
Advanced Platform
Development with
Kubernetes

Enabling Data Management,
the Internet of Things, Blockchain,
and Machine Learning
—
Craig Johnston

Advanced Platform
Development with

Kubernetes
Enabling Data Management,

the Internet of Things,
Blockchain, and Machine

Learning

Craig Johnston

Advanced Platform Development with Kubernetes: Enabling Data
Management, the Internet of Things, Blockchain, and Machine
Learning

ISBN-13 (pbk): 978-1-4842-5610-7 ISBN-13 (electronic): 978-1-4842-5611-4
https://doi.org/10.1007/978-1-4842-5611-4

Copyright © 2020 by Craig Johnston

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 NY Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5610-7. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Craig Johnston
Los Angeles, CA, USA

https://doi.org/10.1007/978-1-4842-5611-4

iii

Table of Contents

Chapter 1: Software Platform and the API ��1

Software Applications vs. Software Platforms ..3

Dependency Management and Encapsulation ..4

Network of Applications ..4

Application Platform ..5

Platform Requirements ...6

Platform Architecture ..8

Platform Capabilities ...9

IoT ..12

Blockchain ...17

Machine Learning ..21

Core Components ..23

Configuration ...25

Ingress ...26

Data Management ...27

Metrics ..28

APIs and Protocols ..29

Summary...31

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

iv

Chapter 2: DevOps Infrastructure ���33

Cloud Computing ...33

Cloud Native and Vendor Neutral ..36

Redundancy ...37

Portable Platforms ...38

Getting Started Vendor Neutral ..40

DevOps Toolchain ..41

Repositories ...42

Registries ..43

CI/CD ..44

GitLab for DevOps ..45

k3s + GitLab ..47

Summary...68

Next Steps ...69

Chapter 3: Development Environment ��71

Custom Development Kubernetes Cluster ..72

Nodes ..73

Server Setup ..75

Prepare Nodes ...78

Install Master Node ...85

Join Worker Nodes ..87

DNS ..87

Remote Access ..88

Configuration...90

Repository ...91

Ingress ...92

TLS/HTTPS with Cert Manager ..105

Table of ConTenTs

v

Persistent Volumes with Rook Ceph ..107

Monitoring ...112

Summary...115

Chapter 4: In-Platform CI/CD ��117

Development and Operations ..117

Platform Integration ..118

Yet Another Development Cluster ...119

RBAC ..120

GitLab Group Kubernetes Access ..121

Custom JupyterLab Image ..126

Repository and Container Source ..127

Local Testing ..130

Additional Learning ...134

Automation ..134

GitLab CI ..136

. gitlab-ci.yml ...136

Running a Pipeline ...139

Manual Testing in Kubernetes ...142

Prepare Namespace ..143

Run Notebook ..145

Repository Access ...147

GitOps..150

Summary...151

Chapter 5: Pipeline ���153

Statefulness and Kubernetes ..154

Real-Time Data Architecture ...155

Message and Event Queues ..156

Table of ConTenTs

vi

Development Environment ..158

Cluster-Wide Configuration ..159

Data Namespace ...160

TLS Certificates ...161

Basic Auth ..162

Apache Zookeeper ..163

Apache Kafka ..169

Kafka Client Utility Pod ..178

Mosquitto (MQTT) ..183

Summary...189

Chapter 6: Indexing and Analytics ��191

Search and Analytics...192

Data Science Environment ..192

Development Environment ..192

TLS Certificates ...194

Basic Auth ..195

ELK ..195

Elasticsearch ...196

Logstash ..201

Kibana ...210

Data Lab ..214

Keycloak ..216

Namespace ..224

JupyterHub ..228

JupyterLab ...234

Summary...241

Table of ConTenTs

vii

Chapter 7: Data Lakes���245

Data Processing Pipeline ..246

Development Environment ..247

Data Lake as Object Storage ...249

MinIO Operator ..249

MinIO Cluster ...251

MinIO Client ...255

MinIO Events ..256

Process Objects ...259

Summary...281

Chapter 8: Data Warehouses ��283

Data and Data Science ..284

Data Platform ..285

Development Environment ..286

Data and Metadata Sources ..287

MySQL ...287

Apache Cassandra ...291

Apache Hive ...301

Modern Data Warehouse ...312

Hive..312

Presto ..321

Summary...335

Chapter 9: Routing and Transformation ��337

ETL and Data Processing ..338

Development Environment ..339

Serverless ...340

OpenFaaS ..341

Table of ConTenTs

viii

ETL ..348

Apache NiFi ...349

Example ETL Data Pipeline ..356

Analysis and Programmatic Control ..368

Summary...377

Chapter 10: Platforming Blockchain���379

Private Blockchain Platform ..380

Development Environment ..382

Private Ethereum Network ..382

Bootnodes ..384

Bootnode Registrar ..389

Ethstats ...391

Geth Miners ...396

Geth Transaction Nodes ...405

Private Networks ...411

Blockchain Interaction ..412

Geth Attach ..412

Jupyter Environment ...413

Serverless/OpenFaaS ..421

Summary...427

Chapter 11: Platforming AIML ��431

Data ...432

Hybrid Infrastructure ...432

Development Environment ..434

DNS ..435

Table of ConTenTs

ix

k3s Hybrid Cloud ...436

Kilo VPN ...437

Master Node ..440

Worker Nodes ..442

On-premises ..443

Node Roles ..453

Install Kilo ..455

Platform Applications ..457

Data Collection ..458

MQTT IoT Client ...458

ETL ..462

Apache NiFi ...463

Python CronJob ...465

Machine Learning Automation ..471

Jupyter Notebook GPU Support ...472

Model Development ...475

Deploy Artificial Intelligence ..488

Summary...494

 Index ���497

Table of ConTenTs

xi

About the Author

Craig Johnston currently holds the position of Chief Architect at Deasil

Works, Inc. and has been developing software for over 25 years. Craig’s

expertise revolves around microservices, artificial intelligence, algorithms,

machine learning, and blockchain technologies.

Craig has helped lead his team to significantly improved productivity

and return on investment across many client projects, leveraging

Kubernetes, Docker, Golang, Cassandra, Kafka, and Elastic, to name a

few. The team and he are developing more productive, stable, clean, and

faster applications than ever in the past, and the results are beautiful

and innovative IoT management systems, IoT implementations, mobile

applications, business intelligence, data management, and machine

learning platforms.

As the former Director of R&D at Napster and later a handful of

Universal and Sony subsidiaries, Craig has been fortunate to spend many

of his early days on the bleeding edge, in the open green fields of new

media and disruptive technology.

Craig is successfully operating multiple commercial Kubernetes

platforms utilizing all the technology and concepts proposed in Advanced

Platform Development with Kubernetes.

xiii

About the Technical Reviewer

David Gonzalez is a DevOps engineer who has written three books about

DevOps and microservices. He works as a consultant, helping large

companies to advance their systems development, by tweaking related

software processes and tools. David is also a Google Developer Expert

(https://developers.google.com/experts/people/davidgonzalez-

gonzalez) in Kubernetes (Google Container Engine) and a member of the

Node.js Foundation, working on security in third-party npm packages.

In his free time, he enjoys cycling and walking with his dogs in the green

fields of Ireland.

https://developers.google.com/experts/people/davidgonzalez-gonzalez
https://developers.google.com/experts/people/davidgonzalez-gonzalez

xv

Acknowledgments

I want to start by thanking Kelsey Hightower, who inspired me and so

many others with his passion and excitement for technologies that

advance a developer’s productivity. Kelsey's live demonstrations, talks,

and tutorials convinced me that Kubernetes is a platform for developing

platforms. Kelsey is also responsible for the popularity of my Kubernetes

development utility kubefwd.

A big thank you to my friend, co-worker, author, and software

developer, David Elsensohn. David poured over every draft to ensure my

English syntax would compile in the readers' minds. Thanks to everyone at

Deasil Works, especially Jeff Masud, for helping me carve out time to write

a book in one of our busiest years (and for fixing the clusters I broke along

the way).

Thanks to Apress editors Natalie Pao and Jessica Vakili for their

patience and encouragement. Thanks again to Natalie Pao for having a

vision for this book and encouraging me to write it. Thanks to my technical

reviewer David González for correcting my mistakes, unintentional

obfuscations, and providing valuable guidance for technical clarity.

Lastly, thanks to my family and friends (most of them having no

idea what a “Kubernetes” is) who encouraged me to stay focused and

motivated. Thank you!

1© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_1

CHAPTER 1

Software Platform
and the API
On October 28, 2018, IBM announced a $34 billion deal to buy Red Hat,1

the company behind Red Hat Enterprise Linux (RHEL), and more recently

Red Hat OpenShift, an enterprise Docker/Kubernetes application platform.

What we see is $34 billion of evidence that Cloud-native and open source

technologies, centered on the Linux ecosystem and empowered by

Kubernetes, are leading disruption in enterprise software application

platforms.

Any exposure to enterprise software marketing presents a steady

stream of platform services released almost daily by major cloud

providers, including products like Google Cloud Machine Learning

Engine, Microsoft’s Azure Machine Learning service, Amazon Managed

Blockchain, and IBM Watson IoT Platform, to name a few. Big providers

like Amazon, Microsoft, IBM, and Google are not only responding to

market demand for these technologies but creating a greater awareness

of their accessibility for solving problems across a variety of industries.

Large software vendors are rapidly responding to the demand for these
capabilities and perpetuate their demand by refining and marketing
products that demonstrate their value. These vendors are often merely

1 IBM to Buy Red Hat, the Top Linux Distributor, for $34 Billion.” The New York
Times, October 28, 2018, sec. Business. https://www.nytimes.com/2018/10/28/
business/ibm-red-hat-cloudcomputing.html

https://doi.org/10.1007/978-1-4842-5611-4_1#DOI
https://www.nytimes.com/2018/10/28/business/ibm-red-hat-cloudcomputing.html
https://www.nytimes.com/2018/10/28/business/ibm-red-hat-cloudcomputing.html

2

service-wrapping the latest in open source software, adding polished user
interfaces and proprietary middleware. Peek under the hood of these
hyper-cloud services and you often find a mesh of cloud-native and even
vendor-neutral technologies for machine learning (ML), like TensorFlow,
Keras, and PyTorch, or Blockchain capabilities powered by Ethereum and
Hyperledger, and high-performance IoT data collectors like Prometheus
and Kafka. These vendors are not stealing this technology from the open
source community; some of the most significant contributions in this
ecosystem are the vendors themselves.

Developing an enterprise-grade platform from the ground up, with
capabilities as diverse as Blockchain and Machine Learning, would have
required an enormous effort only a few years ago. Your other option
would have been a significant investment and long-term commitment to
a commercial platform. Google disrupted the entire commercial platform
business with Kubernetes, a free, open source, cloud-native, and vendor-
neutral system for the rapid development of new platforms that can easily
support almost any technology with enterprise-grade security, stability,
and scale. Expect to see another significant wave of platform innovation, as
Kubernetes matures and allows software and platform developers to focus
more time on features, with less custom work needed on infrastructure,
networking, scaling, monitoring, and even security.

This book aims to build a simple demonstration platform in a vendor-
neutral approach using Kubernetes. With only minimal modifications, this
new platform should run on any primary cloud provider able to run
Kubernetes and offer a small number of widely available dependencies
such as storage, memory, and CPU. Each existing, open source technology
implemented in this platform has a specialized focus on a particular
solution. Offering Machine Learning, Blockchain, or IoT-based services
will not in themselves be a core differentiator for a platform. However,
operating these technologies together within Kubernetes provides a
foundation in which to build and offer novel solutions through their

combined efforts, along with providing a template for future additions.
In the early 1990s, databases were often operated and accessed as

independent applications. The combination of a database and a web
server revolutionized the Internet with dynamic database-driven websites.

Chapter 1 Software platform and the apI

3

These combinations seem obvious now, and Kubernetes together with
service mesh technologies like Istio and Linkerd is making connections
between diverse applications, even with conflicting dependencies, not
only possible but adding security and telemetry to the platform.

 Software Applications vs. Software Platforms
You may be a software developer and have a solution to a problem in a
specific industry vertical. With a specific mix of closed and open source
software, you wish to combine these capabilities under an API and
expose them in support of a specific application. Alternatively, you may
be a value-added reseller and want to offer customers an application
development platform that comes with a suite of prepackaged features
such as Machine Learning, Blockchain, or IoT data ingestion. Software
platforms like Kubernetes are the ideal environment for developing a
singular focused application or a platform as a service (PaaS) offering
customers an environment in which they can develop and extend their
applications (Figure 1-1).

Figure 1-1. A software application, a platform as a collection of
applications, and a platform-based application

Chapter 1 Software platform and the apI

4

 Dependency Management and Encapsulation
Containerization has made running software applications more portable

than ever by creating a single dependency, a container runtime. However,

applications often need access to a sophisticated mix of resources, including

external databases, GPUs (graphics processing units for machine learning),

or persistent storage, and likely need to communicate with other applications

for authentication, database access, and configuration services. Even a single

containerized application typically needs some form of management over

it and its access to external resources. The problem of managing connected

containers is where Kubernetes comes in; Kubernetes orchestrates the

containers of applications and manages their relationship to resources.

 Network of Applications
Not all software applications need sophisticated platform architecture. Most

software applications can be developed and merely run on a computer that

meets their operational dependencies. Platforms come into play when you

wish to operate multiple applications together and form an interconnected

network of services, or when multiple applications can benefit from shared

functionality, configuration, or resource management (Figure 1-2).

Figure 1-2. Network of containerized applications

Chapter 1 Software platform and the apI

5

 Application Platform
Even if your goal is to develop a single-purpose online application, there

are several reasons to embark on developing a software platform in

Kubernetes. Large and small, complex and straightforward, enterprise

and small-scale applications benefit when implemented in the context

of a software platform. Software platforms provide an architecture to

solve common problems and reduce the need for custom development

in several areas, including communication, storage, scaling, security, and

availability.

Architecting an application as a platform means that from the ground

up the software is intended to be extended beyond its fundamental

requirements, with the ability to upgrade and deploy new components

independently. A proper platform welcomes the addition of the latest

trends in open source, and when innovations arise, and open source

products are released, it is successful software platforms that wrap and

leverage their functionality to stay current. A proper software platform

should never assume the label legacy; it should remain in a constant,

iterative cycle of improvement.

The next section goes more in-depth into how this is accomplished

with Kubernetes as the central component. Kubernetes solves the

problems that traditional enterprise solutions like the service-oriented

architecture (SOA) have attempted to solve for decades, only Kubernetes

does this with protocols and methodologies that power the global

Internet, like DNS, TCP, and HTTP, and wraps them in an elegant and

robust API, accessible through those very same protocols. The platform is

architected around Kubernetes’s concept of a Service and its relationship

to containerized applications (Figure 1-3).

Chapter 1 Software platform and the apI

6

 Platform Requirements
This book focuses on implementing a foundational data-driven, Data

Science, and Machine Learning platform, primarily but not limited to IoT

data, and providing opportunities for interconnection with Blockchain

technology. If this sounds like a lot of hype, it is, and as the hype fades, it’s

time to get to work. As these technologies leave the lab, they begin to fade

into the background, and over the next decade, they will begin to silently

provide their solutions behind new and innovative products.

If you are familiar with the “Gartner Hype Cycle for Emerging

Technologies” (Figure 1-4) in 2018,2 you would have seen deep neural

networks (deep learning), IoT platforms, and Blockchain still on the

“peak of inflated expectations” and rolling toward the “trough of

disillusionment.” Disillusionment sounds dire, but Gartner marks the

following phase for these technologies as the “slope of enlightenment”

and a later plateau in the next 5–10 years. Much innovation happens

before these technologies plateau, and a flexible architecture built from a

collection of connected containers, managed by Kubernetes, should easily

keep you relevant for the next decade or more.

2 Walker, Mike. “Hype Cycle for Emerging Technologies, 2018.” Gartner.
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-
technologies-2018.

Figure 1-3. The relationship between services and application

Chapter 1 Software platform and the apI

https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018

7

While individual components may come and go as trends peak and

plateau, data is here to stay; the platform needs to store it, transform it, and

provide access to it by the latest innovations that produce value from it. If

there is a central requirement for Advanced Platform Development with

Kubernetes, it would be accessing the value of data, continuously, through

the latest innovative technologies in IoT, Machine Learning, Blockchain,

and whatever comes next.3

A final requirement of Advanced Platform Development with

Kubernetes is to stay open source, Cloud native, and vendor neutral. A

platform with these principles can leverage open source to harness the

global community of contributing software developers looking to solve

the same problems we are. Remaining Cloud native and vendor neutral

means not being tied to or constrained by a specific vendor and is just as

functional in a private data center, as it can on AWS, GKE, Azure, or all of

them combined as the concept of “hybrid cloud” grows in popularity.

3 Walker, Mike. “Hype Cycle for Emerging Technologies, 2018.” Gartner.
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-
technologies-2018.

Figure 1-4. Gartner’s Hype Cycle for Emerging Technologies, 20183

Chapter 1 Software platform and the apI

https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018
https://www.gartner.com/en/documents/3885468/hype-cycle-for-emerging-technologies-2018

8

 Platform Architecture
With Kubernetes it is common to build software platforms from a

collection of specialized components, written in a variety of languages and

having vastly different and even conflicting dependencies. A good platform

can encapsulate different components and abstract their interfaces into a

standard API or set of APIs.

Object-oriented software concepts are a great reference tool for overall

platform architecture. Trends in microservice architectures encourage

the development of several, minimal applications, often taking the form

of an object Class, providing a limited number of operations in a specific

problem domain, letting the larger platform take care of aggregate business

logic. To implement this approach, take the concept of an Object and apply

it to the Kubernetes implementation of a Service (Figure 1- 5). Like software

interfaces, Kubernetes services represent one or more entry points to

an application. The object-oriented software principles of abstraction,

encapsulation, inheritance, and polymorphism can express every layer of

the platform architecture.

Figure 1-5. Class design and service architecture

Chapter 1 Software platform and the apI

9

Kubernetes is well suited for platform development and may be

overkill for any lesser task. I believe, as I hope you discover in this book,

that there is not much to debate on Kubernetes fitness for platform

development. Containers solved many of the problems with dependency

management by isolating and encapsulating components; Kubernetes

manages these containers and in doing so forms the framework for a

software platform.

 Platform Capabilities
The purpose of the platform outlined in this book is to demonstrate

how Kubernetes gives developers the ability to assemble a diverse

range of technologies, wire them together, and manage them with the

Kubernetes API. Developing platforms with Kubernetes reduces the risk

and expense of adopting the latest trends. Kubernetes not only enables

rapid development but can easily support parallel efforts. We develop

a software platform with as little programming as necessary. We use

declarative configurations to tell Kubernetes what we want. We use open

source applications to build a base software platform, providing IoT data

collection, Machine Learning capabilities, and the ability to interact with a

private managed Blockchain.

Starting with the ingestion, storage, and retrieval of data, a core

capability of the platform is a robust data layer (Figure 1-6). The platform

must be able to ingest large amounts of data from IoT devices and other

external sources including a private managed Blockchain. Applications

such as Elasticsearch, Kafka, and Prometheus manage data indexing,

message queueing, and metrics aggregation. Specific services capture

Blockchain transactions from applications such as Ethereum Geth nodes

and send them to Apache Kafka for queueing and Elasticsearch for

indexing.

Chapter 1 Software platform and the apI

10

Above the data layer sits an application layer (Figure 1-6), providing

capabilities utilizing this data, such as Machine Learning automation.

Platform services wire together and expose data sources that export

and serve persistent and streaming data usable for Machine Learning

experiments, production AI inference, and business analytics.

The Platform naturally supports the expansion of features through

the management of containers by Kubernetes. Serverless technologies

including OpenFaaS provide higher-level expansion of features. Serverless

support allows the rapid development and deployment of real-time

data processors, operations that run at specific intervals, and new API

endpoints, allowing specialized access to data, performing AI operations,

or modifying the state of the platform itself.

The platform envisioned in this book forms a data-driven foundation

for working with trending technologies, specializing in Machine Learning,

Blockchain, and IoT. Components for the ingestion, storage, indexing,

and queueing of data are brought together and allow efficient access

to data between the specialized technologies. The platform provides

data scientists the access to data and tools needed to perform Machine

Learning experimentation and the development of production-ready

neural network models for deployment by way of Serverless functions able

to make predictions, perform classification, and detect anomalies from

existing and inbound data. Blockchain technology is used to demonstrate

how third-party ledger transactions and smart contract executions can

seamlessly inner-connect to the data processing pipeline.

Chapter 1 Software platform and the apI

11

The platform, developed iteratively, eventually consists of a large

number of services, ranging in size and complexity, mixing giant monoliths

mixed with small serverless functions. Some services consist of a cluster of

Java applications, while some services only execute a few lines of Python.

If this sounds like a nightmare, it is not. Fortunately, containerization has

helped us isolate an application’s operation and dependencies, exposing

what is needed to configure, control, and communicate with the application.

However, containerization only gives us limited options for visibility

and control over our collection of services. Kubernetes gives us great

configuration access controls over infrastructure resources, security, and

networking, but leaves platform application–level concerns like encrypted

communication between services, telemetry, observability, and tracing, to

the applications themselves or higher-level specialized systems like Istio or

Linkerd. The platform developed in this book is a collection of services that

can operate with or without Istio or Linkerd. Istio and Linkerd are still young,

and best practices for implementing them are still maturing.

Figure 1-6. Platform application and data layers

Chapter 1 Software platform and the apI

12

The next few sections define the platform’s three main requirements:

IoT, Blockchain, and Machine Learning in more detail (Figure 1-7).

 IoT
The Internet of Things (IoT) and the newer Industrial Internet of Things

(IIoT) are technologies that have matured past the hype phase. The

physical devices of an industry are not only expected to be connected and

controlled over the Internet but have a closer relationship to their larger

data platforms. Kubernetes is capable of managing both the data and

control plane in every aspect of IoT. This book focuses on three main uses

for Kubernetes in the IoT domain, including the ingestion of data, as an

edge gateway, and even an operating system (Figure 1-8).

Figure 1-7. IoT, Blockchain, and Machine Learning in Kubernetes

Chapter 1 Software platform and the apI

13

 Ingestion of Data

The first and most obvious use of Kubernetes is to orchestrate a data

ingestion platform. IoT devices have the potential of producing a large

volume of metrics. Gathering metrics is only one part of the problem.

Gathering, transforming, and processing metrics into valuable data and

performing actions on that data requires a sophisticated data pipeline.

IoT devices utilize a wide range of communication protocols, with

varying quality of support from various software products built to specific

devices and protocols. To effectively support data from a range of IoT

and IIoT devices, the platform needs to speak in protocols like AMQP

(Advanced Message Queuing Protocol), MQTT (Message Queue Telemetry

Transport), CoAP (Constrained Application Protocol), raw TCP, and HTTP,

to name a few.

Figure 1-8. Three uses of Kubernetes platforms in IoT

Chapter 1 Software platform and the apI

14

JSON (JavaScript Object Notation) over HTTP is the most popular

and supported messaging protocol on the Internet. Every significant

programming language supports JSON. JSON drives nearly all public

cloud APIs in one way or another. Kubernetes’s own API is JSON-based,

and YAML, a superset of JSON, is the preferred method of declaring the

desired state.

JSON may not be as efficient as binary messages or as descriptive

as XML; however, converting all inbound messages to JSON allows

the platform to unify data ingestion on the most flexible and portable

standard available today. The platform consists of custom microservices

implementing a variety of protocols, parsing inbound message or querying

and scraping remote sources, and transforming these messages to

JSON. An HTTP collection service accepts JSON transformed data to buffer

and batch. This architecture (Figure 1-9) allows unlimited horizontal

scaling, accommodating large volumes of data.

The chapter “Pipeline” covers the implementation of the ingestion

and transformation services: Apache NiFi, Prometheus, Logstash,

Elasticsearch, and Kafka.

Figure 1-9. IoT data ingestion

Chapter 1 Software platform and the apI

15

 Edge Gateway

Kubernetes in the IoT space is beginning to include on-premises, edge

deployments. These are mini-clusters that often include as little as a single

node. On-premises clusters often operate a scaled-down version of the

larger platform and are typically responsible for communicating with IoT

devices on the local area network, or the nodes themselves are attached to

proprietary hardware and protocols, legacy control systems, or lower-level,

serial communication interfaces. Industrial use cases for the collection of

data can often include sub-second sampling of device sensors or merely

a volume of data only useful for classification, anomaly detection, or

aggregation.

An on-premises platform (Figure 1-10) can handle the initial

gathering and processing of metrics and communicate results back to a

larger data processing platform. New Kubernetes distributions such as

Minikube, Microk8s, k3s, and KubeEdge specialize in small or single-node

implementations on commodity hardware.

Figure 1-10. On-premises Kubernetes platform

Chapter 1 Software platform and the apI

16

Running a scaled-down platform on-premises solves many security

and compliance issues with data handling. In scenarios where data must

remain on-premises by strict compliance rules, on-premises clusters

can process data, whose resulting metadata, inference, and metrics

aggregation can transmit to a remote platform for further processing,

analysis, or action.

 IoT OS

The third use of Kubernetes for IoT addressed in this book is just starting

to take root, that is, Kubernetes as an IoT operating system (Figure 1- 11).

ARM processors are cheap and energy efficient. Products like the

Raspberry Pi have made them incredibly popular for hobbyists, education,

and commercial prototyping. Container support for ARM-based systems

has been around for a few years now, and running containerized

applications on IoT devices has nearly all the advantages as does running

them on more powerful and sophisticated hardware. IoT devices running

containers orchestrated by Kubernetes can take advantage of features

like rolling updates to eliminate downtime when upgrading applications.

Running a small collection of containers in Kubernetes on an IoT device

lets you take advantage of microservices application architecture, resource

allocation, monitoring, and self-healing. The development of software

for small, low-power devices once required using a proprietary operating

system and writing much of the code to support activities like firmware

updates, crash reporting, and resource allocation. IoT devices supporting

scaled-down versions of Kubernetes are still new and poised for growth

as more developers begin to see the potential for many of the common

challenges with IoT software solved with platforms like Kubernetes.

Slimmed down distributions, like the 40mb k3s, are making

Kubernetes an excellent choice for small, resource-limited devices like the

Raspberry Pi and the large family of SOC boards on the market today.

Chapter 1 Software platform and the apI

17

 Blockchain
With the maturity of Smart Contracts,4 Blockchain technology is now a

type of platform5 itself. Smart contracts allow the storage and execution

of code within the distributed, immutable ledger of the Blockchain

(see Chapters 9 and 10). The inclusion of Blockchain technology

provides the platform a capability for transactional communication with

untrusted participants. Untrusted in this context means no personal or

legal contractional trust is needed to transmit value expressed as data.

Blockchain provides a permanent record of a transaction, verified in

a shared ledger. The external parties only need to operate Blockchain

4 https://en.wikipedia.org/wiki/Smart_contract
5 Blockgeeks. “Smart Contract Platforms [A Deep Dive Investigation],” May 11, 2018.
https://blockgeeks.com/guides/different-smart-contract-platforms/.

Figure 1-11. Kubernetes platform on an IoT device

Chapter 1 Software platform and the apI

https://en.wikipedia.org/wiki/Smart_contract
https://blockgeeks.com/guides/different-smart-contract-platforms/

18

nodes capable of executing a shared mathematical algorithm. Trusting

the integrity of a transaction comes from the consensus of verifications

from a broader network of nodes. Describing the in-depth conceptual,

philosophical, and technical details of a Blockchain is out of scope for

this book.

 Private Managed Blockchains

Blockchain technology is a distributed network of nodes, and there are

very few use cases for Blockchains within a closed system. However, the

concept of private or protected Blockchains is the focus of this platform,

which represents essential capabilities for participation in a managed

network.

The platform provides the allocation and bootstrapping of third-

party participants within its selected network of nodes (Figure 1-12).

Private Blockchains do not imply a level of trust beyond the allowance

of participation. In closed systems, this trust is one way. Traditional

platforms can allow a third party to create an account and utilize the

system. However, that third party must also trust the platform operator.

We trust that Google does not edit and modify emails we receive; we

trust that Twitter does not tweet on our behalf. Blockchain participants

rely on a majority of participants to verify a transaction rather than a

central authority. With Blockchain technology, the platform is only

responsible for equal participation and management of participants.

Incorporating Blockchain technology directly into the platform brings it

under a unified communication network with other services and facilitates

the management and configuration of this technology as its concepts

and capabilities rapidly mature. The chapter “Platforming Blockchain”

describes the technical details for implementation.

Chapter 1 Software platform and the apI

19

 Use Cases

Industry verticals including finance, supply chain, logistics, manufacturing,

process compliance, and many more are all looking for solutions provided

by Blockchain capabilities, especially around the execution of Smart

Contracts. Smart Contracts are blocks of immutable code that sit in the

Figure 1-12. Blockchain bootstrapping, and the ingestion of
Blockchain transactions

Chapter 1 Software platform and the apI

20

Blockchain and are executable by anyone in the network of connected

Blockchain nodes able to meet the criteria of the contract’s interface.

Streaming transactional events related to Smart Contracts and the

execution of Smart Contracts provides a wealth of opportunities beyond

recording the active intentions of third parties; they can communicate

the state of IoT devices, or the automated results of artificial intelligence

derived from Machine Learning. X Corp can verify that Z Corp sent data

while Z Corp can verify that the platform processed the data and provided

X Corp the results, while additional entities can execute Smart Contracts

related to this activity (Figure 1-13). The platform not only facilitates access

to this trustless network but interacts with it through streaming, real-time

data queues. The platform can index the transactions and provide in-depth

analysis of transaction types, frequency, and values.

Figure 1-13. Addition, execution, and observation of Blockchain
Smart Contracts

Chapter 1 Software platform and the apI

21

Ethereum and Hyperledger are popular choices for private/

permissioned Blockchains supporting smart contracts. Hyperledger was

designed explicitly for private enterprise blockchains and does not contain

currency features. Although it’s unlikely the platform’s enterprise use

cases require a Blockchain currency, neither is it a deterrent. The platform

in this book uses Ethereum, making its capabilities compatible with

public or private blockchains, with or without the need for currency. The

platform is not limited to Ethereum and can easily be extended to support

Hyperledger or the newest trends in Blockchain.

The chapter “Blockchain” covers the implementation of Ethereum

nodes into the platform and provides examples for interconnecting with

the platform’s data layer.

 Machine Learning
Machine Learning and specifically deep learning is another field of

technology nearing, or at peak hype according to Gartner. All the major

hyper-cloud providers including Google, IBM, AWS, and Azure either offer

platforms with service-wrapped versions of TensorFlow, PyTorch, Keras, or

their in-house developed Machine Learning development and production

automation tools. The major cloud providers respond quickly to the hype,

but this response is also an indication that the technology has matured to

the point of a commodity. Commodity technology might have lost a bit of

its novelty and excitement, but if it survives past that initial phase, then

it’s ready for business. We may be at the tip of the expectation iceberg for

Machine Learning, but it can and does solve industry problems today, and

so its capabilities belong in the platform and exposed to its connected data.

Providing a simple service-wrapping of Kubeflow with some

limited custom configurations would be powerful enough to call this a

data science platform. Kubeflow as a service would alone be a decent

competitor to the hyper-clouds. Wrapping Kubeflow would take less than a

Chapter 1 Software platform and the apI

22

chapter to describe and, more importantly, miss out on the combinatorial

power of the adjacent capabilities of Blockchain and IoT data, all sitting

atop the core components, covered in the next section.

Industry wants real-time answers from real-time data. Data science

needs static data and the ability to perform reproducible experiments

and learn from a known quantity. Machine Learning is an application of

data science, and machines learn best on fixed sets of data. The platform

provides both by providing access to persistent data and the ability to label

and snapshot subsets of data to form trained neural network models that

can then be immediately deployed and tried against streams of real-time

data (Figure 1-14). The cost of iterative experimentation is high when the

technological ecosystem of the data science lab is alien to production

concerns of the enterprise. Kubeflow and other cloud-native technologies

help bring these environments closer together, reducing the cost and

risk associated with experimentation. The reduction of risk leads to new

opportunities for experimentation and the testing of novel theories or

approaches to machine learning and artificial intelligence.

 Automation and Management

With software frameworks like Keras or PyTorch, you can now easily

configure a simple yet trainable neural network in a few dozen lines

of code. The entire machine learning life cycle (Figure 1-15) requires

Figure 1-14. High-velocity data pipelines to Machine Learning

Chapter 1 Software platform and the apI

23

more than a few moving parts, from data access, transformation, and

experimentation to the deployment of trained models. Kubernetes-

compatible solutions like Apache Airflow and Kubeflow are making great

strides in the areas of automation. This book focuses on a few components

of Kubeflow as a sub-platform for data science. Kubeflow came from

Google’s internal solution for automating the use of TensorFlow, a popular

Machine Learning framework also developed by Google and open

sourced. The chapters “In-Platform CI/CD,” “Indexing and Analytics,”

and “Platforming AIML” explore some of the technology that powers

Kuberflow, including JupyterLab, JupyterHub, MLflow and Seldon Core.

 Core Components
The following section covers platform components you will likely never

see on Gartner’s hype charts. However, these core components form the

essential glue that holds the platform together. These components include

configuration, ingress, data management, metrics, APIs, and protocols.

Figure 1-15. Kubeflow process

Chapter 1 Software platform and the apI

24

Containers, configuration, ingress, data management, and metrics

collection are the core components that make up the platform’s core

infrastructure, discussed later. The following briefly reviews their

purpose, the problems they solve, and their role in tying together

specialized applications. Realizing the potential of trends in the Internet

of Things, Machine Learning, Blockchain, and future innovations is only

amplified when incorporated into a platform that can combine their

focused expertise. Solve problems across new domains, harnessing the

combinatorial effect of their specific solutions—for example, utilizing

Artificial Intelligence driven from models developed through deep

learning on metrics collected from IoT devices that execute a Smart

Contract on the Blockchain whose results communicate a change in

the operational state of other IoT devices. Machine Learning developed

independent from Blockchain and IoT technology is certainly not

dependent on any of them. A wide variety of languages is used to develop

these technologies, each with diverse dependencies. However, with

little effort, they can all run in containers and communicate in protocols

that are proven in reliability and limitless scale, because they scale the

Internet itself. TCP/IP, HTTP, and DNS are the underlying protocols of the

Internet, and within Kubernetes they are the methods of communication

and service discovery. This relationship between Containers comes

from the Container API and its orchestrator, Kubernetes. Kubernetes

makes containers easy and elegant to configure, scale, and maintain.

Therefore, Kubernetes itself, along with containers, forms the primary

core component of the platform. If you are reading a book on advanced

platform development, you probably have a firm grasp on the advantages

of containers as well as the many supporting objects Kubernetes provides,

including the powerful ConfigMap and Secret.

Chapter 1 Software platform and the apI

25

 Configuration
Two forms of configuration make up the platform: the configuration of the

platform itself, a set of Kubernetes objects expressed in YAML files, and the

configuration of various applications within the platform. This book uses

the kubectl utility for configuring Kubernetes. The kubectl utility provides

three kinds of object management: imperative commands, imperative

object configuration, and declarative object configuration. This book relies

primarily on declarative object configuration by describing a desired state

in a series of YAML files and using kubectl to apply them. The chapter

“Development Environment” presents a method of organizing and

maintaining the Kubernetes configuration manifests, an essential aspect of

keeping your platform configuration organized and documented.

The configuration of individual applications within the platform is

the concern here and why configuration is considered a core component.

Kubernetes provides the object types ConfigMap and Secret to provide a

rich set of options for application configuration.

 Application Parameters

A container can wrap nearly any application, and the three most common

ways to configure an application include command-line parameters,

configuration files, environment variables, and combinations of the three.

If you have spent any time with Docker or Kubernetes, it is not uncommon

to specify a long list of parameters required to configure an application for

execution, or to populate a series of environment variables, or to mount a

configuration directory. With these three methods of configuration, nearly

any application can be configured and have a standard method to manage

the configuration for all components of the platform. This is an essential

component of the platform’s core infrastructure.

Chapter 1 Software platform and the apI

26

ConfigMaps and Secrets are configuration object types provided by

Kubernetes; they are persistent and available throughout the cluster. The

key/value pairs of ConfigMaps and Secrets can be mounted as filesystems

within a Pod, the keys being file names and value as data whose mount

points are shared by one or more containers in the Pod. ConfigMaps and

Secrets can populate environment variables within containers or populate

command-line arguments used in the execution of the container’s

application.

The chapter "Development Environment" on infrastructure covers the

management and organization of ConfigMaps and Secrets in further detail,

and if you come from any experience with Kubernetes, you may be well

versed in their use. The intention here is to more clearly define their value

as core infrastructure components to the platform.

 Ingress
Ingress is defined as “the act of entering” and is the basic concept of

accepting inbound data to the platform. However, ingress is one of the

most critical components of the framework. Ingress is responsible for

providing a means of securing inbound communication over protocols like

Transport Layer Security (TLS), routing HTTP traffic to various services

based on a variety of configured rules. Although majority interaction with

the platform is over the HTTP protocol, consisting of REST-style API calls

from external systems or web and native applications, the platform also

provides listeners for custom inbound TCP traffic for specific IoT devices

and protocols. In some software platforms, infrastructure-level ingress is

an afterthought; large monolithic and stateful applications often assume

a direct interaction with inbound requests and expect the ingress layers

above to be thin. Unfortunately, these more traditional ways of utilizing

popular and influential proxies like Nginx and Envoy often fail to take

advantage of their power in this specialization or do so as a means to work

around implementation requirements.

Chapter 1 Software platform and the apI

27

The platform described in this book only scrapes the surface of

utilizing Nginx to manage ingress. However, it is a core component and

essential to the network and architectural layout of the platform. Envoy

is another new and popular choice for reverse-proxy support and one of

the core components of Istio. The platform described in this book will use

Nginx for public HTTP ingress.

 Data Management
Data management is the fundamental core component of the enterprise

platform. The platform must manage data after it’s accepted through

ingress and retrieved through APIs. The data management layer of the

platform is also the necessary means of communicating the results

of various processors. Raw data comes into the platform in the form

of metrics from IoT devices, results of Blockchain transaction, and

communication through HTTP APIs and TCP ports. This data is retrieved

and processed to form new Blockchain transactions, send commands to

IoT devices, and form predictions derived from machine learning models;

the results of which become new data, traveling and continuously refined

through this recursive ecosystem.

The platform can harness the best in class technologies for message

queues, indexing, and metrics aggregation by incorporating modern and

proven open source technologies, including Apache Kafka, Elasticsearch,

and Prometheus. Implementing each of these technologies is addressed in

the chapters “Pipeline," and "Indexing and Analytics.” From the perspective

of the software platform, the core components are the underlying

infrastructure that wrap all specialized functionality. The purpose of the

platform is not merely to service-wrap technologies like Apache Kafka

or Elasticsearch for external platform capabilities. Integrating these

technologies into the platform infrastructure gives the advantages of

standardized management capabilities through Kubernetes, but simplifies

communication and observability through their deep integration.

Chapter 1 Software platform and the apI

28

These technologies form a higher-level infrastructure of the stack and

provide their capabilities through custom intermediaries, connecting the

specialized applications of IoT data, Machine Learning, and Blockchain by

normalizing access to their resulting data.

 Metrics
There is no shortage of hosted PaaS offerings willing to collect your

metrics, and they offer APIs and beautiful dashboards for developing

reports, business analytics, and intelligence. Aggregating, sorting, and

organizing metrics is big business, and thanks to open source community

and SoundCloud, we have Prometheus as a free and open source

solution. SoundCloud developed and open sourced Prometheus in 2015,

after which it became the second Cloud Native Computing Foundation

incubated project in 2016 following Kubernetes. Prometheus is now a

graduate project of the Cloud Native Computing Foundation and actively

developed.

SoundCloud developed Prometheus when they determined that

solutions like StatsD and Graphite could not handle their needs.

Prometheus is a high-performance metrics aggregator and records

real-time metrics into a time series database. Prometheus can not only

scale to our future needs but has a robust and flexible query language.

The platform in this book utilizes Grafana to build visually stunning

dashboards that query our metrics scraped by Prometheus.

Prometheus scrapes metrics from applications and offers official and

mature client libraries in Go, Java, and Python on Ruby with unofficial

third-party client libraries in Bash, C++, Common Lisp, Elixir, Erlang,

Haskell, Lua, .Net, C#, Node.js, Perl, PHP, and Rust. This collection of

SDKs means you can add deep instrumentation to nearly any modern

application. The client libraries are well written and easy to implement.

Prometheus forms an essential fork in the platform’s data pipeline, for use

in rich analytics dashboards and also allowing Blockchain and Machine

Learning capabilities to not only feed into this data stream but react to it.

Chapter 1 Software platform and the apI

29

 APIs and Protocols
The application programming interface (or the platform API) provides

external access for interacting with the platform. An API is a broad term

and can be used to describe how one portion of software communicates

with another, how an enterprise accesses its data, or how to invoke

programmatically driven business logic, either internally or externally. The

latter, external access, being the concern of the platform API. This external

interface to the platform is concerned with the storage and retrieval of

data, the recording of events, the configuration of the desired platform

state, the invocation of business logic, and the extension of platform

functionality. The platform API empowers the construction of web-based

and native applications customized to a specific vertical, or allows existing

IT systems to interact with its capabilities or report data and events.

The platform uses its API to perform multiple actions necessary in the

provisioning of accounts and users, supply data to business analytics and

intelligence solutions, and provide front-end user interfaces for extending

and augmenting data pipelines for data science and machine learning.

The Platform presented in this book is reflective of many real-

world data platform implementations, being a collection of monolithic

applications, microservices, and (Serverless) functions. Each

component of the platform may have different methods of interaction.

Elasticsearch uses a RESTful API for processing user requests as well as

an asynchronous transport protocol for internal communication with

its nodes. Communication with Kafka is performed over a TCP-based

binary protocol and additionally offers a REST proxy. This book covers

Elasticsearch and Kafka implementation in the “Pipeline,” and “Indexing

and Analytics” chapters. In the world of API development, there is no

shortage of solutions; new and innovative protocols like gRPC and

GraphQL are maturing and gaining traction, as older ideas such as SOAP

are less likely to be considered in new development.

Chapter 1 Software platform and the apI

30

The Platform in this book takes the middle road when it comes to the

fundamental interactions involving configuration. REST, or representational

state transfer, is by far the most popular API implementation due to its

simplicity and ubiquity across the Internet and the range of tools and clients

for working with it. REST may not be as fast and compact as gRPC or as

flexible as GraphQL, but REST has no requirements for its clients beyond

HTTP and its verbs POST, GET, PUT, PATCH, and DELETE. The platform

uses JSON (JavaScript Object Notation) for communication over REST. REST

is widely accessible mostly because HTTP is the only requirement, a

universally established, mature, and stable protocol.

Although the platform’s core API is an implementation of REST,

established through HTTP endpoints exposed by Ingress, there is the

opportunity to develop custom, low-level TCP listeners as well as offer

specialized services over gRPC and GraphQL. The Platform is not limited

or constrained by implementing any particular API protocol; constructing

platforms in Kubernetes makes adding additional interfaces easier than

ever. Traditionally businesses often have a hard time seeing APIs beyond

their endpoints, often evidenced by monolithic applications evolving into

large and unwieldy collections of highly coupled dependencies between

the API and underlying data. While it is possible to develop a traditional

monolithic system in Kubernetes, you would be working out an anti-

pattern and failing to take full advantage of one of Kubernetes’s best

features, Services. Kubernetes Services may be backed by a collection of

both monolithic and micro application architectures.

In regard to the platform API architecture, Kubernetes services compare

to the concept of a Class in object-oriented design (OOD), although a

strained analogy. There has been a lot of thought and theory put into

the description and organization of services in the world of microservice

architectures, and that is well beyond the scope of this book, but thinking of

services as nouns providing access to corresponding verbs is a good starting

point for platform design. Kubernetes services are the persistent gateways

Chapter 1 Software platform and the apI

31

for all API calls, JSON-REST, gRPC, GraphQL, binary- or text-based TCP, and

UDP; virtually anything that can listen on a port assigned to an IP address

can be an endpoint of a Service, internal or external to the platform. The

Platform centers design around Kubernetes services.

 Summary
The goal of this book is to give you examples and inspiration to

develop productive and compelling software platforms and distributed

applications leveraging Kubernetes, with examples that tie together

capabilities from a range of technologies. This chapter defined a type

of data-driven software platform, set to combine the capabilities of IoT

technology, Machine Learning, and Blockchain. While demand for specific

capabilities comes and goes, the platform’s core components center

on configuration, Ingress, data management, and metrics. These core

capabilities form a framework of essential services, supporting limitless

combinations of new technology and their relationship to its data.

Infrastructure has often been the sole domain of operations. As the

gap between development and operations has narrowed in recent years,

the term DevOps has gained popularity. While some organizations

see DevOps as a role, a more accurate expression may be a range of

responsibilities and tasks performed by many different roles. DevOps

encompasses the provisioning of hardware, installation and management

of server clusters, configuration management, continuous integration

and continuous deployment, to name a few. The following chapter on

infrastructure covers the DevOps needed for essential core components as

well as configuration management, integration, operations, monitoring,

and maintenance of the platform.

Chapter 1 Software platform and the apI

33© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_2

CHAPTER 2

DevOps Infrastructure
Kubernetes abstracts the physical infrastructure of its underlying servers

and network. This chapter covers how to leverage Kubernetes in the

management of the entire development life cycle. This chapter and the

next take a break from the specific concerns of the Platform functionality

and center the focus on development operations (DevOps), including the

vital tools for rapid and efficient integration, testing, and deployment for

teams building platforms on Kubernetes by setting up a GitLab instance.

Kubernetes is a vendor-neutral, Cloud-native technology, making it

highly portable across the major Cloud vendors, bare-metal data centers,

and local workstations. In keeping with this principle, the following

chapter constructs a portable DevOps toolchain that leverages Kubernetes,

standardizing the configuration and management for all aspects of

development and production.

 Cloud Computing
Writing portable software has always been a leading driver of

innovations and productivity. The earliest computers of the 1940s

required programmers to write in assembly language, specifically

tailored to a particular machine. In the late 1950s, FORTRAN became

the first successful, commercially available, high-level, general-purpose

programming language. Utilizing a compiler, FORTRAN could be written

generically to solve specific problems, and by the early 1960s, over 40

https://doi.org/10.1007/978-1-4842-5611-4_2#DOI

34

FORTRAN compilers were available. FORTRAN still exists today, outliving

nearly all of the physical infrastructure available when it was first released.

Even at the cost of some performance, it has always been wise for software

developers to keep a layer of abstraction between the concepts embedded

in the code and the implementations achieved in the circuitry.

Virtualization and Cloud computing are the latest players in the

race for abstraction, not to mention containerization adding a new form

of portable encapsulation to the mix. However, in the race to abstract

physical infrastructure, Cloud computing itself can take the form of the

specialized systems of the 1940s. Cloud vendors have become a type

of specialized infrastructure. Specialization might be acceptable for

many organizations looking to harness turnkey solutions or leverage

performance realized from a vendor’s custom solution. Trends in Cloud

computing are now moving toward a goal of providing Cloud-native

solutions with a vendor-neutral approach, not only to abstract the physical

infrastructure but abstracting the vendors themselves. If FORTRAN was

the first answer to portable applications, Kubernetes might be the new

answer to portable platforms.

Data centers were once the exclusive domain of large enterprises. In

1991 the National Science Foundation lifted commercial restrictions on

what is now the Web and along came a crowd of web hosting providers,

allowing anyone with a few dollars a month to participate in its global

network, along with a handful of static HTML files on a server in some

remote data center. Racks of servers soon filled data centers, and new

data centers sprang up in every major city. The Internet generated a boom

of cheap, commodity servers running the free and open source Linux

operating system. Your bank needed proprietary communication protocols

over point-to-point telecom connections to transmit data globally; all you

needed was someone to visit your URL, and for a few dollars a month, you

could do what your bank spent a fortune to achieve.

Back in the early 1990s, computers attached to the Internet, delivered

data nearly the same as they do today, primarily over HTTP. Back then,

Chapter 2 DevOps InfrastruCture

35

HTTP served HTML documents, images, and a variety of files. Web servers

grew in power and the ability to execute code, standardized in 1993 with

the common gateway interface (CGI). CGI provided the opportunity to

develop web-based applications under a simple and clear standard.

Applications written to receive and respond to HTTP messages could run on

nearly any provider supporting CGI, aside from unique dependencies. If

this sounds like a Cloud-native and vendor-neutral solution, it was and still

is. The need for and the ideas behind the Cloud-native and vendor- neutral

movement is a type of correction in the self-healing nature of the Internet

and covered in the next section.

Sophisticated web applications need much more than simple CGI

execution from a web server; they often need a specified amount of CPU

or GPU resource, memory, and storage, along with the ability to run

on multiple compute instances and in multiple regions. Renting and

maintaining servers in data centers is a complex and specialized task,

with a large amount of up-front planning and long-term commitment.

Setting up new platforms once required a significant amount of manual

labor. Companies like Google and Amazon built robust internal platforms

for the allocation of compute resource, accommodating their massive

workloads and constant release cycles. It made sense for new Internet- based

enterprises to further capitalize on their infrastructure investments by

offering them as products. These companies differentiated themselves

from web hosting and colocation services by marketing a Cloud platform.

Enterprises could now grasp these offerings as another option for their

enterprise applications. The Cloud was not simple web hosting and

servers. It was now another option for enterprises to deploy and operate

all of their business applications. The Cloud was, in concept, a platform as

a service (PaaS).

The traditional Cloud is not a standard like HTTP or CGI, the

traditional Cloud is not an operating system, and applications cannot

compile and execute on it natively. To master the Cloud, you needed to

pick one and might pursue a certificate in Amazon AWS, Microsoft Azure,

Chapter 2 DevOps InfrastruCture

36

or Google Cloud. However, there is little distinction in the features offered

by these major providers, only their proprietary implementations. When

one vendor releases a particular feature, the others quickly follow. This

competition has been excellent for innovation, and the major providers

are some of the leading innovators in bringing cutting-edge technology to

market. Along with the innovation has come proprietary APIs, and if you

leverage these at the core of your architecture, your system is considered

vendor-locked. Additionally, there has become a growing trend of

enterprises looking for hybrid-Cloud solutions, attempting to leverage the

strengths of multiple Cloud providers; this can mean better diversification

or unfortunately multiple vendor lock-ins.

This book is about building platforms in Kubernetes and implemented

in a way that can run on instances by Amazon, Google, IBM, Microsoft,

or custom servers in a private data center, or all of them combined.

Kubernetes can operate on any Cloud that supports generic compute

instances, which is all of them. However, even this is no longer necessary,

as the major Cloud providers are now offering Kubernetes as a service, a

fully Cloud-native and vendor-neutral option.

 Cloud Native and Vendor Neutral
The early days of the Internet moved quickly, primarily due to open source

technology and open standards. Cloud computing has solved the problem

of efficiently managing compute resource by abstracting the physical

infrastructure into a set of API calls. The first major Cloud offering was a

type of on-demand utility computing called the Elastic Compute Cloud

(EC2). Amazon was the first to make the term Cloud computing popular in

2006 with the release of their EC2 Platform. Google released Google App

Engine in 2008, and in 2010, Microsoft launched Azure. These major Cloud

providers now offer far more than virtualized compute instances; they

are full-featured PaaS and SaaS solutions that continue to proliferate with

Chapter 2 DevOps InfrastruCture

37

features and capabilities released daily. The major Cloud providers solved

the problem of startups and new development efforts needing a fast and

cost-effective way to spin up and manage compute resource and attach

their business needs to on-demand solutions. Architecting solutions that

leverage these offerings may bring many up-front advantages by taming

development costs and reducing time to market; however, they also bring

the concerns of vendor lock-in.

Vendor lock-in occurs when your application or business process

would require significant effort to port to a new platform or vendor. If

your application or Platform is essential to the operation of your business,

being deeply tied to the future stability and strategic decisions of another

organization can pose a significant risk, or impose arbitrary technological

limitations at best. Long-term contracts and service-level agreements

(SLAs) only contractually guarantee stability, but technology managed

by a third party is always prone to unexpected failures and depreciation.

In some cases, it’s easier for a business to move buildings or relocate to

another state than it would be to refactor a decade or more of business

logic that has become deeply entrenched in the specialized platforms

offered by IBM, Microsoft, Amazon, or Google. Vendor lock-in is not

necessarily a problem for some organizations, especially value-added

resellers (VARs) in the business of supporting or extending traditional

Cloud services. However, if your business only wishes to leverage Cloud

services, then you are best served with a Cloud-native vendor-neutral

approach to your architecture, and Kubernetes provides this.

 Redundancy
In September of 2015, Amazon Web Services (AWS) suffered a five-hour

outage in their US-EAST-1 region. Websites and applications from high-

profile organizations such as IMDb, Tinder, Airbnb, Nest, and many

others suffered up to eight hours of limited or full outages of their systems.

However, Netflix is another significant user of AWS and only suffered a

Chapter 2 DevOps InfrastruCture

38

temporary disruption. Netflix had correctly architected against the risk of

running critical business operations tied to infrastructure they don’t fully

control. Redundancy is a sound principle that should be part of the design

for any critical system’s architecture; unfortunately, many systems rely on

the traditional Cloud to abstract this from them.

It is not a stretch to assume there are a high number of redundant

components to Amazon’s AWS offerings; Amazon’s 99.95% uptime

service- level agreements necessitate this. However, genuine redundancy

should be something you have control over, not a faith-based reliance on

a third party. In 2015, Netflix did not have to wait patiently for Amazon to

restore its US-EAST-1 region; Netflix had failure contingencies planned1

through their internally redundant architecture. However, what if the

issues that caused AWS to go down had cascaded to other regions?

The ability to stand up and operate a Kubernetes-based platform on

nearly any Cloud provider could offer redundancy at massive cross-cloud

scale and provide an ultimate contingency plan. A Kubernetes-based

platform leverages the most fundamental value of the Cloud, on-demand

compute instances, and with the proper consideration, it can remain

vendor neutral.

 Portable Platforms
Many organizations are not interested or able to purchase and

maintain a vast array of physical infrastructure across national and

even global regions. Cloud computing has become an essential aspect

of operating sophisticated workloads flexibly and cost-effectively. The

concept of Cloud-native means leveraging this world of ephemeral

compute instances, storage, and networks, where efforts shift from the

implementation of processes involved in forming the desired state to

merely describing it.

1 Heath, “AWS Outage.”

Chapter 2 DevOps InfrastruCture

39

In 2017 Amazon announced its intentions to buy grocery retailer

Whole Foods.2 With Amazon’s expansion into brick-and-mortar retail,

there arose concern from other retailers that Amazon would now be

considered a direct competitor. In an email to CNBC, Walmart spokesman

Dan Toporek is quoted “Our vendors have the choice of using any cloud

provider that meets their needs and their customers’ needs. It shouldn’t be

a big surprise that there are cases in which we’d prefer our most sensitive

data isn’t sitting on a competitor’s Platform.”3 Walmart was not worried

about the cost or stability of its vendors using AWS; they preferred not to,

for strategic business reasons. Solutions deeply tied to AWS may have lost

opportunities to engage with Walmart or may have been passed up by

competitors using Microsoft or IBM Cloud services. The idea of vendor-

neutral means not needing to miss out on doing business with companies

like Walmart if all it entails is a standing-up Kubernetes Cluster on an

alternate Cloud.

Kubernetes, along with a growing ecosystem of applications,

frameworks, and concepts, is solving problems by developing applications

that are both cloud native and vendor neutral. If an application can run

on a generic install of Kubernetes, it can likely run anywhere, with only

minimal changes typically needed in the configuration of custom network

and storage interfaces. So, are the Cloud vendors worried about this new

technology so quickly enabling a vendor-neutral approach? Not only

is Kubernetes able to be installed and operated on every major Cloud,

surprisingly all the traditional Cloud providers now offer Kubernetes as a

service.

Choosing the location for operating your Platform is out of the scope

for this book. If you have experience with AWS, you might be interested in

Amazon Elastic Container Service for Kubernetes (Amazon EKS). If you

2 Wingfield and Merced, “Amazon to Buy Whole Foods for $13.4 Billion.”
3 Thomas, “Wal-Mart Is Reportedly Telling Its Tech Vendors to Leave Amazon’s
Cloud.”

Chapter 2 DevOps InfrastruCture

40

are comfortable with Azure, you should explore Azure Kubernetes Service

(AKS). IBM offers the IBM Cloud Kubernetes Service, and Google provides

Google Kubernetes Engine (GKE).

 Getting Started Vendor Neutral
While Kubernetes itself is vendor neutral, managed Kubernetes

services from vendors such as Google, Microsoft, and Amazon often

include vendor-specific requirements, often around identity and access

management. If constructing a portable, vendor-neutral platform is a

goal or business requirement, it may be beneficial to install a custom/

vanilla Kubernetes cluster using only generic compute instances from the

major cloud providers. Otherwise, explicitly documenting nonstandard

configurations used for a specific vendor provides a vendor-neutral road

map, should portability or multi-cloud support be a future concern.

Developing a platform with Kubernetes means it should be able to

operate on a local workstation, on a private Cloud, on a public cloud with

generic compute instances, or on public cloud Kubernetes service. There

is a wealth of books and online tutorials for setting up and configuring

Kubernetes for every environment and vendor, from a few simple clicks

on AWS or Google to “Kubernetes The Hard Way” by Kelsey Hightower.4

This book assumes you have some experience with Kubernetes and

development operations and only covers basic setups for review.

Development toolchains and environments can and often should

have the same level of portability as the platforms they support. The

following section, “DevOps Toolchain,” assembles a working development

operations pipeline and workflow using open source technology

compatible with a pure vendor-neutral, Cloud-native approach. While

traditional cloud providers offer some integrated development solutions,

4 Hightower, Bootstrap Kubernetes the Hard Way on Google Cloud Platform.
No Scripts.

Chapter 2 DevOps InfrastruCture

41

the goal of this book is not only to build a vendor-neutral platform

supporting Blockchain, Machine Learning, and IoT data management

solutions but additionally keep the entire development toolchain as

portable and flexible as possible.

 DevOps Toolchain
Application platforms exist to increase the productivity of the development

process. They often go beyond abstracting access to complex subsystems.

Mature application platforms establish conventions, provide methods

for observability, and promote specific architectural design patterns.

Developers building applications for iOS or Windows or extending the

functionality of CMS systems like SharePoint or Salesforce have well-

established ecosystems, consisting of tools and methods for developing on

those platforms. However, Kubernetes, at its core, is just a robust container

orchestration system, making it an excellent environment for developing

large enterprise platforms. Kubernetes is a higher level of concern than

Linux or Windows development, and a much lower level than extending

popular content management systems. Kubernetes leaves developers

only one concern, applying the configuration. There have been several

tools developed to ease the management of complex configurations, yet

these can obfuscate the simplicity of Kubernetes core tenant—declarative

configuration. The central tool used in this book for configuring,

managing, and developing Kubernetes is kubectl, establishing a single

standard on which to introduce more complex tooling when required.

Later on, a small Kubernetes Cluster is set up in the section

“Development Environment.” Repositories, registries, and CI/CD are

essential components for organizing, configuring, and maintaining the

manifests, code, and container images supporting platform development

Chapter 2 DevOps InfrastruCture

42

in this new development Cluster. Each of these concepts is covered briefly,

and this section concludes with the installation of GitLab5 on a single- Node

k3s6 Cluster (see Figure 2-1).

 Repositories
Repositories are used to store, distribute, and manage source code,

specifically YAML files in the case of the Platform developed in this book.

Kubernetes has no dependency on developers managing configurations in

repositories; however, as any platform develops, a growing tome of YAML

manifests necessitates a well-organized system for managing them. Git has

become the industry standard for source code management and version

control. Git repositories are distributed and portable and meet the vendor-

neutral standards strived for in this book. Git is ubiquitous thanks in large

5 https://about.gitlab.com/
6 https://k3s.io/

Figure 2-1. Toolchain

Chapter 2 DevOps InfrastruCture

https://about.gitlab.com/
https://k3s.io/

43

part to the popularity of GitHub. GitHub hosts nearly every major open

source project, yet GitHub is only a value-add atop Git’s standard features.

Although this book focuses on the development of YAML

configurations related to running applications within Kubernetes,

source code repositories play a central role at every level of development

operations. Infrastructure-as-code7 (IaC) technologies, such as Terraform,

Ansible, Puppet, Chef, and the new Cluster API, abstract the construction

and maintenance of underlying infrastructure through code and benefit8

greatly from well-managed source code repositories and management

systems such as GitHub and GitLab.

This book not only promotes Kubernetes’s vendor-neutral and

Cloud- native approach to platform development but to the entire toolchain

supporting it.

 Registries
Kubernetes runs and manages Containers. An image is a file that contains

executable code and configuration needed to create a run a Container.

Docker is by far the most popular option for building Container images,

and so this book focuses on Docker and its accompanying ecosystem

of applications and utilities. Container image registries are a critical

component for developing and maintaining platforms in Kubernetes. The

registry is responsible for maintaining the versioning and distribution of

container images. The Platform in this book pulls containers from several

registries including the public Docker Hub. Docker Hub is free for hosting

public containers; however, many organizations, such as Elastic, chose to

self-host their public container registries. Public containers created in this

book use Docker Hub, and private containers use GitLab’s built-in Docker

7 https://techbeacon.com/enterprise-it/infrastructure-code-engine-
heart-devops

8 https://devops.com/version-your-infrastructure/

Chapter 2 DevOps InfrastruCture

https://techbeacon.com/enterprise-it/infrastructure-code-engine-heart-devops
https://techbeacon.com/enterprise-it/infrastructure-code-engine-heart-devops
https://devops.com/version-your-infrastructure/

44

registry. It may also be wise to mirror all containers used for the platform

into the private registry, adding an additional layer of control and security

(see Figure 2-2).

Building and hosting containers in private registries may ensure

greater trust in the providence of an image. However, it is common to

construct new images from base images, including distributions such

as Ubuntu, Alpine, or CentOS. Nearly all software eventually contains

common vulnerabilities and exposures (CVEs). Solutions for detecting

CVEs and other security risks, such as Clair by CoreOS,9 may be integrated

directly into the build pipeline.

 CI/CD
Continuous integration and deployment to Kubernetes is essential for

productive and efficient platform development and stable production

releases. There are a large number of commercial CI/CD offerings, and

most of them work well with Kubernetes. The open source application

GitLab has a stable and mature CI/CD component, able to perform build

operations and testing directly in a Kubernetes Cluster. The ability to test

code against existing services running in the Cluster is a tremendous

9 https://coreos.com/clair/docs/latest/

Figure 2-2. Container image registries

Chapter 2 DevOps InfrastruCture

https://coreos.com/clair/docs/latest/

45

advantage over many other services. The process of developing

sophisticated platforms necessitates the operation and communication

of many different services, and developing custom components that

communicate with more than one of them can be challenging in isolated

integration and test environments. The following illustrates a GitLab

Runner building and testing code from within a development Kubernetes

Cluster (see Figure 2-3).

 GitLab for DevOps
Git is only a version control system, and additional tooling is needed to

support the larger development operations (DevOps) concern. GitHub

is by far the most popular hosted repository for open source projects,

and although extremely popular and well trusted in the open source

community, GitHub itself is not open source, and if you wish to avoid

vendor lock-in, it’s best not to rely on GitHub’s value-add features for

Figure 2-3. In-cluster continuous integration, testing, and deployment

Chapter 2 DevOps InfrastruCture

46

critical components in your development toolchain. This book utilizes

GitHub as a mirror for public access to open source components.

However, this book uses GitLab for continuous integration and continuous

deployment. Like GitHub, GitLab.com offers hosted plans ranging from

free to enterprise. Unlike GitHub.com, GitLab is open source and can be

installed and run entirely on infrastructure you control.

“GitLab Community Edition (CE) is an open source end-to-end

software development platform with built-in version control, issue

tracking, code review, CI/CD, and more. Self-host GitLab CE on your

bare- metal servers, VMs, in a container, or on a cloud provider.”10 GitLab

can be run on stand-alone instances or inside a Kubernetes Cluster;

however, in either case, GitLab can leverage existing Kubernetes Clusters

by setting up remote Runners able to perform testing and deployment

activities. This book utilizes GitLab for maintaining Kubernetes

configurations, continuous deployment, and serving private application

containers. The following exercise walks through setting up GitLab on

a small compute instance and able to utilize the Kubernetes Cluster

assembled in the chapter “Development Environment.”

GitLab does not require Kubernetes and runs well directly on a server

or within a Docker container on a server. Yet, there is value to a unified

control plane for both the platform under development and the tools

that support it. While a full production-ready Kubernetes Cluster may

be overkill for many small isolated applications, there is a growing list of

Kubernetes-compliant solutions focused on low-resource single-Node

Clusters. The next section covers installing GitLab into a single-Node k3s11

Cluster.

10 “GitLab.Org / GitLab Community Edition.”
11 https://k3s.io

Chapter 2 DevOps InfrastruCture

https://k3s.io

47

 k3s + GitLab
k3s is 40MB binary that runs “a fully compliant production-grade

Kubernetes distribution” and requires only 512MB of RAM.

k3s is a great way to wrap applications that you may not want to run

in a full production Cluster but would like to achieve greater uniformity

in systems deployment, monitoring, and management across all

development operations. GitLab plays a central role in the development

operations of the platform in this book, and k3s will be used along with

other single-Node solutions for IoT devices and on-site appliances. Using

k3s to host GitLab is great way to become familiar with single-Node

Clusters and with the added benefit of a management plane unified under

the Kubernetes API.

The following outlines a process for setting up a GitLab application

running in a single-Node custom Kubernetes (k3s) Cluster on Vultr.12 Vultr

is chosen as an alternative to the major cloud providers, such as Amazon,

Google, or Microsoft. Vultr, along with providers like Digital Ocean,13

Linode,14 OVH,15 Hetzner,16 or Scaleway,17 provide a great way to quickly

stand up cheap, generic compute (virtual machine) instances without

needing to dive deep into specialized workflows and account management

system of the major providers. However, once a generic virtual machine is

set up on any provider, there is little difference in implementation.

12 https://vultr.com
13 www.digitalocean.com/
14 www.linode.com/
15 https://us.ovhcloud.com/public-cloud/
16 https://www.hetzner.com/
17 www.scaleway.com

Chapter 2 DevOps InfrastruCture

https://vultr.com
http://www.digitalocean.com/
http://www.linode.com/
https://us.ovhcloud.com/public-cloud/
https://www.hetzner.com/
http://www.scaleway.com

48

 Server Setup

Vultr, Scaleway, and Hetzner are excellent choices for development of

experimental clusters, and typically offering virtual servers at a fraction

of the cost of the major public clouds. They often include SSD storage

and a sufficient amount of network transfer included in the price. This

chapter demonstrates setting up a Kubernetes development cluster on

Vultr; however, the following instructions are easily translatable to other

providers.

Sign up for an account on Vultr or choose an equivalent alternative.

This exercise requires an Ubuntu 18.04 server with at least two CPU cores

and 4096MB of memory.

First, choose a server location (see Figure 2-4). Choose a server

location geographically close to the majority of your team. While GitLab

will be able to communicate with Kubernetes Clusters anywhere in the

world, choosing an instance in a city closest to the majority of your team

will reduce network latency for development operations.

Figure 2-4. Server locations

Chapter 2 DevOps InfrastruCture

49

Next, choose a server type of Ubuntu 18.04 (see Figure 2-5). “Ubuntu

is a free and open-source Linux distribution based on Debian” and well

supported by Canonical Ltd. Ubuntu 18.04 a long-term support release

and will be supported until 2028.

Next, select a server size (see Figure 2-6). GitLab on k3s will need at

least two CPU cores and 4086MB of memory to run efficiently, supporting

a small team.

Figure 2-5. Server types

Figure 2-6. Server sizes

Chapter 2 DevOps InfrastruCture

50

Finally, give the new instance a hostname with a domain you own.

Vultr, like many providers, provisions the server with the hostname

preconfigured if you supply it in the provisioning configuration (see

Figure 2-7 and Figure 2-8.)

 Configure DNS

This book uses the domain apk8s.dev for all examples. Replace apk8s.dev

with your domain wherever it appears in the following text.

Add at least two DNS A records for apk8s.dev (see Figure 2-9) that

point to the public IP address of the new server. Consult your Domain/

DNS provider for specific instructions. Figure 2-9 shows the public IP of

the new Vultr instance.

Figure 2-7. Vultr dashbaord server hostname and label fields

Figure 2-8. Vultr dashboard

Chapter 2 DevOps InfrastruCture

51

 Install k3s

Open the Server Information page (see Figure 2-10) on Vultr and locate the

root password.

Figure 2-9. DNS entries

Figure 2-10. Server Information

Chapter 2 DevOps InfrastruCture

52

Log in to the new server and upgrade any outdated packages.

Upgrading packages ensures the new server is equipped with the latest

security, bug fixes, and performance improvements.

$ ssh root@PUBLIC.IP.ADDRESS

$ apt update && apt upgrade -y

Download the k3s installer with curl and pipe it to the shell for

execution:

$ curl -sfL https://get.k3s.io | sh -

Use kubectl to test the new k3s (Kubernetes) installation:

$ kubectl get Nodes

NAME STATUS ROLES AGE VERSION

gitlab.apk8s.dev Ready <none> 5m v1.14.1-k3s.4

 Remote Access

k3s is now installed on the new server, and a Kubernetes API that is

listening on port 6443 is ready to accept connections. Credentials for

remote access to the Cluster are located at /etc/rancher/k3s/k3s.yaml.

If you have kubectl installed18 on your local workstation, notice that

the /etc/rancher/k3s/k3s.yaml file on the new k3s node is a kubectl

config file similar to the file ~/.kube/config generated by kubectl on your

local workstation. The config file contains three main sections of interest:

Clusters, users, and contexts, each containing a single entry related to the

new Cluster. Add each entry from the k3s.yml on the k3s server to the ~/.

kube/config file on your local workstation, replacing the word default

with a sensible alternative, such as gitlab (see Figure 2-11), and replace

localhost in the Cluster section with the public IP address of the server.

18 https://kubernetes.io/docs/tasks/tools/install-kubectl/

Chapter 2 DevOps InfrastruCture

https://kubernetes.io/docs/tasks/tools/install-kubectl/

53

Adding a new Cluster, user, and context to the existing ~/.kube/config

file on your local workstation is one simple method of configuring kubectl.

kubectl supports the use of multiple config files and other alternative

configuration methods; see the documentation on kubectl for more on

this. kubectl is the central application used throughout this book; a

well- organized configuration is essential when working with multiple

Clusters.

