
Michele Sciabarrà

Learning
 Apache
OpenWhisk
Developing Open Serverless Solutions

Michele Sciabarrà

Learning Apache OpenWhisk
Developing Open Source Serverless Solutions

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04616-5

[LSI]

Learning Apache OpenWhisk
by Michele Sciabarrà

Copyright © 2019 Michele Sciabarrà. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Virginia Wilson and John Devins
Production Editor: Nan Barber
Copyeditor: Christina Edwards
Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2019: First Edition

Revision History for the First Edition
2019-07-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492046165 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Apache OpenWhisk, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492046165

Table of Contents

Foreword. xi

Preface. xiii

Part I. Introducing OpenWhisk Development

1. Serverless and OpenWhisk Architecture. 3
OpenWhisk Architecture 4

Functions and Events 4
Architecture Overview 5
Programming Languages for OpenWhisk 6
Actions and Action Composition 7
Action Chaining 8

How OpenWhisk Works 9
Nginx 10
Controller 11
Load Balancer 11
Invoker 12
Client 12

Serverless Execution Constraints 13
Actions Are Functional 14
Actions Are Event-Driven 15
Actions Do Not Have Local State 15
Actions Are Time-Bound 16
Actions Are Not Ordered 16

From Java EE to Serverless 17
Classic Java EE Architecture 17

iii

Serverless Equivalent of Java EE 19
Summary 22

2. A Simple OpenWhisk Application. 23
Getting Started 24

The Bash CLI 24
The IBM Cloud 25

Creating a Simple Contact Form 27
Form Validation 29

Address Validation 30
Returning the Result 31

Saving Form Data 32
Invoking Actions 35
Storing in the Database 37

Sending an Email 39
Configuring Mailgun 40
Writing an Action to Send Email 41
Creating an Action Sequence 43

Summary 44

3. The OpenWhisk CLI and JavaScript API. 45
The wsk Command 46

Configuring the wsk Command 47
OpenWhisk Entity Names 48

Defining Packages 49
Package Binding 50

Creating Actions 51
Chaining Sequences of Actions 53
Including Some Code of Your Own as a Library 55

Inspecting Activations 57
Managing Triggers and Rules 58

Putting the Trigger to Work 60
Using a Feed 63
Generic JavaScript APIs 66

Asynchronous Invocation 66
Using Promises 67
Creating a Promise 67

Using the OpenWhisk API 69
Invoking OpenWhisk Actions 70
Firing Triggers 73
Inspecting Activations 75

Summary 76

iv | Table of Contents

4. Common Design Patterns in OpenWhisk. 79
Built-in Patterns 80

Singleton 81
Facade 82
Prototype 84
Decorator 86

Patterns Commonly Implemented with Actions 90
Strategy 91
Chain of Responsibility 94
Command 96

Summary 99

5. Integration Design Patterns in OpenWhisk. 101
Integration Patterns 103

Proxy 103
Adapter 106
Bridge 108
Observer 110

User Interaction Patterns 115
Composite 115
Visitor 117
MVC 119

Summary 122

6. Unit Testing OpenWhisk Applications. 123
Using the Jest Test Runner 124

Using Jest 124
Running Tests Locally 126
Snapshot Testing 133

Mocking 137
What Is a Mock? 138
Mocking an HTTPS Request 138

Mocking the OpenWhisk API 144
Using the Mocking Library to Invoke an Action 145
Mocking Action Parameters 146
Mocking a Sequence 147

Summary 148

Table of Contents | v

Part II. Advanced OpenWhisk Development

7. Developing OpenWhisk Actions in Python. 151
The Python Runtime 151

What’s in the Python Runtime? 152
Libraries Available in the Runtime 153

Using Third-Party Libraries 156
Packaging a Python Application in a Zip File 156
Using virtualenv 158
How Virtualenv and Pip Work 159
Automating the Virtual Environment 160
Using the yattag Library 160
Building the Virtualenv, Including a Library 161

Using the OpenWhisk REST API 162
Authentication 163
Connecting to the API with curl 164

Using the OpenWhisk REST API in Python 165
Invocations, Activations, and Triggers in Python 168

Blocking Action Invocation 168
Nonblocking Trigger Invocation 170
Retrieving the Result of an Invocation 172

Testing Python Actions 173
Recreating the Python Runtime Environment Locally 174
Unit Test Examples 175
Invoking the OpenWhisk API Locally 177
Mocking Requests 178

Summary 180

8. Using CouchDB with OpenWhisk. 181
How to Query CouchDB 182
Exploring CouchDB on the Command Line 183

How CouchDB works 184
Creating Database 185
Create 185
Retrieve 186
Update 187
Delete 187
Attachments 188

Querying CouchDB 191
Searching the Database 191
Indexes 192
Fields 193

vi | Table of Contents

Pagination Support 194
Bookmark Feature 195
Selectors 195
Operators 197

CouchDB Design Documents 198
Creating a Design Document 199

View Functions 200
Extracting Data with map Functions 201
Implementing a Join with map Functions 203
Joining with a Single Document 205
Aggregations with reduce Functions 207

Validation Functions 208
Using the Cloudant Package 210

CRUD Actions in the Cloudant Package 212
Queries and Views with Packages 215

Summary 217

9. An OpenWhisk Web Application in Python. 219
CRUD Application Architecture 219

Deploying the Action 221
Abstracting Database Access 222

Implementing model.init() 222
Implementing model.insert() 223
Implementing model.find() 224
Testing insert and find 225
Implementing model.update() and model.delete() 226
Testing update and delete 227

The User Interface 228
Testing 228
Rendering the Table with view.table 230
Rendering the Form with view.form 232

The Controller 233
Processing Operations 234
Side Effects 237

Advanced Web Actions 239
Improving the CRUD Application 241
Validation and Error Reporting 242

Storing Error Messages 243
Pagination 244

Creating an Index 245
Using Bookmarks and Limits 246
Pagination 246

Table of Contents | vii

Processing the Bookmark 247
Uploading and Displaying Images 248

File Upload Form 249
Parsing the File Upload 250
Saving Data in the Database 251
Generating an Tag 252
Generating a URL to Retrieve an Image 252
Rendering the Image with an HTTP Request 254

Summary 255

10. Developing OpenWhisk Actions in Go. 257
Your First Golang Action 258

From Echo to Hello 259
Packaging Multiple Files 261

Imports, GOPATH, and the vendor Folder 261
Actions with Multiple Files in main 263
Actions with Multiple Packages 264

Actions Using Third-Party Libraries 266
How Go Uses Third-Party Open Source Libraries 266
Selecting a Given Version of a Library 267
Action Precompilation 269

Testing Go Actions 271
Writing Tests 271
Testing Using Examples 272

Embedding Resources 274
Using packr 274

Serving Resources with Web Actions 276
Accessing the OpenWhisk API in Go 280

Utilities 280
HTTP Requests 282
Invoking an OpenWhisk Action 284
Firing a Trigger 285
Retrieving the Data Associated with the Activation ID 287

Summary 287

11. Using Kafka with OpenWhisk. 289
Introducing Apache Kafka 290

Kafka Brokers and Protocol 291
Messages and Keys 292
Topics and Partitions 292
Offsets and Client Groups 293

Creating a Kafka Instance in the IBM Cloud 293

viii | Table of Contents

Creating an Instance 294
Creating a Topic 295
Get Credentials 296

Using the messaging Package 297
Creating a Binding and a Feed 297
Receiving Messages with an Action 298
Sending Messages Using kafkacat 299
Testing the Kafka Broker 299

A Kafka Producer in Go 301
Creating a Producer 301
Sending a Kafka Message 303
Writing a Sender Action 304
Deploying and Testing the Producer 306

A Kafka Consumer in Go 307
Creating a Consumer 307
Receiving a Message 309
Writing a Receiver Action 311
Testing the Consumer 313

Implementing the Web Chat Application 314
Overview 315
User Interface 316
Initializing 316
Joining 317
Receiving 319
Sending 320

Summary 320

12. Deploying OpenWhisk with Kubernetes. 321
Installing Kubernetes 322

Installation Types 323
Installing kubectl and Helm 323
Installing Kubernetes Locally 325
Installing Kubernetes in the Cloud 327

Architecture of a Kubernetes Cloud Deployment 327
Generic Procedure for Installing Kubernetes with cloud-init 329
Installing on Hetzner Cloud 333
Installing on AWS Cloud 335

Installing Kubernetes on a Bare Metal Server 339
Collecting the Required Software 340
Network Configuration 341
Scripts for the Installation 342
Creating the Cluster 343

Table of Contents | ix

Installing OpenWhisk 345
Configuring Kubectl 346
Configuring Helm 347
Installing in Docker Desktop 348
Installing in the Kubernetes Cluster 350

Configuring the OpenWhisk Command-Line Interface 353
Configuring wsk Insecurely for Docker Desktop 353
Creating a New Namespace 353

Summary 355
Conclusion 355

Index. 357

x | Table of Contents

Foreword

Amazon Web Services changed the cloud computing landscape in November of 2014
when it launched a new service called Lambda. It offered developers the intriguing
possibility of processing thousands of events concurrently, simply by registering func‐
tions as event handlers. With Lambda, functions execute on-demand and scale
instantly and costs are proportional to actual resource utilization. This new model of
computing was dubbed “serverless” because it let developers eschew all aspects of
server-side development and operations—including infrastructure management,
resource provisioning, and scaling.

Amazon showed that in the era of managed infrastructure and services, cloud provid‐
ers can free developers from low-level operational burdens and let them focus on
what matters most: delivering real business value to their organizations. Serverless
computing is the foundation of a cloud-native transformation that is ongoing in the
industry. It is the way cloud applications are being built and will largely be built in the
future. There are now more than a trillion functions processed every month on Ama‐
zon alone for a wide variety of applications from IoT, web applications, machine
learning, and high-performance computing.

At IBM Research, my group took notice of the Lambda announcement, and we
quickly realized the value of the serverless promise. So in February 2015, we set out to
build a serverless platform for the IBM Cloud. The project was code-named Whisk,
as in “to move nimbly and quickly.” It was later branded OpenWhisk when we open-
sourced the code to GitHub, nearly a year to the day from our first commit. Today,
the project is part of the Apache Software Foundation Incubator and it’s the premiere
open-source alternative to Amazon’s Lambda. Apache OpenWhisk is ready for Enter‐
prise workloads and offers a powerful programming model for building entire server‐
less applications. It powers serverless product offerings from IBM and Adobe, and it’s
used in private deployments in some of Asia’s largest mobile and internet providers.
The Apache OpenWhisk community consists of more than 215 contributors from
around the world, and is among the top 30 Apache Foundation projects ranked by
their GitHub stars. Many of the top OpenWhisk contributors are now also shaping

xi

the future of other emerging serverless platforms such as Google’s Knative project,
which aims to bring a serverless experience to the increasingly popular Kubernetes
platform.

In this book, Michele Sciabarrà delivers a thorough exposition of Apache OpenWhisk
tailored to the needs of developers and operators. For developers eager to adopt a
serverless methodology, this book explains the emerging computational patterns and
current limitations. It also illustrates several examples of applying the technology to
solve real-world challenges. For operators who want to deliver a serverless experience
for their organizations, Michele carefully reveals the OpenWhisk architecture, and
provides a go-to guide for deployment and operations, particularly for a Kubernetes-
based deployment.

Michele draws on his own contributions to the Apache OpenWhisk project in writing
this book. His work has dramatically improved the performance of serverless func‐
tions developed in Go, PHP, Python, Swift, and more. His insightful and practical
approach is well-suited to the developer who wants get up to speed quickly in har‐
nessing the power of serverless computing.

For those of us at the frontier of the serverless journey, there is no doubt that we are
witnessing the dawn of a new Cloud Computer, with functions at the cornerstone of a
new instruction set architecture. This model of computing is powerful and disruptive,
and yet much work remains to be done. History has shown that as new computer
abstractions emerge, innovation follows.

— Rodric Rabbah
CTO and Cofounder Nimbella Corporation

April, 2019

xii | Foreword

Preface

This book is for developers who want to learn to use Apache OpenWhisk, a mature,
multilanguage, serverless development platform. It provides the knowledge needed to
build complex, well-structured, polyglot serverless applications that can be deployed
in any cloud or even on-premises.

Why Serverless?

For a long time, companies built their own data centers and bought hardware to
install their web applications, mobile backends, or data processing pipelines. But the
high costs of building and maintaining data centers eventually led to people renting
servers from third parties to reduce costs. Servers are frequently partitioned to “vir‐
tual machines,” allowing businesses to pay only for what they need (as opposed to
renting a whole server). Eventually, this concept evolved into what today we generi‐
cally call “the cloud.” The cloud at its core is mostly a “server on demand” service.
Modern cloud providers offer a wide range of services but have also become increas‐
ingly complex. In particular, one source of this complexity is the need to provision
and manage servers. Servers are cattle not easy to raise. They require continuous care
and control and must be monitored, cleaned, updated, and occasionally destroyed
and rebuilt. Like cattle, they also tend to grow and multiply quickly.

Developers want to forget the server (“serverless”) and develop their application as
native citizen of the cloud (“cloud-native”). The focus here is to push the burden of
managing the servers onto the shoulders of a platform deployed in the cloud. Most
software developers want to upload their code and immediately have it up and run‐
ning.

As a result, all the major cloud providers now offer some form of Function as a Ser‐
vice that hides the servers and only needs the code to run—in short, a way to use
their cloud serverless.

xiii

Why Apache OpenWhisk?

Serverless computing was pioneered by Amazon Web Services (AWS), with its
Lambda service. Amazon Lambda is, as you might expect, highly tailored to the AWS
offering. However, serverless computing is not (and cannot be) limited to one cloud
provider. As a natural consequence, some open source serverless projects have
emerged. Today, there are many available platforms for serverless computing, which
can run in multiple clouds. The focus of this book is one of those: Apache Open‐
Whisk.

Apache OpenWhisk was originally developed by IBM but its code base was later
donated to the Apache Software Foundation and released under a commercially
friendly open source license, the Apache License 2.0. This makes it “seriously” open
source, free of commercial limitations, friendly to commercial ventures adopting it,
and maintained in the long run.

Because any Apache project has to have a working code base as well as an active com‐
munity, adopters of Apache software can trust they will not be alone in using it. Also,
Apache-supported software has a detailed list of compliance rules allowing everyone
to use the released software without risking getting caught in the “noncommercial”
traps that some other open source licenses have.

In addition to those advantages of being an Apache project, OpenWhisk is used in
production and powers the cloud functions of the IBM Cloud as well as Adobe’s I/O
runtime cloud services. Apache OpenWhisk also supports many programming lan‐
guages, including Node.js, Python, Java, Go, Swift, PHP, and Ruby. More languages
are also in the works. In short, it is a stable and sophisticated production-ready serv‐
erless platform.

What You Will Learn

This book is for developers, so you need to be familiar with coding and programming
languages. The book is split into two parts—the first part is introductory and the
other more advanced.

In the first part, I assume you only know the JavaScript programming language and
the basics of web development, like HTML. I do not assume you have experience in
serverless development.

In this section you will learn how to create OpenWhisk applications from scratch.
After exploring the OpenWhisk architecture, we will create a simple contact form for
a static website.

Then we’ll explore the CLI and API of OpenWhisk and rebuild the same application
in a highly engineered way, splitting it into cooperating actions and applying a bunch

xiv | Preface

of design patterns. You will learn about the building blocks you need to develop your
applications along with examples and best practices.

In this book we emphasize the importance of testing, so the first part ends with a
chapter entirely devoted to unit testing, mocking, and snapshot testing.

The second part of the book is more advanced, and here I assume you know more
programming languages. Two chapters in the second part use Python for coding
examples, and another two chapters use Go. We’ll discuss the peculiarities of develop‐
ing OpenWhisk applications in those programming languages.

In the second part we’ll also explore integration with essential external services such
as databases (CouchDB) and messaging queues (Kafka). Last but not least, the final
chapter covers installing OpenWhisk in Kubernetes, including the installation of
Kubernetes itself. This last chapter is more oriented to system administrators but
could also be helpful for those unfamiliar with Linux because it provides step-by-step
installation instructions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

Preface | xv

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://learning-apache-openwhisk.github.io.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Apache OpenWhisk by
Michele Sciabarrà (O’Reilly). Copyright 2019 Michele Sciabarrà, 978-1-492-04616-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text

xvi | Preface

https://learning-apache-openwhisk.github.io/
mailto:permissions@oreilly.com
http://oreilly.com

and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learn-apache-openwhisk.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I want to say thank you to Rodric Rabbah and Carlos Santana for their support and
mentoring. If it were not for them, all I would have ended up with is the single line of
code I submitted to fix the Vagrant build on Windows, my first contribution to the
OpenWhisk project. Instead, thanks to their support and encouragement, I built a
new action proxy that now powers multiple OpenWhisk runtimes, and I ended up
writing a book on Apache OpenWhisk.

I also want to thank the reviewers. Carlos and Rodric, of course, were the first to
review my early chapters, but Rob Allen, Dragos Dascalita, and Vincent Hou, also
provided invaluable suggestions to improve my writing and correct the errors they
saw.

Preface | xvii

http://www.oreilly.com
http://bit.ly/learn-apache-openwhisk
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Last but not least, I want to thank some members of the Apache community involved
with the OpenWhisk project: Dave Grove, Justin Halsall, James Thomas, Markus
Thömmes, Matt Rutkowski, Priti Desai, and all the others I’ve forgotten to name
here.

xviii | Preface

PART I

Introducing OpenWhisk Development

In this first part, you are going to learn how to develop OpenWhisk applications.
We’ll start with the architecture of the system and the CLI. Then you will use the
JavaScript API, debugging techniques, and design patterns developed specifically in
JavaScript.

JavaScript is undoubtedly one of the most important and widely used programming
languages available. It is also the most common language used by frontend develop‐
ers, those who may need to add backend logic and don’t want to deal with the com‐
plexities of managing servers. Most people that use OpenWhisk usually start with
JavaScript to keep things simple.

To hit the ground running, we’ll start by developing a simple form application. Once
you know the basics, we will rewrite the application using design patterns. We’ll also
cover unit testing and “mocking,” used to test software that runs in the cloud.

CHAPTER 1

Serverless and OpenWhisk Architecture

Welcome to the world of Apache OpenWhisk, an open source serverless platform
designed to make it simple to develop applications in the cloud. The project was
developed in the open by the Apache Software Foundation, so the correct name is
“Apache OpenWhisk,” but for simplicity we’ll use “OpenWhisk” throughout.

Note that “serverless” does not mean “without a server”—it means “without manag‐
ing the server.” Indeed, we will learn how to build complex applications without being
concerned with installing and configuring the servers to run the code; we only have
to deal with the servers when we first deploy the platform.

A serverless environment is most suitable for applications needing processing “in the
cloud” because it allows you to split your application into multiple simpler services.
This approach is often referred to as a “microservices” architecture.

To begin with, we will take a look at the architecture of OpenWhisk to understand its
strengths and weaknesses. After that we’ll discuss the architecture itself, focusing on
the serverless model to show you what it can and cannot do.

We’ll wrap up this chapter by comparing OpenWhisk with another widely used simi‐
lar architecture, Java EE. The problems previously solved by Java EE application
servers can now be solved by serverless environments, only at a greater scale (even
hundreds of servers) and with more flexibility (not just with Java, but with many
other programming languages).

Since the project is active, new features are added almost daily. Be
sure to check the book’s website for important updates and correc‐
tions.

3

http://bit.ly/2J0V5ws

OpenWhisk Architecture
Apache OpenWhisk, as shown in Figure 1-1, is a serverless open source cloud plat‐
form. It works by executing functions (called actions) in response to events. Events
can originate from multiple sources, including timers, databases, message queues, or
websites like Slack or GitHub.

OpenWhisk accepts source code as input that provisions executing a single command
with a command-line interface (CLI), and then delivers services through the web to
multiple consumers, such as other websites, mobile applications, or services based on
REST APIs.

Figure 1-1. How Apache OpenWhisk works

Functions and Events
OpenWhisk completes its tasks using functions. A function is typically a piece of code
that receives some input and provides an output in response. It is important to note
that a function is generally expected to be stateless.

Backend web applications are stateful. Just think of a shopping cart application for e-
commerce: while you navigate the website, you add your items to the basket to buy
them at the end. You keep a state, which is the contents of the cart.

But being stateful is expensive; it limits scalability because you need a place to store
your data. Most importantly, you will need something to synchronize the state
between invocations. When your load increases, this “state-keeping” infrastructure
will limit your ability to grow. If you are stateless, you can usually add more servers
because you do not have the housekeeping of keeping the state in sync among the
servers, which is complex, expensive, and has limits.

In OpenWhisk, and in serverless environments in general, the functions must be
stateless. In a serverless environment you can keep state, but not at the level of a sin‐

4 | Chapter 1: Serverless and OpenWhisk Architecture

gle function. You have to use some special storage that is designed for high scalability.
As we will see later, you can use a NoSQL database for this.

The OpenWhisk environment manages the infrastructure, waiting for something
important to occur. This something important is called an event. Only when an event
happens a function is invoked.

Event processing is actually the most important operation the serverless environment
manages. We will discuss in detail next how this happens. Developers want to write
code that responds correctly when something happens—e.g., a request from the user
or the arrival of new data—and processes the event quickly. The rest belongs to the
cloud environment.

In conclusion, serverless environments allow you to build your application out of
simple stateless functions, or actions as they are called in the context of OpenWhisk,
that are triggered by events. We will see later in this chapter what other constraints
those actions must satisfy.

Architecture Overview
Now that we know what OpenWhisk is and what it does, let’s take a look at how it
works under the hood. Figure 1-2 provides a high-level overview.

Figure 1-2. An example deployment with actions in multiple languages

In Figure 1-2, the big container in the center is OpenWhisk itself. It acts as a con‐
tainer of actions. We will learn more about the container and these actions shortly,

OpenWhisk Architecture | 5

but as you can see, actions can be developed in many programming languages. Next,
we’ll discuss the various options available.

The “container” schedules the actions, creating and destroying
them as needed needed, and it will also scale them, creating dupli‐
cates in response to an increase in load.

Programming Languages for OpenWhisk
You can write actions in many programming languages. Typically, interpreted pro‐
gramming languages are used, such as JavaScript (actually, Node.js), Python, or PHP.
These programming languages give immediate feedback because you can execute
them without a compilation step. While these are higher-level languages and are eas‐
ier to use, they are also slower than compiled languages. Since OpenWhisk is a highly
responsive system (you can immediately run your code in the cloud), most develop‐
ers prefer to use those interpreted languages as their use is more interactive.

While JavaScript is the most widely used language for OpenWhisk,
other languages can also be used without issue.

In addition to purely interpreted (or more correctly, compiled-on-the-fly) languages,
you can also use the precompiled interpreted languages in the Java family such as Java,
Scala, and Kotlin. These languages run on the Java Virtual Machine (JVM) and are
distributed in an intermediate form. This means you have to create a .jar file to run
your action. This file includes the so-called “bytecode” OpenWhisk executes when it
is deployed. A JVM actually executes the action.

Finally, in OpenWhisk you can use compiled languages. These languages use a binary
executable that runs on “bare metal” without interpreters or virtual machines (VMs).
These binary languages include Swift, Go, and the classic C/C++. Currently, Open‐
Whisk supports Go and Swift out of the box. However, you can use any other com‐
piled programming language as long as you can compile the code in Linux elf format
for the amd64 processor architecture. In fact, you can use any language or system that
you can package as a Docker image and publish on Docker Hub: OpenWhisk is able
to retrieve this type of image and run it, as long as you follow its conventions.

6 | Chapter 1: Serverless and OpenWhisk Architecture

Each release of OpenWhisk includes a set of runtimes for specific
versions of programming languages. For the released combinations
of programming languages and versions, you can deploy actions
using the switch --kind on the command line (e.g., --kind
nodejs:6 or --kind go:1.11). For single file actions, OpenWhisk
will select a default runtime to use based on the extension of the
file. You can find more runtimes for programming languages or
versions not yet released on Docker Hub that can be used with the
switch --docker followed by the image name.

Actions and Action Composition
OpenWhisk applications are collections of actions. Figure 1-3 shows how they are
assembled to build applications.

Figure 1-3. Overview of OpenWhisk action runtimes

An action is a piece of code, written in one of the supported programming languages
(or even an unsupported language, as long as you can produce an executable and
package it in a Docker image), that you can invoke. On invocation, the action will
receive some information as input.

OpenWhisk Architecture | 7

To standardize parameter passing among multiple programming languages, Open‐
Whisk uses the widely supported JavaScript Object Notation (JSON) format, because
it’s pretty simple and there are libraries to encode and decode this format available for
basically every programming language.

The parameters are passed to actions as JSON objects serialized as strings that the
action receives when it starts and is expected to process. At the end of the processing,
each action must produce a result, which is returned as a JSON object value.

You can group actions in packages. A package is a unit of distribution. You can share
a package with others using bindings. You can also customize a package, providing
parameters that are different for each binding.

Action Chaining
Actions can be combined in many ways. The simplest way is chaining them into
sequences.

Chained actions use as input the output of the preceding actions. Of course, the first
action of a sequence will receive the parameters (in JSON format), and the last action
of the sequence will produce the final result as a JSON string. However, since not all
the flows can be implemented as a linear pipeline of input and output, there is also a
way to split the flows of an action into multiple directions. This feature is imple‐
mented using triggers and rules. A trigger is merely a named invocation. By itself a
trigger does nothing. However, you can associate the trigger with one or more actions
using rules. Once you have created the trigger and associated some action with it, you
can fire the trigger by providing parameters.

Triggers cannot be part of a package. but they can be part of a
namespace, as we’ll see in Chapter 3.

The actions used to fire a trigger are called a feed and must follow an implementation
pattern. In particular, as we will learn in “Observer” on page 110, actions must imple‐
ment an Observer pattern and be able to activate a trigger when an event happens.

When you create an action that follows the Observer pattern (which can be imple‐
mented in many different ways), you can mark the action as a feed in a package. You
can then combine a trigger and a feed when you deploy the application, to use a feed
as a source of events for a trigger (and in turn activate other actions).

8 | Chapter 1: Serverless and OpenWhisk Architecture

How OpenWhisk Works
Now that you know the different components of OpenWhisk, let’s look at how Open‐
Whisk executes an action.

The process is straightforward for the end user, but internally it executes several
steps. We saw before the user visible components of OpenWhisk. We are now going
to look under the hood and learn about the internal components. Those components
are not visible by the user but the knowledge of how it works is critical to use Open‐
Whisk correctly. OpenWhisk is “built on the shoulders of giants,” and it uses some
widely known and well-developed open source projects.

These include:

Nginx
A high-performance web server and reverse proxy

CouchDB
A scalable, document-oriented NoSQL database

Kafka
A distributed, high-performing publish/subscribe messaging system

All the components are Docker containers, a format to package applications in an
efficient but constrained, virtual machine–like environment. They can be run any
environment supporting this format, like Kubernetes.

Furthermore, OpenWhisk can be split into some components of its own:

Controller
Managing entities, handling trigger fires, and routing actions invocations

Invoker
Launching the containers to execute the actions

Action Containers
Actually executing the actions

In Figure 1-4 you can see how the processing happens. We are going to discuss it in
detail, step by step.

How OpenWhisk Works | 9

Figure 1-4. How OpenWhisk processes an action

Basically, all the processing done in OpenWhisk is asynchronous,
so we will go into the details of an asynchronous action invocation.
Synchronous execution fires an asynchronous action and then
waits for the result.

Nginx
Everything starts when an action is invoked. There are different ways to invoke an
action:

• From the web, when the action is exposed as a web action
• When another action invokes it through the API
• When a trigger is activated and there is a rule to invoke the action
• From the CLI

Let’s call the client the subject who invokes the action. OpenWhisk is a RESTful sys‐
tem, so every invocation is translated to an HTTPS call and hits the so-called “edge”
node. The edge is actually the web server and reverse proxy Nginx. The primary pur‐

10 | Chapter 1: Serverless and OpenWhisk Architecture

pose of Nginx is to implement support for the HTTPS secure web protocol, so it
deploys all the certificates required for secure processing. Nginx then forwards the
requests to the actual internal service component, the controller.

Controller
Before executing the action, the controller checks whether it can execute the action
and initialize it correctly:

1. It needs to be sure it can execute the action, so it must authenticate the request.
2. Once the origin of the request has been identified, it needs to be authorized, veri‐

fying that the subject has the appropriate permissions.
3. The request must be enriched with some additional parameters that, as we will

see, are provided as part of action configuration.

To perform all those steps the controller consults the database, which in OpenWhisk
is CouchDB. Once validated and enriched, the action is now ready to be executed, so
it is sent to the next component of the processing, the load balancer.

Load Balancer
The job of the load balancer, as its name implies, is to balance the load among the
various executors in the system, which are called invokers in OpenWhisk.

We already saw that OpenWhisk executes actions in runtimes. The load balancer
keeps an eye on the available instances of the action runtime, reuses the existing ones
if they are available, or creates new ones if they are needed.

We’ve arrived at the point where the system is ready to invoke the action. However,
you cannot just send your action invocation to an invoker, because it may be busy
serving another action. There is also the possibility that an invoker has crashed, or
even that the whole system has crashed and is restarting.

So, because we are working in a massively parallel environment that is expected to
scale, we have to consider the possibility that we will not have the resources we need
to execute the action immediately. In cases like this, we have to buffer invocations.
OpenWhisk uses Kafka to perform this action. Kafka is a high-performing “publish
and subscribe” messaging system that can store your requests until they are ready to
be executed. The request is turned into a message addressed to the invoker the load
balancer chose for the execution. An action invocation is actually turned in an
HTTPS request to Nginx; then it internally becomes a message to Kafka.

Each message sent to an invoker has an identifier called the activation ID. Once the
message has been queued in Kafka, there are two possibilities: a nonblocking and a
blocking invocation.

How OpenWhisk Works | 11

For a nonblocking invocation, the activation id is sent back as the final answer to the
request to the client, and the request completes. In this case, the client is expected to
come back later to check the result of the invocation.

For a blocking invocation, the connection stays open: the controller waits for the
result from the action and sends the result to the client.

Invoker
In OpenWhisk the invoker is in charge of executing the actions. Actions are actually
executed by the invoker in isolated environments provided by Docker containers. As
already mentioned, Docker containers are execution environments that resemble an
entire operating system, providing everything needed to run an application.

So, from the actions perspective, the environment provided by a Docker container
looks like an entire computer (just like a VM). However, execution within containers
is much more efficient than in VMs, so they are preferred.

It would be safe to say that, without containers, serverless environ‐
ments like OpenWhisk would not be possible.

Docker actually uses images to create the containers that execute actions. A runtime is
really a Docker image. The invoker launches a new image for the chosen runtime and
then initializes it with the code of the action. OpenWhisk provides a set of Docker
images including support for various languages. The action runtimes also include the
initialization logic. They support JavaScript, Python, Go, Java, and similar languages.

Once the runtime is up and running, the invoker passes the action requests that have
been constructed in the processing so far. The invoker also manages and stores the
logs needed to facilitate debugging.

After OpenWhisk completes the processing, it must store the result somewhere. This
place is again CouchDB (where configuration data is also stored). Each result of the
execution of an action is then associated with the activation ID, the one that was sent
back to the client. Thus, the client can retrieve the result of its request by querying the
database with the ID.

Client
The processing described so far is asynchronous. This means the client will start a
request and forget about it, although it doesn’t leave it behind entirely, because it
returns an activation ID as the result of an invocation. As we have seen already, the
activation ID is used to store the result in the database after the processing. To

12 | Chapter 1: Serverless and OpenWhisk Architecture

retrieve the final result, the client will have to perform a request again later, passing
the activation ID as a parameter. Once the action completes, the result, the logs, and
other information will be available in the database and can be retrieved.

Synchronous processing is also available. It works the same way as asynchronous pro‐
cessing, except the client will block waiting for the action to complete and retrieve the
result immediately.

Serverless Execution Constraints
Serverless applications come with a few constraints and limitations. We call those
constraints the execution model. You can think of your application as a set of actions,
collaborating with each other to meet the purpose of the application. Each action
running in a serverless environment will be executed within certain limits, and those
limits must be considered when designing the application.

Figure 1-5 shows the most important action execution constraints. All constraints
have some value in terms of time or space, (timeout, frequency, memory, disk size,
etc.). Some are configurable; others are hardcoded. Typical constraints (which can be
different depending on the particular installation you are using) are:

• Execution time: max 1 minute per action
• Memory size: max 256 MB per action
• Log size: max 10 MB per action
• Code size: max 48 MB per action
• Parameters: max 1 MB per action
• Result: max 1 MB per action

Note that execution time and memory size can be configured by the developer of the
action using annotations. Other constraints cannot be configured by the user, but
they can be configured by the system administrator of OpenWhisk.

Furthermore, there are global constraints:

• Concurrency: max 100 concurrent activations can be queued at the same time
(configurable)

• Frequency: max 120 activations per minute can be requested (configurable)

Serverless Execution Constraints | 13

Figure 1-5. OpenWhisk action execution constraints

Global constraints are actually per namespace. You can think of a
namespace as a collection of OpenWhisk resources available under
a URL prefix that can be accessed using the same API token (so
they can invoke each other). In a sense, a namespace is the server‐
less equivalent of an application, split into multiple related entities.

Let’s discuss the qualitative constraints that impact the way you have to develop
actions.

Actions Are Functional
As already mentioned, each action must be a function invoked with a single input
and must produce a single output. The input is a string in JSON format. The action
usually deserializes the string in a data structure specific to the programming lan‐
guage used for the implementation. The runtime generally performs the deserializa‐
tion, so the developer receives an already-parsed data structure. If you use dynamic
languages like JavaScript or Python, you will usually receive something like a Java‐
Script object or a Python dictionary, which can be efficiently processed using the pro‐
gramming language.

If you use a statically typed language like Java or Go, you may need to put more effort
into decoding the input. Libraries for performing such decoding are readily available.

14 | Chapter 1: Serverless and OpenWhisk Architecture

However, some decoding work may be necessary to map the generally untyped argu‐
ments to the typed data structure of the language.

The same holds true for returning the output. It must be a single data structure
appropriate for the programming language you are using, but it must also be serial‐
ized back into JSON format before being returned. Runtimes usually take care of seri‐
alizing data structures back into strings.

Actions Are Event-Driven
Everything in the serverless environment is activated by events. Your code should
execute quickly, do what is requested, and terminate. It is the system that will invoke
your code when it is needed. An example of an event is when a user browses the web
and invokes the URL of a web action deployed in OpenWhisk. This event triggers an
action invocation.

But this is only one possible event. Another example is a request from another action
that arrives in a message queue.

Database management is also event-driven. You can perform a query on a database,
then wait until an event is triggered when the data arrives.

Websites can originate events, too. For example, you may receive an event:

• When someone pushes a commit on GitHub
• When a user interacts with Slack and sends a message
• When a scheduled alarm is triggered

Actions Do Not Have Local State
Actions are executed in Docker containers. A container is created to execute a single
action; it serves a number of requests, and then it is destroyed. As a consequence (by
Docker design), the filesystem is ephemeral. Once a container terminates, all the data
stored on the filesystem will be removed too. But this does not mean you cannot store
anything in files when using a function. You can use files for temporary data storage
while executing an application.

Indeed, a container can be used multiple times. For example, if your application
needs some data downloaded from the web, an action can can perform the down‐
loading and then save it and make it available to other actions executed in the same
container.

What you cannot assume is that the data will stay in the container forever. At some
point in time, either the container will be destroyed or another container will be cre‐

Serverless Execution Constraints | 15

ated to execute the action. In a new container, the data you downloaded in a previous
execution of the action will no longer be available.

In short, you can use local storage as a cache for speeding up further actions, but you
cannot rely on the fact that the data you store in a file will persist forever. For long-
term persistence, you need to use other means: typically a database or another form
of cloud storage.

Actions Are Time-Bound
Actions must complete in the shortest time possible. As already mentioned, the exe‐
cution environment imposes time limits on the execution time of an action. If the
action does not terminate within that timeframe, it will be aborted. This is also true
for background actions or threads you may have started.

So, ensure that your code will not keep going for an unlimited amount of time (e.g.,
when it gets larger input). Instead, you may want to split the processing into smaller
chunks and ensure the execution time of your action will stay within the necessary
limits.

Also remember that billing can be time-dependent. If your cloud provider supports
OpenWhisk with a pay-per-use model, you will be charged for the time your actions
take. Faster actions will result in lower costs. When you have millions of actions exe‐
cuting, a few milliseconds can make a difference.

If you install OpenWhisk on your own servers, you are usually only
billed for the VMs running them.

Actions Are Not Ordered
Note also that actions are not ordered. If you invoke action A at time X and action B
at time Y, with X < Y, action B may be executed before A. As a consequence, if the
actions have side effects—for example, writing to the database—the side effect of
action A may be applied later than that of action B. Furthermore, there is no guaran‐
tee an action will be executed entirely before or after another action. They may over‐
lap in time. For example, if you are writing to a database you must be aware that
another action may start writing to it too before you are finished. So, you have to pro‐
vide transaction support.

16 | Chapter 1: Serverless and OpenWhisk Architecture

From Java EE to Serverless
While the serverless architecture may look brand new, it actually has quite a bit in
common with existing architectures. In a sense, it is an evolution of those historical
architectures.

To better understand the genesis and the advantages of the serverless architecture, it
makes sense to compare the OpenWhisk architecture with one of its historical prece‐
dents: Java Enterprise Edition, or Java EE.

Java EE itself was a specification. Some of the most prominent
implementations of this specification still in broad use today are
Oracle WebLogic and IBM WebSphere.

Classic Java EE Architecture
The core idea behind Java EE was to allow the development of large application out of
small, manageable parts. It was a technology designed to help application develop‐
ment for large organizations, using the once new and revolutionary Java program‐
ming language—hence, the name Java Enterprise Edition.

When the Java EE was created, everything was based on the Java
programming language, leveraging the VM. At the time Java was
considered to be a programming language suitable for building
large, scalable applications (meant to replace C++). Scripting lan‐
guages like Python were not yet largely used, and JavaScript was
still in its infancy.

To facilitate the development of these vast and complex applications, Java EE pro‐
vided a productive (and complicated) infrastructure of services offering many differ‐
ent types of components, each one deployable separately, with many ways for the
various parts to communicate with each other. Those services were put together and
made available through the use of software packages called application servers.
Figure 1-6 gives an overview of the JavaEE architecture and its different tiers.

From Java EE to Serverless | 17

Figure 1-6. Java EE architecture

The client tier was expected to implement the application logic at the client level. His‐
torically Java was used to implement applets, small Java components that were down‐
loaded and run in browsers. JavaScript, CSS, and HTML replaced those web
components.

In the web tier, the most crucial components were the servlets, further specialized in
into JavaServer Pages (JSP), tag libraries, etc. Those components defined the web user
interface at the server level.

The so-called business logic, managing data and connection to other enterprise sys‐
tems, was expected to be implemented in the business or Enterprise Java Beans (EJB).
There were many flavors of EJB, like Entity Beans, Session Beans, Message Beans, etc.

Each component in Java EE was a set of Java classes that implemented an API. The
developer wrote those classes and then delivered them to the application server,
which loaded the components and ran them in their containers.

The application servers also provided a set of connectors to interface the application
with the external world, in the enterprise information system (EIS) tier. There were
Java connectors allowing applications to interface with virtually any resource of inter‐
est, including:

• Databases
• Message queues
• Email and other communication systems

18 | Chapter 1: Serverless and OpenWhisk Architecture

In the Java EE world, application servers provided the implementation of the entire
Java EE specification, including APIs and connectors, acting as a one-stop solution
for all the development needs of enterprises.

Serverless Equivalent of Java EE
For many reasons, OpenWhisk can be seen as an evolution of Java EE. Both started
from the same basic idea: split your application into many small, manageable parts,
and provide a system to quickly put together all those pieces.

However, the technological landscape driving the development of serverless environ‐
ments is different. In today’s world:

• Applications are spread among multiple servers in the cloud, requiring virtually
infinite scalability.

• We have numerous programming languages, including scripting languages, that
are used extensively.

• VM and container technologies are available to wrap and control the execution
of programs.

• HTTP can be considered a standard transport protocol.
• JSON is simple and widely used as a universal exchange format.

Figure 1-7 shows the OpenWhisk architecture in a way that is easy to compare with
Java EE. It is intentionally similar to Figure 1-6, to make it easier to see the similarities
and differences between the two architectures.

Tiers
As you can see, OpenWhisk also has a web tier and a business tier, in addition to a
client and an integration tier. While there is no formal separation between the two
tiers, in practice OpenWhisk has actions that are directly exposed to the web (web
actions) and actions that are not.

Web actions can be considered to belong to the web tier. Other actions, meant to
serve events either coming from web actions or triggered by other services in the
infrastructure, can be considered business actions, defining a business tier.

From Java EE to Serverless | 19

Figure 1-7. OpenWhisk architecture

Components
In Java EE, everything runs in the Java Virtual Machine, and everything must be
coded in Java (or at least a programming language that can generate JVM-compatible
bytecode). In OpenWhisk, you can code applications in multiple programming lan‐
guages. We use their runtimes as equivalents of the JVM. Furthermore, those run‐
times are wrapped in Docker containers to provide isolation and control over
resource usage. This means you can write your components in any (supported) lan‐
guage you like. You are no longer confined to writing your application solely for the
JVM. However, a JVM runtime is available, so you can still use Java and its family of
languages if you like.

You can now write your code for the JavaScript Virtual Machine, more commonly
referred to as Node.js.

Under the hood, Node.js is an adaptation of the V8 JavaScript inter‐
preter that powers the Chrome browser. It is a fast executor of the
JavaScript language, which also has advanced functions like
compiling on the fly to native code to speed up execution.

Instead of using VMs, you can also use language-producing native executables like
Swift or Go. Go is becoming a popular choice in the serverless world. As long as you
compile your application for Linux and AMD64, you can deploy it in OpenWhisk.

20 | Chapter 1: Serverless and OpenWhisk Architecture

APIs
In JavaEE, you have APIs available to interact with the rest of the world, written in
Java itself. Basically, in the Java EE model, every interesting resource for writing appli‐
cations has been adapted to be used by Java.

In OpenWhisk, you have only one API for all the supported programming languages.
This is the OpenWhisk API, and it is a RESTful API. You can invoke it over HTTPS
using JSON as an interchange format.

This API can even be invoked directly using any HTTP library that can read and
write JSON objects as strings. The OpenWhisk API acts as glue for the various com‐
ponents of the platform. All the communications among the different parts in Open‐
Whisk are performed in JSON over HTTP.

Connectors
In JavaEE, you have connectors for each external system you want to communicate
with. For example, if you’re going to interact with an Oracle database, you need an
Oracle JDBC connector; to communicate with IBM DB2, you need a DB2 JDBC
driver, etc. The same holds true for messaging queues, email, and so on.

In OpenWhisk, interactions with other systems are wrapped in packages, collections
of actions explicitly written to interact with a particular system. You can use any pro‐
gramming language and available APIs and drivers to communicate with packages.
For example, if you have a Java driver for a database, you can write a package to inter‐
act with it. Packages act as connectors.

In the IBM Cloud, there are packages available to communicate with essential serv‐
ices such as:

• The cloud database Cloudant
• The Kafka messaging system
• The enterprise chat Slack
• Many others, some specific to IBM services

You use the feed mechanism provided by OpenWhisk to hook into those systems.

Application servers
In Java EE, everything is managed by application servers. They are the containers
where enterprise applications are meant to be deployed.

In a sense, OpenWhisk itself takes on this role by providing a cloud-based, multi‐
node, language-agnostic execution service. Using a serverless engine like Open‐

From Java EE to Serverless | 21

Whisk, the cloud becomes a transparent entity where you deploy your code. The
environment manages the distribution of applications in the cloud.

The problem then becomes not to install your code, but to install
OpenWhisk. Each component of OpenWhisk must be appropri‐
ately deployed according to the available resources of the cloud.
The installation of OpenWhisk in the cloud is a complex subject,
and we will devote Chapter 12 to it.

We know that OpenWhisk runs in Docker containers. However, scaling Docker in a
cloud requires you to manage those Docker containers under supervisory systems
called orchestrators.

There are many orchestrators, but at the moment OpenWhisk supports the following:

• Kubernetes, a widely used orchestration system initially developed by Google
• DC/OS, a cloud operating system built on top of Apache Mesos supporting the

management of distributed applications and Docker containers.

Summary
Apache OpenWhisk is a serverless application platform. In this chapter, we learned
how the serverless approach to software development makes it easy to take advantage
of the cloud while keeping programming simple for developers.

We also took a good look at the OpenWhisk architecture and its components. Since
constraints are critical to developing serverless applications, we also covered those in
this chapter.

We wrapped up the chapter by comparing Apache OpenWhisk with Java EE to illus‐
trate how serverless architecture has evolved.

22 | Chapter 1: Serverless and OpenWhisk Architecture

CHAPTER 2

A Simple OpenWhisk Application

This chapter walks through developing a simple OpenWhisk application using the
CLI and JavaScript as a programming language. The goal is to show you how server‐
less development works in action. For this purpose, we are going to create a simple
contact form for a website using OpenWhisk.

Apache OpenWhisk is an open source project that is meant to be
cloud-independent; you can adopt it without being constrained to
one single vendor.

Let’s assume you already have a static website and you want to add a contact form.
The challenge here is that you cannot store contacts in your static website; you need
some server logic to save them. Furthermore, you may want some logic to validate the
data (since users can disable JavaScript in their browsers) and additionally receive
email notification of what is going on on the website.

Since you cannot do this with just static HTML, this is a good use case for Open‐
Whisk: implementing simple external logic for an otherwise static website. For sim‐
plicity, our examples refer to the IBM Cloud, which offers OpenWhisk as its “Cloud
Functions” service. However, the techniques here can be used with other cloud pro‐
viders that support OpenWhisk.

The source code for the examples in this chapter is available on
GitHub.

23

http://bit.ly/2LqDS15
http://bit.ly/2LqDS15

Getting Started
We’re assuming that you already have a website, built with a static website generator.
Even so, not everything on a website can be static. For example, you may need to allow
your site’s visitors to contact you. You may then want to store the contacts in a data‐
base to manage the data with a customer resource management (CRM) application.

Before serverless environments were available, the only way to enhance a static web‐
site with server-side logic was to provision a server (typically a VM), deploy a web
server with server-side programming support, add a database, and finally implement
the function you needed using a server-side programming language like PHP or Java.
Today, you can keep your website mostly static and implement a contact form in a
serverless environment, without the need for a VM, web server, or database.

The implementation that is shown in this chapter is not the best
one possible. It is just a simple example to show you how to do it
with OpenWhisk. In Chapters 4 and 5, we will rework the example
to implement it in a more structured way.

The Bash CLI
Serverless development is primarily performed at the terminal using a CLI. We’ll
mostly use the Unix-based CLI and the command-line interpreter bash. In a sense,
this is a Unix-centered book. Bash is available out of the box in any Linux-based envi‐
ronment and on macOS. It can also be installed on Windows.

You can use any Unix-like CLI, including Git for Windows. Note
that, despite the name, it is not just Git: it includes a complete
Unix-like environment, based on bash, ported to Windows. On
more recent versions of Windows, you can instead install the Win‐
dows Subsystem for Linux (WSL), which includes a complete Linux
distribution like Ubuntu, with bash of course. It is informally called
Bash for Windows.

So, to follow along with these examples, you need to be familiar with bash and the
command line. Here is an example of working with the CLI:

$ pwd
/Users/msciab
$ ls \
-l
total 16
-rw-r--r--@ 1 msciab staff 1079 24 Feb 09:53 form.js
-rw-r--r--@ 1 msciab staff 71 23 Feb 17:18 submit.js

24 | Chapter 2: A Simple OpenWhisk Application

Type pwd at the command line.

Type these two lines at the command line. While not strictly necessary here, this
example is intended to show that long command lines may be split into multiple
lines. In these cases, the lines that are continued should each end with a \.

This is an example of the output you should expect.

The IBM Cloud
As I’ve mentioned a few times now, Apache OpenWhisk is an open source project
and can be deployed in any cloud. You will see in Chapter 12 how to implement your
environment on-premises or in the cloud of your choice. However, since OpenWhisk
was initiated by IBM and then donated to the Apache Foundation, it is available ready
to use in the IBM Cloud. The OpenWhisk environment is offered for free for devel‐
opment purposes, so the simplest way to get started is to create an IBM Cloud
account.

At the time of writing, you can create an IBM Cloud account by going to http://
cloud.ibm.com and looking for a button that says “Create an IBM Cloud account.”

Fill in the form and then activate your account.

After registering, the next steps are as follows:

1. Log in to the IBM Cloud dashboard.
2. Download the CLI tool as shown in Figure 2-1.
3. Install the CLI tool using the installer for your platform.
4. Go to the terminal.
5. Log in to the IBM Cloud with ibmcloud login.
6. Install the Cloud Functions plugin with ibmcloud plugin install cloud-

functions.
7. Target your organization and your workspace with ibmcloud target -o <user

name> -s dev, where <username> is your username.

Getting Started | 25

http://cloud.ibm.com
http://cloud.ibm.com

Figure 2-1. Downloading the CLI tools for OpenWhisk

In the IBM Cloud, when you register for a free account, your orga‐
nization name is your email address, and there is only one space,
dev. You can create more spaces, but you need to upgrade to a paid
account.

To make sure you are ready, run the following command in the terminal and check
the result. If your result matches this one, everything is configured correctly!

$ ibmcloud fn action invoke /whisk.system/utils/echo -p message hello --result
{
 "message": "hello"
}

In the rest of the book we use wsk on the command line to invoke
OpenWhisk. This is the name of the CLI if you download it
directly as described in “The wsk Command” on page 46. If you
use the ibmcloud CLI, you have to use ibmcloud fn instead of wsk.
To avoid confusion, we recommend using your shell alias functions
and setting alias wsk="ibmcloud fn" in your shell initialization
file, so you can use the command wsk to follow the examples in this
book.

26 | Chapter 2: A Simple OpenWhisk Application

Creating a Simple Contact Form
Now we are going to create and deploy a simple contact form.

Open a terminal running bash. First we will create a package to group our code:

$ wsk package create contact
ok: created package contact

Now we are ready to start coding our application. In the serverless world you can
write code and then deploy and execute it immediately. This immediacy is the essence
of the platform.

We call the code we create actions. Actions are generally, at least in
this chapter, single files. One exception is when we bundle an
action file with some libraries we need, and we deploy them
together. In such a case, the action will be deployed as a zip file,
composed of many files.

Let’s write our first action. The action is a simple HTML page returned by a JavaScript
function:

function main() {
 return {
 body: `<html><head>
<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.0/css/bootstrap.min.css"
 rel="stylesheet" id="bootstrap-css">
</head><body>
 <div id="container">
 <div class="row">
 <div class="col-md-8 col-md-offset-2">
 <h4>Get in Touch</h4>
 <form method="POST" action="submit">
 <div class="form-group">
 <input type="text" name="name"
 class="form-control" placeholder="Name">
 </div>
 <div class="form-group">
 <input type="email" name="email"
 class="form-control" placeholder="E-mail">
 </div>
 <div class="form-group">
 <input type="tel" name="phone"
 class="form-control" placeholder="Phone">
 </div>
 <div class="form-group">
 <textarea name="message" rows="3"
 class="form-control" placeholder="Message"
 ></textarea>
 </div>

Creating a Simple Contact Form | 27

 <button class="btn btn-default" type="submit" name="button">
 Send
 </button>
 </form>
 </div>
 </div>
 </div>
</body></html>`
 }
}

Note the general structure of the actions: the function is called
main; it takes as an input a JavaScript obj and returns a JavaScript
object.

