
Accelerating
Development
Velocity Using
Docker

Docker Across Microservices
—
Kinnary Jangla

Accelerating
Development Velocity

Using Docker
Docker Across Microservices

Kinnary Jangla

Accelerating Development Velocity Using Docker: Docker Across

Microservices

ISBN-13 (pbk): 978-1-4842-3935-3		 ISBN-13 (electronic): 978-1-4842-3936-0
https://doi.org/10.1007/978-1-4842-3936-0

Library of Congress Control Number: 2018962734

Copyright © 2018 by Kinnary Jangla

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Samuel Zeller on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484239353.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Kinnary Jangla
San Francisco, CA, USA

https://doi.org/10.1007/978-1-4842-3936-0

To all those engineers who struggle with ramp-up
curves on new software tools!

v

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: �Containers��1

What and Why?��1

Containers vs. Virtual Machines���3

Pros and Cons of Containerizing Applications��5

Running an Application on a Host Machine��5

Running an Application on a Virtual Machine���6

Advantages of Using Containers���6

Challenges of Using Containers��7

Summary���8

Chapter 2: �Docker��9

History��9

What Is Docker?���11

The Docker Runtime and Orchestration Engine��12

Docker Images��12

Dockerfiles���13

Why Should You Use Docker?��13

vi

Docker’s Key Use Cases���14

Configuration Management��14

Code Pipeline Management��14

Developer Productivity���14

Faster Deployment���15

Application Isolation���15

Continuous Integration and Continuous Deployment�������������������������������������16

Consistent Environments Across Machines��16

Summary���17

Chapter 3: �Monolith vs. Microservices��19

Evolution of Microservices���20

Comparing Monoliths and Microservices���22

Challenges with Microservices��24

Summary���26

Chapter 4: �Docker Basics��27

Terminology���28

Architecture���29

Docker Platform��30

Docker Engine��30

Docker Architecture��32

Docker Objects���33

Docker Hub���36

Installing Docker��38

Basic Docker Commands���43

docker container run��43

docker container create���43

Table of ContentsTable of Contents

vii

docker container start��44

docker container stop���44

docker image build���45

docker image pull���46

docker search���46

docker image ls��48

docker container ps��48

docker container rm���49

docker container inspect��49

Summary���53

Chapter 5: �Docker Images���55

Docker Images���55

Dockerfile���56

Creating a Sample Dockerfile��56

Building Images with Dockerfile��60

Docker Containers��71

Attaching and Detaching from a Docker Container��73

Summary���76

Chapter 6: �Docker Compose��77

What Is Docker Compose���77

Installing Docker Compose��81

Usage���82

docker-compose up��82

docker-compose build��83

docker-compose config��83

docker-compose kill���84

Table of ContentsTable of Contents

viii

docker-compose restart���84

docker-compose ps��84

docker-compose logs���84

docker-compose start��85

docker-compose stop���85

docker-compose pause��85

docker-compose run��86

Behind the Scenes and an Example���87

Summary���97

Chapter 7: �Debugging Microservices Using Docker����������������������������99

Distributed Environments��100

Advantages of Distributed Systems���100

Scalability���100

Reliability and Availability���100

Autonomy���101

Challenges of Distributed Systems��101

Heterogeneity���101

Concealing the Complexity���102

Concurrency���102

Scalability���102

Failure Handling���103

Debugging��103

Sample Real-World End-to-End Use Case���104

Debugging��128

Summary���133

Table of ContentsTable of Contents

ix

Chapter 8: �Advanced Docker Use Cases��135

Docker in Production Environments���136

Managing Docker Images���136

Docker in Cloud��137

Security and Network���137

Load Balancing���138

Deployment��138

Service Discovery���138

Log Management��139

Monitoring Docker Containers��139

Managing Databases��139

Orchestration Using Docker���140

Advanced Use Cases��141

Tips and Tricks���142

Summary���144

�Index��145

Table of ContentsTable of Contents

xi

About the Author

Kinnary Jangla has worked in the tech industry for a dozen years and

is currently an engineering manager at Pinterest in the Ads division.

Previously she worked on the machine learning Homefeed infrastructure

team where she used Docker to develop the debugging framework.

Kinnary previously worked at Uber and Microsoft, is the author of three

books, and holds six patents. You can follow her on Twitter at @kjangla.

xiii

About the Technical Reviewer

Michael Irwin is an application architect at Virginia Tech who is striving to

modernize how software is developed and run on campus, by driving the

adoption of Docker-based workloads, CI/CD pipelines, the public cloud,

single-page applications, and more. As a Docker Captain and Community

Leader (Meetup Organizer), he has the opportunity to share his expertise

and experiences with others but also learn how others are using the latest

technologies. When developing, he writes code in Node, Java (Java EE

mostly), and JavaScript but actively contributes to projects written in other

languages and frameworks. He’s blessed to have a beautiful wife and four

daughters.

xv

Acknowledgments

Writing a book requires teamwork. I’m lucky to have found a team of

thorough tech reviewers such as Michael Erwin and James Markham, who

revised my content thoroughly to ensure that this book is completely most

up to date. Thanks, Apress, for the opportunity, and Nancy Chen, for all the

hard work of coordination and keeping me on schedule.

This book took a long time to complete. In the past few months, I

wanted to give up multiple times. It was my husband’s push and support

that ultimately got me to the finish line. I can never thank you enough,

Abhinav Vora.

Thank you to all my family and friends for being so patient and

understanding of the lack of time and attention I was able to devote to you

these past months. Your support and motivation kept me going.

xvii

Introduction

The idea of writing this book occurred to me while I was ramping up on

Docker during my first year at Pinterest. There is a lot of content on the

Internet, but it is unstructured and sometimes incorrect and inaccurate.

This book will help you to understand the fundamentals of Docker. To

understand anything in depth, it’s best to start with basic concepts. Over

the past years, the needs of tech companies have evolved significantly.

This book will help you understand the need for Docker in the software

industry and how Docker has managed to ease the growing pains of this

industry.

I have tried to structure this book by explaining the fundamentals

before going into anything specific to Docker. I hope that helps you

understand the fundamentals of Docker.

My hope, too, is that this book is useful to both students and engineers

who want to ramp up on Docker quickly.

The following sections provide a snapshot of the book.

�Chapter 1: Containers
This chapter focuses on what Docker is all about. It’s about containers.

But what are containers and how do they differ from virtual machines?

Why does Docker make use of container technology and what are

the benefits of that? What are the advantages and challenges of

containerization? At the end of this chapter, you will have learned the

underlying technology of Docker.

xviii

�Chapter 2: Docker
This chapter focuses on how the software industry evolved and what gave

rise to the need for containers and, therefore, Docker. In this chapter, you’ll

learn the history of Docker, in addition to some of its basic use cases today.

�Chapter 3: Monolith vs. Microservices
Because this book focuses on debugging microservices using Docker, this

chapter talks about the evolution of microservices, the differences between

monolith and microservices, and the advantages and challenges of both. It

will help you understand why debugging becomes significantly difficult when

you’re dealing with multiple services that all need to talk to one another.

�Chapter 4: Docker Basics
This chapter is all about taking the first few steps to begin working with

Docker. This section discusses the terminology used in the Docker world,

the underlying architecture of Docker, how to install Docker, and some basic

Docker commands. This chapter is your go-to to step foot into Docker land.

�Chapter 5: Docker Images
This chapter goes deep into what Docker images are and how they’re

created. It examines Dockerfiles, which is where all the instructions to

build Docker images are located. Then it goes into how to build Docker

images and, finally, into Docker containers in depth. I would encourage

you to take some extra time to understand the role of Dockerfiles, Docker

images, and Docker containers. I’d also advise acquiring a thorough

understanding of this chapter.

IntroductionIntroduction

xix

�Chapter 6: Docker Compose
This chapter is devoted to the Docker Compose tool. This links all the

services and helps in running an application from end to end. Here you’ll

learn all aspects of Docker Compose: how to install it, how to use it, and

what happens behind the scenes.

�Chapter 7: Debugging Microservices Using
Docker
This is what the book has been leading to. This chapter is the core and

longest chapter of this book. It explains what distributed environments

are and their challenges. It later goes into depth about how to debug an

end-to-end real-world use case, by explaining different related debugging

techniques.

�Chapter 8: Advanced Docker Use Cases
After exploring how to debug an application, based on the microservices

architecture, this chapter discusses some advanced use cases of Docker.

It talks about the use of Docker in a production environment, orchestration

using Docker, and offers some tips and tricks to help you with the software.

IntroductionIntroduction

1© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_1

CHAPTER 1

Containers
A container is any receptacle or enclosure for holding a prod-
uct used in storage, packaging, and shipping.

Wikipedia, “Container,”
https://en.wikipedia.org/wiki/Container, 2018.

In this chapter, you will learn the basics of containers and how they are

used in the software industry. You will also see how containers differ

from virtual machines and discover some of the pros and cons of using

containers. This chapter puts you on the path to learning about Docker in

depth.

�What and Why?
You can’t work in a software company today and not hear about software

containers: Docker, Kubernetes, Mesos, and a host of others. But before we

dive into any of this, let’s look at what really changed in the world that led

to the need for containers.

When you run a program on your machine in a certain environment,

and the environment that supports your program on a production

machine is not identical, problems arise. You test using a certain

version of the programming language, and it runs a different version in

production, so something weird happens, owing to the lack of forward

https://en.wikipedia.org/wiki/Container

2

or backward compatibility. Alternatively, you rely on a certain version

of an SSL library, and a different version is installed in production. The

network topology or the security policies might be different. These

inconsistencies can cause all sorts of problems. Let’s take a step back.

What is a container in the traditional sense of the word, and how can

containers solve this problem?

“A container is any receptacle or enclosure for holding a product used

in storage, packaging, and shipping,” right? Now let’s apply this to software.

The concept of container technology uses this same paradigm of

shipping containers in transportation. The idea is that before shipping

containers were invented, manufacturers had to be prepared to ship

goods in a wide variety of modes—ships, trains, or trucks—with different

sized containers and packaging. By standardizing the shipping container,

goods could be seamlessly transferred among shipping methods, without

any additional preparation. Before the advent of this standard, shipping

anything in bulk was a complicated, laborious process.

The promise behind software containers is essentially the same.

Instead of shipping via a full operating system (OS) and your software (and

maybe the software that your software depends on), you simply pack your

code and its dependencies into an image that can then run anywhere, and

because these are usually pretty small, you can pack lots of containers onto

a single computer.

Put simply, a container consists of an entire runtime environment:

an application, plus all the dependencies, libraries and other binaries,

and configuration files needed to run it, bundled into one package. By

containerizing the application platform and its dependencies, differences

in OS distributions and underlying infrastructure are abstracted away.

By allowing software code to be prepped in ready-made software

containers, the code can quickly be moved around to run on servers

running the Linux OS or be connected to run a distributed app in the

Chapter 1 Containers

3

cloud. This approach also has the benefit of speeding up the testing

process and building large, scalable cloud applications. While this

approach has been around in software development circles for many years,

it has recently become more popular with the growth of Linux and cloud

computing. Earlier projects taking the container approach have included

BSD Jails, Solaris Zones, and Unix V7.

�Containers vs. Virtual Machines
Heard the terms virtualization or virtual machine? First, what are virtual

machines (VMs)? In the present day and age, when collaborating and

working remotely have become commonplace, virtualization is key.

Historically, as server processing power and capacity increased, bare metal

applications weren’t able to exploit the new abundance in resources. Thus,

VMs were born, designed by running software on top of physical servers, to

emulate a particular hardware system.

At the heart of it, a VM is an app! Typically called hypervisor, it

emulates an OS. Hypervisor is a program that enables you to host several

different VMs on a single hardware. Everything in the VM is self-contained,

and it typically has all the capabilities of the OS it is imitating.

Sounds like a fake computer, doesn’t it? However, there are some

important distinctions. A VM is indeed entirely virtual, in that it doesn’t

have any hardware of its own, except for the storage drive it comes from.

More modern and complex VMs are supported by server setups.

Virtualization services are usually provided by specific companies,

such as VMware, for example.

How do containers compare to VMs, though? Are they the same thing?

When do you use what? And what is the key difference, really?

Chapter 1 Containers

4

VMs take up a lot of system resources. Each VM runs not just a full

copy of an OS but a virtual copy of all the hardware that the OS requires

to run. This quickly adds up to a lot of RAM and CPU cycles. In contrast,

all that a container requires is enough of an OS, supporting programs and

libraries, and system resources to run a specific program.

What this means in practice is that you can put many more

applications on a single server with containers than you can with a VM.

OS virtualization has grown in popularity over the last decade, to

enable software to run predictably and well when moved from one server

environment to another. But containers provide a way to run these isolated

systems on a single server or host OS.

Containers sit on top of a physical server and its host OS, for

example, Linux or Windows. Each container shares the host OS kernel.

Binaries and libraries are the only elements created from scratch.

Containers are thus exceptionally “light”—they are only megabytes in

size and take just seconds to start, as opposed to gigabytes and minutes

for a VM.

Containers also reduce management overhead. Because they share

a common OS, only a single OS requires care and feeding for bug fixes,

patches, and so on. This concept is similar to what we experience with

hypervisor hosts: fewer management points but slightly higher fault

domain. In short, containers are lighter weight and more portable than

VMs.

VMs and containers differ in several ways, but the primary

difference is that containers are isolated processes running on an OS

that are implemented using namespaces. With VMs, the hardware is

virtualized to run multiple OS instances. Containers’ speed, agility,

and portability make them yet another tool to help streamline software

development.

Figure 1-1 provides a comparison of containers and VMs.

Chapter 1 Containers

5

�Pros and Cons of Containerizing
Applications
Let us start with understanding how applications are run traditionally.

That will help us understand what containerization is not.

�Running an Application on a Host Machine
Traditionally, you would install an application on a host computer and

run it directly from a host computer’s file system. The environment this

application runs in would include the host’s file system, network interfaces,

ports, devices, etc. To get the application working, you would additionally

require other packages that your application depends upon. You might also

want different versions of the same package running on your system.

Besides this, running multiple instances of your service on the host

computer might get tricky, because the application might bind to a

particular network port by default; other services might bind to the same

network port; the service might have to read configuration files on service

startup; etc.

Figure 1-1.  Containers vs. virtual machines

Chapter 1 Containers

6

�Running an Application on a Virtual Machine
Running an application on a VM can overcome some of the drawbacks of

running applications directly on the host OS. A VM also runs on the host,

but it has its own kernel, file system, network interfaces, etc. This makes it

easy to keep almost everything inside the OS separate from the host.

Because a VM is a separate entity, you don’t have the same issues

of inflexibility that arise from running an application directly on

hardware. You could run an application ten times on the host by

starting up ten different VMs. The service on each VM could listen on

the same port number and not cause a conflict, because each VM could

have a different IP address, as if it’s a different computer altogether,

except that it’s not.

Likewise, if you have to shut down a host computer, you could either

migrate the VM to another host (if your virtualization environment

supports it) or just shut it down and start it again on the new host.

The downside of running each instance of an application in a VM

is the resources it consumes. Your application might require only a

few megabytes of disk space to run, but the entire VM could consume

many gigabytes of space. Also, the startup time and CPU consumption

of the VM is almost sure to be higher than the application itself would

consume.

Containers offer an alternative to running applications directly on the

host or in the VM, which can make the applications faster, more portable,

and more scalable.

�Advantages of Using Containers
Containers offer both efficiency of resources and flexibility of usage. While

VMs take up several gigabytes of space, containers are sized within the

range of tens to hundreds of megabytes. A server can host significantly

more containers than VMs because of the lack of the need to run multiple

Chapter 1 Containers

7

copies of OSs. Flexibility comes from the container being able to carry all

the files it needs with it. As with an application running in a VM, it can

have its own configuration files and dependent libraries, as well as its own

network interfaces that are distinct from those configured on the host.

So, a containerized application is easier to move around than its directly

installed counterparts, and it doesn’t have to contend for such resources

as port numbers, because each container they run in has separate network

interfaces.

Because the container can hold the application and its dependencies it

requires to run, the startup time, disk space consumption, and processing

power is much lower than those of a VM. Containers also don’t have a

separate kernel, as does a VM. Using containers can decrease the time

required for development, testing, and deployment of applications and

services. Testing and bug tracking also become less complicated, because

there is no difference between running your application on a test server vs.

production.

Containers are a very cost-effective solution and can potentially help

you decrease your operating and development costs. Container-based

virtualization is a great option for microservices, developer operations, and

continuous deployment.

�Challenges of Using Containers
One of the main disadvantages of container-based virtualization

compared to traditional VMs is security. Containers share the kernel and

other components of the host OS. This means that containers are less

isolated from each other than VMs, which have their own OS. If there is a

vulnerability in the kernel, it can jeopardize the security of all containers.

VMs only share the hypervisor, which makes them less prone to attacks

than the shared kernels of containers.

Chapter 1 Containers

8

While VMs with any kind of OS can reside next to each other on the

same server, you must start a new server, to be able to run containers with

different OSs. For complex enterprise applications, this can be a serious

constraint.

In addition to that, deploying containers in a sufficiently isolated way

while maintaining an adequate network connection can be tricky too. Also,

containers, as they are designed, cannot see other containers by default.

So, what happens when you want your container to work closely with

another container? For example, what if your service requires access to a

database server?

Some of these problems are addressed by Docker, which you will read

about in the next chapter.

�Summary
This chapter described the basics of containers, their use in the

software industry, and how they differ from VMs. It also described the

difference between running an application on a host machine vs. a VM

vs. a container. It discussed the advantages and challenges of using

containers.

This chapter has put you on a path along which you can start from

scratch, if you’re new to the world of virtualization, by comparing the

differences between all options available today and the reasons the

software industry has moved toward containerization rather than other

available options.

Chapter 1 Containers

9© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_2

CHAPTER 2

Docker
Docker is another term for longshoreman. Longshoreman: a
person employed by a port to load and unload ships.

https://www.collinsdictionary.com/us/dictionary/english/docker

In the last chapter, you saw what containers are and the differences

between them and virtual machines (VMs). You also read about some of

the advantages of containers and the challenges of using them.

Docker provides a solution to some of the problems posed by

containers. But why did Docker become so successful only in recent years?

Let’s look into that a little .

In this chapter, you will learn about the evolution of Docker and the

reasons for its wide adoption by the software industry. You will learn

some basics of Docker, some basic use cases for it, and some of its main

components. We’ll dive deeper into this in the future chapters.

�History
As new as containerization and Docker might sound to you, the intriguing

wrinkle is that they’re really not new. The idea of containers has been

around since the early days of Unix, with the chroot command. Rings a

bell? Docker software was originally built on Linux containers, which were

introduced in 2008.

As you should know from having read Chapter 1, containerized

applications share a common operating system (OS) kernel,

https://www.collinsdictionary.com/us/dictionary/english/docker

10

eliminating the need for each instance to run its own separate system.

An application can be deployed in seconds and uses a lot fewer

resources than hypervisor-based virtualization. However, because

applications rely heavily on a common OS kernel, this approach can

work only for applications that share the exact OS version. Docker

found a way to address this limitation.

Docker was released as an open source project by dotCloud, Inc., in

2013. dotCloud is a San Francisco–based technology startup founded by

the French-born American developer and entrepreneur Solomon Hykes. It

relies heavily on namespaces and cgroups to ensure resource isolation and

to package an application along with its dependencies, which are mostly

Linux kernel features. It is this clustering of dependencies into a package

that lets an application run across different platforms and still support a

level of portability. This also allows developers to develop in the language

of their choice, on a platform of their choice. This flexibility is what

attracted a lot of interest in recent years.

Docker became extremely famous in many fast-growing companies

that were trying to build test and dev environments for developers that

could replicate production systems in many ways. Today, Docker is used

by some well-known companies, including PayPal, Spotify, Yelp, and

Pinterest, which are finding value in the software.

Let’s look at a time line of Docker milestones, according to the

Container Journal. Docker source code was released as an open source

software in March 2013. Needless to say, everyone had access to it after

that. About a year later, Docker built the libcontainer framework,

which it switched to. Around the same time, demand for orchestration

tools increased, as Docker kept getting popular. In order for Docker

containers to scale, orchestration frameworks are key. In June 2014,

Google introduced Kubernetes, which helped Docker scale. Later that

year, Amazon’s EC2 container service, which is a cloud-based container

as a service, was offered. In June 2015, the open container initiative,

which promotes open standards related to containers, was launched.

Chapter 2 Docker

11

A year later, Docker acquired a small company working on unikernels

technology called Unikernels. By June of 2016, Docker had become very

popular with the container ecosystem. It included the Swarm orchestrator

in its platform, even though it was replaceable. Later that year, Docker

started supporting all versions of Microsoft Windows. By 2016, Docker was

extremely successful, and major companies began using it extensively for

their most important use cases.

Now that we’ve reviewed how Docker became a success in the

industry, let’s dive deeper into what Docker is and what use cases it solves.

�What Is Docker?
Docker is the name of the company that produces the software called

Docker. It is also the open source project that is now called Moby. When

someone refers to Docker, he or she can be referring to any of these three

things. Let’s try to understand a bit about each of them.

Docker is a software that runs on Linux and Windows. It is a tool

designed to make it easier to create, deploy, and run applications, by using

containers. The software is developed in the open, as part of the Moby

open source project on GitHub.

Docker is a tool that is mainly designed for developers, so that they

can focus on developing on their choice of platform, without having to

worry about the OS the application will eventually run on. It allows them

to run end-to-end workflow without having to get into services they don’t

understand. In other words, it helps them to obtain a clearer view of the

entire stack fairly easily. Additionally, running Docker containers has no

additional memory overhead, so multiple Docker containers running

multiple services creates very low overhead.

Understanding the different parts of Docker will help us get a good

overview of everything Docker is made of before we dive deeper into

any of it. The Docker architecture is explained in detail in Chapter 4.

Chapter 2 Docker

12

�The Docker Runtime and Orchestration Engine
The Docker engine is the infrastructure plumbing software that runs and

orchestrates containers. This means that all the Docker, Inc., and third-

party products plug into the Docker Engine and build around it. It is

combined with a workflow for building and managing your application

stacks. It is this underlying client-server technology that builds and runs

containers using Docker’s components and services. It is made up of the

Docker daemon, a server that is a type of long-running program; a REST

API, which specifies interfaces that programs can use to talk to the daemon

and tell it what to do; and the CLI, the command-line interface that talks

to the Docker daemon through the API. Many docker applications use the

underlying API and CLI.