Figure 2-11. kubectl configuration

Chapter 2 DevOps InfrastruCture

54

 Install Cert Manager/Let’s Encrypt

k3s is a fully functional Kubernetes Cluster and comes preconfigured with

the Traefik Ingress controller, ready to handle inbound HTTP requests.

Cert Manager19 “is a Kubernetes add-on to automate the management

and issuance of TLS certificates from various issuing sources.” The

following steps install and configure Cert Manager to use Let’s Encrypt for

generating free TLS certificates used to secure the GitLab instance over

HTTPS.

GitLab ships with Let’s Encrypt capabilities; however, since we are

running GitLab through k3s (Kubernetes) Ingress (using Traefik), we need

to generate Certs and provide TLS from the Cluster.

Create Cert Manager’s custom resource definitions:

$ kubectl apply -f https://raw.githubusercontent.com/jetstack/

cert-manager/release-0.8/deploy/manifests/00-crds.yaml

Next, create a directory called 00-cluster used to store Cluster scoped

configuration; within the new directory, create the file 00-cert-manager-

helm.yml with the following configuration (see Listing 2-1).

Helm is a popular utility for installing and maintaining applications

in Kubernetes. Billing itself as a type of package manager, Helm abstracts

away the often-numerous configurations required to operate an

application in Kubernetes. This abstraction is a collection of templatized

YAML files representing Kubernetes objects. Helm renders and applies

these templates, populated with user-supplied values. It is typical to

use Helm as a command-line utility; however, k3s contains the custom

resource definition (CRD) HelmChart and, when applied, installs or

updates Helm deployments internally.

19 https://github.com/jetstack/cert-manager

Chapter 2 DevOps InfrastruCture

https://github.com/jetstack/cert-manager

55

Note the numbers prefixing configuration files in this book are
intended to represent an order in which to apply them or express a
chain of dependencies. Other methods of organization involve placing
multiple configurations in the same file, which can make large
configurations challenging to navigate. the majority of Kubernetes
objects expressed in this book are written as individual files,
organized by directories.

Listing 2-1. Cert Manager

apiVersion: k3s.cattle.io/v1

kind: HelmChart

metadata:

 namespace: kube-system

 name: cert-manager

spec:

 chart: cert-manager

 repo: https://charts.jetstack.io

 targetNamespace: cert-manager

Apply the configuration:

$ kubectl apply -f 00-cert-manager-helm.yml

Ensure that Cert Manager is now running in the cert-manager

Namespace:

$ kubectl get all -n cert-manager

Chapter 2 DevOps InfrastruCture

56

Next, a ClusterIssuer that is configured to retrieve TLS certificates from

Let’s Encrypt is needed. Later on, a Certificate configuration is added that

utilizes this ClusterIssuer named letsencrypt-production.

Create the file 05-cluster-issuer.yml with the configuration in

Listing 2-2. Replace YOUR_EMAIL_ADDRESS with a valid email address.

Listing 2-2. 05-cluster-issuer.yml

apiVersion: certmanager.k8s.io/v1alpha1

kind: ClusterIssuer

metadata:

 name: letsencrypt-production

spec:

 acme:

 server: https://acme-v02.api.letsencrypt.org/directory

 # Email address used for ACME registration

 email: YOUR_EMAIL_ADDRESS

 privateKeySecretRef:

 name: letsencrypt-production

 # Enable the HTTP-01 challenge provider

 http01: {}

Figure 2-12. Cert Manager resources

Chapter 2 DevOps InfrastruCture

57

Apply the configuration:

$ kubectl apply -f 05-cluster-issuer.yml

 Install GitLab

The Namespace gitlab is used to contain the GitLab application. Create

another directory on the same level as 00-cluster named 01-gitlab. The

new directory 01-gitlab is used to store the remaining configuration files,

named after the Namespace it represents.

Namespace

Create the file 00-namespace.yml with the configuration in Listing 2-3.

Note Imperative commands for some configurations in this book
would save time and require less up-front effort; for example,
kubectl create namespace gitlab is one step—however,
declarative configuration has the added benefits of explicit
documentation and versioning of the desired state. this namespace
configuration is simple, yet more involved configurations are likely
when needing to add labels and resource limitations.

Listing 2-3. GitLab Namespace

apiVersion: v1

kind: Namespace

metadata:

 name: gitlab

Apply the configuration:

$ kubectl apply -f 00-namespace.yml

Chapter 2 DevOps InfrastruCture

58

TLS Certificate

Ensure two DNS A records for your domain name point to the public IP of the

new Cluster. In this example gitlab.apk8s.dev and *.gitlab.apk8s.dev

both resolve to the new Cluster. The following Certificate configuration

produces a valid certificate for these domains using the ClusterIssuer

letsencrypt-production created earlier.

The following exercise creates a Certificate resource describing

multiple domains; cert-manager uses this Certificate resource to generate

a single TLS key pair and populate a Secret with it. Any Ingress with the

domains listed in this Certificate may use the generated Secret as a valid

TLS certificate. Additionally, cert-manager offers an alternative method

of requesting Certificates directly within an Ingress resource through an

annotation.20

Create the file 05-certs.yml with the configuration in Listing 2-4.

Listing 2-4. GitLab TLS Certificate

apiVersion: certmanager.k8s.io/v1alpha1

kind: Certificate

metadata:

 name: gitlab-apk8s

 namespace: gitlab

spec:

 secretName: gitlab-apk8s-tls

 issuerRef:

 name: letsencrypt-production

 kind: ClusterIssuer

20 https://cert-manager.netlify.com/docs/usage/ingress/

Chapter 2 DevOps InfrastruCture

https://cert-manager.netlify.com/docs/usage/ingress/

59

 commonName: gitlab.apk8s.dev

 dnsNames:

 - gitlab.apk8s.dev

 - reg.gitlab.apk8s.dev

 acme:

 config:

 - http01:

 ingressClass: traefik

 domains:

 - gitlab.apk8s.dev

 - reg.gitlab.apk8s.dev

Apply the configuration:

$ kubectl apply -f 05-certs.yml

Check the status of the Certificate:

$ kubectl describe certificate -n gitlab

If the “Certificate issued successfully,” there is now the Secret

gitlab- apk8s- tls in the gitlab Namespace containing the keys

tls.crt and tls.key making up the TLS certificate. The Secret is a type of

kubernetes.io/tls used by Ingress to secure HTTPS traffic.

Services

Defined in this configuration are the services gitlab and gitlab-ssh. The

gitlab service provides a backend service for Ingress by exposing port 80

(gitlab:80) for the GitLab website and port 5050 (gitlab:5050) for the

container registry, connecting to pods matching the label app: gitlab

and the ports 80 and 5050, later defined in a Deployment. The service

gitlab-ssh exposes the NodePort 32222 used by the git ssh protocol for

operations such as git clone, push, and pull.

Chapter 2 DevOps InfrastruCture

60

Note nodeports are exposed across the cluster.

Create the file 10-services.yml with the configuration in Listing 2-5.

Apply the configuration:

$ kubectl apply -f 10-services.yml

Listing 2-5. GitLab Services Configuration

apiVersion: v1

kind: Service

metadata:

 name: gitlab

 namespace: gitlab

 labels:

 app: gitlab

spec:

 selector:

 app: gitlab

Figure 2-13. GitLab Services

Chapter 2 DevOps InfrastruCture

61

 ports:

 - name: http-web

 protocol: "TCP"

 port: 80

 targetPort: 80

 - name: http-reg

 protocol: "TCP"

 port: 5050

 targetPort: 5050

 type: ClusterIP

apiVersion: v1

kind: Service

metadata:

 name: gitlab-ssh

 namespace: gitlab

 labels:

 app: gitlab-ssh

spec:

 selector:

 app: gitlab

 ports:

 - name: tcp-git

 protocol: "TCP"

 targetPort: 22

 port: 32222

 NodePort: 32222

 type: NodePort

Chapter 2 DevOps InfrastruCture

62

ConfigMap

A Kubernetes ConfigMap is used to manage the main GitLab configuration

file gitlab.rb. This example configuration only defines the settings

needed to get a minimal operating instance of GitLab up and running

along with a built-in container registry. An extensive list of configuration

options is available and well documented on docs.gitlab.com.21 Make sure

to set the initial_root_password to a strong password; GitLab uses this

setting during the original setup to provide an initial admin user named

root with the configured password.

Create the file 20-configmap.yml with the configuration in Listing 2-6.

Apply the configuration:

$ kubectl apply -f 20-configmap.yml

Listing 2-6. GitLab configuration

apiVersion: v1

kind: ConfigMap

metadata:

 name: gitlab-config

 namespace: gitlab

data:

 gitlab.rb: |-

 gitlab_rails['gitlab_shell_ssh_port'] = 32222

 prometheus['monitor_kubernetes'] = false

 gitlab_rails['initial_root_password'] = "password"

 external_url 'https://gitlab.apk8s.dev'

21 https://docs.gitlab.com/omnibus/settings/configuration.html

Chapter 2 DevOps InfrastruCture

https://docs.gitlab.com/omnibus/settings/configuration.html

63

 nginx['listen_port'] = 80

 nginx['listen_https'] = false

 nginx['proxy_set_headers'] = {

 'X-Forwarded-Proto' => 'https',

 'X-Forwarded-Ssl' => 'on'

 }

 registry_external_url 'https://reg.gitlab.apk8s.dev'

 gitlab_rails['registry_enabled'] = true

 registry_nginx['listen_port'] = 5050

 registry_nginx['listen_https'] = false

 registry_nginx['proxy_set_headers'] = {

 'X-Forwarded-Proto' => 'https',

 'X-Forwarded-Ssl' => 'on'

 }

Deployment

A Deployment defines the GitLab application as a single Pod, and

because this runs on a single-Node Cluster, we can use hostPath to

mount directories on the server, providing persistent storage for the

Pod. The directory /srv/gitlab/ is created automatically on the server.

All configuration and data persist as files on the server, while gitlab-

configmap- volume mounts the ConfigMap created earlier with the contents

of gitlab.rb.

Create the file 40-deployment.yml with the configuration in Listing 2-7.

Apply the configuration:

$ kubectl apply -f 40-deployment.yml

Chapter 2 DevOps InfrastruCture

64

Listing 2-7. GitLab Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 namespace: gitlab

 name: gitlab

 labels:

 app: gitlab

spec:

 replicas: 1

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: gitlab

 template:

 metadata:

 labels:

 app: gitlab

 spec:

 containers:

 - name: gitlab

 image: gitlab/gitlab-ce:11.10.4-ce.0

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: config-volume

 mountPath: /etc/gitlab

 - name: logs-volume

 mountPath: /var/log/gitlab

 - name: data-volume

 mountPath: /var/opt/gitlab

Chapter 2 DevOps InfrastruCture

65

 - name: reg-volume

 mountPath: /var/opt/gitlab/gitlab-rails/shared/

registry

 - name: uploads-volume

 mountPath: /var/opt/gitlab/gitlab-rails/uploads

 - name: gitlab-configmap-volume

 mountPath: /etc/gitlab/gitlab.rb

 subPath: gitlab.rb

 ports:

 - name: http-web

 containerPort: 80

 - name: tcp-ssh

 containerPort: 22

 - name: http-reg

 containerPort: 5050

 volumes:

 - name: gitlab-configmap-volume

 configMap:

 name: gitlab-config

 - name: config-volume

 hostPath:

 path: /srv/gitlab/config

 - name: logs-volume

 hostPath:

 path: /srv/gitlab/logs

 - name: data-volume

 hostPath:

 path: /srv/gitlab/data

Chapter 2 DevOps InfrastruCture

66

 - name: reg-volume

 hostPath:

 path: /srv/gitlab/reg

 - name: uploads-volume

 hostPath:

 path: /srv/gitlab/uploads

Ingress

k3s is preconfigured with a Traefik Ingress controller managing requests

to HTTP port 80 and HTTPS port 443. Listing 2-8 is a basic Kubernetes

Ingress configuration along with an added annotation requesting that

Traefik route any HTTP requests to HTTPS.

Create the file 50-ingress.yml with the configuration in Listing 2-8.

Apply the configuration:

$ kubectl apply -f 50-ingress.yml

Listing 2-8. GitLab Ingress

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: gitlab

 namespace: gitlab

 labels:

 app: gitlab

 annotations:

Chapter 2 DevOps InfrastruCture

67

 traefik.ingress.kubernetes.io/redirect-entry-point: https

spec:

 rules:

 - host: gitlab.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: gitlab

 servicePort: 80

 path: /

 - host: reg.gitlab.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: gitlab

 servicePort: 5050

 path: /

 tls:

 - hosts:

 - reg.gitlab.apk8s.dev

 - gitlab.apk8s.dev

 secretName: gitlab-apk8s-tls

Disable Sign-up

GitLab, by default, allows new users to sign up for an account. However,

the instance installed here is for internal use by a development team

working on the software platform defined later in this book. Disabling the

 sign- up option requires the admin (root) user to configure this feature in

the administration section of the user interface. See Figure 2-14.

Chapter 2 DevOps InfrastruCture

68

 Summary
Setting up GitLab on a single-Node Kubernetes Cluster with k3s provides

several benefits. k3s and a growing ecosystem of mini-Kubernetes

distributions are extending the opportunities to utilize Kubernetes at any

scale. Wrapping GitLab in Kubernetes provides the ability to extend it in

the same manner as other Kubernetes-based platforms, by merely adding

additional container-backed services able to interact within a mesh of

Figure 2-14. Disable GitLab sign-up

Chapter 2 DevOps InfrastruCture

69

services. GitLab not only interacts with external Clusters though its ability

to install and operate CI/CD containers within them, GitLab itself is now

under the same control plane as the platforms developed within it.

 Next Steps
Now that GitLab is up and running in a single-Node Kubernetes Cluster,

the next chapter sets up a development Kubernetes Cluster representing a

scaled-back version of its eventual production equivalent. GitLab utilizes

this Cluster for software integration, build, testing, and deployment

operations.

Chapter 2 DevOps InfrastruCture

71© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_3

CHAPTER 3

Development
Environment
Developing a platform supporting components such as Blockchain,

Machine Learning, and IoT data management requires at least three

areas of essential functionality provided by the Kubernetes Cluster:

Ingress, TLS, and persistent data storage. This chapter stands up a small-

scale development cluster that meets these minimal requirements for

platform development. The following cluster can easily be scaled both in

the number of nodes and the size of each node as requirements demand

additional resources.

Many Kubernetes tutorials walk you through examples using a local

copy of Minikube. Minikube costs nothing more than a bit of CPU and

memory on your local workstation. However, a healthy development

environment should reflect a scaled-down version of production, and

while Minikube is great for experimentation and some local development,

it is limited in its ability to reflect the challenges of a production

environment. A development Cluster may need to be shared between

remote developers or be available to external resources for collecting data,

metrics, and events; this all becomes a challenge with a local workstation–

based Kubernetes install. If you are serious about testing the Cloud-native

and vendor-neutral aspects of your Platform on Kubernetes, it might be

beneficial to have a development environment on one vendor, with a

https://doi.org/10.1007/978-1-4842-5611-4_3#DOI

72

staging test and production on another. Developing your application to

run on a generic virtual machine (VM)–based Cluster and later publishing

to a test environment reflective of your production Cluster can ensure

your portability between vendors, with only minimal differences in

configuration and no significant architectural changes.

 Custom Development Kubernetes Cluster
Today there are several production-ready, turnkey Kubernetes offerings,

such as Google Kubernetes Engine (GKE), Amazon Elastic Container

Service for Kubernetes (Amazon EKS), Azure Kubernetes Service (AKS),

and IBM Cloud Kubernetes Service. These options may be a safe choice for

the production deployment of a commercial platform, and these providers

offer opportunities for deep integration into their more extensive suite of

services. In keeping the Platform portable and vendor neutral, a custom,

self-managed Kubernetes Cluster can provide a cost-effective neutral

environment for development. Segregating development into a custom

Kubernetes Cluster has many benefits for Platform developers, forcing a

deeper understanding of the underlying infrastructure without losing the

benefits of abstraction. Platform development on a custom Kubernetes

Cluster ensures portability and provides an opportunity for redundancy,

leveraged by compatibility with multiple vendors.

GitLab was set up in the previous chapter on a single Vultr instance

running k3s. While Kubernetes was developed to schedule and manage

container workloads on hundreds or even thousands of Nodes, k3s utilized

its features on just a single Node. Setting up a custom development

Kubernetes Cluster involves multiple servers, one (or more) for the master

Node, and one or more worker Nodes.

The following section takes a more in-depth look at Kubernetes Nodes

and walks through the process of setting up a custom Kubernetes Cluster

on Digital Ocean. Like Vultr, Digital Ocean offers affordable compute

Chapter 3 Development environment

73

instances they call Droplets. Instructions for setting up Custom Kubernetes

are easily translatable to any alternative service offering generic compute

instances or virtual or bare-metal machines. There is an ongoing debate on

the manageability and cost-effectiveness of operating custom Kubernetes

Clusters for critical, high-profile production platforms. However, there

is great benefit from the knowledge and skills gained through installing,

configuring, and maintaining a custom Cluster when at the end you have

a working development environment, and quite possibly a backup or a

redundant version ready for production.

 Nodes
A Kubernetes Cluster is made up of Nodes. One or more master Nodes,

and as of Kubernetes 1.14 no more than 5000 Nodes in total. If you ran

all 5000 Nodes on 1U servers, you would fill over 100 racks in a typical

data center, not including routers, power management, and all the other

infrastructure needed. Kubernetes not only abstracts individual servers

from the Platform, but a few federated Kubernetes Clusters may also very

well abstract away a small data center.

The initial size of a Kubernetes Cluster is a production concern, best

calculated by the performance of a test or development Cluster operating

a developed application platform along with projected utilization. Scaling

Kubernetes is as easy as adding compute resource and joining it as a Node.

It’s important to note that the size of any Master Node may need to be

scaled as the Cluster grows. However, for the small development Cluster

setup in this book, a small, single master Node is sufficient.

Chapter 3 Development environment

74

Note a single master node in a Kubernetes cluster is not
necessarily a single point of failure for the entire Cluster. the failure
of the Kubernetes master node is an urgent concern; however,
networking and container workloads (not reliant on the Kubernetes
api) continue to operate without the Kubernetes control plane.1

The examples in this book utilize a small development Cluster set

up in this section, starting with one Master Node and two Worker Nodes

(see Figure 3-1). The previous chapter used k3s to operate a scaled-down

Master Node to run workloads. However, in a multi-node Cluster, Master

Nodes should only be concerned with managing the Cluster.

Figure 3-1. Kubernetes Nodes

1 https://kubernetes.io/docs/concepts/#kubernetes-control-plane

Chapter 3 Development environment

https://kubernetes.io/docs/concepts/#kubernetes-control-plane

75

 Server Setup
This section sets up three Ubuntu 18.04 x64 servers (Droplets) on Digital

Ocean at the minimal required hardware specification of 2 CPUs and

2 GB RAM.

Note Digital ocean allows Droplets to be scaled up when future
demand may require more CpU or ram for the master or Worker
nodes.

After setting up an account and logging in to Digital Ocean, click the

Create button and choose Droplets from the resulting menu. Choose an

image for the Droplets by selecting Ubuntu 18.04 x64 under Distributions

(see Figure 3-2).

Next, under Standard starter plans, find and select the option with

2 GB/2 CPUs, as shown in Figure 3-3. At the time of this writing, the cost

for a Droplet with these options is $15 per month ($0.022 hour). At this

price point, the development Cluster assembled here costs $45 per month

($0.066 per hour).

Figure 3-2. Create Droplets

Chapter 3 Development environment

76

Next, choose a data center region closest to you or your development

team. Digital Ocean offers one or more choices with a region. Figure 3-4

shows San Francisco/2 selected.

Next, select the additional options Private Networking and Monitoring

(see Figure 3-5). Private Networking is later used by the Kubernetes API to

communicate privately between Nodes. Additionally, with Digital Ocean

and most providers, data transfer over Private Networking does not count

against data transfer limitations.

Figure 3-3. Choose a plan

Figure 3-4. Choose a region

Chapter 3 Development environment

77

Finally, select a quantity of three Droplets for this development Cluster

and provide descriptive hostnames, as shown in Figure 3-6. This book uses

hostnames dosf2-n01.apk8s.dev, hostnames dosf2-n02.apk8s.dev, and

hostnames dosf2-n03.apk8s.dev.

Once the new Droplets (Servers) are up and running, note the public

and private IP address assigned to each Droplet. Figure 3-7 shows the

assigned public IP address for dosf2-n01.apk8s.dev as 138.68.18.212

and the private IP address as 10.138.28.155.

Figure 3-5. Private networking and monitoring

Figure 3-6. Droplet quantity and hostnames

Figure 3-7. Droplet details

Chapter 3 Development environment

78

 Prepare Nodes
Using a terminal, ssh as the user root into each new Droplet (server).

Digital Ocean would email you a generated, one-time use root password if

you did not add an SSH key when setting up the Droplet. Update packages

and install Docker and Kubernetes utilities on each server, with the

following instructions:

$ ssh root@PUBLIC_IP

 Install Dependencies

Update and upgrade all packages to ensure the servers are up to date with

the latest packages providing any necessary security and performance

updates:

$ apt update && apt upgrade -y

Install the following packages: apt-transport-https allows the

apt package manager to pull packages from HTTPS endpoints. ca-

certificates installs SSL/TLS certificates from the Certificate Authorities

along with an updater. curl is a command-line HTTP client essential for

interacting with HTTP-based endpoints from the command line. gnupg-

agent provides a system daemon for GPG signing and the management

of keys. software-properties-common supports the management of

independent software vendor repositories added later on for WireGuard,

Docker, and Kubernetes.

Install dependencies with one command:

$ apt install -y \

 apt-transport-https \

 ca-certificates \

 curl \

 gnupg-agent \

 software-properties-common

Chapter 3 Development environment

79

 Install WireGuard VPN

All cloud providers offer private networking, the ability to assign IP

address only accessible within the provider’s internal network, and often

only within the same region. Although these private IP addresses are not

accessible by public Internet, depending on the provider, other customers

may access them if running instances in the same region. Encrypting all

traffic between nodes in the Cluster is always a good practice.

This exercise is optional. Using a VPN to encrypt traffic over a private

network is not necessary for most situations. In the past, some cloud

providers shared private networks with multiple clients, and while not

exposed to the public,2 network traffic was potentially visible to other

clients on the same network. Although most providers have abandoned

shared private networking,3 nevertheless this exercise demonstrates the

use of a VPN to secure all network traffic in high-security environments on

untrusted networks.

Operating a Kubernetes cluster over a VPN encrypts network traffic

between nodes; however, within the cluster, network traffic is not

encrypted by default. Service meshes such as Istio4 and Linkerd5 offer

options for mutual TLS communication between Pods.

WireGuard6 is a fast, secure VPN, easy to install, configure, and route

all internal Cluster traffic through. The next steps walk through the process

of generating public and private keys for each server, adding a WireGuard

configuration file, starting the service, and creating an overlay network to

tunnel Kubernetes traffic through.

2 https://blog.digitalocean.com/introducing-private-networking/
3 www.digitalocean.com/docs/platform/release-notes/2018/
private-networking/

4 https://istio.io/docs/tasks/security/authentication/mutual-tls/
5 https://linkerd.io/2/features/automatic-mtls/
6 www.wireguard.com/

Chapter 3 Development environment

https://blog.digitalocean.com/introducing-private-networking/
http://www.digitalocean.com/docs/platform/release-notes/2018/private-networking/
http://www.digitalocean.com/docs/platform/release-notes/2018/private-networking/
https://istio.io/docs/tasks/security/authentication/mutual-tls/
https://linkerd.io/2/features/automatic-mtls/
http://www.wireguard.com/

80

Add the WireGuard repository:

$ add-apt-repository -y ppa:wireguard/wireguard

Update the package list now that the WireGuard repository has been

added:

$ apt update

Install WireGuard:

$ apt install -y wireguard

Generate private and public keys for each server. The following is a

small shell command for generating three key pairs. Once the keys are

generated, store them securely for use in configuring WireGuard on each

server. The private keys (priv) are used for the VPN interface on each

server and public (pub) keys are used to communicate with peers.

$ for i in {1..3}; do prvk=$(wg genkey); \

echo "$i - priv: $prvk pub: $(echo $prvk | wg pubkey)"; done

Next, configure WireGuard for each server. The following example

configuration for the first server will set up a new network interface named

wg0 with the IP address 10.0.1.1. Adjust the configuration according to each

server; the second server’s interface IP should be 10.0.1.2 and 10.0.1.3 for the

third (see Figure 3-8). Use the public or private keys generated previously.

Figure 3-8. VPN interfaces and peers

Chapter 3 Development environment

81

$ cat <<EOF >/etc/wireguard/wg0.conf

[Interface]

Address = 10.0.1.1

PrivateKey = SERVER_1_PRIVATE_KEY

ListenPort = 51820

[Peer]

PublicKey = SERVER_2_PUBLIC_KEY

AllowedIps = 10.0.1.2/32

Endpoint = SERVER_2_PRIVATE_IP:51820

[Peer]

PublicKey = SERVER_3_PUBLIC_KEY

AllowedIps = 10.0.1.3/32

Endpoint = SERVER_3_PRIVATE_IP:51820

EOF

Next, ensure that IP forwarding is enabled. If running sysctl

net.ipv4.ip_forward returns 0, then you need to run the following

commands:

$ echo "net.ipv4.ip_forward=1" >> /etc/sysctl.conf

$ sysctl -p

After adding the configuration file, start the WireGuard VPN on each

server:

$ systemctl start wg-quick@wg0

$ systemctl enable wg-quick@wg0

Chapter 3 Development environment

82

 Install Docker

Kubernetes supports several Container Runtime Interface7 (CRI)–based

runtimes including rkt,8 frakti,9 cri-o,10 and cri-containerd.11 Docker is

the default CRI and a well-established industry standard, although each

alternative has benefits worth exploring. The following commands walk

through the process of installing Docker.

Add the Docker repository GPG key:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg |

sudo apt-key add -

Add the Docker repository:

$ add-apt-repository -y \

 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \

 $(lsb_release -cs) stable"

Update the package list now that the Docker repository has been

added:

$ apt update

Install the latest versions of the Docker CE (Community Edition)

daemon, the Docker command-line interface, and containerd:12

$ apt install -y docker-ce docker-ce-cli containerd.io

7 https://kubernetes.io/docs/setup/cri/
8 https://github.com/rkt/rkt
9 https://github.com/kubernetes/frakti
10 https://cri-o.io/
11 https://github.com/containerd/cri
12 https://containerd.io/

Chapter 3 Development environment

https://kubernetes.io/docs/setup/cri/
https://github.com/rkt/rkt
https://github.com/kubernetes/frakti
https://cri-o.io/
https://github.com/containerd/cri
https://containerd.io/

83

The Ubuntu operating system uses Systemd13 to track processes using

Linux cgroups,14 and by default Docker uses cgroupfs. Having separate

cgroup managers can cause instability when managing resources under

load. Configure Docker to use Systemd by supplying a configuration file.15

$ cat > /etc/docker/daemon.json <<EOF

{

 "exec-opts": ["native.cgroupdriver=systemd"],

 "log-driver": "json-file",

 "log-opts": {

 "max-size": "100m"

 },

 "storage-driver": "overlay2"

}

EOF

Create a Systemd drop-in directory for Docker:

$ mkdir -p /etc/systemd/system/docker.service.d

Enable the Docker service:

$ systemctl enable docker.service

Restart Docker:

$ systemctl daemon-reload && systemctl restart docker

13 www.freedesktop.org/wiki/Software/systemd/
14 www.kernel.org/doc/Documentation/cgroup-v2.txt
15 https://github.com/kubernetes/kubeadm/issues/1394#issuecomment-
462878219

Chapter 3 Development environment

http://www.freedesktop.org/wiki/Software/systemd/
http://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://github.com/kubernetes/kubeadm/issues/1394#issuecomment-462878219
https://github.com/kubernetes/kubeadm/issues/1394#issuecomment-462878219

84

 Install Kubernetes Utilities

In addition to Docker, each Node will also need kubelet16 and kubeadm.17

kubectl18 is optional but helpful to have when needing to debug directly

from a Node.

Add Google GPG key for apt:

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg \

| apt-key add -

Add Kubernetes apt repository:

$ cat <<EOF >/etc/apt/sources.list.d/kubernetes.list

deb https://apt.kubernetes.io/ kubernetes-xenial main

EOF

Update the package list now that the Kubernetes repository has been

added:

$ apt update

Install Kubernetes packages:

$ apt install -y kubelet kubeadm kubectl

Lock the installed packages to their current version:

$ apt-mark hold kubelet kubeadm kubectl

16 https://kubernetes.io/docs/reference/command-line-tools-reference/
kubelet/

17 https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
18 https://kubernetes.io/docs/reference/kubectl/overview/

Chapter 3 Development environment

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
https://kubernetes.io/docs/reference/kubectl/overview/

85

 Install Master Node
kubeadm is the official Kubernetes install utility and does all the work of

configuring the master Node. If you wish to dive deeper and learn how to

install and configure each component, study “Kubernetes The Hard Way”19

by Kelsey Hightower. Otherwise, run the kubeadm installer on node 1,

configured with the private VPN IP address (--apiserver-advertise-

address) of the master Node to advertise on, and add a public address

(--apiserver- cert- extra-sans) as an extra for inclusion into the generated

TLS certificate, allowing external access to the API on the public interface.

The domain api.cluster.dev1.apk8s.dev is assigned a DNS A record with

the public IP address of the master Node later in the section DNS.

$ kubeadm init \

--apiserver-advertise-address=10.0.1.1 \

--apiserver-cert-extra-sans=api.cluster.dev1.apk8s.dev

After a successful installation, the message “Your Kubernetes

control- plane has initialized successfully!” will present along with

instructions for configuring kubectl.

$ mkdir -p $HOME/.kube

$ cp /etc/kubernetes/admin.conf $HOME/.kube/config

Additional instruction for joining worker Nodes is provided after the

install process, similar to the following command (keys redacted). Copy

and save the provided command for use in the next section, “Join Worker

Nodes.”

kubeadm join 10.0.1.1:6443 --token REDACTED --discovery-token-

ca-cert-hash REDACTED

19 https://github.com/kelseyhightower/kubernetes-the-hard-way

Chapter 3 Development environment

https://github.com/kelseyhightower/kubernetes-the-hard-way

86

Next, a pod network is necessary for communication between Pods on

the Cluster. At this time there are over a dozen choices, each with a wide

range of features worth exploring when setting up a network-intensive

production Cluster. Weave Net20 is an excellent choice for development or

production Clusters needing only simple networking and network policies.

Weave can be installed in one command and does not require an external

database or other dependencies.

Install Weave with the kubectl utility previously installed on the

master Node (node 1):

$ kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-

version=$(kubectl version | base64 | tr -d '\n')&env.IPALLOC_

RANGE=10.32.0.0/16"

Optional—Install Weave Scope21 for network visualization and

monitoring:

$ kubectl apply -f https://cloud.weave.works/k8s/scope.

yaml?k8s- version=$(kubectl version | base64 | tr -d '\n')

Route all Pod network (Weave) 10.96.0.0/16 traffic over the

WireGuard VPN. Do this on each server in the Cluster 10.0.1.1 on the first

node, 10.0.1.2 on the second, and 10.0.1.3 on the third.

$ ip route add 10.96.0.0/16 dev wg0 src 10.0.1.1

Persist this route with the following file on each server, replacing

10.0.1.1 with the VPN interface corresponding to the server:

$ cat <<EOF >/etc/systemd/system/overlay-route.service

[Unit]

Description=Overlay network route for Wireguard

After=wg-quick@wg0.service

20 www.weave.works/oss/net/
21 www.weave.works/docs/scope/latest/introducing/

Chapter 3 Development environment

http://www.weave.works/oss/net/
http://www.weave.works/docs/scope/latest/introducing/

87

[Service]

Type=oneshot

User=root

ExecStart=/sbin/ip route add 10.96.0.0/16 dev wg0 src 10.0.1.1

[Install]

WantedBy=multi-user.target

EOF

Apply the new configuration on each server:

$ systemctl enable overlay-route.service

 Join Worker Nodes
The second and third servers are Kubernetes worker Nodes. Log in to

each server and run the join command provided after the master Node

installation.

$ kubeadm join 10.0.1.1:6443 --token REDACTED --discovery-

token-ca-cert-hash REDACTED

Adding additional nodes requires only that the server meets the

minimum hardware specifications of 2 CPUs and 2 GB RAM, along with

the WireGuard, Docker, and Kubernetes applications installed previously

in this section. Additional Nodes must be added to the WireGuard VPN

network along with routing the Pod network’s IP subnet 10.96.0.0/16

over its interface.

 DNS
This custom Kubernetes development Cluster does not sit behind a

sophisticated (and often expensive) load balancer; instead, it uses a basic

DNS round-robin technique to distribute requests across the Cluster.

Chapter 3 Development environment

88

Implement DNS round-robin by adding multiple DNS A records for

the same hostname. The development Cluster has two A records, each

pointing to the public IP address of a worker Node using the wildcard

hostname *.dev1 (see Figure 3-9). Wild cards allow any number of

 *.dev1.apk8s.dev subdomains to resolve to nodes on the Cluster. Refer to

your domain name/DNS provider for instructions on adding A records.

Next, add an additional A record api.cluster.dev1.apk8s.dev for the

Kubernetes API pointed to the public IP of the master node (node 1).

 Remote Access
The “k3s + GitLab” section covered one method of configuring kubectl

for remote access by copying and pasting the Cluster, user, and context

sections of a generated config. The following instructions give an

alternative method of configuring kubectl.

After installing the master Node, kubeadm provided instructions for

copying a generated kubectl configuration to $HOME/.kube/config.

Logged in as root on the master Node, this path will resolve to /root/.

kube/config. Secure copy the kubeadm-generated configuration to a

location workstation with the following command:

$ scp root@api.cluster.dev1.apk8s.dev:/root/.kube/config

~/.kube/apk8s- dev1

Figure 3-9. Development Cluster DNS

Chapter 3 Development environment

89

Open the file and replace the IP address 10.0.1.1 with api.cluster.
dev1.apk8s.dev. Optionally, change the context kubernetes-admin@

kubernetes to something more descriptive. The following commands use

the command sed to edit the file inline:

$ sed -i .bak \

 's/10.0.1.1/api.cluster.dev1.apk8s.dev/g' \

 ~/.kube/apk8s-dev1

$ sed -i .bak 's/kubernetes-admin@kubernetes/apk8s-dev1/g'

~/.kube/apk8s-dev1

In the same terminal, set the environment variable KUBECONFIG to

 ~/.kube/apk8s-dev1:

$ export KUBECONFIG=~/.kube/apk8s-dev1

Exporting an environment variable makes it available for the current

terminal session only. Although this is not the most efficient method

of switching kubectl contexts, it’s a good option when working with a

large number of Clusters and prevents the default ~/.kube/config from

becoming overly cluttered. Test the new configuration and context:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

dosf2-n01 Ready master 15m v1.15.0

dosf2-n02 Ready <none> 11m v1.15.0

dosf2-n03 Ready <none> 11m v1.15.0

The new development Cluster is ready for the configuration of

additional components to satisfy the dependencies in the remainder of

this book. TLS Certificates, persistent storage, and Ingress are essential

requirements for the IoT, Machine Learning, and Blockchain capabilities

added later on. The next section, “Configuration,” covers the organization

Chapter 3 Development environment

90

and application of YAML manifests used to satisfy these requirements and

makes use of the new GitLab instance for keeping them versioned and

documented.

 Configuration
Kubernetes supports declarative configuration; this means we tell

Kubernetes what we want it to be, as opposed to issuing a list of commands

required to achieve a state. This book uses YAML to describe the desired

state for Kubernetes; this state is a collection of Deployments, StatefulSets,

ConfigMaps, Services, and others that make up the operational Platform.

Keeping state configuration as a set of static YAML files in a Git repository

will not only reflect the current state of the Platform but provide a valuable

commit log of changes over time.

There is a growing ecosystem in configuration management

techniques and utilities for enterprise software platforms. This book

attempts to keep things simple by sticking with plain YAML as the standard

means of configuration. This book demonstrates a straightforward method

for organizing Kubernetes configuration manifests describing various

applications added to the Platform. As the platform and configuration

needs grow, more sophisticated configuration tools may be layered in,

such as Jsonnet,22 Kapitan,23 or Kustomize.24 New concepts like GitOps25

aim to completely manage the active configuration state directly with Git.

Kubernetes provides endless ways to manage configuration creatively.

However, starting with a well-organized directory structure categorized

by environment, namespace, component, and object type provides a sane

foundation to build on.

22 https://jsonnet.org/
23 https://github.com/deepmind/kapitan
24 https://github.com/kubernetes-sigs/kustomize
25 www.weave.works/technologies/gitops/

Chapter 3 Development environment

https://jsonnet.org/
https://github.com/deepmind/kapitan
https://github.com/kubernetes-sigs/kustomize
http://www.weave.works/technologies/gitops/

91

 Repository
Now that the development Cluster is operational and kubectl can access

it from the local workstation, a series of YAML files containing additional

configuration for Namespaces, Volumes, Ingress, and monitoring are

applied to the Cluster. Developing the Cluster produces a growing number

of YAML configuration files. These configuration files (or manifests) not

only define the desired state for Kubernetes, they provide verbose and

accurate documentation for developers and systems administrators,

especially when accompanied by supplemental (README.md) markdown-

style documentation.

The configuration manifests and documentation in this book is

organized in the self-hosted GitLab repository installed in the previous

chapter. A GitLab group named apk8s holds the project k8s. A common

method for organizing multiple Kubernetes-based project is to nest them

under GitLab groups, each project having a dedicated k8s repository. An

example of two separate platform projects may include https://gitlab.

apk8s.dev/apk8s/k8s, holding the Cluster configs for this platform,

and https://gitlab.apk8s.dev/another-platform/k8s, holding the

Kubernetes configs for “another-platform”.

Note Github provides the feature Organizations, with similar
functionality to Gitlab groups.

Once the group apk8s and project k8s are set up in GitLab, make a

directory on the local workstation that matches the group (apk8s) and

clone the new project into it.

$ mkdir -p ~/workspace/apk8s

$ cd ~/workspace/apk8s

$ git clone ssh://git@gitlab.apk8s.dev:32222/apk8s/k8s.git

$ cd k8s

Chapter 3 Development environment

https://gitlab.apk8s.dev/apk8s/k8s
https://gitlab.apk8s.dev/apk8s/k8s
https://gitlab.apk8s.dev/another-platform/k8s

92

Note if developing multiple projects on the same cluster, it is
recommended to store cluster-wide configuration as a separate
group such as devops/k8s and refer each project to it for cluster-
wide requirements and documentation.

Create a directory to hold Cluster-wide configurations. These

configurations are specific to Cluster (cluster-apk8s-dev1).

$ mkdir -p cluster-apk8s-dev1/000-cluster

 Ingress
In this platform the majority of Kubernetes Services26 are assigned a

ClusterIP and are only accessible from within the cluster. Kubernetes

Ingress allows external HTTP and HTTPS connections to Services within

the Cluster. The Kubernetes Ingress Resource defines a configuration that

must be backed by an Ingress controller.

Kubernetes does not provide a default Ingress controller, leaving this

decision for administrators and systems architects to pick one that best

fits the needs of the platform. There are a large number of capable Ingress

controllers available. In the previous chapter, Traefik came packaged with

the k3s Kubernetes distribution and demonstrated its use by servicing a

GitLab installation. This chapter configures the new dev1 cluster with an

Ingress Nginx27 controller demonstrating variety for Ingress options.

26 https://kubernetes.io/docs/concepts/services-networking/service/
27 https://kubernetes.github.io/ingress-nginx/

Chapter 3 Development environment

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.github.io/ingress-nginx/

93

This chapter builds configurations from the directory ~/workspace/

apk8s/k8s cloned from the k8s repository and GitLab group apk8s set up

in the previous section. From this location create a directory to store the

Ingress Nginx configuration manifests:

$ mkdir -p cluster-apk8s-dev1/000-cluster/00-ingress-nginx

$ cd cluster-apk8s-dev1/000-cluster/00-ingress-nginx

Create a configuration file for the Ingress Nginx namespace called

00-namespace.yml from Listing 3-1.

Listing 3-1. Ingress Nginx Namespace

apiVersion: v1

kind: Namespace

metadata:

 name: ingress-nginx

Apply the Ingress Nginx Namespace configuration:

$ kubectl apply -f 00-namespace.yml

Create a configuration file describing Role-Based Access Control

(RBAC) Kubernetes Service Account for Ingress Nginx named

05-serviceaccount.yml from Listing 3-2.

Listing 3-2. Ingress Nginx RBAC Service Account

apiVersion: v1

kind: ServiceAccount

metadata:

 name: nginx-ingress-serviceaccount

 namespace: ingress-nginx

Apply the Ingress Nginx Service Account configuration:

$ kubectl apply -f 05-serviceaccount.yml

Chapter 3 Development environment

94

Create a configuration file describing an RBAC Cluster Role for Ingress

Nginx named 06-clusterrole.yml from Listing 3-3.

Listing 3-3. RBAC Ingress Nginx Cluster Role

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRole

metadata:

 name: nginx-ingress-clusterrole

rules:

 - apiGroups: [""]

 resources: ["configmaps",

 "endpoints",

 "nodes",

 "pods",

 "secrets"]

 verbs: ["list", "watch"]

 - apiGroups: [""]

 resources: ["nodes"]

 verbs: ["get"]

 - apiGroups: [""]

 resources: ["services"]

 verbs: ["get", "list", "watch"]

 - apiGroups: ["extensions"]

 resources: ["ingresses"]

 verbs: ["get","list","watch"]

 - apiGroups: [""]

 resources: ["events"]

 verbs: ["create", "patch"]

 - apiGroups: ["extensions"]

 resources: ["ingresses/status"]

 verbs: ["update"]

Chapter 3 Development environment

95

Apply the Ingress Nginx Cluster Role configuration:

$ kubectl apply -f 06-clusterrole.yml

Create a configuration file describing an RBAC Role for Ingress Nginx

named 07-role.yml from Listing 3-4.

Listing 3-4. RBAC Ingress Nginx Role

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: Role

metadata:

 name: nginx-ingress-role

 namespace: ingress-nginx

rules:

 - apiGroups: [""]

 resources: ["configmaps",

 "pods",

 "secrets",

 "namespaces"]

 verbs: ["get"]

 - apiGroups: [""]

 resources: ["configmaps"]

 resourceNames:

 - "ingress-controller-leader-nginx"

 verbs: ["get", "update"]

 - apiGroups: [""]

 resources: ["configmaps"]

 verbs: ["create"]

 - apiGroups: [""]

 resources: ["endpoints"]

 verbs: ["get"]

Chapter 3 Development environment

96

Apply the Ingress Nginx Role configuration:

$ kubectl apply -f 07-role.yml

Create a configuration file describing an RBAC Role Binding for Ingress

Nginx named 08-rolebinding.yml from Listing 3-5.

Listing 3-5. RBAC Ingress Nginx Role Binding

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: RoleBinding

metadata:

 name: nginx-ingress-role-nisa-binding

 namespace: ingress-nginx

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: nginx-ingress-role

subjects:

 - kind: ServiceAccount

 name: nginx-ingress-serviceaccount

 namespace: ingress-nginx

Apply the Ingress Nginx Role Binding configuration:

$ kubectl apply -f 08-rolebinding.yml

Create a configuration file describing an RBAC Cluster Role Binding for

Ingress Nginx named 09-clusterrolebinding.yml from Listing 3-6.

Listing 3-6. RBAC Ingress Nginx Cluster Role Binding

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: ClusterRoleBinding

metadata:

Chapter 3 Development environment

97

 name: nginx-ingress-clusterrole-nisa-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: nginx-ingress-clusterrole

subjects:

 - kind: ServiceAccount

 name: nginx-ingress-serviceaccount

 namespace: ingress-nginx

Apply the Ingress Nginx Cluster Role Binding configuration:

$ kubectl apply -f 09-clusterrolebinding.yml

Create a configuration file describing two Kubernetes Services for

Ingress Nginx named 10-services.yml from Listing 3-7.

Listing 3-7. Ingress Nginx Services

apiVersion: v1

kind: Service

metadata:

 name: default-http-backend

 namespace: ingress-nginx

 labels:

 app: default-http-backend

spec:

 ports:

 - port: 80

 targetPort: 8080

 selector:

 app: default-http-backend

Chapter 3 Development environment

98

apiVersion: v1

kind: Service

metadata:

 name: ingress-nginx

 namespace: ingress-nginx

spec:

 type: NodePort

 ports:

 - name: http

 port: 80

 targetPort: 80

 protocol: TCP

 - name: https

 port: 443

 targetPort: 443

 protocol: TCP

 selector:

 app: ingress-nginx

Apply the Ingress Nginx Services configuration:

$ kubectl apply -f 10-services.yml

Create a configuration file describing three empty Kubernetes

ConfigMaps for Ingress Nginx named 20-configmaps.yml from Listing 3-8.

Listing 3-8. Ingress Nginx Services ConfigMaps

kind: ConfigMap

apiVersion: v1

metadata:

 name: nginx-configuration

 namespace: ingress-nginx

 labels:

Chapter 3 Development environment

99

 app: ingress-nginx

kind: ConfigMap

apiVersion: v1

metadata:

 name: tcp-services

 namespace: ingress-nginx

kind: ConfigMap

apiVersion: v1

metadata:

 name: udp-services

 namespace: ingress-nginx

Apply the Ingress Nginx ConfigMaps configuration:

$ kubectl apply -f 20-configmaps.yml

Create a configuration file describing a Kubernetes Deployment for a

default HTTP back-end server named 30-deployment.yml from Listing 3-9.

Listing 3-9. Ingress Nginx Deployment. Default back ends

apiVersion: apps/v1

kind: Deployment

metadata:

 name: default-http-backend

 labels:

 app: default-http-backend

 namespace: ingress-nginx

spec:

 replicas: 2

 revisionHistoryLimit: 1

 selector:

Chapter 3 Development environment

100

 matchLabels:

 app: default-http-backend

 template:

 metadata:

 labels:

 app: default-http-backend

 spec:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 100

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - default-http-backend

 topologyKey: kubernetes.io/hostname

 terminationGracePeriodSeconds: 60

 containers:

 - name: default-http-backend

 image: gcr.io/google_containers/defaultbackend:1.4

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 30

 timeoutSeconds: 5

 ports:

Chapter 3 Development environment

101

 - containerPort: 8080

 resources:

 limits:

 cpu: 10m

 memory: 20Mi

 requests:

 cpu: 10m

 memory: 20Mi

Apply the Ingress Nginx default HTTP server back-end configuration

Deployment:

$ kubectl apply -f 30-deployment.yml

Finally, create a configuration file describing a Kubernetes DaemonSet

for the Ingress Nginx controller named 40-daemonset.yml from Listing 3-10.

The DaemonSet instructs Kubernetes to ensure one Ingress Nginx controller

is running on each node. Ingress Nginx controller listens on TCP ports 80

(HTTP) and 443 (HTTPS). Earlier in this chapter, the section DNS configured

two A records for *.dev1.apk8s.dev, pointed to each worker node.

Note the custom Kubernetes development cluster defined in this
chapter does not use a loadBalancer28 and relies on DnS records to
point to each worker node. Using a DaemonSet ensures that each
worker node has an nginx ingress pod listening on ports 80 (http)
and 443 (httpS).

28 https://kubernetes.io/docs/tasks/access-application-cluster/
create-external-load-balancer/

Chapter 3 Development environment

https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/

102

Listing 3-10. Ingress Nginx DaemonSet

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: nginx-ingress-controller

 namespace: ingress-nginx

spec:

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: ingress-nginx

 template:

 metadata:

 labels:

 app: ingress-nginx

 annotations:

 prometheus.io/port: '10254'

 prometheus.io/scrape: 'true'

 spec:

 serviceAccountName: nginx-ingress-serviceaccount

 hostNetwork: true

 containers:

 - name: nginx-ingress-controller

 image: quay.io/kubernetes-ingress-controller/nginx-

ingress- controller:0.14.0

 args:

 - /nginx-ingress-controller

 - --default-backend-service=$(POD_NAMESPACE)/

default-http- backend

 - --configmap=$(POD_NAMESPACE)/nginx-configuration

Chapter 3 Development environment

103

 - --tcp-services-configmap=$(POD_NAMESPACE)/tcp-

services

 - --udp-services-configmap=$(POD_NAMESPACE)/udp-

services

 - --annotations-prefix=nginx.ingress.kubernetes.io

 env:

 - name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 ports:

 - name: http

 containerPort: 80

 hostPort: 80

 - name: https

 containerPort: 443

 hostPort: 443

 livenessProbe:

 failureThreshold: 3

 httpGet:

 path: /healthz

 port: 10254

 scheme: HTTP

 initialDelaySeconds: 10

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 1

Chapter 3 Development environment

104

 readinessProbe:

 failureThreshold: 3

 httpGet:

 path: /healthz

 port: 10254

 scheme: HTTP

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 1

 securityContext:

 runAsNonRoot: false

Apply the Ingress Nginx default HTTP server back-end configuration

Deployment:

$ kubectl apply -f 40-daemonset.yml

Ingress Nginx is now configured and running on the new development

cluster, ready to accept web traffic through ports 80 and 443 on each node.

This exercise built each configuration manifest and stored it for the Cluster

in the directory ~/workspace/apk8s/k8s/cluster-apk8s-dev1/000-

cluster/00- ingress- nginx. This set of Ingress Nginx configuration

manifests accurately represents the current or desired state of the

Cluster, additionally providing documentation to others and the ability to

reproduce this state at a later time, or on another cluster.

Finally, the Development Cluster needs the ability to generate TLS

certificates that Ingress Nginx can use to service encrypted HTTPS (port

443) traffic. The next section, “TLS/HTTPS with Cert Manager,” covers

setting up the Cert Manager to generate free TLS certificates automatically

with Let’s Encrypt.

Chapter 3 Development environment

105

 TLS/HTTPS with Cert Manager
Cert Manager is used “to automate the management and issuance of

TLS certificates from various issuing sources.”29 This book utilizes Let’s

Encrypt30 for secure, free TLS certificate issuance, later configured with a

Cert Manager custom resource called a ClusterIssuer. Create the directory

~/workspace/apk8s/k8s/cluster-apk8s-dev1/000-cluster/10-cert-

manager for the Cert Manager configuration manifests.

Create the file 00-namespace.yml with the contents of Listing 3-11.

Listing 3-11. Cert Manager Namespace

apiVersion: v1

kind: Namespace

metadata:

 name: cert-manager

 labels:

 certmanager.k8s.io/disable-validation: "true"

Apply the new namespace for Cert Manager:

$ kubectl apply -f 00-namespace.yml

Get Cert Manager’s custom resource definitions (CRDs) and save them

to the file 02-crd.yml:

$ curl -L https://github.com/jetstack/cert-manager/releases/

download/v0.8.0/cert-manager.yaml >02-crd.yml

Apply the Cert Manager CRDs:

$ kubectl apply -f 02-crd.yml

29 Automatically Provision and Manage TLS Certificates in Kubernetes: Jetstack/
Cert-Manager. Jetstack, 2019. https://github.com/jetstack/cert-manager.

30 https://letsencrypt.org/

Chapter 3 Development environment

https://github.com/jetstack/cert-manager
https://letsencrypt.org/

106

Cert Manager is installed. Ensure all Pods supporting cert manager

have achieved the Running status (kubectl get pods -n cert-manager).

Cert Manager defined new custom resources called ClusterIssuer

and Certificate, among others. A Certificate describes the desired TLS

certificate and the use of an Issuer to retrieve the TLS certificate from

an authority such as Let’s Encrypt. This book uses a ClusterIssuer for all

Certificates, but you can read more about Issuers and ClusterIssuer in Cert

Manager’s official documentation.

Create the file 03-clusterissuer.yml with the contents of Listing 3-12.

Listing 3-12. Cert Manager Cluster Issuer

apiVersion: certmanager.k8s.io/v1alpha1

kind: ClusterIssuer

metadata:

 name: letsencrypt-production

spec:

 acme:

 server: https://acme-v02.api.letsencrypt.org/directory

 email: YOUR_EMAIL_ADDRESS

 privateKeySecretRef:

 name: letsencrypt-production

 http01: {}

Apply the Cert Manager ClusterIssuer:

$ kubectl apply -f 03-clusterissuer.yml

Any namespace in the Cluster can use the new ClusterIssuer. Get a

list of ClusterIssuers with the command: kubectl get clusterissuers.

Later sections use this new ClusterIssuer letsencrypt-production

when defining Certificates (stored as Kubernetes Secrets) used for TLS

communication by Ingress Nginx.

Chapter 3 Development environment

107

The new development Cluster is now able to accept inbound HTTP

and HTTPS and perform automatic generation of TLS certificates. The

final essential requirement for a suitable development environment is

persistent storage, covered in the next section.

 Persistent Volumes with Rook Ceph
Persistent storage is an essential and often tricky requirement for some

Kubernetes deployments. Kubernetes Pods are considered transient and

their file systems along with them. External databases are a great way to

persist data obtained by an application container in a Pod. However, some

Pods may represent databases or filesystems themselves, and therefore any

connected data volumes must survive beyond the lifespan of the Pod itself.

This section enables Kubernetes Persistent Volumes31 backed by

Ceph32 orchestrated by Rook.33 Ceph is a distributed storage cluster,

providing Kubernetes Persistent Volumes for object-, block-, and

filesystem-based storage. The Rook operator is used to install and manage

Ceph behind the scenes.

The following instructions install the Rook operator and create two

storage classes (block and filesystem) for use by Kubernetes Persistent

Volumes. The official Rook documentation for Ceph34 suggests starting

with their example configuration manifests and customizing them

where desired. Keeping consistent with the previous examples, create

the directory: ~/workspace/apk8s/k8s/cluster-apk8s-dev1/000-

cluster/20-rook- ceph. Download the Rook custom resource definitions

(CRDs), operator, cluster, and toolbox deployments from the following.

31 https://kubernetes.io/docs/concepts/storage/persistent-volumes/
32 https://ceph.com/
33 https://rook.io/
34 https://rook.io/docs/rook/v1.0/ceph-examples.html

Chapter 3 Development environment

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://ceph.com/
https://rook.io/
https://rook.io/docs/rook/v1.0/ceph-examples.html

108

Get the Rook Ceph Namespace CRDs and save them to the file

00-namespace-crd.yml:

$ curl -L \

https://github.com/rook/rook/raw/release-1.0/cluster/examples/

kubernetes/ceph/common.yaml >00-namespace-crd.yml

Apply the Rook Ceph Namespace and custom resource definitions:

$ kubectl apply -f 00-namespace-crd.yml

Get the Rook Ceph Operator Deployment configuration and save it to

the file 30-deployment-oper.yml:

$ curl -L \

https://github.com/rook/rook/raw/release-1.0/cluster/examples/

kubernetes/ceph/operator.yaml >30-deployment-oper.yml

Apply the Rook Ceph Operator Deployment:

$ kubectl apply -f 30-deployment-oper.yml

Get the example Rook Ceph Cluster configuration and save it to the file

60-cluster-rook-ceph.yml:

$ curl -L \

https://github.com/rook/rook/raw/release-1.0/cluster/examples/

kubernetes/ceph/cluster-test.yaml >60-cluster-rook-ceph.yml

Apply the Rook Ceph Cluster Deployment configuration:

$ kubectl apply -f 60-cluster-rook-ceph.yml

Get the Rook Ceph toolbox Deployment configuration and save it to

the file 30-deployment-toolbox.yml:

$ curl -L \

https://github.com/rook/rook/raw/release-1.0/cluster/examples/

kubernetes/ceph/toolbox.yaml >30-deployment-toolbox.yml

Chapter 3 Development environment

109

Apply the Rook Ceph Cluster toolbox Deployment configuration:

$ kubectl apply -f 30-deployment-toolbox.yml

The rook-ceph Namespace now contains Pods for managing the

underlying Ceph cluster along with the ability to provision Persistent

Volumes from Persistent Volume Claims.

View the list of Pods running in the rook-ceph Namespace (kubectl

get pods -n rook-ceph); the Pod prefixed with rook-ceph-tools-

contains the ceph command-line utility. Execute the bash shell on this Pod

and then issue the command ceph status to view the status of the new

storage cluster.

$ kubectl exec -it rook-ceph-tools-5f49756bf-m6dxv \

-n rook-ceph bash

$ ceph status

Example output:

 cluster:

 id: f67747e5-eb2a-4301-8045-c1e210488433

 health: HEALTH_OK

 services:

 mon: 1 daemons, quorum a (age 22m)

 mgr: a(active, since 21m)

 osd: 2 osds: 2 up (since 21m), 2 in (since 21m)

 data:

 pools: 0 pools, 0 pgs

 objects: 0 objects, 0 B

 usage: 9.1 GiB used, 107 GiB / 116 GiB avail

 pgs:

Chapter 3 Development environment

110

 Block Storage

Pods requiring Persistent Volumes may do so through Kubernetes

Persistent Volume Claims (PVCs). PVCs require a defined Storage Class

used by Rook to provision a Persistent Volume.

Set up a new StorageClass called rook-ceph-block backed by a

CephBlockPool able to provision Persistent Volumes from Persistent

Volume Claim requests.

If continuing from the previous section, create the file 70-rook-ceph-

block.yml in the directory ~/workspace/apk8s/k8s/cluster-apk8s-

dev1/000- cluster/20-rook-ceph with the contents of Listing 3-13.

Listing 3-13. CephBlockPool and StorageClass

apiVersion: ceph.rook.io/v1

kind: CephBlockPool

metadata:

 name: replicapool

 namespace: rook-ceph

spec:

 failureDomain: host

 replicated:

 size: 1

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: rook-ceph-block

provisioner: ceph.rook.io/block

parameters:

 blockPool: replicapool

 clusterNamespace: rook-ceph

 fstype: xfs

reclaimPolicy: Delete

Chapter 3 Development environment

111

Apply the CephBlockPool and StorageClass configuration:

$ kubectl apply -f 70-rook-ceph-block.yml

The development cluster now supports Persistent Volume Claims

(PVCs) commonly used by (but not limited to) Kubernetes StatefulSets.

Later on, this book uses PVCs for Stateful applications such as

databases, data indexes, and event queues. The next section covers the

implementation of a cluster-wide shared filesystem backed by Ceph.

 Shared Filesystem

Shared filesystems provide opportunities to separate responsibility around

the management of files. Shared filesystems allow scenarios where one set

of Pods may enable users to upload files such as images, while another set

of Pods retrieves and processes them. Although there are many other ways

to share files across deployments, a shared filesystem backed by Ceph

empowers flexible options in architecting a data-centric platform in the

Cluster.

Create the file 75-rook-ceph-clusterfs.yml in the directory

~/workspace/apk8s/k8s/cluster-apk8s-dev1/000-cluster/20-rook-ceph

with the contents of Listing 3-14.

Listing 3-14. CephFilesystem

apiVersion: ceph.rook.io/v1

kind: CephFilesystem

metadata:

 name: rook-ceph-clusterfs

 namespace: rook-ceph

spec:

 metadataPool:

 replicated:

 size: 1

Chapter 3 Development environment

112

 dataPools:

 - failureDomain: host

 replicated:

 size: 2

 metadataServer:

 activeCount: 1

 activeStandby: true

Apply the CephFilesystem configuration:

$ kubectl apply -f 75-rook-ceph-clusterfs.yml

The Development Cluster is now able to accept and route inbound web

traffic with Ingress Nginx, create and use TLS certificates with Cert Manager

and Let’s Encrypt, provision Persistent Volume Claims, and offer a shared

filesystem with Rook and Ceph. It may seem like a lot of effort to bring this

custom Kubernetes Cluster up with these essential capabilities when the

major cloud providers offer much of this stack in turnkey solutions. However,

the development cluster configured in this chapter can run on nearly any

provider, making it truly portable, cloud native, and vendor neutral.

The development cluster is complete in that it can support the majority

of the required functionality for the Blockchain, Machine Learning, and

IoT data processing components in this book.

The next section briefly covers monitoring. Monitoring is not an

operational requirement but a crucial utility for the management of the

Cluster, providing administrative metrics on performance and resource

utilization.

 Monitoring
The ecosystem of Kubernetes monitoring solutions is vast and matures

daily. From commercial offerings to novel and niche open source projects,

the realm of Cluster monitoring is well covered in books, blogs, and

tutorials on Kubernetes administration.

Chapter 3 Development environment

113

This section sets up a minimal monitoring solution using the

open source project kube-prometheus by CoreOS.35 Production

environments would likely have far more customized monitoring and

alerting configurations. Therefore, the monitoring component of the

development Cluster is not something that requires reproducibility in

other environments. For this reason, it is only necessary to document

the imperative commands used to create the development Cluster’s

monitoring solution.

In keeping with the organization of Cluster configuration from

previous sections, create the directory ~/workspace/apk8s/k8s/cluster-

apk8s- dev1/000-cluster/30-monitoring, adding the file README.md with

the contents of Listing 3-15.

Listing 3-15. Monitoring README

kube-prometheus

Installation guide for the **monitoring** namespace.

```bash

git clone git@github.com:coreos/kube-prometheus.git

cd kube-prometheus

git checkout v0.1.0

kubectl create -f manifests/

# Verify the resources are ready before proceeding.

until kubectl get customresourcedefinitions servicemonitors.

monitoring.coreos.com ; do date; sleep 1; echo ""; done

until kubectl get servicemonitors --all-namespaces ; do date; 

sleep 1; echo ""; done

35 https://github.com/coreos/kube-prometheus

Chapter 3  Development environment

https://github.com/coreos/kube-prometheus


114

# Apply the manifests.

# This command sometimes may need to be done twice

# (to work around a race condition).

kubectl apply -f manifests/

```

Execute each of the commands between the ```bash and ```. The

instructions in the new README.md clone the kube-prometheus project,

create new custom resource definitions for the CoreOS Prometheus,

and apply several deployments representing the components needed to

monitor the Cluster with Prometheus and Grafana.

There is no need to track the cloned kube-prometheus project with

the rest of the development cluster configuration manifests. Exclude the

kube-prometheus project with a Git ignore file (cd ../ && echo "kube-

prometheus" >.gitignore).

Note Documenting commands in markdown format provides
instruction that is human readable as raw text or rendered as
formatted html when browsing the repository in Gitlab (or Github).

Visually monitor the new cluster by port-forwarding Grafana to a local

workstation:

$ kubectl --namespace monitoring \

port-forward svc/grafana 3000

Open http://localhost:3000 on a local workstation, and log in to

Grafana with the default administrator credentials, username: admin,

password: admin. Explore the prebuilt dashboards for monitoring many

aspects of the Kubernetes cluster, including Nodes, Namespaces, and

Pods.

Chapter 3 Development environment

115

Note the prometheus operator uses the custom resource definition
(CrD) Servicemonitor to configure targets for scraping metrics.
to customize prometheus monitoring this cluster, first review the
preinstalled Servicemonitors with kubectl get ServiceMonitor -n
monitoring and review the official Servicemonitor documentation.36

 Summary
This chapter set up a small custom Kubernetes development Cluster

with support for Ingress, automatic TLS certificate generation, block

and filesystem storage, and essential monitoring. The configuration files

developed in this chapter are intended to be committed to a Git repository

(and optionally hosted on the GitLab instance set up in the previous chapter).

The process of developing a platform as a collection of domain-

specific functionality such as Machine Learning, Blockchain, and IoT data

management tied together with custom applications benefits from a well-

integrated DevOps toolchain connected to this new development cluster.

The next chapter covers CI/CD and combines the GitLab installation from

Chapter 2 with this new development Cluster.

Note listing 3-16 displays the final list and organization of the
configuration files developed through the course of this chapter.
Starting from the directory ~/workspace/apk8s/k8s, listing 3-16
represents the current state of the repository cloned from the Gitlab
group apk8s and the project k8s.

36 https://github.com/coreos/prometheus-operator/blob/master/
Documentation/api.md#servicemonitorspec

Chapter 3 Development environment

https://github.com/coreos/prometheus-operator/blob/master/Documentation/api.md#servicemonitorspec
https://github.com/coreos/prometheus-operator/blob/master/Documentation/api.md#servicemonitorspec

116

Listing 3-16. Development Cluster configuration layout

.

└── cluster-apk8s-dev1
 └── 000-cluster
 ├── 00-ingress-nginx
 │ ├── 00-namespace.yml
 │ ├── 05-serviceaccount.yml
 │ ├── 06-clusterrole.yml
 │ ├── 07-role.yml
 │ ├── 08-rolebinding.yml
 │ ├── 09-clusterrolebinding.yml
 │ ├── 10-services.yml
 │ ├── 20-configmaps.yml
 │ ├── 30-deployment.yml
 │ └── 40-daemonset.yml
 ├── 10-cert-manager
 │ ├── 00-namespace.yml
 │ ├── 02-crd.yml
 │ └── 03-clusterissuer.yml
 ├── 20-rook-ceph
 │ ├── 00-namespace-crd.yml
 │ ├── 30-deployment-oper.yml
 │ ├── 30-deployment-toolbox.yml
 │ ├── 60-cluster-rook-ceph.yml
 │ ├── 70-rook-ceph-block.yml
 │ └── 75-rook-ceph-clusterfs.yml
 └── 30-monitoring
 └── README.md

Chapter 3 Development environment

117© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_4

CHAPTER 4

In-Platform CI/CD
CI/CD stands for both continuous integration and delivery, and

continuous integration and deployment. Continuous delivery consists of

processes that compile, or otherwise prepare, code into a suitable release,

while continuous deployment installs or updates existing applications

(typically on servers) through automated processes. CI/CD continues

to mature and widen its scope, from low-level development concerns

to central platform operations. It has expanded beyond the limited

focus of merging and compiling applications for stand-alone software

packages. CI/CD is gaining new ground, deploying machine learning

models, serverless functions, even so far as infrastructure provisioning.

This chapter leverages CI/CD to develop and deliver containers used

for enabling data science capabilities within the scope of an application

platform. GitLab is used in this chapter to provide CI/CD capabilities for

both platform development and production operations.

 Development and Operations
CI/CD principles have expanded from the isolated build and delivery

systems powering the development of traditional software applications.

CI/CD concepts are expanding into the operational components of

enterprise platforms. The fields of Data Science and specifically Machine

Learning have a wide range of implementations and specialized

processes just beginning to emerge from academic labs to cloud-based

https://doi.org/10.1007/978-1-4842-5611-4_4#DOI

118

production deployments. Machine Learning automation has embraced

containerization, and the automated building of containers to wrap

complex logic and dependencies. CI/CD-style pipelines are well suited for

the experimentation, testing, and production deployment of containerized

artificial intelligence, lowering the cost and complexity of deployment and

rollback capabilities.

 Platform Integration
This chapter integrates GitLab with Kubernetes to form closer

relationships between platform development and operations. Building

containers from versioned source code from within the Kubernetes cluster

opens new opportunities for access to platform functionality at all stages of

integration, delivery, and deployment.

In Chapter 2, Figure 2-3 illustrates the relationship between a GitLab

instance running on a single-node Kubernetes (k3s) cluster and a remote

development cluster controlled externally through git and kubectl

commands. Integrating the capabilities of git and kubectl from within the

platform provides opportunities to bring development capabilities into the

platform. Kubeflow is a popular machine learning automation platform

that embraces much of this concept through custom JupyterLab1 images

containing kubectl. JupyterLab images are provisioned by JupyterHub2

and mount a Kubernetes service account with RBAC defined permissions.

The following exercise borrows some these concepts to demonstrate

CI/CD integration with Data Science capabilities as a starting point for

more in-depth customization (see Figure 4-1).

1 https://jupyterlab.readthedocs.io
2 https://jupyterhub.readthedocs.io

Chapter 4 In-platform CI/CD

https://jupyterlab.readthedocs.io
https://jupyterhub.readthedocs.io

119

 Yet Another Development Cluster
This chapter uses a four-node custom Kubernetes cluster setup at Scaleway3

(a European discount cloud provider). Although many examples in this book

use different providers, it is not necessary to spread services across providers,

aside from demonstrating a vendor-neutral approach and portability of

concepts and implementation. Scaleway is a cost-effective option for testing

experimenting with various cluster configurations. The following cluster uses

one DEV1-M (3 CPU/4G RAM/40G SSD) for the Kubernetes master node

and three DEV1-L (4 CPU/8G RAM/80GB) for worker nodes. The total cost

for this development cluster is just under 0.20 USD per hour at the time of

this writing. Scaleway presents a user interface and options similar to Vultr

and Digital Ocean. The instructions from the “Development Environment”

chapter may be applied to Scaleway and many other vendors.

Figure 4-1. CI/CD integration with GitLab and JupyterLab

3 www.scaleway.com

Chapter 4 In-platform CI/CD

http://www.scaleway.com

120

The remainder of this chapter uses GitLab to host a repository

containing a Dockerfile customizing the base JupyterLab image with new

data science and machine learning capabilities along with the kubectl

command. This image is built with GitLab’s CI features and hosted in

the GitLab image registry. Chapter 2 walks through setting up GitLab on

single-node Kubernetes cluster; however, any GitLab instance is suitable.

 RBAC
GitLab uses a service account token with cluster-admin privileges. Keep

in mind that GitLab integration “security is based on a model where

developers are trusted, so only trusted users should be allowed to control

your clusters.”4

In keeping with the organization of manifests from Chapters 2 and 3,

create the directory cluster-apk8s-dev2/000-cluster/40-gitlab-

integration within the k8s git project.

Create a ServiceAccount and ClusterRoleBinding in a file named

05- rbac.yml from Listing 4-1.

Listing 4-1. ServiceAccount and ClusterRoleBinding for GitLab

 apiVersion: rbac.authorization.k8s.io/v1beta1

kind: RoleBinding

metadata:

 name: data-lab

 namespace: data-lab

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: data-lab

4 https://gitlab.apk8s.dev/help/user/project/clusters/index#security-
implications

Chapter 4 In-platform CI/CD

https://gitlab.apk8s.dev/help/user/project/clusters/index#security-implications
https://gitlab.apk8s.dev/help/user/project/clusters/index#security-implications

121

subjects:

 - kind: ServiceAccount

 name: data-lab

 namespace: data-lab

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: RoleBinding

metadata:

 name: hub

 namespace: data-lab

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: hub

subjects:

 - kind: ServiceAccount

 name: hub

 namespace: data

Apply the GitLab RBAC configuration:

$ kubectl apply -f 05-rbac.yml

 GitLab Group Kubernetes Access
Although GitLab’s Kubernetes integration is based on trusting developers,

not all projects/repositories, or developers, need access to Kubernetes.