Once you write the code, you can deploy it, then retrieve the actual URL to execute
the action:

$ wsk action create contact/form form.js --web true
ok: created action contact/form
$ wsk action get contact/form --url
ok: got action form
https://openwhisk.eu-gb.bluemix.net/api/v1\
/web/openwhisk%40example.com_dev/contact/form

Create the action and request web access for it.

This message confirms the action was created.

This is the URL where the action is available.

The actual URL returned will be different since it depends on your account and loca‐
tion.

As you will see later, not all the actions are accessible with a URL—
only the “public-facing” ones. By default, actions are restricted and
accessible only with an API key. We marked this action with the
flag --web true because we want to access it with a URL and
without authentication.

We can now test to see if the form was deployed correctly by opening the URL in a
web browser. It should look like Figure 2-2.

28 | Chapter 2: A Simple OpenWhisk Application

Figure 2-2. The contact form

If you click on the Submit button you will get an error, because it
will try to submit the form to the action contact/submit that does
not (yet) exist:

{
 "error": "The requested resource does not exist.",
 "code": 3850005
}

Form Validation
After testing, the next step is to validate the data the user submits before we store it in
a database.

We will now create an action called submit, in the file submit.js. First, let’s “wrap” our
code in the main function:

function main(args) {
 message = []
 errors = []
 // TODO: <Form Validation>
 // TODO: <Returning the Result>
}

Insert the code for validating the form here.

Insert the code for returning the result here.

Note that this action’s main function has an explicit parameter, args. Let’s see what
happens when we submit the form.

Form Validation | 29

We have a form with the fields name, email, phone, and message. On submit, the form
data will be encoded and sent to OpenWhisk, which will decode it (all the details of
the processing will be provided later in this chapter).

We use a JavaScript object to process a request using an action. Each key corresponds
to a field of the form. This object is passed as the argument of the main function. So,
our form fields are available to the main function as args.name, args.email, etc. We
can now validate them.

Address Validation
First, let’s check if the name is provided. Insert the following code snippet in place of
the // TODO: <Form Validation> comment in the submit.js action:

// validate the name
if(args.name) {
 message.push("name: "+args.name)
} else {
 errors.push("No name provided")
}

Second, let’s validate the email address, making sure it “looks like” an email. We use a
regular expression for this (add this code below the code you just inserted in
action.js):

// validate email
var re = /\S+@\S+\.\S+/;
if(args.email && re.test(args.email)) {
 message.push("email: "+args.email)
} else {
 errors.push("Email missing or incorrect.")
}

Third, let’s validate the phone number, making sure it has enough digits (at least 10):

/// validate the phone
if(args.phone && args.phone.match(/\d/g).length >= 10) {
 message.push("phone: "+args.phone)
} else {
 errors.push("Phone number missing or incorrect.")
}

Finally, let’s add the message text, if any:

/// add the message text, optional
if(args.message) {
 message.push("message:" +args.message)
}

30 | Chapter 2: A Simple OpenWhisk Application

Returning the Result
Once we have validated all the fields, we can return the result. There is now a bit of
logic: we choose whether to return an error message or an acceptance message.

Insert the following code in place of the // TODO: <Returning the Result> com‐
ment in the submit.js action:

// complete the processing
if(errors.length) {
 var errs = ""+errors.join("")+""
 return {
 body: "<h1>Errors!</h1>"+
 data + errs +
 '
Back'
 }
} else {
 var data = "<pre>"+message.join("\n")+"</pre>"
 // storing in the database
 // TODO: <Store the message in the database>
 return {
 body: "<h1>Thank you!</h1>"+ data
 }
}

Placeholder to insert code to save data in the database.

The action is not complete (we still need to store the data), but we can test this partial
code with this command:

$ wsk action create contact/submit submit.js --web true
ok: created action contact/submit

If you now submit the form empty, you will see the message shown on the right in
Figure 2-3. If you provide all the parameters correctly, you will instead see the mes‐
sage on the left.

Form Validation | 31

Figure 2-3. Form messages

Saving Form Data
Now we can focus on database creation, to store our form data. Since we have an IBM
Cloud account, the simplest option is to use the Cloudant database. For small
amounts of data, it is free to use.

As shown in Figure 2-4, this is pretty simple to do:

1. From the menu at the top of the IBM Cloud window, select Catalog.
2. Search for the Cloudant NoSQL database.
3. Select Create to create a Lite instance.
4. Click Launch to access the administrative interface.
5. Click Create Database (not shown in the figure).
6. Finally, specify contact as the database name.

32 | Chapter 2: A Simple OpenWhisk Application

Figure 2-4. Creating a Cloudant database

Now we need to get the credentials to access the database.

As shown in Figure 2-5, in the Cloudant service, select “Service credentials” in the
menu at the top left, then click “New credential,” and finally select “View credentials.”
This will show a JSON file.

Saving Form Data | 33

Figure 2-5. Getting Cloudant credentials

You need to extract the values in the fields username and password. You can now use
these values at the command line to “bind” the database. This is what you have to
type in the terminal:

$ export USER=XXXX
$ export PASS=YYYY
$ wsk package bind \
 /whisk.system/cloudant contactdb \
 -p username $USER \
 -p password $PASS \
 -p host $USER.cloudant.com \
 -p dbname contactdb
ok: created binding contactdb
$ wsk action invoke contactdb/create-database -r
{
 "ok": true
}
$ wsk package list
packages
/openwhisk@example.com_dev/contactdb private
/openwhisk@example.com_dev/contact private

34 | Chapter 2: A Simple OpenWhisk Application

Copy here the username.

Copy here the password.

Bind the cloudant package (one of a set of generic packages OpenWhisk pro‐
vides with the specified credentials).

Create the actual database.

Make sure you have two packages.

In the IBM Cloud, it is possible to bind the Cloudant package auto‐
matically with the reload command. This will create a package
with the credentials automatically configured.

After binding you will have a new package with parameters allowing you to read and
write in your database. OpenWhisk provides a set of generic packages. We used the
command bind to make it specific to write in our database giving username and pass‐
word. This package provides many actions, which you can see by listing them (not all
the actions are shown here):

$ wsk action list contactdb
/whisk.system/cloudant/write private nodejs:6
/whisk.system/cloudant/read private nodejs:6
...

Creating a package gives you access to multiple databases. Since we
need just one, we specified the default database we want to use
(using the parameter dbname in the bind command), then we
explicitly invoked the create-database command to be sure that
database was created.

Invoking Actions
The actions we’ve created so far have been web actions (you may have noted the --
web true flag in the action create commands). In general, web actions can be
invoked directly, navigating to web URLs or submitting web forms.

However, not all actions can be invoked straight from the web. Many of them execute
internal processing and are activated only through specific APIs. We will also invoke
other actions that are not web actions.

Saving Form Data | 35

To read and write to a database, we have to use the wsk action invoke command,
passing parameters with the --param option and data in JSON format as a command-
line argument.

Let see how it works by invoking the action write, as follows:

$ wsk action invoke contactdb/write \
 --blocking --result --param dbname contactdb \
 --param doc '{"name":"Michele Sciabarra", "email": "michele@sciabarra.com"}'
{
 "id": "fad432c6ea1145e71e99053c0d811475",
 "ok": true,
 "rev": "1-d14ba6a37cfdf34a8b3bb49dd3c0e22a"
}

Here, we’re using the --blocking option to wait for the result and
the --result option to print the final result. Those options will be
discussed in detail in the next chapter. However, note that in this
case the --blocking is actually redundant; --result implies --
blocking, so when using --result it is not required (it’s included
only for illustration purposes). OpenWhisk provides a set of
generic packages. We used the bind command to create a copy that
also provides additional parameters to let you read and write in a
specific database.

The database replied with a confirmation and some extra information. Most notably,
the result includes the id of the new record that we can use later to retrieve the value.

We can now check the database’s user interface to see the data we just stored in it.
Select the database and then the ID, as shown in Figure 2-6, and you should see the
data we just inserted in the database in JSON format. As you can see, to write data in
the database you just need a JSON object. So far we’ve written data using the com‐
mand line. Now let’s look at how we can do it in code.

36 | Chapter 2: A Simple OpenWhisk Application

Figure 2-6. How to retrieve data from Cloudant

Storing in the Database
OpenWhisk includes an API you can use to interact with the rest of the system. We
used the database as a package, so we now have an action to write in the database. To
use it we need to invoke the action from another action. Let’s see how.

First we need this line:

var openwhisk = require('openwhisk')

to access to the openwhisk API. This code is the entry point to interact with Open‐
Whisk from within an action.

Now we can define the function save using the OpenWhisk API to invoke the action
to write in the database. The following code should be placed at the beginning of sub‐
mit.js:

var openwhisk = require('openwhisk')

function save(doc) {
 var ow = openwhisk()
 return ow.actions.invoke({
 "name": "contactdb/write",
 "params": {
 "dbname": "contactdb",

Saving Form Data | 37

 "doc": doc
 }
 })
}

Currently, you need to add var ow = openwhisk() inside the body
of the main function. This is a documented issue: environment
variables used to link the library to the rest of the system are avail‐
able only within the main function or any function called by it, so
you cannot initialize the variable outside (as you may be tempted
to do).

Once the save function is available, you can use it to save data just by creating an
appropriate JSON object and passing it as a parameter. In submit.js, replace the place‐
holder line // TODO: <Store the message in the database> with the following
code:

save({
 "name": args.name,
 "email": args.email,
 "phone": args.phone,
 "message": args.message
})

We “extracted” the arguments instead of just saving the whole args
object because it includes other information we do not want to
keep.

The code is now complete. We can deploy submit as a web action to be executed
when the user submits the form:

$ wsk action update contact/submit submit.js --web true
ok: updated action contact/submit

We can now manually test the action from the command line to see if it writes in the
database:

$ wsk action invoke contact/submit -p name Michele \
-p email michele@sciabarra.com -p phone 1234567890 -r
{
 "body": "<h1>Thank you!</h1><pre>name: Michele
email: michele@sciabarra.com
phone: 1234567890</pre>"
}

And we can try our form and make sure the data is in the database, as shown in
Figure 2-7.

38 | Chapter 2: A Simple OpenWhisk Application

In general, automated testing is used to test serverless code. Here,
we use manual testing to help you understand the system and to
illustrate the manual testing process.

Figure 2-7. Submitting the form and storing the data

Sending an Email
Now let’s add a feature that shows how the system interacts with other systems. We
will set up the system to send an email when someone uses our contact form (for
both complete and incomplete submissions).

We are going to use the Mailgun service for this purpose. It provides free accounts,
allowing a limited number of emails to be sent only to selected and validated
addresses—just what we need.

Sending email is usually done with the SMTP protocol, but since
email is generally used to send spam in most cloud services, cloud
providers usually block SMTP ports. Since this is also the case in
the IBM Cloud, for our example we use a third-party service for
sending email that provides an HTTP API and a JavaScript library
to use it.

Sending an Email | 39

Configuring Mailgun
To use Mailgun go to www.mailgun.com and click the Sign Up button at the top right
to register for a free account. Once registered, to retrieve credentials for sending an
email (Figure 2-8) you need to:

1. Log in to Mailgun.
2. Scroll down until you find the Sandbox Domains.
3. Click on Authorized Recipients
4. Invite the recipient.
5. Click on the link in the email received.

Once you’ve done that, you’ll need the following information, as shown in the figure,
to write your script:

1. Sandbox domain
2. Private API key
3. Authorized recipient address

Figure 2-8. How to register in Mailgun

40 | Chapter 2: A Simple OpenWhisk Application

http://www.mailgun.com

Writing an Action to Send Email
Now we can build an action to send an email. The purpose of this example is to show
you how to create more complex actions involving third-party services and libraries.

This action is a bit more complicated than the actions we have seen before, because
we need to use and install an external library and deploy it with the action code. We
were able to skip the integration of libraries in the preceding steps only because the
cloudant package was included in the runtime, since it is part of the standard Open‐
Whisk deployment.

Let’s start by creating a folder and importing the library mailgun-js with the npm tool
distributed with Node.js:

$ mkdir sendmail
$ cd sendmail
$ npm init -y
$ npm install --save mailgun-js

Now we can write a simple action that can send an email and place it in sendmail/
index.js. Substitute in the information you collected in the previous section when reg‐
istering with Mailgun:

var mailgun = require("mailgun.js")
var mg = mailgun.client({username: 'api',
 key: '<YOUR-PRIVATE-API-KEY>'})
function main(args) {
 return mg.messages.create(
 '<YOUR-SANDBOX-DOMAIN>.mailgun.org', {
 from: "<YOUR-RECIPIENT-EMAIL>",
 to: ["<YOUR-RECIPIENT-EMAIL>"],
 subject: "[Contact Form]",
 html: args.body
 }).then(function(msg) {
 console.log(msg);
 return args;
 }).catch(function(err) {
 console.log(err);
 return args;
 })
}

Replace <YOUR-PRIVATE-API-KEY> with the private API key.

Replace <YOUR-SANDBOX-DOMAIN>.mailgun.org with the sandbox domain.

Replace <YOUR-RECIPIENT-EMAIL> with the one used both as the sender and
recipient.

Sending an Email | 41

For simplicity, we’ve placed the keys within the script, but this is
not a recommended practice. You will see later how to define
parameters for a package and use them for each action, so you do
not have to store keys in the code.

We can now deploy the action. Since this time the action is not a single file, because it
includes libraries, we have to package everything in a zip file:

$ zip ../sendmail.zip -q -r *
$ wsk action update contact/sendmail ../mailgun.zip --kind nodejs:6
ok: updated action contact/sendmail

We are using update here even though the action was not present
before. update will create the action if it does not exist, so by using
it we avoid the error create would have given if the action were
already there. Also note that because we placed the action in a zip
file, we need to specify its type; the command line cannot deduce it
from the filename.

We can now test the action by invoking it directly:

$ wsk action invoke contact/sendmail -p body "<h1>Hello</h1>" -r
{
 "body": "<h1>Hello</h1>"
}

The action acts as a filter, accepting the input and copying it in the output. We will
leverage this behavior to chain the action to submit. When invoked, it will return an
output, but also send an email as a side effect (see Figure 2-9).

Figure 2-9. The email sent by the action in my inbox

42 | Chapter 2: A Simple OpenWhisk Application

Creating an Action Sequence
So far we have developed an action that can send an email as a standalone action. But
we designed it to take the output of the submit action and return it as is so we can
create a pipeline of actions, similar to Unix shell processing, where the output of a
command is used as an input for another command.

We are going to take the output of the sendmail action, use it as the input for the
submit action, and then return it as the final result of the email submission.

Note that it will send emails for every submission, even for incorrect inputs, so we
will know if someone is trying to use the form without providing all the information.
But we will only store the fully validated data in the database. Let’s create this pipe‐
line, called a sequence in OpenWhisk, and then test it:

$ wsk action create contact/submit-sendmail \
 --sequence contact/submit,contact/sendmail \
 --web true
ok: updated action contact/submit-sendmail

$ wsk action invoke contact/submit-sendmail -p name Michele -r
{
 "body": "<h1>Errors!</h1><pre>name: Michele</pre>\
Email missing or incorrect.\
Phone number missing or incorrect.\

Back"
}

As a result, we should receive an email for each attempt at submitting the form (both
the complete and incomplete attempts).

Now we can complete the whole process including storing the data in the database
and sending the email. But the form should activate our sequence, not just the sub‐
mission action. The simplest way to activate the sequence is to edit the form.js file,
replacing the action we are invoking in the form. Make the following change in
form.js:

-<form method="POST" action="submit">
+<form method="POST" action="submit-sendmail">

The change we are making here is in the patch format. We won’t get
into too many details here, but in general the prefix - means
remove this line, while the prefix + means add this line. We will use
this notation again later in the book.

If we now update the action and try it, we should receive an email for each form sub‐
mission, but the form will be stored in the database only when the data is complete.

Sending an Email | 43

Summary
In this chapter, we started from scratch with OpenWhisk and created an IBM Cloud
account. Then we downloaded and installed the command-line interface, its primary
access mechanism. We used that account to write a simple application and to explore
some of the mechanics of serverless programming.

We created a simple HTML form in OpenWhisk and then implemented basic form
validation logic, storing the results in a NoSQL database (Cloudant). Finally, we con‐
nected to a third-party service (Mailgun) to send an email.

Congratulations on your first exposure to OpenWhisk in practice!

44 | Chapter 2: A Simple OpenWhisk Application

CHAPTER 3

The OpenWhisk CLI and JavaScript API

OpenWhisk applications are made up of entities you can manipulate with the com‐
mand line or programmatically. The CLI uses the command wsk, which can be used
interactively or by writing automated scripts. You can also use JavaScript, using an
API crafted explicitly for OpenWhisk. These are both external interfaces to the REST
API OpenWhisk exposes. Since they are two different aspects of the same thing, they
are both covered in this chapter.

Before we get into design patterns in the next few chapters, first you need to learn
about the OpenWhisk API. This API is critical to writing applications that leverage
specific OpenWhisk features.

We already covered the fundamentals of OpenWhisk in the example in Chapter 2, but
let’s recap a few things here:

• Packages are used to group actions together, share parameters, and annotations,
etc., and they also provide a base URL that can be used by web applications.

• Actions are the building blocks of an OpenWhisk application, and can be written
in one of the programming languages supported by OpenWhisk; they receive
input and provide an output, both in JSON format.

• Actions can be interconnected, where the output of one action becomes the input
of another, thus creating a sequence.

• Triggers are similar to actions but are used through rules to activate multiple
actions.

• Rules associate triggers with actions, so when you fire a trigger, all its actions are
invoked.

45

• Feeds are specially crafted actions with a well-defined pattern; they connect
events provided by a package with triggers defined by a consumer.

The source code for the examples in this chapter related to the CLI
is available in the GitHub repository, as is the source code for the
examples related to the API.

The wsk Command
Let’s begin with the CLI, using the command wsk. This command can be downloaded
in precompiled binary format for many platforms from the releases page of the repos‐
itory.

The wsk command is composed of many commands, each with many subcommands.
The general format is this:

wsk <COMMAND> <SUBCOMMAND> <PARAMETERS> <FLAGS>

<PARAMETERS> and <FLAGS> are different for each <SUBCOMMAND>,
and for each <COMMAND> there are many subcommands.

The CLI itself is self-documenting and provides help when you do not feed enough
parameters to it. Typing wsk will get you a list of the main commands. If you type the
wsk command then a subcommand, you will get help for that subcommand. For
example:

$ wsk
Available Commands:
 action work with actions
 activation work with activations
 package work with packages
 rule work with rules
 trigger work with triggers
 property work with whisk properties
 namespace work with namespaces
 list list entities in the current namespace
$ wsk action
 create create a new action
 update update an existing action
 invoke invoke action
 get get action
 delete delete action
 list list all action

46 | Chapter 3: The OpenWhisk CLI and JavaScript API

http://bit.ly/2XABXO3
http://bit.ly/2IR61gb
https://github.com/apache/incubator-openwhisk-cli/releases
https://github.com/apache/incubator-openwhisk-cli/releases

create: available for actions, packages, rules, and triggers.

update: available for actions, packages, rules, and triggers.

get: available for actions, packages, rules, and triggers, and also for activations,
namespaces, and properties.

delete: available for actions, packages, rules, and triggers.

list: available for actions, packages, rules, and triggers, and also for namespaces,
and as a top-level command to list everything.

Remembering that the commands are the entities and the subcom‐
mands are CRUD (create, retrieve, update, delete) will help you
remember how the wsk command works. Of course, there are indi‐
vidual cases that differ, but we’ll cover those as we go.

Subcommands also have flags. As we discuss the subcommands, we will cover some
of their flags as they come up.

Configuring the wsk Command
The wsk command has a configuration, in the form of a set of properties you can set;
those properties are the credentials to access an OpenWhisk environment. When you
use the IBM Cloud, those properties are actually set for you by the ibmcloud main
command. If you have a different OpenWhisk deployment, you may need to change
the properties manually.

You can see the currently configured properties with:

$ wsk property get
Client key
whisk auth xxxxx:YYYYY
whisk API host openwhisk.eu-gb.bluemix.net
whisk API version v1
whisk namespace _
whisk CLI version 2017-11-15T19:55:32+00:00
whisk API build 2018-02-28T23:44:25Z
whisk API build number whisk-build-7922

API authentication key (replaced in the example with xxxxx:YYYYY)—your own
will be different.

OpenWhisk host to which you connect to control OpenWhisk with the CLI—
depends on your location.

The wsk Command | 47

Current namespace (the value _ is shorthand for your default namespace).

If you install a local OpenWhisk environment, you need to set these properties man‐
ually using wsk property set. In particular, you need to set the whisk auth and
whisk host properties with the values provided by your local installation.

OpenWhisk Entity Names
Let’s see how we name things. As you may already know, in OpenWhisk we have the
following entities with names: packages, actions, sequences, triggers, rules, and feeds.
We have to use precise naming conventions for each, and they are reflected in the
structure of the URLs used to invoke the various elements of OpenWhisk.

The general structure for the entity URL is “namespace/package/entity”, where “pack‐
age” is optional for all the entities, or not required for some entities. As a result, all
the entities are placed in some namespace. Actually, a namespace is assigned by sys‐
tem administrators to users when they are given access to the system. A namespace
acts a workspace and provides a base URL for all the entities the user can create. The
credentials that are given to a user allow access to entities placed under a namespace.

For example, when I registered with the IBM Cloud, my namespace was /open
whisk@example.com_dev/: my username followed by _dev (for development).

You can create a namespace in an OpenWhisk installation if you are authorized, or
the system administrator can create one for you.

Under a namespace you can create triggers, rules, actions, and packages. They will
have names like /openwhisk@example.com_dev/a-trigger, /openwhisk@exam

ple.com_dev/a-rule, /openwhisk@example.com_dev/a-package, and /open

whisk@example.com_dev/an-action.

When you create a package, you can include its actions and feeds. For example, in the
package a-package you can have /openwhisk@example.com_dev/a-package/

another-action and /openwhisk@example.com_dev/a-package/a-feed.

To recap:

• The general format for entities is /<namespace>/<package>/<entity>, but it can
be reduced to /<namespace>/<entity>.

• Under a namespace you can create triggers, rules, packages, and actions.
• Under a package you can create actions, but not triggers, rules, or other packages.

48 | Chapter 3: The OpenWhisk CLI and JavaScript API

Most of the time you do not need to specify the namespace. If you
specify an action as a relative action (not starting with /) it will be
placed in your current namespace. Note that the special namespace
_ means “your current namespace” and the full namespace name
automatically replaces it.

Defining Packages
In OpenWhisk, all the entities are grouped in a namespace. You can put actions
directly under a namespace, or you can create a package instead, and put actions
under the package. Packages are used to:

• Group related actions together, to reuse them and share them with others
• Share parameters, annotations, etc.
• Provide a URL for those related actions (useful for actions that refer to each

other, like in web applications)

Let’s create a package called sample and provide a parameter, as follows:

$ wsk package create sample -p email michele@sciabarra.com
ok: created package sample

Keep in mind that when you set parameters for a package, those
parameters are available to all the actions in the package. We will
use this feature frequently in the examples.

You can list a package, get information from it, update it (e.g., with different
parameters), and finally delete it:

$ wsk package list
packages
/openwhisk@example.com_dev/sample private
/openwhisk@example.com_dev/contact private
/openwhisk@example.com_dev/contactdb private
$ wsk package update sample -p email openwhisk@example.com
ok: updated package sample
$ wsk package get sample -s
package /openwhisk@example.com_dev/sample: Returns a result based on parameter
 email (parameters: *email)
$ wsk package delete sample
ok: deleted package sample

Here we used the parameter -s to summarize information from the package.

Defining Packages | 49

Package Binding
Now let’s discuss another function of packages: binding. OpenWhisk allows you to
import (or bind) third-party packages to your namespace to customize it.

Keep in mind that user credentials allow access to all the resources
under a namespace. Binding a package therefore makes it accessi‐
ble to the other actions in the namespace.

To better understand how binding works, let’s look at the packages for databases and
message queues available in the IBM Cloud.

A package for Cloudant is available, and all we need to do to use it is to bind it. Bind‐
ing has the purpose of adding parameters to a package with a new name to make
access easier. In the following example, we use the configuration file cloudant.json (we
covered how to retrieve configuration files in Chapter 2):

$ wsk package list /whisk.system
packages
/whisk.system/cloudant shared
/whisk.system/websocket shared
/whisk.system/alarms shared
/whisk.system/messaging shared
$ wsk package get /whisk.system/cloudant -s | head -2
package /whisk.system/cloudant: Cloudant database service
 (parameters: *apihost, *bluemixServiceName,
 *dbname, *host, overwrite, *password, *username)
$ wsk package bind /whisk.system/cloudant patterndb \
 -P cloudant.json -p dbname pattern
ok: created binding contactdb

Here, we list the packages available in the IBM Cloud (the output has been edited
and shortened for clarity).

Here, we inspect the Cloudant package (only the first two lines are shown).

Note here the required parameters to use the database.

Here, we create the binding to make the database accessible.

We are using the file cloudant.json to specify the host, username, and password,
and using dbname on the command line.

50 | Chapter 3: The OpenWhisk CLI and JavaScript API

Two common flags, available also for actions, feeds, and triggers,
are -p and -P. With -p <name> <value> you can specify a parame‐
ter named <name> with value <value>. With -P you can put some
parameters in a JSON file, which is assumed to be a map. See
Figure 4-6 for an example of this format.

Creating Actions
The purpose of the wsk action command is to manipulate actions using CRUD
operations and the subcommands. Let’s illustrate this using a simple now action:

function main(args) {
 return { body: Date() }
}

Now, if we want to deploy this simple action in the package basics we use the follow‐
ing:

$ wsk package update basics
ok: updated package basics
$ wsk action create basics/now basics/now.js
ok: created action basics/now

Ensures we have a basics package.

Creates the action from the file stored in basics/now.js.

Now that the action has been deployed, we can invoke it. The simplest way is to call it
as follows:

$ wsk action invoke basics/now
ok: invoked /_/basics/now with id fec047bc81ff40bc8047bc81ff10bc85

Wait a minute… where is the result? If you remember correctly, actions in Open‐
Whisk are by default asynchronous, so we usually get an id (called the activation ID)
to retrieve the result after the action completed. We’ll discuss this in more detail in
the next section.

If we instead want to see the result immediately, we can provide the flag -r or
--result, which blocks until we get an answer:

$ wsk action invoke basics/now -r
{
 "body": "Thu Mar 15 2018 14:24:39 GMT+0000 (UTC)"
}

But what if we want to access that action from the web? To do that, we can retrieve a
URL with get and --url. If we leave out the --url we get a complete description of
the action in JSON format:

Creating Actions | 51

$ wsk action get basics/now --url
https://openwhisk.eu-gb.bluemix.net/api/v1\
/namespaces/openwhisk@example.com_dev/actions/basics/now
$ wsk action get basics/now
{
 "namespace": "openwhisk@example.com_dev/basics",
 "name": "now",
 "version": "0.0.1",
 "exec": {
 "kind": "nodejs:6",
 "binary": false
 },
 "annotations": [
 {
 "key": "exec",
 "value": "nodejs:6"
 }
],
 "limits": {
 "timeout": 60000,
 "memory": 256,
 "logs": 10
 },
 "publish": false
}

But if we try to use the URL to run the action we may get a nasty surprise:

$ curl https://openwhisk.eu-gb.bluemix.net/api/v1/\
namespaces/openwhisk@example.com_dev/actions/basics/now
{"error":"The resource requires authentication,\
 which was not supplied with the request"
 "code":9814}

While all the actions (and everything else) in OpenWhisk are accessible with a REST
API, they are protected and not accessible without authentication.

However, it is possible to mark an action as publicly accessible with the --web true
flag when creating or updating it. These actions are called web actions. A web action
produces web output, allowing you to view it with a browser. While there are some
constraints on web actions, as we’ll discuss a little later, for now it’s enough to know
that you must have a body property to render an HTML page.

To change our action to a web action, we will use the update command. Then we can
immediately retrieve its URL and invoke it directly:

$ wsk action update basics/now --web true
ok: updated action basics/now
$ curl $(wsk action get basics/now --url | tail -1)
Thu Mar 15 2018 14:46:56 GMT+0000 (UTC)

52 | Chapter 3: The OpenWhisk CLI and JavaScript API

Now that we’ve covered create and update, let’s wrap up by demonstrating the list
and delete commands:

$ wsk action list basics
actions
/openwhisk@example.com_dev/basics/now private nodejs:6
$ wsk action delete basics/now
ok: deleted action basics/now
$ wsk action list basics
actions

Chaining Sequences of Actions
An essential feature of OpenWhisk is the ability to chain actions in sequences, creat‐
ing actions that use, as an input, the output of another action, as shown in Figure 3-1.

Figure 3-1. Actions chained in a sequence

Let’s go over a simple example implementing a word count application separated into
two actions to demonstrate how to chain sequences of actions. The first action splits
the input, which is supposed to be words in a text file, while the second retrieves the
words and produces a map as a result. In the map, each word is then shown with its
frequency.

Let’s start with the first action, in the file split.js:
function main(args) {
 let words = args.text.split(' ')
 return {
 "words": words
 }
}

You can deploy and test the split action by feeding it a simple string:

$ wsk action update basics/split basics/split.js
ok: updated action basics/split
$ wsk action invoke basics/split \
 -p text "the pen is on the table" -r \
 | tee save.json
{
 "words": [
 "the",
 "pen",

Creating Actions | 53

 "is",
 "on",
 "the",
 "table"
]
}

Note here that we are saving the output in a file called save.json.

Let’s do the second step. Here are the contents of the count.js file:

function main(args) {
 let words = args.words
 let map = {}
 let n = 0
 for(word of words) {
 n = map[word]
 map[word] = n ? n+1 : 1
 }
 return map
}

We can now deploy the count action and check the result, feeding the output of the
first action as input:

$ wsk action update basics/count count.js
ok: updated action basics/count
$ wsk action invoke basics/count -P save.json -r
{
 "is": 1,
 "on": 1,
 "pen": 1,
 "table": 1,
 "the": 2
}

Now we have two actions. Since the second can take the output of the first as input,
we can create a sequence:

$ wsk action update basics/wordcount \
 --sequence basics/split,basics/count

Note here that we are specifying a comma-separated list of existing action names.

The sequence can now be invoked as a single action; we feed the text input and see
the result:

$ wsk action invoke basics/wordcount -r -p text \
"can you can a can as a canner can can a can"
{
 "a": 3,
 "as": 1,
 "can": 6,

54 | Chapter 3: The OpenWhisk CLI and JavaScript API

 "canner": 1,
 "you": 1
}

Including Some Code of Your Own as a Library
In essence, an action is just a single JavaScript file. But it is common to want to share
code or to use it in actions. The best way to handle this situation is to have a library of
code that you deploy with your actions.

Let’s consider a couple of utility functions that format the date in the standard format
“YYYY/MM/DD” and the time in the standard format “HH:MM:SS”:

function fmtDate(d) {
 let month = '' + (d.getMonth() + 1),
 day = '' + d.getDate(),
 year = d.getFullYear();
 if (month.length < 2) month = '0' + month;
 if (day.length < 2) day = '0' + day;
 return year + "/" + month + "/" + day
}

function fmtTime(d) {
 let hour = ''+ d.getHours(),
 minute = '' + d.getMinutes()
 second = '' + d.getSeconds()

 if(hour.length < 2) hour = "0"+hour
 if(minute.length < 2) minute = "0"+minute
 if(second.length <2) second = "0"+second

 return hour + ":" + minute + ":" + second
}

Of course, you could copy this code into each action. But this could become tedious
and would be difficult to maintain, because if you change the functions you will have
to update all the files that use those functions.

Fortunately there’s a better way. Since actions are executed using Node.js, you can use
the standard export/require mechanism. As a convention, we are going to place our
shared code in a subdirectory named lib, and we’ll treat it as modules.

So, place the preceding code in a file called lib/datetime.js and add the following code
at the end:

module.exports = {
 fmtTime: fmtTime,
 fmtDate: fmtDate
}

Creating Actions | 55

Now you can use the two functions in one action. For example, let’s consider an
action named clock that returns the date if invoked with date=true, the time if
invoked with time=true, or both if the date and time parameters are specified.

Our action starts by requiring the library with the following:

var dt = require("./lib/datetime.js")

This way we can access the two functions as dt.fmtDate and dt.fmtTime. Using
those functions, we can easily write the main body, clock.js, as:

function main(args) {
 let now = args.millis ? new Date(args.millis) : new Date()
 let res = " "
 if(args.date)
 res = dt.fmtDate(now) + res
 if(args.time)
 res = res + dt.fmtTime(now)
 return {
 body: res
 }
}
exports.main = main

Now we have to deploy the action and include the library. How can we do this in
OpenWhisk?

The solution is to deploy not a single file but a zip file that includes all the files we
want to run as a single action. When deploying multiple files, you need either to put
your code in an index.js file or provide a package.json file saying which one is the
main file.

Let’s perform this procedure with the following commands, creating a package.json
inline, then a zip file, and finally deploying it all. The final content of the clock.zip file
will be as follows:

├── clock.js
├── lib
│ └── datetime.js
└── package.json

Let’s build and deploy it:

$ cd basics
$ echo '{"main":"clock.js"}' >package.json
$ zip -r clock.zip clock.js package.json lib
$ wsk action update basics/clock clock.zip \
 --kind nodejs:6
ok: updated action basics/clock

Create a simple package.json on the fly.

56 | Chapter 3: The OpenWhisk CLI and JavaScript API

Create a zip file with subdirectories (this requires the -r switch).

Deploy the action, specifying that the runtime we want to use is nodejs:6.

When we deploy an action as a zip file, we have to specify the run‐
time to use with --kind nodejs:6, because the system is unable to
determine this from the filename.

Let’s test it:

$ wsk action invoke basics/clock -p date true -r
{
 "body": "2018/03/18 "
}
$ wsk action invoke basics/clock -p time true -r
{
 "body": " 15:40:42"
}

Inspecting Activations
As we saw earlier, when we invoke an action without waiting for the result, we receive
an invocation idea. This fact brings us to the topic of this section: the use of the sub‐
command wsk activation to manage the results of invocations.

To explore it, let’s create a simple echo.js file:

function main(args) {
 console.log(args)
 return args
}

Now let’s deploy and invoke it (with the parameter hello=world) to get the activation
ID (for more on activation and invocation IDs, see Chapter 1):

$ wsk action create basics/echo echo.js
ok: created action basics/echo
$ wsk action invoke basics/echo -p hello world
ok: invoked /_/basics/echo with id 82deb0ec37524a9e9eb0ec37525a9ef1

As explained in Chapter 1, when actions are invoked, they are identified by an activa‐
tion ID that can be used to save and retrieve results and logs from the database. We
can use this activation ID with the option result to get the results, and logs to get
the logs:

$ ID=$(wsk action invoke basics/echo -p hello world \
 | awk '{ print $6}')
$ wsk activation result $ID

Inspecting Activations | 57

{
 "hello": "world"
}
$ wsk activation logs $ID
2018-03-15T18:17:36.551486467Z stdout: { hello: 'world' }

You can also use wsk result --last to get the result of the last
invoked action.

The activation subcommand has a few other helpful options. One is list. It will
return a list of all the activations in chronological order. Since the list can be very
long, it’s useful to use the option --limit <n> to see only the latest <n>:

$ wsk activation list --limit 4
activations
82deb0ec37524a9e9eb0ec37525a9ef1 echo
219bacbdb838449d9bacbdb838149de2 echo
1b75cd02fd1f4782b5cd02fd1f078284 echo
6fa117115aa74f90a117115aa7cf90e0 now

Another handy option (probably the most useful) is poll. With this option, you can
continuously display logs for actions as they occur. This lets you monitor what is
going on in the remote serverless system when you are debugging or doing other
similar tasks.

You can poll for just one action or for all the actions at the same
time.

Managing Triggers and Rules
Now let’s see how to create a trigger. A trigger is merely a name for an arbitrary event.
By itself, a trigger can do nothing. However with the help of rules, it becomes useful,
because when a trigger is activated, it invokes all the associated rules, as shown in
Figure 3-2.

58 | Chapter 3: The OpenWhisk CLI and JavaScript API

Figure 3-2. Triggers and rules

Let’s look at a simple logging example to see how triggers work. After that, we’ll get
into how rules work.

First let’s prepare our example, deploying a simple log action that logs its name:

function main(args) {
 console.log(args.name)
 return {}
}

Then we deploy it twice, with two different names:

$ wsk action update basics/log-alpha -p name alpha basics/log.js
ok: updated action basics/log-alpha
$ wsk action update basics/log-beta -p name beta basics/log.js
ok: updated action basics/log-alpha

By themselves, those actions do nothing except leave a trace of their activation in the
logs:

$ wsk action invoke basics/log-alpha
ok: invoked /_/basics/log-alpha with id 320b50d841064d0b8b50d841060d0bff
$ wsk action invoke basics/log-beta
ok: invoked /_/basics/log-beta with id 990d284f090c45328d284f090c45320d
$ wsk activation list --limit 2
activations
990d284f090c45328d284f090c45320d log-beta
320b50d841064d0b8b50d841060d0bff log-alpha
$ wsk activation poll --since-seconds 60 --exit 20
Enter Ctrl-c to exit.
Polling for activation logs
Activation: 'log-beta' (e6b76a85c5584579b76a85c558957957)
[
 "2018-03-17T17:32:06.364836123Z stdout: beta"
]
Activation: 'log-alpha' (e92e4466ee8f4684ae4466ee8f6684da)
[

Managing Triggers and Rules | 59

 "2018-03-17T17:32:00.842842699Z stdout: alpha"
]

Invoke the action log-alpha.

Invoke the action log-beta.

Show a list of activations.

Poll the activations (in the last 60 seconds, for 20 seconds) to see which activa‐
tions happened and what they logged.

Now we are ready to create a trigger, using the command wsk trigger create.

Note that triggers are namespace-level entities, and you cannot put them in a pack‐
age:

$ wsk trigger create basics-alert
ok: created trigger alert
$ wsk trigger list
triggers
/openwhisk@example.com_dev/basics-alert private
$ wsk trigger get basics-alert
ok: got trigger alert
{
 "namespace": "openwhisk@example.com_dev",
 "name": "basics-alert",
 "version": "0.0.1",
 "limits": {},
 "publish": false
}

There are also update and delete subcommands, and they work as
expected, updating and deleting triggers. In the next section we’ll
see the fire subcommand, which requires you to first create rules
to do something useful.

Putting the Trigger to Work
Once we have a trigger and some actions, we can create rules for the trigger. A rule is
a connection of a trigger with an action, so if you fire the trigger, it will invoke the
action. Let’s see this in practice. Here, we create a rule, trigger an event, and inspect
the logs:

$ wsk rule create basics-alert-alpha \
 basics-alert basics/log-alpha
ok: created rule basics-alert-alpha
$ wsk trigger fire basics-alert
ok: triggered /_/alert with id 86b8d33f64b845f8b8d33f64b8f5f887

60 | Chapter 3: The OpenWhisk CLI and JavaScript API

$ wsk activation logs 86b8d33f64b845f8b8d33f64b8f5f887 \
 | jq
{
 "statusCode": 0,
 "success": true,
 "activationId": "b57a1f1dc3414b06ba1f1dc341ab0626",
 "rule": "openwhisk@example.com_dev/basics-alert-alpha",
 "action": "openwhisk@example.com_dev/basics/alpha"
}

$ wsk activation logs b57a1f1dc3414b06ba1f1dc341ab0626
2018-03-17T18:10:48.471777977Z stdout: alpha

Create a rule to activate the action basics/log-alpha when the trigger basics-
alert is fired.

Fire the rule; it returns an activation ID.

Let’s inspect the activation ID.

We pipe the output into the jq utility to make it more readable.

The rule invoked an action with this activation ID.

Inspect what the rule did.

You can also execute list, update, and delete by name.

A trigger can enable multiple rules, so firing one trigger can actually activate multiple
actions. Let’s try this feature. But first, let’s open another terminal window and enable
polling (with the command wsk activation poll) to see what happens:

$ wsk rule create basics-alert-beta basics-alert basics/log-beta
ok: created rule basics-alert-beta
$ wsk trigger fire basics-alert
ok: triggered /_/basics-alert with id a731a03603bb4183b1a03603bb8183ce

If we check the logs we should see something like this:

$ wsk activation poll
Enter Ctrl-c to exit.
Polling for activation logs

Activation: 'alert' (a731a03603bb4183b1a03603bb8183ce)
[

Managing Triggers and Rules | 61

"{\"statusCode\":0,\"success\":true,\
\"activationId\":\"3024596c57ac4c10a4596c57ac7c1042\",\
\"rule\":\"openwhisk@example.com_dev/basics-alert-alpha\",\
\"action\":\"openwhisk@example.com_dev/basics/log-alpha\"}",
"{\"statusCode\":0,\"success\":true,\
\"activationId\":\"6d88836c860d405f88836c860d305f83\",\
\"rule\":\"openwhisk@example.com_dev/basics-alert-beta\",\
\"action\":\"openwhisk@example.com_dev/basics/log-beta\"}"
]

Activation: 'log-alpha' (3024596c57ac4c10a4596c57ac7c1042)
[
 "2018-03-17T18:34:58.633797676Z stdout: alpha"
]

Activation: 'log-beta' (6d88836c860d405f88836c860d305f83)
[
 "2018-03-17T18:34:58.629413468Z stdout: beta"
]

The trigger activation invoked two actions.

This is the log of the first action.

This is the log of the second action.

Rules can also be enabled and disabled without removing them. As the last example,
let’s disable the first rule and fire the trigger again to see what happens. As before,
first, we start the log polling to see what happened:

$ wsk rule disable basics-alert-alpha
ok: disabled rule basics-alert-alpha
$ wsk trigger fire basics-alert
ok: triggered /_/basics-alert with id 0f4fa69d910f4c738fa69d910f9c73af

Disable the rule alert-alpha.

Fire the trigger again.

If we check the result, we see that only the action log-beta was invoked this time:

$ wsk activation poll
Enter Ctrl-c to exit.
Polling for activation logs

Activation: 'basics-alert' (0f4fa69d910f4c738fa69d910f9c73af)
[
 "{\"statusCode\":0,\"success\":true,\"activationId\":\
 \"a8221c7d7fe94e22a21c7d7fe9ce223c\",\
 \"rule\":\"openwhisk@example.com_dev/alert-beta\",\
 \"action\":\"openwhisk@example.com_dev/basics/log-beta\"}",

62 | Chapter 3: The OpenWhisk CLI and JavaScript API

 "{\"statusCode\":1,\"success\":false,\
 \"rule\":\"openwhisk@example.com_dev/basics-alert-alpha\",\
 \"error\":\"Rule 'openwhisk@example.com_dev/basics-alert-alpha' is inactive,\
 action 'openwhisk@example.com_dev/basics/log-alpha'\
 was not activated.\",\
 \"action\":\"openwhisk@example.com_dev/basics/log-alpha\"}"
]

Activation: 'log-beta' (a8221c7d7fe94e22a21c7d7fe9ce223c)
[
 "2018-03-18T07:27:14.01530577Z stdout: beta"
]

Using a Feed
Triggers are useful if someone can enable them. You can fire your triggers in code, as
we will see when we examine the API.

However, triggers are really there to be invoked by third parties and hook them into
our code. This feature is provided by the concept of feed (Figure 3-3).

Figure 3-3. Feeds triggering actions

A feed is actually an action that implements a pattern, not an API. We will get into
this when we discuss the Observer pattern in the next chapter, but for now let’s focus
on hooking an existing feed using the command line to create a trigger. For this pur‐
pose we will use the /whisk.system/alarms package. As we can see, it offers a few
actions:

$ wsk action list /whisk.system/alarms
actions
/whisk.system/alarms/interval private nodejs:6
/whisk.system/alarms/once private nodejs:6
/whisk.system/alarms/alarm private nodejs:6

The once feed will trigger an event only once, while interval can provide it based on
a fixed schedule. The alarm trigger is more complex since it uses a cron-like expres‐
sion (not covered here).

Using a Feed | 63

Let’s create a trigger to be executed every minute using interval and associate it with
the rule log-alpha. As before, we start by polling the logs to see what happens:

$ wsk trigger create basics-interval \
 --feed /whisk.system/alarms/interval \
 --param minutes 1
ok: invoked /whisk.system/alarms/interval with\
id 5d4bf01d0a56412d8bf01d0a56512d38
{
 "activationId": "5d4bf01d0a56412d8bf01d0a56512d38",
 "annotations": [
 {
 "key": "path",
 "value": "whisk.system/alarms/interval"
 },
 {
 "key": "waitTime",
 "value": 34
 },
 {
 "key": "kind",
 "value": "nodejs:6"
 },
 {
 "key": "limits",
 "value": {
 "logs": 10,
 "memory": 256,
 "timeout": 60000
 }
 },
 {
 "key": "initTime",
 "value": 320
 }
],
 "duration": 1153,
 "end": 1521359853176,
 "logs": [],
 "name": "basics-interval",
 "namespace": "openwhisk@example.com_dev",
 "publish": false,
 "response": {
 "result": {
 "status": "success"
 },
 "status": "success",
 "success": true
 },
 "start": 1521359852023,
 "subject": "openwhisk@example.com",
 "version": "0.0.6"

64 | Chapter 3: The OpenWhisk CLI and JavaScript API

}
ok: created trigger interval

$ wsk rule create \
 basics-interval-alpha basics-interval basics/log-alpha
ok: created rule interval-alpha

The parameter --feed connects the trigger to the feed.

We pass a parameter to the feed, saying we want the trigger to be activated every
minute.

The trigger does nothing until we associate it to at least an action with a rule.

If we now wait a couple of minutes, this is what we will see in the activation log:

Polling for activation logs:

Activation: 'log-alpha' (0ca4ade11e73498fa4ade11e73a98ff0)
[
 "2018-03-18T08:01:03.046752324Z stdout: alpha"
]

Activation: 'basics-interval' (065c363456b440489c363456b4c04864)
[
 "{\"statusCode\":0,\"success\":true,\
 "activationId\":\"0ca4ade11e73498fa4ade11e73a98ff0\",\
 "rule\":\"openwhisk@example.com_dev/basics-interval-alpha\",\
 "action\":\"openwhisk@example.com_dev/basics/log-alpha\"}"
]

After you do this test, do not forget to remove the trigger or it will
stay there forever, consuming actions. You may even end up getting
a bill for it!

To remove the trigger and the rule:

$ wsk rule delete basics-interval-alpha
ok: deleted rule interval-alpha
$ wsk trigger delete basics-interval
ok: deleted trigger interval

Using a Feed | 65

Generic JavaScript APIs
We’ll now explore the JavaScript API, which resembles the CLI.

We do not go into the details of the JavaScript language, as that is out of the scope of
this book: there are plenty of sources you can consult to learn about it in depth. This
API is available inside the runtime, so you do not need to install it.

However, before discussing the API we need to discuss JavaScript promises, as the
OpenWhisk API is based on them. Promises are an essential part of asynchronous
invocation and are widely used in the OpenWhisk API.

Asynchronous Invocation
A promise is a way to wrap an asynchronous computation in an object that can be
returned as a result of a function invocation. To understand why we need to do that,
let’s consider as an example a simple script that generates a new universally unique
identifier (UUID) using the website httpbin.org. Here we use the standard Node.js
http API.

The following code opens a connection to the website and then defines a couple of
callbacks to handle the data and error events. In JavaScript, providing callbacks is the
standard way of handling events that do not happen immediately; these are the so-
called “asynchronous” computations:

var http = require("https")

function uuid(callback) {
 http.get("https://httpbin.org/uuid",
 function(res) {
 res.on('data', (data) =>
 callback(undefined, JSON.parse(data).uuid))
 }).on("error", function(err) {
 callback(err)
 })
}

Note that this function does not return anything. To retrieve the result and do some‐
thing with it (e.g., print it on the console), we have to pass a function like this:

uuid(function(err, data) {
 if(err) console.log("ERROR:" +err)
 else console.log(data)
})

We can use this code locally with Node.js, but we cannot deploy it as an action
because it does not return anything. The main action must always return “something,”

66 | Chapter 3: The OpenWhisk CLI and JavaScript API

http://httpbin.org

and in OpenWhisk, the “something” expected for asynchronous computation is a
“promise” object. But what is a promise? How do you create one? We cover that next.

Using Promises
We just saw an example of an asynchronous computation. The code in the last listing
does not return anything, because the computation is asynchronous. Instead of wait‐
ing for the result, we provide a function as a parameter. It will perform our work later,
when the computation finally completes.

In OpenWhisk we cannot do this. We need a way to return the asynchronous compu‐
tation as a result. So, the computation must be wrapped in some object we can return
as an answer to the action. The solution for this requirement is called a promise.

A promise is an object returned by a function requiring asynchronous computations.
Using promises we can take advantage of being asynchronous while transforming the
asynchronous computation into an object.

It is essential to understand that even with a promise, the computation is still asyn‐
chronous, so the result can be retrieved only when ready. Furthermore, an asynchro‐
nous computation can fail with an error.

Promises combine a nice way to retrieve results and error management. With the
promise-based action genuuid we cover next, extracting the value and managing the
errors will be done with the following code:

var p = uuid()
p.then(data => console.log(data))
 .catch(err => console.log("ERROR:"+err))

Creating a Promise
Let’s translate the genuuid example to make it promise based. Instead of requiring a
callback, we wrap our asynchronous code in a function block like this:

return new Promise(function(resolve, reject) {
 // OK
 resolve(success)
 // K.O.
 reject(error)
})

Wrapper function to create an isolated environment.

What to do when you get the result successfully.

What to do when you catch an error.

Generic JavaScript APIs | 67

It might look a bit twisted, but it makes sense. A function wraps asynchronous code
for three reasons:

• To create an isolated scope
• To be invoked only when the promise resolution is required
• To use the arguments to pass to the code block two functions for returning the

result and catching errors

So, the real work of wrapping the asynchronous behavior is performed by the func‐
tion. But there is more work to do, and we cannot do this work only in the function.
We need to:

• Start the invocation when needed (then).
• Catch errors (catch).
• Provide our implementation of resolve.
• Provide our implementation of reject.

Hence, we further wrap the function in a promise object and return it as a result. We
can now implement our genuuid function. Translating the callback is straightfor‐
ward:

var http = require("https")

function uuid() {
 return new Promise(function(resolve, reject){
 http.get("https://httpbin.org/uuid",
 function(res) {
 res.on('data', (data) =>
 resolve(JSON.parse(data).uuid))
 }).on("error", function(err) {
 reject(err)
 })
 })
}

Wrap the asynchronous code in a promise.

Success; we can return the result with resolve.

Failure; we return the error with reject.

