1-2, follow the numbers from the illustration with the numbers of this list:	1.Each Container has a unique PID namespace running its group of process. Inside the Container, the first process is seen as PID 1. From the host perspective, the Container PID is a regular process ID.

	2.The Namespaces exist at the Kernel level. Namespaces provide the isolation for the system resource but are part of the same Kernel.

	3.Control Groups or cgroups, the feature, are used to limit the access to system resources by a group of processes.

	4.In addition to the PID namespace, Containers will have other dedicated namespaces which provide their view of system resources or they can use the default namespace which is shared with the host.

Container Specifications
As can be seen from the previous section, from the technical perspective, in its core, Linux containers are a group of Linux processes existing in namespaces using cgroups to control and limit the access to system resources.
The core building blocks for Linux Containers are simple but powerful. Following the popularity of Docker containers, the industry recognized the need for a set of specifications (Figure 1-3) supported by open communities to maintain compatibility while enabling innovation and creation of solutions on top of the capabilities provided by Linux Containers.[image: A478307_1_En_1_Fig3_HTML.jpg]
Figure 1-3The Container specifications

Today, the widely recognized container specifications are	1.
 Open Container Initiative (OCI)

 : The OCI specification defines a standard container format. This is what is usually referred as the Docker format (Figure 1-4).

[image: A478307_1_En_1_Fig4_HTML.jpg]
Figure 1-4The OCI-compliant container image

Note
Demystifying containers—An OCI-compliant image, or an image following the Docker format, can be seen as a TAR file of a filesystem layout containing the application binaries, its dependencies, and some XML formatted files with metadata describing the container namespaces. A container with multiple layers is a TAR file of TAR files, each representing a particular layer of the container.

 	2.
 Container Storage Interface (CSI)

 : The CSI specification describes a standardized interface to present storage resources to a container. Prior to this specification, each storage vendor had to create, certify, and maintain their own storage plugin for every container solution. With CSI, vendors maintain a single plugin which can be used by any container solution supporting the specification.

	3.
 Container Network Interface (CNI)

 : The CNI specification standardizes an interface to provide networking services to containers. This helped in reducing the proliferation of networking plugins which were incompatible among themselves.

Container Runtime and Kubernetes
The creation of the OCI specification also provided the freedom to replace the container runtime beyond the Docker Daemon. A container runtime only needs to understand the OCI format to be able to run the container.
Traditionally, by default, container runtime like the Docker Daemon handles containers in a single host. Over time, some of these tools evolved into fat daemons or services trying to include container orchestration and to solve and handle too many things (resource consumptions, scheduling, control, etc.).
Note
For the remaining of this book, we use the term Linux Container, Containers, and Container Images to refer to a Linux Container following the OCI specification.

With Kubernetes, Google provided a way to orchestrate, manage, and operate containers at scale across thousands of nodes. Kubernetes abstracted the management of individual containers with the notion of managing Pods and Services. Kubernetes, as the container orchestration platform, requires minimal actions to be handled by the container runtimes: create Pod, start Pod, stop Pod, and remove Pod.
With this new understanding, the Kubernetes community explored ways to replace traditional fat daemons with purpose built container runtimes. The community defined the
 Container Runtime Interface (CRI)

 . CRI2 provides a specification for integrating container runtimes with the kubelet service at each Kubernetes worker node. Since then, there has been a proliferation of CRI-compliant container runtimes for Kubernetes optimizing for speed, isolation, and breaking dependencies to a runtime daemon. Among these new options, we can find containerd, Kata Containers, and CRI-O.
Note
OpenShift 3.x supports the Docker Daemon as the default container runtime. Starting with OpenShift 3.10, it also supports CRI-O as the container runtime. With OpenShift 4.0, CRI-O will be the default container runtime.

Introduction to OpenShift Architecture Components
OpenShift is built on top of Kubernetes. While Kubernetes provides the container orchestration capabilities, Pod resiliency, Services definitions, and Deployment constructs to describe the desire state of a microservice-based application, there are many other components required to make it work. For example, Kubernetes does not provide a default Software-Defined Networking (SDN)

 or a default method to steer traffic into the applications running on Kubernetes clusters. It is up to the cluster admin to bring additional tools and projects to operate and manage the Kubernetes cluster and any application running on it. For the developers it also means they need to learn a new CLI or YAML specification to be able to deploy and test their applications. For the security teams, it means figuring out ways to map the organization’s policies into new constructs and identifying additional projects to enforce additional ones not provided by the default capabilities of Kubernetes.
These additional capabilities are part of what is provided out of the box with OpenShift Container Platform or OKD (the upstream community project) (see Figure 1-5). In fact, at the time of this writing, OpenShift is a Kubernetes superset combining over 200 open source projects into a fully integrated solution with strong focus on a developer experience, operational capabilities, monitoring, and management with strong and secure defaults. All these while being pluggable so platform admins can replace out of the box components and services with their own. For example, using third-party SDN to provide the networking capabilities or third-party storage solutions to provide persistent storage for the applications running in the environment.[image: A478307_1_En_1_Fig5_HTML.jpg]
Figure 1-5OpenShift Container Platform (OCP) vs. OKD (formerly OpenShift Origin)

Note
In this book the term OpenShift is used to denote both the OpenShift Container Platform (OCP)

 , which is the Red Hat–supported product, and OKD, the upstream community project. Unless otherwise specified, everything in this book applies to OCP and OKD.

Kubernetes Constructs
Having Kubernetes as its foundation, OpenShift inherits all the base constructs for the Containers’ orchestration from Kubernetes and, in addition, extends them. A great deal of these extensions come from adding the capabilities or functionalities that are not part of the base of Kubernetes but that are required to successfully operate the platform. Other extensions come from enforcing prescriptive best practices designed to comply with the stability and regulations required on enterprise environments (i.e., RBAC, CI/CD Pipelines, etc.).
Some of the important Kubernetes constructs inherited by OpenShift (not an exhaustive list) are	
 Pods

 : A
 Pod

 is a group of one or more tightly coupled Containers sharing a set of Linux namespaces and cgroups (Figure 1-6). Among those, the Containers inside the Pod share the same Mount and Network namespace (i.e., same IP address and TCP/UDP ports) (see per-Pod IP addresses in Figure 1-6). Within a Pod each Container may have further sub-isolations (i.e., different UTC namespaces). Pods communicate with each other using localhost.[image: A478307_1_En_1_Fig6_HTML.jpg]
Figure 1-6Example of Pod configurations

	Services: A Service

 is a Kubernetes object that maps one or more incoming ports to targetPorts at a selected set of target of Pods. These represent a microservice or an application running on the cluster. The Services are discoverable by Pods running on the cluster. Generally, Pods interact with other applications or microservice on the cluster through the Service object (Figure 1-7).[image: A478307_1_En_1_Fig7_HTML.jpg]
Figure 1-7The Kubernetes Service object abstracts one or more Pods running an application or microservice

	
 ReplicationController (RC)

 : The ReplicationController (the object) ensures the requested number of Pods are running at any given time. If there are too many Pods, the ReplicationController terminates any number of Pods in excess of the specified amount. If there are too few, the ReplicationController starts additional Pods until the specified amount. In case of a Pod failure, or if Pods are deleted or terminated, the ReplicationController takes care of re-creating the failed, deleted, or terminated Pods to match the requested number of Pods.

	ReplicaSets: The ReplicaSets are considered the next generation of ReplicationControllers. From the high-level perspective, ReplicaSets provide the same functionalities as the ReplicationControllers with the difference being these are intended to be managed by Deployments.

	Deployment (the object): The Deployment object is a declarative configuration describing the desired state, quantity, and version of Pods to deploy. The Deployment controller defines a ReplicaSet that creates new Pods or executes a rolling upgrade with the new version of the Pods. The Deployment Controller changes and maintains the state of the Pod and ReplicaSet to match the desire state (Figure 1-8).[image: A478307_1_En_1_Fig8_HTML.jpg]
Figure 1-8Deployment and ReplicaSet

	The steps illustrated by the pseudocode in Figure 1-8 are as follows:	1.The Deployment object creates a ReplicaSet with the information of the desired state.

	2.The ReplicaSet deploys the requested version and total number of Pods.

	3.In case of Pod failure (i.e., because of node failure), the total number of Pods will be less than the desired amount.

	4.The ReplicaSet will deploy additional Pods until the number of desired replicas specified by the Deployment.

	Volumes: The Volumes provide persistent storage for the Containers inside a Pod. Data in a Volume is preserved across Container restarts. Volumes outlive Containers and remain in existence for the lifetime of a Pod.

	PersistentVolume (PV): The PersistentVolume represents the actual storage resource provisioned for the cluster. PVs are Volume plugins with a lifecycle independent of any Pod that uses the PV.

	
 PersistentVolumeClaim (PVC)

 : The PersistentVolumeClaim is the storage request for the PV storage resources. A PVC is bind to a PV matching the requested storage characteristics and access mode. Refer to Figure 1-9.[image: A478307_1_En_1_Fig9_HTML.jpg]
Figure 1-9Relationship between Volume, PersistentVolumeClaim, and PersistentVolume

The Kubernetes architecture is comprised of the following core elements (not an exhaustive list):	Master Nodes: The master nodes are the nodes hosting core elements of the control plane like (not an exhaustive list) the kube-api-server, kube-scheduler, kube-controller-manager, and in many instances the etcd database.	kube-api-server: This component is what is commonly referred as the Kubernetes API. This is the frontend API to the control plane of the Kubernetes cluster.

	kube-scheduler: This component takes care of handling the scheduling of Pods into nodes, taking into account resource requirements, policy constraints, affinity or anti-affinity rules, and other filters.

	kube-controller-manager: This component runs multiple controller services at the master. Among these controllers, we can find (not an exhaustive list)	Node Controller: This controller is responsible for detecting node failures and triggering the appropriate response.

	Replication Controller (the controller): This controller is responsible for ensuring the correct number of Pods are running as requested by a replication controller (the object) in the system.

	Endpoints Controller: This manages the Endpoint objects by associating the correct Services and Pods.

	etcd: This component is a key-value store database used extensively by Kubernetes to store configuration data of the cluster representing the state of the cluster (i.e., nodes, pods state, etc.) as well as for service discovery, among other things.

	Worker Nodes: The worker nodes (formerly known as minions) host elements like the kubelet, kube-proxy, and the container runtime.	kubelet: Also known as the node agent, is the Kubernetes agent that runs on each node. The kubelet ensures containers are started and continue to run as specified by the container manifest (a YAML file describing a Pod) and updates the node accordingly.

	kube-proxy: A simple Kubernetes network proxy agent running on each node. The kube-proxy abstracts network services defined on the host, forwards traffic to the appropriate Service, and provides traffic load balancing. It does this by managing iptables rules of the host.

	A Container Runtime: Any CRI-compliant runtime capable of running OCI-compliant Containers (i.e., Docker Daemon, CRI-O, containerd, etc.).

	Ancillary Services: Services required for the proper operation of the Kubernetes cluster but that are not technically considered to be part of the Kubernetes components. These services may be running as part of the Master Nodes, Worker Nodes, or dedicated Nodes, or even be services external to the cluster. Among these services, we can find DNS (i.e., SkyDNS or KubeDNS), Web UI Dashboards, container resource monitoring services, and cluster-level monitoring and logging services.

Figure 1-10 illustrates how all these elements integrate and interact to form the Kubernetes architecture.[image: A478307_1_En_1_Fig10_HTML.jpg]
Figure 1-10The elements of the Kubernetes architecture

OpenShift Constructs
The OpenShift architecture builds on top of Kubernetes and is comprised of three types of nodes:	Master Nodes: These nodes are Kubernetes Master Nodes which may be providing additional functionalities like the web console with the self-service portal as well as the developers and operations-focused dashboards.

	Infrastructure Nodes: These are Kubernetes Worker Nodes dedicated to host functionalities like the OpenShift Routes and the OpenShift internal registry.

	App Nodes or Nodes: These are the Kubernetes Worker Nodes used to run the microservices and containerized applications deployed on OpenShift.

Note
The App Nodes are also referred to just as Nodes and you will find them as such in some documentation. To avoid confusion, the book uses App Nodes.

As a superset of Kubernetes, within these nodes, beyond the Kubernetes elements, there can be multiple integrated components from other Open Source projects that work together to augment Kubernetes features and capabilities and form the OpenShift Container Platform. A special focus of this integration is toward the ease of use for developers and application owners.
A high-level view of the OpenShift node types is shown in Figure 1-11, and more details are going to be covered in subsequent sections.[image: A478307_1_En_1_Fig11_HTML.jpg]
Figure 1-11The OpenShift node types

Master Nodes
The Master Nodes are the main control elements of the OpenShift control plane. These are Kubernetes Master Nodes and they provide the services expected from any Kubernetes Master and additionally provide a series of functionalities built on top of Kubernetes which create OpenShift. See Figure 1-12 for reference.[image: A478307_1_En_1_Fig12_HTML.jpg]
Figure 1-12OpenShift Master Node details

From Figure 1-12 we can see the Kubernetes Master Node elements are present in the OpenShift Master Nodes. The actual list of these will be dependent on the services enabled for the cluster as many are optional services.	Kubernetes DNS: The OpenShift 3.x releases are using SkyDNS as part of Kube-DNS. As of the writing of this book, this is transitioning to CoreDNS. By default, this DNS service listens on port 8053.

	OpenShift Web Console: This is the microservice providing the self-service portal or developer console.

	OpenShift Console: This is the microservice providing the operations console (former Tectonic console).

	Registry Console: This is the microservice providing a basic web UI to interact with the internal container registry.

	Additional APIs and Consoles: Many optional cluster services have their own API interfaces and web frontends. These APIs and frontends are provided as containers which, by default, will be hosted in the Master Nodes. Some examples are Template Service Brokers and the OpenShift Container Storage (glusterfs).

In addition, in Figure 1-12 we can see a partial list of services that may be present in every OpenShift Node. Their presence depends on the services enabled for the cluster. Let’s go into the details of some of them (the actual service names may have slightly variations from the containers or Pods name):	Fluentd: The Fluentd service runs in every node. It aggregates logs from the host Node, including logs from Pods and Projects, and sends them to the Elasticsearch (ES) database running on the Infrastructure Nodes.

	node-exporter and kube-state-metrics: These services are part of the OpenShift cluster monitoring solution based on Prometheus. The node-exporter3 agent collects node hardware and OS metrics and makes them available for Prometheus. The kube-state-metrics agent converts metrics from Kubernetes objects (i.e., from the kubelet) into metrics consumable by Prometheus.

	node-problem-detector: This is a service that runs in each node to detect multiple problems4 on the node and reports them to the API Server.

	dnsmasq: As part of the Kube-DNS service, this service is automatically configured on all nodes. Pods use the node hosting them as their default DNS. When receiving a name resolution request, dnsmasq will send the query to the Kubernetes DNS at the Master Nodes, and if not a resolution, it will try recursive DNS to the upstream DNS server originally configured on the node.

Note
Every node is running dnsmasq listening on port 53. For this reason, nodes cannot run any other type of DNS application.

 	openshift-sdn: This consists of a series of privileged containers providing the Software-Defined Network (SDN) of the OpenShift cluster using Open vSwitch (OVS).

Infrastructure Nodes
These are dedicated Kubernetes Worker Nodes

 hosting important elements for the proper operation of the OpenShift Cluster. Among these, we have the Container Registry and the OpenShift Router. Figure 1-13 illustrates some additional services running on the Infrastructure Nodes.[image: A478307_1_En_1_Fig13_HTML.jpg]
Figure 1-13OpenShift Infrastructure Node details

From the diagram in Figure 1-13, we can deduce on Infrastructure Nodes there are some services which seem to overlap in functionalities. This is the case with services like Hawkular, Cassandra, and Heapster which are being deprecated in OpenShift 3.11 and being replaced by the Prometheus-based monitoring solution which is deployed and managed by the Prometheus Operator.
As with the Master Nodes, the exact list of services running on the Infrastructure Nodes is completely dependent on the services enabled for the cluster. Out of the services shown in the illustration, only few deserve mention at this point:	
 OpenShift Container Registry (OCR)

 : The OpenShift Container Registry is a containerized Docker Registry service used internally by the cluster. Additional details are covered in the corresponding section.

	OpenShift Router: The OpenShift Router is used to expose a Kubernetes Service to external clients by a FQDN. Additional details are covered in the corresponding section.

	Elasticsearch (ES) and Kibana: Elasticsearch is used to collect all the logs sent by the Fluentd service running in every node. The Kibana Web UI is used to interact with the data and create visualization and dashboards of the aggregated data.

	Prometheus, Grafana, and the Prometheus Operator: These are the components of the new OpenShift Monitoring and Metrics solution. These are used to collect information about the health of the cluster and all the services and components running on it. The Grafana Web UI is used to create dashboards visualizing the status of the elements being monitored.

App Nodes
The OpenShift App Nodes, or simply OpenShift Nodes, are Kubernetes Worker Nodes dedicated to running the workloads deployed to an OpenShift cluster. These include applications, microservices, or containerized applications.
As it can be seen in Figure 1-14, the OpenShift App Nodes are dedicated to running the applications deployed on the OpenShift cluster. Beyond the elements of the Kubernetes Nodes, it contains the common OpenShift Services to provide the network connectivity for the Pods, the DNS resolution, node monitoring, and log aggregation.[image: A478307_1_En_1_Fig14_HTML.jpg]
Figure 1-14OpenShift App Node details

OpenShift Consoles
OpenShift provides developer-centric consoles and operations-centric consoles. The first console a user of the platforms receives is the Service Catalog console (see Figure 1-15) which contains the self-service catalog of pre-approved container images and templates (see #2 of Figure 1-15) available for the particular user. These catalogs can be cluster-wide catalogs or project-specific catalogs. From this initial console, the user can choose from a drop-down menu (see #1 of Figure 1-15) to switch to the operations Cluster Console.[image: A478307_1_En_1_Fig15_HTML.jpg]
Figure 1-15The OpenShift self-service portal also known as the developer console

The
 Cluster Console

 (Figure 1-16), sometimes referred to as the Cluster Administrator Console, provides access to cluster operations and functions. At first glance it provides a cluster health and status view (see #1 and #2 of Figure 1-16).[image: A478307_1_En_1_Fig16_HTML.jpg]
Figure 1-16The OpenShift Cluster Console also known as the cluster admin console

For users with deep understanding of the Kubernetes, this console also exposes the Kubernetes objects with a more traditional Container as a Service (CaaS) experience (see #1 of Figure 1-17). From here, a cluster admin has an aggregated view into the Kubernetes and OpenShift objects like Namespaces, Pods, Deployments, Secrets, Deployment Configs, and ConfigMaps.[image: A478307_1_En_1_Fig17_HTML.jpg]
Figure 1-17The OpenShift Cluster Console managing subscriptions to Kubernetes Operators

In addition, the Cluster Console provides a graphical interface for interacting with Kubernetes Operators (see #2 of Figure 1-17).

OpenShift Routers
Steering traffic to applications running on a Kubernetes cluster, until this day with Kubernetes 1.13, it is still highly dependent on where the Kubernetes cluster is running (i.e., on-premise vs. at a Cloud provider). When using a Kubernetes offering from a Cloud provider, they will provide a network service that maps to the LoadBalancer object in Kubernetes. Those load balancers provided by the Cloud infrastructure are what is used to steer traffic to the Service objects or Pods in the cluster.
Outside these options, it is up to the cluster operator to combine Kubernetes constructs with third-party solutions or other Open Source projects to bring the traffic into the cluster. Until now, the options are limited to NodePort, HostPort, and Ingress with an Ingress Controllers. The particular implementation details for each one of these objects are beyond the scope of this book, but it’s worth having a general overview of these concepts to properly understand the OpenShift Router. Figure 1-18 showcases the main difference between using OpenShift Routes or Kubernetes Ingress and using NodePorts or HostPorts to steer traffic into the cluster.[image: A478307_1_En_1_Fig18_HTML.jpg]
Figure 1-18OpenShift Routes, Kubernetes Ingress, NodePorts, and HostPorts

Note
OpenShift supports OpenShift Routes and the native Kubernetes Ingress, NodePort, and HostPort resources.

The main difference to keep in mind is that when using NodePorts5 or HostPorts,6 the user is responsible for the configuration and updates to the configuration of the external load balancer or proxy used to steer the traffic toward all the Nodes or subset of Nodes when using HostPorts.
The OpenShift Router and the OpenShift Routes are a predecessor of the Ingress Controller and the Ingress object. Even when Ingress and Ingress Controllers are still available since Kubernetes 1.1, they are still considered Beta in Kubernetes 1.13.7 There is still no feature parity between Routes8 and Ingress objects as it can be seen from Table 1-1.Table 1-1OpenShift Routes vs. Kubernetes Ingress9

	Feature
	Ingress
	Route

	Standard Kubernetes object
	X
	
	External access to services
	X
	X

	Persistent (sticky) sessions
	X
	X

	Load-balancing strategies
	X
	X

	Rate-limit and throttling
	X
	X

	IP whitelisting
	X
	X

	TLS edge termination
	X
	X

	TLS re-encryption
	 	X

	TLS passthrough
	 	X

	Multiple weighted backends (split traffic)
	 	X

	Pattern-based hostname
	 	X

	Wildcard domains
	 	X

When using the Ingress object in OpenShift, internally, the Ingress Controller creates one or more Route objects to satisfy the conditions specified by the Ingress configuration file. Listing 1-1 represents the Ingress configuration file, and Listing 1-2 is the resulting Route configuration.kind: Ingress
apiVersion: extensions/v1beta1
metadata:
 name: example
spec:
 rules:
 - host: example.com
 http:
 paths:
 - path: /example
 backend:
 serviceName: example-svc
 servicePort: 80

Listing 1-1Define an Ingress object for example.com

kind: Route
apiVersion: route.openshift.io/v1
metadata:
 # Note: The Route name is auto generated by route object
 # using the Ingress name as prefix
 name: example-a24dc
 ownerReferences:
 - apiVersion: extensions/v1beta1

 kind: Ingress
 name: example
 controller: true
spec:
 host: example.com
 path: /example
 to:
 name: example-svc
 port:
 targetPort: 80

Listing 1-2Resulting Route object for example.com

OpenShift Registry
One of the ancillary services required by Kubernetes is a container registry where the OCI-compliant container runtime can pull the container images. OpenShift provides an integrated container registry known as the
 OpenShift Container Registry (OCR)

 . This is not a replacement to the organization’s enterprise container registries. The purpose of the OCR is to provide a built-in location to store images that are deployed into the cluster or images build by the cluster using the native build strategies10 like Source-to-Image (S2I).11
The OpenShift Container Registry is hosted on the Infrastructure Nodes (refer to Figure 1-13). Among the additional capabilities available with the OCR is the ability to trigger redeployments if a new version of the container image becomes available in the registry.

Summary
In this chapter we provided a map between the Kubernetes architecture and constructs and the OpenShift architecture. We saw how OpenShift is built on top of the Kubernetes primitives and then augment its capabilities by integrating additional Open Source projects. The result is an integrated multitenant Kubernetes platform which enables developers to deploy applications into a Kubernetes cluster without understanding or learning the specifics of Kubernetes while providing the operations teams the ability to manage Kubernetes with a low learning curve. All of this while being a pluggable architecture in which any of the components can be swapped by other projects or software providing the specific capabilities.
Chapter 2 goes into the details on how high availability is achieved for the OpenShift platform and in each one of the core components.

Footnotes
1In some documentation, you may find a statement about the existence of six namespaces, and in other documentations, you will find seven namespaces listed. Those lists do not count the cgroup namespace which virtualizes the cgroup capabilities as a namespace. For details about the namespace vs. the capability, refer to the Linux man page cgroup_namespaces, the Linux man page for cgroups, and the Linux man page for namespaces.

2The CRI specification defines four actions: CreatePod, StartPod, StopPod, and RemovePod.

3For more details, visit
 https://github.com/prometheus/node_exporter

4For more details, visit
 https://github.com/kubernetes/node-problem-detector

5When using NodePorts, the requested or dynamically assigned port is allocated in all the nodes of the particular cluster. Additional details are available at
 https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

6In general the use of HostPort is discouraged. Acceptable use cases are DaemonSets or some networking services. Upstream HostPort documentation is scarce, but functionality is similar to NodePorts but for a subset of Nodes.

7Kubernetes Ingress feature state:
 https://kubernetes.io/docs/concepts/services-networking/ingress/#prerequisites

8OpenShift Routes:
 https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html

9Reference
 https://blog.openshift.com/kubernetes-ingress-vs-openshift-route/

10For information about build strategies, visit
 https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html

11Source-to-Image (S2I) is an Open Source project (
 https://github.com/openshift/source-to-image
) to create container images from source code. For information on how to use S2I in OpenShift, refer to
 https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_2

2. High Availability

William Caban1
(1)Columbia, MD, USA

As we saw from Chapter 1, OpenShift Container Platform is comprised of multiple elements build on top of Kubernetes. When designing production environments, we should understand the high availability (HA) built into the different elements of the platform. Each one of the HA elements can be scaled independently.
The desired level of HA for each platform element and how a cluster will be scaled out over time may have a direct influence in the initial design considerations.
In this chapter, we will cover the HA configurations, what may be considered the most relevant elements of the OCP architecture, but the reader should keep in mind there might be many other components which are not covered here.
Control Plane and Data Plane
From the OpenShift and Kubernetes perspective, there is a clear definition of the Control Plane, but, when it comes to the Data Plane, it is loosely defined and its definition is normally based on the context it is being used. To avoid confusion, this is the way we use the terms here:	OpenShift Control Plane

 : The OCP Control Plane is comprised of the Kubernetes Control Plane1 (Kubernetes Master2 and the kubelet process in each node). For the purpose of this book, we are considering the OpenShift consoles, logging, metrics, and cluster monitoring services as part of this plane.

	OpenShift Data Plane: The term OCP Data Plane, even when not officially defined in the OKD and OCP documentation, is normally used to describe the traffic forwarding plane of the SDN layer.

Note
The terms Control Plane, Management Plane, and Data Plane have a clear separation of concerns when used in computing, networking, and telecommunications systems. There is no direct mapping of the Kubernetes constructs into these concepts. Kubernetes, as a project, does not provide a clear separation of concerns between the functions that would normally go into the Control Plane and those that go into the Management Plane. When considering the OpenShift architecture, we could clearly map OpenShift components for each one of these planes. For example, the OpenShift Cluster Console is what would normally be considered part of the Management Plane. Unfortunately, for those of us used to architecting solutions with these differentiations, the terms Management Plane and Data Plane have not been officially adopted by the OKD and OpenShift community.

HA for Control Plane
The elements of the OpenShift Control Plane are protected in different ways, and as such, to achieve high availability differs for each one.
HA for ETCD
The etcd database is one of the critical components of the Kubernetes. It is used to store status and details of the Kubernetes objects, store information and status of the Nodes, scheduler results, and much more.
From the technical point of view, etcd is a distributed key-value store using the RAFT consensus algorithm.
Because of the consensus required by the RAFT algorithm (see details in section “RAFT Consensus Algorithm”), the etcd service must be deployed in odd numbers to maintain quorum. For this reason, the minimum number of etcd instances for production environments is three.
Note
Using one instance is considered a testing or demo environment as it is a single point of failure.

From the operational aspects of etcd, the etcd service is considered an active-active cluster. Meaning, an etcd Client can write to any of the etcd nodes and the cluster will replicate the data and maintain consistency of the data across the instances.
Failures of the etcd database can be classified under one of the following scenarios:	1.Losing the etcd Leader or losing less than (N-1)/2 nodes of an N size etcd cluster: These are considered temporary failures from which the cluster recovers automatically.

	2.Losing etcd quorum: This failure happens when the cluster loses more than (N-1)/2 nodes of the etcd cluster. This is a major failure as once the quorum is lost, the cluster is incapable of reaching consensus and cannot accept any additional update. When this failure happens, applications already running on OCP are unaffected. However, the platform functionality is limited to read-only operations. Under this failure scenario, it is not possible to take actions such as scaling an application up or down, changing deployment objects, and running or modifying builds.

	3.Losing the data of etcd cluster: Losing the data from the etcd cluster will render the Kubernetes and OCP cluster unusable. The only way to recover from this failure scenario is by restoring the etcd data from backup.

From the deployment aspect, the etcd service can be colocated in the Master Nodes with other master services. It is a common practice to colocate the etcd service in the Master Nodes. In this case, a minimum of three Master nodes is required. The minimum of three Masters is because the etcd deployment must guarantee quorum so the etcd RAFT protocol can reach consensus in the case of a Node failure.
Note
Up to OpenShift 3.11, there is the option to have external dedicated etcd Nodes. Starting with OpenShift 4.0, the etcd service will always be on the cluster.

From the implementation perspective, in OpenShift 3.11 the etcd instances are deployed as a series of privileged Pods running in the kube-system project3 or namespace.4 Additional details are covered in “HA for Masters Services” section.
RAFT Consensus Algorithm
The basis of the RAFT algorithm states that for any action (add, remove, update, etc.) to be accepted, there needs to be quorum. Quorum is decided by having a number of voting members greater than 50% of the total number of etcd instances or Nodes. For example, with three etcd Nodes, a minimum of two etcd Nodes are required to have quorum and achieve consensus.
The RAFT Consensus Algorithm consists of three states:	1.Follower

	2.Candidate

	3.Leader

There are two timeout settings which control the process of the election of a Leader node in the RAFT algorithm:	1.Election Timeout: The time a Follower waits before becoming a Candidate. This is a random number between 150ms and 300ms.

	2.Heartbeat Timeout: Regular interval of time a Leader sends Append Entries messages to Followers to replicate logs.

All nodes start in the Follower state (see Step 1 of Figure 2-1). The nodes wait for Election Timeout. If a Follower doesn’t hear from a Leader in Election Timeout, they can become Candidate (see Step 2 of Figure 2-1) and initiate new Election Term. The Candidate node votes for itself and Request Votes from the other nodes. If the receiving node hasn’t voted yet in this Election Term, then it votes for the candidate and resets its Election Timeout. A Candidate becomes Leader if it gets the majority of the votes from the nodes (see Step 3 of Figure 2-1).[image: A478307_1_En_2_Fig1_HTML.jpg]
Figure 2-1The RAFT algorithm Leader election process

Once a Leader is elected, all changes to the system go through the Leader. A client sends a change to the Leader. The Leader appends this to the Replication Log (see Step 1 of Figure 2-2). The change is sent to the Followers on the next Heartbeat (see Step 2 of Figure 2-2). Once an entry is committed and acknowledged by the majority of the Followers (see Step 3 of Figure 2-2), the cluster has reached Consensus. A response is sent to the client (see Step 4 of Figure 2-2).[image: A478307_1_En_2_Fig2_HTML.jpg]
Figure 2-2Update value in RAFT algorithm

HA for Master Services
When we talk about Master services

 , we are referring mainly to the API Server, the Controllers, and the etcd service. In OpenShift these services are deployed as privileged containers and pods (see Figure 2-3).[image: A478307_1_En_2_Fig3_HTML.jpg]
Figure 2-3The kube-system namespace or project

From what can be seen in Figure 2-3, the kube-system namespace or project host the containers Pods for the API Server (see #2 of Figure 2-3), the Controllers (see #3 of Figure 2-3), and the etcd (see #4 of Figure 2-3) instances. Each Master Node contains an API Server Pod, a Controller Pods and an etcd Pods.
Note
The reader may notice the output in Figure 2-3 is the same when using the kubectl or the oc5 command-line interfaces. The kubectl is the official Kubernetes CLI and oc is the OpenShift CLI. The oc CLI includes the kubectl and shares the same syntax. In addition to the standard features, the oc CLI extends capabilities and brings native support to OCP features like authentication, routes, DeploymentConfigs, ImageStreams, and others.

Looking into the details of one of these Pods, the etcd Pods, we can clearly see they are running as privileged containers (see #3 of Figure 2-4), and they are running in the kube-system (see #2 of Figure 2-4) namespace or project.[image: A478307_1_En_2_Fig4_HTML.jpg]
Figure 2-4Details of the etcd Pod definition highlighting the privileged mode

One of the reasons these Pods need the privileged access is because they access host resources. As we can see in Figures 2-5, 2-6, and 2-7, some host resources are mapped as volumes to the containers.
The details of the etcd Pod in Figure 2-5 highlight how paths from the Master Node (see #1 and #3) are mapped as volumes for the container (see #1).[image: A478307_1_En_2_Fig5_HTML.jpg]
Figure 2-5Details of etcd Pod highlighting host path mounts as volumes

Figure 2-6 (see #4 and #5) provides the detail of the host paths mounted by the API server Pod from the Master Nodes.[image: A478307_1_En_2_Fig6_HTML.jpg]
Figure 2-6Details of API server Pod highlighting host path mounts as volumes

Similarly, Figure 2-7 highlights the host paths from the Master Node (see #4 and #5) mounted by the Controllers Pod.[image: A478307_1_En_2_Fig7_HTML.jpg]
Figure 2-7Details of Controllers Pod highlighting host path mounts as volumes

In all these cases, the configuration files, certificates, and other information reside on the Master Node but are consumed directly by these privileged Pods which are core components of the Control Plane.
One of the missing elements of the Control Plane not running as a Pod or as privileged Container is the kubelet service. The kubelet service runs as a traditional privileged process on the Master Node (see Figure 2-8).
Note
The reader may notice the hyperkube binary used to invoke the kubelet service (see #1 of Figure 2-8). The hyperkube6 is the all-in-one binary with all the Kubernetes server components: kube-apiproxy, kubelet, kube-scheduler, kube-controller-manager, kube-proxy.

 [image: A478307_1_En_2_Fig8_HTML.jpg]
Figure 2-8Details of the kubelet process running in a node

In a multimaster deployment, the default is to use native high availability (HA) to determine how to load balance the API requests across the Master Nodes. This native HA method takes advantage of the built-in native HA master capabilities in OCP and can be used with any load balancing solution.
Each Master Node runs all the master server components. Accessing the API server at Master Nodes does not require session awareness or stickiness. Each Master Node answers to the cluster internal name, the cluster external name, and its own hostname.
The OpenShift advanced installation using openshift-ansible supports the definition of an [lb] section in the inventory file which automatically installs and configures an HAProxy to act as the load balancing solution for the Master Nodes.
Note
The [lb] definition ONLY manages or load balances traffic toward the Master Nodes. It does NOT load balance traffic toward the Infrastructure Nodes or applications running on the OpenShift cluster.

To better illustrate this configuration, refer to Figure 2-9. As seen in Figure 2-9, there is the concept of an External Cluster Name and Internal Cluster Name, and each Master Node has their own assigned FQDN.
The External Cluster Name is defined in the advanced installation inventory file by the openshift_master_cluster_public_hostname variable. Similarly, the internal cluster name is specified by the openshift_master_cluster_hostname variable.[image: A478307_1_En_2_Fig9_HTML.jpg]
Figure 2-9The native HA and load balancing for Master Nodes

Any external load balancer can be used to load balance the traffic among the Master Nodes. The requirements for using external load balancer are simple:	1.Define a virtual IP or VIP to represent the cluster.

	2.Configure the VIP for SSL passthrough.

	3.Configure the VIP to listen to the port specified by the openshift_master_api_port variable of the inventory file. If no port is specified, the API server will listen in port 8443 in every Master Node.

Note
In some load balancer might require a different external VIP and an internal VIP. Other load balancers will handle both external and internal cluster names with a single VIP.

 	4.Configure the DNS to resolve the External Cluster Name to the external VIP and the Internal Cluster Name to the internal VIP.

The HA styles for each of the master services can be summarized as in Table 2-1. Some services handle their internal HA, while others are completely active-active HA.Table 2-1The Native HA of Master Services

	Role
	HA Style
	Notes

	etcd
	Active-Active
	The etcd service is highly redundant and using the RAFT algorithm to maintain data replication and consistency. By default, in OpenShift, this is only accessible from within the cluster. There is no external access or exposure to the etcd service.

	API Server
	Active-Active
	Any Master Node can handle requests to the API Server. The external load balancer can choose the preferred method to distributing the load.
When using the [lb] host, the HAProxy distributes the traffic using the source balancing mode which is based on the hash of the source IP address making the request.

	Controllers and Schedulers
	Active-Passive
	One Controller instance is elected as the cluster leader at a time.
Each API Server handling a request interacts with their local Controller instance. The local Controller instance is aware and communicates with the leader Controller which is the only instance scheduling and controlling Pods in the cluster at any given time.

The specific configuration for the [lb] hosts is shown in Figure 2-10. As it can be seen, the HAProxy is deployed to listen on openshift_master_api_port, in this example port 443 (#2 of Figure 2-10). The load balancing is a simple TCP passthrough (#3 of Figure 2-10) toward the Master Nodes. The load balancing mode is a source (#4 of Figure 2-10) which balances based on the resulting hash of the source IP address making the request.[image: A478307_1_En_2_Fig10_HTML.jpg]
Figure 2-10Relevant HAProxy configuration for the [lb] host

Beyond what can be achieved by the load balancers, the system takes care of restarting any of the Containers and Pods providing the master services just like it will do to remediate deviations from the desired configuration or state for any other Pod running an application in Kubernetes.

HA for OpenShift Consoles
The OpenShift consoles are deployed as Kubernetes objects and use Services, ReplicationController, or Deployment objects to maintain HA. Consider the output shown in Figure 2-11. #1 of Figure 2-11 lists the Pods corresponding to each of the Consoles: registry-console, openshift-web-console, and openshift-console.
The HA for the Container Registry Console is achieved by the Service named registry-console and the ReplicationController named registry-console-1 (see #2 of Figure 2-11). The HA for the developer console (openshift-web-console) is achieved by a Service named webconsole and a Deployment object named webconsole with its corresponding ReplicaSet (see #3 of Figure 2-11). Finally, the HA for the OpenShift operations console (openshift-console) is achieved by a Service named console and a Deployment object named console with its corresponding ReplicaSet (see #4 of Figure 2-11).[image: A478307_1_En_2_Fig11_HTML.jpg]
Figure 2-11OpenShift Console Pods, ReplicationControllers, and Deployments

With the use of the native Kubernetes constructs to protect these Consoles, there is no additional configuration required for its HA.

HA for Logging, Metrics, and Monitoring
The OpenShift Monitoring, Logging, and Metrics services are comprised of multiple elements, all of which are deployed and managed as Kubernetes objects: Service, DaemonSet, Deployment, ReplicationController, and DeploymentConfig. As such, these mechanisms take care of maintaining the high availability for each one of these services. The OpenShift Monitoring components are deployed on the openshift-monitoring Namespace or Project.
Note
A DeploymentConfig or OpenShift Deployment Configuration7 is an OpenShift-specific object that predates Kubernetes Deployment. The DeploymentConfig was built on ReplicationController to support the development and deployment lifecycle of an application. In addition to the capabilities of the Deployment, the DeploymentConfig provides the ability to specify deployment strategies (i.e., rolling strategy, recreate strategy, etc.) to change or upgrade an application; ability to set up triggers to automatically change, redeploy, or upgrade an application and the deployment strategy to use during the transition; and the ability to define hooks to be run before or after creating the ReplicationController.

Even when the system takes care of maintaining the availability of these services, it is good to understand how these services are deployed should there be a need for troubleshooting.
OpenShift Monitoring
The
 OpenShift Monitoring

 is a cluster monitoring solution comprised of Prometheus8 with its plugin ecosystem and Grafana for the dashboards. OpenShift uses the Cluster Monitoring Operator9 to configure, deploy, and maintain the OpenShift Monitoring stack.
The elements of OpenShift Monitoring are illustrated in Figure 2-12. The details of each component are described in the following list:	Prometheus: Prometheus itself is an Open Source project for monitoring and alerting.

	Prometheus Operator: A Kubernetes Operator to create, configure, and manage Prometheus and Alertmanager instances. In OpenShift Monitoring, this component is deployed as a Deployment which creates a ReplicaSet (RC). The RC maintains one prometheus-operator Pod running in any of the Infrastructure Nodes.

	Cluster Monitoring Operator: Watches the deployed monitoring components and resources of the OpenShift Monitoring and ensures they are up to date. This element is deployed as a Deployment which creates the ReplicaSet (RC). The RC maintains one cluster-monitoring-operator Pod running in any of the Infrastructure Nodes.

	prometheus-k8s: The actual Prometheus instances responsible for monitoring and alerting on cluster and OpenShift components. This component is deployed as a StatefulSet and maintains a copy in every Infrastructure Node.

	Alertmanager: A global cluster component for handling alerts generated by all the Prometheus instances in the particular cluster. This element is deployed as a StatefulSet and maintains two prometheus-k8s Pods across any of the Infrastructure Nodes.

	node-exporter: Prometheus exporter or agent deployed on every Node to collect metrics from its hardware and Operating System. This element is deployed as a DaemonSet. There is one node-exporter Pod in every Node of the cluster.

	kube-state-metrics10: Prometheus exporter or plugin to convert metrics from Kubernetes objects into metrics consumable by Prometheus. This is deployed as a Deployment which creates a ReplicaSet and runs a kube-state-metric Pod in any of the Infrastructure Nodes.

	Grafana11: An extensible Open Source metrics analytics and visualization suite. This element is deployed as a Deployment which creates a ReplicaSet and runs a Grafana Pod in any of the Infrastructure Nodes.

[image: A478307_1_En_2_Fig12_HTML.jpg]
Figure 2-12The OpenShift Monitoring architecture

Metrics
What is considered
 OpenShift Metrics

 are the original OpenShift components used to collect metrics information from Containers, Pods, and Nodes across the entire OpenShift cluster. These collected metrics are then available over the OpenShift Console or can be exported to an external system. These metrics can also be used for the Horizontal Pod Autoscaler (HPA)12 to scale the number of Pods in a ReplicationController or ReplicaSet based.
Note
OpenShift 3.11 is the last version supporting the traditional OpenShift Metrics service.13 These are being deprecated in OpenShift 4.0. Most of the functionalities are replaced by the OpenShift Monitoring solution based on the Prometheus project, and the remaining functionality is superseded by the Kubernetes Metrics Server.

All the components of the traditional OpenShift Metrics are deployed as Kubernetes ReplicationControllers on the openshift-infra Namespace or Project. This service consists of the following components:	1.Heapster14: A service for the monitoring and analysis of compute, memory, and network resource utilization and performance for Kubernetes. Collects the information from the Kubelet APIs.

Note
Kubernetes kubelet embeds cAdvisor15 which autodiscovers all containers in the machine and collects CPU, memory, filesystem, and network usage statistics. cAdvisor also provides the overall machine usage by analyzing the “root” Container on the machine.

 	2.
 Hawkular Metrics

 : This is the metric storage engine for Hawkular. It uses the Cassandra database as the metric datastore.

	3.Cassandra: The Cassandra database is used to store the metrics data.

The interaction between all these components is illustrated in Figure 2-13.[image: A478307_1_En_2_Fig13_HTML.jpg]
Figure 2-13The OpenShift Metrics architecture (deprecated in OCP 4.0)

Metrics Server
Metrics Server16 is a cluster-wide aggregator of resource usage data like Container CPU and memory utilization. The Metrics Server collects metrics from the Kubelet API of each node. The resource usage metrics are made available in Kubernetes through the Metrics API. It supersedes the Heapster service in OpenShift 4.0 and beyond.
The Metrics Server is considered the prerequisite for some advanced Kubernetes features or capabilities like the Horizontal Pod Autoscaler (HPA), the Kubernetes scheduler, and other functionalities that require access to metrics17 from nodes and Pods. In OpenShift, this service runs as a Deployment which creates a ReplicaSet to maintain a metrics-server Pod in one of the Master Nodes.

Logging
The OpenShift Logging

 service aggregates logs for the OpenShift platform services, Nodes, Containers, and applications. The OpenShift Logging service shown in Figure 2-14 is comprised of the following components:	Elasticsearch (ES): A NoSQL database with multitenant full-text search and analytics engine. This component is deployed in the openshift-logging Namespace or Project as DeploymentConfig which creates a ReplicationController to run the requested number of Pods. The cluster administrator should rightsize18 the Elasticsearch deployment to the requirements of the specific environment.

	FluentD: Data collection software that gathers logs from the Nodes and feeds them to the Elasticsearch database. This element is deployed in the openshift-logging Namespace as a DaemonSet. There is a logging-fluentd Pod in every Node of the cluster.

	Kibana: An analytics and visualization Web UI for Elasticsearch. It enables the creation of visualizations and dashboards for monitoring Container and Pods logs by Deployment, Namespace, Pod, and Container. Kibana is deployed in the openshift-logging Namespace as a DeploymentConfig which creates a ReplicationController to run and maintain the logging-kibana Pod running on an Infrastructure Node.

	Curator19: Allows administrators to configure scheduled maintenance operations for the Elasticsearch database. These are performed automatically on per-project basis. This component is deployed into the openshift-logging Namespace as a Kubernetes CronJob object and runs the logging-curator Pod on one of the Infrastructure Nodes.

	Eventrouter: Watches Kubernetes events, formats them to JSON, and outputs them to STDOUT to be ingested by FluentD. The logging-eventrouter Pod is deployed to default Namespace or Project as a DeploymentConfig where it creates a ReplicationController and runs the Pod on an Infrastructure Node.

The first three components together (Elasticsearch, FluentD, and Kibana) are known as the EFK stack.[image: A478307_1_En_2_Fig14_HTML.jpg]
Figure 2-14The OpenShift Logging Service

HA for Data Plane
As mentioned before, there is no official definition of the OpenShift Data Plane even though the term is normally used to refer to the traffic forwarding plane of the SDN layer.
As with any other networking architecture, from the SDN layer perspective, we can talk about north-south traffic and east-west traffic. From the OpenShift perspective, the north-south traffic refers to the external traffic arriving into the cluster or the inbound traffic toward the applications hosted on the platform. The east-west traffic refers to the traffic within the cluster.
In a future chapter, we will go into details on how the different SDN options and capabilities move traffic within the cluster (east-west traffic) and the specific features they may provide. For now, this section focuses on the inbound traffic (north-south traffic) arriving to the applications deployed on the cluster. By default, the traffic toward the applications running on the cluster goes through the OpenShift Routers.
HA for OpenShift Router
The
 OpenShift Router

 is an OpenShift component used to expose Services running on the cluster to external clients. It does this by generating a unique FQDN and handling requests to it by steering the traffic to the appropriate Service. The OpenShift Routers are deployed in the default Namespace or Project as a DeploymentConfig which creates a ReplicationController. The ReplicationController maintains the number of router Pod specified by openshift_hosted_router_replicas in the inventory file. These Routers are deployed to the Infrastructure Nodes. This behavior can be modified by specifying a different Node label selector for the Pods using the openshift_router_selector variable in the inventory file. If not specified, the default number of replicas is set to one.
In case of failure of a Router, the DeploymentConfig takes care of correcting the environment by creating a new one.
In a later chapter, we will cover the OpenShift Router Sharding capabilities, and we are going to see some of the advanced techniques that can be used to distribute Routes among different Routers or even dedicate Routers to specific Namespaces or Projects.

HA for Container Registry
The OpenShift Container Registry (OCR) is the default internal Container image registry used by the cluster to store Container images built with one of the supported build strategies, or among other things, to maintain a copy of Container images running in the environment.
The OpenShift Container Registry is deployed into the default Namespace or Project using a DeploymentConfig which creates a ReplicationController used to run and maintain the desired number of docker-registry Pod running. Alternatively, the cluster admin can choose to deploy the OCR as a DaemonSet.20
When not specified, by default, the installer will deploy one docker-registry Pod running on the Infrastructure Nodes. The number of docker-registry Pods to deploy and the Nodes selectors to use to deploy the Pod can be specified by using the openshift_hosted_registry_replicas and openshift_registry_selector variables, respectively, in the advanced installer inventory file.
If no persistent storage options are specified for the registry, the default is to use ephemeral storage and all data will be lost when the Pod is restarted.
When using multiple replicas, the persistent storage must support the ReadWriteMany21 storage access mode. The supported storage22 backends for the Registry range from GlusterFS to S3 compatible services.
Caution
In production environments, the OpenShift Container Registry should NOT use NFS as the storage backend.

Summary
The OpenShift architecture is designed for high availability of every one of its components. Since these elements are built on top of Kubernetes using the Kubernetes constructs, they benefit from the resiliency provided by these. As it can be seen from this chapter, when the OpenShift cluster is deployed with multiple Master, Infrastructure, and Application Nodes, the availability of all the other internal elements of the platform is achieved with Kubernetes itself.
With the abstraction layers created by Kubernetes and the OpenShift platform, Chapter 3 describes the traffic flow with different overlay SDNs when components communicate inside the platform vs. when applications communicate outside the platform.

Footnotes
1See official definition here:
 https://kubernetes.io/docs/concepts/#kubernetes-control-plane

2API Server, Controllers, Scheduler, and etcd database

3OpenShift Projects are Kubernetes Namespaces used to organize and manage content in isolation for a community of users.
 https://docs.openshift.com/container-platform/3.11/dev_guide/projects.html

4Kubernetes Namespaces are used to divide cluster resources among multiple projects and users.
 https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

5For details about the differences between oc and kubectl, visit
 https://docs.openshift.com/container-platform/3.11/cli_reference/differences_oc_kubectl.html

6Refer to the GitHub project for additional details:
 https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube

7For more information about Deployments and deployment strategies, visit
 https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html

8Prometheus is an Open Source project for monitoring and alerting. Additional information can be found at
 https://prometheus.io/docs/introduction/overview/

9The Cluster Monitoring Operator is an Open Source Kubernetes Operator to manage a Prometheus-based cluster monitoring stack. More information can be found here:
 https://github.com/openshift/cluster-monitoring-operator

10Additional details about the metrics collected by this agent can be found at
 https://github.com/prometheus/node_exporter

11Additional information can be found at
 https://grafana.com/grafana

12Kubernetes Horizontal Pod Autoscaler (HPA) automatically scales the number of Pods. For more information, visit
 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

13See Release Notes for OpenShift 3.11 at
 https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40

14Heapster was deprecated in Kubernetes 1.11 in favor of Metrics Server and has been retired in Kubernetes 1.13. Additional details are available here:
 https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md

15Additional information on how cAdvisors are embedded in kubelet is available at
 https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

16For more details about the Kubernetes Metrics Server, visit
 https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server

17Additional information on use cases and scalability of the Metrics Server is available at
 https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md

18For guidelines on rightsizing the Elasticsearch database, visit
 https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging_sizing.html

19For details on how to configure and use Curator, visit
 https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#configuring-curator

20Deploying the Registry as a DaemonSet:
 https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset

21Persistent volume access modes supported by OpenShift are described here:
 https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes

22The full list of supported storage for registry is available at
 https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_3

3. Networking

William Caban1
(1)Columbia, MD, USA

Chapter 2 covers how high availability is achieved for the core components of the platform. The communication for specific control plane components like the synchronization of the etcd database, external connections to the OpenShift Console (in OCP 3.11.x), the communication from the Kubelet to the Kubernetes APIs, and external connections to the cluster’s Kubernetes API goes directly to Master’s Nodes IPs. Any other intercommunication among components in the cluster uses the OpenShift Networking service.
When considering the OpenShift Networking as a whole, there are the OpenShift SDN plugins to handle the east-west traffic or the traffic within the cluster and the OpenShift Router plugins to handle the north-south traffic, or the inbound traffic destined to Services in the cluster.
The default OpenShift software-defined networking (SDN) solution is built on top of Open vSwitch (OVS). With OpenShift, the cluster admin is free to choose to deploy with one of the OpenShift native SDN plugins or they can opt to deploy the cluster using a third-party SDN from the supported ecosystem. Should a different SDN is desired, OpenShift supports Kubernetes CNI-compliant SDN solutions.
There are multiple Kubernetes CNI-compliant SDN solutions in the market. If considering a third-party SDN, something to keep in mind is the alignment of the release cycle between OpenShift and the third-party SDN solution. The alignment or lack thereof, between the two, will have a direct impact in the supported upgrade cycle for the whole platform.
This chapter provides an overview of the main OpenShift SDN solutions and documents the traffic flow among Pods inside the cluster as well as how these communicate to destination outside the cluster.
East-West Traffic
For the east-west traffic

 , out of the box, OpenShift provides the following SDN plugins:	OpenShift ovs-subnet

	OpenShift ovs-multitenant

	OpenShift ovs-networkpolicy

	OpenShift OVN1 (future)

	Flannel2 (limited)

In addition to the native SDN options, at the time of this writing, the following SDN solutions are validated and supported on OpenShift directly by the third-party vendors3:	Big Switch4

	Cisco Contiv

	Cisco ACI CNI5

	Juniper Contrail

	Nokia Nuage

	Tigera Calico

	VMware NSX-T

	Kuryr SDN6 (or Kuryr-Kubernetes)

OpenShift SDN
The native OpenShift Software-Defined Networking (SDN) configures an Open vSwitch (OVS)–based overlay network to provide communication between Pods in the cluster. This overlay network uses the VXLAN protocol as the SDN encapsulation protocol.
Tip
Standard VLANs provide up to 4094 VLAN IDs to segregate Ethernet traffic, but it requires for every device between two endpoints to be Layer2 devices supporting the IEEE 802.1Q protocol and maintaining the same configuration; hence its support in Cloud and hyperscaled datacenter environments is limited. By default, VLANs cannot work over the Internet, and stretched Layer2 networks are limited. On the other hand, the VXLAN protocol provides 224 or 16,777,216 VXLAN Network IDs (VNIs or VNIDs) and works over any Layer2 or Layer3 transport (including the Internet). It only requires IP reachability between the two endpoints. Because of this and other properties, VXLAN has become the preferred transport protocol for SDN solutions.