GitLab allows individual projects or groups to each have individually

integrated Kubernetes clusters. This chapter creates a new group called

Data Science (ds) and integrates it with the new dev2 cluster set up on

Scaleway. Figure 4-2 demonstrates setting up a new GitLab group.

Chapter 4 In-platform CI/CD

122

 Configure Kubernetes Cluster Integration

Configure the new Data Science GitLab group to control a Kubernetes

cluster (see Figure 4-3):

 1. Select Kubernetes on left-side menu of the group.

 2. Choose the tab Add Existing Cluster.

 3. Provide a name for the cluster, in this case dev2.

 4. Provide the fully qualified URL to the Kubernetes

API exposed on the master node (e.g., https://

n1.dev2.apk8s.dev:6443).

Figure 4-2. Create GitLab group

Chapter 4 In-platform CI/CD

https://n1.dev2.apk8s.dev:6443
https://n1.dev2.apk8s.dev:6443

123

 5. Provide the cluster CA Certificate. The certificate

is easily found in the default-token in the default

Namespace. To retrieve the certificate in the

required PEM format, first list the Secrets in the

default Namespace: kubectl get secrets. If this is

a new cluster, the default-token will likely be the

only Secret. Use the following command, replacing

the <secret name> with the default-token:

kubectl get secret \

 $(kubectl get secret | grep default-token | awk

'{print $1}') -o jsonpath="{['data']['ca\.crt']}" \

| base64 --decode

 6. Provide the Service Token from the gitlab-admin

service account set up in the previous section. Use

the following command:

kubectl -n kube-system describe secret $(kubectl -n

kube-system get secret | grep gitlab-admin | awk

'{print $1}')

 7. Ensure that RBAC is enabled.

Chapter 4 In-platform CI/CD

124

 Enable Dependencies

This chapter uses a GitLab Runner5 installed on the dev2 cluster for

building custom containers with GitLab CI.6 Complete the Kubernetes

integration for the Data Science group (see Figure 4-4):

 1. Provide a base domain. Although unused in this

chapter, GitLab can use this base domain for Auto

DevOps7 and Knative8 integration. The setup for

dev2 follows DNS instructions from Chapter 3

by assigning multiple A records for *.dev2 with

Figure 4-3. GitLab group Kubernetes configuration menu

5 https://docs.gitlab.com/runner/
6 https://docs.gitlab.com/ce/ci/
7 https://docs.gitlab.com/ee/topics/autodevops/
8 https://knative.dev/

Chapter 4 In-platform CI/CD

https://docs.gitlab.com/runner/
https://docs.gitlab.com/ce/ci/
https://docs.gitlab.com/ee/topics/autodevops/
https://knative.dev/

125

the public IP address of each worker node. Any

subdomain of dev2.apk8s.dev will resolve to a

worker node on the cluster.

 2. Install Helm Tiller.9 GitLab installs Helm into a new

Namespace called gitlab-managed-apps on the

cluster. GitLab manages its dependent applications

behind the scenes with Helm charts. Helm Tiller may

already be installed in the cluster and running in

another namespace; however, GitLab requires its own

Helm Tiller. Installation may take several minutes. The

newly released Helm 3 does not require Helm Tiller,

check GitLab documentation for the version installed.

 3. Lastly, install the GitLab Runner. Installation may

take several minutes.

Figure 4-4. Install applications on Kubernetes Cluster

9 https://helm.sh/docs/glossary/#tiller

Chapter 4 In-platform CI/CD

https://helm.sh/docs/glossary/#tiller

126

 Custom JupyterLab Image
Jupyter Notebooks10 (Figure 4-8) are becoming a staple of Python-based

data science. Jupyter Notebooks combine live runnable code with

markdown-based text segments ideal for describing and demonstrating

computational procedures and their corresponding results. JupyterLab

is the next generation of Jupyter Notebooks, combining an updated user

interface with an integrated file browser, and tabs for running multiple

notebooks and terminals. JupyterLab (see Figure 4-6) provides a robust

integrated development environment able to run within a container.

JupyterHub is an application designed to provision Jupyter Notebooks

in a single or multiuser environment. The “Data Science” chapter explores

the use of JupyterHub to provision custom JupyterLab images. Operating

JupyterHub within the platform provides software developers, data

scientists, and statisticians direct access to platform services, including

filesystems, databases, event queues, and permissioned access to the

Kubernetes API as shown in Figure 4-5.

Figure 4-5. JupyterLab within a Kubernetes cluster

10 https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

Chapter 4 In-platform CI/CD

https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

127

This chapter demonstrates the use of GitLab CI for automating the

process of building a custom JupyterLab container image and pushing it

into GitLab’s integrated container registry.

 Repository and Container Source
Create a new project in the GitLab group Data Science (ds) called

notebook-apk8s. The project begins with a single Dockerfile.

Create a file named Dockerfile with the contents of Listing 4-2.

Figure 4-6. Custom JupyterLab with Python and Octave kernels, and
kubectl

Chapter 4 In-platform CI/CD

128

Listing 4-2. Custom JupyterLab

FROM jupyter/minimal-notebook:7a3e968dd212

USER root

ENV DEBIAN_FRONTEND noninteractive

RUN apt update \

 && apt install -y apt-transport-https curl iputils-ping gnupg

RUN curl -s https://packages.cloud.google.com/apt/doc/apt-key.

gpg \

 | sudo apt-key add -

RUN echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" \

 | sudo tee -a /etc/apt/sources.list.d/kubernetes.list

RUN apt update \

 && apt install -y kubectl git gcc mono-mcs musl-dev octave \

 && rm -rf /var/lib/apt/lists/*

kubefwd for local development and testing

RUN apt-get clean && apt-get autoremove --purge

RUN wget https://github.com/txn2/kubefwd/releases/download/

v1.8.4/kubefwd_amd64.deb \

 && dpkg -i kubefwd_amd64.deb \

 && rm kubefwd_amd64.deb

USER $NB_UID

Installs data science and machine learning Python packages

RUN pip install --no-cache \

 rubix \

 python-gitlab \

 scipy \

 numpy \

 pandas \

Chapter 4 In-platform CI/CD

129

 scikit-learn \

 matplotlib \

 tensorflow \

 torch \

 torchvision \

 fastai \

 octave_kernel \

 jupyterlab-git

JupyterLab and server extensions

RUN jupyter labextension install @jupyterlab/git

RUN jupyter labextension install @jupyterlab/plotly-extension

RUN jupyter serverextension enable --py jupyterlab_git

The new Dockerfile extends the official minimal Jupyter Notebook

container,11 adding the Kubernetes configuration utility kubectl along

with several popular Python-based Machine Learning libraries. Jupyter

Notebooks support a large number of languages aside from Python,

including the Octave,12 an open source alternative to MATLAB13 by

MathWorks.

Test the new Dockerfile by building a local Docker image. From the

directory containing the Dockerfile, run:

docker build -t jupyterlab-apk8s

Building the custom Jupyter Notebook may take several minutes. The

base jupyter/minimal-notebook comes in around nearly 3GB, and after

adding more than a dozen Machine Learning and Data Science packages

and their dependencies, the new jupyterlab-apk8s image is nearly 7GB.

11 https://github.com/jupyter/docker-stacks/tree/master/minimal-notebook
12 www.gnu.org/software/octave/
13 www.mathworks.com/products/matlab.html

Chapter 4 In-platform CI/CD

https://github.com/jupyter/docker-stacks/tree/master/minimal-notebook
http://www.gnu.org/software/octave/
http://www.mathworks.com/products/matlab.html

130

 Local Testing
Run and test the new container with Docker on the same local workstation

used to build it. Although the new jupyterlab-apk8s image is intended

to run from within the cluster, a utility called kubefwd is installed to

accommodate port-forwards from a remote Kubernetes cluster to local

service names. Use the following command to start jupyterlab-apk8s:

docker run --rm --name jl -p 8888:8888 \

 -v "$(pwd)":"/home/jovyan/work" \

 -v "$HOME/.kube/apk8s-dev2":"/home/jovyan/.kube/config" \

 --user root \

 -e GRANT_SUDO=yes \

 -e JUPYTER_ENABLE_LAB=yes -e RESTARTABLE=yes \

 jupyterlab-apk8s:latest

The docker run command mounts the current working directory

to /home/jovyan/work, the container runs as the user jovyan, and the

initial working directory from within the container is /home/jovyan/. The

next volume mount (-v) exposes the config apk8s-dev2 for the new dev2

cluster. The argument --user root starts the container with the root user

and is required for sudo access needed for the kubefwd utility and enabled

with -e GRANT_SUDO=yes. See the official documentation14 for a list of

features exposed by the Jupyter Notebook base container.

Note the user jovyan is convention from the Jupyter community
and used in all official Jupyter notebook images. the noun Jovian is a
fictional inhabitant of the planet Jupiter.

14 https://jupyter-docker-stacks.readthedocs.io/en/latest/using/common.html

Chapter 4 In-platform CI/CD

https://jupyter-docker-stacks.readthedocs.io/en/latest/using/common.html

131

Upon starting the new Jupyter Notebook container, review the

initial log output for connection instructions containing a token. After

retrieving the token from the container output, visit the URL: http://

localhost:8888?token=<token>

Figure 4-6 represents a running instance of the new jupyterlab-apk8s

container.

 Port-Forwarding

The new jupyterlab-apk8s container is intended to run inside the

dev2 cluster, provisioned by JupyterHub. However, testing on a local

workstations can mimic an in-cluster environment with the help

of kubefwd15 (developed by the author), previously installed in

jupyterlab- apk8s for local testing support.

Within the Docker container (at localhost:8888), under the section

titled Other within the running Jupyter Notebook, chose Terminal. Once

the terminal launches, provide the following command to port-forward all

services running in the monitoring Namespace on the dev2 cluster (see

Figure 4-7):

sudo kubefwd svc -n monitoring

15 https://github.com/txn2/kubefwd

Chapter 4 In-platform CI/CD

https://github.com/txn2/kubefwd

132

The utility kubefwd connects and port-forwards Pods backing Services

on a remote Kubernetes cluster to a matching set of DNS names and ports

on the local workstation (in this case a Jupyter Notebook). Once kubefwd

is running, connections to services such as http://prometheus- k8s.

monitoring:9200 are possible just as they are from within the remote cluster.

 Test Notebook

Create a new Notebook for testing the custom Jupyter container

jupyterlab- apk8s. Under the file menu of the running Notebook, choose

New and Notebook, and select the Python 3 kernel from the drop-down

list. Enter the Python code from Listing 4-3 into the first input cell and click

the play button located in the menu bar under the tab, or use the keyboard

shortcut Shift-Enter (see Figure 4-8).

Figure 4-7. Port-forwarding a remote Kubernetes cluster

Chapter 4 In-platform CI/CD

http://prometheus-k8s.monitoring:9200
http://prometheus-k8s.monitoring:9200

133

Listing 4-3. Python communicating with Prometheus

import requests

response = requests.get('http://prometheus-k8s:9090/api/v1/query',

 params={'query': "node_load1"})

if response.status_code == 200:

 print("Got 200 response from Prometheus")

for node_data in response.json()['data']['result']:

 value = node_data['value'][1]

 name = node_data['metric']['instance']

 print(f'Node {name} has a 1m load average of {value}')

The newly created Jupyter Notebook, Untitled.ipynb, executes

a single cell that returns the connection status to Prometheus and the

current one- minute load average for each of the Kubernetes nodes in the

dev2 cluster as shown in Figure 4-8.

Figure 4-8. Communicating with Prometheus

Chapter 4 In-platform CI/CD

134

 Additional Learning
If you are new to Data Science or Machine Learning, this custom Notebook

contains several popular libraries and frameworks for getting started.

Popular online courses in artificial intelligence and Machine Learning

often use Jupyter Notebooks or MATLAB/Octave. Coursera offers one of

the most popular Machine Learning courses16 using MATLAB/Octave,

taught by Andrew Ng, a Stanford professor and co-founder of Google

Brain. Udacity offers an introductory Nanodegree course called API

Programming with Python,17 heavily utilizing Jupyter Notebooks. Jeremy

Howard’s18 fast.ai offers a unique top-down approach in the course

Introduction to Machine Learning for Coders19 and the fast.ai Python

libraries are included with this custom image.

The Jupyter Notebook environment is not limited to the preinstalled

Python libraries; developers and data scientists can use pip install

to extend the Python environment to suit their needs. The commands

jupyter labextension20 and jupyter serverextension are also available

to extend and customize the Jupyter ecosystem.21

 Automation
The new Jupyter Notebook jupyterlab-apk8s container image (created

earlier in this chapter and tested in the previous section) is usable without

further modification. Because this container does not contain proprietary

16 www.coursera.org/learn/machine-learning
17 www.udacity.com/course/ai-programming-python-nanodegree--nd089
18 www.fast.ai/about/#jeremy
19 http://course18.fast.ai/ml
20 https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
21 https://blog.jupyter.org/99-ways-to-extend-the-jupyter-ecosystem-
11e5dab7c54

Chapter 4 In-platform CI/CD

http://www.coursera.org/learn/machine-learning
http://www.udacity.com/course/ai-programming-python-nanodegree%2D%2Dnd089
http://www.fast.ai/about/#jeremy
http://course18.fast.ai/ml
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://blog.jupyter.org/99-ways-to-extend-the-jupyter-ecosystem-11e5dab7c54
https://blog.jupyter.org/99-ways-to-extend-the-jupyter-ecosystem-11e5dab7c54

135

code or business logic, it may be uploaded to any public container registry

including Docker Hub. The following commands tag the new image with

the apk8s Docker Hub account and pushes it to the registry, making it

available to the public:

docker tag jupyterlab-apk8s:latest \

apk8s/jupyterlab-apk8s:latest

docker push apk8s/jupyterlab-apk8s:latest

Not all containers should be publicly accessible, as they may contain

proprietary business logic or data. Aside from the security aspect of private

container registries, it is also a good practice to retain control of these

assets, along with avoiding vendor lock-in. Fortunately, the open source

GitLab (installed in Chapter 2) comes with a built-in container registry.

Building the jupyterlab-apk8s container has been a straightforward

yet manual process. The version of the newly built jupyterlab-apk8s

container is not coupled to the code that created it. A developer

could easily make a change and forget to push a new version for other

developers. Automation not only solves the problem of enforcing a

coupling between code version and image version, but it also opens up the

ability to add test suites and security checks.

The remainder of this chapter uses GitLab CI to automate the building

and storage of the jupyterlab-apk8s container defined earlier. The

new Data Science group set up earlier in GitLab has been configured to

perform GitLab CI operations via GitLab Runners on the new dev2 cluster.

The next section covers writing a GitLab CI configuration for automating a

container building and versioning.

Chapter 4 In-platform CI/CD

136

 GitLab CI
A large number of powerful CI/CD tools are available today. Jenkins,

Buildbot, Drone, Concourse, and dozens of other well-designed tools

have exposed the high demand for sophisticated and stable methods of

automating the complex processes of software integration, delivery, and

deployment.

GitLab CI has deep integration with GitLab itself and requires it to run;

however, this does not mean a project may be managed only by GitLab.

The Git VCS allows multiple remotes, allowing a project to exist in multiple

hosted repositories such as GitHub or Bitbucket. GitLab also supports

pull and push-based project synchronization with repository mirroring.22

Rather than managing another application, this book uses GitLab CI

specifically for its integration with GitLab and Kubernetes.

GitLab CI requires a GitLab project and a GitLab Runner. Earlier in

this chapter, a GitLab group named Data Science (gitlab.apk8s.dev/

ds) was configured along with a GitLab Runner installed after configuring

Kubernetes access for the group. Within this new Data Science group, the

project jupyterlab-apk8s (gitlab.apk8s.dev/ds/jupyterlab-apk8s)

was developed and included a single Dockerfile built and tested in the

previous section. Invoking GitLab CI requires one file, .gitlab-ci.yml,

covered in the next section.

 .gitlab-ci.yml
When any source repository in GitLab project contains a file named

.gitlab- ci.yml, the presence of the file invokes GitLab CI, which creates

a new Pipeline and begins to run all defined Jobs. Create a file named in

the new jupyterlab-apk8s project and add the contents of Listing 4-4.

22 https://docs.gitlab.com/12.1/ce/workflow/repository_mirroring.html

Chapter 4 In-platform CI/CD

https://docs.gitlab.com/12.1/ce/workflow/repository_mirroring.html

137

Listing 4-4. GitLab CI pipeline configuration

stages:

 - build

 - test

 - deploy

tag_build:

 stage: build

 only:

 - tags@ds/jupyterlab-apk8s

 image:

 # debug version is required for shell

 name: gcr.io/kaniko-project/executor:debug-v0.10.0

 entrypoint: [""]

 script: |

 # configure kaniko

 export KCFG=$(printf '{"auths":{"%s":{"username":"%s","pass

word":"%s"}}}' \

 "$CI_REGISTRY" "$CI_REGISTRY_USER" "$CI_REGISTRY_PASSWORD")

 echo $KCFG > /kaniko/.docker/config.json

 /kaniko/executor --context $CI_PROJECT_DIR --dockerfile

$CI_PROJECT_DIR/Dockerfile \

 --destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG \

 --destination $CI_REGISTRY_IMAGE:latest

The new .gitlab-ci.yml configuration file contains a single job

named tag_build. Job names are user defined and may contain any

descriptive text. There are three default stages for GitLab CI pipelines:

build, test, and deploy. The tag_build job is assigned the stage, build,

and only runs when the ds/jupyterlab-apk8s project receives new tags

pushed to the project.

Chapter 4 In-platform CI/CD

138

GitLab CI/CD pipeline configuration, as shown in Listing 4-4, provides

GitLab Runners with build and deployment instructions via rules and

scripts. Refer to GitLab's official documentation for detailed information

on pipeline configuration.23

 Kaniko

Building container images from within a Docker container requires mounting

the host server’s Docker socket. This method has considerable security

implications and is challenging to achieve with automated CI/CD solutions

such as GitLab CI and Kubernetes. To solve this problem, Google developed

the project Kaniko,24 specifically designed as “a tool to build container images

from a Dockerfile, inside a container or Kubernetes cluster.”

The tag_build job uses a Kaniko image. GitLab CI checks out the

specified git tag and runs /kaniko/executor, specifying the Dockerfile.

Before the executor is invoked, a Kaniko configuration JSON file is

generated at /kaniko/.docker/config.json, providing authentication

credentials to the ds/jupyterlab-apk8s project’s container registry.

 Integrated Environment Variables

GitLab CI provides an extensive set of environment variables25 to the image

containers specified in a job. The tag_build job uses the environment

variables CI_REGISTRY, CI_REGISTRY_USER, and CI_REGISTRY_PASSWORD

to provide Kaniko with authentication credentials for the ds/jupyterlab-

apk8s project’s container registry. The variable CI_REGISTRY_IMAGE is the

path to the project-based image—in this case, reg.gitlab.apk8s.dev/ds/

jupyterlab- apk8s. Lastly, CI_COMMIT_TAG is the git tag that triggered this

job and used to tag the container along with the tag latest.

23 https://docs.gitlab.com/ee/ci/yaml/
24 https://github.com/GoogleContainerTools/kaniko
25 https://docs.gitlab.com/ce/ci/variables/

Chapter 4 In-platform CI/CD

https://docs.gitlab.com/ee/ci/yaml/
https://github.com/GoogleContainerTools/kaniko
https://docs.gitlab.com/ce/ci/variables/

139

 Running a Pipeline
A GitLab CI pipeline is triggered once a tag is committed to the

ds/jupyterlab-apk8s repository containing the file .gitlab-ci.yml.

Tag the commit as follows:

git commit v0.0.1

Push the new tag:

git push origin v0.0.1

Finally, open a web browser to <gitlab>/ds/jupyterlab-apk8s/

pipelines (see Figure 4-9). Click the pipeline running status to view the jobs.

The pipeline detail view (see Figure 4-10) shows job tag_build as

defined in the .gitlab-ci.yml configuration file. Best practices for

container workflows would involve jobs in the test stage, including

functional tests and container security checks.

Figure 4-9. GitLab CI pipelines

Chapter 4 In-platform CI/CD

140

Container security there are a wealth of books and resources
specializing in CI/CD and container security. although beyond
the scope of this book, tools such as Clair26 by CoreoS check for
container vulnerabilities through static analysis. Cilium,27 also
by CoreoS, secures network connectivity. Both projects are well
documented and support Kubernetes deployments.

Figure 4-10. GitLab CI Pipeline Jobs

26 https://github.com/coreos/clair
27 https://github.com/cilium/cilium

Chapter 4 In-platform CI/CD

https://github.com/coreos/clair
https://github.com/cilium/cilium

141

Next, click the tag_build job to view its process in a web terminal

as shown in Figure 4-11. The jupyterlab-apk8s image contains a large

number of dependencies and may take between 20 and 30 minutes to

build.

Once the build completes, a new image is available in the Data Science

group project jupyterlab-apk8s registry at reg.gitlab.apk8s.dev/ds/

jupyterlab-apk8s with the tags v0.0.1 and latest as shown in Figure 4-12.

Figure 4-11. GitLab CI running job

Chapter 4 In-platform CI/CD

142

 Manual Testing in Kubernetes
The previous sections describe the creation of a GitLab group called

Data Science (ds) and the project jupyterlab-apk8s, along with a GitLab

CI configuration that builds a custom Jupyter Notebook container now

available at reg.gitlab.apk8s.dev/ds/jupyterlab-apk8s:v0.0.1.

The new Jupyter Notebook is intended for provisioning by JupyterHub,

described later in the chapter on Data Science. Manually testing the new

jupyterlab-apk8s image on the dev2 cluster can be accomplished with a

few imperative commands through the use of kubectl.

The GitLab container registry for the jupyterlab-apk8s project is

private, and pulls against it from the dev2 cluster require a Kubernetes

Secret with an access token. Create an access token for the jupyterlab-

apk8s GitLab project registry by clicking Settings in the left-hand

navigation, choose Repository, and click the expand button in the Deploy
Tokens section.

Figure 4-12. GitLab container registry

Chapter 4 In-platform CI/CD

143

Create a token with the name k8s, skip the Expires at field, and check

read_registry in the Scopes field (see Figure 4-13).

 Prepare Namespace
Create the Namespace notebook-testing (in the dev2 cluster), indented

for testing custom notebooks:

kubectl create namespace notebook-testing

Add a docker-registry Secret with the key and value generated by

GitLab. Figure 2-13 shows a generated token with the key gitlab+deploy-

token- 3 and the value W8x6_MxWxMYKRTfhMstU. Run the following

Figure 4-13. GitLab Deploy Tokens

Chapter 4 In-platform CI/CD

144

command to create a new secret in the notebook-testing Namespace

(change the username, password, server, and email accordingly):

kubectl create secret docker-registry \

 ds-jupyterlab-apk8s-regcred \

 --namespace=notebook-testing \

 --docker-server=reg.gitlab.apk8s.dev \

 --docker-username=gitlab+deploy-token-3 \

 --docker-password=W8x6_MxWxMYKRTfhMstU \

 --docker-email=cjimti@gmail.com

Next, update the default Kubernetes Service Account for the notebook-

testing Namespace with the new docker-registry Secret. Kubernetes

uses the docker-registry Secret from the default service account to

authenticate with the GitLab container registry.

Edit the existing default service account with the following command:

kubectl edit sa default -n notebook-testing

Add the last two lines from Listing 4-5 and save.

Note an alternative method is to save the current service account
manifest to a file, kubectl get sa default -n notebook-
testing -o yaml > ./sa.yaml, edit sa.yaml, and reapply with
kubectl apply -f sa.yml.

Listing 4-5. Editing the notebook-testing default Service Account

#...

apiVersion: v1

kind: ServiceAccount

metadata:

 creationTimestamp: "2019-08-01T20:18:34Z"

Chapter 4 In-platform CI/CD

145

 name: default

 namespace: notebook-testing

 resourceVersion: "21353"

 selfLink: /api/v1/namespaces/notebook-testing/

serviceaccounts/default

 uid: 2240fc34-b050-4ccb-9f96-f4f378842dbd

secrets:

- name: default-token-dhj94

imagePullSecrets:

- name: ds-jupyterlab-apk8s-regcred

 Run Notebook
The previous section configured the default service account in the

notebook-testing Namespace with the ability to authenticate against the

GitLab registry provided by the ds/jupyterlab-apk8s project. Running

containers for testing means there is little need to save and version

a declarative configuration. Kubectl provides an imperative kubectl

run28 command that generates a minimal Pod configuration useful for

temporary tasks such as testing, debugging, experimenting, or merely

demonstrating functionality.

The following kubectl command starts a Pod with the name test-

notebook. The Pod is set to remove its configuration when complete and

never automatically restart with the flags --rm=true and --restart=Never.

The environment variable JUPYTER_ENABLE_LAB=yes informs the Jupyter

Notebook to start up in the updated JupyterLab mode.

28 https://kubernetes.io/docs/reference/generated/kubectl/kubectl-
commands#run

Chapter 4 In-platform CI/CD

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#run
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#run

146

Issue the following command and observe the output similar to

Figure 4-14:

kubectl run -i -t test-notebook \

 --namespace=notebook-testing \

 --restart=Never --rm=true \

 --env="JUPYTER_ENABLE_LAB=yes" \

 --image=reg.gitlab.apk8s.dev/ds/jupyterlab-apk8s:v0.0.1

The container jupyterlab-apk8s is large and depending on network

conditions may take several minutes to download, create, and start the

Pod. Once the Pod is running, copy the generated token from the output

logs as seen in Figure 4-14.

Jupyter Notebooks listen on port 8888 by default. In testing and

demonstrations such as this, it is common to port-forward Pod containers

directly to a local workstation rather than configure Services and Ingress.

Caution Jupyter notebooks intend and purposefully allow remote
code execution. exposing Jupyter notebooks to public interfaces
requires proper security considerations and is reviewed further in the
chapters “Indexing and analytics” and "platforming aIml".

Figure 4-14. Running a custom Jupyter Notebook

Chapter 4 In-platform CI/CD

147

Port-forward the test-notebook Pod with the following command:

kubectl port-forward test-notebook 8888:8888 \

-n notebook-testing

Once kubectl has begun forwarding port 8888 on the local workstation

to port 8888 in the Pod, use the token provided in the container output

(shown in Figure 4-14) to open jupyterlab-apk8s in a web browser.

Browse to

http://localhost:8888/?token=3db...1e5

The new Jupyter Notebook should load and operate the same as it did

earlier in this chapter on local testing (see Figure 4-6), only this time within

the dev2 Kubernetes cluster. The next section covers using a GitLab API

user token to pull and push files from the notebook repository.

 Repository Access
A variety of Machine Learning automation and Serverless platforms use

CI/CD components along with VCS (version control system) repositories

to build and deploy containerized workloads. The following is a simplistic

approach to demonstrating a CI/CD pipeline originating from the cluster,

in this case modifying the jupyterlab-apk8s image from within the

jupyterlab-apk8s running container.

Create a GitLab Personal Access Token from User Settings (found in

the drop-down menu under the user avatar). The token name is only used

for reference. Check the api scope and click “Create personal access token”

(see Figure 4-15). Record the generated token value, as this is not shown

again; however, users may generate new tokens at any time.

Chapter 4 In-platform CI/CD

148

Return to the test-notebook Pod running the custom Jupyter

Notebook jupyterlab-apk8s in the web browser. In the Launcher tab,

under the section titled Other, choose Terminal. Once a command

prompt is available, clone the source code for jupyterlab-apk8s, and

replace the token with the one generated earlier:

export GL_TOKEN=JDYxbywCZqS_N8zAsB6z

export GL_PROJ=gitlab.apk8s.dev/ds/jupyterlab-apk8s.git

git clone https://oauth2:$GL_TOKEN@$GL_PROJ

Caution Sharing this running notebook with other developers
exposes your personal Gitlab token. the chapters “Indexing and
analytics” and “platforming aIml” demonstrate alternate methods of
notebook and repository access.

Figure 4-15. GitLab Deploy Tokens

Chapter 4 In-platform CI/CD

149

Later in this book, the chapter “Platforming Blockchain” uses the Python

packages web3 and py-solc to communicate with an in-cluster Ethereum

Blockchain network from within a user-provisioned Jupyter Notebook. The

chapter “Pipeline” develops test MQTT clients and event listeners using the

Python package paho-mqtt. Adding these packages to the custom JupyterLab

container ensures a standard set of dependencies are always available to

developers. Additional packages are easy to add at runtime.

Note the jupyterlab-apk8s container is large and contains
many packages and applications that may not be used by all
developers. It is also likely that a developer will need additional
packages. the jupyterlab-apk8s container defined in this book
is for demonstration purposes. an optional practice involves creating
a basic suit of custom notebooks focusing on a specific area of
development.

Next, open the Dockerfile in the cloned project and edit the RUN layer

containing a pip install command. Add the Python packages paho-mqtt,

web3, and py-solc as shown in Listing 4-5.

Listing 4-5. Source fragment from Dockerfile

Installs blockchain, data science, and machine learning

python packages

RUN pip install --no-cache \

 rubix \

 python-gitlab \

 scipy \

 numpy \

 pandas \

 scikit-learn \

Chapter 4 In-platform CI/CD

150

 matplotlib \

 tensorflow \

 torch \

 torchvision \

 fastai \

 octave_kernel \

 jupyterlab-git \

 paho-mqtt \

 web3 \

 py-solc

Finally, commit the change, tag the commit v0.1.2, and push it back to

the remote:

git commit -a -m "Blockchain and IoT packages."

git tag v0.1.2

git push origin v0.1.2

Earlier in this chapter, the project ds/jupyterlab-apk8s was

configured to trigger a GitLab CI pipeline as new tags are pushed to the

repository. The container reg.gitlab.apk8s.dev/ds/jupyterlab-

apk8s:v0.1.2 will become available once the CI pipeline completes.

 GitOps
GitOps,29 a process popularized by Weaveworks,30 is another trending

concept within the scope of Kubernetes CI/CD. GitOps involves the use

of applications reacting to git push events. GitOps focuses primarily

on Kubernetes clusters matching the state described by configuration

29 www.gitops.tech/
30 www.weave.works/

Chapter 4 In-platform CI/CD

http://www.gitops.tech/
http://www.weave.works/

151

residing in a Git repository. On a simplistic level, GitOps aims to replace

kubectl apply with git push. Popular and well-supported GitOps

implementations include ArgoCD,31 Flux,32 and Jenkins X.33

 Summary
This chapter presented a high-level introduction to CI/CD concepts and

where they can fit from both a development and operations perspective.

The use of a single-node (k3s) Kubernetes cluster running at Vultr and a

four-node custom Kubernetes cluster running at Scaleway demonstrated

multi-cluster, multi-cloud coordination at the application (platform)

level. Running multiple small clusters with a well-defined separation

of responsibility is an emerging architectural pattern.34 The chapter

developed a custom Jupyter Notebook built with a GitLab CI pipeline and

was manually deployed and used to develop its capabilities further.

This chapter did not cover deployment. Deployment is often defined

as a final step in the CI/CD pipeline and highly coupled to a specific

application and its production requirements.

The overall goal of this chapter is to present CI/CD (in a simplistic

manner) as a platform feature, exposing opportunities to expand beyond

detached development concerns and integrate this powerful mechanism

into the core of an enterprise application platform. New software platforms

are extendable, and containerized workloads are natural means to extend

31 https://argoproj.github.io/argo-cd/
32 https://github.com/fluxcd/flux
33 https://jenkins-x.io/
34 https://content.pivotal.io/blog/kubernetes-one-cluster-or-many

Chapter 4 In-platform CI/CD

https://argoproj.github.io/argo-cd/
https://github.com/fluxcd/flux
https://jenkins-x.io/
https://content.pivotal.io/blog/kubernetes-one-cluster-or-many

152

platforms developed on Kubernetes. Developing and deploying containers

are all possible from within the Kubernetes ecosystem. As demonstrated

in this chapter, it is possible to provide a platform that may be extended

limitlessly from within itself.

The next chapter covers data, specifically data pipelines into

databases, indexes, event queues, and filesystems. Data is central to

platform presented in this book, from the collection, analysis, processing,

and presentation of data to the generation of new data derived from the

inference of artificial intelligence or the results of blockchain transactions

on smart contracts triggered by IoT events. The upcoming chapters intend

to get started working with data from a platform perspective.

Chapter 4 In-platform CI/CD

153© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_5

CHAPTER 5

Pipeline
All software platforms operate by communicating data in one form or

another. Data-driven services use data to determine flow (or logic), while

event-driven services listen for events to execute predetermined flow

and logic. In ether sense, these services are communicating data, and

the transmission of data itself is an event. Data-driven vs. event-driven

architectures typically boil down to the meaning and value of the data they

handle, and how the data is acted on, transformed, processed, or analyzed

by services consuming it.

The applications that manage data are often central components in

software platforms. How data is processed and maintained is typically

determined through business logic driven by business requirements. A

mature software platform should provide efficient and flexible application

logic able to accommodate a range of data management requirements,

supporting both data-driven and event-driven implementations.

IoT, Machine Learning, and Blockchain technologies produce

and consume data, each with specific needs: IoT devices produce and

consume high volumes of real-time data while communicating state.

Machine learning often requires extensive, organized catalogs of data.

Finally, Blockchain consumes and emits events as data.

The context of this book and the platform at hand considers data

as generic as possible, being primarily concerned with collection and

distribution and leaving the meaning and value of data to higher-level

application requirements. This chapter focuses on moving data from

publishers to subscribers in data pipelines.

https://doi.org/10.1007/978-1-4842-5611-4_5#DOI

154

 Statefulness and Kubernetes
Database management systems (databases) are stateful applications.

Traditional monolithic architectures typically revolve around a

central database, shared across multiple domains, while microservice

architectures favor multiple databases, isolated to specific services

and domains. Regardless of the overall system architecture, database

applications are stateful, and not all stateful applications can easily exploit

the strengths of Kubernetes.

Containerization and the orchestration of containers by Kubernetes

are well suited for building extensible systems made up of separate,

portable, and scalable components. At the heart of all Kubernetes

platforms are the Pods, containerized workloads best treated as ephemeral

and stateless. Pods are expected to come and go, scaling up and down

based on rules, or unexpectedly terminated and re-spawned when

underlying infrastructure fails or undergoes maintenance. Designing

components to operate in this fashion realizes the advantage of

Kubernetes’s robust scaling, performance, redundancy, and self-healing

capabilities. Operating stateful applications within this architecture can

be challenging. However, many applications can maintain state over a

distributed architecture; these applications are ideal for Kubernetes.

Kubernetes is suited for communicating data and events through

vast networks of services backed by stateless Pods. However, the storage

and retrieval of data is a stateful activity, a concept not as well suited for

Kubernetes’s ephemeral workloads. Data stored within a Pod is lost when

the Pod is removed or replaced. Pods may attach to external Persistent

Volumes; however, sharing Persistent Volumes between multiple Pods is

not widely supported by storage providers and is challenging to achieve

with acceptable performance and stability. Finally, operating a stateful

application within a single Pod is neither scalable nor fault-tolerant.

Stateful applications (such as databases) that work well with Kubernetes

maintain state over a distributed network of nodes.

Chapter 5 pipeline

155

Kubernetes offers stateful functionality in the form of StatefulSets.

StatefulSets are mostly equivalent to Deployments, yet deploy enumerated

Pods able to reattach to storage allocated to them through Volume Claim

Templates. A StatefulSet creates Pods named with an ordinal index,

for example, PODNAME-0..n, and provides a stable network ID such as

PODNAME-4.somenamespace.svc.cluster.local. If a Pod in a StatefulSet

has crashed, been upgraded, or rescheduled to another node, Kubernetes

creates a new Pod with the same name and network ID and reattaches any

persistent volumes previously associated with the Pod name. Even if their

workloads are ephemeral, Pods are stateful in concept through persistent

naming and storage. Elasticsearch, Cassandra, and Kafka are some

examples of data management applications that work well when deployed

in multiple stateful Pods. Systems like these manage their data replication,

distributed processing, and work around faulty or missing nodes within

their self-managed, clustered networks. When properly configured, these

applications continue to perform when missing a node (in this case a

Pod) and typically provide limitless horizontal scaling. In some respects,

Kubernetes makes scaling and managing these applications easier than

the traditional methods involving the cumbersome task of provisioning

virtual machines or bare-metal servers. In contrast, Kubernetes provides

the ability to increment the desired number of Pods by merely editing and

reapplying configuration.

 Real-Time Data Architecture
A software platform intent on providing Machine Learning, IoT, and

Blockchain capabilities requires the ability to collect, transform, process, and

manage data, metadata, and metrics. The next few chapters cover a handful

of enterprise-grade applications able to operate within a Kubernetes cluster,

providing real-time data collection, routing, transformation, indexing, and

the management of data and metrics (see Figure 5-1).

Chapter 5 pipeline

156

The following sections cover the technology used in this chapter to

assemble a real-time distributed streaming platform, ready for any form of

inbound data and uniquely tailored for IoT.

 Message and Event Queues
Web and mobile applications typically operate on a finite set of defined

data structures; custom API endpoints authenticate, validate, and persist

these objects in structured databases. By contrast, IoT platforms often

require the ability to accept a wide range of data types and structures

produced by any variety of connected devices. IoT platforms are primarily

responsible for the distribution of device state to other devices and

services.

Publish and subscribe (also known as Pub/Sub) applications solve

the problem of gathering and distributing data (often referred to as

events or messages) and connect a near-limitless number of producers

to almost any number of interested consumers. This chapter focuses on

Figure 5-1. Data management architecture

Chapter 5 pipeline

157

implementing the highly available and distributed streaming platform

Apache Kafka for all real-time data and event distribution, along with the

purpose-built MQTT broker, Mosquitto, for IoT.

 Distributed Streaming Platform

Apache Kafka bills itself as a distributed streaming platform and acts as a

type of “central nervous system” for real-time data operations within the

platform. Kafka can handle many hundreds of thousands of messages per

second with a half-dozen nodes and proper configuration, a capability far

exceeding most use cases outside of significant data-centric enterprises.

Kafka records message (data) as records within a topic, consisting of a key,

value, and timestamp. Kafka manages the relationship, collection, and

distribution of records through its Consumer, Producer, Streaming, and

Connector APIs.

Kafka provides stable and mature client libraries for all major

programming languages, allowing custom platform components to

operate on data (events and messages) in real time.

 MQTT and IoT

MQTT1 (Message Queuing Telemetry Transport) is a publish/subscribe

messaging protocol designed for IoT and IIoT (Industrial Internet of

Things) implementations. Devices may publish and subscribe to topics

through MQTT brokers and Brokers may be bridged together. MQTT

is designed to be lightweight, able to run in resource-constrained

environments, including Raspberry Pi.2

1 https://mqtt.org
2 https://appcodelabs.com/introduction-to-iot-build-an-mqtt-server-
using-raspberry-pi

Chapter 5 pipeline

https://mqtt.org
https://appcodelabs.com/introduction-to-iot-build-an-mqtt-server-using-raspberry-pi
https://appcodelabs.com/introduction-to-iot-build-an-mqtt-server-using-raspberry-pi

158

Consider an organization with a factory operating thousands of

sensors and controllers communicating directly with an on-premises

MQTT broker. The organization also subscribes to a cloud-hosted MQTT

solution for gathering metrics from remote or isolated devices. Each of

these Brokers may be bridged together and communicate bidirectionally

with a larger data platform as shown in Figure 5-2.

Mosquitto is a popular open source MQTT broker, configured later in

this chapter for in-cluster MQTT operations. Mosquitto can publish and

subscribe to any other MQTT compatible broker, typically on-premises or

cloud-based SaaS.

 Development Environment
This chapter uses the same, inexpensive four-node cluster setup on

Scaleway in Chapter 4. The cluster includes one DEV1-M (3 CPU/4G

RAM/40G SSD) for the Kubernetes master node and three DEV1-L

(4 CPU/8G RAM/80GB SSD) for worker nodes. Configuring and operating

Apache Kafka, Apache NiFi, Elasticsearch, and Logstash utilizes the

Figure 5-2. MQTT network

Chapter 5 pipeline

159

majority of CPU and RAM of this small development cluster. These

specifications are an absolute minimum requirement and should be scaled

up as desired.

Note the entire three-node development cluster used in this
chapter is equivalent to one 12 core CpU/32GB raM server
instance similar to a single production node in a typical enterprise
configuration.

 Cluster-Wide Configuration
This chapter uses the same general Kubernetes configuration as detailed

in Chapter 3, including Ingress Nginx, Cert Manager, Rook-Ceph, and

monitoring configurations. If following along from previous chapters, copy

and apply the configuration manifests from the directory cluster-apk8s-

dev1/000-cluster in Listing 3-15 to cluster-apk8s-dev3/000-cluster

and create the directory cluster-apk8s-dev3/003-data (as shown in

Listing 5-1) to hold the manifests used throughout this chapter.

Listing 5-1. Development Cluster configuration layout

.

└── cluster-apk8s-dev1
└── cluster-apk8s-dev2
└── cluster-apk8s-dev3
 └── 000-cluster
 ├── 00-ingress-nginx
 ├── 10-cert-manager
 ├── 20-rook-ceph
 └── 30-monitoring
 └── 003-data

Chapter 5 pipeline

https://doi.org/10.1007/978-1-4842-5611-4_3-15

160

Note numerically prefixed directories are a simple convention to
infer an intended order of precedence. Configuration manifests may
generally be applied in any order.

 Data Namespace
Create the directory cluster-apk8s-dev3/003-data/000-namespace to

contain namespace-wide configuration manifests. This development

cluster should be considered single tenant considering its size and use

for demonstration. However, containing all data-related functionality in

tenant-based Namespaces (e.g., clientx-data) allows the opportunity to

apply fine-grained role-based access control and networking rules. Since

this development cluster has only one tenant, the namespace data is

suitable. The following configurations apply to all services in the new data

Namespace.

Within the cluster-apk8s-dev3/003-data/000-namespace directory,

create a Kubernetes Namespace in a file named 00-namespace.yml from

Listing 5-2.

Listing 5-2. Data Namespace

apiVersion: v1

kind: Namespace

metadata:

 name: data

Apply the Namespace configuration:

$ kubectl apply -f 00-namespace.yml

Chapter 5 pipeline

161

 TLS Certificates
Later in this chapter, secure Ingress configurations are applied for NiFi at

nifi.data.dev3.apk8s.dev and Kibana at kib.data.dev3.apk8s.dev,

providing external access to their user interfaces. Cert Manager, along with

a ClusterIssuer, should be present in the cluster (see Chapter 3).

Create a Certificate configuration in a file named 05-certs.yml from

Listing 5-3.

Listing 5-3. Certificates for the data Namespace

apiVersion: certmanager.k8s.io/v1alpha1

kind: Certificate

metadata:

 name: data-cert

 namespace: data

spec:

 secretName: data-production-tls

 issuerRef:

 name: letsencrypt-production

 kind: ClusterIssuer

 commonName: data.dev3.apk8s.dev

 dnsNames:

 - data.dev3.apk8s.dev

 - nifi.data.dev3.apk8s.dev

 - kib.data.dev3.apk8s.dev

 acme:

 config:

 - http01:

 ingressClass: nginx

Chapter 5 pipeline

162

 domains:

 - data.dev3.apk8s.dev

 - nifi.data.dev3.apk8s.dev

 - kib.data.dev3.apk8s.dev

Apply the Certificate configuration:

$ kubectl apply -f 05-certs.yml

 Basic Auth
The development cluster uses Basic Auth3 (Basic Authentication) as a

convenient method of securing Ingress. Using a single Basic Auth secret

across Ingresses simplifies the use of authentication during development

and can be replaced with more sophisticated methods such as OAuth

when required.

Create a file named auth with the utility htpasswd:4

$ htpasswd -c ./auth sysop

Create a generic Kubernetes Secret named sysop-basic-auth with the

auth file generated earlier:

$ kubectl create secret generic sysop-basic-auth \

--from-file auth -n data

3 https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
4 https://httpd.apache.org/docs/2.4/programs/htpasswd.html

Chapter 5 pipeline

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication
https://httpd.apache.org/docs/2.4/programs/htpasswd.html

163

 Apache Zookeeper
Apache Zookeeper5 has become a standard for many popular applications

requiring distributed coordination, including Hadoop,6 HBase,7 Kafka,

NiFi, and Elasticsearch. In this chapter, both Kafka and NiFi utilize a

shared Zookeeper cluster. Elasticsearch operates as a single node in

this environment; however, larger Elasticsearch clusters could also take

advantage of a shared Zookeeper.

Zookeeper may be scaled to tolerate a given number of failed nodes;

however, some architectures favor multiple isolated installs to avoid

single points of failure. Scaled or multiple Zookeeper configurations are

a production concern, whereas sharing this service in a development

environment makes better use of limited resources.

Create the directory cluster-apk8s-dev3/003-data/010-zookeeper.

Within the new 010-zookeeper directory, create a file named 10-service.

yml from Listing 5-4.

Listing 5-4. Zookeeper Service

apiVersion: v1

kind: Service

metadata:

 name: zookeeper

 namespace: data

spec:

 ports:

 - name: client

 port: 2181

5 https://zookeeper.apache.org
6 https://hadoop.apache.org/
7 https://hbase.apache.org

Chapter 5 pipeline

https://zookeeper.apache.org
https://hadoop.apache.org/
https://hbase.apache.org

164

 protocol: TCP

 targetPort: client

 selector:

 app: zookeeper

 sessionAffinity: None

 type: ClusterIP

Apply the Zookeeper Service configuration:

$ kubectl apply -f 10-service.yml

Zookeeper clients such as Kafka and NiFi manage their relationships

to individual nodes. A standard Service definition in Kubernetes is

assigned an IP address and most commonly configured to route any

communication with that service to any Pod matching a specified selector

and port. However, applications such as Zookeeper require the ability

for each Zookeeper node (running as a Pod) to communicate with its

peers (running as Pods). A standard Kubernetes Service is inadequate for

use in a peer-aware cluster as each node must be able to communicate

specifically with each other node and not merely any node matching a

selector and port. Kubernetes provides this functionality through the

concept of a Headless Service,8 which is a Service without a ClusterIP

defined (clusterIP: None). The following service definition creates a

Headless Service returning DNS entries for Pods matching the selector

app: zookeeper as defined in the StatefulSet described in the next section.

Create a Headless Service configuration in a file named 10-service-

headless.yml from Listing 5-5.

8 https://kubernetes.io/docs/concepts/services-networking/service/
#headless-services

Chapter 5 pipeline

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

165

Listing 5-5. Zookeeper Headless Service

apiVersion: v1

kind: Service

metadata:

 name: zookeeper-headless

 namespace: data

spec:

 clusterIP: None

 ports:

 - name: client

 port: 2181

 protocol: TCP

 targetPort: 2181

 - name: election

 port: 3888

 protocol: TCP

 targetPort: 3888

 - name: server

 port: 2888

 protocol: TCP

 targetPort: 2888

 selector:

 app: zookeeper

 sessionAffinity: None

 type: ClusterIP

Apply the Zookeeper Headless Service configuration:

$ kubectl apply -f 10-service-headless.yml

Next, create a StatefulSet configuration in a file named

40-statefulset.yml from Listing 5-6.

Chapter 5 pipeline

166

Listing 5-6. Zookeeper StatefulSet

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: zookeeper

 namespace: data

spec:

 podManagementPolicy: OrderedReady

 replicas: 2

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: zookeeper

 serviceName: zookeeper-headless

 template:

 metadata:

 labels:

 app: zookeeper

 spec:

 containers:

 - command:

 - /bin/bash

 - -xec

 - zkGenConfig.sh && exec zkServer.sh start- foreground

 env:

 - name: ZK_REPLICAS

 value: "2"

 - name: JMXAUTH

 value: "false"

 - name: JMXDISABLE

 value: "false"

Chapter 5 pipeline

167

 - name: JMXPORT

 value: "1099"

 - name: JMXSSL

 value: "false"

 - name: ZK_CLIENT_PORT

 value: "2181"

 - name: ZK_ELECTION_PORT

 value: "3888"

 - name: ZK_HEAP_SIZE

 value: 1G

 - name: ZK_INIT_LIMIT

 value: "5"

 - name: ZK_LOG_LEVEL

 value: INFO

 - name: ZK_MAX_CLIENT_CNXNS

 value: "60"

 - name: ZK_MAX_SESSION_TIMEOUT

 value: "40000"

 - name: ZK_MIN_SESSION_TIMEOUT

 value: "4000"

 - name: ZK_PURGE_INTERVAL

 value: "0"

 - name: ZK_SERVER_PORT

 value: "2888"

 - name: ZK_SNAP_RETAIN_COUNT

 value: "3"

 - name: ZK_SYNC_LIMIT

 value: "10"

 - name: ZK_TICK_TIME

 value: "2000"

 image: gcr.io/google_samples/k8szk:v3

 imagePullPolicy: IfNotPresent

Chapter 5 pipeline

168

 livenessProbe:

 exec:

 command:

 - zkOk.sh

 failureThreshold: 3

 initialDelaySeconds: 20

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 1

 name: zookeeper

 ports:

 - containerPort: 2181

 name: client

 protocol: TCP

 - containerPort: 3888

 name: election

 protocol: TCP

 - containerPort: 2888

 name: server

 protocol: TCP

 readinessProbe:

 exec:

 command:

 - zkOk.sh

 failureThreshold: 3

 initialDelaySeconds: 20

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 1

 resources: {}

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

Chapter 5 pipeline

169

 volumeMounts:

 - mountPath: /var/lib/zookeeper

 name: data

 dnsPolicy: ClusterFirst

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext:

 fsGroup: 1000

 runAsUser: 1000

 terminationGracePeriodSeconds: 30

 volumes:

 - emptyDir: {}

 name: data

 updateStrategy:

 type: OnDelete

Lastly, apply the Zookeeper StatefulSet configuration:

$ kubectl apply -f 40-statefulset.yml

Zookeeper, a shared dependency of Kafka and NiFi, is now available

on the development cluster. The next section sets up a two-node Apache

Kafka cluster.

 Apache Kafka
Apache Kafka “is used for building real-time data pipelines and streaming

apps. It is horizontally scalable, fault-tolerant, wicked fast, and runs in

production in thousands of companies.”9 The following configuration stands

up a two-node Kafka cluster, well suited for a small-scale development

9 https://kafka.apache.org

Chapter 5 pipeline

https://kafka.apache.org

170

environment and data science activities. As noted earlier, Apache Kafka is the

central nervous system of this data-driven platform. In addition to providing

stable and feature-rich client libraries in every major programming language,

many data management applications have developed first-class connectors

to both publish and subscribe to Kafka events including Logstash and NiFi,

demonstrated later in this chapter; see Figure 5-3.

High-performance, low-latency event queues such as Apache Kafka

operate at peak efficiency on dedicated, highly optimized, bare-metal

servers. Running Kafka in containers, on shared virtual instances with

abstracted storage and overlay networks (as the Kubernetes cluster defined

in this book), can significantly reduce its efficiency and throughput.

However, in some cases, a reduction in optimal performance may not be

noticed, or may readily be compensated for through scaling. Operating

Kafka within Kubernetes brings numerous advantages, including

unified networking, DNS, scaling, self-healing, security, monitoring,

and a unified control plane with other components. On a conceptual

level, Kafka is one of many components forming a Kubernetes-based

Figure 5-3. Apache Kafka

Chapter 5 pipeline

171

data platform described throughout this book. While Kafka itself my not

profit significantly from management within Kubernetes, the larger data

platform benefits from Kafka's inclusion through a higher cohesion among

its essential components.

The following configuration sets up Kafka in a similar fashion to

Zookeeper (configured in the previous section) with the addition of

persistent volumes, as shown in Figure 5-4.

Create the directory cluster-apk8s-dev3/003-data/020-kafka.

Within the new 020-kafka directory, create a file named 10-service.yml

from Listing 5-7.

Listing 5-7. Kafka Service

apiVersion: v1

kind: Service

metadata:

 name: kafka

 namespace: data

Figure 5-4. Apache Kafka and Zookeeper Kubernetes configuration

Chapter 5 pipeline

172

spec:

 ports:

 - name: broker

 port: 9092

 protocol: TCP

 targetPort: kafka

 selector:

 app: kafka

 sessionAffinity: None

 type: ClusterIP

Apply the Kafka Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a Headless Service configuration for Kafka in a file named

10-service-headless.yml from Listing 5-8.

Listing 5-8. Kafka Headless Service

apiVersion: v1

kind: Service

metadata:

 name: kafka-headless

 namespace: data

spec:

 clusterIP: None

 ports:

 - name: broker

 port: 9092

 protocol: TCP

 targetPort: 9092

Chapter 5 pipeline

173

 selector:

 app: kafka

 sessionAffinity: None

 type: ClusterIP

Apply the Kafka Headless Service configuration:

$ kubectl apply -f 10-service-headless.yml

Next, create a StatefulSet configuration for Kafka in a file named

40-statefulset.yml from Listing 5-9.

The following configuration uses a Kafka container maintained by

Confluent Inc.10 Confluent provides commercial support for their open

source event-streaming platform built around Kafka. Kafka functionality

utilized in this book works with both Confluent’s Kafka distribution and

the standard, upstream Apache Kafka.

Listing 5-9. Kafka StatefulSet

apiVersion: apps/v1

kind: StatefulSet

metadata:

 labels:

 app: kafka

 name: kafka

 namespace: data

spec:

 podManagementPolicy: OrderedReady

 replicas: 2

 revisionHistoryLimit: 1

10 https://www.confluent.io

Chapter 5 pipeline

https://www.confluent.io

174

 selector:

 matchLabels:

 app: kafka

 serviceName: kafka-headless

 template:

 metadata:

 labels:

 app: kafka

 spec:

 containers:

 - command:

 - sh

 - -exc

 - |

 unset KAFKA_PORT && \

 export KAFKA_BROKER_ID=${HOSTNAME##*-} && \

 export KAFKA_ADVERTISED_LISTENERS=PLAINTEXT:

//${POD_IP}:9092 && \

 exec /etc/confluent/docker/run

 env:

 - name: POD_IP

 valueFrom:

 fieldRef:

 apiVersion: v1

 fieldPath: status.podIP

 - name: KAFKA_HEAP_OPTS

 value: -Xmx1G -Xms1G

 - name: KAFKA_ZOOKEEPER_CONNECT

 value: zookeeper-headless:2181

 - name: KAFKA_LOG_DIRS

 value: /opt/kafka/data/logs

 - name: KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR

Chapter 5 pipeline

175

 value: "1"

 - name: KAFKA_JMX_PORT

 value: "5555"

 image: confluentinc/cp-kafka:5.3.1-1

 imagePullPolicy: IfNotPresent

 livenessProbe:

 exec:

 command:

 - sh

 - -ec

 - /usr/bin/jps | /bin/grep -q SupportedKafka

 failureThreshold: 3

 initialDelaySeconds: 30

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 5

 name: kafka-broker

 ports:

 - containerPort: 9092

 name: kafka

 protocol: TCP

 readinessProbe:

 failureThreshold: 3

 initialDelaySeconds: 30

 periodSeconds: 10

 successThreshold: 1

 tcpSocket:

 port: kafka

 timeoutSeconds: 5

 resources: {}

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

Chapter 5 pipeline

176

 volumeMounts:

 - mountPath: /opt/kafka/data

 name: datadir

 dnsPolicy: ClusterFirst

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 60

 updateStrategy:

 type: OnDelete

 volumeClaimTemplates:

 - metadata:

 name: datadir

 spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5Gi

 storageClassName: rook-ceph-block

Apply the Kafka StatefulSet configuration:

$ kubectl apply -f 40-statefulset.yml

Kubernetes Pod Disruption Budgets11 limit the number of Pods

allowed to be down at any given time with the exception of unplanned

outages such as node failures or Pod errors. A PodDisruptionBudget

configuration is especially useful for updating a stateful set representing

a highly available cluster such as Kafka. With proper configuration and

resources, a Kafka cluster may stay entirely operational, while a subset of

nodes are offline.

11 https://kubernetes.io/docs/concepts/workloads/pods/
disruptions/#how-disruption-budgets-work

Chapter 5 pipeline

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#how-disruption-budgets-work
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#how-disruption-budgets-work

177

Note Due to the limited resources of the development environment
specified in this chapter, the Kafka configuration defined in the
following is stable, yet not highly available.12

Create a PodDisruptionBudget configuration for Kafka in a file named

45-pdb.yml from Listing 5-10.

Listing 5-10. Kafka Pod Disruption Budget

apiVersion: policy/v1beta1

kind: PodDisruptionBudget

metadata:

 name: kafka

 namespace: data

 labels:

 app: kafka

spec:

 maxUnavailable: 1

 selector:

 matchLabels:

 app: kafka

Lastly, apply the Kafka PodDisruptionBudget configuration:

$ kubectl apply -f 45-pdb.yml

The new development environment is now running a two-node Kafka

cluster. The next section sets up Pod for testing and debugging.

12 www.loudera.com/documentation/kafka/latest/topics/kafka_ha.html

Chapter 5 pipeline

http://www.loudera.com/documentation/kafka/latest/topics/kafka_ha.html

178

 Kafka Client Utility Pod
Kafka can broker data between nearly every component in this data-

driven platform with minimal administrative overhead. However, the

Kafka container provided by Confluence contains several useful scripts

(see Table 5-1) for testing, backup, security configuration, and general

administrative functions. Running a Kafka client utility Pod provides

command-line administrative access to this critical platform component.

The Kafka test client Pod runs the same confluentinc/cp-

kafka:5.3.1-1 image as the operational cluster configured earlier.

However, the Pod is configured to execute the command tail -f /dev/

null rather than the standard entry point, keeping tail an active process

and preventing the Pod from completing.

Create a Kafka test client configuration in a file named 99-pod-test-

client.yml from Listing 5-11.

Listing 5-11. Kafka test client Pod

apiVersion: v1

kind: Pod

metadata:

 name: kafka-client-util

 namespace: data

spec:

 containers:

 - command:

 - sh

 - -c

 - exec tail -f /dev/null

 image: confluentinc/cp-kafka:5.3.1-1

 imagePullPolicy: IfNotPresent

 name: kafka

Chapter 5 pipeline

179

 resources: {}

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

Apply the Kafka test client Pod configuration:

$ kubectl apply -f 99-pod-client-util.yml

The container image confluentinc/cp-kafka:4.1.2-2 running in

the Kafka test client Pod comes with the utilities listed in Table 5-1. Run

any of the commands listed in Table 5-1 with the --help flag for a list of

configuration arguments. Cloudera provides detailed documentation on

their website: Kafka Administration Using Command Line Tools.13

Table 5-1. Kafka client utility scripts

Script Description

kafka-acls User authentication, authorization, and access control list

management.

kafka-broker-api-

version

list the api versions of all nodes in the cluster.

kafka-configs add/remove entity config for a topic, client, user, or broker.

kafka-console-
consumer

Used to create, alter, list, and describe topics.

kafka-console-
producer

read data from standard output and write it to a Kafka topic.

kafka-consumer-

groups

list the current consumer groups.

(continued)

13 www.cloudera.com/documentation/enterprise/latest/topics/kafka_admin_
cli.html

Chapter 5 pipeline

http://www.cloudera.com/documentation/enterprise/latest/topics/kafka_admin_cli.html
http://www.cloudera.com/documentation/enterprise/latest/topics/kafka_admin_cli.html

180

Script Description

kafka-consumer-

offset-checker

return the number of messages read and written with lag

times for each consumer in a specific consumer group.

kafka-consumer-

perf-test

run a consumer performance test on a broker and topic.

kafka-delegation-

tokens

Delegation tokens are shared secrets between brokers and

clients. Create, describe, renew, and expire tokens.

kafka-delete-records Delete records from a topic with a given offset.

kafka-log-dirs Output a JSOn object with log information per broker.

kafka-mirror-maker replicate the Kafka cluster.14

kafka-preferred-

replica-election

rebalance topics.15

kafka-producer-perf-

test

run a producer performance test on a broker and topic.

kafka-reassign-

partitions

reassign the Kafka topic partition leaders to a different

Kafka Broker.

kafka-replay-log-

producer

Consume messages from one topic and replay (produce)

them in another.

kafka-replica-

verification

Verify that data is replicated correctly for one or more topics.

kafka-run-class provides the ability to call Kafka classes directly; used

primarily by the other scripts.

Table 5-1. (continued)

14 https://cwiki.apache.org/confluence/pages/viewpage.action?
pageId=27846330

15 https://blog.imaginea.com/how-to-rebalance-topics-in-kafka-cluster/

(continued)

Chapter 5 pipeline

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=27846330
https://blog.imaginea.com/how-to-rebalance-topics-in-kafka-cluster/

181

TESTING KAFKA

 1. Drop into a Bash17 session on the new Kafka test client pod.

$ kubectl exec -it kafka-client-util bash -n data

 2. From the command-line on the new pod, create the topic test

with one partition and one replica.

kafka-topics --zookeeper zookeeper-headless:2181 \

--topic test --create --partitions 1 --replication-factor

 3. list all topics in the Kafka cluster. the new cluster should

only have the test topic along with one or more internal topics

beginning with two underscores.

kafka-topics --zookeeper zookeeper-headless:2181 --list

Script Description

kafka-server-start

kafka-server-stop

Unused in the context of administering the Confluent

distribution.

kafka-streams-

application-reset

reset the internal state of a Kafka Streams16 application.

kafka-topics Create, list, configure, and delete topics.

kafka-verifiable-

producer

kafka-verifiable-

consumer

produce and consume a set number of messages for testing.

Table 5-1. (continued)

16 https://kafka.apache.org/documentation/streams/
17 www.gnu.org/software/bash/

Chapter 5 pipeline

https://kafka.apache.org/documentation/streams/
http://www.gnu.org/software/bash/

182

 4. listen to the new test topic. kafka-console-consumer printing

message to the console.

kafka-console-consumer --bootstrap-server kafka:9092 \

--topic test

 5. Open an additional Bash session on Kafka test client pod from a

separate terminal.

$ kubectl exec -it kafka-client-util bash -n data

 6. Send a test message with kafka-console-producer utility.

kafka-console-producer --broker-list kafka:9092 \

--topic test

 7. type a message and return. each line of text is sent to the topic

as a message and displayed in the terminal running the Kafka

console consumer (step 4).

The development environment is now running a two-node Kafka

cluster, tested and ready to receive and deliver messages. Consider adding

an administrative web interface with Kafka Manager,18 developed by

Yahoo!. LinkedIn developed the Burrow19 utility to monitor consumer

lag times and provide stats over an HTTP endpoint. Cruise-control,20

also developed by LinkedIn, and DoctorKafka21 developed by Pinterest

automate dynamic workload rebalancing and self-healing. Kafka has a vast

and evolving ecosystem of utilities and third-party support.22

18 https://github.com/yahoo/kafka-manager
19 https://github.com/linkedin/Burrow
20 https://github.com/linkedin/cruise-control
21 https://github.com/pinterest/doctorkafka
22 https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem

Chapter 5 pipeline

https://github.com/yahoo/kafka-manager
https://github.com/linkedin/Burrow
https://github.com/linkedin/cruise-control
https://github.com/pinterest/doctorkafka
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem

183

Kafka is designed to work at an immense scale, as a highly available,

fault-tolerant, distributed, general-purpose publish/subscribe system, and

this is a great reason to keep it in the center of a data-driven architecture.

Kafka can easily handle a tremendous volume23 of data and metrics from

nearly any source, especially IoT devices. However, the next section

covers another publish/subscribe application called Mosquitto which

implements the MQTT protocol, uniquely designed for IoT.

 Mosquitto (MQTT)
Protocols such as MQTT (and AMQP) focus on lightweight client to

message broker communications suitable for a wide and growing range

of consumer and industrial IoT devices. In contrast, Apache Kafka is a

much heavier event queue implementation, able to process and persist

tremendous volumes of data. While these systems are similar in concept,

adding MQTT capabilities to the data platform in this book demonstrates a

variety of protocols and the ability to exchange messages between them.

Imagine a factory where machine states are both controlled and

communicated through on-premises MQTT broker; an MQTT broker

within a remote data platform acts as a client-bridge and relays these

messages to Kafka. Machine Learning models run predictive analysis on

a rolling last hour of data from Kafka and make decisions for adjusting a

particular machine's state and communicate this decision back through

MQTT (see Figure 5-5).

23 https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-
million-writes-second-three-cheap-machines

Chapter 5 pipeline

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

184

Mosquitto24 is an open source MQTT broker maintained by the Eclipse

Foundation25 as one of many components offered by the iot.eclipse.org

project.

Create the directory cluster-apk8s-dev3/003-data/050-mqtt. Within

the new 050-mqtt directory, create a file named 10-service.yml from

Listing 5-12.

Listing 5-12. Mosquitto MQTT Service

apiVersion: v1

kind: Service

metadata:

Figure 5-5. Apache Kafka and MQTT event queues

24 https://mosquitto.org/
25 https://eclipse.org/

Chapter 5 pipeline

https://mosquitto.org/
https://eclipse.org/

185

 name: mqtt

 namespace: data

 labels:

 app: mqtt

spec:

 selector:

 app: mqtt

 ports:

 - protocol: "TCP"

 port: 1883

 targetPort: 1883

 type: ClusterIP

Apply the MQTT Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a ConfigMap for Mosquitto in a file named 20-configmap.

yml from Listing 5-13. The small configuration file defined here instructs

the server to run as the user mosquitto and listen on port 1883. There is

no encryption or authentication in this example because the server in this

development environment is not exposed directly to the public. See the

online documentation for an extensive list of configuration options.26

Caution never expose an MQtt broker to the public internet
without authentication and encryption enabled. all clients should be
trusted. it is highly recommended to employ a Vpn or well-configured
firewall to secure remote connections.

26 https://mosquitto.org/man/mosquitto-conf-5.html

Chapter 5 pipeline

https://mosquitto.org/man/mosquitto-conf-5.html

186

Listing 5-13. Mosquitto configuration ConfigMap

apiVersion: v1

kind: ConfigMap

metadata:

 name: mqtt

 namespace: data

 labels:

 app: mqtt

data:

 mosquitto.conf: |-

 user mosquitto

 port 1883

Apply the Mosquitto configuration ConfigMap:

$ kubectl apply -f 20-configmap.yml

Next, create a Deployment for Mosquitto in a file named

30-deployment.yml from Listing 5-14. The Mosquitto defined here is

intended to run as a single instance. Scaling Mosquitto for production

often involves provisioning Brokers for a specified client or group of

clients. There are many other open source and commercial MQTT

brokers available, including VerneMQ,27 a highly available distributed

implementation, and the popular RabbitMQ28 supporting AMQP,29

STOMP,30 as well as MQTT, both open source and written in Erlang.

27 https://vernemq.com
28 www.rabbitmq.com
29 www.amqp.org
30 https://stomp.github.io

Chapter 5 pipeline

https://vernemq.com
http://www.rabbitmq.com
http://www.amqp.org
https://stomp.github.io

187

Listing 5-14. Mosquitto Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: mqtt

 namespace: data

 labels:

 app: mqtt

spec:

 replicas: 1 # keep at 1 for

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: mqtt

 template:

 metadata:

 labels:

 app: mqtt

 spec:

 volumes:

 - name: mqtt-config-volume

 configMap:

 name: mqtt

 containers:

 - name: mqtt

 image: eclipse-mosquitto:1.6.6

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: mqtt-config-volume

 mountPath: /mosquitto/config

Chapter 5 pipeline

188

 ports:

 - name: mqtt

 containerPort: 1883

Apply the Mosquitto Deployment:

$ kubectl apply -f 30-deployment.yml

An MQTT broker is installed and running in the Kubernetes

development cluster. Utilities such as MQTT.fx31 and mqtt-spy32 are great

for testing and debugging MQTT brokers. The following exercise tests the

new Broker utilizing the mosquitto_sub utility on the new Mosquitto Pod

along with MQTT.fx operated on a local workstation.

TESTING MOSQUITTO

 1. Download and install MQtt.fx version 1.7.1 on a local workstation.

Visit https://mqttfx.jensd.de/index.php/download.

 2. Drop into a Bash session on the Mosquitto MQtt broker pod

(use kubectl get pods -n data to find its name).

$ kubectl exec -it mqtt-6899646f75-g65sf sh -n data

 3. From the command line within the Mosquitto MQtt pod, begin

listening for messages on the dev/test topic.

mosquitto_sub -t dev/apk8s

 4. From the local workstation, use kubectl to port-forward the

mqtt Kubernetes Service to the local workstation running

MQtt.fx.

$ kubectl port-forward svc/mqtt 1883:1883 -n data

31 https://mqttfx.jensd.de
32 http://kamilfb.github.io/mqtt-spy/

Chapter 5 pipeline

https://mqttfx.jensd.de/index.php/download
https://mqttfx.jensd.de
http://kamilfb.github.io/mqtt-spy/

189

 5. Open MQtt.fx and select “local mosquitto” from the connect

drop-down, and then click Connect as shown in Figure 5-6.

 6. provide the same topic; mosquitto_sub is listening to from

step 3, in this case, dev/apk8s. provide a message in the

large text area and click Publish.

Note Simple messaging can also be accomplished with the
mosquitto_pub utility available alongside mosquitto_sub.

 7. Observe the message printed from the mosquitto_sub output.

 Summary
The platform now consists of two popular event queues, Kafka and

Mosquitto. Kafka is intended as the “central nervous system” of the

platform and responsible for the real-time communication of state,

metrics, and data, to and from other platform components. Mosquitto

provides support for the popular IoT communication protocol

MQTT. Listing 5-15 displays an overview of configuration manifests

developed in this chapter.

Figure 5-6. MQTT.fx application running on a local workstation

Chapter 5 pipeline

190

Listing 5-15. Data Pipeline Development Cluster configuration

layout

.

└── cluster-apk8s-dev3
 ├── 000-cluster
 └── 003-data
 ├── 000-namespace
 │ ├── 00-namespace.yml
 │ └── 05-certs.yml
 ├── 010-zookeeper
 │ ├── 10-service-headless.yml
 │ ├── 10-service.yml
 │ └── 40-statefulset.yml
 ├── 020-kafka
 │ ├── 10-service-headless.yml
 │ ├── 10-service.yml
 │ ├── 40-statefulset.yml
 │ ├── 45-pdb.yml
 │ └── 99-pod-test-client.yml
 └── 050-mqtt
 ├── 10-service.yml
 ├── 20-configmap.yml
 └── 30-deployment.yml

The upcoming chapters demonstrate methods of indexing, analysis,

visualization, warehousing, and routing data flowing through the queues

configured in this chapter.