As you can see, the code is similar to the standard way we use a callback, except we
wrap everything in a function that provides the resolve and reject actions. The
function is then used to build a promise. Most of the implementation follows the
standard way; only a function must be defined to implement a specific behavior.

68 | Chapter 3: The OpenWhisk CLI and JavaScript API

Now, using the promise, we can create an action for OpenWhisk, providing the fol‐
lowing main:

function main() {
 return uuid()
 .then(data => ({"uuid": data}))
 .catch(err => ({"error": err}))
}

We do not specify args here because we do not use them.

Let’s try the code:

$ wsk action update apidemo/promise-genuuid \
 apidemo/promise-genuuid.js
ok: updated action apidemo/promise-genuuid
$ wsk action invoke apidemo/promise-genuuid -r
{
 "uuid": "52a188a9-ff9b-4f3a-b72d-301c26aac2cf"
}

Using the OpenWhisk API
To access the OpenWhisk API you use the standard Node.js require commmand.
Every action that needs to interact with the system must start with:

var openwhisk = require("openwhisk")

However, the openwhisk object is just a constructor used to access the API. You need
to construct the actual instances to access the methods of the OpenWhisk API:

var ow = openwhisk()

Hidden in this call there is the actual work of connecting to the API server and dialo‐
guing with it. This call is a short form that uses implicitly some parameters to per‐
form a connection; the long form is as follows:

var ow = openwhisk({
 apihost: <your-api-server-host>,
 api_key: <your-api-key>
})

If you use the shortened form, apihost and apikey are retrieved from two environ‐
ment variables:

• __OW_API_HOST

• __OW_API_KEY

When an action is running inside OpenWhisk, these environment variables are
already set for you, so you can use the initialization without passing them explicitly.

Using the OpenWhisk API | 69

While you usually require the API in the body of your action, out‐
side of any function, you need to perform this second step inside
the main function or any function called by it. This is a known issue
in OpenWhisk: environment variables are not yet set when you
load the code. They are set only when you invoke main. Hence, if
you perform the initialization outside of main, it will fail.

If you want to connect to OpenWhisk from the outside (e.g., from a client applica‐
tion), you can still use the OpenWhisk API, but you have to either set the environ‐
ment variables or pass the API host and key explicitly.

If you are using, for example, the IBM Cloud, you can retrieve your
current values with wsk property get --auth.

The OpenWhisk API provides the same functions that are available in the CLI. Some
features are more useful than others for actually writing action code. The most
important for our purposes are ow.actions, ow.triggers, and ow.activations.
We’ll look at those next.

The API also has features that are useful for deploying code. We
will not discuss those features here, since they are needed only
when you develop your deployment tools. Those other available
features are ow.rules, ow.packages, and ow.feeds. You can find
detailed coverage of them on GitHub, should you need them.

Invoking OpenWhisk Actions
Probably the most critical API function available is invoke. It is used from an action
to execute other actions, so it is essential to build interactions between various actions
and it is the backbone of complex applications.

In the simplest case you just use the following:

var ow = openwhisk()
var pr = ow.actions.invoke("action")

Note that by default the action invocation is asynchronous. It just returns an activa‐
tion ID, so if you need the results, you have to retrieve them by yourself. If instead
you have to wait for the execution to complete, you add blocking: true. If you also
need the results, and not just the activation ID, you add result: true. For example,
you can invoke the promise-genuuid action we implemented before from a web
action, so that a UUID can be shown from a web page, as follows :

70 | Chapter 3: The OpenWhisk CLI and JavaScript API

http://github.com/apache/incubator-openwhisk-client-js

var openwhisk = require("openwhisk")
function main(args) {
 let ow = openwhisk()
 return ow.actions.invoke({
 name: "apidemo/promise-genuuid",
 result: true,
 blocking: true
 }).then(res => ({
 body: "<h1>UUID</h1>\n<pre>"+
 res.uuid+"</pre>"
 })).catch(err => {statusCode: 500})
}

Require the API.

Instantiate the API access object.

Actual action invocation (note we want to immediately use the result).

Get the value returned by the other action.

The web action invokes the other action, waits for the result, extracts it, and builds a
simple HTML page. For example:

$ wsk action update apidemo/invoke-genuuid \
 apidemo/invoke/invoke-genuuid.js --web true
ok: updated action apidemo/invoke-genuuid
$ curl $(wsk action get apidemo/invoke-genuuid --url \
 | tail -1)
<h1>UUID</h1>
<pre>d9333213-be20-449d-adc9-ecd8224772ad</pre>

Deploy the action as a web action.

Extract the URL of the action and then use curl to invoke the URL.

The generated UUID, presented as HTML markup.

Accessing OpenWhisk from the outside

In this example, we built the ow object without parameters. This object requires
authentication parameters, but if you do not pass them it gets them from the environ‐
ment variables. In this way, an action can invoke another action that belongs to the
same users. However, it is also possible to use this API to invoke actions that belong
to other users, or from Node.js applications running outside of OpenWhisk. In those
cases, you have to provide the authentication information explicitly. The general for‐
mat of the API constructor is as follows:

Using the OpenWhisk API | 71

let ow = openwhisk({
 apihost: host,
 api_key: key
}

In the cases in which you are running from outside an action, you have to get api
host and api_key and use them in the API constructor to be able to invoke other
actions or triggers. That information can be either retrieved using the wsk property
get command or read from the environment variables __OW_API_HOST and
__OW_API_KEY with an action.

Invoking multiple promises
We know how to use promises to chain asynchronous operations, but what about
when we have multiple promises?

We could wait for multiple actions with some complex code involving then. But since
this use case is frequent enough, it merited the availability of a standard method:
Promise.all(promises).

Within this method call, promises is an array of promises (actually, anything satisfy‐
ing the “iterable” JavaScript protocol). As a result, Promise.all() returns a promise
that completes when all the other promises are complete. You can then retrieve the
combined result of all the promises with a then function, receiving, as a result, an
array of the results of the many promises.

Let’s demonstrate this feature with an example. We are going to create a web action
consisting of multiple promises (actually, multiple invocations). We will wait for all of
them to complete, and then we will construct a web page concatenating the results.
You may notice in the example the use of map, which is probably idiomatic in these
cases:

var openwhisk = require("openwhisk")

function main(args) {
 let ow = openwhisk()
 let count = args.n ? args.n : 3;
 let inv = { name: "apidemo/promise-genuuid",
 blocking: true,
 result: true
 }
 let promises = []
 for(let i=0; i< count; i++)
 promises.push(ow.actions.invoke(inv));
 return Promise.all(promises)
 .then(res => ({
 body: "<h1>UUIDs</h1>"+
 res.map(x=>x.uuid).join("")+
 ""

72 | Chapter 3: The OpenWhisk CLI and JavaScript API

 }))
}

Read a parameter from the URL; if not specified it defaults to 3.

Loop and construct an array of invocations, each one asking for a different
UUID.

This is the key call: we are waiting for all the promises to complete.

The final result is built here, in the form of an array of results, each one being a
different UUID. We join them to create a list in HTML.

Now, we can test the invocation and check the results:

$ wsk action update apidemo/invoke-genuuid-list \
 apidemo/invoke/invoke-genuuid-list.js --web true
ok: updated action apidemo/invoke-genuuid-list
$ curl $(wsk action get apidemo/invoke-genuuid-list \
 --url | tail -1)
<h1>UUIDs</h1>

 3b72aec9-eb1d-45e9-9c98-d689a6bddf2b
 3189605c-d003-469b-afcc-202ef690a544
 3e78ee6d-f141-483b-8d1a-7e8aaaae309d

Deploy the action wrapping multiple promises as a web action.

Invoke of the new action using curl and extract the URL.

The result is now the combination of multiple invocations of the promise-
genuuid action.

Firing Triggers
Now we are going to see how to fire triggers with the API. This is especially useful for
implementing feeds, as we’ll see in “Observer” on page 110. It works pretty much like
action invocation, except you have to use triggers instead of actions. Also, firing a
trigger cannot be blocking, because it can always start multiple actions. Instead, it
always returns a list of activation IDs.

Using the OpenWhisk API | 73

Keep in mind that you may need to fire triggers belonging to other
users. Generally, you fire triggers as part of the implementation of a
feed. We cover that in Chapter 5. When you create a trigger and
hook it into a feed, you receive from the system, among other
parameters, an api-key. You have to use this key to invoke those
external triggers.

Here is an example of a proper invocation of a third-party trigger:

const openwhisk = require('openwhisk')

function fire(trigger, key, args) {
 let ow = openwhisk({ api_key: key })
 return ow.triggers.invoke({
 name: trigger,
 params: args
 })
}

Construct an instance of the API, passing the api_key.

Perform the invocation.

Specify the trigger name.

Some of the parameters that will be forwarded to the triggered actions.

The result of an invocation is a promise that returns a JSON object like this:

{
 "activationId": "a75b8008ad2641189b8008ad26f11835"
}

You can then use the activation ID to retrieve the results, as explained shortly.

Now let’s try to deploy and run this code. For this example, we’ll reuse the clock.js
code from “Including Some Code of Your Own as a Library” on page 55. We need to
set up an action activated by a trigger to test it:

$ wsk trigger create apidemo-trigger
ok: created trigger apidemo-trigger
$ wsk action update apidemo/clock apidemo/trigger/clock.js
ok: updated action apidemo/clock
$ wsk rule update apidemo-trigger-clock apidemo-trigger apidemo/clock
ok: updated rule apidemo-trigger-clock
$ wsk action update apidemo/trigger apidemo/trigger/trigger.js
ok: updated action apidemo/trigger

Create a trigger.

74 | Chapter 3: The OpenWhisk CLI and JavaScript API

Create an action the trigger will invoke.

Create a rule that connects the trigger to the action.

Finally, deploy the action dependent on the trigger.

Now everything is set up: invoking the action apidemo/trigger will activate the
action apidemo/clock via a trigger and a rule. You can test it by opening polling with
wsk activation poll and then doing:

$ wsk action invoke apidemo/trigger -p time 1
ok: invoked /sciabarra_cloud/apidemo/trigger with\
id 1c453cc7142c4e19853cc7142c3e1998
$ wsk action invoke apidemo/trigger -p date 1
ok: invoked /sciabarra_cloud/apidemo/trigger with\
id 3d157c76dfa244ce957c76dfa294cea3

In the activation log, you should see (among other things) the logs emitted by the
clock action that was activated by the trigger:

Activation: 'clock' (bdc6438e11b34bb686438e11b3cbb67c)
[
 "2018-09-25T17:13:24.584124671Z stdout: 17:13:24"
]
Activation: 'clock' (4fc0889664ad4e1880889664ad5e18e0)
[
 "2018-09-25T17:13:40.667002422Z stdout: 2018/09/25"
]

Inspecting Activations
Now, let’s use the API to inspect activations. An activation ID is returned by invoking
an action or firing a trigger. Once you have this ID, you can retrieve the entire record
using ow.activations.get, as in the following example (activation.js):

const openwhisk = require('openwhisk')

function main (args) {
 let ow = openwhisk()
 return ow.activations.get({ name: args.id })
}

As you can see, you need to pass the ID (as the parameter named name by convention,
but the parameter id also works) to retrieve results, logs, or the entire record activa‐
tion. Let’s try it, first deploying the example and then creating an activation ID:

$ wsk action create activation activation.js
ok: created action activation
$ wsk action invoke \
 /whisk.system/samples/helloWorld \
 -p payload Mike

Using the OpenWhisk API | 75

ok: invoked /whisk.system/samples/helloWorld with \
id a6d34e7165024c26934e716502fc26cf

Deploy the activation action.

Execute a system action to produce the activation ID.

Now we can use that ID to retrieve the activation, which is a pretty complex (and
interesting) data structure. Here are the results (shortened for clarity):

$ wsk action invoke activation -p id a6d34e7165024c26934e716502fc26cf -r
{
 "activationId": "a6d34e7165024c26934e716502fc26cf",
 "annotations": [
 // annotations removed...
],
 "duration": 4,
 "end": 1522237060018,
 "logs": [
 "2018-03-28T11:37:40.016763747Z stdout: hello Mike!"
],
 "name": "helloWorld",
 "namespace": "openwhisk@example.com_dev",
 "publish": false,
 "response": {
 "result": {},
 "status": "success",
 "success": true
 },
 "start": 1522237060014,
 "subject": "openwhisk@example.com",
 "version": "0.0.62"
}

The logs of the action.

The result of the action.

We used ow.activations.get in this example to get the entire acti‐
vation record. You can use the same parameters but specify ow.
0.result to get just the results, or ow.activations.logs to
retrieve just the logs.

Summary
OpenWhisk has in practice one access point: its REST API. This API is used in two
ways: interactively, by using a CLI, and programmatically, by writing code. In this
chapter, we explored both ways to use the API.

76 | Chapter 3: The OpenWhisk CLI and JavaScript API

First, we covered the various commands, subcommands, and options of the CLI.
Then we learned how to create actions, sequences, and triggers, deploying either
single- or multiple-file actions. We also discussed how to retrieve logs and results.
Finally, we learned about the JavaScript API. We covered promises, an important part
of this API, and then got into action invocation and firing triggers.

Summary | 77

CHAPTER 4

Common Design Patterns in OpenWhisk

This chapter and the next focus on designing OpenWhisk applications. When writing
your code, you need to have a good grasp of programming languages and algorithms.
In this chapter, we’ll apply many of the classic “Gang of Four” design patterns as
described in Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley). We
also cover the ubiquitous Model-View-Controller pattern, although it is not part of
this classic collection. We will go over an example for each pattern, and in the pro‐
cess, revamp our contact form from Chapter 2. To illustrate how to build and engi‐
neer a real serverless application using a design pattern, we will create a contact form
handler.

Figure 4-1 shows the patterns covered in this chapter: Singleton, Facade, Prototype,
Strategy, Chain of Responsibility, and Command. We’ll cover a few more patterns in
Chapter 5.

The source code for the examples in this chapter and the next are
available in the book’s GitHub repository.

79

http://bit.ly/2NgRJtC

Figure 4-1. A contact form using common design patterns

Built-in Patterns
OpenWhisk allows you to combine actions that implement some of the more com‐
mon patterns out of the box. These patterns include:

Singleton
Available through triggers and named invocations (1 in Figure 4-1)

Facade
Provided by packages with web actions and feeds (2 in Figure 4-1)

Prototype
Used when you bind packages (3 in Figure 4-1)

Decorator
Available as the annotation feature (not shown in the diagram)

80 | Chapter 4: Common Design Patterns in OpenWhisk

Singleton
The Singleton pattern (Figure 4-2) meets the challenge of locating services and com‐
ponents in an application with many parts, to coordinate the work across the differ‐
ent parts of the application. This is probably the most straightforward pattern. A
singleton restricts the number of instances of a class to a single instance, and provides
easily accessible methods to reach that instance, using some global name (see
Figure 4-1).

Figure 4-2. The Singleton pattern

In general, you can implement this pattern using static methods or global variables to
retrieve the unique instance of a class. Another option is to use libraries that do
dependency injection and manage named instances of objects.

In OpenWhisk, the Singleton pattern is embedded in the API so you can retrieve
actions by name. A trigger is a type of Singleton pattern, because it is used to locate a
single point of access to multiple actions.

In a sense, the fact that actions are named and can be invoked using their name as an
implementation of the Singleton pattern. You can consider each action as the unique
instance of an (implicit) class containing main as a method.

In our contact form, we use a trigger as a unique entry point for processing the form
submission (Figure 4-3). The trigger submit is in charge of receiving data coming
from the frontend. It acts as a Singleton since the form processes the submission by
name. What happens next depends on the configuration of the application. For
example, as we are going to see, we can create rules to process a form submission,
store it in the database, and send an email.

Built-in Patterns | 81

Figure 4-3. The Singleton pattern used to implement a trigger

Another valid view of the pattern implemented by OpenWhisk
when instantiating actions is the AbstractFactory pattern: there is
indeed a single interface that instantiates different implementations
of the actions as provided by runtimes.

Facade
The Facade pattern makes a complex subsystem easier to use by providing a more
straightforward interface to it (see Figure 4-4). You use the Facade pattern when you
have an application with many subsystems and you want to simplify their use. A
facade usually provides only the subset of the functionalities of the subsystems that
are of interest to users.

Figure 4-4. The Facade pattern

In OpenWhisk we can design an application using many interconnected actions.
Those actions are, by themselves, hiding some complexity and providing a more
straightforward interface to complex systems in the cloud, like GitHub or Slack.
Thus, those actions could also be considered implementations of the Facade pattern.

82 | Chapter 4: Common Design Patterns in OpenWhisk

OpenWhisk offers a few ways to define an external interface. You can mark actions as
web actions, you can expose some actions as feeds, and you can define some actions
as triggers (Figure 4-5).

Figure 4-5. The Facade pattern in OpenWhisk

Web actions define the external interfaces to be used by web clients. You can use them
to define an externally accessible REST API. Defining a similar API is equivalent to
providing the simplified access to the complex processing performed by other
actions, as the Facade pattern requires.

But the interface of your Facade does not have to be web-based. You can use triggers
as entry points to your application, and you can invoke them without having to
expose them publicly. To use them you have to use one of the available client libraries
to access the APIs of OpenWhisk. Note, however, that an essential feature of triggers
is that you can connect them to feeds, so triggers offer an interface to other Open‐
Whisk applications.

A Feed is an action that must follow a documented pattern (we’ll see an example later
in this chapter, when we discuss the Observer pattern). Using Feeds you can connect
an OpenWhisk application to another web application, thus providing an interface to
use it as a subsystem. While web actions expose a web interface, feeds invoke third-
party web interfaces.

Apache OpenWhisk includes many packages that can be considered facades for com‐
plex subsystems. The ones that are available out of the box in the IBM Cloud plat‐
form include:

Built-in Patterns | 83

• /whisk.system/github, a facade over the GitHub API
• /whisk.system/slack, a facade to access the Slack API
• /whisk.system/weather, which allows access to the service giving information

on the weather
• /whisk.system/watson-translator, an IBM service for language translation

Prototype
The Prototype pattern makes constructing complex objects easier. It works by creat‐
ing an instance to be used as a model, or “prototype,” for new instances. The creation
of new instances of the model is performed using a clone method. Of course, gener‐
ally, it is not that useful to have completely identical copies of a given prototype. It is
therefore common to provide parameters to the clone method in order to create
“customized” clones that are more fit for our purposes (see Figure 4-6).

Figure 4-6. The Prototype pattern

The Prototype pattern is used in OpenWhisk in package binding. Using packages, we
can create collections of actions that can be shared and reused. Using the command
wsk package bind, we can create a copy of a package, just like the Prototype pattern
prescribes. All the actions are then available under the new package name.

A complete copy of a package is rarely useful. When binding a
package, we can provide a set of parameters to customize the pack‐
age for our needs.

84 | Chapter 4: Common Design Patterns in OpenWhisk

https://weather.com/

For example, to use Cloudant in IBM cloud, you use a package binding after you pro‐
vision your server instance. A server instance includes multiple databases. You can
create a clone that can read and write in multiple databases by providing username
and password. Or better still, you can create a clone that can read and write in a single
database within the server instance by providing a username, password, and database
name.

We use the Prototype pattern in our contact form, customizing it with a set of param‐
eters. We download a JSON file that includes the parameters to access the server
instance, and then use those at bind time to create a cloned package customized with
some parameters, so we get a prototype package parametrized to read and write in
only one database (see Figure 4-7).

Figure 4-7. The Prototype pattern creating an instance of the Cloudant package

A binding creates a copy of an existing package, but lets you change the parameters.
This way you can create an instance of a package customized for your use. We already
covered how to bind to a package using specific parameters—now let’s see how to
bind to a database using a JSON file. This feature implements the Prototype pattern
with a custom parameter.

Go into the Cloudant database, as shown in Figure 4-8, and copy the configuration
file. Then open a text editor, paste the the JSON file, and save it as cloudant.json.

Using that file can you now bind the patterndb database as follows:

$ wsk package bind /whisk.system/cloudant patterndb \
 -P cloudant.json \
 -p dbname pattern
ok: created binding patterndb

The configuration file binds to a server instance.

We add a parameter to use a specific database.

Now you can access all the actions configured in the cloudant package. Since we pro‐
vided a clone customized with our parameters, the actions actually use our database
in the server instance.

Built-in Patterns | 85

Figure 4-8. Retrieving the Cloudant JSON configuration file

Decorator
The Decorator pattern adds functionalities to an existing system, without changing
the interface of the system and while preserving all the old functionality. With this
pattern, we take an instance of a class and wrap it with another instance of the same
class, providing the same interface. The added functionality is performed by the
“wrapper,” which will also use existing functionality to perform its work (see
Figure 4-9).

In OpenWhisk, the Decorator pattern is implemented using annotations. Annotations
are a way to add additional information to OpenWhisk entities, and to add tools, plu‐
gins, and custom implementations.

Most of the available annotations are for documentation only and change the behav‐
ior of an entity only when displaying the online help. However, some annotations
change the behavior of an entity in a more “semantic” way.

86 | Chapter 4: Common Design Patterns in OpenWhisk

Figure 4-9. The Decorator pattern

In general, you can add an annotation with the flag -a <name> <value> for all Open‐
Whisk entities. Furthermore, you can read the annotation of every entity using the
get subcommand.

We can use the following annotations to add additional information to our entities:

• parameters for packages and actions show fields:
— doclink (link to documentation)
— required (is required)
— bindTime (was this parameter bound?)
— type (for example password or array)

• description for packages, actions, and parameters
• sampleInput and sampleOutput for actions

Currently, these annotations are not checked, so it is up to the
developer to respect (or ignore) them. At some point in time, how‐
ever, they may become constraints.

Built-in Patterns | 87

As an example, let’s read the annotations to see what parameters are available for the
cloudant package’s read action:

$ wsk action get /whisk.system/cloudant/read \
 | tail +2 \
 | jq .annotations
[
 {
 "key": "description",
 "value": "Read document from database"
 },
 {
 "key": "parameters",
 "value": [
 {
 "name": "dbname",
 "required": true
 },
 {
 "description": "The Cloudant document id to fetch",
 "name": "id",
 "required": true
 },
 {
 "name": "params",
 "required": false
 }
]
 },
 {
 "key": "exec",
 "value": "nodejs:6"
 }
]

Get rid of the first line to feed JSON to jq.

Extract only the annotations part of the JSON output.

Now let’s see how we can add annotations, for example, to document the apidemo/
clock interface:

$ wsk action update apidemo/clock ok: updated action apidemo/clock
$ wsk action update apidemo/clock \
-a "description" "return the current date or \
time" -a "parameters" '[{"name":"time","description":"show time"}, \
{"name":"time","description":"show time"}']
ok: updated action apidemo/clock

Let’s check the results:

88 | Chapter 4: Common Design Patterns in OpenWhisk

$ wsk action get apidemo/clock | tail +2 | jq .annotations
[
 {
 "key": "description",
 "value": "return the current date or time"
 },
 {
 "key": "parameters",
 "value": [
 {
 "description": "show time",
 "name": "time"
 },
 {
 "description": "show time",
 "name": "time"
 }
]
 },
 {
 "key": "exec",
 "value": "nodejs:6"
 }
]

Note the exec annotation added automatically by the system.

Useful annotations are also added to activations. We can see them here:

$ wsk action invoke apidemo/clock
ok: invoked /_/apidemo/clock with id 17cb42c9fd2a45ad8b42c9fd2a45ad71
$ wsk activation get 17cb42c9fd2a45ad8b42c9fd2a45ad71 \
 | tail +2 | jq .annotations
[
 {
 "key": "path",
 "value": "openwhisk@example.com_dev/apidemo/clock"
 },
 {
 "key": "waitTime",
 "value": 45
 },
 {
 "key": "kind",
 "value": "nodejs:6"
 },
 {
 "key": "limits",
 "value": {
 "logs": 10,
 "memory": 256,
 "timeout": 60000
 }

Built-in Patterns | 89

 },
 {
 "key": "initTime",
 "value": 74
 }
]

Some useful information is provided by these annotations:

• path is the action associated with this invocation.
• limits are the execution constraints of the action.
• kind is the runtime used.
• waitTime is the time spent before the action is activated.
• initTime is the time needed to initialize the action.

In addition to these documentation annotations, there are annotations for web
actions, which will be discussed in “Advanced Web Actions” on page 239.

You can also use sequences to implement the Decorator pattern.
Consider an action that requires an authentication token to per‐
form its work that must be retrieved automatically. You can “deco‐
rate” the token by using a sequence: the first action retrieves the
authentication token and passes it to the second, which does its
work.

Patterns Commonly Implemented with Actions
There are some other patterns that are used very frequently in the context of Open‐
Whisk and serverless applications. Hence, we gather them under the hat of “com‐
mon” patterns. They are not part of OpenWhisk, but they are easily implemented
with OpenWhisk actions

We’ll cover the following patterns in this section:

Strategy
Used to change implementations while keeping a standard interface (#4 in
Figure 4-1)

Chain of Responsibility
Used to partition the solution of a problem into multiple steps (#5 in Figure 4-1)

Command
Used to encapsulate information needed to perform a task (#6 in Figure 4-1)

90 | Chapter 4: Common Design Patterns in OpenWhisk

Strategy
The Strategy pattern provides different functionalities to a system while keeping a
uniform interface. It works by defining a base class for an algorithm that acts as the
interface. We can then extend this base class with other classes to customize the logic
as needed. The client sees a standard interface, while the behavior is implemented by
providing a different implementation (or “strategy”) for each subclass (see
Figure 4-10).

Figure 4-10. The Strategy pattern

To illustrate the Strategy pattern, we will implement validation in our contact form.
We will have a base class performing the validation, with a standard interface. Then
we will customize the validation logic to behave in a different way when we validate
an email address or a phone number, as illustrated in Figure 4-11.

Figure 4-11. A demonstration of the Strategy pattern

To validate the different fields in the form, we’ll create a library file lib/validator.js
with the following contents. The interface is the same for each field (“validate”), but
the implementation is different: an email address must be validated in a different way
than a phone number. The Validator class looks like this:

class Validator {
 constructor(field) {

Patterns Commonly Implemented with Actions | 91

 this.field = field;
 }

 // simple validator - just check it not empty
 // return an error, or an empty string if ok
 validator(value) {
 if(value)
 return ""
 return "missing "+this.field;
 }

 // validate data, adding messages and values
 validate(data) {
 if (!data.message) data.message = [];
 if (!data.errors) data.errors = [];

 let value = data[this.field];
 let err = this.validator(value);
 if (err) data.errors.push(err);
 else data.message.push(this.field + ": " + value);
 return data;
 }
}

The replaceable validation logic; by default, it checks only if a field exists.

The validator gets some data, then applies the validation logic to the specified
field.

Here is where we apply the validation logic.

The validator can be used as it is to validate the existence of a single field, as shown
here in name.js:

const Validator = require("./lib/validator.js")

function main(args) {
 return new Validator("name").validate(args)
}

Import the Validator class from the library.

Create a validator for the name field, returning the form data annotated with mes‐
sages and errors.

Now let’s apply the Strategy pattern by providing different implementations of the
validation logic. First we’ll create an email action (email.js) to validate the email field
with a validator for email addresses:

const Validator = require("./lib/validator.js")

92 | Chapter 4: Common Design Patterns in OpenWhisk

class EmailValidator extends Validator {
 validator(value) {
 let error = super.validator(value);
 if (error) return error;
 var re = /\S+@\S+\.\S+/;
 if(re.test(value))
 return "";
 return value+" does not look like an email"
 }
}

function main(args) {
 return new EmailValidator("email").validate(args)
}

Redefine the validator method, hence applying the Strategy pattern.

Validation logic, matching the email field against this regular expression.

We validate in the same way as before, but now we use the EmailValidator.

Next we’ll use a different strategy, implementing a phone action to validate a phone
number:

const Validator = require("./lib/validator.js");

class PhoneValidator extends Validator {
 validator(value) {
 let error = super.validator(value);
 if (error) return error;
 var match = value.toString().match(/\d/g)
 if (match && match.length >= 10) return "";
 return value + " does not look like a phone number";
 }
}

function main(args) {
 return new PhoneValidator("phone").validate(args);
}

This validator extracts the numbers from the string, then verifies that there are at
least 10 of them.

We can use this validator in the same way as before.

This validation was designed to be chained, which means we can use it to implement
another pattern—Chain of Responsibility.

Patterns Commonly Implemented with Actions | 93

Chain of Responsibility
The Chain of Responsibility pattern splits large, complex processing into multiple
smaller, separate steps that are assembled as a chain of execution.

It works by doing the following (see Figure 4-12):

• Defining a standard interface for the task to be performed
• Implementing each step of the processing with a separate class
• Connecting the specific instances performing the processing in a chain—when

one step is complete, the next is called to continue the processing

Figure 4-12. The Chain of Responsibility pattern

The Chain of Responsibility pattern in OpenWhisk can be implemented in a natural
way by using sequences. Of course, to put actions in a sequence, the output of an
action must be usable as the input of the next action in the sequence (Figure 4-13).

Figure 4-13. Chain of Responsibility pattern

Actually, the implementation of the Strategy pattern in the preceding section is also
an implementation of the Chain of Responsibility pattern.

Let’s review the Validator class again, to see where the pattern is. The key concepts
are:

• We need to partition the problem to apply different instances of the chain.

94 | Chapter 4: Common Design Patterns in OpenWhisk

• We have to make sure the instances can be concatenated.

Here’s the lib/validator.js file again:

class Validator {
 constructor(field) {
 this.field = field;
 }

 // simple validator - just check if not empty
 // return an error, or an empty string if OK
 validator(value) {
 if(value)
 return ""
 return "missing "+this.field;
 }

 // validate data, adding messages and values
 validate(data) {
 if (!data.message) data.message = [];
 if (!data.errors) data.errors = [];

 let value = data[this.field];
 let err = this.validator(value);
 if (err) data.errors.push(err);
 else data.message.push(this.field + ": " + value);
 return data;
 }
}

Pass a parameter saying which part of the form we are going to validate.

Collect the result (the email message to send) and the errors in the data and pass
them to the next element.

Select a field of the form to which to apply the logic of an element of the chain.

We can ultimately state the following:

• The form to validate (the problem) is partitioned; we specify which field we want
to validate for each element of the chain.

• The result is built incrementally, so we get the form data, and we annotate it
incrementally with the errors found or the final result (the email message we
want to send).

We can then deploy our Chain of Responsibility reusing the actions we built previ‐
ously with the simple command:

$ wsk action update pattern/validate --sequence \
 pattern/strategy-name,\

Patterns Commonly Implemented with Actions | 95

 pattern/strategy-email,\
 pattern/strategy-phone
 ok: updated action pattern/chainresp

Let’s try a simple test on the command line:

$ wsk action invoke pattern/validate \
 -p name Michele -p email michele@sciabarra.com -r
{
 "email": "michele@sciabarra.com",
 "errors": [
 "missing phone"
],
 "message": [
 "name: Michele",
 "email: michele@sciabarra.com"
],
 "name": "Michele"
}

Missing the phone number.

Error correctly detected.

Parts of the form passing the validation check.

Here we show only a simple manual test case to be sure you have
correctly deployed the code. We cover systematic testing in Chap‐
ter 6.

Command
The Command pattern provides a uniform interface to perform multiple tasks, with
the task description encapsulated in a single object (see Figure 4-14). It works by:

1. Collecting all the information needed to perform a task in an instance of a Com‐
mand interface

2. Sending that instance of the Command interface to an executor, for actually per‐
forming the task.

96 | Chapter 4: Common Design Patterns in OpenWhisk

Figure 4-14. The Command pattern

In our contact form, we have a problem: managing a feed. A feed is, as we’ll see later,
an action that must execute some operation according to requests, called a 0. As a
result, we need to be able to store, retrieve, and delete data in a database
(Figure 4-15).

Figure 4-15. The Command pattern

We implement the data storage with the Command pattern. We define a command as
a JSON object with the fields command, key, value, and type.

Strictly speaking, the pattern prescribes that you define a class
whose instances are used to keep the command information. How‐
ever, to implement it correctly we have to share the code for the
Command class between the clients and the receivers. A common
practice with OpenWhisk is to instead share data with JSON mes‐
sages. We are hence not going to create a Command class. Instead,
instances of actions just share the knowledge of the structure of the
JSON. In this case, it wasn’t necessary to enforce this, so our com‐
mand is just a JSON structure with the three fields.

An object to represent the Command pattern in JavaScript is as follows:

{ "command": <CMD>,
 "type": <TYPE>
 "key": <KEY>,
 "value": <VALUE>,
}

Patterns Commonly Implemented with Actions | 97

We execute a different action for each value of <CMD>, most notably:

• CREATE, which saves the <VALUE> of the given <TYPE> in the database accessible
with the <KEY>.

• DELETE, which deletes a record of the given <TYPE> accessible with the <KEY>
(<VALUE> is ignored).

• LIST, which returns a list of each <KEY> and <VALUE> we stored in the database of
the given <TYPE>.

Basically, the command implements a very simple key/value store:
we save with a key, we retrieve the value with the key, and we can
get a list of all the keys. However, we added a field type allowing us
to store multiple key/value stores in the same database.

The structure of the action is as follows:

var kv = require("./lib/keyvalue.js")

function main (args) {
 let command = args.command
 let data = {
 type: args.type,
 key: args.key,
 value: args.value
 }
 switch (command) {
 case 'CREATE':
 return kv.create(data)
 case 'LIST:
 return kv.list(data)
 case 'DELETE':
 return kv.delete_(data)
 }
}

Use the library keyvalue.js.

Extract the command key.

Create a record with the key and value.

List all the records.

Delete the record with the given value.

98 | Chapter 4: Common Design Patterns in OpenWhisk

We used the name delete_ with a final underscore to avoid con‐
flicts with the delete JavaScript keyword.

Here we use a library called keyvalue.js, which is self-explanatory. In Chapter 5, we
will go into more depth on database storage.

For now, let’s execute an action at the command line:

$ wsk action invoke pattern/command-database \
 -p command LIST -p type test -r
{"list":[]}
$ wsk action invoke pattern/command-database \
 -p command CREATE -p type test \
 -p key alpha -p value 1 -r
{ "activationId": "994212b782224eb58212b782226eb561" }
$ wsk action invoke pattern/command-database \
 -p command LIST -p type test -r
 {"list":[{"key":"alpha","value":1}]}
$ wsk action invoke pattern/command-database \
 -p command DELETE -p type test -p key alpha
{ "activationId": "a93f1a0ada0f43edbf1a0ada0f53ed90" }
$ wsk action invoke pattern/command-database \
 -p command LIST -p type test -r
{"list":[]}

Check that the key/value store is empty.

Create a key alpha=1.

Now there is a value in the store.

Delete the value using the key.

Check that the key/value store is empty again.

Summary
In this chapter, we explored some simple design patterns in OpenWhisk. In particu‐
lar, we explored a few patterns that are built into the design of OpenWhisk, and
therefore used implicitly (Singleton, Facade, Prototype, and Decorator). We also
explored some simple patterns that are frequently used with OpenWhisk (Strategy,
Chain of Responsibility and Command).

Summary | 99

CHAPTER 5

Integration Design Patterns in OpenWhisk

We have already explored some of the common and built-in patterns in OpenWhisk,
which are useful for implementing single actions. In this chapter, we’ll explore pat‐
terns that are useful for integrating different actions and interacting with users. We
continue the implementation of some classical “Gang of Four” design patterns and
also cover the ubiquitous Model-View-Controller pattern implemented for Open‐
Whisk.

In Figure 5-1 we can see the patterns covered in this chapter and the previous chap‐
ter:

1. Singleton
2. Facade
3. Prototype
4. Strategy
5. Chain of Responsibility
6. Command
7. Bridge
8. Proxy
9. Adapter

10. Observer
11. Composite and Visitor
12. MVC

101

Figure 5-1. A contact form example covering many design patterns

The source code for the examples of the design patterns (this chap‐
ter and the previous chapter) are available in the GitHub reposi‐
tory.

102 | Chapter 5: Integration Design Patterns in OpenWhisk

http://bit.ly/2NgRJtC
http://bit.ly/2NgRJtC

Integration Patterns
In this section we discuss the patterns commonly used to connect different systems.
These include:

Proxy
Used when you want to keep the same interface to a system but change the details
at the implementation level

Adapter
Used for adapting requests from one interface to a system to another.

Bridge
Used when you want to define a common generic interface to a class of systems
and then specify different implementations for each case

Observer
Used when you have a system producing events and many clients interested in
those events who want to be notified of changes

Proxy
The Proxy pattern controls access and provides more functionality to an existing
object. It works by creating an instance, a proxy, that is similar to the real object we
want to access and is invoked in the same way. In the implementation of the proxy we
perform the access control, or some functionality that otherwise changes the behav‐
ior; then we forward the request to the existing object (see Figure 5-2).

Figure 5-2. The Proxy pattern

For example, let’s consider a simple proxy service that can send an email using an
HTTP interface. In the example in Chapter 2, we used Mailgun to send emails. This
service is accessible via HTTP, but it requires you to provide credentials before you

Integration Patterns | 103

can send an email. Furthermore, the recipients are restricted to the email addresses
specified when configuring the service.

To do better than this, we’ll build an action, exposed as a public HTTP call, that can
receive the subject and the body of an email, then handle the protocol and connect in
a controlled and restricted way to Mailgun to deliver the message to the recipient we
want (see Figure 5-3). We do this to provide a simplified and restricted access to a
service, one of the common reasons that we use the proxy pattern.

Figure 5-3. The Proxy pattern

Let’s start from the configuration. First, we create a sendmail.json file like this:

{
 "mailuser": "<your-email@your-domain>",
 "maildomain": "<domain-from-mailgun>",
 "mailkey": "<mailgun-api-key>"
}

Here we use the configuration parameters of Mailgun described in Chapter 2. Next
we deploy the sendmail action, described next, with:

wsk action create pattern/proxy-sendmail sendmail.js \
 -P sendmail.json --web true

The action receives the three parameters for accessing Mailgun, and two more
parameters describing the email to send: subject and body.

Now we can write sendmail.js. We’ll split the work of this task into two listings, as fol‐
lows. The first one describes the configuration:

var http = require('https');
var querystring = require('querystring');

function main(args) {
 // Email
 var email = querystring.stringify({
 'from' : args.mailuser,
 'to': args.mailuser,
 'subject': args.subject,
 'html': args.body
 });

 // Post Data
 var post_data = {
 host: 'api.mailgun.net',
 port: '443',

104 | Chapter 5: Integration Design Patterns in OpenWhisk

 path: '/v3/'+args.maildomain+"/messages",
 method: 'POST',
 headers: {
 'Content-Type':
 'application/x-www-form-urlencoded',
 'Authorization': 'Basic '+
 (new Buffer(args.mailkey).toString('base64')),
 'Content-Length': Buffer.byteLength(email)
 }
 };
 // <actual sending email>

}

Use the native Node.js https module to send emails.

Build the actual email (in HTML form format) using parameters provided by the
action.

Authenticate the access, providing a header for performing the HTTP Basic
authentication.

We are simply accepting two fields, subject and body, adding the from and to fields
(which happens to be same in our case), and including some headers to the HTTP
call to perform authentication. Then we repeat the HTTP call as follows (this code
replaces the // <actual sending of email> comment in the previous listing):

return new Promise(function(resolve, reject) {
 // Set up the request
 var post_req = http.request(post_data,
 function(res) {
 // send actual data
 res.setEncoding('utf8');
 res.on('data', function(data) {
 resolve({ "result": data})
 });
 });
 // Handle errors
 post_req.on('error', function(err) {
 console.log(err)
 reject({"error": err})
 })

 // Post the data
 post_req.write(email);
 post_req.end();
 })

The https module is asynchronous, so we have to wrap it in a promise.

Integration Patterns | 105

Provide the post_data to the request.

This is the returned value from Mailgun that we send as the answer to the proxy.

Implement error handling.

Insert the actual email body.

This listing executes the same https call that was used to invoke
the proxy, changing some parameters. You invoke the proxy with
the https protocol, and it emits another https call.

You can test the proxy by getting the URL and then invoking it with curl (note you
are using an http interface here):

$ URL=$(wsk action get pattern/proxy-sendmail --url | tail -1)
$ echo $URL
https://openwhisk.eu-gb.bluemix.net/api/v1/web/ \
openwhisk@example.com_dev/pattern/proxy-sendmail
$ curl $URL'?subject=Hello&body=Hello+World'

If the parameters are correct, you will receive an email at the email address you con‐
figured.

Adapter
The Adapter pattern (Figure 5-4) accesses services using a different interface than the
client requires. It works by providing an interface in the format the client expects,
then implementing it in the format that the actual service uses.

Figure 5-4. The Adapter pattern

106 | Chapter 5: Integration Design Patterns in OpenWhisk

Let’s assume we have a service accessible only as an HTTP call. For example, in the
previous example, we implemented a proxy action that can be invoked only in HTTP.
Let’s assume this proxy could not be invoked using the OpenWhisk API (actually, it
can, but for the purposes of illustration we won’t do this).

Let’s assume we want to use the trigger we created for the Singleton pattern in the
previous chapter to submit emails. A trigger primarily uses the OpenWhisk API to
perform invocations of actions; it cannot use direct HTTPS calls.

So we have a service we can only invoke with HTTPS, but we want to use a trigger to
submit data. To use a trigger we can only do an action invocation, which is ideal for
the Adapter pattern, as shown in Figure 5-5.

Figure 5-5. The Adapter pattern

We then write an action that receives data as a form invocation and forwards the
request in HTTPS format to the proxy action.

The form2http action (in form2http.js) is as follows:

const https = require("https")

function main(args) {
 var message = `Name: ${args.name}

Email: ${args.email}

Phone: ${args.phone}`
 var body = encodeURIComponent(message)
 var query = "?subject=[Contact]&body="+body

 return new Promise(function (resolve, reject) {
 https.get(args.url+query, (resp) => {
 resp.on('data', () => {})
 resp.on('end', () => resolve({result:"OK"}))
 }).on("error", (err) => reject({error:err}))
 })
}

Prepare the message to send from form data to URI format.

Prepare a query string.

Asynchronous call to be wrapped in a promise.

Use the args.url parameter to locate the actual URL to invoke.

Integration Patterns | 107

resolve and reject invocations.

Since the URL to invoke is a parameter, we have to provide it when deploying the
action.

We deploy as follows:

$ URL=$(wsk action get pattern/proxy-sendmail \
 --url | tail -1)
$ wsk action create pattern/adapter-form2http \
 -p url "$URL"

Extract the URL of the target web action.

Update the action with a parameter with the URL.

You can test to check if it sends an email with an action invocation:

$ wsk action invoke pattern/adapter-form2http -p messages \
 '["this","is", "a", "test"]' -r
{
 "result": "OK"
}

You should receive an email with the subject “[Contact]” and body “This is a test.”
Note this time we are using an invocation to send an email, so it’s suitable to be
hooked into a trigger.

Bridge
The Bridge pattern evolves abstractions and implements them independently. It
works by defining a well-known abstraction that omits all the necessary implementa‐
tion details for using a service. Implementations will provide the application-specific
code, which can be evolved independently while keeping the abstraction valid (see
Figure 5-6).

Figure 5-6. The Bridge pattern

108 | Chapter 5: Integration Design Patterns in OpenWhisk

For example, let’s consider a common problem in OpenWhisk development: storing
data. In our example, at some point we will have to preserve in some way the data of
the contact form. We could simply implement an action that saves the data in the
database. But all we need is a feature that, given some data, can store it in a database.
We do not need to specify too many details of the actual database structure. Further‐
more, we might even want to change the database. This is a good use case for the
Bridge pattern (see Figure 5-7).

Figure 5-7. Demonstration of the Bridge pattern

We are going to decouple the operation of saving from the actual implementation.
This way we can change the database used later.

In our example, the interface is the action itself; the implementation is in a module
used as a library. Just changing the implementation of the module will provide access
to a different database.

Here’s the code for the formsave action:

const driver = require("./lib/driver")

function main(args) {
 var key = args.email
 var value = {
 name: args.name,
 phone: args.phone
 }
 return driver.save(key, value)
}

Retrieve the driver implementation.

Use the email as a key.

Place the other two values in a map.

Save it in a key/value store.

The implementation is actually leveraging the action we implemented for the Com‐
mand pattern:

const openwhisk = require('openwhisk')

module.exports = {

Integration Patterns | 109

 save: function (key, value) {
 return openwhisk().actions.invoke({
 name: 'pattern/command-database',
 params: {
 command: 'CREATE',
 key: key,
 value: value,
 type: 'contact'
 }
 })
 }
}

Invoke the action for the Command pattern.

Add a new value with CREATE.

Use contact as the type to store the data.

If we were going to use a different database, of course, the details would be different.
But as long as we can keep an interface with a save(key,value) method we don’t
have to change the action, which means we can evolve the data storage solution inde‐
pendent of the interface of the action.

We can now test it with the following commands, first invoking the formsave action,
then using the action in the Command pattern to see the result:

$ wsk action invoke pattern/bridge-formsave \
 -p email michele@sciabarra.com \
 -p name Michele -p phone 123456789 -r
{
 "activationId": "8fe95dfc17c04c63a95dfc17c0ec631d"
}
$ wsk action invoke pattern/command-database \
 -p command LIST -p type contact -r
{
 "list": [
 {
 "key": "michele@sciabarra.com",
 "value": {
 "name": "Michele",
 "phone": 123456789
 }
 }
]
}

Observer
The Observer pattern provides of events to a variable number of users.

110 | Chapter 5: Integration Design Patterns in OpenWhisk

It works as follows:

• The source of the event (a “subject”) offers a registration (and deregistration) ser‐
vice, and it is able to keep track of the registered objects.

• When a user, hereafter called the “observer,” needs notifications of an event, it
registers itself with the subject. Note that the observer must use an interface
known to the subject for notifications.

• When the event happens, the subject consults its recordings of the registered
observers and invokes the known update operation for each observer, thus noti‐
fying them about the event.

From the point of view of the Observer pattern, a feed is an action implementing the
observer. Your users are triggers requiring notifications about events sent to the
action.

In this example, we implement the pattern/observer-feed action. To demonstrate
how it works, I’ll show in advance how to connect the feed to the trigger pattern-
singleton-submit we use to process the form:

$ wsk trigger create pattern-singleton-submit --feed pattern/observer-feed
ok: invoked /_/pattern/observer-feed with id ca5956cbf4f040ca9956cbf4f0d0ca77
{
 "activationId": "ca5956cbf4f040ca9956cbf4f0d0ca77",
 "annotations": [...],
 "duration": 92,
 "end": 1523023957025,
 "logs": [],
 "name": "observer-feed",
 "namespace": "openwhisk@example.com_dev",
 "publish": false,
 "response": { ... },
 "start": 1523023956933,
 "subject": "openwhisk@example.com",
 "version": "0.0.13"
}
ok: created trigger pattern-singleton-submit

Annotations removed.

Response removed.

A feed, in practice, is just an action designed according to a protocol similar to the
registration process used by the Observer pattern. A feed receives a request when you
create, delete, pause, or unpause a trigger. Specifically, it receives an action invocation
from the system when someone performs an action on the trigger and declares this
action to be its feed. In particular, it receives the following parameters:

Integration Patterns | 111

lifecycleEvent

This can be CREATE, DELETE, UPDATE, PAUSE, or UNPAUSE.

triggerName

This is the name of the trigger to be activated.

authKey

This is the API key required to invoke the trigger from the outside.

Now let’s implement the feed. We create the file feed.js with a structure very similar to
the one we used for the Command pattern. We use command and fire here. We’ll dis‐
cuss them more later, but for now just note that command modifies the database using
the Command pattern, while fire activates all the triggers whose names are saved in
the database. A feed receives action invocations from the system when someone per‐
forms actions on the trigger, and declares this action to be its feed:

function main (args) {
 let event = args.lifecycleEvent
 if(event == 'CREATE') {
 return command('CREATE',
 args.triggerName, args.authKey)
 } else if(event == 'DELETE') {
 return command('DELETE',
 args.triggerName)
 } else if(event == 'FIRE') {
 return fire(args.value)
 } else {
 // not implemented PAUSE/UNPAUSE/UPDATE
 return {"error": "unimplemented "+event}
 }
}

Register a trigger.

Unregister a trigger.

Activate all the registered triggers.

These events are not implemented, to keep the code simple.

We implemented the Observer pattern because the feed registers all the parties inter‐
ested in an event. We save data to the database when we register and unregister trig‐
gers in the feed, as the pattern prescribes.

The Observer pattern prescribes a subject to notify the user of
events, while the feed pattern and the lifeCycle request do not. To
make the feed action a true observer, we added a lifeCycle event
not required for the feed: FIRE.

112 | Chapter 5: Integration Design Patterns in OpenWhisk

Now let’s see the functions we have used without defining. The code for command is
pretty straightforward; it’s just the invoke we already saw in our discussion of the
API, and we use the key/value store implemented in the Command pattern:

function command(cmd, key = '', value = '') {
 let ow = openwhisk()
 return ow.actions.invoke({
 name: 'pattern/command-database',
 result: true,
 blocking: true,
 params: {
 command: cmd,
 key: key,
 value: value,
 type: 'trigger'
 }
 })
}

Use the command-database action to actually store data.

The key is the trigger name.

The value is the API key.

Triggers are recorded as type trigger.

It is a little more complicated to notify interested parties about the events. We need to
do the following:

• List all the registered triggers.
• Create API access with a specific API key for each trigger.
• Invoke the trigger, creating multiple promises.
• Collect the results and return them.

In code, it looks like this:

function fire(value) {
 return command('LIST', 'trigger').then(res => {
 let promises = res.list.map(tr => {
 let ow1 = openwhisk({ api_key: tr.value })
 return ow1.triggers.invoke({
 name: tr.key,
 params: value
 })
 })
 return Promise.all(promises)
 .then(results => ({"results": results}))
 .catch(err => ({error: err}))

Integration Patterns | 113

 })
}

Use the LIST command from the database, listing all the registered keys of type
trigger.

Create a list of those invocations with map because each invocation is a promise.

Create a different instance of the API because the API key can be different.

Invoke the trigger.

Wait for all the promises to complete and return the final result.

If we check the database, we’ll see that there is now an additional record correspond‐
ing to the trigger.

Since we have a feed available, we can now register some rules for it. In particular, we
are going to register rules to invoke the bridge action to save in the database and
send an email when an event is triggered:

$ wsk rule update pattern-submit-adapter-form2http \
 pattern-singleton-submit \
 pattern/adapter-form2http
$ wsk rule update pattern-submit-brigde-formsave \
 pattern-singleton-submit \
 pattern/bridge-formsave

As a test, let’s trigger the event with the following:

$ cat >data.json <<EOF
{
 "name":"Michele",
 "email":"michele@sciabarra.com",
 "phone":"1234567890"
}
EOF

$ wsk action invoke pattern/observer-feed \
 -p lifecycleEvent FIRE \
 -p value "$(cat data.json)" -r
{
 "results": [
 { "activationId": "397f9b16e95e42aebf9b16e95e52ae3" }
]
}

Prepare a JSON file with the form data.

Invoke all the registered triggers.

114 | Chapter 5: Integration Design Patterns in OpenWhisk

FIRE is the event requesting the notification.

Use the JSON file just created.

As a result of notifying users of the event, you should see an additional record in the
database and receive an email.