In other words, the Docker Engine is the program that creates and runs

the Docker container from the Docker image file. So, next, let’s take a quick

look at what a Docker image file is.

�Docker Images
A Docker image is not just a file; it is more of a file system. This file

system is composed of multiple layers, and each layer contains a file of

the contents for that layer that cannot be changed. In other words, it is

immutable. It is essentially a snapshot of a Docker container.

Docker images are created with the build command. They produce

a container and are stored in a Docker registry. Images can become fairly

large quite quickly. Therefore, they are designed to be composed of layers

of other images, allowing a minimal amount of data to be sent when

transferring images over a network.

To explain this more clearly with a programming metaphor, if an image

is a class, then a container is an instance of a class—a runtime object.

Containers are lightweight and portable encapsulations of an environment

in which you can run applications.

Chapter 2 Docker

13

An image is created using a Dockerfile. Let’s see what a Dockerfile

is. Later on, we’ll learn how to build a Docker image from a Dockerfile in

detail, in Chapter 5. For now, let’s take a quick look at what Dockerfiles are

all about.

�Dockerfiles
Everything starts with a Dockerfile. It is a text document that contains a set

of instructions or commands to assemble an image that are understood by

the build engine.

The Dockerfile defines what goes in the environment inside your

container. Access to resources, mapping volumes, passing arguments,

copying files that must be inside your container, etc., go into this file. After

creating the Dockerfile, you will have to build it to create the image of the

container. The image is just the snapshot of all the executed instructions in

the Dockerfile. Once you have this application image built, you can expect

it to run across any machine using the same kernel.

�Why Should You Use Docker?
Docker provides application isolation with little overhead. By saving space

with the low memory footprint, it has some powerful advantages.

Primarily, you can benefit from the extra layer of abstraction (in

which code and its dependencies are packed together) offered by Docker.

Another significant advantage is that you can have many more containers

running on a single machine than you can with virtualization alone, owing

to Docker’s lightweight nature.

Another significant advantage is that containers can be spun and

shut down within seconds. The Docker FAQ has a good overview of what

Docker adds to traditional containers.

Let’s look at some of the key uses.

Chapter 2 Docker

14

�Docker’s Key Use Cases
Here are some of the key use cases that Docker supports that promote

consistency of environments.

�Configuration Management
Simplifying configurations is one of the primary use cases of Docker. One

of the features it provides is the ability to run any application or platform

with its own config on any OS or other infrastructure. Docker provides the

capability of clubbing your environment with your configuration into code,

packaging it, and deploying it.

�Code Pipeline Management
When you have simplified your application configuration, code

management becomes a lot simpler as a result. Code lives in many

different environments before it reaches a point at which it can be shipped.

It first lives in the developer’s machine, where it is tested, then it goes to

test environments, where it might be deployed on test machines. Only after

that does it reach the production servers.

All these environments vary in infrastructure, settings, configuration,

etc. With Docker, a consistent environment is provided across these

different phases, which in turn ease the development and deployment

process. The ease with which Docker images can be spun helps you to

maintain consistency across runtime environments.

�Developer Productivity
As mentioned earlier, the life cycle of shipping an application goes through

numerous phases, starting from the developer machine all the way to the

production servers. At all points, we mostly strive to ensure a consistency

between test and production environments.

Chapter 2 Docker

15

To achieve this, every service must reflect how it will run in the

production environment. For that to be possible, test environments require

all the dependent services that end up taking huge amounts of space.

Docker comes in handy here by allowing a bigger number of services

to run simultaneously, by not adding to the memory footprint. Docker’s

shared code volumes make it available to the container’s host OS, which

helps to support low memory usage.

This works amazingly well for developers, because they can use the

code editor of their choice on a platform of their choice to develop the

application, without worrying about the OS the application will run in on

a production setting. This also helps developers avoid getting into the nitty

gritty of services they don’t really understand but still enables them to test

their end-to-end scenarios, which implicitly helps them understand the

full stack better.

�Faster Deployment
Prior to the existence of VMs, spinning up new hardware was a very

cumbersome and time-consuming process. With VMs, that process

became slightly easier, and with Docker, it became exponentially easier.

Creating and destroying Docker containers, bringing up a new

container, etc., become extremely simple with Docker, not to mention less

costly, which in turn allows for better resource allocation.

�Application Isolation
When multiple microservices power up an application, it is very likely that

these services depend on common libraries and packages, but possibly

different versions of them. If you were to start an application on a single

machine, getting all these services up and running to kick-start the

application would practically be impossible, owing to the version conflicts

of the various dependencies.

Chapter 2 Docker

16

For that reason, isolating these microservices in their own

environments, with only their dependencies and configurations that

don’t conflict with other services, lets that service run independently.

Setting up all these microservices in their independent Docker

containers and having these containers communicate with each other

seems like an ideal solution to getting an application up and running

seamlessly.

�Continuous Integration and Continuous
Deployment
Docker has the ability to do image versioning. This means that you

can set up your Docker containers to pull new code from your code

repository, build it, package it in a Docker image, and push this new

image to your image repository. Your deployment tool can then pull

the newest image from your image repository, deploy it to your test

environments, and, finally, promote it to your production environments.

You could do this either every time there is new code in your repository

or at a certain frequency, depending on how often you require your code

to be deployed.

�Consistent Environments Across Machines
How often have you observed that something works on your coworkers’

machines but not on yours? Docker helps you prevent this situation

completely, by setting consistent environment variables and configuration

settings in the image file, so that your and your coworkers’ machines

look the same, without any other variables that can affect the run of an

application or service.

Chapter 2 Docker

17

�Summary
In this chapter, you learned how Docker evolved, how it went from being

an open source project in 2013 to acquiring unikernels to running natively

on Windows. You saw what requirements of the software industry gave rise

to the wide adoption of Docker. You also learned some basics of Docker

and its components. We’ll dive deeper into this in future chapters.

Finally, you learned some of the key use cases of Docker, ranging from

code pipeline management to faster deployments to increasing developer

productivity. These are just some of the use cases of Docker that are widely

applied across the software industry.

In the next chapter, you will learn about the differences between

monoliths and microservices and when and why you use one vs. the other.

You will see how to use Docker with microservices, as well.

Chapter 2 Docker

19© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_3

CHAPTER 3

Monolith vs.
Microservices

A monolith is “a large single upright block of stone, especially
one shaped into or serving as a pillar or monument.”

Oxford Living Dictionaries, s.v. “monolith,”
https://en.oxforddictionaries.com/definition/monolith,

accessed October 1, 2018.

Docker provides a solution to some of the problems posed by containers.

But why did Docker become so successful only in recent years? Let’s delve

into that a bit.

In the previous chapter, you learned about the evolution of Docker and

the reasons for its wide adoption by the software industry. You also learned

some basic use cases of Docker and its components.

In this chapter, I will consider the evolution of the microservices

architecture. You’ll see how challenges posed by a monolith system,

such as difficulty in continuous deployments, testing, scalability, etc.,

were solved by adopting a microservices architecture. You will also learn

about the challenges of a microservices architecture and how application

isolation enabled by Docker can come to the rescue.

https://en.oxforddictionaries.com/definition/monolith

20

Before we get into microservices, however, let’s first understand

how microservices and service-oriented architectures are related. Both

are architectures based on distributed systems, but there are some

fundamental differences.

Microservices architecture is a kind of service-oriented architecture.

In both architectures, services have a certain responsibility. These services

can be developed independently on different tech stacks, and in both

architectures, developers must deal with the complexity of a distributed

system. However, microservices architecture splits an application into

multiple different services that can be independently developed, scaled,

tested, and deployed, whereas in a service-oriented architecture, services

are provided to other application components. A service-oriented

architecture must be deployed as a monolith, and all services must follow

the same communication protocol.

Now let’s look at how microservices evolved.

�Evolution of Microservices
Before we go into learning how microservices evolved, let’s first look into

challenges presented by monoliths, because that is what contributed to the

need for microservices architecture.

A monolith application is a single, self-contained software application

in which all components of the application, including the user interface

and the data access code, are all tightly coupled into a single program.

While a monolith service is simple to implement, test, deploy, and

perhaps even scale, there are many other challenges that can arise as the

complexity of the software application increases. Here are some of the

challenges:

•	 It becomes more and more difficult to test different

pieces of the application independently.

•	 Continuously deploying the entire application becomes

tedious.

Chapter 3 Monolith vs. Microservices

21

•	 If you change a piece of code in a certain area, you will

have to deploy the entire service, which could seem

quite long and unnecessary.

•	 A software bug in any module can bring the entire

service down. Monoliths have single points of failure,

which are very difficult to debug.

•	 As the size of a monolith application increases, the

startup time of the application keeps increasing with it.

•	 To adapt new frameworks and technologies in your

monolith app that uses a single stack, you must rewrite

the entire application.

To mitigate all of these potential pitfalls, microservices architecture

was born.

A microservices architecture is one in which a monolith is split

into multiple smaller services that operate independently of each

other but are interconnected. Each microservice is an independent

service or an independent application. Different microservices in an

application can be built on different software stacks and implement their

own architecture. What’s more, in a microservices architecture, each

microservice can additionally implement its own database schema, as

required, instead of sharing a single database schema. It can also use

a database that best suits its need. As a matter of fact, microservices

should use their own databases and database schema; otherwise, the

dependency on shared databases and schemas doesn’t really allow the

services to be independent. Figure 3-1 shows two services using MySQL

but different instances of it. The monolith is broken down into multiple

services, each of which uses its own database.

Chapter 3 Monolith vs. Microservices

22

Microservices have many advantages over monoliths. A

microservice architecture deals with the complexity issue of

a monolith, for which it helps in dividing a single application

into multiple components. This makes understanding as well as

maintaining the code base a lot easier. Because the services operate

independently, they can be developed using a framework that best

suits the need. This gives developers a lot of flexibility, as they are

free to choose what works best. Different modules can be deployed

independently of one another. Services can also be scaled, as required.

Testing independent services becomes easier as well, owing to the

modularity that comes with a microservices architecture.

�Comparing Monoliths and Microservices
Table 3-1 provides a consolidated view of a monolith vs. a microservices

architecture.

Figure 3-1.  Microservices architecture in which an application is
broken down into multiple services, and each service uses its own
independent database

Chapter 3 Monolith vs. Microservices

23

Table 3-1.  Differences Between Monolith and Microservices

Monolith Microservices Architecture

 1. Maintenance Maintenance grows

in complexity as the

application does.

It is easier to maintain

microservices, as they are modular

and independent.

 2. Deployment Continuous deployment

becomes very difficult

as the monolith keeps

growing.

Deployment of individual services

is easier, and services can be

deployed as and when required.

 3. Testing Testing the entire

monolith becomes a

pain.

Testing individual components is

much easier.

 4. Startup time As the monolith grows

in size, the startup time

increases with it.

Startup times of individual services

are much faster, because they are

smaller in size.

 5. �Adoption
of newer
technologies

A monolith is written in

a single language, uses

a single database, and is

averse to adopting newer

technologies.

Developers are free to choose

the technologies to build their

microservices. Each microservice

can also use a database that best

suits its needs. Microservices

architecture allows you to take

advantage of the latest available

technologies.

 6. Scalability It’s much harder to scale

a complex monolith.

Microservices can be scaled on

demand, as and when needed.

Chapter 3 Monolith vs. Microservices

24

�Challenges with Microservices
While microservices address many issues with monoliths, they

introduce many other kinds of problems that present a challenge.

With a microservices architecture, you are dealing with all challenges

that come with a distributed system. For example, because services

in a microservices architecture are interconnected, inter-service

communication must occur, and for that, a single, reliable, and

consistent communication channel must be established, for example,

using HTTP.

Multiple services mean more management of those services. All of

these must be independently managed for their health and maintenance.

These services have to be frequently updated and upgraded to meet the

newest versions of the dependencies they use.

Microservices might have their own logging mechanisms. This might

result in lots of unstructured and potentially unmanaged data. Retrieving

logs can become confusing with gigabytes of available logging data.

Finding the root cause of a failure in a certain workflow might be very

tedious to debug. In order to debug an entire workflow, you might have

to get multiple services up and running and then test them end to end,

in order to know where the bug exists, because the logic is distributed, as

is the data. There could also be cyclic dependencies between services,

which can be very difficult to deal with while debugging the root cause of a

failure.

Last, the most significant issues are those related to versioning. When

more than one service depends on certain libraries or packages, but only

different versions of those libraries, it becomes tricky to get these services

up and running. How can you have two versions of the same dependency

on your machine? If you can’t have that, how can you manage getting

these services up and running, either in a production system or in your

debugging environment?

Chapter 3 Monolith vs. Microservices

25

For example, imagine a spellchecker application with three different

microservices: service A, service B, and service C. When the user enters

a word to check the spelling of, the request is sent to service A, which

depends on JavaScript version 1.8.5, Python version 2.7, and Flask version

0.12.4. Service B takes the request from service A, checks the spelling

against a dictionary, and sends it to service C. In order to get service B up

and running, you need Flask version 0.10.3. Service C takes this spelling

and writes it to a database for records. Service C depends on Python

version 2.1.

Table 3-2 shows the dependencies required on your machine, to get

these services up and running successfully.

Table 3-2.  Service dependencies

Service A Service B Service C

JavaScript v1.8.5 - -

Python v2.7 - Python v2.1

Flask v0.12.4 Flask v0.10.3 -

As you see, getting service A and service B running on the same

machine is practically impossible, because they both require a different

version of Flask. Similarly, getting service A and service C running

successfully on a single machine is also impossible, owing to the different

versions of Python.

This is one of the most prevalent and widely seen problems in the

software industry. A common solution might be to update your services

to use the same version of a certain dependency. But in a complex

application with thousands of microservices, this becomes extremely

difficult to keep track of. So, what is a good solution here? Docker.

Chapter 3 Monolith vs. Microservices

26

In the preceding example, if you isolate service A, service B, and

service C in their own environment and let them run independently and,

at the same time, enable inter-process communication between them, they

would not conflict with one another. Docker enables exactly this!

In the next few chapters, I will delve into how exactly this problem

can be solved with the help of Docker, in addition to the many other

advantages of using Docker to solve related problems.

�Summary
In this chapter, you saw how the microservices architecture was born and

how it evolved. The many challenges that came with monolith services

were solved by the microservices architecture.

You also saw the differences between a monolith and a microservices

architecture. You saw how as an application grows in size and complexity,

a monolith poses many problems, such as difficulties with continuous

deployments, testing, scalability, startup, etc. These are elegantly solved by

a microservices architecture.

Last, you saw that with a microservices architecture come all the

challenges of a distributed system. You saw how getting multiple services

up and running can be quite challenging, if they rely on different versions

of the same dependencies. Application isolation comes in very handy here.

And Docker can help us with that.

In the next chapter, I will get into the basics of Docker and explain

the nitty-gritties, including related terminologies, its architecture, how to

install Docker, and some basic commands to use to get started.

Chapter 3 Monolith vs. Microservices

27© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_4

CHAPTER 4

Docker Basics
Essential foundations, starting points, and fundamentals

In this chapter, we will look into the Docker terminology that has been

used in the previous chapters of this book and which I will continue to use

in future chapters.

You’ll see the different components of the Docker architecture,

including the Docker Engine, Docker Hub, Docker clients, Docker host,

and Docker registries. You’ll see how different Docker objects are created

by the Docker daemon and how Docker Hub can be used to pull existing

Docker images and buy, sell, or distribute images for free.

Additionally, you will learn how to install Docker on the Mac operating

system (OS) platform.

I will examine more closely some of the basic Docker commands,

providing an example of the use of each command, so that you can play

around with it and then follow it with your own example.

28

�Terminology
Before you begin to approach the fundamentals of Docker, it is important

to learn the associated lingo. Following are certain keywords and phrases

that you will come across frequently, now that you’re on the path to

becoming a Docker expert!

Image: A Docker image is a bundle of all the

dependencies and configurations that an

application depends on to run successfully. An

image is this package that runs inside a container.

Once an image is created, it cannot be changed. In

other words, a Docker image is immutable.

Container: A Docker container is a lightweight

instance of a Docker image. It is a running process

that has been isolated using namespaces and uses

the image for its root file system.

Dockerfile: A Dockerfile is a text file that contains

instructions to build a Docker image.

Building a Dockerfile: This refers to building the

instructions in the Dockerfile, in order to create a

Docker image that can then run inside a Docker

container.

Compose: This refers to a command-line tool that

operates on one or more files that are a composition

of multiple Dockerfiles of different applications/

services, in a sense. With the Compose tool, you can

run a single YAML file and get the images build to

create and have them all running together.

Chapter 4 Docker Basics

29

�Architecture
Before mastering Docker, let’s get into how it all works behind the scenes,

to get a solid understanding of how it really works and how its different

components interact with one another.

To begin with, let’s look at Docker’s different components:

•	 Docker platform

•	 Docker Engine

•	 Docker architecture

•	 Docker client

•	 Docker daemon

•	 Docker registries

•	 Docker objects

•	 Images

•	 Containers

•	 Services

•	 Docker Hub

As you have seen in the previous chapters, some of the advantages of

Docker are process- and application-level isolation, portability, and ease

of deployment and testing. Many different components come into play to

support these scenarios. So, let’s delve into the components one at a time.

Chapter 4 Docker Basics

30

�Docker Platform
Docker provides a platform to bundle dependencies and other information,

such as environment variables, configurations, settings, etc., into a single

isolated environment. Owing to this isolation, dependencies across

applications do not interfere with each other, and, hence, multiple

applications can run inside their own containers. These containers can

all run simultaneously on a single host machine. Because containers are

different than virtual machines (VMs), in that they don’t need a hypervisor

later and can run directly on the host machine’s kernel, a lot more containers

can run on a single hardware machine than if you were to use VMs.

The Docker platform also provides the ability to manage your

containers, allowing you to develop and test your applications using

containers. When ready, you can also deploy your application in its

production environment, using containers.

�Docker Engine
The Docker Engine is a client-server application. It consists of the

following three parts, as shown in Figure 4-1.

	 1.	 A server process, also known as a daemon process.

This is a background process that is continuously

running and constantly listening to the REST API

interface for any commands to process.

	 2.	 A REST API interface that programs can talk to, in

order to communicate with the Docker daemon.

This can be accessed by an HTTP client.

	 3.	 A client that is a command-line interface (CLI).

Chapter 4 Docker Basics

31

Figure 4-1.  Docker Engine architecture

The way to get anything done using Docker is through the Docker

client, via the CLI or a script composed of commands. The client then

communicates these commands, via the REST API, to the Docker daemon,

which is the server. The Docker daemon then gets the job done. It creates

such Docker objects as images, containers, volumes, etc.

Let’s look more extensively into Docker’s client-server architecture.

Chapter 4 Docker Basics

32

�Docker Architecture
The Docker system mainly consists of the Docker client, daemon, and

registry (Figure 4-2).

�Docker Client

The Docker Client is the primary way in which most users interact with

Docker. When you run commands using the CLI, these commands are

then sent to the Docker daemon, using the Docker API interface. The

Docker daemon or the dockerd then executes these commands and creates

relevant Docker objects. The Docker client has the ability to communicate

with multiple Docker daemons.

Figure 4-2.  Docker client-server architecture

Chapter 4 Docker Basics

33

�Docker Daemon

The Docker daemon is a server process that is persistent in nature and

runs in the background. It continuously listens to the REST API interface

and looks for any incoming requests to process commands. The daemon

can listen to the API interface using different socket types, such as Unix,

TCP (transmission control protocol), and FD (file descriptor).

�Docker Registries

The images created by the Docker daemon must be stored at a certain

location, for ease of access. The Docker registry is this location. There are

public registries, such as the Docker Hub, that can be used by anyone.

By default, Docker looks for images on the Docker Hub, but this can be

configured to use your private registry as well.

Commands such as Docker pull retrieve the required images from

your configured registry and Docker push pushes the image to this same

configured registry.

From a Docker store, you can buy, sell, or distribute images for free.

You can then use these images to deploy an application in your test or

production environment.

Let’s move forward a bit and look at the different objects of Docker that

have been referenced multiple times in this book so far.

�Docker Objects
With the use of Docker, different objects are generated, mostly by the

Docker daemon. Some of these objects are images, containers, services,

and storage.

Chapter 4 Docker Basics

34

�Images

A Docker image is a read-only file system that contains instructions to

create a container that can run an application. Most of the time, a Docker

image is based on another image and is customized. You could either use

existing images published in public registries, such as the Docker Hub, or

create your own image.

A Dockerfile is used to build a Docker image. A Dockerfile contains

simple instructions that can be understood by the Docker daemon, to

create the image and run it.

Docker images are layers that correspond to each instruction in the

Dockerfile. A part of what makes a Docker image super lightweight is

that when you modify a part of the Dockerfile, only that layer is modified,

rather than the entire image.

�Containers

A Docker container is an instance of an image. An image runs inside a

container. You can manage a container using stop, start, and delete

commands. Multiple containers can be connected to one another through

a network. They can be connected to storage, and they can also talk to one

another.

As you have seen in Chapter 1, containers are much more lightweight

than VMs, owing to their startup times being very fast.

In order to create a container, an image, in addition to the container’s

configuration and settings, is provided. When a container is deleted,

everything related to the container is also deleted, including state and

storage.

Chapter 4 Docker Basics

35

The Docker run command is used to run a container. When you run

this command, the following things happen:

	 1.	 The Docker image is pulled from the configured

registry.

	 2.	 A new Docker container is created.

	 3.	 A local file system is allocated to that container,

to enable creation and modification of files and

directories in its local file system.

	 4.	 The container is connected to the default network,

unless you configure a networking option.

A container is assigned an IP address.

	 5.	 Docker starts running the container and attaches

it to your local terminal. This allows you to interact

with this container.

	 6.	 You can stop or remove the container, using your

terminal input, at any time.

�Services

In a distributed application, different functionalities of the app constitute

different services. For example, if you are building an application for

suggestions based on keywords entered by the user, you might want

a front-end service that takes the word and sends it to the service that

verifies the legitimacy of the word. This might, in turn, go to another

service that might execute an algorithm, in order to generate the

suggestions, etc., which are then returned to the service.

These are all different services on different Docker containers that

sit behind different Docker daemons. These Docker daemons are all

connected through the network and interact with each other. To the user,

Chapter 4 Docker Basics

36

this might look like a single application that runs, but behind the scenes,

these are multiple services that make the entire application function.