Independent from the OpenShift SDN plugin in use, there are some default behaviors. For every node registered into the cluster, OpenShift SDN allocates a /23 subnet (see #2 of Figure 3-1) from the cluster network specified by the osm_cluster_network_cidr variable in the inventory file of the openshift-ansible advanced installer. If not specified, the default cluster network is 10.128.0.0/14. The cluster network subnet assigned to each node is used to assign IPs to the Pods at the node.
Caution
When considering the value for osm_cluster_network_cidr, keep in mind that once a cluster is deployed, the cluster network cannot be arbitrarily reconfigured.

Tip
The osm_host_subnet_length variable in the inventory file can be used to specify a different subnet length size, in bits, for the subnets to allocate to each registered node. The default subnet length is 9 which is a subnet of size /23. This is why, by default, OpenShift SDN allocates /23 per node, equivalent to two /24, to each node.

Caution
The host subnet length is one of the attributes that has a direct impact in the maximum number of Pods that can run per node, and its value cannot be reconfigured after deployment.

To identify the cluster network subnet allocated to each Node, execute the “oc get hostsubnet” command with a user with cluster-admin privilege. The resulting output will be similar to Figure 3-1. The Host IP column (#1 in Figure 3-1) is the Nodes physical IP address (i.e., the IP Address of eth0 in the Node) and the Subnet column (#2 in Figure 3-1) is the cluster network subnet allocated to the corresponding Node.[image: A478307_1_En_3_Fig1_HTML.jpg]
Figure 3-1Sample output showing the cluster network subnet allocation

When removing or deleting a node from the cluster, the OpenShift SDN frees the corresponding cluster network subnet. This subnet becomes available for future allocations to new nodes.
Note
Unless Master Nodes are also configured as Nodes, the OpenShift SDN will not configure or allocate a cluster network subnet for the Master Nodes. If the Master Nodes are not configured as Nodes, they do not have access to Pods via the SDN.

In every
 Node

 that is registered as part of a cluster, the OpenShift SDN registers the Node with the SDN Master. The SDN Master allocates a cluster network subnet for the new Node (see #2 in Figure 3-1). This subnet is stored in the etcd database of the cluster (see #2 in Figure 3-2). The OpenShift SDN at the Node creates the local host Open vSwitch (OVS) named br0 with two interfaces: the vxlan_sys_4789 in port 1 and tun0 in port 2 of the OVS br0 (refer to #4, #5, #8, #9, and #10 in Figure 3-2).
For each Pod in the Node, the local OpenShift SDN creates a vethXX interface and assigns it to the OVS br0 (refer to #6 and #8 in Figure 3-2).[image: A478307_1_En_3_Fig2_HTML.jpg]
Figure 3-2Diagram of the OpenShift SDN

During the initialization, the local OpenShift SDN instance injects an OpenFlow entry for every cluster network subnet that has been allocated by the SDN Master. After this, the local OpenShift SDN of each Node monitors the SDN Master for subnet updates. Upon detecting an update (i.e., new subnet allocation or deletion of a subnet), the local OpenShift SDN injects or removes a corresponding OpenFlow entry in the ovsdb in br0.
The vxlan_sys_4789 of br0 is the interface that defines the VXLAN tunnels, or the overlay network, that enables the communication between local Pods with Pods in remote Nodes (refer to #1 of Figure 3-3). This interface is known as vxlan0 interface inside the OVS and that is the name used in the OpenFlow entries.[image: A478307_1_En_3_Fig3_HTML.jpg]
Figure 3-3Details of the vxlan0 and tun0 interfaces of OpenShift SDN

The tun0 interface gets the local cluster network subnet gateway address (see #4 of Figure 3-4). This is the interface (see #2 of Figure 3-3) that provides NAT access from the cluster network subnet to the external network (see #2 of Figure 3-4).
In addition to the local cluster network subnet gateway address, on each Node the Kubernetes Service objects network is also pointed to the tun0 interface (see #1 of Figure 3-4).[image: A478307_1_En_3_Fig4_HTML.jpg]
Figure 3-4Details of routes and NAT for tun0

In OpenShift, the Service network configuration is set by the openshift_portal_net variable in the inventory file. If this variable is not defined, the default Service network is 172.30.0.0/16.
Tip
After the initial installation of the cluster, the service network can be expanded as long as the existing network is at the beginning of the new network range.7

As new Pods are created on a host, the local OpenShift SDN allocates and assigns an IP Address from the cluster network subnet assigned to the Node and connects the vethXX interface to a port in the br0 switch. At the same time, the OpenShift SDN injects new OpenFlow entries into the ovsdb of br0 to route traffic addressed to the newly allocated IP Address to the correct OVS port connecting the Pod.
OpenShift ovs-subnet
The OpenShift ovs-subnet

 is the original OpenShift SDN plugin. This plugin provides basic connectivity for the Pods. In the OpenShift official documentation, this network connectivity is sometimes referred to as a “flat” Pod network. That may cause some confusion with season network engineers. For any network engineer, the term “flat” network will be interpreted as a network where there are no subnetting and sharing of the same broadcast domain. That would be a very bad network design and would be prone to constant broadcast storms. Fortunately, that is not the case with ovs-subnet.
With the OpenShift SDN ovs-subnet plugin, each Node still receives a dedicated /23 cluster network subnet (see #1, #2, and #3 of Figure 3-5). Then, the local OpenShift SDN instance sets up OpenFlow entries for each cluster network subnet defined by the SDN Master (#4, #5, and #6 of Figure 3-5 provide a conceptual representation of these).
The reason it is described as a “flat” Pod network is because there are no filters or restrictions and every Pod can communicate with every other Pod and Service in the cluster. So, from the networking perspective, this will be a fully meshed and unfiltered network. In this case, any Pod in Node 1 (#8 of Figure 3-5) will have reachability to the Pods in Node 2 and Node 3 (see #9 and #10 in Figure 3-5) and vice versa.
Note
Even when Pods may have reachability to any other Pod in the cluster, they will only see open the Ports explicitly enabled by the destination Pod definition. For example, a Pod definition opening TCP Port 8080 will only allow traffic to TCP 8080 to arrive to the container inside the Pod and will block everything else.

 [image: A478307_1_En_3_Fig5_HTML.jpg]
Figure 3-5Representation of OpenShift SDN ovs-subnet plugin

OpenShift ovs-multitenant
With OpenShift ovs-multitenant

 plugin, each Project receives a unique VXLAN ID, also known as a
 Virtual Network ID (VNID)

 . All the Pods and Services of a Project are assigned to the corresponding VNID. By doing this, it maintains project-level traffic isolation. Meaning, Pods and Services of one Project can only communicate with Pods and Services in the same Project. By definition, there is no way for Pods or Services from one Project to send traffic into another Project.
The underlying cluster network subnet allocation remains the same. Each Node receives a dedicated /23 cluster network subnet (see #1, #2, and #3 of Figure 3-6). After this, the local OpenShift SDN instance sets up the OpenFlow entries for each cluster network subnet defined by the SDN Master (see #4, #5, and #6 of Figure 3-6).
After this point, it starts differencing from the other plugins. When using ovs-multitenant, the OpenShift SDN Master monitors the creation and deletion of Projects. Upon the creation of a new Project, it allocates and assigns a VXLAN ID to the Project. This VXLAN ID is the one used to isolate the traffic of the Project (see #11 of Figure 3-6).[image: A478307_1_En_3_Fig6_HTML.jpg]
Figure 3-6Representation of OpenShift SDN ovs-multitenant plugin

When a new Pod is instantiated in a cluster using the
 ovs-multitenant plugin

 , during the process of injecting the OpenFlow entries into br0, the OpenShift SDN includes OpenFlow rules to tag traffic coming from the br0 port connecting the Pod with the VNID corresponding to its Project. In addition, it adds explicit rules to only allow traffic into the Pod if traffic’s VNID matches the Pod’s VNID or is coming from a privileged VNID 0.
Note
When using ovs-multitenant, the VNID=0 is considered privileged traffic that can communicate with any Project, and any Project can send traffic to a Project with VNID=0. OpenShift assigns Project “default” to VNID=0 (see #11 of Figure 3-6). Among other Pods and Services, Project “default” contains the Pods and Services for the internal Container Registry (OCR) and the OpenShift Router.

When sending traffic across the vxlan0 interface to a remote Node, the traffic is tagged with the correct VNID matching the source Pod Project VNID. The VNID is used as the VXLAN Tunnel ID (see #7 of Figure 3-6 where the colors represent the different VNIDs). The receiving Node uses the VXLAN Tunnel ID as the VNID tag for the traffic. This guarantees end-to-end isolation of traffic from different projects.

OpenShift ovs-networkpolicy
The OpenShift ovs-networkpolicy plugin, fully supported since OpenShift 3.7, is a modern SND that implements the Kubernetes Network Policies8 capabilities. In the default configuration, all Pods have reachability to any other Pod or Service in the cluster.
To restrict traffic to or from a Pod or to isolate Pods, a NetworkPolicy resource must be defined (see #8 in Figure 3-7). Once a NetworkPolicy is configured in a Project or Namespace selecting a particular Pod, there will be an implicit deny-all rule rejecting all the traffic to that Pod and only allowing traffic from connections explicitly allowed by the NetworkPolicy. These policies will not impact or affect any other Pods in the same Project, and those will continue to receive all traffic directed to them.[image: A478307_1_En_3_Fig7_HTML.jpg]
Figure 3-7Representation of the OpenShift SDN ovs-networkpolicy plugin

For each Node, these network policies are enforced by OpenFlow entries in the bro0 switch (see #1 in Figure 3-7 for representation).
The NetworkPolicy resource provides robust network policy mechanisms. As such, it is up to the cluster-admin or Project admin to define the desired policies for a Project. The additive property of these objects enables for multiple NetworkPolicy objects to be combined together to create advanced and complex network policies.
As with any other Kubernetes resource, the NetworkPolicy resource is expressed in YAML format.
Consider Listing 3-1 for an example NetworkPolicy definition to deny all traffic from and to any Pod in a Project or Namespace. After applying this policy, all Pods in the particular Project become isolated.# Deny All Traffic (isolate all Pods in namespace)
oc create -f 3.1_deny-all.yaml -n <your-namespace>
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-all
spec:
 podSelector:
 ingress: []

Listing 3-1NetworkPolicy to deny all traffic and isolate Pods

Figure 3-8 shows the process of applying this NetworkPolicy. On #1 in Figure 3-8, the output shows there are two Pods. In #2 in Figure 3-8, a tcpping Python function is used to demonstrate a TCP connection to the PostgreSQL Pod is possible. Then the policy is applied in #3 in Figure 3-8. On #4 and #5 in Figure 3-8, there is a validation that the NetworkPolicy has been created. Finally, #6 in Figure 3-8 shows the execution of tcpping, and this time the connection is blocked.[image: A478307_1_En_3_Fig8_HTML.jpg]
Figure 3-8Applying NetworkPolicy to isolate Pods by blocking all traffic to them

Following the same exercise, consider Listing 3-2. This NetworkPolicy allows every Pod to communicate to any other Pod in the same Project and enables access to the default Project.
Note
When using NetworkPolicy resources, the communication with Project “default” is required to get to the OpenShift Routers. This rule must be explicitly allowed by the defined policy.

 # Allow traffic between Pods in the same Project and with the default project (i.e. to access the routers)
oc label namespace default name=default
oc create -f 3.2_allow-same-project-and-default.yaml -n <your-namespace>
kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-same-and-default-namespace
spec:
 ingress:
 - from:
 - podSelector: {}
 - from:
 - namespaceSelector:
 matchLabels:
 name: default

Listing 3-2NetworkPolicy to allow traffic within Pods in the Project and with the default Namespace

Figure 3-9 documents the application of Listing 3-2 NetworkPolicy (#1) to restore the communication with the PostgreSQL Pod (#3).[image: A478307_1_En_3_Fig9_HTML.jpg]
Figure 3-9Applying NetworkPolicy to allow traffic among Pods and with Project default

Flannel
Flannel

 is one of the simplest SDN implementations of the Kubernetes network model. It supports various overlay protocols (or backends) ranging from VXLAN to host-gw, and many others.9 The OpenShift-supported Flannel configuration uses the host-gw backend.10
Note
In OpenShift, the support of the Flannel plugin is limited to deployments of OpenShift Container Platform over the Red Hat OpenStack Platform.11

The host-gw backend requires Layer2 connectivity between the Nodes so flanneld can forward the packets to the corresponding Node as next-hop. The Flannel SDN initialization

 in OpenShift is as follows:	Each Node runs a flanneld agent which reads the configuration from the etcd database (see #11 of Figure 3-10).

	The flanneld agent allocates a unique /24 subnet from the configured Network and registers the allocated Node host subnet into the etcd database (see #12 of Figure 3-10).

	The first IP of the subnet is assigned as the interface docker0 (#1 of Figure 3-10) which becomes the default gateway for the local Pods.

	For each allocated host subnet in etcd, Flannel host-gw backend injects a subnet route with the remote Node eth0 IP Address as the next-hop gateway address to reach that subnet (see #2 of Figure 3-10).

With Flannel host-gw backend, the traffic flow from a Pod in one Node to a Pod in another Pod is as follows:	1.The Pod sends traffic to its default gateway. For example, Pod 1A in Node 1 sends traffic to Pod 2C in Node 2 (Figure 3-10). Pod 1A sends traffic to its default gateway, which happens to be the docker0 interface (#1 of Node 1 in Figure 3-10).

	2.From the docker0 interface, the traffic is routed by the host routing table (#5 in Figure 3-10). Since there is a specific route for the destination subnet (#2 in Figure 3-10), the traffic is sent to the registered next-hop address (#7 in Figure 3-10) which, in this example, happens to be Node 2 eth0 IP Address.

	3.Once the traffic is received by the remote Node (Node 2), the destination IP Address is evaluated by the host routing table (#9 in Figure 3-10) so the traffic is sent to docker0 interface which finally forwards the traffic to Pod 2C (#10 in Figure 3-10).[image: A478307_1_En_3_Fig10_HTML.jpg]
Figure 3-10Flannel SDN

 with host-gw backend in OpenShift

Because Flannel with the host-gw backend does not use additional encapsulations, it maintains certain level of performance, and the host-gw backend is considered a good option when deploying Kubernetes over virtualized platforms that have their own SDN solutions. This is to avoid the performance penalties which might be experienced when using SDNs over SDNs, resulting in what is known as double encapsulation.

OpenShift with Third-Party SDN
OpenShift configurations with third-party SDN are maintained by their respective third-party vendors. To illustrate the use of third-party SDNs with OpenShift in this section, we focus on the Open Source Calico12 SDN solution.
OpenShift with Calico SDN
The Calico SDN CNI provides another SDN alternative supporting NetworkPolicy resources for ingress and egress policy rules. Calico can be used with or without an encapsulated overlay network. In OpenShift, by default it uses IP over IP encapsulation.
Calico relies on routing principles from the native Linux network stack to move traffic from one Node to another. It can be used with Nodes using Layer2 or Layer3 connectivity.
As with other Kubernetes SDN solutions, Calico maintains its configuration and state in the cluster etcd database and relies on the BGP protocol at each Node to communicate the routing information.
Tip
A best practice for large-scale cluster deployments with Calico is to have a dedicated etcd instance for it, different from the cluster etcd.

Note
If BGP is supported by the top-of-rack (TOR) switches interconnecting the cluster, Calico can peer with the TOR over BGP. The default BGP ASN is 64512. This ASN value is configurable by CLI.13

By default, Calico allocates a /26 subnet to each Node, and as IPs are consumed by the Node, it dynamically allocates additional blocks to the Node. This is possible thanks to the use of a dynamic routing protocol, in this case BGP, on each Node.
Various components come together to create the Calico architecture (see Figure 3-11):	1.CNI Plugin:	a.Calico-CNI: The Calico CNI plugin implements the Kubernetes CNI specification.

	b.Calico-IPAM: The Calico IPAM assigns IP address to the Pods.

	2.calico-node: The calico-node is a privileged container running as DaemonSet in every Node (see #1 of Figure 3-11). This container has three elements:	a.confd: Monitors the etcd database for state updates and generates the corresponding new BGP configuration for BIRD.

	b.BIRD and BIRD6: BGP agents running at each Node and distribute the routes across. BIRD is for IPv4 addresses and BIRD6 for IPv6 IP addresses.

	c.Felix: Agent doing the routing and policy calculation. It writes the corresponding routes and ACLs to the Node host routing table and iptables, respectively.

	3.calico-kube-controller: This container runs as a Pod on top of Kubernetes and maintains Calico in sync with Kubernetes when using NetworkPolicy.

[image: A478307_1_En_3_Fig11_HTML.jpg]
Figure 3-11Representation of Calico SDN in OpenShift

From #3 in Figure 3-11, we can see an extract of the resulting host routing table when using Calico. Local Pod-to-Pod traffic has direct communication inside the host. To reach a Pod in a remote Node, the traffic from a Pod gets to the local tunl0 interface (#4 in Figure 3-11) and gets routed by the host routing table to the next-hop IP Address which is the remote Node. At the remote Node, the packet is routed by the host routing table and delivered to the tunl0 interface (#6 in Figure 3-11) where it finally reaches the remote Pod.

North-South Traffic
When considering the north-south traffic, out of the box, the available OpenShift Router plugins14 are	HAProxy Template Router (default plugin)

	F5 BIG-IP Router plugin

In addition to the official supported plugins, at the time of this writing, a third-party supported OpenShift Router plugin is	NGINX and NGINX Plus Router15

HAProxy Template Router
The default OpenShift Router is one or more Router Pods running on Infrastructure Nodes (see #1 of output shown in Figure 3-12) and is deployed as a Deployment Config (see #5 of output shown in Figure 3-12).[image: A478307_1_En_3_Fig12_HTML.jpg]
Figure 3-12Output showing the elements comprising the OpenShift Router service

These Router container images are based on HAProxy (see #6 of Pod definition extract shown in Figure 3-13). These Pods are defined to share the Network Namespace with the host Infrastructure Node (see #5 and #8 of extract shown in Figure 3-13).[image: A478307_1_En_3_Fig13_HTML.jpg]
Figure 3-13Extract of an OpenShift Router Service and Pod definition

Sharing the Network Namespace enables these Router Pods to receive traffic over the host-network. By default, the OpenShift Router listens on TCP ports 80 (HTTP), 443 (HTTPS), and 1936 (HAProxy Stats) (see #3 and #7 in Figure 3-13). Once the traffic arrives to the Pod, it will match the corresponding Route object (see #1 and #2 of Figure 3-14).
During the creation of the Route resource (#1 in Figure 3-14) and at the addition or removal of a Pod, the OpenShift Router queries the Service resource (#3 in Figure 3-14) for the Endpoints associated to the Service based on label selectors (#5 in Figure 3-14). From here it obtains Endpoint information like name and IP of the Pods. The OpenShift Router uses this information to create the corresponding HAProxy configuration to load balance the traffic (#6 in Figure 3-14) destined to the particular Route (i.e., myapp-demo-app.example.com) across the available Pods.[image: A478307_1_En_3_Fig14_HTML.jpg]
Figure 3-14OpenShift Route to Service details

Summary
OpenShift Networking is comprised of multiple elements that can be grouped into two types of solutions: the solutions that provide the Software-Defined Networking (SDN) to move the east-west traffic, or traffic within the cluster, and the solutions that handle the north-south traffic, or the inbound traffic to applications hosted on the OpenShift cluster.
For both cases, for the east-west traffic and for the north-south traffic, there are the OpenShift native supported plugins and third-party validated plugins supported by those third-party vendors.
The next chapter, Chapter 4, explores the available options for providing storage to components and applications running on the platform.

Footnotes
1The OpenShift Open Virtual Networking (OVN) plugin is considered a development preview. The current capabilities for OCP OVN are similar to the ovs-networkpolicy. More information about OVN can be found at the Kubernetes OVN upstream project under the Open vSwitch project:
 https://github.com/openvswitch/ovn-kubernetes

2Flannel is only supported when OCP is deployed over OpenStack environments which are using a VXLAN-based SDN to work around issues with the possible VXLAN over VXLAN encapsulation.

3For an updated list of the supported third-party vendor, visit
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers

4Additional information about Big Switch Big Cloud Fabric Enterprise Cloud (BCF-EC) integration with OpenShift is available here:
 www.bigswitch.com/tech-partner/red-hat

5For more information about the Cisco ACI CNI Plugin for OCP, refer to
 www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf

6At the time of this writing, the Kuryr SDN is considered Technology Preview; for more information, refer to
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_kuryrsdn.html

7For details on expanding the Service network, refer to
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network

8Additional detail of Kubernetes Network Policies is available at
 https://kubernetes.io/docs/concepts/services-networking/network-policies/

9For a complete list of the backend protocols supported by the Flannel SDN, refer to
 https://github.com/coreos/flannel/blob/master/Documentation/backends.md

10Additional details about OpenShift and Flannel are available at the following URL (note: a valid Red Hat support subscription is required to access this link):
 https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations

11For more information of OpenShift Flannel, see
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#using-flannel

12Additional information about project Calico can be found at
 www.projectcalico.org

13For information on customizing the BGP ASN number, visit
 https://docs.projectcalico.org/v3.4/usage/configuration/bgp#configuring-the-default-node-as-number

14For an updated list of available Router plugins, visit
 https://docs.openshift.com/container-platform/3.11/architecture/networking/assembly_available_router_plugins.html

15Additional details about the NGINX and NGINX Plus OpenShift Routers are available at NGINX Inc Git repo:
 https://github.com/nginxinc/nginx-openshift-router

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_4

4. Storage

William Caban1
(1)Columbia, MD, USA

Once the networking options are defined for Containers as described in Chapter 3, another essential service is storage. Container storage is ephemeral by design. Initially, Containers were designed for immutable and stateless workloads. Later, the advantages of containerizing stateful applications became apparent. With that came the need to support persistent storage. A similar paradigm happened with Kubernetes; initially, it was designed for stateless applications, but it was rapidly extended to support stateful workloads. Supporting these new types of workloads drove the need to support multiple storage options. The storage options for Kubernetes and OpenShift environments are grouped under two classifications: ephemeral storage and persistent storage.
OpenShift Storage
With Kubernetes and OpenShift, the on-disk files representing the instance of a Container are ephemeral. Meaning, once the Pod is destroyed or reinstantiated (i.e., during rolling upgrade), any changes to files or data stored inside those Container are destroyed.
The default mount point for the ephemeral storage representing the filesystem and the data inside the Containers is determined by the
 Container Runtime

 in use. See Tables 4-1 and 4-2 for the default mount points used by OpenShift when using Docker runtime or CRI-O runtime.Table 4-1OpenShift Mount Points for OpenShift 3.11

	Directory
	Notes

	
 /var/lib/docker

	When using Docker runtime, this mount point is used by active Containers and Pods. This is the local storage where the Node maintains a copy of Container images pulled from a Container Registry. This mount point is managed by docker-storage.
It uses the following naming format:

 /var/lib/docker/overlay2/<layer-id>

 /var/lib/docker/containers/<container-id>

Note: When using the CRI-O runtime, this folder is a symbolic link to /var/lib/containers.

	
 /var/lib/containers

	When using the CRI-O runtime, this is the mount point used by active Containers and Pods. This is the local storage where the Node maintains a copy of Container images pulled from a Container Registry.
It uses the following naming format:

 /var/run/containers/storage/overlay-containers/<layer-id>

 /var/lib/containers/<container-name>/<container-id>

	
 /var/lib/origin/openshift.local.volumes

	This is the mount point of the ephemeral volume storage for Pods including anything external that is mounted into a Container at runtime. This is also the mount point for environment variables, kube secrets, and any data volumes not backed by a persistent storage volume (PV).
It uses the following naming format:

 /var/lib/origin/openshift.local.volumes/pods/<pod-id>/containers/<container-name>/<container-id>

 /var/lib/origin/openshift.local.volumes/pods/<pod-id>/volumes/<volume-type>/<volume-name>

Table 4-2OpenShift Mount Points for OpenShift 4.01

	Directory
	Notes

	
 /var/lib/containers

	When using the CRI-O runtime with Red Hat CoreOS (RHCOS), this is the mount point used by active Containers and Pods. This is the local storage where the Node maintains a copy of Container images pulled from a Container Registry.
It uses the following naming format:

 /run/containers/storage/overlay-containers/<pod-id>

 /var/lib/containers/storage/overlay/<layer-id>

	
 /var/lib/kubelet/pods

	With Red Hat CoreOS (RHCOS), this is the mount point of the ephemeral volume storage for Pods including anything external that is mounted into a Container at runtime. This is also the mount point for environment variables, kube secrets, and any data volumes not backed by a persistent storage volume (PV).
It uses the following naming format:

 /var/lib/kubelet/pods/<pod-uid>/volumes/<volume-type>/<volume-name>

Beyond the default ephemeral storage of the on-disk files representing the instance of a Container, Kubernetes has the concept of a Volume.2 A
 Kubernetes Volume

 is an object that provides a mechanism to provide persistent storage for the Containers. A Volume and the data on it are preserved across Container restarts and it even outlives any Containers within a Pod.
Note
A
 Volume

 is created to provide persistent storage for Containers in a Pod. There is a special Volume type, emptyDir,3 that is ephemeral in nature as it is created when a Pod is assigned to a Node but is deleted when the Pod is removed from the Node.

Kubernetes Storage Constructs
Kubernetes maintains strict separations of concerns between the definitions of a
 PersistentVolume (PV)

 , making it available to the Cluster (see #1 and #12 in Figure 4-1), to the moment the PV is associated to a Project or Namespace through a
 PersistentVolumeClaim (PVC)

 (see #6 and #13 in Figure 4-1). Once the PVC is created associating the PV to the Project or Namespace, it then can be associated as a Volume and binds to a mount point in the Container (see #10 and #14 in Figure 4-1).
Note
A PersistentVolume (PV) is not tied to any Namespace. A PersistentVolumeClaim (PVC) is associated and created inside a Project or Namespace.

 [image: A478307_1_En_4_Fig1_HTML.jpg]
Figure 4-1PersistentVolume, PersistentVolumeClaim, and Volumes

PersistentVolumes (PV) can be provisioned manually by the cluster administrator or the cluster administrator can enable dynamic provisioner plugins which take care of dynamically creating PVs for any PVC’s definition configured in a Namespace.
Tip
A PVC storage size request (see #9 in Figure 4-1) can bind to a PV with equal or larger storage size (see #3 in Figure 4-1) defined by a PV.

Caution
If there is no PV capable of fulfilling the PVC storage size request, the PVC remain unbound indefinitely.

When the Volume is disconnected from the Container, the PVC is available for any other Container in the same Namespace to use. The data remains on the Volume and will be available to any future Container using the PVC.
When the PVC definition is deleted, the PV is considered to be released. The data is handled based on the reclaimPolicy of the PV.
PersistentVolume Status
A PersistentVolume (PV) will be in one of the following status (see #5 in Figure 4-2):	Available: The PV has not been claimed by a PVC.

	Bound: The PV is associated and claimed by a PVC.

	Released: The PVC was deleted but the resource has not been reclaimed by the cluster according to the reclaimPolicy.

	Failed: The automatic reclamation of the PV has failed.

[image: A478307_1_En_4_Fig2_HTML.jpg]
Figure 4-2Output showing PV’s Access Modes, reclaimPolicy, and Status

Reclaim Policy
PersistentVolumes (PV) have an associated
 Reclaim Policy

 (see #4 in Figure 4-2) which dictates how to handle data after the PV is not Bound to a PVC. Kubernetes supports the following Reclaim Policies4:	Retain: With this policy the PV is kept after the PV is no longer Bound to a PVC and enables manual reclamation of the resources.

	Recycle: (Depreciated in favor of dynamic provisioning) This policy performs a basic scrub doing a "rm -rf /<volume-path>/*" on the Volume, then makes the Volume available again for new PVCs.

	Delete: This policy removes the PV and the associated storage asset (i.e., AWS EBS, GCE PD, Cinder Volume, Gluster Volume, etc.) when the PV is no longer Bound to a PVC.

Note
When no reclaimPolicy is specified or when using dynamically provisioned Volumes, the default reclaim policy is Delete.

Access Modes
The access mode

 (see #3 in Figure 4-2) capabilities of a PersistentVolume (PV) are dependent on the modes supported by the provider of the storage resource. For example, NFS supports the three available access modes, while AWS EBS only supports one.
The available access modes are detailed in Table 4-3.
Note
A Volume Access Mode describes the Volume’s capability but does not enforce constraints. It is up to the storage provider to enforce this at runtime.

 Table 4-3Volume Access Modes

	Access Mode
	Abbreviation
	Description

	
 ReadWriteOnce

	
 RWO

	The volume can be mounted as read-write only by a single Node at a time.

	
 ReadOnlyMany

	
 ROX

	The volume can be mounted as read-only by many Nodes at a time.

	
 ReadWriteMany

	
 RWX

	The volume can be mounted as read-write by many Nodes at a time.

OpenShift PersistentVolume Plugins
OpenShift supports multiple storage plugins.5 Some of these plugins and the access modes are listed in Table 4-4.Table 4-4OpenShift PersistentVolume (PV) Plugins and Supported Access Modes

	PV Plugin Name
	Access Mode
	Mount Options

	
 NFS

	
 RWO, ROX, RWX

	Yes

	
 HostPath

	
 RWO

	No

	
 GlusterFS

	
 RWO, ROX, RWX

	Yes

	
 Ceph RBD

	
 RWO, ROX

	Yes

	
 OpenStack Cinder

	
 RWO

	Yes

	
 AWS EBS

	
 RWO

	Yes

	
 GCE Persistent Disk

	
 RWO

	Yes

	
 iSCSI

	
 RWO, ROX

	Yes

	
 FibreChannel

	
 RWO, ROX

	No

	
 Azure Disk

	
 RWO

	Yes

	
 Azure File

	
 RWO, ROX, RWX

	Yes

	
 VMWare vSphere

	
 RWO

	Yes

	
 Local

	
 RWO

	No

	
 FlexVolume

	FlexVolume is an out-of-tree plugin interface that enables users to write their own drivers. Because of this, the supported Access Modes and Mount Options are implementation specific.

	
 Container Storage Interface (CSI)

	CSI is an industry standard that enables vendors to develop storage plugins for container orchestration systems (i.e., Kubernetes) in a way that it is portable across CSI-compliant container orchestration systems. Because of this, the supported Access Modes and Mount Options are implementation specific.

Since Kubernetes 1.8, the upstream Kubernetes project decided to stop accepting in-tree storage Volume plugins. Before this, Volume plugins were linked and distributed as part of the core binaries of Kubernetes. To enable vendors to develop Volume plugins independently from Kubernetes and with their own release cadence, nowadays, instead, it promoted the use of the FlexVolume plugin interface or the use of the Container Storage Interface (CSI) plugin.
The FlexVolume plugin interface has been available since Kubernetes 1.2. The Container Storage Interface (CSI) plugin was introduced in Kubernetes 1.9 and GA in 1.13. These two options are covered in detail in the following sections.

FlexVolume
FlexVolume is known as an out-of-tree plugin interface because it is developed outside the main Kubernetes source code. The FlexVolume interface enables users to write their own drivers. These drivers can be written in any programming or scripting language.
User-provided driver binaries must be installed in a predefined Volume plugin path6 in every Node of the cluster (see #1 in Figure 4-3). The FlexVolume driver performing the attach and detach operations must be a self-contained executable with no external dependencies.
Kubernetes is shipped with a FlexVolume in-tree plugin that kubelet uses to interact with the user-provided drivers using an exec-based model (see #2 in Figure 4-3). When invoking the binary of the driver, the first command-line argument is an operation name followed by parameters for the operation.[image: A478307_1_En_4_Fig3_HTML.jpg]
Figure 4-3FlexVolume plugin architecture

The FlexVolume driver works in one of two modes:	FlexVolume driver with master-initiated attach/detach operation

	FlexVolume driver without the master-initiated attach/detach operation

With Master-Initiated Attach/Detach
A FlexVolume driver with master-initiated attach/detach operation7 must implement the following operations:	init: Initializes the driver

	getvolumename: Returns the unique name of the volume

	attach: Attaches a volume to a given Node

	waitforattach: Waits until the Volume is attached to a Node and the device is recognized by the OS

	detach: Detaches the Volume from a Node

	isattached: Checks if a particular Volume is attached to a Node

	mountdevice: Mounts a Volume device to a directory in a Node

	umountdevice: Unmounts a Volume’s device from a directory in a Node

Without Master-Initiated Attach/Detach
A FlexVolume driver that does not support master-initiated attach/detach operations8 is only executing at the specific target Node and must implement the following operations:	init: Initializes the driver.

	mount: Mounts a Volume to a directory in the Node. This operation is responsible for finding the device, attaching the device to the Node, and mounting the device to the correct mount point.

	umount: Unmounts a Volume from a directory in the Node. This operation should take care of cleaning up the Volume and detaching the device from the Node.

CSI
The
 Container Storage Interface (CSI)

 was designed to provide a way for vendors to develop storage plugins for any container orchestration platform following the CSI specification. This means these plugins are not tied to Kubernetes but any CSI-compliant platform. CSI was introduced into Kubernetes as a way to decouple plugin development from Kubernetes releases and prevent bugs from a plugin from affecting other Kubernetes critical components.
Contrary to FlexVolume plugins that use an exec-based API and assume plugins have access to the root filesystem, the CSI plugins use a gRPC interface over a unix domain socket.
To support CSI plugins, a CSI-compliant plugin interface recommended9 architecture was defined (Figure 4-4). The CSI plugin interface was included starting in Kubernetes 1.9 and was made GA in Kubernetes 1.13.[image: A478307_1_En_4_Fig4_HTML.jpg]
Figure 4-4CSI plugin recommended architecture

The Kubernetes CSI volume plugin implements the following internal volume interfaces:	VolumePlugin: Mount and unmount of a Volume to a specific path. During the mount operation, Kubernetes generates a unique path and passes it to the CSI Driver DaemonSet (see #4, #5, and #8 in Figure 4-4) for the CSI plugin to mount the volume (see #9 and #11 in Figure 4-4).

	AttachableVolumePlugin: Attach and detach of a volume to a given node. This action is handled by the CSI External Controller (see #2, #3, and #6 in Figure 4-4). It is up to the CSI external controller to determine when a CSI Volume must be attached or detached from a particular Node (see #7 and #10 in Figure 4-4). Once the CSI controller determines a Volume should be attached to a Node, it generates a PersistentVolume (PV) and eventually the corresponding PersistentVolumeClaim (PVC) to be consumed by the container (see #12 in Figure 4-4).

OpenShift Ephemeral
The OpenShift Ephemeral framework is a Technology Preview (TechPreview) capability to allow administrators to limit and manage the ephemeral local storage consumed by Pods and Containers running in the particular Node.
Without the Ephemeral framework, Pods are not aware how much local storage is available to be consumed by the Container’s writable layers or EmptyDir Volumes, and the Pod cannot request guaranteed local storage. Because of this, if the Node runs out of local storage, Pods can be evicted, losing all the data stored in the ephemeral volumes.
Enabling this capability requires manually enabling the feature on the Master Nodes configurations and the ConfigMaps associated with all the other Nodes. The feature-specific capabilities require to set LocalStorageCapacityIsolation=true.10

OpenShift Container Storage
The OpenShift Container Storage (OCS)11 brings the software-defined storage capabilities of the Gluster12 and Heketi13 open source projects as a native storage solution into Containers environments. It does this by adding a
 REST API

 interface to front end the Gluster services.
The OpenShift Container Storage (OCS) supports two deployment modes: converged mode and independent mode (see Figure 4-5).[image: A478307_1_En_4_Fig5_HTML.jpg]
Figure 4-5OpenShift Container Storage deployment modes

Note
During the installation of OCS using the OpenShift advanced installer (openshift-ansible), only one of the OCS modes can be specified. Should both modes be required in a cluster, one of the modes can be installed with the Ansible workflow and the other must be manually configured.14

OCS Converged Mode
The OCS Converged Mode deploys a hyperconverged environment with an end result where the Nodes are providing Compute and storage services to the cluster.
From the technical perspective, OCS Converged Mode deploys an environment where the Gluster storage Containers reside in Nodes where it mounts raw disks attached to these Nodes that are then used for the Gluster service (see #1 and #2 in Figure 4-5).
There are two common deployment patterns with OCS Converged Mode:	1.Worker Nodes running OCS Pods and also running application Pods (#1 in Figure 4-5)

	2.Dedicated OCS worker Nodes (#2 in Figure 4-5)

In both of these deployment patterns, the Gluster services are deployed as Containers (see Figure 4-6). A minimum of three nodes are required for the Converged deployment.[image: A478307_1_En_4_Fig6_HTML.jpg]
Figure 4-6OCS Converged Mode

Tip
OCS Converged Mode is commonly illustrated using Application Nodes as the Converged Nodes, but it is not limited to those. With the proper planning and design considerations, another option is to deploy OCS Converged Mode to Infrastructure Nodes instead.

Raw Disks for OCS Converged Mode
The raw block devices for the Gluster service Pods can be provided by Kernel using any supported technology to provide raw block devices to the Node (see Figure 4-7).[image: A478307_1_En_4_Fig7_HTML.jpg]
Figure 4-7OCS Converged Mode block device

OCS Independent Mode
OCS Independent Mode uses an external or standalone Gluster cluster managed by an instance of Heketi REST API (#3 and #8 Figure 4-8).[image: A478307_1_En_4_Fig8_HTML.jpg]
Figure 4-8OCS Independent Mode

Note
Even when the Heketi service can run either as a regular system service or as a Container, the recommendation is for Heketi to be deployed as a Pod on OpenShift so it can benefit from the HA capabilities of the platform.

OCS Storage Provisioning
OCS supports static or dynamic GlusterFS storage volume provisioning. The desired provisioning mode is configured during the deployment of OCS. The PVC and PV provisioning workflow varies the configured provisioning mode. With static storage provisioning15:	1.The GlusterFS administrator creates a GlusterFS volume.

	2.A user with cluster-admin privileges creates the corresponding GlusterFS Kubernetes Endpoints in the cluster.

	3.A user with cluster-admin privileges creates a PV definition.

	4.A user creates the corresponding PVC request.

With dynamic provisioning16:	1.(If dynamic provisioning was not selected during the deployment of OCS or if doing a manual OCS deployment.) A cluster administrator creates a GlusterFS StorageClass.

	2.A user creates a PVC request.

With dynamic provisioning enabled, when there is a creation of a PVC request, the kube-api-server sends a request for a new volume to the Heketi REST API (#2 in Figure 4-6 or Figure 4-8) which communicates with the Gluster service (#3 in Figure 4-6 or Figure 4-8) to create a new Gluster Volume. With the confirmation of the volume, the creation of the kube-api-server generates a PV which is bound to the PVC request.
When the Kubelet service (#4 in Figure 4-6 or Figure 4-8) receives the mount request, it invokes the mount.glusterfs system command (#5 and #6 in Figure 4-6 or Figure 4-8) with the appropriate parameters to mount the volume to the Container. When the Kubelet receives an unmount volume request, it uses the umount system command.
When the PVC is deleted, the PV is destroyed and a notification is sent to the Heketi service (#2 in Figure 4-6 or Figure 4-8) which in turn notifies Gluster service (#3 in Figure 4-6 or Figure 4-8).
Note
After the PVC and PV objects are destroyed and do not exist in the Kubernetes environment, from the Gluster cluster perspective, it might not be the case as the action of completely deleting and recycling a Gluster volume may take additional time.

Storage Classes
A StorageClass is a Kubernetes construct for cluster administrators to create storage profiles describing the storage options available for the platform. Cluster administrators are free to use the StorageClass to represent storage types, or backup policies, or quality-of-service levels, or replication policies, or encryption policies, or any other arbitrary characteristic or service determined relevant for the organization.
A StorageClass17 configuration consists of a YAML file with the following options:	Provisioner: (#3 in Figure 4-9) Determines the volume plugin to use for provisioning PVs under the specified StorageClass.

	Reclaim Policy: (#5 in Figure 4-9) Tells the cluster what to do with the Volume after it is released. The policy can be either Delete, Retain, or Recycle.18 With dynamically provisioned volumes, the Reclaim Policy is Delete.

	Mount Options (optional): (#6 in Figure 4-9) Mount options for dynamically created PVs.

	Volume Binding Mode: (#7 in Figure 4-9) This parameter controls the Volume binding and dynamic Volume provisioning.

	Allowed Topologies (optional): Used to restrict provisioning to specific topologies.

	Parameters (optional): (#4 in Figure 4-9) This section is used to set Provisioner-specific parameters.

[image: A478307_1_En_4_Fig9_HTML.jpg]
Figure 4-9Sample StorageClass definition

Note
A StorageClass definition is required for enabling dynamic storage provisioning.

OpenShift with Third-Party Storage
Beyond the list19 of supported OpenShift software-defined storage (SDS) plugins, because of the availability of the FlexVolume and CSI plugins, there are many third-party traditional or modern storage solutions supported for OpenShift. This section is a reference (nonexhaustive) list of additional third-party storage vendors. Additional vendors can be found at the OpenShift Primed20 web site.
DriveScale Composable Platform
The DriveScale Composable Platform21 by DriveScale is a composable storage platform that aggregates JBOD chassis behind the DriveScale Composer. From there, the raw disks are presented as iSCSI targets.
DriveScale supports dynamic storage provisioning in OpenShift. At the moment of this writing, DriveScale has a FlexVolume and a CSI plugin. The DriveScale FlexVolume plugin is available at the Red Hat ISV registry22 and the CSI23 plugin is provided directly by them.
From the OpenShift perspective, at the creation of a new PVC, the DriveScale FlexVolume plugin interacts with the DriveScale Composer and dynamically allocates disks from the JBOD. It then proceeds to present them directly to the Node running the Container and mount them as a Volume into the Container. If the Pod is reinstantiated into another Node, the plugin takes care of unmounting the disk from the Node and mounting it into the new Node.

HPE 3PAR
The HPE 3PAR24 storage by HPE is an all-flash or hybrid storage array platform with support for data services and quality of services guaranteed for the storage. The LUNs are presented to the Nodes over FibreChannel (FC) or iSCSI protocols.
HPE 3PAR supports dynamic storage provisioning in OpenShift. At the time of this writing, HPE provides a FlexVolume plugin25 for OpenShift. The HPE FlexVolume driver is named Dory, and the dynamic provisioner is named Doryd. The configuration for the plugin can either be set for FibreChannel (FC) or iSCSI, not both at the time. The FibreChannel (FC) protocol is supported for OpenShift bare-metal deployments, and the iSCSI protocol is supported for OpenShift bare-metal or OpenShift over virtualization environments.
From the OpenShift perspective, at the creation of a new PVC, the HPE 3PAR FlexVolume plugin interacts with the Doryd and dynamically allocates LUNs from the HPE 3PAR storage array. Dory presents them directly to the Node running the Container and mounts them as a Volume into the Container. If the Pod is reinstantiated into another Node, the plugin takes care of unmounting the disk from the Node and mounting it into the new Node.

HPE Nimble
The HPE Nimble26 storage by HPE is an all-flash high-performance storage platform with support for data-at-rest encryption, extreme availability, and sub-millisecond response time. The LUNs are presented to the Nodes over the iSCSI protocol.
HPE Nimble supports dynamic storage provisioning in OpenShift. At the time of this writing, HPE provides a FlexVolume plugin27 for OpenShift. The HPE FlexVolume is available from the Red Hat ISV registry.28
From the OpenShift perspective, at the creation of a new PVC, the HPE Nimble FlexVolume plugin interacts with the Nimble Dynamic Provisioner and dynamically allocates LUNs from the HPE Nimble storage. This LUN is presented directly to the Node running the Container and mounts as a Volume into the Container. If the Pod is reinstantiated into another Node, the plugin takes care of unmounting the disk from the Node and mounting it into the new Node.

NetApp Trident
NetApp Trident29 is an open source project maintained by NetApp designed to support the NetApp storage portfolio in Docker and Kubernetes environments. The plugin supports the NFS or iSCSI protocols.
NetApp Trident supports dynamic storage provisioning in OpenShift. At the time of this writing, by default, NetApp Trident provides a plugin which uses the native Kubernetes iSCSI and NFS plugins and provides an experimental CSI plugin30 implementation.
From the OpenShift perspective at the creation of a new PVC, the NetApp Trident plugin provisions the corresponding LUN or Volume in the storage array and relies in the native Kubernetes iSCSI or NFS plugins for mounting the Volume into the Container.

OpenEBS (OSS, MayaData)
OpenEBS31 is an open source project supported by MayaData to provide block storage with tiering and replica policies. While it can use any block devices as the backend storage, the OpenEBS Volumes are presented to the Nodes over the iSCSI protocol.
OpenEBS supports dynamic storage provisioning in OpenShift. At the time of this writing, OpenEBS provides a FlexVolume plugin available from the Red Hat ISV registry32 or directly from the upstream33 project.
From the OpenShift perspective at the creation of a PVC, the OpenEBS plugin creates a volume. A volume is represented by a series of Pods. First there is Pod that works as the iSCSI target34 for the particular volume. This is the target that is presented to the Node running the Container and mounts as a Volume into the Container. Supporting the iSCSI target volume, there is one Pod per replica. For example, if the configuration is set to have three replicas, there will be three Pods, each one representing one of the replicas. This replica Pods provide the actual backend storage for the Volume. The backend storage can be supported by any block device.

Summary
The use of storage in Kubernetes and OpenShift environments can be grouped under two classifications: ephemeral storage and persistent storage. The different use cases of ephemeral storage rely on the underlying Node filesystem. When working with persistent storage, there are new constructs in play. OpenShift and Kubernetes provide an extensible plugin framework that enables third-party storage providers to onboard their solutions developing plugins at their own phase and independently, without having to coordinate releases with the Kubernetes core project.
There are many more persistent storage providers and plugins for OpenShift. The OpenShift Primed web site is good place to find additional ones understanding the ecosystem supporting OpenShift and Kubernetes is much larger than the list there.
Once the Containers have networking and storage services, containerized applications can start serving requests. To benefit from the HA capabilities of the platform, the traffic to these applications should consider the use of load balancers. Chapter 5 explores various configuration options to steer traffic to the cluster using load balancers.

Footnotes
1This information applies to OpenShift 4.0 Beta release. Paths may be subject to change during development and may be different for final release.

2Additional information and definitions of Volume from the upstream Kubernetes community are available at
 https://kubernetes.io/docs/concepts/storage/volumes/

3For use cases and details about emptyDir, refer to the Kubernetes upstream documentation at
 https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

4Additional details and utilization of the Reclaim Policies are available at the upstream Kubernetes documentation:
 https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming

5For an updated list of the supported plugins, visit
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index

6The standard path for FlexVolume is /usr/libexec/kubernetes/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver>.

7Additional details can be found at
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach

8Additional details can be found at
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach

9Details about recommended deployment mechanisms for CSI plugin on Kubernetes are available at
 https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes

10For the specific steps toward enabling the LocalStorageCapacityIsolation, refer to
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage

11Additional information about OCS is available at (an active Red Hat subscription is required to access this link)
 https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/

12The upstream Gluster project is available at
 www.gluster.org

13The Heketi RESTful API for Gluster project is available at
 https://github.com/heketi/heketi

14The Red Hat OpenShift Container Storage (OCS) Deployment Guide provides step-by-step instructions for manual installation of the OCS deployment modes (an active Red Hat subscription is required to access this link):
 https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/deployment_guide/

15Step-by-step instructions on how to configure OCS static provisioning are available at
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-static

16Instructions for configuring OCS dynamic provisioning on an existing cluster are available at
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-dynamic

17The details of StorageClass resources are described in the upstream Kubernetes documentation:
 https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource

18The Recycle Reclaim Policy is considered deprecated.
 https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recycle

19OpenShift Persistent Volume plugins:
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html

20OpenShift Primed technical readiness:
 www.openshift.com/learn/partners/primed/

21Additional information about the DriveScale Composable Platform is available at
 https://drivescale.com/composable-platform/

22DriveScale Composable Platform FlexVolume plugin:
 https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume

23DriveScale CSI plugin:
 https://github.com/DriveScale/k8s-plugins

24Additional information about the HPE 3PAR storage is available at
 www.hpe.com/us/en/storage/3par.html

25Additional information about the HPE 3PAR FlexVolume plugin is available at
 https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md

26Additional information about the HPE 3PAR storage is available at
 www.hpe.com/us/en/storage/3par.html

27Additional information about the HPE 3PAR FlexVolume plugin is available at
 https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md

28The HPE Nimble Kube Storage Controller is available at
 https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller

29Additional information about NetApp Trident is available in the upstream documentation:
 https://netapp-trident.readthedocs.io/en/stable-v19.01/

30CSI Trident for Kubernetes:
 https://netapp-trident.readthedocs.io/en/stable-v19.01/kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes

31OpenEBS:
 www.openebs.io

32OpenEBS API Server and volume exporter:
 https://access.redhat.com/containers/#/product/54cd9cf908d9f6b7

33OpenEBS project documentation:
 https://docs.openebs.io/docs/next/installation.html

34For additional information around the constructs of OpenEBS, refer to the upstream documentation in GitHub:
 https://github.com/openebs/openebs/blob/master/contribute/design/README.md#openebs-volume-container-aka-jiva-aka-data-plane

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_5

5. Load Balancers

William Caban1
(1)Columbia, MD, USA

As seen in Chapters 1 through 4, the OpenShift platform integrates and builds on top of Kubernetes to provide an environment to run and scale containerized applications reliably. To maintain the most resiliency and benefit the most from the HA capabilities of the platform, the infrastructure hosting the cluster should use load balancers to steer the traffic to the Nodes in the cluster serving the application at a given time. This chapter explores various configuration options when using load balancers with OpenShift.
Load Balancer Overview
When considering the use of external Load Balancers with the OpenShift platform, there are general target areas or traffic types. Each type of traffic will have different requirements based on the desired outcome and the capabilities of the external device or virtual appliance used at load balancing. The use cases for load balancer can be grouped in, at least, the following three types:	Load balancing traffic to the
 Master Nodes

 (#1 in Figure 5-1): This load balancer should be present for any highly available deployment. For small deployments and lab environments, OpenShift provides the option to deploy a software load balancer based on HAProxy. (Refer to “HA for Masters Services” section in Chapter 2).