User Interaction Patterns
In this section, we are going cover a pattern used to implement user interfaces in
OpenWhisk known as the Model-View-Controller (MVC). The MVC pattern is
widely used, and it has many variants; in fact, entire frameworks are designed around
it.

In our case, we’ll implement it by providing a “controller” action that will, in turn,
invoke other actions both to handle the requested operations and to render the user
interface (the “view” part of the MVC pattern). The “model” is generally the JSON
data structure that is passed through the various actions.

To better understand views, first we’ll discuss a couple of other patterns used to ren‐
der them: the Composite and Visitor patterns.

These two patterns are covered in a slightly different way than the rest of the patterns
in this chapter: the examples are not OpenWhisk-specific, mostly because imple‐
menting a composite as a combination of OpenWhisk actions is generally inefficient.
But since these patterns are widely used for developing web applications, they are
included here for completeness. An example is provided that can be used as part of an
OpenWhisk application.

Composite
Some problems can be modeled by dividing them into smaller parts that are similar
in structure to the central part. For example, an HTML page can be split into subparts
that are still HTML pages. The Composite pattern models these types of problems by
defining a common interface Component. Then you implement the other compo‐
nents as either leaves, which are components with no children, or composites, which
can have other components as children.

The idea behind a composite is to create an object composed of parts similar to itself.
It is a recursive structure like a tree. Each element of a composite has an operation
and a variable number of children (Figure 5-8). It performs its operations with the
help of the children, recursively. When a client invokes an operation on a composite,
the composite invokes the operations on its children, who in turn invoke operations
on their children, and so on until a “leaf ” component with no children is reached and
recursion ends.

User Interaction Patterns | 115

Figure 5-8. The Composite pattern

As an example of a composite, we’ll provide an action that can render a web page split
into components and subcomponents according to the Composite pattern.

We start by defining the Composite class as follows:

class Component {

 constructor(prefix, suffix = "") {
 this.prefix = prefix
 this.suffix = suffix
 this.children = []
 }

 add(child) {
 this.children.push(child)
 }

 // <add here the code for rendering>
}

A Component has a prefix.

And an optional suffix.

And an array of children, initially empty.

Use this method to add children (another Component).

The idea is to model each snippet of HTML according to its nested structure. Some
HTML tags do not nest, so you just create them with let input = new Compo
nent('<input type="text">'). Other tags do nest. For example, when you want to
render a form, you need to start with <form> and end with </form>, and in the mid‐
dle you place the HTML describing the fields of the form. So, you create a Component

116 | Chapter 5: Integration Design Patterns in OpenWhisk

with let form = new Component('<form>', '</form>'). To insert the input tag
into the component, use form.add(input).

Figure 5-9 shows the structure of the form, while the following code shows how it is
rendered (note that the HTML is simplified):

const Component = require('./lib/component')

const name = new Component(`<input name="name">`)
const email = new Component(`<input name="email">`)
const phone = new Component(`<input name="phone">`)

const form = new Component(`<form>`, `</form>`)
form.add(name)
form.add(email)
form.add(phone)

const page = new Component(`<html>`, `</html>`)
page.add(form)

Figure 5-9. The Composite pattern

Now that we have our structure built, we need to render it. We will use the Visitor
pattern for this, discussed next.

Visitor
The Visitor pattern performs arbitrary operations on complex and nested data struc‐
tures with subcomponents (e.g., a composite). It works by implementing an accept
operation for each element of the data structure that receives the visitor. The accept
applies a visit of the Visitor pattern to itself and then applies the accept to each
subcomponent (see Figure 5-10). This way, the visitor can visit all the components of
the nested data structure.

User Interaction Patterns | 117

Figure 5-10. The Visitor pattern

The Visitor pattern is a good complement of the Composite pattern, since it is useful
to write in HTML a representation of an HTML page we did in the preceding para‐
graph. We first implement a Visitor for the Component in the previous example class,
as follows:

class Visitor {
 constructor() {
 this.prefixes = []
 this.suffixes = []
 }
 visit(item) {
 this.prefixes.push(item.prefix)
 this.suffixes.push(item.suffix)
 }
 render() {
 return this.prefixes.join("") +
 this.suffixes.reverse().join("")
 }
}

The Visitor for the tree keeps a list of all the prefixes and suffixes.

For each visited Component, the tree just records the prefix and the suffix in its
list.

Rendering is a matter of concatenating the prefix, and then the suffixes in reverse
order.

To complete the example, we have to add the accept method to the Component class
we defined earlier as follows:

accept(visitor) {
 visitor.visit(this)

118 | Chapter 5: Integration Design Patterns in OpenWhisk

 for(let child of this.children)
 child.accept(visitor)
}

Visit the current composite.

Iterate the children.

Accept the visitor for each subcomponent.

Now we test what we get when applying our visitor to the composite from the preced‐
ing example:

let v = new Visitor()
page.accept(v)
console.log(v.prefixes)
console.log(v.suffixes)
console.log(v.render())

We get:

console.log view.test.js:
 ['<html>',
 '<form>',
 '<input name="name">',
 '<input name="email">',
 '<input name="phone">']

 console.log view.test.js:
 ['</html>', '</form>', '', '', '']
 console.log view.test.js:
 <html><form><input name="name"><input name="email"><input name="phone"></form></html>

This is the form defined with the composite as represented in HTML.

In Chapter 6 we cover how to write tests for actions without having
to deploy the code in OpenWhisk. In addition to providing flexibil‐
ity and creating better architectures, patterns also help segregate
code, making it easier to test.

MVC
The Model-View-Controller (MVC) pattern is widely used for developing user inter‐
faces. It reduces coupling between the rendering logic and control logic of the user
interface by splitting the implementation of the user interface into three parts:

Model
Primarily represents the current state of the user interface abstractly, omitting the
more low-level details

User Interaction Patterns | 119

View
Reads the model and builds the actual user interface in a format you can render
to the user

Controller
Receives user interactions, determines the right course of action, and interfaces
with the rest of the system

The three components interact in this way:

• The user interaction starts with the user looking at a rendering of the view and
then interacting with it, producing events sent to the controller.

• The controller receives the events, consults the model, and then decides the state
of the system after the user interaction, updating the model only.

• The model is then sent to the view again, which rerenders the user interface using
the model to prepare the system to be ready for the next user interaction.

Then the loop restarts.

In the context of OpenWhisk, implementing the MVC pattern is pretty easy. In our
contact form example, we implement a “controller” action and some “view” func‐
tions. The “model” is the JSON data structure that receives a request and returns an
answer.

We already have some pieces we need to process the form:

• The form itself is rendered using the Composite/Visitor pattern (action: pat
tern/composite-visitor-view).

• The form validation is performed using the Chain of Responsibility pattern
(action: pattern/chainresp-validate).

• When the form is validated, sending an email and saving to the database is per‐
formed by firing the feed (action: pattern/observer-feed), which in turn fires a
trigger activating the actions we created to send an email and store data.

The controller ultimately needs to react to two possible actions of the user: the initial
request (when the user opens the contact form) and the form submission. Because of
how a web browser works, the initial request is translated to an HTTPS request using
the method GET, while the form submission uses the HTTPS method POST. On the
POST we trigger the validation, and then we decide what to do next, according to
whether the form validates correctly or not. If it doesn’t, we display the errors and
repeat the form submission. If it does, we store the data and send an email.

Let’s see the procedure in code:

120 | Chapter 5: Integration Design Patterns in OpenWhisk

function main (args) {
 let method = args.__ow_method
 let form = {
 email: args.email,
 phone: args.phone,
 name: args.name
 }
 if (method == 'get') {
 return invoke('pattern/composite-visitor-view')
 } else {
 return invoke('pattern/chainresp-validate',
 form).then(result => {
 if (result.errors.length > 0) {
 return viewErrors(result.errors)
 } else {
 invoke('pattern/observer-feed', {
 lifecycleEvent: "FIRE",
 value: form
 }).then(res => {
 console.log(res)
 })
 return viewOk(result.message)
 }
 })
 }
}

The method can be GET or POST.

Collect the form data in a form object.

Show the form.

Validate the form.

Check if there are errors.

Display an error message.

Form validated; send emails and save data.

Display an OK message.

Let’s now look at the helper methods, which are pretty simple and straightforward:

function invoke (name, args = {}) {
 let ow = openwhisk()
 return ow.actions.invoke({
 name: name,
 blocking: true,

User Interaction Patterns | 121

 result: true,
 params: args
 })
}

function viewErrors (errors) {
 return {
 body: '<h1>Errors!</h1>' +
 errors.join('') +
 '
Back'
 }
}

function viewOk (messages) {
 return {
 body: '<h1>Thank You!</h1>' +
 messages.join('') +
 ''
 }
}

A wrapper to invoke an action in a simple way.

Render an HTML answer with errors.

Render an HTML answer with an “accepted” message.

Summary
In this chapter, we continued the exploration of design patterns we started in Chap‐
ter 4, considering more (and more complex) design patterns. In particular, we saw
that the Proxy, Adapter, and Bridge patterns are used for connecting existing systems;
the Observer pattern is key to implementing feeds; Composite and Visitor are useful
for views; and MVC is widely used to structure interactions with the user.

122 | Chapter 5: Integration Design Patterns in OpenWhisk

CHAPTER 6

Unit Testing OpenWhisk Applications

For most newcomers, one of the biggest challenges when it comes to developing in a
serverless environment is learning how to test and debug. Since you deploy your code
continuously in the cloud, it’s usually not possible to debug your code step by step.
While a debugger can in some cases be useful, most developers split their applications
into small pieces and test locally before sending the code to the cloud.

Once the application is tested in small pieces, it can be assembled and deployed as a
whole. Then tests can be run against the final result, generally simulating user inter‐
action, to ensure the pieces are working together correctly.

Testing in small parts is called unit testing, while simulating the
interaction with the assembled application is called integration test‐
ing. In this chapter, we focus on how to do unit testing in Open‐
Whisk applications.

Luckily, there are plenty of unit testing tools available. You can use them to run small
pieces of code on your local machine, then deploy only when the application is tested.
Let’s see how this works in practice.

In this chapter, we cover unit testing for the Node.js runtime. Unit testing for Python
is covered in “Testing Python Actions” on page 173, and unit testing for Go is cov‐
ered in “Testing Go Actions” on page 271.

The source code for this chapter’s examples is available in the Git‐
Hub repository.

123

http://bit.ly/2XxsHu5
http://bit.ly/2XxsHu5

Using the Jest Test Runner
OpenWhisk applications generally run in the cloud. You write your code, deploy it,
and then run it. However, to run unit tests, you need to be able to run your code on
your local machine, without deploying in the cloud. In this chapter you are going to
learn how to run action code locally to test them. But first you’ll learn about Jest, a
testing tool, and how to write tests with it.

Jest is one of many competing test tools in the JavaScript ecosys‐
tem. While it is the tool of choice for this chapter the techniques
used here can be easily adapted to other testing tools.

Using Jest
Jest is a test tool developed by Facebook for testing React applications. We are not
going to use React in this book, but Jest is independent of React, and it is a good fit
for our purposes.

Jest is easy to install, fast, supports snapshot testing, and has extensive support for
“mocking.” Here’s how to install it:

$ npm install -g jest
+ jest@22.4.3
updated 1 package in 13.631s
$ jest --version
v22.4.3

Install Jest as a global command.

Check if Jest is now available as a command.

Now that we have Jest installed, we can write a test. To begin, we will test a modified
version of the word count action (count.js) we used in Chapter 3.

This action receives its input as a property text of an object args, splits the text into
words, counts the words, and then returns a table containing all the words and how
often they occur.

Here is the updated version, wordcount.js:
function main(args) {
 let words = args.text.split(" ")
 let map = {}
 let n = 0
 for(word of words) {
 n = map[word]
 map[word] = n ? n+1 : 1

124 | Chapter 6: Unit Testing OpenWhisk Applications

 }
 return map
}
module.exports.main = main

Add an export of the function.

In OpenWhisk, you can deploy a simple function. It works as long as it is a main
function. When you want to use it locally in a test, however, it must be a proper mod‐
ule so a test can import it. That’s why the last line is included in wordcount.js.

Always add the line module.exports.main = main at the end of all
actions. It is required when you run a test or when you have to
deploy the action in a zip file.

We can now write a test for wordcount that we can run with Jest. First, we’ll write a
wordcount.test.js file with the following code:

const wordcount =
 require("./wordcount").main
test('wordcount simple', () => {
 res = wordcount({text: "a b a"})
 expect(res["a"]).toBe(2)
 expect(res["b"]).toBe(1)
})

Import the module being tested.

Declare a test.

Invoke the function.

Ensure it found two as.

Ensure it found one b.

We are ready to run the tests, but before we go on, we need to create a package.json
file. This is a configuration file used by the Node Package Manager tool (npm) for stor‐
ing package requirements and other information. We will use it for other functions
later, but for now, we just need it to mark that this directory contains a Node.js
project. It is as simple as this:

{ "name": "jest-samples" }

Using the Jest Test Runner | 125

If you don’t create a package.json, jest will walk up the directory
hierarchy searching for one and will throw an error if it cannot find
it. Once found, it will assume the directory it’s in is the root direc‐
tory containing a JavaScript application and it will look in all the
subdirectories, searching for files ending in .test.js.

Now you can run the test. You can do this directly using the Jest command line from
the directory containing all your files:

$ ls
package.json
wordcount.js
wordcount.test.js
$ jest
 PASS ./wordcount.test.js
 ✓ wordcount simple (3ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 1.341s
Ran all test suites matching /wordcount/i.

As you can see, Jest started to search for tests, found our wordcount.test.js file, loaded
it and executed the tests in it, then showed the results.

You usually do not run jest directly. A best practice is to configure
a test command in the package.json file, as shown here:

{
 "name": "jest-samples",
 "scripts": {
 "test": "jest"
 }
}

Running Tests Locally
In general, actions in OpenWhisk run under Node.js, so the same code you execute
locally with Node.js should also work with OpenWhisk as long as the environment is
the same. To ensure the environment matches, when you run your tests you need to
do the following:

• Run your tests with the same version of Node.js.
• Install the same Node.js packages locally.
• Load the code in the same way as OpenWhisk loads it.

126 | Chapter 6: Unit Testing OpenWhisk Applications

• Provide the same environment variables that are available in OpenWhisk.

Let’s discuss those needs in order.

Matching versions and packages
At the time of this writing, OpenWhisk provides different versions of the Node.js
runtime; for example, there is one based on Node.js version 6.14.1 and another based
on Node.js version 8.11.1. More recent versions might become available. Table 6-1
shows the preinstalled packages available for Node.js 6.

Table 6-1. Node.js 6 preinstalled packages
apn@2.1.2 async@2.1.4

body-parser@1.15.2 btoa@1.1.2

cheerio@0.22.0 cloudant@1.6.2

commander@2.9.0 consul@0.27.0

cookie-parser@1.4.3 cradle@0.7.1

errorhandler@1.5.0 express@4.14.0

express-session@1.14.2 glob@7.1.1

gm@1.23.0 lodash@4.17.2

log4js@0.6.38 iconv-lite@0.4.15

marked@0.3.6 merge@1.2.0

moment@2.17.0 mongodb@2.2.11

mustache@2.3.0 nano@6.2.0

node-uuid@1.4.7 nodemailer@2.6.4

oauth2-server@2.4.1 openwhisk@3.14.0

pkgcloud@1.4.0 process@0.11.9

pug@">=2.0.0-beta6 <2.0.1” redis@2.6.3

request@2.79.0 request-promise@4.1.1

rimraf@2.5.4 semver@5.3.0

sendgrid@4.7.1 serve-favicon@2.3.2

socket.io@1.6.0 socket.io-client@1.6.0

superagent@3.0.0 swagger-tools@0.10.1

tmp@0.0.31 twilio@2.11.1

underscore@1.8.3 uuid@3.0.0

validator@6.1.0 watson-developer-cloud@2.29.0

when@3.7.7 winston@2.3.0

ws@1.1.1 xml2js@0.4.17

xmlhttprequest@1.8.0 yauzl@2.7.0

Using the Jest Test Runner | 127

To prepare your environment for local testing, you need to install the same version of
Node.js and the same packages available in OpenWhisk locally. You can do this using
the Node Version Manager tool (nvm).

For example, let’s assume you have an application running under the Node.js 6 run‐
time using the library cheerio for processing HTML. You can recreate the same envi‐
ronment locally using nvm.

nvm enables you to install a specific version of Node.js and easily
switch among multiple versions on your machine. You can install it
by following the instructions in the GitHub repository.

Once you have nvm installed, you can install the right environment for testing with
the following commands (output shortened):

$ nvm install v6.14.1
Downloading https://nodejs.org/dist/\
 v6.14.1/node-v6.14.1-darwin-x64.tar.xz...
######### 100,0%
Now using node v6.14.1 (npm v3.10.10)
$ node -v
v6.14.1
$ npm init --yes
Wrote to chapter4/package.json
$ npm install --save cheerio@0.22.0
chapter4@1.0.0 chapter4
└─┬ cheerio@0.22.0

Install the version of Node.js used in OpenWhisk.

Create a package.json to store the package configuration.

Install v0.22.0 of the cheerio library locally.

Loading the code

An action sent to OpenWhisk is a module, and you can load it with require. In gen‐
eral, OpenWhisk allows you to create an action without having to export if it is a sin‐
gle file, but in this case, you cannot test it locally because require wants you to export
the module. Furthermore, if you’re going to test functions internal to the module, you
have to export them, too.

For example, let’s reconsider the module we used to validate an email address in
Chapter 4. Let’s rewrite the file email.js in a form we can test locally. We will also
make the error messages parametric (we will use this feature in another test later):

128 | Chapter 6: Unit Testing OpenWhisk Applications

http://bit.ly/31P74Vg

const Validator = require("./lib/validator.js")
function checkEmail(input) {
 var re = /\S+@\S+\.\S+/;
 return re.test(input)
}
var errmsg = " does not look like an email"
class EmailValidator extends Validator {
 validator(value) {
 let error = super.validator(value);
 if (error) return error;
 if(checkEmail(value))
 return "";
 return value+errmsg
 }
}
function main(args) {
 if(args.errmsg) {
 errmsg = args.errmsg
 delete args.errmsg
 }
 return new EmailValidator("email").validate(args)
}
module.exports = {
 main: main,
 checkEmail: checkEmail
}

Email validation logic is isolated in a function.

Here we use the function to validate the email address.

Parametric error message.

The main function must always be exported.

We will also test checkEmail.

Next we’ll write email.test.js, step by step. First, we have to import the two functions
we want to test from the module:

const main = require("./email").main
const checkEmail = require("./email").checkEmail

We can then write a test for the checkEmail function:

test("checkEmail", () => {
 expect(
 checkEmail("michele@sciabara.com"))
 .toBe(true)
 expect(
 checkEmail("http://michele.sciabarra.com"))

Using the Jest Test Runner | 129

 .toBe(false)
})

Now let’s add another test, testing instead the main function, the one we wanted to
test in the first place:

test("validate email", () => {
 expect(main({email: "michele@sciabarra.com"})
 .message[0])
 .toBe('email: michele@sciabarra.com')
 expect(main({email:"michele.sciabarra.com"})
 .errors[0])
 .toBe('michele.sciabarra.com does not look like an email')
})

Setting environment variables
In OpenWhisk, you use the API to interact with other actions. We already discussed
in Chapter 3 how you invoke actions, fire triggers, read activations, and so on. When
you want to invoke other actions running in the same namespace as the main action,
you need to use require("openwhisk") to access the API. At least, this is what hap‐
pens when your application is running inside OpenWhisk.

Remember that when an action runs inside OpenWhisk, it has
access to environment variables containing authentication infor‐
mation the API uses as credentials to execute the invocation. Be
careful!

When your code is running outside OpenWhisk, as with unit testing, the OpenWhisk
API cannot talk to other actions because every request needs authentication. Hence, if
you try to run your code outside of OpenWhisk, you will get an error. We can
demonstrate this with the simple action dbread.js, which can read a single record we
put in the database with the contact form:

const openwhisk = require("openwhisk")
function main(args) {
 let ow = openwhisk()
 return ow.actions.invoke({
 name: "contactdb/read",
 result: true,
 blocking: true,
 params: {
 docid: "michele@sciabarra.com"
 }
 })
}
module.exports.main = main

If we deploy and run the action in OpenWhisk there are no problems:

130 | Chapter 6: Unit Testing OpenWhisk Applications

$ wsk action update dbread dbread.js
ok: updated action dbread
$ wsk action invoke dbread -r
{
 "_id": "michele@sciabarra.com",
 "_rev": "5-011e075095301fcfc350cac66fd17c7e",
 "type": "contact",
 "value": {
 "name": "Michele",
 "phone": "1234567890"
 }
}

But let’s try to write and run a test (dbread.test.js) for this simple action:

const main = require("./dbread").main
test("read record", () => {
 main().then(r => expect(r.value.name).toBe("Michele"))
})

If we run the test, the story is a bit different:

$ jest dbread
 FAIL ./dbread.test.js
 ✕ read record (8ms)

 ● read record

 Invalid constructor options. Missing api_key parameter.

 1 | const openwhisk = require("openwhisk")
 2 | function main(args) {
 > 3 | let ow = openwhisk()
 4 | return ow.actions.invoke({
 5 | name: "contactdb/read",
 6 | result: true,

 at Client.parse_options (node_modules/openwhisk/lib/client.js:80:13)
 at new Client (node_modules/openwhisk/lib/client.js:60:25)
 at OpenWhisk (node_modules/openwhisk/lib/main.js:15:18)
 at main (dbread.js:3:12)
 at Object.<anonymous>.test (dbread.test.js:5:4)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 0 total
Time: 1.021s
Ran all test suites matching /dbread/i.

As we discussed in Chapter 3 when we introduced the API, the OpenWhisk library
needs to know the host to contact to perform requests (the API host) and requires an
authentication key to be able to interact with it.

Using the Jest Test Runner | 131

When your application is running in the cloud in OpenWhisk, those keys are avail‐
able through two environment variables, __OW_API_HOST and __OW_API_KEY. The
OpenWhisk environment sets them before executing the code.

When your code is running locally, those variables are not available, unless your test
code sets them. Luckily, it is it pretty easy to provide them locally. Indeed, if you are
using the tool wsk and have configured it properly, it stores credentials in a file
named .wskprops in the home directory. Because the format of this is compatible with
the syntax of the shell, using bash you can load those environment variables with the
following commands:

$ source ~/.wskprops
$ export __OW_API_HOST=$APIHOST
$ export __OW_API_KEY=$APIKEY

With the environment variables set, you can run this test successfully:

$ jest dbread
 PASS ./dbread.test.js
 ✓ read record (22ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 0 total
Time: 0.951s, estimated 1s
Ran all test suites matching /dbread/i.

Your local code uses credentials and can contact and interact with the real server to
run the test.

This test is not a unit test. It does not run entirely on your local
machine. When you write unit tests, you should provide a local
implementation that simulates the real servers. We will discuss in
detail how to simulate OpenWhisk later in this chapter, when we
talk about mocking.

132 | Chapter 6: Unit Testing OpenWhisk Applications

For simplicity, if you want your environment to be correctly set up,
I recommend leveraging the npm test command to run the tests
and initialize them properly. If you add the following code into
your package.json you can run tests with npm test instead of
jest, without having to worry about setting up the environment
variables manually:

 "scripts": {
 "test": "source $HOME/.wskprops;
 __OW_API_HOST=$APIHOST
 __OW_API_KEY=$AUTH jest"
 },

This is actually one long line split into three lines for typeset‐
ting purposes.

Snapshot Testing
One of the downsides to testing is the burden of having to check results. You may end
up writing a lot of code whose results you need to check against the expected values.
Luckily, there are techniques (that we are going to see) to reduce the amount of repet‐
itive code you have to write.

When you’re testing, you choose a set of data corresponding to the various scenarios
you want to verify. Then you write your test, invoking your code against the test data,
and check the results. While defining the test data is generally fun, because you have
to think about your code and what it does, verifying the results is not so fun.

Jest provides a large number of “matchers” to make checking results easier. Matchers
work well when results are small, but sometimes test results are pretty large. In these
cases you have to use snapshot testing.

Snapshot testing is pretty simple: when you run a test the first time, you save the test
results in a file called a “snapshot.” You can then make sure the result is correct. You
do not have to write code—you only have to check the snapshot.

If the result is correct, you can commit the snapshot into the version control system.
When you rerun a test, if there is already a snapshot in place, the test tool will auto‐
matically compare the new result of the test with the snapshot. If it is the same, the
test passes; otherwise, it fails.

Let’s see how this works in Jest using the simple matcher toMatchSnapshot. We will
modify the two tests we just did to use snapshot testing. While the test for checkE
mail simply checks if the result is true or false (so we don’t have to modify it much
to use snapshot testing), the test for validateEmail is a bit more complicated.

In that case, we wrote a test expression like this:

Using the Jest Test Runner | 133

expect(main({email: "michele@sciabarra.com"})
 .message[0])
 .toBe('email: michele@sciabarra.com')
expect(main({email: "michele.sciabarra.com"})
 .errors[0])
 .toBe('michele.sciabarra.com does not look like an email')

Here, we are taking the test output and extracting some pieces (.message[0]
or .errors[0]) to verify only a part of the result.

You could save yourself from the burden of thinking about which parts to inspect by
just writing:

test("validate email with snapshot", () => {
 expect(main({email: "michele@sciabarra.com"})
 .toMatchSnapshot()
 expect(main({email: "michele.sciabarra.com"})
 .toMatchSnapshot()
})

Now, if you run the test, Jest will save the results as a snapshot. Of course, always
make sure the snapshot is correct. Let’s see the first execution of the test, when you
create the snapshot:

$ jest email-snap
 PASS ./email-snap.test.js
 ✓ validate email with snapshot (7ms)

 › 2 snapshots written.
Snapshot Summary
 › 2 snapshots written in 1 test suite.

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 2 added, 2 total
Time: 0.899s, estimated 1s

Running the test creates two snapshots.

Summary of the snapshots in the test.

Jest creates a folder named snapshots to store snapshots; then, for each test, it creates a
file named after the filename containing the snapshots, like this:

snapshots/email-snap.test.js.snap

This file is designed to be human-readable, so you can inspect it to be sure the results
in the snapshot are as expected.

For example, this is the content of the snapshot file just created:

134 | Chapter 6: Unit Testing OpenWhisk Applications

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`validate email with snapshot 1`] = `
Object {
 "email": "michele@sciabarra.com",
 "errors": Array [],
 "message": Array [
 "email: michele@sciabarra.com",
],
}
`;

exports[`validate email with snapshot 2`] = `
Object {
 "email": "michele.sciabarra.com",
 "errors": Array [
 "michele.sciabarra.com does not look like an email",
],
 "message": Array [],
}
`;

Result of the first test, with a correct email address.

We produce an array of messages.

Result of the second test, with an incorrect email address.

We produce an array of errors.

Once we know the snapshot is correct, all we need to do is save it in the version con‐
trol system. If a snapshot is already present, running the test again will compare the
test execution against the snapshot, as follows:

$ jest email-snap.test.js
 PASS ./email-snap.test.js
 ✓ validate email with snapshot (7ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: 2 passed, 2 total
Time: 0.876s, estimated 1s

Updating a snapshot
Once a snapshot is in place, Jest will make sure the test always returns the same result.
But of course, things change. Let’s look at an example of a test that fails because some‐
thing in the snapshot changed, and then we’ll see how to update the snapshot.

Using the Jest Test Runner | 135

Let’s assume that from now on we will only accept email addresses with a dot in the
part before the @. Of course, we’d never do this, but right now we’re trying to get our
test to fail, so we’ll use this as an example.

We change the regular expression to validate the emails as follows:

before: var re = /\S+@\S+\.\S+/;
after : var re = /\S+\.\S+@\S+\.\S+/;

Now, if we run the test again, it fails:

$ jest email-snap.test.js
FAIL ./email-snap.test.js
 ✕ validate email with snapshot (17ms)

 ● validate email with snapshot

 expect(value).toMatchSnapshot()

 Received value does not match stored snapshot 1.

 - Snapshot
 + Received

 Object {
 "email": "michele@sciabarra.com",
 - "errors": Array [],
 - "message": Array [
 - "email: michele@sciabarra.com",
 + "errors": Array [
 + "michele@sciabarra.com does not look like an email",
],
 + "message": Array [],
 }

 2 |
 3 | test("validate email with snapshot", () => {
 > 4 | expect(main({email: "michele@sciabarra.com"})).toMatchSnapshot()
 5 | expect(main({email: "michele.sciabarra.com"})).toMatchSnapshot()
 6 | })
 7 |

 at Object.<anonymous>.test (testing/strategy/email-snap.test.js:4:52)

 › 1 snapshot test failed.
Snapshot Summary
 › 1 snapshot test failed in 1 test suite. Inspect your code changes\
 or re-run jest with `-u` to update them.

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 total
Snapshots: 1 failed, 1 passed, 2 total

136 | Chapter 6: Unit Testing OpenWhisk Applications

Time: 0.967s, estimated 1s
Ran all test suites matching /email-snap.test.js/i.

We can fix the test replacing the first email:

expect(main({email: "michele.sciabarra@gmail.com"})).toMatchSnapshot()

However, if we simply run the test again, it will still be failing because the snapshot
expects a michele@sciabarra.com somewhere.

Instead, we need to update the test using jest -u. The flag -u tells Jest to discard the
current snapshot in the cache and re-create it.

After updating the test, of course, you should check that the new snapshot is correct.
Indeed, we have now:

 "message": Array [
 "email: michele.sciabarra@gmail.com",
],

The snapshot can now be used for other tests.

Mocking
For a surprisingly large number of applications, you can run tests in isolation. How‐
ever, at some point, while testing your code, you will have to interface with some out‐
side service. For example, in OpenWhisk it is common to interact with other services
via HTTP or by invoking the OpenWhisk API, perhaps to invoke other actions or
activate triggers. This is where the boundaries of unit testing and integration testing
start to blur.

Some developers would probably say it’s impossible to test code that uses external
APIs locally and that you can only test in the actual environment to get accurate
results.

While this is partly true, it is possible to simulate “just enough” of the behavior of an
external environment (or of any other system) by implementing a local “work-alike”
of the remote system. We call this a mock. In our case, Jest explicitly supports mock‐
ing by replacing libraries with mocks we define.

We’ll start with a simple example simulating an HTTP call. After that, we will cover in
detail how to mock a significant part of the OpenWhisk API to simulate complex
interactions between actions.

But first, let’s learn a little bit more about what a mock really is.

Mocking | 137

What Is a Mock?
A mock is a piece of code that simulates the behavior of some non-local or complex
service in a local environment for testing. For example, in the OpenWhisk environ‐
ment, services that require mocking to be testable include:

• Action invocations
• HTTP requests
• Database access
• Messaging queues

This list is by no means exhaustive. Note that in a mock, you generally do not have to
provide all the complexities of the remote service: you only deliver some results in
response to specific requests.

In principle, you could mock everything, but in practice, this will
probably require a lot of test code. So generally, you need to write
your application code in a way that will isolate access to remote
services in certain modules (that can be replaced by mocks) and
use as little of the remote services as possible (in order to reduce
the number of cases you have to test).

Mocking an HTTPS Request
To better understand how mocking works, let’s consider a common problem: testing
code that executes a remote HTTP call. To illustrate this, we are going to write a sim‐
ple action, httptime.js, that returns the current time.

However, to make it “hard” to test, we will use another action, invoked via HTTP, that
will return the date and time in full format, from which our action will extract the
time.

To do this, we will have to use the Node.js https module and also wrap the call in a
promise to conform to OpenWhisk requirements. For those reasons, the code is a bit
more convoluted than we would like it to be. However, since mocking an HTTPS call
is a frequent and important case, it is worth doing.

You can find the full example code in the GitHub repository.

138 | Chapter 6: Unit Testing OpenWhisk Applications

http://bit.ly/2KCYxj7

An action to be tested by mocking
The code implements an action that returns the current time. It works by invoking
via HTTPS another action that provides the date and time. It uses a promise-based
API. In detail, it:

• Wraps everything in a promise, providing a resolve function
• Opens an HTTPS request to a URL, provided as a parameter of the action
• Defines event handlers for two events, data and end
• Collects data as it is received
• Extracts the time with a regular expression

Here is the main function:

const https = require("https")

function main(args) {
 return new Promise(resolve => {
 let time = ""
 https.get(args.url, (resp) => {
 resp.on('data', (data) => {
 time += data
 })
 resp.on('end', () => {
 var a = /(\d\d:\d\d:\d\d)/.exec(time)
 resolve({body:a[0]})
 })
 })
 })
}

The promise required to retrieve the results.

This variable collects the input.

Use the https module.

Handle the data event (new data received).

Collect the data, which may arrive in multiple chunks.

Handle the end event (all data received).

Extract the time from the date.

Return the value extracted.

Mocking | 139

For convenience, let’s first test in OpenWhisk. We need to create the action service
that returns the current time and date. Note that in the following we use a shell fea‐
ture to create an action without creating a file to store it:

$ CODE="function main() {\
> return { body: new Date() } }"
$ wsk action update testing/now <(echo $CODE) \
 --kind nodejs:6 --web true
$ URL=$(wsk action get testing/now --url | tail -1)
$ curl $URL
2018-05-02T19:42:34.289Z

Store code in a variable.

Use a bash feature to create a temporary file.

Get the URL of the newly created action.

Invoke the action via HTTP.

We can now deploy and invoke the action to see if it works:

$ wsk action update testing/httptime httptime.js \
 -p url "$URL" --web true
$ TIMEURL=$(wsk action get testing/httptime --url | tail -1)
$ curl $TIMEURL
20:06:55

Using a mock to test the action
The example action we just wrote is a typical example of an action that is difficult to
unit test, for a few reasons:

• It invokes a remote service, so to run tests you need to be connected to the inter‐
net.

• You need to be sure the invoked service is readily available.
• The data returned changes every time, so you cannot compare the results with

fixed values.

This is a perfect candidate for testing by mocking the remote service. We need to
replace the https call with a mock that will not perform any remote call. Let see how
to do that with Jest. Jest supports mocking through the ability to replace any Java‐
Script module with a mock without changing the code. In our case, to replace the
https module with a mock we have to:

• Put the code that replaces the https module with our code in a directory called
mocks.

140 | Chapter 6: Unit Testing OpenWhisk Applications

• Use jest.mock('https') in our test code before importing the module to test.
• Write our test code as if we were using the real service.

The folder mocks must be in the same folder as package.json, a sib‐
ling to the node_modules folder.

This is the layout of the filesystem with the files we need for mocking:

httptime
├── package.json
├── __mocks__
│ └── https.js
├── httptime.test.js
└── httptime.js

A placeholder file to declare it is a Node.js project (required by Jest).

The directory containing the mocks.

A mock to replace the https standard library.

A few tests using the mock.

The action to test by mocking.

When you perform a require in a Jest test, it will load your mocked code instead of
the regular code. Since we want to replace the https module, we need to write the
mocks code. For now, assume this code has already been written.

In the next test, pay attention to the fact that the data invoking the URL is the URL
itself. In short, the mock of the URL https://something will return something!
Since the only parameter we are passing to our mock is the URL, whose meaning is in
our case irrelevant because we are not executing any remote calls, it makes sense to
use the URL itself as the parameter to check the result.

Once the mock is in place, you can use it to write the test https.test.js as follows:

jest.mock('https')
const main = require('./httptime').main
test('https', () => {
 main({
 url: '2000-01-01T00:00:00.000Z'
 }).then(res => {
 expect(res.body).toBe('00:00:00')

Mocking | 141

 })
})

Enable the mock.

Import the action locally for testing.

Declare a test.

Invoke the main function—remember we use the URL as the data!

The action returns a promise, so we have to handle it.

Make sure the handler extracts the time from the date.

The jest.mock call is required only to replace built-in Node.js
modules. In general, modules in the mocks directory will be used
automatically before importing any module from node_modules.

To be sure, let’s try to rerun the test with different data:

test('https2', () => {
 main({ url: '2018-05-02T19:42:34.289Z' })
 .then(res => {
 expect(res.body).toBe('19:42:34')
 })
})

Here’s the final result:

$ jest httptime
 PASS ./httptime.test.js
 ✓ https (5ms)
 ✓ https2 (1ms)

Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 1.222s
Ran all test suites matching /httptime/i.

Writing a mock for https

Now let’s write the mock code that will replace the https call. To better understand
the problem, let’s consider what happens when the https module is invoked. As you
can see, there are two steps:

142 | Chapter 6: Unit Testing OpenWhisk Applications

https.get(URL, (resp) =>
 resp.on('data', (data) => {
 // COLLECT_DATA
 }
 resp.on('end', () => {
 // COMPLETE_REQUEST
 }
}

The “real” https module receives an object (resp) that acts as a gatherer of event-
handling functions. There are two handlers required: one for each chunk of data that
arrives, and another for when the request completes.

The HTTPS protocol, when performing a request, opens a connection to a URL, then
reads the content and returns the results in multiple chunks. For this reason, you can
have multiple calls to the data event executing the code marked as COLLECT_DATA.
Hence, you need to collect the data before analyzing it. When all the data has been
collected, you get one (and only one) invocation to execute the code marked as
COMPLETE_REQUEST.

If we want to emulate this code with a mock, we need to perform the following steps:

1. Create an object that stores the event handler.
2. Invoke once (or more) the data event handler.
3. Invoke once the end event handler.

First, we declare an object that gathers the event handlers. This object must imple‐
ment the method on as this is the method used to register event handlers:

var observer = {
 on(event, fun) {
 observer[event] = fun
 }
}

Create an object.

Define an on function.

Assign a function to a field; the field name is the event name.

This code looks complicated, but it’s actually pretty simple. It defines an object that
can register the event handlers and then can invoke them by name, as follows:

observer.on('something', doSomething)
observer.something(1)

So if you pass the observer to the https.get() function, it will register the event han‐
dlers. Once it returns, you will be able to invoke the two handlers registered by name.

Mocking | 143

Our action will register resp.on('data', dataFunc) and resp.on('end', endFunc).
Later, you will invoke them using resp.data("some data") and resp.end().

Now that we have our observer, the full mock is much simpler to write. Remember
what we want to happen:

1. Invoking the function get, we pass a handler object.
2. The handler register the functions to be invoked when data is received and the

invocation complete.
3. The “magic” of our mock is that it returns the URL as the data.

We developed an observer that, once returned, can be used to invoke the user-
defined functions observer.data() and observer.end(). So we pass it as handler,
then we pass the url as data, and finally call end. In code it looks like this:

// observer here, omitted for brevity
function get(url, handler) {
 handler(observer)
 observer.data(url)
 observer.end()
}
module.exports.get = get

It will be invoked as https.get(url, handler).

Important: we are using the URL itself as the value returned by the mocked
https call.

Invoke the end handler.

Now the loop is closed and the tests written before can be implemented and run as
shown.

Mocking the OpenWhisk API
Now that you understand testing with mocking, we can use it to test OpenWhisk
actions using the OpenWhisk API without deploying them. In this section, we unit-
test actions invoking other actions without deploying them.

The OpenWhisk API was covered in Chapter 3. Here, we develop a mocking library
that can mock the more frequently used features of OpenWhisk: action invocation
and sequences.

This library is not large, but its explanation can be complicated and you don’t need to
know all the details to use it in OpenWhisk, so here I’ll only explain how to use it.

144 | Chapter 6: Unit Testing OpenWhisk Applications

The library itself is available on GitHub along with the examples from this book. To
use it in your tests, you need to install Jest and then download and place the file open‐
whisk.js in your mocks folder. You can then use this mocking library to write and run
local unit tests that include action invocations and action sequences.

Using the Mocking Library to Invoke an Action
To use this library, we have to follow some conventions in the layout of our code.
When your application runs in OpenWhisk, you do not have the problem of locating
the code when invoking an action. You deploy an action with the name you choose,
then use this name in the action invocation. It is the OpenWhisk runtime that
resolves the names.

When you test your code locally and simulate invocations by mocking, you do not
deploy your action code, but you still invoke it by name. So, our mocking library
must be able to locate the actual code locally. It does this by following some conven‐
tions.

To illustrate these conventions, let’s look at an example that invokes an action using
the OpenWhisk API:

const ow = require('openwhisk')
test("invoke email validation", () => {
 ow()
 .actions.invoke({
 name: "testing/strategy-email",
 params: {
 email: "michele.sciabarra.com"
 }
 }).then(res =>
 expect(res).toMatchSnapshot())
})

Initialize the OpenWhisk library.

Create the actual invocation instance.

Perform the invocation.

Action name.

Parameters.

You must translate the name testing/strategy-email into the name of a file in the
local filesystem. We use as the base in the filesystem the folder containing pack‐
age.json and node_modules, which is the project root.

By convention, we name our actions according to this structure:

Mocking the OpenWhisk API | 145

http://bit.ly/2XDO1xX

<package>/<prefix>-<action>

Then we expect the action code to be placed in a file named:

• <package>/<prefix>/<file>.js

When we test the code locally by invoking the testing/strategy-email action, the
mocking library works like this:

• The require("openwhisk") will load the mocks/openwhisk.js library.
• It can locate its position from the __dirname variable, and hence find the project

root (i.e., the parent directory).
• Using the name of the action, it can now locate the code of the action to invoke:

in our case, <project-root>/testing/strategy/email.js.

Mocking Action Parameters
There is another essential feature we need to complete our simulation for testing. In
OpenWhisk, actions can have additional parameters. Those parameters can be speci‐
fied when you deploy the action or can be inherited from the package to which the
action belongs. When we use our mocking library, we can simulate those parameters
by adding a file with the same name as the action and the extension .json.

For example, in our case, we have the file testing/strategy/email.json in the same folder
as email.js with the content:

{
 "errmsg": " is not an email address"
}

The mocking library uses this file, preloading the parameters and passing them as
args. Indeed, we can check the test has used the parameter errmsg. We need to check
the snapshot to see:

$ cat __snapshots__/invoke.test.js.snap
// Jest Snapshot v1, https://goo.gl/fbAQLP
exports[`invoke email validation 1`] = `
Object {
 "email": "michele.sciabarra.com",
 "errors": Array [
 "michele.sciabarra.com is not an email address",
],
 "message": Array [],
}
`;

Dump the snapshot file the terminal.

146 | Chapter 6: Unit Testing OpenWhisk Applications

The error message produced is the one specified in the email.json file.

Mocking a Sequence
We can now complete our analysis of the mocking library by describing how to mock
a sequence. In Chapter 5 we saw how the Chain of Responsibility pattern is imple‐
mented as a sequence. A sequence does not have a corresponding action, but it does
exist as a deployment declaration. We can simulate an action sequence with a particu‐
lar value in the JSON file we use to pass the parameters.

For example, let’s consider the following test sequence:

test('validate4', () =>
 ow().actions.invoke({
 name: 'testing/chainresp-validate',
 params: {
 name: 'Michele',
 email: 'michele.sciabarra.com',
 phone: '1234567890'
 }
}).then(res => expect(res).toMatchSnapshot()))

There is not a testing/chainresp/validate.js file, but there is a testing/chainresp/vali‐
date.json with this content:

{
 "__sequence__": [
 "testing/strategy-name",
 "testing/strategy-email",
 "testing/strategy-phone"
]
}

We can now write a test as follows:

const ow = require('openwhisk')
test('validate', () =>
 ow().actions
 .invoke({
 name: 'testing/chainresp-validate',
 params: {
 name: 'Michele',
 email: 'michele.sciabarra.com',
 phone: '1234567890'
 }
 })
 .then(res => expect(res).toMatchSnapshot()))

The mocking library then reads the __sequence__ property from validate.json and
translates in a sequence of invocations (as it would happen in the real OpenWhisk),
allowing us to test the result of a chained invocation locally.

Mocking the OpenWhisk API | 147

We can see that the mocking of the sequence works by inspecting the snapshot:

// Jest Snapshot v1, https://goo.gl/fbAQLP
exports[`validate 1`] = `
Object {
 "email": "michele.sciabarra.com",
 "errors": Array [
 "michele.sciabarra.com is not an email address",
],
 "message": Array [
 "name: Michele",
 "phone: 1234567890",
],
 "name": "Michele",
 "phone": "1234567890",
}
`;

Error message defined as a parameter.

Summary
In this chapter you learned about testing and debugging JavaScript applications run‐
ning in OpenWhisk. First, we gathered information and prepared a local environ‐
ment that mimics OpenWhisk, and we installed a test runner (Jest). Then we went
through code for testing actions, either locally or by connecting to OpenWhisk, with
particular emphasis on verifying the results through snapshot testing. Finally, we cov‐
ered an important technique used to test code that connects to other code: mocking.

148 | Chapter 6: Unit Testing OpenWhisk Applications

PART II

Advanced OpenWhisk Development

In this second part, you’ll take your OpenWhisk skills a little further. We’ll use two
more programming languages to develop OpenWhisk actions: Python and Go. We’ll
analyze how to create, deploy, and test OpenWhisk actions in Python, and create a
simple CRUD application. Then we’ll do the same for Go actions, and to create a sim‐
ple web chat application. We’ll also explore two important components of Open‐
Whisk applications: the NoSQL database CouchDB and the messaging queue Kafka.
Finally, we complete the book by exploring how to install OpenWhisk in the cloud
and on-premises using Kubernetes.

CHAPTER 7

Developing OpenWhisk Actions in Python

In this chapter, you will learn how to write OpenWhisk actions using Python.

While knowledge of Python is a prerequisite to fully understand the examples in this
chapter, the code should be comprehensible to most developers as Python is one of
the easiest and most readable programming languages around. Still, I recommend
that you check out the Python tutorial before reading this chapter and Chapter 9 if
you haven’t worked with Python before.

The source code for this chapter’s examples is available in the Git‐
Hub repository.

The Python Runtime
Let’s start by exploring the Python runtime. As you’ll see, it executes actions similar
to the examples we saw earlier.

You develop your actions by creating a function, main, that will receive a dictionary as
input and must also return a dictionary as output (you can specify a different func‐
tion name if you want).

For example:

def main(args):
 name = args.get("name", "world")
 greeting = "Hello " + name + "!"
 print(greeting)
 return {"hello": greeting }

151

http://docs.python.org
http://bit.ly/2YidUAv
http://bit.ly/2YidUAv

The entry point is a function with a dictionary as a parameter.

You access the fields of this dictionary using Python functions like get.

What you print goes in the log.

The returned value must be a dictionary too.

Deploying the action and invoking it works the same way as it does in JavaScript:

$ wsk action update python/hello hello.py
ok: updated action python/hello
$ wsk action invoke python/hello -p name Mike -r
{
 "hello": "Hello Mike!"
}

Here, we did not specify which programming language to use, but
the CLI is smart enough to infer that the action requires the Python
runtime. The default is Python 2, but if you want to use Python 3
use the option --kind python:3.

What’s in the Python Runtime?
Now that we have our shiny new runtime, let’s use some inspection actions to take a
closer look.

The first step is to write a script that prints the version:

import sys
def main(args):
 return { "version": sys.version}

Let’s deploy and run it:

$ wsk action update python/version version.py
ok: updated action python/version
$ wsk action invoke python/version -r
{
 "version": "2.7.15 (default, Sep 12 2018, 02:38:23) \n[GCC 6.4.0]"
}

We can see that by default it uses Python 2, but let’s specify that we want Python 3,
instead:

$ wsk action update python/version3 \
 version.py --kind python:3
ok: updated action python/version3
wsk action invoke python/version3 -r
{

152 | Chapter 7: Developing OpenWhisk Actions in Python

 "version": "3.6.6 (default, Sep 12 2018, 02:15:29) \n[GCC 6.4.0]"
}

Now let’s create a script that can produce a listing of all the available libraries in the
runtime in the format <library>==<version>. The standard requirements.txt file,
used by the pip package manager, actually uses this format; we use it later to create a
test environment.

In Python, the pkg_resources library provides a list of the third-party packages
installed and writes a web action that will output our file:

import pkg_resources
def main(args):
 requirements = ""
 for d in pkg_resources.working_set:
 requirements += d.project_name
 requirements += "=="
 requirements += d.version
 requirements += "\n"
 return {
 "body": requirements
 }

This package gives access to a list of available packages.

This object contains all the available package information.

We extract just the package name and version.

We return a web action output.

Let’s now use this script to extract requirements.txt, which we can use later to rebuild
the runtime environment locally:

$ wsk action update python/requirements requirements.py --web true
ok: updated action python/requirements
$ curl $(wsk action get python/requirements --url | tail -1)
wsgiref==0.1.2
Python==2.7.15
zope.interface==4.5.0
wheel==0.31.1
...

Libraries Available in the Runtime
Table 7-1 lists the libraries included in the runtime for Python 2 at the time of writ‐
ing.

The Python Runtime | 153

Table 7-1. Python 2 action runtime package list

Package Version
Flask 0.11.1

Jinja2 2.10

MarkupSafe 1.0

PyDispatcher 2.0.5

Python 2.7.15

Scrapy 1.1.2

Twisted 16.4.0

Werkzeug 0.14.1

asn1crypto 0.24.0

attrs 18.2.0

beautifulsoup4 4.5.1

cffi 1.11.5

click 6.7

cryptography 2.3.1

cssselect 1.0.3

enum34 1.1.6

functools32 3.2.3.post2

gevent 1.1.2

greenlet 0.4.15

httplib2 0.9.2

idna 2.7

ipaddress 1.0.22

itsdangerous 0.24

kafka-python 1.3.1

lxml 3.6.4

parsel 1.5.0

pip 18.0

pyOpenSSL 18.0.0

pyasn1 0.4.4

pyasn1-modules 0.2.2

pycparser 2.18

python-dateutil 2.5.3

queuelib 1.5.0

requests 2.11.1

service-identity 17.0.0

setuptools 40.4.1

154 | Chapter 7: Developing OpenWhisk Actions in Python

Package Version
simplejson 3.8.2

six 1.11.0

virtualenv 15.1.0

w3lib 1.19.0

wheel 0.31.1

wsgiref 0.1.2

zope.interface 4.5.0

Table 7-2 lists the available packages in the Python 3 runtime at the time of writing.

Table 7-2. Python 3 action runtime package list

Package Version
Automat 0.7.0

Flask 0.12

Jinja2 2.10

MarkupSafe 1.0

PyDispatcher 2.0.5

Scrapy 1.3.3

Twisted 17.1.0

Werkzeug 0.14.1

asn1crypto 0.24.0

attrs 18.2.0

beautifulsoup4 4.5.3

cffi 1.11.5

click 6.7

constantly 15.1.0

cryptography 2.3.1

cssselect 1.0.3

gevent 1.2.1

greenlet 0.4.15

httplib2 0.10.3

idna 2.7

incremental 17.5.0

itsdangerous 0.24

kafka-python 1.3.4

lxml 3.7.3

parsel 1.5.0

The Python Runtime | 155

Package Version
pip 18.0

pyOpenSSL 18.0.0

pyasn1 0.4.4

pyasn1-modules 0.2.2

pycparser 2.18

python-dateutil 2.6.0

queuelib 1.5.0

requests 2.13.0

service-identity 17.0.0

setuptools 40.3.0

simplejson 3.10.0

six 1.11.0

virtualenv 15.1.0

w3lib 1.19.0

wheel 0.31.1

zope.interface 4.5.0

Since the actual package versions may vary, it is best that you use
the scripts here to see what you have available. I don’t expect the
packages to change drastically in future releases, but developers
periodically refresh the runtimes, updating the versions of the
packages.