All these services work together as a swarm, managed by different

managers and workers. Each swarm contains a Docker daemon. These

daemons communicate with each other using the Docker API.

A Docker Compose YAML file is used to get all these services up and

running together. Later, in Chapter 6, you will see how to use the Docker

Compose tool in detail.

�Docker Hub
Docker Hub is the primary location for storage of Docker images. It is

a cloud-based public registry from which you can pull images or push

images to. It also links to Docker Cloud. It is a centralized store for image

discovery and distribution. By default, Docker is configured to use this

public registry.

A user can buy or sell Docker images from the Docker Hub.

Alternatively, a user can also distribute Docker images for free on the hub.

A user can search for Docker images using the Docker Hub user interface

or the CLI.

Chapter 4 Docker Basics

37

ki
nn
ar
yj
an
gl

a@
de
v-
ab
c:
 d
oc
ke
r
se
ar
ch
 a
lp
in
e

NA
ME

D
ES
CR

IP
TI
ON

S
TA
RS

OF
FI
CI
AL

AU
TO
MA
TE
D

al
pi
ne

A
 m
in
im
al
 D
oc
ke
r
im
ag
e
ba
se
d
on
 A
lp
in
e
Li
nu
x.
..

4
20
3

[O
K]

mh
ar
t/
al
pi
ne
-n
od
e

M
in
im
al
 N
od
e.
js
 b
ui
lt
 o
n
Al
pi
ne
 L
in
ux

3
79

an
ap
si
x/
al
pi
ne
-j
av
a

O
ra
cl
e
Ja
va
 8
 (
an
d
7)
 w
it
h
GL
IB
C
2.
28
 o
ve
r
A.
..

3
46

[O
K]

gl
id
er
la
bs
/a
lp
in
e

I
ma
ge
 b
as
ed
 o
n
Al
pi
ne
 L
in
ux
 w
il
l
he
lp
 y
ou
 w
i.
..

1
77

fr
ol
vl
ad
/a
lp
in
e-
gl
ib
c

A
lp
in
e
Do
ck
er
 i
ma
ge
 w
it
h
gl
ib
c
(~
12
MB
)

1
62

[O
K]

al
pi
ne
/g
it

A

si
mp
le
 g
it
 c
on
ta
in
er
 r
un
ni
ng
 i
n
al
pi
ne
 l
i.
..

4
6

[O
K]

ki
as
ak
i/
al
pi
ne
-p
os
tg
re
s

P
os
tg
re
SQ
L
do
ck
er
 i
ma
ge
 b
as
ed
 o
n
Al
pi
ne
 L
in
ux

4
2

[O
K]

zz
ro
t/
al
pi
ne
-c
ad
dy

C
ad
dy
 S
er
ve
r
Do
ck
er
 C
on
ta
in
er
 r
un
ni
ng
 o
n
Al
p.
..

3
2

[O
K]

ea
sy
pi
/a
lp
in
e-
ar
m

A
lp
in
eL
in
ux
 f
or
 R
as
pb
er
ry
Pi

3
0

da
vi
dc
as
te
/a
lp
in
e-
to
mc
at

A
pa
ch
e
To
mc
at
 7
/8
 u
si
ng
 O
ra
cl
e
Ja
va
 7
/8
 w
it
h.
..

3
0

[O
K]

by
rn
ed
o/
al
pi
ne
-c
ur
l

A
lp
in
e
li
nu
x
wi
th
 c
ur
l
in
st
al
le
d
an
d
se
t
as
 .
..

1
7

[O
K]

et
op
ia
n/
al
pi
ne
-p
hp
-w
or
dp
re
ss

A
lp
in
e
Wo
rd
Pr
es
s
Ng
in
x
PH
P-
FP
M
WP
-C
LI

1
5

[O
K]

he
rm
si
/a
lp
in
e-
ss
hd

D
oc
ke
ri
ze
 y
ou
r
Op
en
SS
H-
se
rv
er
 u
po
n
a
li
gh
tw
e.
..

1
2

[O
K]

da
vi
dc
as
te
/a
lp
in
e-
ja
va
-u
nl
im
it
ed
-j
ce

O
ra
cl
e
Ja
va
 8
 (
an
d
7)
 w
it
h
GL
IB
C
2.
21
 o
ve
r
A.
..

1
1

[O
K]

he
rm
si
/a
lp
in
e-
fp
m-
ph
p

D
oc
ke
ri
ze
 y
ou
r
FP
M
PH
P
7.
2
up
on
 a
 l
ig
ht
we
ig
h.
..

1
0

[O
K]

al
pi
ne
/s
oc
at

R
un
 s
oc
at
 c
om
ma
nd
 i
n
al
pi
ne
 c
on
ta
in
er

1
0

[O
K]

gr
az
e/
ph
p-
al
pi
ne

S
ma
ll
is
h
ph
p7
 a
lp
in
e
im
ag
e
wi
th
 s
om
e
co
mm
on
 .
..

9

[O
K]

yo
ba
sy
st
em
s/
al
pi
ne
-x
en
-o
rc
he
st
ra

X
en
 O
rc
he
st
ra
 r
un
ni
ng
 o
n
Al
pi
ne
 L
in
ux
 [
do
ck
e.
..

8

[O
K]

ma
st
er
ro
sh
i/
xm
ri
g-
al
pi
ne

C
ry
pt
on
ot
e
CP
U
Mi
ne
r
wr
ap
pe
d
in
 a
 A
lp
in
e
Do
c.
..

8

sp
ot
if
y/
al
pi
ne

A
lp
in
e
im
ag
e
wi
th
 `
ba
sh
`
an
d
`c
ur
l`
.

5

[O
K]

te
ns
ta
rt
up
s/
al
pi
ne

A
lp
in
e
li
nu
x
ba
se
 d
oc
ke
r
im
ag
e
wi
th
 u
se
fu
l
p.
..

5

[O
K]

fu
nc
ti
on
s/
al
pi
ne

A
lp
in
e
Li
nu
x
/
Bu
sy
Bo
x
wi
th
 t
he
 O
pe
nF
aa
S
wa
t.
..

4

go
vu
k/
ge
ms
ta
sh
-a
lp
in
e

G
em
st
as
h
se
rv
er
 r
un
ni
ng
 o
n
Al
pi
ne

3

[O
K]

ca
se
pt
/a
lp
in
e-
am
d6
4

A
 b
as
ic
 a
lp
in
e
li
nu
x
im
ag
e.

0

sm
ar
te
nt
ry
/a
lp
in
e

a
lp
in
e
wi
th
 s
ma
rt
en
tr
y

0

[O
K]

Chapter 4 Docker Basics

38

Now that we have looked behind the scenes at how Docker actually

operates, let’s see how to install it.

�Installing Docker
There are two Docker editions available to install.

Docker Community Edition (CE): This works for

small communities or individual developers looking

to get started and experiment with Docker.

Docker Enterprise Edition (EE): This is meant for

enterprises that use Docker to ship business-critical

applications that need to scale.

For the purposes of this book, let’s look at how to install the Docker CE.

Docker CE is available for both the Mac and Windows OSs. It is also

available to Amazon Web Services and Microsoft Azure.

Let’s look at how to install Docker CE on the Mac OS platform. There

are some system requirements to meet before you can install Docker on

your machine. You will need a Mac machine model that is at least from

2010 or later. In addition, you will need at least 4GB of RAM.

	 1.	 Go to the Docker store at https://store.docker.

com/editions/community/docker-ce-desktop-mac

and click Get Docker, from the right-side pane, as

seen in Figure 4-3.

Chapter 4 Docker Basics

https://store.docker.com/editions/community/docker-ce-desktop-mac
https://store.docker.com/editions/community/docker-ce-desktop-mac

39

	 2.	 Once you have the dmg file on your machine,

double-click it and drag Moby the whale to the

Applications folder, as shown in Figure 4-4.

Figure 4-3.  Getting the Docker Community Edition for Mac

Figure 4-4.  Drag Moby to your Applications folder

Chapter 4 Docker Basics

40

	 3.	 In the Applications folder, double-click the Docker

app, as seen in Figure 4-5.

Figure 4-6.  Docker icon on the status bar

Figure 4-5.  Docker icon as seen in the Applications folder

Authorize Docker.app with your system password,

after you launch it. You will need admin access to

launch the different Docker components.

	 4.	 The Moby whale on the status bar on the top, as

shown in Figure 4-6, indicates that Docker is now

running.

Chapter 4 Docker Basics

41

	 5.	 If you have successfully installed the app, you will

also see a pop-up with a success message, next

steps, and tips, as shown in Figure 4-7.

Figure 4-7.  Successful installation of Docker shows a pop-up with
next steps

Chapter 4 Docker Basics

42

To dismiss this pop-up, click the whale on the top

status bar.

	 6.	 Right-clicking the whale on the status bar will give

you options to set or modify your preferences, as

shown in Figure 4-8.

Figure 4-8.  Right-click Docker menu on the status bar icon

	 7.	 Check About Docker, to ensure you have the latest

version.

Now that we have Docker installed and running on our machines, let’s

take a look at some basic Docker commands, so that you can play around

and experiment with them.

Chapter 4 Docker Basics

43

�Basic Docker Commands
Following are some basic Docker commands that you can start playing with.

�docker container run
This runs a command in a new container. When a user runs the Docker

run command, it isolates the containers in its environment and the

configuration within its own local file system.

The Docker run command specifies an image, in order to run that

image inside a container.

The basic docker container run command looks like this:

docker container run [OPTIONS] IMAGE [COMMAND] [ARG...]

Image is the existing image you want to run inside the container. With

docker container run [OPTIONS], the developer can modify the defaults

of the images. Some options types are

-d: You can choose to let the container run in

the background, in detached mode, or in the

foreground. By default, when -d is not specified, the

container runs in the foreground.

-a: The foreground mode lets you attach your

local console to the process’s (running inside the

container) standard input output.

�docker container create
The docker container create command lets you create a new container

from an existing image that has been built previously. This is shown

following. The –t command stands for “tty,” which sets a pseudo time of

the container to live, and the -I command stands for “interactive” and

keeps the standard input open, even if it’s not attached.

Chapter 4 Docker Basics

44

Usage:

docker container create [OPTIONS] IMAGE [COMMAND] [ARG...]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker container create –t

-i myApp bash

38001kjhasd7qhs8whs7sh38729wajsh352191j888dhasg2

kinnaryjangla@dev-abc:~/code/test$

�docker container start
The docker container start command lets you start a new container or

a container that has been previously stopped, as shown here. The –t flag

stands for “tty” and is used to give the container a pseudo time to live.

The -I flag keeps the standard input open, even when it’s not attached.

Usage:

docker container start [OPTIONS] CONTAINER [CONTAINER...]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker container create –t -i

myApp bash 38001kjhasd7qhs8whs7sh38729wajsh352191j888dhasg20

kinnaryjangla@dev-abc:~/code/test$ docker start –a -i 38001kjhasd

root@38001kjhasd:/mnt/myApp #

�docker container stop
The docker container stop command lets you stop a currently running

container.

Usage:

docker container stop [OPTIONS] CONTAINER [CONTAINER...]

Chapter 4 Docker Basics

45

Example:

kinnaryjangla@dev-abc:~/code/test$ docker container stop

38001kjhasd

�docker image build
The docker image build command builds the docker image using the

instructions in the Dockerfile.

Usage:

docker image build [OPTIONS] PATH | URL | -

Example:

kinnaryjangla@dev-abc:~/code/test$ docker image build myApp/.

Sending build context to Docker daemon 1.649MB

Step 1/6 : FROM openjdk:8

 ---> ef09cb43251e

Step 2/6 : ENV CONFIG_FILE config/myApp.dev.properties HEAP_

SIZE 4G LOG4J_CONFIG_FILE config/log4j.dev.properties NEW_SIZE

2G JAVA_COMMAND java

 ---> Using cache

 ---> 09c7e98f7c49

Step 3/6 : WORKDIR /opt/myApp

 ---> Using cache

 ---> 3c29b8fa2f25

Step 4/6 : ARG ARTIFACT_PATH=target/myApp-0.1-SNAPSHOT-bin.tar.gz

 ---> Using cache

 ---> c563d2e7990c

Step 5/6 : ADD $ARTIFACT_PATH /opt/myApp/

Successfully built bd6110589d1b

Chapter 4 Docker Basics

46

�docker image pull
The docker image pull command pulls an image from a docker registry.

Usage:

docker image pull [OPTIONS] NAME[:TAG|@DIGEST]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker image pull alpine

Using default tag: latest

latest: Pulling from library/alpine

8e3ba11ec2a2: Pull complete

Digest: sha256:7043076348bf5040220df6ad703798fd8593a0918d06d3ce

30c6c93be117e430

Status: Downloaded newer image for alpine:latest

kinnaryjangla@dev-abc:~/code/test$

�docker search
You can search for Docker images using the docker search command.

Usage:

docker search [OPTIONS] TERM

Example:

Chapter 4 Docker Basics

47

ki
nn
ar
yj
an
gl

a@
de
v-
ab
c:
~/
co
de
/t
es
t$
 d
oc
ke
r
se
ar
ch
 a
lp
in
e

NA
ME

D
ES
CR

IP
TI
ON

 S
TA
RS

O
FF
IC
IA
L

AU
TO
MA
TE
D

al
pi
ne

A
 m
in

im
al
 D
oc
ke
r
im
ag
e
ba
se
d
on
 A
lp
in
e
Li
n.
..

4
20
3

[
OK
]

mh
ar
t/
al
pi
ne

-n
od
e

M
in
im

al
 N
od
e.
js
 b
ui
lt
 o
n
Al
pi
ne
 L
in
ux

3
79

an
ap
si
x/
al
pi

ne
-j
av
a

O
ra
cl

e
Ja
va
 8
 (
an
d
7)
 w
it
h
GL
IB
C
2.
28
 o
ve
r.
..

3
46

[O
K]

gl
id
er
la
bs
/a

lp
in
e

I
ma
ge

 b
as
ed
 o
n
Al
pi
ne
 L
in
ux
 w
il
l
he
lp
 y
ou
 .
..

1
77

fr
ol
vl
ad
/a
lp

in
e-
gl
ib
c

A
lp
in

e
Do
ck
er
 i
ma
ge
 w
it
h
gl
ib
c
(~
12
MB
)

1
62

[O
K]

al
pi
ne
/g
it

A

si

mp
le
 g
it
 c
on
ta
in
er
 r
un
ni
ng
 i
n
al
pi
ne
 .
..

 4
6

[O
K]

ki
as
ak
i/
al
pi

ne
-p
os
tg
re
s

P
os
tg

re
SQ
L
do
ck
er
 i
ma
ge
 b
as
ed
 o
n
Al
pi
ne
 L
in
ux

4
2

[O
K]

zz
ro
t/
al
pi
ne

-c
ad
dy

C
ad
dy

 S
er
ve
r
Do
ck
er
 C
on
ta
in
er
 r
un
ni
ng
 o
n
A.
..

3
2

[O
K]

ea
sy
pi
/a
lp
in

e-
ar
m

A
lp
in

eL
in
ux
 f
or
 R
as
pb
er
ry
Pi

3
0

da
vi
dc
as
te
/a

lp
in
e-
to
mc
at

A
pa
ch

e
To
mc
at
 7
/8
 u
si
ng
 O
ra
cl
e
Ja
va
 7
/8
 w
i.
..

3
0

[O
K]

by
rn
ed
o/
al
pi

ne
-c
ur
l

A
lp
in

e
li
nu
x
wi
th
 c
ur
l
in
st
al
le
d
an
d
se
t
a.
..

1
7

[O
K]

et
op
ia
n/
al
pi

ne
-p
hp
-w
or
dp
re
ss

A
lp
in

e
Wo
rd
Pr
es
s
Ng
in
x
PH
P-
FP
M
WP
-C
LI

1
5

[O
K]

he
rm
si
/a
lp
in

e-
ss
hd

D
oc
ke

ri
ze
 y
ou
r
Op
en
SS
H-
se
rv
er
 u
po
n
a
li
gh
t.
..

1
2

[O
K]

da
vi
dc
as
te
/a

lp
in
e-
ja
va
-u
nl
im
it
ed
-j
ce

O
ra
cl

e
Ja
va
 8
 (
an
d
7)
 w
it
h
GL
IB
C
2.
21
 o
ve
r.
..

1
1

[O
K]

he
rm
si
/a
lp
in

e-
fp
m-
ph
p

D
oc
ke

ri
ze
 y
ou
r
FP
M
PH
P
7.
2
up
on
 a
 l
ig
ht
we
i.
..

1
0

[O
K]

al
pi
ne
/s
oc
at

R
un
 s

oc
at
 c
om
ma
nd
 i
n
al
pi
ne
 c
on
ta
in
er

1
0

[O
K]

gr
az
e/
ph
p-
al

pi
ne

S
ma
ll

is
h
ph
p7
 a
lp
in
e
im
ag
e
wi
th
 s
om
e
co
mm
o.
..

9

[O
K]

yo
ba
sy
st
em
s/

al
pi
ne
-x
en
-o
rc
he
st
ra

X
en
 O

rc
he
st
ra
 r
un
ni
ng
 o
n
Al
pi
ne
 L
in
ux
 [
do
c.
..

8

[O
K]

ma
st
er
ro
sh
i/

xm
ri
g-
al
pi
ne

C
ry
pt

on
ot
e
CP
U
Mi
ne
r
wr
ap
pe
d
in
 a
 A
lp
in
e
D.
..

8

sp
ot
if
y/
al
pi

ne

A
lp
in

e
im
ag
e
wi
th
 `
ba
sh
`
an
d
`c
ur
l`
.

5

[O
K]

te
ns
ta
rt
up
s/

al
pi
ne

A
lp
in

e
li
nu
x
ba
se
 d
oc
ke
r
im
ag
e
wi
th
 u
se
fu
l.
..

5

[O
K]

fu
nc
ti
on
s/
al

pi
ne

A
lp
in

e
Li
nu
x
/
Bu
sy
Bo
x
wi
th
 t
he
 O
pe
nF
aa
S
w.
..

4

go
vu
k/
ge
ms
ta

sh
-a
lp
in
e

G
em
st

as
h
se
rv
er
 r
un
ni
ng
 o
n
Al
pi
ne

3

[O
K]

ca
se
pt
/a
lp
in

e-
am
d6
4

A
 b
as

ic
 a
lp
in
e
li
nu
x
im
ag
e.

 0

sm
ar
te
nt
ry
/a

lp
in
e

a
lp
in

e
wi
th
 s
ma
rt
en
tr
y

 0

[O
K]

Chapter 4 Docker Basics

48

�docker image ls
The docker image ls command is used to list all the Docker images on

the host machine.

Usage:

docker image ls [OPTIONS] [REPOSITORY[:TAG]]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu latest cd6d8154f1e1 3 days ago 84.1MB

openjdk 7 bd6110589d1b 4 days ago 472MB

alpine latest 11cd0b38bc3c 2 months ago 4.41MB

�docker container ps
The docker container ps command is used to list all containers running

on the host.

Usage:

docker container ps [OPTIONS]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker container ps

CONTAINER ID IMAGE COMMAND CREATED

e55ce4b2e4f5 alpine "./bin/docker_run_..." 6 days ago

119b4b5eed95 ubuntu "./bin/docker_run_..." 6 days ago

Chapter 4 Docker Basics

49

�docker container rm
The docker container rm command is used to remove one or more

containers. You cannot remove a running container without the –f flag

to force it, which first stops the container and then removes it. In order to

do that, you must first stop the container, using docker container stop

<container-id>. This command execution is shown following:

Usage:

docker container rm [OPTIONS] CONTAINER [CONTAINER...]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker container stop

e55ce4b2e4f5

kinnaryjangla@dev-abc:~/code/test$ docker image rm 119b4b5eed95

�docker container inspect
This command allows you to inspect the details of a container.

Usage:

docker container inspect [OPTIONS] CONTAINER [CONTAINER...]

Example:

kinnaryjangla@dev-abc:~/code/test$ docker container inspect

f9d4b5c9aa49

[

 {

 �"Id": "f9d4b5c9aa49fb22b23ae0d377236e1da80ceebc14c

67550e36f6c0345eb2062",

 "Created": "2018-08-03T06:11:54.181815872Z",

 "Path": "/test/bin/entry_point.sh",

 "Args": [],

Chapter 4 Docker Basics

50

 "State": {

 "Status": "running",

 "Running": true,

 "Paused": false,

 "Restarting": false,

 "OOMKilled": false,

 "Dead": false,

 "Pid": 30163,

 "ExitCode": 0,

 "Error": "",

 "StartedAt": "2018-08-03T06:11:58.414063235Z",

 "FinishedAt": "0001-01-01T00:00:00Z"

 },

 �"Image": "sha256:b657c637b59170b7ea275d0af93fed7b89b

1c286aeacd5438052955911a89d7a",

 �"ResolvConfPath": "/var/lib/docker/containers/f9d4b5

c9aa49fb22b23ae0d377236e1da80ceebc14c67550e36f6c0345

eb2062/resolv.conf",

 �"HostnamePath": "/var/lib/docker/containers/f9d4b5c9aa

49fb22b23ae0d377236e1da80ceebc14c67550e36f6c0345eb2062/

hostname",

 �"HostsPath": "/var/lib/docker/containers/f9d4b5c9aa49

fb22b23ae0d377236e1da80ceebc14c67550e36f6c0345eb2062/

hosts",

 �"LogPath": "/var/lib/docker/containers/f9d4b5c9aa49fb22

b23ae0d377236e1da80ceebc14c67550e36f6c0345eb2062/f9d4b5

c9aa49fb22b23ae0d377236e1da80ceebc14c67550e36f6c0345eb

2062-json.log",

 "Name": "/webapp_selenium-chrome_1",

 "RestartCount": 0,

 "Driver": "overlay",

 "MountLabel": "",

Chapter 4 Docker Basics

51

These are some basic commands you can start to explore. Let’s go

through a little end-to-end Hello World example.

In the following example, we’ll pull an existing Hello World image, run

it, and view the images and containers.