Chapter 5 pipeline

191© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_6

CHAPTER 6

Indexing and Analytics
A modern, distributed data platform with Kubernetes goes well beyond the

collection, storage, and transmission of data. Search, indexing, analyzing,

and data science applications are essential elements in data-centric

platforms. This chapter focuses on web-scale1 technologies, an ecosystem

that matured outside of the mainline concerns of Big Data.2 Where Big

Data assumes a limited number of simultaneous requests to process

nearly unlimited lakes3 of data, web-scale assumes an eventual unlimited

simultaneous demand for data. Web-scale analytics and Big Data are

growing closer together and rapidly advancing in combined capabilities.

This chapter covers general data indexing, metrics, analytics, and data

science built for web-scale architectures. The next chapter covers how

Kubernetes fits into the Big Data picture by supporting the development of

modern data lakes and warehouses. Kubernetes’s ability to construct robust,

distributed clusters brings opportunities to bridge the data and control

planes of these two distinct problem domains, Big Data at web-scale.

1 Haight, Cameron. “Enter Web-Scale IT.” Gartner Blog Network, May
16, 2013. https://blogs.gartner.com/cameron_haight/2013/05/16/
enter-web-scale-it/.

2 Lohr, Steve. “The Origins of ‘Big Data’: An Etymological Detective Story.” Bits
Blog (blog), February 1, 2013. https://bits.blogs.nytimes.com/2013/02/01/
the-origins-of-big-data-an-etymological-detective-story/.

3 Dixon, James. “Pentaho, Hadoop, and Data Lakes.” James Dixon’s Blog
(blog), October 14, 2010. https://jamesdixon.wordpress.com/2010/10/14/
pentaho-hadoop-and-data-lakes/.

https://doi.org/10.1007/978-1-4842-5611-4_6#DOI
https://blogs.gartner.com/cameron_haight/2013/05/16/enter-web-scale-it/
https://blogs.gartner.com/cameron_haight/2013/05/16/enter-web-scale-it/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

192

This chapter focuses on applications that cover a generic yet capable

range of communication, indexing, and data science requirements.

Applications focused on a specific problem domain may benefit from

technology targeted at a higher level; however, general search, analytics,

and data science technologies are often the foundation of a multilayered

approach in developing a focused data-driven solution.

 Search and Analytics
Data exists as structured, semi-structured and unstructured. Unstructured

data includes a variety of data types, such as images, videos, audio, PDFs,

and raw text. The next chapter covers the development of data lakes to store

unstructured data. However, this chapter is concerned with semi-structured,

document-based data supported by Elasticsearch, a document-based data

index capable of the storage, retrieval, and analysis of billions of records.

 Data Science Environment
In the section “Data Lab,” this chapter ties together the operations of

data gathering, queueing indexing, and analysis into a data science

environment. JupyterHub is configured to provide JupyterLab instances

(introduced in Chapter 4) to enhance data science activities by leveraging

in-cluster access to Kafka, Elasticsearch, Mosquitto, and more.

 Development Environment
Previous chapters utilized generic compute resources from low-cost

hosting providers Vultr and Scaleway. This chapter continues the trend

by selecting discount compute offerings by Hetzner. Hetzner is another

excellent option for constructing low-cost development and experimental

Kubernetes clusters.

Chapter 6 IndexIng and analytICs

193

The Kubernetes cluster in this chapter utilizes one CX21 (2 vCPU/8G

RAM/40G SSD) and four CX41 (4 vCPU/16G RAM/160G SSD) instances by

Hetzner. Hetzner pricing at the time of this writing puts this cluster at less

than four US dollars per day.

Note Ubuntu server instances on hetzner do not include kernel
headers needed by some packages or the kernel module rbd
(required by Ceph). Use the following commands on each hetzner
server to install the kernel headers and load rbd shown in listing 6-1.

Listing 6-1. Installing kernel headers and the rdb kernel module

$ # install kernel headers

$ apt install -y linux-headers-$(uname -r)

$ # load the Ceph rbd kernel module

$ modprobe rbd

Labeled as dev4, the custom Kubernetes cluster in this chapter is set

up following installation instructions from Chapter 3 along with manifests

from Chapter 5. If following along from the previous chapter, duplicate and

apply the manifests from cluster-apk8s-dev3 into cluster-apk8s-dev4

as shown in Listing 6-2.

Listing 6-2. Development environment prerequisites

.

└── cluster-apk8s-dev3
└── cluster-apk8s-dev4
 ├── 000-cluster
 │ ├── 00-ingress-nginx
 │ ├── 10-cert-manager

Chapter 6 IndexIng and analytICs

194

 │ ├── 20-rook-ceph
 │ └── 30-monitoring
 └── 003-data
 ├── 000-namespace
 ├── 010-zookeeper
 ├── 020-kafka
 └── 050-mqtt

 TLS Certificates
This chapter uses the subdomains kib for Kibana, auth for Keycloak,

and lab for JupyterHub/JupyterLab. Ensure the TLS Kubernetes Secret

data-production-tls is available to ingress by generating the certificates.

Listing 6-3 lists an example Cert Manager configuration defining the file

cluster-apk8s-dev4/003-data/000-namespace/05-certs.yml.

Listing 6-3. cluster-apk8s-dev4 TLS Certificate

apiVersion: cert-manager.io/v1alpha2

kind: Certificate

metadata:

 name: data-cert

 namespace: data

spec:

 secretName: data-production-tls

 issuerRef:

 name: letsencrypt-production

 kind: ClusterIssuer

 commonName: data.dev4.apk8s.dev

Chapter 6 IndexIng and analytICs

195

 dnsNames:

 - data.dev4.apk8s.dev

 - auth.data.dev4.apk8s.dev

 - lab.data.dev4.apk8s.dev

 - kib.data.dev4.apk8s.dev

 Basic Auth
Create a Kubernetes Secret containing Basic Auth credentials. Later on,

Ingress Nginx is configured to use this Secret to secure access to Kibana.

First, create a username/password combination in a file named auth

using the htpasswd4 utility.

$ cd cluster-apk8s-dev4/003-data/000-namespace

$ htpasswd -c auth sysop

Use the kubectl imperative command create secret to create a Secret

named sysop-basic-auth from the auth file structured as expected by

Ingress.

$ kubectl create secret generic sysop-basic-auth \

 --from-file auth -n data

 ELK
The ELK stack5 consists of Elasticsearch, Logstash, and Kibana. ELK

is a popular suite of applications for indexing, searching, routing,

transforming, and visualizing data. Elasticsearch B.V. maintains this open

source stack and offers managed services along with many other popular

open source and commercial software.

4 https://httpd.apache.org/docs/current/programs/htpasswd.html
5 www.elastic.co/what-is/elk-stack

Chapter 6 IndexIng and analytICs

https://httpd.apache.org/docs/current/programs/htpasswd.html
http://www.elastic.co/what-is/elk-stack

196

Note the elasticsearch B.V. Elastic License may be too restrictive
for platforms-as-a-service (paas) offerings that include elasticsearch.
amazon has forked the project and created the Open Distro
for Elasticsearch6 under an apache 2.0 software license (albeit
somewhat controversial7). due diligence is a requirement for
choosing a distribution that suits a particular use case.

 Elasticsearch
Elasticsearch is a data indexer and analytics engine based on Apache

Lucene8 and created as a distributed system designed explicitly for

horizontal scalability and high availability. Elasticsearch accepts any form

of JSON-based data structures, making it well suited for interoperability

with modern web APIs. Elasticsearch can automatically detect many data

types, yet custom templates may also be provided to assert data types for

ambiguous fields that require casting or transformation, such as numbers

represented as strings or date formats. Elasticsearch has extensive features

for data aggregation and statistical analysis and can store data along

with its indexes. Although intended for data indexing and aggregation,

Elasticsearch is a capable NoSQL database.

This chapter sets up a single-node Elasticsearch instance. Production

deployments of Elasticsearch consist of multiple nodes, each dedicated

to a specific task: data nodes store, index, and query data; master nodes

update the cluster state; and client nodes take the form of load balancers,

performing indexing and searching.

6 https://opendistro.github.io/for-elasticsearch/
7 Leonard, Andrew. “Amazon Has Gone From Neutral Platform to Cutthroat
Competitor, Say Open Source Developers.” Medium, April 24, 2019. https://
onezero.medium.com/open-source-betrayed-industry-leaders-accuse-
amazon-of-playing-a-rigged-game-with-aws-67177bc748b7.

8 https://lucene.apache.org/

Chapter 6 IndexIng and analytICs

https://opendistro.github.io/for-elasticsearch/
https://onezero.medium.com/open-source-betrayed-industry-leaders-accuse-amazon-of-playing-a-rigged-game-with-aws-67177bc748b7
https://onezero.medium.com/open-source-betrayed-industry-leaders-accuse-amazon-of-playing-a-rigged-game-with-aws-67177bc748b7
https://onezero.medium.com/open-source-betrayed-industry-leaders-accuse-amazon-of-playing-a-rigged-game-with-aws-67177bc748b7
https://lucene.apache.org/

197

Note elasticsearch B.V., the official maintainers of elasticsearch,
has developed a solution they call the “elastic Cloud on Kubernetes,9”
implementing the Kubernetes Operator pattern for installing and
managing elasticsearch clusters. Consider this solution for production
implementations.

Create the directory cluster-apk8s-dev4/003-data/030-

elasticsearch. Within the new 030-elasticsearch directory, create a file

named 10-service.yml from Listing 6-4.

Listing 6-4. Elasticsearch Service

apiVersion: v1

kind: Service

metadata:

 namespace: data

 name: elasticsearch

spec:

 type: ClusterIP

 selector:

 app: elasticsearch

 ports:

 - name: http-es

 port: 9200

 targetPort: http-es

 protocol: TCP

Apply the Elasticsearch Service configuration:

$ kubectl apply -f 10-service.yml

9 www.elastic.co/elasticsearch-kubernetes

Chapter 6 IndexIng and analytICs

http://www.elastic.co/elasticsearch-kubernetes

198

Next, create a StatefulSet configuration for Elasticsearch in a file

named 40-statefulset.yml from Listing 6-5.

Listing 6-5. Elasticsearch StatefulSet

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: elasticsearch

 namespace: data

 labels:

 app: elasticsearch

spec:

 serviceName: elasticsearch

 replicas: 1 # single-node cluster

 selector:

 matchLabels:

 app: elasticsearch

 template:

 metadata:

 labels:

 app: elasticsearch

 spec:

 initContainers:

 - name: init-sysctl

 image: busybox:1.27.2

 command: ["sysctl", "-w", "vm.max_map_count=262144"]

 securityContext:

 privileged: true

 - name: init-chown

 image: busybox:1.27.2

 command: ["/bin/sh"]

Chapter 6 IndexIng and analytICs

199

 args: ["-c", "chown -R 1000:1000 /usr/share/

elasticsearch/data"]

 securityContext:

 privileged: true

 volumeMounts:

 - name: es-data

 mountPath: /usr/share/elasticsearch/data

 containers:

 - name: elasticsearch

 i mage: docker.elastic.co/elasticsearch/

elasticsearch:7.1.1

 imagePullPolicy: IfNotPresent

 env:

 - name: "discovery.type"

 value: "single-node"

 - name: "cluster.name"

 value: "apk8s"

 - name: "transport.host"

 value: "127.0.0.1"

 - name: "ES_JAVA_OPTS"

 value: "-Xms512m -Xmx512m"

 - name: "http.host"

 value: "0.0.0.0"

 - name: "http.port"

 value: "9200"

 - name: "http.cors.allow-origin"

 value: "http://localhost:1358"

 - name: "http.cors.enabled"

 value: "true"

 - name: "http.cors.allow-headers"

 value: "X-Requested-With,X-Auth-Token,Content-

Type,Content-Length,Authorization"

Chapter 6 IndexIng and analytICs

200

 - name: "http.cors.allow-credentials"

 value: "true"

 ports:

 - containerPort: 9200

 name: http-es

 - containerPort: 9300

 name: tcp-es

 volumeMounts:

 - name: es-data

 mountPath: /usr/share/elasticsearch/data

 volumeClaimTemplates:

 - metadata:

 name: es-data

 spec:

 storageClassName: rook-ceph-block

 accessModes: [ReadWriteOnce]

 resources:

 requests:

 storage: 50Gi

Apply the Elasticsearch StatefulSet configuration:

$ kubectl apply -f 40-statefulset.yml

Use kubectl to port-forward the Elasticsearch Service to a local

workstation.

$ kubectl port-forward elasticsearch-0 9200:9200 -n data

Use curl to check the health of the new single-node Elasticsearch

cluster. A successful installation returns a JSON object with the status key

reporting the message green.

$ curl http://localhost:9200/_cluster/health

Chapter 6 IndexIng and analytICs

201

Elasticsearch is designed to shard10 and replicate data across a large

cluster of nodes. Single-node development clusters only support a single

shard per index and are unable to replicate data because there are no other

nodes available. Using curl, POST a (JSON) template to this single-node

cluster, informing Elasticsearch to configure any new indexes with one

shard and zero replicas.

$ cat <<EOF | curl -X POST \

-H "Content-Type: application/json" \

-d @- http://localhost:9200/_template/all

{

 "index_patterns": "*",

 "settings": {

 "number_of_shards": 1,

 "number_of_replicas": 0

 }

}

EOF

 Logstash
Logstash is the central hub in the Elastic ecosystem. “Logstash is an

open-source, server-side data processing pipeline that ingests data from

a multitude of sources simultaneously, transforms it, and then sends

it to your favorite ‘stash’.”11 This book uses Logstash to inject data into

Elasticsearch. Injecting large volumes of data at a high velocity into

Elasticsearch can be challenging; however, Logstash buffers data and

manages back pressure caused by the indexing process. Logstash has a

10 www.elastic.co/blog/how-many-shards-should-i-have-in-my-
elasticsearch-cluster

11 www.elastic.co/products/logstash

Chapter 6 IndexIng and analytICs

http://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster
http://www.elastic.co/blog/how-many-shards-should-i-have-in-my-elasticsearch-cluster
http://www.elastic.co/products/logstash

202

large set of useful input plug-ins, including Apache Kafka, utilized later

in this chapter to index records (events/message) from Kafka topics into

Elasticsearch.

To operate the examples in this chapter, ensure Apache Kafka is

running in the Kubernetes cluster. Review Kafka installation instructions

from Chapter 5 if necessary.

Create the directory cluster-apk8s-dev4/003-data/032-logstash.

Within the new 032-logstash directory, create a file named 10-service.

yml from Listing 6-6.

Listing 6-6. Logstash Service

kind: Service

apiVersion: v1

metadata:

 name: logstash

 namespace: data

spec:

 selector:

 app: logstash

 ports:

 - protocol: TCP

 port: 5044

 type: ClusterIP

Apply the Logstash Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a ConfigMap containing Logstash configuration settings in

a file named 30-configmap-config.yml from Listing 6-7. To limit memory

usage in resource-constrained environments (such as the development

cluster defined in this chapter), configure the Java JVM -Xms512m

and -Xmx523m settings to a relatively small number.

Chapter 6 IndexIng and analytICs

203

Listing 6-7. Logstash configuration ConfigMap

apiVersion: v1

kind: ConfigMap

metadata:

 name: logstash-config

 namespace: data

data:

 logstash.yml: |

 http.host: "0.0.0.0"

 xpack.monitoring.enabled: false

 pipelines.yml: |

 - pipeline.id: main

 path.config: "/usr/share/logstash/pipeline"

 log4j2.properties: |

 status = error

 name = LogstashPropertiesConfig

 appender.console.type = Console

 appender.console.name = plain_console

 appender.console.layout.type = PatternLayout

 appender.console.layout.pattern = [%d{ISO8601}][%-5p]

[%-25c] %m%n

 appender.json_console.type = Console

 appender.json_console.name = json_console

 appender.json_console.layout.type = JSONLayout

 appender.json_console.layout.compact = true

 appender.json_console.layout.eventEol = true

 rootLogger.level = ${sys:ls.log.level}

 rootLogger.appenderRef.console.ref = ${sys:ls.log.format}_

console

Chapter 6 IndexIng and analytICs

204

 jvm.options: |

 ## JVM configuration

 -Xms512m

 -Xmx523m

 -XX:+UseParNewGC

 -XX:+UseConcMarkSweepGC

 -XX:CMSInitiatingOccupancyFraction=75

 -XX:+UseCMSInitiatingOccupancyOnly

 -Djava.awt.headless=true

 -Dfile.encoding=UTF-8

 -Djruby.compile.invokedynamic=true

 -Djruby.jit.threshold=0

 -XX:+HeapDumpOnOutOfMemoryError

 -Djava.security.egd=file:/dev/urandom

Apply the Logstash configuration ConfigMap:

$ kubectl apply -f 30-configmap-config.yml

Logstash processes events in three stages: input, filter, and output.

The configuration in Listing 6-8 demonstrates the use of a Kafka input

plug-in to consume data from topic message and metrics. The output

configuration checks for the existence of a Kafka topic and, if found, routes

the data from the topic into a corresponding index prepended with the

current day.

Chapter 6 IndexIng and analytICs

205

Create a ConfigMap containing Logstash pipeline settings in a file

named 30-configmap-pipeline.yml from Listing 6-8.

Listing 6-8. Logstash pipeline configuration ConfigMap

apiVersion: v1

kind: ConfigMap

metadata:

 name: logstash-pipeline

 namespace: data

data:

 logstash.conf: |

 input {

 kafka {

 bootstrap_servers => "kafka-headless:9092"

 topics => ["messages", "metrics"]

 auto_offset_reset => "latest"

 auto_commit_interval_ms => "500"

Figure 6-1. Kafka to Elasticsearch Logstash pipeline configuration

Chapter 6 IndexIng and analytICs

206

 enable_auto_commit => true

 codec => json

 decorate_events => true

 }

 }

 output {

 if [@metadata][kafka][topic] {

 elasticsearch {

 hosts => ["elasticsearch:9200"]

 index => "apk8s-%{[@metadata][kafka][topic]}-

%{+YYYY.MM.dd}"

 }

 }

 }

Apply the Logstash pipeline configuration ConfigMap:

$ kubectl apply -f 30-configmap-pipeline.yml

Lastly, create a Logstash Deployment in a file named 40-deployment.

yml from Listing 6-9.

Listing 6-9. Logstash Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: logstash

 namespace: data

 labels:

 app: logstash

spec:

 replicas: 1

Chapter 6 IndexIng and analytICs

207

 selector:

 matchLabels:

 app: logstash

 template:

 metadata:

 labels:

 app: logstash

 spec:

 containers:

 - name: logstash

 image: docker.elastic.co/logstash/logstash:7.1.1

 ports:

 - containerPort: 5044

 env:

 - name: ES_VERSION

 value: 7.1.1

 volumeMounts:

 - name: config-volume

 mountPath: /usr/share/logstash/config

 - name: logstash-pipeline-volume

 mountPath: /usr/share/logstash/pipeline

 volumes:

 - name: config-volume

 configMap:

 name: logstash-config

 - name: logstash-pipeline-volume

 configMap:

 name: logstash-pipeline

Apply the Logstash Deployment:

$ kubectl apply -f 40-deployment.yml

Chapter 6 IndexIng and analytICs

208

The cluster is now running a single Logstash instance, easily scalable

by incrementing the replicas as desired. Starting with a single node is

useful for early debugging.

As configured earlier, the Logstash pipeline accepts JSON data input

from the Kafka topic messages and metrics. The output configuration

instructs Logstash to populate Elasticsearch indexes based on the topic

name and day.

Note refer to Chapter 5 for instructions on setting up apache Kafka
and the kafka-test-client pod required for examples in this
chapter.

Test the new Logstash pipeline by echoing a simple JSON message to

the kafka-console-producer script provided by the kafka-test-client.

$ kubectl -n data exec -it kafka-test-client -- \

bash -c "echo '{\"usr\": 1, \"msg\": \"Hello ES\" }' | \

kafka-console-producer --broker-list kafka:9092 \

--topic messages"

Use kubectl to port-forward the Elasticsearch Service to a local

workstation.

$ kubectl port-forward elasticsearch-0 9200:9200 -n data

Next, ensure that Logstash correctly routed the data event from the

Kafka topic messages into the correct index. Use curl to get all records for

the index pattern apk8s-messages-*. The following command returns all

records from indexes beginning with apk8s-messages-:

$ curl http://localhost:9200/apk8s-messages-*/_search

Example response:

{

 "took": 1,

Chapter 6 IndexIng and analytICs

209

 "timed_out": false,

 "_shards": {

 "total": 1,

 "successful": 1,

 "skipped": 0,

 "failed": 0

 },

 "hits": {

 "total": {

 "value": 1,

 "relation": "eq"

 },

 "max_score": 1.0,

 "hits": [

 {

 "_index": "apk8s-messages-2020.03.02",

 "_type": "_doc",

 "_id": "IDn7mXABZUrIUU7qdxAr",

 "_score": 1.0,

 "_source": {

 "@version": "1",

 "usr": 1,

 "@timestamp": "2020-03-02T06:42:38.545Z",

 "msg": "Hello ES"

 }

 }

]

 }

}

Earlier in this chapter, the template all was defined to match all

indexes and set default sharding and replication. Additional templates

could be added to define data types for fields on specific or sets of indexes.

Chapter 6 IndexIng and analytICs

210

However, when no templates match fields or indexes, Elasticsearch makes

a best-effort guess at the data types. Review the default mapping generated

for the new index with the following curl command:

$ curl http://localhost:9200/apk8s-messages-*/_mapping

In the case of Elasticsearch 7.1.1 configured in this cluster, the field

user received the numeric assignment long, and field msg indexed as text.

Logstash's ability to buffer and manage back pressure from the

Elasticsearch indexing operations can play a vital role in platforms

consuming and processing tremendous amounts of data at a very high

velocity. Even in the small cluster defined in this chapter, Logstash may

scale12 to a dozen or more nodes, each one consuming and buffering data

into this single Elasticsearch node.

 Kibana
Kibana is the front-end component of the ELK stack and integrates

seamlessly with Elasticsearch and is an excellent tool for debugging,

development, and visualizations of Elasticsearch data. However, Kibana is

also limited to working exclusively with Elasticsearch. Modern analytics,

visualizations, and dashboards often require the collection, processing,

and visualization of data from a variety of providers. It is not uncommon

to utilize Kibana as internal development and debugging utility for

Elasticsearch while employing more general solutions for visualization and

analysis across the platform at large.

Create the directory cluster-apk8s-dev4/003-data/034-kibana.

Within the new 034-kibana directory, create a file named 10-service.yml

from Listing 6-10.

12 www.elastic.co/guide/en/logstash/current/deploying-and-scaling.html

Chapter 6 IndexIng and analytICs

http://www.elastic.co/guide/en/logstash/current/deploying-and-scaling.html

211

Listing 6-10. Kibana Service

apiVersion: v1

kind: Service

metadata:

 name: kibana

 namespace: data

 labels:

 app: kibana

spec:

 selector:

 app: kibana

 ports:

 - protocol: "TCP"

 port: 80

 targetPort: 5601

 type: ClusterIP

Apply the Kibana Service:

$ kubectl apply -f 10-service.yml

Next, create a ConfigMap containing Kibana configuration settings in a

file named 20-configmap.yml from Listing 6-11.

Listing 6-11. Kibana configuration ConfigMap

apiVersion: v1

kind: ConfigMap

metadata:

 name: kibana

 namespace: data

 labels:

 app: kibana

data:

Chapter 6 IndexIng and analytICs

212

 kibana.yml: |-

 server.name: kib.data.dev4.apk8s.dev

 server.host: "0"

 elasticsearch.hosts: http://elasticsearch:9200

Apply the Kibana ConfigMap:

$ kubectl apply -f 20-configmap.yml

Next, create a Kibana Deployment in a file named 30-deployment.yml

from Listing 6-12.

Listing 6-12. Kibana Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: kibana

 namespace: data

 labels:

 app: kibana

spec:

 replicas: 1

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: kibana

 template:

 metadata:

 labels:

 app: kibana

 spec:

 volumes:

 - name: kibana-config-volume

Chapter 6 IndexIng and analytICs

213

 configMap:

 name: kibana

 containers:

 - name: kibana

 image: docker.elastic.co/kibana/kibana-oss:7.1.1

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: kibana-config-volume

 mountPath: /usr/share/kibana/config

 env:

 - name: CLUSTER_NAME

 value: apk8s

 ports:

 - name: http

 containerPort: 5601

Apply the Kibana Deployment:

$ kubectl apply -f 30-deployment.yml

Next, create an Ingress for Kibana in a file named 50-ingress.yml

from Listing 6-13.

Listing 6-13. Kibana Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: kibana

 namespace: data

 labels:

 app: kibana

 annotations:

 nginx.ingress.kubernetes.io/auth-type: basic

Chapter 6 IndexIng and analytICs

214

 nginx.ingress.kubernetes.io/auth-secret: sysop-basic-auth

 nginx.ingress.kubernetes.io/auth-realm: "Authentication

Required"

spec:

 rules:

 - host: kib.data.dev4.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: kibana

 servicePort: 5601

 path: /

 tls:

 - hosts:

 - kib.data.dev4.apk8s.dev

 secretName: data-production-tls

Apply the Kibana Ingress:

$ kubectl apply -f 50-ingress.yml

The following ingress exposes Kibana to the public at https://kib.

data.dev4.apk8s.dev and uses Basic Auth for security. The secret sysop-

basic-auth contains the username and password for Basic Auth.

If following along, the new Elasticsearch instance contains only a single

record. The remainder of this chapter demonstrates provisioning JupyterLab

environments capable of communicating data to and from the Elasticsearch

configured in this chapter and Kafka configured in the previous.

 Data Lab
This chapter and the previous bring the essential capabilities of a data-

driven platform, including event streams with Kafka, IoT message

brokering by Mosquitto, data routing, and transformation in Logstash

Chapter 6 IndexIng and analytICs

https://kib.data.dev4.apk8s.dev
https://kib.data.dev4.apk8s.dev

215

and persistent indexed data through Elasticsearch. The remainder of this

chapter creates a user-provisioned data laboratory connected to these

systems directly within the cluster as shown in Figure 6-2.

JupyterLab, first introduced in Chapter 4, brings a robust and

extendable suite of data science capabilities along with a command-line

terminal. Operating JupyterLab within the cluster creates an incredibly

efficient environment for both traditional data science, analytics,

and experimentation, along with opportunities for development and

operations through closer interaction with the Kubernetes API.

The following sections demonstrate the setup of a Kubernetes

Namespace, sample RBAC, and ServiceAccount permissions allowing

JupyterLab access to Kubernetes resources. JupyterHub13 is configured to

provision JupyterLab environments, authenticating against Keycloak.

Figure 6-2. JupyterLab in the data-lab Namespace

13 https://jupyterhub.readthedocs.io/en/stable/

Chapter 6 IndexIng and analytICs

https://jupyterhub.readthedocs.io/en/stable/

216

 Keycloak
Keycloak14 is a free, open source identity and access management

application sponsored by Red Hat. Keycloak provides the ability to create

and manage user accounts, or connect to an existing LDAP or Active

Directory. Third-party applications may authenticate users through

OpenID Connect, OAuth 2.0, and SAML 2.0.

Keycloak provides a turnkey solution for identity management and

third-party authentication well suited to the requirements of the data

platform described in this book. The following section implements a

single-node Keycloak instance, used later in this chapter for JupyterHub to

authenticate users before provisioning JupyterLab instances for them.

Create the directory cluster-apk8s-dev4/003-data/005-keycloak.

Within the new 005-keycloak directory, create a file named 10-service.

yml from Listing 6-14.

Listing 6-14. Keycloak Web Service

apiVersion: v1

kind: Service

metadata:

 name: web-keycloak

 namespace: data

spec:

 selector:

 app: web-keycloak

 ports:

 - name: http-web

 protocol: "TCP"

14 www.keycloak.org/

Chapter 6 IndexIng and analytICs

http://www.keycloak.org/

217

 port: 8080

 targetPort: http-web

 type: ClusterIP

Apply the Keycloak Web Service:

$ kubectl apply -f 10-service.yml

Next, create a Secret containing Keycloak administrator credentials in

a file named 15-secret.yml from Listing 6-15.

Listing 6-15. Keycloak administrator and keystore credentials

apiVersion: v1

kind: Secret

metadata:

 name: keycloak

 namespace: data

 labels:

 app: keycloak

type: Opaque

stringData:

 keycloak_user: "sysop"

 keycloak_password: "verystrongpassword"

 keystore_password: "anotherverystrongpassword"

Apply the Keycloak Secret:

$ kubectl apply -f 10-service.yml

Next, create a Keycloak Deployment in a file named 30-deployment.

yml from Listing 6-16.

Chapter 6 IndexIng and analytICs

218

Listing 6-16. Keycloak deployment

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: web-keycloak

 namespace: data

spec:

 serviceName: web-keycloak

 replicas: 1

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: web-keycloak

 template:

 metadata:

 labels:

 app: web-keycloak

 spec:

 initContainers:

 - name: keycloak-init-chown

 image: alpine:3.10.1

 imagePullPolicy: IfNotPresent

 volumeMounts:

 - name: keycloak-db

 mountPath: /data

 command: ["chown"]

 args: ["-R","1000:1000","/data"]

 containers:

 - name: web-keycloak

 image: jboss/keycloak:6.0.1

 imagePullPolicy: IfNotPresent

Chapter 6 IndexIng and analytICs

219

 env:

 - name: PROXY_ADDRESS_FORWARDING

 value: "true"

 - name: KEYCLOAK_HOSTNAME

 value: "auth.data.dev4.apk8s.dev"

 - name: KEYCLOAK_USER

 valueFrom:

 secretKeyRef:

 name: keycloak

 key: keycloak_user

 - name: KEYCLOAK_PASSWORD

 valueFrom:

 secretKeyRef:

 name: keycloak

 key: keycloak_password

 - name: KEYSTORE_PASSWORD

 valueFrom:

 secretKeyRef:

 name: keycloak

 key: keystore_password

 ports:

 - name: http-web

 containerPort: 8080

 volumeMounts:

 - name: keycloak-db

 mountPath: /opt/jboss/keycloak/standalone/data

 volumeClaimTemplates:

 - metadata:

 name: keycloak-db

 spec:

 storageClassName: rook-ceph-block

Chapter 6 IndexIng and analytICs

220

 accessModes: [ReadWriteOnce]

 resources:

 requests:

 storage: 5Gi

Apply the Keycloak Deployment:

$ kubectl apply -f 30-deployment.yml

Lastly, create an Ingress for Keycloak in a file named 50-ingress.yml

from Listing 6-17.

Listing 6-17. Keycloak Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: web-auth

 namespace: data

 labels:

 app: web-auth

spec:

 rules:

 - host: auth.data.dev4.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: web-keycloak

 servicePort: 8080

 path: /

 tls:

 - hosts:

 - auth.data.dev4.apk8s.dev

 secretName: data-production-tls

Chapter 6 IndexIng and analytICs

221

Apply the Keycloak Ingress:

$ kubectl apply -f 50-ingress.yml

 Realm, Client, and User

Keycloak provides identity management and authentication to multiple

tenants through the configuration of realms.15 JupyterHub is configured

later on in this chapter to authenticate users using Oauth2,16 belonging

to the realm datalab. A Keycloak client associated with a realm grants

access to applications such as JupyterHub looking to authenticate users.

This section sets up a realm, client, and user used to provision JupyterLab

servers later in this chapter.

Using a web browser, visit the new Ingress https://auth.data.dev4.

apk8s.dev/auth/ as set up in the previous section. Log in to Keycloak

using the sysop credential defined in Listing 6-15. After logging in, master

is the default realm shown in the upper left of the user interface and

depicted in Figure 6-3. Open the "Add realm" menu by clicking the drop-

down to the right of the realm title and create the new realm datalab.

15 www.keycloak.org/docs/latest/server_admin/index.html#_create-realm
16 https://oauth.net/2/

Chapter 6 IndexIng and analytICs

https://auth.data.dev4.apk8s.dev/auth/
https://auth.data.dev4.apk8s.dev/auth/
http://www.keycloak.org/docs/latest/server_admin/index.html#_create-realm
https://oauth.net/2/

222

Next, navigate to Clients in the left-hand navigation of the new Datalab

realm. Click Create and fill in the “Add Client” form to add a new client

named datalab shown in Figure 6-4.

Figure 6-3. Add realm

Figure 6-4. Add client

Chapter 6 IndexIng and analytICs

223

After adding the new datalab client, click the Credentials tab to retrieve

the generated secret, as shown in Figure 6-5. JupyterHub is later configured

to use the client ID datalab and the generated secret for permission to

authenticate users against the Keycloak datalab realm.

Configure the new datalab client (under the Setting tab) by switching

Authorization Enabled to on. Provide Valid Redirect URIs, in this case,

https://lab.data.dev4.apk8s.dev/hub/oauth_callback later defined in

the “JupyterHub” section. Review Figure 6-6.

Figure 6-5. Client credentials

Chapter 6 IndexIng and analytICs

https://lab.data.dev4.apk8s.dev/hub/oauth_callback

224

Finally, create one or more users in the datalab realm by choosing Users

under the Manage section of the left-hand menu. After adding a user, assign

a password under the Credentials tab. Use a strong password; any users

assigned to this realm are later given access to a JupyterLab environment with

permissions to read and write data and execute code from within the cluster.

 Namespace
Most Kubernetes objects are associated with a Namespace, including Pods,

Deployments, StatefulSets, Jobs, Ingresses, Services, and more, in other

words: “A Namespace defines a logically named group for multiple Kinds

Figure 6-6. Client configuration

Chapter 6 IndexIng and analytICs

225

of resources.”17 Namespaces not only aid in organizing configured objects,

they also provide options for security, resource allocation, and resource

constraints.

Tip Use Kubernetes resourceQuota18 objects for fine-grain
restriction to resources for a given namespace, including the total
number of pods and persistentVolumeClaims allowed, CpU, memory,
and storage class restrictions.

This section sets up the Namespace data-lab along with a

ServiceAccount and RBAC permissions used by JupyterLab and JupyterHub.

Create the directory cluster-apk8s-dev4/005-data-lab/000-namespace

to contain namespace-wide configuration manifests. Next, create a Kubernetes

Namespace in a file named 00-namespace.yml from Listing 6-18.

Listing 6-18. data-lab Namespace

apiVersion: v1

kind: Namespace

metadata:

 name: data-lab

Apply the Namespace configuration:

$ kubectl apply -f 00-namespace.yml

The default service account assigned to Pods in this cluster does not

have access to the Kubernetes API. The following creates a service account

assigned to JupyterLab Pods provisioned by JupyterHub.

17 https://github.com/kubernetes/community/blob/master/contributors/
design-proposals/architecture/namespaces.md#design

18 https://kubernetes.io/docs/concepts/policy/resource-quotas/

Chapter 6 IndexIng and analytICs

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/namespaces.md#design
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/namespaces.md#design
https://kubernetes.io/docs/concepts/policy/resource-quotas/

226

Create the file 05-serviceaccount.yml from Listing 6-19.

Listing 6-19. data-lab ServiceAccount

apiVersion: v1

kind: ServiceAccount

metadata:

 name: data-lab

 namespace: data-lab

Apply the ServiceAccount configuration:

$ kubectl apply -f 05-serviceaccount.yml

Next, create a Role for the new datalab ServiceAccount, later assigned

to JupyterLab, and a Role for the hub ServiceAccount, later used by

JupyterHub. Create the file 07-role.yml from Listing 6-20.

Listing 6-20. data-lab and hub Roles for the data-lab Namespace

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: Role

metadata:

 name: data-lab

 namespace: data-lab

rules:

 - apiGroups: [""]

 resources: ["pods","events","services"]

 verbs: ["get","watch","list","endpoints","events"]

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: hub

 namespace: data-lab

Chapter 6 IndexIng and analytICs

227

rules:

 - apiGroups: [""]

 resources: ["pods", "persistentvolumeclaims"]

 verbs: ["get","watch","list","create","delete"]

 - apiGroups: [""]

 resources: ["events"]

 verbs: ["get", "watch", "list"]

Note Kubernetes interprets “” (apiGroups: [""]) as the core apI
group.19,20

Apply the Roles configuration:

$ kubectl apply -f 07-role.yml

Lastly, csreate RoleBinding objects associating the new Roles to their

corresponding ServiceAccounts. Create the file 08-rolebinding.yml from

Listing 6-21.

Listing 6-21. data-lab and hub RoleBindings

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: RoleBinding

metadata:

 name: data-lab

 namespace: data-lab

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: data-lab

19 https://kubernetes.io/docs/concepts/overview/kubernetes-api/
#api-groups

20 https://kubernetes.io/docs/reference/access-authn-authz/
rbac/#role-examples

Chapter 6 IndexIng and analytICs

https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups
https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-examples
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-examples

228

subjects:

 - kind: ServiceAccount

 name: data-lab

 namespace: data-lab

apiVersion: rbac.authorization.k8s.io/v1beta1

kind: RoleBinding

metadata:

 name: hub

 namespace: data-lab

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: hub

subjects:

 - kind: ServiceAccount

 name: hub

 namespace: data

Apply the RoleBinding configuration:

$ kubectl apply -f 08-rolebinding.yml

 JupyterHub
JupyterHub “spawns, manages, and proxies multiple instances of the

single-user Jupyter notebook server.”21 This section installs JupyterHub

into the development cluster and configures it to authenticate users with

21 Project Jupyter team. “JupyterHub Documentation.” October 21, 2019. https://
jupyterhub.readthedocs.io/en/stable/

Chapter 6 IndexIng and analytICs

https://jupyterhub.readthedocs.io/en/stable/
https://jupyterhub.readthedocs.io/en/stable/

229

Keycloak and spawn JupyterLab (notebook) servers into the data-lab

Namespace. Additionally, the data-lab Role defined in the previous

section grants JupyterHub limited access to the Kubernetes API.

Zero to JupyterHub22 with Kubernetes is a stable JupyterHub Helm

chart with comprehensive and detailed documentation. Although much

of this book opts to utilize plain YAML files for learning and clarity,

JupyterHub is a complex system that is well abstracted by this chart while

providing any necessary configuration overrides.

Note helm is a successful and well-maintained package manager
for Kubernetes, yet also under rapid development; therefore, consult
the official documentation23 for simple install instructions along with
the additional notes24 from Zero to JupyterHub.

Create the directory cluster-apk8s-dev4/003-data/100-jupterhub

to contain the values.yml manifest used by Helm. Populate with the

contents of Listing 6-22.

Note the following bolded elements in the values.yml Helm

configuration:

 1. Within the proxy section, set the secretToken to

a 32-character string of random hex values. The

official documentation recommends using the

following command:

$ openssl rand -hex 32.25

22 https://zero-to-jupyterhub.readthedocs.io/en/latest/
23 https://helm.sh/docs/
24 https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-helm.html
25 www.openssl.org/

Chapter 6 IndexIng and analytICs

https://zero-to-jupyterhub.readthedocs.io/en/latest/
https://helm.sh/docs/
https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-helm.html
http://www.openssl.org/

230

 2. Within the singleuser section, note the container

image apk8s/datalab. A variety26 of Jupyter

Notebook images may be used here; however, in

this case, the specified image represents a highly

customized version developed in Chapter 4.

 3. Within the hub section, extraConfig is used to

inject additional configuration not directly exposed

by the Helm chart. In this case, the configuration

instructs KubeSpawner27 to spawn JupyterLab Pods

in the data-lab Namespace and configured to use

the data-lab ServiceAccount defined earlier in this

chapter.

Additionally, within the hub section, extraEnv is

used to populate environment variables required

by the GenericOAuthenticator defined later in

values.yml. Note the Keycloak realm datalab,

created earlier in this chapter and defined in the

environment variables OAUTH2_AUTHORIZE_
URL and OAUTH2_TOKEN_URL.

 4. Within the auth section, the

GenericOAuthenticator28 is configured with a

client_id and client_secret set up earlier in the

Keycloak datalab realm. Note the datalab realm is

part of the token_url and userdata_url paths.

26 https://jupyter-docker-stacks.readthedocs.io/en/latest/using/
selecting.html

27 https://jupyterhub-kubespawner.readthedocs.io/en/latest/spawner.html
28 https://github.com/jupyterhub/oauthenticator

Chapter 6 IndexIng and analytICs

https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
https://jupyterhub-kubespawner.readthedocs.io/en/latest/spawner.html
https://github.com/jupyterhub/oauthenticator

231

Listing 6-22. JupyterHub Helm values

proxy:

 secretToken: "large_random_hex_string"

 service:

 type: ClusterIP

singleuser:

 image:

 name: apk8s/datalab

 tag: v0.0.5

 defaultUrl: "/lab"

 storage:

 dynamic:

 storageClass: rook-ceph-block

 capacity: 10Gi

hub:

 image:

 name: jupyterhub/k8s-hub

 tag: 0.9-dcde99a

 db:

 pvc:

 storageClassName: rook-ceph-block

 extraConfig:

 jupyterlab: |-

 c.Spawner.cmd = ['jupyter-labhub']

 c.KubeSpawner.namespace = "data-lab"

 c.KubeSpawner.service_account = "data-lab"

 jupyterhub: |-

 c.Authenticator.auto_login = True

 extraEnv:

Chapter 6 IndexIng and analytICs

232

 OAUTH2_AUTHORIZE_URL: https://auth.data.dev4.apk8s.dev/

auth/realms/datalab/protocol/openid-connect/auth

 OAUTH2_TOKEN_URL: https://auth.data.dev4.apk8s.dev/auth/

realms/datalab/protocol/openid-connect/token

 OAUTH_CALLBACK_URL: https://lab.data.dev4.apk8s.dev/hub/

oauth_callback

scheduling:

 userScheduler:

 enabled: true

 replicas: 2

 logLevel: 4

 image:

 name: gcr.io/google_containers/kube-scheduler-amd64

 tag: v1.14.4

auth:

 type: custom

 custom:

 className: oauthenticator.generic.GenericOAuthenticator

 config:

 login_service: "Keycloak"

 client_id: "datalab"

 client_secret: "from_keycloak_client_config"

 token_url: https://auth.data.dev4.apk8s.dev/auth/

realms/datalab/protocol/openid-connect/token

 userdata_url: https://auth.data.dev4.apk8s.dev/auth/

realms/datalab/protocol/openid-connect/userinfo

 userdata_method: GET

 userdata_params: {'state': 'state'}

 username_key: preferred_username

Chapter 6 IndexIng and analytICs

233

Add the JupyterHub repository29 to Helm and update.

$ helm repo add jupyterhub \

 https://jupyterhub.github.io/helm-chart/

$ helm repo update

Install (or upgrade/update) the JupyterHub Helm package.

$ helm upgrade --install lab-hub jupyterhub/jupyterhub \

 --namespace="data" \

 --version="0.9-dcde99a" \

 --values="values.yml"

Note Jupyterhub takes several minutes to pull and initialize large
containers. you may need to rerun the helm command should it time
out during install.

Finally, configure an Ingress for the JupyterHub web proxy in a file

named 50-ingress.yml from Listing 6-23.

Listing 6-23. JupyterHub Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: jupyterhub

 namespace: data

spec:

 rules:

 - host: lab.data.dev4.apk8s.dev

29 https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-
jupyterhub/setup-helm.html

Chapter 6 IndexIng and analytICs

https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-jupyterhub/setup-helm.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-jupyterhub/setup-helm.html

234

 http:

 paths:

 - backend:

 serviceName: proxy-public

 servicePort: 80

 path: /

 tls:

 - hosts:

 - lab.data.dev4.apk8s.dev

 secretName: data-production-tls

Apply the Ingress configuration:

$ kubectl apply -f 50-ingress.yml

JupyterHub is configured to run in the cluster and in the Namespace

data and configured to spawn single-user JupyterLab servers (Pods) in the

data-lab namespace. After applying configuration JupyterHub may take

several minutes to boot as it must preload large JupyterLab images. Once

JupyterHub has fully booted, launch a new JupyterLab instance (with a

user created in Keycloak under the datalab realm) by visiting https://

lab.data.dev4.apk8s.dev.

 JupyterLab
First introduced in Chapter 5, JupyterLab is “the next-generation web-

based user interface for Project Jupyter,”30 a feature-rich data science

environment. Project Jupyter began in 2014 and has seen massive

adoption; in 2018, there were over 2.5 million31 Jupyter notebooks shared

30 Project Jupyter. “JupyterLab Documentation.” 2019. https://jupyterlab.
readthedocs.io/.

31 Perkel, Jeffrey M. “Why Jupyter Is Data Scientists’ Computational Notebook of
Choice.” Nature 563 (October 30, 2018): 145–46. https://doi.org/10.1038/
d41586-018-07196-1.

Chapter 6 IndexIng and analytICs

https://lab.data.dev4.apk8s.dev
https://lab.data.dev4.apk8s.dev
https://jupyterlab.readthedocs.io/
https://jupyterlab.readthedocs.io/
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1038/d41586-018-07196-1

235

publicly on GitHub. Kubernetes is a natural fit for provisioning and serving

JupyterLab environments through JupyterHub, as demonstrated in the

previous section.

Streamlining the development of machine learning and statistical models

has driven the success of Project Jupyter. Many data science activities, such as

machine learning, require static, immutable data sets to achieve reproducible

results from experimentation. However, operating Jupyter environments with

static data alongside real-time event streams, indexes, and the full power of

Kubernetes distributed computing is an opportunity to offer a variety of data

science functionality directly in the center of a data platform.

The following sections demonstrate brief examples of working directly

with the data and control plane from within the cluster, connecting

JupyterLab notebooks with the Kubernetes API, Kafka, Elasticsearch, and

Mosquitto MQTT.

 Kubernetes API

The default JupyterLab environment includes a CLI (command-line interface)

terminal, and the customized JupyterLab (developed in Chapter 4)

used in this chapter provides kubectl. Figure 6-7 demonstrates kubectl

communicating with the Kubernetes API to retrieve a list of pods running

in the current namespace. kubectl is permitted access to the Kubernetes

API through a custom service account and RBAC configuration applied

earlier in this chapter.

Figure 6-7. Running kubectl in a JupyterLab terminal

Chapter 6 IndexIng and analytICs

236

Figure 6-8 depicts communication with the Kubernetes API through

code running in a Python-based Jupyter Notebook, using the official

Python client library for Kubernetes.32 Extending permissions to the

service account used by JupyterLab Pod can allow Python to perform

any Kubernetes API operation, for example, the creation of Pods, Jobs,33

CronJobs,34 or Deployments related to data science, analytics, or ETL

activities.

Figure 6-8. Jupyter Notebook running Python Kubernetes API in
cluster

32 https://github.com/kubernetes-client/python
33 https://kubernetes.io/docs/concepts/workloads/controllers/
jobs-run-to-completion/

34 https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

Chapter 6 IndexIng and analytICs

https://github.com/kubernetes-client/python
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

237

Creating, managing, and monitoring Kubernetes resources from within

Kubernetes has facilitated significant progress in automating machine

learning, deep learning, and deployment of artificial intelligence–based

solutions. Kubeflow (described in Chapter 1) is one such application, a

“Machine Learning Toolkit for Kubernetes,”35 that takes full advantage

of the Kubernetes API to automate many of the complex tasks related to

machine learning.

 Kafka

Figure 6-9 depicts a Python-based Jupyter Notebook publishing simulated

device sensor data to the Kafka topic metrics. Producing and consuming

data from Kafka topics requires only a few lines of code. Kafka is a powerful

conduit for communicating events and data between services, including

Jupyter Notebooks. Earlier in this chapter, Logstash is configured to

consume events from select Kafka topics and deliver them to Elasticsearch

for indexing and longtime persistence. The next section demonstrates

retrieving the data produced in Figure 6-9 from its destination in

Elasticsearch.

35 www.kubeflow.org

Chapter 6 IndexIng and analytICs

http://www.kubeflow.org

238

Figure 6-9. Jupyter Notebook running a Python Kafka producer

Chapter 6 IndexIng and analytICs

239

 Elasticsearch

Figure 6-10 depicts a simple match_all query against any Elasticsearch

index beginning with apk8s-metrics-. The query demonstrated in this

example may be built up to perform advanced search, filtering,36 and

aggregations37 across billions of records.38

Figure 6-10. Jupyter Notebook Elasticsearch with Python

36 www.elastic.co/guide/en/elasticsearch/reference/current/query-
filter-context.html

37 www.elastic.co/guide/en/elasticsearch/reference/current/search-
aggregations.html

38 Batlogg, Jodok. “Querying 24 Billion Records in 900ms.” Elastic Blog. 2012. www.
elastic.co/videos/querying-24-billion-records-in-900ms.

Chapter 6 IndexIng and analytICs

http://www.elastic.co/guide/en/elasticsearch/reference/current/query-filter-context.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-filter-context.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
http://www.elastic.co/videos/querying-24-billion-records-in-900ms
http://www.elastic.co/videos/querying-24-billion-records-in-900ms

240

The results of data mining Elasticsearch can form new indexes or

export as CSV-based data sets to package and share along with machine

learning results.

 Mosquitto (MQTT)

MQTT is a popular choice for IoT communication and metrics collection.

Chapter 5 introduced Mosquitto to provide MQTT support for the data

pipeline. Figure 6-12 depicts only a few lines of code that need to consume

events from an MQTT topic. This example displays test JSON messages

sent to the dev/apk8s/lightbulb topic from the MQTT.fx application,

shown in Figure 6-11, running on a local workstation. The command

kubectl port-forward svc/mqtt 1883:1883 -n data allows MQTT.fx to

connect to the cluster from a local port.

Figure 6-11. MQTT testing utility

Chapter 6 IndexIng and analytICs

241

 Summary
This chapter configured and demonstrated the ELK stack (Elasticsearch,

Logstash, and Kibana) to provide enterprise-grade data pipelining,

indexing, analysis, and persistence. The cluster now supports SSO,

identity management, and authorization through Keycloak, initially used

by JupyterHub to authenticate users and provision JupyterLab instances

with limited access to the Kubernetes API. If you are following along, the

structure of Kubernetes manifests should look similar to Listing 6-24.

This book should demonstrate the power Kubernetes gives platform

architects, software developers, researchers, and even hobbyists to

construct modern data platforms quickly, from a diverse set of best-in-class

Figure 6-12. Jupyter Notebook Python MQTT consumer

Chapter 6 IndexIng and analytICs

242

applications. This book is a rough sketch and demonstration for

developing novel solutions that communicate events and data from IoT,

and Blockchain and Big Data technologies, into machine learning models,

powering inference-based business logic.

The next chapter continues to support data through the concepts of

Data Lakes and Data Warehouses.

Listing 6-24. Indexing and analytics development cluster

configuration layout

.

└── cluster-apk8s-dev4
 ├── 000-cluster
 ├── 003-data
 │ ├── 000-namespace
 │ ├── 005-keycloak
 │ │ ├── 10-service.yml
 │ │ ├── 15-secret.yml
 │ │ ├── 30-deployment.yml
 │ │ └── 50-ingress.yml
 │ ├── 010-zookeeper
 │ ├── 020-kafka
 │ ├── 030-elasticsearch
 │ │ ├── 10-service.yml
 │ │ └── 40-statefulset.yml
 │ ├── 032-logstash
 │ │ ├── 10-service.yml
 │ │ ├── 20-configmap-config.yml
 │ │ ├── 20-configmap-pipeline.yml
 │ │ └── 30-deployment.yml
 │ ├── 034-kibana
 │ │ ├── 10-service.yml

Chapter 6 IndexIng and analytICs

243

 │ │ ├── 20-configmap.yml
 │ │ ├── 30-deployment.yml
 │ │ └── 50-ingress.yml
 │ └── 050-mqtt
 └── 005-data-lab
 └── 000-namespace
 ├── 00-namespace.yml
 ├── 05-serviceaccount.yml
 ├── 07-role.yml
 └── 08-rolebinding.yml

Chapter 6 IndexIng and analytICs

245© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_7

CHAPTER 7

Data Lakes
The concepts of data warehouses, data marts, and data lakes have become

commonplace in many enterprises. Big Data technology has enabled

organizations to collect, store, and process an ever-growing stream of

data. IoT, social media, and the digital transformation of every aspect

of business only continue to increase the volume and velocity of data

available to organizations.

Traditionally, Big Data concepts have focused on the problem of

managing massive volumes and varieties of collected data for large

organizations or projects specific to data collection and analysis. Big

Data technologies, especially Apache Hadoop and its ecosystem, enable

organizations to consume and store all data produced or related to their

organization. However, many Big Data solutions came before the rise in

the availability and popularity of containers and container orchestration,

specifically Kubernetes. In the past, engaging Big Data technologies typically

meant provisioning dedicated clusters and often a team to operate and

maintain them. A single chapter on data lakes and warehouses can hardly

scratch the surface of this vibrant and mature ecosystem. The following

exercises aim to demonstrate a minute set of Big Data concepts at a small

scale, leveraging the advantage of Kubernetes in unifying the control plane

between static and transactional data and any variety of workloads.

All data contains some value to an organization; the cost of extracting

that value has always been the challenge, whether it be analysts poring

over regional sales reports or purchasing managers auditing inventory

levels. Yet over the last two decades, the volume and frequency of available

https://doi.org/10.1007/978-1-4842-5611-4_7#DOI

246

data have increased dramatically, from consumer and industrial IoT to

social media, IT systems, and custom applications producing torrents of

data. Big organizations needed a solution to a Big Data problem. In 2006

the Hadoop project tackled these issues though clustering any number

of commodity servers into a Big Data solution. Hadoop Distributed File

System (HDFS), along with its implementation of MapReduce concepts,

allows data to be limitlessly gathered into vast “lakes” and analyzed at

their source. Hadoop is a valuable and powerful technology for many

organizations. However, many Hadoop capabilities are achievable within

Kubernetes, including highly distributed workloads, fault tolerance, and

self-healing, along with the benefit of a much more extensive and rapidly

expanding ecosystem. Kubernetes is not Big Data technology, yet the next

Big Data capable systems are likely to spring from it.

This chapter does not attempt to convince enterprises with established

Big Data management applications to consider moving them into

Kubernetes; instead, the goal aims to lay a foundation for implementing

these concepts into a variety of new application platforms developed atop

Kubernetes.

 Data Processing Pipeline
Figure 7-1 depicts a typical data processing pipeline consisting of raw

and processed data storage, an event system, a metadata system, and

application workloads for analysis and transformation. Most of the

architecture depicted and later described in this chapter is not explicitly

designed for Kubernetes nor has any dependency on Kubernetes

to operate. However, wrapping these specialized clusters within a

Kubernetes cluster establishes a unified control plain, networking,

monitoring, security policies, and fine-grained resource management,

including provisioning and limiting storage, memory, and CPU. Although

technologies such as Elasticsearch, Kafka, MQTT, and other enterprise

Chapter 7 Data Lakes

247

solutions require extensive knowledge to configure and manage them

effectively in demanding production environments, Kubernetes abstracts

the underlying infrastructure common to all.

 Development Environment
This chapter builds up data processing and management capabilities

from previous chapters by including MinIO for object storage and Apache

Cassandra as a key/value store for object metadata, raw data warehousing,

and processed data.

The following exercises utilize the inexpensive Hetzner cluster

mentioned in Chapter 6, including one CX21 (2 vCPU/8G RAM/40G SSD)

for the Kubernetes master node and four CX41 (4 vCPU/16G RAM/160G

SSD) instances for worker nodes, yet any equivalent infrastructure will

accommodate. Additionally, this chapter leverages applications and

Figure 7-1. Object processing pipeline

Chapter 7 Data Lakes

248

cluster configurations installed in Chapters 3, 5, and 6; see Table 7-1. This

chapter organizes configuration manifests for the new cluster dev5, under

the folder cluster-apk8s-dev5.

The remainder of this chapter focuses on reading and writing data

to a modern concept of data lakes as object storage implemented by

MinIO. MinIO’s ability to emit events related to the addition, status,

and deletion of objects (files) makes it a compelling addition to any

data processing pipeline. Finally, this chapter demonstrates the rapid

prototyping of applications reacting to object-related events produced by

MinIO into Kafka and MQTT utilizing Python-based Jupyter Notebooks

running within JupyterLab instances.

Table 7-1. Key applications and configurations assembled from

previous chapters

Resources Organization

Chapter 3 Ingress

Cert Manager

storage

Monitoring

000-cluster/00-ingress-nginx

000-cluster/10-cert-manager

000-cluster/20-rook-ceph

000-cluster/30-monitoring

Chapter 5 Namespace

Zookeeper

kafka

Mosquitto

003-data/000-namespace

003-data/010-zookeeper

003-data/020-kafka

003-data/050-mqtt

Chapter 6 elasticsearch

Logstash

kibana

keycloak

Jupyterhub

003-data/030-elasticsearch

003-data/032-logstash

003-data/034-kibana

003-data/005-keycloak

005-data-lab/000-namespace

003-data/100-jupyterhub

Chapter 7 Data Lakes

249

 Data Lake as Object Storage
Transactional databases, data warehouses, and data marts are all

technologies that intend to store and retrieve data in known structures.

Organizations often need to store new and varied types of data, often

whose form is not known or suitable for structured data systems. The

concept of managing this idea of unlimited data in any conceivable form

is known as a Data Lake. Traditionally, filesystems and block storage

solutions store most file-based data that an organization wishes to gather

and maintain outside of its database management systems. Filesystems

and block storage systems are challenging to scale, with varying degrees

of fault tolerance, distribution, and limited support for metadata and

analytics.

HDFS (Hadoop Distributed File System) has been a popular choice

for organizations needing the conceptual advantage of a Data Lake. HDFS

is complicated to set up and maintain, typically requiring dedicated

infrastructure and one or more experts to keep it operational and

performant.

This chapter builds a Data Lake with Object Storage, implemented

with MinIO. MinIO provides a distributed, fault-tolerant object storage

system compatible with Amazon S3. MinIO is horizontally scalable and

supports objects up to five terabytes, with no limit to the number of

objects it may store. These capabilities alone meet the basic conceptual

requirements of a data lake. However, MinIO is extensible though its

support for events and a powerful S3-compatible query system.

 MinIO Operator
A Kubernetes Operator is a type of resource manager and, in this case,

installing and managing one or more MinIO clusters.

Chapter 7 Data Lakes

250

Note the concept of a kubernetes Operator came about in 2016.
CoreOs began developing custom resource definitions representing
controllers aimed at managing the life cycle of stateful applications
and called them Operators. Operators go beyond the limited
concerns of package managers and installers such as helm by
managing pre- and post-install conditions, monitoring, and runtime
operations. Operators are custom kubernetes resources and
installed declaratively like any other resource, or through a package
manager such as helm. after acquiring CoreOs, red hat released the
Operator Framework1 in 2018 and later launched Operatorhub2 with
contributors amazon, Microsoft, and Google.

 The MinIO project offers an official Kubernetes Operator. The

following configuration installs the MinIO operator, managing the new

custom resource definition Tenant used for declaring new MinIO clusters.

 Create the directory cluster-apk8s-dev5/000-cluster/22-minio to

contain the MinIO operator installation documentation. Next, create a file

named README.md from Listing 7-1.

Listing 7-1. MinIO operator installation documentation

MinIO Operator Installation

see: https://github.com/minio/operator

Quick Start:

```shell script

kubectl apply -k github.com/minio/operator

```

1 https://github.com/operator-framework
2 https://operatorhub.io/

Chapter 7 Data Lakes

https://github.com/operator-framework
https://operatorhub.io/

251

Apply the MinIO operator configuration:

$ kubectl apply -k github.com/minio/operator

The Kubernetes cluster now contains the Namespace minio-system

with a ServiceAccount and Deployment named minio-operator.

“Operators are clients of the Kubernetes API that act as controllers for a

custom resource,”3 in this case, the new resource type Tenant. The next

section sets up a MinIO cluster by declaring a Tenant resource.

 MinIO Cluster
MinIO is an S3-compatible object storage system, able to provide a type of

Data Lake capability to the platform. The small Minio cluster defined in

Listing 7-2 includes four nodes, supporting an essential level of high

availability. The Tenant resource describes four MinIO nodes with ten

gigabytes each, using the rook-ceph-block storage class created in Chapter 3.

The standard storage configuration uses half the available disks (in this case,

persistent volumes) for data and the other half for parity, allowing full

read/write activity with the loss of one node and ready-only activity at the

loss of two nodes. This configuration is sufficient for a small development

cluster or proof of concept.

Generate a large random string for both the username and password

sections of the Secret defined in Listing 7-2. This username and password

are equivalent to AWS S3 credentials and may be used in any

S3-compatible client to interact with MinIO.

Create the directory cluster-apk8s-dev5/003-data/070-minio

to contain the MinIO cluster configuration. Next, create a file named

90-cluster.yml from Listing 7-2.

3 https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Chapter 7 Data Lakes

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

252

Listing 7-2. MinIO cluster configuration

apiVersion: v1

kind: Secret

metadata:

 namespace: data

 name: minio-creds-secret

type: Opaque

stringData:

 accesskey: REPLACE_WITH_STRONG_PASSWORD

 secretkey: REPLACE_WITH_STRONG_PASSWORD

apiVersion: minio.min.io/v1

kind: Tenant

metadata:

 name: minio

 namespace: data

spec:

 metadata:

 annotations:

 prometheus.io/path: /minio/prometheus/metrics

 prometheus.io/port: "9000"

 prometheus.io/scrape: "true"

 image: minio/minio:RELEASE.2020-08-18T19-41-00Z

 serviceName: minio-internal-service

 zones:

 - name: "zone-0"

 servers: 4

 volumesPerServer: 1

 volumeClaimTemplate:

 metadata:

 name: miniodata

 spec:

Chapter 7 Data Lakes

253

 storageClassName: rook-ceph-block

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 ## Secret with credentials to be used by MinIO instance.

 credsSecret:

 name: minio-creds-secret

 podManagementPolicy: Parallel

 requestAutoCert: false

 certConfig:

 commonName: ""

 organizationName: []

 dnsNames: []

 liveness:

 initialDelaySeconds: 10

 periodSeconds: 1

 timeoutSeconds: 1

Apply the MinIO cluster configuration:

$ kubectl apply -f 90-cluster.yml

After applying the cluster configuration, including the Secret and

Tenant resources, MinIO is accessible within the Kubernetes cluster at the

Service address minio-internal-service:9000 or the Headless Service

address minio-hl:9000.

An Ingress configuration, as shown in Listing 7-3, provides external

access to MinIO. MinIO is compatible with AWS S3 object storage service;

therefore, existing systems capable of interacting with the AWS S3 may

utilize the new minio.data.dev5.apk8s.dev as an alternative endpoint.

Next, create a file named 50-ingress.yml from Listing 7-3.

Chapter 7 Data Lakes

254

Listing 7-3. MinIO cluster Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: minio

 namespace: data

 annotations:

 cert-manager.io/cluster-issuer: letsencrypt-production

 nginx.ingress.kubernetes.io/proxy-body-size: "0"

 nginx.ingress.kubernetes.io/proxy-read-timeout: "600"

 nginx.ingress.kubernetes.io/proxy-send-timeout: "600"

spec:

 rules:

 - host: minio.data.dev5.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: minio-internal-service

 servicePort: 9000

 path: /

 tls:

 - hosts:

 - minio.data.dev5.apk8s.dev

 secretName: minio-data-tls

Apply the Ingress configuration for new MinIO cluster:

$ kubectl apply -f 50-ingress.yml

In addition to the S3-compatible API, MinIO serves as a useful and

attractive web-based user interface accessible from a web browser at

https://minio.data.dev5.apk8s.dev/.

Chapter 7 Data Lakes

https://minio.data.dev5.apk8s.dev/

255

The next section configures the command-line MinIO Client, used to

create buckets, configure the MinIO server, and set up notification events.

 MinIO Client
The MinIO Client4 is a command-line utility for interacting with a MinIO

Cluster (and mostly compatible with AWS S3). The MinIO Client supports

any operation related to object storage, from creating buckets and listing

objects to full administrative and configuration capabilities. In the

next section, the MinIO Client is used to configure object state–related

notifications on the buckets created in the following.

Refer to the MinIO Client Quickstart Guide for installation instructions

for any particular workstation. After installing the MinIO Client (mc) on

a local workstation, create an alias for the new cluster called apk8s-dev5

using the Ingress host defined in Listing 7-3 and the credentials defined in

Listing 7-2:

$ mc config host add apk8s-dev5 \

 https://minio.data.dev5.apk8s.dev \

 username password

Create the buckets, upload, processed, and twitter used later in this

chapter and the next:

$ mc mb apk8s-dev5/upload

$ mc mb apk8s-dev5/processed

$ mc mb apk8s-dev5/twitter

4 https://docs.min.io/docs/minio-client-complete-guide

Chapter 7 Data Lakes

https://docs.min.io/docs/minio-client-complete-guide

256

List the three new buckets:

$ mc ls apk8s-dev5

The MinIO Client can easily copy files from a local workstation or AWS

S3, Google Cloud Storage, and more. Start by creating new host aliases or

listing existing aliases:

$ mc config host list

The MinIO Client is a powerful utility for manual interaction with

the object storage cluster. For programmatic control over the object

cluster, MinIO provides SDKs for JavaScript, Java, Python, Golang, .NET,

and Haskell. The MinIO Cluster is also compatible with the AWS S3 API

and many libraries such as Amazon’s Boto3 for Python, AWS.S3 class for

JavaScript, or s3 package for Golang. Boto3 is used later in this chapter to

process CSV files.

The next section leverages MinIO’s ability to emit events related to

objects.

 MinIO Events
Object-related event notifications provide a sophisticated form of

extensibility to a data-centric platform by allowing any number of services

to consume these notifications and perform tasks. MinIO supports the

configuration of object-state notification to AMQP,5 Elasticsearch, Kafka,

MQTT, MySQL, NATS,6 NSQ,7 PostgreSQL, Redis, and webhooks.8

5 www.amqp.org/
6 https://nats.io/
7 https://nsq.io/
8 www.programmableweb.com/news/what-are-webhooks-and-how-do-they-
enable-real-time-web/2012/01/30

Chapter 7 Data Lakes

http://www.amqp.org/
https://nats.io/
https://nsq.io/
http://www.programmableweb.com/news/what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30
http://www.programmableweb.com/news/what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30

257

The following exercise configures MinIO with the ability to notify

Elasticsearch, Kafka, and MQTT, leveraging the technologies installed

in Chapters 5 and 6. After configuring the connection settings for

Elasticsearch, Kafka, and MQTT, the MinIO servers require a restart;

however, after this initial configuration, no further restarts are needed

when configuring any number of notification settings.

Begin configuring MinIO by requesting the current configuration and

saving it as JSON file. Use the MinIO Client command-line utility (mc)

installed in the previous section.

Create a directory for the MinIO server configuration:

$ cd ./005-cluster-apk8s-dev5/003-data

$ mkdir -p ./070-minio/cfg

Next, get the existing server configuration as a JSON file (the previous

section describes configuring the apk8s-dev5 alias). The following

multiline command pipes the JSON output to Python to format it for easier

editing:

$ mc admin config get apk8s-dev5 | \

 python -m json.tool > config.json

Under the "notify" section of the config.json, edit the sections for

Elasticsearch, Kafka, and MQTT to match Listing 7-4.

Listing 7-4. MinIO server external connection configuration

"elasticsearch": {
 "1": {
 "enable": true,
 "format": "namespace",
 "index": "processed",
 "url": "http://elasticsearch:9200"
 }

 },

Chapter 7 Data Lakes

258

"kafka": {

 "1": {

 "brokers": ["kafka-headless:9092"],

 "enable": true,

 "sasl": {

 "enable": false,

 "password": "",

 "username": ""

 },

 "tls": {

 "clientAuth": 0,

 "enable": false,

 "skipVerify": false

 },

 "topic": "upload"

 }

 },

 "mqtt": {

 "1": {

 "broker": "tcp://mqtt:1883",

 "enable": true,

 "keepAliveInterval": 0,

 "password": "",

 "qos": 0,

 "queueDir": "",

 "queueLimit": 0,

 "reconnectInterval": 0,

 "topic": "processed",

 "username": ""

 }

 },

Chapter 7 Data Lakes

259

Apply the edited config.json and restart the MinIO server:

$ mc admin config set apk8s-dev5 < config.json

$ mc admin service restart apk8s-dev5

MinIO produces event notification types related to the creation,

deletion, and access to objects, as shown in Table 7-2. MinIO supports

event notification configurations by bucket and supports fine-grained

filtering by type of event, object name prefix, or object name suffix.

The next section demonstrates a method for processing object-related

events within Kubernetes.

 Process Objects
JupyterLab, as set up in Chapter 6, provides a convenient and productive

environment for data science activities, primarily due to its proximity to in-

cluster data and event sources. On the same note, JupyterLab running within

Kubernetes simplifies the ability to experiment with combining data-based

events, cluster-based data, and the Kubernetes API. Jupyter Notebooks are a

useful tool for quickly building and documenting complex prototypes.

Table 7-2. MinIO supported object events

Category Event

Creation s3:ObjectCreated:Put

s3:ObjectCreated:Post

s3:ObjectCreated:Copy

s3:ObjectCreated:CompleteMultipartUpload

Deletion s3:ObjectRemoved:Delete

access s3:ObjectAccessed:Get

s3:ObjectAccessed:Head

Chapter 7 Data Lakes

260

The following exercise prototypes an event listener, creates and places

a large CSV file into a MinIO bucket, compresses the CSV by generating

a Kubernetes Job, and demonstrates the extraction of data from a

compressed CSV.

 Configure Notifications

First, configure MinIO to notify Kafka and MQTT topics when particular

bucket events occur, specifically at the creation of any object in the upload

bucket with the suffix .csv and the creation of any object in the processed

bucket with the suffix .gz. In this exercise, the use of both Kafka and MQTT

only intends to illustrate a variety of event queues:

$ mc event add apk8s-dev5/upload \

 arn:minio:sqs::1:kafka \

--event put --suffix=".csv"

$ mc event add apk8s-dev5/processed \

 arn:minio:sqs::1:mqtt \

--event put --suffix=".gz"

Additionally, configure MinIO to keep an index of documents in

Elasticsearch, describing the state of all objects in the processed bucket:

$ mc event add apk8s-dev5/processed \

 arn:minio:sqs::1:elasticsearch \

 Event Notebook

Open a JupyterLab environment and start a Python Notebook for testing

the new bucket notification events produced by MinIO. In the first cell,

ensure the kafka-python library is available:

!pip install kafka-python==1.4.7

Chapter 7 Data Lakes

261

Import the standard JSON library to parse MinIO notifications, the

KafkaConsumer9 class from the kafka-python library, and lastly, the clear_

output function from IPython.display to assist in clearing cell output

between loops:

import json

from kafka import KafkaConsumer

from IPython.display import clear_output

Connect the KafkaConsumer to the upload topic on the Kafka cluster

in the data Namespace. Set the group_id to data-bucket-processor:

consumer = KafkaConsumer('upload',

 bootstrap_servers="kafka-headless.data:9092",

 group_id='data-bucket-processor')

Finally, create a for loop on consumer messages. The loop continues

infinitely, replacing the last event with the current event:

for msg in consumer:

 jsmsg = json.loads(msg.value.decode("utf-8"))

 clear_output(True)

 print(json.dumps(jsmsg, indent=4))

Test the event listener by creating and uploading a test CSV file to the

upload bucket from a local workstation:

$ touch test.csv

$ mc cp test.csv apk8s-dev5/upload

The JupyterLab event notebook should now display an

s3:ObjectCreated:Put event notification similar to Listing 7-5.