Using Third-Party Libraries
The examples so far have only used a single Python file. But most Python programs
are composed of many files and can include third-party libraries. Next, we will go
over how to deal with those requirements and deploy multifile actions in Open‐
Whisk.

Packaging a Python Application in a Zip File
To deploy an action composed of multiple files, you need to build a zip file that con‐
forms to some rules.

The most important rule is that it must contain, at the top level (not in a subdirec‐
tory), a file called __main__.py. In this file, you have to define a function whose name
is the one specified with the flag --main. If you omit the value, the default name is
main.

To illustrate, let’s create a __main__.py file containing a function called main:

156 | Chapter 7: Developing OpenWhisk Actions in Python

def main(args):
 name = args.get("name", "stranger")
 greeting = "Welcome " + name
 return {"main": greeting}

We can now build a zip file and deploy it and test it:

$ zip zipfile.zip __main__.py
 adding: __main__.py (deflated 47%)
$ wsk package update python
ok: updated package python
$ wsk action update python/zipfile \
 zipfile.zip --kind python:3
ok: updated action python/zipfile
$ wsk action invoke python/zipfile -r
{
 "main": "Welcome stranger"
}

Package the action in a zip file.

Make sure we have a python package.

Deploy the action as a zip file.

Invoke it and see the result.

The action does not have to be named main. If we have, for example, this
__main__.py including this hello function

def hello(args):
 return {
 "hello": "Hello %s" %
 args.get("name", "world")
 }

we can build the zip in the same way as before, but we have to deploy it in a slightly
different way:

$ wsk action update \
 python/zipfile-hello zipfile.zip \
 --kind python:3 --main hello
ok: updated action python/zipfile-hello
$ wsk action invoke python/zipfile-hello -r
{
 "hello": "Hello world"
}

Note here the use of --main.

Of course, a zip file comprising only one file is pointless. Let’s create a Python mod‐
ule, stored in the file hi.py, that can we deploy in the same zip file:

Using Third-Party Libraries | 157

File: hi.py
def hi(name):
 if name:
 return "Hi %s" % name
 return "Hi all!"

File: __main__.py
import hi
def main(args):
 return {"hi":
 hi.hi(args.get("name"))}

The function hi is stored in a different Python module.

We import the module hi in the main function.

Refers to the function in the module.

In Python it is common to collect functions in a module and import them in another.
But now we have to deploy both files:

$ zip zipfile-hi.zip __main__.py hi.py
 adding: __main__.py (deflated 47%)
 adding: hi.py (deflated 30%)
$ wsk action update python/zipfile-hi \
 zipfile.zip --kind python:3
ok: updated action python/zipfile-hi
$ wsk action invoke python/zipfile-hi -r
{
 "hi": "Hi all!"
}

Using virtualenv
As we have seen, there are many libraries available out of the box in the OpenWhisk
Python runtimes. But what do we do when we want to use libraries that are not in the
default set? Luckily, we can include additional third-party libraries in the zip file we
use to deploy multifile actions.

Python has a vast repository of open source libraries available in a
common registry called the Python Package Index (PyPI), which is
accessible with the tool pip. You can browse the available packages
at https://pypi.org.

The inclusion of additional libraries requires the use of two Python-specific tools: pip
and virtualenv.

158 | Chapter 7: Developing OpenWhisk Actions in Python

https://pypi.org

pip (short for “Pip install packages"--a recursive acronym, a common pun in pro‐
gramming) is the standard Python package manager, included in recent distributions
of the language. In a normal Python environment, when you need a package that is
available in PyPi, you install it with the command pip <package>.

Unfortunately, it is not as simple to install the package in a serverless environment.
This is because we have a specific version of Python within our runtime, and a partic‐
ular set of libraries already installed, with exact versions.

When we install a package with pip, it can have dependencies. As a result, pip also
installs all the dependencies, and the dependencies of the dependencies, but skips
those dependencies already available in our environment. Things can become even
more complicated when we consider versions: pip can pick a specific version of the
library we have requested, then update some other libraries available in the environ‐
ment if the library asks for a more recent version of an already-present package…

In practice, we need to be able to run our pip installer in the same environment we
will have in the runtime image, then upgrade it, and finally, send the final environ‐
ment. How can this be done?

Here is where the utility virtualenv comes in. virtualenv can create a fresh copy of
a given environment that can then be modified or updated, without affecting the
original environment. The “virtual environment” is a subdirectory with many folders
and links to the existing environment. The virtualenv command creates it. Once we
have this virtual environment, we can activate it and install additional packages (with
pip) in it.

But here’s the problem: we have to do that using the same environment that is in the
runtime. Luckily, those environments are Docker images we can pull and use to build
the virtual environment that we then send to OpenWhisk. Let’s look at some exam‐
ples.

How Virtualenv and Pip Work
First, let’s see how Virtualenv and Pip work by installing the yattag package. The fol‐
lowing steps can be done in a single command.

This is the listing (with some of the more verbose and irrelevant output eliminated):

$ docker run --rm -ti openwhisk/python3action bash
latest: Pulling from openwhisk/python3action
python -c 'import yattag'
ModuleNotFoundError: No module named 'yattag'
cd /tmp
virtualenv virtualenv
Using base prefix '/usr/local'
New python executable in /tmp/virtualenv/bin/python
Installing setuptools, pip, wheel...done.

Using Third-Party Libraries | 159

source virtualenv/bin/activate
(virtualenv) # pip install yattag
Collecting yattag
Successfully built yattag
Installing collected packages: yattag
Successfully installed yattag-1.10.0
python -c "import yattag"

Enter the Python runtime.

Check if there is a yattag module; if not, error.

Create a virtualenv in /tmp/virtualenv

Activate it.

Install the yattag module with pip.

Success! No errors.

Automating the Virtual Environment
Now that the procedure is clear we can automate it, with the help of Docker. We will
perform the following steps:

Deploy and run.

We need to use the Docker container to build the virtualenv, but we
have to store the result in a directory outside the Docker container.
The -v (volume) switch in Docker allows mapping our current
folder into a folder inside the Docker container.

Using the yattag Library
Let’s assume we want to write an action in Python to produce an HTML result—i.e., a
web action. The usual way is to embed the HTML in the code, but this generally leads
to code that is difficult to read and maintain. A better option would be to describe the
HTML in Python.

yattag is a library designed for this purpose. For example, we can write a simple
hello world Python action that produces HTML as follows:

from yattag import Doc
doc, tag, text = Doc().tagtext()

def main(args):
 with tag("html"):
 with tag("body"):

160 | Chapter 7: Developing OpenWhisk Actions in Python

 with tag("h1"):
 text("Hello %s" %
 args.get("name", "world"))
 return {
 "body": doc.getvalue()
 }

Import the library to generate the HTML.

with tag represents an HTML tag.

We use text to produce text output in the HTML.

Finally, we return the HTML we built as a Python dictionary.

Building the Virtualenv, Including a Library
Before building the virtual environment, we create the requirements.txt file that can
be used to give pip a list of the required libraries. With it, we can use pip install -r
requirements.txt instead of specifying all the libraries on the command line.

The requirements.txt file is pretty simple; it contains just one line with yattag. But it
can be more complex, and include multiple libraries and the versions of each library.
The main reason to put the list of requirements in a file is to be able to store and
automate the creation of the virtualenv.

Once we have __main__.py and requirements.txt we can build a virtualenv and store
it in our directory with the following long command line:

$ docker run --rm \
 -v "$PWD:/tmp" \
 openwhisk/python3action bash -c \
 "cd tmp && \
 virtualenv virtualenv && \
 source virtualenv/bin/activate && \
 pip install -r requirements.txt"

Start a “transient” Docker image.

Mount the current directory to be accessible as /tmp inside the Docker image.

Launch the Docker image of the Python action.

Go where our current directory is mounted.

Build the virtualenv.

Activate the virtualenv.

Using Third-Party Libraries | 161

Install the missing libraries.

After running the command, you will find a new directory in your current one—vir‐
tualenv—including yattag and all the other requirements that may depend on it.

Now it is time to zip the image, deploy it, and execute it:

$ zip -q -r yattag.zip __main__.py virtualenv
$ wsk action update python/yattag yattag.zip \
 --web true --kind python:3
ok: updated action python/yattag
$ curl $(wsk action get python/yattag --url | tail -1)
<html>
 <body>
 <h1>Hello world</h1>
 </body>
</html>

Collect the action and its virtualenv.

Deploy the action as a web action.

Invoke the action as a web action with curl.

The HTML output of the action as generated by yattag.

Using the OpenWhisk REST API
In earlier chapters, we saw how the OpenWhisk API allows us to invoke other
actions, activate triggers, and execute asynchronous calls in JavaScript. OpenWhisk,
however, is a multilanguage environment, so you may need APIs for other program‐
ming languages.

We are using Python in this chapter, but you could use Ruby, Go, Swift, PHP, etc. To
support all these environments, OpenWhisk provides a generic REST API in Open‐
API (formerly Swagger) format. This API can be used by any programming language
as soon as you have a library to use HTTP and JSON.

Let’s look at how to use this API on the command line (with curl). After that, we’ll
see how to use it in Python.

Like all the REST APIs, you access the various functionalities using URLs as entry
points. The generic format of the entry point is

https://{APIHOST}/api/v1/namespaces/{NAMESPACE}/{ENTITY}/...

where the names in curly braces are placeholders for specific values the user can spec‐
ify. The {APIHOST} is where your OpenWhisk installation is running. If you are using,

162 | Chapter 7: Developing OpenWhisk Actions in Python

for example, the IBM Cloud, it will be something like openwhisk.eu-

gb.bluemix.net, but you may also have some URL specific to your installation if you
chose to install it on your servers.

If you recall the discussion in Chapter 3, you may remember that the namespace is a
name that you are assigned and is used as a common prefix for a set of OpenWhisk
entities. The REST API places all the operations under the {NAMESPACE} because all
the operations that refer to the {ENTITY} are restricted to entities present only in that
namespace. After the namespace, you can specify the entity you want to operate with.
Currently, the available entities are actions, triggers, rules, packages, and activations.

If you omit the {NAMESPACE}/{ENTITY} part it shows the available namespaces.

After the entity name, there are specific parameters for each entity. You can operate
on each entity with HTTP methods like GET, POST, PUT, and others by providing a
JSON payload that is different for each entity.

Let’s see some of the possible combinations of methods and paths. We will not cover
in detail every possible operation; instead, I’ll show with examples only those I think
are essential for practical use.

The CLI works by implementing the API and offers a verbose
mode allowing you to see the actual URLs and JSON used. So, if
you are in doubt about how to invoke certain operations using the
REST API, you can always run the equivalent operations in the CLI
and use the switch -v to see what is happening “under the hood.”

Authentication
All the API operations are protected with HTTP Basic authentication. This means
every request needs an authentication header with a value constructed by:

• Concatenating the username and password separated by a :
• Encoding the result in base64

Knowing how to build an authentication header is essential when you want to con‐
struct an appropriate HTTP request with a generic HTTP library. However, more
advanced libraries often can generate this header for you.

In the IBM Cloud you may need to use something else in the
authentication header, like the IAM bearer token.

Using the OpenWhisk REST API | 163

Connecting to the API with curl
Now that we know how to format the URL we can try the first connection using the
command-line tool curl with connection credentials available through the CLI.

If you type wsk property get you get output like this:

whisk auth XXX:YYY
whisk API host openwhisk.eu-gb.bluemix.net
whisk API version v1
whisk namespace learning_openwhisk
whisk CLI version 2018-09-14T17:43:44.288+0000
whisk API build 2018-09-20T14:24:50Z
whisk API build number whisk-build-10300

where XXX:YYY is a long string encoding the username and password (it has been
simplified in the example).

We have enough information to connect using the curl command. However, the
command line and the URL would be very long—let’s try to simplify them with envi‐
ronment variables.

Here is how to extract credentials from wsk and put in environment variables:

APIHOST=$(wsk property get --apihost | awk '{print $4}')
APIVERSION=$(wsk property get --apiversion | awk '{ print $4}')
AUTH=$(wsk property get --auth | awk '{ print $3 }')
NAMESPACE=$(wsk property get --namespace | awk '{ print $3}')
URL="https://$APIHOST/api/$APIVERSION/namespaces/$NAMESPACE"

Extract the API host.

Extract the version of the API.

Extract authentication information.

Extract the current namespace.

The base URL to connect to.

With those variables we can easily invoke the list of packages. For example:

$ curl -s \
 -u $AUTH \
 $URL/packages \
 | jq .[1]
{
 "name": "python",
 "binding": false,
 "publish": false,
 "annotations": [],

164 | Chapter 7: Developing OpenWhisk Actions in Python

 "version": "0.0.2",
 "updated": 1538230458075,
 "namespace": "openwhisk@example.com_dev"
}

We use the curl command in silent (-s) mode to avoid unnecessary messages.

We specify the username and password (-u).

The URL was constructed using the variables we set before, adding the entity
packages.

Since the output is a long JSON array we use only the first one with this jq
expression.

Alternatively, we can get a list of all the packages, picking only the name, with:

$ curl -u $AUTH -s $URL/packages | jq .[].name
"pattern"
"python"
"apidemo"
"basics"
"contact"
"contactdb"

When you use the command line, the command jq is handy since
it lets you easily manipulate the JSON using its expression lan‐
guage. The subject is outside the scope of this book, but if you want
to learn more visit the jq website.

We do not go into more detail here because we are more interested in using Python
than curl. However, the ability to use the command line is invaluable when you need
to debug.

Using the OpenWhisk REST API in Python
In Python, the most common library to perform HTTP requests is (not surprisingly)
the requests library; it is not part of the standard library but is present in the set
offered by the runtime. This library allows us to perform the same invocations that
we did before using the command line. However, we need a few parameters we
obtained before using wsk in the CLI. The same parameters are available in Open‐
Whisk, through the environment variables starting with the prefix __OW_. We can see
those variables with this simple script:

import os
def main(args):

Using the OpenWhisk REST API in Python | 165

http://bit.ly/2KGEFeV

 m = os.environ
 return { x:m[x]
 for x in m.keys()
 if x.startswith("__OW_") }

Get the environment.

Iterate on all the environment variables.

Filter the environment variables starting with __OW_.

Using this script we can see that the same values we saw on the command line are
also available here and are readily usable by Python scripts:

$ wsk action update python/environ environ.py
ok: updated action python/environ
wsk action invoke python/environ -r
{
 "__OW_ACTION_NAME": "/openwhisk@example.com_dev/python/environ",
 "__OW_ACTIVATION_ID": "81f048886f684f9eb048886f68cf9e46",
 "__OW_API_HOST": "https://eu-de.functions.cloud.ibm.com:443",
 "__OW_API_KEY": "XXXX:YYYY",
 "__OW_DEADLINE": "1538771271529",
 "__OW_NAMESPACE": "openwhisk@example.com_dev"
}

Now let’s construct an action that can perform the same invocation we saw before
listing the available packages. This time we will create a web request and produce a
result in HTML.

To do this, we need to follow these steps:

1. Import the request library.
2. Get authentication credentials from the API_KEY.
3. Open a connection to the API_HOST.
4. Execute the request.
5. Wait for the result of the request and then parse it.
6. Process the result to return the final result.

Let’s translate this plan into Python:

import os

def url(operation):
 return "%s/api/v1/namespaces/%s/%s" % (
 os.environ["__OW_API_HOST"],
 os.environ["__OW_NAMESPACE"],

166 | Chapter 7: Developing OpenWhisk Actions in Python

 operation
)

This code builds the REST URL we saw before using Python string formatting.

Let’s see how we extract the authentication information:

def auth():
 up = os.environ['__OW_API_KEY'].split(":")
 return (up[0], up[1])

This code is slightly more interesting. In the API key, the username and password are
concatenated and separated with :, while the requests library expects a tuple of the
username and password. We need to separate the two components, splitting the
string into two.

We are now ready to perform the request:

def whisk_get(operation):
 return requests.get(
 url=url(operation),
 auth=auth())

We merely construct a request object, passing the extracted URL and authentication
information. This call executes the HTTP request and returns the result as a response
object.

We know that the result is a JSON string that we can parse and process, as follows:

import json

def main(args):
 res = whisk_get("packages")
 js = json.loads(res.text)
 pkgs = [x["name"] for x in js]
 return { "packages": pkgs }

Execute a get on the OpenWhisk URL to get the packages.

Parse the JSON in a Python object.

Extract the package name from a list of objects.

Return the result.

Let’s deploy the action and check the result:

$ wsk action update python/restpkgs restpkgs.py --kind python:3
ok: updated action python/restpkgs
$ wsk action invoke python/restpkgs -r
{
 "packages": [
 "python",

Using the OpenWhisk REST API in Python | 167

 "pattern",
 "apidemo",
 "basics",
 "contact",
 "contactdb"
]
}

We got the same results as the curl examples in Python with an action running in
OpenWhisk.

Invocations, Activations, and Triggers in Python
When you develop OpenWhisk applications, the more important APIs that we’ll look
at in detail are:

• Action invocations, either blocking or nonblocking
• Trigger invocations
• Activation retrieval

Blocking Action Invocation
Action invocation is probably the most important and frequently used function in the
OpenWhisk API.

Action invocation has the following requirements:

• You must specify the action name in the URL.
• It receives additional information (the payload) that you want to submit.
• It can be either blocking or not blocking.
• It can return or not return the result of the invoked action.

An action invocation has the following URL format:

https://{APIHOST}/api/v1/namespaces/{namespace}/actions/[{packageName}/]\
{actionName}

You append to the URL as a parameter blocking=1 if you want it to be blocking and
result=1 if you want to retrieve the result. Then, you need to send the data for the
invocation in JSON format with a POST method; the returned data is in JSON format.

Now let’s construct a whisk_invoke function that satisfies those requirements. First,
let’s define the parameters. You need to pass additional data, in the form of a Python
object that can be serialized in JSON. Second, you can specify if you want the action
invocation to be blocking and if you want the result of the invoked action. Since a

168 | Chapter 7: Developing OpenWhisk Actions in Python

blocking action returning the result is the most common case, the default values of
those parameters are true. The function has this signature:

def whisk_invoke(action, args, blocking=True, result=True)

You can now invoke whisk_invoke(action,args) if you want a blocking invocation
that returns the results. You can use whisk_invoke(action, args, False) if you
want a nonblocking action invocation where you retrieve the results later. When you
specify an action invocation with whisk_invoke(action, args, False, False) you
are not interested in the results, so you “fire and forget.” There is also the (rare) case
of whisk_invoke(action,args, True, False), when you want to block waiting for
the action to complete but you are not interested in the results.

Let’s take a look at the implementation. We can reuse the functions url and auth
from before. Here we use a POST request to pass the payload, which must be encoded
in JSON. We then decode the result. The function looks like this:

def whisk_invoke(action, args,
 blocking=True, result=True):
 invoke = "actions/%s?blocking=%d&result=%d" % (
 action, blocking, result)
 resp = requests.post(
 url=url(invoke),
 auth=auth(),
 json=args
)
 return json.loads(resp.text)

Construct the URL in the required format.

Note the request now is a POST.

Pass the args with json to encode in JSON.

Decode the JSON result as a Python object.

Let’s now see how this works in practice. We’ll use as an example the action sort from
the /whisk.system/utils package. Hence, we’ll first bind the package in our name‐
space to be able to use it without needing different credentials. Here’s the main func‐
tion from invokesort.py. The function simply accepts a text string as an input, splits it
into words, and then returns an ordered list:

def main(args):
 input = {"lines": args["text"].split(" ")}
 res = whisk_invoke("utils/sort", input)
 return res

Prepare input, splitting the parameter text.

Invocations, Activations, and Triggers in Python | 169

Invoke the action utils/sort.

Return the result, as is.

Now let’s bind the package we want to invoke, deploy our function, and invoke it to
test and see the result:

$ wsk package bind /whisk.system/utils utils
ok: created binding utils
$ wsk action update python/invokesort \
 invokesort.py --kind python:3
ok: updated action python/invokesort
wsk action invoke python/invokesort \
 -p text "b a d a c" -r
{
 "length": 5,
 "lines": [
 "a",
 "a",
 "b",
 "c",
 "d"
]
}

Now we have a utils/sort action.

Deployment.

Invocation.

The result is the input line split and sorted.

Nonblocking Trigger Invocation
Action invocations can be blocking or nonblocking, depending on whether the
parameter blocking is set to true or false. You can also invoke an action indirectly
through a trigger and a rule. Trigger invocation, however, is always nonblocking. The
invocation of a trigger is very similar to the invocation of an action, except you do not
have to specify if it is blocking or not, and you cannot use package names in a trigger
name. To invoke a trigger, the format of the URL is:

https://{APIHOST}/api/v1/namespaces/{namespace}/triggers

Reusing the usual url and auth functions, we can write a function that invokes a trig‐
ger named python-trigger (yet to be created) as follows:

def whisk_trigger(trigger, args):
 invoke = url("triggers/%s" % trigger)

170 | Chapter 7: Developing OpenWhisk Actions in Python

 resp = requests.post(
 url=invoke,
 auth=auth(),
 json=args
)
 return json.loads(resp.text)

def main(args):
 input = {"lines": args["text"].split(" ")}
 return whisk_trigger("python-trigger", input)

Invoke the trigger entity.

Specify the python-trigger as a trigger.

Now we can test build a trigger and a rule, and then fire the trigger to enable the rule
and activate the action:

$ wsk trigger create python-trigger
ok: created trigger python-trigger
wsk rule update python-trigger-sort python-trigger utils/sort
ok: updated rule python-trigger-sort
$ wsk action update python/firetrigger firetrigger.py --kind python:3
ok: updated action python/firetrigger
$ wsk action invoke python/firetrigger -p text "b a d a c" -r
{
 "activationId": "8023462aaa5e41fba3462aaa5ea1fbae"
}

We invoke our REST service in a nonblocking way. As you saw in earlier chapters, if
you deploy and invoke the action again without the -b flag, it returns instead an acti‐
vation id.

In general, however, you do not want to return the activation id to the user. You want
to store it somewhere and use it later to retrieve the results. To complete our example
we’ll assume we pass the invocation id to another action (python/retrieve) that
retrieves the result as follows:

input = {"lines": args["text"].split(" ")}
aid = whisk_invoke("utils/sort", input, False)
return whisk_invoke("python/retrieve", aid)

We delegate the retrieval of the data associated with the activation
to another action because trying to retrieve the result immediately
almost always leads to it not being available yet. So, we have to wait
a bit using another invocation.

Invocations, Activations, and Triggers in Python | 171

In general, when you have to wait, you can also use the sleep func‐
tion.

Retrieving the Result of an Invocation
Now let’s see how to retrieve the data associated with an activation id using the REST
API. The URL has this format:

https://{APIHOST}/api/v1/namespaces/{namespace}/activations/{activationId}

Using curl you can see the format of the answer returned by the activation:

$ source init.sh
$ curl -u $AUTH -s $URL/activations/8023462aaa5e41fba3462aaa5ea1fbae| jq .
{
 "duration": 5,
 "name": "sort",
 "subject": "openwhisk@example.com",
 "activationId": "0e45f77a1cde47e385f77a1cded7e33d",
 "publish": false,
 "version": "0.0.92",
 "response": {
 "result": {
 "lines": [
 "a",
 "a",
 "b",
 "c",
 "d"
],
 "length": 5
 },
 "success": true,
 "status": "success"
 },
 "end": 1539110403714,
 "logs": [
 "2018-10-09T18:40:03.713748725Z stdout: sort input msg: \
 {\"lines\":[\"b\",\"a\",\"d\",\"a\",\"c\"]}",
 "2018-10-09T18:40:03.713814088Z stdout: sort before: b,a,d,a,c",
 "2018-10-09T18:40:03.713821123Z stdout: sort after: a,a,b,c,d"
],
 "start": 1539110403709,
 "namespace": "openwhisk@example.com_dev"
}

As you can see, the value returned is in the field response.result.

172 | Chapter 7: Developing OpenWhisk Actions in Python

So, we can write an action receiving an activation id and execute the invocation. The
main function is, as expected, just:

def main(args):
 id = args.get("activationId")
 if id:
 return whisk_activation(id)['response']['result']
 return {"error": "missing activationId"}

Nonblocking action invocation.

Retrieve the result of the invocation and extract the result.

Now we have all the pieces to make a round trip as follows (reusing the whisk_invoke
and whisk_trigger functions we already wrote):

def main(args):
 input = {"lines": args["text"].split(" ")}
 aid = whisk_trigger("python-trigger", input)
 res = whisk_invoke("python/retrieve", aid)
 return res

We show the results, deploying retrieve.py and roundtrip.py and testing it:

$ wsk action update python/retrieve retrieve.py --kind python:3
ok: updated action python/retrieve
$ wsk action update python/roundtrip roundtrip.py --kind python:3
ok: updated action python/roundtrip
$ wsk action invoke python/roundtrip -p text "b a d a c" -r
{
 "lines": [
 "b",
 "a",
 "d",
 "a",
 "c"
]
}

Testing Python Actions
You already know how to write and run actions in OpenWhisk. Now you need to
learn how to debug and test those actions. You can, of course, debug your actions by
deploying them and then using logs to inspect their behavior when they do not work
correctly. But this is not a very effective way of debugging, since it involves a lot of
repetitive and time-consuming work.

As we saw earlier for JavaScript, a better way to debug Python actions is by executing
them locally, applying unit tests to the various parts of your code before deploying it
in the runtime.

Testing Python Actions | 173

Hence, I am now going to show the essential steps required to perform a useful test:

• How to recreate the environment of the runtime locally
• How to write unit tests, using examples
• How to execute locally actions that invoke the REST API
• How to “mock” remote requests to get predictable results

We’ll reuse the rstpkgs.py code (the script that shows a list of our packages) to explore
how to test in Python.

Recreating the Python Runtime Environment Locally
The first step to test your actions locally is to recreate the runtime environment. You
should install the same version of the interpreter available in the runtime and create
the same dependencies. As shown in “What’s in the Python Runtime?” on page 152,
you can quickly inspect the packages in use and create a requirements3.txt file specify‐
ing the exact versions of the packages you need. Once you have that, you can create a
virtualenv for local use, installing the exact versions that are in the runtime.

Let’s execute at the terminal the initialization of a test environment for Python 3. I
assume you have deployed the python/requirements3 action to retrieve the list of
the requirements.

$ curl -s $(wsk action get python/requirements3 --url \
 | tail -1) >requirements3.txt
$ head requirements3.txt
zope.interface==4.5.0
wheel==0.31.1
Werkzeug==0.14.1
w3lib==1.19.0
virtualenv==15.1.0
Twisted==17.1.0
six==1.11.0
simplejson==3.10.0
setuptools==40.4.3
service-identity==17.0.0

We can now use this file to create a virtual environment with the right libraries. We’ll
also add a “mocking” library for HTTP, called httpretty, to use in our tests:

$ virtualenv virtualenv --python python3
Running virtualenv with interpreter /usr/local/bin/python3
New python executable in virtualenv/bin/python3.6
Also creating executable in virtualenv/bin/python
Installing setuptools, pip, wheel...done.
$ source virtualenv/bin/activate
(virtualenv) $ pip install -r requirements3.txt
... omitted ...

174 | Chapter 7: Developing OpenWhisk Actions in Python

$ pip install httpretty
Installing collected packages: httpretty
Successfully installed httpretty-0.9.5

You can find documentation about the httpretty library at
HTTPretty.

Unit Test Examples
There are many ways to write unit tests. One of the easiest ways to write tests in
Python uses examples, a technique similar to using snapshots in JavaScript. One fea‐
ture of Python that everyone loves is the interactive interpreter, because it allows you
to execute Python code on the fly. We will use it here.

Using examples to test means that:

• You execute your code in the interpreter, to test it and verify the results.
• When you get the correct results, you save the examples, embedding them in

your program.
• You run the test by executing the commands again at the command line and

compare if the results are still the same.

So, let’s start adding tests to all the functions in the restpkgs.py file. We’ll begin with
function auth shown in “Using the OpenWhisk REST API in Python” on page 165,
and try to test it in the Python interpreter. The function is pretty simple—it only
reads the environment variable __OW_API_KEY and splits its value into two:

$ python
Python 3.6.5 (default, Jun 17 2018, 12:13:06)
[GCC 4.2.1 Compatible Apple LLVM 9.1.0 (clang-902.0.39.2)] on darwin
Type "help", "copyright", "credits" or "license" for more information
>>> import restpkgs as r, os
>>> os.environ['__OW_API_KEY']="USER:PASS"
>>> r.auth()
('USER', 'PASS')

Invoke the Python interpreter at the command line.

Import the action as a module, with a short name for convenience.

Explicitly set the environment variable read by the action to a known value.

Invoke the function.

Testing Python Actions | 175

http://bit.ly/2ITt1v3

This is the result, as expected.

Now we can transform the log of the terminal into a test very quickly: we just need to
add the transcript in the documentation string, or docstring, for our function. A doc‐
umentation string in Python is just a string constant placed at the beginning of the
body of our function code. It serves no purpose other than generating documentation
or, as in our case, testing. Here’s the docstring of the auth function, including the test:

def auth():
 """ Extract OpenWhisk authentication keys
 >>> import restpkgs as r, os
 >>> os.environ["__OW_API_KEY"]="USER:PASS"
 >>> r.auth()
 ('USER', 'PASS')
 """
 up = os.environ['__OW_API_KEY'].split(":")
 return (up[0], up[1]

Yep, it’s nothing more than the transcript of our interpreter session. It is useful as
documentation, but it can also be used as an executable (and hence repeatable) test!

In the standard Python library there is a module called doctest
that allows you to collect the output of an interpreter session,
embed it in the source code as a documentation string, and then
use it as an executable test, repeating the session and comparing
the results. You can read more at the doctest library.

Let’s see how to execute the test. In Python, it is possible to make any module exe‐
cutable locally on the command line. Each script has a variable __name__ that is set to
the value __main__ when the script is invoked directly by the interpreter as the main
entry point. We can leverage this feature to run our tests, embedded as documenta‐
tion. All you need to do is make each module executable and invoke the function
doctest.testmod() as follows:

if __name__ == "__main__":
 import doctest
 doctest.testmod()

Now, you can execute the module to run the tests, as follows. If you run it and don’t
get any output at all, this is good news. Silence means your code passed the tests. But
let’s see what happens when there is an error. Let’s change the value assigned to the
environment variable from USER:PASS to USERNAME:PASSWORD:

> python restpkgs.py
**
File "restpkgs.py", line 24, in __main__.auth
Failed example:
 r.auth()

176 | Chapter 7: Developing OpenWhisk Actions in Python

http://bit.ly/2XDP2pL

Expected:
 ('USER', 'PASS')
Got:
 ('USERNAME', 'PASSWORD')
**
1 items had failures:
 1 of 3 in __main__.auth
Test Failed 1 failures.

If we now change the embedded listing, replacing ('USER', 'PASS') with 0, 'PASS
WORD'), again we don’t get an answer, as expected.

Invoking the OpenWhisk API Locally
So far, we’ve seen how to run a Python action locally, creating an environment similar
to the runtime and adding the ability to execute it as a standalone program. However,
in OpenWhisk we also can invoke other actions or fire triggers using the API, as dis‐
cussed in detail in “Using the OpenWhisk REST API in Python” on page 165.

Invoking the API inside OpenWhisk requires environment variables that are set by
the runtime before executing our action. Our action will not run locally because those
environment variables are missing. Obviously, the solution is to set those variables
locally. Luckily, the values we need are also the values the wsk CLI uses, and are stored
in a local file (the file .wskprops in the home directory). Names and values are not the
same as environment variables, but they are close enough that they are pretty easy to
convert.

So, to be able to run tests using the OpenWhisk API we need the following function,
load_props, which extracts the OpenWhisk parameters and sets the local environ‐
ment variables using the wsk command:

def load_props():
 import os, os.path
 with open(os.path.expanduser("~/.wskprops"), "r") as f:
 for line in f.readlines():
 [k, v] = line.strip().split("=")
 if k == "AUTH": os.environ["__OW_API_KEY"] = v
 if k == "NAMESPACE": os.environ["__OW_NAMESPACE"] = v
 if k == "APIHOST": os.environ["__OW_API_HOST"] = "https://%s:443" % v

Open the .wskprops file and read it line by line.

Separate each k=v string into two values.

Set the __OW_API_KEY environment variable from the AUTH value.

Set __OW_NAMESPACE from the NAMESPACE value.

Testing Python Actions | 177

Set __OW_API_HOST in a format slightly different from the APIHOST value.

For example, using this function, we can test the whisk_get function that relies on a
remote call to the OpenWhisk API:

def whisk_get(operation):
 """ Execute GET requests on the OpenWhisk API
 >>> import restpkgs as r
 >>> r.whisk_init()
 >>> re = r.whisk_get("packages")
 >>> re
 <Response [200]>
 >>> type(re.json())
 <class 'list'>
 """
 return requests.get(
 url=url(operation),
 auth=auth())

Import the module under test.

Here we initialized the environment, so it is now possible to invoke the Open‐
Whisk API.

Get the list of packages.

Verify that the response is correct.

Verify that we got a list as expected.

This test is a bit vague, but we can’t really be any more specific because the list of
packages depends on the current configuration of your environment. We can just ver‐
ify that we can connect to the server and that the answer is a JSON list. To be able to
be more precise we need to be able to impose the result returned, and we can do this
with mocking.

Mocking Requests
As you saw in Chapter 6, mocking is a technique that allows you to replace a real-
world response—one that involves interaction with external systems—with a simula‐
ted one for testing purposes. This feature is critical for testing OpenWhisk actions
that have complex interactions with other actions.

Mocking is a generic concept, and there are advanced libraries you can use to do it.
However, in the OpenWhisk environment most of the time you need to be able to
mock the result of HTTP calls, replacing specific requests to real-world systems with
values determined at test time.

178 | Chapter 7: Developing OpenWhisk Actions in Python

Let’s see how to do that when testing the code for the main function of our restpkgs.py
action:

def main(args):
 res = whisk_get("packages")
 js = json.loads(res.text)
 pkgs = [x["name"] for x in js]
 return { "packages": pkgs }

The problem here is that whisk_get("packages") returns different values according
to the state of the system, and it is difficult to run this test without forcing a specific
system configuration. For this reason, we need to force (or mock) the answer for the
HTTP request to a known value.

For this purpose, we use the library httpretty we included in the local environment
for testing. Let’s see the test showing the interaction in the Python interpreter:

>>> import restpkgs as r, httpretty as h, json
>>> r.whisk_init()
>>> h.enable()
>>> resp = json.dumps([{"name":"first"}, {"name":"second"}])
>>> h.register_uri(h.GET, r.url("packages"), body=resp)
>>> r.main({})
{'packages': ['first', 'second']}
>>> h.disable()

Import the modules we are going to use.

Initialize the OpenWhisk environment variables.

Enable the mocking library to replace responses.

The response we want to force from whisk_get("packages").

The mocking request that will force our response.

Here, we invoke the main function that will, in turn, do an HTTP request whose
result will be replaced by our mock.

Given the mocking data this is the expected result.

We can now disable the mocking library to avoid side effects.

Now, to create an embedded test we only need to collect the interaction at the termi‐
nal and insert it in a docstring for the main function.

Testing Python Actions | 179

Summary
In this chapter, you learned how to write OpenWhisk actions using Python. First, you
learned about the peculiarities of the OpenWhisk Python runtime and the ways to
write and package Python applications that may include third-party libraries using
virtual environments.

Then we explored how to connect to the OpenWhisk API, using the REST interface
and writing code to invoke other actions, fire triggers, and retrieve results.

Finally, we went through testing actions using the Python interpreter, embedding
tests in code and using mocking libraries.

180 | Chapter 7: Developing OpenWhisk Actions in Python

CHAPTER 8

Using CouchDB with OpenWhisk

In the first part of the book, when we were developing our contact form we actually
used a database to store data. At the time, we didn’t go into much detail about how
the database works, because the focus of the first part was understanding Open‐
Whisk.

But at this point, we need to know more about how to use a database since data stor‐
age is a key component of every nontrivial application.

Or course, we can’t possibly cover every single database out there—we have to choose
one. OpenWhisk offers a package that integrates with the Cloudant and CouchDB
databases, NoSQL databases based on JSON that fit the JSON-based paradigm of
OpenWhisk pretty well, so the choice is obvious.

Cloudant is an IBM product, a cloud-based NoSQL database
offered as a software service in the cloud. Cloudant is based on the
open source Apache project CouchDB, which can be deployed into
on-premises deployments of OpenWhisk. OpenWhisk is not
bound to Cloudant, since you can also use CouchDB. Everything in
this chapter applies to both Cloudant and CouchDB. For simplicity,
in the rest of the chapter I’ll talk about CouchDB, but it also applies
to Cloudant.

CouchDB is a good match for OpenWhisk because it is JSON based, it is schemaless,
and it is scalable.

Let’s discuss those points. First, all the actions in OpenWhisk talk to each other and
exchange JSON objects. Hence, JSON is the natural format for managing data. The
obvious requirement in similar environments is a database that can persist JSON
objects. This is exactly what CouchDB does, as it stores JSON objects as “documents.”

181

JSON objects are not stored exactly “as is”: to be able to index and
retrieve data, CouchDB adds additional fields that act as identifiers
in the database.

Because CouchDB can store JSON objects there is no need to provide a “schema,” as
in a SQL database. You do not have to declare fields; CouchDB can store any format
of JSON object, eventually adding some additional fields for its own use.

As with any database, scalability is important. Cloudant is a commercial product, dis‐
tributed and optimized for heavy workloads like those generated by mobile applica‐
tions and websites with a lot of traffic. It is offered by IBM as a platform, and it is
available in the IBM Cloud.

CouchDB is an open source product offered by the Apache Software Foundation. It
can be clustered, allowing it to scale, but you have to build a cluster in your deploy‐
ment if you need it. You can learn more by reading the full documentation or the free
guide.

The source code for the examples related to this chapter is available
in the GitHub repository.

How to Query CouchDB
With any database, you have to know how to query it for it to be of any use.
CouchDB does not use the familiar SQL language. Instead, it has two different ways
to query: the first one is a JSON-based query language called Mango and the second
is a MapReduce approach using JavaScript functions embedded in the database. You
embed JavaScript functions in CouchDB using specially crafted JSON files called
design documents.

Let’s first discuss the query language. It was inspired by the query language of another
widely used NoSQL database, MongoDB (hence the name). Using this language, you
express queries in a format that can be considered as the JSON equivalent of SQL
statements. To give you an idea of how this works, let’s look at an example using SQL
(a language many people are familiar with):

SELECT name FROM person

Using Mango, you can express a similar query in this format:

{
 "selector": {
 "type": "person"

182 | Chapter 8: Using CouchDB with OpenWhisk

http://docs.couchdb.org
http://guide.couchdb.org
http://guide.couchdb.org
http://bit.ly/2NwamtJ

 },
 "fields: ["name"]
}

We cover more of the details in “Querying CouchDB” on page 191.

For now, let’s look at how JavaScript uses MapReduce. MapReduce is essentially a pat‐
tern for distributed computation. It was popularized by Google, which used it to
implement large-scale distributed queries for a search engine.

This pattern works in two steps. In the first step, mapping, you invoke a map function
on each item of the data. Each mapping produces values that are further classified
using keys.

After you run the mapping step, then you perform a reduction on the mapped data,
generally to aggregate the results. This step works by invoking a reduce function on
the output of the first step, this time grouped in batches, where the grouping is per‐
formed using keys.

CouchDB uses MapReduce both for creating derivate representations of data stored
in the database (called views) and to calculate aggregate functions (sums, averages,
etc.).

CouchDB implements MapReduce using function, embedded in the database that are
written in JavaScript (although they can also be written in other languages, like
Erlang).

The two approaches are both useful. Using the query language you can easily extract
data, which covers the more common use cases. Using MapReduce is similar to
adding stored procedures to the database; the database performs most of the work for
you and you just need to extract the results.

Exploring CouchDB on the Command Line
To get a feeling for how CouchDB works before delving into the details of the interac‐
tion with OpenWhisk, I am going to explore the interaction with it using the
command-line interface, with the help of common tools like curl and jq.

You can register in the IBM Cloud and get a free instance of Cloudant for develop‐
ment and test purposes. In Figure 2-5 I showed all of the steps required to get access
and retrieve a username and password. That information is enough to access the
database from the command line since the username is also used as the hostname.

To play with Cloudant at the command line, you need to set a couple of environment
variables (CLOUDANT_USER and CLOUDANT_PASS) with the values retrieved from the
IBM Cloud and set a couple of other variables (URL and AUTH) for convenience, as fol‐
lows:

Exploring CouchDB on the Command Line | 183

$ export CLOUDANT_USER="<username-from-ibm-cloud>"
$ export CLOUDANT_PASS="<password-from-ibm-cloud>"
$ export URL="https://$CLOUDANT_USER.cloudant.com"
$ export AUTH="$CLOUDANT_USER:$CLOUDANT_PASS"

Replace the username with the actual value

Replace the password with the actual value

Set the URL to access Cloudant

Set the AUTH as the username/password to access

Using just those two variables and curl is enough to get access to Cloudant. For
example, invoking the entry point $URL, you get the version:

$ curl -u $AUTH $URL | jq .
{
 "couchdb": "Welcome",
 "version": "2.1.1",
 "vendor": {
 "name": "IBM Cloudant",
 "version": "7137",
 "variant": "paas"
 },
 "features": [
 "geo",
 "scheduler",
 "iam"
]
}

How CouchDB works
Next, look at the basic operations. You need to understand these since the package
operations you will see and use are a wrapper on top of this REST API.

In particular, let’s learn the basic CRUD operations, most notably how to:

• Create a database
• Insert data in the database
• Retrieve data from the database
• Update data from the database
• Delete data from the database

Those are just the basic features of the database. There are many others I am going to
explore later.

184 | Chapter 8: Using CouchDB with OpenWhisk

Creating Database
The username in the IBM cloud is also the hostname of a Cloudant instance. You can
also have a local instance of CouchDB (and set your $URL variable to point to it).

In a CouchDB instance, there can be multiple databases. A database is a logical parti‐
tion of data. In CouchDB, a database is identified by a URL. For example, everything
under $URL/demodb belongs to the demodb database.

To create such a database, do the following:

$ curl -X PUT -u $AUTH $URL/demodb
{"ok":true}

Note the method PUT used to create the database

CouchDB tells you the database was created

You can check whether the database was actually created with the special URL
_all_dbs, which lists all the available databases:

$ curl -u $AUTH $URL/_all_dbs
["contactdb","demodb","patterndb"]

Without parameters the request is a GET

You see the new database and others created before

You may have noticed the _all_db URL. In general, in CouchDB
both URLs and field names starting with _ are special and are gen‐
erally managed by the database for special purposes.

Create
Now let’s explore how to execute the basic CRUD (create, retrieve, update, and delete)
operations of any database using the JSON-based paradigm of CouchDB.

CouchDB stores in its database JSON objects that are called documents. A document
is any JSON object (but not an array or a single value) with two important properties
added: _id and _rev. _id is a unique identifier (either generated or provided by the
user) used to identify the document within the database, while _rev is another identi‐
fier, managed entirely by CouchDB and used to distinguish among different versions
of the same document.

In CouchDB, creating a new object is just a matter of performing a PUT HTTP request
against the URL where we want to store the object. The URL is the name of the data‐

Exploring CouchDB on the Command Line | 185

base followed by the id of the document. The database returns a confirmation mes‐
sage with the id and the revision:

$ curl -u $AUTH -X PUT $URL/demodb/msciab \
 -d '{"name": "Michele", "age": 50}'
{"ok":true,
 "id":"msciab",
 "rev":"1-4cbf3dded8477e95b5079eda6038c22d"}

Request to store a JSON document.

The data is the JSON object you want to store.

Confirm everything is OK.

The _id of the object.

The _rev (revision ID) of the object.

A revision id is an incremental number followed by a special value
calculated by CouchDB. Technically speaking it is the MD5 hash of
the transport representation, but this really does not matter for
practical use. What matters is that you have to use it for updates. It
is there to avoid multiple clients modifying an object at the same
time, to be sure only one succeeds and the others fail.

Retrieve
Now let’s verify what happened. We can try to retrieve the document at the given
URL using a GET request. As you might expect, we receive the document with the spe‐
cial properties _id and _rev:

$ curl -su $AUTH -X GET $URL/demodb/msciab \
 | jq .
{
 "_id": "msciab",
 "_rev": "1-4cbf3dded8477e95b5079eda6038c22d",
 "name": "Michele",
 "age": 50
}

Request the document with id msciab in database demodb.

CouchDB added _id and _rev.

The other fields of the document.

186 | Chapter 8: Using CouchDB with OpenWhisk

Update
Updating works in a similar way to creating, except you have to provide the revision
id of the current document to be sure you are actually updating the document you
read and not an older version that may have been modified.

You can see this by trying again to PUT the same object under the same URL—you get
an error:

$ curl -u $AUTH -X PUT $URL/demodb/msciab \
 -d '{"name": "Michele Sciabarra", "age": 50}'
{"error":"conflict",
 "reason":"Document update conflict."}

Try to use PUT again with the same URL as before.

You get an error.

There is a conflict because there is no revision provided.

To fix this, add the revision in the URL. You just need to append ?rev=<id> , where
<id> is the revision id returned in the preceding call:

$ curl -u $AUTH -X PUT \
 "$URL/demodb/msciab?rev=1-4cbf3dded8477e95b5079eda6038c22d" \
 -d '{ "name": "Michele Sciabarra", "age": 50}'
{"ok":true,
 "id":"msciab",
 "rev":"2-f8885327dee4d24fb8edff31e7683962"}

The old revision id.

The new revision id.

You can now do a simple check to verify that the document was actually updated:

$ curl -su $AUTH -X GET $URL/demodb/msciab | jq .
{
 "_id": "msciab",
 "_rev": "2-f8885327dee4d24fb8edff31e7683962",
 "name": "Michele Sciabarra",
 "age": 50
}

Change the name as requested.

Delete
The last operation in the classic CRUD set of operations is delete. In CouchDB you
use the DELETE HTTP method followed by the revision number:

Exploring CouchDB on the Command Line | 187

$ curl -su $AUTH -X DELETE
 "$URL/demodb/msciab?rev=2-f8885327dee4d24fb8edff31e7683962"
{"ok":true,"id":"msciab",
 "rev":"3-022254165a2971263cca5b2b5f108d58"}

The DELETE operation.

Let’s verify if the document is now deleted:

$ curl -su $AUTH -X GET $URL/demodb/msciab | jq .
{
 "error": "not_found",
 "reason": "deleted"
}

It is.

Attachments
In a relational database, you have BLOB fields holding binary data. In CouchDB you
have attachments. This means you can upload a file in binary format (not JSON) and
retrieve it as is. CouchDB works a bit like a writable web server. But when you upload
an attachment, it is always part of a document. The URL format for attachments
inside a server is:

/<database>/<document>/<attachment>

So you can have /demodb/openwhisk/logo.png but not /demodb/logo.png nor /
logo.png. For example, let’s create an attachment containing the OpenWhisk logo.
We first create a document containing the BLOB, then we upload it. We use the PUT
method and the revision id because uploading an attachment is actually an update. It
is also important to upload the data as a binary file and to specify the Content-Type
header. Note that for attachments the type is not just application/json but varies
according to the actual type of the attachment:

$ curl -u $AUTH -XPUT \
 $URL/demodb/openwhisk \
 -d '{"width":800,"height":400}'
{"ok":true,
 "id":"openwhisk",
 "rev":"1-29ee2a1bdb910c06e36b432922a3bd42"}
 $ curl -u $AUTH -XPUT \
 "$URL/demodb/openwhisk/logo.png\
 ?rev=1-29ee2a1bdb910c06e36b432922a3bd42"\
 --data-binary @openwhisk.png \
 -H "Content-Type: image/png"
{"ok":true,
 "id":"openwhisk",
 "rev":"2-c4603cf28267f4cd8284936f37a2e211"}

188 | Chapter 8: Using CouchDB with OpenWhisk

Create the containing document.

Create the attachment.

The URL of the attachment, placed under a document in a database.

The revision id, since we are updating a document.

Here we specify that we want to upload the file openwhisk.png.

The content type of the attachment, an image.

If we check the document we can see that there is an attachment. However, the
attachment body is not shown:

$ curl -su $AUTH $URL/demodb/openwhisk | jq .
{
 "_id": "openwhisk",
 "_rev": "2-c4603cf28267f4cd8284936f37a2e211",
 "width": 800,
 "height": 400,
 "mime": "image/png",
 "_attachments": {
 "logo.png": {
 "content_type": "image/png",
 "revpos": 2,
 "digest": "md5-lKbApb8v7JnR5EDehO/8zA==",
 "length": 27191,
 "stub": true
 }
 }
}

You can now see the attachment using a browser. To do so, you need to construct an
appropriate URL that also includes authentication information.

In our examples, we used two variables: $AUTH containing the authentication infor‐
mation and the $URL to the Cloudant instance. The $URL has the format https://
<database-server>`. You need to put the authentication information in the URL.

An authenticated URL has the format https://<user>:<pass>@<database-server>.
We can easily construct the authenticated URL variable $AURL by removing the prefix
and including the authentication information:

URL1="${URL##https://}"
AURL=https://$AUTH@$URL1
export AURL

Remove the protocol from the URL.

Exploring CouchDB on the Command Line | 189

Add it again with the authentication information.

Now we have a variable we can use to access the attachment with a browser. How you
open the browser depends on the system. You can simply echo the $AURL and copy
and paste it in your browser, or open the browser from the command line. On
macOS you can open the URL in Google Chrome with:

$ open -a "Google Chrome" \
 $AURL/demodb/openwhisk/logo.png

The result is shown in Figure 8-1.

Figure 8-1. Displaying the attachment

In other systems, like Windows, you may want to use the command start to open
the URL in the default browser. In Linux, you generally directly invoke a browser like
Firefox with the URL on the command line.

190 | Chapter 8: Using CouchDB with OpenWhisk

To be able to display an image, a browser needs to know the MIME
type. The image is displayed correctly because the database knows
its MIME type, but generating URLs accessing the database directly
is not recommended since it would expose security information.
There are ways to make attachments public, but I recommend
using a web action and exporting images instead (explained in the
next chapter) for this purpose.

Querying CouchDB
Now that you know how to actually create data, let’s see how to do queries in
CouchDB using the Mango query language. We start by loading some sample data in
the database (see Tables 8-1 and 8-2). In the GitHub repository for the book, you can
find the data in JSON format and a Makefile to import it.

Table 8-1. Persons

_id type name dob
mike person Michele 1968-07-09

miri person Mirella 1966-10-25

Table 8-2. Computers

_id type name brand owner memory
mac computer MacBookPro Apple mike 16

pc computer Pavilion HP miri 8

pc2 computer m15 Alienware mike 32

Searching the Database
You can query your database using <database>/_find. In the simplest form, a query
is just a JSON object with a field named "selector" whose value can be an empty
object. The following JSON object just selects all the documents in the repository:

{ "selector": {} }

But notice that not all the documents available are returned. There is an implicit limit
of 25 documents, and the server returns a “bookmark,” an opaque identifier letting
you get the next batch of documents.