	 1.	 First, pull the hello-world Docker image. This will

pull the image from the Docker Hub registry.

kinnaryjangla@dev-abc:~/code/test$ docker image pull

hello-world

Using default tag: latest

Latest: Pulling from library/hello-world

9bbdshfg673e39ja: Pull complete

Digest: sha256:

fkjdh7t6dauadubiadadia8dya98777da9fiudfhd9a86fidfbdfi

d8fydisch

Status: Downloaded newer image for hello-world:latest

	 2.	 Use docker images to view the image that was just

pulled, as shown following.

kinnaryjangla@dev-abc:~/code/test$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

Hello-world latest ekjad89sjdfd 2 months ago

1.85kB

	 3.	 Now run the hello-world image, which will run this

image inside a new container, as follows.

kinnaryjangla@dev-abc:~/code/test$ docker container run

hello-world

latest: Pulling from library/hello-world

d1725b59e92d: Pull complete

Digest: sha256:0add3ace90ecb4adbf7777e9aacf18357296e799

f81cabc9fde470971e499788

Status: Downloaded newer image for hello-world:latest

Chapter 4 Docker Basics

52

Hello from Docker!

This message shows that your installation appears to be

working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. �The Docker daemon pulled the "hello-world" image from the

Docker Hub.

 (amd64)

 3. �The Docker daemon created a new container from that image

which runs the executable that produces the output you are

currently reading.

 4. �The Docker daemon streamed that output to the Docker

client, which sent it to your terminal.

To try something more ambitious, you can run an Ubuntu

container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free

Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

This preceding example lets you go through an end-to-end scenario

of pulling an existing Docker image, viewing the image, and running the

image.

In the next chapter, we’ll take a closer look at how to create Docker

images using Dockerfiles and run these images inside Docker containers.

Chapter 4 Docker Basics

53

�Summary
In this chapter, we looked in detail at the Docker terminology that has

been commonly used in the previous chapters of this book and that will

continue to be used in future chapters.

We also examined the different components of the Docker

architecture, including the Docker Engine, Docker Hub, Docker clients,

Docker hosts, and Docker registries. We also saw how different Docker

objects are created by the Docker daemon. We saw how Docker Hub can

be used to pull existing Docker images and buy, sell, or distribute images

for free.

Additionally, you saw how to install Docker on the Mac OS platform

in detail.

We looked at some basic Docker commands, with sample usage and

examples of each command, so that you can explore them further. We then

walked through a simple end-to-end example of pulling the existing Hello

World image and running it.

In the next chapter, I’ll go more into detail on how to build an image

from a Dockerfile and run it inside a container.

Chapter 4 Docker Basics

55© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_5

CHAPTER 5

Docker Images
A Docker image is an immutable read-only file system that is
a snapshot of the entire package of an application, including
the dependencies, configuration, and settings.

In this chapter, you’ll learn about Dockerfile and its basics. We’ll build

images using Dockerfiles and then view the running images. We’ll then run

these images inside a Docker container, and you’ll discover how to attach

the container to our local terminal input/output.

�Docker Images
As mentioned previously, Docker images are read-only and immutable

and created with the docker image build command. They are stored

inside a Docker registry and run inside a container. Images can become

quite large very quickly. Therefore, they are designed to be composed

of layers of other images, allowing a minimal amount of data to be sent

when transferring images over a network. So, you can build your own

customized image on top of an existing image. When you modify that

image, new layers are added that contain your changes.

As for Docker containers, you’ll learn about them in more detail later

in this chapter, but to summarize with a programming metaphor, if an

image is a class, then a container is an instance of a class, that is, a runtime

object. While images are lightweight and portable encapsulations of an

environment, containers are the running instances of images.

56

Furthermore, a Docker image is created using a Dockerfile. Let’s see

what a Dockerfile is. Later on, you’ll learn how to build a Docker image

from a Dockerfile.

�Dockerfile
Everything Docker begins with a Dockerfile. The Dockerfile is the

instruction set on how to build an image. It the basis on which your

entire Docker container is built. It specifies all the configuration settings

environment variables, volumes to be mounted, the base image to build on

top of, the list of dependencies, etc. All this is then bundled into an image

that then runs inside the container.

A Dockerfile must be built to create the Docker image of an

application. The image is just the “compiled version” of the source code

that lives inside the Dockerfile. The Dockerfile is a text file that contains a

set of instructions or commands that are then assembled into an image.

�Creating a Sample Dockerfile
Let’s create a sample Dockerfile next. To begin, create a file called

Dockerfile inside a directory called docker.

kinnaryjangla@dev-abc:~/code/docker$ vim Dockerfile

Build your Dockerfile using the following commands. Replace the

LABEL maintainer email with your e-mail address.

#This is a sample image

FROM ubuntu

LABEL maintainer="email@example.com"

RUN apt-get update

RUN apt-get install –y nginx

CMD ["echo", "Hello World!"]

Chapter 5 Docker Images

57

Let’s look at the instructions in the preceding Dockerfile.

	 1.	 The first line, #This is a sample image, is a

comment. You can add other comments to the

Dockerfile for readability using the # command.

	 2.	 The FROM keyword is used to tell Docker which base

image you want to build your customized image on

top of. This instruction is mandatory.

	 3.	 LABEL is a non-executable instruction used to

indicate the author of the Dockerfile.

	 4.	 The RUN instruction is used to execute a command

on top of an existing image. That in turn creates

another layer with the results of the execution of the

command on top of the image. For example, if there

is a precondition to install PHP before running an

application, you can run appropriate commands to

install PHP on top of the base image (say, Ubuntu),

as shown following.

FROM ubuntu

RUN apt-get update && update apt-get install –y php

	 5.	 The CMD command doesn’t execute anything

during the build time. It just specifies the intended

command for the image. The difference between

the CMD and the RUN command is that RUN actually

executes the command during build time. If you

have multiple CMD instructions in the Dockerfile,

only the last one will take effect.

Chapter 5 Docker Images

58

Following are some other commands that can come in handy when

creating the Dockerfile:

•	 ENV: This instruction can be used to set the environment

variables in the container as shown following.

#Default environment variables requires to run service,

can be overridden by docker run

ENV CONFIG_FILE=config/config.service.test.properties \

 HEAP_SIZE=6G \

 LOG4J_CONFIG_FILE=config/log4j_local.xml \

 NEW_SIZE=4G

•	 COPY: This instruction is used to copy the files and

directories from a specified source to a specified

destination (in the file system of the container), as follows.

COPY conditions.txt /usr/tmp

•	 ADD: The ADD instruction is like the COPY instruction. It

has some additional features, such as support for remote

URLs. The COPY instruction is more readable, so if you

don’t need the extra supported features that ADD provides,

it’s recommended that you use the COPY instruction

instead. See the following usage. Tar or zip files will be

auto-expanded when you add one to a source destination.

ADD http://www.xyz.com/sample.tar.xz /usr/src

•	 WORKDIR: This is used to set the currently active directory

for other instructions, such as RUN, CMD, ENTRYPOINT, COPY,

and ADD. See the following paragraph for a usage example.

If you provide a relative path as the WORKDIR, it

will be taken as relative to the path of the previous

WORKDIR instruction.

Chapter 5 Docker Images

59

WORKDIR /user

WORKDIR home

•	 USER: This is used to set the UID (or username) to

use when running the image or any subsequent

commands. See the following usage.

USER daemon

•	 VOLUME: This instruction specifies a path in which data

should be persisted longer than the life of the container.

See the following usage.

VOLUME /data

•	 ENTRYPOINT: This command is the primary command

of your Docker image.

This command is set in such a way that whenever

you run the image, the ENTRYPOINT command will

be executed every time.

You can also pass arguments here, but they are

optional. You can pass them when you run the image

with something such as docker run <image-name>.

Also, all the elements specified using CMD will be

overridden, except the arguments. They will be

passed to the command specified in ENTRYPOINT.

Following is a sample usage.

CMD "Hello World!"

ENTRYPOINT echo

Save this file, and in the next section, you’ll see how to build an image

from this Dockerfile.

Chapter 5 Docker Images

60

�Building Images with Dockerfile
As you’ve learned so far, Docker images are immutable, read-only file

systems. Images can be based on other existing images that can be pulled

from Dockerfile. This makes modifying them a lot easier, because the

only thing that changes is the layer that gets modified. This also prevents

images from becoming extremely large in size.

In the previous section, we created a Dockerfile called Dockerfile with

some basic instructions and saved it in a directory called docker.

Let’s continue to build an image from the Dockerfile created in the

previous section. From the docker directory, run the command docker

image build. The . builds the Dockerfile within the directory.

When you run this command for the first time, you’ll see a long list of

packages being pulled, because we’re building our image on top of the

Ubuntu image.

I am going to divide the output in multiple sections, to make it easier

to read. You should be able to see this entire output, if your image is built

successfully.

As per the Dockerfile, each instruction is built sequentially. In the

following sequence, you see first (Step 1/5) some images get pulled

successfully from the base Ubuntu image. Step 2/5 assigns the author of

the image to the image. In Step 3/5, the apt-get update command runs

on top of the base Ubuntu image.

kinnaryjangla@dev-abc:~/code/docker$ docker image build .

Sending build context to Docker daemon 2.048kB

Step 1/5 : FROM ubuntu

latest: Pulling from library/ubuntu

124c757242f8: Pull complete

9d866f8bde2a: Pull complete

fa3f2f277e67: Pull complete

398d32b153e8: Pull complete

afde35469481: Pull complete

Chapter 5 Docker Images

61

Digest: sha256:de774a3145f7ca4f0bd144c7d4ffb2931e06634f11529653

b23eba85aef8e378

Status: Downloaded newer image for ubuntu:latest

---> cd6d8154f1e1

Step 2/5 : LABEL maintainer "kijangla@example.com"

---> Running in 2d6e3abeff60

---> b7df3b688aca

Removing intermediate container 2d6e3abeff60

Step 3/5 : RUN apt-get update

---> Running in 8bd46979c5fa

Moving forward as part of Step 3/5, a bunch of other packages are

installed as apt-get update is executed.

Step 3/5 : RUN apt-get update

---> Running in 8bd46979c5fa

Get:1 �http://security.ubuntu.com/ubuntu bionic-security

InRelease [83.2 kB]

Get:2 �http://archive.ubuntu.com/ubuntu bionic InRelease [242 kB]

Get:3 �http://security.ubuntu.com/ubuntu bionic-security/

universe Sources [17.4 kB]

Get:4 �http://archive.ubuntu.com/ubuntu bionic-updates InRelease

[88.7 kB]

Get:5 �http://security.ubuntu.com/ubuntu bionic-security/

multiverse amd64 Packages [1363 B]

Get:6 �http://security.ubuntu.com/ubuntu bionic-security/main

amd64 Packages [203 kB]

Get:7 �http://archive.ubuntu.com/ubuntu bionic-backports

InRelease [74.6 kB]

Get:8 �http://archive.ubuntu.com/ubuntu bionic/universe Sources

[11.5 MB]

Get:9 �http://security.ubuntu.com/ubuntu bionic-security/

universe amd64 Packages [69.0 kB]

Chapter 5 Docker Images

62

Get:10 �http://archive.ubuntu.com/ubuntu bionic/main amd64

Packages [1344 kB]

Get:11 �http://archive.ubuntu.com/ubuntu bionic/universe amd64

Packages [11.3 MB]

Get:12 �http://archive.ubuntu.com/ubuntu bionic/multiverse amd64

Packages [186 kB]

Get:13 �http://archive.ubuntu.com/ubuntu bionic/restricted amd64

Packages [13.5 kB]

Get:14 �http://archive.ubuntu.com/ubuntu bionic-updates/universe

Sources [70.4 kB]

Get:15 �http://archive.ubuntu.com/ubuntu bionic-updates/universe

amd64 Packages [226 kB]

Get:16 �http://archive.ubuntu.com/ubuntu bionic-updates/main

amd64 Packages [401 kB]

Get:17 �http://archive.ubuntu.com/ubuntu bionic-updates/

multiverse amd64 Packages [3925 B]

Get:18 �http://archive.ubuntu.com/ubuntu bionic-backports/

universe amd64 Packages [2807 B]

Fetched 25.9 MB in 3s (8072 kB/s)

Reading package lists...

---> e8081b840106

Removing intermediate container 8bd46979c5fa

Furthermore, Step 4/5 gets executed where the apt-get install -y

nginx command runs. As a part of this run command, it builds a

dependency tree and installs more packages.

Step 4/5 : RUN apt-get install –y nginx

---> Running in 4e8613ee2337

Reading package lists...

Building dependency tree...

Reading state information...

Chapter 5 Docker Images

63

The following additional packages will be installed:

 �fontconfig-config fonts-dejavu-core geoip-database

libbsd0 libexpat1

 �libfontconfig1 libfreetype6 libgd3 libgeoip1 libicu60

libjbig0

 libjpeg-turbo8 libjpeg8 libnginx-mod-http-geoip

 �libnginx-mod-http-image-filter libnginx-mod-http-xslt-

filter

 �libnginx-mod-mail libnginx-data libxau6 libxdmcp6 libxml

libxpm4

 libxslt1.1 multiarch-support nginx-common nginx-code ucf

Suggested packages:

 Libgd-tools geoip-bin fcgiwrap nginx-doc ssl-cert

The following NEW packages will be installed:

 �fontconfig-config fonts-dejavu-core geoip-database

libbsd0 libexpat1

 �libfontconfig1 libfreetype6 libgd3 libgeoip1 libicu60

libjbig0

 libjpeg-turbo8 libjpeg8 libnginx-mod-http-geoip

 �libnginx-mod-http-image-filter libnginx-mod-http-xslt-

filter

 �libnginx-mod-mail libnginx-data libxau6 libxdmcp6 libxml

libxpm4

 �libxslt1.1 multiarch-support nginx-common nginx-code ucf

0 upgraded, 35 newly installed, 0 to remove and 8 no

upgraded.

Need to get 16.1 MB of archives.

Soon after, it will install some additional archives.

Need to get 16.1 MB of archives

Get:1 �http://security.ubuntu.com/ubuntu bionic-security

InRelease [83.2 kB]

Chapter 5 Docker Images

64

Get:2 �http://archive.ubuntu.com/ubuntu bionic InRelease

[242 kB]

Get:3 �http://security.ubuntu.com/ubuntu bionic-security/

universe Sources [17.4 kB]

Get:4 �http://archive.ubuntu.com/ubuntu bionic-updates InRelease

[88.7 kB]

Get:5 �http://security.ubuntu.com/ubuntu bionic-security/

multiverse amd64 Packages [1363 B]

Get:6 �http://security.ubuntu.com/ubuntu bionic-security/main

amd64 Packages [203 kB]

Get:7 �http://archive.ubuntu.com/ubuntu bionic-backports

InRelease [74.6 kB]

Get:8 �http://archive.ubuntu.com/ubuntu bionic/universe Sources

[11.5 MB]

Get:9 �http://security.ubuntu.com/ubuntu bionic-security/

universe amd64 Packages [69.0 kB]

Get:10 �http://archive.ubuntu.com/ubuntu bionic/main amd64

Packages [1344 kB]

Get:11 �http://archive.ubuntu.com/ubuntu bionic/universe amd64

Packages [11.3 MB]

Get:12 �http://archive.ubuntu.com/ubuntu bionic/multiverse amd64

Packages [186 kB]

Get:13 �http://archive.ubuntu.com/ubuntu bionic/restricted amd64

Packages [13.5 kB]

Get:14 �http://archive.ubuntu.com/ubuntu bionic-updates/universe

Sources [70.4 kB]

Get:15 �http://archive.ubuntu.com/ubuntu bionic-updates/universe

amd64 Packages [226 kB]

Get:16 �http://archive.ubuntu.com/ubuntu bionic-updates/main

amd64 Packages [401 kB]

Get:17 �http://archive.ubuntu.com/ubuntu bionic-updates/

multiverse amd64 Packages [3925 B]

Chapter 5 Docker Images

65

Get:18 �http://archive.ubuntu.com/ubuntu bionic-backports/

universe amd64 Packages [2807 B]

Get:19 �http://security.ubuntu.com/ubuntu bionic-security

InRelease [83.2 kB]

Get:20 http://archive.ubuntu.com/ubuntu bionic InRelease [242 kB]

Get:21 �http://security.ubuntu.com/ubuntu bionic-security/

universe Sources [17.4 kB]

Get:22 �http://archive.ubuntu.com/ubuntu bionic-updates

InRelease [88.7 kB]

Get:23 �http://security.ubuntu.com/ubuntu bionic-security/

multiverse amd64 Packages [1363 B]

Get:24 �http://security.ubuntu.com/ubuntu bionic-security/main

amd64 Packages [203 kB]

Get:25 �http://archive.ubuntu.com/ubuntu bionic-backports

InRelease [74.6 kB]

Get:26 �http://archive.ubuntu.com/ubuntu bionic/universe Sources

[11.5 MB]

Get:27 �http://security.ubuntu.com/ubuntu bionic-security/

universe amd64 Packages [69.0 kB]

Get:28 �http://archive.ubuntu.com/ubuntu bionic/main amd64

Packages [1344 kB]

Get:29 �http://archive.ubuntu.com/ubuntu bionic/universe amd64

Packages [11.3 MB]

Get:30 �http://archive.ubuntu.com/ubuntu bionic/multiverse amd64

Packages [186 kB]

Get:31 �http://archive.ubuntu.com/ubuntu bionic/restricted amd64

Packages [13.5 kB]

Get:32 �http://archive.ubuntu.com/ubuntu bionic-updates/universe

Sources [70.4 kB]

Get:33 �http://archive.ubuntu.com/ubuntu bionic-updates/universe

amd64 Packages [226 kB]

Chapter 5 Docker Images

66

Get:34 �http://archive.ubuntu.com/ubuntu bionic-updates/main

amd64 Packages [401 kB]

Get:35 �http://archive.ubuntu.com/ubuntu bionic/main amd64 nginx

all 1.14.0-ubuntu[3596 B]

It’ll continue to unpack some of the installed dependencies.

Hit http://ppa.launchpad.net trusty InRelease

Get:1 https://ubuntu-archive.pinadmin.com trusty InRelease

Ign https://ubuntu-archive.pinadmin.com trusty InRelease

Get:2 https://artifacts.pinadmin.com trusty InRelease

Ign https://artifacts.pinadmin.com trusty InRelease

Get:3 https://puppetlabs.pinadmin.com trusty InRelease

Ign https://puppetlabs.pinadmin.com trusty InRelease

Hit https://ubuntu-archive.pinadmin.com trusty-security InRelease

Get:4 https://debrepo-trusty.pinadmin.com trusty InRelease

Hit https://download.docker.com trusty InRelease

Ign https://debrepo-trusty.pinadmin.com trusty InRelease

Hit https://saltrepo.pinadmin.com trusty InRelease

Hit https://artifacts.pinadmin.com trusty-security InRelease

Hit https://puppetlabs.pinadmin.com trusty Release.gpg

Hit https://debrepo-trusty.pinadmin.com trusty Release.gpg

Hit https://deb.nodesource.com precise InRelease

Hit https://puppetlabs.pinadmin.com trusty Release

Hit https://download.docker.com trusty/stable amd64 Packages

Hit https://debrepo-trusty.pinadmin.com trusty Release

Hit https://saltrepo.pinadmin.com trusty/main amd64 Packages

Hit https://deb.nodesource.com precise/main Sources

Hit https://deb.nodesource.com precise/main amd64 Packages

Hit https://puppetlabs.pinadmin.com trusty/puppet amd64 Packages

Hit https://debrepo-trusty.pinadmin.com trusty/main all Packages

Hit https://debrepo-trusty.pinadmin.com trusty/main amd64

Packages

Chapter 5 Docker Images

67

Hit https://ubuntu-archive.pinadmin.com trusty-updates InRelease

Hit http://ppa.launchpad.net trusty/main amd64 Packages

Hit https://artifacts.pinadmin.com trusty-updates InRelease

Hit https://ubuntu-archive.pinadmin.com trusty Release.gpg

Hit https://artifacts.pinadmin.com trusty Release.gpg

Ign http://binaries.erlang-solutions.com trusty InRelease

Hit https://ubuntu-archive.pinadmin.com trusty-security/main

amd64 Packages

Hit https://artifacts.pinadmin.com trusty-security/main amd64

Packages

Hit https://ubuntu-archive.pinadmin.com trusty-security/

universe amd64 Packages

Hit http://binaries.erlang-solutions.com trusty Release.gpg

Hit https://artifacts.pinadmin.com trusty-security/restricted

amd64 Packages

Hit https://ubuntu-archive.pinadmin.com trusty-updates/main

amd64 Packages

Hit https://artifacts.pinadmin.com trusty-security/universe

amd64 Packages

Hit https://ubuntu-archive.pinadmin.com trusty-updates/universe

amd64 Packages

Hit http://binaries.erlang-solutions.com trusty Release

Hit https://artifacts.pinadmin.com trusty-updates/main amd64

Packages

Hit https://ubuntu-archive.pinadmin.com trusty Release

Hit https://artifacts.pinadmin.com trusty-updates/universe

amd64 Packages

Hit http://binaries.erlang-solutions.com trusty/contrib amd64

Packages

Hit https://ubuntu-archive.pinadmin.com trusty/main amd64

Packages

Hit https://artifacts.pinadmin.com trusty Release

Chapter 5 Docker Images

68

Hit https://ubuntu-archive.pinadmin.com trusty/restricted amd64

Packages

Hit https://artifacts.pinadmin.com trusty/main amd64 Packages

Hit https://ubuntu-archive.pinadmin.com trusty/universe amd64

Packages

Hit https://artifacts.pinadmin.com trusty/restricted amd64

Packages

Hit https://artifacts.pinadmin.com trusty/universe amd64 Packages

It also unpacks the nginx package.

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no

longer required:

 fonts-cabin fonts-comfortaa fonts-dejavu-extra fonts-droid

 fonts-font-awesome fonts-freefont-otf fonts-gfs-artemisia

 �fonts-gfs-complutum fonts-gfs-didot fonts-gfs-neohellenic

fonts-gfs-olga

 fonts-gfs-solomos fonts-inconsolata fonts-junicode fonts-lato

 �fonts-linuxlibertine fonts-lmodern fonts-lobster fonts-

lobstertwo

 �fonts-oflb-asana-math fonts-sil-gentium fonts-sil-gentium-

basic fonts-stix

 �libcupsfilters1 libcupsimage2 libfile-basedir-perl libfile-

desktopentry-perl

 �libfile-mimeinfo-perl libijs-0.35 libjbig2dec0 libkpathsea6

libpaper-utils

 �libpaper1 libpoppler44 libptexenc1 lmodern luatex pinterest-

nginx-common

 �poppler-data tcl tex-common tk ttf-adf-accanthis ttf-adf-

gillius

Chapter 5 Docker Images

69

 x11-xserver-utils xdg-utils

Use 'apt-get autoremove' to remove them.