	Load balancing traffic to the
 Infrastructure Nodes

 (#2 in Figure 5-1): This is the load balancer handling the traffic to applications running on the cluster and using the OpenShift Router as their ingress endpoint. This load balancer is recommended for any highly available deployment even though it can be as simple as a round-robin DNS resolution for the apps wildcard subdomain.

	Load balancing traffic directly to Application Nodes or Pods

 (#3, #4, and #5 in Figure 5-1): This load balancer only exists in nonstandard deployments requiring specialized networking interaction between the client and the application Nodes or directly with the Pods.

[image: A478307_1_En_5_Fig1_HTML.jpg]
Figure 5-1OpenShift and Load Balancers

Load Balancer Considerations
There are many load balancer options in the market. Instead of focusing on a particular software or hardware solution, let’s focus on the basic requirements for each type of traffic and destination in an OpenShift cluster.
Considerations for Master Nodes
As presented during the discussion of High Availability for
 Master Nodes

 in Chapter 2, these Nodes are the ones exposing the Kubernetes APIs, the web interface for the Developer or Application Console, the Service Portal, and the Operations Console (see #1 in Figure 5-1). From the perspective of web sessions, the Master Nodes are stateless, meaning it does not matter which Master receives the request during interactions with the API. There are no special requirements for persistent sessions or sticky sessions. Because of this, the load balancing service functioning as the front end for the Master Nodes can use simple load balancing algorithms (i.e., source IP, round-robin, etc.) to distribute the load among the Master Nodes.
Refer to Chapter 2 for details on the requirements for load balancers for Master Nodes.

Considerations for Infrastructure Nodes
Traffic load balancing for the Infrastructure Nodes refers to a load balancer handling the traffic destined to the OpenShift Routers (see #2 in Figure 5-1) which serve as the main ingress point for any external traffic destined to applications and services running on the cluster. A simple DNS round-robin resolution can be used to spread traffic across Infrastructure Nodes and, from that perspective, an external load balancer for traffic destined to these Nodes is optional. Normally, production environments prefer to have more advanced load balancing capabilities to distribute the traffic among the OpenShift Routers. In those cases, an external load balancer is used.
This external load balancer for the OpenShift Routers should be configured in passthrough mode (see Listings 5-1 and 5-2). This means the load balancer will do connection tracking and Network Address Translation (NAT), but the TCP connections are not terminated by the load balancer; instead, they are forwarded to one of the Router instances at the Infrastructure Nodes (see #1 in Figure 5-2).# NOTE: extract from nginx.conf
<snip>
stream {
 # Passthrough required for the routers
 upstream ocp-http {
 # Worker Nodes running OCP Router
 server worker-0.ocp.example.com:80;
 server worker-1.ocp.example.com:80;
 }
 upstream ocp-https {
 # Worker Nodes running OCP Router
 server worker-0.ocp.example.com:443;
 server worker-1.ocp.example.com:443;
 }
 server {
 listen 443;
 proxy_pass ocp-https;
 }

 server {
 listen 80;
 proxy_pass ocp-http;

 }
}
<snip>

Listing 5-1Passthrough configuration example with NGINX

NOTE: extract from haproxy.cfg
<snip>
frontend ocp-http
 bind *:8080
 default_backend ocp-http
 mode tcp
 option tcplog

backend ocp-http
 balance source
 mode tcp
 server worker-0 192.168.1.15:80 check
 server worker-1 192.168.1.16:80 check

frontend ocp-https
 bind *:443
 default_backend ocp-https
 mode tcp
 option tcplog

backend ocp-https
 balance source
 mode tcp
 server worker-0 192.168.1.15:443 check
 server worker-1 192.168.1.16:443 check
<snip>

Listing 5-2Passthrough configuration example with HAProxy

At the OpenShift Router, this traffic is matched with a Route (see #3 in Figure 5-2), and it is load balanced among the Pods of the corresponding Service object (see #4 in Figure 5-2).
The OpenShift Router supports roundrobin, leastconn, and source as the load balancing algorithms or load balancing strategies.1 The source is considered the default load balancing strategy.
The default load balancing strategy and other OpenShift Router parameters can be configured by setting the corresponding Environment Variable for the OpenShift Router DeploymentConfig.2[image: A478307_1_En_5_Fig2_HTML.jpg]
Figure 5-2Traffic flow from external load balancers to OpenShift Routers

Note
The specific behavior of the traffic at the Router level may be different if using third-party Router plugins.

The
 OpenShift Router

 supports the following protocols:	HTTP

	HTTPS with SNI3

	WebSockets

	TLS with SNI

Any traffic for protocols outside these web protocols cannot make use of the OpenShift Router and Routes capabilities. Those cases are covered in the following section.

Considerations for Specialized Protocols
As we saw in the previous section, the OpenShift Router cannot be used with traffic using non-web-based protocols or with traffic using the UDP protocol. This book aggregates all these cases under the “specialized protocols” category. The details on how to provide load balancing to these protocols are highly dependent on the Kubernetes and OpenShift options used to expose these services.
As illustrated in Figure 5-3, some configuration options will rely on the native capabilities of kube-proxy, while others may depend on the capabilities provided by the specific SDN solution used in the cluster.[image: A478307_1_En_5_Fig3_HTML.jpg]
Figure 5-3Representation of load balancer for non-HTTP/HTTPS/TLS protocols

OpenShift provides several options to support non-web-based or UDP-based traffic. The following list provides a general description of the options and their functionalities:	Service External IP: This option allocates an External IP for the Service from the CIDR defined by externalIPNetworkCIDRs in the Master Nodes configuration.4 When using this option, the ExternalIP is defined and managed by the kube-proxy agent in each node (see #2 in Figure 5-3). From a load balancer perspective, the traffic can be directed to any of the Application or Infrastructure Nodes. Once the traffic arrives to the Node, the incoming traffic is forwarded internally by kube-proxy to the corresponding Pods as it does for any other Service communication.

	LoadBalancer: The LoadBalancer option behaves differently when used in a Cloud provider vs. when used locally. At a Public Cloud provider, this option will allocate an ExternalIP for the Cloud provider Load Balancing service. When this option is used in non-Cloud environments, it allocates an ExternalIP from the ingressIPNetworkCIDR network. When this variable is not specified in the Master Nodes configuration,5 the default network for this type of Service is 172.29.0.0/16. From a load balancer perspective, the traffic can be directed to any of the Application or Infrastructure Nodes. The incoming traffic to the Nodes is forwarded by the kube-proxy to the selected Pods (see #2 in Figure 5-3).

	nodePort: This option allows the user to specify a port for the Service from the default nodePort range of 30000–32767. When the Service is created with this option, kube-proxy starts listening to that port in every Node. From a load balancer perspective, the traffic can be directed to any of the Application or Infrastructure Nodes. The incoming traffic to the Nodes is forwarded by the kube-proxy to the selected Pods (see #2 in Figure 5-3).

	hostPort: This option allows the user to bind a Pod to any Port of the Node, and the Container will be exposed to the external network as <hostIP>:<hostPort>, where hostIP is the physical IP of the Node running the particular Pod, and hostPort is the port number specified in the Pod definition. The load balancer for this option needs to be configured to send traffic to the physical IP of the Node running the Pod (see #3 in Figure 5-3). A consideration when using this option is that the hostIP of the <hostIP>:<hostPort> pair will change if the Pod recreated in another Node.

	hostNetwork: This option enables the Pod to have full visibility of the Node network interfaces. This is the equivalent of the Pod sharing the network namespace with the Node. This option is not recommended for running application. It is normally used by SDN plugins and other network functions deployed as DaemonSets or privileged containers.

	IP Failover: The IP Failover6 option is an OpenShift-specific capability which enables the creation of a Virtual IP address (VIP) for the applications. When this configuration is enabled, OpenShift deploys Keepalived privileged containers to handle the particular VIP. These Keepalived Pods for the IP Failover capability can be deployed cluster-wide or in a subset of Nodes matching a particular label. These Pods use the VRRP protocol to maintain the VIP address active. Only one of the Keepalived Pods will be active or in MASTER state serving the VIP address at a time; the others will be on standby or in BACKUP state. The VRRP protocol is used to determine which Pod gets to be active for a particular VIP. From a load balancer perspective, the Node with the active Pod serving the VIP address is the only one capable of handling the traffic destined to that VIP address.

In addition to the options described here, there are other techniques which are more relevant to Cloud environments. One of these options is the LoadBalancer which requires external support by a Cloud provider. In this case, Kubernetes interacts with the Cloud platform to provision a Cloud Load Balancer with an External IP for the Service. Another option are SDNs like Calico or MacVLAN which can be configured to expose the Pods IPs to the upstream networking equipment enabling direct access to the Pods from the external networks (see #4 in Figure 5-3). In this case, it is up to the networking team to manage the network traffic directed to the Pods.

Summary
Configuring a load balancer service in OpenShift for Master Nodes and OpenShift Routers at the Infrastructure Nodes can be a simple pass-through load balancing configuration. These can be considered web-friendly protocols: HTTP, HTTPS, TLS, and WebSockets. Supporting UDP or non-web-friendly protocols with Kubernetes and OpenShift requires the use of a different set of objects and capabilities. The particular load balancer configuration for these use cases requires an understanding of the workload, the option being used, and the level of exposure of the Services and Pods to the external networks.
Having a base understanding of how the networking, storage, and traffic routing options work for OpenShift, Chapter 6 will focus on putting all this knowledge together for a successful deployment of a cluster.

Footnotes
1The supported load balancing strategies are described here:
 https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#load-balancing

2A list of available Environment Variables to fine-tune the OpenShift Router is available at
 https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#env-variables

3Standard Name Indication (SNI) is an extension of the TLS protocol. With this extension, the client indicates the hostname it is trying to contact at the start of the handshaking process.

4To use this option, the externalIPNetworkCDIRs must be configured and enabled:
 https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/expose_internal_ip_service.html

5To customize the ExternalIPs for this option, use the ingressIPNetworkCIDR variable in the Master Node configuration:
 https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster

6For configuration requirements for the OpenShift IP Failover capability, refer to
 https://docs.openshift.com/container-platform/3.11/admin_guide/high_availability.html#configuring-ip-failover

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_6

6. Deployment Architectures

William Caban1
(1)Columbia, MD, USA

Having an understanding of the OpenShift components and platform as seen in the previous chapters provides the basis for understanding some of the configuration options that are set during the installation.
OpenShift (OCP) provides the ability to customize the deployment architecture. The exact customization is highly dependent on the version and release, so it is necessary to group the deployment process in two main categories:	OCP 3.11 release: This is considered a long-term release. At the time of this writing, the latest subrelease is 3.11.99.1 The 3.11.x advanced deployment methodology uses the OpenShift Ansible installer, and it is supported in any x86 platform where RHEL is supported.

Note
At the time of this writing, version 3.11.x is considered to be Technology Preview or Development Preview for Microsoft Windows Server 2019, Power 8 and Power 9. This book does not cover any of these operating systems and architectures.

 	OCP 4.0 release: This is considered the new major release of OpenShift that brings a new deployment and management paradigm. At the time of this writing, the latest version is 4.0 Beta 3. This means OCP 4.0 is still in active development and has not reached the general availability (GA).

Note
At the time of this writing, 4.0 is considered beta and it is available for AWS with minimal customization. This book covers the AWS deployment architecture.

This chapter presents the most common scenarios that can be used to start deploying OpenShift clusters, and as you’ll see, both versions have their advantages and disadvantages, and independent from the deployment methodology, each one provides ways to highly customize the environment to fit the organization’s need.
Before going into the two deployment approaches, let’s quickly review Minishift, a development tool for Windows, MacOS, and Linux that enables developers to run an OpenShift environment in their workstations.
Minishift
Currently the Minishift development tool is a distribution based on OCP 3.11.x or OKD 3.11.x that runs as a Virtual Machine (VM).
Minishift can be downloaded as part of the Red Hat Container Development Kit (CDK),2 which includes additional Red Hat development tools and middleware. Alternatively, the upstream Minishift from the OKD community can be obtained from the Minishift Git3 repository.
Visit the Minishift documentation4 for installation details for a specific platform. The following are common steps to fine-tune Minishift:	Allocate a minimum of two vCPUs to Minishift (see #2 in Figure 6-1).

	Allocate at least 8 GB to Minishift (see #2 in Figure 6-1).

	To access additional software from the Red Hat Subscription, define and export the corresponding environment variables (see #4 in Figure 6-1).

	Activate additional add-ons as needed (see #5 in Figure 6-1).

[image: A478307_1_En_6_Fig1_HTML.jpg]
Figure 6-1Minishift configuration

Minishift provides the developer experience similar to OCP (see Figure 6-2). From the platform perspective, there are certain Minishift defaults and characteristics that are different from an actual OCP cluster. For example, by default, Minishift enables any user to run Containers in privilege mode. In OCP, this behavior is discouraged and the cluster administrator must disable security for a user or group to allow them to run Containers in privilege mode. Another distinct characteristic is that the default identity provider with Minishift allows users to log in with any username and using any password. If the username does not exist, Minishift will automatically provision that user in the environment. In an OCP cluster, the user authentication is handled by the identity provider, and when the access is granted, if the functionality is enabled, it proceeds to create the user.[image: A478307_1_En_6_Fig2_HTML.jpg]
Figure 6-2Minishift developer experience

OCP 3.11 Deployment Architectures
The examples in this section have been tested and validated with OpenShift (OCP) 3.11.69, 3.11.82, and 3.11.98. To identify the latest subrelease of 3.11, refer to the last section of the Release Notes5 as these are updated regularly with any new subrelease.
Prerequisites
OpenShift requires certain preparation of the infrastructure and configuration of ancillary datacenter services before deployment. Refer to Table 6-1 for a summary of a prescribed VM configuration used by this section. This table is a recommendation and it does not represent the minimum requirements. The list of minimum requirements is available at the official OpenShift prerequisites6 documentation.Table 6-1OpenShift 3.11 Nodes Configurations (Recommendation)

	Node
	Node Requirements

	Masters
	• 8 vCPUs
• Minimum 16GB RAM (recommended 32GB RAM)
• Disk 100GB
• /var should have 80GB free

	App Nodes
	• 8 vCPUs
• 32GB RAM (recommended 64GB RAM)
• Disk 100GB
• /var should have 80GB free
A Converged or Hyperconverged App Nodes must include at least a dedicated disk for OCS:
• OCS Disk 500GB Raw/Unformatted (any block device)

 Note: A minimum of three hyperconverged or converged nodes are required for OpenShift Container Storage (OCS)

	Infrastructure
	• 8 vCPUs
• 32GB RAM
• Disk 100GB
• /var should have 80GB free

	Bastion
	• 2 vCPUs
• 8GB RAM
• Disk 40GB

	LB
	• 2 vCPUs
• 8GB RAM
• Disk 40GB

Operating System—Minimal Installation
All Nodes must be configured with the following setup:	RHEL 7.6 Minimum installation (using Red Hat standard image).	Recommended “Minimum” profile installation

	RHEL image should not have customizations from post-installation scripts.

	SELinux must be set to ​enforcing.

	Firewall should be enabled and ​running.​

	Time synchronization enabled.

General Requirements for the Cluster

 	All Nodes should7 be on the same network.

	All Nodes must have identical MTU.

	All Nodes must have unfiltered communication to each other.

	All Nodes require Internet access during the installation.8	Nodes access and download RPMs and Containers from the Red Hat repository and Red Hat Container registries.

	Nodes must use static IP address.

	Nodes must have an FQDN resolvable to their IP by the DNS servers in /etc/resolv.conf.

	Allocate a wildcard subdomain for application (i.e., ∗.apps.ocp.example.com). DNS servers in /etc/resolv.conf must be able to resolve any name under the application subdomain (i.e., test.apps.ocp.example.com) to the Infrastructure Nodes or the Nodes hosting the OpenShift Router.

Note
Installation requires root or sudo SSH access to Nodes from Bastion (or Master Node when not using Bastion Node).

SDN Subnets
OpenShift SDN uses an internal default network address. Validate there are no conflicts with the default IP address range of the internal SDN networks:	Containers Network (osm_cluster_network_cidr): 10.1.0.0/16

	​Services Network (openshift_portal_net): 172.30.0.0/16

These subnets are internal to the OCP cluster. These are NOT visible outside the cluster. Should there be an existing IP subnet within the range of any of these two subnets, a new set of private /16 networks should be designated for these purposes.

(Optional) Subnets for Hosting Apps with Non-Web-Based or Specialized Protocols
If the cluster will be hosting applications that need to present non-HTTP/HTTPS/TLS protocols

 to services outside the cluster, there are two additional CIDR network ranges to consider:	​172.29.0.0/16 (ingressIPNetworkCIDR)

	<undefined CIDR> (externalIPNetworkCIDR)

These subnets are NOT internal to the OCP cluster. When deploying on-premise, the external network devices must be configured to route them to the OCP Nodes.

Registry Service Account and Token
When deploying the Red Hat OpenShift Container Platform (OCP), the installation requires a Service Account and a Token to access and download OCP containers from registry.redhat.io. Before the installation, create a new Registry Service Account and generate a Token at
 https://access.redhat.com/terms-based-registry/

The username will have the format "<number>|<custom_string>" and a corresponding Token string will be generated. These credentials are required for the installation.
Note
This step is not necessary when deploying the OKD upstream project.

Activate and Assign OpenShift Subscriptions
Each Node must have an active RHEL and OpenShift subscription. Register each Node with a subscription following the steps in Listing 6-1.
 Register each Node with RHSM

$ subscription-manager register --username=<user_name> --password=<password>

 Pull subscriptions

$ subscription-manager refresh

 Identify the available OpenShift subscriptions

$ subscription-manager list --available --matches '*OpenShift*'

 Assign a subscription to the node

$ subscription-manager attach --pool=<pool_id>

 Disable all RHSM repositories

$ subscription-manager repos --disable="*"

 Enable only repositories required by OpenShift

$ subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.11-rpms" \
 --enable="rhel-7-server-ansible-2.6-rpms"

 Upgrade each Node to the latest version of the OS

$ yum -y update

Listing 6-1Register RHEL and OpenShift subscriptions

Prepare OCP 3.11.x Installer on Bastion
Install the OpenShift Ansible installer on the Bastion Node as per Listing 6-2.$ yum -y install atomic-openshift-clients openshift-ansible

Listing 6-2Install OpenShift Ansible installer on Bastion

Enable Password-less SSH
Enable password-less SSH for the OpenShift Ansible installer from the Bastion Node

 to all the other Nodes as per Listing 6-3.
 Generate key pair at Bastion Node

$ ssh-keygen

 Install public key to all Nodes

$ for host in master.ocp.example.com \
inf1.ocp.example.com \
inf2.ocp.example.com \
app1.ocp.example.com \
app2.ocp.example.com \

app3.ocp.example.com \
do ssh-copy-id -i ~/.ssh/id_rsa.pub $host; \
Done

Listing 6-3(Example) Enable password-less SSH from Bastion

OpenShift Ansible Inventory File
The OpenShift Ansible installer uses a series of Ansible Playbooks to deploy an OpenShift Cluster. Ansible uses a hosts inventory file to group managed target and set variables for Ansible Roles and Playbooks.
This provides the ability to highly customize the deployment of an OpenShift cluster. The official OpenShift inventory9 file documentation provides a list of variables available for the customization of the inventory file. There are far more variables than the ones documented in the referenced document. These are additional variables that can be used to fine-tune an inventory file. These additional customizations are documented in the corresponding section of each one of the feature or capabilities.
The fact that there cannot be a single page with all the possible variables available for customization speaks to the degree of fine-tuning that can be achieved for an OpenShift cluster. At the same time, having too many options may be cumbersome for someone new to OpenShift.
This book describes the configurations for the most common features and the most relevant variables that may be used in the organizations starting with OpenShift. There are multiple approaches for deploying these—from starting with a bare minimum deployment of OCP and enabling features over time to the option of doing a deployment enabling all the desired features at the install time.
The following subsections use a single inventory file enabling the most common features in an OCP cluster at install time. During production configurations, the infrastructure and operations teams can choose a more layered approach for the deployment.
Defining the OpenShift Release
The inventory_file is an Ansible inventory configuration. The first part of it is used to configure some basic information for Ansible itself and for the openshift-ansible playbooks. Lines 13–15 on Figure 6-3 are Ansible parameters to identify the username Ansible will use to connect to the Nodes. This user should be root or have sudo privileges. When using a regular user with sudo privileges, line 15 on Figure 6-3 configures Ansible to use sudo when connecting to the target Node.[image: A478307_1_En_6_Fig3_HTML.jpg]
Figure 6-3Inventory file—defining OpenShift Type and Release

Line 21 on Figure 6-3 is identifying the deployment as OpenShift Container Platform (OCP) by setting the value to openshift-enterprise. When using OKD, this value is set to origin.
Line 27 on Figure 6-3 is identifying the exact subrelease to use. In this example, it is using OCP 3.11.98. This value should be as specific as possible to ease cluster upgrades among minor releases.
Tip
When specifying the OpenShift release, avoid the use of generic version numbers (i.e., 3.11) or generic tags like latest.

Even when considered Technology Preview in OCP 3.11.x, it is recommended to enable the OpenShift Operator Lifecycle Manager (Line 30 on Figure 6-3) to take full advantage of the benefits from the Kubernetes Operators capabilities.
By default OpenShift uses iptables for internal functionalities and Kubernetes resources like firewall, kube-proxy, and Services, among others. By enabling the configuration in line 33 on Figure 6-3, OpenShift can use firewallD instead.

Registry Definitions and Access
During the installation, the openshift-ansible installer pulls a series of Container Images from Red Hat repositories. To access these repositories requires a valid subscription, a service account and subscription (see “Registry Service Account and Token” section at the beginning of this chapter).[image: A478307_1_En_6_Fig4_HTML.jpg]
Figure 6-4Inventory file—Container Registries and Registry Service Account

The
 Registry Service Account

 and the corresponding token should be set in the variables shown in lines 41, 42, and 45 on Figure 6-4.
To support dynamic storage provisioning with OCS or any other supported storage plugin, the configuration in line 62 on Figure 6-4 must be enabled. When dynamic provisioning is not enabled, a user with cluster-admin privileges must manually create and define the Persistent Volumes (PV) resources.

Red Hat OpenShift Container Storage
The Red Hat OpenShift Container Storage (RHOCS or OCS)

 provides Container-native Gluster-based storage. OCS can be deployed during the OCP installation as the default storage class (see line 74 on Figure 6-5).[image: A478307_1_En_6_Fig5_HTML.jpg]
Figure 6-5Inventory file—Red Hat OpenShift Container Storage (RHOCS or OCS)

OCS can be deployed supporting GlusterFS (line 73 on Figure 6-5), Gluster-Block (line 77 on Figure 6-5), and Glusterfs S3 (line 89 on Figure 6-5).
Note
The Gluster-Block and Glusterfs S3 modes require GlusterFS.

The release cadence of OCS is not tied to OCP. When deploying OCS as part of the deployment, it is highly recommended to specify the exact subrelease tag to use for the corresponding service containers (lines 111, 114, 117, and 120 on Figure 6-6).[image: A478307_1_En_6_Fig6_HTML.jpg]
Figure 6-6Inventory file—setting up specific subrelease tag for OCS containers

Web Console Access and Wildcard Apps Domain
The default setup in OCP is for the web console and the Kubernetes API to listen on port 8443 on each Master node. This can be modified to match the standard HTTPS port (see lines 132 and 133 on Figure 6-7).
In addition to the listening port

 , the Master configuration requires an FQDN the Master Node or cluster of Master Nodes (if using multimaster configuration) will answer to handle requests to the API or web consoles. This variable is the openshift_master_cluster_hostname (see line 136 on Figure 6-7). When using a single Master, this value can be the FQDN of the Master Node. When using multimaster configuration, this value must be set to an FQDN that represents all the Masters (usually this can be a Virtual IP or VIP address load balancing the traffic toward the Master Nodes).
When using an external Load Balancer service or device, the FQDN of the northbound VIP address must be specified in the inventory file using the variable openshift_master_cluster_public_hostname (see line 140 on Figure 6-7).[image: A478307_1_En_6_Fig7_HTML.jpg]
Figure 6-7Inventory file—web console and wildcard domains

The OpenShift Routers at Infrastructure Nodes require a wildcard subdomain

 it will use to dynamically build a URL or Route for applications running on the platform and exposing a service outside the cluster (see line 143 on Figure 6-7).

Audit Logs
When audit logs are required as part of the deployment, the inventory file provides a way to enable this functionality with the desired specific configuration (see line 150 on Figure 6-7).

Configuring the SDN
The OpenShift SDN default configuration uses the 10.1.0.0/16 network as the overlay network and 172.30.0.0/16 as the network for the Service Kubernetes resources. These networks can be set to something different before the installation by defining the variables osm_cluster_network_cidr and openshift_portal_net (see lines 156 and 157 on Figure 6-8).[image: A478307_1_En_6_Fig8_HTML.jpg]
Figure 6-8Inventory file—OpenShift SDN parameters

OpenShift SDN supports multiple modes. The recommended OpenShift SDN mode is the OVS with NetworkPolicy support (see line 160 on Figure 6-8).
Alternatively, there are other CNI plugins, like Calico SDN, which can be enabled as the SDN provider (see lines 163–165 on Figure 6-8).

Identity Providers
OpenShift supports multiple identity providers. To prevent installation failures due to missing parameters or configurations with external identity providers, the deployment can use the htpasswd identity provider (line 177 on Figure 6-9) with inline user definitions (line 181 on Figure 6-9) or using an external htpassword file (see line 184 on Figure 6-9).[image: A478307_1_En_6_Fig9_HTML.jpg]
Figure 6-9Inventory file—configuration for identity providers

Cluster Monitoring (Prometheus)
To enable
 Cluster Monitoring

 using the Prometheus Operator, set the openshift_cluster_monitoring_operator_install variable (see line 196 on Figure 6-10).[image: A478307_1_En_6_Fig10_HTML.jpg]
Figure 6-10Inventory file—Cluster Monitoring with Prometheus Operator

Cluster Metrics (EFK Stack) and Logging
The traditional OpenShift
 Cluster Metrics

 are collected by the EFK Stack (ElasticSearch, FluentD, and Kibana). After OCP 3.11, the Hawkular API functionality (see line 225 on Figure 6-11) is being superseded by the Prometheus API.
The Horizontal Pod Autoscaler (HPA) functionality depends on the openshift-metrics-server which is deployed by enabling the metrics install in the inventory file (see line 220 on Figure 6-11).
Note
In OCP 4.x releases, the metrics-server uses metrics from Prometheus instead.

 [image: A478307_1_En_6_Fig11_HTML.jpg]
Figure 6-11Inventory file—Cluster Metrics (with EFK Stack)

Installing the Cluster logging capabilities (line 246 on Figure 6-12) also provides the ability to enable the event-router (line 247 on Figure 6-12) which watches for Kubernetes events and streams them into the ElasticSearch in the EFK Stack.[image: A478307_1_En_6_Fig12_HTML.jpg]
Figure 6-12Inventory file—Cluster Logging

By default, the backend components of the metrics and logging services are deployed to the Infrastructure Nodes. Configuring the variables in lines 225 to 227 and the variables in lines 259 to 262 on Figure 6-12, these components can be deployed to other Nodes.

OpenShift Router and OpenShift Container Registry
The OpenShift Router and the OpenShift Container Registries are deployed to the Infrastructure Nodes. To select different Nodes, specify different Node selectors (see lines 272, 273, and 285 on Figure 6-13).
For the default OpenShift Router configurations, the number of Routers should be equal to the number of Infrastructure Nodes (see line 276 on Figure 6-13).
To determine the number of Container Registry replicas, consult the documentation as it should take the Container backend storage into consideration. If unsure, set it to one (see line 278 on Figure 6-13).
Note
In this case (see line 283 on Figure 6-13), when using Glusterfs as the storage backend for the Container Registry, the storage stores three copies of every container stored in the Registry.

 [image: A478307_1_En_6_Fig13_HTML.jpg]
Figure 6-13Inventory file—OpenShift Router and Registry

OpenShift Service Catalog and Service Brokers
The
 Service Catalog

 (line 292 on Figure 6-14) is required for the Template Service Broker (TSB) (line 296 on Figure 6-14) and the
 Ansible Service Broker (ASB)

 (line 301 on Figure 6-14).[image: A478307_1_En_6_Fig14_HTML.jpg]
Figure 6-14Inventory file—OpenShift Service Catalog and Template Service Broker

OpenShift Nodes
The core definition of the inventory file is the definition of the Nodes and their respective roles. Each Node type configuration is invoked by the definition of the groups in lines 309 to 313 on Figure 6-15. The required section or group definitions are masters, etcd, and nodes.[image: A478307_1_En_6_Fig15_HTML.jpg]
Figure 6-15Inventory file—OpenShift Node definition

The [lb] section and group (lines 309, 315, and 316 on Figure 6-15) are required when deploying a multimaster configuration and using openshift-ansible to deploy and configure the optional software load balancer for the cluster of Master Nodes. Comment this section when using a third-party load balancer or deploying a single Master configuration.
The [masters] and [etcd] sections (lines 318 to 326 on Figure 6-15) must list all the Master Nodes.
Note
The most common configurations use the Master Nodes as the etcd Nodes. Should dedicated etcd Nodes required, they should be listed in the [etcd] section.

The [nodes] section should list all the Master, Infrastructure, and Application Nodes in the cluster. The Master Nodes should be tagged with the node-config-master group name (see details in lines 330 to 332 on Figure 6-15). The Infrastructure Nodes should be tagged with the node-config-infra group name (see details in lines 335 to 337 on Figure 6-15). The Application Nodes should be tagged with the node-config-compute group name (see details in lines 340 to 342 on Figure 6-15).
When deploying OCS in converged or hyperconverged mode, the [glusterfs] section should be defined (see lines 313 and 347 to 351 on Figure 6-15) listing the Nodes providing the raw devices or disks, to be used by OCS (see details in lines 349 to 351 on Figure 6-15).

Sample Deployment Scenarios
Note
This section will focus on three common infrastructure setups (see Table 6-2) and document a prescribed deployment configuration for each one of them. There are many other possible configurations not covered in this book.

 Table 6-2Sample OpenShift 3.11 Deployment Architectures in This Section

	 	Masters
	App Nodes
	Infr Nodes
	LB

	All-in-One
	1
	N/A
	N/A
	N/A

	Non-HA
	1
	3 or more
	1
	N/A

	Full HA
	3
	3 or more
	2 or 3
	1 or more

Single Node Deployment (All-in-One)
Note
This All-in-One (AIO) (see Figure 6-16) is not an officially supported OCP deployment. The AIO configuration is considered a testing or development environment. The Master, Infrastructure and Application Roles are deployed to a single node (see Table 6-3).

 Table 6-3Sample OpenShift 3.11 All-in-One

	Node Role
	FQDN
	Node IP Address

	Master, Infra., and App Nodes
	ocp.example.com
	192.168.1.10

	Bastion
	bastion.ocp.example.com
	192.168.1.5

	
 Apps wildcard domain

	*.apps.ocp.example.com
	CNAME MASTER

 [image: A478307_1_En_6_Fig16_HTML.jpg]
Figure 6-16OCP 3.11.x All-in-One configuration

The All-in-One configuration executes all the OCP roles in a single Node. This particular example is using an internal NFS server as the persistent storage. The openshift-ansible installer will configure additional exports for the NFS based on the inventory file.
The corresponding Ansible inventory file for the All-in-One deployment will be similar to Listing 6-4.
Note
Using NFS as the persistent storage for infrastructure components like Registry, Metrics, Logging, and so on is an unsupported configuration.

 ###
#
All-in-One (AIO) SERVER WITH EMBEDDED NFS:
- assume AIO node name: ocp.example.com
- assume app wildcard name: *.apps.ocp.example.com
- assume NFS server configure to export /srv/nfs
- using docker or CRI-O
#
NOTE 2: Some services have been set to use *ephemeral* storage
#
###
Configuring your inventory file
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html

[OSEv3:vars]

###
Ansible Vars
###
timeout=60
ansible_user=root
#ansible_become=yes

###
OpenShift Basic Vars
###
Deployment type
openshift_deployment_type=openshift-enterprise
#openshift_deployment_type=origin

WARNING: only disable these checks in LAB/TEST environments(Do not use in production)
openshift_disable_check="disk_availability,memory_availability"

OpenShift Version(Always use sub-release for smoother upgrades):
openshift_release=3.11.98

Deploy Operator Lifecycle Manager (Tech Preview)
openshift_enable_olm=true

Enable NFS support for infrastructure components (unsupported)
openshift_enable_unsupported_configurations=true

###
Enable CRI-O

###

#openshift_use_crio=True
#openshift_use_crio_only=False
#openshift_crio_enable_docker_gc=True

###
OpenShift Registries Locations
###

NOTE: Need credentials from: https://access.redhat.com/terms-based-registry/
oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg_auth_user={{REGISTY_USER}}
oreg_auth_password={{REGISTRY_TOKEN}}

For Operator Framework Images
openshift_additional_registry_credentials=[{'host':'registry.connect.redhat.com','user':'{{REGISTY_USER}}','password':'{{REGISTRY_TOKEN}}','test_image':'mongodb/enterprise-operator:0.3.2'}]

Update examples to point to oreg_url
NOTE: change this if using disconnected install
openshift_examples_modify_imagestreams=false

NOTE: accept insecure registries and registries with self-signed certs
setup for lab environment

openshift_docker_hosted_registry_insecure=true

###
OpenShift Master Vars
###

openshift_master_api_port=8443
openshift_master_console_port=8443

Internal cluster name
openshift_master_cluster_hostname=ocp.example.com

Default wildcard domain for applications
openshift_master_default_subdomain=apps.ocp.example.com

###
OpenShift Network Vars
###
Defaults
#osm_cluster_network_cidr=10.1.0.0/16
#openshift_portal_net=172.30.0.0/16

os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

###
OpenShift Authentication Vars
###

htpasswd Authentication(Non-Priviledge UI User until formal identity provider is used. For now htpasswd identity provider)
NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

Using an external htpasswd file use this:
#openshift_master_htpasswd_file=/home/cloud-user/htpasswd.openshift

Embedding users in the configuration file use this syntax
Note: user==password for this example
openshift_master_htpasswd_users={'ocpadmin':'$apr1$ZuJlQr.Y$6abuePAhKG0iY8QDNWoq80','developer':'$apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew.'}

###
OpenShift Metrics and Logging Vars
###

#########################
Prometheus Cluster Monitoring
#########################
https://github.com/openshift/openshift-docs/blob/master/install_config/monitoring/configuring-openshift-cluster-monitoring.adoc
https://github.com/openshift/openshift-docs/tree/enterprise-3.11/install_config/monitoring

openshift_cluster_monitoring_operator_install=true
#openshift_prometheus_node_selector={"node-role.kubernetes.io/infra":"true"}

NOTE: Setup for lab environment
Enable persistent storage of Prometheus time-series data (default false)
openshift_cluster_monitoring_operator_prometheus_storage_enabled=false
Enable persistent storage of Alertmanager notifications (default false)
openshift_cluster_monitoring_operator_alertmanager_storage_enabled=false

########################
Cluster Metrics
########################
https://github.com/openshift/openshift-docs/blob/enterprise-3.11/install_config/cluster_metrics.adoc

openshift_metrics_install_metrics=true

Store Metrics for 1 days
openshift_metrics_duration=1

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_nfs_directory=/srv/nfs
openshift_metrics_storage_nfs_options='*(rw,root_squash)'
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=10Gi
openshift_metrics_storage_labels={'storage': 'metrics'}

cassandra -- ephemeral storage (for testing)
openshift_metrics_cassandra_storage_type=emptydir
openshift_metrics_cassandra_replicas=1
openshift_metrics_cassandra_limits_memory=2Gi
openshift_metrics_cassandra_limits_cpu=800m
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"}

hawkular
openshift_metrics_hawkular_limits_memory=2Gi
openshift_metrics_hawkular_limits_cpu=800m
openshift_metrics_hawkular_replicas=1
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"}

heapster
openshift_metrics_heapster_limits_memory=2Gi
openshift_metrics_heapster_limits_cpu=800m
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"}

########################
Cluster Logging
########################
https://github.com/openshift/openshift-docs/blob/enterprise-3.11/install_config/aggregate_logging.adoc

install logging
openshift_logging_install_logging=true

logging curator
openshift_logging_curator_default_days=1
openshift_logging_curator_cpu_limit=500m
openshift_logging_curator_memory_limit=1Gi
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"}

Configure a second ES+Kibana cluster for operations logs
Fluend splits the logs accordingly
openshift_logging_use_ops=false

Fluentd
openshift_logging_fluentd_cpu_limit=500m
openshift_logging_fluentd_memory_limit=1Gi
collect audit.log to ES
openshift_logging_fluentd_audit_container_engine=false

persistent storage for logs
openshift_logging_storage_kind=nfs
openshift_logging_storage_access_modes=['ReadWriteOnce']
openshift_logging_storage_nfs_directory=/srv/nfs
openshift_logging_storage_nfs_options='*(rw,root_squash)'
openshift_logging_storage_volume_name=logging
openshift_logging_storage_volume_size=10Gi
openshift_logging_storage_labels={'storage': 'logging'}

eventrouter
openshift_logging_install_eventrouter=true
openshift_logging_eventrouter_nodeselector={"node-role.kubernetes.io/infra": "true"}

Elasticsearch (ES)
ES cluster size (HA ES >= 3)
openshift_logging_es_cluster_size=1
replicas per shard
#openshift_logging_es_number_of_replicas=1
shards per index
#openshift_logging_es_number_of_shards=1
openshift_logging_es_cpu_limit=500m
openshift_logging_es_memory_limit=1Gi
PVC size omitted == ephemeral vols are used

#openshift_logging_es_pvc_siz=10G
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}

Kibana
openshift_logging_kibana_cpu_limit=500m
openshift_logging_kibana_memory_limit=1Gi
openshift_logging_kibana_replica_count=1
expose ES? (default false)
openshift_logging_es_allow_external=false
openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}

###
OpenShift Router and Registry Vars
###

NOTE: Qty should NOT exceed the number of infra nodes
openshift_hosted_router_replicas=1

openshift_hosted_registry_replicas=1
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_nfs_directory=/srv/nfs
openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi

openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###
OpenShift Service Catalog Vars
###

default=true
openshift_enable_service_catalog=true

default=true
template_service_broker_install=true
openshift_template_service_broker_namespaces=['openshift']

default=true
ansible_service_broker_install=true
ansible_service_broker_local_registry_whitelist=['.*-apb$']

###
OpenShift Cockpit Vars and plugins
###

Disable cockpit
osm_use_cockpit=false

###
OpenShift Hosts
###
[OSEv3:children]
nfs
masters
etcd
nodes

[nfs]
ocp.example.com

[masters]
ocp.example.com

[etcd]
ocp.example.com

[nodes]
All-In-One with CRI-O
#ocp.example.com openshift_node_group_name='node-config-all-in-one-crio' openshift_node_problem_detector_install=true
ocp.example.com openshift_node_group_name='node-config-all-in-one' openshift_node_problem_detector_install=true

#
END OF FILE
#

Listing 6-4Ansible inventory file for All-in-One deployment

Non-HA Control Plane Deployment

 Table 6-4Sample OpenShift 3.11 Non-HA Control Plane

	Node Role
	FQDN
	Node IP Address

	Master
	ocp.example.com
	192.168.1.10

	Infr Node
	inf1.ocp.example.com
	192.168.1.15

	App Node
	node1.ocp.example.com
	192.168.1.21

	App Node
	node2.ocp.example.com
	192.168.1.22

	App Node
	node3.ocp.example.com
	192.168.1.23

	Bastion
	bastion.ocp.example.com
	192.168.1.5

	
 Apps wildcard domain

	*.apps.ocp.example.com
	CNAME INFR NODE

 [image: A478307_1_En_6_Fig17_HTML.jpg]
Figure 6-17OCP 3.11.x Non-HA Control Plane configuration

 # Use the inventory file from Listing 6-6 with the following modifications
#<snip>
###
OpenShift Master Vars
###
#<snip>
Internal cluster name
openshift_master_cluster_hostname=ocp.example.com

#<snip>
#openshift_master_cluster_public_hostname=ocp-ext.example.com

#<snip>
NOTE: Qty should match number of infra nodes
openshift_hosted_router_replicas=1

#<snip>
[OSEv3:children]
#lb
masters
etcd
nodes
glusterfs

#[lb]
#lb1.example.com

[masters]
ocp.example.com
[etcd]
ocp.example.com
[nodes]
Master Nodes
ocp.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true
Infrastructure Nodes
inf1.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true

#<snip>
#
END OF FILE
#

Listing 6-5Ansible Inventory file for Non-HA Control Plane deployment (fragment)

Full-HA Control Plane Deployment

 Table 6-5Sample OpenShift 3.11 Full-HA Control Plane

	Node Role
	FQDN
	Node IP Address

	LB
	lb.ocp.example.com
	192.168.1.10

	(public_hostname)
	console.ocp.example.com
	CNAME LB (outside)

	(cluster_hostname)
	ocp-int.ocp.example.com
	CNAME LB (inside)

	Master Node
	master1.ocp.example.com
	192.168.1.11

	Master Node
	master2.ocp.example.com
	192.168.1.12

	Master Node
	master3.ocp.example.com
	192.168.1.13

	Infr Node
	inf1.ocp.example.com
	192.168.1.15

	Infr Node
	inf2.ocp.example.com
	192.168.1.16

	Infr Node
	inf3.ocp.example.com
	192.168.1.17

	App Node
	node1.ocp.example.com
	192.168.1.21

	App Node
	node2.ocp.example.com
	192.168.1.22

	App Node
	node3.ocp.example.com
	192.168.1.23

	App Node
	nodeX.ocp.example.com
	192.168.1.XX

	Bastion
	bastion.ocp.example.com
	192.168.1.5

	
 Apps wildcard domain

	*.apps.ocp.example.com
	CNAME ENT LB

 [image: A478307_1_En_6_Fig18_HTML.jpg]
Figure 6-18OCP 3.11.x Full-HA Control Plane configuration

 #
openshift-ansible inventory file for OpenShift Container Platform 3.11.98
#

Details on configuring your inventory file
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html

[OSEv3:vars]

###
Ansible Vars
###
timeout=60
ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}
ansible_become=yes

###
OpenShift Basic Vars
###
Deployment type
openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments
#openshift_disable_check="disk_availability,memory_availability"

OpenShift Version:
openshift_release=3.11.98

Deploy Operator Lifecycle Manager (OLM)
openshift_enable_olm=true

firewalld recommended for new installations (default is iptables)
#os_firewall_use_firewalld=true

###
OpenShift Registries Locations
###

NOTE: Need credentials from: https://access.redhat.com/terms-based-registry/
oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}
oreg_auth_password={{CHANGEME_SERVICE_KEY}}

For Operator Framework Images
openshift_additional_registry_credentials=[{'host':'registry.connect.redhat.com','user':'{{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}','password':'{{CHANGEME_SERVICE_KEY}}','test_image':'mongodb/enterprise-operator:0.3.2'}]

NOTE: accept insecure registries and registries with self-signed certs
setup for lab environment
openshift_docker_hosted_registry_insecure=true
#openshift_docker_insecure_registries=<registry_hostname>
#openshift_docker_blocked_registries=<registry_hostname>

Update examples to point to oreg_url -- enable if using disconnected install
#openshift_examples_modify_imagestreams=false

###
Enable dynamic storage provisioning
###
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/dynamically_provisioning_pvs.html
Note: required for OCS dynamic provisioning

openshift_master_dynamic_provisioning_enabled=true

###
OpenShift Container Storage (OCS)
###
https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

Deploy OCS glusterfs and create StorageClass
Note: default namespace = glusterfs
#openshift_storage_glusterfs_namespace=openshift-storage

openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=true

Enable Glusterfs Block Storageclass
openshift_storage_glusterfs_block_deploy=false
#openshift_storage_glusterfs_block_host_vol_create=true
NOTE: host_vol_size is effectively an upper limit on the size of glusterblock volumes
unless you manually create larger GlusterFS block-hosting volumes
#openshift_storage_glusterfs_block_host_vol_size=100
#openshift_storage_glusterfs_block_storageclass=true
#openshift_storage_glusterfs_block_storageclass_default=false

#
Enable Glusterfs S3 (Tech Preview)
#

#openshift_storage_glusterfs_s3_deploy=true
#openshift_storage_glusterfs_s3_account=s3testvolume
#openshift_storage_glusterfs_s3_user=s3adminuser
#openshift_storage_glusterfs_s3_password=s3adminpass
#openshift_storage_glusterfs_s3_pvc=dynamic
Size (Gi) of glusterfs backed PVC used for S3 object data storage
#openshift_storage_glusterfs_s3_pvc_size=2
Size (Gi) of glusterfs backed PVC used for S3 object metadata storage
#openshift_storage_glusterfs_s3_meta_pvc_size=1

GlusterFS version
openshift_storage_glusterfs_version=v3.11
openshift_storage_glusterfs_block_version=v3.11
openshift_storage_glusterfs_s3_version=v3.11
openshift_storage_glusterfs_heketi_version=v3.11

NOTE: https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#install-advanced-installer

NOTE: Using specific sub-releases tags for fixed bugs
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/rhgs3/rhgs-server-rhel7

Container image to use for glusterfs pods
openshift_storage_glusterfs_image="registry.access.redhat.com/rhgs3/rhgs-server-rhel7:v3.11.2"

Container image to use for glusterblock-provisioner pod
openshift_storage_glusterfs_block_image="registry.access.redhat.com/rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.2"

Container image to use for Gluster S3
openshift_storage_glusterfs_s3_image="registry.redhat.io/rhgs3/rhgs-s3-server-rhel7:v3.11.2"

Container image to use for heketi pods
openshift_storage_glusterfs_heketi_image="registry.access.redhat.com/rhgs3/rhgs-volmanager-rhel7:v3.11.2"

If using a dedicated glusterfs_registry storage cluster
openshift_storage_glusterfs_registry_version=v3.11
openshift_storage_glusterfs_registry_block_version=v3.11
openshift_storage_glusterfs_registry_s3_version=v3.11
openshift_storage_glusterfs_registry_heketi_version=v3.11

###
OpenShift Master Vars
###

openshift_master_api_port=443
openshift_master_console_port=443

Internal cluster name
openshift_master_cluster_hostname=ocp-int.example.com

Note: use if using different internal & external FQDN (i.e. using LB)
set the external cluster name here
openshift_master_cluster_public_hostname=ocp-ext.example.com

NOTE: Specify default wildcard domain for applications
openshift_master_default_subdomain=apps.example.com

Configure custom certificates
https://docs.openshift.com/container-platform/3.11/install_config/certificate_customization.html

Audit log
https://docs.openshift.com/container-platform/3.11/install_config/master_node_configuration.html#master-node-config-audit-config
openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/audit-ocp.log", "maximumFileRetentionDays": 7, "maximumFileSizeMegabytes": 10, "maximumRetainedFiles": 3}

###
OpenShift Network Vars
###
Defaults
#osm_cluster_network_cidr=10.1.0.0/16
#openshift_portal_net=172.30.0.0/16

OpenShift SDN with NetworkPolicy
os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

If using Calico SDN
#os_sdn_network_plugin_name=cni
#openshift_use_calico=true
#openshift_use_openshift_sdn=false

###
OpenShift Authentication Vars
###
Available Identity Providers
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html

#########################
htpasswd Authentication
#########################
NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

To define initial users directly in the inventory file:
Note: user==password for this example
openshift_master_htpasswd_users={'ocpadmin':'$apr1$ZuJlQr.Y$6abuePAhKG0iY8QDNWoq80','developer':'$apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew.'}

To use external htpassword file:
#openshift_master_htpasswd_file=/root/htpasswd.openshift

###
OpenShift Cluster Monitoring, Metrics and Logging Vars
###

#########################
Cluster Monitoring
#########################
https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monitoring.html

Enable Prometheus, Grafana & Alertmanager
openshift_cluster_monitoring_operator_install=true
openshift_cluster_monitoring_operator_node_selector={"node-role.kubernetes.io/infra":"true"}

Setup storage allocation for Prometheus services
openshift_cluster_monitoring_operator_prometheus_storage_capacity=20Gi
openshift_cluster_monitoring_operator_alertmanager_storage_capacity=2Gi

Enable persistent dynamic storage for Prometheus services
openshift_cluster_monitoring_operator_prometheus_storage_enabled=true
openshift_cluster_monitoring_operator_alertmanager_storage_enabled=true

Storage class to use if persistent storage enabled
NOTE: it will use storageclass default if storage class not specified
#openshift_cluster_monitoring_operator_prometheus_storage_class_name='glusterfs-storage-block'
#openshift_cluster_monitoring_operator_alertmanager_storage_class_name='glusterfs-storage-block'

For custom config Alertmanager
https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monitoring.html#configuring-alertmanager

########################
Cluster Metrics
########################

Deploy Metrics Server (used by HPA)
openshift_metrics_install_metrics=true

Start metrics cluster after deploying the components
openshift_metrics_start_cluster=true

openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"}

Store Metrics for 2 days
openshift_metrics_duration=2

Settings for Lab environment
openshift_metrics_cassandra_pvc_size=10Gi
openshift_metrics_cassandra_replicas=1
openshift_metrics_cassandra_limits_memory=2Gi
openshift_metrics_cassandra_limits_cpu=1000m

User gluster-block or glusterfs (dynamic)
#openshift_metrics_cassandra_pvc_storage_class_name='glusterfs-storage-block'
openshift_metrics_cassandra_storage_type=dynamic

########################
Cluster Logging
########################

openshift_logging_install_logging=true
openshift_logging_install_eventrouter=true

openshift_logging_es_pvc_dynamic=true
openshift_logging_es_pvc_size=20Gi
#openshift_logging_es_pvc_storage_class_name='glusterfs-storage-block'

openshift_logging_es_memory_limit=4Gi
openshift_logging_es_cluster_size=1

minimum age (in days) Curator uses for deleting log records
openshift_logging_curator_default_days=1

openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_eventrouter_nodeselector={"node-role.kubernetes.io/infra": "true"}

NOTE: If want to config a dedicated Elasticsearch for operation logs
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#aggregated-ops

###
OpenShift Router and Registry Vars
###

default selectors for router and registry services
openshift_router_selector='node-role.kubernetes.io/infra=true'
openshift_registry_selector='node-role.kubernetes.io/infra=true'

NOTE: Qty should match number of infra nodes
openshift_hosted_router_replicas=3

openshift_hosted_registry_replicas=1
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true

openshift_hosted_registry_storage_kind=glusterfs
openshift_hosted_registry_storage_volume_size=10Gi
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###
OpenShift Service Catalog
###

Servie Catalog
openshift_enable_service_catalog=true

Template Service Broker (TSB)
Note: requires Service Catalog
template_service_broker_install=true
openshift_template_service_broker_namespaces=['openshift']

Ansible Service Broker (ASB)
Note: requires TSB
ansible_service_broker_install=true
ansible_service_broker_local_registry_whitelist=['.*-apb$']

###
OpenShift Hosts
###

[OSEv3:children]
lb
masters
etcd
nodes
glusterfs

[lb]
lb1.example.com

[masters]
master1.example.com
master2.example.com
master3.example.com

[etcd]
master1.example.com
master2.example.com
master3.example.com

[nodes]
Master Nodes
master1.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true
master2.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true
master3.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true

Infrastructure Nodes
inf1.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true
inf2.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true
inf3.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true

App/Worker nodes
node1.example.com openshift_node_group_name='node-config-compute' openshift_node_problem_detector_install=true
node2.example.com openshift_node_group_name='node-config-compute' openshift_node_problem_detector_install=true
node3.example.com openshift_node_group_name='node-config-compute' openshift_node_problem_detector_install=true

Node Groups and custom Node Groups
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html#configuring-inventory--node-group-configmaps

[glusterfs]
App/Worker nodes with OCS hyperconverged
node1.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'
node2.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'
node3.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'

#
END OF FILE
#

Listing 6-6Ansible inventory file for Full-HA Control Plane deployment

Deploying OpenShift
Once the openshift-ansible inventory file is defined, the process to install OpenShift from the Bastion Node is as shown in Listing 6-7.
 # The following steps assume the openshift-inventory file configuration is saved as ./inventory_file in the local directory

 # Step 1: Validate Bastion Node can reach all the Nodes

$ ansible all -i inventory_file -m ping

 # Step 2: Once Step 1 completes without errors, install pre-requisites

$ ansible-playbook -i inventory_file /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

 # Step: 3: Once Step 2 completes without errors, deploy the OpenShift cluster

$ansible-playbook -i inventory_file /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

Listing 6-7
 Deploying OpenShift

Tip
If the installation process fails during the initial deployment, it is recommended to follow the uninstall procedure, correct the inventory file, and redeploy again.