9 https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.
html

Chapter 7 Data Lakes

https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html

262

Listing 7-5. Example bucket event notification

{

 "EventName": "s3:ObjectCreated:Put",

 "Key": "upload/test.csv",

 "Records": [

 {

 "eventVersion": "2.0",

 "eventSource": "minio:s3",

 "awsRegion": "",

 "eventTime": "2019-12-27T08:27:40Z",

 "eventName": "s3:ObjectCreated:Put",

 "userIdentity": {

 "principalId": "3Fh36b37coCN3w8GAM07"

 },

 "requestParameters": {

 "accessKey": "3Fh36b37coCN3w8GAM07",

 "region": "",

 "sourceIPAddress": "0.0.0.0"

 },

 "responseElements": {

 "x-amz-request-id": "15E42D02F9784AD2",

 "x-minio-deployment-id": "0e8f8...",

 "x-minio-origin-endpoint":

"http://10.32.128.13:9000"

 },

 "s3": {

 "s3SchemaVersion": "1.0",

 "configurationId": "Config",

 "bucket": {

 "name": "upload",

 "ownerIdentity": {

Chapter 7 Data Lakes

263

 "principalId": "3Fh36b378GAM07"

 },

 "arn": "arn:aws:s3:::upload"

 },

 "object": {

 "key": "test.csv",

 "eTag": "d41d8cd98f998ecf8427e",

 "contentType": "text/csv",

 "userMetadata": {

 "content-type": "text/csv",

 "etag": "d41d8cd90998ecf8427e"

 },

 "versionId": "1",

 "sequencer": "15E42D02FD98E21B"

 }

 },

 "source": {

 "host": "0.0.0.0",

 "port": "",

 "userAgent": "MinIO (darwin"

 }

 }

]

}

 Test Data

Python is an excellent tool for gathering, normalizing, and even generating

data. The following exercise produces a CSV file containing one million

fictitious blood donors, each consisting of a fake email address, name,

blood type, birthday, and state. Lastly, the script uploads the generated

CSV data into the upload bucket on the new MinIO cluster.

Chapter 7 Data Lakes

264

This section continues the use of an in-cluster JupyterLab

environment; however, this is not a requirement. Create a new Jupyter

Notebook in JupyterLab in the Kubernetes cluster, or create a Python script

on a local workstation.

The example Python script uses the Faker Python library to create

fake data and MinIO Client library for connecting to MinIO. Ensure the

development environment contains the required dependencies by adding

the following pip install directives to the first cell of the Jupyter Notebook:

!pip install Faker==2.0.3

!pip install minio==5.0.1

In the next cell, import the following libraries:

import os

from faker import Faker

from minio import Minio

from minio.error import ResponseError

In the next cell, add the following code to open a file named donors.

csv, write an initial header for the data, and create a while loop with one

million increments:

%%time

fake = Faker()

f_customers = open("./donors.csv","w+")

f_customers.write(

 "email, name, type, birthday, state\n"

)

i = 0

while i < 1000000:

 fp = fake.profile(fields=[

 "name",

Chapter 7 Data Lakes

265

 "birthdate",

 "blood_group"])

 st = fake.state()

 bd = fp["birthdate"]

 bg = fp["blood_group"]

 ml = fake.ascii_safe_email()

 f_customers.write(

 f'{ml},{fp["name"]},{bg},{bd},{st}\n'

)

 i += 1

f_customers.close()

In the last cell of the Jupyter Notebook, connect to the MinIO cluster

set up earlier in this chapter and upload the newly generated donors.

csv into the upload bucket; replace username and password with values

defined in the MinIO Cluster setup:

Note If developing from a local workstation, replace 'minio-
internal- service.data:9000' with 'minio.data.dev5.
apk8s.dev' and secure=False with secure=True.

%%time

minioClient = Minio('minio-internal-service.data:9000',

 access_key='username',

 secret_key='password',

 secure=False)

try:

 with open("./donors.csv", 'rb') as file_data:

 file_stat = os.stat('./donors.csv')

Chapter 7 Data Lakes

266

 minioClient.put_object('upload',

 'donors.csv',

 file_data,

 file_stat.st_size,

 content_type='application/csv')

except ResponseError as err:

 print(err)

If the Event Notebook from the previous section is running, a new

event named s3:ObjectCreated:CompleteMultipartUpload with the

key upload/donors.csv will be displayed. The MinIO cluster now holds a

roughly 60-megabyte object containing test data, representing fake blood

donors, their email, name, birthdate, blood type, and state.

At this point, the event system could trigger a wide range of data

processing actions. The next section uses a custom data compression

application to demonstrate a typical object processing flow.

 Containerized Application

On Kubernetes, all workloads execute within a container within a Pod.

The last few exercises used a Pod running a JupyterLab container to

execute code written in a Jupyter Notebook, an excellent method for

experimenting, building a proof of concept, or rapid prototyping. As the

prototyping process iterates toward a stable production system, identify

independent units of work, develop and wrap them in containers, test,

version, and make them available for orchestration.

The following exercise develops a generic object compressor in

Go, builds and versions a container, and makes that container publicly

available on Docker Hub. On a local workstation, ensure Go version 1.13+

and Docker 19+ are present. Use new or existing accounts on GitLab and

Docker Hub (both free) to store the source code and resulting container.

Chapter 7 Data Lakes

267

Create a folder for a new Go application on a local workstation; this

example uses the folder ~/workspace/apk8s/compressor. From within

the new folder, initialize Go Modules10 (replace with any custom Git

repository):

$ go mod init github.com/apk8s/compressor

Note as of Go 1.14,11 Go Modules are ready for production use and
considered the official dependency management system for Go. all
developers are encouraged to use Go Modules for new projects along
with migrating any existing projects.

Create the directory cmd to store the main Go source—a convention

typically used to signify a command-line application rather than

components of a shared library. Create a file named compressor.go in the

cmd directory and populate it with the source from Listing 7-6.

Listing 7-6. Go application: compressor

package main

import (

 "bufio"

 "compress/gzip"

 "flag"

 "io"

 "log"

 "os"

10 https://github.com/golang/go/wiki/Modules
11 https://golang.org/doc/go1.14

Chapter 7 Data Lakes

https://github.com/golang/go/wiki/Modules
https://golang.org/doc/go1.14

268

 minio "github.com/minio/minio-go/v6"

)

var (

 endpoint = os.Getenv("ENDPOINT")

 endpointSSL = os.Getenv("ENDPOINT_SSL")

 accessKeyID = os.Getenv("ACCESS_KEY_ID")

 accessKeySecret = os.Getenv("ACCESS_KEY_SECRET")

)

func main() {

 var (

 fmBucket = flag.String("f", "", "From bucket.")

 toBucket = flag.String("t", "", "To bucket.")

 fmObjKey = flag.String("k", "", "From key.")

)

 flag.Parse()

 useSSL := true

 if endpointSSL == "false" {

 useSSL = false

 }

 mc, err := minio.New(

 endpoint, accessKeyID,

 accessKeySecret, useSSL)

 if err != nil {

 log.Fatalln(err)

 }

 obj, err := mc.GetObject(

 *fmBucket,

Chapter 7 Data Lakes

269

 *fmObjKey,

 minio.GetObjectOptions{},

)

 if err != nil {

 log.Fatalln(err)

 }

 log.Printf("Starting download stream %s/%s.",

 *fmBucket,

 *fmObjKey)

 // synchronous in-memory pipe

 pipeR, pipeW := io.Pipe()

 // reads from object, writes to pipe

 bufIn := bufio.NewReader(obj)

 // gzip buffers to memory and flushes on close

 gzW, err := gzip.NewWriterLevel(pipeW, 3)

 if err != nil {

 log.Fatalln(err)

 }

 go func() {

 log.Printf("Compress and stream.")

 n, err := bufIn.WriteTo(gzW)

 if err != nil {

 log.Fatalln(err)

 }

 gzW.Close()

 pipeW.Close()

 log.Printf("Compressed: %d bytes", n)

 }()

Chapter 7 Data Lakes

270

 // data will not be sent until gzW.Close() and

 // the gzip buffer flushes

 log.Print("BEGIN PutObject")

 _, err = mc.PutObject(

 *toBucket, *fmObjKey+".gz",

 pipeR, -1, minio.PutObjectOptions{})

 if err != nil {

 log.Fatalln(err)

 }

 log.Print("COMPLETE PutObject")

}

The new Go application defined earlier connects to a MinIO cluster,

compresses an object, and places the compressed output in a new object

in a separate bucket. This application is only a simplistic example of

object processing, utilizing the Go programming language to create

a small, statically compiled binary with no external operating system

dependencies.

Test the new compressor application on a local workstation by setting

the following environment variables; replace the endpoint, username, and

password with values defined earlier in this chapter:

$ export ENDPOINT=minio.data.dev5.apk8s.dev

$ export ACCESS_KEY_ID=username

$ export ACCESS_KEY_SECRET=password

Compile and execute the compressor application configured with the

buckets upload and processed along with the object upload/donors.csv

generated and added to MinIO in the previous section:

$ go run ./cmd/compressor.go -f upload -k donors.csv -t processed

Chapter 7 Data Lakes

271

After completing execution, a new object containing a compressed

version of the donors.csv named donors.csv.gz is available in the

processed bucket and is about 20 megabytes. Additionally, MinIO sent

a message to the MQTT cluster on the topic processed and added a new

document to the Elasticsearch index processed. Refer to Chapters 5 and 6

on exploring MQTT (Mosquitto) and Elasticsearch.

Next, this chapter uses the Docker Hub organization apk8s to store and

serve public containers. Set up a free Docker Hub account or ensure access

to a suitable container registry for the following exercise.

Within the folder ~/workspace/apk8s/compressor representing the

compressor project, create the file Dockerfile and populate it with the

contents of Listing 7-7.

Listing 7-7. Dockerfile for the compressor application

FROM golang:1.13.3 AS builder

WORKDIR /go/src

COPY . /go/src

RUN go mod download

RUN CGO_ENABLED=0 \

 GOOS=linux \

 GOARCH=amd64 \

 GO111MODULE=on \

 go build -ldflags "-extldflags -static" \

 -o /go/bin/compressor /go/src/cmd

RUN echo "nobody:x:65534:65534:Nobody:/:" > /etc_passwd

FROM scratch

ENV PATH=/bin

Chapter 7 Data Lakes

272

COPY --from=builder /etc/ssl/certs/ca-certificates.crt /etc/
ssl/certs/
COPY --from=builder /etc_passwd /etc/passwd
COPY --from=builder /go/bin/compressor /bin/compressor

WORKDIR /

USER nobody
ENTRYPOINT ["/bin/compressor"]

The new Dockerfile represents a multistage build process. The first
stage uses the golang:1.13.3 container named builder to download
dependencies and compile a static binary. The builder container also
creates an /etc_passwd file to support the user Nobody assigned to
execute the binary in the following scratch container, defined as the
second stage of the Docker build.

In addition to being a tiny container, weighing in at about ten
megabytes, this scratch-based container (Listing 7-7) executes a single
binary as the user Nobody, no other user accounts, and no operating
system. This method reduces the attack surface to the binary itself, along
with the libraries used to compile it. An exploit allowing an attacker to
escape the container would do so as the relatively benign user Nobody.
There is no perfect security; however, any reduction in potential attack
surfaces and complexity reduces the cumulative effect of running
hundreds of thousands of containers in a production system.

Lastly, build, tag, and push the container to Docker Hub or any
suitable container registry:

$ docker build -t apk8s/compressor:v0.0.1 .
$ docker push apk8s/compressor:v0.0.1

Test the new container, first by ensuring the environment variables
ENDPOINT, ACCESS_KEY_ID, and ACCESS_KEY_SECRET are still exported
in the current shell (as defined earlier), and then execute the following

command:

Chapter 7 Data Lakes

273

$ docker run -e ENDPOINT=$ENDPOINT \

 -e ACCESS_KEY_ID=$ACCESS_KEY_ID \

 -e ACCESS_KEY_SECRET=$ACCESS_KEY_SECRET \

 apk8s/compressor:v0.0.1 \

 -f=upload -k=donors.csv -t=processed

The new container is ready to run in the Kubernetes cluster and

process objects, in this case compressing them. However, the goal of

this exercise is to demonstrate the ease of developing small, focused

applications and the part they play in a Kubernetes-based data platform.

The next section demonstrates how one might prototype an event-based

deployment of this (or any) new object processing container.

 Programmatic Deployments

The declarative configuration for the desired state of a compute cluster

is the idiomatic method for deploying applications in Kubernetes. This

book has primarily used YAML directly to define the desired state or used

Helm to populate and apply YAML templates indirectly. Even imperative

commands such as kubectl run12 invoke declarative-style API calls under

the hood. The exercise in this section develops a prototype application

within a Jupyter Notebook that listens for MinIO bucket events and

processes objects by defining Kubernetes Jobs and applying them with

Kubernetes API.

Before attaching any execution to an event stream, the following

exercise uses an in-cluster Jupyter Notebook provided by the JupyterLab

environment provisioned by JupyterHub set up in Chapter 6 to develop a

prototype Kubernetes Job deployer.

12 https://kubernetes.io/docs/tasks/manage-kubernetes-objects/
imperative-command/

Chapter 7 Data Lakes

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-command/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/imperative-command/

274

When specifying a serviceAccount for a container within a Pod,
Kubernetes mounts its associated access token into /var/run/secrets/
kubernetes.io/serviceaccount, along with the cluster certificate ca.crt.
Pods without a serviceAccount specified mount the default service
account for the namespace they are running in. Chapter 6 configured a
service account and role named data-lab with extended permissions to the
Kubernetes API for use by the JupyterLab container. Ensure the following
permissions, pods/log, jobs, and jobs/status (as shown in Listing 7-8) are
available to the data-lab Role assigned to the data-lab ServiceAccount in
the data-lab Namespace.

Listing 7-8. Update 005-data-lab/000-namespace/07-role.yml

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: Role
metadata:
 name: data-lab
 namespace: data-lab
rules:
 - apiGroups: ["","batch"]
 resources: ["pods",
 "pods/log",
 "events",
 "services",
 "jobs",
 "jobs/status"]
 verbs: ["delete",
 "create",
 "get",
 "watch",
 "list",
 "endpoints",
 "patch",

 "events"]

Chapter 7 Data Lakes

275

Visit the JupyterLab environment lab.data.dev5.apk8s.dev set up in
Chapter 6. Add and execute the following code samples in individual cells
to test and experiment with each step.

Add a cell to install the latest Python Kubernetes client library:13

!pip install kubernetes

Import the following dependencies:

from os import path
import yaml
import time
from kubernetes import client, config
from kubernetes.client.rest import ApiException
from IPython.display import clear_output

Create a collection of environment variables using the class V1EnvVar14
for later use with the compressor container. Replace the username and
password with values defined earlier in this chapter in the “MinIO Cluster”
section. The ENDPOINT_SSL setting is false for the current in-cluster
configuration:

envs = [
 client.V1EnvVar("ENDPOINT", "minio-internal-service.

data:9000"),
 client.V1EnvVar("ACCESS_KEY_ID", "username"),
 client.V1EnvVar("ACCESS_KEY_SECRET", "password"),
 client.V1EnvVar("ENDPOINT_SSL", "false"),

]

13 https://github.com/kubernetes-client/python
14 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1EnvVar.md

Chapter 7 Data Lakes

https://github.com/kubernetes-client/python
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1EnvVar.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1EnvVar.md

276

Using the class V1Container,15 configure a container with the image

apk8s/compressor:v0.0.1 built and tagged in the previous section. The

compressor application requires the environment variables configured

previously along with arguments -f specifying the bucket to process from,

-k for the object key, and -t for the destination bucket:

container = client.V1Container(

 name="compressor",

 image="apk8s/compressor:v0.0.1",

 env=envs,

 args=["-f=upload",

 "-k=donors.csv",

 "-t=processed"])

Using the classes V1PodTemplateSpec,16 V1ObjectMeta,17 and

V1PodSpec,18 configure a Pod to run the previously configured container:

podTmpl = client.V1PodTemplateSpec(

 metadata=client.V1ObjectMeta(

 labels={"app": "compress-donors"}

),

 spec=client.V1PodSpec(

 restart_policy="Never",

 containers=[container]))

15 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1Container.md

16 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1PodTemplateSpec.md

17 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1ObjectMeta.md

18 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1PodSpec.md

Chapter 7 Data Lakes

https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Container.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Container.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1PodTemplateSpec.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1PodTemplateSpec.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1ObjectMeta.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1ObjectMeta.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1PodSpec.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1PodSpec.md

277

Kubernetes provides the Job resource for Pods intended to run until

completed. Jobs only restart a Pod if it exits with a nonzero return. Using

the classes V1Job,19 V1ObjectMeta, and V1JobSpec,20 configure a Job with

the previously configured Pod:

job = client.V1Job(

 api_version="batch/v1",

 kind="Job",

 metadata=client.V1ObjectMeta(

 name="compress-donors"

),

 spec=client.V1JobSpec(

 template=podTmpl,

 backoff_limit=2)

)

Next, configure the Python client and load the Kubernetes Batch API

responsible for managing Job resources. The method load_incluster_

config() configures the Python client to utilize the Kubernetes configuration

available to the Pod running the current JupyterLab environment.

config.load_incluster_config()

batch_v1 = client.BatchV1Api()

Use the Kubernetes Batch API to apply the Job configuration:

resp = batch_v1.create_namespaced_job(

 body=job,

 namespace="data-lab")

19 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1Job.md

20 https://github.com/kubernetes-client/python/blob/master/kubernetes/
docs/V1JobSpec.md

Chapter 7 Data Lakes

https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Job.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Job.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1JobSpec.md
https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1JobSpec.md

278

After executing the code in the previous Jupyter Notebook cell,

Kubernetes creates a Job named compress-donors in the data-lab

Namespace. After successful execution, the Job remains with status

Completed. However, any failures result in two retries as configured earlier

with the backoff_limit directive. In either case, the code in Listing 7- 9

polls the state of the configured Job and removes it after completion; if

the Job returns an error, the final code displays the logs from the Pod

associated with the Job. Add the code from Listing 7-9 to the final cell of

the Jupyter Notebook and execute it.

Listing 7-9. Monitor Job state and cleanup

completed = False

while completed == False:

 time.sleep(1)

 try:

 resp = batch_v1.read_namespaced_job_status(

 name="compress-donors",

 namespace="data-lab", pretty=False)

 except ApiException as e:

 print(e.reason)

 break

 clear_output(True)

 print(resp.status)

 if resp.status.conditions is None:

 continue

 if len(resp.status.conditions) > 0:

 clear_output(True)

 print(resp.status.conditions)

Chapter 7 Data Lakes

279

 if resp.status.conditions[0].type == "Failed":

 print("FAILED -- Pod Log --")

 core_v1 = client.CoreV1Api()

 pod_resp = core_v1.list_namespaced_pod(

 namespace="data-lab",

 label_selector="app=compress-donors",

 limit=1

)

 log_resp = core_v1.read_namespaced_pod_log(

 name=pod_resp.items[0].metadata.name,

 namespace='data-lab')

 print(log_resp)

 print("Removing Job...")

 resp = batch_v1.delete_namespaced_job(

 name="compress-donors",

 namespace="data-lab",

 body=client.V1DeleteOptions(

 propagation_policy='Foreground',

 grace_period_seconds=5))

 break

This book leaves the remaining event-based object processing exercise

to the reader. Combine the event notebook defined earlier in this chapter

with the programmatic deployment of Jobs for processing objects defined

earlier. This combination creates a prototyping framework for nearly any

form of event-based data processing, including analysis, normalization,

the generation of derivative and synthetic data, and housekeeping tasks

such as organization and compression demonstrated earlier.

Chapter 7 Data Lakes

280

 Serverless Object Processing

Automating the processes developed in the previous section is the central

focus of Serverless21 (or functions as a service) technologies briefly covered

here.

Cloud vendors offer solutions that abstract away all the complicated

moving parts that support the compiling, execution, scaling, and error

handling for any isolated workload small and focused enough to be

considered a function. Building critical business logic with AWS Lambda,22

Azure Functions,23 or Google Cloud Functions24 is an effective method for

rapid development or small teams looking to offload as much operational

complexity as possible. However, these Serverless products do come at the

cost of strong vendor lock-in and trust that their supporting product line

remains a priority for the vendor into the future.

Within the Kubernetes ecosystem,25 a growing list of Serverless

technologies provides both a cloud-native and vendor-neutral approach.

Kubeless,26 OpenFaaS,27 Fission,28 Apache OpenWhisk,29 and Nuclio30

all provide turnkey Serverless platforms well suited for public cloud

or custom Kubernetes cluster. The project Knative31 provides a flexible

21 https://martinfowler.com/articles/serverless.html
22 https://aws.amazon.com/lambda/
23 https://azure.microsoft.com/en-us/services/functions/
24 https://cloud.google.com/functions/
25 https://landscape.cncf.io/format=serverless
26 https://kubeless.io/
27 www.openfaas.com/
28 https://fission.io/
29 https://openwhisk.apache.org/
30 https://nuclio.io/
31 https://knative.dev/

Chapter 7 Data Lakes

https://martinfowler.com/articles/serverless.html
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://landscape.cncf.io/format=serverless
https://kubeless.io/
http://www.openfaas.com/
https://fission.io/
https://openwhisk.apache.org/
https://nuclio.io/
https://knative.dev/

281

platform of components for developing new Serverless-based platforms.

Chapter 8 demonstrates the use of OpenFaaS for Serverless-style data

transformation.

With Kubernetes abstracting low-level infrastructure concerns,

MinIO providing object storage and access, along with a robust Serverless

platform automating deployments and the execution of event-based object

processing, the Data Lake described in this book is capable of satisfying

many enterprise requirements when scaled for production.

 Summary
This chapter assembled a type of Data Lake, specifically the upload

bucket, responsible for the ingestion of any form and quantity of data32

with the ability to scale nearly without limit. Data Lakes satisfy any

organization’s desire to acquire or retain data before the identification of

any specific purpose. Data Lakes are not merely flat data storage engines;

they must support the ability to provide controlled access for a variety

of stakeholders, support tooling for exploration and analysis, and scale

in both processing power and volume when needed. MinIO makes an

excellent choice for building Data Lakes within Kubernetes. MinIO’s

S3-compatible API, along with an event notification system supporting a

wide variety of external systems, provides a broad and capable platform

in which to build modern Data Lakes.33 Additionally, this chapter

demonstrated the power and convenience of leveraging in-cluster Jupyter

Notebooks for the rapid prototyping of event-based object processing.

32 www.dataversity.net/data-lakes-101-overview/
33 https://blog.minio.io/modern-data-lake-with-minio-part-1-716a49499533

Chapter 7 Data Lakes

http://www.dataversity.net/data-lakes-101-overview/
https://blog.minio.io/modern-data-lake-with-minio-part-1-716a49499533

282

Once any data within a Data Lake is organized, processed, or

transformed, the concepts of data warehousing emerge. Data Warehouses

are critical components for business intelligence, analytics, and data

science activities, including machine learning. The next chapter

superimposes and extends the capabilities in this chapter with data

warehousing concepts.

Chapter 7 Data Lakes

283© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_8

CHAPTER 8

Data Warehouses
This chapter on Data Warehouses extends from the previous chapter

covering the development of a modern Data Lake with the distributed

object storage system MinIO. Data Lakes store a wide variety of data forms,

while Data Warehouses manage a wide variety of data sources. Data

Warehouses provide access to data catalogs, metadata, indexes, key/value

stores, message queues, event streams, document, and relational databases,

including Data Lakes. The line between Data Lakes and Data Warehouses is

not always clear; this book distinguishes the concept of data warehousing as

any managed collection of sources containing data that is either processed,

organized, indexed, cataloged, or otherwise identified with a purpose.

Open Source Data Lake management systems such as Delta Lake1

bring ACID transactions, metadata, unified streaming, and batch data,

while Kylo2 offers a robust user interface for data ingestion, preparation,

and discovery. These sophisticated Data Lake applications begin to blur

the line between a vast, formless Data Lake and the well-organized,

Warehouse. However, the results of these systems are likely candidates for

higher-level Data Warehouse concepts.

Data lakes are indiscriminate in their collection of data; when

organizations acquire data of any kind, the need to store it may arise before

the business case for its use. When the value and purpose for a set of data

is understood, it may then be processed, schemas developed, attributes

1 https://delta.io/
2 https://kylo.io/

https://doi.org/10.1007/978-1-4842-5611-4_8#DOI
https://delta.io/
https://kylo.io/

284

indexed, values normalized, and metadata catalogued for the awareness

of interested services or human analysts. Data Warehouses expose access

to real-time event and message data and collections of historical data,

readied for decision support systems, business intelligence, analytics,

machine learning, and inference.

 Data and Data Science
The concepts related to supporting Data Science activities are broad,

along with an endless array of techniques and implementations focused

on providing data-driven decision making by humans or machines. Data

platforms facilitate the ingestion, access, and management of data, and within

them, Data Warehouses offer a catalog of data sources, schema, and metadata.

In the field of Data Science, Machine Learning activities often pose

a particularly demanding set of requirements on data. Ten researchers

from Google contributed to a research paper titled “Hidden Technical

Debt in Machine Learning Systems.”3 The paper illustrates a typical set

of infrastructure dependencies and their relative footprint within the

scope of Machine Learning. The infrastructure supporting Machine

Learning includes Configuration, Data Collection, Feature Extraction,

Data Verification, Machine Resource Management, Analysis Tools, Process

Management Tools, Serving Infrastructure, and Monitoring (see Figure 8- 1).

Additionally, many other Data Science activities require much of this

resource, including business intelligence and analytics.

3 Sculley, D., Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan
Dennison. “Hidden Technical Debt in Machine Learning Systems.” In Advances
in Neural Information Processing Systems 28, edited by C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 2503–2511. Curran Associates,
Inc., 2015. http://papers.nips.cc/paper/5656-hidden-technical-debt-in-
machine-learning-systems.pdf.

Chapter 8 Data Warehouses

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

285

The next section introduces a foundation of a modest yet highly functional

modern Data Warehouse capable of much, if not all, of the functionality

required for most Data Science activities, including Machine Learning.

 Data Platform
Constructing a modern Data Warehouse in Kubernetes provides an

abstraction from low-level infrastructure, a unified control plane,

standardized configuration management, holistic monitoring, role- based

access control, network policies, and compatibility with the rapidly

growing landscape4 of cloud-native technologies.

This chapter installs and configures three new data sources: MySQL5

cluster representing a common RDBMS database, Apache Cassandra6 as

a wide-column distributed NoSQL database, and Apache Hive7 capable

of projecting a schema atop the S3-compatible object storage set up in

the previous chapter. Presto,8 a distributed SQL query engine for Big Data,

Figure 8-1. Machine Learning infrastructure3

4 https://landscape.cncf.io/
5 www.mysql.com/
6 https://cassandra.apache.org/
7 https://hive.apache.org/
8 https://prestodb.io/

Chapter 8 Data Warehouses

https://landscape.cncf.io/
http://www.mysql.com/
https://cassandra.apache.org/
https://hive.apache.org/
https://prestodb.io/

286

ties these existing data sources together into a single catalog, providing

schema and connectivity. Presto natively supports over 20 typical data

applications, including Elasticsearch (configured in Chapter 6) and

Apache Kafka (configured in Chapter 5).

It is not uncommon to write an application that natively connects

and consumes data from more than one source. However, technologies

such as Presto consolidate and abstract this capability, distribute queries

across a cluster to workers, aggregate results, and monitor performance.

Centralized access to a vast warehouse of data from Presto reduces

technical debt across specialized systems (see Figure 8-2) by managing

diverse connectivity requirements and schema management.

 Development Environment
The following exercises continue to utilize small clusters mentioned in

the previous chapters, including one 2 vCPU/8G RAM/40G SSD for the

Kubernetes master node and four 4 vCPU/16G RAM/160G SSD instances

Figure 8-2. Presto distributed SQL joining multiple data sources

Chapter 8 Data Warehouses

287

for Kubernetes worker nodes. The concepts and configurations in this

chapter are scaled down to fit this economically minded experimentation

and development cluster.

This chapter leverages applications and cluster configurations defined

in Chapters 3, 5, and 6 and the new MinIO cluster from Chapter 7 (see

Table 7-1). This chapter continues to organize configuration manifests

under the folder cluster-apk8s-dev5.

 Data and Metadata Sources
Data Warehouses not only provide access to historical data from a

variety of sources, but they also assist in the ingestion, development,

and description of data sets. This section installs MySQL, utilized later

by Apache Hive for metadata storage, and is demonstrated in this book

by projecting schema atop objects in MinIO. Additionally, this chapter

installs Apache Cassandra to further demonstrate the operation of diverse

data management systems in Kubernetes, along with leveraging the

combinatorial effect of data warehousing concepts.

 MySQL
MySQL is a tremendously popular database. According to a 2019 Stack

Overflow developer survey, 54% of respondents use MySQL.9 These

results are not surprising, with tens of thousands of websites launched

daily powered by MySQL-backed content management systems such

as WordPress and Drupal.10 WordPress claims that it powers 35% of the

Internet;11 if this claim is accurate, it is safe to assume a significant portion of

all online data (expressed as website content) is served by MySQL databases.

9 https://insights.stackoverflow.com/survey/2019#technology-_-databases
10 www.drupal.org/
11 https://wordpress.com/activity/

Chapter 8 Data Warehouses

https://doi.org/10.1007/978-1-4842-5611-4_7Tab#1
https://insights.stackoverflow.com/survey/2019#technology-_-databases
http://www.drupal.org/
https://wordpress.com/activity/

288

The Data Warehouse application Apache Hive requires a database to

store and manage metadata. Hive can use MySQL (among many other

databases) for metadata. Platform support for MySQL may serve as both a

possible data source and a functional dependency of the Data Warehouse

(see Figure 8-2).

MySQL, along with most of the traditional database systems, predates

Kubernetes, and even cloud-native concepts. Turnkey solutions for

configuring and maintaining the challenging requirements of stateful

database workloads are rapidly evolving. This section installs a MySQL

Kubernetes Operator and defines the desired state of a new MySQL cluster.

 MySQL Operator

This section configures the stable, well-documented, and actively

maintained MySQL Kubernetes Operator by Presslabs.12 The MySQL

Operator defines a new custom resource represented by the custom

resource definition (CRD) MysqlCluster.

If following along from previous chapters, the platform developed

in this book set up a Rook Ceph Operator in Chapter 3 defining and

managing the resource CephCluster and a MinIO Operator in Chapter 7

defining and managing the resource Tenant. Like previous Operators, the

new MySQL Operator extends Kubernetes, therefore giving the platform

developed throughout this book the ability to quickly deploy and manage

one or more MySQL clusters in one or more Namespaces.

The following configuration installs the MySQL Operator in the new

Namespace mysql-operator and can manage MysqlCluster resources

created in any Namespace. Organize the Namespace configuration and

install documentation at the cluster level. Create the directory cluster-

apk8s- dev5/000-cluster/25-mysql-operator to contain the MySQL

operator Namespace configuration and documentation. Next, create a file

12 https://github.com/presslabs/mysql-operator

Chapter 8 Data Warehouses

https://github.com/presslabs/mysql-operator

289

named 00-namespace.yml with contents from Listing 8-1. Additionally,

create a file named README.md to document the Helm commands

performed next.

Listing 8-1. MySQL operator Namespace

apiVersion: v1

kind: Namespace

metadata:

 name: mysql-operator

Apply the MySQL operator Namespace configuration:

$ kubectl apply -f 00-namespace.yml

Next add the Presslabs charts repository to Helm:

$ helm repo add presslabs \

https://presslabs.github.io/charts

Finally, install the mysql-operator. Configure the operator to use the

rook-ceph-block storage class as set up in Chapter 3:

$ helm install presslabs/mysql-operator \

 --set orchestrator.persistence.storageClass=rook-ceph-block \

 --name mysql-operator \

 --namespace mysql-operator

The new mysql-operator is ready to install and manage MySQL

clusters defined in MysqlCluster resources described in the next section.

Additionally, the mysql-operator exposes GitHub’s MySQL Orchestrator

as the Service mysql-operator:80 in the mysql-operator Namespace.

Orchestrator is a MySQL management and visualization tool, providing

topology discovery, refactoring, and recovery capabilities.13

13 https://github.com/github/orchestrator

Chapter 8 Data Warehouses

https://github.com/github/orchestrator

290

Access Orchestrator by port-forwarding the Service and visiting it in a

browser:

$ kubectl port-forward service/mysql-operator \

8080:80 -n mysql-operator

 MySQL Cluster

The following section defines a small, two-node MySQL cluster named

mysql in the data Namespace. Initially, this chapter uses MySQL as

a metadata back end for Apache Hive and later on for demonstrating

complex joins between diverse data sources with Presto.

Create the directory cluster-apk8s-dev5/003-data/080-mysql

to contain the MySQL cluster configuration. Next, create a file named

90-cluster.yml from Listing 8-2.

Listing 8-2. MySQL cluster configuration

apiVersion: v1

kind: Secret

metadata:

 name: mysql-credentials

 namespace: data

type: Opaque

stringData:

 ROOT_PASSWORD: strongpassword

 USER: hive

 PASSWORD: strongpassword

 DATABASE: objectmetastore

apiVersion: mysql.presslabs.org/v1alpha1

kind: MysqlCluster

metadata:

 name: mysql

Chapter 8 Data Warehouses

291

 namespace: data

spec:

 replicas: 2

 secretName: mysql-credentials

 volumeSpec:

 persistentVolumeClaim:

 accessModes: ["ReadWriteOnce"]

 storageClassName: "rook-ceph-block"

 resources:

 requests:

 storage: 1Gi

Apply the MySQL cluster configuration:

$ kubectl apply -f 90-cluster.yml

 Apache Cassandra
Apache Cassandra is a high-performance, highly available, wide-column

database. The addition of Cassandra to the data platform described in this

book rounds out the data access and storage capabilities by providing a

web-scale database solution. Netflix is one of the more notable and public

Cassandra users, “Netflix is using Cassandra on AWS as a key infrastructure

component of its globally distributed streaming product.” Netflix has

posted benchmarks demonstrating one million plus writes per second.

Cassandra’s peer-to-peer design means there are no master nodes to

overwhelm or outgrow, allowing Cassandra to scale linearly in both data

volume and velocity. These characteristics provide capabilities that bridge

many of the volume requirements of Big Data with high-velocity wide-

column store data.

The following section configures the Rook Cassandra Operator used to

prepare and manage one or more Cassandra clusters within Kubernetes.

Chapter 8 Data Warehouses

292

 Cassandra Operator

Rook14 is a well-established provider of data storage operators for

Kubernetes. This book covers the Rook Ceph Operator in Chapter 3.

The Rook Cassandra Operator extends Kubernetes with the new custom

resource definition Cluster, under the API namespace cassandra.

rook.io.

The Rook Cassandra Operator15 supports cluster settings allowing the

specification of the desired Cassandra version, container image repository,

annotations, and the option to utilize Scylla,16 a Cassandra-compatible

alternative written in C++. Scylla claims performance of 1,000,000s of

OPS per node and the ability to scale out to hundreds of nodes with 99%

latency of less than one millisecond. Rook’s compatibility with both Scylla

and Cassandra databases facilitates experimenting with both solutions.

Additionally, the Rook Cassandra Operator supports the definition of

Cassandra’s physical topology enabling the specification of data center and

rack configuration for each cluster.

Create the directory cluster-apk8s-dev5/000-cluster/23-rook-

cassandra to contain the Rook Cassandra operator configuration. Next,

create a file named 00-operator.yml from Listing 8-3.

Listing 8-3. Rook Cassandra operator

apiVersion: v1

kind: Namespace

metadata:

 name: rook-cassandra-system

14 https://rook.io/
15 https://rook.io/docs/rook/v1.2/cassandra-cluster-crd.html
16 www.scylladb.com/

Chapter 8 Data Warehouses

https://rook.io/
https://rook.io/docs/rook/v1.2/cassandra-cluster-crd.html
http://www.scylladb.com/

293

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: clusters.cassandra.rook.io

spec:

 group: cassandra.rook.io

 names:

 kind: Cluster

 listKind: ClusterList

 plural: clusters

 singular: cluster

 scope: Namespaced

 version: v1alpha1

 validation:

 openAPIV3Schema:

 properties:

 spec:

 type: object

 properties:

 version:

 type: string

 description: "Version of Cassandra"

 datacenter:

 type: object

 properties:

 name:

 type: string

 description: "Datacenter Name"

 racks:

 type: array

 properties:

Chapter 8 Data Warehouses

294

 name:

 type: string

 members:

 type: integer

 configMapName:

 type: string

 storage:

 type: object

 properties:

 volumeClaimTemplates:

 type: object

 required:

 - "volumeClaimTemplates"

 placement:

 type: object

 resources:

 type: object

 properties:

 cassandra:

 type: object

 sidecar:

 type: object

 required:

 - "cassandra"

 - "sidecar"

 sidecarImage:

 type: object

 required:

 - "name"

 - "members"

 - "storage"

Chapter 8 Data Warehouses

295

 - "resources"

 required:

 - "name"

 required:

 - "version"

 - "datacenter"

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: rook-cassandra-operator

rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["get", "list", "watch", "delete"]

 - apiGroups: [""]

 resources: ["services"]

 verbs: ["*"]

 - apiGroups: [""]

 resources: ["persistentvolumes", "persistentvolumeclaims"]

 verbs: ["get", "delete"]

 - apiGroups: [""]

 resources: ["nodes"]

 verbs: ["get"]

 - apiGroups: ["apps"]

 resources: ["statefulsets"]

 verbs: ["*"]

 - apiGroups: ["policy"]

 resources: ["poddisruptionbudgets"]

 verbs: ["create"]

 - apiGroups: ["cassandra.rook.io"]

Chapter 8 Data Warehouses

296

 resources: ["*"]

 verbs: ["*"]

 - apiGroups: [""]

 resources: ["events"]

 verbs: ["create","update","patch"]

apiVersion: v1

kind: ServiceAccount

metadata:

 name: rook-cassandra-operator

 namespace: rook-cassandra-system

kind: ClusterRoleBinding

apiVersion: rbac.authorization.k8s.io/v1

metadata:

 name: rook-cassandra-operator

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: rook-cassandra-operator

subjects:

- kind: ServiceAccount

 name: rook-cassandra-operator

 namespace: rook-cassandra-system

 apiVersion: apps/v1

 kind: StatefulSet

 metadata:

 name: rook-cassandra-operator

 namespace: rook-cassandra-system

 labels:

Chapter 8 Data Warehouses

297

 app: rook-cassandra-operator

 spec:

 replicas: 1

 serviceName: "non-existent-service"

 selector:

 matchLabels:

 app: rook-cassandra-operator

 template:

 metadata:

 labels:

 app: rook-cassandra-operator

 spec:

 serviceAccountName: rook-cassandra-operator

 containers:

 - name: rook-cassandra-operator

 image: rook/cassandra:v1.1.2

 imagePullPolicy: "Always"

 args: ["cassandra", "operator"]

 env:

 - name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

Apply the Cassandra operator configuration:

$ kubectl apply -f 00-operator.yml

Chapter 8 Data Warehouses

298

 Cassandra Cluster

This section creates a three-node Apache Cassandra cluster, used later to

demonstrate the powerful convergence of web-scale wide-column store

databases and Big Data systems expressed with the Presto distributed

SQL query engine. The following configuration defines a Kubernetes Role,

ServiceAccount, and RoleBinding in the data Namespace for use in the

Cassandra cluster. The Cassandra cluster is named apk8s and configured

in a single virtual rack named r1. More extensive and sophisticated

clusters should define multiple data centers and racks distributed within

Kubernetes clusters by setting the placement values of nodeAffinity,

podAffinity, podAntiAffinity, and tolerations.

Create the directory cluster-apk8s-dev5/003-data/060-cassandra

to contain the Cassandra cluster configuration. Next, create a file named

15-rbac.yml from Listing 8-4.

Listing 8-4. Rook Cassandra RBAC configuration

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: cassandra-member

 namespace: data

rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["get"]

 - apiGroups: [""]

 resources: ["services"]

 verbs: ["get","list","patch","watch"]

 - apiGroups: ["cassandra.rook.io"]

 resources: ["clusters"]

Chapter 8 Data Warehouses

299

 verbs: ["get"]

apiVersion: v1

kind: ServiceAccount

metadata:

 name: cassandra-member

 namespace: data

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: cassandra-member

 namespace: data

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: cassandra-member

subjects:

 - kind: ServiceAccount

 name: cassandra-member

 namespace: data

Apply the Cassandra cluster RBAC configuration:

$ kubectl apply -f 15-rbac.yml

The small Cassandra cluster defined next is constrained to one virtual

rack with no specified Kubernetes Node or affinity or tolerations. The

following configuration restricts each node in the Cassandra cluster to one

CPU and 2 gigabytes of memory.

Create a file named 90-cluster.yml from Listing 8-5.

Chapter 8 Data Warehouses

300

Listing 8-5. Rook Cassandra cluster configuration

apiVersion: cassandra.rook.io/v1alpha1

kind: Cluster

metadata:

 name: cassandra

 namespace: data

spec:

 version: 3.11.1

 mode: cassandra

 datacenter:

 name: apk8s

 racks:

 - name: r1

 members: 3

 storage:

 volumeClaimTemplates:

 - metadata:

 name: cassandra-data

 spec:

 storageClassName: rook-ceph-block

 resources:

 requests:

 storage: 5Gi

 resources:

 requests:

 cpu: 1

 memory: 2Gi

 limits:

 cpu: 1

 memory: 2Gi

Chapter 8 Data Warehouses

301

Apply the Cassandra cluster configuration:

$ kubectl apply -f 90-cluster.yml

 Apache Hive
Apache Hive is Data Warehouse software initially developed by Facebook

and later given to the Apache Software Foundation. Organizations such as

Netflix17 and FINRA18 use Hive to query massive volumes of structured data

across distributed storage systems, including Hadoop’s HDFS and Amazon

S3. Hive simplifies the complex MapReduce jobs typically required for

querying Big Data by providing a standard SQL interface. While Hive is not

a database, it delivers the ability to project schema onto any structured

data stored in HDFS or S3-compatible storage. Amazon’s AWS offers the

product Elastic MapReduce, including a version of Hive as a service.19

Apache Hive enables organizations to harness enormous quantities of

structured data not managed by formal database management systems,

steady streams of IoT data, exports from legacy systems, and ad hoc data

ingestion. Apache Hive reduces the complexity and effort to perform Data

Science activities, including business analytics, business intelligence, and

Machine Learning, by providing an SQL interface, metadata, and schema

onto a vast Data Lake.

 Containerization

This section creates a custom Apache Hive container configured to use

MySQL for the storage of schema and metadata related to objects residing

in an S3-compatible distributed storage system, such as the MinIO cluster

configured in Chapter 7. Apache Hive, like many Big Data applications,

17 www.youtube.com/watch?v=Idu9OKnAOis
18 https://technology.finra.org/opensource.html#bigdata
19 https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive.html

Chapter 8 Data Warehouses

http://www.youtube.com/watch?v=Idu9OKnAOis
https://technology.finra.org/opensource.html#bigdata
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive.html

302

evolved outside the Cloud-Native and Kubernetes ecosystems, therefore

requiring a bit more effort in onboarding it into the cluster. The following

starts with building a custom container suitable for use with Kubernetes

and local experimentation.

Create the directory apk8s-hive to contain the necessary components

and configuration for a new Apache Hive Docker container.20 Next, create

the directory src, and download and uncompress both Apache Hive and

its main dependency Apache Hadoop:

$ mkdir -p apk8s-hive/src

$ cd apk8s-hive

$ curl -L http://mirror.cc.columbia.edu/pub/software/apache/

hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz -o ./src/apache-

hive- 3.1.2-bin.tar.gz

$ curl -L http://archive.apache.org/dist/hadoop/common/

hadoop-3.1.2/hadoop-3.1.2.tar.gz -o ./src/hadoop-3.1.2.tar.gz

$ tar -xzvf ./src/apache-hive-3.1.2-bin.tar.gz -C ./src

$ tar -xzvf ./src/hadoop-3.1.2.tar.gz -C ./src

Next, extend Apache Hive’s capabilities by adding JAR files containing

the functionality needed for connecting to S3-compatible object storage

and MySQL for schema and metadata management:

$ export HIVE_LIB=$(pwd)/src/apache-hive-3.1.2-bin/lib

$ export MIRROR=https://repo1.maven.org/maven2

$ curl $MIRROR/org/apache/hadoop/hadoop-aws/3.1.1/hadoop-aws- -

3.1.1.jar -o $HIVE_LIB/hadoop-aws-3.1.1.jar

$ curl $MIRROR/com/amazonaws/aws-java-sdk/1.11.406/aws-java-

sdk-1.11.307.jar -o $HIVE_LIB/aws-java-sdk-1.11.307.jar

20 https://github.com/apk8s/hive

Chapter 8 Data Warehouses

https://github.com/apk8s/hive

303

$ curl $MIRROR/com/amazonaws/aws-java-sdk-core/1.11.307/

aws-java-sdk-core-1.11.307.jar -o $HIVE_LIB/aws-java-sdk-

core-1.11.307.jar

$ curl $MIRROR/com/amazonaws/aws-java-sdk-dynamodb/1.11.307/

aws-java-sdk-dynamodb-1.11.307.jar -o $HIVE_LIB/aws-java-sdk-

dynamodb-1.11.307.jar

$ curl $MIRROR/com/amazonaws/aws-java-sdk-kms/1.11.307/

aws-java-sdk-kms-1.11.307.jar -o $HIVE_LIB/aws-java-sdk-

kms-1.11.307.jar

$ curl $MIRROR/com/amazonaws/aws-java-sdk-s3/1.11.307/aws-java-

sdk-s3-1.11.307.jar -o $HIVE_LIB/aws-java-sdk-s3-1.11.307.jar

$ curl $MIRROR/org/apache/httpcomponents/httpclient/4.5.3/

httpclient-4.5.3.jar -o $HIVE_LIB/httpclient-4.5.3.jar

$ curl $MIRROR/joda-time/joda-time/2.9.9/joda-time-2.9.9.jar -o

$HIVE_LIB/joda-time-2.9.9.jar

$ curl $MIRROR/mysql/mysql-connector-java/5.1.48/mysql-

connector- java-5.1.48.jar -o $HIVE_LIB/mysql-connector-

java-5.1.48.jar

Hive, like many Java-based applications, uses XML files for configuration,

in this case, hive-site.xml. However, packaging configuration values containing

sensitive authentication tokens, passwords, and environment-specific services

locations would be an anti-pattern causing security concerns and limiting

container reusability. Mounting a configuration file from a filesystem (or

ConfigMaps in the case of Kubernetes) is a standard method of configuring

containers and provides considerable flexibility for admins or developers

using the container; however, this method limits the ability to leverage values

from existing Secrets and ConfigMap values available in Kubernetes. The

technique described in this section creates a configuration file template to be

populated by the container with environment variables at runtime.

Chapter 8 Data Warehouses

304

Create a file named hive-site-template.xml with the contents from

Listing 8-6.

Listing 8-6. Apache Hive configuration template hive-site-

template.xml

<configuration>

 <property>

 <name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:mysql://MYSQL_ENDPOINT/objectmetastore?createDataba

seIfNotExist=true&useSSL=false</value>

 </property>

 <property>

 <name>javax.jdo.option.ConnectionDriverName</name>

 <value>com.mysql.jdbc.Driver</value>

 </property>

 <property>

 <name>javax.jdo.option.ConnectionUserName</name>

 <value>MYSQL_USER</value>

 </property>

 <property>

 <name>javax.jdo.option.ConnectionPassword</name>

 <value>MYSQL_PASSWORD</value>

 </property>

 <property>

 <name>fs.s3a.endpoint</name>

 <value>S3A_ENDPOINT</value>

 </property>

 <property>

 <name>fs.s3a.access.key</name>

 <value>S3A_ACCESS_KEY</value>

 </property>

Chapter 8 Data Warehouses

305

 <property>

 <name>fs.s3a.secret.key</name>

 <value>S3A_SECRET_KEY</value>

 </property>

 <property>

 <name>fs.s3a.path.style.access</name>

 <value>S3A_PATH_STYLE_ACCESS</value>

 </property>

</configuration>

Create a shell script named entrypoint.sh as the container’s initial

process. The entry point script uses sed to replace values in the hive-

site.xml configuration file with values from the environment variables

passed in through the container runtime, defined in the previous section.

After applying the configuration, the script runs the utility schematool to

add any MySQL database and tables Hive requires to store schema and

metadata. Finally, the entry point script starts both a Hive server and a

Hive Metastore21 server.

Create a Bash22 script named entrypoint.sh with the contents from

Listing 8-7 used as the entry point for the new container.

Listing 8-7. Apache Hive container entrypoint.sh script

#!/bin/bash

provide ample time for other services to come online

sleep 10

configuration file location

HIVE_CONF="/opt/hive/conf/hive-site.xml"

21 https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metasto
re+3.0+Administration

22 www.gnu.org/software/bash/manual/

Chapter 8 Data Warehouses

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+3.0+Administration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Metastore+3.0+Administration
http://www.gnu.org/software/bash/manual/

306

template replacements

for v in \

 MYSQL_ENDPOINT \

 MYSQL_USER \

 MYSQL_PASSWORD \

 S3A_ENDPOINT \

 S3A_ACCESS_KEY \

 S3A_SECRET_KEY \

 S3A_PATH_STYLE_ACCESS; do

 sed -i'' "s/${v}/${!v//\//\\/}/g" $HIVE_CONF

done

add metastore schema to mysql

$HIVE_HOME/bin/schematool -dbType mysql -initSchema

$HIVE_HOME/bin/hiveserver2 start &

$HIVE_HOME/bin/hiveserver2 --service metastore

Next, create a Dockerfile with the contents from Listing 8-8.

Listing 8-8. Apache Hive entrypoint.sh

FROM ubuntu:16.04

ENV HADOOP_HOME /opt/hadoop

ENV HIVE_HOME /opt/hive

ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64

RUN apt-get update \

 && apt-get install -y --reinstall build-essential \

 && apt-get install -y \

 curl ssh rsync vim \

 net-tools openjdk-8-jdk python2.7-dev \

 libxml2-dev libkrb5-dev libffi-dev \

Chapter 8 Data Warehouses

307

 libssl-dev libldap2-dev python-lxml \

 libxslt1-dev libgmp3-dev libsasl2-dev \

 libsqlite3-dev libmysqlclient-dev

ADD src/hadoop-3.1.2 /opt/hadoop

ADD src/apache-hive-3.1.2-bin /opt/hive

COPY ./hive-site-template.xml /opt/hive/conf/hive-site.xml

ADD entrypoint.sh /

RUN chmod 775 /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]

EXPOSE 9083

EXPOSE 10000

EXPOSE 10002

Ensure the custom Apache Hive containerization project contains all

the necessary files specified earlier, as shown in Listing 8-9. Next, build the

container defined in the Dockerfile for local testing:

$ docker build -t apk8s-hive-s3m:3.1.2 .

Listing 8-9. Apache Hive containerization files

.

├── Dockerfile
├── docker-compose.yml
├── entrypoint.sh
├── hive-site-template.xml
└── src
 ├── apache-hive-3.1.2-bin
 ├── apache-hive-3.1.2-bin.tar.gz
 ├── hadoop-3.1.2
 └── hadoop-3.1.2.tar.gz

Chapter 8 Data Warehouses

308

Create a version tag and push the new container to a public registry (or

create the tag after the testing the container as performed in the following

section):

$ docker tag apk8s-hive-s3m:3.1.2 \

apk8s/hive-s3m:3.1.2-1.0.0

 Local Hive Testing

This section tests the Hive container built in the previous section by

creating a database and table schema mapped to the MinIO (S3) bucket

test. Create the bucket test in the MinIO cluster defined in Chapter 7.

Later in this book, Hive is used to catalog object locations as data sources

and project schema onto them. The following demonstrates the creation

of a data source by creating a schema in Hive mapped to the empty bucket

test (see Figure 8-3).

Figure 8-3. Testing Hive on a local workstation

Chapter 8 Data Warehouses

309

After building the new container apk8s-hive-s3m:3.1.2, as described

in the previous section, create a Docker Compose23 file for local testing

on the workstation used to build the container. Create the file docker-

compose.yml with the contents from Listing 8-10. Set the environment

variables S3A_ACCESS_KEY and S3A_SECRET_KEY to the MinIO credentials

established in Chapter 7. The Docker Compose configuration defines a

mysql:8.0.18 database container along with the Apache Hive container

apk8s-hive-s3m:3.1.2 built previously.

Listing 8-10. Apache Hive docker-compose.yml

version: "3"

services:

 mysql:

 container_name: mysql

 image: mysql:8.0.18

 command: --default-authentication-plugin=mysql_native_

password

 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: demo

 ports:

 - "3306:3306"

 hive-metastore:

 container_name: hive

 image: apk8s-hive-s3m:3.1.2

 environment:

 MYSQL_ENDPOINT: "mysql:3306"

 MYSQL_USER: "root"

23 https://docs.docker.com/compose/

Chapter 8 Data Warehouses

https://docs.docker.com/compose/

310

 MYSQL_PASSWORD: "demo"

 S3A_ENDPOINT: "https://obj.data.dev5.apk8s.dev"

 S3A_ACCESS_KEY: "miniouser"

 S3A_SECRET_KEY: "miniopassword"

 S3A_PATH_STYLE_ACCESS: "true"

 ports:

 - "9083:9083"

 - "10000:10000"

 - "10002:10002"

 depends_on:

 - mysql

Run the new Docker Compose container stack:

$ docker-compose up

After starting Docker Compose, the new Apache Hive container

connects to MySQL, creating a database and tables used to store schema

and metadata defined later. The Apache Hive container exposes three

ports: HiveServer2 listens on port 10000, providing SQL access over thrift/

JDBC; Hive Metastore listens on port 9083, allowing access to metadata

and tables over the thrift protocol; and Hive provides a web interface on

port 10002 for performance monitoring, debugging, and observation.

Begin testing Apache Hive by executing the command-line application

available within the running container:

$ docker exec -it hive /opt/hive/bin/hive

Create a database named test:

hive> CREATE DATABASE IF NOT EXISTS test;

OK

Create a table in the test database named message using the empty

bucket test (create the bucket in MinIO if it does not exist):

Chapter 8 Data Warehouses

311

hive> CREATE TABLE IF NOT EXISTS test.message (

 > id int,

 > message string

 >)

 > row format delimited fields terminated by ','

 > lines terminated by "\n" location 's3a://test/messages';

Insert a record into the new test.message table:

hive> INSERT INTO test.message

 > VALUES (1, "Hello MinIO from Hive");

Select the data back from MinIO (S3):

hive> SELECT * FROM test.message;

OK

1 Hello MinIO from Hive

The previous test created a type of distributed database capable of

cataloging and querying petabytes of data from a distributed, highly

scalable MinIO object storage system. The preceding exercise is capable of

modeling existing data, provided that all data in the specified bucket and

prefix (/test/messages/) has the same structure. This powerful concept

allows organizations to begin collecting structured data and apply a

schema in the future, once the need to access it arises.

The next section brings the power of Apache Hive to the Kubernetes

platform, progressing in this book. Running Hive in Kubernetes brings

all the advantages provided by container management, networking,

monitoring, and logical proximity to all the services within the data

platform.

Chapter 8 Data Warehouses

312

 Modern Data Warehouse
This book considers modern Data Warehouses and Data Lakes as an

open (employing containerization), cloud-native platform, the cloud

represented by Kubernetes (container orchestration), and the platform

as an ever-growing collection of data management applications exposed

through APIs and graphical user interfaces with the ability to deploy

business logic within.

Many organizations and applications require access to a variety of

data sources, from common RDBMS databases to distributed document,

object, and key stores—resulting from trends in Digital Transformation,

IoT, and Data Science activities such as Machine Learning. Correlating

data from various sources is a common practice; however, depending on

the relationships between these sources, the process can be challenging.

Migrating all data sources to a commercial Data Warehouse may be cost-

prohibitive, impose unacceptable limitations, or result in vendor lock-in.

Constructing a modern, cloud-native, vendor-neutral Data Warehouse

on Kubernetes may open up new possibilities even alongside commercial

applications and PaaS offerings. A tremendous amount of functionality

and flexibility is achieved with little effort and capital, starting small with a

near-limitless ability to scale.

This section adds Presto and Apache Hive to Kubernetes, applying new

layers atop the data platform developed throughout this book. Presto and

Hive demonstrate the ability to represent and combine data sources such

as MinIO (S3), Cassandra, MySQL, and several more, creating a centralized

data access point with distributed query execution.

 Hive
This section deploys the custom Apache Hive container developed earlier

in the chapter. Hive supplies SQL-like capabilities atop Apache Hadoop,

extending its use to a broader range of data analytics, analysis, and

Chapter 8 Data Warehouses

313

management applications. Hadoop’s Big Data capabilities are traditionally

associated with the Hadoop Distributed File System (HDFS). However,

the custom container developed earlier extends Hive with the ability to

use S3-compatible object storage as a modern alternative to Hadoop’s

HDFS. Apache Hive creates a Data Warehouse within a broader Data Lake,

as shown in Figure 8-4.

 Kubernetes Configuration

The following configuration defines a hive Kubernetes Service backed

by a hive Deployment implementing the custom image apk8s/hive-

s3m:3.1.2-1.0.0 developed earlier in the chapter. The new Hive container

uses MySQL to store schema, defining structured and semi-structured

objects stored in MinIO (S3).

Create the directory cluster-apk8s-dev5/003-data/085-hive to

contain the Apache Hive Kubernetes configurations. Next, create a file

named 10-service.yml from Listing 8-11.

Figure 8-4. Apache Hive warehousing structured and semi- structured
data

Chapter 8 Data Warehouses

314

Listing 8-11. Apache Hive Service

apiVersion: v1

kind: Service

metadata:

 name: hive

 namespace: data

 labels:

 app: hive

spec:

 selector:

 app: hive

 ports:

 - protocol: "TCP"

 port: 10000

 targetPort: tcp-thrift

 name: tcp-thrift

 - protocol: "TCP"

 port: 9083

 targetPort: tcp-thrift-meta

 name: tcp-thrift-meta

 - protocol: "TCP"

 port: 10002

 targetPort: http-hwi

 name: http-hwi

 type: ClusterIP

Apply the Apache Hive Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a file named 30-deployment.yml from Listing 8-12. The

following deployment sets the environment variables MYSQL_USER and MYSQL_

PASSWORD from the secret mysql-credentials defined earlier in this chapter as

Chapter 8 Data Warehouses

315

part of the MySQL cluster configuration. Chapter 7 configured MinIO with the

secret minio-creds-secret, which supplies values for S3A_ACCESS_KEY and

S3A_SECRET_KEY environment variables in this custom Hive deployment.

Listing 8-12. Apache Hive Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hive

 namespace: data

 labels:

 app: hive

spec:

 replicas: 1

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: hive

 template:

 metadata:

 labels:

 app: hive

 spec:

 containers:

 - name: hive

 image: apk8s/hive-s3m:3.1.2-1.0.0

 imagePullPolicy: IfNotPresent

 env:

 - name: MYSQL_ENDPOINT

 value: "mysql:3306"

 - name: MYSQL_USER

 valueFrom:

Chapter 8 Data Warehouses

316

 secretKeyRef:

 name: mysql-credentials

 key: USER

 - name: MYSQL_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mysql-credentials

 key: PASSWORD

 - name: S3A_ENDPOINT

 value: "http://minio:9000"

 - name: S3A_ACCESS_KEY

 valueFrom:

 secretKeyRef:

 name: minio-creds-secret

 key: accesskey

 - name: S3A_SECRET_KEY

 valueFrom:

 secretKeyRef:

 name: minio-creds-secret

 key: secretkey

 - name: S3A_PATH_STYLE_ACCESS

 value: "true"

 ports:

 - name: tcp-thrift-meta

 containerPort: 9083

 - name: tcp-thrift

 containerPort: 10000

 - name: http-hwi

 containerPort: 10002

Apply the Apache Hive Deployment:

$ kubectl apply -f 30-deployment.yml

Chapter 8 Data Warehouses

317

 Test Data

As demonstrated previously in this chapter, Apache Hive provides the ability

to project schema onto empty buckets, allowing for the creation of ad hoc

yet well-structured data sets. While Hive is not itself a database, it can create

massively scalable object-based databases atop distributed object storage, in

this case the S3-compatible MinIO. Hive provides the ability to store schema

supporting existing structured and semi-structured objects of a given type.

The following exercise creates a new blood donor example data set

introduced in Chapter 7, consisting of one million records distributed

across one thousand CSV files. Each record contains the comma-separated

values for email, name, blood type, birthday, and state of fictional donors.

Create a new Jupyter Notebook by running JupyterLab as configured in

Chapter 6; in this case, browse to a custom equivalent of https://lab.data.

dev5.apk8s.dev/. Add each of the following code segments to their own cell.

Note the following exercise is executable as a plain python 3 script
on a local workstation by replacing minio-internal-service.
data:9000 with minio.data.dev5.apk8s.dev:443 (the
MinIo cluster ingress set up in Chapter 7) and secure=False to
secure=True.

In the first cell of a Python-based Jupyter Notebook, ensure the

installation of Faker and minio libraries as follows:

!pip install Faker==2.0.3

!pip install minio==5.0.1

Import the following Python libraries:

import os

import datetime

from faker import Faker

Chapter 8 Data Warehouses

https://lab.data.dev5.apk8s.dev/
https://lab.data.dev5.apk8s.dev/

318

from minio import Minio

from minio.error import (ResponseError,

 BucketAlreadyOwnedByYou,

 BucketAlreadyExists)

Create a function returning a tuple with a single record of fictitious

donor information:

fake = Faker()

def makeDonor():

 fp = fake.profile(fields=[

 "name",

 "birthdate",

 "blood_group"

])

 return (

 fake.ascii_safe_email(),

 fp["name"],

 fp["blood_group"],

 fp["birthdate"].strftime("%Y-%m-%d"),

 fake.state(),

)

Create a MinIO API client and create the bucket exports:

bucket = "exports"

mc = Minio('minio-internal-service.data:9000',

 access_key='<accesskey>',

 secret_key='<secretkey>',

 secure=False)

Chapter 8 Data Warehouses

319

try:

 mc.make_bucket(bucket)

except BucketAlreadyOwnedByYou as err:

 pass

except BucketAlreadyExists as err:

 pass

except ResponseError as err:

 raise

Finally, create a file named with a data time, containing one thousand

donor records. Upload the file to the MinIO bucket exports with the prefix

donors/ (e.g., donors/20200205022452.csv). Repeat this process one

thousand times for a total of one million records for testing.

for i in range(1,1001):

 now = datetime.datetime.now()

 dtstr = now.strftime("%Y%m%d%H%M%S")

 filename = f'donors/{dtstr}.csv'

 tmp_file = f'./tmp/{dtstr}.csv'

 with open(tmp_file,"w+") as tf:

 tf.write("email,name,type,birthday,state\n")

 for ii in range(1,1001):

 line = ",".join(makeDonor()) + "\n"

 tf.write(line)

 mc.fput_object(bucket, filename, tmp_file,

 content_type='application/csv')

 os.remove(tmp_file)

 print(f'{i:02}: {filename}')

Chapter 8 Data Warehouses

320

 Create Schema

Test the new custom Apache Hive deployment by executing the hive

command-line interface within the running Pod.

First, create a bucket in MinIO named hive.

Get the custom Apache Hive Pod name:

$ kubectl get pods -l app=hive -n data

Execute the hive command:

$ kubectl exec -it hive-8546649b5b-lbcrn \

/opt/hive/bin/hive -n data

From within the running hive command, create a database named

exports:

hive> CREATE DATABASE exports;

Next, create the table exports.donors:

hive> CREATE TABLE exports.donors (

 > email string,

 > name string,

 > blood_type string,

 > birthday date,

 > state string

 >)

 > row format delimited fields terminated by ','

 > lines terminated by "\n"

 > location 's3a://exports/donors';

This chapter uses a custom Apache Hive container to project schema

onto the distributed object-store. While the single Hive container is

capable of executing queries through ODBC/thrift exposed over the

Chapter 8 Data Warehouses

321

hive:1000 Kubernetes Service, a more extensive Hive cluster is necessary

for executing production workloads directly against Hive. However, the

next section uses a Presto cluster for distributed query execution and only

uses Hive to supply schema from its metadata server exposed through the

Service hive:9083.

The next section demonstrates the use of Presto to connect structured

data collected in the MinIO distributed object storage using Hive along a

variety of other data sources, including the RDBMS MySQL and the key/

value database Apache Cassandra.

 Presto
Presto is the final component of the modern Data Warehouse defined

in this book. According to the official website prestodb.io, “Presto is

an open source distributed SQL query engine for running interactive

analytic queries against data sources of all sizes ranging from gigabytes

to petabytes.” Although Hive is also a distributed SQL query engine cable

of querying vast quantities of data, Presto connects to a broader range of

data sources, including Apache Hive (as shown in Figure 8-5). Aside from

Presto’s high-performance querying capabilities, it provides a central

catalog of data sources.

Chapter 8 Data Warehouses

322

Presto reduces the amount of application logic needed to retrieve

data from multiple sources, both through a standard SQL abstraction

and removing the need for the client-side joining of data (in some cases

considered an anti-pattern24). Presto provides SQL abstraction across all

its supported data sources, performs distributed query execution, and

includes monitoring and observability. Presto supports client libraries for

Go,25 C,26 Java,27 Node.js,28 PHP,29 Ruby,30 R,31 and Python.32 A growing set of

Figure 8-5. Presto distributed SQL query across multiple data sources

24 www.batey.info/cassandra-anti-pattern-distributed.html,
www.slideshare.net/chbatey/webinar-cassandra-antipatterns-45996021

25 https://github.com/prestodb/presto-go-client
26 https://github.com/easydatawarehousing/prestoclient/tree/master/C
27 https://prestodb.io/docs/current/installation/jdbc.html
28 https://github.com/tagomoris/presto-client-node
29 https://github.com/Xtendsys-labs/PhpPrestoClient
30 https://github.com/treasure-data/presto-client-ruby
31 https://github.com/prestodb/RPresto
32 https://github.com/prestodb/presto-python-client

Chapter 8 Data Warehouses

http://www.batey.info/cassandra-anti-pattern-distributed.html
http://www.slideshare.net/chbatey/webinar-cassandra-antipatterns-45996021
https://github.com/prestodb/presto-go-client
https://github.com/easydatawarehousing/prestoclient/tree/master/C
https://prestodb.io/docs/current/installation/jdbc.html
https://github.com/tagomoris/presto-client-node
https://github.com/Xtendsys-labs/PhpPrestoClient
https://github.com/treasure-data/presto-client-ruby
https://github.com/prestodb/RPresto
https://github.com/prestodb/presto-python-client

323

web-based GUI clients, visualization, and dashboard applications support

Presto, including the new business intelligence application Apache

Superset, from the creators of Apache Airflow (see Figure 8-6).

Figure 8-6. Apache Superset (image from https://superset.
apache.org)

Chapter 8 Data Warehouses

https://superset.apache.org
https://superset.apache.org

324

 Kubernetes Configuration

This chapter installs a Presto cluster with two workers and a coordinator in

Kubernetes using a stable open source Helm chart by When I Work Data.33

Create the directory cluster-apk8s-dev5/003-data/095-presto to

contain the Presto Helm configuration and documentation. Next, create a

file named values.yml with contents from Listing 8-13. Additionally, create

a file named README.md to document the Helm commands performed next.

In Presto, a catalog represents a top-level data source. Note the four

data sources (known as connectors) defined in the catalog section of the

Helm chart configuration values.yml. The first two, obj.properties and

hive.properties, use the hive-hadoop2 connector. Presto uses Hive

for access to data files (objects) contained in HDFS or S3 and the Hive

Metastore service for metadata and schema representing the data files.

The hive.properties configuration demonstrates the use of the custom

Apache Hive container (installed in the previous section) for its Metastore

service backed by MySQL. Additionally, the cassandra.properties and

mysql.properties demonstrate connections to MySQL and Apache

Cassandra as configured in this chapter.

Listing 8-13. Presto Helm configuration

presto:

 environment: "production"

 workers: 2

 logLevel: "INFO"

image:

 repository: "wiwdata/presto"

 tag: "0.217"

 pullPolicy: "IfNotPresent"

33 https://github.com/wiwdata/presto-chart

Chapter 8 Data Warehouses

https://github.com/wiwdata/presto-chart

325

service:

 type: ClusterIP

catalog:

 obj.properties: |

 connector.name=hive-hadoop2

 hive.metastore=file

 hive.metastore.catalog.dir=s3://metastore/

 hive.allow-drop-table=true

 hive.s3.aws-access-key= miniobucketuserid

 hive.s3.aws-secret-key= miniobucketuserpassword

 hive.s3.endpoint=http://minio:9000

 hive.s3.path-style-access=true

 hive.s3.ssl.enabled=false

 hive.s3select-pushdown.enabled=true

 hive.properties: |

 connector.name=hive-hadoop2

 hive.metastore.uri=thrift://hive:9083

 hive.allow-drop-table=true

 hive.s3.aws-access-key= miniobucketuserid

 hive.s3.aws-secret-key= miniobucketuserpassword

 hive.s3.endpoint=http://minio:9000

 hive.s3.path-style-access=true

 hive.s3.ssl.enabled=false

 cassandra.properties: |

 connector.name=cassandra

 cassandra.contact-points=cassandra-data-r1-0,cassandra-

data- r1-1,cassandra-data-r1-2

 mysql.properties: |

 connector.name=mysql

 connection-url=jdbc:mysql://mysql:3306

Chapter 8 Data Warehouses

326

 connection-user= root

 connection-password= mysqlrootpassword

coordinatorConfigs: {}

workerConfigs: {}

environmentVariables: {}

coordinatorResources: {}

workerResources: {}

coordinatorNodeSelector: {}

workerNodeSelector: {}

coordinatorTolerations: []

workerTolerations: {}

coordinatorAffinity: {}

workerAffinity: {}

Next, clone the Presto Helm chart repository:

$ git clone git@github.com:apk8s/presto-chart.git

Note the Github repository apk8s/presto-chart34 is forked
from wiwdata/presto-chart and contains minor updates required
for compatibility with Kubernetes 1.16+. refer to the upstream
repository for future releases or compatibility with older versions of
Kubernetes.