The following extra packages will be installed:

 nginx-common nginx-core

Suggested packages:

 fcgiwrap nginx-doc

The following packages will be REMOVED:

 pinterest-nginx

The following NEW packages will be installed:

 nginx nginx-common nginx-core

0 upgraded, 3 newly installed, 1 to remove and 148 not

upgraded.

Need to get 349 kB of archives.

After this operation, 6,641 kB disk space will be freed.

Get:1 �https://artifacts.pinadmin.com/artifactory/ubuntu-

archive-remote/ trusty-security/main nginx-common all

1.4.6-1ubuntu3.8 [19.1 kB]

Get:2 �https://artifacts.pinadmin.com/artifactory/ubuntu-

archive-remote/ trusty-security/main nginx-core amd64

1.4.6-1ubuntu3.8 [325 kB]

Get:3 �https://artifacts.pinadmin.com/artifactory/ubuntu-

archive-remote/ trusty-security/main nginx all

1.4.6-1ubuntu3.8 [5,394 B]

Fetched 349 kB in 0s (1,887 kB/s)

Preconfiguring packages ...

(Reading database ... 168260 files and directories currently

installed.)

Removing pinterest-nginx (1.9.2) ...

Selecting previously unselected package nginx-common.

(Reading database ... 168258 files and directories currently

installed.)

Chapter 5 Docker Images

70

Preparing to unpack .../nginx-common_1.4.6-1ubuntu3.8_all.deb ...

Unpacking nginx-common (1.4.6-1ubuntu3.8) ...

dpkg: error processing archive /var/cache/apt/archives/nginx-

common_1.4.6-1ubuntu3.8_all.deb (--unpack):

trying to overwrite '/lib/systemd/system/nginx.service', which

is also in package pinterest-nginx-common 1.9.2

Selecting previously unselected package nginx-core.

Preparing to unpack .../nginx-core_1.4.6-1ubuntu3.8_amd64.deb ...

Unpacking nginx-core (1.4.6-1ubuntu3.8) ...

Selecting previously unselected package nginx.

Preparing to unpack .../nginx_1.4.6-1ubuntu3.8_all.deb ...

Unpacking nginx (1.4.6-1ubuntu3.8) ...

It then sets up the nginx package and removes the intermediate

container.

Debconf: falling back to frontend: Teletype

Setting up libnginx-mod-mail (1.14.0-0ubuntu1) . . .

Setting up libxdmcp6:amd64 (1:1.1.2-3) . . .

Setting up libnginx-mod-http-geoip (1.14.0-0ubuntu1) . . .

Setting up libx11-data (2:1.6.4-3) . . .

Setting up libxau6:amd64 (1:1.0.8-1) . . .

Setting up libwebp6:amd64 (0.6.1-2) . . .

Setting up libjpeg8:amd64 (8c-2ubuntu8) . . .

Setting up libnginx-mod-mail (1.14.0-0ubuntu1) . . .

Setting up libnginx-mod-http-geoip (1.14.0-0ubuntu1) . . .

Setting up libx11-data (2:1.6.4-3) . . .

Setting up libxau6:amd64 (1:1.0.8-1) . . .

Setting up libwebp6:amd64 (0.6.1-2) . . .

Setting up nginx (1.14.0-0ubuntu1) . . .

Processing triggers for libc-bin (2.27-3ubuntu1) . . .

Chapter 5 Docker Images

71

---> 3e5c6069eaf3

Removing intermediate container 5bae8841a2ac

Finally, it executes the CMD command and builds the image

successfully.

Step 5/5: CMD echo Hello World!

---> Running in 171dfcbaks42ka

---> 35c2e82eajd416

Removing intermediate container 171hsbva624bs9

Successful built 35c2e82eajd416

To view the image that you just built, run the command docker image ls,

and you should be able to see the preceding successfully built image in the list.

kinnaryjangla@dev-abc:~/code/demo/docker$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

Ubuntu latest 113a43faa138 4 weeks ago 81.1MB

In the next section, let’s run this image inside a container.

�Docker Containers
Now that we have built a Docker image successfully, let’s look into what a

Docker container is and run this image inside a container.

As we’ve seen before, Docker containers provide a different form of

isolation than virtual machines (VMs). They are lightweight platforms to

package your entire microservices application and have it running inside

the container.

Let’s run inside a container the image we built successfully. There are

multiple ways to run a Docker image inside a container.

In the code below, we see the image ID and the tag name of the Docker

image.

Chapter 5 Docker Images

72

kinnaryjangla@dev-abc:~/code/demo/docker$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

Ubuntu latest 113a43faa138 4 weeks ago 81.1MB

You could use either or both to run the image inside a container.

Using the name and the tag ID together, you could run the image as

follows:

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container run

-I –t ubuntu:latest /bin/bash root@cffbfc9312: /#

Alternatively, you could run the image as in the following, without the

tag name and using only the image ID:

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container run

-i –t 113a43faa138 /bin/bash root@cffbfc9312

Now, before we can see how to explore the container, let’s first confirm

that the container is up and running. In another window, run the docker

container ls command, and you should be able to view the container, in

the list of containers.

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container ls

CONTAINER ID IMAGE COMMAND CREATED      STATUS

PORTS NAMES

d121c440051b 113a43faa138 "/bin/bash" 8 seconds ago Up 7 seconds

0.0.0.0-5001->8821/tcp dreamy_clean

Now let’s look inside the container. Your container has the ID

1c3e3baace92.

There are multiple ways to get inside your running container using

docker exec, docker attach, etc.

Chapter 5 Docker Images

73

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container

attach dreamly_clean

 root@517s27n525fs: /#

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container exec

-t -i dreamy_clean /bin/bash

root@517s27n525fs: /# ls

bin host dev src home lib lib64 media mnt

opt proc root run sbin srv sys tmp usr var

root@517s27n525fs: /#

When inside the container, you can view logs, volumes that have been

mounted, etc. Getting inside the Docker container very much comes in

handy when debugging errors.

Because we started a shell, to get out of the container, just close

the shell, by using the exit command, and you should be back on the

command prompt of your local terminal.

root@517s27n525fs: /# exit

exit

kinnaryjangla@dev-abc:~/code/demo/docker$

�Attaching and Detaching from a Docker
Container
Attaching to the Docker container means attaching the local standard

input/output to the Docker container. Detaching means detaching your

local input/output from the Docker container. Now you’ll learn how to

attach to and detach from a Docker container.

In order to attach to the Docker container, first run the Docker image,

and give it a name, say, “testdemo.”

Chapter 5 Docker Images

74

kinnaryjangla@dev-abc:~/code/demo/docker$ docker

container run -d –-name testdemo ubuntu /usr/bin/tap -b

easjhf7ejbadgsvkaid888sagdhabgfks555

kinnaryjangla@dev-abv:~/code/demo/docker$

Next, let’s attach our local terminal standard input/output to the

container using docker container attach, as shown in Figure 5-1.

Figure 5-1.  Attaching to the Docker container

You should see that your terminal is now attached to the container’s

input/output.

Let’s do another quick example, in which you can see the exit code of

your container in your local terminal output.

Chapter 5 Docker Images

75

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container run

–name test -d -it ubuntu

easjhf7ejbadgsvkaid888sagdhabgfks555

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container

attach test

root@ksjhdf6t3uqe: /# exit 13

exit

kinnaryjangla@dev-abc:~/code/demo/docker$ echo $?

13

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container ls

-a | grep test

ksjhdf6t3uqe ubuntu "/bin/bash" 28 seconds ago

Exited(13) 15 seconds ago

In this example, we run the image inside a container and call it test. We

then attach the container to the local standard input/output. From inside the

container, we set an exit code of 13, which exits the container. On your local

terminal, when you echo, you see 13 as the output. In your list of containers,

you see that the container exited, owing due to the exit code 13.

You can also create a new container over a certain image. This is useful

when you want to set up a container configuration beforehand.

To create a container over our Ubuntu image, let’s use docker

container create -t -I ubuntu bash.

kinnaryjangla@dev-abc:~/code/demo/docker$

docker container create -t -I ubuntu bash

cee13y299o1hkjasd462e4jhdasi7673242hbd76gdewu

Then start this container, using the first few letters of the container ID

that was created previously.

kinnaryjangla@dev-abc:~/code/demo/docker$ docker container

start -a -i cee13y299

root@ cee13y299: /#

Chapter 5 Docker Images

76

This lands you inside the newly created container.

You can do various things when you create a container, such as

initializing volumes and even removing them using the -v option.

Now that we’ve looked at how to create Dockerfiles, how to build

images with Dockerfiles, and how to run these images inside a container,

in the next chapter, let’s look at how to link multiple containers,in order to

get an entire microservices application up and running on Docker.

�Summary
In this chapter, we looked at what a Dockerfile is and created a basic

Dockerfile step by step. You learned that a Dockerfile is the first step to

anything Docker.

Later, we built an image using this Dockerfile. We looked at how to list

all the images on your host machine.

Later, we ran this image inside a container and looked at how to attach

the container to our local terminal input/output. We executed a few

examples and attached and detached the container to our local terminal.

You also learned how to list all the containers that are up and running on

your machine.

In the next chapter, we’ll look at how to link multiple containers, hence

multiple services to each other, and create a real-world microservices

application, using Docker.

Chapter 5 Docker Images

77© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_6

CHAPTER 6

Docker Compose
Composition: “the act of combining parts or elements to form
a whole.”

Dictionary.com, s.v. “composition,”

www.dictionary.com/browse/composition, accessed October 2, 2018.

In the previous chapter, we studied Dockerfiles and Docker images, how

to build images, and run them in Docker containers. But if you think

about practical day-to-day workflows, they are seldom going to occur on a

single service. A workflow is usually a composition of multiple services or

microservices. So, in order to get an application running on Docker from

end to end, you have to link multiple Docker containers running different

services, in such a way that they can talk to one another.

In this chapter, you’ll see how we can get multiple Docker

containers running different services up and running simultaneously

and efficiently, in order to get an end-to-end application up and

running, using Docker.

�What Is Docker Compose
In the previous chapters, you saw the advantages of running services on

Docker containers. Some of the advantages are consistent environment

variables, isolation of dependencies, and enabling continuous deployment

of these services.

http://dictionary.com
http://www.dictionary.com/browse/composition

78

Today, most software applications are made of multiple services that

talk to each other. In order to make such applications operational, you

have to link several Docker containers to one another and have them all

running simultaneously on Docker in production. Let’s see how we can

link multiple Docker containers.

Docker Compose is the tool for running multi-container Docker

applications. It’s essentially a YAML file that can be thought of as a

composition of multiple Dockerfile containers running commands into

a single file. This Docker compose YAML file contains configurations

of multiple services. Then, using a single command, you can get all the

services up and running simultaneously inside Docker containers.

You can also configure these services in such a way that they talk to

each other.

So, Docker Compose requires you to do the following three things:

	 1.	 Define the configuration of the running container

inside a Dockerfile.

	 2.	 Create a Docker Compose YAML file that contains

configurations of all the services you want up and

running.

	 3.	 Then run the command docker-compose up, which

runs the YAML file and your entire application.

Docker Compose can be used to create this microservices architecture

and link the containers between them, or it can be used for a single service.

In addition, Docker Compose can build images, scale containers, and

rerun stopped containers. All this functionality is a part of Docker. docker-

compose is just a higher-level abstraction of container run commands. You

can do everything you can in a compose file with plain Docker commands,

except that this requires more memory and takes extra effort to run all the

extra commands, attaching to the network, etc. docker-compose helps to

simplify this process.

Chapter 6 Docker Compose

79

Let’s look at a sample Docker Compose YAML file, as shown following:

version: '3'

services:

 myapp:

 build: .

 ports:

 - "5001:8887"

 command: "bash scripts/local_test_server.sh"

 container_name: myApp

 volumes:

 - "/home/{{USER}}/code/services/myApp:/var/src/myApp"

 - "/var/serverset:/var/serverset"

 - "/var/config:/var/config"

 environment:

 - HEAP_SIZE=4G

 - CLASSPATH=/code/services/myApp-0.1-SNAPSHOT

 redis:

 image: "redis:alpine"

 ports:

 - "5001:9020"

 command: "bash scripts/run_in_container.sh"

 container_name: redis

 volumes:

 - "/home/{{USER}}/code/redis:/var/src/redis"

 - "/var/serverset:/var/serverset"

 - "/var/config:/var/config"

 environment:

 - HEAP_SIZE=4G

Chapter 6 Docker Compose

80

networks:

 default:

 driver: my-driver-1

In this example, the Docker Compose YAML file has configurations

for two services, namely, myApp and Redis, wherein myApp is an

application service and Redis is a database. Let’s look at what some of

the fields in the YAML file represent. First, the Docker Compose YAML

file tells Docker to build the images for the services—myApp and Redis.

The build instruction asks to look for the file Dockerfile-dev in the

folder myApp.

Instead of using the build key, you could specify the image. If you use

image, specify the image name. This pulls up the specific image.

Next, the ports instruction indicates to map port 5001 on the host to

the service1 docker containers port 8887.

The command instruction specifies the first command to run, in order to

get the service up and running.

container_name is intuitive. It specifies the name of the Docker

container in which myApp will run. This is used to identify which services

run inside which Docker container. However, most compose files do not

define the container name. Names must be unique. Once you specify a

name, you have removed the ability to scale the number of replicas used

for a service. When the docker-compose tool starts the container without a

specified name, the generated name helps to identify the service.

The volumes instructions let you map certain files and folders on the

host machine to the Docker container. For example, /home/{{USER}}/

code/services/service1:/var/src/myApp says to map the folder code/

services/service1 to the folder var/src/myApp on the Docker container.

This command is very useful when debugging inside the Docker container,

so that you can use the files that exist on the host machine.

The environment instruction basically configures the environment

variables for the services.

Chapter 6 Docker Compose

81

The networks key lets you define a network that each service wants to

connect to. You can also specify a default network that can be used for the

entire app. If there is an existing network that you want the containers to

join, you can employ the external option.

In addition to the instructions in the preceding sample Docker

Compose YAML file, you could use deploy to specify the deployment

specifications, such as the number of replicas, resources, CPU, and

memory limits on these resources, restart policies, etc. The deploy key

only applies when deploying to a Swarm. We’ll look at that in more detail

in later chapters.

Next let’s see how to install Docker Compose on your machine.

�Installing Docker Compose
Docker Compose relies on the Docker Engine, so before you install

Compose, make sure you have Docker installed on your machine.

The Docker Desktop tool includes the docker-compose tool.

In order to get Docker for a Mac system, refer to the “Installing

Docker” section in Chapter 4. For older machines, you can get the

Docker Toolbox. Docker Toolbox helps you quickly set up and install

the Docker environment on your Mac or Windows machine. Docker

Toolbox includes docker-machine, docker, docker-compose, Docker

GUIs, and Docker CLIs.

You can uninstall Docker Compose in two ways, unless you’ve installed

the Docker Compose tool with Docker Desktop. In this case, you’ll have to

uninstall Docker Desktop.

It’s quick and easy to install Docker Compose using curl. If you’ve

installed it using curl, you can uninstall it using the following command:

sudo rm /usr/local/bin/docker-compose

Chapter 6 Docker Compose

82

If you installed Docker Compose using pip, you can uninstall it using

this command:

pip uninstall docker-compose

�Usage
Let’s look at some basic Docker Compose commands.

�docker-compose up
The main command to keep in mind when using Docker Compose is

docker-compose up. This command gets all your services running per the

specified configuration in your Docker Compose YAML file.

Usage:

up [options] [--scale SERVICE=NUM...] [SERVICE...]

You can use this command with multiple options, such as the

following:

-d or - -detach: This allows you to run Docker

Compose in detached mode, which means running

containers in the background.

- -quiet-pull: This pulls the images without

printing progress information.

- -no-deps: This instructs the system not to start the

linking services.

- -build: This builds the images before starting the

containers.

- -remove-orphans: This removes all the other

containers not specified in this docker-compose

YAML file.

Chapter 6 Docker Compose

83

�docker-compose build
This command allows you to build all the services in the YAML file, after

which all the images built are tagged with the image name. If you change

the service’s Dockerfile, make sure to set docker-compose build again, in

order to build the new image.

Usage:

build [options] [--build-arg key=val...] [SERVICE...]

Some options to use with this command are

- -compress: This compresses the build using gzip.

- -force-rm: Remove intermediate containers at all

times.

- -no-cache: Disable use of cache when building

the image.

- -pull: Pull the newer version of the image, if it

exists.

�docker-compose config
It’s a great idea to validate your Docker Compose config file once you’ve

created one. This command can be used for that.

Usage:

config [options]

Some options to use with this command are

-q, - -quiet: Validate without printing anything.

- -services: Print services name, one per line.

- -volumes: Print volume names, one per line.

Chapter 6 Docker Compose

84

�docker-compose kill
This command forces all running commands to stop, by sending the

SIGKILL signal.

Usage:

kill [options] [SERVICE...]

�docker-compose restart
This command restarts all the services that have been previously stopped

or are currently running.

Usage:

restart [options] [SERVICE...]

You can use the timeout option with this command, using -t or -

-timeout.

�docker-compose ps
This command lists all the containers that were successfully started.

Usage:

ps [options] [SERVICE...]

�docker-compose logs
This command outputs the logs from all services.

Usage:

logs [options] [SERVICE...]

Chapter 6 Docker Compose

85

Some options to use with this command are

-f, - -follow: Follow the output of the logs.

- -t, - -timestamps: Display the timestamps.

- -tail="all": The number of lines from the end

of the logs that you want displayed for each Docker

container.

�docker-compose start
This command starts existing containers for all services.

Usage:

start [SERVICE...]

�docker-compose stop
This command stops running containers but does not remove them. You

can restart containers using docker-compose start.

Usage:

stop [options] [SERVICE...]

�docker-compose pause
This command pauses the running services. They can be unpaused using

docker-compose unpause.

Usage:

pause [SERVICE...]

Chapter 6 Docker Compose

86

�docker-compose run
This command runs a command once for a particular service that is

specified with the command.

Usage:

run [options] [-v VOLUME...] [-p PORT...] [-e KEY=VAL...]

 SERVICE [COMMAND] [ARGS...]

For example, docker-compose run service1 bash starts the service

service1 and runs bash as its command.

Some options you can use with this command are

-d, - -detach: Run the container in the background.

- -name NAME: Assign a name to the container.

- -entrypoint CMD: Override the given entry point

of that image.

- -e KEY=VAL: Set an environment variable called

KEY and assign it the value VAL.

- -u, - -user: Run as a specified user.

- -rm: Remove the container after the run is over.

When you run docker-compose run, the commands used with run

start new Docker containers with configurations specified with that

command in the options. It is important to note that the commands passed

along with the run command override the configuration in the Docker

Compose YAML file. Another important thing to note is that the docker-

compose run command creates or uses any of the ports specified in the

Docker Compose YAML file, in order to avoid port collisions. If you want

to specify a port, you can use the - -service-ports flag in your docker-

compose run command.

Now that we’ve looked at some basic docker-compose usages, let’s look

at what’s really happening behind the scenes of Docker Compose.

Chapter 6 Docker Compose

87

�Behind the Scenes and an Example
In the previous chapters, you saw how a single Dockerfile can be built into

a single Docker image. Similar to that, a single Docker Compose YAML file

can be built into a stack of images. This stack is also called a distributed

application bundle (DAB).

Docker stacks and Docker bundles are features in Docker and Docker

Compose.

The simplest way to create a Docker bundle is via Docker Compose.

Using docker-compose bundle builds all the images of the services in the

YAML file and creates a bundle. In order to deploy this bundle, you have

to create a Docker stack. This can be done using docker deploy. You can

manage this stack using the docker stack command.

Further, let’s work through a simple docker-compose example in which

we will link two services.

As a first step, let’s create a directory called test, then change into that

directory.

kinnaryjangla@dev-abc:~/code$ mkdir test

kinnaryjangla@dev-abc:~/code$ cd test

kinnaryjangla@dev-abc:~/code/test$

Next, create a file called myapp.py in the test directory and paste this

content into it:

import time

import redis

from flask import Flask

app = Flask(__name__)

cache = redis.Redis(host='redis', port=6379)

Chapter 6 Docker Compose

88

def get_page_count():

 retries = 3

 while True:

 try:

 return cache.incr('hits')

 except redis.exceptions.ConnectionError as exc:

 if retries == 0:

 raise exc

 retries -= 1

 time.sleep(0.5)

@app.route('/')

def helloWorld():

 count = get_page_count()

 �return 'Hello World! You have been here {} times.\n'.

format(count)

if __name__ == "__main__":

 app.run(host="0.0.0.0", debug=True)

In this example, redis refers to the Redis Docker container, and we use

6379, which is the default port for Redis.

Note that Flask and Redis are requirements for this file. So, next, create

a requirements.txt file in the test directory and paste in the following:

flask

redis

As a next step, let’s create a Dockerfile for this service. Create a

file called Dockerfile in your test project directory and paste in the

following:

FROM python:3.4-alpine

WORKDIR /code

Chapter 6 Docker Compose

89

ADD . /code

RUN pip install -r requirements.txt

CMD ["python", "myapp.py"]

Let’s look at what the instructions in this Dockerfile mean. The FROM

instruction pulls the alpine image from the Docker registry and builds the

image. Next, the ADD instruction says to add the current directory . into

the /code directory in the image. The WORKDIR command sets the working

directory in the container to /code. The RUN instruction installs the Python

dependencies, namely, Flask and Redis, as defined in the requirements.

txt file. The CMD instruction then sets the default command for the Docker

container to python myapp.py.

So now that we have the Dockerfile for our service created, let’s start

a Redis service that our app can talk to that pulls an existing Redis image

from the Docker registry. In practice, this could be replaced by another

similar service to that we created previously.

Let’s create a file called docker-compose.yml in our test project

directory. Then paste in this:

version: '3'

services:

 myapp:

 build: .

 ports:

 - "5000:5000"

 redis:

 image: "redis:alpine"

This is made up of two services, one of which is defined by us, called

myapp, that is built by the Dockerfile in the current project directory. This

configuration maps the port 5000 on the host machine to the port 5000

on the Docker container running this service. The other service is Redis,

which pulls an existing Redis image from the default Docker Hub registry.