Uninstalling OpenShift
The openshift-ansible provides playbooks to uninstall an OpenShift deployment. To remove any traces of OpenShift, follow the steps described in Listing 6-8.
Tip
If the installation process fails during the initial deployment, it is recommended to uninstall and redeploy again.

 # The following steps assume the openshift-inventory file configuration is saved as ./inventory_file in the local directory

 # Step 1: Uninstall the OpenShift deployment

 and delete data on OCS disks.

ansible-playbook -i inventory_file -e "openshift_storage_glusterfs_wipe=true" /usr/share/ansible/openshift-ansible/playbooks/adhoc/uninstall.yml

 # Step 2: Remove any leftovers configuration files

ansible nodes -i inventory_file -m file -a "dest=/etc/origin state=absent"

 #(optional): If the installation was using 3rd party CNI plugins remove any leftovers from the CNI configuration

ansible nodes -i inventory_file -m file -a "dest=/etc/cni state=absent"

Listing 6-8Uninstalling OpenShift

Bastion Node as Admin Jumphost
Once the deployment is completed, OpenShift has a special account “system:admin” with cluster-admin privileges that can be used to configure the platform. By default, this privileged account is only available when logged in as root to a Master Node.
To use the Bastion Node for cluster-admin configurations, it is possible to copy the certificate credentials (/root/.kube/config) from a Master Node into the Bastion Node to enable the use of the “system:admin” account from the Bastion Node. Listing 6-9 documents a way to copy these credentials to the Bastion Node using the information from the inventory file.
 # The following step assume the openshift-inventory file configuration is saved as ./inventory_file in the local directory

$ ansible -i inventory_file masters[0] -b -m fetch -a "src=/root/.kube/config dest=/root/.kube/config flat=yes"

Listing 6-9Bastion Node

OpenShift 4.x Deployments (AWS)
The examples in this section have been tested and validated with OpenShift (OCP) 4.0 Developer Preview 3 on AWS.
Prerequisites
OpenShift 4.0 on AWS requires minimum preparation of the AWS environment.

 	1.Create a new DNS zone for OCP in AWS Route5310 service.	a.Note: Entries created in the Route53 zone are expected to have full resolution from the Nodes.

	2.Prepare Bastion Node.	a.Configure the AWS credentials in the Bastion Node as per AWS CLI11 documentation.

	b.Test the AWS configuration executing a query to validate the DNS zone is listed of the following command:	i.aws route53 list-hosted-zones

	c.Download the OpenShift 4 installer12 from the OpenShift portal.	i.At the time of this writing, the official portal to download the installer is
 https://cloud.openshift.com/clusters/install

	ii.Note: The OpenShift 4 installer is a single Go binary that can be executed from any Linux or MacOS machine.

	d.Download the Pull Secret for the OpenShift subscriptions.	i.At the time of this writing, the Pull Secret is generated and available at the Developer Preview site:
 https://cloud.openshift.com/clusters/install

	e.Download and install the OpenShift 4 client (the oc client) from the official mirror13 site.

OpenShift 4.x Deployment Architecture
The OpenShift 4.x deployment architecture uses the openshift-install command to deploy OCP 4.x to the desired environment using one of two modes:	
 User Provisioned Infrastructure (UPI)

 : In this mode, the Nodes are manually provisioned with a set of prerequisites. Then, by a configuration process that has not been published, feed this information to the openshift-install for it to deploy the OpenShift cluster.	At the time of this writing, this mode is not yet available under the Developer Preview release.

	
 Installer Provisioned Infrastructure (IPI)

 : In this mode, the Nodes are provisioned by the installer, and OpenShift is deployed as a series of Kubernetes Operators on top of the provisioned Nodes.	During the IPI installation, the installer provisions a bootstrap Node it will use to instantiate the Master Nodes and the Worker Nodes. Once the cluster is instantiated, the bootstrap Node is destroyed.

OCP4 Deployment to AWS (IPI Mode)
When deploying OCP4 into AWS, it uses the IPI mode. By default, this process deploys an architecture of three Master Nodes and three Worker Nodes. The deployment automatically distributes these Nodes across different AWS Availability Zones (AZ) in the same AWS Region (see Figure 6-19).[image: A478307_1_En_6_Fig19_HTML.jpg]
Figure 6-19OCP4 Deployment to AWS (IPI Mode)

Note
In OCP4 the Application Nodes are known as Worker Nodes. Both terms are interchangeable.

As seen in Figure 6-19, the basic deployment does not use dedicated Infrastructure Nodes and instead deploys two OpenShift Router instances into the Worker Nodes. The Service resource definition for the Routers uses the Kubernetes LoadBalancer resource to provision a classic AWS ELB load balancer to distribute the traffic among the OpenShift Routers. This ELB receives the HTTP and HTTPS traffic to applications served by the wildcard subdomain.
Note
The wildcard subdomain is automatically configured by the installer following the format *.apps.<ocp-route53-dns-zone>

Another difference from the OCP 3.11.x architecture is that only the Kubernetes API server is exposed to the outside world directly from the Master Nodes. All other services, including the Web Consoles, are published as Routes.
Note
There is an openshift-config-server service that is accessible directly on Master Nodes but, when using IPI mode, this is not exposed outside the cluster.

Installing OCP4 on AWS
Standard Deployment
The standard OCP4 deployment is the single liner described in Listing 6-10 which will prompt for basic information and proceed with the deployment.
 # Assuming prerequisites in place.

$ openshift-install create cluster
? SSH Public Key /Users/wcabanba/.ssh/id_rsa.pub
? Platform aws
? Region us-west-2
? Base Domain example.com
? Cluster Name ocp4demo1
? Pull Secret [? for help] ****<snip>*******
INFO Creating infrastructure resources...
INFO Waiting up to 30m0s for the Kubernetes API at https://api.ocp.example.com:6443...
INFO API v1.12.4+0ba401e up
INFO Waiting up to 30m0s for the bootstrap-complete event...
INFO Destroying the bootstrap resources...
INFO Waiting up to 30m0s for the cluster at https://api.ocp.example.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO Run 'export KUBECONFIG=/path/to/ocp4demo1/auth/kubeconfig' to manage the cluster with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <snip>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.ocp.example.com
INFO Login to the console with user: kubeadmin, password: <snip>

Listing 6-10Installing OpenShift 4 (standard)

Customizing Standard Deployment
There is some minor customization possible by generating the installer configuration file and editing parameters on it before running the installation.
The OCP4 installer provides the --dir flag to read or write the configuration parameters to it. This provides a way to maintain multiple configurations on different folders. To generate the installation configuration, follow the steps in Listing 6-11.
 # Assuming prerequisites in place.

$ openshift-install create install-config --dir ocp4demo1
? SSH Public Key /Users/wcabanba/.ssh/id_rsa.pub
? Platform aws
? Region us-west-2
? Base Domain example.com
? Cluster Name ocp
? Pull Secret [? for help] ****<snip>*******

Listing 6-11Generating the OCP4 installation file

This command will prompt for any missing information it requires to generate the configuration. The resulting configuration is similar to Listing 6-12.apiVersion: v1beta4

 baseDomain: example.com

compute:
- name: worker
 platform: {}
 replicas: 3
controlPlane:
 name: master
 platform: {}
 replicas: 3
metadata:
 creationTimestamp: null
 name: ocp
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineCIDR: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: us-west-2
 type: m4.large
pullSecret: <snip>
sshKey: |
 ssh-rsa <snip>

Listing 6-12The OCP4 installation file

From the output shown in Listing 6-12, it is relatively easy to identify core areas that can be modified. From the output, it is clear where to change the number of replicas to have more workers or change the Workers instance type. Additional customization attributes can be found in the official OCP4 documentation.14.
To deploy using the customization, point the installer to the directory when executing the installation. The exact flags when invoking the command are shown in Listing 6-13.
 # Assuming prerequisites are in place

$ openshift-install create cluster --dir ocp4demo1
INFO Consuming "Install Config" from target directory
INFO Creating infrastructure resources.
<snip>

Listing 6-13The deploying OCP4 with customizations

The rest of the output and process is similar to the one shown in Listing 6-10.

Deployment Progress
As part of the initial configuration for the environment, the installer extends the DNS zone on AWS Route53 designated for OCP (see #1 on Figure 6-20) and creates a subdomain for the new cluster using the cluster name as the subdomain (see #2 on Figure 6-20).
In addition to the default AWS resources in the VPC (see #3 on Figure 6-20), the installer allocates Elastic IPs, creates an ELB load balancer, and creates security groups for the Nodes (see #4 on Figure 6-20).[image: A478307_1_En_6_Fig20_HTML.jpg]
Figure 6-20OCP4 installation—allocating subdomain and EC2 resources

The installer continues by creating the Bootstrap and Master Nodes (see #1 on Figure 6-21). The process takes several minutes.[image: A478307_1_En_6_Fig21_HTML.jpg]
Figure 6-21OCP4 installation—BootStrap and Master Nodes

[image: A478307_1_En_6_Fig22_HTML.jpg]
Figure 6-22OCP4 installation—Worker Nodes

Once the Checks under Status Checks are successful and all the instances in running state (see #3 on Figure 6-21), the installer proceeds with the instantiation of the Worker Nodes (see #1 on Figure 6-22).
After the Worker Nodes are in running state and have passed the Status Checks (see #3 on Figure 6-22), it proceeds to terminate the Bootstrap Node (see #4 on Figure 6-22).

Configuring the Identity Provider
Once the cluster is successfully deployed, the installer displays the credentials for the kubeadmin user (see Listing 6-10). This is a cluster-admin user equivalent to the system:admin user in the OCP3.11.x clusters, but the kubeadmin user can log in to the web console.
In OCP4, this is the user that configures and sets up the environment to enable other services or functionalities. To enable other users to access the new OCP cluster, the kubeadmin user must define a new identity provider.
Identify the console URL returned by the installer (see Listing 6-10) and access it using a browser (see Figure 6-23).[image: A478307_1_En_6_Fig23_HTML.jpg]
Figure 6-23OCP4 login screen—kubeadmin

While no identity provider is configured, when logged in as kubeadmin, there will be a message indicating the need to configure an identity provider (see #2 on Figure 6-24).[image: A478307_1_En_6_Fig24_HTML.jpg]
Figure 6-24OCP4 OAuth configuration

From the same message, there is a link to the OAuth configuration (see #3 on Figure 6-24).
At the OAuth configuration, the existing identity provider can be modified or a new identity provider can be added (see Figure 6-25). At the time of this writing, the Developer Preview version provides a wizard to configure the htpasswd and the OpenID identity providers.[image: A478307_1_En_6_Fig25_HTML.jpg]
Figure 6-25OCP4 adding identity provider

To add the htpasswd identity provider, select from the dropdown options (see Figure 6-25), and a simple screen will provide a way to set up the name for the identity provider and to upload the htpasswd file with the new user identities (see Figure 6-26).
The uploaded htpasswd file is converted into a Secret object and associated to the corresponding identity provider resource definition (see Figure 6-26).[image: A478307_1_En_6_Fig26_HTML.jpg]
Figure 6-26OCP4 configuring htpasswd identity provider

After a new identity provider is added to the system, the login screen will present the options for a user to choose the identity provider they want to use to log in to the platform.[image: A478307_1_En_6_Fig27_HTML.jpg]
Figure 6-27OCP4 login screen with htpasswd identity provider

Summary
There are many ways to deploy OpenShift 3.11.x and OpenShift 4 clusters. This chapter presented the most common scenarios that can be used to start deploying OpenShift clusters.
With OCP 3.11.x, there is the option of using a huge single inventory file to set up the parameters and features required for the deployment. The deployment model of OCP 3.11.x requires the pre-provisioning of the Nodes before starting a deployment. This model allows for the cluster administrators to have fine control of the deployment and features to enable since the very beginning.
OCP 4.x brings a paradigm shift which focuses on deploying the core components in an HA configuration without much customization during the installation. Once the cluster is operational, the cluster-admin user kubeadmin can be used to configure and set up the parameters for all the features and elements required by the implementation.
Both deployment approaches have their advantages and disadvantages. Independent from the deployment methodology, both provide ways to highly customize the environment to fit the organization’s need.
Once the cluster is deployed, new users can be created, and further tuning of the platform is possible. OpenShift supports granular role-based access control (RBAC) capabilities while supporting self-service for regular users. These and other administrative tasks are covered in Chapter 7.

Footnotes
1For details about the latest 3.11.x release, visit
 https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-3-11-98

2For information of and to download the Red Hat CDK, refer to
 https://developers.redhat.com/products/cdk/overview/

3The upstream Minishift project documentation is available at
 https://github.com/minishift/minishift/releases
 <Para ID="Par17">The Red Hat CDK documentation is available at (requires access to the Red Hat portal)
 https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.7/

4Upstream Minishift documentation:
 https://docs.okd.io/latest/minishift/getting-started/index.html

5For details about the latest 3.11.x releases, visit
 https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html

6OpenShift prerequisites:
 https://docs.openshift.com/container-platform/3.11/install/prerequisites.html

7OpenShift supports deployment across multiple networks. There must be unrestricted reachability among the nodes for a deployment across networks. To avoid issues with external routing or firewalls, this section assumes the nodes are in the same network.

8Disconnected install is possible following the official documentation:
 https://docs.openshift.com/container-platform/3.11/install/disconnected_install.html

9For additional details on how to configure the inventory file, visit the official documentation at
 https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html

10AWS Route53:
 https://console.aws.amazon.com/route53

11AWS CLI Configuration:
 https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration

12The latest beta installer is available at
 https://github.com/openshift/installer/releases

13OpenShift 4 client can be downloaded from
 https://mirror.openshift.com/pub/openshift-v4/clients/oc/4.1/

14AWS Customizations:
 https://docs.openshift.com/container-platform/4.0/installing/installing_aws/installing-aws-customizations.html

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_7

7. Administration

William Caban1
(1)Columbia, MD, USA

After deploying OpenShift platform as presented in Chapter 6, the administrative tasks of the platform start. The interaction with an OpenShift cluster is governed by the role-based access control (RBAC) objects. The RBAC determines whether a User is authorized to perform a given action within a Project. A User is an account that is used to interact with the OpenShift API. A User will be associated to one or more Groups that are used to assign privileges to multiple users at the same time.
This chapter focuses on the main tasks of user management (basic user management, groups, virtual users, and service accounts), security, quotas, and templates, which are powerful features for enabling self-service capabilities.
User and Groups
There are several types of users in OpenShift. The default user types are documented in Table 7-1.Table 7-1OpenShift Virtual Groups

	User Type
	Description

	Regular users
	Regular users are represented by the User object. This is the most common way users interact with OpenShift.

	System users
	This type of user is usually created automatically during the deployment and is used by the platform to interact with the OpenShift API.

	Service accounts
	The service accounts users are represented by the ServiceAccount object. These are special system users associated with projects. The service accounts can be created automatically during Project creation or by a Project administrator.

Examples of some of the
 system users

 created during the deployment of OpenShift are	Cluster administrators (i.e., system:admin)

	Per-node users (i.e., system:node:node1.​ocp.​example.​com)

	An anonymous user (system:anonymous)

During the creation of a new Project, OpenShift creates three service accounts that are used when executing certain actions in the Project:	system:serviceaccount:<project-name>:deployer

	system:serviceaccount:<project-name>:builder

	system:serviceaccount:<project-name>:default

To access OpenShift, every user must be authenticated (i.e., using access tokens, certificates, etc.). The policy associated to the User object determines what the user is authorized to do in the cluster. When the user is authenticated, the policy associated to the User dictates the authorizations. When the API receives a request with no authentication or invalid authentication, these requests are processed as a request by the anonymous user system:anonymous.

Virtual Groups and Virtual Users
OpenShift provisions a series of system groups as the base classification for any user interacting with the platform. These special groups are referred to as
 Virtual Groups

 . Similarly, there is a special
 Virtual User

 used to identify for anonymous interactions. Table 7-2 lists the Virtual Groups and Virtual Users.Table 7-2OpenShift Virtual Groups

	Virtual Group or Virtual User
	Description

	system:authenticated
	This Virtual Group represents all the authenticated users.

	system:authenticated:oauth
	This Virtual Group represents authenticated users with an OAuth access token.

	system:unauthenticated
	This Virtual Group represents all the unauthenticated users.

	system:anonymous
	This Virtual User is used in conjunction with the system:unauthenticated Virtual Group to represent an unauthenticated user interacting with the OpenShift API.

Authentication, Authorization, and OpenShift RBAC
The OpenShift Master has a built-in OAuth server1 used by the users to obtain an access token to interact with the API. The request for an OAuth token must specify the OAuth client that will receive and use the token (see Table 7-3).Table 7-3OpenShift OAuth Clients

	OAuth Clients
	Description

	openshift-web-console
	Request tokens to use for the web console

	openshift-browser-client
	Token requests at https://<master>/oauth/token/request with a user-agent that can handle interactive logins

	openshift-challenging-client
	Token requests with a user-agent that supports OAuth WWW-Authenticate challenges.

When a new OAuth Token request arrives to the OAuth server (#2 on Figure 7-1), the OAuth server uses the identity provider to determine the identity of the user making the request (#3 on Figure 7-1). Once the user identity is established, it maps the identity to the corresponding User (#4 on Figure 7-1). After successfully mapping the identity to the User, the OAuth server creates a token for that User and returns it to the original requester.[image: A478307_1_En_7_Fig1_HTML.jpg]
Figure 7-1Sample flow for an OAuth Token request

Note
OpenShift supports the use of Service Account as OAuth clients2 and the addition of OAuth client3 definitions.

RBAC
The RBAC objects determine if a user is allowed to perform a specific action within a Project. The RBAC authorization is comprised of Rules, Roles, and Bindings (see Table 7-4 for more details).Table 7-4Authorization Constructs

	Construct
	Description

	Rules
	Represent the Verbs permitted on a set of Kubernetes and OpenShift objects.

	Roles
	Represent a collection of policy Rules. Users and Groups can be associated to multiple Roles at the same time.

	Bindings
	Represent the association of Users or Groups with a Role.

	Verb
	The Verbs are get, list, create, update, delete, delete collection, or watch.

	Identity
	Represents the User Name and the list of Groups the User belongs to.

There are two levels of RBAC authorization in an OpenShift Cluster (see Table 7-5 for details).Table 7-5Levels of RBAC Authorizations

	Construct
	Description

	Cluster RBAC
	Refers to Roles and Bindings that are applicable cluster-wide and not scoped to a particular Project. Cluster Role Bindings can only reference Cluster Roles (Roles that exist cluster-wide).

	Local RBAC
	Refers to Roles and Bindings scoped to a particular Project. Local Role Bindings can reference Cluster Roles or Local Roles (Roles that only exist in a Project).

Default Cluster Roles
OpenShift predefines a series of default Cluster Roles (see Table 7-6) that can be bound to Users or Groups. In addition, a cluster-admin user can define additional Roles.Table 7-6
 Default Cluster Roles

	Default Cluster Role
	Description

	cluster-admin
	A super-user that can perform any action on any Project.
Note: When the cluster-admin Role is bound to a User with a Local Binding, that user will have full control over quota and actions on every resource in the Project.

	admin
	A Project manager.
Note: When used in a Local Binding, a User with admin Role will have rights to view and modify any resource in the Project (except for Quota).

	basic-user
	A user that can get basic information about Projects and Users.

	cluster-status
	A user that can get basic cluster status information.

	edit
	A user that can modify most objects in a Project but does not have rights to view or modify Roles or Bindings.

	self-provisioner
	A user that can create their own Projects.

	view
	A user who can see, but not modify, most objects in a Project. They cannot view or modify Roles or Bindings.

	cluster-reader
	A user who can read, but not view, objects in the cluster.

Security Context Constraints
OpenShift provides granular control of the actions and access of a Pod with the capabilities provided by the Security Context Constraints (SCC).
The SCC objects define the conditions that a Pod must met in order to be accepted into the system. The SCC controls the following:	1.Ability to run privileged Containers

	2.Additional capabilities that can be requested by a Container

	3.Ability to use Host directories as Volumes

	4.SELinux context of the Container

	5.The User ID

	6.The use of Host namespaces and networking

	7.Allocating an FSGroup4 that owns the Pod’s Volumes

	8.Configuring allowable supplemental Groups

	9.Requiring the use of a read-only root filesystem

	10.Controlling the usage of Volume types

	11.Configuring allowable SECCOMP profiles

OpenShift defines seven default SCC in a cluster. These default SCC are listed on Figure 7-2.[image: A478307_1_En_7_Fig2_HTML.jpg]
Figure 7-2List of default SCC

By default, authenticated users are granted access to the
 restricted SCC

 (line #10 on Figures 7-2 and 7-3), while cluster administrators, Nodes, and the build controller are granted the privileged SCC (line #9 on Figure 7-2).[image: A478307_1_En_7_Fig3_HTML.jpg]
Figure 7-3The “restricted SCC” definition

As it can be seen from the restricted SCC definition (Figure 7-3), this SCC enforces the following restrictions:	Pods cannot run as privileged (line #8 on Figure 7-3).

	Pods cannot use Host directory Volumes (lines #39 to #45 on Figure 7-3).

	Pods run as a user in a preallocated range of UID (lines #32 and #33 on Figure 7-3).

	Pods run with a preallocated SELinux MCS label (lines #34 and #35 on Figure 7-3).

	Pods can use any supplemental Group (lines #36 and #37 on Figure 7-3).

The SCC strategies5 are settings and strategies that fall into three categories:	Controlled by a boolean (default to the most restrictive value)

	Controlled by an allowable set specifying the allowed values

	Controlled by a strategy in which a mechanism generates the value and ensures the value is allowed (see Table 7-7)

Table 7-7SCC Strategies

	SCC Strategy
	Options

	RUNASUSER
	MustRunAs, MustRunAsRange, MustRunAsNonRoot, RunAsAny

	SELINUXCONTEXT
	MustRunAs, RunAsAny

	SUPPLEMENTALGROUPS
	MustRunAs, RunAsAny

	FSGROUP
	MustRunAs, RunAsAny

	volumes
	azureFile, azureDisk, flocker, flexVolume, hostPath, emptyDir, gcePersistentDisk, awsElasticBlockStore, gitRepo, secret, nfs, iscsi, glusterfs, persistentVolumeClaim, rbd, cinder, cephFS, downwardAPI, fc, configMap, vsphereVolume, quo byte, photonPersistenDisk, projected, portworxVolume, scaleIO, storageos, “*”, none

SECCOMP Profiles
SECCOMP (secure computing mode) is a security facility in the Linux Kernel that allows a system administrator to limit access by Containers to the system features. The combination of restricted and allowed calls are arranged in profiles. Different profiles can be passed to different Containers. This provides a fine-grained control over the syscalls available from a Container.
Note
SECCOMP is a Kernel feature, and as such, it must be enabled6 on the system.

To enable SECCOMP for a Pod, the following annotations are required in the Pod configuration:	
 seccomp.security.alpha.kubernetes.io/pod: <unconfined>

	
 container.seccomp.security.alpha.kubernetes.io/<container_name>: <localhost/profile_name>

In addition, edit the /etc/origin/node/node-config.yaml to define the seccomp-profile-root directory where the local SECCOMP profiles will be stored. (See Listing 7-1.)
 # Edit /etc/origin/node/node-config.yaml

kubeletArguments:
 ...
 seccomp-profile-root:
 - "/path/to/seccomp/profiles"

 # Restart the Node services

$ sudo systemctl restart atomic-openshift-node

Listing 7-1Defining SECCOMP profiles directory

To control the SECCOMP profiles that may be used in the OpenShift platform and to set the default SECCOMP profile, configure the SCC with the seccompProfiles field. When using a custom SECCOMP profile, the format for the field is localhost/<profile-name>. (See Listing 7-2.)seccompProfiles:
- localhost/<profile-name>

Listing 7-2Configuring SECCOMP in SCC profiles

Enabling Unsafe SYSCTL
When SYSCTL are namespaced, their value can be set independently for each Pod. This is a requirement for SYSCTLS to be accessible in a Pod within Kubernetes.
A SYSCTL

 is considered safe for a Pod if	Does not influence any other Pod on the Node

	Does not harm the Node’s health

	Does not gain CPU or memory resources outside the resource limits of a Pod

All safe7 SYSCTLS are enabled by default. All other SYSCTLS are considered unsafe and are disabled by default. A user with cluster-admin privileges can manually enable unsafe SYSCTLS on a per-node basis.
Enabling unsafe sysctls requires modifying the kubeletArguments on the /etc/origin/node/node-config.yaml in the Nodes that will be supporting the unsafe SYSCTLS (see Listing 7-3).
 # Edit /etc/origin/node/node-config.yaml

kubeletArguments:
 ...
 allowed-unsafe-sysctls:
 - "kernel.msg*,net.ipv4.route.min_pmtu"

 # Restart the Node services

$ sudo systemctl restart atomic-openshift-node

Listing 7-3Enabling unsafe SYSCTLS

The configuration of SYSCTLS for a Pod is done by setting the values under the securityContext in the Pod configuration (see Listing 7-4).
Note
There is no distinction between safe and unsafe sysctls in the Pod configuration.

 apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
spec:
 securityContext:
 sysctls:
 - name: kernel.shm_rmid_forced
 value: "0"
 - name: net.ipv4.route.min_pmtu
 value: "552"
 - name: kernel.msgmax
 value: "65536"
 ...

Listing 7-4Example setting SYSCTLS for Pod

Note
A Pod using unsafe SYSCTLS will fail to run on any Node where the unsafe SYSCTLS have not been explicitly enabled.

Identity Providers
Configuring the identity provider8 for the built-in OAuth server can be done during the installation or after the installation.
The OpenShift 3.11.x supported identity providers are	Deny All: Default identity provider. Denies access for all usernames and passwords.

	Allow All: Allows access to any non-empty username with any non-empty password to log in. Used for testing purposes. (Used as default if running without a master configuration file.)

	HTPasswd: Validates usernames and passwords against a flat file generated using htpasswd.

	Keystone: Uses the OpenStack identity project for authentication.

	LDAP: Validates usernames and password against an LDAPv3 server using simple bind authentication.

	Basic Authentication (remote): Allows users to log in to OpenShift with credentials validated against a remote identity provider. (Must use an HTTPS connection to remote server.)

	Request Header: Identifies users from request header values like X-Remote-User.

	GitHub: Uses the OAuth authentication from GitHub.

	GitLab: Uses the OAuth authentication from GitLab (versions 7.7.0 to 11.0). If using GitLab version 11.1 or later, use the OpenID Connect.

	Google: Uses Google’s OpenID Connect integration.

	OpenID Connect: Integrates with an OpenID Connect identity provider.

The configuration of the identity provider uses a
 mappingMethod

 to define how new identities are mapped to users when they log in to OpenShift. The value will be one of the following:	claim: Provisions a user with the identity’s preferred user name. Fails if a user with that user name is already mapped to another identity. (This is the default configuration.)

	lookup: Looks up an existing identity, user identity mapping, and user. It does not provision users or identities if they don’t exist. Using this method requires cluster administrators to set up identities and users manually or by an external process.

	generate: Provisions a user with the identity’s preferred user name. If a user with the preferred user name already exists, a unique user name is generated (i.e., username2).

	add: Provisions a user with the identity’s preferred user name. If a user with that user name already exists, the identity is mapped to the existing user. (Required when multiple identity providers are configured that identify the same set of users.)

Managing Users and Groups
The creation of a user depends on the configuration of the
 mappingMethod

 in the identity provider. The manual creation of a user is as shown in Listing 7-5.$ oc create user <username> --full-name="User Name"

Listing 7-5Manual creation of a user

Managing the roles, groups, and SCC for a user can be done with the oc client command with the options as shown in Figure 7-4.[image: A478307_1_En_7_Fig4_HTML.jpg]
Figure 7-4Manage user roles, groups, and SCC

Using Service Accounts
Service Accounts (SA) provide a flexible way to control API access without sharing a regular User credential.
The user name of a
 Service Account (SA)

 is derived from its Project and name (see Listing 7-6). The Service Account can be granted Roles (see Listing 7-6) as any other user in the system.
 # Format of a Service Account name

system:serviceaccount:<project-name>:<name>

 # Assigning Role to a Service Account

$ oc policy add-role-to-user <role-name> system:serviceaccount:<project-name>:<name>

 # Assigning Role to a Service Account from the Project it belongs to

$ oc policy add-role-to-user <role-name> -z <SA-name>

Listing 7-6Assigning Roles to Service Account

Each Service Account belongs to two groups:	
 system:serviceaccount

	
 system:serviceaccount:<project-name>

During the creation of a new Service Account,9 the system ensures to add two secrets to it (see Listing 7-7):	An API token

	Credentials for the OpenShift Container Registry

Note
The generated API token and registry credentials do not expire. If the secret is deleted, a new one is automatically generated to replace it.

 # Creating a Service Account name
$ oc create sa sa-demo (or) oc create serviceaccount sa-demo
serviceaccount/sa-demo created
$ oc describe sa sa-demo
Name: sa-demo
Namespace: demo
Labels: <none>
Annotations: <none>
Image pull secrets: sa-demo-dockercfg-rj875
Mountable secrets: sa-demo-token-xph4v
 sa-demo-dockercfg-rj875
Tokens: sa-demo-token-txlcq
 sa-demo-token-xph4v
Events: <none>

Listing 7-7Creating a Service Account

To associate a ServiceAccount to a Pod, use the serviceAccountName under the Pod’s spec definition (see Listing 7-8).apiVersion: v1
kind: Pod
metadata:
 name: demo-pod
spec:
 serviceAccountName: sa-demo
 ...

Listing 7-8Creating a Service Account

The API tokens from the ServiceAccount associated to the Pod are mounted as a file at /var/run/secrets/kubernetes.io/serviceaccount/token inside the Container.
Note
The default ServiceAccount is used when no explicit ServiceAccount is specified in the Pod definition.

Quotas and Limit Ranges
Quotas and Limit Ranges are objects that can be set by a cluster administrator to limit the number of objects or amount of compute resources that are used by a particular Project. While LimitRanges specify the limits of compute resources in a Project on per-object basis, Quotas act as the upper limit for the total compute resources or number of objects in the Project.
LimitRange object can set up compute resource constraints in a Project at the following level:	Pod

	Container

	Image

	ImageStream

	PersistentVolumeClaim

To apply a LimitRange10 to a Project, create the object definition with the specification (see definition in Figure 7-5).[image: A478307_1_En_7_Fig5_HTML.jpg]
Figure 7-5Creating and verifying LimitRange

All resource creation or modification requests are checked against the LimitRange in the Project. The resource creation or modification is rejected if it violates the constraints (see Figure 7-6).[image: A478307_1_En_7_Fig6_HTML.jpg]
Figure 7-6LimitRange and its effect on Pod requests

The
 ResourceQuota

 object is used to set up Project-level Quota to limit the number of objects in a Project or the total Limits for a Project. Figure 7-7 shows an example defining and verifying the creation of a ResourceQuota.[image: A478307_1_En_7_Fig7_HTML.jpg]
Figure 7-7Definition and creation of ResourceQuota

When a particular request for creation or modification of a resource violates a Quota, the system will prevent the creation or modification of the resource (see Figure 7-8).[image: A478307_1_En_7_Fig8_HTML.jpg]
Figure 7-8Example of quota enforcement

OpenShift Service Catalogs
OpenShift includes a Service Catalog which implements the Open Service API11 (OSP API) for Kubernetes. This capability allows users to connect applications deployed in OpenShift to services instantiated through service brokers.
A user with cluster-admin privileges registers one or more Service Brokers with OpenShift cluster. Each Service Broker defines a set of Cluster Service Classes and Service Plans available to users.
Users request to provision or deprovision a resource provided by a Service Class. When provisioning a new resource, the Users bind the service instance with their local application Pods.
OpenShift provides two Service Brokers with the Service Catalog:	Template Service Broker (TSB) gives the visibility into the Instant App and Quickstart Templates12 that are shipped with OpenShift. In addition, the TSB makes available as a service any services defined as an OpenShift Template.

	OpenShift Ansible Broker (OAB)13 is an implementation of the OSB API that manages application

 defined by Ansible Playbook Bundles (APBs).

OpenShift Templates
OpenShift Templates provide a way to parameterize the creation of any OpenShift and Kubernetes objects. A template can be processed to create anything the user executing the Template has the permission to create within a Project (i.e., Services, BuildConfig, Deployments, Routes, etc.).
Templates are one of the mechanisms used to provide self-service capabilities with OpenShift. They provide a way for developers to deploy, on self-serve style, applications or backend stacks, when needed, while administrators retain full control on how a particular application or backend stack is implemented.
A Template can be executed from CLI or using the web console if the Template has been uploaded to the Project or Global Template library. Installing a Template can be done over GUI or CLI (see Figure 7-9).[image: A478307_1_En_7_Fig9_HTML.jpg]
Figure 7-9Installing OpenShift Template

When using the GUI to install an OpenShift Template, there are two options: an option to immediately process the Template (#3 on Figure 7-9) and another option to save the template to the service catalog (#4 on Figure 7-9).
Note
When installing a Template, it needs to be associated to a namespace. To make the Template available cluster-wide, it should be installed into the openshift Project.

An example of an OpenShift Template is shown in Listing 7-9.apiVersion: template.openshift.io/v1
kind: Template
labels:
 app: podcool-example
 template: podcool-example
metadata:
 annotations:
 description: An simple Demo Flask Python application
 iconClass: fa fa-leaf
 openshift.io/display-name: Podcool Demo App
 tags: quickstart,podcool
 name: podcool-example
objects:
- apiVersion: v1
 kind: Service
 metadata:
 annotations:
 description: Exposes and load balances the application pods
 name: podcool-example
 spec:
 ports:
 - name: web
 port: 8080
 targetPort: 8080
 selector:
 name: podcool-example
- apiVersion: v1
 kind: ImageStream
 metadata:
 annotations:
 description: Keeps track of changes in the application image
 name: podcool-example
- apiVersion: v1
 kind: BuildConfig
 metadata:
 annotations:
 description: Defines how to build the application
 name: podcool-example
 spec:
 output:
 to:
 kind: ImageStreamTag
 name: podcool-example:latest
 source:
 contextDir: ${CONTEXT_DIR}
 git:
 ref: ${SOURCE_REPOSITORY_REF}
 uri: ${SOURCE_REPOSITORY_URL}
 type: Git
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: python:3.6
 namespace: openshift
 type: Source
 triggers:
 - type: ConfigChange
 - github:
 secret: ${GITHUB_WEBHOOK_SECRET}
 type: GitHub
- apiVersion: v1
 kind: DeploymentConfig
 metadata:
 annotations:
 description: Defines how to deploy the application server
 name: podcool-example
 spec:
 replicas: 1
 selector:
 name: podcool-example
 strategy:
 type: Rolling
 template:
 metadata:
 labels:
 name: podcool-example
 name: podcool-example
 spec:
 containers:
 - image: podcool-example
 name: podcool-example
 ports:
 - containerPort: 8080
 env:
 - name: APP_VERSION
 value: v1
 - name: APP_MESSAGE
 value: Deployment from Template
 triggers:
 - imageChangeParams:
 automatic: true
 containerNames:
 - podcool-example
 from:
 kind: ImageStreamTag
 name: podcool-example:latest
 type: ImageChange
 - type: ConfigChange
parameters:
- description: The URL of the repository with your application source code
 name: SOURCE_REPOSITORY_URL
 value: https://github.com/williamcaban/podcool.git
- description: Set this to a branch name, tag or other ref of your repository if you
 are not using the default branch
 name: SOURCE_REPOSITORY_REF
- description: Set this to the relative path to your project if it is not in the root
 of your repository
 name: CONTEXT_DIR
- description: Github trigger secret. A difficult to guess string encoded as part
 of the webhook URL. Not encrypted.
 from: '[a-zA-Z0-9]{40}'
 generate: expression
 name: GITHUB_WEBHOOK_SECRET

Listing 7-9OpenShift Template example

An OpenShift Template14 can use or create any OpenShift and Kubernetes object the user executing it has privileges to create in a Project. That is a wide range of options and possible objects to create with a Template. As such, the process of writing OpenShift Templates is beyond the scope of this book.

Summary
This chapter focused on the main tasks of user management, security, quotas, and Templates. With respect to user management, this chapter covered basic user management, groups, virtual users, and service accounts. The security topics covered setting secure profiles, quotas, and limits. Finally, this chapter described using OpenShift Templates with the service catalog as a mechanism to provide self-service capabilities to the users.
The administration of OpenShift Clusters involves much more than what is covered in the chapter, and the reader should explore additional topics that will enhance the experience for the users while facilitating sustainable operations of the platform.
One of the OpenShift features designed to enhance the developer experience is the native capability to support CI/CD pipelines. The OpenShift Pipelines are covered in Chapter 8.

Footnotes
1OpenShift OAuth Server:
 https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth

2Using Service Account as OAuth client:
 https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients

3To define additional OAuth clients, refer to
 https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth-clients

4The FSGroup defines Pod’s “file system group” ID, for more information refer to the documentation at
 https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/pod_security_context.html#fsgroup

5Details about the SCC Strategies:
 https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authorization.html#authorization-SCC-strategies

6To check if SECCOMP is enabled, consult the documentation at
 https://docs.openshift.com/container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp

7For additional information of safe vs. unsafe sysctls, refer to
 https://docs.openshift.com/container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts

8Additional details on configuring identity providers:
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring

9Additional information about Service Accounts
 https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html

10Additional information about creating LimitRange:
 https://docs.openshift.com/container-platform/3.11/admin_guide/limits.html#creating-a-limit-range

11Details about the Open Service Broker API are available at the project home page:
 www.openservicebrokerapi.org

12Additional information on using Instant App and Quickstart Templates is available at
 https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html#using-the-instantapp-templates

13Additional details about the Ansible Service Broker is available at
 https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker

14Additional information about writing OpenShift Templates:
 https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_8

8. Architecting OpenShift Jenkins Pipelines

William Caban1
(1)Columbia, MD, USA

The OpenShift platform provides multiple features to enhance the developer experience. These features are enabled and managed using the same RBAC and SCC options seen in Chapter 7. This chapter focuses on the OpenShift Jenkins Pipelines capabilities.
The OpenShift Jenkins Pipelines capabilities in
 OpenShift Container Platform (OCP)

 provide the ability to create advanced CI/CD pipelines that can be used to create new CI/CD processes, or to integrate with existing organizations CI/CD processes.
OpenShift Jenkins Pipelines provide support for using CI/CD pipelines to build, deploy, and promote applications on OpenShift. These Pipelines can use a combination of the Jenkins Pipeline Build Strategy, Jenkinsfiles, and the OpenShift Jenkins Client Plugin.
This chapter describes the basic configurations to start using the capabilities provided by the OpenShift CI/CD feature.
CI/CD Pipelines As a Service with OpenShift
When using the Jenkins Pipeline Build Strategy or using a Jenkinsfile, OpenShift CI/CD capabilities autoprovision a
 Jenkins Master

 for the Project and the Jenkins Slaves required to complete the stages.
This
 Jenkins Master

 will be used to execute all the Jenkins Pipelines defined at the Project.
By default, the Jenkins Master server uses the OpenShift Jenkins-ephemeral template to instantiate the server. To deploy a Jenkins server with persistent storage for the data and configuration stored in /var/lib/jenkins, the Project admin can manually deploy a Jenkins Master using the Jenkins-persistent template from the self-service catalog. To change the default Jenkins template, a cluster-admin can modify the Master Nodes configuration1 to set up the Jenkins-persistent template as the default template to use when autoprovisioning a Jenkins server (see Listing 8-1).# Update /etc/origin/master/master-config.yaml to include
jenkinsPipelineConfig:
 autoProvisionEnabled: true
 templateNamespace: openshift
 templateName: jenkins-persistent
 serviceName: jenkins-persistent-svc

Listing 8-1Jenkins-persistent as default template for autoprovisioning of Jenkins servers

During the instantiation of the Jenkins Master, the process	Deploys Jenkins into the Project using the official OpenShift Jenkins image	The Jenkins deployment can be done using ephemeral or persistent storage.

	Creates Service and Route resources for the Jenkins Master

	Creates a jenkins Service Account (SA) in the Project	Grant Project-level edit access to the new jenkins Service Account

When using an OpenShift Pipeline across Projects, the jenkins SA on the project hosting the Jenkins Master requires edit access level on the Projects it will manage.
 # Option 1: Grant 'edit' access to 'jenkins' Service Account on specific Projects

oc policy add-role-to-user edit system:serviceaccount:<cicd-project>:jenkins -n <target-project>

 # Option 2: Grant 'edit' access to 'jenkins' Service Account on all Projects

oc adm policy add-cluster-role-to-user edit system:serviceaccount:<cicd-project>:jenkins

Listing 8-2Grant ‘edit’ access to ‘jenkins’ Service Account

Jenkins Pipeline Build Strategy
OpenShift has the notion of build configurations or BuildConfigs. A
 BuildConfig

 is a configuration describing a single build definition. This includes information like the triggers that will provoke a new build and the build strategy to use. The build strategy determines the process to be used to execute a build. One of the build strategies is the Pipeline Build Strategy.2
The Pipeline Build Strategy is an OpenShift Build3 type that enables developers to define Jenkins pipeline workflows which are executed inside the OpenShift platform.
To use this Build Strategy, the Jenkins Pipeline is defined in a Jenkinsfile. This can be embedded directly in the BuildConfig (see #3 on Figure 8-1) or provided on a Git repository (see #2 on Figure 8-2) referenced by the BuildConfig (see #3 on Figure 8-2).[image: A478307_1_En_8_Fig1_HTML.jpg]
Figure 8-1OpenShift Pipeline Build Strategy with embedded Jenkinsfile definition

The BuildConfig with the embedded Jenkins pipeline definition is a YAML formatted configuration file specifying the Jenkins Pipeline Strategy (see #2 on Figure 8-1). The content of the Jenkinsfile is included as a multiline string block (see #3 on Figure 8-1) in the definition.[image: A478307_1_En_8_Fig2_HTML.jpg]
Figure 8-2OpenShift Pipeline Build Strategy with Git Jenkinsfile definition

The other option for the Pipeline Strategy is the BuildConfig referencing a Jenkinsfile (see #3 on Figure 8-2) on a Git repository (see #2 on Figure 8-2). In this particular case, the Jenkinsfile can be in any directory of the referenced Git repository and can have any name as long as the full path and filename are specified in the corresponding Jenkinsfile Path variable. If this variable is not defined, it will retrieve a file named Jenkinsfile from the root directory of the Git repo.
Creating the Pipeline BuildConfig
The BuildConfig on Figure 8-1 is for a sample pipeline that defines environment variables at the pipeline strategy level (line 8 on Figure 8-1) and at the Jenkinsfile level (line 21 on Figure 8-1). The embedded
 Jenkinsfile

 defines a Jenkins Pipeline (line 13 on Figure 8-1) with some sample stages (line 25 on Figure 8-1). For the purpose of this example, there are three stages. To maintain a minimal structure to illustrate the use of the pipeline, in this example, each stage simply displays a message.
The YAML configuration for the BuildConfig sample-pipeline from Figure 8-1 is shown in Listing 8-3.kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 env:
 - name: "MY_STRATEGY_VAR"
 value: "Demo Env Var from Pipeline Strategy"
 type: JenkinsPipeline
 jenkinsfile: |-
 pipeline {
 agent any

 options {
 // set a timeout of 5 minutes for this pipeline
 timeout(time: 5, unit: 'MINUTES')
 } //options

 environment {
 MY_PIPELINE_VAR = "Demo Env Var from Pipeline"
 }

 stages {
 stage('Build') {
 steps {
 echo "Sample Build stage with variable from pipeline startegy >> ${MY_STRATEGY_VAR}"
 }
 } //stage

 stage('Test') {
 steps {
 echo "Sample Test stage with variable from Jenkinsfile >> ${MY_PIPELINE_VAR}"
 }
 } //stage

 stage('Promote') {
 steps {
 echo "Sample Promote stage with OpenShift Client Plugin DSL"
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 } // script
 } //steps
 } //stage

 } // stages
 } // pipeline

Listing 8-3Sample Pipeline BuildConfig with embedded Jenkinsfile

The YAML configuration for the BuildConfig sample-pipeline-2 from Figure 8-2 is shown in Listing 8-4.kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline-2"
spec:
 source:
 git:
 uri: "https://git.example.com/demo/myapp"
 strategy:
 jenkinsPipelineStrategy:
 env:
 - name: "MY_STRATEGY_VAR"
 value: "Demo Env Var from Pipeline Strategy"
 jenkinsfilePath: path/to/jenkinsfile/filename

Listing 8-4Sample Pipeline BuildConfig with Git referenced Jenkinsfile

Deploying the Pipeline BuildConfig
The BuildConfig is created at a Project level. It is up to the user to use a dedicated Project for the Pipeline and another for the application or use the same Project for the Pipeline and application.
From the OpenShift Application Console, import the YAML for the BuildConfig (see #1 on Figure 8-3).[image: A478307_1_En_8_Fig3_HTML.jpg]
Figure 8-3Import BuildConfig YAML definition

The Import YAML window allows for uploading a YAML file from the local machine or for the copy and paste of the BuildConfig at the editor window (see #1 on Figure 8-4). On the successful upload or definition of the BuildConfig, a new Pipeline is created.[image: A478307_1_En_8_Fig4_HTML.jpg]
Figure 8-4Importing the BuildConfig and creating the Pipeline

The first time a Pipeline strategy is defined for a Project, OpenShift instantiates a
 Jenkins Master

 server in that Project (see Figure 8-5). This Jenkins server is used to execute the Pipeline definition from the BuildConfig.
Note
Additional Pipeline Build configurations or BuildConfigs, in the same project, will share the same Jenkins server.

 [image: A478307_1_En_8_Fig5_HTML.jpg]
Figure 8-5Instantiation of an embedded Jenkins server

Note
The instantiation of the initial Jenkins server takes some time to complete. After about 10 minutes after the instantiation, the system will be ready to receive triggers to execute the Pipeline.

The Pipeline can be triggered by a Webhook, Image Change, Configuration Change, or Manually. To execute a manual trigger from GUI, at the Application Console, go to Builds ➤ Pipelines (see #1 and #2 on Figure 8-6) or from CLI (see #3 on Figure 8-6).[image: A478307_1_En_8_Fig6_HTML.jpg]
Figure 8-6Executing the Pipeline Build Strategy

A visual representation of the pipeline will be highlighting the step that is executing (see #2 on Figure 8-7). As stages are successful, the stage representation will be colored green.
After several execution of the Pipeline, the History tab of the Pipeline pane will show a histogram of the time it took to complete an execution and a color-coded view showing failed and successful attempts (see #3 on Figure 8-7).[image: A478307_1_En_8_Fig7_HTML.jpg]
Figure 8-7Pipeline Build History

The OpenShift integration with the Jenkins instance allows access to the logs generated during the execution of the Pipeline Build.[image: A478307_1_En_8_Fig8_HTML.jpg]
Figure 8-8View Logs from Jenkins Console

To access the Logs for a particular Build execution, select the View Log link under the execution number (see #1 on Figure 8-8). This will redirect to the
 Jenkins Console

 where OpenShift credentials can be used to log in to the Jenkins server and see the logs (see Figure 8-9).[image: A478307_1_En_8_Fig9_HTML.jpg]
Figure 8-9Build Logs at Jenkins Console

The logs for a particular Pipeline will include the actions and output from those actions (see #2, #3, #4, and #5 on Figure 8-9), for each one of the Pipeline Stages defined by the Jenkinsfile.
Note
The Jenkins server must be manually deleted by the user. It will not be automatically removed, even after deleting all Pipeline build configurations.

Jenkinsfile with Source Code
When using this option, the Jenkinsfile must be included with the application source code at the root of the repository or at the root of the contextDir of the repository. When deploying an application and referencing a repository containing a Jenkinsfile	If there is not an existing Jenkins instance in the Project, OpenShift creates a DeploymentConfig and deploys a Jenkins instance.