In the body of the selector, you can include some values restricting the documents
you retrieve. In the simplest case just specify a field and a value, and you will get only
the documents with that field and that value. Here is an example:

$ curl -su $AUTH -X POST $URL/demodb/_find \
 -H "Content-Type: application/json" \
 -d '{"selector":{ "type": "person" }}' \

Querying CouchDB | 191

http://bit.ly/2IS5z19

 | jq .
{
 "docs": [
 {
 "_id": "mike",
 "_rev": "1-7e2e7dcf6ae46e373bf9836fec2cbb04",
 "dob": "1968-07-09T23:00:00.000Z",
 "name": "Michele",
 "type": "person"
 },
 {
 "_id": "miri",
 "_rev": "1-34500a0cd43eec3ba6f1d5f44943b365",
 "dob": "1966-10-25T23:00:00.000Z",
 "name": "Mirella",
 "type": "person"
 }
],
 "bookmark":
 "g1AAAAA4eJzLYWBgYMpgSmH..."
 "warning": \
 "no matching index found, create an index to optimize query time"
}

Invoke the URL to query the database using POST.

The content type is required.

This selector extracts all the documents of type person.

This bookmark helps to paginate things (explained later).

Note this warning, because there is no index for the field type.

Indexes
In the last example, there is a warning telling you that the field you queried for is not
indexed. Indeed, to get better performances when you query the database you need to
create an index. An index is, in its simplest form, a list of field names that are likely to
be searched for. Hence, the database needs to keep track of these field names in a spe‐
cial way to be able to find more quickly documents containing those fields.

You can describe the indexes using a JSON file called index.json, like this:

{
 "index": {
 "fields": [
 {
 "type": "asc"
 }

192 | Chapter 8: Using CouchDB with OpenWhisk

]
 }
}

This JSON file declares that you want to index the field type, in ascending order
(alternatively you can use desc). You can put the index description in a file called
index.json and deploy it with a POST to a database with the URL _index as follows:

$ curl -su $AUTH $URL/demodb/_index \
-X POST -H "Content-Type: application/json" \
-d @index.json
{
 "result": "created",
 "id": "_design/d0ad4137f94d6923bfcff603fe3984cf1e21af1d",
 "name": "d0ad4137f94d6923bfcff603fe3984cf1e21af1d"
}

The special URL to create an index.

Note that when you POST you need to specify the content type.

Include the content of the file index.json.

Now, if you run the previous query again, the warning will no longer be there.

Fields
In the query object, you can specify the fields you want to extract. In the preceding
example you saw that by default CouchDB returns all fields, but since that can be a
lot, you generally don’t want to do this. You can filter the fields you need using the
fields attribute by specifying an array with the field names you want to extract. For
example, let’s try the following query that extracts just the field name from all the
documents in our database:

$ curl -su $AUTH -X POST $URL/demodb/_find \
 -H "Content-Type: application/json" \
 -d '{"selector":{ },
 "fields": ["name"] }' \
 | jq .docs
[
 {
 "name": "MacBookPro"
 },
 {
 "name": "Michele"
 },
 {
 "name": "Mirella"
 },
 {

Querying CouchDB | 193

 "name": "Pavilion"
 },
 {
 "name": "m15"
 }
]

Select all the documents.

Extract only the field name.

Show only the results (property docs).

Pagination Support
CouchDB supports pagination with many options available in the query object. Using
those options it is easy to navigate the various documents. In the query object, you
can specify the number of documents returned with the limit property. As already
mentioned, this property defaults to 25, so you never get more than 25 results, unless
you specify a different value. There is another property you may need: skip. This lets
you skip the given number of documents. Let’s try an example, restricting the view to
three documents and skipping one:

$ curl -su $AUTH -X POST $URL/demodb/_find \
 -H "Content-Type: application/json"
 -d '{"selector":{ }, \
 "fields": ["name"], \
 "limit": 3, \
 "skip": 1}' \
 | jq .
 {
 "docs": [
 {
 "name": "Michele"
 },
 {
 "name": "Mirella"
 },
 {
 "name": "Pavilion"
 }
],
 "bookmark":
 "g1AAAAA0eJzLYWBgYMpgSmHgKy5JLC"
}

Limit the number of the documents returned to three.

Skip one document at the beginning.

194 | Chapter 8: Using CouchDB with OpenWhisk

Take note of this identifier as we are going to use it again.

As you can see, compared with the previous result, where there were five documents;
you see only three of them and the first one has been skipped.

Bookmark Feature
In the previous example, we paged using limit and skip. With many databases you
can do only this, using a skip parameter to reach the current page. However,
CouchDB does better by offering the more efficient “bookmark” feature. Each result
also returns an identifier, called the bookmark, which can be used to ask for the next
batch of the search without needing to keep track of where the cursor is (usually the
tricky part when doing pagination). For example, if we want to continue the search of
the previous batch, we can just use the bookmark returned at the end of the query.
Let’s try it:

$ curl -su $AUTH -X POST $URL/demodb/_find \
 -H "Content-Type: application/json" \
 -d '{"selector":{ },
 "fields": ["name"],
 "limit": 3,
 "bookmark":"g1AAAAA0eJzLYWBgYMpgSmHgKy5JLC"}' \
 | jq .
{
 "docs": [
 {
 "name": "m15"
 }
],
 "bookmark": "g1AAAAA2eJzLYWBgYMpgSmHgKy5JLC"
}

Specify the bookmark to continue the search.

As you can see, we are now getting the last document out of the five we found in the
first search. We limited the search to three results, but only one was missing, and it is
now shown.

Selectors
This section goes into more detail on the syntax of selectors, which are required to
perform more complex queries than the simple one you have just seen.

A selector is a JSON object with a mandatory key selector whose value contains the
query options. As you have already seen, you can define an empty value ({}) to select
everything, or specify a fixed key-value like {"type":"person"} to select all the docu‐
ments having that key with the specified value.

Querying CouchDB | 195

Actually, you can put in multiple values. Here’s see an example with two values:

$ curl -su $AUTH -X POST $URL/demodb/_find \
 -H "Content-Type: application/json"
 -d '{"selector":{
 "type":"computer",
 "owner":"mike"}
 }' | jq .docs
[
 {
 "_id": "mac",
 "_rev": "1-6fb66eb7faba0b9ebe4bfdbb0da31616",
 "name": "MacBookPro",
 "brand": "Apple",
 "owner": "mike",
 "type": "computer",
 "memory": 16
 },
 {
 "_id": "pc2",
 "_rev": "1-c1381146da5ef5da5215cd78a02cb3ce",
 "name": "m15",
 "brand": "Alienware",
 "owner": "mike",
 "type": "computer",
 "memory": 32
 }
]

In the database, there are five records; selecting type=computer you restrict the
search to the three available while selecting owner=mike you find only those two
owned by him.

Now, the example you have just see is really an abbreviation for a more complex syn‐
tax. The inner constraint {"type": "computer"} is really a short form for a clause
{"type": {"$eq": "computer"}}, so it actually defines a constraint requiring that
type is $eq to compute. implicitly defines an equality relationship.

Furthermore, when you declare multiple clauses, they are actually conditions implic‐
itly connected by a $and relationship. The condition of the preceding example fully
expanded is hence:

{ "$and": [
 { "type": {"$eq", "computer" }
 },
 { "owner": {"$eq": "mike" }
 }
]
}

196 | Chapter 8: Using CouchDB with OpenWhisk

Each clause applies an operator to the specified field and the given value; then it cal‐
culates the and of all the intermediate results.

If you already know the SQL, you could write a query more or less equivalent as:

SELECT *
FROM EVERYTHING
WHERE type = "computer"
AND owner = "mike"

Note that generally in SQL data are stored in different tables, while in CouchDB there
is not a table concept. So in the example, I put a hypothetic EVERYTHING table, a ficti‐
tious table containing all the fields for all the documents.

Operators
So far you have seen only the $eq and the $and operator. There are actually many oth‐
ers, as shown in Table 8-3.

Table 8-3. Some Frequently Used Query Operators

operator meaning
$and if all selectors in array matches

$or if one selector in array matches

$not if the given selector does not match

$all if an array contains all the elements of the given array

$type check for the JavaScript type

$ne / $ne compare JSONs for equality / inequality

$lt /$lte compare JSON for less / less or equal

$gt, $gte compare JSON for greater / greater or equal

$exist check if a field exists

$in, $nin check if a field is / is not in a given array

$regexp check if a field matches a regular expression

As you can guess, you can do much more complex queries with those operators. For
example, I want to search for all the computers either having more than 16 GB of
memory, or its brand is either “Apple” or “Dell.”

You need to use different operators. To select the memory size, you need to use the
operator $gt to filter everything greater than 16, while you use the $in operator for
filtering for values belonging to a given set. Last but not least, conditions are now
connected by the $or operator.

Expressing this query in JSON looks like this:

Querying CouchDB | 197

{ "selector": {
 "$or": [
 "memory":
 {"$gt": 16},
 "brand": {
 "$in": ["Apple", "Dell"] }
]
 }
}

I save now the query in a file query.json and run it as follows:

$ curl -su $AUTH -X POST $URL/demodb/_find \
 -H "Content-Type: application/json" \
 -d "$(cat query.json)" \
 | jq .docs
[
 {
 "_id": "mac",
 "_rev": "1-6fb66eb7faba0b9ebe4bfdbb0da31616",
 "name": "MacBookPro",
 "brand": "Apple",
 "owner": "mike",
 "type": "computer",
 "memory": 16
 },
 {
 "_id": "pc2",
 "_rev": "1-c1381146da5ef5da5215cd78a02cb3ce",
 "name": "m15",
 "brand": "Alienware",
 "owner": "mike",
 "type": "computer",
 "memory": 32
 }
]

Loading the query from the json file

You can see that I find a computer Apple (that has 16GB RAM) from the first clause,
and another that does not belong to the given brands, but it has 32 GB of RAM so it
matches the second clause.

CouchDB Design Documents
In addition to JSON-based queries, you can write queries for CouchDB using Java‐
Script and MapReduce functions. Databases usually have the ability to store recurring
operations you can call later. Those are called stored procedures, and CouchDB uses
JavaScript for this purpose. CouchDB MapReduce functions extend the database with
functions stored in so-called design documents. A design document is a JSON object

198 | Chapter 8: Using CouchDB with OpenWhisk

that can be stored in CouchDB and looks like an ordinary document (with an _id
and a _rev), except it embeds some JavaScript functions used by the database to per‐
form various tasks.

A design document can actually define a number of different functions:

View
Functions performing the MapReduce we discussed in “How to Query
CouchDB” on page 182.

Validation
Functions invoked on updates to validate values.

Show
Functions useful for producing a rendering of data in the database in various for‐
mats (not only JSON but also HTML, XML, SVG, etc.).

List
Functions that can transform the results of view functions, to generate render‐
ings like those produced by show functions.

Update
Functions that perform server-side logic for creating or modifying documents.

Filter
CouchDB has a “log” of all the changes that can be listened for; these functions
can manipulate this log, for example, to reduce the notifications produced to a
more interesting subset.

In the context of OpenWhisk, the more useful functions are the view and validation
functions. Those are the cases we’ll discuss in detail. View functions allow advanced
ways to query the database. Validation functions allow writing in the database docu‐
ments that satisfy certain requirements.

For examples of other functions, refer to the CouchDB documenta‐
tion.

Creating a Design Document
A design document that stores the functions you just saw has a specific format. It is a
JSON file where some of the fields are JavaScript functions; you manage it like a nor‐
mal document except you have to use the special path _design.

CouchDB Design Documents | 199

http://docs.couchdb.org
http://docs.couchdb.org

A design document is formatted like the following example. Note that we only look at
view and validation functions here. The markers in angle brackets, like <name>, are
not part of the JSON but must be replaced by the user:

{
 "_id": "_design/<name>",
 "views": {
 "<view-name>": {
 "map": "<map-function>",
 "reduce": "<reduce-function>"
 }
 },
 "validate_doc_update": "<validation-function>"
}

Name of the design document.

Views are under this key.

Each entry introduces a view with a given name.

Key to define a map function.

Key to define a reduce function.

A design document is still a JSON file, not a JavaScript one. Hence,
JavaScript functions are stored in the design document as simple
strings. Furthermore, in JSON a string cannot be multiline, so all
the newlines must be represented as \n.

Design documents are treated like other documents, so they are uploaded and upda‐
ted with PUT, using _id and _rev. What distinguishes these files from others is the
URL, which is <database>/_design/<name>. Once you have created the document,
there are other URLs you can use to invoke the embedded functions. For example, to
invoke the view we can use <database>/_design/<document>/_view/<name>. We’ll
discuss this in the next section.

View Functions
In CouchDB, originally there were only view functions to query the database. You can
now also use the Mango query language, but views are still the more efficient and
powerful querying mechanism.

A view is a transformation of the data contained in a database, calculated by a couple
of functions; the first is called map and the second reduce. Note that the second is

200 | Chapter 8: Using CouchDB with OpenWhisk

optional (we’ll discuss it later). Reductions are useful to perform aggregations, but
many useful tasks can be performed using only map.

Extracting Data with map Functions
A map function is a JavaScript function that receives a document and processes it,
returning a derivation of it. CouchDB invokes a map function on all the documents of
the database. For each document, it can produce a single derivation, multiple deriva‐
tions, or none. You do not return the derivation; instead, you use the function emit to
produce it. Each derivation includes a key and a value. Keys are optional (they can be
null) but are important since they are used for a number of purposes, such as select‐
ing the output of a view, ordering, and reduction.

Let’s write a simple view, returning all the names in our database, using the type as the
key. The map function will receive each document and emit the doc.type as the key,
and the doc.name as the value.

First we’ll construct the design document:

{
 "_id" : "_design/sampleviews",
 "views" : {
 "names": {
 "map":
 "function(doc) { emit(doc.type, doc.name) }"
 }
 }
}

The design document name.

The view name.

The map function.

Now we can publish it using the variables $URL and $AUTH:

$ curl -su $AUTH -X PUT \
 $URL/demodb/_design/sampleviews \
 -d @sampleviews.json | jq .
{
 "ok": true,
 "id": "_design/sampleviews",
 "rev": "49-4d0b58f7906bd1e6d57fa5ad6c14ba58"
}

Finally, we test it, invoking the view names using a URL of the form <database>/
_design/<document>/_view/<name>:

View Functions | 201

$ curl -su $AUTH \
 $URL/demodb/_design/sampleviews/_view/names
{"total_rows":5,"offset":0,"rows":[
{"id":"mac","key":"computer","value":"MacBookPro"},
{"id":"pc","key":"computer","value":"Pavillion"},
{"id":"pc2","key":"computer","value":"m15"},
{"id":"mike","key":"person","value":"Michele"},
{"id":"miri","key":"person","value":"Mirella"}
]}

The result gives a “view” of the names in the database, in a format that is easy to pro‐
cess: you get all the names, organized by document type.

The URL used for invoking the view accepts many parameters. You can use the
parameter key to receive only the records with a given type. So, to get all the names of
the persons involved you can use:

$ VIEW=$URL/demodb/_design/sampleviews
$ curl -su $AUTH \
 "$VIEW/_view/names?key=\"person\"" \
 jq -r ".rows[] | .value"
"Michele"
"Mirella"

Restrict the result to the output with this key.

Filter the values from the output.

The key must be a true JSON value, so it has to be "person" with
quotes, not person without. This is why we had to add the back‐
slashes, to include quotes within quotes. The entire query had to be
quoted because the ? is a shell metacharacter and it would be
expanded without the quotes.

We used jq to extract the values from the result on the command line. In general, you
extract the values in your user code, or you can ask CouchDB to do it for you using a
list function (which we do not discuss here).

You do not have to emit all the documents in the database. A common practice is just
to emit the documents that match some criteria. For example, if you want to select
only persons in the database, just emit documents with doc.type == "person",
adding this entry to the file sampleviews.json:

"persons": {
 "map":
 "function(doc){ if(doc.type == 'person') emit(doc._id, doc.name) }"
},

The result is:

202 | Chapter 8: Using CouchDB with OpenWhisk

$ curl -su $AUTH "$VIEW/_view/persons"
{"total_rows":2,"offset":0,"rows":[
{"id":"mike","key":"mike","value":"Michele"},
{"id":"miri","key":"miri","value":"Mirella"}
]}

Implementing a Join with map Functions
CouchDB is not a relational database; it is document-oriented and does not imple‐
ment relations as a primitive concept. Joining two tables, an operation very simple
with a traditional relational database, is not a native function in CouchDB. Instead,
you replace JOIN with some techniques to get this result using map functions.

In general, when you want scalability and to process big data, you
should rely less on normalizing the database (a classic operation for
a relational database). In a scalable database, it is common to dupli‐
cate data and avoid normalization of the database.

Let’s demonstrate how to implement a join in CouchDB with an example. In our
demo database there are computers, and for each computer there is a field called
owner that refers to its owner. We want to implement a query to join each computer
with the person that owns it. In SQL terms this is roughly equivalent to a query like
this:

SELECT *
FROM PERSON
INNER JOIN COMPUTER
ON COMPUTER.ID = PERSON.OWNER

Let’s do the same in CouchDB. Emitting multiple documents that contain the ids of
the records to join is the recommended way to implement joins with views. You will
leverage the following features:

• You do not have to emit a single document in your view functions, so you will
emit more than one: one for the main record and one for each joined record.

• If a view has a field _id, you can use the option include_docs to expand it and
include all the data from the referred-to document.

• Returning more documents of the view under the same key helps to retrieve all
the data for the join.

Use these steps to perform a join:

1. In your map function, first emit the _id of the main record as the value, under
some key.

View Functions | 203

2. Then emit the _id of each of the joined records as the value, under the same key
as the main record.

3. Invoke the view with the option include_docs=true.
4. Select all the records you want to use the key.

For example, let’s assume you want to join a document with type computer with
documents with type person over the field owner of a computer record. This is a sim‐
plification, in general, you can emit multiple records when you join, but the techni‐
que is the same. You can do this by adding a function like this:

{
 "views": {
 "join": {
 "map": "function(doc) {
 if(doc.type == 'computer') {
 emit(doc.owner, { _id: doc._id});
 emit(doc.owner, { _id: doc.owner })
 }
 }"
 }
 }
}

Simplified JSON for readability; must be a single file with quoted newlines.

Select computers.

Emit a value with the id of the computer.

Emit a value with the id of the person.

Now publish the design document as discussed before, and let’s look at the result:

$ curl -u $AUTH "$VIEW/_view/join?\
include_docs=true\
&key=\"miri\"" | jq .
{
 "total_rows": 6,
 "offset": 4,
 "rows": [
 {
 "id": "pc",
 "key": "miri",
 "value": {
 "_id": "pc"
 },
 "doc": {
 "_id": "pc",
 "_rev": "1-f381af8cac6c3cf040fa9a87bb5b05dd",

204 | Chapter 8: Using CouchDB with OpenWhisk

 "name": "Pavillion",
 "brand": "HP",
 "owner": "miri",
 "type": "computer",
 "memory": 8
 }
 },
 {
 "id": "pc",
 "key": "miri",
 "value": {
 "_id": "miri"
 },
 "doc": {
 "_id": "miri",
 "_rev": "1-34500a0cd43eec3ba6f1d5f44943b365",
 "dob": "1966-10-25T23:00:00.000Z",
 "name": "Mirella",
 "type": "person"
 }
 }
]
}

As you can see, the result is actually spread across two records. The actual values are
in the doc field. Your user code expects multiple records and gathers the values
accordingly.

CouchDB guarantees the results will be ordered by key. In this case, we just filtered
the result using a single key, but you can use multiple keys. Also, when you expect
results with a variable number of included documents, you can use the startkey and
endkey parameters for filtering. I recommend checking the CouchDB documentation
documentation for more details, as it includes a more detailed example with multiple
records.

Joining with a Single Document
The solution for joining documents in the previous section works, but it requires
more processing of the output.

In the frequent case of a document joined with another single document, you can
actually get only one document with all the data as output. You can do this by:

• Placing all the properties of the main document as the value,
• Using the id of the joined document as the _id
• Expanding it with include_docs

View Functions | 205

http://docs.couchdb.org

For example, let’s try filtering the result by computer id and retrieving all the proper‐
ties of the computer and the owner:

{
 "views": {
 "join2": {
 "map": "function(doc) {
 if(doc.type == 'computer') {
 emit(doc.id,
 { _id: doc.owner,
 name: doc.name,
 brand: doc.brand,
 memory: doc.memory })
 }
 }"
 }
 }
}

Simplified for readability; should be on a single line.

Use the id of the joined document.

Add as values all the properties of the document.

Now let’s try to select the computer with the id mac and see its owner:

$ curl -su $AUTH "$VIEW/_view/join2\
 ?include_docs=true&key=\"mac\"" | jq .
{
 "total_rows": 3,
 "offset": 0,
 "rows": [
 {
 "id": "mac",
 "key": "mac",
 "value": {
 "_id": "mike",
 "name": "MacBookPro",
 "brand": "Apple",
 "memory": 16
 },
 "doc": {
 "_id": "mike",
 "_rev": "1-7e2e7dcf6ae46e373bf9836fec2cbb04",
 "dob": "1968-07-09T23:00:00.000Z",
 "name": "Michele",
 "type": "person"
 }
 }
]
}

206 | Chapter 8: Using CouchDB with OpenWhisk

The result is spread out, but you have all the values of the two joined records.

Aggregations with reduce Functions
So far we’ve only discussed view functions with a map part. We know how those func‐
tions can implement the SQL equivalent of selects and joins. Now let’s look at reduc‐
tion functions, the equivalent in CouchDB of SQL aggregate functions. For example,
let’s consider the SQL statement:

SELECT COUNT(*)
FROM SOME_TABLE

How can we do this in CouchDB? The trick is to first map all the documents (to
extract the information to aggregate), then invoke the reduce function on the map‐
ped values to produce the final result. For example, if you want to count the number
of documents, you just map each document into the value 1, then sum all the values.
In code, you can do something like the following:

"count": {
 "map" :
 "function(doc){ emit(doc.type, 1)}",
 "reduce":
 "function(key, values) { return sum(values) }"
}

For each document, emit a value of 1.

Sum all the values to get the count.

Let’s check the result:

$ VIEW=$URL/demodb/_design/sampleviews
$ curl -su $AUTH $VIEW/_view/count
{"rows":[
 {"key":null,"value":5}
]}

This works, but it’s not the most efficient way to perform this aggregation. There are
three built-in aggregation functions that can do a more efficient job because they are
written in the language of CouchDB (Erlang):

• _count counts the number of emitted values.
• _sum assumes the emitted values are numbers, then adds them up.
• _stats assumes the emitted values are numbers, then calculates some statistical

values—the minimum, maximum, sum, count, and sum of squares.

For example, using those functions you can write a more efficient ncomputer view
that returns the number of computers:

View Functions | 207

"ncomputer": {
 "map" : "function(doc) {
 if(doc.type == 'computer')
 emit(doc._id) }",
 "reduce": "_count"
},

Simplified; must be on a single line.

Using the built-in _count.

Now let’s look at an example using the _stat function on all the documents. Add this
view to your design document:

"stats": {
 "map" : "function(doc){ emit(doc._id, 1)}",
 "reduce": "_stats"
}

Let’s see the result:

$ curl -su $AUTH $VIEW/_view/stats | jq .
{
 "rows": [
 {
 "key": null,
 "value": {
 "sum": 5,
 "count": 5,
 "min": 1,
 "max": 1,
 "sumsqr": 5
 }
 }
]
}

Validation Functions
CouchDB can validate a document when you create or modify it. Validation is per‐
formed by adding a validation function to the design document. This validation func‐
tion either completes without any result if everything is okay or can you notify of
errors by throwing exceptions. To create this function, you insert the key
validate_doc_update in the design document, using the function as a value. If
everything is okay the result is ignored. If there are exceptions, the document won’t
be created or changed and the invoker will be notified of the error.

Let’s go over an example of this type of validation function—validating contacts. For a
contact that has only a name and an email address, we want to be sure they are both

208 | Chapter 8: Using CouchDB with OpenWhisk

specified. Furthermore, we want email addresses in a certain format, so we’ll check
them against a regular expression.

Validation functions are invoked for every update in the database, but we want to val‐
idate only for contacts, so the first step is filtering for doc.type == "contact". Then
we’ll apply some checks to the properties of the document.

The function is complex enough that we should write the code in a separate valida‐
tion.js file:

function (doc, old, ctx) {
 if(doc.type && doc.type == "contact") {
 if(!doc.name) {
 throw({forbidden: "name required"})
 }
 if(!doc.email) {
 throw({forbidden: "email required"})
 }
 var re = /\S+@\S+\.\S+/;
 if(!re.test(doc.email)) {
 throw({forbidden: "not an email"})
 }
 }
}

Filter the validation only for contacts.

Check that there is a name.

Check that there is an email address.

A regular expression to validate the email address.

Validate the email address against the regular expression.

We can now post the function to CouchDB. This time we want to solve the problem
of encoding a JavaScript function into JSON. We need a validate.json document in the
format:

{
 "_id": "_design/validate",
 "validate_doc_update": "<validate-function-here>"
}

Since the function is not a trivial one-liner we store it in a separate validate.js file,
then ask the jq utility for help. Before posting to CouchDB, we generate validate.json
from validate.js as follows:

$ jq -n --rawfile file validate.js \
 '{ "_id" : "_design/validate", \

Validation Functions | 209

 "validate_doc_update":$$file}' \
 >validate.json

Provide our JSON as a variable to jq.

Expand the variable inside a template.

Save the result.

With a validation function in place, the effect is that now some document updates
may fail. Let’s try it:

$ curl -u $AUTH $URL/demodb/test-mike \
 -X PUT -d '{"type":"contact"}'
{"error":"forbidden","reason":"name required"}
$ curl -u $AUTH $URL/demodb/test-mike \
 -X PUT -d '{"type":"contact","name": "Mike", \
 "email": "mike@home"}'
{"error":"forbidden","reason":"not an email"}
$ curl -u $AUTH $URL/demodb/test-mike
 -X PUT -d '{"type":"contact","name": "Mike", \
 "email": "m@s.c"}'
{"ok":true,"id":"test-mike",
"rev":"3-00673090ce0564363fc27285873f4bc4"}

Error, no name.

Error, wrong format for the email address.

Everything is okay now.

Using the Cloudant Package
Now that you know more about CouchDB and Cloudant, you probably want to start
using it with OpenWhisk. The examples in this chapter all refer to Cloudant running
in the IBM Cloud, but everything discussed here also applies to a local installation of
OpenWhisk, provided you also have your own instance of CouchDB.

The OpenWhisk package /whisk.system/cloudant provides a high-level interface to
Cloudant/CouchDB. While it is possible to directly use the database using the REST
API, it is easier with this package.

Note that you need to:

• Authenticate in Cloudant/CouchDB to use the package.
• Select a database to work with it.

210 | Chapter 8: Using CouchDB with OpenWhisk

• Authenticate in OpenWhisk to be able to invoke an action.

You can do all of this in a single step by binding the cloudant package and specifying
the database as a package parameter. But note that:

• When an action invokes a database action, it uses its own OpenWhisk authenti‐
cation information to invoke the other action.

• The package contains authentication information to access the database.
• The package automatically selects which database to use.

To see how this works, let’s create a package binding to access one specific database in
one instance of Cloudant. The binding must set the username, password, and current
database in the package variables. The following assumes that you’ve already set the
CLOUDANT_USER and CLOUDANT_PASS environment variables to the values you have
retrieved in the IBM Cloud:

$ wsk package bind /whisk.system/cloudant demodb \
 -p username "$(CLOUDANT_USER)" \
 -p password "$(CLOUDANT_PASS)" \
 -p host "$(CLOUDANT_USER).cloudant.com" \
 -p dbname demodb

Bind demodb to the cloudant system package.

Provide the username and password.

The hostname in Cloudant is just the username followed by a standard suffix.

Select the database that you want to use with this package.

The binding is now available—you can access an instance, but you still need to create
a database. Let’s do this using the bound package itself. This is equivalent to the curl
command we used to create the database:

$ wsk action invoke demodb/create-database -r
{
 "ok": true
}

Create the database.

It worked.

You are now ready to work with your shiny new Cloudant database.

Using the Cloudant Package | 211

It is worth mentioning that in the IBM Cloud you can get an auto‐
matic binding for a provisioned Cloudant database with the com‐
mand ibmcloud fn package refresh. However, the name is
automatically generated and the binding does not select a fixed
database.

CRUD Actions in the Cloudant Package
The standard OpenWhisk cloudant package offers actions to do CRUD operations,
and they are simpler to use than the CouchDB API. Let’s see how to use it with a
number of examples.

First, let’s inspect the package itself to see what functions are available:

$ wsk action list demodb | awk '{ print $1}' | sort
/whisk.system/cloudant/delete-attachment
/whisk.system/cloudant/update-attachment
/whisk.system/cloudant/read-attachment
/whisk.system/cloudant/create-attachment
/whisk.system/cloudant/read-changes-feed
/whisk.system/cloudant/delete-query-index
/whisk.system/cloudant/delete-view
/whisk.system/cloudant/manage-bulk-documents
/whisk.system/cloudant/exec-query-view
/whisk.system/cloudant/exec-query-search
/whisk.system/cloudant/exec-query-find
/whisk.system/cloudant/list-query-indexes
/whisk.system/cloudant/create-query-index
/whisk.system/cloudant/list-design-documents
/whisk.system/cloudant/list-documents
/whisk.system/cloudant/delete-document
/whisk.system/cloudant/update-document
/whisk.system/cloudant/write
/whisk.system/cloudant/read-document
/whisk.system/cloudant/read
/whisk.system/cloudant/create-document
/whisk.system/cloudant/read-updates-feed
/whisk.system/cloudant/list-all-databases
/whisk.system/cloudant/delete-database
/whisk.system/cloudant/read-database
/whisk.system/cloudant/create-database
/whisk.system/cloudant/changes

For each action, you also can get information about the available parameters. For
example, if you want to know which parameters create-document accepts you can
use:

$ wsk action get demodb/create-document | tail +2 | jq .annotations
[
 {
 "key": "description",

212 | Chapter 8: Using CouchDB with OpenWhisk

 "value": "Create document in database"
 },
 {
 "key": "parameters",
 "value": [
 {
 "name": "dbname",
 "required": true
 },
 {
 "description": "The JSON document to insert",
 "name": "doc",
 "required": true
 },
 {
 "name": "params",
 "required": false
 }
]
 },
 {
 "key": "exec",
 "value": "nodejs:8"
 }
]

This action requires a database name with dbname, a document with doc, and addi‐
tional parameters with params, which is optional. The parameter dbname is specified
at the package binding level, so it is always present for each invocation of actions in
the demodb package. The only required parameter for creating a document is thus
doc. Let’s try create-document, passing a simple document:

wsk action invoke demodb/create-document \
 -p doc '{"name":"Mike"}' -r
{
 "id": "9a2360ec53b50942fbae59b4476e1895",
 "ok": true,
 "rev": "1-4ad839e8dccd6221eb78f388ad6b9f98"
}

Note that the created document generates a new id; if you invoke it multiple times,
you will get multiple records with the same content. Let’s try to invoke it again and
then list all the available documents in the database:

$ wsk action invoke demodb/create-document \
 -p doc '{"name":"Mike"}' -r
{
 "id": "7fdecd38345fa3487fa15f83a983b847",
 "ok": true,
 "rev": "1-4ad839e8dccd6221eb78f388ad6b9f98"
}
$ wsk action invoke demodb/list-documents -r

Using the Cloudant Package | 213

{
 "offset": 0,
 "rows": [
 {
 "id": "7fdecd38345fa3487fa15f83a983b847",
 "key": "7fdecd38345fa3487fa15f83a983b847",
 "value": {
 "rev": "1-4ad839e8dccd6221eb78f388ad6b9f98"
 }
 },
 {
 "id": "9a2360ec53b50942fbae59b4476e1895",
 "key": "9a2360ec53b50942fbae59b4476e1895",
 "value": {
 "rev": "1-4ad839e8dccd6221eb78f388ad6b9f98"
 }
 }
],
 "total_rows": 2
}

As expected, invoking create-document twice in an empty database results in two
documents. If you want to delete the second document, inspecting the action delete-
document you’ll see that there are two required parameters: docid and docrev.

As you learned in “Delete” on page 187, you need a revision id to delete a document.
Let’s try it:

$ wsk action invoke demodb/delete-document \
 -p docid 9a2360ec53b50942fbae59b4476e1895 \
 -p docrev 1-4ad839e8dccd6221eb78f388ad6b9f98 -r
{
 "id": "9a2360ec53b50942fbae59b4476e1895",
 "ok": true,
 "rev": "2-984386b290c0601c61cdb83fd932442b"
}
$ wsk action invoke demodb/list-documents -r
{
 "offset": 0,
 "rows": [
 {
 "id": "7fdecd38345fa3487fa15f83a983b847",
 "key": "7fdecd38345fa3487fa15f83a983b847",
 "value": {
 "rev": "1-4ad839e8dccd6221eb78f388ad6b9f98"
 }
 }
],
 "total_rows": 1
}

214 | Chapter 8: Using CouchDB with OpenWhisk

If you instead use update-document, you will see it uses just a generic doc parameter;
this is a Couch DB document, so you have to add the _id and _rev parameters as
Couch DB prescribes. Hence, you have to read the entire document to get the _id and
_rev fields, change something, then submit the document again to get the changes.

Let’s start by reading the document:.

$ wsk action invoke demodb/read-document \
 -p docid 7fdecd38345fa3487fa15f83a983b847 -r \
 | tee doc.json
{
 "_id": "7fdecd38345fa3487fa15f83a983b847",
 "_rev": "1-4ad839e8dccd6221eb78f388ad6b9f98",
 "name": "Mike"
}

This command saves the input in a file and also shows it in the terminal.

Now you can use the jq utility to change a field of the document and save it in
another file:

$ jq '.name = "Michele Sciabarra"' \
 <doc.json | tee doc1.json
{
 "_id": "7fdecd38345fa3487fa15f83a983b847",
 "_rev": "1-4ad839e8dccd6221eb78f388ad6b9f98",
 "name": "Michele Sciabarra"
}

Finally, you can submit the updated document:

$ wsk action invoke demodb/update-document -r \
 -p doc "$(cat doc1.json)"
{
 "id": "7fdecd38345fa3487fa15f83a983b847",
 "ok": true,
 "rev": "2-dc5a2d3358cefb0567df64086faa8696"
}

Read the entire document from the file and then pass it as a parameter on the
command line.

If you try to read the document again, you will see it has been updated.

Queries and Views with Packages
Of course, it is possible to search in the database using either the Mango query lan‐
guage or views. The action to invoke to execute a Mango query is exec-query-find,
using the parameter query. This parameter must be a query in the format you saw in
“Querying CouchDB” on page 191.

Using the Cloudant Package | 215

We won’t repeat all the examples here. Instead, here’s a simple query with type equal‐
ing person using the test data from before:

$ wsk action invoke demodb/exec-query-find \
 -p query '{"selector":{"type":"person"}}' -r
{
 "bookmark": "g1AAAAA4eJzLYWBgYMpgSmHgKy5JLC...",
 "docs": [
 {
 "_id": "mike",
 "_rev": "1-7e2e7dcf6ae46e373bf9836fec2cbb04",
 "dob": "1968-07-09T23:00:00.000Z",
 "name": "Michele",
 "type": "person"
 },
 {
 "_id": "miri",
 "_rev": "1-34500a0cd43eec3ba6f1d5f44943b365",
 "dob": "1966-10-25T23:00:00.000Z",
 "name": "Mirella",
 "type": "person"
 }
]
}

Now let’s look at how to invoke one of the view functions defined in “Implementing a
Join with map Functions” on page 203. In particular, we’ll see how to invoke the view
join2, passing a parameter to expand the document and filtering using a key.

The action to invoke is exec-query-view, and you have to specify the docid (the ID
of the design document, without the _design prefix), viewname (the name of the
view), and params (a JSON object with the additional parameters to pass):

$ wsk action invoke demodb/exec-query-view \
 -p docid sampleviews \
 -p viewname join2 \
 -p params '{
 "include_docs": true,
 "key": "pc"}'
 -r | jq .
{
 "offset": 1,
 "rows": [
 {
 "doc": {
 "_id": "miri",
 "_rev": "1-34500a0cd43eec3ba6f1d5f44943b365",
 "dob": "1966-10-25T23:00:00.000Z",
 "name": "Mirella",
 "type": "person"
 },
 "id": "pc",

216 | Chapter 8: Using CouchDB with OpenWhisk

 "key": "pc",
 "value": {
 "_id": "miri",
 "brand": "HP",
 "memory": 8,
 "name": "Pavillion"
 }
 }
],
 "total_rows": 3
}

Summary
In this chapter we learned about CouchDB (and its cloud-based brother, Cloudant),
the NoSQL database that powers OpenWhisk and is packaged with all the installa‐
tions.

First, we learned the basics of CouchDB: creating, updating, and deleting documents
(actually, JSON objects).

Then we went through specific ways of querying CouchDB: either with the Mango
query language or with map and reduce functions.

Finally, we explored advanced functions, like bookmarks, pagination, validation, join‐
ing, and design documents.

Summary | 217

CHAPTER 9

An OpenWhisk Web Application in Python

In this chapter, we are going to develop a non-trivial example of an OpenWhisk
Python application using CouchDB/Cloudant. The application we are going to
develop is a database table editor. The goal is to demonstrate coding in Python, by
creating a web user interface that interacts with databases in OpenWhisk. We also
cover testing in depth.

For illustration purposes, the application is actually split into two implementations.
First we’ll build a basic application, with bare-bones functionality. Then we’ll create a
more advanced implementation, with more complex features.

The source code for the examples related to this chapter is available
in the GitHub repository.

CRUD Application Architecture
In the basic application, we cover:

• Implementation and testing of database operations in Python
• Creation and testing of a simple HTML user interface
• Implementation and testing by “mocking” of the application control logic

The application, shown in Figure 9-1, has a simple structure. It uses only HTML
tables and forms, and a bit of client-side JavaScript. We keep the application features
to an absolute minimum here and instead focus on OpenWhisk coding techniques,
avoiding too many implementation details. We follow the usual Model-View-

219

http://bit.ly/2ITfJPi

Controller pattern for a web application, splitting it into three modules: model.py,
view.py, and control.py.

Figure 9-1. CRUD application user interface

When invoked, the application shows a list of the current contacts. Records just
include a name and email address. You can add new contacts by clicking New Con‐
tact. You can update an existing contact by selecting it and clicking Edit Contact.
Finally, selecting a contact and clicking Delete Contact, will delete the contact.

The application has two main states: the “table” and “form” states. The table state dis‐
plays the records. Figure 9-2 shows how the application works as a state machine. You
can go into the form state with the operations new and edit. If you perform the opera‐
tion delete, you return to the table state. Finally, from the form state you can come
back to the table state with the save operation.

Figure 9-2. State machine of the CRUD application

220 | Chapter 9: An OpenWhisk Web Application in Python

Deploying the Action
Let’s begin by deploying the crud action. While we don’t get into the coding right
now, I will show the beginning code here because we need to define an environment
at deployment time.

The application is comprised of the following files, which we will explore in detail in
the following sections:

• model.py, which interfaces with the database
• view.py, which generates the HTML user interface
• control.py, which handles user interaction
• rest.py, the interface to the OpenWhisk REST API
• __main__.py, the entry point of the application.

All the functions in rest.py have already been described in Chapter 7. We need the
__main__.py file because it is mandatory for OpenWhisk Python actions. However,
for uniformity, in this module there are only some initializations; the actual main
function is in control.py. This is the code for the entry point:

import control
import model
def main(args):
 model.init(args["db"], "contact")
 return control.main(args)

Before deploying the action, you need to bind a database to a pack‐
age, as described in “Using the Cloudant Package” on page 210. You
also need to create a database and pass the package name of the
database to the action. Here, I assume you’ve already created the
package cruddb to access the cruddb database, and that you’ve
already created the database.

Now we can create the action as a web action and get its URL as follows:

$ zip crud.zip __main__.py rest.py model.py view.py control.py
$ wsk action create crud crud.zip \
 --kind python:3 -p db cruddb --web true
ok: created action crud
$ wsk action get crud --url
ok: got action crud
https://openwhisk.eu-gb.bluemix.net/api/v1/web/.../crud/main

Of course, your URL will be different because it will have your namespace. Now let’s
get into the application in detail.

CRUD Application Architecture | 221

Abstracting Database Access
Let’s start by implementing a module that simplifies access to CouchDB or Cloudant.
We’ll also examine a set of functions for this purpose that we’ll put in the
__main__.py module.

The first problem to solve is the peculiar approach of CouchDB, which uses the _id
to uniquely identify documents but also requires _rev to be able to update or delete a
document.

We will try to hide this detail in the module. One way to do this is to use a synthetic
id that is a concatenation of _id and _rev. We assume the user of the module does
not need to know of the existence of _rev and instead will use only an id (without the
underscore). We manage encoding and decoding of this id internally in the module.

Furthermore, since documents in CouchDB are not typed, it is customary to add a
type field that helps to select a document in a way similar to classic database tables.
All the functions add or search for only documents with a field called type that we
select in the initialization.

With those assumptions, we are ready to implement our CouchDB abstraction layer,
with the following functions:

• init for initializing the module
• insert for adding new documents
• update for updating an existing document
• delete for deleting an existing document
• find for searching for documents with various criteria

Implementing model.init()
In the init function of the database module, we want to select which database we are
using and set the type of documents we want to restrict our interactions to. So the
first function is model.init(<database>, <dtype>), where <database> is actually a
package we’ve bound to a specific database and <dtype> is the document type—in
this case just a field called type added to each document manipulated by the module.

The implementation of init is obvious. We just store the values in two variables in
the module that all the functions in the module will use:

db = "cruddb"
dtype = "contact"

def init(_db, _dtype):

222 | Chapter 9: An OpenWhisk Web Application in Python

 global db, dtype
 db = _db
 dtype = _dtype

Implementing model.insert()
The insert function receives a JSON object with the fields you want to insert and
(optionally) an initial id. If the id is not provided, it is generated. Let’s discuss how we
handle ids in our abstraction.

In general, you have to remember that the id of a document is not stable: it changes at
every operation. So, invoking insert on a document returns the new id that you have
to use to delete or update it. Similarly, when you update a document, it returns a new
id that you have to use for further modifications.

Actually, a document is identified by a stable _id, but to update it, you also need to
use the field _rev, which changes at every modification of the document. So we sim‐
plify things here: we are using an unstable id that is actually a concatenation of the
_id and _rev fields; we return it from insert and update. We also add a field id as
the result of searches. In the insert function we provide the option to specify the ini‐
tial id (as it does not require the _rev part).

Given those requirements, this is what the insert function needs to do:

• Make a copy of the object you are writing to avoid overwriting it.
• Add the current document type (and optionally the id passed as the parameter).
• Invoke the create-document action already seen in “CRUD Actions in the Clou‐

dant Package” on page 212.
• Return the new id, concatenating the _id and _rev values stored in the answer

from CouchDB.

This is the code:

def insert(args, id=None):
 doc = args.copy()
 doc["type"] = dtype
 if id:
 doc["_id"] = id
 ret = rest.whisk_invoke(\
 "%s/create-document" % db, \
 {"doc": doc})
 if "ok" in ret:
 return "%s:%s" %\
 (ret["id"], ret["rev"])
 return None

Copy the object to avoid overwriting it.

Abstracting Database Access | 223

Assign the document type.

Assign the document id, if required.

Create the document.

If the request was successful, create the new id.

Otherwise, return a false Python value.

Before testing the function we need a way to read the data in the database, so first
we’ll implement the find function.

Implementing model.find()
The find function can be invoked without arguments. In this case it returns a num‐
ber of documents (of a given type), up to the pagination limit, which by default is 25.
If you instead provide an id, it returns only the document satisfying that id. Note that
the id can be either the id returned by a function or the original id (the one returned
by insert or update).

The returned data is also normalized to our way of handling the id, adding explicitly
the field concatenating the _id and _rev values:

def find(id=None):
 query = \
 { "selector": {"type": dtype} }
 if id:
 query["selector"]["_id"] \
 = id.split(":")[0]
 ret = rest.whisk_invoke(\
 "%s/exec-query-find" % db,\
 {"query": query})
 for rec in ret["docs"]:
 rec["id"] = "%s:%s" %\
 (rec["_id"], rec["_rev"])
 return ret

Initialize the query to search all the documents of the current type.

If an id is provided, we add _id to the query, and remove the _rev part, if any.

This split removes the _rev part if it is present.

Invoke the search of the documents.

Normalize the results by adding the id field from _id and _rev.

224 | Chapter 9: An OpenWhisk Web Application in Python

Testing insert and find
Now we can finally test the functions we wrote using the Python interpreter. As dis‐
cussed in Chapter 7, we use doctest for this, so the interactive interpreter session will
be copied into the source code as a documentation comment to become a repeatable
test.

The first step in testing is initialization—importing the modules, loading the environ‐
ment variables to access OpenWhisk, and initializing the model module with the
database and the record type we want to restrict to:

>>> import rest,model,json
>>> rest.load_props()
>>> model.init("demodb","test")

Import modules.

Load variables to be able to invoke OpenWhisk actions.

Initialize the variables to use a specific database and document type.

Now let’s try inserting one record, without specifying any id. As you can see, this gen‐
erates and returns an id, which we save for future use:

>>> args = {"name": "Mike",\
 "email":"msciab@gmail.com"}
>>> id1 = model.insert(args)
>>> id1
'73a395c8020cc6b579f8a7a4c2e2d8a6\
:1-1a96710e8f4c3c9b738eb0250762205f'

Now, using id1, we can test the find function and reload the document we just inser‐
ted to see what the database returns. We use json.dumps() to render the result in
JSON format, to make it easier to read:

>>> model.find(id1)
>>> print(json.dumps(
 model.find(id1),\
 indent=2))
{
 "bookmark": \
 "g1AAAABweJzLYWBgYMpgSmHgKy5JLCrJT",
 "docs": [
 {
 "_id": "73a395c8020cc6b579f8a7a4c2e2d8a6",
 "_rev": "1-1a96710e8f4c3c9b738eb0250762205f",
 "id": "73a395c8020cc6b579f8a7a4c2e2d8a6:\
 1-1a96710e8f4c3c9b738eb0250762205f",
 "type": "test",
 "email": "msciab@gmail.com",
 "name": "Mike"

Abstracting Database Access | 225

 }
]
}

The bookmark for pagination.

Documents returned by the query (just one).

The _id and _rev and the synthetic id.

The document type and the data just added.

The examples here show actual ids for illustration purposes, but
those ids make the test unrepeatable because they change at each
operation. The actual test code avoids producing explicit ids by
using additional variables. to learn more about how to write tests, I
recommend checking out the actual examples in the GitHub repos‐
itory.

Implementing model.update() and model.delete()
The update function works on records returned by find. In CouchDB, to update a
document you have to provide all the fields to load the document using find. Our
find function also adds an id, and the update function looks for it.

The implementation works by making a copy of the document (again, to avoid modi‐
fying the original), then replacing it with _id and _rev. The document is then sent to
CouchDB for updating, and then we create a new synthetic id. This is the code:

def update(args):
 doc = args.copy()
 doc["type"] = dtype
 a = doc["id"].split(":")
 del doc["id"]
 doc["_id"] = a[0]
 doc["_rev"] = a[1]
 ret = rest.whisk_invoke(\
 "%s/update-document" % db, \
 {"doc": doc})
 if "ok" in ret:
 return "%s:%s" \
 % (ret["id"], ret["rev"])
 return None

Ensure the document type is in the answer.

Generate _id and _rev from id.

226 | Chapter 9: An OpenWhisk Web Application in Python

http://bit.ly/2ITfJPi
http://bit.ly/2ITfJPi

Actual invocation of the document update.

Generate the synthetic id from the answer.

delete also requires an id, but as with find we want to use either the synthetic id or
the original id. In the first case it is easy—we have both _id and _rev in the synthetic
id. However, if we are using only the original id we do not have _rev, so we have to
retrieve the document and read the revision before we can delete the document.

Here’s how it looks in code:

def delete(id):
 a = id.split(":")
 if len(a) == 1:
 res = find(id)
 if res["docs"]:
 a = res["docs"][0]["id"].split(":")
 else:
 return {"error": "not found" }
 params = {
 "docid": a[0],
 "docrev": a[1]
 }
 ret = rest.whisk_invoke(\
 "%s/delete-document" % db, params)
 return ret

Check whether the id is a synthetic id.

If not, try to locate the actual id.

Split the synthetic id into components.

Prepare the parameters for deletion.

Delete the document.

Testing update and delete
We can now test the functions in the Python interpreter. Since we are continuing the
session from before, we’ll reuse id1. Now let’s test locating the document, then updat‐
ing and finally deleting it:

>>> rec = model.find(id1)["docs"][0]
>>> rec["name"]="Michele"
>>> id2 = model.update(rec)
>>> model.find(id2)["docs"][0]["name"]
'Michele'
>>> x = model.delete(id2)

Abstracting Database Access | 227

>>> model.find()
{'bookmark': 'nil', 'docs': [] }

Locate the document using the last saved id.

Change a field.

Then update it.

Reload the asset to check the changed value.

Delete the asset.

Check whether it’s gone.

This is actually a simplified test. A more detailed test in doctest
format is available in the repository on GitHub.

The User Interface
The application we are developing has an HTML user interface meant to be used by a
web browser. Let’s see how the HTML is produced. Given the simplicity of the appli‐
cation, the HTML is generated simply using formatted Python strings. This solution,
using multiline strings and the % operator, is actually good enough in many cases.

In a more realistic application, you may want to use a templating
library to keep the code separate from the HTML markup. This
makes it easier to edit using web design tools. In the Python world,
the most widely used templating library is probably Jinja2.

Recall from Figure 9-1 that there are two main screens in our web user interface: the
table and the form. Each one corresponds to a function with the same name. In addi‐
tion, there is some markup common to both screens, so we have used a wrap function
to wrap the output of another function. Furthermore, for convenience, since a table is
made up of rows, we define a rows function that only renders the rows of the table.

Testing
We also need to figure out how to test the HTML output. In this section, you’ll see
how to test the output with the help of the library Beautiful Soup.

228 | Chapter 9: An OpenWhisk Web Application in Python

http://bit.ly/2ITfJPi
http://jinja.pocoo.org/
http://bit.ly/2xcoFbM

While the user interface functions produce a lot of markup, it is in large part fixed,
and we’re interested in testing only those parts that are calculated. Most notably, we
want to test whether those parts of the HTML containing variables actually change as
expected. BeautifulSoup, to ease testing, helps in selecting only those snippets of the
HTML markup you want to verify.