Create a new Presto cluster by applying the preceding Helm chart

clone, along with custom configuration from values.yml:

34 https://github.com/apk8s/presto-chart

Chapter 8 Data Warehouses

https://github.com/apk8s/presto-chart

327

$ helm upgrade --install presto-data \

 --namespace data \

 --values values.yml \

 ./presto-chart/presto

Once Helm completes the install process, the Kubernetes cluster

contains two Presto worker nodes and one Presto coordinator.

Finally, add a Kubernetes Ingress configuration backed by the new

presto-data:80 service generated by the Helm chart. The following

Ingress uses the secret sysop-basic-auth set up in the “Data Namespace”

section of Chapter 5 to add simple Basic Auth security. Create a file named

50-ingress.yml from Listing 8-14.

Listing 8-14. Presto Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: presto

 namespace: data

 annotations:

 cert-manager.io/cluster-issuer: letsencrypt-production

 nginx.ingress.kubernetes.io/auth-type: basic

 nginx.ingress.kubernetes.io/auth-secret: sysop-basic-auth

 nginx.ingress.kubernetes.io/auth-realm: "Authentication

Required"

spec:

 rules:

 - host: presto.data.dev5.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: presto-data

Chapter 8 Data Warehouses

328

 servicePort: 80

 path: /

 tls:

 - hosts:

 - presto.data.dev5.apk8s.dev

 secretName: presto-data-production-tls

Apply the Presto Ingress configuration:

$ kubectl apply -f 50-ingress.yml

The next section demonstrates connecting to Presto from within a

Jupyter Notebook using the presto-python-client library.

 Query

This section demonstrates interaction with Presto using a Python-based

Jupyter Notebook running within the Kubernetes cluster (see Chapter 6).

Start a new Python 3 Notebook from the JupyterLab environment, add

and execute the following code in individual cells. Starting with the first

cell, use pip to install the presto-python-client library:

!pip install presto-python-client==0.7.0

Import the prestodb (from the package presto-python-client), os,

and pandas Python libraries; create a new Presto database connection

object and cursor used to execute commands as shown in Figure 8-7.

Executing the command SHOW CATALOGS reveals the four data sources,

cassandra, hive, mysql, and obj configured in the previous section.

The system catalog contains Presto internal configuration and

operational data.

Chapter 8 Data Warehouses

329

Query the system catalog for a list of Presto nodes as shown in

Figure 8-8. Loading the results of a select statement into a Pandas35

DataFrame36 along with the column names provides a user interface for

managing and displaying the result set. This method becomes especially

useful when performing analytics and Data Science activities. Pandas is

often a central component in Python data libraries and contains many

powerful features for data transformation and mathematical operations.

Figure 8-7. Jupyter Notebook executing show catalogs Presto
command

35 https://pandas.pydata.org/
36 https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

Chapter 8 Data Warehouses

https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html

330

Describe the donors schema configured with Apache Hive in the

previous section as shown in Figure 8-9. Hive and Presto completely

abstract the location and underlying data structure of the donors data set,

generated and uploaded earlier in this chapter as a series of one thousand

CSV files to the exports bucket.

Figure 8-8. Retrieving a list of Presto nodes

Figure 8-9. Describing tables in Presto

Chapter 8 Data Warehouses

331

Figure 8-10 depicts an SQL select statement utilizing Presto to scan all

one thousand CSV files for records where the values of the state column

beginning with “New” and grouping the records by state and blood_type

with a count of all records for each group.

Presto provides a mature, well-documented, and full-featured SQL

interface along with dozens of functions and operators. Utilizing Presto for

initial data analysis, application of mathematical functions and operators,

aggregation, and more removes operational complexity from applications

by leveraging Presto’s distributed execution engine for these intensive

tasks, especially on massive volumes of data.

Figure 8-10. SQL select statement in Presto

Chapter 8 Data Warehouses

332

Joining diverse data sets is a fundamental feature of Presto and the

central concept of Data Warehouses. As an exercise for the reader, create or

import data into Apache Cassandra or MySQL that correlates to the sample

donor data used earlier. A typical SQL join may resemble Figure 8- 11; in this

example, a Cassandra table named appointment exists in the Keyspace lab,

representing appointment data.

Figure 8- 11: Example using Presto to SQL join Hive and Cassandra

data sets.

Figure 8-11. SQL join statement in Presto

Chapter 8 Data Warehouses

333

Joining and performing operations on large data sets across a variety of

data sources creates elaborate execution plans. Presto provides an intuitive

web-based user interface for exploring, monitoring, and debugging

queries. An Ingress configuration, defined in the previous section, exposes

the Presto UI at https://presto.data.dev5.apk8s.dev as depicted in

Figure 8-12.

Monitoring and observability are critical, for both Big Data and web-

scale data operations. The Presto web user interface supports drill-downs

into each query providing query details including resource utilization,

timeline, error information, stages, and tasks related to the execution.

Additionally, Presto provides a Live Plan, as shown in Figure 8-13 depicting

the execution flow between stages in real time through a network diagram.

Figure 8-12. SQL join statement in Presto

Chapter 8 Data Warehouses

https://presto.data.dev5.apk8s.dev

334

Presto is a comprehensive solution for building a modern Data

Warehouse within Kubernetes; its support for a range of data sources fits

the growing needs of IoT and Machine Learning, providing the ability to

retrieve, coalesce, correlate, transform, and analyze limitless quantities

and structures of data.

Figure 8-13. SQL join statement in Presto

Chapter 8 Data Warehouses

335

 Summary
This chapter, along with Chapter 6, demonstrated a small-scale

representation of Data Lake and Data Warehouse concepts constructed

atop Kubernetes. Technologies such as Apache Hive and Presto help

organizations struggling with siloed data management operations;

running these solutions on Kubernetes further reduces the logical and

conceptual proximity of these applications by unifying the underlying data

and control planes.

This chapter covered the installation of a MySQL cluster representing

a massively popular RDBMS, Apache Cassandra as Big Data key/value

store, and Hive exposing limitless structured and semi-structured data

objects. While there are a large number of specialized applications for a

range of data-centric problem domains (from Machine Learning to IoT),

this book covers a general yet comprehensive set of data (and event)

management solutions. If following along from previous chapters, Listing

8-15 represents a high-level snapshot of the current organization of

Kubernetes-based data platform components up to this point.

Now with the ability to store and retrieve near-limitless volumes

and forms of data, the next chapter extends this Kubernetes-based

data platform by expanding the capabilities for data collection, routing,

transformation, and processing.

Listing 8-15. Organization of Kubernetes-based data platform

components

./008-cluster-apk8s-dev5

 ├── 000-cluster
 │ ├── 00-ingress-nginx
 │ ├── 01-helm
 │ ├── 10-cert-manager
 │ ├── 20-rook-ceph

Chapter 8 Data Warehouses

336

 │ ├── 22-minio
 │ ├── 23-rook-cassandra
 │ ├── 25-mysql-operator
 │ └── 30-monitoring
 ├── 003-data
 │ ├── 000-namespace
 │ ├── 005-keycloak
 │ ├── 010-zookeeper
 │ ├── 020-kafka
 │ ├── 030-elasticsearch
 │ ├── 032-logstash
 │ ├── 034-kibana
 │ ├── 050-mqtt
 │ ├── 060-cassandra
 │ ├── 070-minio
 │ ├── 080-mysql
 │ ├── 085-hive
 │ ├── 095-presto
 │ └── 100-jupyterhub
 └── 005-data-lab
 └── 000-namespace

Chapter 8 Data Warehouses

337© Craig Johnston 2020
C. Johnston, Advanced Platform Development with Kubernetes,
https://doi.org/10.1007/978-1-4842-5611-4_9

CHAPTER 9

Routing and
Transformation
Previous chapters covered the construction of databases, Data Lakes, and

Data Warehouses, the foundational elements of a data platform, all from

within Kubernetes, demonstrating a robust distributed services platform.

This chapter focuses on the collection, extraction, movement, and

processing of data, rounding out the majority of functionality required for

any data-centric application. The ability to efficiently extract, transform,
and load data from one diverse system into another is essential in

harnessing the explosive growth of data from consumer and industrial IoT,

social media, and digital transformation occurring in many organizations.

The ability to quickly construct routes that move, transform, and process

data is vital in leveraging the ever-advancing, data-driven trends such as

Machine Learning based AI, technologies particularly hungry for large

quantities of processed data. An effective data platform provides all the

generalized mechanisms needed to extract, transform, and load data

across data management systems and offers an application layer for

supporting specialized processing and custom business logic.

https://doi.org/10.1007/978-1-4842-5611-4_9#DOI

338

This chapter extends the Kubernetes-based data platform built up

from previous chapters with ETL/ELT (extract, transform, load) and FaaS

(functions as a service, also known as Serverless) functionality. Techniques

and technologies focused on ETL have been maturing for many years.

Data engineers can now combine ETL with Serverless platforms, quickly

developing, integrating, and deploying directly into the data pipeline.

 ETL and Data Processing
This chapter introduces two new technologies into Kubernetes: Apache

NiFi and OpenFaaS, demonstrating a purely open source method of

extracting, loading, transforming, and processing data without the need for

domain-specific languages and complicated configuration files. Apache

NiFi brings hundreds of prebuilt data “processors” for the extraction

and loading of data to and from nearly any standard network protocol or

API implementation, along with the ability to transform it to almost any

desired form. OpenFaaS is a vendor-neutral approach to the concept of

Serverless/FaaS (functions as a services); in this case, FaaS allows for the

limitless extensibility of the ETL pipeline through custom, highly focused

code, developed in any language.

Figure 9-1 depicts an ETL, data processing, and visualization

demonstration developed throughout this chapter. The end goal is to

visualize the range of sentiment expressed over some time on a specific set

of Twitter messages. The following sections install OpenFaaS and deploy a

prepacked sentiment analysis Function. Later sections introduce Apache

NiFi and configure directed graphs of data routing and transformation

from Twitter to Kafka and out of Kafka to the OpenFaaS sentiment analysis

Function, finally recording the results in Elasticsearch, exposed for

analysis by a Jupyter Notebook. While none of these technologies requires

Kubernetes, this demonstration aims to illuminate the advantages of a

unified control plane, networking, monitoring, and the extensibility of its

container-based application platform capabilities.

Chapter 9 routing and transformation

339

Some technologies in this book, namely, databases, may sacrifice

a degree of performance when running over abstracted infrastructure;

however, some applications will find this an acceptable trade-off for

the reduction of technical debt incurred when managing many systems

with thoroughly distinctive dependencies. Depending on the size of the

organization or budgetary concerns of the project, it may not be feasible to

employ infrastructure expertise for each enterprise-focused technology such

as Apache NiFi, Kafka, and Elasticsearch. This book hopes to demonstrate

these technologies on a scale nearly any project may utilize by leveraging

Kubernetes, from a startup proof of concept to a web-scale social network.

 Development Environment
The following exercises continue to utilize the inexpensive Hetzner cluster

mentioned in Chapter 6, including one CX21 (2 vCPU/8G RAM/40G SSD)

for the Kubernetes master node and four CX41 (4 vCPU/16G RAM/160G

Figure 9-1. NiFi and OpenFaaS demonstration architecture

Chapter 9 routing and transformation

340

SSD) instances for worker nodes, yet any equivalent infrastructure will

accommodate. Additionally, this chapter leverages applications and

cluster configurations installed in Chapters 3, 5, and 6; see Table 7-1 from

Chapter 7. This chapter requires Ingress, Cert Manager, Storage, and

Monitoring configured in Chapter 3; Namespace, Zookeeper, and Kafka

from Chapter 5; and Elasticsearch, Kibana, Keycloak, and JupyterHub from

Chapter 6.

This chapter organizes configuration manifests for the cluster named

dev5, under the project folder cluster-apk8s-dev5.

 Serverless
The concept of Serverless, otherwise known as FaaS (functions as a

service), has continued to mature and fill the need for the streamlined

deployment of small units of functional code. The difference between

a monolithic application, a microservice, and a (Serverless) Function

resides in the implementation, operational infrastructure, and context of

the broader architecture. For example, many microservice and function-

based architectures still rely on monolithic databases. The term Serverless

implies that the developer should require little or no concern over the

server-side implementation. Serverless, or FaaS (functions as a service),

aims to abstract away nearly all aspects of integration, deployment,

and runtime operations, leaving functional business logic as the only

responsibility of the developer.

Cloud vendors market the central appeal of Serverless technology, the

ability to allow developers to focus solely on business logic, abstracting

and managing infrastructure, operating systems, and runtime and

application layers. The major cloud vendors’ offerings include Amazon’s

Chapter 9 routing and transformation

341

AWS Lambda,1 Microsoft’s Azure Functions,2 Google Cloud Functions,3

and IBM Cloud Functions.4 These products can significantly reduce time

to market and technical debt for many organizations, albeit at the cost of

vendor lock-in. Organizations already invested in Kubernetes, however,

can take advantage of the growing number of open source, vendor-

neutral Serverless platforms such as Apache OpenWhisk,5 Kubeless,6 and

OpenFaaS.7 Knative8 is a popular choice for those looking to develop a

custom Serverless platform.

This chapter demonstrates OpenFaaS for use in an example ETL

application and how Serverless/functions as a service can make an

excellent addition to any data platform.

 OpenFaaS
OpenFaaS is a stable, well-maintained, Serverless application platform

used by a growing number of organizations. OpenFaaS runs nearly

anywhere, yet integrates well with Kubernetes, supporting languages such

as Go, Java, Python, PHP, Rust, Perl, C#, and Ruby, along with application

platforms including Express.js, Django, and ASP.NET Core. OpenFaaS

supports custom-built containers for wrapping powerful binaries such as

FFmpeg9 and ImageMagick.10

1 https://aws.amazon.com/lambda/
2 https://azure.microsoft.com/en-us/services/functions/
3 https://cloud.google.com/functions/docs/
4 www.ibm.com/cloud/functions
5 https://openwhisk.apache.org/
6 https://kubeless.io/
7 www.openfaas.com/
8 https://knative.dev/
9 https://ffmpeg.org/
10 https://imagemagick.org/

Chapter 9 routing and transformation

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/docs/
http://www.ibm.com/cloud/functions
https://openwhisk.apache.org/
https://kubeless.io/
http://www.openfaas.com/
https://knative.dev/
https://ffmpeg.org/
https://imagemagick.org/

342

The management of containerized workloads is Kubernetes’s central

capability; however, a platform such as OpenFaaS provides a formal tooling

and operations framework for the development, cataloging, integration,

deployment, scaling, and monitoring of workloads expressed as Functions.

Serverless/functions as a service are a natural fit for ETL and data

processing pipelines, as demonstrated later in this chapter.

 Install OpenFaaS

Update Helm with the OpenFaaS repository:

$ helm repo add openfaas \

 https://openfaas.github.io/faas-netes/

$ helm repo update

Next, use Helm to install the OpenFaaS gateway into the data

Namespace with the argument --namespace data. The OpenFaaS gateway

can set Functions to run in an alternate Namespace, but for this example,

use the data Namespace by setting functionNamespace=data. OpenFaaS is

capable of utilizing Kubernetes Node Ports and load balancers;11 however,

this example uses Ingress to expose the deployed Functions by setting

exposeServices=false and ingress.enabled=true. Lastly, set the option

generateBasicAuth=true to protect the Ingress exposed gateway user

interface with Basic Authentication:

$ helm upgrade apk8s-data-openfaas –install \

 openfaas/openfaas \

 --namespace data \

 --set functionNamespace=data \

 --set exposeServices=false \

 --set ingress.enabled=true \

 --set generateBasicAuth=true

11 https://kubernetes.io/docs/concepts/services-networking/service/
#publishing-services-service-types

Chapter 9 routing and transformation

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

343

Create the directory cluster-apk8s-dev5/003-data/120-openfaas.

Within the new 120-openfaas directory, create a file named 50-ingress.

yml from Listing 9-1.

Listing 9-1. OpenFaaS Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: faas

 namespace: data

 annotations:

 cert-manager.io/cluster-issuer: letsencrypt-production

spec:

 rules:

 - host: faas.data.dev5.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: gateway

 servicePort: 8080

 path: /

 tls:

 - hosts:

 - faas.data.dev5.apk8s.dev

 secretName: faas-data-production-tls

Apply the OpenFaaS Ingress configuration:

$ kubectl apply -f 50-ingress.yml

Chapter 9 routing and transformation

344

After successfully applying Ingress, retrieve the Basic Authentication

credentials generated by the OpenFaaS Helm installation with the

following command:

$ echo $(kubectl -n data get secret basic-auth -o jsonpath="{.

data.basic-auth-password}" | base64 --decode)

The previous command returns the Basic Auth password used to log

in to the OpenFaaS UI portal; the username is admin. Browse to the ingress

URL, in this example (see Figure 9-2):

https://faas.data.dev5.apk8s.dev.

The OpenFaaS UI portal is a convenient web-based, visual interface

for installing and managing Functions. However, the CLI utility faas-cli

is often the preferred method of interacting with OpenFaaS, capable of

supporting all aspects of developing, testing, deploying, and administering

and automating functions as a service. Install the OpenFaaS CLI on a local

workstation:

$ curl -sLSf https://cli.openfaas.com | sudo sh

Figure 9-2. OpenFaaS UI portal

Chapter 9 routing and transformation

https://faas.data.dev5.apk8s.dev

345

Execute the OpenFaaS CLI for a top-level list of commands:

$ faas-cli

While this book recommends the CLI utility for regular use, the

following section uses the web-based interface as a simple visual

demonstration of installing and interacting with an OpenFaaS Function.

 Install Sentiment Analysis

Sentiment Analysis,12 otherwise known as emotion recognition13 or opinion

mining,14 is a form of natural language processing (NLP). NLP applies

linguistics, artificial intelligence, and information engineering to natural

(human) languages. This section deploys a prebuilt OpenFaaS Function

container,15 implementing the Python library TextBlob16 to perform

Sentiment Analysis on one or more sentences of raw text. This chapter

later uses the deployed Sentiment Analysis Function to analyze a real-time

stream of Twitter messages tagged with keywords related to COVID-19.

Browse to the OpenFaaS UI portal set up in the previous section

(https://faas.data.dev5.apk8s.dev) and click the DEPLOY NEW

FUNCTION button in the center of the screen. Next, use the Search for

12 Gupta, Shashank. “Sentiment Analysis: Concept, Analysis and Applications.”
Medium, January 19, 2018. https://towardsdatascience.com/
sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17.

13 Kołakowska, Agata, Agnieszka Landowska, Mariusz Szwoch, Wioleta Szwoch,
and Michał Wróbel. “Emotion Recognition and Its Applications.” Advances in
Intelligent Systems and Computing 300 (July 1, 2014): 51–62. https://doi.
org/10.1007/978-3-319-08491-6_5.

14 Analytics Vidhya. “A NLP Approach to Mining Online Reviews Using Topic
Modeling,” October 16, 2018. www.analyticsvidhya.com/blog/2018/10/
mining-online-reviews-topic-modeling-lda/.

15 https://github.com/openfaas/faas/tree/master/sample-functions/
SentimentAnalysis

16 https://textblob.readthedocs.io/en/dev/

Chapter 9 routing and transformation

https://faas.data.dev5.apk8s.dev
https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17
https://towardsdatascience.com/sentiment-analysis-concept-analysis-and-applications-6c94d6f58c17
https://doi.org/10.1007/978-3-319-08491-6_5
https://doi.org/10.1007/978-3-319-08491-6_5
http://www.analyticsvidhya.com/blog/2018/10/mining-online-reviews-topic-modeling-lda/
http://www.analyticsvidhya.com/blog/2018/10/mining-online-reviews-topic-modeling-lda/
https://github.com/openfaas/faas/tree/master/sample-functions/SentimentAnalysis
https://github.com/openfaas/faas/tree/master/sample-functions/SentimentAnalysis
https://textblob.readthedocs.io/en/dev/

346

Function feature and search for the term SentimentAnalysis as shown in

Figure 9-3, select the Function SentimentAnalysis, and click DEPLOY on

the bottom left of the dialog.

After deploying the OpenFaaS Sentiment Analysis Function, select

it from the left-hand navigation. The UI portal displays the Status,

Replicas, Invocation count, image, and URL for the Function in the upper

section of the page (see Figure 9-4). The URL is the publicly exposed

endpoint. The OpenFaaS gateway does not protect function endpoints

by default;17 security is the responsibility of the Function itself. OpenFaaS

documentation walks through developing custom Function authentication

by implementing HMAC security using Kubernetes Secrets.18

Figure 9-3. OpenFaaS Deploy the prebuilt Sentiment Analysis
Function

17 https://docs.openfaas.com/reference/authentication/#for-functions
18 https://github.com/openfaas/workshop/blob/master/lab11.md

Chapter 9 routing and transformation

https://docs.openfaas.com/reference/authentication/#for-functions
https://github.com/openfaas/workshop/blob/master/lab11.md

347

The OpenFaaS UI portal provides a convenient web form for testing the

deployed Function under the Invoke function section shown in Figure 9- 4.

Alternatively, invoke the Sentiment Analysis Function using faas-cli utility

installed in the previous section:

$ echo "Kubernetes is easy" | faas-cli invoke \

 sentimentanalysis -g https://faas.data.dev5.apk8s.dev/

Finally, test public access to the new Function with cURL:

$ curl -X POST -d "People are kind" \

https://faas.data.dev5.apk8s.dev/function/sentimentanalysis

Figure 9-4. Testing the Sentiment Analysis Function with the
OpenFaaS UI portal

Chapter 9 routing and transformation

348

Example output:

{"polarity": 0.6, "sentence_count": 1, "subjectivity": 0.9}

The OpenFaaS Sentiment Analysis Function is an excellent example of

a focused, self-contained bit of processing logic deployed and managed by

OpenFaaS atop Kubernetes. The OpenFaaS documentation contains a well-

written set of tutorials on building, testing, and implementing Functions.19

Functions are a great way to extend the data platform developed in this

book continuously. The next section covers Apache NiFi for ETL types of

operations and incorporates the use of the Sentiment Analysis Function as

part of an example data processing flow (see Figure 9- 5).

 ETL
The practice of ETL (extract, transform, load) dates back to the 1970s.20

The need to pull data from one source and transform it for use by another

is a timeless problem, and today there is a wealth of existing techniques

and technologies to address it. Pentaho,21 Talend,22 CloverETL,23 and

JasperETL24 are a few commercial products with limited open source,

community-driven options. However, ETL is such a common problem

19 https://github.com/openfaas/workshop
20 Health Catalyst. “Healthcare Information Systems: Past, Present, Future,” May 20,

2014. www.healthcatalyst.com/insights/healthcare-information-systems-
past-present-future.

21 https://wiki.pentaho.com/
22 www.talend.com/products/talend-open-studio
23 www.cloverdx.com/
24 https://community.jaspersoft.com/project/jaspersoft-etl

Chapter 9 routing and transformation

https://github.com/openfaas/workshop
http://www.healthcatalyst.com/insights/healthcare-information-systems-past-present-future
http://www.healthcatalyst.com/insights/healthcare-information-systems-past-present-future
https://wiki.pentaho.com/
http://www.talend.com/products/talend-open-studio
http://www.cloverdx.com/
https://community.jaspersoft.com/project/jaspersoft-etl

349

that new approaches and generalized solutions such as the open source

(vendor-neutral) Apache NiFi have been gaining popularity for ease of

use and a simplistic, intuitive approach to data collection, routing, and

transformation.

 Apache NiFi
Apache NiFi is the data ingestion front-end of choice for the data-centric

platform described in this book. “Apache NiFi supports powerful and

scalable directed graphs of data routing, transformation, and system

mediation logic.”25

NiFi ships with nearly 300 unique data processors usable for the

collection, transformation, processing, and modeling of data from sources

as diverse as Twitter, SMTP, HDFS, Redis, UDP, HBase, and HTTP API

endpoints.26

At the time of this book’s publication, there is little official

documentation and support for running NiFi within Kubernetes. However,

the NiFi maintainers are aware of the rapid growth in demand for first-class

Kubernetes support, and readers should expect significant contributions to

this effort in the coming years.

The following sections install a multi-node Apache NiFi cluster

in Kubernetes and demonstrate a flow of data extraction from Twitter

with transformation, processing, and utilizing OpenFaaS, Kafka, and

Elasticsearch, as shown in Figure 9-5.

25 https://nifi.apache.org/
26 https://nifi.apache.org/docs.html

Chapter 9 routing and transformation

https://nifi.apache.org/
https://nifi.apache.org/docs.html

350

 Install Apache NiFi

This section installs Apache NiFi with three Kubernetes resources

consisting of a Headless Service, StatefulSet, and Ingress. Review

the “Development Environment” section earlier in this chapter for

requirements, including Ingress Nginx, Ceph storage, Cert Manager, and

Apache Zookeeper.

although this book avoids helm installations at times, in favor of
a more verbose representation of concepts through hand-crafted
manifests, readers should also consider the apache nifi helm chart
by Cetic.27

Figure 9-5. Apache NiFi flow overview

27 https://github.com/cetic/helm-nifi

Chapter 9 routing and transformation

https://github.com/cetic/helm-nifi

351

Create the directory cluster-apk8s-dev5/003-data/060-nifi. Within

the new 060-nifi directory, create a file named 10-service-headless.

yml from Listing 9-2. The StatefulSet defined in the following calls for two

replicas of the Pod nifi running an apache/nifi:1.9.2 container. Each NiFi

instance in the cluster requires some custom configuration on boot. Rather

than allow the standard startup script to run, the command: section invokes

Bash and pipes in a script to customize a few properties based on the

hostname Kubernetes assigns to the Pod.

Listing 9-2. NiFi Headless Service

apiVersion: v1

kind: Service

metadata:

 name: nifi

 namespace: data

 labels:

 app: nifi

 annotations:

 service.alpha.kubernetes.io/tolerate-unready-endpoints:

"true"

spec:

 type: ClusterIP

 clusterIP: None

 selector:

 app: nifi

 ports:

 - port: 8080

 name: http

 - port: 6007

 name: cluster

Chapter 9 routing and transformation

352

Apply the NiFi Headless Service configuration:

$ kubectl apply -f 10-service-headless.yml

Next, create a StatefulSet configuration for NiFi in a file named

40-statefulset.yml from Listing 9-3.

Listing 9-3. NiFi StatefulSet

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: nifi

 namespace: data

 labels:

 app: nifi

spec:

 replicas: 2

 revisionHistoryLimit: 1

 selector:

 matchLabels:

 app: nifi

 serviceName: nifi

 template:

 metadata:

 labels:

 app: nifi

 spec:

 affinity:

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

Chapter 9 routing and transformation

353

 matchExpressions:

 - key: "app"

 operator: In

 values:

 - "nifi"

 topologyKey: "kubernetes.io/hostname"

 containers:

 - name: nifi

 imagePullPolicy: IfNotPresent

 image: apache/nifi:1.9.2

 command:

 - bash

 - -ce

 - |

 FQDN=$(hostname -f)

 PROP_FILE=${NIFI_HOME}/conf/nifi.properties

 p_repl () {

 echo "setting ${1}=${2}"

 sed -i -e "s|^$1=.*$|$1=$2|" ${PROP_FILE}

 }

 p_repl nifi.remote.input.host ${FQDN}

 p_repl nifi.cluster.is.node true

 p_repl nifi.cluster.node.protocol.port 6007

 p_repl nifi.cluster.node.address ${FQDN}

 p_repl nifi.cluster.protocol.is.secure false

 p_repl nifi.security.user.authorizer managed-

authorizer

 p_repl nifi.web.http.host ${FQDN}

 p_repl nifi.web.http.port 8080

 p_repl nifi.zookeeper.connect.string ${NIFI_

ZOOKEEPER_CONNECT_STRING}

Chapter 9 routing and transformation

354

 p_repl nifi.cluster.flow.election.max.wait.time

"1 mins"

 tail -F "${NIFI_HOME}/logs/nifi-app.log" & exec

bin/nifi.sh run

 env:

 - name: NIFI_ZOOKEEPER_CONNECT_STRING

 value: "zookeeper-headless:2181"

 ports:

 - containerPort: 8080

 name: http

 protocol: TCP

 - containerPort: 6007

 name: cluster

 protocol: TCP

Apply the NiFi StatefulSet configuration:

$ kubectl apply -f 40-statefulset.yml

Lastly, create an Ingress configuration for NiFi in a file named

50-ingress.yml from Listing 9-4. Apache NiFi supports authentication;28

however, this requires it to run in SSL mode and needs additional

component configuration to manage certificates and Ingress. In keeping

this demonstration concise, the Ingress configuration secures NiFi with

Basic Auth credentials stored in the Kubernetes Secret sysop-basic-auth.

28 https://nifi.apache.org/docs/nifi-docs/html/administration-guide.
html#user_authentication

Chapter 9 routing and transformation

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#user_authentication
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#user_authentication

355

Listing 9-4. NiFi Ingress

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: nifi

 namespace: data

 annotations:

 cert-manager.io/cluster-issuer: letsencrypt-production

 nginx.ingress.kubernetes.io/auth-type: basic

 nginx.ingress.kubernetes.io/auth-secret: sysop-basic-auth
 nginx.ingress.kubernetes.io/auth-realm: "Authentication

Required"

spec:

 rules:

 - host: nifi.data.dev3.apk8s.dev

 http:

 paths:

 - backend:

 serviceName: nifi

 servicePort: 8080

 path: /

 tls:

 - hosts:

 - nifi.data.dev3.apk8s.dev

 secretName: data-production-tls

Apply the NiFi Ingress configuration:

$ kubectl apply -f 50-ingress.yml

Verify the new NiFi cluster is up and running by browsing to https://

nifi.data.dev3.apk8s.dev/nifi, open the Global Menu in the upper-left

corner of the user interface, and select the item Cluster. Review the list of

running nodes as shown in Figure 9-6.

Chapter 9 routing and transformation

https://nifi.data.dev3.apk8s.dev/nifi
https://nifi.data.dev3.apk8s.dev/nifi

356

The following section demonstrates an example of an ETL/ELT data

pipeline utilizing OpenFaaS installed earlier in this chapter, along with

Apache Kafka, Elasticsearch, and JupyterLab introduced in previous chapters.

 Example ETL Data Pipeline
Traditional examples of ETL (extract, transform, load) operations would

likely demonstrate the extraction of data collected and stored in Big Data

systems such as HDFS or any variety of commercial and open source

data lakes and legacy or modern enterprise data management systems.

Although the following example demonstrates the extraction of data from

Twitter, it should be easy to appreciate the flexibility of NiFi’s wide range of

prebuilt data processors and apply these same essential abilities to nearly

any variety of ETL challenges.

This example requires OpenFaaS and the SentimentAnalysis Function

installed earlier in this chapter; Apache Kafka, configured in Chapter 5;

and Elasticsearch, Kibana, Keycloak, and JupyterHub, introduced in

Chapter 6.

Figure 9-6. Apache NiFi cluster status

Chapter 9 routing and transformation

357

The following example ETL data pipeline extracts messages from Twitter

with the NiFi Twitter processor and publishes them to Apache Kafka topic.

Subsequently, a Kafka processor consumes messages in the topic, preparing

and sending them to the OpenFaaS SentimentAnalysis Function, finally

storing the results in an Elasticsearch index for analysis within a JupyterLab

environment. This example demonstrates the ease in which Kubernetes

manages all the required workloads in a distributed, highly available,

monitored, and unified control plane (see Figures 9-1 and 9-5).

 NiFi Template

Apache NiFi provides detailed documentation for users, administrators,

and developers looking to extend its capabilities.29 Covering all the

capabilities of Apache NiFi would alone fill many chapters if not the entire

book; therefore, to get a quick demonstration of its use, along with utilizing

the components configured and installed in this book, a prebuilt template

is available at https://github.com/apk8s/nifi-demo.

Clone the apk8s/nifi-demo repository:

git clone git@github.com:apk8s/nifi-demo.git

After browsing to the running NiFi cluster at https://nifi.data.

dev3.apk8s.dev/nifi, click the template upload button shown in the

Operate Palette on the left-hand side of the screen (see Figure 9-7). When

prompted, upload the file Twitter_Sentiment.xml found in the templates

directory of the apk8s/nifi-demo repository.

29 https://nifi.apache.org/docs.html

Chapter 9 routing and transformation

https://github.com/apk8s/nifi-demo
https://nifi.data.dev3.apk8s.dev/nifi
https://nifi.data.dev3.apk8s.dev/nifi
https://nifi.apache.org/docs.html

358

After uploading the template, drag the template icon (three connected

boxes) from the Components Toolbar (top navigation), into the canvas

(grid) as shown in Figure 9-8. Before completing, the template component

prompts the user with a list of available templates; choose “Twitter

Sentiment v2” and click the add button.

Figure 9-7. Apache NiFi upload template

Figure 9-8. Apache NiFi add template

Chapter 9 routing and transformation

359

After adding the template, the canvas now contains ten NiFi

processors, as shown earlier in Figure 9-5. The processors provided by the

template are preconfigured to utilize components installed in previous

chapters, such as Apache Kafka and Elasticsearch. Double-click any

processor and select the Properties tab to view its configuration.

Before activating the new dataflow, the processor GetTwitter requires

a Consumer Key, Consumer Secret, Access Token, and Access Token

Secret provided by Twitter. Generate these values by creating a Twitter

account, visiting the portal, and then selecting Apps from the drop-down

navigation.30 On the Apps page for Twitter developers,31 click the Create an

app button and complete the required steps. Once Twitter approves the

new app, retrieve the tokens, keys, and secrets shown in Figure 9-9.

30 https://developer.twitter.com/en
31 https://developer.twitter.com/en/apps

Chapter 9 routing and transformation

https://developer.twitter.com/en
https://developer.twitter.com/en/apps

360

Populate the values required by the GetTwitter processor shown in

Figure 9-10.

Figure 9-9. Apache NiFi Twitter keys and tokens

Chapter 9 routing and transformation

361

The new dataflow is ready to run. However, Elasticsearch is the final

endpoint and requires an index template to store the data fields suitably.

The next section adds an index template to Elasticsearch.

 Prepare Elasticsearch

The NiFi processor PutElasticsearchHttp provided by the template puts

the final processed data into an Elasticsearch index, matching the pattern

sentiment-${now():format('yyyy-MM')}, creating a new index for each

month of the year. PutElasticsearchHttp receives and puts JSON data

assembled by the previous processors. This JSON data structure contains

text, numeric, and date values. Elasticsearch can detect and automatically

set data types, but it’s not perfect and easily confused by varied date

formats. Elasticsearch is naturally unable to determine if values such as

the number zero are an integer or a float. Enforcing proper indexing is

accomplished by providing Elasticsearch with an index template.32

Figure 9-10. Configure the Apache NiFi GetTwitter processor

32 www.elastic.co/guide/en/elasticsearch/reference/current/indices-
templates.html

Chapter 9 routing and transformation

http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-templates.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-templates.html

362

Index templates consist of a JSON-based configuration, defining how

one or more fields should be indexed. The following commands port-

forward Elasticsearch and post an index template matching the data types

resulting from the processed data.

Open a terminal and port-forward Elasticsearch:

$ kubectl port-forward elasticsearch-0 9200:9200 -n data

Open another terminal and post the index template by issuing the

command in Listing 9-5.

Listing 9-5. HTTP post an Elasticsearch index template

cat <<EOF | curl -X POST \

-H "Content-Type: application/json" \

-d @- http://localhost:9200/_template/all

{

 "index_patterns": ["sentiment-*"],

 "settings": {

 "number_of_shards": 1

 },

 "mappings": {

 "_source": {

 "enabled": true

 },

 "properties": {

 "polarity": {

 "type": "float"

 },

 "subjectivity": {

 "type": "float"

 },

Chapter 9 routing and transformation

363

 "sentence_count": {

 "type": "integer"

 },

 "Content-Length": {

 "type": "integer"

 },

 "X-Start-Time": {

 "type": "date",

 "format": "epoch_millis"

 },

 "X-Duration-Seconds": {

 "type": "float"

 },

 "twitter.created_at": {

 "type": "date",

 "format": "EEE MMM dd HH:mm:ss Z yyyy",

 "null_value": ""

 },

 "Date": {

 "type": "date",

 "format": "EEE, dd MMM yyyy HH:mm:ss z"