	OpenShift creates a
 BuildConfig

 (see #1 on Figure 8-10) with	A jenkinsPipelineStrategy (see #5 on Figure 8-10) referring the Jenkinsfile in the Git repository (see #5 on Figure 8-10)

	A set of Webhook triggers: GitHub and Generic (see #6 and #7 on Figure 8-10)

[image: A478307_1_En_8_Fig10_HTML.jpg]
Figure 8-10Pipeline BuildConfig from Jenkinsfile on Git repository

The URL for the Webhook triggers will follow the format:https://<ocp-cluster-fqdn>/apis/build.openshift.io/v1/namespaces/<name-of-project>/buildconfigs/<name-of-buildconfig>/webhooks/<trigger-token>/<trigger-type>

These Webhook triggers4 enable external tools to initiate a new pipeline execution. Figure 8-11 shows a Webhook call (#1 on Figure 8-11) triggering a new Build for the pipeline (#3 on Figure 8-11). #4 on Figure 8-11 clearly shows the CI/CD pipeline was triggered by a Generic Webhook call.[image: A478307_1_En_8_Fig11_HTML.jpg]
Figure 8-11Using Webhook triggers to start a Pipeline execution

Multiproject Pipelines
When using an OpenShift Jenkins Pipelines to promote an application build across multiple projects, the jenkins Service Account must have edit access privileges on each of the target Projects as shown in Listing 8-2.
The implementation of a
 CI/CD Pipeline

 like the one shown in Figure 8-12 involves four different projects. In this example, the
 Jenkins Master

 is instantiated in the “cicd” project (#2 on Figure 8-12) where it may be used by multiple Pipelines in the same Project.[image: A478307_1_En_8_Fig12_HTML.jpg]
Figure 8-12Multiproject Pipeline

In this case, “Pipeline C” (#3 on Figure 8-12) has multiple stages across three Projects. A reference Jenkinsfile implementing this type of Pipeline is shown in Listing 8-5.pipeline {
 agent any
 options {
 // set a timeout of 20 minutes for this pipeline
 timeout(time: 20, unit: 'MINUTES')
 } //options

 environment {
 APP_NAME = "podcicd"
 GIT_REPO = "https://github.com/williamcaban/podcicd.git"
 GIT_BRANCH = "master"
 CONTEXT_DIR = "myapp"

 CICD_PRJ = "cicd"
 CICD_DEV = "${CICD_PRJ}"+"-dev"
 CICD_PROD = "${CICD_PRJ}"+"-prod"
 CICD_STAGE = "${CICD_PRJ}"+"-staging"
 SVC_PORT = 8080
 }
 stages {
 stage('CICD Projects'){
 steps {
 echo "Making sure CI/CD projects exist"
 script {
 openshift.withCluster() {
 echo "Current Pipeline environment"
 sh 'env | sort'
 echo "Making sure required CI/CD projects exist"
 try {
 openshift.selector("projects",CICD_DEV).exists()
 echo "Good! Project ${CICD_DEV} exist"
 } catch (e) {
 error "Missing ${CICD_DEV} Project or RBAC policy to work with Project"
 }
 try {
 openshift.selector("projects",CICD_STAGE).exists()
 echo "Good! Project ${CICD_STAGE} exist"
 } catch (e) {
 error "Missing ${CICD_STAGE} Project or RBAC policy to work with Project"
 }

 try {
 openshift.selector("projects",CICD_PROD).exists()
 echo "Good! Project ${CICD_PROD} exist"
 } catch (e) {
 error "Missing ${CICD_PROD} Project or RBAC policy to work with Project"
 }

 } // cluster
 } // script
 } //steps
 } // stage - projects

 stage('Build') {
 steps {
 echo "Sample Build stage using project ${CICD_DEV}"
 script {
 openshift.withCluster() {
 openshift.withProject("${CICD_DEV}")
 {

 if (openshift.selector("bc",APP_NAME).exists()) {
 echo "Using existing BuildConfig. Running new Build"
 def bc = openshift.startBuild(APP_NAME)
 openshift.set("env dc/${APP_NAME} BUILD_NUMBER=${BUILD_NUMBER}")
 // output build logs to the Jenkins conosole
 echo "Logs from build"
 def result = bc.logs('-f')
 // actions that took place
 echo "The logs operation require ${result.actions.size()} 'oc' interactions"
 // see exactly what oc command was executed.
 echo "Logs executed: ${result.actions[0].cmd}"
 } else {
 echo "No proevious BuildConfig. Creating new BuildConfig."
 def myNewApp = openshift.newApp (
 "${GIT_REPO}#${GIT_BRANCH}",
 "--name=${APP_NAME}",
 "--context-dir=${CONTEXT_DIR}",
 "-e BUILD_NUMBER=${BUILD_NUMBER}",
 "-e BUILD_ENV=${openshift.project()}"
)
 echo "new-app myNewApp ${myNewApp.count()} objects named: ${myNewApp.names()}"
 myNewApp.describe()
 // selects the build config
 def bc = myNewApp.narrow('bc')
 // output build logs to the Jenkins conosole

 echo "Logs from build"
 def result = bc.logs('-f')
 // actions that took place
 echo "The logs operation require ${result.actions.size()} 'oc' interactions"
 // see exactly what oc command was executed.
 echo "Logs executed: ${result.actions[0].cmd}"
 } //else

 echo "Tag Container image with 'build number' as version"
 openshift.tag("${APP_NAME}:latest", "${APP_NAME}:v${BUILD_NUMBER}")

 echo "Validating Route for Service exist, if Not create Route"
 if (!openshift.selector("route",APP_NAME).exists()) {
 openshift.selector("svc",APP_NAME).expose()
 }

 } // project
 } // cluster
 } // script
 } // steps
 } //stage-build

 stage('Test') {

 steps {
 echo "Testing if 'Service' resource is operational and responding"
 script {
 openshift.withCluster() {
 openshift.withProject() {
 echo sh (script: "curl -I ${APP_NAME}.${CICD_DEV}.svc:${SVC_PORT}/healthz", returnStdout: true)
 } // withProject
 } // withCluster
 } // script
 } // steps
 } //stage

 stage('Promote to Staging') {
 steps {
 echo "Setup for Staging"
 script {
 openshift.withCluster() {
 openshift.withProject("${CICD_STAGE}") {
 echo "Tag new image for staging"
 openshift.tag("${CICD_DEV}/${APP_NAME}:v${BUILD_NUMBER}", "${CICD_STAGE}/${APP_NAME}:v${BUILD_NUMBER}")
 //openshift.tag("${CICD_STAGE}/${APP_NAME}:v${BUILD_NUMBER}", "${CICD_STAGE}/${APP_NAME}:latest")
 echo "Deploying to project: ${openshift.project()}"
 def myStagingApp = openshift.newApp(
 "${APP_NAME}:v${BUILD_NUMBER}",
 "--name=${APP_NAME}-v${BUILD_NUMBER}",
 "-e BUILD_NUMBER=${BUILD_NUMBER}",
 "-e BUILD_ENV=${openshift.project()}"
)
 myStagingApp.narrow("svc").expose()
 }
 }
 } // script
 } //steps
 } //stage

 stage('Promote to Prod'){
 steps {
 echo "Promote to production? Waiting for human input"
 timeout(time:10, unit:'MINUTES'){
 input message: "Promote to Production?", ok: "Promote"
 }
 script {
 openshift.withCluster() {
 openshift.withProject("${CICD_PROD}") {
 echo "Tag Staging Image for Production"
 openshift.tag("${CICD_STAGE}/${APP_NAME}:v${BUILD_NUMBER}", "${CICD_PROD}/${APP_NAME}:v${BUILD_NUMBER}")

 echo "Deploying to project: ${openshift.project()}"
 def myProdApp = openshift.newApp(
 "${APP_NAME}:v${BUILD_NUMBER}",
 "--name=${APP_NAME}-v${BUILD_NUMBER}",
 "-e BUILD_NUMBER=${BUILD_NUMBER}",
 "-e BUILD_ENV=${openshift.project()}"
)

 if (openshift.selector("route",APP_NAME).exists()){
 echo "Sending the traffic the the latest version"
 openshift.set("route-backends",APP_NAME,"${APP_NAME}-v${BUILD_NUMBER}=100%")
 } else {
 echo "Creating new Route"
 myProdApp.narrow("svc").expose("--name=${APP_NAME}")
 }

 } // project
 }
 } // script
 } // steps
 } //stage

 } // stages
} // pipeline

Listing 8-5Jenkinsfile—Multiproject Pipeline

For the successful completion of the Pipeline shown in Figure 8-12 and documented in Listing 8-5, the jenkins Service Account in the “cicd” Project must have edit privileges in the “cicd-dev,” “cicd-staging,” and “cicd-prod” Projects (see Listing 8-6).
 Step 1: Create the CI/CD Project in the OpenShift cluster

oc new-project cicd --description="CI/CD Pipeline Demo"
oc new-project cicd-dev --description="CI/CD - Dev"
oc new-project cicd-prod --description="CI/CD - Prod"
oc new-project cicd-staging --description="CI/CD - Staging"

 Step 2: Give jenkins Service Account edit access to the other Projects

oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd-dev
oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd-prod
oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd-staging

 Step 3: Deploy the OpenShift Pipeline from a Git repository containing the Jenkinsfile

oc new-app https://github.com/williamcaban/podcicd.git -n cicd

Listing 8-6Deploying a Multiproject Pipeline

Deploying the example in the listing once the Jenkins Master is running and the Pipeline BuildConfig is ready, executing a manual trigger or simulating a Webhook trigger should yield results similar to the ones shown in Figure 8-11.
To start a new pipeline build from GUI, go to “Application Console” ➤ Project “cicd” ➤ Builds ➤ Pipelines and click the “Start Pipeline” button. To start a new pipeline build from CLI, execute oc start-build podcicd -n cicd. The Pipeline logs and progress are visible at the “Application Console.”

OpenShift Client Plugin
The OpenShift Client Plugin5 or the OpenShift Jenkins Pipeline (DSL) Plugin is a Jenkins Plugin that provides comprehensive Fluent-style syntax for use in Jenkins Pipelines interacting with OpenShift clusters. The plugin leverages the OpenShift “oc” client binary and integrates with Jenkins credentials and cluster.
The OpenShift Client Plugin exposes any option available with “oc” to the Jenkins Pipeline.
Note
The OpenShift Client Plugin for Jenkins supersedes the previous OpenShift V3 Plugin for Jenkins which is now deprecated.6

Custom Jenkins Images
The Jenkins Images can be customized by using the traditional Docker layering capabilities with a Dockerfile or by using the OpenShift native Source-to-Image capabilities.
To use the Source-to-Image capabilities, create a Git repository following the structure shown in Figure 8-13.[image: A478307_1_En_8_Fig13_HTML.jpg]
Figure 8-13Git repository structure for custom Jenkins Image with s2i

For the creation of the custom Jenkins Image from the structure defined in a Git repository, create a BuildConfig similar to Listing 8-7.# BuildConfig to customize the Jenkins Image
apiVersion: v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source:
 git:
 uri: https://github.com/williamcaban/openshift-custom-jenkins.git
 type: Git
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:latest
 namespace: openshift
 type: Source
 output:
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

Listing 8-7BuildConfig for creating custom Jenkins Images

Integrating External CI/CD Pipelines
External Jenkins instances can be integrated with OpenShift in one of the following ways:	Using the
 Jenkins Kubernetes Plugin

 7 which provides the ability for Jenkins agents to be dynamically provisioned8 on multiple Pods

	Using the OpenShift Client Plugin9 and the OpenShift Sync Plugin10

The level of integration provided by the OpenShift Client Plugin

 (i.e., embedding pipeline status in the GUI) currently is only available with Jenkins, and it is maintained by Red Hat. Other popular CI/CD tools like GitLab CI, Spinnaker, Bamboo, TeamCity, and so on provide support for OpenShift Container Platform with a vendor-provided plugin for OpenShift or by using their Kubernetes plugin.

Summary
The OpenShift Jenkins Pipelines capabilities enable development teams to continue the adoption of modern development paradigms by providing CI/CD as a first-class service into the platform. When using Jenkins Pipeline Build Strategy, or by having a Jenkinsfile with the source code, or by using the OpenShift Jenkins Plugin, the OpenShift Jenkins Pipelines ease the learning curve for using CI/CD and simplify the management and operation of the Jenkins CI/CD Pipelines.
Beyond knowing how to do the initial administrative tasks or manage value-added features like the CI/CD Pipelines, a cluster administrator should be aware of Day-2 operations and maintenance tasks for maintaining an optimized cluster. Some of these Day-2 tasks are covered in Chapter 9.

Footnotes
1Using Jenkins-persistent template:
 https://docs.openshift.com/container-platform/3.11/install_config/configuring_pipeline_execution.html

2
 OpenShift Pipeline Build Strategy

 https://docs.openshift.com/container-platform/3.11/dev_guide/builds/build_strategies.html#pipeline-strategy-options

3OpenShift Build process
 https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html#builds

4Additional information on using Webhooks to trigger builds is available from the official documentation:
 https://docs.openshift.com/container-platform/3.11/dev_guide/builds/triggering_builds.html

5For the latest documentation and features of the OpenShift Client Plugin, refer to
 https://github.com/openshift/jenkins-client-plugin

6For reference to the legacy OpenShift Jenkins Plugin, visit the Git repository:
 https://github.com/openshift/jenkins-plugin

7For details about the Jenkins Kubernetes Plugin, refer to
 https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin

8For configuration details, refer to the OpenShift documentation at
 https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#configuring-the-jenkins-kubernetes-plug-in

9OpenShift Client Plugin
 https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#client-plug-in

10OpenShift Sync Plugin
 https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#sync-plug-in

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_9

9. Day-2 Operations

William Caban1
(1)Columbia, MD, USA

As seen in the previous chapter, OpenShift provides features or capabilities to enhance developer experience like the CI/CD Pipelines covered in Chapter 8 and the self-service Templates in Chapter 7. The day-to-day work of developers may leave a high number of objects behind. In very active development environments, the garbage collection processes might need tuning. For example, when executing CI/CD Pipelines or building Containers using features like source to image (s2i), there might be intermediate Containers or Image layers that get created and left behind, consuming the Node ephemeral storage and increasing the size of the etcd database. To work with this, once the OpenShift cluster is in operation, there are certain tasks required for the proper maintenance, operations, and fine-tuning of the cluster. This chapter covers some of these common tasks.
Managing Leftover Objects
During the normal operation and utilization of the cluster and cluster services, objects created in OpenShift can accumulate. Maintaining all previous versions of all the objects may end up consuming significant amount of storage which may have an impact on the performance of elements of the platform. For example:	High storage consumption of the etcd data store may add additional pressure on etcd response time which leads to higher latency per request.

Note
The upstream OSS etcd project provides the benchmark1 tool that can be used to measure etcd performance.

 	Depending on the storage backend used by the internal Container Registry, high storage consumption of the backend storage may yield to slower upload (push) time for new images being build or onboard into the platform.

Tip
Using object storage as the storage backend for the internal Container Registry regularly is the most resilient and cost-effective storage backend for this job.

 	High storage utilization of /var/lib/containers which is used by the Container Runtime to cached Container Images and for the Container ephemeral storage will have an impact on the ability to instantiate new Containers in the node or the ability to download new Images.

Tip
Use a dedicated disk or partition to map to the /var/lib/containers directory to avoid saturating the root disk of the Node.

The high storage consumptions can be the result of normal cluster operations by users of the platform. This is particularly relevant when using objects like Deployments, Builds, manipulating Images (i.e., tagging and keeping multiple releases, etc.), groups, CronJobs, and others.
The OpenShift client CLI provides a mechanism for cluster administrator to prune2 older versions of some of this resource (see Figure 9-1).[image: A478307_1_En_9_Fig1_HTML.jpg]
Figure 9-1Removing older version of resources

The execution of the prune command

 will perform a dry run by default (see line #2 on Figure 9-2). During the run it identifies the resources of the particular time that will be removed (see line #4 on Figure 9-2) during the actual process.[image: A478307_1_En_9_Fig2_HTML.jpg]
Figure 9-2Command to prune Images

The “confirm” flag must be appended to the prune command for the actual process to be executed (see line #2 on Figure 9-3). Additional flags are available to provide higher control and granularity of which objects should be removed or maintained (see lines #4 and #7 on Figure 9-3).[image: A478307_1_En_9_Fig3_HTML.jpg]
Figure 9-3Confirming the prune command

Note
The optional flags for the oc adm prune commands are object specific. Refer to the CLI command help for details.

Garbage Collection
There are two types of garbage collection3 performed by the OpenShift Nodes:

 	Container garbage collection: Removes terminated containers. This is enabled by default and it is executed automatically.

	Image garbage collection: Removes Images no longer referenced by any running Pods. It relies on disk usage as reported by cAdvisor on the Node to choose which Images to remove from the Node.

When the garbage collection is executed, the oldest images get deleted first until the stopping threshold is met. Both of these garbage collection types are configurable by modifying the Kubelet argument settings at the Node ConfigMap (see Figure 9-4).[image: A478307_1_En_9_Fig4_HTML.jpg]
Figure 9-4Garbage collection settings in the Node ConfigMap

Node Optimizations
There are multiple ways to optimize Nodes to deliver the performance required for the workloads and the experience required by an organization. The specific settings to modify to achieve certain optimization are tied to the specifications of the Hosts and the characteristics of the workload that will be running in those Nodes.
OpenShift provides many settings to tune the performance of the Platform. The following subtopics are some of the common settings available for cluster administrators to configure to achieve desired Node optimizations.
Node Resource Allocation
OpenShift provides configuration4 parameters to allocate per Node resources to maintain reliable scheduling of workloads to a Node while minimizing overcommitting compute and memory resources. There are two types of resource allocations:	kube-reserved: Allocation of resources reserved for Node components (i.e., kubelet, kube-proxy, Container Runtime, etc.). The default is None.

	system-reserved: Allocation of resources reserved for Host system components (i.e., sshd, NetworkManager, etc.). The default is None.

Both of these resource reservation types are configurable by modifying the Kubelet argument settings at the
 Node ConfigMap

 (see Figure 9-5).[image: A478307_1_En_9_Fig5_HTML.jpg]
Figure 9-5Node resource reservation

Setting Max Pods Per Node
OpenShift provides two Kubelet configuration setting to control the maximum number of Pods that can be scheduled into a Node:	pods-per-core: Configures the maximum number of Pods the Node can run per core on the Node. When using this parameter, the maximum number of Pods allowed in the Node will be <pods-per-core> x <number-of-cores-in-node>

Note
To disable this limit, set pods-per-core to 0.

 	max-pods: Configures a fixed number as the maximum number of Pods that can run on the Node. The default value is 250.

Note
When both of these settings are configured, the lower of the two is used.

These settings are configurable by modifying the Kubelet arguments at the Node ConfigMap (see Figure 9-6).[image: A478307_1_En_9_Fig6_HTML.jpg]
Figure 9-6Maximum number of running Pods per Node

Using the Tuned Profile
Tuned5 is a daemon that monitors devices connected to the Host and statically and dynamically tunes system settings based on a selected Profile.
During the deployment of OpenShift, the installer configures the Nodes with Tuned profiles6 for OpenShift (see Figure 9-7) and assigns them to the Nodes based on their role.[image: A478307_1_En_9_Fig7_HTML.jpg]
Figure 9-7The tuned profiles for OpenShift

Eviction Policy
The Eviction Policy7 enables the Node to reclaim needed resources by failing one or more Pods when the Node is running low on available resources. OpenShift supports two types of eviction policy:	hard: The Node takes immediate action to reclaim resources from a Pod that exceeds predefined thresholds (see #1 Figure 9-8).

	soft: The Node waits for a grace period (see #3 Figure 9-8) before reclaiming resources from a Pod exceeding the thresholds (see #2 Figure 9-8).

[image: A478307_1_En_9_Fig8_HTML.jpg]
Figure 9-8Eviction Policies

The Eviction Policy settings are configurable by modifying the Kubelet arguments at the Node ConfigMap (see Figure 9-8).

Pod Scheduling
OpenShift Pod Scheduler8 is an internal process responsible for determining the placement of new Pods onto Nodes. It does this by identifying a Node that can provide the Pod’s requirements while complying with configured policies.
The available Nodes are filtered by rules known as Predicates. The resulting list is sorted by rules that rank Nodes according to preferences and determine a Priority.
The configuration for the default scheduler policy containing the default Predicates and Priorities is on the Master Nodes at /etc/origin/master/scheduler.json.
In addition to the default scheduler, there are several ways to invoke advanced scheduling of Pods using	Pod Affinity and Anti-affinity9: Pods specify affinity or anti-affinity toward a group of Pods (e.g., for an application’s latency requirement) using labels on Nodes and label selectors on Pods to control where a Pod can be placed.

	Node Affinity10: Pods specify affinity or anti-affinity toward a group of Nodes using labels on Nodes and label selectors on Pods to control where a Pod can be placed.

	Node Selectors11: Use labels on Nodes and label selectors on Pods to control the scheduling on where a Pod can be placed.

	Taints and Tolerations12: Taints are labels on a Node to refuse Pods to be scheduled onto the Node unless the Pod has a matching Toleration. Tolerations are labels on a Pod. The Taints and Tolerations labels on the Node and on the Pod must match in order to be able to schedule the Pod onto the Node.

Pod Priority
Pod Priority13 is used to indicate the relative importance of a Pod compared to other Pods. The Scheduler orders Pods in queues by their Priority with higher priority Pods ahead of other lower priority Pods.
The PriorityClass are cluster-level (non-namespaced) objects defining a mapping between a name and an integer representing the Priority of the class. The higher the number, the higher the priority.
The priority number is any 32-bit integer with a value smaller than or equal to 1,000,000,000 (one billion). Higher values are reserved for critical Pods that should not be preempted or evicted.
OpenShift has two reserved
 PriorityClasses

 for critical system Pods as seen in Table 9-1.Table 9-1OpenShift Reserved PriorityClasses

	PriorityClass Name
	Priority Value
	Description

	system-node-critical
	2,000,001,000
	Used for all Pods that should never be evicted from a Node. This includes Pods like sdn-ovs, sdn, and others.

	system-cluster-critical
	2,000,000,000
	Used with Pods that are important for the normal operations of the cluster. Pods with this priority include fluentd, descheduler, and others.

The PriorityClass name field is used by the Priority Admission Controller to identify the integer value of the priority. If the named PriorityClass is not found, the Pod is rejected. An example of the definition and utilization of a PriorityClass

 can be seen in Figure 9-9.[image: A478307_1_En_9_Fig9_HTML.jpg]
Figure 9-9Defining and using a PriorityClass

When a high-priority Pod disrupts the
 Node resource budget

 , the scheduler attempts to preempt Pods, starting with lower-priority Pods, avoiding violating the Pod disruption budget.
When the scheduling of a new high-priority Pod requires the eviction of a lower-priority Pod that has a Pod Affinity rule with a high-priority Pod running in the Node, the scheduler attempts to identify a different Node to schedule the new high-priority Pod.

Summary
This chapter documents some of the Day-2 operations tasks for the maintenance and operation of OpenShift clusters. In addition, the chapter presents some of the settings a cluster administrator can use to allocate resources for system or platform critical tasks.
There are many more settings available for the reader to discover from the official OpenShift documentation. The settings covered in this chapter are applicable for the most common scenarios.
The OpenShift platform provides sensible defaults optimized for what is sometimes referred to as general Cloud-native workloads, meaning the workloads for which Kubernetes has been designed which were expected to be TCP-based, web-enabled, and entirely agnostic to the underlying hardware infrastructure. With the adoption of Kubernetes outside the web-based application, there is the need to support hardware acceleration (i.e., GPUs, FPGAs, etc.) or multiple NICs per Container, and much more. Chapter 10 explores how some of these advanced compute and networking capabilities are supported in OpenShift.

Footnotes
1Measuring performance of etcd, refer to the documentation at
 https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md

2Additional details on pruning object are available at the online documentation:
 https://docs.openshift.com/container-platform/3.11/admin_guide/pruning_resources.html

3Additional details are available in the documentation at
 https://docs.openshift.com/container-platform/3.11/admin_guide/garbage_collection.html

4Additional information about configuring Node resources is available at the online documentation:
 https://docs.openshift.com/container-platform/3.11/admin_guide/allocating_node_resources.html

5Additional information about Tuned is available at the RHEL documentation (requires a valid RHN subscription):
 https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned

6Additional information about the OpenShift Tuned profiles is available at the scaling and performance documentation (Requires a valid RHN subscription)
 https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile

7Additional information on OpenShift Eviction Policies is available online at
 https://docs.openshift.com/container-platform/3.11/admin_guide/out_of_resource_handling.html#out-of-resource-eviction-policy

8The OpenShift default scheduler is described in more detail in the online documentation:
 https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html

9Advanced Scheduling using Pod Affinity and Anti-Affinity:
 https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity

10Advanced Scheduling using Node Affinity:
 https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity

11Advanced Scheduling using Node Selector:
 https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector

12Advanced Scheduling using Taints and Tolerations:
 https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints

13Additional information about Pod Priority is available at the online documentation:
 https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/priority_preemption.html#priority-priority-about_priority-preemption

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_10

10. Advanced Network Operations

William Caban1
(1)Columbia, MD, USA

The OpenShift platform provides defaults optimized for Cloud-native workloads. These have been covered throughout this book. As with many successful Open Source project, Kubernetes is being used in setups for which it was never designed. With the adoption of Kubernetes outside the web-based application, there is the need to support specialized hardware acceleration (i.e., GPUs, FPGAs, etc.), multiple NICs per Container, and much more. This chapter focuses on advanced networking features or capabilities for increasing network performance and for the onboarding of applications or microservices using nontraditional web protocols into OpenShift.
Network Optimizations
OpenShift SDN uses OpenvSwitch, VXLAN tunnels, OpenFlow rules, and iptables or firewalld rules. Some possible optimizations to this overlay network are based on best practices for fine-tuning a system in a high-performance environment.
Jumbo Frames and VXLAN Acceleration
The standard Ethernet Maximum Transmission Unit (MTU) is 1500 Bytes. A regular IP UDP packet will consume 20 Bytes for the IP header (see #2 in Figure 10-1) and 8 Bytes for the UDP header (see #3 in Figure 10-1), and the remaining 1472 Bytes are available for payload (see #4 to #8 in Figure 10-1).
Note
The outer Ethernet header (14 Bytes) (see #1 in Figure 10-1) is not counted as part of the MTU.

In SDN networks using the VXLAN protocol, the whole Ethernet frame of traffic from Pods in one Node destined to Pods in another Node is encapsulated as IP UDP packets and forwarded to the Node running the destination Pods. For this, the VXLAN header (see #4 in Figure 10-1) is added to the original Layer 2 Ethernet frame (see #5 in Figure 10-1), minus its FCS, and all this content becomes the payload of the outer IP UDP packets (see #2 and #3 in Figure 10-1) and is sent to the remote Node.[image: A478307_1_En_10_Fig1_HTML.jpg]
Figure 10-1Format of a VXLAN packet

From the diagram in Figure 10-1, the effective MTU for payload (see #8) is 1422 Bytes. When working with environments with large streams of data to transfer among Pods on different Nodes, those streams of data need to be broken into very small chunks of 1422 Bytes or less. Each one of these packets undergoes an encapsulation process. Under high network utilization or high network throughput, this may lead to high CPU utilization and high latency.
To reduce the CPU utilization and latency under such circumstances, the recommendations are	Use Jumbo frames (i.e., MTU 9000 or more) to be able to send more data per packet and reduce the number of packets and overhead required to move the data from one Node to the other.

	Use NIC cards supporting VXLAN acceleration so the encapsulation process is offloaded to hardware and CPU.

Caution
Not all the VXLAN-accelerated NICs support Jumbo frames. Consult the technical specification of your NIC provider. In those cases where VXLAN acceleration is not supported with Jumbo frames, the cluster administrators should avoid Jumbo frames as the NIC driver will determine the final behavior which may have a negative impact in performance.

Tuning Network Devices
Advanced Linux system administrator with deep understanding of the Linux networking stack and the available tuning options for high-performance computing may use similar techniques with OpenShift clusters.
Caution
Some of the following optimizations have limited availability or configuration options in some NIC drivers. Consult your hardware and driver technical information.

Some of the optimizations that may be considered are	Adjusting the number and size of RX and TX queues: Improved throughput, latency, and multi-queue techniques can be used to distribute the processing of queues across multiple CPUs.

	Interrupt coalescing: Prevents interrupt storms and increases throughput or latency.

	Adaptive RX and TX coalescing: Interrupt delivery is optimized to improve latency or throughput based on packet rate.

	Hardware-accelerated
 Receive Flow Steering (RFS)

 : When supported by the NIC’s driver, the NIC and the Kernel work together to determine which flows to send to which CPU for processing.

	Adjusting IRQ affinity: Optimizes for data locality for interrupts generated by the NIC.

	Adjusting UDP receive queue size: Increases throughput.

	
 Generic Receive Offloading (GRO) and Large Receive Offloading (LRO)

	

 Receive Packet Steering (RPS)

 and Receive Side Scaling (RSS)

Some of the Linux commands used for these optimizations are sysctl and ethtool.
These levels of optimizations are unique to each hardware and driver combination. As such, this book highlights the existence of these capabilities but leaves it to the reader to explore and test the ones suitable for their environment.

Routing Optimizations
The OpenShift Router can handle the Routes for multiple applications. This can be anywhere from one to thousands of applications. The actual number of Routes an OpenShift Router can handle is determined by the technology in use by the applications behind the Routes.
As seen in previous chapters, the OpenShift Router is based on HAProxy. One of the tunable parameters for HAProxy is the maxconn parameter which is configurable by using the ROUTER_MAX_CONNECTION1 environment variable of the OpenShift Router DeploymentConfig. This parameter sets the per-process maximum number of concurrent connections.
Note
When configuring the maxconn parameter, consider HAProxy counts of the frontend connection and backend connection as two different connections. Because of this, a connection from an external client to an application load balanced by HAProxy counts as two.

Additional parameters2 for the optimization of the OpenShift Router are	CPU and interrupt affinity

	Increasing number of threads

	Setting up connection timeouts

Note
OpenShift Routers, by default, listen on ports 80 (HTTP) and 443 (HTTPS), but they can be configured to listen for HTTP and HTTPS traffic on other ports. This option is configured using the environment variable ROUTER_SERVICE_HTTP_PORT and the environment variable ROUTER_SERVICE_HTTPS_PORT.

Route-Specific Optimizations Annotations
In addition to the global configuration parameters of the HAProxy, OpenShift provides the ability to modify certain behavior on per-Route basis. This is done by using Route Annotations (see Table 10-1).Table 10-1OpenShift

 Route Annotations3

	Variable
	Description

	haproxy.router.openshift.io/balance
	Load balancing algorithm: source, roundrobin, or leastconn

	haproxy.router.openshift.io/disable_cookies
	Disables the use of cookies to track related connections

	router.openshift.io/cookie_name
	Optional cookie to use for Route

	haproxy.router.openshift.io/pod-concurrent-connections
	Sets the maximum number of connections allowed for each backing Pod from a specific Router

	haproxy.router.openshift.io/rate-limit-connections.concurrent-tcp
	Limits

 the number of concurrent TCP connections by an IP address

	haproxy.router.openshift.io/rate-limit-connections.rate-http
	Limits the rate at which an IP address can make HTTP requests

	haproxy.router.openshift.io/rate-limit-connections.rate-tcp
	Limits the rate at which an IP address can make TCP connections

	haproxy.router.openshift.io/timeout
	Sets a server-side timeout for the Route

	router.openshift.io/haproxy.health.check.interval
	Sets interval for the backend health checks

	haproxy.router.openshift.io/ip_whitelist
	(See “IP Whitelists” section)

	haproxy.router.openshift.io/hsts_header
	Sets a Strict-Transport-Security header for the terminated or re-encrypt Route

IP Whitelists
OpenShift supports the use of special annotations to restrict which source IP address or network can access a specific Route. The ip_whitelist annotation (see Figure 10-2) is a space-separated list of whitelisted source IP addresses and CIDRs that are allowed to access the particular Route.[image: A478307_1_En_10_Fig2_HTML.jpg]
Figure 10-2IP Whitelist annotations for a Route

OpenShift Router Sharding
To horizontally scale the routing layer, OpenShift provides the capability to define and use
 Router Shards

 . In this case, the Routes are shared among a group of Routers based on a selection expression defining the Shard. There are two levels of Route sharding:	Cluster administrators configure and manage sharding at cluster-wide level.

	Users can configure sharding for namespaces where they have admin privileges.

When using sharding, each Router in the group handles a portion of the traffic based on the assigned Shard.
Note
Based on the selection expression, the Router Shards can be unique, in which case a Route belongs to only one Shard, or there can be overlapping in which case some Routes can belong to more than one Shard.

When using Router Sharding, the first Route matching a particular Shard reserves the right to exist on that Shard permanently and even across restarts. Figure 10-3 illustrates both ways of configuring Router Sharding.[image: A478307_1_En_10_Fig3_HTML.jpg]
Figure 10-3Router Sharding using Namespace or Route labels

Note
When using the Namespace labels, the Service Account assigned to the Router must have cluster-reader permission to access the labels in the Namespaces.

Supporting Non-HTTP/HTTPS/TLS Applications
There is a wide range of applications that cannot be classified as HTTP-, HTTPS-, or TLS-based applications. For example:	Applications using specialized TCP protocols (i.e., database protocols)

	UDP-based applications

	Applications requiring direct access to the Pods IP

For these applications, OpenShift provides various mechanisms:	Using IngressIP or ExternalIP

	Using NodePorts or HostPorts

Using IngressIP and ExternalIP
When using an ingressIP and externalIP, OpenShift uses Kube-Proxy to configure all Nodes into accepting traffic destined to the particular IP address. When traffic destined for a particular ExternalIP arrives to a Node, it forwards the traffic internally to the Pods associated to the Service (see #2 and #5 on Figure 10-4).[image: A478307_1_En_10_Fig4_HTML.jpg]
Figure 10-4Traffic flow for non-http/https traffic

At first sight, both of these objects behave similarly but have a different default or intended purpose.	IngressIP: This IP address is allocated from the ingressIPNetworkCIDR (default to 172.29.0.0/16 when not defined) for Service type LoadBalancer. This CIDR should not overlap with other IP ranges used in the Cluster.

	ExternalIP: This IP is allocated from a CIDR defined by the externalIPNetworkCIDRs variable in the master-config.yaml (see Figure 10-5). This can be a public IP address range or an organization-level visible and unique network CIDR.

Note
IP Addresses from the externalIP CIDR are not managed by OpenShift. It is up to the network administrator to make sure the traffic destined to these IP arrives to the Nodes.

 [image: A478307_1_En_10_Fig5_HTML.jpg]
Figure 10-5Defining an externalIPNetworkCIDR

Creating a service type LoadBalancer (see Listing 10-1) gets an ingressIP by default (see Figure 10-6).apiVersion: v1
kind: Service
metadata:
 name: pgsql-lb
spec:
 ports:
 - name: pgsql
 port: 5432
 type: LoadBalancer
 selector:
 name: pgsql

Listing 10-1Creating a Service type LoadBalancer

[image: A478307_1_En_10_Fig6_HTML.jpg]
Figure 10-6LoadBalancer Service, IngressIP, and ExternalIP

The LoadBalancer resource can be created using a YAML file (see #1 in Figure 10-6) or using the OpenShift client command (see #2 in Figure 10-6). The resulting LoadBalancer object will be assigned an IP from the ingressIPNetworkCIDR.
Note
The CIDR for ingressIPNetworkCIDR can be modified on the master-config.yaml.

Assigning an externalIP to a service is achieved by adding it to the spec.externalIPs definitions of the services (see Figure 10-7).[image: A478307_1_En_10_Fig7_HTML.jpg]
Figure 10-7Assigning externalIP to a Service

Using NodePorts and HostPorts
Another way to bring traffic into the Pods is by using a NodePort or HostPort. These two objects are similar in their behavior with respect to allocating ports in the actual Nodes. The difference is how the Ports are allocated in all Nodes from a range or allocated on the Node where the Pod is running.	NodePort: Will allocate a port from the range 30000–32767 in all Nodes. (Note: It is possible to request a specific port in this range). The NodePort can be allocated for a Service or a specific Pod (see Figure 10-8).

	HostPort: Will allocate the specified port in the Node where it is running (see Figure 10-9).

[image: A478307_1_En_10_Fig8_HTML.jpg]
Figure 10-8Using NodePort

[image: A478307_1_En_10_Fig9_HTML.jpg]
Figure 10-9Using HostPort

Multiple NIC per POD
OpenShift 4.1 and later support the ability to provide multiple network interfaces to Pods. This capability is provided by the Multus CNI.4

 Multus CNI

 is a meta plugin for Kubernetes which enables the creation of multiple network interfaces per Pod. Each interface can be using a different CNI plugin.
As seen in Figure 10-9, when Multus CNI receives the request for the creation of a new network interface for the Pod, it sends that request to the primary Kubernetes CNI (see #4 in Figure 10-10) for the creation of the eth0 interface. In addition, it interprets the Pod annotations to invoke additional CNIs to add other interfaces (see #6 in Figure 10-10) to the Pod.[image: A478307_1_En_10_Fig10_HTML.jpg]
Figure 10-10Multus CNI logical diagram

Multus requires the creation of a NetworkAttachmentDefinition defining the additional CNI (see #1 in Figure 10-11). The Pod must be annotated with the additional CNIs to use to provide additional interfaces (see #2 in Figure 10-11). At the Pod level, the new network interface is created (see #4 in Figure 10-11).[image: A478307_1_En_10_Fig11_HTML.jpg]
Figure 10-11Defining NetworkAttachmentDefinition and using Multus CNI

OpenShift ServiceMesh
The OpenShift ServiceMesh is based on the upstream project Maistra.5 Some of the components of OpenShift ServiceMesh are	Istio: Based on the Istio6 project; enables the intelligent control of the flow of traffic; enables the authentication, authorization, and encryption of communication between microservices; enforces policies; and enables observability of the communication among the microservices of an application

	Envoy: Service proxy used by Istio and based on Envoy Proxy7 project

	Jaeger: Distributed tracing capability based on the Jaeger8 project (see #2 in Figure 10-12)

	Kiali9: Graphical interface integrating the components of OpenShift ServiceMesh (see #1 in Figure 10-12)

	Grafana: Used for the Istio mesh dashboards (see #3 and #4 in Figure 10-12)

	Prometheus: Used to collect Istio mesh metrics

	Elasticsearch: Used as the backend storage for the Istio metrics

Note
At the time of this writing, installing OpenShift ServiceMesh10 in OCP 3.11.x is still considered a Technology Preview capability.

Some of the OpenShift ServiceMesh consoles are shown in Figure 10-12.[image: A478307_1_En_10_Fig12_HTML.jpg]
Figure 10-12OpenShift ServiceMesh

The main functionality of the OpenShift ServiceMesh requires injecting the Istio sidecar, the Envoy proxy, into the Pod. This requires the proper annotation of the Deployment configuration (see #1 in Figure 10-13).[image: A478307_1_En_10_Fig13_HTML.jpg]
Figure 10-13OpenShift ServiceMesh annotations for Istio sidecar

Once the Istio proxy sidecar is injected into the Pod (see #5 in Figure 10-14), all traffic incoming or outgoing to that Pod goes over the Istio-proxy sidecar container.[image: A478307_1_En_10_Fig14_HTML.jpg]
Figure 10-14OpenShift ServiceMesh Istio-Proxy sidecar injection

From the OpenShift ServiceMesh perspective, when using OpenShift Routes in conjunction with the Istio Gateway resources, the traffic flow will be as follows:	External traffic arrives to the Route (see #1 in Figure 10-15) which points to a LoadBalancer type Service (see #2 in Figure 10-15).	A LoadBalancer resource gets allocated an IngressIP and the cluster administrator could also assign an ExternalIP.

	Traffic is then delivered to the Istio Gateway on the destination Project or Namespace as seen in #3 on Figure 10-15.	The Istio Gateway is considered the edge of the Mesh for incoming and outgoing connections. It describes the ports and protocol (HTTP/HTTPS/TCP) it will accept traffic for.

	Traffic accepted at the Istio Gateway is forwarded based on the VirtualService definition (see #5 on Figure 10-15).	The VirtualService defines one or more destinations where the traffic should go inside the ServiceMesh to reach the actual destination (i.e., a Service or Pod).

	Any Service or Pod annotated for the Istio Proxy will have the Istio sidecar injected into the Pods (see yellow pentagon shapes in Figure 10-15).

	After this point, the metrics and visibility provided by the Istio Proxy are available over the Kiali console.

[image: A478307_1_En_10_Fig15_HTML.jpg]
Figure 10-15Traffic flow with OpenShift ServiceMesh

Caution
At the moment of this writing, the Istio-Proxy (Envoy) has limited support for non-TCP traffic. Applications relying on non-TCP protocols should investigate the impact of these limitations to avoid service disruption.

Summary
This chapter covers some of the advanced network optimizations available in the OpenShift Container Platform (OCP). Some of these optimizations, like hardware acceleration, are dependent on the availability of underlying infrastructure supporting the capability. Other optimizations are more in the fine-tuning of configuration attributes to increase performance and scalability of the capability, like the optimizations available for the OpenShift Routers.
In addition to the optimization, this chapter describes the use of IngressIP, ExternalIPs, NodePorts, and HostPorts to bring specialized IP protocols to Services and Pods running on the platform.
Finally, the chapter explored advanced functionalities provided by OpenShift Multi-Network capabilities with Multus and the OpenShift ServiceMesh with Istio, Jaeger, and other upstream projects.
Some of the optimizations described in this chapter are intended for OpenShift bare-metal deployments. Chapter 11 provides a glimpse of the installation of OpenShift 4.1 using the User Provisioned Infrastructure (UPI) deployment option. This new OpenShift version provides the support for advanced networking capabilities like the multiple network for Containers using Multus, OpenShift ServiceMesh, and many others.

Footnotes
1Additional information about configuring the maximum number of connection is available at the online documentation:
 https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn

2OpenShift HAProxy optimization parameters:
 https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy

3Additional information and the updated list of possible Route Annotations are available from the online documentation:
 https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#route-specific-annotations

4Additional information on providing multiple network interface to Pods can be found at the OCP 4.1 online documentation:
 https://docs.openshift.com/container-platform/4.1/networking/managing-multinetworking.html

5For more details of the Maistra project, refer to the online documentation at
 https://maistra.io/docs/

6Upstream Istio project is available at
 https://istio.io

7Upstream Envoy Proxy project is available at
 www.envoyproxy.io

8Upstream Jaeger project is available at
 www.jaegertracing.io

9Upstream Kiali project is available at
 www.kiali.io

10The instructions for the installation and configuration of the OpenShift Service Mesh are available at the online documentation:
 https://docs.openshift.com/container-platform/3.11/servicemesh-install/servicemesh-install.html#installing-service-mesh

© William Caban 2019
William CabanArchitecting and Operating OpenShift Clustershttps://doi.org/10.1007/978-1-4842-4985-7_11

11. OCP 4.1 UPI Mode Bare-Metal with PXE Boot Deployment

William Caban1
(1)Columbia, MD, USA

Some of the advanced networking optimizations discussed in Chapter 10 are intended to be used with bare-metal deployments of OpenShift. Furthermore, some of the capabilities are now included in OpenShift 4.1.1 This chapter provides supplementary information that goes into the details of an installation of OpenShift 4.1 in bare-metal deployment using the User Provisioned Infrastructure (UPI) mode that was discussed in Chapter 6.
Note
At the time of this writing, the UPI mode is still in beta, but it has been validated to work with bare-metal deployments.

UPI Mode
With the Installer Provisioned Infrastructure (IPI) mode, covered in Chapter 6, the openshift-installer takes care of configuring ancillary services like internal and external load balancers, DNS records, and the provisioning of the base Operating System (OS); with the UPI mode, all those ancillary configurations need to be in place before starting the deployment.
The installation of OCP 4.1 with UPI mode varies based on the infrastructure target. For example, using UPI mode in a VMware environment, vs. an AWS environment, vs. Bare-Metal, has different steps. The core prerequisites are the same but the infrastructure-specific requirements will vary.
Bare-Metal with PXE Boot Example
This chapter covers UPI mode for Bare-Metal using PXE Boot for provisioning the OS during the installation. The diagram for the documented deployment is as shown in Figure 11-1.[image: A478307_1_En_11_Fig1_HTML.jpg]
Figure 11-1OCP 4.1 UPI standard deployment

The basic deployment for OCP 4.x is a high availability (HA) configuration with three Master or Control Nodes and at least two Workers or Compute Nodes. The Bootstrap Node is only used during the initial deployment of the Master or Control Nodes. See Table 11-1 for details on the reference environment.Table 11-1
 Reference Environment

	Node Name
	IP Address
	Mac Address

	bootstrap
	192.168.1.10
	02:01:01:01:01:01

	master-0
	192.168.1.11
	02:00:00:00:01:01

	master-1
	192.168.1.12
	02:00:00:00:01:02

	master-2
	192.168.1.13
	02:00:00:00:01:03

	worker-0
	192.168.1.15
	02:00:00:00:02:01

	worker-1
	192.168.1.16
	02:00:00:00:02:02

Note
The reference configuration uses ocp4poc as the cluster name and example.com as the base domain, hence the use of ocp4poc.example.com as the domain for the cluster.

UPI Bare-Metal with PXE Boot
There are two ways to install the Red Hat Enterprise Linux CoreOS (RHCOS). One is using an ISO image which then requires manual entry of parameters to load the Ignition configuration files, and the other option is using the PXE Boot install in which case all the Ignition parameters are passed using the PXE APPEND configuration fields.
Prerequisites
The deployment of OpenShift 4.1 using UPI mode with PXE Boot bare-metal has the following prerequisites:	Designate a cluster name (i.e., cluster name = ocp4poc).

	Designate a base domain (i.e., base domain = example.com) for the subdomain dedicated to the cluster.	The cluster subdomain will be composed of <cluster-name>.<based-domain>.	That is, ocp4poc.example.com

	Fully resolvable FQDN forward and reverse DNS entries for all the Nodes (including the Bootstrap node).	Special etcd service entries are required.

	Special Kubernetes API internal and external entries.

	Set up a Load Balancer in pass-through mode for Kubernetes API (tcp/6443), Machine Server Config (tcp/22623), and OpenShift Routers HTTP and HTTPS (tcp/80, tcp/443)

 .

Note
At the moment of this writing, when using UPI mode in bare-metal with PXE Boot, the Red Hat Enterprise Linux CoreOS (RHCOS) uses reverse DNS resolution for assigning the hostname to the Nodes.

DNS Configuration (Example)
Following the reference information from Table 11-1, the corresponding DNS configuration must include the entry layout in Table 11-2.Table 11-2Reference DNS Configuration

	Role
	FQDN
	
	bootstrap
	bootstrap.<cluster_name>.<base_domain>
	192.168.1.10

	master-0
	master-0.<cluster_name>.<base_domain>
	192.168.1.11

	master-1
	master-1.<cluster_name>.<base_domain>
	192.168.1.12

	master-2
	master-2.<cluster_name>.<base_domain>
	192.168.1.13

	worker-0
	worker-0.<cluster_name>.<base_domain>
	192.168.1.15

	worker-1
	worker-1.<cluster_name>.<base_domain>
	192.168.1.16

	Kubernetes API (tcp/6443)
	api.<cluster_name>.<base_domain>
	External Load Balancer for Master Nodes

	api-int.<cluster_name>.<base_domain>
	Internal Load Balancer for Master Nodes

	etcd
	etcd-0.<cluster_name>.<base_domain>
	192.168.1.11

	 	etcd-1.<cluster_name>.<base_domain>
	192.168.1.12

	 	etcd-2.<cluster_name>.<base_domain>
	192.168.1.13

	etcd SRV
	etcd-server-ssl._tcp.<cluster_name>.<base_domain>
For each Master Node, OpenShift requires a SRV DNS record for etcd server on that machine with priority 0, weight 10, and port 2380.

	Wildcard Subdomain for Apps
	∗.apps.<cluster_name>.<base_domain>
	192.168.1.15, 192.168.1.16

The reference configurations in Listings 11-1 and 11-2 are for the Bind DNS server. When using other DNS servers, a similar configuration is required.; /var/named/ocp4poc.example.com
$TTL 1D
@ IN SOA bastion.ocp4poc.example.com. root.ocp4poc.example.com. (
 2019052001 ; serial
 1D ; refresh
 2H ; retry
 1W ; expiry
 2D) ; minimum

@ IN NS bastion.ocp4poc.example.com.
@ IN A 192.168.1.1

; Ancillary services
lb IN A 192.168.1.200
lb-ex IN A 10.10.10.10

; Bastion or Jumphost
bastion IN A 192.168.1.1

; OCP Cluster
bootstrap IN A 192.168.1.10

master-0 IN A 192.168.1.11
master-1 IN A 192.168.1.12
master-2 IN A 192.168.1.13

worker-0 IN A 192.168.1.15
worker-1 IN A 192.168.1.16

etcd-0 IN A 192.168.1.11
etcd-1 IN A 192.168.1.12
etcd-2 IN A 192.168.1.13

_etcd-server-ssl._tcp.ocp4poc.example.com. IN SRV 0 0 2380 etcd-0.ocp4poc.example.com.
 IN SRV 0 0 2380 etcd-1.ocp4poc.example.com.
 IN SRV 0 0 2380 etcd-2.ocp4poc.example.com.

api IN CNAME lb-ext ; external LB interface
api-int IN CNAME lb ; internal LB interface

apps IN CNAME lb-ext

*.apps IN CNAME lb-ext

Listing 11-1
 Forward DNS Record

Note
The configuration of the etcd server records is required for the OpenShift installation. The api (external VIP pointing to the Control Nodes) and api-int (internal VIP pointing to the Control Nodes) records must exist pointing to the correct VIP.

 ; /var/named/1.168.192.in-addr.arpa
$TTL 1h
$ORIGIN 1.168.192.IN-ADDR.ARPA.

@ 1h IN SOA bastion.ocp4poc.example.com. root.ocp4poc.example.com. (
 2019052901 ; serial
 2H ; refresh
 15 ; retry
 1W ; expiry
 2H) ; minimum

 IN NS bastion.ocp4poc.example.com.