The wrapper

Let’s look at the wrap function. The function itself is not very interesting—it just pro‐
duces an HTML string—but it’s useful to illustrate testing techniques:

BOOTSTRAP_CSS = "https:/.../bootstrap.min.css"
BOOTSTRAP_JS = "https://.../bootstrap.min.js"
JQUERY = "https://.../jquery.min.js"

def wrap(body):
 return """<!DOCTYPE html>
<html lang="en">
 <head>
 <title>OpenWhisk Crud Demo</title>
 <link rel="stylesheet" href="%s">
 <script src="%s"></script>
 <script src="%s"></script>
 </head>
 <body>
 <div class="container">%s</div>
 </body>
</html>
""" % (BOOTSTRAP_CSS, \
 JQUERY, BOOTSTRAP_JS, body)

As expected, there’s nothing special here. But let’s see if the markup produced actually
replaces the parameters correctly. Of course, we can print the entire HTML and com‐
pare the result, but this usually leads to tests that are difficult to read and update.

BeautifulSoup
A better approach is to focus just on the important parts, and here is where
BeautifulSoup comes in. This Python library is designed to manage HTML (and
XML) markup. It works by parsing HTML markup using one of the many available
Python parsers (the recommended one is lxml). Once parsed, the HTML is trans‐
formed into a hierarchy of Python objects that you can then inspect. You also get a set
of methods like find and find_all to locate subtrees in the parsed markup.

Let’s use BeautifulSoup to test the wrap function. As usual, we use an interpreter ses‐
sion to prepare our tests, then copy and paste the session into a docstring so we can
repeat them later with doctest:

The User Interface | 229

>>> import view
>>> from bs4 import BeautifulSoup as BS
>>> html = BS(view.wrap("BODY"), "lxml")
>>> print(html.body.div)
<div class="container">BODY</div>
>>> print(html.find_all("link")[0])
<link href="https://.../bootstrap.min.css" rel="stylesheet"/>

Import the module we want to test.

Import the BeautifulSoup parser.

Invoke the wrap function and parse the result.

Extract the main DIV of the wrapper to verify the replacement.

Search the document to locate a tag with replacements.

Note how we used the BS function to parse our markup. The "lxml" parameter is the
parser to use (but there are other parsers that can be useful in specific cases). The
result is a Python object with fields and subfields corresponding to the HTML struc‐
ture of the parsed markup. The hierarchy of objects corresponds to the hierarchy of
tags: under html the main tag is body, which in turn it has the subtag div; we print it
to be sure there is a replacement inside.

The html.find_all("link") returns an array of all the possible tags of this type.
Since we expect only one, we printed only the first result to verify that the replace‐
ment happened correctly.

Rendering the Table with view.table
The main view of our CRUD application is a table with the records we found in the
database. We’ll first write the method rows, which expects an array of maps coming
from the database. When we query the database we get something like this:

[
 {
 "id": "xxx:yyyy"
 "name": "Mike",
 "email":"msciab@gmail.com"
 },
 {
 "id": "zzz:ttt"
 "name": "Miri",
 "email":"miri@gmail.com"
 }
]

230 | Chapter 9: An OpenWhisk Web Application in Python

This answer translates to an array of Python maps. We are going to render it in
HTML using a cell for each value and a radio button for the id, which is used for edit‐
ing and deleting a document. The rows function hence is:

def rows(docs):
 res = "<tbody>"
 for row in docs:
 res += """
 <tr>
 <td scope="row">
 <input name="id" value="%s" type="radio">
 </td>
 <td>%s</td>
 <td>%s</td>
 </tr>
""" % (row["id"], row["name"], row["email"])
 return res+"</tbody>"

The function is straightforward, so we can test it using the same techniques we used
before. Note that we leverage the fact that the id handling is hidden in the model
functions, so we use it without changes.

Now let’s see the table function that wraps rows. This function generates a form that
encloses all the radio buttons. Furthermore, there are buttons for things like adding a
new record (op=new), editing the selected one (op=edit), or deleting a record
(op=delete). The code is as follows:

def table(data):
 res = ""
 res += """
<form method="post">
 <table class="table">
 <thead>
 <tr>
 <th scope="col">#</th>
 <th scope="col">Name</th>
 <th scope="col">Email</th>
 </tr>
 </thead>"""
 res += rows(data)
 res += """
 <tfoot>
 <tr>
 <td colspan="4" align="center">
 <button name="op" value="new"
 type="submit" class="btn btn-default">
 New Contact</button>
 <button name="op" value="edit"
 type="submit" class="btn btn-default">
 Edit Contact</button>
 <button name="op" value="delete"

The User Interface | 231

 type="submit" class="btn btn-default">
 Delete Contact</button>
 </td>
 <tr>
 </tfoot>
 </table>
</form>"""
 return res

A form enclosing all the records.

Render the actual data of the table.

Create a new record.

Edit the selected record.

Delete the selected record.

Rendering the Form with view.form
The form function is a bit more interesting. It is invoked in two different cases: when
you want to create a new record and when you want to update one. The main differ‐
ence is that for new records we do not specify the id since the insert function can
generate one. When editing a record instead we add a hidden input field, storing the
id of the current record needed to perform the update:

def form(args):
 id = ""
 if "id" in args:
 id = """
 <input type="hidden"
 name="id" value="%s">
 """ % (args["id"])
 return """
<form method="get">
 %s
 <input type="hidden"
 name="op" value="save">
 <div>
 <label for="usr">Name:</label>
 <input id="name" name="name"
 type="text" value="%s">
 </div>
 <div>
 <label for="email">Email address:</label>
 <input id="email" name="email"
 type="email" value="%s">
 </div>
 <button type="submit">Save</button>

232 | Chapter 9: An OpenWhisk Web Application in Python

</form>
 """ % (id, args["name"], args["email"])

The code is simplified for readability (I removed formatting
attributes). I also don’t include tests here because they are pretty
obvious and straightforward.

The Controller
The controller is the key component of this simple application, and probably the most
interesting. It puts together the model logic with the view layer we discussed. It is
OpenWhisk-specific, since it works with the action-based serverless model, reading
inputs from args. It is also the most difficult part to test because we need to use
mocking to verify the code locally.

The controller consists of the function main in the module control.py, and the support
function fill that initializes a Python dictionary from the arguments to store it in
the database. Let’s look at the fill function first. It exists solely to create an object
with the relevant fields for the database. Indeed, in the args objects there are many
other values that you may not want to store in the database:

def fill(args):
 res = { }
 if "id" in args: res["id"]=args["id"]
 res["name"] = args.get("name", "")
 res["email"] = args.get("email", "")
 return res

Copy the id only if it is available.

Initialize other fields to the passed value or a default.

Next is the function main, which begins with some initializations and processes all the
operations. If no operations are specified (as happens when you invoke the actions
without parameters) it just renders the main table:

def main(args):
 op = args.get("op")
 # ...processing operations...
 data = model.find()["docs"]
 body = view.table(data)
 return { "body": view.wrap(body) }

Get the current op from the field defined above (<input type="hidden"

name="op" value="save">) to start processing it.

The Controller | 233

Process operations as described later.

You get here if there are no other operations, so the default is to read all the docu‐
ments.

Fill the table with the data.

Render the web action, wrapping the table.

To do something different than just showing the records, the controller needs to
respond to form submissions. Each form submission sets the variable op and other
fields. When you click a button, it is always named op and its value is used to decide
what to do. The possible values for op hence are:

• new

• edit

• delete

• save

In the next sections, we’ll develop our application further to handle each of these
cases.

Processing Operations
First, let’s process the operations. If the current operation is new, you just need to
invoke the form with an empty value:

if op == "new":
 form = view.form(fill({}))
 return { "body": view.wrap(form) }

Capture the operation new.

Fill the form with an empty body.

Return the wrapped answer as a web action body.

The edit operation is a bit more complicated.

First, the operation is possible only if you selected a record to edit. This means you
clicked on a radio button to select a record. If you did so, the current value of id lets
you retrieve the record from the database. You load it and use the value to fill the
form. Note that when you use find to specify an id, you only have to retrieve the first
document from the answer:

234 | Chapter 9: An OpenWhisk Web Application in Python

if op == "edit" and "id" in args:
 res = model.find(args["id"])
 rec = res["docs"][0]
 body = view.form(rec)
 return { "body": view.wrap(body) }

Capture a valid edit operation.

Load the data from the database.

Extract the record (there should be exactly one).

Use the value to fill the form.

Return the wrapped answer.

So, with the new operation you see a form that is empty (with the id not set), while
with the edit operation you see a form that is prefilled.

On the form screen, you can edit the values and then click the Save button. What
happens now depends on whether the record is new or you are updating an existing
record. You can distinguish between the two cases because there is no id when the
record is new. If there is an id, you want to update the record; otherwise, you want to
insert it.

Let’s see the code to process a save operation:

if op == "save":
 if "id" in args:
 model.update(fill(args))
 else:
 model.insert(fill(args))

Determine if you are saving.

Is this a new record or an existing one?

Existing: fill in the data from the args and invoke the model.update function.

New: fill in the data from the args and invoke the model.insert function.

Now let’s see how to delete. First, the operation is possible only if you’ve selected a
record to edit. This means you clicked on a radio button to select a record. The
implementation is just a matter of invoking model.delete:

if op == "delete" and "id" in args:
 model.delete(args["id"])

The Controller | 235

We want to delete and we have an id.

Just do it.

Testing the controller using mocking

Now let’s test the controller using the usual the doctest approach and the Python
interpreter. The main difference here is that we are going to use mocking. The con‐
troller uses the model, which in turn talks with the database. In general, however, we
are not interested in verifying that the model functions work (as they were already
tested), but just that the controller reacts properly to the various requests. This is a
use case for mocking: in your tests, you just want to see what happens when the func‐
tion is invoked, providing some fixed results from the database functions, which are
already encapsulated in a module.

Using Python, a highly dynamic language, you can perform mocking without using
external libraries (at least in simple cases). There is a complex and powerful mocking
tool in the standard library, but here we just need to replace some functions in an
imported module with mocked functions returning fixed values.

Let’s start by importing the model and BeautifulSoup to check the HTML output:

>>> import model
>>> import control
>>> from bs4 import BeautifulSoup as BS

Now let’s see what happens when we invoke the controller the first time, without any
defined operations. If you look at the code, you’ll see that in this case it queries the
database in order to retrieve all the records of our current type: data =

model.find().

But we don’t actually want to invoke the database! Instead, let’s mock the
model.find() function. In Python, tis is extremely easy: we just assign it to a func‐
tion returning the value we expect. To verify the result, we just want to look into the
output and see if the body of the table contains our mocked data:

>>> docs = [{"id":"1","name":"Mike","email":"m@s.c"}]
>>> model.find = lambda x=None: {"docs":docs}
>>> res = control.main({})
>>> html = BS(res["body"], "lxml")
>>> print(html.find("tbody"))
<tbody>
<tr>
<td scope="row">
<input name="id" type="radio" value="1"/>
</td>
<td>Mike</td>
<td>m@s.c</td>

236 | Chapter 9: An OpenWhisk Web Application in Python

</tr>
</tbody>

Mocked data.

Mock find with a function returning fixed data.

Invoke the controller without arguments.

Check that the returned data matches the mocked data.

As expected, the output contains one row with the data returned from the mock. A
more realistic test would include the empty case and multiple rows, but that is omit‐
ted here for brevity. The next step is to test new operations.

There are no database operations involved—just make sure the output produces a
form with empty fields:

>>> res = control.main({"op":"new"})
>>> inp = BS(res["body"], "lxml").find_all("input")
>>> print(*inp, sep="\n")
<input name="op" type="hidden" value="save"/>
<input class="form-control" id="name" name="name" type="text" value=""/>
<input class="form-control" id="email" name="email" type="email" value=""/>

Now, let’s test the edit operation. The main difference here is that it is going to use
data from the database using find. Since find is already mocked, we can expect that
executing an edit operation will return the input fields initialized with the values in
the array of docs we provided:

>>> res = control.main({"op":"edit", "id":"1"})
>>> inp = BS(res["body"], "lxml").find_all("input")
>>> print(*inp, sep="\n")
<input name="id" type="hidden" value="1"/>
<input name="op" type="hidden" value="save"/>
<input class="form-control" id="name" name="name" type="text" value="Mike"/>
<input class="form-control" id="email" name="email" type="email" value="m@s.c"/>

Side Effects
Next, we will test the save operation. Here again, we need to use mocking—this time
with the insert and update operations.

In this case, we want to check not just the value returned, but what happened as a side
effect. In particular, we want to know which value will be written in the database.
Again, in Python this is extremely easy: just define a function that stores the result of
an invocation in a variable, then read that variable.

The Controller | 237

Let’s write the inspect function, saving the received value as spy in the control
package:

spy = {}
def inspect(x):
 global spy
 spy = x.copy()

A variable to store the inspected value.

The function to use to capture the values.

Access the global variable.

Copy our value in the global variable.

Now, all we need to do is replace the functions we want to inspect with our inspect
function, then see what happened by looking at the spy variable. Let’s first test the
insert operation:

>>> model.insert = control.inspect
>>> args = {"op":"save", \
 "name":"Miri", "email":"m@d.g"}
>>> x = control.main(args)
>>> print(control.spy)
{'name': 'Miri', 'email': 'm@d.g'}

Replace insert with our inspector.

Prepare a save operation without ids.

Invoke the save operation with our values.

Print the spy variable in order to verify that the values are as expected.

We can do the same for update, but here we have to set an id:

>>> model.update = control.inspect
>>> args = {"op":"save", "id": "1",\
 "name":"Mike","email":"m@s.c"}
>>> x = control.main(args)
>>> print(control.spy)
{'id': '1', 'name': 'Mike', 'email': 'm@s.c'}

Replace update with the inspector.

Trigger an update using the id.

Check the result.

238 | Chapter 9: An OpenWhisk Web Application in Python

Advanced Web Actions
Recall from Chapter 2 that you can create a web action with the wsk create tool
using the flag --web true and then read its URL (to be used in a browser) with the
wsk get command and the --url flag.

In general, a web action receives a request in the form of a JSON object with some
standard fields providing details of the HTTP requests, and it must produce a
response in the form of another JSON object; this JSON object must contain some
required fields that have a special meaning in producing the HTTP response.

First, let’s discuss the response fields; later in this section we’ll work on the request
fields. The response’s required fields are:

body

The body of an answer, a string; it is usually HTML but it can be plain text or a
base64-encoded string when the body is binary.

statusCode

The HTTP status code, also a string; 200 means OK, while other values, as man‐
dated by HTTP standards, mean some special action (like a redirection) or some
kind of error.

headers

A map, where the keys are header names and the values are header values.

Now let’s use this knowledge to write an example, echoweb.py, which returns the
request as a JSON object so that we inspect it.

def main(args):
 return {
 "body": args,
 "status": "200",
 "headers": {
 "Content-Type": "application/json"
 }
 }

The body contains the arguments.

The status is 200, the HTTP OK code.

Return the content type declaring the answer is a JSON object.

Now you can deploy it and get a URL:

$ wsk action update python/echoweb echoweb.py \
 --web true --kind python:3
ok: updated action python/echoweb

Advanced Web Actions | 239

$ URL=$(wsk action get python/echoweb --url| tail -1)
$ echo $URL
https://openwhisk.eu-gb.bluemix.net/api/v1/web/.../python/echoweb

Store the URL of the echoweb action in the $URL variable.

Now you have an action you can use to explore the format of requests. Before getting
into a practical example, let’s look at the fields in the request and their meanings:

• __ow_method is the HTTP method of the request (GET, POST, PUT, etc.).
• __ow_path is the “extra” path of the request.
• __ow_headers is a map of the headers of the request.
• __ow_body is the body of the request.
• __ow_user is the user, available only if there is an annotation password-

protecting the request.

Let’s try a simple request using curl and $URL as is (i.e., using GET). In this case there
is no body; there is just an empty extra path and there are no additional values. (note
that the output has been simplified to remove unnecessary details):

$ curl $URL
{
 "__ow_method": "get",
 "__ow_path": "",
 "__ow_headers": {
 "user-agent": "curl/7.54.0",
 "host": "...",
 "accept": "*/*",
 "accept-encoding": "gzip",
 "x-forwarded-port": "443"
 }
}

The method of the request is GET.

There is no path after the action name.

Additional information on the request available as headers.

Now let’s try a more complicated request: we are going to create a request using POST
that sends a form with two fields in URL-encoded format and specifies an extra path
and a query string.

This is the result, also simplified for readability:

$ curl -X POST -d 'user=mike&pass=hello' $URL/hello?q=world
{
 "__ow_method": "post",

240 | Chapter 9: An OpenWhisk Web Application in Python

 "__ow_path": "/hello",
 "pass": "hello",
 "user": "mike",
 "__ow_headers": {
 "content-type": "application/x-www-form-urlencoded",
 "host": "...",
 "accept": "*/*",
 "user-agent": "curl/7.54.0",
 "accept-encoding": "gzip",
 "x-forwarded-port": "443",
 "x-client-ip": "...",
 "x-forwarded-proto": "https",
 "x-real-ip": "...",
 "x-forwarded-host": "...",
 "x-forwarded-for": "..."
 },
 "q": "world"
}

The method this time is POST.

The “extra path” after the URL.

Parameters of the form, already decoded.

The content type, a URL-encoded form.

Miscellaneous information available in the headers.

This parameter comes from the query string.

Improving the CRUD Application
Now let’s improve the application by adding some more advanced features. We’ll also
discuss web actions in more depth here, because we’ll use them to implement some of
these advanced features. The features we are going to add include:

• Data validation
• Pagination of output
• File upload
• Image rendering

Data validation is performed on the server side using database data validation fea‐
tures. Pagination also relies on database features, in particular bookmarking. File
upload and image rendering instead require advanced web actions.

Improving the CRUD Application | 241

Figure 9-3 shows the application as it will appear at the end of the chapter.

For reference, all the changes are available on GitHub.

Figure 9-3. The advanced CRUD application

Validation and Error Reporting
At this point, our CRUD application is missing validation of the input. Let’s now add
server-side validation of the data, with the help of the database. In “Validation Func‐
tions” on page 208 we discussed the design document validate.json, which is also suit‐
able here. The validation function is a JavaScript function, in validate.js, that checks if
in a document with type='contact' that both the name and email address are
defined. We are going to reuse this function, but first let’s see how to deploy this
design document using the wsk tool (in the other example we used curl). For deploy‐
ment we also need to prepare a JSON object as a wsk parameter file using jq:

$ jq -n --rawfile file validate.js \
 '{ "doc":{ "_id": "_design/validate",\
 "validate_doc_update":$$file} }' \

242 | Chapter 9: An OpenWhisk Web Application in Python

http://bit.ly/2ITfJPi

 >validate.json
$ wsk action invoke \
 advcruddb/create-document \
 -P validate.json -r
{
 "id": "_design/validate",
 "ok": true,
 "rev": "1-b2803e26e4d30c3e458908df02192150"
}

Prepare the JSON with the parameter doc.

Invoke the create-document action.

Here the doc parameter comes from the JSON.

Now we have our validation function in place. If you try to run the current applica‐
tion without changes, you will not be able to save empty records or wrong emails, but
the application does not show any error messages. This is the feature we need to work
on now—the ability to throw errors. We need to make the following changes to do
this:

• In model.py, store the latest error in a well-known place (a module variable).
• In view.py, read a parameter to display errors.
• In control.py, propagate error messages to the view.

Storing Error Messages
In model.py, we add a variable containing the latest error:

add this after the imports
last_error = None

Then, we store the error message when something goes wrong. Note that since the
variable last_error keeps track of the last error, if there are no errors, we reset it.

 # add this after
 # ret = rest.whisk_invoke(...
 # in insert and update
 global last_error
 if "error" in ret:
 last_error = ret["error"]["message"]
 if "ok" in ret:
 last_error = None
 return "%s:%s" % (ret["id"], ret["rev"])

Save the error if there is one.

Validation and Error Reporting | 243

Clean the error if there is none.

The error message is now saved in the module.last_error variable, but to render it
you need to change view.py; in particular, you have to edit the function table. You go
to the table screen after any operation that goes wrong, so it is the right place to show
the error. For this purpose, we add a parameter error to the table function:

modify the table function
def table(data, error=None):
 res = ""
 if error:
 res += """
<div class="alert alert-danger"
 role="alert">Error: %s

 Retry
</div>""" % error
 # rest of the form

Display the error.

Go back to the form to fix it if there is an error.

The last step is to change control.py to propagate errors from the model to the view:

modify the end of the main function
to pass model.last_error to view.table
body = view.table(data, model.last_error)
if model.last_error:
 model.last_error = None
return { "body": view.wrap(body) }

Pass the error to the view.

Clean the error after use to avoid multiple error messages.

Pagination
We’ve come a long way, but our application still has one issue: when it displays the
records, it displays only the first 25. This is because by default any search has a default
limit of 25. We could increase the limit to show more data, but it would be better to
implement paginated visualization. We will do this using the bookmark feature dis‐
cussed in “Pagination Support” on page 194.

For simplicity, we’ll show only forward pagination: we’ll add a More button that dis‐
plays the next page until we reach the last page of data. Then, the button changes to
Restart to display the first page again.

The implementation first requires a few changes to the model:

244 | Chapter 9: An OpenWhisk Web Application in Python

• Set the number of rows you fetch when you search.
• Add an index to the database to retrieve ordered data.
• Use the bookmark in queries to get the next page.

Once you can get paginated data, the other changes are pretty simple:

• The view must be modified to display the pagination buttons.
• The control just needs to pass the bookmark around.

Creating an Index
To get consistent and efficient pagination, you need to index your data, as described
in “Indexes” on page 192. We’ll create an index that will maintain an ordered list of
names. Indexes are created using design documents, so here we create a design docu‐
ment to index our contacts by name:

{
 "index": {
 "fields": [
 {
 "name": "asc"
 }
]
 }
}

To publish this index, we have to invoke the create-query-index action. We pass the
whole index document as the parameter index, so we again create a parameter file
using jq and then invoke the action with -P:

$ jq -n --slurpfile index index.json \
 '{"index": $$index[0]}' >_index.json
$ wsk action invoke \
 advcruddb/create-query-index \
 -P _index.json -r
{
 "id": "_design/c48f920d130eea44840366ac64cde81858bed902",
 "name": "c48f920d130eea44840366ac64cde81858bed902",
 "result": "created"
}

Read the index file.

Write the parameter file.

Create the index with the parameter file.

Pagination | 245

Using Bookmarks and Limits
The find function is all about running a query against the database. In the first exam‐
ple the query was basic: we did not specify any ordering, we used the default limit,
and we only filtered by document type.

Now, we want to do better. We will:

• Set the limit explicitly.
• Specify some ordering of the results.
• Get a specific page using a bookmark.

The most important changes are to the search query. There is a module variable, ini‐
tialized to 10, that defines the number of rows shown on each page. We use this to
limit the number of rows returned. We then change the query to order the results by
name and set the limit. But most importantly, we use the bookmark so we can start
the search from the current page:

find_limit = 10
def find(id=None, bookmark=None):
 # ...
 global find_limit
 query = {
 "selector": {"type": dtype},
 "sort": [{"name": "asc"}],
 "limit": find_limit
 }
 if bookmark:
 query["bookmark"] = bookmark
 # ...

How many documents the find must retrieve.

Add a new parameter, bookmark, that defaults to None.

Ask to sort results by name.

Limit the number of returned documents.

If the bookmark is defined, add it to the query.

Pagination
Since the data is actually returned paginated, there are no changes in the visualization
of rows. We just need a button to move to the next page. The view needs to know the
value of the current bookmark, too, so we have to pass it. This value is available in the

246 | Chapter 9: An OpenWhisk Web Application in Python

dictionary returned by find. We use it to set the value of the More button to advance
to the next page. If the page is the last one, we instead display a Restart button and
use an empty bookmark:

def table(data, bookmark=None, error=None):
 # ...
 if bookmark:
 button = """
 <button name="bookmark" value="%s"
 type="submit">More</button>
 """ % bookmark
 else:
 button = """
 <button name="bookmark" value=""
 type="submit">Restart</button>"""
 # ...
 print "...%s..." % button

Pass a bookmark as a parameter when displaying the table.

If the bookmark is defined, put it as the value of a button.

Set a button with name=bookmark.

Otherwise add a button with an empty bookmark.

Processing the Bookmark
Normally when you paginate data you have to keep track of current indexes; using
bookmarks, all of this is done for you by the database. The bookmark embeds all the
required information and all you need to do is search, passing the bookmark parame‐
ter.

We only have to take care of one thing: understanding when we are at the last page.
As a simple criterion (it can be more complicated), we can detect that we are at the
end of the pagination when the search returns less documents than the limit.

So, we need to:

• Replace data loading in the basic model.py by reading an additional parameter
(bookmark).

• Search in the database using it.
• Determine whether we are at the last page.

The following code does this:

... replace this after 'data = ...'
paginated rendering

Pagination | 247

curr = args.get("bookmark")
query = model.find(bookmark=curr)
data = query["docs"]
next = ""
if len(data) == model.find_limit:
 next = query.get("bookmark")
body = view.table(data, next, model.last_error)

Get the current bookmark as a parameter.

Search using it (it can be None or empty).

Prepare for the next page.

If we are not yet at the last page, read the bookmark.

Render the current page, but pass the bookmark of the next one.

Uploading and Displaying Images
Next, let’s add the ability to upload a photo and display it. This is probably the most
complicated part of this small application, so I’ll explain it in small steps.

In this demo application we store the image in a field of the data‐
base as a base64-encoded string, and then we retrieve the image
from the database using an action. I must to make 100% clear that
this is not a good idea (except for very small amounts of data). You
should use instead some form of object storage like Amazon S3, or
similar services available in every cloud. This is meant to be a sim‐
ple example. We already have the methods to store and retrieve
data from our database, so using it for the images, too, was very
easy.

Let’s consider what it takes to upload images:

• The data entry form needs a new field for image upload.
• The controller will receive data from a file upload that it must parse to prepare

the data for storage.
• The table must include an tag to show photos.
• The controller must handle requests to render photos.

Luckily, model.py does not need changes. We just have a document with more fields;
the existing code is fine for reading and writing in the database. Most of the complex‐
ity is actually hidden in the form_parse method that handles the details of form pars‐

248 | Chapter 9: An OpenWhisk Web Application in Python

ing. Furthermore, since in the standard Python library there is not a parsing function
for file uploads (except a deprecated one), we use a third-party open source library
(included in the source code of the action). Other details on preparing data to be
stored in the database are handled by the fill function.

Let’s discuss all those things in order.

File Upload Form
First, let’s change the function form in view.py. In the form, you need to make two
changes. The first is the obvious addition of the tag <input> of type file to upload
images. The second change is the encoding of the form. When you use the form to
upload, the HTML rules require using the method POST and setting the encoding to
multipart/form-data. So let’s change the HTML returned by the view:

 # ...
 return """
<form method="post"
 enctype="multipart/form-data">
 <!-- ... -->
 <label for="photo">Photo (optional):</label>
 <input type="file" class="form-control"
 id="photo" name="photo">
 <!-- ... -->
</form>""" # ...

Encode the form to upload a file.

Add a tag to upload a file.

Now that the form can upload, a submit sends to the controller a body encoded as
multipart/form-data. Since we can’t rely on the parameters anymore, leveraging the
knowledge gathered in “Advanced Web Actions” on page 239, we parse the __ow_body
parameter that is now set to the encoded form upload.

In the controller, we are no longer using the condition op == "save" to save data.
Instead, we check to see if the __ow_body has the uploaded data to parse and then we
invoke a new form_parse function (examined later) to read the data.

This function returns two dictionary-like objects—one for normal fields and another
one for file uploads. You have to extract data in a special way for files (we handle
those details later, when we update the fill method):

add this at the beginning of `main`
if "__ow_body" in args:
 fields, files = form_parse(args)
 filled = fill(fields, files)
 if "id" in fields:
 model.update(filled)

Uploading and Displaying Images | 249

 else:
 model.insert(filled)

Since __ow_body is available, we have to parse it.

Parse the form, getting fields and files.

Fill the form with the parsed data.

Do an insert or an update as usual.

Parsing the File Upload
In the standard Python library there is only a deprecated parser for the data of a file
upload. So here, we use a third-party library to parse it: multipart. The library is
included in this code for the chapter on GitHub. I’ve also forked the original reposi‐
tory for reference.

This library requires some information before processing. Luckily, all the informa‐
tions that it needs is available in a web action. Parsing a file upload requires the fol‐
lowing:

• The HTTP method, available in __ow_method
• The content type, available in the map __ow_headers under content-type
• The body of the request, available in __ow_body

A few more things to note:

• The content-type is critical for parsing, as it contains an unique string (the
boundary), essential for parsing the body.

• The __ow_body is actually encoded in base64 so must be decoded first.
• The function multipart.parse_form_data expects the input using a “file-like”

object, so we create one with io.BytesIO.
• Everything is encoded in UTF-8.

Here’s the definition of the form_parse function:

def form_parse(args):
 import io, base64, multipart
 body = args.get("__ow_body")
 input = io.BytesIO(base64.b64decode(body))
 method = args["__ow_method"]
 ctype = args["__ow_headers"]["content-type"]
 env = {
 'REQUEST_METHOD': method,

250 | Chapter 9: An OpenWhisk Web Application in Python

http://bit.ly/2ITfJPi
http://bit.ly/2JelXb5
http://bit.ly/2JelXb5

 'CONTENT_TYPE': ctype,
 'wsgi.input': input
 }
 return multipart.parse_form_data(env, \
 strict=True, charset='utf-8')

Read the body, decoding from base64, then encoding as an in-memory file.

Read the method.

Read the content type.

Prepare a map to pass those parameters to the parsing function.

Actual parsing of the multipart/form-data upload.

The function returns two dictionary-like objects: one containing the normal fields,
and another, more complex object containing file uploads (that you have to read) and
additional information like the content type. Those objects are used in the next sec‐
tion to save data in the database.

Saving Data in the Database
Now we have to prepare a document, using the parsed form, to write it in the data‐
base. A web action returns binary data (like images) in base64 format and also must
return the content type. We are going to store this information in just two fields: one
named photo, with data encoded in base64, and another named photo_mime contain‐
ing the MIME type of the upload. The result is an ordinary document that can be
saved using the available model functions.

The only difficulties are the extraction of the data from the dictionary object. In par‐
ticular, we have to read a file-like object. Then we encode it as a base64 array of bytes,
and finally decode it to an ASCII string for saving:

def fill(fields, files):
 res = { }
 if "id" in fields: res["id"]=fields["id"]
 res["name"] = fields.get("name", "")
 res["email"] = fields.get("email", "")
 if "photo" in files:
 from base64 import b64encode
 photo = files["photo"].file.read()
 res["photo"] = b64encode(photo).decode('ascii')
 res["photo_mime"] = files["photo"].content_type
 return res

Read the id, name, and email address as usual.

Uploading and Displaying Images | 251

Check if there is a photo uploaded.

Read the photo as a file object, returning bytes.

Encode the photo in base64 and extract it as an ASCII string.

Read also the MIME type that was provided in the upload.

Generating an Tag
Since in the database the contacts are documents, and they now include images enco‐
ded in base64, an image is stored as an ordinary field (not as an attachment). This is
easy and convenient both for saving and loading data. However, to display the image
with a web browser you have to do things differently.

In HTML you display images using the tag <IMG SRC="<url>">, where <url> is a
URL that returns an image. When using an ordinary web server, to place a static
image somewhere, you use a URL pointing to the image URL within the web server.
In OpenWhisk there is not a place to save static images, so you have to serve the
image by yourself using an action.

Here, we are going to serve images using the same action. To do so, we use the extra
path, a feature of web actions discussed in “Advanced Web Actions” on page 239.

When you invoke a web action it has a URL in this format:

https://<hostname>/api/v1/web/<action-name><extra-path>

The <action-name> is enough to locate the action, but you can also add the <extra-
path> part; it is entirely optional and is passed as a parameter to the action in the
__ow_path variable.

This handling of images works by generating URLs for images, then concatenating an
extra path in the format /<id> to the complete URL of the action. In the controller,
then, we must check the variable __ow_path, where we can read this part. If the
<extra-path> is empty we serve the main action, producing the HTML you have seen
so far. If it is not empty, we have to retrieve an image. In this case, we have to return
the image as the body, specifying the content type and the image encoded in base64.

But let’s do this in order: first we’ll see how to generate the tag in view.py, then
we’ll change controller.py to render an image as extracted from the database.

Generating a URL to Retrieve an Image
We have to modify the rows function in the view.py module to retrieve the images. At
present, this function only displays the name and email address. Now we want it to

252 | Chapter 9: An OpenWhisk Web Application in Python

also display uploaded images. We need to generate an tag with an appropriate
URL that also includes the _id of the document. The next listing shows the entire
updated rows function. It is a bit long, but hopefully simple to understand.

Here are a few things to keep in mind:

• We don’t specify the hostname, so the URL is relative to the current hostname.
• It starts with /api/v1/web so the URL uses an absolute path within the current

host.
• It reads the current action name from the environment variable
__OW_ACTION_NAME.

• It specifies the _id, removing the _rev part from the id.

Here’s the new rows function:

def rows(docs):
 res = "<tbody>"
 for row in docs:
 img = ""
 if "photo" in row:
 action = os.environ["__OW_ACTION_NAME"]
 _id = row["id"].split(":")[0]
 url = "/api/v1/web%s/%s" % (action, _id)
 img = '' % url
 res += """
 <tr>
 <td scope="row">
 <input name="id" value="%s" type="radio">
 </td>
 <td>%s</td>
 <td>%s</td>
 <td>%s</td>
 </tr>
""" % (row["id"], row["name"], row["email"], img)
 return res+"</tbody>"

Get the action name.

Get the _id.

Construct the URL for the image.

Produce the tag with the URL.

A new cell in the table for the image.

Also pass the tag URL to insert it in the table.

Uploading and Displaying Images | 253

A simpler and more efficient way of rendering images involves
using a data: URL. Using an tag in the format: <IMG
SRC="data:<content-type>;base64,<image-body>">, you can
embed the images in the HTML and render the image without an
additional HTTP request. We follow the more complex path of
serving images with <extra-path> in order to demonstrate more
features of web actions.

Rendering the Image with an HTTP Request
The HTML of the action now includes an tag like the following:

<img width="200"
 src="/api/v1/web/...\
 /advcrud/main/4ac118ee9b8389439cb3cf0954b07c7c">

When the browser tries to render this tag, it invokes the action again for each image,
setting the value /4ac118ee9b8389439cb3cf0954b07c7c in the __ow_path variable. So
we have to handle it, returning the photo embedded in each document.

Our code must consider this an _id, then render it as an image. Here are the steps
required:

• Remove the first slash.
• Load the corresponding document.
• Return the photo field in the body, assuming it is already encoded in base64 for‐

mat.
• Return a Content-Type header using the photo_mime field.

Place the following at the beginning of main in control.py:

 if "__ow_path" in args:
 path = args["__ow_path"]
 if len(path) > 1:
 doc = model.find(path[1:])["docs"][0]
 return {
 "body": doc["photo"],
 "headers": {
 "Content-Type": doc["photo_mime"]
 }
 }

Check if you have an extra path.

Extract it.

Load the image from the database.

254 | Chapter 9: An OpenWhisk Web Application in Python

The body of the image is in the document already encoded in base64.

Return the Content-Type header, also stored in the document.

Summary
In this chapter, we used our knowledge of Python and CouchDB to create a CRUD
application in Python: a simple address book using CouchDB to store data. The
application was split into two parts. In the first part, we implemented the basics of
any CRUD application, reading and writing only simple string data. In the second
part, we extended the application to enable pagination, validation, file upload, and
rendering of images with web actions.

Summary | 255

CHAPTER 10

Developing OpenWhisk Actions in Go

So far we have seen how to develop OpenWhisk actions in two programming lan‐
guages: JavaScript and Python. Those two programming languages have many points
in common: they are both interpreted languages with loosely typed variables (the
common term to define them is that they are both “scripting” languages). They also
have in common flexible data structures that map easily into JSON data. Probably the
main difference is that most frontend developers use JavaScript, while Python is more
popular among backend developers, system administrators, and even data scientists.

Given the similarities, picking one of the two is probably largely a matter of taste and
available libraries. For example, JavaScript offers good libraries to manage web serv‐
ices, while Python has more data analysis and machine learning libraries.

Those two languages are generally productive, but the lack of strong typing can hin‐
der development when the application grows in size, requiring you to put more effort
into testing. Lack of type checking can also mean less control over data structures,
which can be a problem with large programs. For those use cases, you may want to
use a more strongly typed programming language.

Numerous programming languages offer stronger type checking than Python and
JavaScript. The first one that comes to mind is probably Java. However, in the server‐
less world, the programming language on the rise is Go. Go shares many features
with Java, it offers stronger type checking than scripting languages, and the “engines”
powering OpenWhisk (Docker) and the preferred environment to manage Docker
(Kubernetes) are both implemented in it. For those reasons, in this chapter and the
next, we’ll cover the implementation of OpenWhisk actions in Go.

257

Go has some similarities with Python and is not a complex pro‐
gramming language. However, it is a different breed of program‐
ming language than Python and JavaScript, mostly because you
have to declare a type for each variable. This has an impact when
you parse JSON data structures because you often need to know in
advance the type of each field and define structures for parsing.

For obvious reasons of space and focus, I do not teach programming languages in
this book. If you want to know more about the Go language, check out Go by Exam‐
ple.

The source code for the examples related to this chapter is available
on GitHub.

Your First Golang Action
Creating an action in Go is similar to doing so in Python and JavaScript, but there are
some differences related to the Go programming language. First, you start writing a
function. However, in Go functions cannot be standalone but must belong to a pack‐
age. By convention OpenWhisk requires you place your actions in the package main.

Then you need to write a function for your action. In OpenWhisk the name of the
function defaults to main, so the natural name for an OpenWhisk function in Go
would be main. Unfortunately, in Go, you cannot have a main function in the package
main. Functions have a signature (declaring the types of their parameters), and the
entry point for any Go program is main.main() without arguments. So, you have to
consider a few Go and OpenWhisk requirements when naming your functions:

• You cannot have two functions with the same name and different parameters in
Go.

• In Go the casing of the first character of a function’s name defines if it is public or
private (uppercase for public and lowercase for private).

• Arguments are typed. In OpenWhisk, the input and the output are JSON objects
(not strings, numbers, or arrays). The type that comes closest in Go is a map
whose keys are strings and whose values are unspecified (the actual type must be
determined by the user by a conversion to the appropriate type). In Go this type
is map[string]interface{}.

So, to write a Go action you have to follow these rules:

258 | Chapter 10: Developing OpenWhisk Actions in Go

https://gobyexample.com
https://gobyexample.com
http://bit.ly/2JayVa4

• The entry point of your Go action should be the capitalized version of the main
function name.

• It must always be in the package main.
• It receives a parsed JSON object in the form of a map[string]interface{} as

input.
• It returns as a result a map[string]interface{}.

Collecting all the rules together, the simplest possible action is an action that echoes
its arguments back is (echo.go):

package main
func Main(args map[string]interface{}) \
 map[string]interface{} {
 return args
}

Place the action in the package main.

The entry point is the function Main, receiving a parsed JSON object.

The returned type is the same (note it is on the same line in the actual source
code).

Return the result.

Let’s try to deploy the action:

$ wsk package update golang
ok: updated package golang
$ wsk action update golang/echo echo.go
ok: updated action golang/echo
$ wsk action invoke golang/echo -p name Mike -r
{
 "name": "Mike"
}

Deploy the action in source form.

A simple test.

From Echo to Hello
Now, let’s write an action, hello.go, that does a bit more than echo the arguments.
We’ll also use a different name for the function hello.

The function:

Your First Golang Action | 259

• Reads a key from the input
• Produces a result that is a new JSON object
• Creates a new key and formats a string

Here we have to use a few more features of the Go programming language. We will:

• Add a type alias to make the code more readable.
• Convert keys because they are untyped.
• Allocate the resulting new object.
• Index members of a map to access them.

This is the code of hello.go:

package main
func Hello(args map[string]interface{}) \
 map[string]interface{} {
 name, ok := args["name"].(string)
 if ! ok {
 name = "world"
 }
 res := make(map[string]interface{})
 res["hello"] = "Hello, "+name+" !"
 return res
}

The main function is now main.Hello().

Try to get a field name as a string.

The cast failed; there is no such field.

Assign a default value for the missing field.

Prepare an object to return the result.

Assign the answer to the field hello.

Return the result.

Let’s deploy it and test it:

$ wsk action update golang/hello hello.go \
 --main hello \
ok: updated action golang/hello
$ wsk action invoke golang/hello -r
{

260 | Chapter 10: Developing OpenWhisk Actions in Go

 "hello": "Hello, world !"
}
$ wsk action invoke golang/hello \
 -p name Mike -r
{
 "hello": "Hello, Mike !"
}

Note here we use a different main function.

Test without arguments.

Test with an argument.

Packaging Multiple Files
Programs written in Go, like in any other programming language, can be split into
multiple files. But OpenWhisk expects a single file for deploying actions—either a
source file or a zip file with multiple sources. Let’s now learn the rules for packaging
Go applications in zip files.

Similar to what you have already seen for JavaScript and Python, there are three cases
with increasing complexity:

• Multiple files in a single package
• Multiple packages
• Multiple packages including third-party libraries

Before going into the details, let’s go over how Go imports files and how the GOPATH
works. It is important to understand how those rules apply to packaging actions.

Imports, GOPATH, and the vendor Folder
Go allows you to organize code in packages. A package is simply a string that is
declared at the beginning of a source file. For example, package names like main and
hello correspond to either a directory name or a relative path in the GOPATH, as you
will see soon. As such, you can use forward slashes to nest directories.

You can compile multiple .go files in the same directory as long as they belong to the
same package. In this simple case you do not have to set the GOPATH. Just cd into the
directory and run go build. However, if you need to use functions belonging to
other packages, you need to import them. And here is where the GOPATH rules apply.

As mentioned, the package name is actually a directory name. The compiler uses it to
locate the directory containing the corresponding package. Keep in mind that the Go

Packaging Multiple Files | 261

compiler will look for packages in the subfolder src specified first by the GOROOT and
then by the GOPATH. The GOROOT contains the standard libraries of the programming
language and should always be set to the location where Go has been installed (if this
is not set, the Go compiler is generally able to figure out where it was installed).

Let’s assume you have:

• GOPATH=/home/msciab/go

• GOROOT=/usr/local/go

If you use import "fmt", Go will find functions in the /usr/local/go/src/fmt folder. If
you use import "hello", assuming that you have a package called hello, it will not
find it in /usr/local/go/src/hello so it will look in /home/msciab/go/src/hello.

Actually, you can use fully qualified names like github.com/
sirupsen/logrus. In this case, Go will look in /home/
msciab/go/src/github.com/sirupsen/logrus. The fact that the name
looks like part of an HTTP URL is not a coincidence. It means the
library is available at https://github.com/sirupsen/logrus. You can
actually download the library in your GOPATH with go get
github.com/sirupsen/logrus. The package name is generally the
last part of the long name (in our case, logrus). However, you can‐
not use libraries from the GOPATH when sending an action to Open‐
Whisk. You have to use the vendor folder, as described next.

You can override the GOPATH and force a package to use a specific version of a library
that you provide using the vendor folder. The complete search rule is this: if a package
has a vendor folder, that folder will be searched before GOPATH and GOROOT. So let’s
assume you have this layout:

/home/msciab/go
└── src
 ├── hello
 │ ├── hello.go
 │ └── vendor
 │ └── world
 │ └── world.go
 └── world
 └── world.go

If in the file hello.go there is an import "world", the Go compiler will first look in the
folder src/hello/vendor/world and not the folder src/world in the GOPATH.

Now that the Go rules are clear, let’s see how they work.

262 | Chapter 10: Developing OpenWhisk Actions in Go

Actions with Multiple Files in main
In the simplest case, you can just split your code into different files, all in the same
directory. Because you need the entry point function in the main package, in this case
you put everything there.

To deploy, just collect the .go files in a zip file, without a subdirectory, and send it to
OpenWhisk, eventually specifying the main function. For example, assume we have a
utility function to create a map[string]interface{} with one field and want to place
this function in the file util.go:

package main
func mkMap(key string, any interface{}) \
 map[string]interface{} {
 res := make(map[string]interface{})
 res[key] = any
 return res
}

Utility in the main package.

Accept a key and a value.

Return a map.

Create the map.

Assign the value.

Using the mkMap function, we can create an action datetime that will return the cur‐
rent date and time according to a format string (or throw an error if no format is pro‐
vided):

package main
import "time"
// Datetime returns date/time using a format string
func Datetime(args map[string]interface{}) \
 map[string]interface{} {
 now := time.Now()
 fmt, ok := args["format"].(string)
 if ok {
 return mkMap("result", now.Format(fmt))
 }
 return mkMap("error", "no format")
}

This is an entry point so it must be in the package main.

Read the current time.

Packaging Multiple Files | 263

Extract the format string.

First, use mkMap to return the formatted result.

Second, use mkMap to return an error.

You can deploy a simple Go action without specifying any parame‐
ter as the runtime recognizes the .go extension. When using a zip
file, it cannot do so from the extension so you have to add --kind
go:1.11

Now we have an action split into two files. We can deploy it and test it as follows:

$ zip datetime.zip datetime.go util.go
 adding: datetime.go (deflated 37%)
 adding: util.go (deflated 29%)
$ wsk action update golang/datetime datetime.zip \
 --main datetime --kind go:1.11
ok: updated action golang/datetime
$ wsk action invoke golang/datetime \
 -p format "2001-01-02 3:4:5" -r
{
 "result": "18010-10-18 7:45:41"
}
$ wsk action invoke golang/datetime -r
{
 "error": "no format"
}

Collect the two files in a zip file to deploy.

Deploy, specifying the kind (go:1.11) and the main function.

Invoke with a format string.

Invoke without a format string.

Actions with Multiple Packages
Now let’s assume the code is large and we need to split it into multiple packages. Here
we have to follow the rules mandated by the Go programming language regarding the
GOPATH as described in “Imports, GOPATH, and the vendor Folder” on page 261.

Let’s assume we want to implement a (very simple) calculator, something that can
accept an expression like 2 + 2 or 3 * 4 and return the result. We decide to place the
parser in a package parse and the implementation of the operations in another pack‐

264 | Chapter 10: Developing OpenWhisk Actions in Go

age called ops. We keep the entry point function in the package main at the top level
and reuse the utility function mkMap from before.

The layout of our code looks like this:

 src
 ├── calc.go
 ├── ops
 │ ├── add.go
 │ └── mul.go
 ├── parser
 │ └── parse.go
 └── util.go

We placed our source in a src directory. The name src is mandated
by Go compilation rules. When packaging the zip you will have to
include only the files inside the src folder, not the src folder itself.
Actually, Go requires you to place your sources in a src directory
because it compiles intermediate files in a sibling folder named pkg
and stores the final executable in another sibling folder named bin.
This layout is required to compile code locally, and it is needed
when you write unit tests. When you send a zip file to the runtime,
the layout is replicated internally, but you only need to send the
content of the src folder.

The runtime allows compiling code including packages. For simplicity, in Open‐
Whisk the Go runtime sets the GOPATH variable internally to the parent folder where
the sources are uploaded. This way it allows compilation of a package named hello
by simply storing it in the folder hello and importing it with import "hello" and
then using the functions hello.<Function>.

Now let’s go over the code of the main function of the calculator action. It includes the
packages ops and parse. We’ll omit the details of the functions defined in the pack‐
ages for now, and show the rest of the code later, when discussing how to write tests
for those functions.

The action logic is pretty simple. We parse the operator and the arguments with
parser.Parse(), then we invoke the ops.Add() and ops.Mul() functions to perform
the actual math:

package main

import (
 "ops"
 "parser"
)

Packaging Multiple Files | 265

// Main is an action that calculates an expressions
func Main(args map[string]interface{}) \
 map[string]interface{} {
 expr, ok := args["expr"].(string)
 if !ok {
 return mkMap("error", "no parameter expr")
 }
 op, a, b, err := parser.Parse(expr)
 if err != nil {
 return mkMap("error", err.Error())
 }
 switch op {
 case "+":
 return mkMap("result", ops.Add(a, b))
 case "*":
 return mkMap("result", ops.Mul(a, b))
 default:
 return mkMap("error", "Unsupported Operation")
 }
}

This is the entry point of the action, so it must be in the main package.

Import packages using names corresponding to the folder names.

Use the Parse function in the parser/parse.go file here.

Use the Add function in the ops/add.go file.

Actions Using Third-Party Libraries
So far we’ve discussed how to split our code into multiple files and directories. We
also used some libraries that come bundled with Go. The Go library is pretty rich and
complete, but it obviously cannot cover everything—that’s where third-party libraries
come in handy. First we’ll look at how to use those libraries in Go in general, then at
how you can bundle them in your action code using the dep tool.

How Go Uses Third-Party Open Source Libraries
There are plenty of open source libraries for Go, and most of them are available as
source code on internet, very frequently on GitHub. Among the more commonly
used external libraries, there are logging, testing, error handling, cloud, and
command-line support tools.

Go assumes external libraries can be downloaded and uses the internet address of the
library to name it. For example, if you want to use the library zerolog to improve

266 | Chapter 10: Developing OpenWhisk Actions in Go

support for log messages, you have to use the remote import path, which is also its
complete internet address:

import "github.com/rs/zerolog/log"

The library is available on the internet at https://github.com/rs/zerolog/log, and Go
assumes it can be downloaded using a revision control system like Git. To retrieve the
library you usually run the command go get github.com/rs/zerolog/log.

Go downloads libraries under a subfolder of the src folder pointed to by the GOPATH
environment variable. Generally, the GOPATH points to a folder go in your home direc‐
tory. For example, if you have GOPATH=/home/msciab/go, then the go get command
will download it to /home/msciab/go/src/github.com/rs/zerolog/log. In this way, you
have a unique, global collection of Go source code. The biggest problem with a global
collection is that you are stuck with the specific version of each library you downloa‐
ded.

Selecting a Given Version of a Library
Generally, you do not want to just use whatever version of a library is stored in the
GOPATH: you may want to keep specific versions of the libraries you used when you
wrote and tested your code. When uploading code, you cannot include all the libra‐
ries you have in your GOPATH, as you may have hundreds of them. Instead, you have to
use the vendor folder we discussed in “Imports, GOPATH, and the vendor Folder” on
page 261.

You can generate the vendor folder and include only the libraries you are using with
the dep tool. Let’s see how. The first step is, of course, to download and install it, using
the following command:

$ curl https://raw.githubusercontent.com/golang/dep/master/install.sh | sh
ARCH = amd64
OS = darwin
Will install into /Users/msciab/go/bin
Fetching https://github.com/golang/dep/releases/latest..
Release Tag = v0.5.0
Fetching https://github.com/golang/dep/releases/tag/v0.5.0..
Fetching https://github.com/golang/dep/releases/download/v0.5.0/dep-darwin-amd64..
Setting executable permissions.
Moving executable to /Users/msciab/go/bin/dep

Now, let’s assume the code of our action at src/ops/add.go, is the following. The code
is absolutely trivial but includes the library zerolog to generate logs in JSON format
and a log statement using that library:

package ops

import (
 "github.com/rs/zerolog/log"

Actions Using Third-Party Libraries | 267

https://github.com/rs/zerolog/log

)

// Add adds 2 numbers
func Add(a, b int) int {
 log.Debug().Int("a", a).Int("b", b).Msg("Add")
 return a + b
}

The external library we want to use.

Using the library to log the operations.