 }

 }

 }

}

EOF

```

Elasticsearch is now able to properly index processed data from the 

dataflow defined by the NiFi template loaded in the previous section. 

The following section starts up the dataflow and queries the resulting 

processed data.

Chapter 9  routing and transformation



364

 Dataflow

The example ETL data pipeline loaded as a template earlier in this chapter 

extracts data from Twitter and publishes it to an Apache Kafka topic. 

Another set of processors consumes data from the Kafka topic, obtains 

the text of the Twitter message, and sends it to the OpenFaaS Sentiment 

Analysis function. A final set of processors combines the results of 

Sentiment Analysis along with fields from the original data and posts the 

results as JSON to Elasticsearch for indexing.

Twitter produces a high-velocity, endless flow of semi-structured data 

representing a typical data processing scenario. The use of Apache Kafka 

in this example is not necessary and only used to demonstrate additional 

NiFi processors. However, the use of Kafka allows external systems the 

opportunity to act on its data event stream, providing more opportunity for 

expanding the pipeline.

To start the new dataflow, click anywhere on the NiFi canvas (grid) 

and start all data processors by clicking the play button provided by the 

Operate Palette.

After a few minutes, open a terminal and port-forward Elasticsearch:

$ kubectl port-forward elasticsearch-0 9200:9200 -n data

Open another terminal and post an Elasticsearch query by issuing 

the command in Listing 9-6. The following query aggregates the last hour 

of the polarity metric from Sentiment Analysis into histogram buckets 

at every 0.5 interval from -1 to 1. Elasticsearch supports a robust set of 

aggregation capabilities.33

33 www.elastic.co/guide/en/elasticsearch/reference/current/search-
aggregations.html

Chapter 9  routing and transformation

http://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html


365

Listing 9-6. HTTP post an Elasticsearch Sentiment Analysis query

cat <<EOF | curl -X POST \

-H "Content-Type: application/json" \

-d @- http://localhost:9200/sentiment-*/_search

{

  "size": 0,

  "aggs": {

    "polarity": {

      "histogram" : {

          "field" : "polarity",

          "interval" : 0.5,

          "extended_bounds" : {

              "min" : -1,

              "max" : 1

          }

      }

    }

  },

  "query": {

      "range": {

          "Date": {

              "gt": "now-1h"

          }

      }

  }

}

EOF

Chapter 9  routing and transformation



366

The example results (see Listing 9-7) show there were ten times more 

negative Twitter posts ("doc_count": 40) regarding COVID-19 than 

positive ("doc_count": 4) in the last hour.

Listing 9-7. Example aggregation output from Elasticsearch 

Sentiment Analysis query

{

  "took": 5,

  "timed_out": false,

  "_shards": {

    "total": 1,

    "successful": 1,

    "skipped": 0,

    "failed": 0

  },

  "hits": {

    "total": {

      "value": 2276,

      "relation": "eq"

    },

    "max_score": null,

    "hits": []

  },

  "aggregations": {

    "polarity": {

      "buckets": [

        {

          "key": -1,

          "doc_count": 40

        },

Chapter 9  routing and transformation



367

        {

          "key": -0.5,

          "doc_count": 404

        },

        {

          "key": 0,

          "doc_count": 1718

        },

        {

          "key": 0.5,

          "doc_count": 110

        },

        {

          "key": 1,

          "doc_count": 4

        }

      ]

    }

  }

}

The example ETL dataflow attempts to demonstrate a small set of the 

many features provided by Apache NiFi, along with Kubernetes’s ability 

to provide an ideal platform for the near-seamless interconnectivity of 

data management, storage, and processing systems. The platform in this 

book demonstrates Kubernetes’s handling of widely diverse applications, 

from large monoliths such as NiFi, Elasticsearch, and Kafka to Serverless 

Functions, wrapped in containers, deployed, monitored, and managed 

across multiple servers with a unified network and control plane.

The next section leverages a JupyterLab environment, demonstrating 

the ability for real-time experimentation and interaction with platform 

data.

Chapter 9  routing and transformation



368

 Analysis and Programmatic Control
JupyterHub, installed and configured in Chapter 6, provides JupyterLab 

environments, facilitating the operation of one or more Jupyter Notebooks 

running directly in the cluster. The following two exercises demonstrate 

both the simple query and visualization of data indexed in Elasticsearch 

and the ability to develop NiFi dataflows programmatically.

 Analysis and Visualization

This example uses a Python-based Jupyter Notebook provided by 

JupyterHub (see Chapter 6). As data flow into Elasticsearch, it is 

immediately indexed and searchable by all its fields. The example returns 

up to 10,000 records from Elasticsearch indexes starting with sentiment- 

and the Date field value is within the last hour.

Open a new Python-based Jupyter Notebook and add each of the 

following code blocks to individual cells.

Install the Elasticsearch package version 7.6.0 by adding the following 

command to the first cell:

!pip install elasticsearch==7.6.0

Import elasticsearch, pandas, and matplotlib:

from elasticsearch import Elasticsearch

import pandas as pd

from matplotlib import pyplot

Create an Elasticsearch client connected to the elasticsearch service 

running in the Kubernetes Namespace data:

es = Elasticsearch(["elasticsearch.data"])

Chapter 9  routing and transformation



369

Use the Elasticsearch client’s search function to query the index 

pattern sentiment-*, and store the results in the variable response:

response = es.search(

    index="sentiment-*",

    body={

        "size": 10000,

        "query": {

            "range": {

                "Date": {

                    "gt": "now-1h"

                }

            }

        },

        "_source": [

            "Date",

            "polarity",

            "subjectivity" ],

    }

)

Map and transpose the response from Elasticsearch into Pandas 

DataFrame:

df = pd.concat(map(pd.DataFrame.from_dict,

                   response['hits']['hits']),

               axis=1)['_source'].T

Convert the Date column to a Python Datetime data type:

datefmt = '%a, %d %b %Y %H:%M:%S GMT'

df['Date'] = pd.to_datetime(df['Date'], format=datefmt)

Chapter 9  routing and transformation



370

Assign the Date field to the DataFrame index and convert all numeric 

values to floats:

df = df.set_index(['Date'])

df = df.astype(float)

Print the first five records (as shown in Figure 9-11):

df.head()

Finally, plot sentiment by calling the plot function of the DataFrame, 

assigning polarity to the y axis (see Figure 9-12):

df.plot(y=["polarity"], figsize=(13,5))

Figure 9-11. Sample Sentiment Analysis DataFrame rows

Chapter 9  routing and transformation



371

The previous example is a rudimentary sample of data analysis and 

visualization. A data scientist or analyst’s first step may include similar 

tasks to form a cursory understanding of the available data. Data Science 

activities such as Machine Learning typically require sets of immutable/

fixed data to facilitate reproducible experiments. The ability to connect 

 in- cluster Jupyter Notebooks with MinIO object storage (installed 

in Chapter 7), along with event queues, data management, and ETL 

systems, provides many opportunities for efficiently building and sharing 

these valuable data sets.

The Kubernetes-backed JupyterLab environment provides a suitable 

platform for interactive programmatic control over cluster resources with 

internally exposed APIs, such as Apache NiFi; the next section covers a 

quick example of this.

Figure 9-12. Sentiment Analysis DataFrame plot

Chapter 9  routing and transformation



372

 Programming NiFi

Apache NiFi supports extension through custom controllers and 

processors written in Java.34 However, NiFi’s robust set of standard 

processors means that many projects will find a set that works for a 

surprising number of circumstances. Another extension of NiFi’s capability 

is through the API,35 facilitating automation and monitoring. This section 

contains a brief example of creating a NiFi process group and populating it 

with a single processor.

Open a new Python-based Jupyter Notebook and add each of the 

following code blocks to individual cells.

Install the NiPyApi36 Python package version 1.14.3 by adding the 

following command to the first cell:

!pip install nipyapi==0.14.3

Import the package:

import nipyapi

Configure the NiFi client with the API endpoint, in this case the 

Kubernetes Service nifi in the data Namespace:

api_url = "http://nifi.data:8080/nifi-api"

nipyapi.utils.set_endpoint(api_url)

34 https://medium.com/hashmapinc/creating-custom-processors-and-
controllers-in-apache-nifi-e14148740ea

35 https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
36 https://github.com/Chaffelson/nipyapi

Chapter 9  routing and transformation

https://medium.com/hashmapinc/creating-custom-processors-and-controllers-in-apache-nifi-e14148740ea
https://medium.com/hashmapinc/creating-custom-processors-and-controllers-in-apache-nifi-e14148740ea
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html
https://github.com/Chaffelson/nipyapi


373

Test the client connection by retrieving information on the first node in 

the cluster; Figure 9-13 depicts example output:

nodes = nipyapi.system.get_cluster().cluster.nodes

nodes[0]

Create a NiFi Process Group37 and place it on the canvas (above the 

processors added earlier in this chapter):

pg0id = nipyapi.canvas.get_process_group(

    nipyapi.canvas.get_root_pg_id(),

    'id'

)

Figure 9-13. NiFi Python client node output

37 https://nifi.apache.org/docs/nifi-docs/html/user-guide.
html#process_group_anatomy

Chapter 9  routing and transformation

https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#process_group_anatomy
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html#process_group_anatomy


374

pg0 = nipyapi.canvas.create_process_group(

    pg0id,

    "apk8s_process_group_0",

    location=(800.0, 200.0)

)

After executing the cell with the code in the preceding example, visit 

the NiFi web interface and note the new apk8s_process_group_0 process 

group above the processors added earlier as shown in Figure 9-14. Double- 

clicking the new process group reveals a blank canvas.

Figure 9-14. NiFi Process Group added by the Python API client

Chapter 9  routing and transformation



375

38 https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/
nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.
GenerateFlowFile/index.html

Create a GenerateFlowFile38 processor in the new NiFi Process Group 

created previously and place it on the canvas:

gf = nipyapi.canvas.get_processor_type('GenerateFlowFile')

p0 = nipyapi.canvas.create_processor(

    parent_pg=pg0,

    processor=gf,

    location=(250.0, 0.0),

    name="apk8s_processor_0",

    config=nipyapi.nifi.ProcessorConfigDTO(

        scheduling_period='1s',

        auto_terminated_relationships=['success']

    )

)

After executing the cell with the code in the preceding example, visit 

the NiFi web interface, double-click the new process group, and view the 

newly created GenerateFlowFile as shown in Figure 9-15.

Chapter 9  routing and transformation

https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.GenerateFlowFile/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.GenerateFlowFile/index.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-standard-nar/1.11.4/org.apache.nifi.processors.standard.GenerateFlowFile/index.html


376

This section automates the creation of a NiFi Process Group along with 

a NiFi GenerateFlowFile Processor. This example demonstrates a granular 

method of dataflow development. The NiFi API and NiPyApi Python 

package also support the installation and configuration of templates, 

allowing developers to design and save a variety of complete dataflows as 

templates, such as the Twitter Sentiment v2 (added earlier in the chapter), 

making them available for programmatic configuration, deployment, and 

monitoring.

Figure 9-15. NiFi Processor added by Python API client

Chapter 9  routing and transformation



377

 Summary
This chapter installed the Serverless platform OpenFaaS and the data 

routing and transformation platform Apache NiFi (see Listing 9-8), 

demonstrating interconnectivity with other data management components 

installed from previous chapters, specifically Apache Kafka, Elasticsearch, 

and JupyterLab. This chapter showed the extraction, transformation, 

loading, processing, and analysis of Twitter messages all without the 

need for custom code, yet provides many ways to extend with code, from 

writing custom (Serverless) Functions for OpenFaaS or interacting with 

Elasticsearch, Kafka, and NiFi interactively through Python in JupyterLab.

This book aims to demonstrate the ease in which a data platform 

may be quickly assembled, managed, and monitored atop Kubernetes. 

The level of integration with Kubernetes is wide ranging. Software such 

as OpenFaaS and JupyterHub utilizes the Kubernetes API themselves 

for deploying and scaling Pods, while others like NiFi operate with no 

awareness of Kubernetes.

The Kubernetes data platform developed in this book runs on a small- 

scale, resource-constrained, four-node development cluster, costing only 

a few dollars a day. Yet, this small cluster covers many fundamental data 

handling concepts, including data events, indexing, processing, databases, 

data lakes, data warehouses, distributed query execution, modern 

ETL operations, and data science environments. These capabilities are 

essential for organizations expected to collect, process, and analyze a 

variety of data. IoT and machine learning are examples of concepts with 

heavy demands on data management ranging from the collection of high- 

velocity real-time unstructured and semi-structured data to processed, 

normalized, well-structured data catalogs for training and refining 

machine learning models.

Chapter 9  routing and transformation



378

Listing 9-8. Organization of Kubernetes-based data platform 

components

./009-cluster-apk8s-dev5

├── 000-cluster
├── 003-data
│   ├── 000-namespace
│   ├── 005-keycloak
│   ├── 010-zookeeper
│   ├── 020-kafka
│   ├── 030-elasticsearch
│   ├── 032-logstash
│   ├── 034-kibana
│   ├── 050-mqtt
│   ├── 060-cassandra
│   ├── 070-minio
│   ├── 080-mysql
│   ├── 085-hive
│   ├── 095-presto
│   ├── 100-jupyterhub
│   ├── 120-openfaas
│   └── 150-nifi
└── 005-data-lab
    └── 000-namespace

Chapter 9  routing and transformation



379© Craig Johnston 2020 
C. Johnston, Advanced Platform Development with Kubernetes,  
https://doi.org/10.1007/978-1-4842-5611-4_10

CHAPTER 10

Platforming 
Blockchain
Blockchain is a concept enabling the ability to maintain a decentralized 

and trustless database of transactions. The Bitcoin network, released in 

2009,1 popularized blockchain technology by implementing a method 

for generating and trading cryptocurrency over a shared public ledger. 

Although Bitcoin has remained the most popular form of cryptocurrency,2 

new blockchain technologies have risen to expand the capabilities beyond 

currency exchange.

This book focuses on Ethereum, one of the most successful alternatives 

to Bitcoin. Although Bitcoin has some ability for Smart Contracts, 

Ethereum natively supports the storage and execution of distributed 

applications compiled from Solidity, its DSL (domain-specific language) 

for Smart Contracts.

1 Marr, Bernard. “A Short History Of Bitcoin And Crypto Currency Everyone 
Should Read.” Forbes. Accessed May 12, 2020. www.forbes.com/sites/
bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-
currency-everyone-should-read/.

2 Baccardax, Martin. “Bitcoin Tops $10,000 Ahead of Halving Event; Tudor-Jones  
Backs ‘Fastest Horse’ in Inflation Race.” TheStreet. Accessed May 12, 2020.  
www.thestreet.com/investing/bitcoin-tops-10000-ahead-of-halving- 
tudor-jones-gives-ok.

https://doi.org/10.1007/978-1-4842-5611-4_10#DOI
http://www.forbes.com/sites/bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-currency-everyone-should-read/
http://www.forbes.com/sites/bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-currency-everyone-should-read/
http://www.forbes.com/sites/bernardmarr/2017/12/06/a-short-history-of-bitcoin-and-crypto-currency-everyone-should-read/
http://www.thestreet.com/investing/bitcoin-tops-10000-ahead-of-halving-tudor-jones-gives-ok
http://www.thestreet.com/investing/bitcoin-tops-10000-ahead-of-halving-tudor-jones-gives-ok


380

There are a growing number of business-focused blockchain 

technologies available, including Hyperledger Fabric,3 Corda,4 and 

Quorum.5 These blockchain applications focus directly on permissioned 

or private blockchain networks and are an excellent choice for some 

organizations. However, Ethereum6 supports private and permissioned 

blockchains along with its enormously successful public network.7 

Developing Solidity-based8 applications means portability to any 

Ethereum implementation: public, private, or permissioned. Permissioned 

Ethereum networks are discussed later in this chapter.

This book implements a closed, private Ethereum network suitable 

for experimentation and development. A private centralized Ethereum 

network has little production application since a single party controls 

the consensus of nodes. Development environments such as the Truffle 

Suite offer excellent turnkey solutions for individual developers; however, 

operating a private Ethereum network aids in both the understanding 

of the public network along with providing a controlled, multi-tenant 

development environment.

 Private Blockchain Platform
This chapter focuses on building a private Ethereum Blockchain network 

operating similarly to the global public Ethereum network. Running 

Ethereum nodes within Kubernetes, whether public, private, or protected, 

3 www.hyperledger.org/projects/fabric
4 www.corda.net/
5 www.goquorum.com/
6 https://ethereum.org/
7 Live Bitcoin News. “Ernst & Young: Ethereum Can Do A Lot for Businesses,”  
April 27, 2020. www.livebitcoinnews.com/ernst-young-ethereum-can-do- 
a-lot-for-businesses/.

8 https://github.com/ethereum/solidity

Chapter 10  platforming BloCkChain

http://www.hyperledger.org/projects/fabric
http://www.corda.net/
http://www.goquorum.com/
https://ethereum.org/
http://www.livebitcoinnews.com/ernst-young-ethereum-can-do-a-lot-for-businesses/
http://www.livebitcoinnews.com/ernst-young-ethereum-can-do-a-lot-for-businesses/
https://github.com/ethereum/solidity


381

provides all the advantages of this elegant application platform, including 

unified networking and control plane, fault tolerance and self-healing, 

declarative configuration, monitoring, and the transparent distribution of 

workloads scaled across a vast number of servers.

Figure 10-1 represents a high-level goal of this chapter, platforming 

Ethereum nodes and interacting with them, both through application 

development by Serverless functions (with OpenFaaS) and 

experimentation and development with Jupyter Notebooks provided by 

the multi-tenant JupyterHub. Kubernetes facilitates the mixing of these 

diverse applications and opens many opportunities for assembling exotic 

platforms supporting novel technologies.

Figure 10-1 represents Serverless, Blockchain, and Data Science 

environments brought together in the context of a data platform.

Figure 10-1. Blockchain network development platform

Chapter 10  platforming BloCkChain



382

 Development Environment
The following Blockchain development platform utilizes an inexpensive 

Hetzner cluster first mentioned in Chapter 6, including one CX21  

(2 vCPU/8G RAM/40G SSD) for the Kubernetes master node and four 

CX41 (4 vCPU/16G RAM/160G SSD) instances for worker nodes. Any 

equivalent infrastructure will accommodate the following exercise.

This chapter creates a new Kubernetes cluster called eth and leverages 

applications and cluster configurations installed in Chapters 3, 5, and 6  

(as described in Table 10-1). This chapter organizes all configuration 

manifests under the folder cluster-apk8s-eth.

Table 10-1. Key applications and configurations assembled from 

previous chapters

Resources Organization

Chapter 3 ingress

Cert manager

Storage

monitoring

000-cluster/00-ingress-nginx

000-cluster/10-cert-manager

000-cluster/20-rook-ceph

000-cluster/30-monitoring

Chapter 5 namespace 003-data/000-namespace

Chapter 6 keycloak

Jupyterhub

003-data/005-keycloak

005-data-lab/000-namespace

003-data/100-jupyterhub

Chapter 9 openfaaS 003-data/120-openfaas

 Private Ethereum Network
The following sections assemble an Ethereum Blockchain development 

cluster (see Figure 10-2), mimicking the general operation of a public 

Ethereum network. The essential components are the same for public, 

private, or permissioned systems.

Chapter 10  platforming BloCkChain



383

Miner nodes (also known as Full Nodes) are the central component 

of an Ethereum network. Ethereum nodes may be any application 

implementing the Ethereum protocol. This chapter uses Geth,9 developed 

in Go as one of the original three implementations of the Ethereum 

protocol. Geth provides a stand-alone binary along with an open source 

library suitable for building custom applications/nodes implementing the 

Ethereum protocol. This chapter uses Geth binaries wrapped in containers 

(ethereum/client-go) representing three types of nodes: Bootnodes  

(a separate binary in the Geth package), Miners, and Transaction nodes.

Ethereum is a peer-to-peer network of Nodes and uses established 

Bootnodes10 to connect new nodes to the network. Bootnodes11 do 

not mine or submit transactions; they are only responsible for initial 

Figure 10-2. Private Ethereum network

9 https://geth.ethereum.org/
10 https://github.com/ethereum/go-ethereum/blob/master/params/
bootnodes.go

11 https://geth.ethereum.org/docs/interface/peer-to-peer

Chapter 10  platforming BloCkChain

https://geth.ethereum.org/
https://github.com/ethereum/go-ethereum/blob/master/params/bootnodes.go
https://github.com/ethereum/go-ethereum/blob/master/params/bootnodes.go
https://geth.ethereum.org/docs/interface/peer-to-peer


384

peer discovery. Geth ships with a list of main network and test network 

Bootnode addresses; however, the private Ethereum network in this 

chapter requires Geth to use local Bootnodes. This chapter uses a 

Bootnode Registrar Service to provide the address of the local Bootnodes.

Transaction nodes are optional; any node, including Miners, may 

submit presigned transactions for inclusion into the Blockchain. Miner 

nodes use attached Ethereum accounts12 to sign their transactions; 

allowing remote connections to these nodes provides anyone with access to 

submit transactions signed by the miner. Transaction nodes can only send 

transactions signed by the end user since there is no private account attached.

Finally, Geth provides the ability to report its current state and metrics 

to an API endpoint. This chapter utilizes the Ethstats project13 to collect 

node metrics and present them on a web dashboard.

 Bootnodes
Ethereum Bootnodes assist the bootstrapping of new nodes into an 

Ethereum network by providing an initial set of peers. Bootnodes are a 

subset of the Ethereum client implementation and only participate in 

the network node discovery protocol. Bootnodes do not implement any 

higher-level Ethereum application protocols.

The following configurations set up an eth-bootnode Service. A DNS 

request to this headless service returns the internal hostnames of any Pods 

matching the selector app: eth-bootnode. This service comes in handy for 

generating a registry for Bootnodes, as developed in the next section.

Create the directory cluster-apk8s-eth/003-data/200-eth/10-

bootnode. Within the new 10-bootnode directory, create a file named 

10-service.yml from Listing 10-1.

12 https://blockgeeks.com/how-to-create-an-ethereum-account/
13 https://github.com/cubedro/eth-netstats

Chapter 10  platforming BloCkChain

https://blockgeeks.com/how-to-create-an-ethereum-account/
https://github.com/cubedro/eth-netstats


385

Listing 10-1. Bootnode Service

apiVersion: v1

kind: Service

metadata:

  name: eth-bootnode

  namespace: data

  labels:

    app: eth-bootnode

spec:

  selector:

    app: eth-bootnode

  clusterIP: None

  ports:

    - name: discovery

      port: 30301

      protocol: UDP

    - name: http

      port: 8080

Apply the Ethereum Bootnode Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a Deployment for the Ethereum Bootnodes in a file named 

30-deployment.yml from Listing 10-2. The following Bootnode Deployment 

consists of two containers and one container for initialization. The 

initialization container generates a key and stores it in the Volume Mount 

data shared with the other containers in the Pod. The key is used by the 

Bootnode to create its enode identifier (an Ethereum node’s unique ID).

The first of the two containers is the Ethereum Bootnode, which mounts 

the key generated in the initialization container and communicates on port 

30301/UDP. The second container, named bootnode-server, executes a 

small shell script echoing the full Ethereum address of the Bootnode over 

Chapter 10  platforming BloCkChain



386

port 8080 using netcat.14 The full address consists of the enode identifier, IP 

address, and port. The Bootnode Registrar in the following section uses the 

headless service (configured in the previous section) to discover Bootnode 

Pods and then retrieves each of their Ethereum network addresses via 

HTTP port 8080, served by the bootnode-server container.

Listing 10-2. Bootnode Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

  name: eth-bootnode

  namespace: data

  labels:

    app: eth-bootnode

spec:

  replicas: 2

  revisionHistoryLimit: 1

  selector:

    matchLabels:

      app: eth-bootnode

  template:

    metadata:

      labels:

        app: eth-bootnode

    spec:

      volumes:

        - name: data

          emptyDir: {}

14 https://en.wikipedia.org/wiki/Netcat

Chapter 10  platforming BloCkChain

https://en.wikipedia.org/wiki/Netcat


387

      initContainers:

        - name: genkey

          image: ethereum/client-go:alltools-v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

            - "bootnode --genkey=/etc/bootnode/node.key"

          volumeMounts:

            - name: data

              mountPath: /etc/bootnode

      containers:

        - name: bootnode

          image: ethereum/client-go:alltools-v1.9.13

          imagePullPolicy: IfNotPresent

          resources:

            limits:

              cpu: ".5"

            requests:

              cpu: "0.25"

          command: ["/bin/sh"]

          args:

            - "-c"

             - "bootnode --nodekey=/etc/bootnode/ 

node.key --verbosity=4"

          volumeMounts:

            - name: data

              mountPath: /etc/bootnode

          ports:

            - name: discovery

              containerPort: 30301

Chapter 10  platforming BloCkChain



388

              protocol: UDP

        - name: bootnode-server

          image: ethereum/client-go:alltools-v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

             - "while [ 1 ]; do echo -e \"HTTP/1.1 200 OK\n\

nenode://$(bootnode -writeaddress --nodekey=/etc/

bootnode/node.key)@$(POD_IP):30301\" | nc -l -v -p 

8080 || break; done;"

          volumeMounts:

            - name: data

              mountPath: /etc/bootnode

          env:

            - name: POD_IP

              valueFrom:

                fieldRef:

                  fieldPath: status.podIP

          ports:

            - containerPort: 8080

The cluster now contains two Ethereum Bootnodes; however, 

new Ethereum nodes require the full enode address (enode://ENODE_

IDENTIFIER@POD_IP:30301) in order to use them. As discussed previously, 

the Kubernetes headless Service eth-bootnode provides the hostnames 

of the individual nodes, while the container bootnode-server reports its 

enode address over HTTP on port 8080. The Bootnode Registrar, defined in 

the following section, combines these two actions.

Chapter 10  platforming BloCkChain



389

 Bootnode Registrar
The Bootnode Registrar is a small Golang application for looking up the 

DNS entries exposed by the eth-bootnode headless Service, querying 

each Pod for its enode address, and returning a comma-separated string 

through a simple HTTP request. Later sections configure each Geth node 

with this Bootnode Registrar’s string of enode addresses.

Note Jason poon15 wrote the Bootnode registrar application,16 along 
with the kubernetes ethereum helm chart.17 Concepts and inspiration 
for this chapter come from these projects and the microsoft Developer 
blog post Building a Private Ethereum Consortium.18

Create the directory cluster-apk8s-eth/003-data/200-eth/20-

bootnode-reg. Within the new 20-bootnode-reg directory, create a file 

named 10-service.yml from Listing 10-3.

Listing 10-3. Bootnode Registrar Service

apiVersion: v1

kind: Service

metadata:

  name: eth-bootnode-registrar

  namespace: data

  labels:

    app: eth-bootnode-registrar

15 https://devblogs.microsoft.com/cse/author/jason-poon/
16 https://github.com/jpoon/bootnode-registrar
17 https://github.com/helm/charts/tree/master/stable/ethereum
18 https://devblogs.microsoft.com/cse/2018/06/01/
creating-private-ethereum-consortium-kubernetes/

Chapter 10  platforming BloCkChain

https://devblogs.microsoft.com/cse/author/jason-poon/
https://github.com/jpoon/bootnode-registrar
https://github.com/helm/charts/tree/master/stable/ethereum
https://devblogs.microsoft.com/cse/2018/06/01/creating-private-ethereum-consortium-kubernetes/
https://devblogs.microsoft.com/cse/2018/06/01/creating-private-ethereum-consortium-kubernetes/


390

spec:

  selector:

    app: eth-bootnode-registrar

  type: ClusterIP

  ports:

    - port: 80

      targetPort: 9898

Apply the Ethereum Bootnode Regis.trar Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a Deployment for the Ethereum Bootnode Registrar in a 

file named 30-deployment.yml from Listing 10-4.

Listing 10-4. Bootnode Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

  name: eth-bootnode-registrar

  namespace: data

  labels:

    app: eth-bootnode-registrar

spec:

  replicas: 1

  revisionHistoryLimit: 1

  selector:

    matchLabels:

      app: eth-bootnode-registrar

  template:

    metadata:

      labels:

        app: eth-bootnode-registrar

Chapter 10  platforming BloCkChain



391

    spec:

      containers:

        - name: bootnode-registrar

          image: jpoon/bootnode-registrar:v1.0.0

          imagePullPolicy: IfNotPresent

          env:

            - name: BOOTNODE_SERVICE

              value: "eth-bootnode.data.svc.cluster.local"

          ports:

            - containerPort: 9898

The Kubernetes cluster now contains a Bootnode Registrar Service. 

Later on, Geth miner and transaction node deployments call this Service 

on initialization to provide a list of Ethereum Bootnode addresses.

 Ethstats
Geth nodes emit metrics when configured with an Ethstats endpoint. The 

Ethstats web dashboard19 configured in this section ingests Ethereum 

metrics and presents them on an attractive web interface20 (as shown in 

Figure 10-3). This section sets an Ethstats Service, Deployment, and Secret 

used later in the command-line arguments supplied to Geth nodes.

19 https://github.com/cubedro/eth-netstats
20 https://imti.co/ethereum-ethstats/

Chapter 10  platforming BloCkChain

https://github.com/cubedro/eth-netstats
https://imti.co/ethereum-ethstats/


392

Create the directory cluster-apk8s-eth/003-data/200-eth/30-

ethstats. Within the new 30-ethstats directory, create a file named 

10-service.yml from Listing 10-5.

Listing 10-5. Ethstats Service

apiVersion: v1

kind: Service

metadata:

  name: eth-ethstats

  namespace: data

  labels:

    app: eth-ethstats

spec:

  selector:

    app: eth-ethstats

Figure 10-3. Ethereum network statistics from ethstats.net

Chapter 10  platforming BloCkChain



393

  type: ClusterIP

  ports:

    - port: 8080

      targetPort: http

Apply the Ethstats Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a Secret for Ethstats in a file named 15-secret.yml from 

Listing 10-6.

Listing 10-6. Ethstats Secret

apiVersion: v1

kind: Secret

metadata:

  name: eth-ethstats

  namespace: data

  labels:

    app: eth-ethstats

type: Opaque

stringData:

  WS_SECRET: "uGYQ7lj55FqFxdyIwsv1"

Apply the Ethstats Service configuration:

$ kubectl apply -f 15-secret.yml

Next, create a Deployment for Ethstats in a file named  

30-deployment.yml from Listing 10-7.

Chapter 10  platforming BloCkChain



394

Listing 10-7. Ethstats Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

  name: eth-ethstats

  namespace: data

  labels:

    app: eth-ethstats

spec:

  replicas: 1

  revisionHistoryLimit: 1

  selector:

    matchLabels:

      app: eth-ethstats

  template:

    metadata:

      labels:

        app: eth-ethstats

    spec:

      containers:

        - name: ethstats

          image: ethereumex/eth-stats-dashboard:v0.0.1

          imagePullPolicy: IfNotPresent

          ports:

            - name: http

              containerPort: 3000

          env:

            - name: WS_SECRET

              valueFrom:

                secretKeyRef:

                  name: eth-ethstats

                  key: WS_SECRET

Chapter 10  platforming BloCkChain



395

Apply the Ethstats Deployment configuration:

$ kubectl apply -f 30-deployment.yml

Next, create an Ingress configuration for Ethstats in a file named 

50-ingress.yml from Listing 10-8.

Listing 10-8. Ethstats Ingress

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

  name: eth-ethstats

  namespace: data

  labels:

    app: eth-ethstats

  annotations:

    cert-manager.io/cluster-issuer: letsencrypt-production

spec:

  rules:

    - host: stats.data.eth.apk8s.dev

      http:

        paths:

          - backend:

              serviceName: eth-ethstats

              servicePort: 8080

            path: /

  tls:

    - hosts:

        - stats.data.eth.apk8s.dev

      secretName: eth-ethstats-production-tls

Chapter 10  platforming BloCkChain



396

Apply the Ethstats Ingress configuration:

$ kubectl apply -f 50-ingress.yml

Finally, visit https://stats.data.eth.apk8s.dev in a web browser. 

There should be no data until Geth nodes begin reporting as configured in 

the following sections.

 Geth Miners
This book does not explore the details of the Ethereum protocol. However, 

this section and the next install two types of Ethereum nodes supported 

by Geth: miner nodes21 and transaction nodes. All nodes on an Ethereum 

network communicate peer-to-peer, sharing network topology, blockchain 

state, and transactions. Miner nodes work to create new blocks on the 

Blockchain consisting of any pending transactions.22

Create the directory cluster-apk8s-eth/003-data/200-eth/40-

miner. Within the new 40-miner directory, create a file named 15-secret.

yml from Listing 10-9. Geth miners require an Ethereum account for use 

in signing transactions and receiving mining rewards. An initialization 

container, later defined in each Geth Deployment, creates an Ethereum 

account with the password specified in the Secret defined in Listing 10-9.

Listing 10-9. Geth Secret

apiVersion: v1

kind: Secret

metadata:

  name: eth-geth-miner

  namespace: data

21 https://github.com/ethereum/go-ethereum/wiki/Mining
22 https://geth.ethereum.org/docs/interface/mining

Chapter 10  platforming BloCkChain

https://stats.data.eth.apk8s.dev
https://github.com/ethereum/go-ethereum/wiki/Mining
https://geth.ethereum.org/docs/interface/mining


397

  labels:

    app: eth-geth-miner

type: Opaque

stringData:

  accountsecret: "strongpassword"

Apply the Geth Secret configuration:

$ kubectl apply -f 15-secret.yml

Install Geth on a local workstation following the online install 

documentation.23 Geth provides installers for all major operating systems 

and most package management systems. For example, Macs with 

Homebrew may issue the command:

$ brew install geth.

Create two or more Ethereum accounts. The Ethereum Genesis file 

defined in the following ConfigMap instructs the new Blockchain to pre-

fund these accounts (in the first block) with a specified amount of Ether 

(Ethereum cryptocurrency) available for use within the private network.

$ geth account new

After creating multiple accounts with the geth account new 

command, copy and save the “Public address of the key:” from the output. 

Next, create a ConfigMap for Geth in a file named 20-configmap.yml from 

Listing 10-10. Update the alloc section of the genesis.json with the 

newly created accounts.

The genesis.json file defined within the ConfigMap in Listing 10-10 

configures the first block of an Ethereum Blockchain. Any node wishing 

to join the private network must first initialize against this Ethereum 

23 https://geth.ethereum.org/downloads/

Chapter 10  platforming BloCkChain

https://geth.ethereum.org/downloads/


398

Genesis file.24 Both miner and transaction nodes described in the following 

are configured to mount the genesis.json file defined as a key in the 

ConfigMap (Listing 10-10).

Listing 10-10. Geth ConfigMap

apiVersion: v1

kind: ConfigMap

metadata:

  name: eth-geth

  namespace: data

  labels:

    app: eth-geth

data:

  networkid: "27587"

  genesis.json: |-

    {

        "config": {

            "chainId": 27587,

            "homesteadBlock": 0,

            "eip150Block": 0,

            "eip155Block": 0,

            "eip158Block": 0

        },

        "difficulty": "0x400",

        "gasLimit": "0x8000000",

        "nonce"   : "0x0000000000000000",

24 Ting, 李婷婷 Lee Ting. “Beginners Guide to Ethereum (3) — Explain the 
Genesis File and Use It to Customize Your Blockchain.” Medium, November 23, 
2018. https://medium.com/taipei-ethereum-meetup/beginners-guide-to-
ethereum-3-explain-the-genesis-file-and-use-it-to-customize-your-
blockchain-552eb6265145.

Chapter 10  platforming BloCkChain

https://medium.com/taipei-ethereum-meetup/beginners-guide-to-ethereum-3-explain-the-genesis-file-and-use-it-to-customize-your-blockchain-552eb6265145
https://medium.com/taipei-ethereum-meetup/beginners-guide-to-ethereum-3-explain-the-genesis-file-and-use-it-to-customize-your-blockchain-552eb6265145
https://medium.com/taipei-ethereum-meetup/beginners-guide-to-ethereum-3-explain-the-genesis-file-and-use-it-to-customize-your-blockchain-552eb6265145


399

        "alloc": {

           "0xFa4087D3688a289c9C92e773a7b46cb9CCf80353": { 

"balance": "100000000000000000000" },

           "0x8ab8F3fc6c660d3f0B22490050C843cafd2c0AAC": { 

"balance": "200000000000000000000" }

        }

    }

Apply the Geth ConfigMap configuration:

$ kubectl apply -f 20-configmap.yml

Next, create a Deployment configuration for Geth in a file named 

30-deployment.yml from Listing 10-11. The Geth miner Deployment in 

Listing 10-11 establishes a data volume mounted by all containers along with 

a config volume previously applied from the ConfigMap in Listing 10-10.

The first initialization container init-genesis runs the Geth init 

command against the Genesis file mounted from the ConfigMap and 

creates a new Ethereum Blockchain database in the shared data volume 

mounted as /root/.ethereum.

The second initialization container create-account creates a unique 

Ethereum account for the Geth miner using a password defined in the 

Secret eth-geth-miner applied earlier from Listing 10-9. Geth stores the 

new Ethereum account in /root/.ethereum, mounted as the shared data 

volume.

The final initialization container get-bootnodes runs a small shell script 

attempting to retrieve the list of Bootnodes with a curl call to the Bootnode 

Registrar configured earlier in this chapter. If successful, the output of the 

curl call writes the returned (comma-separated) list of bootnodes to the file 

/geth/bootnodes mounted in the shared volume data.

After initialization, Pods defined in the eth-geth-miner Deployment 

start the geth-miner container and mount the shared volume data  

(/root/.ethereum), where the initialization containers initialized the 

Chapter 10  platforming BloCkChain



400

Blockchain database, created an Ethereum account, and stored a file with 

a list of Bootnode addresses. The geth-miner container executes geth with 

the following arguments: --bootnodes defines the initial set of bootnodes 

to find peers. --mine instructs geth to operate as a miner attempting to 

create blocks. --minerthreads sets the number of parallel mining threads. 

--nousb disables checks for USB hardware wallets. --miner.etherbase 

takes an index pointing to an Ethereum account used to collect mining 

rewards; in this case, the initialization container create-account generated 

the first (and only) account (index zero). --networkid instructs geth to 

connect to a particular network, in this case as defined in the eth-geth 

ConfigMap. --ethstats accepts an endpoint capable of receiving metrics 

from geth; in this case, the Ethstats Dashboard configured in the previous 

section. Finally, --verbosity sets the depth of logging to output.

Listing 10-11. Geth Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

  name: eth-geth-miner

  namespace: data

  labels:

    app: eth-geth-miner

spec:

  replicas: 3

  revisionHistoryLimit: 1

  selector:

    matchLabels:

      app: eth-geth-miner

Chapter 10  platforming BloCkChain



401

  template:

    metadata:

      labels:

        app: eth-geth-miner

    spec:

      volumes:

        - name: data

          emptyDir: {}

        - name: config

          configMap:

            name: eth-geth

      initContainers:

        - name: init-genesis

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          args:

            - "init"

            - "/var/geth/genesis.json"

          volumeMounts:

            - name: data

              mountPath: /root/.ethereum

            - name: config

              mountPath: /var/geth

        - name: create-account

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

             - "printf '$(ACCOUNT_SECRET)\n$(ACCOUNT_SECRET)\n' 

| geth account new"

Chapter 10  platforming BloCkChain



402

          env:

            - name: ACCOUNT_SECRET

              valueFrom:

                secretKeyRef:

                  name: eth-geth-miner

                  key: accountsecret

          volumeMounts:

            - name: data

              mountPath: /root/.ethereum

        - name: get-bootnodes

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

            - |-

              apk add --no-cache curl;

              CNT=0;

               echo "retrieving bootnodes from $BOOTNODE_

REGISTRAR_SVC"

              while [ $CNT -le 90 ]

              do

                 curl -m 5 -s $BOOTNODE_REGISTRAR_SVC | xargs 

echo -n >> /geth/bootnodes;

                if [ -s /geth/bootnodes ]

                then

                  cat /geth/bootnodes;

                  exit 0;

                fi;

                echo "no bootnodes found. retrying $CNT...";

                sleep 2 || break;

Chapter 10  platforming BloCkChain



403

                CNT=$((CNT+1));

              done;

              echo "WARNING. unable to find bootnodes.";

              exit 0;

          env:

            - name: BOOTNODE_REGISTRAR_SVC

              value: eth-bootnode-registrar

          volumeMounts:

            - name: data

              mountPath: /geth

      containers:

        - name: geth-miner

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

             - "geth --bootnodes=\"`cat /root/.ethereum/

bootnodes`\" --mine --minerthreads=1  

--nousb --miner.etherbase=0 --networkid=$ 

{NETWORK_ID} --ethstats=${HOSTNAME}:${ETHSTATS_

SECRET}@${ETHSTATS_SVC} --verbosity=3"

          env:

            - name: ETHSTATS_SVC

              value: eth-ethstats:8080

            - name: ETHSTATS_SECRET

              valueFrom:

                secretKeyRef:

                  name: eth-ethstats

                  key: WS_SECRET

            - name: NETWORK_ID

Chapter 10  platforming BloCkChain



404

              valueFrom:

                configMapKeyRef:

                  name: eth-geth

                  key: networkid

          ports:

            - name: discovery-udp

              containerPort: 30303

              protocol: UDP

            - name: discovery-tcp

              containerPort: 30303

          volumeMounts:

            - name: data

              mountPath: /root/.ethereum

          resources:

            limits:

              cpu: "400m"

            requests:

              cpu: "400m"

Apply the Geth Deployment configuration:

$ kubectl apply -f 30-deployment.yml

After applying the eth-geth-miner Deployment and the three replica 

Pods have initialized, the miners begin generating a DAG (directed acyclic 

graph) represented as one or more gigabytes of data used in Ethereum’s 

PoW (proof-of-work) protocol. On this highly constrained development 

cluster, expect these processes to take anywhere from 20 minutes to 

an hour. Once the geth miners complete DAG generation, mining 

commences, and the Blockchain begins to grow as miners add blocks.

The new mining pool adds blocks to the chain about every 15–30 

seconds, depending on CPU resources and the Ethereum PoW difficulty 

Chapter 10  platforming BloCkChain



405

level calibrated by the network. Although initially set low in the Genesis file 

defined earlier at 0x400, the Ethereum network calibrates difficulty based 

on the time difference between blocks added to the chain.

The initial set of miners continues to build the Blockchain indefinitely, 

whether or not there are transactions to include with each block. The next 

section added nodes specifically purposed for interacting with the private 

Ethereum blockchain, including submitting transactions.

 Geth Transaction Nodes
This section configures Geth nodes with an RPC (Remote Procedure Call) 

management API enabled. The following transaction nodes implement the 

full Ethereum protocol without mining enabled, therefore not requiring 

an Ethereum account. Transaction nodes may only submit transactions 

presigned by an external Ethereum account, making them a suitable 

gateway for external communication with the Blockchain. Later on, this 

chapter demonstrates interactivity with the Blockchain through Jupyter 

Notebooks and Serverless Functions.

Create the directory cluster-apk8s-eth/003-data/200-eth/50-tx. 

Within the new 50-tx directory, create a file named 10-service.yml from 

Listing 10-12.

Listing 10-12. Geth transaction node Service

apiVersion: v1

kind: Service

metadata:

  name: eth-geth-tx

  namespace: data

  labels:

    app: eth-geth-tx

Chapter 10  platforming BloCkChain



406

spec:

  selector:

    app: eth-geth-tx

  type: ClusterIP

  ports:

    - name: rpc

      port: 8545

    - name: ws

      port: 8546

Apply the Geth transaction node Service configuration:

$ kubectl apply -f 10-service.yml

Next, create a Deployment configuration for Geth transaction nodes in 

a file named 30-deployment.yml from Listing 10-13.

The eth-geth-tx Deployment is nearly identical to the eth-geth-

miner configured in the previous section, with a few key differences. The 

Geth eth-geth-tx Deployment does not initialize an Ethereum account 

and does not set the --mine, --minerthreads, and --miner.etherbase 

command-line options. The new command-line options for (transaction 

mode) geth include the following: --rpc enables the HTTP-RPC25 server, 

supporting remote connections on port 8548; --rpcaddr sets HTTP-RPC 

server listening interface, in this case, all of them (IP 0.0.0.0); --rpcapi 
sets APIs to enable over HTTP-RPC interface, in this case, eth, net, and 

web3;26 --rpcvhosts sets a list of domains allowed to connect (enforced 

by the server); and --rpccorsdomain sets the (enforced by web browsers) 

allowable domains for cross-origin requests.

25 https://github.com/ethereum/wiki/wiki/JSON-RPC
26 https://github.com/ethereum/go-ethereum/wiki/Management-APIs

Chapter 10  platforming BloCkChain

https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/go-ethereum/wiki/Management-APIs


407

Listing 10-13. Geth transaction node Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

  name: eth-geth-tx

  namespace: data

  labels:

    app: eth-geth-tx

spec:

  replicas: 2

  selector:

    matchLabels:

      app: eth-geth-tx

  template:

    metadata:

      labels:

        app: eth-geth-tx

    spec:

      volumes:

        - name: data

          emptyDir: {}

        - name: config

          configMap:

            name: eth-geth

      initContainers:

        - name: init-genesis

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          args:

            - "init"

            - "/var/geth/genesis.json"

Chapter 10  platforming BloCkChain



408

          volumeMounts:

            - name: data

              mountPath: /root/.ethereum

            - name: config

              mountPath: /var/geth

        - name: get-bootnodes

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

            - |-

              apk add --no-cache curl;

              COUNT=0;

              echo "calling $BOOTNODE_REGISTRAR_SVC"

              while [ $COUNT -le 100 ]

              do

                 curl -m 5 -s $BOOTNODE_REGISTRAR_SVC | xargs 

echo -n >> /geth/bootnodes;

                if [ -s /geth/bootnodes ]

                then

                  cat /geth/bootnodes;

                  exit 0;

                fi;

                echo "Attempt $COUNT. No bootnodes found...";

                sleep 2 || break;

                COUNT=$((COUNT+1));

              done;

              echo "ERROR: Unable to find bootnodes.";

              exit 0;

Chapter 10  platforming BloCkChain



409

          env:

            - name: BOOTNODE_REGISTRAR_SVC

              value: eth-bootnode-registrar

          volumeMounts:

            - name: data

              mountPath: /geth

      containers:

        - name: geth-tx

          image: ethereum/client-go:v1.9.13

          imagePullPolicy: IfNotPresent

          command: ["/bin/sh"]

          args:

            - "-c"

             - "geth --nousb --bootnodes=`cat /root/.

ethereum/bootnodes` --rpc --rpcaddr='0.0.0.0' 

--rpcapi=eth,net,web3 --rpcvhosts='*' 

--rpccorsdomain='*' --ws --networkid=${NETWORK_

ID} --ethstats=${HOSTNAME}:${ETHSTATS_

SECRET}@${ETHSTATS_SVC} --verbosity=2"

          env:

            - name: ETHSTATS_SVC

              value: eth-ethstats:8080

            - name: ETHSTATS_SECRET

              valueFrom:

                secretKeyRef:

                  name: eth-ethstats

                  key: WS_SECRET

            - name: NETWORK_ID

              valueFrom:

                configMapKeyRef:

                  name: eth-geth

                  key: networkid

Chapter 10  platforming BloCkChain



410

          ports:

            - name: rpc

              containerPort: 8545

            - name: ws

              containerPort: 8546

            - name: discovery-udp

              containerPort: 30303

              protocol: UDP

            - name: discovery-tcp

              containerPort: 30303

          volumeMounts:

            - name: data

              mountPath: /root/.ethereum

Apply the Geth transaction node Deployment configuration:

$ kubectl apply -f 30-deployment.yml

At this stage, there should now be five nodes reporting into the Ethstats 

Dashboard configured earlier (see Figure 10-4), consisting of three miners 

and two transaction nodes.

Figure 10-4. Ethstats Private Ethereum nodes reporting

Chapter 10  platforming BloCkChain



411

This network is a highly constrained, miniature replica of the 

public Ethereum network. Private Blockchain networks such as this are 

useful for building and deploying experimental nodes, smart contract27 

development, and connecting any aspect of the Blockchain operations into 

the more extensive data and application platform developed throughout 

this book. Consider the following section on private networks before 

opening this network up to third-party nodes.

 Private Networks
Extending this network as is, through remote nodes operated by external 

organizations, would have limited value. PoW-based Blockchains rarely 

make sense on a small scale. Any organization able to provide more 

than 50% of the network’s mining hash rate could validate an otherwise 

invalid transaction, known as the 51% attack.28 Organizations looking to 

participate with a select set of other organizations can adapt the concepts 

in this chapter to Ethereum’s new Clique consensus protocol supported by 

Geth. Clique-configured nodes do not mine for PoW and instead use PoA 

(proof of authority29).

Converting this network to use Clique involves creating a new Genesis 

Block with an initial list of nodes permitted to sign blocks. See Ethereum’s 

well-documented guide for instructions on converting this network to the 

Clique consensus protocol.30

27 https://coinsutra.com/smart-contracts/
28 www.investopedia.com/terms/1/51-attack.asp
29 https://blockonomi.com/proof-of-authority/
30 https://geth.ethereum.org/docs/interface/private-network

Chapter 10  platforming BloCkChain

https://coinsutra.com/smart-contracts/
http://www.investopedia.com/terms/1/51-attack.asp
https://blockonomi.com/proof-of-authority/
https://geth.ethereum.org/docs/interface/private-network


412

 Blockchain Interaction
Interacting with a Blockchain is performed by communicating with a node. 

Full Ethereum nodes (miner nodes in the context of this book) manage a 

complete copy of the Blockchain and communicate transactions and state 

with other nodes (peers) on the network. Geth provides an HTTP-RPC API 

providing external access. Two of the five nodes configured earlier in this 

chapter, known as transaction nodes, provide HTTP-RPC access exposed 

by the Service eth-geth-tx.

 Geth Attach
Geth offers an interactive console31 for interacting with its API. One of the 

easiest ways to experiment with the API involves using geth to attach to 

another local instance of geth. The following example executes geth on 

one of the three miner nodes and interacts with the running miner:

$ kubectl exec -it -n data eth-geth-miner-789dd75565-gk25b -- 

geth attach

Example geth console output:

Welcome to the Geth JavaScript console!

instance: Geth/v1.9.13-stable-cbc4ac26/linux-amd64/go1.14.2

coinbase: 0x284f99f929b49da9d85b2a3dbf606ed38eec393e

at block: 1134 (Fri May 08 2020 06:19:03 GMT+0000 (UTC))

 datadir: /root/.ethereum

 modules: admin:1.0 debug:1.0 eth:1.0 ethash:1.0 miner:1.0 

net:1.0 personal:1.0 rpc:1.0 txpool:1.0 web3:1.0

> eth.blockNumber

1159

31 https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console

Chapter 10  platforming BloCkChain

https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console


413

Communicate with geth from a local workstation by port-forwarding 

the eth-geth-tx Service, set up earlier in this chapter, and attach a local 

geth to the forwarded Service.

$ kubectl port-forward svc/eth-geth-tx 8545 -n data

Forwarding from 127.0.0.1:8545 -> 8545

Forwarding from [::1]:8545 -> 8545

Open an additional terminal on the local workstation and attach geth:

$ geth attach http://localhost:8545

Geth’s interactive JavaScript console is a great way to explore the 

API. However, Ethereum provides a variety of mature client libraries for 

building applications that interact with the Ethereum Blockchain. The 

following sections examine Ethereum’s Web3 Python library, both through 

an interactive Python environment provided by a Jupyter Notebook and 

the development of a small function in the Serverless platform OpenFaaS, 

returning information on the latest block in the chain.

 Jupyter Environment
The experimentation and development of software against complex 

and sophisticated cloud architectures often presents unique challenges 

in connecting developers and analysts to services. Many, if not most, 

applications in a cloud-based architecture communicate system to system 

with other applications with no explicit method for external access. Port-

forwarding is a typical method for accessing internal services within a 

Kubernetes cluster from a local workstation; however, web-based IDEs 

may function as an extension of the platform itself.

Jupyter Notebooks are a browser-based (or web-based) IDE required 

to run the following examples within the Kubernetes cluster. Chapter 6 

describes the configuration of JupyterHub (along with Keycloak) for use 

as a multi-tenant provisioner of JupyterLab environments managing one 

Chapter 10  platforming BloCkChain



414

or more Jupyter Notebooks. Create a new Python 3 Jupyter Notebook from 

within the cluster; copy and execute the following code examples within 

individual cells.

Import the Python libraries web3,32 json, and time:

import web3, json, time

import pandas as pd

from IPython.display import clear_output

from web3.contract import ConciseContract

from web3 import Web3

from web3.auto.gethdev import w3

Connect to the Geth transaction node:

rpc_ep = "http://eth-geth-tx.data:8545"

web3 = Web3(Web3.HTTPProvider(rpc_ep))

if web3.isConnected():

    print(f"Connected: {rpc_ep}")

    print(f"Peers: {web3.net.peerCount}")

    print(f"Chain ID: {web3.net.version}")

    print(f"Last block: {web3.eth.blockNumber}")

else:

    print("Not connected")

Example output:

Connected: http://eth-geth-tx.data:8545

Peers: 4

Chain ID: 27587

Last block: 5549

32 https://github.com/ethereum/web3.py

Chapter 10  platforming BloCkChain

https://github.com/ethereum/web3.py


415

Check the eth balance of the accounts pre-funded in the Genesis block 

defined earlier in this chapter:

account_1 = "0xFa4087D3688a289c9C92e773a7b46cb9CCf80353"

account_2 = "0x8ab8F3fc6c660d3f0B22490050C843cafd2c0AAC"

a1_bal = web3.eth.getBalance(account_1)

a2_bal = web3.eth.getBalance(account_2)

print(f"Account 1: {web3.fromWei(a1_bal, 'ether')} ether")

print(f"Account 2: {web3.fromWei(a2_bal, 'ether')} ether")

Example output:

Account 1: 100 ether

Account 2: 200 ether

Add the following code to create a transaction, transferring one ether 

to account_2:

nonce = web3.eth.getTransactionCount(account_1)

print(f"Account 1 nonce: {nonce}")

tx = {

    'nonce': nonce,

    'to': account_2,

    'value': web3.toWei(1, 'ether'),

    'gas': 2000000,

    'gasPrice': web3.toWei('50', 'gwei'),

}

tx

Chapter 10  platforming BloCkChain



416

Example output:

{'nonce': 15,

 'to': '0x8ab8F3fc6c660d3f0B22490050C843cafd2c0AAC',

 'value': 1000000000000000000,

 'gas': 2000000,

 'gasPrice': 50000000000}

Warning Do not use the ethereum accounts generated in this 
chapter for any transactions on the public/main ethereum network. 
the examples in this book do not provide adequate security for 
protecting these accounts.

The private key file and password are required to sign the transaction 

as account_1. Within the JupyterLab environment, create a text file named 

pass1.txt and populate it with the password used to create account_1 

earlier in this chapter, the first pre-funded account used in the alloc 

section of the genesis.json configuration. Additionally, upload the secret 

key file generated from the geth account new command (performed 

earlier in this chapter to create the pre-funded Ethereum accounts). Name 

the secret key account1.json (see Figure 10-5).

Chapter 10  platforming BloCkChain



417

Load the private key and password for account_1 and sign the 

transaction created earlier:

with open('pass1.txt', 'r') as pass_file:

    kf1_pass = pass_file.read().replace('\n', '')

with open("account1.json") as kf1_file:

    enc_key = kf1_file.read();

p_1 = w3.eth.account.decrypt(enc_key, kf1_pass)

signed_tx = web3.eth.account.signTransaction(tx, p_1)

signed_tx

Example output:

AttributeDict({'rawTransaction': HexBytes('0xf86d0f850ba43b74 

00831e8480948ab8f3fc6c660d3f0b22490050c843cafd2c0aac880de0b6b3 

a7640000801ca0917ae987a8c808cf01221dad4571fd0b1b8f5429d13c469 

c72bc13647e9c1744a068507c8542ccdebb96e534d13a140ddcbdaedbfa3b 

a82dcbf86d4b196cc41b1f'),

Figure 10-5. Ethereum account private key and password

Chapter 10  platforming BloCkChain



418

  'hash': HexBytes('0x9de62dc620274e2c9dba2194d90c245a933af8468 

ace5f2d38e802da09c06769'),

  'r': 65802530150742945852115878650256413649726940478651153584 

824595116007827969860,

  's': 47182743427096773798449059805443774712403275692049277894 

020390344384483433247,

 'v': 28}

Send the signed transaction to the transaction node and retrieve the 

resulting hash. This hash is the unique identifier for the transaction on the 

Ethereum Blockchain:

signed_tx = signed_tx.rawTransaction

tx_hash = web3.eth.sendRawTransaction(signed_tx)

web3.toHex(tx_hash)

Example output:

'0x9de62dc620274e2c9dba2194d90c245a933af8468ace5f2d38e802d 

a09c06769'

After a node receives the transaction, it propagates to all nodes for 

validation and inclusion into the pending transaction pool, ready to be 

mined with the next block.33 The following code queries the connected 

transaction node every second until the transaction returns with a block 

number:

%%time

blockNumber = None

check = 0

33 Murthy, Mahesh. “Life Cycle of an Ethereum Transaction.” Medium,  
April 18, 2018. https://medium.com/blockchannel/life-cycle-of-an- 
ethereum-transaction-e5c66bae0f6e.

Chapter 10  platforming BloCkChain

https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e


419

while type(blockNumber) is not int:

    check += 1

    tx = web3.eth.getTransaction(tx_hash)

    blockNumber = tx.blockNumber

    clear_output(wait=True)

    print(f"Check #{check}\n")

    if type(blockNumber) is not int:

        time.sleep(1)

tx

Example output:

Check #12

CPU times: user 129 ms, sys: 904 μs, total: 130 ms
Wall time: 11.1 s

AttributeDict({'blockHash': HexBytes('0x676a24aa8117b51958031a2

863b17f91ed3356276036a9de7c596124a6234986'),

 'blockNumber': 8050,

 'from': '0xFa4087D3688a289c9C92e773a7b46cb9CCf80353',

 'gas': 2000000,

 'gasPrice': 50000000000,

  'hash': HexBytes('0xa3f02c685ff05b13b164afcbe11d2aa83d2dab3ff9

72ee7008cc931282587cee'),

 'input': '0x',

 'nonce': 16,

 'to': '0x8ab8F3fc6c660d3f0B22490050C843cafd2c0AAC',

 'transactionIndex': 0,

 'value': 1000000000000000000,

 'v': 28,

Chapter 10  platforming BloCkChain



420

  'r': HexBytes('0x89d052927901e8a7a727ebfb7709d4f9b99362c0f0001

f62f37300ed17cb7414'),

  's': HexBytes('0x3ea3b4f5f8e4c10e4f30cc5b8a7ff0a833d8714f20744

c289dee86006af420c8')})

The transaction is now complete and its record immutably stored 

on the private blockchain. The network attempts to create a new block 

every 10 to 15 seconds34 by adjusting the required difficulty;35 however, 

this resource-constrained network with only three miners may fluctuate 

considerably. The final code block in the exercise queries the transaction 

node for the last 100 blocks and plots the time delta between block 

timestamps:

df = pd.DataFrame(columns=['timestamp'])

for i in range (0,100):

    block = web3.eth.getBlock(tx.blockNumber - i)

    df.loc[i] = [block.timestamp]

df['delta'] = df.timestamp.diff().shift(-1) * -1

df.reset_index().plot(x='index', y="delta", figsize=(12,5))

See Figure 10-6 for example output from the block timestamp delta plot.

34 https://etherscan.io/chart/blocktime
35 Siriwardena, Prabath. “The Mystery Behind Block Time.” Medium, July 8, 2018.  
https://medium.facilelogin.com/the-mystery-behind-block-time- 
63351e35603a.

Chapter 10  platforming BloCkChain

https://etherscan.io/chart/blocktime
https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a
https://medium.facilelogin.com/the-mystery-behind-block-time-63351e35603a


421

This section demonstrated programmatic interactivity with a private 

blockchain network from within the Kubernetes cluster. Operating one 

or more Ethereum nodes in a Kubernetes cluster opens up numerous 

opportunities to extend and leverage Blockchain concepts through 

streamlined interconnectivity with existing and custom applications. 

The final section deploys a Serverless function, creating a public API for 

accessing Blockchain data.

 Serverless/OpenFaaS
This book introduced the Serverless platform OpenFaaS in Chapter 9 and 

installed the prebuilt function Sentiment Analysis. This section builds 

and deploys a custom function for exposing a public API into the private 

blockchain network. See Chapter 9 for installation instructions using 

Helm. The following exercise uses the ingress URL https://faas.data.

eth.apk8s.dev.

Figure 10-6. Plot of block timestamp deltas

Chapter 10  platforming BloCkChain

https://faas.data.eth.apk8s.dev
https://faas.data.eth.apk8s.dev


422

Log in and configure the faas-cli to use the new eth Blockchain cluster 

on a local workstation:

$ export OPENFAAS_PASS=$(kubectl -n data get secret basic-auth -o  

jsonpath="{.data.basic-auth-password}" | base64 --decode)

$ export OPENFAAS_URL=https://faas.data.eth.apk8s.dev

$ faas-cli login --gateway=$OPENFAAS_URL \

--password=$OPENFAAS_PASS

Pull the OpenFaaS function template python3-http-debian:

$ faas-cli template store pull python3-http-debian

Create the directory cluster-apk8s-eth/003-data/200-eth/

functions. Within the new functions directory, create a new OpenFaaS 

function named last-block using the python3-http-debian template:

$ faas-cli new last-block --lang python3-http-debian

The faas-cli command created the folder last-block and yaml file 

last-block.yml. If necessary, install Python 3 on the local workstation. 

Change directory to the last-block and create a Python virtual 

environment. This helps in generating a requirements.txt later used 

to configure the OpenFaaS function with the required Python packages. 

Finally, activate the virtual environment:

$ cd last-block

$ python3 -m venv venv

$ source ./venv/bin/activate

Install the Python packages hexbytes and web3:

$ pip install hexbytes==0.2.0 web3==5.9.0

Chapter 10  platforming BloCkChain



423

pip will install the hexbytes and web3 and all the dependent packages 

into the virtual environment. The new virtual environment contains 

only the packages required to run the function. Use pip to create a list of 

required packages in the requirements.txt file:

$ pip freeze > requirements.txt

Create the function by replacing the contents in handler.py with  

Listing 10-14.

Listing 10-14. OpenFaaS function for returning details on the last 

block in the Blockchain

#!/usr/bin/env python3

""" handler.py

OpenFaaS Blockchain function returning the last block

in the chain.

"""

import os

import json

import hexbytes

from web3 import Web3

def handle(event, context):

    """

    handle a request to the function

    """

    ep_url = "http://eth-geth-tx:8545"

    ep = os.getenv('GETH_RPC_ENDPOINT', ep_url)

    w3 = Web3(Web3.HTTPProvider(ep))

    latest_block = w3.eth.getBlock('latest')

    lbd = latest_block.__dict__

Chapter 10  platforming BloCkChain



424

    return {

        "statusCode": 200,

        "body": json.loads(

            json.dumps(lbd, cls=CustomEncoder)

        )

    }

class CustomEncoder(json.JSONEncoder):

    """

    CustomEncoder decodes HexBytes

    in Geth response dict.

    """

    def default(self, o):

        if isinstance(o, hexbytes.main.HexBytes):

            return o.hex()

        return json.JSONEncoder.default(self, o)

if __name__ == '__main__':

    """

    Run code from command line for testing.

    Mock event and context.

    """

    print(handle(event={}, context={}))

Test the new function on a local workstation by port-forwarding the 

eth-geth-tx service in one terminal and executing the Python script 

handler.py in another. Open a separate terminal and port-forward  

eth-geth-tx:

$ kubectl port-forward svc/eth-geth-tx 8545:8545 -n data

Chapter 10  platforming BloCkChain



425

Execute the Python script handler.py from the current (virtual 

environment enabled) terminal:

$ export GETH_RPC_ENDPOINT=http://localhost:8545

$ python3 ./handler.py

Example output:

{'statusCode': 200, 'body': {'difficulty': 471861, 'extraData':  

'0xd88301090d846765746888676f312e31342e32856c696e7578',  

'gasLimit': 8000000, 'gasUsed': 0, 'hash': '0x8b4ebaca1d3606630 

c872cba9ccf4a968c43af24e02800b0a182ef89b149f08b', 'logsBloom':  

'0x000000000000000000000', 'miner': '0x284F99f929B49Da9D85b2a3 

dbF606Ed38EeC393E', 'mixHash': '0xd92b8eaa4a7f103f9c76bf7bf9b13 

b90271fed7f1f25c72f81e429f2108755bc', 'nonce': '0x1f110a5f5dc6 

9827', 'number': 9107, 'parentHash': '0xd40382cd4c2e75cc919d11 

318672820aab10854951ee4ee137a08d97e84aa4c7', 'receiptsRoot':  

'0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e36 

3b421', 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad3124 

51b948a7413f0a142fd40d49347', 'size': 538, 'stateRoot':  

'0xbe54d463bf9ffeda68975ff839eec7ecabd42c2f88cfc75372765891f4 

3b1f18', 'timestamp': 1589012313, 'totalDifficulty': 3333037812,  

'transactions': [], 'transactionsRoot': '0x56e81f171bcc55a6ff8 

345e692c0f86e5b48e01b996cadc001622fb5e363b421', 'uncles': []}}

Next, build, push, and deploy the function. The OpenFaaS CLI 

uses Docker to build and push a container image of the Function to the 

repository configured automatically in last-block.yml; see OpenFaaS 

Chapter 10  platforming BloCkChain



426

configuration options36 to customize the defaults. If using the default 

configuration, install Docker on the local workstation and sign up for a free 

Docker Hub37 account:

$ faas-cli build --build-arg ADDITIONAL_PACKAGE=gcc -f ./last-

block.yml

$ faas-cli push -f ./last-block.yml

$ faas-cli deploy -f ./last-block.yml

Example output:

Deploying: last-block.

Deployed. 202 Accepted.

URL: https://faas.data.eth.apk8s.dev/function/last-block

Finally, use a web browser or curl to access the new public last-block 

function:

$ curl https://faas.data.eth.apk8s.dev/function/last-block

Example output (truncated):

{"difficulty":474599,"extraData":"0xd88301090d846765746888676f 

312e31342e32856c696e7578","gasLimit":8000000,"gasUsed":0,"hash 

":"0x8154d9edf431821a239fbb72bc2636304e254663b11cddc6987095d39 

1f35248","logsBloom":"0x000…","miner":"0xcc7ADDFC03cb5ec2E3894 

583895C1bE385625c62","mixHash":"0xd20bf313f1834ec333d7d5cb2870 

b42487b462ee322aeccdd699fc017f86be51","nonce":"0x1a11af75e7ff4 

68f","number":11694,"parentHash":"0x930d5f7340997cc1f0cd4be6e2 

2aefe02c136c2e93b38ce75eff1815455f730d","receiptsRoot":"0x56e8 

36 https://docs.openfaas.com/reference/yaml/
37 https://hub.docker.com/

Chapter 10  platforming BloCkChain

https://docs.openfaas.com/reference/yaml/
https://hub.docker.com/


427

1f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421", 

"sha3Uncles":"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a74 

13f0a142fd40d49347","size":538,"stateRoot":"0x51a5a7bb73dd5bd6 

ebb3a96606e115033e6b3bdcdb4a326b5a6c67718969f6cc","timestamp": 

1589048551,"totalDifficulty":4550348128,"transactions":[], 

"transactionsRoot":"0x56e81f171bcc55a6ff8345e692c0f86e5b48e0 

1b996cadc001622fb5e363b421","uncles":[]}

The last-block function represents a minimal and straightforward 

demonstration of application development atop Kubernetes and 

OpenFaaS. OpenFaaS manages, monitors, and scales Functions. 

Kubernetes glues together technologies as diverse as Serverless, 

Blockchain, and web-based IDEs (integrated development environments).

 Summary
This chapter installed an Ethereum Blockchain network consisting of two 

Bootnodes, a Bootnode Registrar, an Ethstats Dashboard, three miner 

nodes, and two transaction nodes (see Listing 10-15), all running across 

a three-node Kubernetes cluster. Adapting the Ethereum Blockchain 

network in this chapter to support a protected public network involves 

exposing bootnodes and miners for external third-party access and moving 

from the Ethereum standard proof-of-work consensus protocol to the 

new Clique, proof of authority. The configuration of a shared production 

Blockchain network is dependent on business goals and requirements, and 

it is therefore beyond the scope of this book. However, the demonstrated 

Kubernetes implementation applies to many flavors of Blockchain and 

Serverless platforms.

Implementing Blockchain technology within Kubernetes may seem 

counterintuitive at first; it is an example where the technology itself does 

not require any of the functionality provided by Kubernetes. However, 

Chapter 10  platforming BloCkChain



428

Kubernetes is not presented here as a solution to running Blockchain, 

or even Serverless technology. This book presents Kubernetes as a 

standardized, unified platform for extending data management, Serverless, 

data science, and Blockchain platforms, supported by unified storage, 

network, and control plane, implemented by declarative configuration.

The next and final chapter in this book covers the management of data 

science and Machine Learning workloads across cloud and on-premises 

infrastructure.

Listing 10-15. Chapter 10 organization of Kubernetes-based 

Blockchain platform components

./010-cluster-apk8s-eth/

├── 000-cluster
│   ├── 00-ingress-nginx
│   ├── 10-cert-manager
│   ├── 20-rook-ceph
│   └── 30-monitoring
├── 003-data
│   ├── 000-namespace
│   ├── 005-keycloak
│   ├── 100-jupyterhub
│   ├── 120-openfaas
│   └── 200-eth
│       ├── 10-bootnode
│       │   ├── 10-service.yml
│       │   └── 30-deployment.yml
│       ├── 20-bootnode-reg
│       │   ├── 10-service.yml
│       │   └── 30-deployment.yml
│       ├── 30-ethstats
│       │   ├── 10-service.yml

Chapter 10  platforming BloCkChain



429

│       │   ├── 15-secret.yml
│       │   ├── 30-deployment.yml
│       │   └── 50-ingress.yml
│       ├── 40-miner
│       │   ├── 15-secret.yml
│       │   ├── 20-configmap.yml
│       │   └── 30-deployment.yml
│       ├── 50-tx
│       │   ├── 10-service.yml
│       │   └── 30-deployment.yml
│       └── functions
│           ├── build
│           ├── last-block
│           ├── last-block.yml
│           └── template
└── 005-data-lab

Chapter 10  platforming BloCkChain



431© Craig Johnston 2020 
C. Johnston, Advanced Platform Development with Kubernetes,  
https://doi.org/10.1007/978-1-4842-5611-4_11

CHAPTER 11

Platforming AIML
Platforming AI/ML (Artificial Intelligence/Machine Learning) in the 

context of this book involves implementing all the components necessary 

to develop and deploy artificial intelligence based on Machine Learning 

leveraging Kubernetes. This chapter uses specific technologies to 

illustrate broad concepts, from distributing and managing data collection 

applications on IoT devices and ETL operations to building and training 

Machine Learning models with on-premises GPUs, and deploying 

inference-based artificial intelligence into a distributed cloud environment.

Data Science frameworks such as TensorFlow, Keras, scikit-Learn, 

and PyTorch simplify the development and training of machine learning 

models. These frameworks lower the barrier of entry to the concepts of 

Artificial Intelligence through Machine Learning. These modern data 

science frameworks facilitate rapid experimentation and development. 

Kubernetes complements this ecosystem by simplifying the complex 

problems of managing and connecting applications responsible for 

collecting, storing, distributing, processing, and analyzing data and 

workloads that process it, making Kubernetes well suited as the foundation 

for an end-to-end Machine Learning platform.

The AIML life cycle begins with raw data and ends with valuable 

inferences made on that data. There are numerous books on nearly every 

stage of this process; this Kubernetes-centric book can only scratch the 

surface in a single chapter, yet aims to demonstrate concepts useful in 

constructing custom AIML platforms building from previous chapters (see 

Figure 11-1).

https://doi.org/10.1007/978-1-4842-5611-4_11#DOI


432

 Data
A significant portion of this book covers data management applications: 

Chapters 5 through 9 cover data pipelines, data indexing and analytics, 

data lakes, data warehouses, and data transformation. This chapter adds 

raw data acquisition to the cluster. It demonstrates the capabilities of 

Kubernetes in reducing the conceptual distance between the collection 

of raw data and access to packaged data sets suitable for Data Science 

activities, including the development of Machine Learning–based artificial 

intelligence.

 Hybrid Infrastructure
The application of Machine Learning–based artificial intelligence (AIML) 

extends well beyond packaged data sets and the latest algorithms. Full 

AIML life cycles often involve data acquisition, ETL, processing, and data 

Figure 11-1. Demonstration of end-to-end AIML platform

Chapter 11  platforming aiml



433

routing to and from inference-/prediction-based workloads across various 

locations and infrastructure.

Figure 11-2 depicts an infrastructure familiar to many organizations, 

including on-premises facilities containing sensor devices, offices with 

servers and workstations, and multiregional presence in multiple public 

clouds.

Kubernetes provides a platform capable of supporting the entire end- 

to- end life cycle of AIML-driven initiatives, from the raw data collected 

by devices and their sensors to the deployment and management of 

highly scalable distributed inference workloads. The following sections 

implement a representative sampling of the broad scope of infrastructure 

shown in Figure 11-2.

Figure 11-2. Corporate infrastructure example

Chapter 11  platforming aiml



434

 Development Environment
The exercises in this chapter utilize the following scaled-back 

demonstration infrastructure shown in Figure 11-3. To follow along with 

the examples in this chapter, use the following or equivalent resources:

• One Droplet from Digital Ocean providing 2 CPUs, 

2 GB memory, 60 GB of disk storage, running Ubuntu 

18.04, and deployed in the NYC3 region

• Three CX31 cloud servers from Hetzner, each providing 

2 CPUs, 2 GB memory, 80 GB of disk storage, running 

Ubuntu 18.04, and deployed in the Nuremberg region

• One physical workstation providing 4 CPUs, 16 GB 

memory, 80 GB of disk storage, 1 NVIDIA GPU 

(GeForce GTX 1070, or better), running Ubuntu 18.04, 

and deployed on-premises

• Three Raspberry Pi devices (version 3 or 4), running 

Raspberry Pi OS Lite (32-bit) minimal, and based on 

Debian Buster1

1 www.raspberrypi.org/downloads/raspberry-pi-os/

Chapter 11  platforming aiml

http://www.raspberrypi.org/downloads/raspberry-pi-os/


435

The hybrid cluster in this chapter is intentionally complicated for its 

scale; however, this complexity demonstrates Kubernetes’s flexibility in a 

wide range of infrastructure challenges.

 DNS
This chapter uses Cloudflare2 to manage the following DNS A entries (see 

Figure 11-4) for a new development cluster called hc1: *.hc1 points to 

the three IP addresses assigned to the Hetzner cloud instances used as 

worker nodes. master.hc1 points to a Digital Ocean Droplet created for the 

Kubernetes master node. nbg1-n1.hc1, nbg1-n2.hc1, and nbg1-n3.hc1 are 

optional entries pointed to each worker node. Finally, lab-gpu.hc1 points 

to an on-premises Internet router; if this router has a dynamic IP address 

(common for home Internet service), use a dynamic DNS service.3

2 www.cloudflare.com/
3 www.ionos.com/digitalguide/server/tools/free-dynamic-dns-providers- 
an-overview/

Figure 11-3. Corporate infrastructure example

Chapter 11  platforming aiml

http://www.cloudflare.com/
http://www.ionos.com/digitalguide/server/tools/free-dynamic-dns-providers-an-overview/
http://www.ionos.com/digitalguide/server/tools/free-dynamic-dns-providers-an-overview/


436

The next section walks through the installation of eight Kubernetes 

nodes using k3s across three regions, on-premises devices and servers, and 

public clouds in New York and Nuremberg.

 k3s Hybrid Cloud
This chapter uses k3s to demonstrate a fully functional Kubernetes cluster 

across a wide range of hardware. k3s is a lightweight certified Kubernetes 

distribution, well suited for hybrid infrastructure with support ranging 

from cloud compute resources to IoT devices.

The following sections create an eight-node Kubernetes cluster 

consisting of three Raspberry Pi devices used for sensor data collection, 

one GPU workstation for machine learning, three public cloud nodes for 

distributed workloads, and one public cloud node in a master role.

The three Raspberry Pi devices represent any IoT device responsible 

for collecting sensor data and transmitting it to an MQTT broker. Later, it 

is stored in Elasticsearch and MinIO object storage running on the worker 

nodes. The GPU server trains Machine Learning models from collected 

data and deploys the trained models to the cloud nodes for inference/

prediction workloads. A single Kubernetes cluster manages all workloads 

and communication across this small yet global cluster.

Figure 11-4. DNS entries for the hc1 development cluster

Chapter 11  platforming aiml



437

 Kilo VPN
Extra attention to security is required when operating a Pod network across 

multiple public networks. Any communication over the open Internet 

must be encrypted, and a VPN is one of the ways to ensure this. Previous 

chapters used private networks to communicate across nodes; private 

networking is a standard feature provided by every major cloud vendor. 

However, these private networks are typically limited to the vendor and, in 

some cases, limited by region.

WireGuard (first introduced in Chapter 3) is a high-performance VPN 

capable of providing an efficient encrypted tunnel for Pod communication 

across public networks. Yet, configuring and managing routing and 

tunneling between public network interfaces to and from nodes on each 

region is a complicated and tedious task.

The Kilo4 project uses WireGuard to create an encrypted layer-35 

network overlay. Kilo manages the IP routing along with the WireGuard 

public/private key pairs for each node in the Kubernetes cluster. Kilo 

supports full-cluster and region-based node-to-node encryption. Full- 

cluster encryption may add unnecessary overhead between nodes already 

communicating in a private network. Therefore, the following examples 

use a region-based Kilo network, creating VPN tunnels only between 

regions, as shown in Figure 11-5.

4 https://github.com/squat/kilo
5 www.infoblox.com/glossary/layer-3-of-the-osi-model-network-layer/

Chapter 11  platforming aiml

https://github.com/squat/kilo
http://www.infoblox.com/glossary/layer-3-of-the-osi-model-network-layer/


438

Figure 11-6 depicts the network interfaces used by each node for both 

internal and external communication to each of the other nodes in the 

cluster.

Figure 11-5. Hybrid Kubernetes cluster with topology-aware VPN 
tunnels

Chapter 11  platforming aiml



439

The complex hybrid cluster depicted in this section gives a brief 

overview of the network topology created with each node over the next 

few sections. Refer back to these diagrams after each node is installed 

for reference. This network demonstrates Kubernetes support for a wide 

range of networked environments and solves challenges common to many 

organizations: the need to standardize and unify diverse development and 

production environments.

Figure 11-6. Kilo VPN full-cluster network connections

Chapter 11  platforming aiml



440

 Master Node
As a means to demonstrate a scaled-down hybrid-cloud network, the 

following example installs a single Kubernetes master node on Digital 

Ocean using k3s. Create one Droplet on Digital Ocean, providing 2 CPUs, 

2 GB memory, 60 GB of disk storage, and configured with Ubuntu 18.04, 

and deploy it to the NYC3 region.

Upgrade packages on the Droplet and install WireGuard (later used by 

Kilo to create a VPN tunnel) on the new Droplet:

$ apt upgrade -y

$ apt install -y apt-transport-https \

ca-certificates gnupg-agent \

software-properties-common

$ add-apt-repository -y ppa:wireguard/wireguard

$ apt update

$ apt -o Dpkg::Options::=--force-confnew \

install -y wireguard

Next, create a shared secret for the cluster and store the generated 

value in a safe place. Additional nodes use the shared secret for acceptance 

into the k3s cluster by the master node:

$ export K3S_CLUSTER_SECRET=$(head -c48 /dev/urandom | base64)

# copy the echoed secret

$ echo $K3S_CLUSTER_SECRET

Install k3s without the default Flannel Pod network; Kilo, installed later 

in this chapter, will handle the layer-3 networking:

$ curl -sfL https://get.k3s.io | \

sh -s - server --no-flannel

Chapter 11  platforming aiml



441

k3s supports both single- and multi-node operation; this chapter 

builds an eight-node cluster with a dedicated master. Taint the master 

node to prevent the scheduling of regular workloads:

$ kubectl taint node master dedicated=master:NoSchedule

Kilo creates VPN tunnels between regions using the name label 

topology.kubernetes.io/region; label the master node with its region, 

in this example, nyc3:

$ kubectl label node master \

topology.kubernetes.io/region=nyc3

Next, copy the k3s kubectl configuration file located at /etc/rancher/

k3s/k3s.yaml to root home:

$ cp /etc/rancher/k3s/k3s.yaml ~

Create a DNS entry for the master node, in this case, master.hc1.

apk8s.dev, and update the copied ~/k3s.yml file with the new public 

DNS. Edit the file manually or use sed for quick replace:

$ sed -i "s/127.0.0.1/master.hc1.apk8s.dev/" k3s.yaml

$ sed -i "s/default/apk8s-hc1/" k3s.yaml

Finally, copy the modified k3s.yaml onto a local workstation with 

kubectl installed. From a local workstation, use secure copy:

$ scp root@master.hc1.apk8s.dev:~/k3s.yaml ~/.kube/apk8s-hc1

Use the new kubectl configuration file to query the master node:

$ export KUBECONFIG=~/.kube/apk8s-hc1

$ kubectl describe node master

This section installed a single master node on Digital Ocean’s public 

cloud in the nyc3 region. The next section creates three worker nodes on 

the Hetzner public cloud in the Nuremberg region.

Chapter 11  platforming aiml



442

 Worker Nodes
This section continues the development of a hybrid-cloud network, 

attaching three worker nodes to the master node created in the previous 

section. Start three CX31 (2 CPUs, 2 GB memory, 80 GB of disk storage) 

cloud servers on Hetzner, running Ubuntu 18.04, and deployed in the 

Nuremberg region. Name the new instances nbg1-n1, nbg1-n2, and nbg1-n3.

To avoid the cost and complexity of a load balancer on the demo 

cluster, create a wildcard DNS A record *.hc1.apk8s.dev for each of the 

new instances’ IP addresses. All ingress rules for the subdomain hc1.

apk8s.dev now route to one of the three Hetzner instances.

Log in to each new cloud server instance, and upgrade and install 

required packages along with WireGuard on each instance:

$ apt upgrade -y

$ apt install -y apt-transport-https \

ca-certificates gnupg-agent \

software-properties-common

# Install kernel headers (missing on Hetzner instances)

$ apt install -y linux-headers-$(uname -r)

# Ceph block device kernel module (for Ceph support)

$ modprobe rbd

$ add-apt-repository -y ppa:wireguard/wireguard

$ apt update

$ apt -o Dpkg::Options::=--force-confnew \

install -y wireguard

Next, install k3s on each new Hetzner instance. Begin by populating 

the environment variables K3S_CLUSTER_SECRET, the cluster secret 

generated on the master node in the previous section, and K3S_URL, the 

Chapter 11  platforming aiml



443

master node address, in this case master.hc1.apk8s.dev. Pipe the k3s 

installer script to sh along with the command-line argument agent (run as 

nonworker) and a network topology label:

$ export K3S_CLUSTER_SECRET="<PASTE VALUE>"

$ export K3S_URL="https://master.hc1.apk8s.dev:6443"

$ curl -sfL https://get.k3s.io | \

sh -s - agent --no-flannel \

--node-label=\"topology.kubernetes.io/region=nbg1\"

The hc1.apk8s.dev cluster now consists of four nodes, one master 

node at Digital Ocean and three worker nodes at Hetzner. On a local 

workstation with the kubectl configuration file copy and modified in the 

previous section, list the four nodes:

$ export KUBECONFIG=~/.kube/apk8s-hc1

$ kubectl get nodes -o wide

kubectl lists four nodes in the cluster. The cluster lacks a Pod network 

and will therefore report a NotReady status for each node. This chapter 

installs the Kilo Pod network after configuring all eight nodes. The 

following section begins work on the third and final region of the hybrid- 