1 IN PTR bastion.ocp4poc.example.com.

10 IN PTR bootstrap.ocp4poc.example.com.

11 IN PTR master-0.ocp4poc.example.com.
12 IN PTR master-1.ocp4poc.example.com.
13 IN PTR master-2.ocp4poc.example.com.

15 IN PTR worker-0.ocp4poc.example.com.
16 IN PTR worker-1.ocp4poc.example.com.

100 IN PTR lb.ocp4poc.example.com.

Listing 11-2
 Reverse DNS Record

Load Balancer Configuration (Examples)
The load balancer configuration is divided into external-facing configuration and cluster-facing configuration. The external-facing configuration should resolve to the external IP of the load balancer. The cluster-facing configuration should resolve to the internal IP of the load balancer. All the ports must be configured in pass-through mode. The ports required by OpenShift and that should be configured in the load balancer are listed in Table 11-3.Table 11-3Reference Load Balancer Configuration

	Service VIP
	Backend
	Port

	Kubernetes API
	bootstrap.ocp4poc.example.com:6443
master-0.ocp4poc.example.com:6443
master-1.ocp4poc.example.com:6443
master-2.ocp4poc.example.com:6443
	6443
The entry for the Bootstrap Node should be removed after the cluster bootstrap installation process is completed

	Machine Server
	bootstrap.ocp4poc.example.com:22623
master-0.ocp4poc.example.com:22623
master-1.ocp4poc.example.com:22623
master-2.ocp4poc.example.com:22623
	22623
The entry for the Bootstrap Node should be removed after the cluster bootstrap installation process is completed

	Ingres HTTP
	worker-0.ocp4poc.example.com:80
worker-1.ocp4poc.example.com:80
	80

	 	worker-1.ocp4poc.example.com:80
	
	Ingress HTTPS
	worker-0.ocp4poc.example.com:443
worker-1.ocp4poc.example.com:443
	443

	 	api-int.<cluster_name>.<base_domain>
	Internal Load Balancer for Master Nodes

NGINX and HAProxy are Open Source projects commonly used as load balancers. A reference load balancer configuration using NGINX is presented in Listing 11-3.# ngnix.conf
user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

events {
 worker_connections 1024;
}

Pass-through
stream {
 upstream ocp4poc-k8s-api {
 # Kubernetes API
 server bootstrap.ocp4poc.example.com:6443;

 server master-0.ocp4poc.example.com:6443;
 server master-1.ocp4poc.example.com:6443;
 server master-2.ocp4poc.example.com:6443;
 }

 upstream ocp4poc-machine-config {
 # Machine-Config
 server bootstrap.ocp4poc.example.com:22623;

 server master-0.ocp4poc.example.com:22623;
 server master-1.ocp4poc.example.com:22623;
 server master-2.ocp4poc.example.com:22623;
 }

 server {
 listen 6443;
 proxy_pass ocp4poc-k8s-api;
 }

 server {
 listen 22623 ;
 proxy_pass ocp4poc-machine-config;

 }

 # Passthrough required for the routers
 upstream ocp4poc-http {
 # Worker Nodes running OCP Router
 server worker-0.ocp4poc.example.com:80;
 server worker-1.ocp4poc.example.com:80;
 }

 upstream ocp4poc-https {
 # Worker Nodes running OCP Router
 server worker-0.ocp4poc.example.com:443;
 server worker-1.ocp4poc.example.com:443;
 }
 server {
 listen 443;
 proxy_pass ocp4poc-http;
 }

 server {
 listen 80 ;
 proxy_pass ocp4poc-https;

 }
}

Listing 11-3Load Balancer with NGINX (Example)

A reference load balancer configuration using HAProxy is presented in Listing 11-4.# haproxy.cfg
defaults
 mode http
 log global
 option httplog
 option dontlognull
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 300s
 timeout server 300s
 timeout http-keep-alive 10s
 timeout check 10s
 maxconn 20000

frontend openshift-api-server
 bind *:6443
 default_backend openshift-api-server
 mode tcp
 option tcplog

backend openshift-api-server
 balance source
 mode tcp
 server bootstrap 192.168.1.10:6443 check
 server master-0 192.168.1.11:6443 check
 server master-1 192.168.1.12:6443 check
 server master-2 192.168.1.13:6443 check

frontend machine-config-server
 bind *:22623
 default_backend machine-config-server
 mode tcp
 option tcplog

backend machine-config-server
 balance source
 mode tcp
 server bootstrap 192.168.1.10:22623 check
 server master-0 192.168.1.11:22623 check
 server master-1 192.168.1.12:22623 check
 server master-2 192.168.1.13:22623 check

frontend ingress-http
 bind *:8080
 default_backend ingress-http
 mode tcp
 option tcplog

backend ingress-http
 balance source
 mode tcp
 server worker-0 192.168.1.15:80 check
 server worker-1 192.168.1.15:80 check

frontend ingress-https
 bind *:8443
 default_backend ingress-https
 mode tcp
 option tcplog

backend ingress-https
 balance source
 mode tcp
 server worker-0 192.168.1.15:443 check
 server worker-1 192.168.1.15:443 check

Listing 11-4Load Balancer with HAProxy (Example)

DHCP with PXE Boot Configuration (Example)
Listing 11-5 is a reference configuration of DHCP using DNSmasq, sending the PXE Boot server information to the Nodes.# OCP4 PXE BOOT Lab
dnsmasq configurations
disable DNS /etc/dnsmasq.conf set port=0
#
no-dhcp-interface=eth0
interface=eth1

#domain=ocp4poc.example.com

DHCP (dnsmasq --help dhcp)
dhcp-range=eth1,192.168.1.10,192.168.1.200,24h
dhcp-option=option:netmask,255.255.255.0
dhcp-option=option:router,192.168.1.1
dhcp-option=option:dns-server,192.168.1.1
dhcp-option=option:ntp-server,204.11.201.10

Bootstrap
dhcp-host=02:01:01:01:01:01,192.168.1.10

master-0, master-1, master-2
dhcp-host=02:00:00:00:01:01,192.168.1.11
dhcp-host=02:00:00:00:01:02,192.168.1.12
dhcp-host=02:00:00:00:01:03,192.168.1.13

worker-0, worker-1
dhcp-host=02:00:00:00:02:01,192.168.1.15
dhcp-host=02:00:00:00:02:01,192.168.1.16

PXE
enable-tftp
tftp-root=/var/lib/tftpboot,eth1
dhcp-boot=pxelinux.0

Listing 11-5DHCP for PXE Boot with DNSmasq

PXE Boot Configuration (Example)
Listing 11-6 is a reference configuration of using DNSmasq as the PXE Boot server.UI vesamenu.c32
DEFAULT LOCAL
PROMPT 0
TIMEOUT 200
ONTIMEOUT LOCAL

MENU TITLE PXE BOOT MENU

LABEL WORKER-BIOS
 MENU LABEL ^1 WORKER (BIOS)
 KERNEL rhcos/rhcos-kernel
 APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0 coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.ignition_url=http://192.168.1.1:8000/worker.ign coreos.inst.image_url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz ip=eth1:dhcp

LABEL MASTER-BIOS
 MENU LABEL ^2 MASTER (BIOS)
 KERNEL rhcos/rhcos-kernel
 APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0 coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.ignition_url=http://192.168.1.1:8000/master.ign coreos.inst.image_url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz ip=eth1:dhcp

LABEL BOOTSTRAP-BIOS
 MENU LABEL ^3 BOOTSTRAP (BIOS)
 KERNEL rhcos/rhcos-kernel
 APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0 coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.ignition_url=http://192.168.1.1:8000/bootstrap.ign coreos.inst.image_url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz ip=eth1:dhcp

LABEL LOCAL
 MENU LABEL ^7 Boot from Local Disk
 MENU DEFAULT
 LOCALBOOT 0

LABEL RECOVERY1
 MENU LABEL ^8 Recovery (initqueue)
 KERNEL rhcos/rhcos-kernel
 APPEND rd.break=initqueue rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0 ip=eth1:dhcp

LABEL RECOVERY2
 MENU LABEL ^9 Recovery (pre-mount)
 KERNEL rhcos/rhcos-kernel
 APPEND rd.break=pre-mount rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0 ip=eth1:dhcp

Listing 11-6DNSmasq as PXE Boot Server

Preparing the Installation
The bare-metal deployment of OpenShift 4.1 using UPI mode with PXE Boot requires special attention to the hardware configuration in use, especially the BIOS configuration and NIC interface configured for the PXE Boot.
Note
The examples in this chapter use a Bastion Node in the same network as the Cluster Nodes, but this is not strictly necessary. They can be on different networks as long as the reachability exists.

Considerations with UPI Mode with PXE Boot
At the time of this writing, there are several considerations to have when using UPI Mode with PXE Boot:	When using a physical server with multiple NICs	The PXE APPEND command must specify the exact NIC to use during the PXE boot. For example, use a syntax similar to ip=eth2:dhcp and NOT a generic DHCP entry like ip=dhcp.

	If the PXE APPEND uses the ip=dhcp, the DNS information from the last NIC to come up will be used as the entry for /etc/resolv.conf.

	If the last NIC to come up has a self-assigned IP and does not receive a DNS, the resulting /etc/resolv.conf will be empty. When this happens, the Node will attempt to use the localhost [::1] as the DNS and the installation will fail. To work around this, during the installation	When possible, avoid having NICs with active link that are not receiving valid IPs.

	Pass the nameserver=<nameserver_ip> with the PXE APPEND command.

	When the server has many NICs, it is possible for the NetworkManager-wait-online.service to time out before the DHCP request over each NIC timeout. When this happens, a cascaded failure may be triggered. To avoid this situation, a recommended patch is to increase the timeout of this NetworkManager service and avoid the situation.

	At the time of this writing, using the PXE APPEND to disable IPv6 using the ipv6.disable is not supported.

	When customizing Ignition files to write custom files or configurations in the Node, the permissions must be specified in OCTAL mode (i.e., 384), NOT in DECIMAL mode (i.e., 600).

	If there is no valid reverse DNS resolution during the installation, the Masters (and all the Nodes) will register as localhost.localdomain into the Kubernetes etcd. When this happens, Kubernetes will fail to identify the existence of multiple masters and the installation process will fail.

Downloading RHCOS and Installation Binaries
The installation requires the download of the Red Hat Enterprise Linux CoreOS (RHCOS) corresponding to the 4.1 version, the OpenShift 4.1 client, and the OCP 4.1 openshift-installer. These are available from the corresponding mirror repositories:	Obtain the latest RHCOS images from
 https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.1/latest/

	Obtain the latest OpenShift client and installer binaries from
 https://mirror.openshift.com/pub/openshift-v4/clients/ocp/

For the UPI mode using PXE Boot, the required images are as shown in Figure 11-2 (the specific subrelease and release will be different after GA).[image: A478307_1_En_11_Fig2_HTML.jpg]
Figure 11-2RHCOS and OCP 4.1 installation binaries (example)

Preparing the PXE Boot Images
Copy the RHCOS PXE Boot images to the PXE server similar to #1 on Figure 11-3. Copy the RHCOS Operating System Images to the web server to be used by the PXE installation similar to #2 on Figure 11-3.[image: A478307_1_En_11_Fig3_HTML.jpg]
Figure 11-3Installing RHCOS PXE Boot and OS Images

Installation
At high level, the installation process consists of creating the install-config.yaml configuration, generating the Ignition files, and using those Ignition configurations to bootstrap the cluster.
Any customization required for the initial installation of the cluster must be done to those Ignition files. There are three initial Ignition files:	bootstrap.ign: This Ignition file contains all the information the Bootstrap Node will use to render the cluster configuration and generate the MachineConfig configuration files for the Master Nodes.

	master.ign: This is the Ignition file the Master Nodes will use to install the RHCOS image into the bare-metal server. It also contains the information on how to obtain the Master Node configuration from the Bootstrap Node.

	worker.ign: This is the Ignition file the Worker Nodes will use to install the RHCOS image into the bare-metal server. It also contains the information on how to obtain the Worker Node configuration from the Master Nodes.

The discovery of the Kubernetes API to retrieve the state of the deployment process, the discovery of the API to retrieve the configuration for the Nodes, the discovery of the etcd database, and other access required by the Ignition process are highly dependent on the existence of the specific DNS entries discussed previously in this chapter.
Creating the Configuration
The OpenShift 4.1 installer UPI mode requires the creation of the install-config.yaml file which will be used to generate the Ignition files (Listing 11-7).apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
 name: worker
 replicas: 0
controlPlane:
 hyperthreading: Enabled
 name: master
 replicas: 3
metadata:
 name: ocp4poc
networking:
 clusterNetworks:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 none: {}
pullSecret: '{"auths": ...}'
sshKey: 'ssh-ed25519 AAAA...'

Listing 11-7Sample install-config.yaml

The pullSecret must be obtained from
 https://try.openshift.com
 . The SSH key is the public SSH key from the key pair that is going to be used by the administration during the installation.

Generating the Ignition Files
Create a folder for the installation, copy the install-config.yaml file into it, and proceed to generate the Ignition files, as shown in Figure 11-4.[image: A478307_1_En_11_Fig4_HTML.png]
Figure 11-4Generating Ignition files

When using UPI PXE Boot with a system with multiple NIC, it is recommended to increase the timeout of the NetworkManager-wait-online.service (see Listing 11-8).{
"systemd": {
 "units": [
 {
 "name": "NetworkManager-wait-online.service",
 "dropins": [{
 "name": "timeout.conf",
 "contents": "[Service]\nExecStart=\nExecStart=/usr/bin/nm-online -s -q --timeout=300"
 }]
 }
]
 }
}

Listing 11-8Increase Network Manager timeout patch

By default, OCP 4.1 UPI only creates a local user in the Bootstrap Node. There is no local user in Master and Worker Nodes. To create a local user, follow Listing 11-9.{
 "passwd": {
 "users": [
 {
 "name": "core",
 "sshAuthorizedKeys": [
 "ssh-rsa"
]
 }
]
 }
}

Listing 11-9Adding local user

The patches from Listings 11-8 and 11-9 must be merged with the original Ignition file of the corresponding Node.
Note
At the moment of this writing, OpenShift does not provide a tool to edit the Ignition files and apply customization. Currently the administrator must rely on third-party tools to edit and merge the corresponding JSON files.

Copy the resulting Ignition files to the web server that will be used by the PXE Boot process—for example, cp -f ./ocp4poc/*.ign /usr/share/nginx/html/

Bootstrap and Master Nodes
The first Node to be installed is the Bootstrap Node. When using the PXE configuration from Listing 11-6, the PXE Boot menu will be similar to Figure 11-5.[image: A478307_1_En_11_Fig5_HTML.jpg]
Figure 11-5PXE Boot menu (example)

Select the Bootstrap from the menu and it will proceed with the installation of RHCOS.
Once the RHCOS installation of Bootstrap Node completes, it will reboot. After the Bootstrap is running, proceed to install RHCOS in the three Masters.
It is possible to use the ./openshift-install wait-for bootstrap-complete --dir=ocp4poc --log-level debug command to have a high-level overview of the progress of the Bootstrap process of the Master Nodes. For more granular view of the progress, log in to the Bootstrap Node using the “core” user and the SSH key provided in the install-config.yaml (see #1 on Figure 11-6).[image: A478307_1_En_11_Fig6_HTML.jpg]
Figure 11-6Log in to the Bootstrap Node

Once logged in, the Bootstrap Node executes the journalctl -b -f -u bootkube.service command to follow the detailed output messages about the progress of the process (see #2 and #3 in Figure 11-6).
After the installation of a Master Node completes, the Node will reboot in the RHCOS version used for the installation (see #1 on Figure 11-7). At this point, the Master requests the Machine Configuration rendered by the Cluster Version Operator running in the Bootstrap Node (see #2 on Figure 11-7). This will instruct the Node into downloading and applying the latest RHCOS (see #3 on Figure 11-7) and to start downloading and running the services corresponding to the Master Node.[image: A478307_1_En_11_Fig7_HTML.jpg]
Figure 11-7Master Node Boot and Upgrade

Once the three Master Nodes are fully operational, the openshift-install wait-for bootstrap command will notify the Bootstrap Node has completed its job and it is time to shut down the Bootstrap Node (see #1 in Figure 11-8).
Note
At this point, it is safe to remove the Bootstrap Node from the Load Balancer configuration.

The log message from the Bootstrap Node will also indicate the Bootstrap process has been completed (see #2 on Figure 11-8).[image: A478307_1_En_11_Fig8_HTML.jpg]
Figure 11-8Bootstrap complete

During the bootstrap process, the Bootstrap Node takes care of signing the certificate requests from the Masters so they can become a single cluster (see #3 and #4 on Figure 11-8). After this point, adding workers or any other Node into the cluster requires for the cluster administrator to manually accept the Certificate Signing Requests (CSR)

 from the new Nodes.
After the Bootstrap Node has completed its purpose, the etcd and Kubernetes APIs are online, but the installation of the OpenShift Master Nodes is still in progress. To monitor this progress, use the command ./openshift-install wait-for install-complete --dir=ocp4poc --log-level debug

Worker Nodes
Once the Bootstrap Node has been removed from the cluster, it is possible to install and onboard the Worker Nodes.
Note
Even when the installation of the OpenShift Master Nodes is still in progress, the successful completion of the OCP cluster installation requires at least two Worker Nodes to be online and be part of the cluster.

Boot and install RHCOS in the Worker Nodes using the same PXE Boot menu as before. This time, select the Worker option. The installation will be similar as with the Master Nodes. This time the Master Nodes are the ones providing the Machine Configuration to the Worker Nodes. For a Worker to start this process, it generates a Certificate Signing Request (CSR) for a node-bootstrapper Service Account which needs to be accepted by the cluster administrator (see #1 and #2 on Figure 11-9). Then it generates a system Node account CSR which needs to be approved for the Worker to join the cluster (see #3 and #4 on Figure 11-9).[image: A478307_1_En_11_Fig9_HTML.jpg]
Figure 11-9OCP CSR signing

During this process, the Worker Nodes go over a RHCOS upgrade process and receive information on which containers to download and which services to bring online.
With all the Master and Worker Nodes online (see #1 on Figure 11-10), the installation will continue but will not complete to 100% until persistent storage is assigned to the Image Registry (see #3 on Figure 11-10).[image: A478307_1_En_11_Fig10_HTML.jpg]
Figure 11-10Installation progress and Image Registry

Note
Persistent storage for the Image Registry should NOT be ephemeral in nature (like emptyDir) as images may be lost during a reboot of the Node hosting the registry. This type of ephemeral storage may only be used during testing or in nonproduction environments.

Once the installation is successfully completed, all the Cluster Operators should be shown as available (see Figure 11-11).[image: A478307_1_En_11_Fig11_HTML.jpg]
Figure 11-11Cluster Operators running after successful installation

The OpenShift console (see Figure 11-12) for the new environment will be available at https://console-openshift-console.apps.<cluster-name>.<base-domain>.[image: A478307_1_En_11_Fig12_HTML.jpg]
Figure 11-12The OpenShift 4.1 Console

After the installation is completed, the system will have created the following Routes:	
 https://console-openshift-console.apps.ocp4poc.example.com
 —default URL for the OpenShift console

	

 https://oauth-openshift.apps.ocp4poc.example.com

	

 https://downloads-openshift-console.apps.ocp4poc.example.com

	

 https://alertmanager-main-openshift-monitoring.apps.ocp4poc.example.com

	

 https://grafana-openshift-monitoring.apps.ocp4poc.example.com

	

 https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.example.com

Summary
As seen in this chapter, the use of OpenShift User Provisioned Infrastructure (UPI) mode for Bare-Metal deployment may provide a way for organizations looking to retain control of the physical infrastructure while benefiting of a modern platform capable of auto-upgrade itself to the latest code.
The lecturer should be aware this is only one way to use the UPI mode. There are different ways in which UPI may be used to provision bare-metal or other types of infrastructures.

Footnotes
1During the development of this book, Red Hat decided to keep OpenShift 4.0 as a Developer Preview release and instead did the release of OpenShift 4.1 as the first General Availability (GA) release of the 4.x major version.

Index

A

Ansible service broker (ASB)

Application nodes/Pods

B

BuildConfig
creation
Jenkinsfile, Git
sample Jenkinsfile
deployment
access logs
Jenkins Console
Jenkins Master
manual trigger
new pipeline
pipeline history
YAML, import

C

Certificate signing request (CSR)

CI/CD pipelines
external integration
grant edit access
Jenkins Master
Jenkins-persistent template

Cluster Monitoring

Container network interface (CNI)

Container runtime

Container runtime interface (CRI)

Containers

Container storage interface (CSI)

D

Day-2 operations
garbage collection
leftover objects
cluster administrator
prune command
storage, consume

Default cluster roles

DriveScale composable platform

E

East-west traffic
Calico SDN CN
Openshift SDN
cluster network subnet allocation
flannel
node
ovs-multitenant plugin
ovs-networkpolicy plugin
ovs-subnet plugin
routes
tun0 interface
VXLAN protocol
SDN plugins

Ephemeral framework

Eviction policy

F, G

Flannel

FlexVolume
architecture
Volume plugin
with attach/detach
without attach/detach

H

Hawkular metrics

High availability (HA)
data plane
Metrics Server
OCP
consoles
etcd database
RAFT algorithm
services
SeeMaster services
OCR
OpenShift logging services
OpenShift metrics
OpenShift monitoring
OpenShift router

Horizontal Pod Autoscaler (HPA)

HPE Nimble

HPE 3PAR

I

Identity providers
mapping, value
OpenShift 3.11.x

Infrastructure nodes

Installer provisioned infrastructure (IPI)

Isolates interprocess communication (IPC)

J

Jenkins-ephemeral template

Jenkinsfile
BuildConfig
CI/CD Pipeline
edit access
Git repository
GUI, pipeline
multiproject pipeline
Webhook triggers

Jenkins images, custom

Jenkins Kubernetes plugin

Jenkins Master

K

Kubernetes constructs
core elements
deployment
Pod
PVC
replicaSet
services

Kubernetes storage
access mode
PV status
reclaim policy

Kubernetes volume

L

LimitRanges
resource constraints
resource creation or modification

Linux Containers
container specifications
Control Groups (cgroups)
definition
Docker Daemon
Docker platform
Kubernetes
namespaces

Load balancer
infrastructure nodes
OpenShift Router
passthrough configuration
master nodes
non-HTTP/HTTPS/TLS protocols
non-web-based/UDP-based traffic
types

Load balancer configuration
external-facing
HAProxy
cluster-facing
NGINX
ports

M

Managing users and groups
oc client command
SA
user, creation

mappingMethod

Master nodes

Master services
HAproxy
hyperkube binary
kube-system namespace
Native HA
nodes
Pods

Maximum transmission unit (MTU)

Minishift

Multus CNI

N

NetApp Trident

Networking
north-south traffic
HAProxy template router plugin
NGINX and NGINX Plus router plugin
traffic flow
SeeEast-west traffic

Network optimizations
jumbo frames and VXLAN acceleration
tuning options

Node ConfigMap

Node optimizations
cluster administrators
max Pods per node
resource allocations
tuned profile

Non-HTTP/HTTPS/TLS applications
using ingressIP/externalIP
using NodePort/HostPort

Non-HTTP/HTTPS/TLS protocols

O

OAuth
clients
token request

OCP 3.11 deployment architectures
active RHEL/subscriptions
Ansible inventory file
All-in-One configuration
ASB
Bastion node
Cluster Metrics
Cluster Monitoring
deploying OpenShift
Full-HA control plane
htpasswd identity provider
nodes
Non-HA control plane
OpenShift Router and Registry
parameters
Registry Service Account
RHOCS/OCS
SDN parameters
service catalog
uninstalling OpenShift
web console access
wildcard apps domain
on Bastion node
cluster requirements
nodes configurations
non-HTTP/HTTPS/TLS protocols
operating system
password-less SSH
Registry Service Account
SDN subnets

Open container initiative (OCI)

OpenEBS

Open Service API (OSP API)

OpenShift ansible broker (OAB)

OpenShift architecture
components
constructs
app nodes
cluster console
infrastructure nodes
Master nodes
Kubernetes
SeeKubernetes constructs
OCR
routers

 routes
 vs
 . Kubernetes

OpenShift Client Plugin

OpenShift container platform (OCP)

OpenShift container registry (OCR)

OpenShift container storage (OCS)
converged Mode
deployment patterns
Gluster service
raw disks
GlusterFS storage
independent mode
Kubelet service
REST API

OpenShift control plane (OCP)

OpenShift 4.x deployment architecture
AWS (IPI Mode)
identity provider
login screen
installing OCP4
IPI
prerequisites
progress
UPI

OpenShift Router

OpenShift ServiceMesh
components
consoles
Istio sidecar
traffic flow

OpenShift storage
OpenShift 3.11, mount points
OpenShift 4.0, mount points

Open vSwitch (OVS)

P, Q

PersistentVolumeClaim (PVC)

PersistentVolume (PV)
access mode
cluster administrator
plugins and access modes
reclaim policy

Pipeline Build Strategy
BuildConfig
defined
Jenkinsfile
Jenkinsfile, Git

Pod priority
node resource budget
PriorityClasses
scheduler

Pods
scheduling

prune command

PXE Boot menu

R

RAFT consensus algorithm

RBAC authorization
constructs
levels

Receive flow steering (RFS)

Receive packet steering (RPS)

Red Hat Enterprise Linux CoreOS (RHCOS)

Red Hat OpenShift Container Storage (RHOCS/ OCS)

ReplicationController (RC)

ResourceQuota

Role-based access control (RBAC)

Routing optimizations
annotations
IP Whitelist
parameters
Router Shards

S

SECCOMP

Security context constraints (SCC)
control, objects
default cluster
restricted SCC
strategies

Service Account (SA)
API tokens
creation
roles

Service catalogs
OSP API
service brokers

Software-defined networking (SDN)

Software-defined storage (SDS) plugins

Source-to-Image (S2I)

StorageClass
cluster administrators
sample definition
YAML file

SYSCTL, enable unsafe

System users

T

Templates
defined
example
installation

Template service broker (TSB)

Tuned profile

U

UPI Bare-Metal with PXE Boot
DHCP
DNS configuration
forward DNS record
reference information
reverse DNS record
DNSmasq
load balancer
SeeLoad balancer configuration
prerequisites

UPI mode with PXE Boot, installation
Bootstrap node
log in
log message
RHCOS
cluster operators
CSR
ignition files
generation
install-config.yaml configuration
Master node
Network Manager timeout patch
OpenShift console
preparation
ignition files
physical server
RHCOS, download
RHCOS PXE Boot images
routes
worker nodes
Image Registry
PXE Boot menu

User provisioned infrastructure (UPI) mode
Bare-Metal using PXE Boot
OCP 4.1
reference environment

User types

V, W, X, Y, Z

Virtual groups

Virtual Network ID (VNID)

Virtual user

Volumes

OEBPS/A478307_1_En_8_Fig10_HTML.jpg
apiVersion: build.openshift.io/vl

©

NNNN
LRSS

N

____]

kind: BuildConfig

annotations: Pipelines > podcicd
openshift.io/generated-by: OpenShiftNewApp
podcicd 9 Start Pipeline | | Actions ~
labels: .)
app: podcicd
name: podcicd History Configuration Events
namespace: cicd ————
spec: Details Triggers Leam wore 2
failedBuildsHistoryLimit: 5 Build Strategy: Jenkins Pipeline Config Change For: Build config podcicd
nodeSelector: {} Source Repo: https://github.comvwillamcaban/podcicd.git Generic Webhook URL: https://ocp.shift zone:443/apis/build.openshift.
output: {} Source Ref: master
postCommit: {} lv:'-:‘:!?k:“::v Jenkinsfile : tps://0cP. openshift.| Iy
resources: {} Run Policy: serial @ Manual (CLI): oc start-build podcicd -n cicd ©
runPolicy: Serial
source: ‘Show Annotations.
git:

ref: master
uri: https://github.com/williamcaban/podcicd.git
type: Git

strategy:
jenkinsPipelineStrategy: .
jenkinsfilePath: Jenkinsfile
type: JenkinsPipeline
successfulBuildsHistoryLimit: 5

triggers:
=~ github: ‘
secret: 34G@5Ra6rNadVrEUOLr

type: GitHub
- generic:

secret: yPc9deBFZfISQEWFnZjr
type: Generic

- type: ConfigChange

OEBPS/A478307_1_En_2_Fig5_HTML.jpg
O 00 NO UL & WN =

NNNNRRRRRB R 2 2 B @2
WNRPSWOWOWNOOUAWNROS

[root@bastion ~]# oc get pod master-etcd-masterl.demo.internal -n kube-system -o yaml
volumeMounts:
- mountPath: /etc/etcd/
name: master-config
readOnly: true
- mountPath: /var/lib/etcd/
name: master-data
workingDir: /var/lib/etcd
dnsPolicy: ClusterFirst
hostNetwork: true
nodeName: masterl.demo.internal ‘

volumes:
- hostPath: ‘
path: /etc/etcd/
type: ""
name: master-config
- hostPath:
path: /var/lib/etcd
type: ""
name: master-data

OEBPS/A478307_1_En_11_Fig12_HTML.jpg
iner Platform

Project: openshift-image-registry v

status
Project Status

@ Dashboard

0.008

Application v

OEBPS/A478307_1_En_10_Fig10_HTML.jpg
POD WITHOUT MULTUS POD WITH MULTUS

kubelet kubelet

v
EEEestil)

3 Multus CNI
MULTUS \e\

CNI compliant SDN plugin

(i.e. OpenShift-SDN, Calico, etc)

CNI compliant SDN plugin CNI compliant SDN plugin
(i.e. OpenShift-SDN, Calico, etc) o (i.e. OpenShift-SDN, Calico, etc)

e Pod e

Pod

o

A
O

PEE T T
ceccccccs

....... ’ 4“““‘,’

OEBPS/A478307_1_En_2_Fig11_HTML.jpg
O O NO UL B WN =

NAMESPACE .
default
openshift-console
openshift-console
openshift-console
openshift-web-console
openshift-web-console
openshift-web-console

[root@bastion ~]# oc get rc registry-console-1 -n default .
NAME DESIRED CURRENT READY AGE
1 1 1d

registry-console-1 1

NAME
registry-console-1-qhmz8
console-6f5f4bd585-hrpf6
console-6f5f4bd585-1mq64
console-6f5f4bd585-zd5v6
webconsole-7d6bd48dcd-19sch
webconsole-7d6bd48dcd-rqz9k
webconsole-7d6bd48dcd-wh162

READY
1/1
1/1
1/1
1/1
1/1
1/1
a7,

STATUS

Running
Running
Running
Running
Running
Running
Running

[root@bastion ~]# oc get deployment,rs —-n openshift-web-console .

NAME DESIRED CURRENT
deployment.extensions/webconsole 3 B
NAME DESIRED

replicaset.extensions/webconsole-7d6bd48dcd 3

[root@bastion ~]#

UP-TO-DATE

CURRENT

B

[root@bastion ~]# oc get deployment,rs —-n openshift-console

NAME DESIRED CURRENT
deployment.extensions/console 3 8
NAME DESIRED

replicaset.extensions/console-6f5f4bd585 3

[root@bastion ~]#

UP-TO-DATE

CURRENT

3

READY

<

AVAILABLE

3

READY
3

AVAILABLE

NODE

masterl.
master3.
master2.
masterl.
master3.
master2.
masterl.

AGE
1d

AGE

AGE
1d

demo.
demo.
demo.
demo.
demo.
demo.
demo.

internal
internal
internal
internal
internal
internal
internal

OEBPS/A478307_1_En_3_Fig13_HTML.jpg
apiVersion: vl
@ind Service) ‘
metadata:
labels:
router: router

name: router
namespace: default

spec:
clusterIP: 172.30.117.14

ports:
'~ name: 80-tcp .

port: 80
protocol: TCP
targetPort: 80
- name: 443-tcp
port: 443
protocol: TCP
targetPort: 443
- name: 1936-tcp
port: 1936
protocol: TCP
targetPort: 1936 |
selector'
router: router
sessionAffinity: None
type: ClusterIP

apiVersion: vl
kind: Pod
metadata:

annotations:

openshift.io/deployment-config.name: router

openshift.io/deployment.name: router-1
@penshiit.io/scc: hostnetwork .
labels:

deployment: router-1
deploymentconfig: router
router: router

spec:
containers:

openshift.io/deployment-config.latest-version:

wyn

11vanasstobe
failureThreshold: 3
httpGet:
host: localhost
path: /healthz
port: 1936
scheme: HTTP

: router

- containerPort:
hostPort: 80
protocol: TCP
containerPort: 443

hostPort: 443
protocol: TCP
containerPort: 1936
hostPort: 1936
name: stats
protocol: TCP

ostNetwork: true
nodeName: infranodel.demo.internal

nodeSelector:
node-role.kubernetes.io/infra: "true"

image: tegxstry redhat.io/openshift3/ose-haproxy-router:v3.11. 51)
image. : otPresent

OEBPS/A478307_1_En_8_Fig1_HTML.jpg
O oONOUVE WN

VULV LE L DD DLDLEDLDLDLEDWWWWWWWWWWNRNNRNNRNRNNRNNR R B
WN R OO®OMNODUBEWNROOVW®O®NOUAEWNRSDO®X®NODUBEWNRERSOW®NOUHEWNRS

kind: “"BuildConfig"
apiVersion: "v1"
metadata:
name: “sample-pipeline"
spec:
strategy:
jenkinsPipelineStrategy:
env:
- name: "MY_STRATEGY_VAR"
value: "Demo Env Var from Pipeline Strategy"
type: JenkinsPipeline
jenkinsfile: |-
pipeline {
agent any

options {
// set a timeout of 5 minutes for this pipeline
timeout(time: 5, unit: 'MINUTES')

} //options

environment {
MY_PIPELINE_VAR = "Demo Env Var from Pipeline"

}
stages {
stage('Build') {
steps {
echo "Sample Build stage with variable from pipeline startegy >> ${MY_STRATEGY_VAR}"
}
} //stage

stage('Test') {
steps {
echo "Sample Test stage with variable from Jenkinsfile >> ${MY_PIPELINE_VAR}"
¥
} //stage

stage('Promote’) {
steps {
echo "Sample Promote stage with OpenShift Client Plugin DSL"
script {
openshift.withCluster() {
openshift.withProject() {
echo "Using project: ${openshift.project()}"
}
}
} // script
} //steps
} //stage

} // stages
} // pipeline

OEBPS/A478307_1_En_4_Fig4_HTML.jpg
Master Node

- kube-scheduler

kube-api-server

!

ller-manager

kube-c

Attacher Container Provisioner Container

Driver Container

Infrastructure Node;'-

e

Driver Registrar
Container
8

App Nodes i

Driver Container

S
eESE

3rd Party
Storage

OEBPS/A478307_1_En_7_Fig5_HTML.jpg
$ oc create -f demo-limit-range.yaml -n demo
limitrange/demo-limit-range created

$ oc describe limitrange demo-limit-range

Name:

Namespace:

Type

Pod

Pod

Container

Container
openshift.io/Image
openshift.io/ImageStream
openshift.io/ImageStream

demo-limit-range

demo

Resource

cpu

memory

memory

cpu

storage
openshift.io/image-tags
openshift.io/images

Min

200m
6M1
4mi
100m

Default Request

Default Limit

Max Limit/Request Ratio

10eMi
200m

200M1
300m

OEBPS/A478307_1_En_9_Fig4_HTML.jpg
© 0NV A WN R

WWWWWWwNNRNRNNNNNNNRSRB R B 23 3 8 0
UEWNREROOUOINOUSAWNROSOO®NOUAWNROS

oc edit cm -n openshift-node node-config-compute
apiVersion: v1 .
kind: ConfigMap
data:
node-config.yaml: |
apiVersion: v1

kind: NodeConfig

kubeletArguments: .
[minimum-container-ttl-duration: # Minimum age that a container is eligible for garbage collection
_ u1gs”
maximum-dead-containers-per—container: # Number of instances to retain per pod container
_ upm
maximum-dead-containers: # Maximum number of total dead containers in the node
_ ugpn
image-gc-high-threshold: # Percent of disk usage which triggers image garbage collection
_ uggu
image-gc-low-threshold: # Percent of disk usage to which image garbage collection attempts to free
_ ugg"
52 5

bootstrap-kubeconfig:

- /etc/origin/node/bootstrap.kubeconfig
cert—dir:

- /etc/origin/node/certificates
enable-controller-attach-detach:

- 'true'

feature-gates:

- RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true
node-labels:

- node-role.kubernetes.io/compute=true
pod-manifest-path:

- /etc/origin/node/pods
rotate-certificates:

—“true’

OEBPS/A478307_1_En_6_Fig18_HTML.jpg
O @
]
i » O
AUTOMATION CLUSTER DEVELOPERS APP OWNERS
& Cl/ICD TOOLS ADMIN

\ /.

https://consol ample.com:443

v https://ocp-lnt,ocp,example.com:443\ N
i

APP USERS

http:/<myapp>.apps.ocp.example.com

ENTERPRISE LOAD-BALANCER

INFRASTRUCTURE

OEBPS/A478307_1_En_11_Fig4_HTML.png
Creating installation folder
mkdir ocp4poc

Copy installation configuration
cp ./install-config.yaml ocp4poc

Generating Ignition files
./openshift-install create ignition-configs —--dir=ocp4poc

OEBPS/A478307_1_En_6_Fig9_HTML.jpg
168
169
170
171
172
173
174
175
176
177

178
179
180
181

182
183
184
185

OpenShift Authentication Vars

Available Identity Providers
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html

htpasswd Authentication

NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', ‘'challenge': ‘'true',
'HTPasswdPasswordIdentityProvider'}]

To define initial users directly in the inventory file:

Note: user==password for this example
openshift_master_htpasswd_users={'ocpadmin':'$apr1$Zul1Qr.Y$6abuePAhKGOiY8QDNW0oq80",
‘developer': '$apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew. '}

To use external htpassword file:
#openshift_master_htpasswd_file=/root/htpasswd.openshift

‘kind':

OEBPS/A478307_1_En_6_Fig22_HTML.jpg
. v s ww
Events
Tags « | Q Fiterby ta a @ K 1t060f6 >
Reports
Name - Instance ID ~ Instance Type - Availability Zone - Instance State - Status Checks - Alarm Status
Limits
meﬁdsmobmshmasm-t -0b8956b66523735.. md. xlalge us-west-2b 9 mnmni & 2/2 checks ... None
INSTANCES ——
- (pAd ’ i md.large us-west-2a @ running Z Initializing None ®)
Launch Templates ocpddemo?-{8j6h-master-2 1-0847a210076ee1ad3 _ md xlarge us-west-2c. @ running. © 212 checks . None A
» 2
4demo-18j6h-work 120, WORE: nitiali
Spot Requests P md large us-west-2b @ running & Initializing None W
A — ocpddemo?-18j6h-master-0 10508d50a8a705c932 md.xlarge us-west-2a @ running © 2/2checks... None Y
Dedicatiid Hosts)t md.large us-west-2a @ running @ 2/2 checks None Y
Actions v o &
Events A hS o
Tags « || QFit K [~] < 1to60f6 >
Reports
Name - Instance ID ~ Instance Type - Availability Zone - Instance State - Status Checks - Alarm Status
Limits.
ocpddemo1-t8j6h-master-1 i-0bB956b66523735. md.xlarge us-west-2b. @ running @ 2/2 checks . None
= N - - S 09,
4 J 5 md.large us-west-2a running @ 22 checks None)
| instances C — sl L h i e >
‘ocpddemoi-8jeh-master-2 1-0847a210076ee1ad3 _ md xlarge Us-west-2C @ running © 272 checks ... None A7)
Launch Templates e
‘ ocpddemor-t8j6h-worker-us-west-2b-... -06e93a2159ab023... md large us-west-2b @ running Z Initalizing None -
Spot Requests '
Floserved instances ocpddemo-t8j6h-master-0 0598d50a8a705c932 md.xlarge us-west-2a running & 22checks... None ‘
4d h p -west. s
CedGisd e pe i mé.Jarge us-west-2a @ running © 22 checks None A
Launch Instance Actions v
S
Events 4 < ©
Tags « || Q Fiter by tags a but rch by k (2] < 1t06016
Reports
Name ~ Instance ID ~ Instance Type - Availability Zone - Instance State -~ Status Checks -~ Alarm Status
Limits
ocpddemo1-t8j6h-master-1 i-0b8956b66523735... _md xlar us-west-2b running & 2/2 checks ... None
= NsTANCES C.......x:.__./........ QLRs5ee52T et 2, ooy Ty
pddemo-18j i« md.Jarge us-west-2a runnin © 22checks... None
| Instances Ssdiadbi b d i s
ocpddemo 10847a2/0076ee1ad3__md.xlarge us-west-2 @ runni © 2/2checks ... None
Launch Templates e g,
ocpddemo -06e93a2159ab023. md large us-west-2b running © 2/2 checks None)
Spot Requests - - e -d - T -
ocpddemo1-18/6h-master-0 1:0508d50a8a705932 _ md xlarge us-west-2a @ unning & 2/2checks ... None 1)
Reserved Instan
ocpddemo?-t8j6h- md.large us-west-2a terminated None
Dedicated Host (Pt . . »

OEBPS/A478307_1_En_1_Fig3_HTML.jpg
L]
LCi] OPEN R

CONTAINER
e STORAGE
INTERFACE

CN I

KUBERNETES CRI

OCI: Open Container Initiative

CSI: Container Storage Interface

CNI: Container Network Interface

CRI: Container Runtime Interface
(specs container runtimes to
integrate with kubelet)

OEBPS/A478307_1_En_10_Fig1_HTML.jpg
Maximum Transmission Unit (MTU)

(se3hg p) s0a sweig

el
(]
o
—
ol
d
A
~
(1]
]
Nl
o
-
o
(o]

NVIA Butsn ueym se3lhg p +
(se34g pT) I°PESH DWW Iouul

(se3kg g) I9PESH NVIXA

NVIA Butsn usym se3ig p +
(se34g pI) ISPesH DWW I93n0

OEBPS/A478307_1_En_6_Fig27_HTML.jpg
RED HAT'
OPENSHIFT

Container Platform

OPENSHIFT CONTAINER PLATFORM

Log in with...

kube:admin

htpasswd

OEBPS/A478307_1_En_6_Fig3_HTML.jpg
10
11
117
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

[0SEv3:vars]

Bt e i
Ansible Vars

AR R S R S R S T R A R S T R S R A R R S R S A R R A
timeout=60

ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}

ansible_become=yes

WA S R A S i i A R T A A A R e i e
OpenShift Basic Vars

SRR G R AR A A i A A R o i s A g S A i s e e
Deployment type

openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments
#openshift_disable_check="disk_availability,memory_availability"

OpenShift Version:
openshift_release=3.11.98

Deploy Operator Lifecycle Manager (OLM)
openshift_enable_olm=true

firewalld recommended for new installations (default is iptables)
#os_firewall _use_firewalld=true

OEBPS/A478307_1_En_6_Fig13_HTML.jpg
269

OpenShift Router and Registry Vars

default selectors for router and registry services
openshift_router_selector='node-role.kubernetes.io/infra=true'
openshift_registry_selector='node-role.kubernetes.io/infra=true'

NOTE: Qty should match number of infra nodes
openshift_hosted_router_replicas=3

openshift_hosted_registry_replicas=1
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true

openshift_hosted_registry_storage_kind=glusterfs
openshift_hosted_registry_storage_volume_size=10Gi
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

OEBPS/A478307_1_En_1_Fig16_HTML.jpg
OPENSHIFT CONTAINER PLATFORM Clt 2 SRR

2 e ; 5
> B Project: all projects

Status
Search Cluster Status

Events

Health

SREeE Kubernetes API Openshift Console Alerts Firing Crashlooping Pods

Workloads

Networking

Control Plane Status

Storage

API Servers Up Controller Managers Up Schedulers Up API Request Success Rate

Builds

Monitoring

Administration 3 ;
Capacity Planning

Projects

Namespaces CPU Usage Memory Usage Disk Usage Pod Usage
Service Accounts

Roles

OEBPS/A478307_1_En_1_Fig8_HTML.jpg
myapp

> Pod 1
Deployment
name: myapp
labels: app=myapp
replicas: 2 #
container image: quay/myapp ?:():pzp
ports: 8080 >

!

@)

@ node 3

myapp
Pod 1

myapp
Po

myapp
Pod 3

OEBPS/A478307_1_En_8_Fig2_HTML.jpg
O 0O NOULL B WN =

[e
o U, WN RS

kind: "BuildConfig" ‘
apiVersion: "v1"

metadata:
name: "sample-pipeline-2"
spec:
source: ‘
gt
uri: "https://git.example.com/demo/myapp"
strategy:
jenkinsPipelineStrategy:
env:

- name: "MY_STRATEGY_VAR"
value: "Demo Env Var from Pipeline Strategy"
’ jenkinsfilePath: path/to/jenkinsfile/filename

OEBPS/A478307_1_En_4_Fig3_HTML.jpg
attach/detach
mount/unmount

é
E—M,
N——<

o >
N
==

HE
[R—
: —
—

..é.:hé-..-llllllIlIlllIl --’ ——

3rd Party
Storage

/usr/libexec/kubernetes/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver>

(i.e. /usr/libexec/kubernetes/kubelet-plugins/volume/exec/example.com~mydriver/mydriver)

OEBPS/A478307_1_En_3_Fig2_HTML.jpg
OpensShift Master Node T+

osm_cluster_network_cidr =
osm_host_subnet_length = 9

4

10.128.0.0}1‘

AppNodel = 10.128.0.0/23

AppNode2 = 10.128.2.0/23
AppNode3 = 10.128.4.0/23
InfNodel = 10.128.6.0/23
S

ovs-vsctl -- --columns=name,ofport list Interface

name
ofport

name
ofport

name
ofport

name
ofport

name
ofport

name
ofport

: "vethd£77b2al" .
;3

: "veth637ed89%a"
: 4

: "veth741337bd"
)

: 65534

g2

'vxlan0"
% &

)

OpenShift SDN
ovsdb

Open vSwitch (br0)

Port 4

All Nodes

container runtime interface
(CRI)

(Pods)

Vethdf77b2al

OEBPS/A478307_1_En_9_Fig3_HTML.jpg
O 00 NO WL WN =

To execute the actual prune operation the "confirm" flag must be appended
$ oc adm prune images --keep-tag-revisions=3 --keep-younger-than=2h¢<-confirm>

—-keep-tag-revisions=3

——keep-younger—than=3h

Specify the number of image revisions for a tag in an image
stream that will be preserved

Specify the minimum age of an image and its referrers for it
to be considered a candidate for pruning.

OEBPS/A478307_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/A478307_1_En_8_Fig8_HTML.jpg
Pipelines temworee

sample-pipeline created 9 minutes a
Recent Runs

Start Pipeline

© Build #1

3 minutes ago (0 stages have started, |
View Log

View PipelineRuns | it Pipelne
@ Jenkins £ 588

Login to Jenkins using your Openshift credentials

Log in with Opensh

Authorize Access

Service account jenkins in project cicd is requesting permission to access your account (admin)

Requested permissions

@ user:info
Read

nly access 1o your user inforn

@ user:check-access

You will be redh

Allow selected permissions Deny

OEBPS/A478307_1_En_8_Fig11_HTML.jpg
$ curl -X POST -k https://ocp.shift.zone:443/apis/build.openshift.io/v1/namespaces/cicd/buildconfigs/|

invalid Content-Type on payload, ignoring payload and continuing with build",

Icicd/webhooks/yPc9deBFZfISQEWFnZj r/generic

Pipelines wumuses

podcicd create o8 Start Pipeline
Source Reposaony: .t commsCaRpOKEA B
Recent Runs Average Duraton 1m 495
oo propas Buig et Sromote o sugg promre toproa
= - u M gt Requres
oouin | et oo proecs i e promse to sty promse torod
hours ago o
vt P “ ars o o maos
Pipelines > podcicd » 03
podcicd-3 " Rebuild | | Actions «
Dewlls Events
obus | Decratie: Checkout o projeas ™ et promote tostagg promote 0Prod
3 minutes ag0 < s < < e -
4 ot P4 " & b4
Status
status: + Complte - View!
surted: 3mintes ag0 - Apr 24,2019 614165
ouraton: + mite, 43 seconds
Triggered by:
Configuration podocs
‘Build Strategy: Jenkins Pipeline
Source Type: G
Source Repor g gthub commameabanspodacd gt
Source Ret. master
Jenkinsfe Path: Jenkinstie
Whats jeskistie?

Show Annotatons.

OEBPS/A478307_1_En_2_Fig6_HTML.jpg
apiVersion: vl
kind: Pod
metadata:

labels:
openshift.io/component: api
openshift.io/control-plane: "true"
name: master-api-masterl.demo.internal
namespace: kube-system .
spec:
containers:

name: api .

resources: {}

securityContext:

privileged: true ‘
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
mountPath: /etc/origin/master/ .
name: master—config
mountPath: /etc/origin/cloudprovider/
name: master-cloud-provider
mountPath: /var/lib/origin/
name: master-data
mountPath: /etc/pki
name: master—pki

1

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

volumes:
- hostPath: .
path: /etc/origin/master/
type: ""
name: master—config
- hostPath:
path: /etc/origin/cloudprovider
type: "
name: master—cloud-provider
- hostPath:
path: /var/lib/origin
type: ""
name: master-data
- hostPath:
path: /etc/pki
type: ""
name: master—pki

OEBPS/A478307_1_En_9_Fig9_HTML.jpg
~N o WUn s WN

apiVersion: scheduling.k8s.io/vlbetal
kind: PriorityClass .

metadata:

name: demo-high-priority ™ # name of the PriorityClass object

value: 1000000

priority actual value

globalDefault: false # default for Pods not specifying a PriorityClass name?
description: "This is a demo priority class."

W~ WU E WN

=
(]

apiVersion: vl
kind: Pod @
metadata:
name: my-demo-app
spec:
containers:
- name: myy-demo-app
image: my-demo-app
imagePullPolicy: IfNotPresent
(priorityClassName: demo-high-priorit

OEBPS/A478307_1_En_3_Fig14_HTML.jpg
metadata:

apiVersion: route.openshift.io/vl
---------------------------- E=E5 @

Route: myapp-demo-app.example.com “
labels:

app: myappl
name: myroute
namespace: demo-app

OpenShift Router ec -
host: myapp-demo-app.example.com

targetPort: 8080-tcp

kind: Service
name: myappl
weight:
wildcardPolicy: None

ClusterlP: 172.30.£47.42, Port:8080, targetPort:8080

namespace: demo-app

spec:

clusterIP: 172.30.247.42

ports:

- name: 8080-tcp

port: 8080

protocol: TCP
t B

Pod attributes

ports:
containerPort: 8080
protocol: TCP
labels: s
app: myapp1 a a type: ClusterIP
status:
loadBalancer: {}

OEBPS/A478307_1_En_1_Fig10_HTML.jpg
Master Node

ancillary services

(i.e. DNS, Web UL, etc.)