Chapter 6 Docker Compose

90

From your project directory, now run docker-compose up.

You should see the following:

	 1.	 First, it pulls the Python 3.4 image to build the image

we specified in the earlier Dockerfile.

kinnaryjangla@dev-abc:~/code/test$ docker-compose up

Creating network "test_default" with the default driver

Pulling redis (redis:alpine)...

alpine: Pulling from library/redis

8e3ba11ec2a2: Pull complete

1f20bd2a5c23: Pull complete

782ff7702b5c: Pull complete

82d1d664c6a7: Pull complete

69f8979cc310: Pull complete

3ff30b3bc148: Pull complete

Digest: sha256:43e4d14fcffa05a5967c353dd7061564f130d602

1725dd219f0c6fcbcc6b5076

Status: Downloaded newer image for redis:alpine

Building myapp

Step 1/5 : FROM python:3.4-alpine

3.4-alpine: Pulling from library/python

8e3ba11ec2a2: Already exists

4001a9c615cb: Pull complete

5bbb3a9b8d5e: Pull complete

5adcac484e5a: Pull complete

ffd089d04f72: Pull complete

Digest: sha256:9ecfc28113e3e0299e82fbfbbf37851b9c84efbf

931eae22ccd69d2ad1562c91

Status: Downloaded newer image for python:3.4-alpine

---> 0c5cb9a7cbd2

Step 2/5 : ADD . /code

---> 494ffafb0dbd

Chapter 6 Docker Compose

91

Removing intermediate container 56496ef21df6

Step 3/5 : WORKDIR /code

---> 3fee363b7d90

Removing intermediate container 08dc071a5e33

	 2.	 Next, it installs Flask and Redis, per the

requirements specified in the requirements.txt

file.

Step 4/5 : RUN pip install -r requirements.txt

---> Running in 4f3c397dedd1

Collecting flask (from -r requirements.txt (line 1))

 �Downloading https://files.pythonhosted.org/packages/

7f/e7/08578774ed4536d3242b14dacb4696386634607af824ea9

97202cd0edb4b/Flask-1.0.2-py2.py3-none-any.whl (91kB)

Collecting redis (from -r requirements.txt (line 2))

 �Downloading https://files.pythonhosted.org/packages/3b/

f6/7a76333cf0b9251ecf49efff635015171843d9b977e4ffcf59f

9c4428052/redis-2.10.6-py2.py3-none-any.whl (64kB)

Collecting Jinja2>=2.10 (from flask->-r requirements.

txt (line 1))

 �Downloading https://files.pythonhosted.org/packages/

7f/ff/ae64bacdfc95f27a016a7bed8e8686763ba4d277a78

ca76f32659220a731/Jinja2-2.10-py2.py3-none-any.whl

(126kB)

Collecting click>=5.1 (from flask->-r requirements.txt

(line 1))

 �Downloading https://files.pythonhosted.org/

packages/34/c1/8806f99713ddb993c5366c362b2f908f18269

f8d792aff1abfd700775a77/click-6.7-py2.py3-none-any.

whl (71kB)

Collecting itsdangerous>=0.24 (from flask->-r

requirements.txt (line 1))

Chapter 6 Docker Compose

92

 �Downloading https://files.pythonhosted.org/packages/

dc/b4/a60bcdba945c00f6d608d8975131ab3f25b22f2bcfe1

dab221165194b2d4/itsdangerous-0.24.tar.gz (46kB)

Collecting Werkzeug>=0.14 (from flask->-r requirements.

txt (line 1))

 �Downloading https://files.pythonhosted.org/packages/

20/c4/12e3e56473e52375aa29c4764e70d1b8f3efa6682bef8d0

aae04fe335243/Werkzeug-0.14.1-py2.py3-none-any.whl

(322kB)

Collecting MarkupSafe>=0.23 (from Jinja2>=2.10->flask-

>-r requirements.txt (line 1))

 �Downloading https://files.pythonhosted.org/packages/

4d/de/32d741db316d8fdb7680822dd37001ef7a448255de9699

ab4bfcbdf4172b/MarkupSafe-1.0.tar.gz

Building wheels for collected packages:

itsdangerous, MarkupSafe

 Running setup.py bdist_wheel for itsdangerous:

started

 �Running setup.py bdist_wheel for itsdangerous:

finished with status 'done'

 �Stored in directory: /root/.cache/pip/

wheels/2c/4a/61/5599631c1554768c6290b08c02c72d7317910

374ca602ff1e5

 Running setup.py bdist_wheel for MarkupSafe: started

 �Running setup.py bdist_wheel for MarkupSafe: finished

with status 'done'

 �Stored in directory: /root/.cache/pip/

wheels/33/56/20/

ebe49a5c612fffe1c5a632146b16596f9e64676768661e4e46

Successfully built itsdangerous MarkupSafe

Installing collected packages: MarkupSafe, Jinja2,

click, itsdangerous, Werkzeug, flask, redis

Chapter 6 Docker Compose

93

Successfully installed Jinja2-2.10 MarkupSafe-1.0

Werkzeug-0.14.1 click-6.7 flask-1.0.2 itsdangerous-0.24

redis-2.10.6

---> a8a506f87306

Removing intermediate container 4f3c397dedd1

	 3.	 Finally, it executes the last instruction and runs the

Python myapp.py command.

Step 5/5 : CMD python myapp.py

---> Running in c2113e2877dc

---> 104b362fbe0b

Removing intermediate container c2113e2877dc

Successfully built 104b362fbe0b

Successfully tagged test_myapp:latest

WARNING: Image for service myapp was built because it did

not already exist. To rebuild this image you must use

`docker-compose build` or `docker-compose up --build`.

Creating test_myapp_1 ...

Creating test_redis_1 ...

Creating test_redis_1

Creating test_redis_1 ... done

Attaching to test_myapp_1, test_redis_1

redis_1 | 1:C 01 Sep 21:04:35.245 # oO0OoO0OoO0Oo

Redis is starting oO0OoO0OoO0Oo

redis_1 | 1:C 01 Sep 21:04:35.245 # Redis

version=4.0.11, bits=64, commit=00000000, modified=0,

pid=1, just started

redis_1 | 1:C 01 Sep 21:04:35.245 # Warning: no config

file specified, using the default config. In order to

specify a config file use redis-server /path/to/redis.conf

redis_1 | 1:M 01 Sep 21:04:35.246 * Running

mode=standalone, port=6379.

Chapter 6 Docker Compose

94

redis_1 | 1:M 01 Sep 21:04:35.247 # WARNING: The TCP

backlog setting of 511 cannot be enforced because /

proc/sys/net/core/somaxconn is set to the lower value

of 128.

redis_1 | 1:M 01 Sep 21:04:35.247 # Server initialized

redis_1 | 1:M 01 Sep 21:04:35.247 # WARNING

overcommit_memory is set to 0! Background save may

fail under low memory condition. To fix this issue add

'vm.overcommit_memory = 1' to /etc/sysctl.conf and

then reboot or run the command 'sysctl vm.overcommit_

memory=1' for this to take effect.

redis_1 | 1:M 01 Sep 21:04:35.247 * Ready to accept

connections

myapp_1 | * Serving Flask app "myapp" (lazy loading)

myapp_1 | * Environment: production

myapp_1 | �WARNING: Do not use the development

server in a production environment.

myapp_1 | Use a production WSGI server instead.

myapp_1 | * Debug mode: on

myapp_1 | * �Running on http://0.0.0.0:5000/

(Press CTRL+C to quit)

myapp_1 | * Restarting with stat

myapp_1 | * Debugger is active!

myapp_1 | * Debugger PIN: 310-933-049

As you see from the preceding code, both services have started and are

running.

Next, look at our browser. On your browser, navigate to

http://0.0.0.0:5000/, to see your application running, as shown in

Figure 6-1. The web app should now be listening to the port 5000 on your

Docker daemon.

Chapter 6 Docker Compose

95

If you refresh the page, you should see the count increase from 1 to 2,

as shown in Figure 6-2.

Figure 6-1.  Sample application being tested on the browser

Chapter 6 Docker Compose

96

If you notice the terminal where you can see the services ready to

accept connection requests, you’ll see the HTTP requests on that terminal

window, as follows.

myapp_1 | * Serving Flask app "myapp" (lazy loading)

myapp_1 | * Environment production

myapp_1 | �WARNING: Do not use the development server

in a production environment.

myapp_1 | Use a production WSGI server instead.

myapp_1 | * Debug mode: on

myapp_1 | * �Running on http://0.0.0.0:5000/

(Press STRL+C to quit)

myapp_1 | * Restarting with stat

myapp_1 | * Debugger is active!

Figure 6-2.  Sample application count increasing to 2

Chapter 6 Docker Compose

97

myapp_1 | * Debugger PIN: 333-632-146

myapp_1 | �172.16.8.199 - - [14/Jul/2018 23.56:30]

"GET / HTTP/1.1" 200 -

myapp_1 | �172.16.8.199 - - [14/Jul/2018 23.56:39] "GET

/ HTTP/1.1" 200 -

In a different terminal window, run docker-compose ps, to see the list

of running containers, as shown following.

kinnaryjangla@dev-abc~/code/test$ docker container ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

d121c440051b test_myapp "bash scripts/loca..." 3 hours ago Up

20 seconds

0.0.0.0-5000->5001/tcp test_myapp_1

c7f77318fa0c redis:alpine "bash scripts/loca..." 3 hours ago Up

10 seconds

6379/tcp test/redis_1

Now that you’ve seen a running example of docker-compose, let’s

conclude this section.

�Summary
In this chapter, we looked at Docker Compose and its uses. We saw that

Docker containers running different services can be linked to one another

using docker-compose.

You saw how to install and uninstall the docker-compose tool and

different uses for docker-compose. Next, you saw how docker-compose

creates container images and spins them. I walked you through a real-

world example of Docker Compose. We created a Dockerfile for a service

and a docker-compose file that links that service to a Redis image that we

Chapter 6 Docker Compose

98

pulled from the Docker Hub registry. We went through how to build it and

run the entire application. We looked at the browser, to see the application

in action and then viewed the Docker containers running the two services

that the application is composed of.

In the next chapter, I’ll go through a real-world example of how to

debug a real-world application composed of microservices, using Docker.

Chapter 6 Docker Compose

99© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_7

CHAPTER 7

Debugging
Microservices Using
Docker

Debugging is the art of identifying and removing errors from
computer software.

In the previous chapter, you learned how to use and install Docker

Compose and saw some examples of how to use it in real-world scenarios.

You also saw what happens behind the scenes of Docker Compose when

containers talk to each other.

In this chapter, you’ll learn how to debug these microservices that run

together with the help of Docker Compose. We’ll look at the challenges of

a distributed system and how we can use Docker to overcome some of the

challenges related to debugging, which, in turn, can help accelerate the

pace at which an engineer can develop.

In Chapter 3, we explored the differences between monolith

and microservices architecture. We also looked at the challenges of

a microservices architecture. A microservices architecture inherits

challenges of a distributed environment. Let’s look at that more closely.

100

�Distributed Environments
What exactly is a distributed system? In the simplest terms, it is a group of

individual computers working together and appearing to the external user

as one system. These computers have shared state, concurrency behaviors,

and failure handing properties, if implemented correctly.

Some of the obvious advantages of a distributed system are sharing,

collaboration, scalability, reliability, and availability. The World Wide Web

is a fantastic example of a distributed system.

�Advantages of Distributed Systems
�Scalability
Every project starts small. As it progresses successfully, it must be

expanded in several dimensions, including space, network bandwidth,

CPU resources, database size, etc. The simplest solution is to replace your

computers with bigger and more powerful CPUs. This is however, very

inefficient, because you are throwing away previous resources, and future

scalability is not taken into account.

The ideal solution is to add resources as a product grows. This is where

a distributed system enables scaling very easily and more efficiently.

There are two types of scaling methods, namely, horizontal and

vertical scaling. In horizontal scaling, you add more machines, and in

vertical scaling, you add more resources, such as memory, CPUs, etc.

�Reliability and Availability
A single point of failure can bring an entire web site down. If the

application is architected correctly, however, when multiple services

are running independently on different servers in a distributed system,

other web sites continue running, and a single failure in the site doesn’t

necessarily cause system shutdown.

Chapter 7 Debugging Microservices Using Docker

101

�Autonomy
Data sharing in a distributed system allows sites to access data residing at

other sites, and, at the same time, sharing data lets each site maintain a

certain degree of control over the data that is stored locally. Local database

administrators can then have complete autonomy to decide how to

operate the databases.

For these reasons, distributed systems really shine in today’s business

settings. But designing a distributed system comes with its own set of

challenges and is not as straightforward and simple.

�Challenges of Distributed Systems
Let’s look at some of the major challenges you’ll face with distributed

systems.

�Heterogeneity
One of the advantages of distributed systems is that different components

and services can be written using different tech stacks. This gives

the developers the independence to use the platforms they are most

comfortable with.

But when services are written in different languages, on different

operating systems (OSs), use different network protocols and hardware

devices, programs cannot communicate with each other, unless some

common standards are established. For example, different languages use

different ways of representing characters and data structures. In order for

services written in different languages to communicate, this difference

must somehow be bridged.

Chapter 7 Debugging Microservices Using Docker

102

For this reason, some kind of a middleware layer must be present,

to bridge the gaps of different platforms, at the same time masking the

heterogeneity of everything that is underlying. Some ways of doing this

are standardizing around REST or gRPC (a remote procedure call initially

developed by Google).

�Concealing the Complexity
As discussed, a distributed system has lot of underlying complexity,

such as differences in data representation, accessibility and location of

resources, resource sharing by several components, failure and recovery

of resources, etc. These complexities are best masked from the user, so

that the system is perceived as a single system, rather than as a set of

independent components.

�Concurrency
One of the advantages of a distributed system is that services and

applications can access common resources. With this sharing of data

comes the possibility of multiple services that can attempt to access the

same resources at the same time. So, in such a scenario, objects must be

able to operate efficiently in a synchronous fashion, while maintaining

data consistency. This is usually achieved by using standard concurrency

techniques, such as semaphores. For example, in the digital stock market,

multiple people buy and sell at a single point in time.

�Scalability
For a growing product, a distributed system has to scale efficiently, in order

to address issues such as increasing network bandwidth; an increase in

latency, which could potentially be a result of an increase in user traffic;

increase in data read and writes; the number of resources to be processed;

Chapter 7 Debugging Microservices Using Docker

103

overloading of servers; etc. For all these reasons, scaling distributed

systems efficiently is a very important issue that companies such as

Amazon and Google continuously work to address.

�Failure Handling
Single points of failure can bring a whole system down, as previously

mentioned. Having an entire service fail is extremely harmful for

service availability. But we can worry about this a little less with a

distributed system, because individual components can continue to

operate. However, partial failures are very common in distributed

systems. For example, a switch failure can interfere with some nodes of

communication but not others; some network messages may be lost;

some nodes crash, while some continue running. Handling of these

failures is particularly difficult in a distributed system. Conversely, in

a single monolith system, it is simpler to tell which process has died or

exited. In a distributed system, the only way to know this is to notice a

halt in receiving signals from a previously operating node. This could

be difficult to debug as well, because it could either be a fatal signal

or a delayed response over the network. Furthermore, it could even

produce incorrect results or incomplete results. Diagnosing such issues

incorrectly could cause us to come to the wrong conclusion and, thereby,

lead us to solving the wrong problem.

�Debugging
Given that a distributed system has multiple services linked to one

another, handling of failures as those mentioned previously can get tricky.

Debugging these failures can get even trickier. In order to debug, you

would have to get all the services up and running first. Consider multiple

Chapter 7 Debugging Microservices Using Docker

104

services dependent of different versions of a library. Getting these services

running on a single machine would be pretty difficult, maybe even

impossible, without the use of some kind of virtualization.

�Sample Real-World End-to-End Use Case
Some of the challenges of a distributed environment can be addressed

with Docker. Let’s look at how to specifically debug an end-to-end

application whose service runs using Docker Compose.

Consider a web site that takes a list of interests as user input and renders

images in the user’s feed, based on these interests. This can get extremely

complex, if you take user signals into account. That would include learning

from user signals and rendering images from the categories or interests that

the user is known to click most and rendering fewer images from categories

or interests that the user has not clicked very often. This can become

complicated very quickly. For the purpose of maintaining simplicity, I will

not take user signals into account in this example.

So, let’s look at what our application does. Our application basically

contains a table from which user ID is mapped to a list of interests and

an inverted index of interests to images in a MySQL database. When the

user logs into his or her account, an HTTP request is made to a service, in

order to retrieve the user’s list of interests. This list is then sent to another

service, which in turn looks at the database and gets five images per

interest from the interest list. Once this data is returned, this service then

sorts this image list according to those most recently created and sends it

back to the client in the HTTP response.

This means, our application is made of three services.

	 1.	 A service that makes the HTTP request with the user

ID. We will call this service Client.

	 2.	 A service that calls the MySQL database to get a list

of interests for the user ID. Let’s call this service DB.

Chapter 7 Debugging Microservices Using Docker

105

	 3.	 A service that takes a list of interests as input and

makes a call to the MySQL database to get a list of five

images for each of those interests. When it receives

the results, this service sorts these images, based on

the ones most recently created, and returns them

back to the Client service. Let’s call this service Api.

I will not go into detail about how each service does its job or the schema

of the database. For the purposes of this example, we’ll look at the Dockerfiles

of each service, the Docker Compose file that will get all these services up

and running at the same time, and, finally, we’ll make an HTTP request to

our service and look at the response received and the images rendered.

Let’s begin. We’ll call our application FunFeed. Figure 7-1 shows how it

will look.

Figure 7-1.  FunFeed application, with its microservices, namely,
Client, DB, and Api, and the MySQL database

Chapter 7 Debugging Microservices Using Docker

106

Now let’s clarify the roles of all three services.

	 1.	 Client: When the user logs in to the FunFeed

application, this service makes an HTTP request to

the DB service with the user ID in the request and

awaits a response from the DB service.

	 a.	 HTTP request input: User ID

	 b.	 HTTP response received: List of images to be

rendered on the browser

	 2.	 DB: This service accepts the HTTP request from the

Client service, takes the user ID as input, and makes

a database request to get a list of interests for that

user ID. It then sends this list of interests to the Api

service and awaits a response.

	 a.	 Input to the database: User ID

	 b.	 Response received from the database: List of

interests

	 c.	 HTTP request to the interest service input: List

of user interests

	 d.	 HTTP response received: List of images

	 3.	 Api: This service takes the list of interests from the

DB service as input, sends this list to the database,

and gets a list of images in response from the

database. It then sorts this list and sends it back to

the DB service, which in turn sends this response

back to the Client service.

	 a.	 HTTP request input received: List of interests

	 b.	 Request to database: List of interests

Chapter 7 Debugging Microservices Using Docker

107

	 c.	 Response from database: List of images

	 d.	 Response to DB service: List of images

Now let’s take a closer look at the Client service.

As mentioned, this service logs the user in and sends the user ID to the

DB service (Figure 7-2).

Let’s look at the Dockerfile for the Client service.

Refer https://docs.docker.com/engine/userguide/eng-image/

dockerfile_best-practices/

for best practices maintaining this file

Base image from https://phabricator.pinadmin.com/diffusion/

BDI

FROM openjdk:7

Default environment variables required to run service, can be

overridden by docker run

ENV CONFIG_FILE=config/client.dev.properties \

 HEAP_SIZE=4G \

 LOG4J_CONFIG_FILE=config/log4j.dev.properties \

 NEW_SIZE=2G \

 JAVA_COMMAND=java

Figure 7-2.  Client service input/output

Chapter 7 Debugging Microservices Using Docker

108

Create and set current directory

WORKDIR /opt/client

Add the build artifact under /opt, can be overridden by

docker build

ARG ARTIFACT_PATH=target/client-server-0.1-SNAPSHOT-bin.tar.gz

ADD $ARTIFACT_PATH /opt/client/

Default command to run service, do not override it in docker

run unless have a good reason

Use "docker logs ID" to view stdout and stderr

CMD ["scripts/run_in_container.sh"]

Let’s look at the instructions of this Dockerfile.

	 1.	 The FROM command sets the base image for the

rest of the instructions. In this case, we set the base

image to openjdk:7.

	 2.	 The ENV instruction sets the environment variables

for the container. In this case, we set our config file

to config/client.dev.properties, our heap size

to 4G, our logs config file to config/log4j.dev.

properties, and our Java command to java.

	 3.	 Next, we set our working directory inside the

container to /opt/client, using the WORKDIR

instruction. This means when you log in to your

container, you will be inside the opt/client folder.

	 4.	 With the ADD instruction, we copy the folders to the

container. First, we set the argument ARTIFACT_PATH

to target/client-server-0.1-SNAPSHOT-bin.tar.

gz, using the ARG instruction, and next we copy this

client-server-0.1-SNAPSHOT-bin.tar.gz file to

the /opt/client folder inside the container.

Chapter 7 Debugging Microservices Using Docker

109

	 5.	 And, finally, we use the CMD instruction, which

specifies the command for the image and does

not execute it during build time. In this case,

the command for the image is scripts/run_in_

container.sh. This means, that this script run_in_

container.sh, is used to get the Client service up

and running.

Put succinctly, the Client service Dockerfile sets the base image that

the rest of the instructions can sit on, sets some environment variables for

the client container, sets a working directory and copies some files, and,

finally, sets up the command for the image run.

Next, let’s look at the Dockerfile for DB.

Refer https://docs.docker.com/engine/userguide/eng-image/

dockerfile_best-practices/

for best practices maintaining this file

Base image from https://phabricator.pinadmin.com/diffusion/BDI

FROM openjdk:7

Default environment variables required to run service, can be

overridden by docker run

ENV CONFIG_FILE=config/db.dev.properties \

 HEAP_SIZE=4G \

 LOG4J_CONFIG_FILE=config/log4j.dev.properties \

 NEW_SIZE=2G \

 JAVA_COMMAND=java

Create and set current directory

WORKDIR /opt/db

Chapter 7 Debugging Microservices Using Docker

110

Add the build artifact under /opt, can be overridden by

docker build

ARG ARTIFACT_PATH=target/db-server-0.1-SNAPSHOT-bin.tar.gz

ADD $ARTIFACT_PATH /opt/db/

ADD target target

ADD scripts scripts

ADD config config

Default command to run service, do not override it in docker

run unless have a good reason

Use "docker logs ID" to view stdout and stderr

CMD ["scripts/run_in_container.sh"]

Let’s take a look at the instructions of the DB Dockerfile.