cluster, the lab.

 On-premises
The term on-premises can mean any specific physical location outside 

a data center or cloud presence. This section continues the build-out of 

a hybrid Kubernetes cluster with a final region called lab. The new lab 

region may be one or more physical locations on a single corporate WAN 

or LAN. The following demonstration configures a single bare-metal server 

with an NVIDIA GPU for processing Machine Learning workloads, along 

with three Raspberry Pi devices used to collect data from onboard sensors.

Chapter 11  platforming aiml



444

 GPU

The following example GPU server uses a generic motherboard, Intel CPU, 

120 GB SSD drive, and 16 GB of memory, and an NVIDIA GeForce 1070 

(Gaming) GPU.6 NVIDIA does not license drivers for GeForce 1070 GPUs 

for use in data centers. However, these cards are inexpensive and suitable 

for small-scale on-premises experimentation and testing. Organizations 

looking to utilize NVIDIA hardware for production should carefully 

examine NVIDIA’s licensing terms. Refer to NVIDIA’s line of Cloud and 

data center hardware for production-scale machine learning.7

NVIDIA GPU models typically offered by public clouds include the 

K80, P100, and V100.

GPU/CUDA

NVIDIA GPUs are popular for Machine Learning projects due to the broad 

support for CUDA8 across major frameworks and software libraries. CUDA 

(Compute Unified Device Architecture) is NVIDIA’s proprietary API and 

is only supported by NVIDIA GPUs. CUDA’s open alternative is OpenCL9 

supported on both NVIDIA and AMD GPUs. However, there is limited 

support for open OpenCL in the data science ecosystem and no support by 

the most popular frameworks, TensorFlow and PyTorch, as of 2020.10

6 www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1070/
7 www.nvidia.com/en-us/data-center/
8 https://developer.nvidia.com/cuda-zone
9 www.khronos.org/opencl/
10 Dimolarov, Nikolay. “On the State of Deep Learning Outside of CUDA’s  

Walled Garden.” Blog. Towards Data Science, June 4, 2019.  
https://towardsdatascience.com/on-the-state-of-deep-learning-
outside-of-cudas-walled-garden-d88c8bbb4342.

Chapter 11  platforming aiml

http://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1070/
http://www.nvidia.com/en-us/data-center/
https://developer.nvidia.com/cuda-zone
http://www.khronos.org/opencl/
https://towardsdatascience.com/on-the-state-of-deep-learning-outside-of-cudas-walled-garden-d88c8bbb4342
https://towardsdatascience.com/on-the-state-of-deep-learning-outside-of-cudas-walled-garden-d88c8bbb4342


445

Install Ubuntu

The following example created a fresh install of Ubuntu 18.04.4 for a new 

or repurposed desktop workstation with an NVIDIA GeForce 1070 GPU.

Download Ubuntu 18.04.4 LTS (Bionic Beaver) 64-bit PC (AMD64) 

server install image11 and create a bootable USB thumb drive.12 This 

example uses an MSI motherboard, where holding down F11 on boot 

launches the Boot Menu; consult the manual for other manufacturers. 

Boot the workstation from the new thumb drive and follow the standard 

installation instructions.

Install WireGuard for Kilo support and rbd kernel module for Ceph 

support:

$ sudo su

$ apt update && apt upgrade -y

$ apt install -y apt-transport-https \

ca-certificates gnupg-agent \

software-properties-common

$ apt install -y linux-headers-$(uname -r)

# Ceph block device kernel module (for Ceph support)

$ modprobe rbd

$ add-apt-repository -y ppa:wireguard/wireguard

$ apt update

$ apt -o Dpkg::Options::=--force-confnew \

install -y wireguard

11 http://releases.ubuntu.com/18.04.4/
12 https://help.ubuntu.com/community/Installation/FromUSBStick

Chapter 11  platforming aiml

http://releases.ubuntu.com/18.04.4/
https://help.ubuntu.com/community/Installation/FromUSBStick


446

Assign a static IP address or reserve a DHCP assigned address and 

forward port 5180 (used for the WireGuard VPN tunnel) from the public 

IP address on an Internet-facing router. Finally, create a DNS A record 

named lab-gpu.hc1.apk8s.dev pointing to the public IP of the on- 

premises Internet router. Use a dynamic DNS service13 if this address is 

likely to change. Kilo is configured later in this chapter to route external 

Pod network traffic to and from any other on-premises nodes through this 

node.

NVIDIA GPU Support

The previous section installed Ubuntu 18.04.4 on a workstation on- 

premises called lab-gpu. The following exercise installs NVIDIA 

GPU drivers along with the nvidia-container-runtime plug-in for 

containerd,14 the default container runtime for k3s.

Execute all the following commands as the root user:

$ sudo su

Update apt, upgrade existing packages, and install common Ubuntu 

driver packages:

$ apt update && apt upgrade -y

$ apt install ubuntu-drivers-common

Enable the Intelligent Platform Management Interface kernel module:

$ modprobe ipmi_devintf

Add the proprietary GPU driver repository to apt:

$ add-apt-repository -y ppa:graphics-drivers

13 https://en.wikipedia.org/wiki/Dynamic_DNS
14 https://containerd.io/

Chapter 11  platforming aiml

https://en.wikipedia.org/wiki/Dynamic_DNS
https://containerd.io/


447

Add NVIDIA’s GPG key to apt:

$ curl -s -L \

   https://nvidia.github.io/nvidia-docker/gpgkey \

   | sudo apt-key add -

Add NVIDIA’s driver repositories to apt:

$ curl -s -L https://nvidia.github.io/nvidia-container-runtime/

ubuntu18.04/nvidia-container-runtime.list | tee /etc/apt/

sources.list.d/nvidia-container-runtime.list

Install NVIDIA packages:

$ apt-get install -y nvidia-driver-440

$ apt-get install -y nvidia-container-runtime

$ apt-get install -y nvidia-modprobe nvidia-smi

Load NVIDIA kernel modules:

$ /sbin/modprobe nvidia

$ /sbin/modprobe nvidia-uvm

After booting the workstation, ensure the nvidia-smi command 

returns results similar to those shown in Figure 11-7:

$ reboot

$ nvidia-smi

Chapter 11  platforming aiml



448

The newly installed workstation now supports an NVIDIA GPU as 

recognized by the operating system and the NVIDIA System Management 

Interface. The next section adds NVIDIA runtime support for containerd.

k3s with NVIDIA Runtime

NVIDIA provides extensive documentation on configuring Docker15 for 

supporting their GPUs, along with a Container Toolkit. Although k3s 

supports Docker, containerd16 is its default container runtime. containerd is 

a component of Docker without the Docker Engine and utilities. This section 

installs k3s and configures containerd with the nvidia-container- runtime.17

Begin by setting the following environment variables: set K3S_

CLUSTER_SECRET to the secret generated when installing the master node; 

set K3S_URL as the URL of the master node; and set INSTALL_K3S_SKIP_

START to true to prevent k3s from starting automatically:

15 https://github.com/NVIDIA/nvidia-docker
16 https://computingforgeeks.com/docker-vs-cri-o-vs-containerd/
17 https://dev.to/mweibel/add-nvidia-gpu-support-to-k3s-with- 
containerd-4j17

Figure 11-7. nvidia-smi output

Chapter 11  platforming aiml

https://github.com/NVIDIA/nvidia-docker
https://computingforgeeks.com/docker-vs-cri-o-vs-containerd/
https://dev.to/mweibel/add-nvidia-gpu-support-to-k3s-with-containerd-4j17
https://dev.to/mweibel/add-nvidia-gpu-support-to-k3s-with-containerd-4j17


449

$ sudo su

$ export K3S_CLUSTER_SECRET="<PASTE VALUE>"

$ export K3S_URL="https://master.hc1.apk8s.dev:6443"

$ export INSTALL_K3S_SKIP_START=true

Use the k3s default installer with parameters and arguments similar 

to those set previously on worker nodes; however, this GPU workstation is 

part of the new on-premises region named lab:

$ curl -sfL https://get.k3s.io | \

sh -s - agent --no-flannel \

--node-label=\"topology.kubernetes.io/region=lab\"

Run the following commands to create or overwrite the config.toml 

in the directory /var/lib/rancher/k3s/agent/etc/containerd/; this new 

configuration instructs containerd to load nvidia-container-runtime 

plug-in and its required runtime type io.containerd.runtime.v1.linux:

$ mkdir -p /var/lib/rancher/k3s/agent/etc/containerd/

$ cat <<"EOF" > \

/var/lib/rancher/k3s/agent/etc/containerd/config.toml

[plugins.opt]

  path = "/var/lib/rancher/k3s/agent/containerd"

[plugins.cri]

  stream_server_address = "127.0.0.1"

  stream_server_port = "10010"

  sandbox_image = "docker.io/rancher/pause:3.1"

[plugins.cri.containerd.runtimes.runc]

  runtime_type = "io.containerd.runtime.v1.linux"

[plugins.linux]

  runtime = "nvidia-container-runtime"

EOF

Chapter 11  platforming aiml



450

Finally, start k3s:

$ systemctl start k3s

The new hc1 Kubernetes hybrid cluster now contains five nodes 

across three regions: nyc3 at Digital Ocean, nbg1 at Hetzner, and now lab 

on-premises. The next section extends the on-premises region with three 

Raspberry Pi devices.

 IoT / Raspberry Pi

Over the last ten chapters, this book has demonstrated various uses for 

Kubernetes in distributed workloads, networking, data processing, and 

data management. Machine Learning–based Artificial Intelligence begins 

with the collection of raw data, and for many projects, devices (also known 

as IoT) collect this data. This section brings IoT into the cluster, specifically 

the popular Raspberry Pi. Raspberry Pi devices make excellent platforms 

for development and prototyping, and a growing number of projects are 

using them in production.18 Raspberry PI devices use an ARM-based19 CPU 

typical for nearly all mobile phones and a growing number of IoT devices.20 

As ARM CPUs have grown in popularity,21 many projects are cross- 

compiled and maintain version executes on x86 and ARM-based systems, 

including Kubernetes.

The hybrid cluster (hc1) developed in this chapter uses k3s. k3s is a 

lightweight yet certified Kubernetes distribution with support for ARM and 

able to run on resource-limited devices. This section demonstrates the 

18 Piltch, Avram, and 2020. “Raspberry Pi to Power Ventilators as Demand for 
Boards Surges.” Tom’s Hardware. Accessed June 26, 2020. www.tomshardware.
com/news/raspberry-pi-ventilators.

19 www.arm.com/products/silicon-ip-cpu
20 www.embedded.com/dev-boards-help-speed-iot-design/
21 https://bgr.com/2020/04/23/arm-based-mac-release-date-apple- 
processor-2021/

Chapter 11  platforming aiml

http://www.tomshardware.com/news/raspberry-pi-ventilators
http://www.tomshardware.com/news/raspberry-pi-ventilators
http://www.arm.com/products/silicon-ip-cpu
http://www.embedded.com/dev-boards-help-speed-iot-design/
https://bgr.com/2020/04/23/arm-based-mac-release-date-apple-processor-2021/
https://bgr.com/2020/04/23/arm-based-mac-release-date-apple-processor-2021/


451

use of Kubernetes as an IoT management platform by providing workload 

scheduling and management, self-healing, networking, and monitoring for 

multiple devices, and unified with on-premises workstations and multiple 

public cloud instances (shown in Figure 11-3).

Raspberry Pi OS

Install22 three Raspberry Pi devices (version 3 or 4) with Raspberry Pi 
OS Lite (32-bit) minimal based on Debian Buster.23 Name the devices 

lab-d1, lab-d2, and lab-d3. The number of devices is optional for the 

examples in this chapter. These devices represent IoT data collection 

sensors within a facility and are attached to a local network (LAN) with 

access to the Internet (see Figure 11-5). Each device requires a private 

static IP address or a DHCP reservation.

WireGuard

Kilo (installed later in this chapter) provides an encrypted Pod network for 

secure communication over the public Internet. Kilo uses WireGuard on 

each node to manage VPN tunnels.

Log in to each Raspberry Pi and install the required packages, 

beginning with updating apt packages and upgrading to the latest versions:

$ sudo su

$ apt-get update && apt-get upgrade

Install kernel headers:

$ apt-get install raspberrypi-kernel-headers

22 www.raspberrypi.org/downloads/
23 https://downloads.raspberrypi.org/raspios_lite_armhf_latest

Chapter 11  platforming aiml

http://www.raspberrypi.org/downloads/
https://downloads.raspberrypi.org/raspios_lite_armhf_latest


452

Next, install WireGuard. WireGuard is available for Raspberry Pi OS 

through the Debian "unstable" distribution repository (containing the 

latest packages):

$ wget -O - https://ftp-master.debian.org/keys/archive-key-

$(lsb_release -sr).asc | sudo apt-key add –

$ printf 'Package: *\nPin: release a=unstable\nPin-Priority: 

150\n' | tee --append /etc/apt/preferences.d/limit-unstable

$ echo "deb http://deb.debian.org/debian/ unstable main" |  

tee --append /etc/apt/sources.list.d/unstable.list

$ apt-get update

$ apt install -y dirmngr wireguard-dkms

$ apt -o Dpkg::Options::=--force-confnew \

install -y wireguard

There are a few good tutorials for installing WireGuard Raspberry Pi if 

any issues arise with the preceding method.24,25,26

k3s on Raspberry Pi

Finally, install k3s on each Raspberry Pi. Start by setting the K3S_CLUSTER_

SECRET with the value generated when installing the master node and set 

the K3S_URL to the master node (on Digital Ocean):

$ sudo su

$ export K3S_CLUSTER_SECRET="<PASTE VALUE>"

$ export K3S_URL="https://master.hc1.apk8s.dev:6443"

24 https://engineerworkshop.com/blog/how-to-set-up-wireguard-on-a- 
raspberry-pi/

25 https://github.com/adrianmihalko/raspberrypiwireguard
26 https://sigmdel.ca/michel/ha/wireguard/wireguard_02_en.html#buster

Chapter 11  platforming aiml

https://engineerworkshop.com/blog/how-to-set-up-wireguard-on-a-raspberry-pi/
https://engineerworkshop.com/blog/how-to-set-up-wireguard-on-a-raspberry-pi/
https://github.com/adrianmihalko/raspberrypiwireguard
https://sigmdel.ca/michel/ha/wireguard/wireguard_02_en.html#buster


453

Install k3s using the default installer with options similar to the 

previous nodes. Set the region topology to lab, assuming these devices 

are in the same facility or local network as the GPU workstation installed 

earlier. Add the parameter --node-taint set to dedicated=pi:NoSchedule. 

Nodes with a NoSchedule taint inform the Kubernetes scheduler only to 

allow Pods with specific tolerations:

$ curl -sfL https://get.k3s.io | \

sh -s - agent --no-flannel \

--node-label=\"topology.kubernetes.io/region=lab\" \

--node-taint="dedicated=pi:NoSchedule"

There are now eight nodes that make up the new hc1 hybrid cluster: 

one master node at Digital Ocean named master within the region nyc3; 

three worker nodes on Hetzner called nbg1-n1, nbg1-n2, and nbg1-n3 

within the region nbg1; and four nodes on-premises called lab-gpu, 

lab-d1, lab-d2, and lab-d3 within the lab region. See Figure 11-5 for an 

overview of the network topology.

The next section sets roles for the nodes for assistance in scheduling.

 Node Roles
A Kubernetes node role is a simple label starting with node-role.

kubernetes.io/<role>. The Pod scheduler is designed by Kubernetes 

to find the best location for Pod. Pods are ephemeral; they may fail or be 

drained from a node and rescheduled to another at any time. However, 

there are times when specialized workloads necessitate additional 

scheduling requirements. In the case of the hc1 cluster defined in this 

chapter, three nodes have the unique role of sensor. Role labels may be 

any value reflective of their operational characteristic.

Chapter 11  platforming aiml



454

The master node already possesses the label master. Label the 

remaining nodes as follows:

$ kubectl label node nbg1-n1 kubernetes.io/role=worker

$ kubectl label node nbg1-n2 kubernetes.io/role=worker

$ kubectl label node nbg1-n3 kubernetes.io/role=worker

$ kubectl label node lab-gpu kubernetes.io/role=worker

$ kubectl label node lab-d1 kubernetes.io/role=sensor

$ kubectl label node lab-d2 kubernetes.io/role=sensor

$ kubectl label node lab-d3 kubernetes.io/role=sensor

Issue the command kubectl get nodes from a local workstation 

and observe output similar to Figure 11-8. The nodes now report their 

intended Roles.

Node status continue to report as NotReady as there is not yet a Pod 

network for them to communicate over. The following section completes 

the hc1 cluster set up by installing the Kilo Pod network.

Figure 11-8. node Roles

Chapter 11  platforming aiml



455

 Install Kilo
The “k3s Hybrid Cloud” section of this chapter began with a detailed 

explanation of Kilo and its role in using WireGuard to create VPN tunnels, 

providing secure, encrypted communication between Pods across a cluster 

spanning three regions over the public Internet. Installing Kilo is the last 

step in setting up the k3s Hybrid Cloud.

At least one node in each region must have an externally accessible 

endpoint.27 The cloud instances on Digital Ocean and Hetzner already 

have public IP addresses. When setting up the GPU workstation, the 

domain lab-gpu.hc1.apk8s.dev resolves to the on-premises Internet 

router and forwards the port 51820 to the GPU workstation on its private 

LAN IP. The three Raspberry Pi devices have private LAN IP addresses and 

are not accessible from the Internet. The following annotations instruct 

Kilo to form VPN tunnels from the GPU workstation to the Raspberry Pi 

devices:

$ kubectl annotate node lab-d1 \

kilo.squat.ai/force-endpoint="lab-gpu.hc1.apk8s.dev:51820"

$ kubectl annotate node lab-d2 \

kilo.squat.ai/force-endpoint="lab-gpu.hc1.apk8s.dev:51820"

$ kubectl annotate node lab-d3 \

kilo.squat.ai/force-endpoint="lab-gpu.hc1.apk8s.dev:51820"

Next, Kilo requires access to the kubectl config for each node in the 

cluster to communicate with the master node. The kilo-k3s.yaml applied 

requires the kubectl config /etc/rancher/k3s/k3s.yaml on each node. The 

master node k3s install generated the file /etc/rancher/k3s/k3s.yaml. 

Download, modify, and distribute this file to the same path on all worker 

and sensor nodes (it does not need modification on the master node):

27 https://github.com/squat/kilo/blob/master/docs/topology.md

Chapter 11  platforming aiml

https://github.com/squat/kilo/blob/master/docs/topology.md


456

$ ssh root@master.hc1.apk8s.dev \

sed "s/127.0.0.1/master.hc1.apk8s.dev/" \ /etc/rancher/k3s/k3s.

yaml >k3s.yaml

Copy the modified k3s.yaml to /etc/rancher/k3s/k3s.yaml on each 

node.

Finally, install Kilo by applying the kilo-k3s.yaml configuration 

manifest:

$ kubectl apply -f \

https://raw.githubusercontent.com/squat/kilo/master/manifests/

kilo-k3s.yaml

A Kilo agent is now running on each node, as shown in Figure 11-9. 

Once Kilo has completed the VPN setup, each node reports as Ready, and 

the new hc1 hybrid cluster is ready for use.

The new hc1 hybrid cluster, as depicted at the beginning of this section 

in Figure 11-3 and Figure 11-5, is ready for applications. The following 

section reviews a sampling of applications used to demonstrate end-to- 

end Machine Learning–based artificial intelligence platforms, from raw 

data collection to inference workloads operating entirely on Kubernetes.

Figure 11-9. Kilo agent Pod on each cluster

Chapter 11  platforming aiml



457

 Platform Applications
This chapter created a new Kubernetes cluster called hc1. The remaining 

examples leverage applications and cluster configurations installed 

in Chapters 3, 5, 6, 7, and 9 (as described in Table 11-1). This chapter 

organizes all configuration manifests under the folder cluster-apk8s-hc1.

The following sections use applications covered in previous chapters: 

Mosquitto (MQTT) to communicate sensor data from Raspberry Pi devices 

(IoT); Apache NiFi to listen to MQTT events, transforming and loading 

Table 11-1. Required configuration and applications from previous 

chapters

Resources Directory Organization

Chapter 3 ingress

Cert manager

Storage

monitoring

000-cluster/00-ingress-nginx

000-cluster/10-cert-manager

000-cluster/20-rook-ceph

000-cluster/30-monitoring

Chapter 5 namespace

mosquitto

Zookeeper

003-data/000-namespace

003-data/050-mqtt

003-data/010-zookeeper

Chapter 6 Keycloak

Jupyterhub

elasticsearch

Kibana

003-data/005-keycloak

005-data-lab/000-namespace

003-data/100-jupyterhub

003-data/030-elasticsearch

003-data/034-kibana

Chapter 7 minio 000-cluster/22-minio

003-data/070-minio

Chapter 9 nifi 003-data/060-nifi

Chapter 11  platforming aiml



458

data (ETL) into Elasticsearch; JupyterHub for working with data and 

developing and training AI models with Machine Learning (AIML) on a 

GPU node; and MinIO for storing Machine Learning models and artifacts.

The chapter uses the following ingress domains: nifi.hc1.apk8s.dev 

for Apache Nifi, hub.hc1.apk8s.dev for JupyterHub, kib.hc1.apk8s.dev 

for Kibana, iam.hc1.apk8s.dev for Keycloak, and minio.hc1.apk8s.dev 

for MinIO.

The next section begins collecting raw data from the Raspberry Pi IoT 

nodes on the cluster.

 Data Collection
The following sections use a Kubernetes DaemonSet object to deploy and 

manage data collection workloads on Raspberry Pi (IoT) devices and a 

CronJob object to deploy ETL workloads performing data aggregation.

 MQTT IoT Client
Many IoT applications follow a traditional model of platform-specific 

software development. Developers write code for a specific device and 

support one or more protocols for communication with the device, 

whether it be collecting sensor data or starting a pot of coffee. However, 

along with Kubernetes, containerization opens up novel approaches to 

IoT application development, deployment, networking, monitoring, and 

control.

The following example deploys a shell script within a Kubernetes 

ConfigMap. A DaemonSet deploys a slim Debian Buster container28 (with 

a command-line MQTT client) on a selected set of (sensor) nodes and 

executes the shell script mounted from the ConfigMap.

28 https://hub.docker.com/_/debian/

Chapter 11  platforming aiml

https://hub.docker.com/_/debian/


459

Create the directory cluster-apk8s-hc1/020-data/220-smon. Within 

the new 220-smon directory, create a file named 20-configmap.yml from 

Listing 11-1.

Listing 11-1. Signal monitor script ConfigMap

apiVersion: v1

kind: ConfigMap

metadata:

  name: smon

  namespace: data

  labels:

    app: smon

data:

  collect.sh: |-

    for (( ; ; ))

    do

      load=$(cat /proc/loadavg | cut -d\  -f 1)

      temp=$(cat /sensor/temp)

      mosquitto_pub \

        -h mqtt.data \

        -i $DEVICE \

        -t sensor/$DEVICE \

        -m "{ \"device\":\"$DEVICE\",\"temp\":$temp, 

\"load\":$load}"

      echo "device: $DEVICE, temp: $temp, load: $load"

    sleep 15

    done

Apply the ConfigMap:

$ kubectl apply -f 20-configmap.yml

Chapter 11  platforming aiml



460

Next, create a DaemonSet for the signal monitor in a file named 

40-daemonset.yml from Listing 11-2. The shell script defined in the 

ConfigMap reads internal sensor data (CPU load and temperature) from 

a Raspberry Pi; developers may follow a similar design for extracting 

external sensor data or controlling attached devices. The DaemonSet uses 

a combination of nodeSelector and tolerations, instructing Kubernetes 

to schedule this container on all Raspberry Pi sensor devices.

Listing 11-2. Signal monitor DaemonSet deployment

apiVersion: apps/v1

kind: DaemonSet

metadata:

  name: smon

  namespace: data

  labels:

    app: smon

    component: sensor

spec:

  selector:

    matchLabels:

      name: smon

  template:

    metadata:

      labels:

        name: smon

        component: sensor

    spec:

      nodeSelector:

        kubernetes.io/role: sensor

      tolerations:

        - key: dedicated

Chapter 11  platforming aiml



461

          value: pi

          effect: NoSchedule

      containers:

        - name: smon

          image: apk8s/mosquitto-clients:1.5.7_1

          command: ["/bin/bash",

                    "/scripts/collect.sh"]

          env:

            - name: DEVICE

              valueFrom:

                fieldRef:

                  fieldPath: spec.nodeName

          securityContext:

            privileged: true

          volumeMounts:

            - name: scripts

              mountPath: /scripts

            - name: sensor

              mountPath: /sensor

          resources:

            limits:

              memory: 200Mi

            requests:

              cpu: 50m

              memory: 200Mi

      volumes:

        - name: sensor

          hostPath:

            path: /sys/class/thermal/thermal_zone0/

        - name: scripts

          configMap:

            name: smon

Chapter 11  platforming aiml



462

Apply the DaemonSet:

$ kubectl apply -f 40-daemonset.yml

The DaemonSet uses the image apk8s/mosquitto-clients:1.5.7_1 that 

generated the Dockerfile in Listing 11-3.

Listing 11-3. MQTT Client Dockerfile

FROM debian:buster-slim

RUN apt-get update \

 && apt-get install -y mosquitto-clients curl \

 && apt-get clean

The three Raspberry Pi devices now report their CPU load and 

temperature every 15 seconds to the MQTT broker running in the cluster 

under the topic /sensor/DEVICE_NAME. The next section uses Apache 

NiFi to create a directed data processing graph, listening to all messages 

published in the /sensor topic, processing the data, and loading it as time 

series data into Elasticsearch for indexing an analysis.

 ETL
The previous section implemented a DaemonSet executing a shell 

script responsible for scraping metrics from Raspberry Pi devices every 

15 seconds. The previous shell script publishes its results as JSON 

into the MQTT topic /sensor/DEVICE_NAME. The following sections 

use Apache Nifi to extract the MQTT messages, transform them, and 

load them into Elasticsearch for indexing and a Python script with a 

Kubernetes CronJob to create CSV objects from ranges of collected data 

for long-term object storage.

Chapter 11  platforming aiml



463

 Apache NiFi
Chapter 9 introduced Apache NiFi for use in data routing and transformation; 

review Chapter 9 for installation instructions and an overview of concepts. 

The following example uses the NiFi processors ConsumeMQTT, 

JoltTransformJSON, and PutElasticsearchHttp as depicted in Figure 11-10.

Create a ConsumeMQTT processor and set the properties Broker URI 

to tcp://mqtt:1883, Topic Filter to sensor/+, and Max Queue Size to 1000.

Use the advanced button to configure the processor with the Jolt 

transformation language from Listing 11-4.

Listing 11-4. Jolt transformation

[

  {

    "operation": "default",

    "spec": {

      "collected": "${now():toNumber()}"

    }

  },

Figure 11-10. NiFi MQTT transformation and Elasticsearch loading

Chapter 11  platforming aiml



464

  {

    "operation": "modify-overwrite-beta",

    "spec": {

      "collected": "=toLong"

    }

  }

]

Test the transformation by pasting sample data retrieved from MQTT 

into the JSON input field (see Figure 11-11):

{"device":"lab-d1","temp":51540, "load":0.37}

Figure 11-11. NiFi Jolt transformation specification

Chapter 11  platforming aiml



465

Finally, add a PutElasticsearchHttp processor and connect the output 

from the JoltTransformJSON processor. Configure PutElasticsearchHttp 

with the properties Elasticsearch URL set to http://elasticsearch:9200, 

Index set to sensor-${now():format('yyyy-MM')}, and Type to _doc.

The previous steps created a small ETL pipeline with Apache Nifi, 

extracting from MQTT, and transforming messages by augmenting JSON 

data with an additional field and loading each transformed message into 

Elasticsearch as time-series data for indexing and analysis.

 Python CronJob
Data Science and specifically Machine Learning research need static 

data sets for experimentation and training. Reproducible results for 

refining and sharing research typically require the ability to couple 

source code with data used in its development. While time-series data 

stored in Elasticsearch is unlikely to change, sharing database access 

with internal and external teams presents additional challenges. Creating 

CSV snapshots of indexed data and loading them onto distributed object 

storage provides a compelling option for storing and sharing persistent, 

long-term data across teams and projects.

This section demonstrates the use of a Kubernetes CronJob for ETL 

activities. The following examples extract the last hour of indexed data 

from Elasticsearch (see Chapter 6), serializing the data as a CSV file and 

loading it into MinIO (see Chapter 7) distributed object storage.

Begin by creating a Python script that extracts the last hour of sensor 

data from Elasticsearch, converts it to a CSV, and loads it into MinIO. Add 

the new Python script as a value in a Kubernetes ConfigMap. Create 

the directory cluster-apk8s-hc1/020-data/500-jobs. Within the new 

500- jobs directory, create a file named 01-configmap-hrdump.yml from 

Listing 11-5.

Chapter 11  platforming aiml



466

Listing 11-5. ConfigMap with Python data dump script

apiVersion: v1

kind: ConfigMap

metadata:

  name: hrdump

  namespace: data

  labels:

    app: hrdump

data:

  hrdump.py: |-

    import requests

    import pandas as pd

    import boto3

    import datetime

    import os

    d = datetime.datetime.now()

    idx = f"sensor-{d.year}-{d.month:02d}"

    query = {

      "size": 10000,

      "query": {

        "range" : {

          "collected" : {

              "gte" : "now-1h"

          }

        }

      }

    }

Chapter 11  platforming aiml



467

    r = requests.post(

        f'http://elasticsearch.data:9200/{idx}/_search',

        json=query

    )

    df = pd.DataFrame()

    for rec in r.json()['hits']['hits']:

        df = df.append(rec['_source'], ignore_index=True)

    csv_data = df.to_csv(index_label="idx")

    s3 = boto3.client('s3',

      endpoint_url='http://minio-internal-service.data:9000',

      aws_access_key_id=os.environ['ACCESS_KEY_ID'],

      aws_secret_access_key=os.environ['ACCESS_KEY'],

      region_name='')

    try:

        s3.create_bucket(Bucket='sensor-hourly')

    except s3.exceptions.BucketAlreadyOwnedByYou:

        print("Bucket Exists")

    except:

        print("Unknown bucket error")

    filename = d.strftime("%Y/%m-%d-%H.csv")

     s3.put_object(Bucket='sensor-hourly', Key=filename, 

Body=csv_data)

    print(f"Added object {filename} to bucket sensor-hourly")

Apply the ConfigMap:

$ kubectl apply -f 01-configmap-hrdump.yml

Chapter 11  platforming aiml



468

The Python script in the ConfigMap requires a container with Python 

preinstalled with required libraries. Before creating a custom container, 

start with adding the required Python packages29 and versions into a file 

named requirements.txt as shown in Listing 11-6.

Listing 11-6. Python data dump script requirements.txt

boto3==1.13.18

botocore==1.16.18

certifi==2020.4.5.1

chardet==3.0.4

docutils==0.15.2

idna==2.9

jmespath==0.10.0

numpy==1.18.4

pandas==1.0.3

python-dateutil==2.8.1

pytz==2020.1

requests==2.23.0

s3transfer==0.3.3

six==1.15.0

urllib3==1.25.9

Next, create a Dockerfile (see Listing 11-7) based on python:slim- 

buster, copy requirements.txt into the container image, and use pip to 

install the needed Python libraries. Build and push the new container 

to a public or private container registry (or use the public image apk8s/

pyreqobj:0.0.1 built for this example).

29 https://pip.pypa.io/en/stable/reference/pip_freeze/

Chapter 11  platforming aiml

https://pip.pypa.io/en/stable/reference/pip_freeze/


469

Listing 11-7. Python Dockerfile with requirements

FROM python:slim-buster

COPY requirements.txt .

RUN pip install -r requirements.txt

Finally, create Kubernetes CronJob30 in a file named 01-cronjob- 

hrdump.yml from Listing 11-8. The CronJob creates a Pod with the custom 

Python container (developed earlier), mounts the ConfigMap into the /

scripts directory, and populates ACCESS_KEY_ID and ACCESS_KEY with 

credentials for MinIO. The CronJob runs one minute after every hour.

Listing 11-8. Python data dump hourly CronJob

apiVersion: batch/v1beta1

kind: CronJob

metadata:

  name: hrdump

  namespace: data

spec:

  schedule: "1 * * * *"

  jobTemplate:

    spec:

      template:

        spec:

          restartPolicy: OnFailure

          containers:

            - name: hrdump

              image: apk8s/pyreqobj:0.0.1

30 https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

Chapter 11  platforming aiml

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/


470

              command: [

                  "/usr/local/bin/python",

                  "/scripts/hrdump.py"

              ]

              env:

                - name: ACCESS_KEY_ID

                  valueFrom:

                    secretKeyRef:

                      name: minio-creds-secret

                      key: accesskey

                - name: ACCESS_KEY

                  valueFrom:

                    secretKeyRef:

                      name: minio-creds-secret

                      key: secretkey

              volumeMounts:

                - name: scripts

                  mountPath: /scripts

          volumes:

            - name: scripts

              configMap:

                name: hrdump

Apply the CronJob:

$ kubectl apply -f 01-cronjob-hrdump.yml

Leveraging CronJobs in Kubernetes for scheduled execution brings all 

the advantages of Kubernetes container orchestration, including resource 

scheduling, network, and service abstraction, self-healing, monitoring, 

and more. CronJobs, although simplistic in their implementation, can fill 

an essential role for even complex ETL operations within any Kubernetes- 

based data management platform.

Chapter 11  platforming aiml



471

The majority of this chapter and book focus on Kubernetes as a 

platform capable of interconnecting a wide range of data applications 

and reducing the conceptual distance between raw data collection, ETL 

operations, data access, and data science activities.

The remainder of this chapter focuses on Machine Learning tools for 

constructing, training, tracking, storing, and serving Machine Learning–

based artificial intelligence models with Kubernetes.

 Machine Learning Automation
Machine Learning Automation, also known as AutoML,31 is a rapidly 

evolving field of software engineering, with new projects beginning to 

leverage Kubernetes specifically. Kubeflow32 and Pachyderm33 stand 

out as specially designed for running their containerized workloads 

on Kubernetes. Both projects tackle two significant areas of AutoML: 

the automation of model training (hyperparameter tuning, algorithm 

selection, and model assessment) and model serving. These projects 

consist of several components brought together to standardize AutoML 

workflows.

Kubeflow and Pachyderm support installation into existing Kubernetes 

clusters, such as those demonstrated in this book, with some limitations 

on supported versions of Kubernetes. Kubeflow and Pachyderm are 

both worth researching as candidates for any enterprise-grade AutoML 

platform.

31 Hwang, Yitaek. “What Is AutoML? Promises vs. Reality.” Blog. 
IoT For All (blog), March 29, 2018. www.iotforall.com/
what-is-automl-promises-vs-realityauto/.

32 www.kubeflow.org/
33 www.pachyderm.com/

Chapter 11  platforming aiml

http://www.iotforall.com/what-is-automl-promises-vs-realityauto/
http://www.iotforall.com/what-is-automl-promises-vs-realityauto/
http://www.kubeflow.org/
http://www.pachyderm.com/


472

This section demonstrates a subset of AutoML components through 

the project MLflow,34 suitable for a more focused exhibition of model 

tracking and serving. The chapter ends with an example of Seldon Core35 

(also used in Kubeflow) for production model deployment.

 Jupyter Notebook GPU Support
Earlier, this chapter introduced a GPU-equipped workstation as a node in 

the new hc1 hybrid Kubernetes cluster, installed NVIDIA operating system 

drivers, and enabled NVIDIA container runtime support. This section 

covers methods for developing Jupyter Notebook containers with access to 

NVIDIA’s CUDA GPU drivers on the host node.

The Jupyter Docker Stacks36 project maintains a set of prebuilt 

containers with Jupyter applications and various assortments of data 

science, machine learning, statistics libraries, and support for multiple 

kernels, including Python, Julia, and R.

Docker Stacks’s prebuilt containers consist of the essential tools 

needed for everyday data science activities and suitable base containers 

for developing more specialized environments.

One approach to creating containers similar to the Jupyter Docker 

Stacks project begins with NVIDIA’s CUDA 10.1 (Ubuntu 18.04) container 

and adding layers supporting any required libraries and applications. 

The gpu-jupyter37 project on GitHub has automated this method and is 

great for experimenting and exploring the construction of GPU-enabled 

Jupyter containers. By default, gpu-jupyter starts with NVIDIA’s CUDA 

container, clones the Jupyter Docker Stacks repository, and aggregates the 

layers of each Dockerfile into one new Dockerfile (just under 500 lines).  

34 https://MLflow.org/
35 www.seldon.io/
36 https://github.com/jupyter/docker-stacks
37 https://github.com/iot-salzburg/gpu-jupyter

Chapter 11  platforming aiml

https://mlflow.org/
http://www.seldon.io/
https://github.com/jupyter/docker-stacks
https://github.com/iot-salzburg/gpu-jupyter


473

The generated Dockerfile is an excellent template for adding and 

removing functionality; however, be aware that building it as is will result 

in a >14 gigabyte container image.

 CUDA Data Science Container

Create a new CUDA Jupyter data science container. First, clone the GitHub 

project gpu-jupyter:

$ git clone \

https://github.com/iot-salzburg/gpu-jupyter.git

$ cd gpu-jupyter

Next, generate a Dockerfile based on NVIDIA’s CUDA 10.1 running 

Ubuntu 18.04 and aggregating Dockerfile configs from Jupyter Docker 

Stacks:

$ ./generate-Dockerfile.sh

$ cd .build

Finally, edit the generated Dockerfile or leave as is. Build with a tag, in 

this case apk8s/jupyter-ds:cuda-10.1, and push:

$ docker build -t apk8s/jupyter-ds:cuda-10.1 .

$ docker push apk8s/jupyter-ds:cuda-10.1

Building this enormous container may take from several minutes to 

hours, depending on the speed and resources allocated to the Docker 

daemon on the local workstation.

The following section uses this container as an option provided by 

JupyterHub.

Chapter 11  platforming aiml



474

 JupyterHub Spawner Options

Chapter 6 introduced JupyterHub as a means to provision Jupyter 

containers for users. Install JupyterHub into the new hc1 cluster (set up 

earlier in this chapter) with an updated singleuser section for the values.

yml (used to configure the Helm chart). Replace the singleuser section 

with the contents of Listing 11-9.

Listing 11-9. Updated singleuser configuration for JupyterHub

singleuser:

  image:

    name: apk8s/datalab

    tag: v0.0.5

  defaultUrl: "/lab"

  storage:

    dynamic:

      storageClass: rook-ceph-block

      capacity: 10Gi

  extraEnv:

    MLFLOW_TRACKING_URI: "http://mlflow.data:5000"

     MLFLOW_S3_ENDPOINT_URL: "http://minio-internal-service.

data:9000"

  profileList:

    - display_name: "DataLab Environment"

      description: "Python, Julia, Octave and R."

      default: true

    - display_name: "GPU Data Science Environment."

      description: "Data science applications and libraries 

with cuda-10.1 support."

      kubespawner_override:

        image: apk8s/jupyter-ds:cuda-10.1

Chapter 11  platforming aiml



475

        extra_resource_guarantees:

          nvidia.com/gpu: "1"

        extra_resource_limits:

          nvidia.com/gpu: "1"

The new singleuser configuration creates a profileList, providing 

the user with options for selecting a Jupyter environment.38 The first entry 

is the default data science container used in Chapter 6; the second option 

is the new apk8s/jupyter-ds:cuda-10.1 GPU-enabled container built in 

the previous section. The key extra_resource_guarantees informs the 

Kubernetes scheduler to place the container on a node with at least one 

GPU available. The key extra_resource_limits ensures that users do 

not get access to more than one GPU. The environment variables MLFLOW_

TRACKING_URI and MLFLOW_S3_ENDPOINT_URL are used later in this chapter.

The following section uses this new GPU data science container to 

develop machine learning models. It introduces MLflow to track their 

learning progress and submit the models to a registry.

 Model Development
Machine Learning model development is similar to any software 

development—a desire by an organization or individual to solve a 

problem, increase productivity, or create new value. In data science, 

the raw material is data and the potential value that may exist in it. This 

book demonstrates the ability to offer a large stack of data management 

applications alongside data science environments.

Machine Learning is a diverse field with a vast ecosystem of 

technology, terminology, and practices. This book does not cover the 

development of Machine Learning models, as this is a fast-moving field 

38 https://zero-to-jupyterhub.readthedocs.io/en/latest/customizing/
user-environment.html

Chapter 11  platforming aiml

https://zero-to-jupyterhub.readthedocs.io/en/latest/customizing/user-environment.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/customizing/user-environment.html


476

with new frameworks and techniques introduced continuously. However, a 

few patterns have arisen over the years that lend themselves to automation 

and, along with containerization, make an excellent fit for Kubernetes. 

The remaining sections cover the four components of Machine Learning 

automation: tracking models, versioning and storing models, serving 

models, and deploying inference workloads (APIs) that use them.

 MLflow

MLflow39 is an open source machine learning platform initially developed 

by Databricks40 and donated (in 2020) to the Linux Foundation. MLflow, 

with over two million downloads a month,41 has been quickly advancing in 

adoption by the machine learning community.

The remainder of this section installs MLflow into the new hc1 

Kubernetes cluster built earlier in this chapter. The following examples use 

MinIO (see Chapter 7) as S3-compatible object storage used by MLflow 

for models and artifact storage,42 and a Jupyter environment (see the 

previous section of this chapter) for developing models and interacting 

with MLflow.

Installation

MLflow supports local and cloud-based operation. Sharing an MLflow 

instance on Kubernetes requires a containerized version. Create a new 

MLflow container by first creating a requirements.txt file with the contents 

of Listing 11-10.

39 https://MLflow.org/
40 https://databricks.com/
41 MSV, Janakiram. “Databricks Donates MLflow Project To Linux Foundation.” 

Forbes. June 25, 2020. www.forbes.com/sites/janakirammsv/2020/06/25/
databricks-donates-MLflow-project-to-linux-foundation/.

42 https://docs.paperspace.com/machine-learning/wiki/artifacts

Chapter 11  platforming aiml

https://mlflow.org/
https://databricks.com/
http://www.forbes.com/sites/janakirammsv/2020/06/25/databricks-donates-MLflow-project-to-linux-foundation/
http://www.forbes.com/sites/janakirammsv/2020/06/25/databricks-donates-MLflow-project-to-linux-foundation/
https://docs.paperspace.com/machine-learning/wiki/artifacts


477

Listing 11-10. MLflow container requirements.txt

mlflow==1.8.0

awscli==1.18.65

boto3==1.13.15

Next, in the same directory as the requirements.txt, create a Dockerfile 

with contents of Listing 11-11.

Listing 11-11. MLflow Dockerfile

FROM python:slim-buster

COPY requirements.txt /requirements.txt

RUN pip install -r /requirements.txt

ENV PORT 5000

ENTRYPOINT ["mlflow"]

Next, build and push the MLflow container:

$ docker build -t apk8s/mlflow:1.8.0-v0 .

$ docker push apk8s/mlflow:1.8.0-v0

Next, configure Kubernetes with MLflow. Create the directory 

cluster-apk8s-hc1/020-data/800-mlflow. Within the new 800-MLflow 

directory, create a file named 10-service.yml from Listing 11-12.

Listing 11-12. MLflow Service

apiVersion: v1

kind: Service

metadata:

  name: mlflow

  namespace: data

  labels:

    app: mlflow

Chapter 11  platforming aiml



478

spec:

  selector:

    app: mlflow

  ports:

    - protocol: "TCP"

      port: 5000

      targetPort: 5000

  type: ClusterIP

Apply the Service:

$ kubectl apply -f 10-service.yml

Next, create a StatefulSet for MLflow in a file named 40-statefulset.

yml from Listing 11-13. The StatefulSet configuration uses the new MLflow 

container created earlier. It sets the environment variables MLFLOW_S3_

ENDPOINT_URL to the service endpoint of the MinIO cluster running on hc1 

(in the data namespace), AWS_ACCESS_KEY_ID, and AWS_SECRET_ACCESS_

KEY mounted from a Kubernetes secret containing MinIO credentials. 

MLflow uses these environment variables to access object storage for 

models and artifacts.

Listing 11-13. MLflow StatefulSet

apiVersion: apps/v1

kind: StatefulSet

metadata:

  name: mlflow

  namespace: data

  labels:

    app: mlflow

spec:

  serviceName: mlflow

  replicas: 1

Chapter 11  platforming aiml



479

  revisionHistoryLimit: 1

  selector:

    matchLabels:

      app: mlflow

  template:

    metadata:

      labels:

        app: mlflow

    spec:

      containers:

        - name: mlflow

          image: apk8s/mlflow:1.8.0-v0

          imagePullPolicy: IfNotPresent

          args: [

            "server",

            "--backend-store-uri=sqlite:///MLflow/data.db",

            "--default-artifact-root=s3://MLflow/artifacts",

            "--expose-prometheus=/metrics",

            "--host=0.0.0.0",

            "--port=5000"

          ]

          env:

            - name: MLFLOW_S3_ENDPOINT_URL

              value: http://minio-internal-service.data:9000

            - name: AWS_ACCESS_KEY_ID

              valueFrom:

                secretKeyRef:

                  name: minio-creds-secret

                  key: accesskey

            - name: AWS_SECRET_ACCESS_KEY

              valueFrom:

Chapter 11  platforming aiml



480

                secretKeyRef:

                  name: minio-creds-secret

                  key: secretkey

          volumeMounts:

            - name: mlflow-data-volume

              mountPath: /mlflow

          ports:

            - name: http

              containerPort: 5000

  volumeClaimTemplates:

    - metadata:

        name: mlflow-data-volume

      spec:

        storageClassName: rook-ceph-block

        accessModes: [ ReadWriteOnce ]

        resources:

          requests:

            storage: 10Gi

Apply the StatefulSet:

$ kubectl apply -f 10-service.yml

Next, create an Ingress for MLflow in a file named 50-ingress.

yml from Listing 11-14. This demonstration uses Basic Auth43 for simple 

password protection of the public ingress. However, for advanced 

authentication support, consider writing a plug-in.44

43 https://imti.co/kubernetes-ingress-basic-auth/
44 www.mlflow.org/docs/latest/plugins.html#writing-your-own-mlflow- 
plugins

Chapter 11  platforming aiml

https://imti.co/kubernetes-ingress-basic-auth/
http://www.mlflow.org/docs/latest/plugins.html#writing-your-own-mlflow-plugins
http://www.mlflow.org/docs/latest/plugins.html#writing-your-own-mlflow-plugins


481

Listing 11-14. MLflow Ingress

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

  name: mlflow

  namespace: data

  annotations:

    cert-manager.io/cluster-issuer: letsencrypt-production

    kubernetes.io/ingress.class: traefik

    ingress.kubernetes.io/auth-type: "basic"

    ingress.kubernetes.io/auth-secret: "sysop-basic-auth"

spec:

  rules:

    - host: mlflow.hc1.apk8s.dev

      http:

        paths:

          - backend:

              serviceName: mlflow

              servicePort: 5000

            path: /

  tls:

    - hosts:

       - mlflow.hc1.apk8s.dev

      secretName: mlflow-production-tls

Apply the Ingress:

$ kubectl apply -f 50-ingress.yml

MLflow is now available on the hc1 cluster at the service endpoint 

mlflow.data:5000 and the publicly accessible web-based user interface 

https://mlflow.hc1.apk8s.dev. The next sections demonstrate the use 

of MLflow for tracking, storing, and versioning models.

Chapter 11  platforming aiml

https://mlflow.hc1.apk8s.dev


482

Tracking Models

Machine Learning model development involves detailed record- 

keeping throughout the process. Data scientists modify source code, 

hyperparameters, and training data, all to achieve higher-quality models. 

Tracking the parameters, code versions, output metrics, and artifacts 

associated with a resulting model is key to efficient and stable Machine 

Learning development. MLflow, installed in the previous section, exposes 

an API endpoint for tracking model development at http://mlflow.

data:5000.

Open a Jupyter environment from JupyterHub running in the new hc1 

cluster (https://hub.hc1.apk8s.dev/).

Note for brevity, the following examples do not use gpU; however, 
using the new gpU-enabled environment (configured in this chapter), 
more advanced readers may adapt the following examples to 
tensorflow or pytorch. additionally, more advanced users may want 
to experiment with the raspberry pi sensor data collected and stored 
(earlier in this chapter) in elasticsearch and minio.

The following exercise is an adaptation of an official MLflow tutorial45,46 

using the scikit-learn ElasticNet47 linear regression model using the Wine 

Quality Data Set.48

45 https://github.com/mlflow/mlflow/blob/master/examples/sklearn_
elasticnet_wine/train.ipynb

46 www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
47 https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.ElasticNet.html

48 P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine 
preferences by data mining from physicochemical properties. In Decision 
Support Systems, Elsevier, 47(4):547-553, 2009.

Chapter 11  platforming aiml

http://mlflow.data:5000
http://mlflow.data:5000
https://hub.hc1.apk8s.dev/
https://github.com/mlflow/mlflow/blob/master/examples/sklearn_elasticnet_wine/train.ipynb
https://github.com/mlflow/mlflow/blob/master/examples/sklearn_elasticnet_wine/train.ipynb
http://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html


483

Add each of the following code blocks as individual cells in a new 

Python 3 Jupyter Notebook.

First, install the following packages:

!pip install mlflow==1.8.0

!pip install scikit-learn==0.23.1

!pip install boto3==1.10.35

Next, MLflow requires the following environment variables: MLFLOW_

TRACKING_URI to access the API server; MLFLOW_S3_ENDPOINT_URL to 

upload models and artifacts; and AWS_ACCESS_KEY_ID and AWS_SECRET_

ACCESS_KEY containing credentials to the MLFLOW_S3_ENDPOINT_URL. 

There are various ways to set environment variables accessible by Jupyter 

Notebooks through JupyterHub (see JupyterHub singleuser configuration 

in the previous section). These values may also be set directly in the 

Jupyter Notebook for testing and debugging purposes only; do not set S3 

credentials within source code for production work:

import os

# api and object access

os.environ['MLFLOW_TRACKING_URI'] = "http://mlflow.data:5000"

os.environ['MLFLOW_S3_ENDPOINT_URL'] = "http://minio-hl-svc.

data:9000"

# minio credentials

os.environ['AWS_ACCESS_KEY_ID'] = "REDACTED"

os.environ['AWS_SECRET_ACCESS_KEY'] = "REDACTED"

Next, import required packages and set a seed for NumPy random to 

aid in reproducing results:

import pandas as pd

import numpy as np

Chapter 11  platforming aiml



484

from sklearn.metrics import mean_squared_error, mean_absolute_

error, r2_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import ElasticNet

from urllib.parse import urlparse

import mlflow

import mlflow.sklearn

np.random.seed(70)

Next, create a function for evaluating model performance:

def eval_metrics(actual, pred):

    rmse = np.sqrt(mean_squared_error(actual, pred))

    mae = mean_absolute_error(actual, pred)

    r2 = r2_score(actual, pred)

    return rmse, mae, r2

Next, download and split data into training and test sets:

csv_url =\

    'http://archive.ics.uci.edu/ml/machine-learning-databases/

wine-quality/winequality-red.csv'

data = pd.read_csv(csv_url, sep=';')

train, test = train_test_split(data)

Next, prepare test and training sets by separating the quality column:

train_x = train.drop(["quality"], axis=1)

test_x = test.drop(["quality"], axis=1)

train_y = train[["quality"]]

test_y = test[["quality"]]

Chapter 11  platforming aiml



485

Next, create a new MLflow experiment if one does not exist:

experiment_name = 'SkLearnWineQuality'

experiment = mlflow.get_experiment_by_name(experiment_name)

if experiment == None:

    mlflow.create_experiment(experiment_name)

    experiment = mlflow.get_experiment_by_name(experiment_name)

mlflow.set_experiment(experiment.name)

Next, train the model, logging metrics, and parameters to MLflow, 

along with trained model and source code:

alpha = 1

l1_ratio = 2.5

with mlflow.start_run() as run:

    mlflow.set_tags({

        "mlflow.user": "apk8s",

        "mlflow.source.type": "NOTEBOOK",

        "mlflow.source.name": "SkLearnWineQuality",

    })

    lr = ElasticNet(

        alpha=alpha,

        l1_ratio=l1_ratio,

        random_state=42

    )

    lr.fit(train_x, train_y)

    predicted_qualities = lr.predict(test_x)

    (rmse, mae, r2) = eval_metrics(

        test_y, predicted_qualities)

Chapter 11  platforming aiml



486

    print("Elasticnet model (alpha=%f, l1_ratio=%f):"

          % (alpha, l1_ratio))

    print("  RMSE: %s" % rmse)

    print("  MAE: %s" % mae)

    print("  R2: %s" % r2)

    mlflow.log_param("alpha", alpha)

    mlflow.log_param("l1_ratio", l1_ratio)

    mlflow.log_metric("rmse", rmse)

    mlflow.log_metric("r2", r2)

    mlflow.log_metric("mae", mae)

    mlflow.log_artifact("SkLearnWineQuality.ipynb")

    mlflow.sklearn.log_model(lr, "model",

                              registered_model_

name="SkLearnWineModel")

mlflow.end_run()

Each run of the previous code results in a new entry into the 

SkLearnWineQuality experiment. Browse to https://mlflow.hc1.

apk8s.dev/ and navigate to the experiment. From there, observe the 

various runs and their results (see Figure 11-12).

Chapter 11  platforming aiml

https://mlflow.hc1.apk8s.dev/
https://mlflow.hc1.apk8s.dev/


487

Click a run entry to view details along with artifacts associated with 

the run, including, in this case, a model package49 and source code (see 

Figure 11-13).

49 https://mlflow.org/docs/latest/models.html

Figure 11-12. MLflow logged training/experiments

Figure 11-13. MLflow packaged model

Chapter 11  platforming aiml

https://mlflow.org/docs/latest/models.html


488

MLflow brings essential Machine Learning components, further 

closing the gap between raw data and machine learning–based artificial 

intelligence. At this point, the new hc1 Kubernetes hybrid cluster supports 

the gathering of raw data from IoT devices, a GPU-enabled node, and 

multiple cloud instances providing ingress, distributed storage, databases, 

ETL, and Machine Learning development applications.

The final step in Machine Learning development is production 

deployment, covered in the following section.

 Deploy Artificial Intelligence
The method of deployment for machine learning models often depends on 

the problem domain, business requirements, and existing infrastructure. 

However, a few projects have gained significant traction in moving toward 

standardization, specifically the open source50 project Seldon Core.

 Seldon Core

This final section covers the deployment of Machine Learning–based 

models with Seldon Core. Seldon Core is an open source model 

deployment controller for Kubernetes. Seldon Core integrates well with 

established model packing standards, offering prebuilt inference servers, 

including supporting MLflow,51 scikit-learn, TensorFlow, and XGBoost, 

and provides an interface for building custom inference servers. This 

section uses only a small set of Seldon Core’s features needed to deploy the 

simple machine learning model built in the previous section.

50 Housley, Alex. “Our First Year Open-Sourcing Machine Learning.” Medium, 
April 3, 2016. https://medium.com/seldon-open-source-machine-learning/
our-first-year-open-sourcing-machine-learning-59241f2f0dd0.

51 https://docs.seldon.io/projects/seldon-core/en/v1.1.0/servers/
MLflow.html

Chapter 11  platforming aiml

https://medium.com/seldon-open-source-machine-learning/our-first-year-open-sourcing-machine-learning-59241f2f0dd0
https://medium.com/seldon-open-source-machine-learning/our-first-year-open-sourcing-machine-learning-59241f2f0dd0
https://docs.seldon.io/projects/seldon-core/en/v1.1.0/servers/MLflow.html
https://docs.seldon.io/projects/seldon-core/en/v1.1.0/servers/MLflow.html


489

At the time of this writing, Seldon Core does not support the 

Kubernetes 1.18 used by the hc1 cluster developed in this chapter. 

However, Seldon Core is an active project, and support for the newest 

Kubernetes versions is not far behind. However, this minor limitation 

presents the opportunity to configure an additional cluster called c2, in 

this case, a single-node k3s cluster on Linode.52

Create one Linode instance with 4 CPU, 8 GB RAM, and 160 GB 

storage, running Ubuntu 18.04, and to keep with the global theme, use the 

Tokyo 2 region. Name the server tokyo2-1 and create DNS A entries for 

tokyo2-1.c2.apk8s.dev and *.c2.apk8s.dev pointing to its public IP.

Instruct k3s to install Kubernetes v1.17:

$ export INSTALL_K3S_VERSION=v1.17.7+k3s1

Create and save a cluster secret, needed for expanding this cluster with 

additional nodes:

$ export K3S_CLUSTER_SECRET=$(head -c48 /dev/urandom | base64)

# copy the echoed secret

$ echo $K3S_CLUSTER_SECRET

Install k3s:

$ curl -sfL https://get.k3s.io | sh -s – server

Download the k3s kubectl config file to a local workstation:

$ scp root@tokyo2-1.c2.apk8s.dev:/etc/rancher/k3s/k3s.yaml   

~/.kube/apk8s-c2

52 www.linode.com/

Chapter 11  platforming aiml

http://www.linode.com/


490

Edit the new config to point the c2 Kubernetes API along with naming 

the cluster and contexts:

$ sed -i .bk "s/default/apk8s-c2/" ~/.kube/apk8s-c2

$ sed -i .bk "s/127.0.0.1/tokyo2-1.c2.apk8s.dev/" ~/.kube/apk8s-c2

Use the new apk8s-c2 config to work with the c2 cluster in a new 

terminal on a location workstation:

$ export KUBECONFIG=~/.kube/apk8s-c2

Create a Namespace for Seldon Core:

$ kubectl create namespace seldon-system

Install Seldon Core Operator53 with Helm:

$ helm install seldon-core seldon-core-operator \

    --repo https://storage.googleapis.com/seldon-charts \

    --set usageMetrics.enabled=true \

    --namespace seldon-system

Create the directory cluster-apk8s-c2/. Within the new directory, 

create a file named 000-sd-s3-secret.yml with the contents from 

Listing 11-15. Replace redacted values with MinIO credentials needed to 

access the model, stored with MLflow (refer to the MLflow configuration 

earlier in this chapter).

Listing 11-15. Secret containing s3 (MinIO) config and credentials

apiVersion: v1

kind: Secret

metadata:

  name: seldon-s3-model-secret

53 https://docs.seldon.io/projects/seldon-core/en/latest/charts/seldon-
core-operator.html

Chapter 11  platforming aiml

https://docs.seldon.io/projects/seldon-core/en/latest/charts/seldon-core-operator.html
https://docs.seldon.io/projects/seldon-core/en/latest/charts/seldon-core-operator.html


491

type: Opaque

stringData:

  AWS_ENDPOINT_URL: "https://minio.hc1.apk8s.dev"

  AWS_ACCESS_KEY_ID: "REDACTED"

  AWS_SECRET_ACCESS_KEY: "REDACTED"

  USE_SSL: "true"

Apply the Secret:

$ kubectl apply -f 000-sd-s3-secret.yml

Next, create a file named 100-sd-quality.yml with the contents from 

Listing 11-16. Change the modelUri: value to the location of the MLflow 

model (see Figure 11-13) configuration. The additional componentSpecs: 

are optional and configured with more extended wait periods for 

the readiness and liveness probes to better account for the  resource- 

constrained c2 cluster. Install Cert Manager as covered initially in Chapter 2, 

for TLS support on the attached Ingress configuration.

Listing 11-16. SeldonDeployment with Ingress

apiVersion: machinelearning.seldon.io/v1alpha2

kind: SeldonDeployment

metadata:

  name: quality

spec:

  name: quality

  predictors:

    - graph:

        children: []

        implementation: MLFLOW_SERVER

         modelUri: s3://mlflow/artifacts/2/1b3cfc890bd04a85a60fa

0706b9e8592/artifacts/model

Chapter 11  platforming aiml



492

        envSecretRefName: seldon-s3-model-secret

        name: quality

      name: default

      replicas: 1

      componentSpecs:

        - spec:

            containers:

              - name: quality

                readinessProbe:

                  failureThreshold: 10

                  initialDelaySeconds: 120

                  periodSeconds: 10

                  successThreshold: 1

                  tcpSocket:

                    port: http

                  timeoutSeconds: 5

                livenessProbe:

                  failureThreshold: 10

                  initialDelaySeconds: 120

                  periodSeconds: 10

                  successThreshold: 1

                  tcpSocket:

                    port: http

                  timeoutSeconds: 5

---

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

  name: quality

  labels:

    app: quality

Chapter 11  platforming aiml



493

  annotations:

    cert-manager.io/cluster-issuer: letsencrypt-production

    kubernetes.io/ingress.class: traefik

spec:

  rules:

    - host: quality.c2.apk8s.dev

      http:

        paths:

          - backend:

              serviceName: quality-default

              servicePort: 8000

            path: /

  tls:

    - hosts:

        - quality.c2.apk8s.dev

      secretName: default-quality-production-tls

Apply the SeldonDeployment and Ingress:

$ kubectl apply -f 100-sd-quality.yml

It may take several minutes to deploy the model. Monitor the newly 

generated Pod in the default namespace for status; once two of two containers 

report ready, the Pod can accept posted data and serve predictions.

Test the deployment with curl by posting the model’s expected 

input, in this case a two-dimensional array (or an array of arrays), each 

containing the 11 values required to make a prediction. The model returns 

one prediction per inner array:

$ curl -X POST https://quality.c2.apk8s.dev/api/v1.0/

predictions \

      -H 'Content-Type: application/json' \

       -d '{ "data": { "ndarray": [[ 6.4, 0.57, 0.02, 1.8, 

0.067, 4.0, 11.0, 0.997, 3.46, 0.68, 9.5]] } }'

Chapter 11  platforming aiml



494

Returned prediction is 5.703684339252623:

{"data":{"names":[],"ndarray":[5.703684339252623]},"meta":{}}

This section moved quickly, lightly scratching the surface of 

Seldon Core’s capabilities. However, it demonstrated nearly seamless 

interoperability between a range of diverse components, from building 

scikit-learn models in Jupyter Notebooks and tracking and serving 

the models in MLflow to their final deployment with Seldon Core, all 

integrated atop Kubernetes.

 Summary
This chapter installed nine nodes across Raspberry Pi devices, public 

clouds, and on-premises, communicating across the globe on an 

encrypted network, utilizing resource-constrained, low-cost infrastructure. 

The purpose is to demonstrate the creation of a Machine Learning 

platform with Kubernetes and to cover the entire life cycle of the data that 

fuels it.

This chapter exhibited the suitability of Kubernetes in providing a 

wide range of capabilities and abstracting and unifying the underlying 

infrastructure of IoT deployments, ETL, data science, and artificial 

intelligence. While some components such as Apache NiFi and 

Elasticsearch have no direct connection with the Kubernetes API, others 

like Jupyter’s KubeSpawner and Seldon Core use it directly.

While this chapter covered a lot of ground, it only briefly touched on 

each critical aspect of developing and deploying Machine Learning–based 

Artificial Intelligence as a platform. However, what makes a platform a 

platform is the framework for improvement and expansion.

Kubernetes facilitates an advanced concept of platform architecture, 

standardizing methods of construction through both aggregation and 

composition. Kubernetes provides the ability to aggregate components 

Chapter 11  platforming aiml



495

with no direct awareness of it, alongside components built to leverage 

or extend its API directly, with a near-full abstraction of the underlying 

infrastructure while providing scaling, fault tolerance, and self-healing. 

Kubernetes facilitates the exploration of innovative problem-solving 

platforms through the combinatorial effects that arise when connecting 

the latest innovations in IoT, Machine Learning, Blockchain, Big Data, and 

the Kubernetes API.

Chapter 11  platforming aiml



497© Craig Johnston 2020 
C. Johnston, Advanced Platform Development with Kubernetes,  
https://doi.org/10.1007/978-1-4842-5611-4

Index
A
Advanced message queuing 

protocol (AMQP), 13
Advanced platform development, 7
Aggregating, sorting, and 

organizing metrics, 28
Amazon Elastic Container Service 

(Amazon EKS), 39, 72
Amazon’s AWS Lambda, 340
Amazon web services (AWS), 37
Analytics

data science environment, 192
and search, 192

Apache Cassandra
cluster, 298, 300, 301
Netflix, 291
operator, 292, 294–297
peer-to-peer design, 291
RBAC configuration, 298

Apache Hadoop, 245
Apache Hive

configuration template, 304, 305
container entrypoint.sh  

script, 305
containerization, 301–304, 307
deployment, 315, 316

Docker Compose container 
stack, 310

docker-compose.yml, 309
entrypoint.sh, 306
testing on local workstation, 308

Apache Kafka, 27, 157
advantages, 170
client utility scripts, 179–181
configuration, 171
data-driven platform, 170
headless service  

configuration, 172
low-latency event queues, 170
and MQTT event queues, 184
PodDisruptionBudget 

configuration, 177
service, 171
StatefulSet  

configuration, 173–176
test client pod, 178
Zookeeper Kubernetes 

configuration, 171
Apache NiFi, 338

add template, 358
cluster status, 356
flow overview, 350

https://doi.org/10.1007/978-1-4842-5611-4#DOI


498

GenerateFlowFile  
processor, 376

GetTwitter processor 
configuration, 361

headless service, 351
ingress configuration, 354, 355
installation, 350
Jolt transformation, 463, 464
MQTT transformation and 

Elasticsearch  
loading, 463

process group, 376
programming, 372–376
StatefulSet configuration, 

352–354
Twitter keys and tokens, 360
upload template, 358

Apache Superset, 323
Apache Zookeeper

clients, 164
configurations, 163
headless service, 165
service, 163
StatefulSet, 166–169

Application parameters, 25, 26
Asynchronous transport  

protocol, 29
Automation

GitLab CI pipeline, 136, 139–142
gitlab-ci.yml, 136–138

Azure Kubernetes Service (AKS), 
40, 72

B
Big data, 245
Bitcoin, 379
Blockchain, 1, 2

addition, execution, and 
observation, 20

bootstrapping, 19
development environment, 382
Ethereum (see Private Ethereum 

network)
ingestion of transactions, 19
interaction

Geth attach, 412, 413
Jupyter environment, 

413–421
Serverless/OpenFaaS, 421–427

network development  
platform, 381

private managed, 18, 19, 380, 381
smart contracts, 17, 20
transactions, 27
use cases, 19–21
Bootnode Registrar
deployment, 391
Golang application, 389
service configuration, 390

Bootnodes, 383
containers, 385
deployment, 385–388
Ethereum client, 384
registrar (see Bootnode 

Registrar)
service configuration, 385

Apache NiFi (cont.)

INDEX



499

Bucket event notification, 263
Business-focused blockchain 

technologies, 380

C
Capabilities, platform

application and data layers, 11
blockchain (see Blockchain)
IoT (see Internet of Things (IoT))
machine learning (see Machine 

Learning (ML))
robust data layer, 9

CephBlockPool, 110
CephFilesystem, 111
Certificates, 106

data Namespace, 162
TLS, 54, 56, 58–59

Cert Manager, 54, 56, 57
cluster issuer, 106
ClusterIssuer and Certificate, 106
CRDs, 105
namespace, 105

Class design and service 
architecture, 8

Cloud computing
Amazon, 36
cloud-native and vendor-

neutral option, 36
cloud-native solutions, 34
custom servers, 36
data centers, 34, 35
innovation, 36

PaaS, 35
virtualization, 34

Cloud native, 2, 35
open source technologies, 1
portable platforms, 38, 40
redundancy, 37, 38
technologies, 22

Cloud vendors, 34
ClusterIssuerS, 105, 106
Clusters, 72, 73
Cluster-wide configuration, 159
Command-line parameters, 25
Commercial platform business, 2
Common gateway  

interface (CGI), 35
Common vulnerabilities and 

exposures (CVEs), 44
ConfigMaps and secrets, 26, 62, 63
Configuration, 25, 26

files, 25
ingress (see Ingress Nginx)
monitoring solutions, 112, 114
repository, 91, 92
static YAML files, 90
TLS/HTTPS with cert  

manager, 105–107
Constrained application protocol 

(CoAP), 13
Container image registries, 44
Containerization, 4, 11, 34, 154
Containerized application, 266–273
Container runtime interface 

(CRI)–based runtimes, 82

INDEX



500

Containers, 9, 43, 154
Continuous integration and delivery/

deployment (CI/CD)
automation (see Automation)
development and  

operations, 117
GitLab, 136
GitOps, 150
integration with GitLab and 

JupyterLab, 119
pipeline configuration, Gitlab, 

137, 138
platform integration, 118, 119

Continuous integration and 
deployment (CI/CD), 44, 45

Core components
data management, 27, 28
ingress, 26, 27
metrics, 28

Corporate infrastructure, 433, 435
CUDA Jupyter data science 

container, 473
Custom development kubernetes 

cluster, 72, 73
Custom JupyterLab image

Python and Octave kernels, and 
kubectl, 127

Kubernetes cluster, 126
local testing

Notebook, 132, 133
port-forwarding, 131, 132

machine learning, 134
repository and container 

source, 127–129

Custom microservices, 14
Custom resource definition (CRD), 

54, 105

D
DaemonSet, 101, 102, 104
Data-centric platforms, 191
Data-driven decision making, 284
Dataflow, ETL, 364–367
Data ingestion platform, 13, 14
Data lab

client, 223
JupyterHub, 228–234
JupyterLab, 215
Keycloak (see Keycloak)
namespace (see Namespace)

Data lakes, 283
development  

environment, 247, 248
object storage, 249

MinIO client, 255, 256
Minio Cluster, 251–255
MinIO events, 256–259
process objects (see Process 

objects)
programmatic  

deployments, 273–279
serverless object processing, 

280, 281
Data management, 27, 28

applications, 432
architecture, 156

Data namespace, 160

INDEX



501

Data Pipeline Development Cluster 
configuration layout, 190

Data platform, 284–286
Data processing pipeline, 246
Data routing, 338, 349, 377, 

See also Apache NiFi
Data science, 6, 22, 121, 192, 284
Data structures, 156
Data warehouses

Apache Hive (see Apache Hive)
data science, 284, 285
development environment, 286
metadata sources

Apache Cassandra, 291–301
MySQL (see MySQL)

Deep learning, 6, 21
Delta lake, 283
Dependencies installation, 78
Development Cluster, 112, 116, 159
Development environment

AIML, 434, 435
Basic Auth credentials, 162, 195
blockchain platform, 382
cluster-wide configuration, 159
data namespace, 160
data warehouses, 286
Kafka (see Apache Kafka)
prerequisites, 193
TLS certificates, 161, 194

Development operations (DevOps)
Gitlab (see Gitlab)
toolchain (see Toolchain, 

DevOps)
Digital ocean, 78

Disable GitLab sign-up, 68
Distributed streaming  

platform, 157
Docker container, 46
Docker installation, 82, 83
Document-based data index, 192
Domain name server (DNS), 88
Droplets (servers), 77

E
Edge gateway, 15, 16
Elastic Compute Cloud (EC2), 36
Elasticsearch, 27, 29, 155

data aggregation and statistical 
analysis, 196

data indexer and analytics 
engine, 196

data types, 196
document-based data, 192
HTTP post, index  

template, 362, 363
indexes, 201
JupyterLab, 239
service, 197
StatefulSet  

configuration, 198, 200
Elasticsearch B.V, 195, 197
Elasticsearch Sentiment Analysis 

query, 366
EMOTION recognition, 345
Enterprise-grade platform, 2
Enterprise platform, data 

management, 27

INDEX



502

Environment variables, 25
Ethereum

bootnodes (see Bootnodes)
protocol, 383

Ethstats
deployment, 394, 395
Ethereum network statistics, 392
ingress configuration, 395
private Ethereum nodes 

reporting, 410
secret, 393
service configuration, 393
web dashboard, 391

Extract, transform, load (ETL), 338
analysis and visualization, 

368–371
Apache NiFi (see Apache NiFi)
data pipeline

Dataflow, 364–367
Elasticsearch, 361–363
NiFi template, 357, 358,  

360, 361
programming NiFi, 372–376

F
faas-cli command, 422
FORTRAN, 33
Foundational data-driven, 6
Full-cluster encryption, 437
Full nodes, 383
Function-based architectures, 340
Functions as a service (FaaS), 340

G
Gartner’s hype cycle for emerging 

technologies, 7
Gathering metrics, 13
Geth

binaries, 383
blockchain interaction, 412, 413
miner nodes

Blockchain indefinitely, 405
ConfigMap configuration, 

398, 399
deployment configuration, 

399, 400, 402–404
initialization container, 399
installation, local 

workstation, 397
pods, 399
replica pods, 404
secret configuration, 397

transaction nodes
deployment configuration, 

406–410
Ethstats dashboard, 410
service configuration, 406

GetTwitter processor, 360
Gitlab

CE, 46
configuration, 62, 63
container registry, 142
deploy tokens, 143, 148
deployment, 63, 65, 66
disable sign-up, 67, 68

INDEX



503

ingress, 66, 67
Kubernetes configurations and 

continuous deployment, 46
namespace, 57
public access, open source 

components, 46
services configuration, 59–61
single-node custom Kubernetes 

(k3s) cluster
Cert Manager, installation, 

54, 56, 57
DNS configuration, 50
installation, 51, 52
remote access, 52, 53
server setup, 48–50

TLS certificate, 58, 59
GitLab CI, 136

environment variables, 138
GitLab project and a GitLab 

Runner, 136
Kaniko image, 138
pipeline configuration, 137, 138
pipeline jobs, 140
pull and push-based project 

synchronization, 136
running job, 141

gitlab-ci.yml
GitLab CI pipeline 

configuration, 137, 138
integrated environment 

variables, 138
Kaniko image, 138

GitLab Community Edition (CE), 46
GitLab group kubernetes access

enable dependencies, 124, 125
Kubernetes cluster integration, 

configuration, 122–124
GitOps, 150
Go application, 267, 269, 270
Go modules, 267
Google Cloud, 36

functions, 341
machine learning engine, 1

Google Kubernetes Engine (GKE), 
40, 72

Graphics processing units (GPU)
CUDA, 444
data centers, 444
k3s with NVIDIA  

runtime, 448, 450
NVIDIA support, 446, 448
Ubuntu installation, 445, 446

H
Hadoop distributed file system 

(HDFS), 246, 249, 313
Hybrid cluster (hc1), 450
Helm, 54, 229
Hyper-cloud providers, 21
Hyper-cloud services, 2
Hyperledger, 21

I
IBM Cloud Functions, 341
IBM Cloud Kubernetes Service, 72
IBM Watson IoT Platform, 1

INDEX



504

Indexing
elasticsearch, 196–201
Logstash, 210–219

Industrial Internet of  
Things (IIoT), 12

Infrastructure-as-code (IaC), 43
Infrastructure-level ingress, 26
Ingress Nginx

cluster role configuration, 95
ConfigMaps configuration, 98, 99
controller, 101
DaemonSet, 102, 104
default HTTP server back-end 

configuration  
deployment, 101, 104

deployment, 99, 101
namespace, 93
RBAC

cluster role, 94
cluster role binding, 96
role binding, 96
service account, 93

service encrypted  
HTTPS, 104

services, 97
Internet of Things (IoT)

based services, 2
Kubernetes uses

edge gateway, 15, 16
ingestion of data, 13, 14
OS, 16, 17
platforms, 6

J
JavaScript object  

notation (JSON), 14
Jolt transformation, 463
JoltTransformJSON processor, 465
Jupyter environment, blockchain 

interaction, 413–421
JupyterHub, 126, 221, 225

Helm values, 231, 233
ingress configuration, 234
single-user Jupyter notebook 

server, 228
values.yml Helm configuration, 

229, 230
JupyterHub Spawner  

options, 474, 475
JupyterLab, 215, 225

Elasticsearch, 239
Kafka, 237
Kubernetes API, 235
Mosquitto (MQTT), 240, 241

jupyterlab-apk8s container, 149
Jupyter Notebooks, 126, 413

K
k3s Hybrid Cloud

Kilo installation, 455, 456
Kilo VPN, 437–439
master node, 440, 441
node roles, 453, 454
on-premises

INDEX



505

GPU (see Graphics 
processing units (GPU))

IoT/Raspberry Pi, 450–453
worker nodes, 442, 443

Kernel headers, 193
Keycloak

administrator and keystore 
credentials, 217

deployment, 218–220
ingress, 220, 221
realm, client, and user, 221–224
single-node Keycloak  

instance, 216
turnkey solution, 216
web service, 216

Kibana
deployment, 212, 213
internal development and 

debugging utility, 210
service, 211

Kilo
agent Pod, 456
k3s Hybrid Cloud, 455, 456

kubeadm, 85
kubectl configuration, 53
Kubeflow process, 21, 23, 471
Kubernetes Clusters, 45, 46
Kubernetes platforms

IoT, 13
Blockchain (see Blockchain)
IoT (see Internet of Things (IoT))
ML (see Machine Learning (ML))

Kubernetes utilities installation, 84

L
load_incluster_config(), 277
Local Hive testing, 308
Logstash

index pattern  
apk8s-messages-*, 208

configuration  
ConfigMap, 203, 204

deployment, 206, 207
Elasticsearch, 201
input, filter, and output, 204
pipeline configuration 

ConfigMap, 205, 206
service, 202
templates, 209

M
Machine Learning (ML), 2

automation and  
management, 22, 23

capabilities, 9
data science, 22
development and production 

automation tools, 21
high-velocity data pipelines, 22
iceberg, 21
infrastructure, 285

Machine Learning Automation 
(AutoML)

deployment of ML-based 
models, Seldon  
Core (see Seldon core)

INDEX



506

enterprise-grade, 471
Jupyter Notebook GPU support

CUDA data science 
container, 473

JupyterHub Spawner 
options, 474, 475

model development, MLflow 
(see MLflow)

Machine Learning–based Artificial 
Intelligence (AIML) 
platforming

data, 432
development environment, 434, 

435
DNS, 435, 436
end-to-end life cycle, 433
infrastructure, 433
life cycle, 431

Manual testing
GitLab deploy tokens, 143
namespace  

preparation, 143, 144
repository access, 147–150
running Notebook, 145–147

Master node, 440, 441
Master node installation, 85–87
Message queuing telemetry 

transport (MQTT), 13, 157
Microservice, 340

architectures, 8
application architecture, 16

Microsoft’s Azure Functions, 341
Microsoft’s Azure Machine 

Learning service, 1
MinIO client, 255, 256
Minio cluster, 251–255
MinIO events, 256–259
MinIO Operator, 288
MLflow

container requirements.txt, 477
Dockerfile, 477
ingress, 480, 481
installation, 476
logged training/experiments, 487
open source machine learning 

platform, 476
packaged model, 487
service, 477
StatefulSet, 478, 480
tracking models, 482–488

Modern data warehouse
Hive

Kubernetes configuration, 
313, 315, 316

schema, creation, 320, 321
test data, 317, 319
warehousing structured and 

semi-structured data, 313
Presto (see Presto)

Monitoring solution, 112, 114
Mosquitto (MQTT), 158

Apache Kafka, 184
Client Dockerfile, 462
ConfigMap, 185, 186

Machine Learning Automation 
(AutoML) (cont.)

INDEX



507

deployment, 187, 188
JupyterLab, 240, 241
MQTT service, 184
scaling, 186
testing, 188, 189

MySQL
cluster, 290, 291
Hive, 288
operator, 288–290

Custom resource definition (CRD) 
MysqlCluster, 288

N
Namespace

cert manager, 105
data-lab, 225

hub RoleBindings, 227, 228
hub roles, 226

Ingress Nginx, 93
rook ceph, 108, 109

Natural language processing 
(NLP), 345

Netflix, 37, 291
Network of containerized 

applications, 4
NiFi architecture, 339
Node roles, 453, 454
Nodes

dependencies installation, 78
DNS, 88
Docker installation, 82, 83
Kubernetes utilities  

installation, 84

master node installation, 85–87
remote access, 88, 90
server setup

droplet details, 77
droplet quantity and 

hostnames, 77
droplets, creation, 75
plan and region, choose, 76

WireGuard VPN installation, 
79–81

worker nodes, 87

O
Object-oriented design (OOD), 30
Object-oriented software, 8
Object processing pipeline, 247
On-premises Kubernetes  

platform, 15
OpenFaaS, 338

architecture, 339
blockchain interaction, 421–427
CLI install, local workstation, 344
Helm to install, 342
ingress configuration, 343
sentiment analysis, installation, 

345–348
Serverless application platform, 

341
tooling and operations 

framework, 342
UI portal, 344
vendor-neutral approach, 338

Opinion mining, 345

INDEX



508

P, Q
Pachyderm, 471
Pandas DataFrame, 369
Persistent storage, 107
Persistent volume claims (PVCs), 

110, 111
Persistent volumes

block storage, 110, 111
CephBlockPool and 

StorageClass, 110
object-, block-, and filesystem-

based storage, 107
Rook Ceph Namespace and 

custom resource, 108
shared filesystems, 111, 112
storage class, 110
storage classes, 107

Pipelines, GitLab CI, 139
Platform

architecture, 8, 9
requirements, 6, 7

Platform applications, 457
Platforms-as-a-service (PaaS), 3, 196
PodDisruptionBudget 

configuration, 176, 177
Pods

network, 86
persistent volumes, 110, 154
rook-ceph namespace, 109
statefulSet, 155

Portable platforms, 38, 40
Port-forwarding, 131, 132, 413
Presto

Apache Superset, 323
catalogs Presto command, 329
client libraries, 322
cluster, 324, 326
comprehensive solution, data 

warehouse, 334
describing tables, 330
distributed SQL query, 322
Helm configuration, 324–326
ingress configuration, 327, 328
retrieving list, nodes, 330
SQL

join Hive and Cassandra 
data sets, 332

join statement, 332–334
select statement, 331

web-based GUI, 323
Presto distributed SQL joining 

multiple data sources, 286
Private blockchain  

platform, 380, 381
Private Ethereum network, 383

bootnodes (see Bootnodes)
Ethstats, 391–396
Geth (see Geth)
miner nodes, 383
peer-to-peer network, 383

Private key and password, 
Ethereum account, 417

Private managed  
blockchains, 18, 19

Process objects
configure notifications, 260

INDEX



509

containerized application, 
266–273

event Notebook, 260, 261, 263
test data, 263–266

Programmatic deployments, 
273–279

Prometheus scrapes metrics, 28
Public container registries, 43
Public keys, 80
PutElasticsearchHttp  

processor, 465
Python CronJob

ConfigMap, 466, 467
data dump hourly CronJob, 469

R
Raspberry Pi

ARM-based CPU, 450
data collection workloads, 458
k3s, 452, 453
OS, 451
WireGuard, 452

Realm datalab, 221
Real-time data architecture

message and event  
queues, 156, 157

distributed streaming 
platform, 157

MQTT and IoT, 157, 158
Red Hat Enterprise Linux (RHEL), 1
Redundancy, 38
Remote access, 88, 90

Repository, 42, 43, 91, 92
Resource allocation, 16
RESTful API, 29
Role-based access control (RBAC), 

96, 120, 121
Rook-ceph

namespace, 109
cluster toolbox deployment 

configuration, 109
operator deployment, 108

Rook operator, 107

S
Scaleway, 48, 119, 192
Scaling Kubernetes, 73
scikit-learn ElasticNet, 482
Seldon core

hc1 cluster, 489
k3s kubectl config file, 489
namespace, 490
open source model deployment 

controller, 488
SeldonDeployment with 

ingress, 491, 493
testing, deployment, 493

Sentiment analysis, 345–348
dataframe plot, 371
dataframe rows, 370
function, 345, 347, 348, 356

Serverless
blockchain interaction, 421–427
Cloud vendors market, 340

INDEX



510

OpenFaaS (see OpenFaaS)
server-side implementation, 340
vendor-neutral platforms, 341

Serverless object  
processing, 280, 281

Serverless technologies, 10
Service-level agreements (SLAs), 37
Service-oriented architecture 

(SOA), 5
Shared filesystems, 111, 112
Sharing network topology, 396
Signal monitor

DaemonSet deployment, 
460–462

script ConfigMap, 459
Single master node, 74
Small Kubernetes Cluster, 41
Smart contracts, 17, 19, 24
Software applications vs. software 

platforms
application platform, 5
dependency management and 

encapsulation, 4
network of containerized 

applications, 4
SoundCloud, 28
Stateful application, 154
Statefulness, 154, 155
StatefulSet, MLflow, 478, 480
StorageClass, 110
Streaming transactional  

events, 20

T
TCP-based binary protocol, 29
Tenant-based Namespaces, 160
TensorFlow, 23
TLS certificates, 106, 107
Toolchain, DevOps

CI/CD, 44, 45
Gitlab (see Gitlab)
registries, 43, 44
repositories, 42, 43

Traditional Cloud  
services, 35, 37

Traditional monolithic 
architectures, 154

Traefik ingress controller, 54
Transaction nodes, 384, 405
Transport layer security (TLS), 26
Turnkey Kubernetes, 72

U
Unstructured data, 192

V
Value-added resellers (VARs), 37
Vendor lock-in, 37, 45
Vendor-neutral

cloud-native solutions, 34
developing applications, 39
lock-in, 37
movement, 35
option, 36

Serverless (cont.)

INDEX



511

platform, 40, 41
road map, 40
standards, 42
system, 2

Version control system (VCS), 147
Virtual machine (VM)–based 

Cluster, 72
VPN interfaces and peers, 80
Vultr, 48, 50, 192

W, X
WireGuard

Raspberry Pi, 452
VPN installation, 79–81

Worker nodes, 87, 442, 443

Y, Z
YAML, 90

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Software Platform and the API
	Software Applications vs. Software Platforms
	Dependency Management and Encapsulation
	Network of Applications
	Application Platform

	Platform Requirements
	Platform Architecture
	Platform Capabilities
	IoT
	Ingestion of Data
	Edge Gateway
	IoT OS

	Blockchain
	Private Managed Blockchains
	Use Cases

	Machine Learning
	Automation and Management


	Core Components
	Configuration
	Application Parameters

	Ingress
	Data Management
	Metrics

	APIs and Protocols
	Summary

	Chapter 2: DevOps Infrastructure
	Cloud Computing
	Cloud Native and Vendor Neutral
	Redundancy
	Portable Platforms
	Getting Started Vendor Neutral

	DevOps Toolchain
	Repositories
	Registries
	CI/CD
	GitLab for DevOps
	k3s + GitLab
	Server Setup
	Configure DNS
	Install k3s
	Remote Access
	Install Cert Manager/Let’s Encrypt
	Install GitLab
	Namespace
	TLS Certificate
	Services
	ConfigMap
	Deployment
	Ingress
	Disable Sign-up



	Summary
	Next Steps


	Chapter 3: Development Environment
	Custom Development Kubernetes Cluster
	Nodes
	Server Setup
	Prepare Nodes
	Install Dependencies
	Install WireGuard VPN
	Install Docker
	Install Kubernetes Utilities

	Install Master Node
	Join Worker Nodes
	DNS
	Remote Access

	Configuration
	Repository
	Ingress
	TLS/HTTPS with Cert Manager
	Persistent Volumes with Rook Ceph
	Block Storage
	Shared Filesystem

	Monitoring

	Summary

	Chapter 4: In-Platform CI/CD
	Development and Operations
	Platform Integration
	Yet Another Development Cluster
	RBAC
	GitLab Group Kubernetes Access
	Configure Kubernetes Cluster Integration
	Enable Dependencies


	Custom JupyterLab Image
	Repository and Container Source
	Local Testing
	Port-Forwarding
	Test Notebook

	Additional Learning

	Automation
	GitLab CI
	.gitlab-ci.yml
	Kaniko
	Integrated Environment Variables

	Running a Pipeline

	Manual Testing in Kubernetes
	Prepare Namespace
	Run Notebook
	Repository Access

	GitOps
	Summary

	Chapter 5: Pipeline
	Statefulness and Kubernetes
	Real-Time Data Architecture
	Message and Event Queues
	Distributed Streaming Platform
	MQTT and IoT


	Development Environment
	Cluster-Wide Configuration
	Data Namespace
	TLS Certificates
	Basic Auth

	Apache Zookeeper
	Apache Kafka
	Kafka Client Utility Pod

	Mosquitto (MQTT)
	Summary

	Chapter 6: Indexing and Analytics
	Search and Analytics
	Data Science Environment
	Development Environment
	TLS Certificates
	Basic Auth

	ELK
	Elasticsearch
	Logstash
	Kibana

	Data Lab
	Keycloak
	Realm, Client, and User

	Namespace
	JupyterHub
	JupyterLab
	Kubernetes API
	Kafka
	Elasticsearch
	Mosquitto (MQTT)


	Summary

	Chapter 7: Data Lakes
	Data Processing Pipeline
	Development Environment
	Data Lake as Object Storage
	MinIO Operator
	MinIO Cluster
	MinIO Client
	MinIO Events
	Process Objects
	Configure Notifications
	Event Notebook
	Test Data
	Containerized Application
	Programmatic Deployments
	Serverless Object Processing


	Summary

	Chapter 8: Data Warehouses
	Data and Data Science
	Data Platform

	Development Environment
	Data and Metadata Sources
	MySQL
	MySQL Operator
	MySQL Cluster

	Apache Cassandra
	Cassandra Operator
	Cassandra Cluster

	Apache Hive
	Containerization
	Local Hive Testing


	Modern Data Warehouse
	Hive
	Kubernetes Configuration
	Test Data
	Create Schema

	Presto
	Kubernetes Configuration
	Query


	Summary

	Chapter 9: Routing and Transformation
	ETL and Data Processing
	Development Environment
	Serverless
	OpenFaaS
	Install OpenFaaS
	Install Sentiment Analysis


	ETL
	Apache NiFi
	Install Apache NiFi

	Example ETL Data Pipeline
	NiFi Template
	Prepare Elasticsearch
	Dataflow

	Analysis and Programmatic Control
	Analysis and Visualization
	Programming NiFi


	Summary

	Chapter 10: Platforming Blockchain
	Private Blockchain Platform
	Development Environment
	Private Ethereum Network
	Bootnodes
	Bootnode Registrar
	Ethstats
	Geth Miners
	Geth Transaction Nodes
	Private Networks

	Blockchain Interaction
	Geth Attach
	Jupyter Environment
	Serverless/OpenFaaS

	Summary

	Chapter 11: Platforming AIML
	Data
	Hybrid Infrastructure
	Development Environment
	DNS

	k3s Hybrid Cloud
	Kilo VPN
	Master Node
	Worker Nodes
	On-premises
	GPU
	GPU/CUDA
	Install Ubuntu
	NVIDIA GPU Support
	k3s with NVIDIA Runtime

	IoT / Raspberry Pi
	Raspberry Pi OS
	WireGuard
	k3s on Raspberry Pi


	Node Roles
	Install Kilo

	Platform Applications
	Data Collection
	MQTT IoT Client

	ETL
	Apache NiFi
	Python CronJob

	Machine Learning Automation
	Jupyter Notebook GPU Support
	CUDA Data Science Container
	JupyterHub Spawner Options

	Model Development
	MLflow
	Installation
	Tracking Models


	Deploy Artificial Intelligence
	Seldon Core


	Summary

	Index