- kube-scheduler

kube-api-server

>

kube-controller-manager

additional ancillary services
(i.e. monitoring & logging services,
container registry and others)

(other dedicated nodes)

l container runtime interface
(CRI)

(Pods)

OEBPS/A478307_1_En_10_Fig15_HTML.jpg
@ (> J Kind: Service
@ ey 4 OpenShift Route Eamees d Type: LoadBalancer

Name: istio-ingressgateway
APP USER

namespace: istio-system }

namespace: bookinfo-app

Kind: Gateway {»/
/° Name: bookinfo-gateway
Kind: VirtualService Kind: §ewic_e
Name: bookinfo Name: details

Kind: Service Kind: Service

Name: reviews

Kind: Service
Name: ratings

Name: productpage

OEBPS/A478307_1_En_3_Fig7_HTML.jpg
OpenFlow entries for Node 1:

Pod 1A <-> vxlanO dst Node2 [Pod 2A]
Pod 1B <-> vxlan0 dst Node2 [Pod 2B]
Pod 1C <-> vxlan0 dst Node2 [Pod 2C]

0.0.0.0/0 -> tun0 dst Node1 external gateway

Open vSwitch (bro)

Port 1

Pod 1A
Node 1

Pod 1B Pod 1C

Only allow HTTP and HTTPS traffic based on Pod labels
kind: NetworkPolicy
apiVersion: networking.k8s.io/vl .
metadata:
name: allow-http-and-https-from-and-to-blue
spec:
podSelector:
matchLabels:
color: blue
ingress:
- from:
- podSelector:
matchLabels:
color: blue
- ports:
- protocol: TCP
port: 80
- protocol: TCP
port: 443

sys_4789 (vxlan0) vxlan_sys_4789 (vxian0)

Representation of NetworkPolicy:

- Allow traffic from/to Pod 1A from/to Pod 2A
- Allow traffic from/to Pod 1B from/to Pod 2B
- Allow traffic from/to Pod 1C from/to Pod 2C
- Allow traffic from any Pod to external networks
- Deny any other traffic

OpenFlow entries for Node 2:

Pod 2A <-> vxlanO dst Node1 [Pod 1A]
Pod 2B <-> vxlan0 dst Node1 [Pod 1B]
Pod 2C <-> vxlan0 dst Node1 [Pod 1C]

0.0.0.0/0 -> tun0 dst Node?2 external gateway

.Subnet gateway: 10.128.2.1

OpenShift SON
sdb
bnet: 10.128.2.(

Open vSwitch (br0)

Pod 2B

Pod 2C
Node 2

OEBPS/A478307_1_En_1_Fig9_HTML.jpg
—>

Pod with volume mount

PersistentVolumeClaim (PVC)
name: www—vol-pvcl
storage: 50Gi
storageClassName: nfs
mode: ReadWriteMany

PersistentVolume (PV)

name: www—vol-pv

capacity: 50G
storageClassName: nfs
accessModes: ReadWriteMany
server: 192.168.20.55
path: /vol/www

NFS Server
IP Address: 192.168.20.55
NFS path: /vol/www

OEBPS/A478307_1_En_7_Fig6_HTML.jpg
©WENOWLE WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2E

apiVersion: "v1"
kind: “"LimitRange"
metadata:
name: "demo-limit-range"
spec:
limits:
- type: "Pod"
max:
cpu:
memory: "1Gi"
min:
cpu: "200m"
memory: “6Mi"
- type: "Container"

max:
cpus; "2"
memory: "1Gi"
min:

cpu: "10em"

memory: "4Mi"
default:

cpu: "30em"

memory: “200Mi"
defaultRequest:

cpu: "200m"

memory: "100Mi"
maxLimitRequestRatio:

cpu: "10"
- type: openshift.io/Image
max:

storage: 1Gi
type: openshift.io/ImageStream
max:
openshift.io/image-tags: 20
openshift.io/images: 30

Deployments > podcool > Edit Resource Limits

Resource Limits: podcool

Resource limits control how much CPU and memory a container will consume on a node.
Learn More

CPU 10

Request

G = rteores

The minimum amount of CPU the container is guaranteed.
Can't be less than 100 millicores.
Limit

[30 = rteores

The maximum amount of CPU the container is allowed to use when running

Can't than 2 cores.

Limit cannot (Request: 1 millicore, Limit:

[< [mie

‘The minimum amount of memory the container is guaranteed.
Can't be less than 4 MiB.
Limit

[2000 < [mie

The it of is allowed to g
Can't be greater than 1 GiB.

‘What are Mi8?

U for i pod mini

CPU limit total for all containers is greater than pod maximum (2 cores).

Memory limit total for all containers is greater than pod maximum (1 GiB).

Pause rollouts for this deployment config
Pausing lets you make changes without triggering a rollout. You can resume rollouts at any time. If unchecked, a new
rollout will start on save.

OEBPS/A478307_1_En_6_Fig12_HTML.jpg
242

244
245
246
247
248
249
250
251
252

254
255
256
257
258
259
260
261
262
263
264
265
266

Cluster Logging

openshift_logging_install_logging=true
openshift_logging_install_eventrouter=true

openshift_logging_es_pvc_dynamic=true
openshift_logging_es_pvc_size=20Gi
#openshift_logging_es_pvc_storage_class_name='glusterfs-storage-block'

openshift_logging_es_memory_limit=4Gi
openshift_logging_es_cluster_size=1

minimum age (in days) Curator uses for deleting log records
openshift_logging_curator_default_days=1

openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_logging_eventrouter_nodeselector={"node-role.kubernetes.io/infra": "true"}

NOTE: If want to config a dedicated Elasticsearch for operation logs
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#aggregated-ops

OEBPS/A478307_1_En_1_Fig15_HTML.jpg
OPENSHIFT CONTAINER PLATFORM

My Projects - gz [EERRRRRNE

BroWSe Cata | og Deploy Image Import YAML/JSON Select from Project 5 of 24 Projects

View All

uages Databases Middleware Other

Split Traffic Demo

130 items

Filter v

Dev Environment

.NET Core Runtime
Example

.NET Core + PostgreSQL

.NET Core
(Persistent)
Testing Environment

@ ’-_\D I-_‘D / default

3scale-gateway amp-apicast-wildcard- amp-pvc Apache HTTP Server

router
=

.NET Core Example

Recently Viewed
/ Bhp)

Apache HTTP Server CakePHP + MySQL CakePHP + MySQL Dancer + MySQL

(httpd) (Ephemeral) 3scale-gateway Python

OEBPS/A478307_1_En_BookFrontmatter_Figa_HTML.png
APICSS®

OEBPS/A478307_1_En_8_Fig7_HTML.jpg
Pipelines tesmworee

sample-pipeline Start Pipeline
Recent Runs

@ Build #1
minutes ag No stages have started
View Log

Pipelines » sample-pipeline
View Pipeline Runs | Edit Pipeline

sample-pipeline start pipeline | | Actions !
History Configuration Events

v Build #10 is complete. View Log

ouration

Buld Number
™ Falled M Complete

© Build #10 Build Test Promote

—_— —— —o—

View Log

© Build#9 Build Test Promote

—_— —o— —o—

ViewLog

OEBPS/A478307_1_En_1_Fig4_HTML.jpg
A] + [

Application Application
Binary Dependencies

]

L4

Container

OEBPS/A478307_1_En_6_Fig17_HTML.jpg
O 3]
®» O

AUTOMATION CLUSTER DEVELOPERS
& CI/ICD TOOLS ADMIN

’
1

S

https://ocp.example.com:443

®

]
)
=]

APP OWNERS

APP USERS

INFRASTRUCTURE
NODE

N

7
-

OEBPS/A478307_1_En_6_Fig23_HTML.jpg
5 B

Container Platform

OPENSHIFT CONTAINER PLATFORM

Welcome to the OpenShift Container Platform.

Username
p—

OEBPS/A478307_1_En_3_Fig1_HTML.jpg
$ oc get hostsubnet
NAME
infranodel.demo.internal
infranode2.demo.internal
masterl.demo.internal
master2.demo.internal
master3.demo.internal
nodel.demo.internal
node2.demo.internal
node3.demo.internal

HOST OST IP
infranodel.demo.internal 192.168.
infranode2.demo.internal 192.168.
masterl.demo.internal 192.168.
master2.demo.internal 192.168.
master3.demo.internal 192.168.
nodel.demo.internal 192.168.
node2.demo.internal 192.168.
node3.demo.internal 192.168.

Oo0Oo0oooooo

SUBNET
.217 10.1.10.0/23
.30 10.1.8.0/23
.176 10.1.4.0/23
.201 10.1.2.0/23
.10 10.1.0.0/23
.5 10.1.6.0/23
.40 10.1.12.0/23
.48 0.1.14.0/23

OEBPS/A478307_1_En_6_Fig7_HTML.jpg
128
129
130
131
132
138
134
135!
136
187
138
139
140
141
142
143
144
145
146
147
148
149

150

151

OpenShift Master Vars

openshift_master_api_port=443
openshift_master_console_port=443

Internal cluster name
openshift_master_cluster_hostname=ocp-int.example.com

Note: use if using different internal & external FQDN (ie. using LB)
set the external cluster name here
openshift_master_cluster_public_hostname=ocp-ext.example.com

NOTE: Specify default wildcard domain for applications
openshift_master_default_subdomain=apps.example.com

Configure custom certificates
https://docs.openshift.com/container-platform/3.11/install_config/certificate_customization.html

Audit log

https://docs.openshift.com/container-platform/3.11/install_config/
master_node_configuration.html#master-node-config-audit-config
openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/audit-ocp.log",
"maximumFileRetentionDays": 7, "maximumFileSizeMegabytes": 10, "maximumRetainedFiles": 3}

OEBPS/A478307_1_En_6_Fig4_HTML.jpg
35
36
37
38
39
40
M
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

OpenShift Registries Locations

NOTE: Need credentials from: https://access.redhat.com/terms-based-registry/
oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}
oreg_auth_password={{CHANGEME_SERVICE_KEY}}

For Operator Framework Images
openshift_additional_registry_credentials=[{'host':'registry.connect.redhat.com', 'user"':'{{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}',
'password ' : ' {{CHANGEME_SERVICE_KEY}}', 'test_image': 'mongodb/enterprise-operator:0.3.2'}]

NOTE: accept insecure registries and registries with self-signed certs
setup for lab environment
openshift_docker_hosted_registry_insecure=true
#openshift_docker_insecure_registries=<registry_hostname>
#openshift_docker_blocked_registries=<registry_hostname>

Update examples to point to oreg_url -- enable if using disconnected install
#openshift_examples_modify_imagestreams=false

Enable dynamic storage provisioning

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/dynamically_provisioning_pvs.html
Note: required for 0CS dynamic provisioning

openshift_master_dynamic_provisioning_enabled=true

OEBPS/sidebar.gif

OEBPS/A478307_1_En_6_Fig26_HTML.jpg
Add Identity Provider: HTPasswd
HTPasswd valldates usernames and passwords against a flat file generated using the htpasswd command.

Name *
htpasswd

Unique name of the new Identity provider. This cannot be changed later.

Mapping Method ©

Claim

Specifies how new identities are mapped to users when they log In. Claim s recommended in most cases.

HTPasswd File *
Browse.

Upload an HTPasswd file created using the htpasswd command.

B cancer
@D cluster

Overview YAML
1 apiversion: “config.openshift.io/vi
OAuth

2 kind
3 netadata:

4 creationTinestanp: '2019-04-14719:08:512
S generation: 2

6 nome: cluster

s LfLink: /apts/config.openshift.io
9 uid: bd373893-Seed-11e9-8743-02699

1/oauths/cluster
4254

identityProviders.
- htpasswd:
[

g
15 s Hlata
B0l | ne: epam

. pe, Wnpassmd
18- tokdAlonfiy’

86400

Overview YAML

T ki
2 apivers

3+ metadat

4 none: htpasswd-nrrdr

5 generatelome: htpasswd-

6 ramespace: openshift-config

7 selfiink

8 uid- 2c388842-Seee-11e9-00f2-0af f5618936C
9 resourceVersion: ‘2417

10 creationTimestam: '2019-04-14T19

-

12-

13

1

15

Add Secret to Worki Actions v

OEBPS/A478307_1_En_1_Fig1_HTML.jpg
Docker Daemon REST API
(docker server)

-

"

$ docker [run|pull|build] ...

Docker Client (docker CLI)

OEBPS/A478307_1_En_1_Fig11_HTML.jpg
RAR

AUTOMATION CLUSTER DEVELOPERS APP OWNERS
& CI/CD TOOLS ADMIN

NODES !

APP NODES

APP USERS

\

ENTERPRISE LOAD-BALANCER
N
e '

INFRASTRUCTURE
NODES

1
|
|
|
|
|
1

OEBPS/A978-1-4842-4985-7_CoverFigure.jpg
Architecting
and Operating
OpenShift Clusters

OpenShift for Infrastructure
and Operations Teams

William Caban

OEBPS/A478307_1_En_3_Fig3_HTML.jpg
OpenShift SDN
ovsdb

3
Open vSwitch (br0)

Nodes:’

an_sys_4789 (vxlan0)

External Networks

VXLAN Tunnels

Openshift SDN
ovsdb
3

Open vSwitch (br0)

Nodes

OEBPS/A478307_1_En_8_Fig9_HTML.jpg
4 Back to Project
Status

5 Changes

B console Output

View as plain text

"> Edit Build Information

© Delete Build
Parameters

~ Timeout set to expire in 5 min 0 sec

a@ Open Blue Ocean

@ Restart from Stage

Replay

Sample d stage with variable

Pipeline Steps
Bl Workspaces

& Previous Build

Sample Test stage w.

insfile >> Demo E

Sample Promote stage w.

hed: SUCCESS

sar/1ib/jenkins/jobs/cicd/ jobs/cicd-sample-,

var from Pipeline

OEBPS/A478307_1_En_2_Fig10_HTML.jpg
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

listen stats .
bind :9000
mode http
stats enable
stats uri /

frontend atomic
bind *:443
default_back
mode tcp
option tcplo

backend atomic-o
balance sour
mode tcp
server
server
server

-openshift-api (@)
end atomic-openshift-api
g

penshift-api (&)

ce '.

master® 192.168.0.93:443 check
masterl 192.168.0.230:443 check
master2 192.168.0.63:443 check

OEBPS/A478307_1_En_8_Fig6_HTML.jpg
OPENSHIFT CONTAINER PLATFORM

Cl/CD Pipeline Demo v

$ oc start-build sample-pipeline -n cicd
build "sample-pipeline-11" started

Overview Builds

B

n

Builds

OPENSHIFT CONTAINER PLATFORM
CI/CD Pipeline Demo v

Pipelines tesmworee

Applications Sample_pipenne Start Pipeline

No pipeline builds have run for sample-pipeline. View the Jenkinsfile to see what stages will run

Builds

OEBPS/A478307_1_En_2_Fig1_HTML.jpg
Step 1

- Nodes start in Follower state
- Wait for Election Timeout

aN

®
/N

Step 2

- A node becomes Candidate
- Candidate request votes

Step 3

- Nodes send votes
- Candidate becomes Leader

° Follower e Candidate ° Leader

OEBPS/A478307_1_En_10_Fig9_HTML.jpg
apiVersion: vl
kind: Pod
metadata:
name: podcool-hostport
labels:
name:
spec:
containers:
- name: podcool-hostport
image: podcool
ports:

podcool-hostport

hostPort: 8080

- (container?ort: 808%

[root@ocp ~]# oc get pod podcool-hostport -o wide

_ NAME
podcool -hostport

READY
1/1

STATUS
Running

AGE IpP
10.128.2.15

RESTARTS
(] 9m

[root@ocp ~J# curl (ocp-n3.shift.zone:8080/hello] (@)

Hello from podcool-hostport vl-dockerfile

[root@cp ~J# curl [ocp-nZ.shift.zone:B@S@/helloJ .

curl: (7) Failed connect to ocp-n2.shift.zone:8080; No route to host

- [root@ocp ~1# []

NODE
ocp-n3.shift.zone

NOMINATED NODE
<none>

OEBPS/A478307_1_En_7_Fig7_HTML.jpg
W oo~ B WN

Tl i
N =

apiVersion: v1
kind: ResourceQuota

metadata:
name: demo-quota
spec:
hard:
pods: "3"

requests.cpu: "300m"
requests.memory: 512Mi
limits.cpu: “2"
limits.memory: 2Gi

W oo ~NOOWV s WN

el el
W NS

$ oc create -f demo-quota.yaml -n demo
resourcequota/demo-quota created

$ oc describe resourcequota demo-gquota

Name: demo-quota
Namespace: demo
Resource Used Hard
limits.cpu 0 2
limits.memory [:] 261
pods 1 3
requests.cpu 0 300m
requests.memory @ 512Mi

OEBPS/A478307_1_En_11_Fig2_HTML.jpg
images/

}—— openshift-client-1linux-4.1.0-rc.7.tar.gz

F—— openshift-install-linux-4.1.0-rc.7.tar.gz
rhcos-410.8.20190516.0-installer-initramfs. img
rhcos-410.8.20190516.0-installer—kernel
rhcos-410.8.20190516.0-metal-bios.raw.gz
rhcos-410.8.20190516.0-metal-uefi.raw.gz

[TTT

OEBPS/A478307_1_En_5_Fig2_HTML.jpg
APP USERS

X '
=]
. '
1 '
F '
p '
i '
& n
]

3

External A pp Load Balancer ‘

&%
|

INFRASTRUCTURE NODES

L . A |
[I A |
[T T |
vVVVy

d ClusterlP: 172.30.199.183, Port: 80, targetPort:8080

OpenShift Route: myapp.cluster.local e

Kube-proxy]

Port:8080

. 1

Port:8080

Node 1

Node 3 :

OEBPS/A478307_1_En_10_Fig2_HTML.jpg
v A WN R

metadata:
annotations:

[haproxy.router.openshift.io/ip_whitelist:

209.132.183.105 192.168.1.0/24 10.5.25.0/24 |

OEBPS/A478307_1_En_11_Fig9_HTML.jpg
E AGE
csr-5vttg 15m
csr-8ntsq 15m

[root@jumphost ocp4]# oc get csr

REQUESTOR CONDITION I
system:node:master-1.ocp4poc.example.com Approved, Issued
system:serviceaccount :openshift-machine-conﬁg-ope rator:node-bootstrapper Approved,Issued

I
Approved, Issued :
I

nil
[root@jumphost ocp4]#

@.0cp4poc. examp[e com
system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
system:node:master-2.ocp4poc.example.com

Approved, Lssued

I
Approved, Issued ;
I
I

[root@jumphost ocp4]# oc get csr
NAME

csr-5vttg
csr-8ntsq
csr-bbdsg
csr-fq97f
csr-g5qgn
csr-nzr26
csr-tbc7w
csr-vavbk
csr-wrkdh
csr-zk9vr

AGE REQUESTOR CONDITION

16m system:node:master-1.ocp4poc.example.com Approved,Issued
16m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
8s | system:node:worker-0.ocp4poc . example. com Pending

16m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
115s system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
16m system:node:master-@.ocp4poc. example. com Approved, Issued
4s Pendin§ 6
16m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
16m system:node:master-2.ocp4poc.example.com Approved, Issued
110s system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued

root@jumphost ocp4]# oc adm certificate approve csr-bbdSg csr-tbc7w
ertificatesigningrequest.certificates.k8s.io/csr-bbd5g approved
ertificatesigningrequest.certificates.k8s.io/csr-tbc7w approved

OEBPS/A478307_1_En_1_Fig13_HTML.jpg
kube-proxy OCP Infrastructure Nodes Services

container registry hawkular, cassandra & heapster

l router openshift-ansible-service-broker

. alertmanager prometheus operator
iptables
elasticsearch prometheus

OCP All Nodes Services
logging-fluentd

node-exporter

od lem-detect 3 - r
hode:problémedetoctor container runtime interface

(CRI)

openshift-sdn OCI compliant container runtime

o

dnsmasq

container network interface (CNI) @‘il @‘i

CNI compliant SDN plugin
(L.e. Bridge, OVS, Flannel, Calico, etc.) (Pods)

OpenShift Infrastructure Nodeé

OEBPS/A478307_1_En_7_Fig4_HTML.jpg
©ONOOUVEWNR

e
N =S

13

$ oc adm policy
Manage policy on the cluster

These commands allow you to assign and manage the roles and policies that apply to users. The reconcile commands allow

you to reset and upgrade your system policies to the latest default policies.

To see more information on roles and policies, use the 'get' and 'describe' commands on the following resources:
‘clusterroles', 'clusterpolicy', 'clusterrolebindings', 'roles', 'policy', 'rolebindings', and ‘'scc'.

Usage:

oc adm policy [flags] .
Discover: .

who-can List who can perform the specified action on a resource
scc-subject-review Check whether a user or a ServiceAccount can create a Pod.
scc-review Checks which ServiceAccount can create a Pod

Manage project membership: .
remove-user Remove user from the current project
remove-group Remove group from the current project

Assign roles to users and groups: .

add-role-to-user Add a role to users or serviceaccounts for the current project
add-role-to-group Add a role to groups for the current project
remove-role-from-user Remove a role from users for the current project
remove-role-from-group Remove a role from groups for the current project

Assign cluster roles to users and groups: .
add-cluster-role-to-user Add a role to users for all projects in the cluster
add-cluster-role-to-group Add a role to groups for all projects in the cluster
remove-cluster-role-from-user Remove a role from users for all projects in the cluster
remove-cluster-role-from-group Remove a role from groups for all projects in the cluster

Manage policy on pods and containers:

add-scc-to-user Add security context constraint to users or a service account
add-scc-to-group Add security context constraint to groups
remove-scc-from-user Remove user from scc

remove-scc—from-group Remove group from scc

Upgrade and repair system policy: .

reconcile-cluster-roles Update cluster roles to match the recommended bootstrap policy
reconcile-cluster-role-bindings Update cluster role bindings to match the recommended bootstrap policy
reconcile-sccs Replace cluster SCCs to match the recommended bootstrap policy

Use "oc adm policy <command> --help" for more information about a given command.
Use "oc adm options" for a list of global command-line options (applies to all commands).

OEBPS/A478307_1_En_3_Fig8_HTML.jpg
$ oc get pods -o wide --show-labels ,

NAME woe; BP NODE . LABELS
podcool-1-gl86q eoe 10.128.2.9 ocp-n3.shift.zone ... app=podcool,deployment=podcool-1,deploymentconfig=podcool
postgresql-1-5s54b ... 10.129.0.8 ocp-n2.shift.zone ... deployment=postgresql-1,deplo; fig=pos ql, P q.

$ oc exec podcool-1-gl86q -- python -c "from tcpping import tcpping ; tcpping(d_host='postgresql',d port=5432, maxCount=3, DEBUG=True)"
Connected to postgresql[5432]: tcp_seq=0 time=2.92 ms
Connected to postgresql[5432]: tcp_seg=1 time=1.41 ms ’

.22 ms

Connected to postgresql[5432]: tcp_seq=2 time=
TCP Ping Results: Connections (Total/Pass/Fail/Avg): [3/3/0/1.85] (Failed: 0%)

$ oc create -f deny-all.yaml -n demo-policy
networkpolicy.networking.k8s.io/deny-all created

$ oc get networkpolicy ‘
NAME POD-SELECTOR AGE
deny-all <none> im

$ oc describe networkpolicy deny-all .

Name: deny-all
Namespace: demo-policy
Created on: 2019-01-17 18:40:52 -0500 EST
Labels: <none>
Annotations: <none>
Spec:
PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)

Allowing ingress traffic:

<none> (Selected pods are isolated for ingress connectivity)
Allowing egress traffic:

<none> (Selected pods are isolated for egress connectivity)
Policy Types: Ingress

$ oc exec podcool-1-gl86q -- python -c "from tcpping import tcpping ; tcpping(d_host='postgresql',d port=5432, maxCount=3, DEBUG=True)"
Connection timed out!

Connection timed out! ‘

Connection timed out!

TCP Ping Results: Connections (Total/Pass/Fail/Avg): [3/0/3/1001.993] (Failed: 100.00%)

OEBPS/A478307_1_En_11_Fig11_HTML.jpg
[root@jumphost ocp4]# oc get co
NAME

authentication

cloud-credential
cluster-autoscaler

console

dns

image-registry

ingress

kube-apiserver
kube-controller-manager
kube-scheduler

machine-api

machine-config

marketplace

monitoring

network

node-tuning

openshift-apiserver
openshift-controller-manager
openshift-samples
operator-lifecycle-manager
operator-lifecycle-manager-catalog
service-ca
service-catalog-apiserver
service-catalog-controller-manager
storage

[root@jumphost ocp4l# [i

VERSION

R o i Al sl S o S
RPRRPRRRRRRBRREBRBRERREBRERRERRRRRREBRRRRR

[

.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.
.0-rc.

NONN NN N NN NN NN NN NN NN NN NN N NN

AVAILABLE
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

PROGRESSING
False
False
False
False
False
False
False
True
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False

DEGRADED
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False

SINCE
40m
63m
64m
43m
63m
22s
47m
61m
61m
61m
63m
63m
58m
45m
64m
60m
59m
61m
47m
63m
63m
64m
60m
60m
58m

OEBPS/A478307_1_En_9_Fig6_HTML.jpg
W o0 NO LB WN

oc edit cm -n openshift-node node-config-compute

apiVersion: v1
kind: ConfigMap
data:
node-config.yaml: |
apiVersion: vl

kind: NodeConfig

kubeletArguments:
pods-per—-core: # <max. number of running Pods> = <pods—per—core> *x <num. cores on Node>
_ uygn
max-pods : # explicit max. number of Pods running on Node

_ 250

OEBPS/A478307_1_En_2_Fig3_HTML.jpg
© 0N UA WN R

[root@bastion ~]# kubectl get pods -n kube-system —-o wide .

NAME

master-api-masterl.demo.internal
master-api-master2.demo.internal
master-api-master3.demo.internal
master-controllers-masterl.demo.internal
master—controllers-master2.demo. intern
master-controllers-master3.demo.internal
master-etcd-masterl.demo.internal
master-etcd-master2.demo. interna
master-etcd-master3.demo. internal

[root@bastion ~]# oc get pods -n kube-system -o wide

NAME

master-api-masterl.demo.internal
master-api-master2.demo.internal
master-api-master3.demo.internal
master—controllers-masterl.demo.internal

master—controllers-master2.demo. intern’
a

master—controllers-master3.demo. intern
master-etcd-masterl.demo.internal
master-etcd-master2.demo.interna
master-etcd-master3.demo. internal
[root@bastion ~]#

READY
1/1
1/
1/1
1/1
1/1
1/1
1/1
1/1
173

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
171
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS

PR R R R R R R

RESTARTS

PR R R R R R R

AGE
22h
21h
22h
22h
22h
22h
22h
21h
21h

AGE
22h
22h
22h
22h
22h
22h
22h
22h
22h

TP
192.168.0.93
192.168.0.230
192.168.0.63
192.168.0.93
192.168.0.230
192.168.0.63
192.168.0.93
192.168.0.230
192.168.0.63

IP
192.168.0.93
192.168.0.230
192.168.0.63
192.168.0.93
192.168.0.230
192.168.0.63
192.168.0.93
192.168.0.230
192.168.0.63

NODE

masterl.demo.internal
master2.demo. internal
master3.demo.internal
masterl.demo.internal
master2.demo.internal
master3.demo.internal
masterl.demo.internal
master2.demo.internal
master3.demo.internal

NODE

masterl.demo.internal
master2.demo.internal
master3.demo.internal
masterl.demo.internal
master2.demo.internal
master3.demo.internal
masterl.demo.internal
master2.demo.internal
master3.demo. internal

OEBPS/A478307_1_En_6_Fig21_HTML.jpg
Launch Instance Actions v/
A o % 0
Events
Tags N Y tes or search by keyword © K < 1todofds > >
Reports
Name - Instance ID ~ Instance Type - Availability Zone - Instance us Checks - Alarm Status
Limits i
ocpddemot-t8j6h-master-1 1-0b8956066523735... md.xlarge us-west-2b "D pending Z Initializing ~~ None »
= INSTANCES
- g . —— . nital
| instances ocpddemot-t8jeh-master-2 1-0847a210076ee1ad3 md.xlarge us-west-2 @ pending 2 Initializing e »
y . <
T — ocp4demot.tgfsh-master-0 1-0598d50a8a705c932 md.xlarge us-west-2a pending 2 3 -
St Bouss ocpddemot-18j6h-bootstrap) 102cb795a56bbfi08 md Jarge us-west-2a pending 2 None %
. e ——
Actions v
A O %0
Events
Tags « || Q Fierby tiributes or search by keyword @ 1< < 1todors
Reports
Name ~ Instance ID ~ Instance Type - Availability Zone - Instanc: s Checks - Alarm Status
Limits g
ocpddemo-t8j6h- 1 35... md.xlarge us-west-2b @ running Z Initializing None Y
= N s
2
1-18j6h- 2 -\ t-; I i
| instances ocpddemo’ m4.xlarge us-west-2¢ @ running & Initializing jone »
Launch Templates ocpddemo1:t8jéh-master-0 10598050a8a705¢932 md.xlarge us-west-2a @ running 2 Initalizing jone Y
Spot Requests pddemo1-18j6h-b p) [md large us-west-2a @ running Z initializin None »
By

— - T

Events
Tags <4 by and attribute reh by k (] 1todof4
Reports
Name ~ Instance ID ~ Instance Type - Availability Zone - Instas us Checks ~ Alarm Status.
Limits i
4demo?-t8j6h- 1 i 35... mé.xlarge us-west-2b @ running @ 2/2checks ., None A
» P4)¢ md4.xlarge IS-west-2¢ running 2/2 checks e
| Instances L o ® running ® %
ET—— 1-0598d50a8a705c932 md xlarge us-west-2a @ running © 2/2checks... Jone A
m4 large us-west-2a @ running © 2/2checks, None A ™

Spot Requests

OEBPS/A478307_1_En_1_Fig6_HTML.jpg
1B e B @
<3y o) B g
&= &= -
= = € =
IP: 10.5.1.20 IP: 10.5.1.73 IP: 10.5.1.42
Pod with single App Container. Pod with primary App Container Pod with App Container
This is the most common and and helper sidecar Container and Sidecar Container
preferred type of Pod. (i.e. using helper as data change watcher) (i.e. when using Envoy Proxy)

S== Container Volumes: The Volumes can be shared among Containers in the same Pod
—

OEBPS/A478307_1_En_2_Fig12_HTML.jpg
i-n"fra;iructare Nc;aes

¥ node-exporter B

kubelet

M.ast"ér Not?es

d APl Server

i Controllers

node-exporter

kubelet

‘ y %

kubelet

node-exporter

App Nodes

OEBPS/A478307_1_En_1_Fig18_HTML.jpg
OpenShift Router or
Kubernetes Ingress Controller

Ingress or OpenShift Route: myapp.cluster.local
mic provisioning of Route or Ingress

ClusterlP: 172.30.199.183, Port: 80, targetPort:8080

T

Node 1 Node 2

Kubernetes NodePorts or HostPorts

Software or Hardware Load Balancer: myapp

Requires manual configuration of Load Balancer to send traffic
directly to the specific port in all nodes when using NodePort or a

subset of nodes when using HostPort:
nodel port 31230
node2 port 31230
node3 port 31230

Port:31230 Port:31230 Port:31230

Port:8080

Node 1 Node 2 Node3d |

OEBPS/A478307_1_En_10_Fig12_HTML.jpg
8 st Istio Mesh Dashboard -
= 3
-~ 1 +
] Istio s a uniform way
a axs S
» 14 ops 100% N/A 0ops
o
= © kiali R 4
2 a
®
=

OEBPS/A478307_1_En_7_Fig9_HTML.jpg
NTAINER PLATFOI

Browse Catalog Deployims et from proect Add Template x ‘

Languages Databases Middieware CUCD Other What would you like to do?

Process the template

< save template)

Fiter + | 169 ftems.

NET NET NET NET
NET Core NET Core + PostgresQL. NET Core Example NET Core Runtime
(Persistent) Example
import A /150N x
[y Import YAML / JSON

3scale-gateway.

YAML / JSON Results

© 2]

e ® Template podcool-example has been imported in demo successfully.

o Cemplate epmaRITE. AL

Continue to the project overview.
ool-example

podc
e podcoot-example

Cancel 3 m_)

ol $ oc create -f podcool-template.yaml -n demo
2 template.template.openshift.io/podcool-example created

OEBPS/A478307_1_En_10_Fig7_HTML.jpg
[root@ocp ~]# oc get svc

NAME TYPE
glusterfs-dynamic-22a6a050-7efe-11e9-b815-001a4a160101 ClusterIP
pgsql ClusterIP
pgsql-1b LoadBalancer
pgsql-1b2 LoadBalancer

CLUSTER-IP
172.30.55.81
172.30.240.202
172.30.106.105
172.30.106.248

[root@cp ~J#(oc patch svc pgsql-1b2 -p '{"spec":{"externalIPs":["198

service/pgsql-1b2 patched
[root@cp ~]# oc get svc

NAME TYPE
glusterfs-dynamic-22a6a050-7efe-11e9-b815-001a4a160101 ClusterIP
pgsql ClusterIP
pgsql-1b LoadBalancer
pgsql-1b2 LoadBalancer

[root@ocp ~]# I

EXTERNAL-IP PORT(S)
<none> 1/7CP
<none> 5432/TCP

172.29.121.102,172.29.121.102 _5432:30671/TCP
172.29.223.161,172.29.223.161 .432 :30318/TCP

.18.101.200" 13").

CLUSTER-IP
172.30.55.81
172.30.240.202
172.30.106.105
172.30.106.248

EXTERNAL-IP
<none>

<none>

172.29.121.102,172.29.121.102
172.29.223.161,(198.18.101.200)172.29.223.161

AGE
32m
32m
30m
28m

PORT(S)

1/TCP

5432/TCP
5432:30671/TCP
5432:30318/TCP

AGE
33m
34m
31m
30m

OEBPS/A478307_1_En_8_Fig4_HTML.jpg
Import YAML/JSON
YAML/JSON Results
@ 2
Browse...
Upload a fle by Jecting i,
T ButldConfig”
2 v
3
4 anple-pipeline”
5| spec:
6-| strategy:
7+ jenkinsPipelineStrategy:
8 env:
9+ - name: "MY_STRATEGY_VAR™
10 lue: "Demo Env Var from Pipeline Strategy”
1 type: JenkinsPipeline
12- Jenkinsfile: |-
13- pipeline {
14 agent any.
15
126+ ot
cancel

(2)

Import YAML / JSON

YAML /JSON Results

© 1]

(© 8uild config sample-pipeline has been imported.

Continue to the project overview,

OEBPS/A478307_1_En_3_Fig11_HTML.jpg
“cniVersion”: "0.3.0",
"plugins": [
{

"type": "calico”,

“ipam': (
“"type": "calico-ipam"

confd BIRD Felix

Pod 1A Pod 1B Pod 1C

Node 1

$ ip route
default via 192.168.5.11 dev
blackhole 10.1.15.1/26 proto bird
10.1.20.0/26 dev tunle proto bird onlink

OpenShift Master Node

EthO IP: 192.168.5.11

ethe proto static metric 100

EthO IP: 192.168.5.22

s ip route

confd BIRD Felix

Host Routing Table

tunl0 — IP: 10.1.20.1/26

Pod 2A Pod 2B Pod 2C

Node 2

default via 192.168.5.22 dev eth® proto static metric 100

Blackhole 10.1.20.1/26 proc bird
10.1.15.0/26 dev tunl@ proto bird onlink

OEBPS/A478307_1_En_4_Fig5_HTML.jpg
CONVERGED MODE

WITH CONVERGED NODES

WITH DEDICATED NODES

e E%JE@J;EJ

INDEPENDENT MODE

APP NODES GLUSTER
CLUSTER

] R
T

OEBPS/A478307_1_En_6_Fig2_HTML.jpg
OPENSHIFT CONTAINER PLATFORM ®. a

Import YAML /JSON

My Projects + Create Project

Deploy Image Select from Project

Browse Catalog

10f 1 Projects

Languages Databases Middleware c/co Other

94 Items

Apache HTTP Server
(httpd)

JBoss A-MQ 6.3 (no SSL)

JBoss BPM Suite 6.4
intelligent process server
+MySQL (with https)

JBoss Data Grid 7.1
(Ephemeral, no https)

@D

CakePHP + MySQL

JBoss A-MQ 6.3 (with SSL)

JBoss BPM Suite 6.4
intelligent process server
+ PostgreSQL (with https)

JBoss Data Grid 7.1 +
MySQL (with https)

b

Dancer + MySQL

JBoss BPM Suite 6.4
intelligent process server
(no https)

JBoss BRMS 6.4 decision
server (with https)

JBoss Data Grid 7.1 +
PostgreSQL (with https)

A

Django + PostgreSQL

JBoss BPM Suite 6.4
intelligent process server
+A-MQ + MySQL (wit...

JBoss BRMS 6.4 decision
server + A-MQ (with
https)

JBoss Data Vir

JBoss A-MQ 63
(Ephemeral with SSL)

JBoss BPM Suite 6.4
intelligent process server
+A-MQ + PostgresQL...

JBoss Data Grid 6.5 +
MySQL (with https)

6.3 (no SSL)

JBoss Data Vir
6.3 (with SSL and
Extensions)

Initial developer project

Getting Started

© Take Home Page Tour

OEBPS/A478307_1_En_8_Fig13_HTML.jpg
Git repository structure for Custom Jenkins Image with s2i:

plugins. txt <-- List of plugins to install in the format "pluginID:pluginVersion"
plugins/ <-- binary Jenknins plugins to copy into the Jenkins image
configuration/ <-- The content of this directory will be copied into the /var/lib/jenkins/

Examples on using the configuration/ folder:

configuration/jobs/ <-- Jenkins job definitions to copy into /var/lib/jenkins/jobs/
configuration/config.xml <-- Custom Jenkins configuration to copy into /var/lib/jenkins/config.xml
configuration/credentials.xml <-- Credentials configuration to copy into /var/lib/jenkins/credentials.xml

OEBPS/A478307_1_En_2_Fig8_HTML.jpg
root 6353 5.4 0.7 1459828 126880 ? Ssl 12:00 2:26 —-v=2 —-address=0.0.0.0
—-allow-privileged=true --anonymous-auth=true --authentication-token-webhook=true --authen ion-token-webhook-cache-tt1=5m

—-authorization-mode=Webhook --authorization-webhook-cache-a rized-tt1=5m —-authorization-webhook-cache-unauthorized-tt1=5m
—-bootstrap-kubeconfig=/etc/origin/node/bootstrap. kubeconfigaadvisor—port=0 [——cert-dir=/etc/origin/node/certificates°
——cgroup—driver:systemd[——c1ient—ca—file=/etc/origin/node/client—ca.crbcluster—dns:lQZ.168.0.93
——cluster-domain=cluster.local --container-runtime-endpoint=/var/run/d rshim.sock --containerized=false
--enable-controller-attach-detach=true --experimental-dockershim-root-directory=/var/lib/dockershim --fail-swap-on=false
--feature-gates=RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true --healthz-bind-address=
—--healthz-port=0 --host-ipc-sources=api --host-ipc-sources=file --host-network-sources=api --host-network-sources=file

—-host-pid-sources=api --host-pid-sources=file --hostname-override= --http-check-frequency=0s e
—--image-service-endpoint=/var/run/dockershim.sock ——iptables—masquerade—bit=0| ——kubeconfig=/etc/origin/node/node. kubeconfig
—-max-pods=250 --network-plugin=cni --node-ip= --node-labels=node-role.kubernetes.io/master=true, runtime=docker

——pod-infra-container-image=registry.redhat.io/openshift3/ose-pod:v3.11.51 I ——pod-manifest-path=/etc/o rigin/node/podsb
--port=10250 --read-only-port=0 --register-node=true ‘——root—di r=/var/lib/origin/openshift. local.volumes b
—-rotate-certificates=true —-rotate-server-certificates=true ——tls-cert-file=
——t1s-cipher-suites=TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 —-tls—cipher-suites=TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305
——tls—cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 —-tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
——t1s-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 —-tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
——tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 —-tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
——tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
——t1s-cipher-suites=TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA —-tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
——t1s-cipher-suites=TLS_RSA_WITH_AES_128_GCM_SHA256 —--tls—-cipher—-suites=TLS_RSA_WITH_AES_256_GCM_SHA384
——tls—cipher-suites=TLS_RSA_WITH_AES_128_CBC_SHA —-tls-cipher-suites=TLS_RSA_WITH_AES_256_CBC_SHA
——tls-min-version=VersionTLS12 —-tls-private-key-file=

OEBPS/A478307_1_En_2_Fig2_HTML.jpg
=5

Leader Log °

Step 1

- Client send change to Leader
- Leader append to Log
- Leader wait for next Heartbeat

|Okay:A=5| | Okay:A=5 |

Step 3

- Followers acknowledge change
- Once an update is acknowledge by the
majority of the nodes it is committed

A=5

Leader Log

Log Replication

Log Replication
A=5

Step 2

- At next Heartbeat the Leader
sends Replication Log to nodes

Step 4

- Leader respond to Client
- Leader notify commit to Followers

OEBPS/A478307_1_En_7_Fig8_HTML.jpg
2y

¥ ¥ K K ¥

er

DeploymentConfig Normal ReplicationControllerScaled deploymentconfig-cont:
f Pod Normal Scheduled default-scheduler
Successfully assigned demo/podcool-1-mhkmj to ocp-n3.shift.zone
.159a1212a65f02d2 ReplicationController Normal SuccessfulCreate replication-controlles

e ==
plicationController FailedCreate replication-controlle
00m, Limi 00

Error creating: pods "podcool-1- 942b4" is forbidden: exceeded quota demo- quota requested: requests.cpu=200m, used: requests.cpu-Zom, limited: requests.cpu=300m
3m 1 podcool -1.159a1212dabcald4 ReplicationController Warning FailedCreate replication-controlles
Error creating: pods "podcool-1-26s7r" is forbidden: exceeded quota: demo-quota, requested: requests.cpu=200m, used: requests.cpu=200m, limited: requests.cpu=300m

OEBPS/A478307_1_En_7_Fig2_HTML.jpg
$ oc get scc
NAME

anyuid
hostaccess
hostmount-anyuid
hostnetwork
node-exporter
nonroot
privileged
restricted

PRIV,

false
false
false
false
false
false
true

false

cAPS,

SELINUX

MustRunAs
RunAsAny
MustRunAs
RunAsAny
MustRunAs

RUNASUSER
RunAsAny
MustRunAsRange
RunAsAny
MustRunAsRange
RunAsAny
MustRunAsNonRoot
RunAsAny
MustRunAsRange

FSGROUP.
RunAsAny
MustRunAS
RunAsAny
MustRunAs
RunAsAny
RunAsAny
RunAsAny
MustRunAs

SUPGROUP
RunAsAny
RunAsAny
RunAsAny
MustRunAs
RunAsAny
RunAsAny
RunAsAny
RunAsAny

PRIORITY

<none>
<none>
<none>
<none>
<none>
<none>
<none>

READONLYROOTFS

false
false
false
false
false
false
false

VOLUMES

[configHap
(configHap downwardAPT
[configap downwardAPT
[confighap downwardAPT
(x]

emptyDir
emptyDir
emptyDir
emptyDir

persist laim projected secret]

hostPath persistentVolumeClaim projected secret]
hostPath nfs persistentVoluneClaim projected secret]
persistentVolumeClain projected secret]

[confighap
[+
[configHap downwardAPT

emptyDir

enptyDir

per lain projected secret]

persistentVolumeClaim projected secret]

OEBPS/A478307_1_En_5_Fig3_HTML.jpg
ADVANCED SPECIALIZED
NETWORKING PROTOCOLS

OEBPS/A478307_1_En_4_Fig7_HTML.jpg
S

Gluster Volume

- § = \ Block

...___. h Device ’

Gluster Pod

7 —

(i.e. BLOCK DEVICES/RAW DISKS)
*Local Physical Disk

e Fibre-Channel Block Device
*iSCSI SAN Block Device

*DAS Disk (i.e. shared SAS)

OEBPS/A478307_1_En_10_Fig13_HTML.jpg
I

omeseen o] 14 detailsvi > Edit YAML
® | Edit Deployment details-v1
Ot
78 maxsurge: 1
29 maxUnavailable: 1
® srocougent ——— type: RollingUpdate
ool 5 template:
tadat
annotat ion
® foratd - sideca
e creation
tabe
app: details
reviews-v1 version: vl
® == s © vvasamon: | | 39.| specs
e 40- containers:
a1+ - image: *istio/examples-bookinfo-details-v1:1.13.0"
roviews2 2 inagePullPolicy: IfNotPresent
@ oo Health: @ Labet veicaron - |03 nane: details
poet
a4~ ports:
a5~ - containerPort: 9080
R, 46 protocol: TCP
@ o Hoath: © Labeivatidation: || 47 resources: {}
e a8 : /dev, g
49 terninationMessagePolicy: File
— 50 dnsPolicy: ClusterFirst
@) weom [Heaith: A\) Mising Sidocar 51 restartPolicy: Always
- 52 schedulerNane: default-scheduler
53 securityContext: {}
54 terminat ionGracePeriodSeconds: 30
55 | status:
56 | availableReplicas: 1
57+ - -

Save = Cancel

OEBPS/A478307_1_En_3_Fig10_HTML.jpg
{
"Network": "10.1.0.0/16",

"SubnetLen": 24,
"SubnetMin": "10.1.0.1",
"SubnetMax": "10.1.250.100",

"Backend":
{
"Type": "host-gw"

}

OpenShift Master Node

e ©

docker0 — IP: 10.1.15.1/24

Pod 1A Pod 1B Pod 1C

Node 1

Host Routing Table a ethO B

EthO IP: 192.168.5.11

$ ip route

default via 192.168.5.11 dev eth® proto static metric 100
10.1.15.0/24 dev docker® proto kernel scope link src 10.1.15.1
10.1.20.0/24 via 192.168.5.22 dev ethB°

EthO IP: 192.168.5.22

$ ip route

Host Routing Table

docker0 — IP: 10.1.20.1/24

Pod 2A Pod 2B Pod 2C

Node 2

default via 192.168.5.22 dev eth® proto static metric 100
10.1.20.0/24 dev docker® proto kernel scope link src 10.1.20.1
10.1.15.0/24 via 192.168.5.11 dev ethee

OEBPS/A478307_1_En_10_Fig4_HTML.jpg
tho ’ ethO0) . k.ethO ”

l' " I'
’ P o
' o’ @
o s
’ ,°
’ 4
'
v
1 1 °
A |
A) '
L TR
(o) Y
‘. a
o Ay
ADVANCED SPECIALIZED

NETWORKING PROTOCOLS

OEBPS/A478307_1_En_9_Fig1_HTML.jpg
$ oc adm prune

Remove older versions of resources from the server

The commands here allow administrators to manage the older versions of resources on the system by removing them.

Usage:

oc adm prune [flags]

Available Commands:

auth Removes references to the specified roles, clusterroles, users, and groups.

builds Remove
deployments Remove
groups Remove
images Remove

old completed and failed builds

old completed and failed deployments

old OpenShift groups referencing missing records on an external provider
unreferenced images

OEBPS/A478307_1_En_11_Fig7_HTML.jpg
Red Hat Enterprise Linux Core0S[418.8.28190516.8 |(Dotpa) 4.1

SSH host key: SHA256:Q6t i 1U6sJg ACR+Uf Sxv11CQBINspIq judo/BDItxB (ED25519)
SSH host key: SHAZ56: jI+0SaLstUef +K jNUL1ThQO9Gh0ik1 jipyLncHs6YAB (RSA)
SSH host key: SHAZ56:FlayQsAyQJzpusgNDCm? jbNQzpng+40tK?T3UihcuRY (ECDSA)

enol: 192.168.1.11 feB88: :e88:5966 :eBa:895d

enoZ:

eno3:

enod:

enpBs2Bulu5: 169.254.95.120 feB8::20ca:634c:33fa:4166

master-8 login: _

et
betal

.Cont1g.opensIre. 10 -n

eated 0000, 1_oauth. cus
Created "0009_10_config-operator_01_project.crd.yaml”

fig.openshift.io -n

bootkube.sh[3617]: Created "0000_10_config-operator_01_scheduler.crd.yaml" vibetal hift.io -n

bootkube.sh[3617]: Created "0000_10_config -_02_conft L .v1.rbac. ks 4 -config-operator: -reader -n
bootkube.sh[3617]: Skipped "0000_10. opy o1 rd.yaml" vibetal k8s. io/clusterresour ot hift.io -n as it aln
bootkube.sh[3617]: Created "cl k-01-crd.yml" vibetal K8: .operator.openshift.io -n

bootkube.sh[3617]: Created " yan" 1.rbac. authortzation. ds. { i -n

bootkube.sh[3617]: Created " ap yamL" V1. rbac. api -n

bootkube.sh[3617]: Created " yamL" k8s. i ap. -n

 Created "etcd-host-service-endpoints.yanl" endpoints.vL. /host- G openshi ft-etcd
: Created "etcd-host-service.yanl" services.vl./host-etcd -n openshift-etcd

: [#54] failed to create some manifests:

: "Cluster-dns-02-config.yml":
+ "cluster-infrastructure-62-config.yml":

: "cluster-ingress-02-config.yml":
: "cluster-network-02-config.yml":
: "cvo-overrides.yanl”: unable to get REST mapping for “cvo-overrides.yaml":

: Created "cluster-dns-02-config.yml" dnses.v1.config.openshift. o/cluster -n
bootkube. sh[3617]: Created " ig.yml"

: Created "cl 1 Fig.yml® 1 V1. config.openshi ft. io/cluster

unable to get REST mapping for "cluster-ingress-02-
unable to get REST mapping for "cluster-network-02-
no matche:

unable to get REST mapping for "cluster-dns-62-config.yml":
unable to get REST mapping for "cluster-infrastructure-62-config.ynl":

hift.io/cluster -n

no matches for kind "DNS" in version "config.openshift.io/v1"
no matches for kind "Infrastructure® in version "config.openshift,

config.yml": no matches for kind "Ingress” in version "config.openshift.io/v1"
config.yml": no matches for kind "Network” in version "config.openshift.io/v1"
s for kind "ClusterVersion” in version "config.openshift.io/v1"

 Created "cluster-network-02-config.ynl" networks.v1.config.openshift. fo/cluster -n
: Created "cvo-overrides.yanl" clusterversions.vl.config.openshift.io/version -n ope
Pod apf

bootkube. sh[3617] Pod Kub il Doesho|
bootkube. sh[3617] Pod ler-manager
bootkube. sh[3617) Pod Pendi|

-oper:

Red Hat Enterprise Linux Core0S 418.8.208198528.8 (Ootpa) 4.1

SSH host key: SHAZ56:Q6ti1U6sJg /WpCR+uf Sxul1CQ8INspJq judo BDItxB (ED25519)
SSH host key: SHAZ56: jI+0SaLstUef +K jNUL1ThQO9Gh0ik1 jipyLncHs6YAB (RSA)
SSH host key: SHAZ56 :FlayQsAy(QJzpusgNDCm? jbNQzpng+40tK?T3VihcuRY (ECDSA)
enol: 192.168.1.11 2081:478:e455:a:cc68:7c15:da5d :d6f b

enoZ:

eno3:

enod:
enpBs2BuluS: 169.254.95.128 feB@::26ca:634c:33fa:4166

master-8 login: _

OEBPS/A478307_1_En_6_Fig15_HTML.jpg
304
305
306
307
308
309
310
311
312
8313
314
315
316
317
318
319

321
322
323
324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346
347
348
349
350
351

OpenShift Hosts

[0SEv3:children]
b

masters

etcd

nodes

glusterfs

[1b]
1bl.example.com

[masters]

masterl.example.com
master2.example.com
master3.example.com

[etcd]

masterl.example.com
master2.example.com
master3.example.com

[nodes]

Master Nodes

masterl.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true
master2.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true
master3.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true

Infrastructure Nodes

infranodel.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true
infranode2.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true
infranode3.example.com openshift_node_group_name="'node-config-infra' openshift_node_problem_detector_install=true

App/Worker nodes

nodel.example.com openshift_node_group_name='node-config-compute' openshift_node_problem_detector_install=true
node2.example.com openshift_node_group_name='node-config-compute' openshift_node_problem_detector_install=true
node3.example.com openshift_node_group_name="'node-config-compute' openshift_node_problem_detector_install=true

Node Groups and custom Node Groups
https://docs.openshift.com/container-platform/3.11/install/
configuring_inventory_file.html#configuring-inventory--node-group-configmaps

[glusterfs]

App/Worker nodes with 0CS hyperconverged

nodel.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'
node2.example.com glusterfs_devices='["/dev/xvdd", “dev/xvde", ...]'
node3.example.com glusterfs_devices='[“/dev/xvdd", “dev/xvde", ...]'