	 1.	 The FROM command sets the base image for the

rest of the instructions. In this case, we set the base

image to openjdk:7.

	 2.	 The ENV instruction sets the environment variables

for the container. In this case, we set our config file

to config/db.yaml, our heap size to 4G, our logs

config file to config/log4j.dev.properties.

	 3.	 Next, we set our working directory inside the

container to /opt/db, using the WORKDIR instruction.

This means when you log in to your container, you

will be inside the opt/db folder.

	 4.	 With the ADD instruction, we copy the folders to the

container. First, we set the argument ARTIFACT_

PATH to target/db-0.1-SNAPSHOT-bin.tar.gz,

using the ARG instruction, and next we copy this

db-0.1-SNAPSHOT-bin.tar.gz file to the /opt/db

Chapter 7 Debugging Microservices Using Docker

111

folder inside the container. We also copy the target,

scripts, and config folders on the host machine

to the target, scripts, and config folders inside the

container.

	 5.	 And, finally, we use the CMD instruction, which

specifies the command for the image and does

not execute it during build time. In this case,

the command for the image is scripts/run_in_

container.sh. This means, that this script, run_in_

container.sh, is used to get the DB service up and

running.

Next, let’s take a look at the Dockerfile for the Api service.

Refer https://docs.docker.com/engine/userguide/eng-image/

dockerfile_best-practices/

for best practices maintaining this file

Base image from https://phabricator.pinadmin.com/diffusion/BDI

FROM openjdk:7

Default environment variables required to run service, can be

overridden by docker run

ENV CONFIG_FILE=config/api.dev.properties \

 HEAP_SIZE=4G \

 LOG4J_CONFIG_FILE=config/log4j.dev.properties \

 NEW_SIZE=2G \

 JAVA_COMMAND=java

Create and set current directory

WORKDIR /opt/api

Chapter 7 Debugging Microservices Using Docker

112

Add the build artifact under /opt, can be overridden by

docker build

ARG ARTIFACT_PATH=target/api-server-0.1-SNAPSHOT-bin.tar.gz

ADD $ARTIFACT_PATH /opt/api/

Default command to run service, do not override it in docker

run unless have a good reason

Use "docker logs ID" to view stdout and stderr

CMD ["scripts/run_in_container.sh"]

Let’s take a look at the instructions of the Api service Dockerfile.

	 1.	 The FROM command sets the base image for the

rest of the instructions. In this case, we set the base

image to openjdk:7.

	 2.	 The ENV instruction sets the environment variables

for the container. In this case, we set our config file

to config/api.test.properties, our heap size to

4G, our logs config file to config/log4j_local.xml.

	 3.	 Next, we set our working directory inside the

container to /opt/api, using the WORKDIR

instruction. This means that when you log in to your

container, you will be inside the opt/api folder.

	 4.	 With the ADD instruction, we copy the folders to the

container. First, we set the argument ARTIFACT_

PATH to target/api-0.1-SNAPSHOT-bin.tar.

gz, using the ARG instruction, and next we copy

this api-0.1-SNAPSHOT-bin.tar.gz file to the /

opt/api folder inside the container. We also copy

the target, scripts, and config folders on the host

machine to the target, scripts, and config folders

inside the container.

Chapter 7 Debugging Microservices Using Docker

113

	 5.	 And, finally, we use the CMD instruction, which

specifies the command for the image and does

not execute it during build time. In this case,

the command for the image is scripts/run_in_

container.sh. This means that this script, run_in_

container.sh, is used to get the Api service up and

running.

Now that we have looked at the individual Dockerfiles of all three

services, let’s take a look at some of the dependencies of those services.

First, let’s take a closer look at the Client service and its dependencies.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>funFeed</groupId>

 <artifactId>client</artifactId>

 <packaging>jar</packaging>

 <version>0.1-SNAPSHOT</version>

 <inceptionYear>2016</inceptionYear>

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>

 <parent>

 <artifactId>client</artifactId>

 <groupId>client</groupId>

 <version>0.1-SNAPSHOT</version>

 </parent>

<dependencies>

Chapter 7 Debugging Microservices Using Docker

114

 <dependency>

 <groupId>com.twitter.common</groupId>

 <artifactId>args</artifactId>

 <version>0.2.41</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

If you look closely at the preceding code snippet, you will see that the

Client service depends on JUnit version 4.11 and Twitter’s com.twitter.

common version 0.2.41, as noted below.

 <dependency>

 <groupId>com.twitter.common</groupId>

 <artifactId>args</artifactId>

 <version>0.2.41</version>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

Furthermore, the Client service also depends on certain plug-ins such

as Puppycrawl.

Chapter 7 Debugging Microservices Using Docker

115

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 �<artifactId>maven-checkstyle-plugin</

artifactId>

 <version>2.12.1</version>

 <executions>

 <execution>

 <id>verify-style</id>

 <phase>process-classes</phase>

 <goals>

 <goal>check</goal>

 </goals>

 </execution>

 </executions>

 <dependencies>

 <dependency>

 <groupId>com.puppycrawl.tools</groupId>

 <artifactId>checkstyle</artifactId>

 <version>7.5.1</version>

 </dependency>

 </dependencies>

</plugin>

 </plugins>

 </build>

</project>

As you can see in the preceding code snippet, the Client service

depends upon the Puppycrawl tool version 7.5.1, in addition to the JUnit

and Twitter dependencies.

Now, let’s look at the requirements of the DB service.

<?xml version="1.0" encoding="UTF-8"?>

Chapter 7 Debugging Microservices Using Docker

116

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>funFeed</groupId>

 <artifactId>db</artifactId>

 <packaging>jar</packaging>

 <version>0.1-SNAPSHOT</version>

 <inceptionYear>2016</inceptionYear>

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>

 <parent>

 <artifactId>db</artifactId>

 <groupId>db</groupId>

 <version>0.1-SNAPSHOT</version>

 </parent>

<dependencies>

 </dependencies>

As you can see from the preceding code, the DB service depends

upon the JUnit and com.twitter.common library, as well, but on different

versions of those libraries.

 <dependency>

 <groupId>com.twitter.common</groupId>

 <artifactId>args</artifactId>

 <version>0.2.39</version>

 </dependency>

 <dependency>

Chapter 7 Debugging Microservices Using Docker

117

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.12</version>

 <scope>test</scope>

 </dependency>

We already have versioning conflicts for JUnit and com.twitter.

common libraries, because both of these are used by both Client and

DB services, except that these services use different versions of these

libraries. If you were to run these services on a single machine on the same

application server, you would have to make these compatible with the

same version of JUnit and Twitter. Imagine doing this for 50 dependencies,

which could very well be the case for huge services. Then imagine adding a

new service that depends on the latest version of JUnit, in which case, you

would have to make all the previous services use the latest version of JUnit.

In addition, JUnit is a test-scoped dependency, so it isn’t even included in

the final artifact. If a previous service was using a feature that is potentially

not supported in the latest version of JUnit, that would break your service,

and you would have to rewrite some of it to use the latest version of JUnit.

Nightmare! Isn’t it?

Further, let’s look at the Api service and its dependencies.

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 �<artifactId>maven-checkstyle-plugin

</artifactId>

 <version>2.10.1</version>

 <executions>

 <execution>

 <id>verify-style</id>

 <phase>process-classes</phase>

 <goals>

Chapter 7 Debugging Microservices Using Docker

118

 <goal>check</goal>

 </goals>

 </execution>

 </executions>

 <dependencies>

 <dependency>

 <groupId>com.puppycrawl.tools</groupId>

 <artifactId>checkstyle</artifactId>

 <version>6.0.1</version>

 </dependency>

 </dependencies>

</plugin>

 </plugins>

 </build>

</project>

Even though the Api service does not need JUnit or Twitter to execute,

it is dependent on the Apache Maven plug-ins and the Puppycrawl tool

plug-in, both of which are different versions than those of the Client

service, as you can see in the code snippet.

Even though there are conflicts in the dependencies of all these three

services, Docker can handle this gracefully, using one of its properties of

application isolation. That means that running these services individually

inside Docker containers will not cause these services to conflict with one

another. Instead, they can operate in their own isolated environment and

run simultaneously.

Alright, now that we have established why we are going to run these

services in Docker containers (to enable them running in their isolated

environments, to avoid conflict dependencies), let’s look at how can we get

them all running together, so we can run the application end to end all at

once.

Chapter 7 Debugging Microservices Using Docker

119

In the previous chapter, we looked at the Docker Compose tool and

how and when to use it. In order to run our application from end to end,

we will have to get all three services namely, Client, DB, and Api, up and

running at the same time. We will use Docker Compose for this purpose.

version: '3.8'

services:

 client:

 build:

 context: ./client

 dockerfile: Dockerfile-dev

 ports:

 - "5001:8887"

 command: "bash scripts/local_test_server.sh"

 container_name: client

 volumes:

 - "/home/{{USER}}/code/funFeed/client:/var/src/client"

 - "/var/serverset:/var/serverset"

 - "/var/config:/var/config"

 environment:

 - LOG4J_CONFIG_FILE=config/log4j.dev.properties

 - CONFIG_FILE=config/config_test.yaml

 - HEAP_SIZE=4G

 - NEW_SIZE=2G

 - CLASSPATH=/opt/client/cilent-0.1-SNAPSHOT

 db:

 build:

 context: ./db

 dockerfile: Dockerfile-dev

 ports:

 - "5004:9020"

 command: "bash scripts/run_in_container.sh"

Chapter 7 Debugging Microservices Using Docker

120

 container_name: db

 volumes:

 - "/home/{{USER}}/code/funFeed/db:/var/src/db"

 - "/var/serverset:/var/serverset"

 - "/var/config:/var/config"

 environment:

 - LOG4J_CONFIG_FILE=config/log4j_local.xml

 - CONFIG_FILE=config/db.test.properties

 - HEAP_SIZE=4G

 - NEW_SIZE=2G

 api:

 build:

 context: ./api/server

 dockerfile: Dockerfile-dev

 ports:

 - "5005:8821"

 command: "bash scripts/run_dev_server.sh"

 container_name: api

 volumes:

 - "/home/{{USER}}/code/funFeed/api:/var/src/api"

 - "/var/serverset:/var/serverset"

 - "/var/config:/var/config"

 environment:

 - LOG4J_CONFIG_FILE=server/config/log4j.dev.properties

 - CONFIG_FILE=server/config/api.dev.properties

 - HEAP_SIZE=4G

 - NEW_SIZE=2G

 - CLASSPATH=/opt/api/api-server-0.1-SNAPSHOT

As you can see in preceding code snippet, the docker-compose file of

the FunFeed application contains the configuration of all three services

Client, DB, and Api.

Chapter 7 Debugging Microservices Using Docker

121

Let’s go through each instruction in this file.

	 1.	 services: The services key tells the docker engine

all the services that constitute the application. In

this case, the docker-compose.yaml file lives inside

the FunFeed folder and contains three services,

namely, Client, DB, and Api, as you can see in the

preceding code snippet.

	 2.	 build: The build key specifies the context path and

the path to the Dockerfile for each service.

	 3.	 ports: The ports key specifies which port on the

container maps to which port on the host machine.

In the preceding code snippet, under the Client

service, you can see that port 8887 on the Docker

container maps to port 5001 on the host machine.

	 4.	 command: This key specifies the command on image

run. Under the Api service, you can see that the

command for the Api service image run is bash

scripts/run_dev_server.sh.

	 5.	 container_name: This key is the container name

for the container in which that service runs in. For

example, the container name for Client is client,

that for DB is db, and that for Api is api.

	 6.	 volumes: This key specifies the volumes you want

mapped from the host machine to the Docker

container for each service.

	 7.	 environment: This specifies the environment

variables for your Docker container.

Now that we’ve looked at our docker-compose file, let’s go ahead and

run this and see what it looks like.

Chapter 7 Debugging Microservices Using Docker

122

The preceding docker-compose.yaml file is stored inside the FunFeed

directory, where all three services that this application is composed of live

in. In order to run your docker-compose file, you would go to your FunFeed

directory and run docker-compose up.

kinnaryjangla@dev-abc:~/code/FunFeed$ docker-compose up

kinnaryjangla@dev-abc:~/code/FunFeed$ docker-compose up

Starting client . . .

Starting client . . . done

Starting db . . .

Starting db . . . done

Starting api . . .

Starting api . . . done

Attaching to client, db and api

api | INFO: Admin HTTP interface started on port 8821.

db | �SLF4J: Class path container multiple SLF4J

bindings.

db | �SLF4J: Found binding in [jar:file:/opt/db/db-

0.1-SNAPSHOT/lib/logback-classic-1.jar!/org/

slf4j/impl/StaticLoggerBinder.class]

db | �SLF4J: Found binding in [jar:file:/opt/db/db-

0.1-SNAPSHOT/lib/slf4j-log4j12-1.6r!/org/slf4j/

impl/StaticLoggerBinder.class]

db | �SLF4J: See http://www.slf4j.org/codes.

html#multiple_bindings for an explanation.

db | �SLF4J: Actual binding is of type

[ch.qos.logback.classic.util.

ContextSelectorStaticBinder]

db | Usage: java db config log4j_config

db | �INFO: Admin HTTP interface started

on port 9020.

Chapter 7 Debugging Microservices Using Docker

123

client | �Jun 13, 2018 12:08:59 AM com.twitter.

ostrich.admin.BackgroundProcess start

client | INFO: �Starting PeriodicStatsLogger_delta_

stats

client | �Jun 13, 2018 12:08:59 AM com.twitter.

ostrich.admin.BackgroundProcess start

client | INFO: �Starting PeriodicStatsLogger_delta_

stats

client | �Jun 13, 2018 12:09:00 AM com.twitter.

finagle.Init$$anonfun$1

client | INFO: �Finagle version 6.25.0-p2

(rev=4963a777kag872691bdfsh92563vd7

2f4262)19

client | �Jun 13, 2018 12:09:10 AM com.twitter.

ostrich.admin.BackgroundProcess start

client | INFO: Starting PeriodicConfigLoader

client | �Jun 13, 2018 12:09:10 AM com.twitter.

common.zookeeper.Group$ActiveMembership

join

client | INFO: �Set group member ID to

00062c65282gdnkadhff82-87

client | �Jun 13, 2018 12:09:10 AM com.twitter.

ostrich.admin.BackgroundProcess start

client | INFO: Starting LatchedStatsListener

client | �Jun 13, 2018 12:09:10 AM com.twitter.

ostrich.admin.start

client | �INFO: Admin HTTP interface started on port

9996.

Chapter 7 Debugging Microservices Using Docker

124

As you can see, so far, we have Api and Client services running

successfully. Next, let’s verify whether Api, DB, and Client Docker

containers are running.

Let’s run docker container ps to view the containers running on the

host machine as a result of docker-compose.

kinnaryjangla@dev-abc~/code/FunFeed$ docker container ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d121c440051b api "bash scripts/loca..." 3 hours ago

Up 20 seconds 0.0.0.0-5001->8821/tcp api

c7f77318fa0c client "bash scripts/loca..." 3 hours ago

Up 10 seconds 0.0.0.0-5001->8887/tcp Client

ddfd9c2a35c4 db "bash scripts/loca..." 3 hours ago.

Up 10 seconds 0.0.0.0-5001->9020/tcp db

Now that we have all the Docker containers for all the services of our

application up and running, as you can see in the preceding code snippet,

let’s see how we can look at the logs and how to look inside these Docker

containers.

The docker container logs command shows logs from a running

container.

docker logs [OPTIONS] CONTAINER

Additionally, you can log in to the Docker containers either by ID or by

their name.

$ docker exec -I –t fa3cf9ad344c /bin/bash #by ID

$ docker exec -I –t api /bin/bash #by Name

Chapter 7 Debugging Microservices Using Docker

125

$ root @fa3cf9ad344c:/opt/api:

Note, as you can see, the Dockerfile of the Api service sets the working

directory to be /opt/api, which is why the container starts in that

directory.

Now that we’ve looked at how to get inside the Docker containers, let’s

go ahead and query the entire FunFeed application.

The FunFeed application services talk to one another over a common

network that could be defined in the docker-compose file. The Client

service talks to the DB service, and the DB service talks to the Api service.

This means that any incoming request from the Client service to the DB

service will not go to the DB production service anymore. Instead, the

request will be processed by the DB service running inside the Docker

container named db. Similarly, any incoming request from the DB service

to the Api service will go to the Api service running inside the Docker

container named api.

Now that we’re clear on how the request is going to get processed, it’s

time for the finale! Let’s query our FunFeed application and see what we

get back.

In order to query our application, make sure that you are inside the

FunFeed ➤ client directory. Remember: client is our Client service,

which will accept this request, authenticate the user, and send the user ID

to the DB service, to get a list of interests for that user and then send it to

the Api service, to get the list of images in the response.

Now, let’s send this request to our Client service.

kinnaryjangla@dev-abc:~/code/FunFeed/client$ bash server/

scripts/client.sh -user_id=3456 -num_results=30

Let’s look at what the preceding request means.

The server/local_test_serversh is the script that starts the server for

the Client service, such that it gets ready to accept the incoming requests.

The user_id is the parameter that is being passed to this script as an input.

Chapter 7 Debugging Microservices Using Docker

126

"--" before user_id is just how the script recognizes what the input

parameters are. num_results is a parameter that accepts the number of results.

Now let’s look back at the preceding snippets. Observe that all three

services are ready to accept incoming requests.

Now that we’ve made the request, let’s go back and look at our web

browser, because we have all our services hooked up to the correct ports

(Figure 7-3).

Figure 7-3.  FunFeed application results on the browser

Now let’s walk through what happened after we sent the request to the

Client service.

	 1.	 The Client service took the request, parsed the user

input (user_id and num_results) and sent this

request to the DB service.

	 2.	 The DB service then authenticated the user ID.

Chapter 7 Debugging Microservices Using Docker

127

	 3.	 The DB service then queried the MySQL

database and looked up the user ID in the

userIdToInterests SQL table, which had a

mapping of the user ID to the Interests table.

	 4.	 The query resulted in a list of interests in the form of

strings, such as animals, architecture, nature.

	 5.	 Once the DB service received this list, it then made a

new request to the Api service, with this interest list

as an input parameter.

	 6.	 The Api service queried the DbToImages table in the

MySQL database and returned a list of images.

	 7.	 The Api service sorted the list of images it got back

from the query.

	 8.	 The Api service then sent this list of images back to

the DB service.

	 9.	 The DB service sent these images back to the Client

service.

	 10.	 The Client service then rendered these images on

the browser.

Note  There are many more optimizations that can be done in this
application architecture, for example, storing images in a cloud-based
storage or a CDN, improving latency by using HTTP accelerators or
simple caching, breaking the DB service down into an authentication
service and a service that is responsible for getting the interests list,
etc. But all these optimizations are out of our scope. This application
is simply to demonstrate how Docker can efficiently be used to
render applications that have dependency conflicts with one another.

Chapter 7 Debugging Microservices Using Docker

128

Furthermore, if you see in your terminal where the client Docker

container is running, running the docker container logs command

should show you everything that’s happening inside each container. You

should be able to see all the post and get requests being made and all

data received. Remember: What you see in the logs is because of what

your service and script logs on the output terminal. So, if you want more

verbosity, make sure your script of your service logs the requests or the

data that you would like to see in the logs. That also makes it easier to

debug, if something is failing in any of these services.

�Debugging
Now that we’ve looked at how an end-to-end application runs successfully

on Docker, let’s take a look at how you would debug if something failed

here and what could be potential hurdles as you develop.

As you’ve seen so far, there are multiple things that must go right in

order for the full application to run end to end. So, things could go wrong

at multiple places. Let’s look at a few and see how you’d debug them, if

they occurred.

Dockerfile for an individual service has build errors.

•	 Apt-get is something that mostly all Dockerfiles

might have. So, make sure you have that installed.

It could potentially be out of date, and you might

need an upgrade, so run apt-get upgrade to

upgrade its version.

•	 Another reason could be that you’re using ADD

instead of COPY. In this case, first try to understand

the difference between the two. COPY is a much

easier command, because it simply copies the

files from the host machine to the container.

Chapter 7 Debugging Microservices Using Docker

129

ADD adds more complexity, because it includes

more features, such as being able to add from a

remote URL and auto-unpacking of compressed

artifacts such as zip, tar, etc. If you don’t need that

simplicity, use COPY.

•	 If you’re using :latest in your FROM command, the

latest image might have been updated. To prevent

this, you could use a certain version tag to be more

specific about which exact build you are taking the

base image from.

•	 You might have multiple FROM statements. Docker

will always use the last one.

The docker-compose.yaml file has build errors.

•	 Make sure your Docker Engine is updated and that

you have the right permissions to run the scripts

and access the files.

•	 Make sure the docker-compose.yaml file is at the

root of your project directory.

•	 Make sure your resources are not named with dots

and dashes or any other illegal characters.

•	 Make sure you have access to the resources from

the root directory.

•	 You might see an error from the Docker daemon,

such as that following. Your solution here will be

to run chmod +x scripts/run_in_container.sh,

where you are making the script an executable file.

Then rebuild the modules.

Chapter 7 Debugging Microservices Using Docker

130

kinnaryjangla@dev-abc:~/code/FunFeed$ Error

response from doemon: oci runtime error: container_

linux.go:247: starting container process caused

"exec: \"script/run_in_container.sh\": permission

denied".

One of the services might exit with a certain error code

•	 When you run docker-compose up, one or more of

the services might not start successfully.

•	 It might error with an exit code, as shown following.

•	 The error code 0 could really be anything.

You could start first with running your script

individually, using the bash command directly

from your service directory, making sure the script

runs and the service starts up successfully. If you’re

not able to get the script running successfully by

itself, then there is either an issue with the way

your service starts up or an error in the script itself.