OEBPS/A478307_1_En_9_Fig7_HTML.jpg
[root@ocp ~]# tuned-adm active ‘
Current active profile: openshift-control-plane

[root@ocp ~]# tuned-adm list .

Available profiles:

for deterministic performance at the cost of increased power consumption
for deterministic performance at the cost of increased power consumption, focused on low latency network performance
for streaming network throughput, generally only necessary on older CPUs or 40G+ networks

Broadly applicable tuning that provides excellent performance across a variety of common server workloads

- balanced - General non-specialized tuned profile

- desktop - Optimize for the desktop use-case

- latency-performance - Optimize

- network-latency - Optimize

— network-throughput - Optimize

— openshift — Optimize systems running OpenShift (parent profile)
— openshift-control-plane - Optimize systems running OpenShift control plane
— openshift-node —- Optimize systems running OpenShift nodes

- powersave ~- Optimize for low power consumption

~ throughput-performance -

- virtual-guest - Optimize for running inside a virtual guest

- virtual-host - Optimize for running KVM guests

Current active profile: openshift-control-plane

OEBPS/A478307_1_En_4_Fig1_HTML.jpg
apiVersion: vl
kind: PersistentVolume .

metadata:

name: nfs-pv0l
labels: ,
pv: nfs-pv0l -
spec:
capacity:

storage: 10Mi
accessModes:

- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
nfs:

server: 192.168.1.15

path: "/ocp-nfs/pv0l"

NFS Server
IP Address: 192.168.1.15
NFS path: /ocp-nfs/pv0l

apiVersion: vl
kind: PersistentVolumeClaiuw

metadata:
name: nfs-pvc0l . <

spec:
accessModes : .
- ReadWriteMany
storageClassName: “"
resources: apiVersion: apps/vl
requests: kind: Deployment
storage: 10Mi metadata:
selector: . name: podcool
matchLabels: labels:
#» pv: nfs-pv0l app: podcool
spec:
replicas: 3
selector:
matchLabels:
app: podcool
template:
metadata:
labels:
app: podcool
spec:
containers:

- name: podcool
image: quay.io/williamcaban/podcool
ports:
- containerPort: 8080
imagePullPolicy: IfNotPresent
volumeMounts:

name must match the volume name below

- name: nfs-pvc

mountPath: "/mnt" .

volumes:
- name: nfs-pvc
persistentVolumeClaim:

~

OEBPS/A478307_1_En_6_Fig10_HTML.jpg
191 # Cluster Monitoring

193 # https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monitoring.html

195 # Enable Prometheus, Grafana & Alertmanager
196 openshift_cluster_monitoring_operator_install=true
197 openshift_cluster_monitoring_operator_node_selector={"node-role.kubernetes.io/infra":"true"}

199 # Setup storage allocation for Prometheus services
200 openshift_cluster_monitoring_operator_prometheus_storage_capacity=20Gi
201 openshift_cluster_monitoring_operator_alertmanager_storage_capacity=2Gi

203 # Enable persistent dynamic storage for Prometheus services
204 openshift_cluster_monitoring_operator_prometheus_storage_enabled=true
205 openshift_cluster_monitoring_operator_alertmanager_storage_enabled=true

207 # Storage class to use if persistent storage enabled

208 # NOTE: it will use storageclass default if storage class not specified

209 #openshift_cluster_monitoring_operator_prometheus_storage_class_name='glusterfs—storage-block"'
210 #openshift_cluster_monitoring_operator_alertmanager_storage_class_name='glusterfs—storage-block"'

212 # For custom config Alertmanager
213 # https://docs.openshift.com/container-platform/3.11/install_config/
prometheus_cluster_monitoring.html#configuring-alertmanager

214

OEBPS/A478307_1_En_6_Fig6_HTML.jpg
105

106
107

109
110
111
112
113
114
115
116
117
118
il
120
121
122
123
124
125
126
127

NOTE: https://docs.openshift.com/container—platform/3.11/install_config/persistent_storage/
persistent_storage_glusterfs.html#install-advanced-installer

NOTE: Using specific sub-releases tags for fixed bugs
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/rhgs3/rhgs-server-rhel7

Container image to use for glusterfs pods
openshift_storage_glusterfs_image="registry.access.redhat.com/rhgs3/rhgs-server-rhel7:v3.11.2"

Container image to use for glusterblock-provisioner pod
openshift_storage_glusterfs_block_image="registry.access.redhat.com/rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.2"

Container image to use for Gluster S3
openshift_storage_glusterfs_s3_image="registry.redhat.io/rhgs3/rhgs-s3-server-rhel7:v3.11.2"

Container image to use for heketi pods
openshift_storage_glusterfs_heketi_image="registry.access.redhat.com/rhgs3/rhgs-volmanager-rhel7:v3.11.2"

If using a dedicated glusterfs_registry storage cluster

openshift_storage_glusterfs_registry_version=v3.11

openshift_storage_glusterfs_registry_block_version=v3.11

openshift_storage_glusterfs_registry_s3_version=v3.11

openshift_storage_glusterfs_registry_heketi_version=v3.11

OEBPS/A478307_1_En_3_Fig5_HTML.jpg
OpenFlow entries for Node 2:
10.128.4.0/23 > vxlan0 dst Node3
10.128.0.0/23 > vxlan0 dst Node1

OpenFlow entries for Node 1:

10.128.2.0/23 > vxlan0 dst Node2 .
10.128.4.0/23 > vxlan0 dst Node3

0.0.0.0/0

> tun0 dst Node1 external gateway

OpenShift SON

1bn 10.128.0.0/2
Open vSwitch (br0)

Port1 | vxlan_sys 4789 (vxlan0)

OpenFlow entries for Node 3:
10.128.2.0/28 > vxlan0 dst Node2
10.128.0.0/23 > vxlan0 dst Node1

0.0.0.0/0 > tun0 dst Node2 external gateway

vxlan_sys 4789 (vxlan0)

vxlan_sys_4789 (vxlan0)

0.0.0.0/0 > tun0 dst Node3 external gateway

Po

OpenShift SDN

ovsdb

10.1

Open vSwitch (br0)

Pod 3A
Node 3

OpenShift SON

t: 10.128.4

Open vSwitch (br0)

Pod 3B

Pod 3C

OEBPS/A478307_1_En_10_Fig14_HTML.jpg
Pods > details-v1-5c89899749-8cqb2

details-v1-5c89899749-8cqb2 createa 37 minutes ago
RN ceis | " 1745455305

Details Environment ~ Metrics Logs Terminal Events

Status

Status: € Running

Replica Set: details-v1-589899749

»: 10.129.0.18

Node: ocp-n1.shift.zone (192.168.1.23)
Restart Policy: Always

(« Init container istio-init completed successfully] e

Container details

State: Running since May 25, 2019 8:57:16 PM
Ready: true
Restart Count: [

Container istio-proxy

State: Running since May 25, 2019 8:57:17 PM
Ready: true
Restart Count: 0

Actions v

Template

Init Containers
istio-init
© Image: openshift-istio-tech-preview/proxy-init:0.10.0
> Command: <image-entrypoint> —p 15601 -u 1337 -m REDIRECT —i % —x -b 9080 -d 15620
i CPU: 10 millicores to 100 millicores
&« Memory: 10 MiB to 50 MiB

Containers

details
S Image: istio/examples-bookinfo-details-v1:1.13.0
“ Ports: 9080/TCP

S Mount: default-token-gnky iolservi read-only
istio-proxy
2 Image: openshift-istio-tech-preview/proxyv2:0.10.0
> Command:

<image-entrypoint> proxy sidecar —domain $(POD_NAMESPACE).svc.cluster.local ——c- See ALL
Ports: 15090/TCP (http-envoy-prom)

Mount: istio-envoy — /etc/istio/proxy read-write

Mount: istio-certs — fetc/certs/ read-only

CPU: 100 millicores to 500 millicores
Memory: 128 MiB to 128 MiB.

A
]
s
£ Mount: default-token-gnkv i i read-only
L)
-
& Readiness Probe: GET /healthz/ready on port 15020 (HTTP) 1s delay, 1s timeout

OEBPS/A478307_1_En_1_Fig5_HTML.jpg
RED HAT

OPENSHIFT kd

Container Platform

The OKD based commercial The Origin community
distribution productized and distribution of Kubernetes that
supported by Red Hat. powers Red Hat OpenShift.

http://openshift.com http://okd.io

OEBPS/A478307_1_En_10_Fig5_HTML.jpg
O 00 N O U B W N =

[T T Y)
N =

vi /etc/origin/master/master—-config.yaml

networkConfig:
externalIPNetworkCIDRs:
- 198.18.100.0/23
- <network_2>/<cidr>

Restart Master service for changes to get into effect
$ master-restart api
$ master-restart controllers

OEBPS/contact.gif

OEBPS/A478307_1_En_6_Fig24_HTML.jpg
RED HAT
OPENSHIFT 2] kube:admin

-
iner Platform

Projects "
Projects
Status

Search

Events

Catalog

OEBPS/A478307_1_En_6_Fig16_HTML.jpg
@%} O o

- &
= o O {pe
AUTOMATION CLUSTER DEVELOPERS APP OWNERS
& CI/CD TOOLS ADMIN

\\ / http://<myapp>.apps.ocp.example.com

@E
Web Console :8443 8 « ‘ ‘ ‘

APP USERS

/

https://ocp.example.com:8443

ala
Bl

Pods

-

N
~

ALL-IN-ONE
NODE

OEBPS/A478307_1_En_7_Fig1_HTML.jpg
- a request_auth_token ‘_—(e/*
® web-console OAuth Server ;
@ " return_auth_token e :

PLATFORM
ADMIN OR USER

Authorization [l
(OpenShift RBAC)

OpenShift Master Node

OEBPS/A478307_1_En_11_Fig1_HTML.jpg
t O 2
AUTOMATION CLUSTER
& Cl/CD TOOLS ADMIN DEVELOPERS APP OWNERS APP USERS

. \ *.apps.ocp4poc.example.com
api.ocp4poc.example.com (L

Layer-4 Load Balancer -~

Ve

11\ \
api-int.ocp4poc.example.com

API Server

(I

/
I
I
I
|
I
|
I
|
I
|

OpenShift 4.x

DHCi’ DNS TIME RH Registries PXE Server RH Repos Installer

ANCILLARY DEPENDENCIES (RHEL-based Nods) BASTION NODE

OEBPS/A478307_1_En_4_Fig8_HTML.jpg
Master Node

- kube-scheduler

kube-api-server

t

ller-manager

kube-c

—

Master Node

REST API

App Nodes

»
.
Lo
RELTPPITL LA

/usr/sbin/glusterfs <options> <gluster-volume> <path-for-volume>

External Gluster Cluster

Gluster Volumes

(@

OEBPS/A478307_1_En_6_Fig5_HTML.jpg
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

OpenShift Container Storage (0CS)

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

Deploy 0CS glusterfs and create StorageClass
Note: default namespace = glusterfs
#openshift_storage_glusterfs_namespace=openshift-storage

openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=true

Enable Glusterfs Block Storageclass

openshift_storage_glusterfs_block_deploy=false
#openshift_storage_glusterfs_block_host_vol_create=true

NOTE: host_vol_size is effectively an upper limit on the size of glusterblock volumes
unless you manually create larger GlusterFS block-hosting volumes
#openshift_storage_glusterfs_block_host_vol_size=100
#openshift_storage_glusterfs_block_storageclass=true
#openshift_storage_glusterfs_block_storageclass_default=false

#
Enable Glusterfs S3 (Tech Preview)
#

#openshift_storage_glusterfs_s3_deploy=true
#openshift_storage_glusterfs_s3_account=s3testvolume
#openshift_storage_glusterfs_s3_user=s3adminuser
#openshift_storage_glusterfs_s3_password=s3adminpass
#openshift_storage_glusterfs_s3_pvc=dynamic

Size (Gi) of glusterfs backed PVC used for S3 object data storage
#openshift_storage_glusterfs_s3_pvc_size=2

Size (Gi) of glusterfs backed PVC used for S3 object metadata storage
#openshift_storage_glusterfs_s3_meta_pvc_size=1

GlusterFS version
openshift_storage_glusterfs_version=v3.11
openshift_storage_glusterfs_block_version=v3.11
openshift_storage_glusterfs_s3_version=v3.11
openshift_storage_glusterfs_heketi_version=v3.11

OEBPS/A478307_1_En_9_Fig8_HTML.jpg
© N U WN R

R e e
UBRWNR

oc edit cm -n openshift-node node-config-compute
apiVersion: v1
kind: ConfigMap
data:
node-config.yaml: |
apiVersion: vi1

kind: NodeConfig
kubeletArguments:
eviction-hard:
— memory.available<100Mi
- nodefs.available<10%
- nodefs. inodesFree<5%
— imagefs.available<15%

© N U WN R

NNNRE PR BRP B RB P
NP, SO®NOUsWNRS

oc edit cm -n openshift-node node-config-compute

apiVersion: vl
kind: ConfigMap

data:

node-config.yaml: |
apiVersion: vl

kind: NodeConfig
kubeletArguments:
eviction-soft:

eviction-soft-grace-period: .

memory.available<500Mi
nodefs.available<500Mi
nodefs.inodesFree<100Mi
imagefs.available<100Mi
imagefs.inodesFree<100Mi

memory.available=1m30s
nodefs.available=1m30s
nodefs.inodesFree=1m30s
imagefs.available=1m30s
imagefs.inodesFree=1m30s

OEBPS/A478307_1_En_4_Fig2_HTML.jpg
$ oc get pv

ﬁlfugpvo 1 ’

hfs—vaZ
pvc-04ec0d5e-2721-11e9-87=

pvc-1bb8a09c-2721-11e9-87=

’~001lad4al60101

¥01a4al60101

CAPACITY
10Mi
10Mi
20Gi

2Gi

ACCESS MODES
RWX
RWX
RWO
RWO

RECLAIM POLICY
Retain
Retain
Delete
Delete

STATUS
Bound
Available
Bound
Bound

OEBPS/A478307_1_En_11_Fig6_HTML.jpg
The authenticity of hos D' can't be established.
ECDSA key fingerprint is SHA256:InSyVHSmjgLmIMUhJVHI7SNSEWHoA4UMr@8Zmn3DYsM.
ECDSA key fingerprint is MD5:61:2c:fd:b7:d9:ed:39:71:e1:dd:10:d1:8a:d6:1c:87.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.1.10' (ECDSA) to the list of known hosts.
Red Hat Enterprise Linux Core0S 410.8.20190516.0

WARNING: Direct SSH access to machmes is not recmended.

This node has been with igure ift.io/ssh=accessed

is is the bootstrap node; it will be destroyed when the master is fully up.

e primary service is "bootkube.service". To watch its status, run e.g.

journalctl -b -f -u bootkube.service
[core@bootstrap ~]$ journalctl -b -f -u bootkube.service
-- Logs begin at Fri 2019-05-31 18:25:23 UTC. --

9

May 31 18:27:49 bootstrap.ocpdpoc.example.com bootkube.sh[3617]: 10531 18:27:49.498303
May 31 18 bootstrap. ocpdpoc. example. com bootkube.sh[3617]: 10531

May 31 18 bootstrap.ocpdpoc. exanple. com bootkube.sh[3617]: 10531 18:27:49.502203

May 31 18 bootstrap.ocpdpoc. example. com bootkube.sh[3617]: 10531 18:27:49.502412

May 31 18 bootstrap.ocpdpoc. example. com bootkube.sh[3617]: 10531 18:27:49.502584

May 31 18 bootstrap.ocpdpoc. example. com bootkube.sh[3617]: 10531 18:27:49.502900

May 31 18: bootstrap.ocpdpoc. example.com bootkube.sh[3617]: 10531 18:27:49.503169

May 31 18 bootstrap.ocpdpoc. example.con bootkube.sh[3617]: Starting etcd certificate signer..

May 31 18 bootstrap.ocp4poc. exanple. com bootkube. sh[3617]: BbaSesllebMZaeWMZMc0272b7aae2f307d:8ed291446¢100Bmfasdbl
May 31 18 bootstrap.ocpdpoc. example. com bootkube.sh[3617]:

May 31 18 bootstrap. ocpdpoc. example. com bootkube.sh[3617]:

May 31 18 bootstrap. ocpdpoc. example. com bootkube. sh[3617]:

May 31 18 bootstrap.ocpdpoc. exanple. com bootkube.sh[3617]
May 31 18:37:54 bootstrap.ocpdpoc. example.com bootkube.sh[3617]:
May 31 18:37:54 bootstrap.ocpdpoc. example.com bootkube.sh[3617]:

p
Error: unhealthy cluster
etcdctl failed. Retrying in 5 seconds. ..

1 bootstrap.go:86] Version: 4.1.0

700-dirty (a3ad9a2 f '564€2)

1 bootstrap.go:141] manifests/machineconfigcontroller/controllerconfig.yanl
1 bootstrap.go:141] manifests/master.machineconfigpool .yaml

1 bootstrap.go:141] mani fests/worker.machineconfigpool .yaml

1 bootstrap.go:141] mani fests/bootstrap-pod-v2.yanl

1 bootstrap.go:141] manifests,

1

ig

rver/csr- p-role-binding.yanl

.go:141] m

g

kube-api ing-ca-configmap. yaml

: dial tcp 192.168.1.11:2379: connect: no route to host
: context deadline exceeded
: dial tcp 192.168.1.12:2379: connect: no route to host

OEBPS/A478307_1_En_2_Fig14_HTML.jpg
Feeds Logs to
Elasticsearch

s # 5 |
Node Log files, journald,
; ___Container Logs, Syslog :

and audit files .

logging-es-prometheus
Pod H

............ Kibana E
: -‘\g"‘.logging-evemmutar :
: b od

Infrastructure Nodes Moo

OEBPS/A478307_1_En_6_Fig1_HTML.jpg
minishift setup-cdk ‘

minishift config set cpus 2 .
minishift config set memory 8GB

minishift config view .

cpus : 2

image-caching : true

iso-url : file:///your/home/.minishift/cache/iso/minishift-rhel7.iso
memory : 8GB

ocp-tag : vlatest

openshift-version : vlatest

vm-driver : xhyve

export MINISHIFT USERNAME=<RED_HAT USERNAME> .
export MINISHIFT PASSWORD=<RED HAT PASSWORD>

minishift addons list .

admin-user : enabled P(0)
anyuid : enabled P(0)
eap-cd : enabled P(0)
registry-route : enabled P(0)
xpaas : enabled P(0)
che : disabled P(0)

htpasswd-identity-provider : disabled P(0)

minishift start .

OEBPS/A478307_1_En_1_Fig7_HTML.jpg
backend
Pod 1

backend
Pod 2

backend
Pod 3

OEBPS/A478307_1_En_3_Fig6_HTML.jpg
10.128.2.0/23 > vxlan0 dst Node2

| OpenFlow entries for Node 1: .

110.128.4.0/23 > vxlan0 dst Node3

10.0.0.0/0

> tun0 dst Node1 external gateway

OpenFlow entries for Node 2:
10.128.4.0/23 > vxlan0 dst Node3 .
10.128.0.0/23 > vxlan0 dst Node1

0.0.0.0/0 > tun0 dst Node2 external gateway

Pod 1A Pod 1B Pod 1C
Node 1

Port 1

tun0

vxlan_sys_4789 (vxian0)

$ oc get netnamespace

NAME NETID
tenant-a 3859724
tenant-b 1245836
tenant-c 2874297
default 0

vxlan_sys_4789 (vxlan0)

vxlan_sys_4789 (vxlan0) P

OpenFlow entries for Node 3:
10.128.2.0/23 > vxlan0 dst Node2 .
10.128.0.0/23 > vxlan0 dst Node1

0.0.0.0/0

> tunO dst Node3 external gateway

OpenShift SDN

ovsdb

et: 10.1
Open vSwitch (br0)

Pod 2A
Node 2

Pod 2B

OpenShift SDN
ovsdb
ort 2

net: 10.128.4.0/23

Open vSwitch (br0)

Pod3A Pod3B Pod3C
Node 3

OEBPS/A478307_1_En_1_Fig17_HTML.jpg
OPENSHIFT CONTAINER PLATFORM Cluster

Home Project: all projects v

Status
Search Operator Catalog Sources

Events

Operators

Cluster Service Versions Catalogs are groups of Operators you can make available on the cluster. Subscribe and grant a namespace access to use the installed Operators.

Catalog Sources .
Subscriptions Certified Operators

Install Plans

NAME LATEST VERSION SUBSCRIPTIONS
Workloads
Pods Couchbase Operator)

1.0.0 (preview) |
Deployments '

Deployment Configs

Stateful Sets v] Dynatrace OneAgent i (|
0.2.0 (preview) |
Secrets S]

Config Maps

Cron Jobs 0.3.2 (preview) |

. MongoDB |
Jobs
Daemon Sets

Replica Sets

OEBPS/A478307_1_En_6_Fig20_HTML.jpg
Create Hosted Zone Go to Record Sets Delete Hosted Zone o0

Dashboard ‘
| Hosted zones Q Search all fields X | | Al Types . 1€ < Displaying 102 0ut of 2Hosted Zones > 1
Health checks
Domain Name ~ Type - Record SetCount- Comment Hosted Zone ID -
Traffic flow Public 2
Traffic policies
ate 6 Managed by Terraform

Policy records
Domains

| EC2Dashboard Resources ¢ Account Attributes 6
Bvents You are using the following Amazon EC2 resources in the US West (Oregon) Supported Platforms
Tags
- ‘ 0 Running Instances D ElasticIPs vPe
Pepots 0 Dedicated Hosts 0 Snapshots Default VPC
L] 0 Volumes 0 Load Balancers
1 Ky ks 25 Sy Gl Resource ID length management
0 Placement Groups — Console experiments
| EC2Dashboard Resources ¢ Account Attributes
Events
T"’" You are using the following Amazon EC2 resources in the US West (Oregon) region: Supported Platforms
fags
< ; vPC
Reports 0 Running Instances
Limits 0 Dedicated Hosts Default VPC
0 Volumes
1 Key Pai
Instances Koy Paks Resource ID length management

Launch Templates 0! Pincement Crodes Console experiments

OEBPS/A478307_1_En_11_Fig8_HTML.jpg
DEBUG Still
DEBUG Still
DEBUG Still
DEBUG Still
DEBUG Still
DEBUG Still

waiting for
waiting for
waiting for
waiting for
waiting for
waiting for

the
the
the
the
the
the

Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes
Kubernetes

INFO API v1.13.4+838b4fa up

DEBUG Bootstrap status: complete

API : Get

INFO Waiting up to 3@m@s for bootstrapping to complete...

INFO Tt is now safe to remove the bootstrap resources

could not find the

could not find the

could not find the

server could not find the requested resource

server could not find the requested resource

https://api.ocpdpoc.example.com:6443/version?timeout=32s: unexpected EOF
s 1.0cp4poc.example.com:6443/version?timeout=32s: EOF

server
server
server

resource
resource
resource

requested
requested
requested

19:31:44 bootstrap.ocpapoc. example.

: Skipped -n open: .
: Skipped “kube- w&semr-semm-(n mﬂamp yanL" confignaps.vi. et bootkube.service complete
: Skipped " ig.yaml" secrets.vl.. g -n kube-s|

: Skipped "kube-system-confignap-root-ca.yaml” configmaps.vl./root-ca -
: Skipped "machine-config-server-tls-secret.yaml" secrets.vl./mach
: Skipped "openshift-config-secret-pull-secret.yaml” secrets.vi

: Skipped "secret-control-plane-client-signer.yaml" s
 Skipped "secret-csr-signer-signer.yaml” secrets.
i e

* Skipped "etcd-host-service.yaml™ services.vi./host-etcd -n openshift-etcd as it already exists
: Skipped "etcd-metric-cli i
: Skipped "etcd-metric-serving-ca-confignap.yaml” configmaps.vl./etcd-m
: Skipped "etcd-metric-signer-secret.yaml” secrets.vl./etcd-metric-sign|
: Skipped "etcd-namespace.yaml" namespaces.v1./openshift-etcd -n as it
: Skipped "etcd-service.yaml” services.vl./etcd -n openshift-etcd as it

: Skipped ma—seMng-m configacp. yomlL" confilgmops.v1./etcd- Eairo

-secret.yaml" secrets.v1./etcd-metric-cli

Skipped "secret-loadbalancer-serving-signer.yaml"
Skipped "secret-localhost-serving-signer.yaml" secr
Skipped "secret-service- ork-serving-signer.yaml

onfig-server-tls -n openshift-machine-config-operator s it already exists
secret -n openshift-config as it already exists
regator-client-signer -n openshift-kube-apiserver- npemor as it already exists

~-n openshi ft as it already exists
esr- siwr-S\yver -n opensh\ft -Kkube-controller-r munager-opemtur as it already exists

ivate- key yanl” secrets.v1./initial-service-account-private- uy -n openshift-config as it already exists
gner..yanl" secrets.vi.. n openshi olreay extsts.

Signer-yanl" secrets.v1./localhost-serving-signer. -n openshiFt-kube-apiserver-operator as it already exists
grk-serving-signer.yaml™ secrets.vl./service-network-serving-signer -n openshi ft-kube-apiserver-operator as it already exists

[root@jumphost ocpd4]# export

KUBECONFIG=./ocp4poc/auth/kubeconfig

AGE

[rootejumphost ocpd]# oc get csr
INAME

REQUESTOR

lcsr-5vttg
lcsr-8ntsq
lcsr-q97f
csr-nzr26
lcsr-vavbk
(csr-wrkdh

6maSs system: node master-1.. ocp4poc example com

7més Pt "apper
m Ft Pt el g-op PP
6mSls system: node master-0.. ocpdpoc exm\ple com

7mls Fig-op ppe
6md6s system:node:master- Locpdpoc.exanple.com

Croot@jumphost ocpal# |

CONDITION

Approved, Issued
Approved, Issued
Approved, Issued
Approved, Issued
Approved, Issued
Approved, Issued

OEBPS/A478307_1_En_6_Fig11_HTML.jpg
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
283

235
236
237
238
239
240
241

Cluster Metrics

Deploy Metrics Server (used by HPA)
openshift_metrics_install_metrics=true

Start metrics cluster after deploying the components
openshift_metrics_start_cluster=true

openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={""node-role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"}

Store Metrics for 2 days
openshift_metrics_duration=2

Settings for Lab environment
openshift_metrics_cassandra_pvc_size=10Gi
openshift_metrics_cassandra_replicas=1
openshift_metrics_cassandra_limits_memory=2Gi
openshift_metrics_cassandra_limits_cpu=1000m

User gluster-block or glusterfs (dynamic)
#openshift_metrics_cassandra_pvc_storage_class_name='glusterfs-storage-block'
openshift_metrics_cassandra_storage_type=dynamic

OEBPS/A478307_1_En_11_Fig5_HTML.jpg
PEE BOOT plEU

Writing image to disk

Downloading Image

OEBPS/A478307_1_En_9_Fig5_HTML.jpg
O 00N U A WN B

el el =
A WNROS

oc edit cm -n openshift-node node-config-compute

apiVersion: vl
kind: ConfigMap
data:
node-config.yaml: |
apiVersion: vl

kind: NodeConfig
kubeletArguments:

kube-reserved:

- "cpu=200m,memory=512Mi"
system-reserved:

- '"cpu=200m, memory=512Mi"

Resources reserved for node components.

Resources reserved for the remaining system components.

OEBPS/A478307_1_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/A478307_1_En_9_Fig2_HTML.jpg
=
n—\@kooo\lcwaw.n—l

$ oc adm

Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting

prune images .

¢Dry run enabled

istags
istags
istags
istags
istags
istags
istags
istags
istags
istags
istags

- no modifications will be made. AddC--confirm o remove images

openshift-sdn/node: v3.11
cicd-staging/podcicd-v4: v4
openshift-node/node: v3.11
cicd-staging/podcicd-v3: v3
cicd-staging/podcicd-v1l: vl
cicd-staging/podcicd-v5: v5
cicd-prod/podcicd-v6: v6
cicd-prod/podcicd-vl: vl
cicd-staging/podcicd-v6: v6
cicd-prod/podcicd-v5: v5
cicd-staging/podcicd-v2: v2

Deleted 11 objects. .

OEBPS/A478307_1_En_1_Fig14_HTML.jpg
iptables

container runtime interface

~

(CRI)

OCI compliant container runtime

OCP All Nodes Services e i ™
logging-fluentd = = 1]
node-exporter

node-problem-detector @‘il rg‘il @‘il
dnsmasq
openshift-sdn
A B\] A 1
&y &L B
container network interface (CNI) < @‘i’ Lér‘i' @‘ﬁ @‘i’ @‘i’

CNI compliant SDN plugin L
pose .
OpenShift App Node:

OEBPS/A478307_1_En_11_Fig10_HTML.jpg
jrorker-1.0cpdpoc. example.con NotReady worker 49s v1.13.4+cb455d664
roamupmse ocp41# oc get nodes

STATUS ROLES AGE VERSION
-ster—awexap\e.
paster-1.ocpdpoc. example

SHIRHHT
$
:
8

STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE CONTAINER-RUNTIME
Ready master 17m v1.13.4scb4SSd664 192.168.1.11 <none> Red Hat Enterprise Linux Core0S 410.8.20190520. .18.0-80. i //1.13.9-1.rhaos4. 1.91td70609. €18
Ready master 17m V1.13.4scb4S5d664 192.168.1.12 <none> Red Hat Enterprise Linux Core0S 410.8.20190520. -1.rhaos4. 1.91d70609. €18
Ready master 17m v1.13.4scb4SSd664 192.168.1.13 <none> Red Hat Enterprise Linux Core0S 410.8.20190520. -1.rhaos4. 1.g1td70609a. €18
Ready worker 71s v1.13.4scb4SSd664 192.168.1.15 <none> Red Hat Enterprise Linux Core0S 410.8.20190520.0 (Ootpa) -1.rhaos4. 1.91td70609a. €18
Ready ~ worker 665 V1.13.4+cb4SSd664 192.168.1.16 <none> Red Hat Enterprise Linux Core0S 410.8.20190520.0 (Ootpa) -1.rhaos4.1.9itd70609a.e18

* Cluster operator openshift-: sw\es is still upam-w

* Could not update op ap operator” (346 of 350): the server does not recognize this resource, check extension API sariars

* Could not update opy :ops * (321 of 350): the server does not recognize this resource, check extension API s

* Could not update "ovenshtft-contro\ nager-op roller-manager-operator” (349 of 350): the server does not recognize this resource, eheck extension APT servers

* Could not update “openshi . inage-registry/inage- registry" (327 of 35 3so) the server does not recognize this resource, check extension API servers

* Could not update "openshif P oper apf operator” (337 of 350): the server does not recognize this resource, check extension API servers

* Could not update “openshif 1 nager-op 1 " (340 of 350): the server does not recognize this resource, (heck exeensxm API servers

* Could not update “openshif oper hedul * (343 of 350): the server does not recognize this resource, check extension API s

* Could not update “openshift- operntnr Lifecycl " (267 of 350): the server does not recognize this resource, check extension APL servers

* Could not update “openshift-servi log-apiserver- -operator” (330 of 350): the server does not recognize this resource, check extension API servers

- ife- seMce cm\og -control ler-manager-operator” (333 of 350): the server does not recognize this resource, check extension API servers

Still waiting for the cluster to initialize: Working towards 4.

[root@jumphost ocp4]#

[root@jumphost ocp4l]# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}"
Eonfig.imageregistr'y.operator.openshift.io/cluster patched

[root@jumphost ocp4l# [| . ‘

OEBPS/A478307_1_En_2_Fig9_HTML.jpg
{o% @) 8
e O O O
ik =
AUTOMATION CLUSTER DEVELOPERS ~ APP OWNERS
& Cl/ICD TOOLS ADMIN

\

[LB] host definition or External Load Balancer

EXTERNAL CLUSTER NAME: ocp.example.com

. INTERNAL CLUSTER NAME: ocp.demo.internal

openshift master cluster public_hostname=ocp.example.com

MASTER NODES: openshift master_cluster_ hostname=ocp.demo.internal

¢ masteri.demo.internal
¢ master2.demo.internal

[masters]
masterl.demo.internal

¢ master3.demo.internal master2.demo.internal

master3.demo.internal
[1b]
loadbalancer.demo.internal

OEBPS/A478307_1_En_10_Fig3_HTML.jpg
USING NAMESPACE LABELS

Create new router (no replicas)
oc adm router router-dev —-replicas=0

Set the NAMESPACE selection expression
oc set env dc/router-dev NAMESPACE_LABELS="router=dev"

Run one replica of the router
oc scale dc/router-ns-dev --replicas=1

Label a NAMESPACE to be matched by selection expression
oc label namespace myproject "router=dev"

USING ROUTE LABELS

Create new router (no replicas)
oc adm router router-shard-2 --replicas=0

Set the Shard selection expression
oc set env dc/router-shard-2 ROUTE_LABELS="bizunit=prod"

Run one replica of the router
oc scale dc/router-shard-2 --replicas=3

Label a ROUTE to be matched by selection expression
oc label route myroute "bizunit=prod"

OEBPS/A478307_1_En_2_Fig13_HTML.jpg
Collects metrics —
from Kubelet API

(Pods)

:App Nodes

Store metrics
in Hawkular

Store metrics

in persistent
datastore >~

Infrastructure Nodes

cassandra
Pod

¥
kubelet
(embeds cAdvisor)

cAdvisor auto-discovers
all containers in the node.

EXxpose metrics over
API for OCP Web Ul

OEBPS/A478307_1_En_10_Fig11_HTML.jpg
1 apiVersion: "k8s.cni.cncf.io/v1"
2 Lgvrlg NetworkAttachmentDefinition
o LEEebEe 1 apiVersion: v1
4 name: my-cni2-conf R
5 spec 2 kind: Pod
6 config: '{ B metadata:
7 sendVerelontd £0.3:0% 4 name: podcool-multus
8 "type": "macvlan",)
9 "master": "etho", 5 annotations:
10 “mode": “bridge", 6 . k8s.v1l.cni.cncf.io/networks: my-cni2-conf
11 “ipam": { 7 spec:
12 "type": "host-local", . .
13 “subnet": "192.168.2.0/24", 8 containers:
14 “rangeStart": "192.168.2.10", 9 — name: podcool-multus
15 “rangeEnd": "192.168.2.200", 10 eein ekl
16 "routes": [LA SNadEE ROCCOOT
17 { "dst": "0.0.0.0/0" } 1| . ports:
18 1, 12 - containerPort: 8080
19 "gateway": "192.168.2.1" 13
20 I
21 b
22
1 $ oc exec -ti podcool-multus sh .
2 /usr/src/app $ ip addr | grep -A2 "@"
3
4 3: eth@@if12: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue state UP
5 link/ether 0a:58:0a:80:02:0f brd ff:ff:ff:ff:ff:ff
6 inet 10.128.2.15/23 brd 10.128.3.255 scope global eth@
7
8 4: net@@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default
9 link/ether 00:1a:4a:16:01:01 brd ff:ff:ff:ff:ff:ff link-netnsid @
10 inet 192.168.2.17/24 scope global net@

OEBPS/A478307_1_En_2_Fig4_HTML.jpg
W 00 NO UL WN =

P N = Y
W oO~NOOOUDWNRO®

[root@bastion ~]# oc get pod master-etcd-masterl.demo.internal -n kube-system -o yaml
apiVersion: vl
kind: Pod
metadata:
labels:
openshift.io/component: etcd
openshift.io/control-plane: "true"
name: master-etcd-masterl.demo.internal
namespace: kube-system .
spec:
containers:
name: etcd
resources: {}
securityContext:
privileged: true ‘

OEBPS/A478307_1_En_8_Fig3_HTML.jpg
OPENSHIFT CONTAINER PLATFORM tion Console v ®+. & adminv

Cl/CD Pipeline Demo rch C Add to Project v

@B Overview

Get started with your project.

Applications
Add content to your project from the catalog of web frameworks, databases, and other
components. You may also deploy an existing image, create or replace resources from their YAML or

Builds JSON definitions, or select an item shared from another project.

|

Resources
Deploy Image Import YAML / JSON Select from Project

Storage

Monitoring

OEBPS/A478307_1_En_10_Fig6_HTML.jpg
apiVersion: vl
kind: Service
metadata:

and

name: pgsql-1lb
spec:
ports:
- name: pgsql
port: 5432
type: LoadBalancer

selector:
name: pgsql

Password for user pguser:
psql (9.2.24, server 9.6.10)

Type "help" for help.

sampledb=> l

psql -h[172.29.223.161 sampledb pguser

$ oc expose dc pgsql --type=LoadBalancer --name=pgsql-1b2

WARNING: psql version 9.2, server version 9.6.
Some psql features might not work.

[root@cp ~]# oc expose dc pgsql --type=LoadBalancer --name=pgsql-1b2

service/pgsql-1b2 exposed
[root@ocp ~]# oc get all

NAME READY STATUS RESTARTS AGE
pod/pgsql-1-vpmot 1/1 Running @ 4m
NAME DESIRED CURRENT READY
replicationcontroller/pgsql-1 1 1 1
NAME

service/pgsql

service/pgsql-1b
service/pgsql-1b2

AGE
4m

TYPE
ClusterIP
LoadBalancer
LoadBalancer

CLUSTER-IP EXTERNAL-IP

172.30.240.202 _ <none>.

172.30.106.105 [172.29.121.102,172.29.121.102
172.30.106.248 | 172.29.223.161,172.29.223.161

)

PORT(S)
5432/TCP
5432:30671/TCP
5432:30318/TCP

AGE

im
4s

OEBPS/A478307_1_En_3_Fig12_HTML.jpg
$ oc get all --selector='router=router' -n default -o wide

NAME READY STATUS

pod/router-1-8nsqg 1/1 Running infranodel.demo.internal

pod/router-l-pxsqe 1/1 Running infranode2.demo.internal

NAME DESIRED CURRENT READY AGE CONTAINERS ... | SELECTOR

replicationcontroller/router-1 2 2 2 1d router ... | depl 1,depl
TYPE CLUSTER-IP EXTERNAL-IP [PORT(S) SELECTOR

service/rout ClusterIP 172.30.117.14 <none> 80/TCP,443/TCP,1936/TCP router=router

REVISION DESIRED CURRENT TRIGGERED BY
depl ig.apps. hift.io/router 1 2 2 config

OEBPS/A478307_1_En_8_Fig5_HTML.jpg
OPENSHIFT CONTAINER PLATFORM

CUCD Pipeline Demo

jenkins-ephemeral

¥ jenkins, #1

Average Us

jenkins

© image: openshitjenkin

jenkins.

SOTCP (web) ~ 8080

jenkins-jnip

S0000/TCP (agen) = S000C

Ustby | Ap

https://jenkins-cicd.apps.ad:

eate deployment s running. . View Events

pod

https:/jenkins-cicd.apps.adsequi.com &2

quicom

OPENSHIFT CONTAINER PLATFORM

jenkins-ephemeral

htps:/fjenkins-cicd.apps adsequi.com

jenkins, #1 i

Average Usage

Jenkins

© image: opens

Servie - Internal Traffic Routes - External Traffic
jenkins https://jenkins-cicd.apps.adsequi.com &
SOTTCP (web) Route jenkin

envice - Internal Trafic Routes - ExternalTrafic

jenkins-jnip ®create Route

OEBPS/A478307_1_En_4_Fig6_HTML.jpg
Master Node + Master Node

o) D s

kube-api-server

REST API

.3

—

!

kube-controller-manager

Converged Nodes

App Nodes

w ""'---...-----‘0“‘-

b
Gluster Volumes

/usr/sbin/glusterfs <options> <gluster-volume> <path-for-volume>

OEBPS/A478307_1_En_4_Fig9_HTML.jpg
kind: StorageClassq
apiVersion: storage.k8s.io/vl
metadata:

name: mystorageclass .
annotations:

provisioner: kubernetes.io/plug-in-type

parameters: .
paraml: value

paramN: value
reclaimPolicy: Delete .

mountOptions:
- debug '

volumeBindingMode: Immediate .

OEBPS/A478307_1_En_10_Fig8_HTML.jpg
apiVersion: vl
kind: Service
metadata:
name: pgsqgl-nodeport
labels:
name: pgsqgl-nodeport
spec:
type: NodePort

ports:
-/ port: 5432 .
nodePort: 30432
name: pgsql

selector:
name: pgsqgl-nodeport

[root@cp ~]# oc get svc pgsql-nodeport

NAME
pgsql-nodeport

[root@ocp ~1# (]

TYPE
NodePort

CLUSTER-IP
172.30.72.157

EXTERNAL-IP
<none>

PORT(S AGE
5432:30432/TCP | 24m

OEBPS/A478307_1_En_5_Fig1_HTML.jpg
3 o

= O O O
AUTOMATION CLUSTER DEVELOPERS APP OWNERS ‘ ‘ ‘
& CI/CD TOOLS ADMIN @ Q Q

NV ¥

APP NODES
External App Load Balancer

MASTER
NODES

INFRASTRUCTURE
NODES

Specialized Load Balancer
Iy

.

ADVANCED SPECIALIZED
NETWORKING PROTOCOLS

OEBPS/A478307_1_En_6_Fig19_HTML.jpg
AUTOMATION OC & KUBECTL
& CI/ICD TOOLS (CLIENT TOOLS)

https://api.ocp.example.com:6443
AWS ELB (Network Type)

https://api.ocp.example.com
(API Server):6443 & (Config Server):22623

Web Console Web Console
:443 443

A

A
Zone 2a ' Zone2b

MASTER NODES

) ® e, _ ©
o & &
CLUSTER ~ DEVELOPERS APP OWNERS ; APRUSERS

ADMIN

- http://<myapp>.apps.ocp.example.com
- https://<myapp2>.apps.ocp.example.com
ther-urls>.apps.ocp.example.com

- https:/ //consoleopenshlft console apps ocp example .com
= P apps.ocp.example.com

*.apps.ocp.example.com (:80 & :443)
AWS ELB (Classic Type)

Availability i Availability Availability
Zone 2a Zone 2b ' Zone2c

N WORKER NODES °

OEBPS/A478307_1_En_1_Fig2_HTML.jpg
(%]
()
=
>
—
()
n

Container 1
Container 2
Container 3

Ir'd

Host Kernel

Z(m]z: Infrastructure % (f_\)

—

Linux Server

OEBPS/A478307_1_En_2_Fig7_HTML.jpg
apiVersion: vl

kind:

Pod

metadata:

labels:
openshift.io/component: controllers
openshift.io/control-plane: "true" ‘
name: master-controllers-masterl.demo.internal
namespace: kube-system

spec:

containers:

name: controllers ‘

resources: {}
securityContext:

privileged: true ’

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:

mountPath: /etc/origin/master/ ‘
name: master-config

mountPath: /etc/origin/cloudprovider/
name: master-cloud-provider

mountPath: /etc/containers/registries.d/
name: signature-import

mountPath: /usr/libexec/kubernetes/kubelet-plugins
mountPropagation: HostToContainer

name: kubelet-plugins

mountPath: /etc/pki

name: master-pki

32
33
34
35
36
37
38
39
40
S
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

volumes:

hostPath: .

path: /etc/origin/master/

type: ""
name: master-config
hostPath:
path: /etc/origin/cloudprovider
type: ""
name: master-cloud-provider
hostPath:
path: /etc/containers/registries.d
type: ""
name: signature-import
hostPath:
path: /usr/libexec/kubernetes/kubelet-plugins
type: ""
name: kubelet-plugins
hostPath:
path: /etc/pki
type: ""

name: master-pki

OEBPS/A478307_1_En_8_Fig12_HTML.jpg
Webhook
Trigger

SCM or Dev Tool

Project: cicd

Declarative: Checkout... CICD Projects Build Test Promote to Staging Promote to Prod
0s 7s 8s

34s

(4] l CI/CD - Dev © cicp - staging

BUILD STAGE PROMOTE TO STAGING

v s2i build ¥ Tag Dev Image into

v Deploy App on Dev Project Staging Project

v Tag Image with Build Number 7 Deﬁloy from]}ﬁage on
Staging Project

TEST STAGE
v Test Deployment is working

- i

Project: cicd-dev Project: cicd-staging Project: cicd-prod

s2i

OEBPS/A478307_1_En_6_Fig25_HTML.jpg
Overvi v{ YAML) @ cluster Actions v

OAuth Overview

Name
cluster

e
4 creationTimestamp: 2019-04-14T19:08:512°
LABELS : Sanaretion
e laois 7 resourceversion: '9334

& sclflink: /apis/config.openshift.io/v1/oauths/cluster
ANNOTATIONS 9 Uic: bd373893-Seed-11e9-8743-02699cB14254.

10

1

0 Annotations #

tokenConfig:
ccessTokersaxAgeSeconds: 86400

ACCESS TOKEN MAX AGE

24n0m 05

CREATED AT
Q@ Apr 14, 3:08pm

Identity Providers

g Reload | Cancel 4 Download

Noldentity Providers Found

Identity Providers

Identity providers determine how users log into the cluster.

HTPasswd

‘ OpeniD Connect No Identity Providers Found

OEBPS/A478307_1_En_6_Fig8_HTML.jpg
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

B B e B B e e e e
OpenShift Network Vars

B R
Defaults

#osm_cluster_network_cidr=10.1.0.0/16

#openshift_portal_net=172.30.0.0/16

OpenShift SDN with NetworkPolicy
os_sdn_network_plugin_name='redhat/openshift-ovs—-networkpolicy'

If using Calico SDN
#o0s_sdn_network_plugin_name=cni
#openshift_use_calico=true
#openshift_use_openshift_sdn=false

OEBPS/A478307_1_En_7_Fig3_HTML.jpg
$ oc get ——export scc/restricted -o yaml
allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
apiVersion: security.openshift.io/v1
defaultAddCapabilities: null
fsGroup:
type: MustRunAs
groups:
- system:authenticated
kind: SecurityContextConstraints
metadata:
annotations:
kubernetes.io/description: restricted denies access to all host features and requires
pods to be run with a UID, and SELinux context that are allocated to the namespace. This
is the most restrictive SCC and it is used by default for authenticated users.
creationTimestamp: null
name: restricted
selfLink: /apis/security.openshift.io/v1l/securitycontextconstraints/restricted
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities:
- KILL
- MKNOD
SETUID
- SETGID
runAsUser:
type: MustRunAsRange
seLinuxContext:
type: MustRunAs
supplementalGroups:
type: RunAsAny
users: []
volumes:
configMap
downwardAPI
emptyDir
- persistentVolumeClaim
projected
- secret

OEBPS/A478307_1_En_3_Fig4_HTML.jpg
[root@nodel ~]# ip route
default via 192.168.0.1 dev eth0 proto dhcp metric 100
10.1.0.0/16 dev tun0 scope link

172.30.0.0/16 dev tunO|
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.5 metric 100

[root@nodel ~]# $ iptables -t nat -L OPENSHIFT-MASQUERADE
Chain OPENSHIFT-MASQUERADE (1 references)

target prot opt source destination
MASQUERADE all -- ip-10-1-0-0.demo.internal/16 ywh . 1* It de pod-to-service and pod-to-external traffic */
$ ip addr

2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 9001 gdisc mq state UP group default glen 1000 .
link/ether 16:30:3c:26:30:94 brd ff:ff:ff:ff:£f:ff
inet 192.168.0.5/24 brd 192.168.0.255 scope global noprefixroute dynamic ethO
valid_lft 3428sec preferred 1lft 3428sec
inet6 fe80::1430:3cff:fe26:3094/64 scope link
valid_lft forever preferred 1lft forever

11: tun0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 8951 gdisc noqueue state UNKNOWN group default glen 1000
link/ether 8e:b9:4d:1c:85:8a brd ff:ff:ff:ff:ff:£ff
inet 10.1.6.1/23 brd 10.1.7.255 scope global tun0
valid_lft forever preferred 1lft forever
inet6 fe80::8cb9:4dff:felc:858a/64 scope link
valid_lft forever preferred 1lft forever

OEBPS/A478307_1_En_6_Fig14_HTML.jpg
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

OpenShift Service Catalog

Servie Catalog
openshift_enable_service_catalog=true

Template Service Broker (TSB)

Note: requires Service Catalog
template_service_broker_install=true
openshift_template_service_broker_namespaces=['openshift']

Ansible Service Broker (ASB)

Note: requires TSB

ansible_service_broker_install=true
ansible_service_broker_local_registry_whitelist=["'.*-apb$"']

OEBPS/A478307_1_En_11_Fig3_HTML.jpg
RHCOS PXE Boot Images (1)

mkdir /var/lib/tftpboot/rhcos

cp ./images/rhcos-410.8.20190516.0-installer-initramfs.img /var/lib/tftpboot/rhcos/rhcos-initramfs.img
cp ./images/rhcos-410.8.20190516.0-installer-kernel /var/lib/tftpboot/rhcos/rhcos—kernel

RHCOS 0S Images (2

mkdir /usr/share/nginx/html/metal/

cp -f ./images/rhcos-410.8.20190516.0-metal-bios.raw.gz /usr/share/nginx/html/metal/
cp —-f ./images/rhcos-410.8.20190516.0-metal-uefi.raw.gz /usr/share/nginx/html/metal/

OEBPS/A478307_1_En_3_Fig9_HTML.jpg
networkpolicy.extensions/all d-default

$ oc create -f allow-same-and-default-ns.yml -n demo-policy .

$ oc describe ne: policy all d-default: p
Name: all d-default: P
Namespace: demo-policy .
Created on: 2019-01-17 18:47:50 -0500 EST
Labels: <none>
Annotations: <none>
Spec:
PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)

Allowing ingress traffic:

To Port: <any> (traffic allowed to all ports)

From:

PodSelector: <none>
To Port: <any> (traffic allowed to all ports)
From:
p lector: fault

Allowing egress traffic:

<none> (Selected pods are isolated for egress connectivity)
Policy Types: Ingress

$ oc exec podcool-1-gl86q -- python -c "from tcpping import tcpping ; tcpping(d_host='postgresql',d port=5432, maxCount=3, DEBUG=True)"
Connected to postgresql[5432]: tcp_seq=0 time=3.34 ms
Connected to postgresql[5432]: tcp_seq=1 time=4.88 ms .

.09 ms

Connected to postgresql[5432]: tcp_seq=2 time:
TCP Ping Results: Connections (Total/Pass/Fail/Avg): [3/3/0/3.103] (Failed: 0%)
$

OEBPS/A478307_1_En_1_Fig12_HTML.jpg
EOpenShift Master Node

OCP Master Services OCP All Nodes Services

logging-fluentd

SkyDNS or KubeDNS

openshift-console node-exporter

openshift-web-console node-problem-detector

registry-console dnsmasq

template-service-broker apiserver openshift-sdn

glusterblock-strage-provisioner

heketi-storage API

kube-controller-manager

Node Controller

etcd kube-scheduler Replication Controller

I 1 Endpoints Controller

=