Narrowing down whether the script is an issue

could be helpful.

db | �SLF4J: Class path container

multiple SLF4J bindings.

db | �SLF4J: Found binding in [jar:file:/

opt/db/db-0.1-SNAPSHOT/lib/logback-

classic-1.jar!/org/slf4j/impl/

StaticLoggerBinder.class]

db | �SLF4J: Found binding in [jar:file:/

opt/db/db-0.1-SNAPSHOT/lib/slf4j-

log4j12-1.6r!/org/slf4j/impl/

StaticLoggerBinder.class]

Chapter 7 Debugging Microservices Using Docker

131

db | �SLF4J: See http://www.slf4j.org/

codes.html#multiple_bindings for an

explanation.

db | �SLF4J: Actual binding is of type

[ch.qos.logback.classic.util.

ContextSelectorStaticBinder]

db | Usage: java db config log4j_config

db exited with code 0

service could be crashing inside the Docker container.

•	 If everything else looks fine, but your service still exits

with an error code, there is a possibility that your

service could be crashing inside the Docker container

it’s running in.

•	 You can either look at the logs of the container using

the docker logs <container-name> command, or

you can log in inside the Docker container, then view

whether the volumes are correctly mounted and the

configurations are as per specifications, etc.

•	 Once inside the Docker container, you could also run

the script to get the service up and running and make

sure it has no permission issues.

Unused Docker containers

•	 Because you can spin up Docker containers so quickly,

one thing to be aware of is that many unused Docker

containers will simply keep consuming heaps of space

on your machine.

•	 If you don’t need these containers and images, feel free

to remove them, so that they don’t consume all that

space.

Chapter 7 Debugging Microservices Using Docker

132

•	 docker system prune, with or without options,

can help with removing unused Docker containers,

networks, or images that could be dangling, and even

volumes, optionally. Some options that could be used

are –all, which would remove all containers, and

--volumes, which would prune volumes.

•	 Doing the preceding will ask you for a prompt, as

shown following.

 �kinnaryjangla@dev-abc:~/code/FunFeed$ docker

system prune

 WARNING! This will remove:

 - all stopped containers

 - all volumes not used by at least one container

 - all networks not used by at least one container

 - all dangling images

 Are you sure you want to continue? [y/N]

Service discovery added overhead

•	 With the multi-tenancy territory comes an added

overhead of discovering all these services. In our

FunFeed example, I’ve left that out, as it is beyond our

scope.

•	 In order to successfully launch an application running

on a microservices architecture, you have to implement

some kind of service discovery.

Chapter 7 Debugging Microservices Using Docker

133

•	 In this day and age, with the rapid adoption of Docker,

there are multiple solutions for this, such as ZooKeeper,

Consul, etc.

•	 This overhead could potentially also cause issues while

running docker-compose.

Last, docker-compose in theory is a very powerful and extremely

straightforward tool to run multi-container applications. It’s super

convenient to get an application that is composed of multiple

microservices up and running for development purposes and also in

production environments.

Today, many companies, such as Pinterest, Lyft, Yelp, etc., run their

services on Docker containers. In order for Docker containers to run at

scale (to compute the resources needed to run containers), options such

as Amazon Web Services (AWS) or any other public clouds come in very

handy. AWS lets you deploy containers pretty quickly.

In addition, in order to get services running at scale in such large

companies, automation of deployment of these services, also known as

orchestration, requires different solutions. We’ll look at that a little more in

detail in the next and final chapter.

�Summary
Phew, that was a lot! In this chapter, we looked at distributed environments

and their advantages and challenges. You saw in depth that heterogeneity,

concurrency, scalability, transparency, and failure handling are just a few

of the issues related to distributed environments.

Later, we saw how an end-to-end application composed of

microservices runs, using the Docker Compose tool. We walked through

each service, its responsibility, individual Dockerfiles, the docker-compose

file that runs the entire application, and, finally, we made a request to the

Chapter 7 Debugging Microservices Using Docker

134

entire end-to-end application, once all Docker containers were up and

running. We saw the output of that request in a web browser. Last, we

looked at some of the hurdles that you can encounter while running a full

application on Docker.

In the next chapter, we’ll look at how Docker works in production

environments, how to scale Docker containers, and how all this ultimately

helps us accelerate the development for software engineers.

Chapter 7 Debugging Microservices Using Docker

135© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0_8

CHAPTER 8

Advanced Docker
Use Cases
In the previous chapter, you learned the advantages and challenges of

distributed environments, such as heterogeneity, concurrency, scalability,

transparency, and failure handling, to name just a few.

Later, I walked you through a sample end-to-end application called

FunFeed, which, relying mainly on given user interests, renders a list of

images on the users’ feed related to those interests. We saw the different

services that sit behind the application, got them running on their

respective Docker containers, and then got all of these services up and

running, using the Docker Compose tool. Finally, we made a request to the

application and viewed the resulting output on the browser.

Toward the end of the chapter, I covered some hurdles you could face

when setting up services in Docker and running the application end-to-

end with the help of Docker Compose.

Now that you’ve seen most of the basic use cases of Docker, basic

commands to get acquainted with Docker, how to get an end-to-end

application running and debugged, it’s time to view some advanced

Docker use cases.

In this chapter, we’ll look at how Docker operates in a production

environment, orchestration using Docker, some advanced use cases, and,

ultimately, some tips and tricks for Docker.

136

In the last chapter, you gained some practical knowledge about

running applications, based on microservices architecture, on Docker.

That in itself is one of the basic use cases of Docker.

Let’s look at what could have been done differently if that application

were run in a production environment.

�Docker in Production Environments
Now that we’ve got our application built and even running on Docker

from our local machines, it might be time to ship it. Let’s deploy it in our

production environment, so that the world can start using it.

But wait, is our application really ready to be shipped? The answer is,

not so fast!

There are many critical decisions to be made before we decide to ship

our application. Let’s look at some of them.

�Managing Docker Images
We’ve seen in our previous chapters that Docker Hub is the public registry

from which you both retrieve Docker images and publish to it, such that

the images are made available to the world. However, when you want to

make these images available to a smaller subset, such as the employees of

a certain company, publishing them to the world won’t really work.

You might want to set certain standards to write these images, for

consistency and to avoid random local environment configurations, even

though this process seemed quite straightforward in our development

environments. Creating consistent standards for images will also help

avoid dependencies on your development environment.

Given that we prefer to publish our images to a smaller subset and not

the entire world, you’ll have to set up a private Docker image registry. And,

last, you’ll want to make this private registry secure and available to your

continuous deployment system.

Chapter 8 Advanced Docker Use Cases

137

�Docker in Cloud
Now that you have your Docker image published in the right location,

you’ll have to deploy it to the Docker hosts. Today, most cloud providers,

such as Amazon Web Services (AWS), Google Cloud, etc., provide support

for deployment of Docker containers. These cloud providers charge for the

resources, so the number can quickly turn up, and you might be in for a

sticker shock.

Planning to host Docker strategically in the cloud might be your best

option. Besides, the deployment process of Docker containers can vary

from cloud provider to provider, making ramp-up curves difficult and

time-consuming.

�Security and Network
When working on a single development machine, you don’t really have

to worry about security or network access. There is no network intrusion,

as such, because you’re only dealing with a single host. Besides that,

troubleshooting is pretty simple too, because again, it’s a single machine

you’re dealing with.

Take that scenario and apply it to multiple hosts across a network in a

production environment for scalability reasons. Your network settings will

require a lot more thought. To begin with, only restricted people should

have access to your Docker containers. Public traffic should not be able

to touch certain containers. Tapping on the network, brute force login

attempts, hacks, etc., must be supervised.

Security patches, whenever available, will have to be applied to all your

Docker hosts. Using containers makes this much easier.

Chapter 8 Advanced Docker Use Cases

138

�Load Balancing
Now that we’re aware, that we’ll require multiple hosts for scalability

reasons, balancing this load across hosts is important. There are, however,

multiple load balancers available today, such as ngapi.

Even though you could use one of these readily available load

balancers, with Docker, creating and destroying containers could be

common. This means that configuration settings will have to be updated

every time a Docker container is created or destroyed.

Every time you deploy a new version of your application, your load

balancer will have to take care not to drop traffic or rout it to the older

version of your application.

�Deployment
In a development environment, deploying and getting the services up

and running is as simple as running docker-compose up. In a production

environment, however, that might not be so simple. You will have to plan

these in advance.

In a production environment, Docker Compose configurations will

vary significantly from those in a development environment. In addition,

as the traffic to your application increases, and as your application

matures, you’ll have multiple, continuous upgrades, hotfixes, and settings

that must be consistent, resulting in abundant related issues to deal with

on a continuous basis.

�Service Discovery
Having an application with a growing number of microservices will

require you to register these services. You’ll have to find efficient ways of

managing your service registries. There are multiple tools to do this, such

as ZooKeeper.

Chapter 8 Advanced Docker Use Cases

139

Regardless of which tool you select to manage your service registry,

one thing to be very sure of is to keep your service registrations in sync

with your Docker container instances. Doing so will ensure that any new

service registered is also recognizable by its Docker container instance.

�Log Management
On a single development machine, we used docker logs <container id>

to view the logs of an instance of a container. With multiple Docker hosts

and services spread across these Docker hosts, troubleshooting becomes

tedious. Distributed logging will have to be put in place to enable viewing

of logs across containers, to troubleshoot issues.

Needless to say, logs will be long and numerous. You’ll have to find a

way to view and search these logs.

�Monitoring Docker Containers
You’ll have to watch the hosts and containers, to make sure they’re healthy

and not running out of space. You’ll have to know the health of the entire

system and each individual service as well.

You’ll need to have certain monitoring strategies in place for this. Tools

such as Grafana can help you achieve this.

�Managing Databases
In development environments, databases can be hosted in a single

container, without having to worry about input/output (I/O) performance.

This changes in a production environment. I/O performance becomes

essential, especially if you care to provide a good consumer experience.

Your database will have to scale and be highly available, in order to

maintain good I/O performance.

Chapter 8 Advanced Docker Use Cases

140

These are only some of the challenges that you might encounter when

you make the decision to take your application to production. Docker

provides some amazing capabilities, but in spite of that, there are certain

other tools required to make scalability more efficient, because Docker is

not a full-blown architecture service. It’s a tool and that’s all.

�Orchestration Using Docker
What is container orchestration, after all? Put simply, a container

orchestration is the process of deploying multi-container applications

on multiple machines. Or, even more essentially, it’s the process of

transitioning individual containers on a single host to multi-container

applications on multiple machines.

Needless to say, in order to achieve this, one would require a

distributed platform that can stay online through the entire lifetime of an

application, surviving hardware and software failures and upgrades.

In order to enable orchestration, Docker came up with a solution

known as “Docker in swarm mode.”

Basically, it consists of a group of Docker Engines on which

applications can be deployed using the Docker API. API objects such as

Service and Node can be used to do this.

There are multiple tools that can be used for orchestration, for

example, Kubernetes. One way to orchestrate Docker is with Docker!

Docker orchestration is built in as part of the core Docker Engine, and

it relies on some fundamental principles, such as simplicity, reliability,

security, and backward compatibility.

Modern distributed applications that serve heavy traffic are mostly all

going to run on multiple hosts and multiple machines and, therefore, will

require orchestration as a critical element. More often than not, a new tool

comes on the market, and developers must ramp up on it quickly. Before

you know it, some other tool supersedes it, and it’s time to ramp up on

that.

Chapter 8 Advanced Docker Use Cases

141

Simplicity of tools makes it easier for developers to start using them

more quickly. At the same time, making these tools more powerful allows

developers to use them for longer periods of time, thus providing more

flexibility. Docker in swarm mode takes advantage of this fundamental

principle. And it’s built with simplicity in mind, yet it’s one of the most

powerful tools. It focuses on resilience in addition to simplicity. Computers

fail all the time, and systems should expect that and be able to adapt to

potential failures effortlessly.

Needless to say, applications built on distributed systems must be

highly secure. Security should be an assumed principle. Continuous

upgrades of certificates, privacy updates, network tapping, etc., are

effortlessly incorporated in the swarm mode.

Docker has had multiple versions and millions of users using these

different versions. For this reason, maintaining backwards compatibility

is essential for Docker, and that’s exactly what Docker in swarm mode

provides.

�Advanced Use Cases
Let’s look where else Docker containers have left their mark and where

they’re currently being used for advanced uses.

•	 Land Information System (LIS): LIS is owned by

NASA and has been extremely difficult to install,

owing to its complexity and its dependencies on

other complex libraries. With Docker, scaling LIS

has been relatively simpler and, hence, has made it

available to a larger group of users. Docker has also

made LIS installation simpler. So, in this case, NASA

uses Docker to simplify its installation process and

improve its scalability rather than helping to achieve

continuous delivery.

Chapter 8 Advanced Docker Use Cases

142

•	 Local area network (LAN) caches: An interesting

example of an obscure use case is using Docker for

setting up a LAN cache. This allows you not to have to

deal with the grungy work that comes with setting up a

LAN party. Even though this might be a typical Docker

use case, it’s definitely one that’s very interesting.

•	 Government software: Docker has been quietly

helped by federal government software, which is a

universe all its own. Docker has been proven helpful in

achieving the security and privacy needed in complex

government software.

•	 Bioinformatics: Many bioinformatics programs have

been using Docker to build their own Docker registries

for bioinformatics tools and software. BioShaDock is an

exclusive bioinformatics repository for bioinformatics

programs. This differentiates it from a public Docker

registry.

•	 Internet of Things (IoT): Not surprisingly, Docker

has entered the IoT realm as well. Resin.io leverages

Docker for its deployment of IoT devices.

�Tips and Tricks
Now that we’ve looked at some obscure but interesting use cases of

Docker, let’s quickly take a look at some tips and tricks that can come in

handy when debugging your Docker application.

•	 HTTP proxy: A typical Dockerfile starts with a FROM,

with which you pull a public image from the Docker

registry. This means it will have to be pulled from the

Internet. Note the following code snippet:

Chapter 8 Advanced Docker Use Cases

143

   FROM tifayuki/java:8

   MAINTAINER . . .

   RUN apt-get update \

   �wget download.java.net/glassfish/4.0/release/glassfish-

4.0.zip \

   . . .

You might run into an issue if you’re behind a proxy.

In this case, you can set up your proxy using the ENV

command in your Dockerfile. So, your Dockerfile

will look like the following snippet:

   FROM tifayuki/java:8

   MAINTAINER . . .

   ENV http_proxy http://server:port

   ENV https_proxy http://server:port

   #. . . some other online commands

•	 Listing all existing containers: You can use docker

container ps -a to list all your containers. This will

list containers that have stopped running as well.

•	 Stopping all running containers: Using docker

container stop $(docker container ps -a -q) will

stop all running containers.

•	 Deleting all existing containers: docker container rm

$(docker container ps -a -q) will delete all your

existing containers. To remove containers that are still

running, you can use the –f flag. So, your command

would look like Docker container rm –f.

•	 Deleting all existing images: docker image rm

$(docker image ls -aq) will let you delete all your

existing images.

Chapter 8 Advanced Docker Use Cases

144

•	 Using the CMD command in Dockerfile: CMD and RUN

are two commands that can become confusing when

trying to determine what to run when. RUN runs the

command, then commits the result at the time of

build. The CMD command mainly provides defaults for a

running container. It should be used inside a Dockerfile

only once, and it runs the software in your image at

runtime.

�Summary
In this chapter, I reviewed the decisions that you’ll have to make, in order

to take your Docker application to production. You saw how network

access and security, deployment of multiple Docker containers and

multiple Docker hosts, etc., can be quite challenging.

You then saw how Docker has a swarm mode to help with

orchestration, which is managing complex multi-container applications on

multiple machines. You also learned some tips and tricks that can be very

useful when building applications with Docker.

This concludes this book. All the knowledge you’ve gained, if put

into practice, can tremendously increase the velocity of your software

engineering.

Chapter 8 Advanced Docker Use Cases

145© Kinnary Jangla 2018
K. Jangla, Accelerating Development Velocity Using Docker,
https://doi.org/10.1007/978-1-4842-3936-0

Index

A
Amazon Web Services

(AWS), 133, 137

B
Bioinformatics, 142

C
Command-line interface

(CLI), 30
Container-based virtualization, 7
Container orchestration

distributed systems, 141
Docker API, 140

Containers
advantages, 6–7
benefits, 3
definition, 2
disadvantages, 7–8
host computer, 5
running applications,

virtual machine, 6
vs. virtual machines, 3–5

Cost-effective solution, 7

D
Database schema, 21
Debugging, 103

docker-compose.yaml file, 129
Docker container, 131
error code, 130
FunFeed (see FunFeed

application)
individual service, 128
service discovery, 132

Distributed application bundle
(DAB), 87

Distributed system
advantages

data sharing, 101
scaling methods, 100

challenges
complexity, 102
concurrency, 102
debugging, 103
failure handling, 103
heterogeneity, 101
scalability, 102

Docker
advantages, 13
architecture

https://doi.org/10.1007/978-1-4842-3936-0

146

client, 32
daemon, 33
registry, 33

description, 11
Dockerfile, 13
history, 9–11
installation, 38

docker icon, 40
drag Moby, 39
status bar, 40–42

objects
container, 34–35
image, 34
services, 35

terminology, 28
Docker API, 140
Docker Cloud, 36
Docker commands

docker container inspect, 49
docker container ps, 48
docker container rm, 49
docker container run, 43
docker container start, 44
docker container stop, 44
docker image build, 45
docker image ls, 48
docker image pull, 46
docker search, 46

Docker Community Edition (CE), 38
Docker Compose

distributed application
bundle, 87

docker-compose up, 90

docker-compose.yml, 89
myapp.py, 87
Redis image, 89

docker-compose build, 83
docker-compose config file, 83
docker-compose kill, 84
docker-compose logs, 84
docker-compose pause, 85
docker-compose ps, 84
docker-compose restart, 84
docker-compose run, 86
docker-compose start, 85
docker-compose stop, 85
docker-compose up, 82, 138
Docker Compose YAML file, 79
installation, 81
microservices architecture, 78

continuous deployment, 77
Docker containers, 28

attaching, 73
detaching, 73
microservices, 71

Docker engine, 12, 30
architecture, 31

Docker Enterprise Edition (EE), 38
Dockerfile, 28

file creation, 56
image creation, 56

Docker Hub, 36, 38
Docker Hub registry, 89
Docker images, 12–13, 28

building, Dockerfile, 60
docker image build command, 55
encapsulations, 55

Docker (cont.)

Index

147

Docker platform, 30
Docker use cases

application isolation, 15
CMD command, 144
code management, 14
configuration, 14
consistent environment, 16
deleting containers, 143
deployment, 15
Docker containers, 141
image versioning, 16
LIS, 141
listing containers, 143
production environment, 15
stopping containers, 143

E
End-to-end application, 104

F
File descriptor (FD), 33
FunFeed application, 105

Api service, 111
dependencies, 117–118

client service, 107
dependencies, 113–114
plug-ins, 114

DB, 109
docker-compose file, 119
services, 104–107

G
Government software, 142

H
Heterogeneity, 101
HTTP proxy, 142
HTTP request, 105
Hypervisor, 3
Hypervisor-based virtualization, 10

I, J, K
Internet of Things (IoT), 142

L
Land information system

(LIS), 141
Local area network (LAN), 142

M, N
Microservices architecture

advantages, 22
application isolation, 19
challenges, 24
dependencies, 25–26
independent service, 21–22
vs. monolith, 23
service-oriented

architecture, 20

Index

148

Monolith application, 20
Monolith system, 103
MySQL database, 105

O
Open source software, 10

P, Q, R
Production environments, Docker

cloud, 137
deployment, 138
Docker containers, 137, 139
Docker images, 136
load balancing, 138
log management, 139
managing databases, 139
security/network access, 137

service discovery, 138
Puppycrawl tool, 115
Python myapp.py command, 93

S
Scalable cloud applications, 3

T, U
Testing and bug tracking,

containers, 7
Transmission control protocol

(TCP), 33

V, W, X, Y, Z
Virtualization, 3
Virtual machines (VMs), 30

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Containers
	What and Why?
	Containers vs. Virtual Machines
	Pros and Cons of Containerizing Applications
	Running an Application on a Host Machine
	Running an Application on a Virtual Machine
	Advantages of Using Containers
	Challenges of Using Containers

	Summary

	Chapter 2: Docker
	History
	What Is Docker?
	The Docker Runtime and Orchestration Engine
	Docker Images
	Dockerfiles

	Why Should You Use Docker?
	Docker’s Key Use Cases
	Configuration Management
	Code Pipeline Management
	Developer Productivity
	Faster Deployment
	Application Isolation
	Continuous Integration and Continuous Deployment
	Consistent Environments Across Machines

	Summary

	Chapter 3: Monolith vs. Microservices
	Evolution of Microservices
	Comparing Monoliths and Microservices
	Challenges with Microservices
	Summary

	Chapter 4: Docker Basics
	Terminology
	Architecture
	Docker Platform
	Docker Engine
	Docker Architecture
	Docker Client
	Docker Daemon
	Docker Registries

	Docker Objects
	Images
	Containers
	Services

	Docker Hub

	Installing Docker
	Basic Docker Commands
	docker container run
	docker container create
	docker container start
	docker container stop
	docker image build
	docker image pull
	docker search
	docker image ls
	docker container ps
	docker container rm
	docker container inspect

	Summary

	Chapter 5: Docker Images
	Docker Images
	Dockerfile
	Creating a Sample Dockerfile
	Building Images with Dockerfile
	Docker Containers
	Attaching and Detaching from a Docker Container

	Summary

	Chapter 6: Docker Compose
	What Is Docker Compose
	Installing Docker Compose
	Usage
	docker-compose up
	docker-compose build
	docker-compose config
	docker-compose kill
	docker-compose restart
	docker-compose ps
	docker-compose logs
	docker-compose start
	docker-compose stop
	docker-compose pause
	docker-compose run

	Behind the Scenes and an Example
	Summary

	Chapter 7: Debugging Microservices Using Docker
	Distributed Environments
	Advantages of Distributed Systems
	Scalability
	Reliability and Availability
	Autonomy

	Challenges of Distributed Systems
	Heterogeneity
	Concealing the Complexity
	Concurrency
	Scalability
	Failure Handling

	Debugging
	Sample Real-World End-to-End Use Case
	Debugging
	Summary

	Chapter 8: Advanced Docker Use Cases
	Docker in Production Environments
	Managing Docker Images
	Docker in Cloud
	Security and Network
	Load Balancing
	Deployment
	Service Discovery
	Log Management
	Monitoring Docker Containers
	Managing Databases

	Orchestration Using Docker
	Advanced Use Cases
	Tips and Tricks
	Summary

	Index