If you try to deploy this code, you will get compilation errors. This because the library
is not part of the standard Go library and the runtime does not download third-party
libraries automatically. The library has to be included in your zip file, so you have to
download it first with dep, as follows:

$ cd src/ops
$ GOPATH=$PWD/../.. dep init
 Using ^1.9.1 as constraint for direct dep github.com/rs/zerolog
 Locking in v1.9.1 (338f9bc) for direct dep github.com/rs/zerolog
$ ls
Gopkg.lock add.go ops_test.go
Gopkg.toml mul.go vendor
$ cd ../..

Note that we specified GOPATH=$PWD/../... This is necessary, because the runtime
always places your code in its own GOPATH at the top level. As you can see, we have
two files: Gopkg.toml and Gopkg.lock. The first two files are version files that dep uses
to store information about the libraries included, while in the vendor folder there are
the action libraries.

You generally store your code in a version control system. Since the
Gopkg.lock and Gopkg.toml files store the information to retrieve
the exact version of the library you are using (while go get only
downloads the latest version), you usually do not store the actual
vendor folder in your version control system, but only the two files.
If you already have those files, you can use dep ensure to redown‐
load the dependencies at build time.

Now you know how to retrieve the libraries you need (either with dep init or dep
ensure). Once you have the vendor folder, you have all the code required to build
your action in the runtime, so you can zip the folder and send it to OpenWhisk.
Remember to change to the src folder before zipping to get the correct path in the zip
file:

$ cd src
$ zip -qr ../calc.zip *

268 | Chapter 10: Developing OpenWhisk Actions in Go

$ cd ..
$ wsk action update golang/calc calc.zip \
 --kind go:1.11
ok: updated action golang/calc

You already know how to deploy the action, which is actually a calculator. We expect
that calc can evaluate simple expressions:

$ wsk action invoke golang/calc -p expr "2 + 2"
ok: invoked /sciabarra_cloud/golang/calc with id aff4b079e03d4102b4b079e03dd10278
$ wsk activation result aff4b079e03d4102b4b079e03dd10278
{
 "result": 4
}
$ wsk activation logs aff4b079e03d4102b4b079e03dd10278
2018-11-01T21:31:14.889100462Z stderr: \
{"level":"debug","a":2,"b":2,"time":"2018-11-01T21:31:14Z","message":"Add"}

As expected, there are messages in the log formatted as JSON.

Action Precompilation
You’ve learned how to create zip files including the source code to be sent to the
action runtime. The ability of the runtime to compile code from sources for you is
very valuable. But compiling code takes time, which becomes a problem when start‐
ing multiple copies of the action. When the system is under heavy load, OpenWhisk
starts multiple instances of the runtime and then initializes them.

Initializing a runtime with a compilation is much slower than initializing with com‐
piled code. OpenWhisk can suffer the problem of the “cold start”: when the load
increases, new instances of the runtime are created and initialized, but if the initiali‐
zation takes a long time, some action invocations can also take a long time to be exe‐
cuted.

Using the Go runtime you can precompile the source code in binary form, generating
an executable that is much faster to initialize since there is no compilation involved.
Compilation happens offline before the action is sent to OpenWhisk.

You need to install Docker to be able to precompile an action using
the image. In the following discussion I assume you have downloa‐
ded and installed Docker, so you have the docker command avail‐
able.

Using precompilation, the compilation is performed by the same Docker image used
to execute the code in OpenWhisk. Docker will download a local copy of the runtime,
use it to perform the compilation on your computer, and then save the results locally.
You can then send them to the OpenWhisk server you are using.

Actions Using Third-Party Libraries | 269

https://www.docker.com

To precompile an action you need the same source that is normally sent to Open‐
Whisk, either a single file or a zip file. For example, let’s assume you have a file
hello.go with the main function hello that you normally deploy with the following:

$ wsk action create golang/hello hello.go --main hello

Then you can precompile the action with:

$ docker run -i \
 openwhisk/actionloop-golang-v1.11 \
 -compile hello \
 <hello.go \
 >hello.zip

Invoke Docker with an input.

Name the Docker image.

Flag to compile a function with hello.

The input source.

The output binary (zipped).

Note that:

• You invoke the runtime with run.
• You need the switch -i, as otherwise Docker cannot read the input.
• You have to use the flag -compile followed by the name of the main function to

trigger compilation.
• You read the action from standard input and write the result to standard output.
• The result is also a zip, but it contains a binary, not source code.

If you unpack the resulting main.zip you will find only one file, exec, the standard for
sending a zip file with precompiled binaries. Once the main.zip file is ready you can
deploy it as an action, in the same way as the other actions:

$ wsk action create \
 golang/hello hello.zip \
 --main hello --kind go:1.11

You can also precompile source code and gather it in a zip file. In this case, you may
have a zip file with sources and another with the binary executable.

Let’s assume you have some sources in a folder called src. You may have packages and
even vendor folders in it. Let’s see how to precompile those cases:

270 | Chapter 10: Developing OpenWhisk Actions in Go

$ cd src
$ zip -r ../main-src.zip *
$ cd ..
$ docker run -i openwhisk/actionloop-golang-v1.11 \
 -compile main <main-src.zip >main-bin.zip
$ wsk action create golang/hello main-bin.zip

Collect the sources in a zip file.

Invoke the runtime to use it as a compiler.

Output it as a zip including an executable.

Testing Go Actions
When we used the Python and JavaScript runtimes, we had to figure out how to repli‐
cate the runtime locally. Luckily, since Golang is a compiled language, we can build
our code locally with the same sources as the runtime environment.

This means we can test our actions locally using the available Go facilities. Go also
includes an “example-based” testing utility that is similar to snapshot testing in Java‐
Script and the doctest feature in Python.

Writing Tests
Let’s consider the admittedly trivial function Mul in the ops/mul.go file from our cal‐
culator example:

package ops

// Mul multiplies 2 numbers
func Mul(a, b int) int {
 return a * b
}

In Go, the standard practice is to test function by function. You create a file with the
extension _test.go in the same folder as the file containing the function you want to
test, then create a test function named like this function, but with the prefix Test. In
code it is as simple as this:

func TestMul(t *testing.T) {
 if Mul(3, 2) != 6 {
 t.Fail()
 }
}

The parameter t provides a means to communicate test results.

Testing Go Actions | 271

In this case, the test is failing.

As you can see, this is pretty basic: you just use if and invoke t.Fail() when the test
does not pass. What Go actually provides is a way to write and run tests but no fancy
features for controlling the results.

Once you have the tests, you simply run them on the command line with go test.
You can also easily select tests you want to run by name. For example:

$ cd src/ops
$ go test -v
=== RUN TestAdd
{"level":"debug","a":3,"b":2,"message":"Mul"}
--- PASS: TestAdd (0.00s)
=== RUN TestMul
--- PASS: TestMul (0.00s)
PASS
ok _/chapter10-golang/calc/src/ops 0.009s
$ go test -run '^TestMul$' <2>
PASS
ok _/chapter10-golang/calc/src/ops 0.009s

Run all the tests in the current folder in verbose mode.

Run only the tests identified by the regular expression.

Testing Using Examples
In Go, like in other languages, one of the more time-consuming activities when writ‐
ing tests is coding assertions to verify the results. To save time, Go uses “example-
based” testing, allowing you to verify test results simply by comparing their output
with a “prerecorded” output stored in the test itself.

Let’s use this technique to test the parser.Parse() function, whose code is as follows:

package parser

import (
 "fmt"
 "strconv"
 "strings"
)

// Parse parses an expression in format 'a op b'
func Parse(expr string) (string, int, int, error) {
 args := strings.Split(expr, " ")
 if len(args) < 3 {
 return "", 0, 0, fmt.Errorf("not enough args")
 }
 a, err := strconv.Atoi(args[0])

272 | Chapter 10: Developing OpenWhisk Actions in Go

 if err != nil {
 return "", 0, 0, err
 }
 b, err := strconv.Atoi(args[2])
 if err != nil {
 return "", 0, 0, err
 }
 return args[1], a, b, nil
}

Split 2 + 3 into an array with elements 2, +, 3.

Verify that the first argument is an integer.

Verify that the second argument is an integer.

Instead of complex assertions, we write a simple function to print the results (the typ‐
ical function we would use when debugging) as follows:

package parser
import "fmt"
func print(op string, a, b int, err error) {
 if err == nil {
 fmt.Printf("%s(%d,%d)\n", op, a, b)
 } else {
 fmt.Printf("err: %s\n", err.Error())
 }
}

Using this function, a test “by example” for the parser can be written in a very simple
and intuitive way:

func ExampleParse() {
 print(Parse("2 + 2"))
 print(Parse("2 + 3"))
 print(Parse("2"))
 print(Parse("3 * a"))
 print(Parse("3 / 2"))
 // Output:
 // +(2,2)
 // +(2,3)
 // err: not enough args
 // err: strconv.Atoi: parsing "a": invalid syntax
 // /(3,2)
}

The name of an example-based test starts with Example.

Feed some inputs to the function and print the results.

The output we expect from the tests.

Testing Go Actions | 273

An example-based test is executed exactly like other tests; the only difference is that
there are no assertions: the output of the tests is compared with the example output
stored in the comments after the test itself.

Embedding Resources
So far, we’ve written simple actions invoked on the command line, without a user
interface. Of course, this is not realistic. Real-world applications have user interfaces.
We will use a web action for this.

As already discussed in Chapters 2 and 9, in OpenWhisk you can declare an action to
be a “web action” and it will produce and handle web input and output. Let’s create a
web action that will generate HTML output including a style sheet, images, and even
a complete JavaScript library, Vue.js. All those resources will be embedded in a single
Go action that will serve all the components of our application.

In short, this is an example of a nontrivial Go actions supporting embedding resour‐
ces and serving a complete, if simple, single-page application (SPA). This application
has only client-based logic, but it is the foundation for more complex examples in the
next chapters, which will also include server-side logic and interaction with other sys‐
tems.

Using packr
Let’s assume we have a SPA written in (client-side) JavaScript using the library Vue.js.
We use Vue.js because it is one of the more common ones (in addition to React and
AngularJS), but it also has the gift of simplicity. One of its advantages is that it can be
deployed as a single file without using complex tooling.

Let’s take a look at the files comprising this application. They are stored in a separate
folder, a sibling of the src folder where we place Go sources, as follows:

res
├── index.html
├── style.css
├── main.js
├── logo.png
├── favicon.ico
└── vue.min.js

HTML displaying the user interface.

Stylesheet for the application.

JavaScript logic of our SPA.

Logo image.

274 | Chapter 10: Developing OpenWhisk Actions in Go

Website icon image.

The Vue.js library, minified.

Let’s now embed those files in our Go code. We use the tool packr for this, which
creates an in-memory “box” containing the files stored in the local folder.

Follow these steps:

1. Install packr to transform resources in Go code.
2. Use packr to generate the file src/app/a_app-packr.go that includes the content of

the files as a box.
3. Write src/app/box.go to extract data from the box.
4. Use the box in the rest of the code to serve resources, now embedded.

We begin by installing the library and the support tool with:

$ go get -u github.com/gobuffalo/packr

The box.go code is the following:

package app
import (
 "github.com/gobuffalo/packr"
)
var box = packr.NewBox("../../res")

The library packr to use the embedded resources.

Create a box object referring to the resources.

Now, if we run the code locally, it will use the actual files on our folder. The is a fea‐
ture of packr: if the files are available on disk, they are used. If you want to embed
resources in the binary, generate the Go source with this command first:

$ cd src
$ packr

This simple command will search for the function NewBox in the .go files and will gen‐
erate the file src/app/a_app-packr.go. This file now embeds the resource files, which
means the original files are no longer needed. You can compile the sources and will
have a binary embedding the resources.

Embedding Resources | 275

To deploy or precompile this application you need some additional
libraries, which means you have to compile the action with vendor
folder support. Follow the procedure described in “Actions Using
Third-Party Libraries” on page 266, using dep to retrieve the
dependencies and create the vendor folder.

Serving Resources with Web Actions
Now that we have all our resources embedded in the executable of the action, let’s cre‐
ate a web action in Go that can serve the entire JavaScript action as a web page. As
you probably remember, a web action is an action that can be accessed with a public
URL, without authentication, returning not just JSON but also resources that a web
browser can use to create a full web page. Web actions were described in “Advanced
Web Actions” on page 239.

Using the web action API discussed in Chapter 9, you can implement an action that
can serve static resources embedded in an SPA. Let’s see how this works.

When you invoke an HTML page with a browser, it uses a URL that becomes the base
for the resources embedded in the HTML. When you invoke an action it has a base
URL like this:

https://openwhisk.bluemix.net/api/v1/web/namespace/package/webapp

Let’s call this URL $BASE. When a user invokes this URL, we receive an empty vari‐
able __ow_path. We immediately redirect to $BASE/index.html (otherwise the base
URL for the page would become the parent of $BASE, and this is not what we want).
Once we’ve resolved the special case of the entry point, the action is invoked again,
this time with __ow_path equal to /index.html. At this point, we can start to serve
resources embedded in the action.

We use the “box” created before with packr, which contains the file index.html, an
HTML file that has been embedded in our action. The file is then loaded by the
browser, which in turn references other resources specified in the web page: style‐
sheet, JavaScript, images, etc. So, the browser invokes the web action again as $BASE/
style.css, $BASE/favico.ico, etc.

In short, the action must search in the box for the resources specified in __ow_path to
serve them. Unfortunately, there are two other complications:

• Each resource must be served with the proper content type.
• Some resources (images) are binaries and must be served encoded in base64.

Let’s solve those problems in order. Since there is no information about the MIME
type to apply to a resource, we use the extension of the filename to generate the
proper content type. Most web servers work this way.

276 | Chapter 10: Developing OpenWhisk Actions in Go

So, in the file assets.go we create a map from the extensions to the required content
types:

// Content Type Map
var ctypes = map[string]string{
 "html": "text/html",
 "js": "application/javascript",
 "css": "text/css",
 "png": "image/png",
 "jpg": "image/jpeg",
 "ico": "image/x-icon",
}

The next problem is distinguishing binary files from text files. This is pretty simple in
our case because the only binaries in the box are the images, so we can write a func‐
tion isBinary as follows:

// only images are treated as binaries
func isBinary(ctype string) bool {
 return strings.HasPrefix(ctype, "image/")
}

Now let’s write an Asset function. It receives the path (/index.html, /style.css,
etc.) and returns the body of the response (in base64 format for images) and the con‐
tent type.

These are the steps:

1. Extract the extension to find the content type in the map.
2. Read the file from the box.
3. Encode in base64 the binaries.

In code:

// Asset extracts a file from the box with its content type
// Returns either a content type with "/" or an error code
func Asset(path string) (string, string) {
 // identify the content type
 splits := strings.Split(path, ".")
 ext := splits[len(splits)-1]
 ctype, ok := ctypes[ext]
 if !ok {
 ctype = "application/octet-stream"
 }
 // extract data
 var str string
 var bytes []byte
 var err error
 if isBinary(ctype) {
 // encode binaries in base64
 bytes, err = box.MustBytes(path)

Serving Resources with Web Actions | 277

 if err == nil {
 str = base64.StdEncoding.\
 EncodeToString(bytes)
 }
 } else {
 str, err = box.MustString(path)
 }
 if err != nil {
 return err.Error(), "404"
 }
 return str, ctype
}

Split the string on . to extract the extension.

Read the content type from the map.

Default to this content type if not found.

Check if the content type refers to a binary.

Extract from the box the path as an array of bytes.

Encode the bytes as a base64 string.

It was not a binary, so extract as a string.

If not found, return an error code instead of a content type.

Final result—return the body and content type.

Now that we have the ability to extract from the box the data with the right content
type, we can use a web action to return a proper answer. We need a response with
three values:

• The body of the response
• The statusCode (generally 200 except in case of errors)
• The Content-Type header

Here is the code:

// WebResponse returns a full response
// suitable for a web action
func WebResponse(path string) map[string]interface{} {
 // interpret as an asset
 body, ctype := Asset(path)
 // prepare the answer
 res := make(map[string]interface{})

278 | Chapter 10: Developing OpenWhisk Actions in Go

 res["body"] = body
 if strings.Index(ctype, "/") != -1 {
 // asset found
 res["headers"] = map[string]string{
 "Content-Type": ctype,
 }
 res["statusCode"] = "200"
 } else {
 // asset not found
 res["statusCode"] = ctype
 res["headers"] = map[string]string{}
 }
 return res
}

Retrieve the asset.

Set the body of the answer.

Detect if the answer is an error.

Set the Content Type header.

Status code is 200 when the answer is OK.

Set the status code when there is an error.

We are now ready to write the main action. It returns the result of the WebResponse
function. The only special case is returning a redirection when the path is empty.
Since we are going to serve a JavaScript app, we need to have JavaScript enabled,
hence we’re using a JavaScript redirection.

The entry point action just needs to read the path and generate a redirect if empty.
Otherwise, we invoke WebResponse and return the results:

// Main is the main action
func Main(args map[string]interface{}) \
 map[string]interface{} {
 // get the path
 path, ok := args["__ow_path"].(string)
 if ok && path != "" {
 return app.WebResponse(path)
 }
 return map[string]interface{}{
 "body": `
 <script>
 location.href += "/index.html"
 </script>
 `,

Serving Resources with Web Actions | 279

 }
}

Read the path.

Expand it with WebReponse if not empty.

Return a JavaScript snippet for the redirection.

Accessing the OpenWhisk API in Go
We’ll complete the chapter by wotking through a detailed example of how to access
the OpenWhisk REST API using direct HTTP requests. In particular, you will see:

• How to construct a web request to invoke the OpenWhisk REST API
• An example of action invocation
• An example of firing a trigger
• How to retrieve data with an activation id
• How to test functions including API calls

We covered the REST API in detail in “Using the OpenWhisk REST API” on page
162. Now we’re going to invoke the API using Go. First we’ll construct the function s
url and auth, to build an OpenWhisk URL. Then we’ll introduce a couple of utility
functions for creating requests and responses: mkMap and mkErr. Next, we’ll explore
how you create HTTP requests in Go, with mkPost and doCall. Finally, we’ll imple‐
ment the whiskInvoke function to invoke an OpenWhisk action. The last step is to
deploy an example Invoke function that invokes the utility function sort from the
utils library.

Let’s get started.

Utilities
The format of REST API URLs is:

https://{APIHOST}/api/v1/namespaces/{NAMESPACE}/{ENTITY}/...

When creating the URL to access OpenWhisk, the required information is either
stored in environment variables or passed as a parameter. Hence, we can build a url
function to easily generate those URLs as follows:

func url(entity string) string {
 return fmt.Sprintf("%s/api/v1/namespaces/%s/%s",
 os.Getenv("__OW_API_HOST"),
 os.Getenv("__OW_NAMESPACE"),

280 | Chapter 10: Developing OpenWhisk Actions in Go

 entity)
}

Use a format string to create the URL.

Extract parameters from the environment variables.

The invocation of a URL with a username and password requires separate values for
each. Since those two values are passed as a single string in the environment, we need
a function to split them:

func auth() (string, string) {
 key := os.Getenv("__OW_API_KEY")
 up := strings.Split(key, ":")
 return up[0], up[1]
}

Extract the API key from the environment.

Split the string into an array of two components.

Return the values as multiple return values.

A common need in the implementation that follows is returning a map from one sin‐
gle value. Since creating one is a bit verbose, it makes sense to create a mkMap function
to simplify this common task:

func mkMap(key string, value interface{}) map[string]interface{} {
 return map[string]interface{}{
 key: value,
 }
}

In OpenWhisk, errors are returned as JSON objects with a string field named error.
But you may want to create an error in different cases: when you receive an error
from a function, when you want to generate an error message, or when you want to
return the content of a Go data structure to help to debug the error. So, we’ll also
write a mkErr function using the type switch feature of Go: the generated error is
based on the type of the value. In code:

func mkErr(err interface{}) map[string]interface{} {
 switch v := err.(type) {
 case error:
 return mkMap("error", v.Error())
 case string:
 return mkMap("error", v)
 default:
 return mkMap("error",
 fmt.Sprintf("%v", err))

Accessing the OpenWhisk API in Go | 281

 }
}

Dispatch the type of the argument.

Get the error string if you have an actual error.

Send as is if you have a string.

In other cases, just return the representation of the data structure using the Go
function fmt.Sprintf().

HTTP Requests
To make an HTTP request in Go, you need to construct a pretty complex data struc‐
ture and then use a client to actually perform the request. Since this is more complex
than in Python, we’ll split this request into two different functions: mkPost to prepare
the request and doCall to actually execute it.

The mkPost construct is an object of type *http.Request. Since we execute JSON
requests and expect JSON responses, our mkPost will take care of converting Go data
structures into JSON format for sending. Furthermore, the function doCall will per‐
form the conversion back from JSON to Go data structures.

Getting into the code, keep in mind that:

• mkPost expects the entity name and the arguments in map[string]interface{}
format.

• It uses url to generate the complete URL and auth to provide authentication
information.

• Encoding from Go types to JSON is performed by json.Marshal().
• The request must specify it is sending JSON content with its MIME type.

It looks like this:

func mkPost(entity string,
 args map[string]interface{}) \
 (*http.Request, error) {
 data, err := json.Marshal(args)
 if err != nil {
 return nil, err
 }
 req, err := http.NewRequest("POST", url(entity),
 bytes.NewBuffer(data))
 if err != nil {
 return nil, err

282 | Chapter 10: Developing OpenWhisk Actions in Go

 }
 req.SetBasicAuth(auth())
 req.Header.Set("Content-Type", "application/json")
 return req, nil
}

The function returns either an HTTP request or an error.

Encode the arguments in JSON .

Create a POST request with the URL and the JSON payload.

Add authentication information.

Set the Content-Type to the JSON MIME type.

Now we can write the doCall function which, given a request, performs the actual
HTTP call. Note the function is generic: it also works for other kinds of requests (e.g.,
GET), and we will reuse it later.

Here are a few key points to remember:

• You need to create a client to perform the actual request.
• The answer is a Reader and must be read entirely to get the body.
• The function expects a JSON object and performs the decoding.

The code is as follows:

func doCall(req *http.Request) \
 map[string]interface{} {
 client := &http.Client{}
 res, err := client.Do(req)
 if err != nil {
 return mkErr(err)
 }
 body, err := ioutil.ReadAll(res.Body)
 if err != nil {
 return mkErr(err)
 }
 // encode answer
 var objmap map[string]interface{}
 err = json.Unmarshal(body, &objmap)
 if err != nil {
 return mkErr(err)
 }
 return objmap
}

Create an HTTP client.

Accessing the OpenWhisk API in Go | 283

Perform the actual call.

Read the body in a byte array.

Decode the byte array in a map.

Invoking an OpenWhisk Action
The whiskInvoke function invokes an OpenWhisk action with its payload. The
action invocation can be either blocking or not and can return the result of the invo‐
cation or just data about the invocation. Hence, it requires two flags as parameters, in
addition to the action name and payload.

When we reuse the functions we’ve already developed, the code is pretty straightfor‐
ward:

func whiskInvoke(action string, \
 args map[string]interface{},
 blocking bool, result bool) \
 map[string]interface{} {
 invoke := fmt.Sprintf(
 "actions/%s?blocking=%t&result=%t",
 action, blocking, result)
 req, err := mkPost(invoke, args)
 if err != nil {
 return mkErr(err)
 }
 return doCall(req)
}

Build the request, including options for blocking and returning results.

Create the POST request from the parameters.

Execute the POST request.

Let’s test it, invoking a sort action. The code of this example is longer because there is
a good amount of checking for missing parameters, but the logic is pretty simple. The
code:

• Receives an action to invoke and a message to print
• Gets a text to sort, as a comma-separated string
• Splits the string into a list of lines and sends it to the sort action
• Invokes the action
• Collects the result in a single string to be returned

284 | Chapter 10: Developing OpenWhisk Actions in Go

Here it is:

// Invoke invokes the sort using the action parameter specified
func Invoke(args map[string]interface{}) \
 map[string]interface{} {
 // retrieve action
 action, ok := args["action"].(string)
 if !ok {
 return mkErr("no action")
 }
 // prepare args
 text, ok := args["text"].(string)
 if !ok {
 return mkErr("no text")
 }
 input := strings.Split(text, ",")
 // invoke action
 res := whiskInvoke(action,
 mkMap("lines", input), true, true)
 log.Printf("%v", res)
 lines, ok := res["lines"].([]interface{})
 if !ok {
 return mkErr("cannot retrieve result")
 }
 // retrieve message
 result, ok := args["message"].(string)
 if !ok {
 result = ">>>"
 }
 for _, v := range lines {
 result += " " + v.(string)
 }
 return mkMap("result", result)
}

Get the action name to invoke, or an error.

Get a message to print, or an error.

Split the text into an array.

Invoke the action.

Concatenate the message and snippets in a single line.

Firing a Trigger
Now we are going to see how to fire a trigger, using the trigger API. It is always asyn‐
chronous and returns an activation id. To see the result you also have to retrieve the
result using the activation API.

Accessing the OpenWhisk API in Go | 285

To use the code, you need to create a trigger and some rules. Let’s create a trigger and
then attach one rule, invoking the sort action:

$ wsk trigger create golang-trigger
ok: created trigger golang-trigger
$ wsk rule update golang-trigger-sort \
 golang-trigger utils2/sort
ok: updated rule golang-trigger-sort
$ wsk rule enable golang-trigger-sort
ok: enabled rule golang-trigger-sort

Create a trigger.

Create a rule invoking sort on the trigger.

Enable the rule.

Now we are ready to write a function that fires the trigger.

The function whiskTrigger is not very different from the whiskInvoke function we
wrote earlier. But it is simpler because you do not need to specify a blocking behavior,
since it is always nonblocking. The function is as follows:

func whiskTrigger(trigger string,
 args map[string]interface{}) \
 map[string]interface{} {
 invoke := fmt.Sprintf("triggers/%s", trigger)
 req, err := mkPost(invoke, args)
 if err != nil {
 return mkErr(err)
 }
 return doCall(req)
}

Use the REST call for triggers.

Note that firing a trigger returns an activation id. You can see this on the command
line (refer to “Using the OpenWhisk REST API” on page 162 for details about how to
configure environment variables):

$ curl -su $AUTH \
 -X POST $URL/triggers/golang-trigger \
 -H "Content-Type: application/json" \
 -d '{"lines":["b","a","c"]}'
{"activationId":"2275e8aa39a743c4b5e8aa39a7a3c44a"}

URL to invoke the trigger posting a JSON object.

Send data to sort as an array of lines.

286 | Chapter 10: Developing OpenWhisk Actions in Go

The answer is an activation id.

So what do we do next? Of course, we retrieve the data associated with the activation
id.

Retrieving the Data Associated with the Activation ID
The function whiskRetrieve is similar to those we wrote before. The main difference
is it is using a GET request, so we need a mkGet first. It is very similar to mkPost, only
simpler since there is not a body:

func mkGet(action string) \
 (*http.Request, error) {
 req, err := http.NewRequest("GET", \
 url(action), nil)
 if err != nil {
 return nil, err
 }
 req.SetBasicAuth(auth())
 return req, nil
}

Create a GET request.

Set authentication information.

The function whiskRetrieve just performs a GET request with the activation id:

func whiskRetrieve(id string) \
 map[string]interface{} {
 invoke := fmt.Sprintf(
 "activations/%s", id)
 req, err := mkGet(invoke)
 if err != nil {
 return mkErr(err)
 }
 return doCall(req)
}

Build an invocation with the activation id.

Construct a GET request.

Summary
In this chapter, you learned how to write OpenWhisk actions using Go. First, we cov‐
ered the peculiarities of the OpenWhisk Go runtime and its way of creating actions
and running tests. Then we discussed advanced features, like how to precompile
actions, how to use vendoring to include third-party libraries, and how to use resour‐

Summary | 287

ces in a Go action with the packr tool. Finally, we explored how to connect to the
OpenWhisk API using the REST interface, writing code to invoke other actions, fire
triggers, and retrieve results.

288 | Chapter 10: Developing OpenWhisk Actions in Go

CHAPTER 11

Using Kafka with OpenWhisk

OpenWhisk can be considered an event-based system in which some event sources
produce events that are processed by actions. So far we’ve looked at event sources like
HTTP requests, handled by web actions and direct action invocations originated by
other actions.

Those are only two of many possible event sources. The strength of OpenWhisk is
that you can plug in as event sources other internet-based services. For example, an
event source can be Cloudant notifying of database changes, GitHub of notifying
commits; or Slack announcing messages. Packages for managing those sources are
included with OpenWhisk.

Event-based systems are frequently built using Apache Kafka. Kafka is a popular solu‐
tion for event processing because it has many desirable properties for building event
processing systems. First, it is scalable and distributed, so it can grow to handle mil‐
lions of events per second. You deploy Kafka in clusters, and you can add more
servers to spread the load among them. Second, it is durable, in the sense that notifi‐
cations of events (also called messages) are not thrown away but can be saved for later
reuse. Third, it is replicated and partitioned, so messages are not stored only on one
server; there are copies in different servers.

OpenWhisk provides a /whisk.system/messaging package to manage messages. It is
a frontend package for using Kafka, similar to the /whisk.system/cloudant package,
a frontend to CouchDB and Cloudant.

In this chapter, you will learn how to use the messaging package and hook it into
triggers and feeds. However, since this package does not allow us to leverage the full
potential of Kafka, we’ll also demonstrate how to use Kafka directly with Kafka libra‐
ries to send and receive messages. We’ll use Go and the confluent-kafka-go library
(supported by the OpenWhisk Go image) for the examples. Finally, we’ll put the

289

examples to work by writing a web chat application in JavaScript (hosted in a Go
action) that uses Kafka and the sender and receiver actions that we wrote for Go in
the previous chapter.

But before starting, we need an actual Kafka instance. We’ll begin by provisioning
Kafka cluster in the IBM Cloud.

Using OpenWhisk and Kafka can be challenging. OpenWhisk by
design scales automatically, creating new instances of action execu‐
tors when there are more requests. However, if there are too many
requests trying to connect to the Kafka brokers, Kafka starts to
refuse new connections, causing applications to fail. With Kafka,
you are required to carefully size the Kafka cluster to the expected
load to avoid this problem, as it is not handled automatically by
OpenWhisk. Kafka may not scale when a large number of connec‐
tion requests are generated. There is work in progress to solve this
and similar problems through the use of concurrency for the action
runtimes.

The source code for the examples related to this chapter is available
on GitHub.

Introducing Apache Kafka
Apache Kafka is, at its core, a reliable and scalable streaming platform. A high-level
overview of its architecture is presented in Figure 11-1.

Figure 11-1. Kafka architecture

290 | Chapter 11: Using Kafka with OpenWhisk

http://bit.ly/300iLXJ

When deployed, there is a cluster of servers that a potentially large number of clients
can access. Clients either produce (send) or consume (receive) messages. To achieve
scalability, it distributes the workload over the servers. To achieve reliability, it repli‐
cates data in different servers.

To better understand Kafka you need to understand:

• Brokers and the protocol
• Messages and keys
• Topics and partitions
• Client groups

Kafka Brokers and Protocol
Strictly speaking, when we talk of Apache Kafka, we’re referring to a cluster of Kafka
servers, called brokers. Most developers use multiple brokers, because the ability to
scale is essential for reliability and performance. One key feature of Kafka is the abil‐
ity to add and remove servers while keeping the cluster running. However, the servers
alone are useless without clients. Clients are applications connecting to brokers using
the Kafka protocol.

It is important to note that the Kafka protocol is not HTTP, nor a variant of it. It is a
Kafka-specific protocol optimized for streaming and designed for long-running con‐
nections. Applications only need to speak its protocol to use Kafka. In practice,
ready-to-use libraries implementing it produce or consume messages in the more
widely used programming languages. In many cases, there are multiple libraries for
the same programming language.

Kafka itself is implemented in Scala, runs on the Java VM, and includes a Java library
developed together with the servers as the primary implementation of the Kafka pro‐
tocol. Besides the Java library, the reference implementation, another non-Java imple‐
mentation of the protocol is the C library called librdkafka. Since many
programming languages can use C libraries, this library is the basis for lots of other
implementations, such as the command-line client kafkacat and Kafka libraries in
Python and Go.

In this chapter, we’ll see examples in Go using the library confluent-go-kafka built
on top of librdkafka. The runtime of librdkafka is included in the Go runtime for
OpenWhisk to simplify the use of the Go libraries that require it.

To connect to a Kafka cluster you need to specify the IP address and the port of one
of the brokers, called the bootstrap server. Once connected to one broker the protocol
communicates the locations of the other brokers.

Introducing Apache Kafka | 291

Since any brokers can go offline, to avoid a single point of failure,
more than one broker should be provided to bootstrap access to
the cluster.

Access to a cluster can be open to everyone or it can require authentication. Further‐
more, data can be sent to the broker in plain text or can be encrypted (e.g., with the
widely used encryption protocol TLS).

Messages and Keys
Kafka clients produce messages. A message has a key, a body, and a timestamp. The
timestamp records the time the producer sent a message and lets Kafka order the
messages by production time. The body of a message is just an arbitrary sequence of
bytes that can be interpreted by the consumer as it likes (e.g., as a JSON object, as a
string, or as an image). Keys are also sequences of bytes, and they can also be empty.
Keys are important to distribute the load, since partitions use them to select where to
place the data.

Topics and Partitions
Producers can send messages to consumers, but how can they distinguish them? Not
all the messages are equals, and they may have different purposes: the notification for
a user login is different from logging an error.

Kafka stores messages in topics. Every message must specify the topic, and messages
produced for a topic can be read only by clients that subscribe to that topic.

A topic can be created automatically at the first use, or an administrator can create it
when needed. Note that for each topic you need to specify a retention period: an hour,
a day, a week, or forever. Kafka discards messages from a topic after this retention
period.

A topic is not monolithic. To achieve scalability and distribute the load among vari‐
ous servers, Kafka splits topics into partitions. Partitions are identified by integer
numbers.

When sending a message, a producer must specify both the topic and the partition.
To select a partition, a client can specify the partition to use, use a round-robin algo‐
rithm, or, if it has a key, use a hash algorithm. In general, the purpose of a key is to
select the partition in which to store a message.

292 | Chapter 11: Using Kafka with OpenWhisk

Offsets and Client Groups
Messages sent to Kafka belong to a partition of a topic. Within a partition, messages
are ordered strictly in the order they arrive. Consumers can read the messages of the
specific partition within the topic they subscribe to. But the question is: starting from
which message? All the messages still available within the retention period, or all the
messages starting from the moment the consumer started to read them? And what
happens to messages it is already read?

The answer is simple: Kafka classifies consumers in consumer groups and only keeps
the offset of the last message that a consumer read. When a user creates a consumer
group, it requests to initialize the offset to some value (usually the last message avail‐
able in the queue at creation time); then for each message consumed the offset is
incremented.

So when you want to consume messages, you have to specify the topic to subscribe to,
your consumer group, and the initial offset. Then the offset is automatically incre‐
mented at each read. You can also select the partition to use or let Kafka assign a par‐
tition for you.

Each consumer in the consumer group will read a message in the topic and partition
it subscribed to once, starting from the initial offset they chose.

If you have one consumer in a consumer group, it will see all the messages; if you
have more consumers in the same group, only one of the group will see each message,
once.

Creating a Kafka Instance in the IBM Cloud
Our first step, before actually using the messaging package, is to provision a Kafka
instance, then get the credentials to access it. Because we’re using the IBM Cloud, the
most straightforward route is to create one there. In the IBM Cloud, messages queues
are called event streams, but they are actually Kafka brokers we can use for our pur‐
poses.

Event stream instances in the IBM Cloud are not free. If you create
one, you will be charged. But a single partition for simple usage is
not expensive.

I assume you already have an account in the IBM Cloud and will provision a Kafka
instance to use as the backend of our messaging examples.

To use an instance you need to:

Creating a Kafka Instance in the IBM Cloud | 293

1. Create a broker in the IBM Cloud.
2. Select the broker and then create a topic in it.
3. Retrieve the credentials to access the broker.

Creating an Instance
Figure 11-2 shows the steps required to create an instance of the Kafka service in the
IBM Cloud. Note that when you register, you are placed in a namespace and you have
to pick a region to use.

Figure 11-2. Creating a Kafka instance

Here are the steps, as outlined in Figure 11-2:

1. Log into the IBM Cloud, go to the Dashboard by clicking the IBM Cloud link,
and then click “Create resource.”

2. In the Catalog, search for “Event Stream” and press Enter. The catalog will show
the Event Streams resource.

3. Click the Event Streams link; it will bring you to the creation form.
4. Fill in the parameters, selecting your organization, the region, and finally a

namespace; then click Create.

294 | Chapter 11: Using Kafka with OpenWhisk

Creating a Topic
Now that you have a new instance, before you can use it, you need to create a “topic,”
which will be our message queue. Figure 11-3 shows how to do that.

Figure 11-3. Creating a topic

Here are the steps outlined in Figure 11-3:

1. Starting again from the Dashboard, click Services and expand Cloud Foundry
Services; you will see a link to your newly created broker.

2. Click that link to reach a page to manage the topics.
3. Click the + button in the Topics list to open a pop-up form to create a topic.
4. Give your topic a name (e.g., “queue”), accept the defaults of 1 partition and 24

hours retention, and click “Create topics.”

Now you’ll see the newly created topic in the list.

In the IBM Cloud, the price of the MessageHub depends on the
number of partitions.

Creating a Kafka Instance in the IBM Cloud | 295

Get Credentials
We have a broker with a topic, but to use it we need to get the credentials. Those are
available in a convenient JSON format that can be fed to OpenWhisk actions.
Figure 11-4 shows the steps to get the credentials.

Figure 11-4. Retrieving credentials to access Kafka

You need to perform these steps:

1. Starting from the Broker page you reached in the previous step, click “Service
credentials.”

2. Click the “New credential” button to open a form for creating credentials.
3. Click Add to accept the defaults.
4. Now you have a new credential set; you can see it by clicking “View credentials,”

which will expand to a text area showing a JSON document with the parameters
you need.

You can now copy the JSON document with the credentials to the clipboard and save
them as a local file called cred.json.

296 | Chapter 11: Using Kafka with OpenWhisk

Do not forget to create the cred.json file. We are going to use it in
the coming examples to create an instance of the messaging pack‐
age to access the Kafka cluster we have created.

Using the messaging Package
Now that we have a broker and a topic, we can begin to produce and consume mes‐
sages. Here we’ll use the standard package, /whisk.system/messaging. This package
has a feed to notify of messages received in a topic, so you can hook an action to con‐
sume them. The package also includes a producer action, but it is deprecated and
might disappear at any time, so we don’t use it. Instead, to send messages, we’ll use
the command-line tool kafkacat. Later in the chapter, I’ll show how to produce and
consume messages in actions using a Go library that talks directly to Kafka.

Let’s focus on the messaging package. To use it, we’ll need to follow these steps:

1. Bind the messaging package to our package so you can use the broker we cre‐
ated.

2. Create a trigger that hooks into a feed from the bound package.
3. Create an action to display the received messages.
4. Add a rule to invoke the action.
5. Test that this chain works with kafkacat.

We discuss each of these steps in the following sections.

Creating a Binding and a Feed
In the section “Creating a Kafka Instance in the IBM Cloud” on page 293, we created
a Kafka cluster and then downloaded the file cred.json with the credentials and the
other parameters needed to access that cluster. We are now going to use that file as a
parameter file for the binding. With the following command we can create the pack‐
age demoq that can access the provisioned Kafka cluster:

$ wsk package bind /whisk.system/messaging \
 demoq -P cred.json
ok: created binding demoq

To use this package and receive messages from it, let’s create a trigger using the action
messageHubFeed from the bound package as a feed. We also need to specify the
parameter topic to correctly select the source of the messages:

$ wsk trigger create messages-trigger \
 -f demoq/messageHubFeed \
 -p topic queue \

Using the messaging Package | 297

 -p isJSONData true
ok: created trigger messages-trigger

Use the package binding demoq to connect to our broker.

Specify the topic we created.

Messages should be parsed as JSON data.

Now when a producer delivers a message in the topic queue, it will fire the trigger.
But the trigger is not enough—we need an action to receive messages.

Receiving Messages with an Action
To see the messages, we need to write a simple action in Go. The purpose of this
example is to investigate what the package does , so we’ll use a simple action that just
prints the received messages:

package main

import "log"
import "encoding/json"

// Main is a logger function
func Main(args map[string]interface{}) \
 map[string]interface{} {
 obj, _ := json.Marshal(args)
 log.Printf("%s\n", obj)
 return args
}

Encode the arguments in JSON.

Write to standard error.

Now you can deploy the action and hook it into the trigger with a rule:

$ wsk action update mesg/logme logme.go
ok: updated action mesg/logme
$ wsk rule update messages-trigger-logme \
messages-trigger mesg/logme
ok: updated rule messages-trigger-logme
$ wsk rule enable messages-trigger-logme
ok: enabled rule messages-trigger-logme

Deploy the logme action.

Add a rule to trigger the action when a message arrives.

Enable the rule.

298 | Chapter 11: Using Kafka with OpenWhisk

Sending Messages Using kafkacat
To send messages we are going to use the utility kafkacat, available on macOS or
Ubuntu-based Linux systems. You can install it with brew install kafkacat on
macOS or apt-get install kafkacat on Ubuntu.

In order to use it with a broker using the Secure Sockets Layer (SSL) encryption pro‐
tocol, as described by the cred.json file, you need to extract some values from it and
pass a number of parameters. Since using it on the command line is unpractical, we
use the script kat.sh to launch it as follows:

#!/bin/bash
BROKERS="$(jq -r '.kafka_brokers_sasl|join(",")' <cred.json)"
USER="$(jq -r .user <cred.json)"
PASS="$(jq -r .password <cred.json)"
kafkacat \
 -b "$BROKERS" \
 -X sasl.username="$USER" \
 -X sasl.password="$PASS" \
 -X sasl.mechanisms=PLAIN \
 -X security.protocol=sasl_ssl \
 "$@"

If you do not have a macOS or Ubuntu system you can use kafka
cat on other systems, like Windows, using Docker. In the reposi‐
tory there is a folder kat with a Dockerfile that has been tested on
Windows. You need to:

• Copy your cred.json into the kat folder.
• Build a Docker image with docker build -t kat.

Now you can use the same commands, replacing ./kat.sh with
docker run -i kat.

Testing the Kafka Broker
As a first step, check if you can connect to your cluster with our script, listing the
available brokers and topics with the -L option. You should see output like this:

$./kat.sh -L
Metadata for all topics (from broker 1: \
sasl_ssl://kafka02-prod01.messagehub.services.eu-de.bluemix.net:9093/1):
 5 brokers:
 broker 2 at kafka03-prod01.messagehub.services.eu-de.bluemix.net:9093
 broker 4 at kafka05-prod01.messagehub.services.eu-de.bluemix.net:9093
 broker 1 at kafka02-prod01.messagehub.services.eu-de.bluemix.net:9093
 broker 3 at kafka04-prod01.messagehub.services.eu-de.bluemix.net:9093
 broker 0 at kafka01-prod01.messagehub.services.eu-de.bluemix.net:9093
1 topics:

Using the messaging Package | 299

http://bit.ly/300iLXJ
http://bit.ly/300iLXJ

 topic "queue" with 2 partitions:
 partition 0, leader 3, replicas: 3,0,2, isrs: 3,0,2
 partition 1, leader 0, replicas: 0,2,4, isrs: 0,2,4

Now, to visualize what our action receives, enable polling with:

$ wsk activation poll mesg/logme.

In another terminal window, try to send messages. To do so, you should use the -P
flag (for “produce”) and specify the topic with -t. Messages are in standard input, so
you feed those messages with a pipe. Also, note that you do not have to specify a key,
but if you want to, you can specify it as a prefix in the message, and specify the sepa‐
rator character with -K. For example, in the other terminal:

$ echo test | ./kat.sh -P -t queue
Activation: 'logme' (e6b788dc35364a23b788dc35366a23bf)
[
 "2019-01-27T12:04:26.850048794Z stderr: 2019/01/27 12:04:26 \
 {\"messages\":[{\"key\":null,\"offset\":0,\"partition\":1,\
 \"topic\":\"queue\",\"value\":\"\\\"test\\\"\"}]}"
]
$ echo hello:world | ./kat.sh -P -t queue -p 0 -K:
Activation: 'logme' (5c6e09b49cc5453aae09b49cc5653abc)
[
 "2019-01-27T12:08:41.721368293Z stderr: 2019/01/27 12:08:41 \
 {\"messages\":[{\"key\":\"hello\",\"offset\":1,\"partition\":0,\
 \"topic\":\"queue\",\"value\":\"\\\"world\\\"\"}]}"
]

Send a simple message with no key and no partition.

In the other terminal: First message (offset 0) received in topic queue partition 1,
key null, value test.

Send a message with a key (separator :) in partition 0.

In the other terminal: Second message (offset 1) received in topic queue partition
0, key hello, value world.

You can also use kat.sh as a consumer. Use -C for consumer mode, and you can use -o
beginning to specify the offset and read messages from the beginning. You can also
use -f to specify a format string (just type ./kat.sh to see the available options). For
example, to dump the entire queue:

$./kat.sh -C -t queue -f '%k:%s\n' -o beginning
:test
hello:world
% Reached end of topic queue [1] at offset 1
% Reached end of topic queue [0] at offset 1

300 | Chapter 11: Using Kafka with OpenWhisk

A Kafka Producer in Go
Earlier, we used Kafka with a command-line client. This is useful for testing and
debugging, but you may want to be able to send messages to a Kafka broker on your
own, and you can do this by connecting directly to a Kafka broker with a Kafka client
library.

In this section you’ll learn how to write such an action in Go, using the library git
hub.com/confluentinc/confluent-kafka-go, an excellent Go library based on the C
library librdkafka (the same one used by the kafkacat tool). Since connecting to a
broker has a cost, we try to minimize the impact by caching the Kafka connection in
the action. But before we get started, be sure you’ve read the warnings at the begin‐
ning of this chapter carefully.

Creating a Producer
To use the library, the first step is of course to include it. We are going to put every‐
thing in the main package because this is a simple enough action. Furthermore, we
need to log errors, so we’ll start by writing a main/send.go file with this code:

package main

import (
 "log"

 "github.com/confluentinc/confluent-kafka-go/kafka"
)

Now, we need to create a producer. There is a kafka.NewProducer() method, but it
requires a pretty complex configuration in the form of a ConfigMap, so we’ll first
write a configProducer function that uses the configuration parameters from the
cred.json file you created when setting up the Kafka cluster. Note that here we assume
you are creating the action with -P cred.json, feeding the parameters generated by
the Kafka instance you provisioned in “Creating a Kafka Instance in the IBM Cloud”
on page 293.

The parameters are similar to those you used to connect to the cluster with kafkacat.
You have to specify the Kafka server to connect to, then pick sasl as the security
mechanism and provide a username and password:

func configProducer(args map[string]interface{}) *kafka.ConfigMap {

 // extract broker list from map
 brokers := ""
 for _, s := range args["kafka_brokers_sasl"].([]interface{}) {
 brokers += s.(string) + ","
 }
 brokers = brokers[0 : len(brokers)-1]

A Kafka Producer in Go | 301

 // generate configuration
 config := kafka.ConfigMap{
 "bootstrap.servers": brokers,
 "security.protocol": "sasl_ssl",
 "sasl.mechanisms": "PLAIN",
 "sasl.username": args["user"],
 "sasl.password": args["password"],
 }
 return &config
}

Build a broker list in comma-separated format from the arguments.

Use the broker list.

Select the security protocol.

Pass username and password.

This configuration is specific to a cluster in the IBM Cloud; how‐
ever, since there are a wide variety of parameters, you will have to
choose the best ones for your particular Kafka configuration. You
should check the documentation about the possible configuration
options on GitHub.

Once you have the configuration, you can build a producer. Since we can use a pro‐
ducer multiple times, we need a variable to cache it. We also need a channel to receive
acknowledgment of message delivery:

var producer *kafka.Producer

var deliveryChan chan kafka.Event

We are now ready to write the producer that puts everything together:

// Producer returns a producer to Kafka in a persistent way
func Producer(args map[string]interface{}) *kafka.Producer {
 if producer != nil {
 return producer
 }
 // create a producer and return it
 p, err := kafka.NewProducer(configProducer(args))
 if err != nil {
 log.Println(err)
 return nil
 }
 producer = p
 deliveryChan = make(chan kafka.Event)

302 | Chapter 11: Using Kafka with OpenWhisk

http://bit.ly/2FAatxS

 return producer
}

Return a cached producer.

Create a new producer.

Cache the producer.

Create the channel for sending events.

Sending a Kafka Message
Once you have a producer you can send messages. A message in Kafka is just a byte
array. However, to send it, you also have to specify the topic (a string) and a partition
(an integer). The partition can be a special value, such as kafka.PartitionAny or a
specific value.

In our chat application we pick one (and only one) partition
because we do not want our messages to be split. We need to
ensure all the messages are delivered to each consumer. Kafka
ensures the messages are delivered to the consumers assigned to
one specific partition, so it is important to pick the partition cor‐
rectly.

The Send function receives a producer, a topic, a partition, and the message. It builds
a kafka.Message with the topic and the partition, then sends it with the
kafka.Producer. It passes a channel to receive an acknowledgment that the message
was delivered.

The delivery in general is asynchronous, so you send a message
and forget about it. If you want a synchronous call, you can wait
for an acknowledgment that a message was successfully sent on the
delivery channel.
In our application, we want the messages to be sent in order. To
avoid messages being sent out of order we make the send synchro‐
nous and wait for the acknowledgment of the message delivery. We
assume that each client will wait for the acknowledgment before
sending another message.

Here’s the code for sending a message:

// Send a message
func Send(p *kafka.Producer, topic string, partition int, message []byte) error {
 tp := kafka.TopicPartition{

A Kafka Producer in Go | 303

 Topic: &topic,
 Partition: int32(partition),
 }
 msg := &kafka.Message{
 TopicPartition: tp,
 Value: message,
 }
 p.Produce(msg, deliveryChan)
 e := <-deliveryChan
 m := e.(*kafka.Message)
 return m.TopicPartition.Error
}

Create the struct to hold the topic and partition.

Create the actual message to deliver.

Send the message using the channel.

Wait for acknowledgment that the message has been sent.

Return the error.

Writing a Sender Action
Now that we have the functions we need to create a producer and use it, wrapping the
complexities of interacting with Kafka. We can write, deploy, and test a sender action
exposed as a web action. Since we are going to use the action in a chat application, we
protect it with a password. However, since we want to avoid the complexity of setting
a separate store for the password, we will only check it against a fixed secret we store
as a parameter of the action when deploying it.

Let’s write the sender action. It starts with checks: first we check for the password,
then we check the arguments. Then we create a producer, since we need it to deliver
messages. Finally, once we have the channel, we can send the messages and return an
“OK” response. But before we go into the details, let’s write a simple helper function
for returning errors, which makes the code simpler to write:

package main

func mkErr(message string) map[string]interface{} {
 return map[string]interface{}{
 "body": "ERROR: " + message,
 }
}

Now we can write the code for the main function of the action:

304 | Chapter 11: Using Kafka with OpenWhisk

// Main is the entry point for the sender action
func Main(args map[string]interface{}) map[string]interface{} {

 pass, ok1 := args["pass"]
 secret, ok2 := args["secret"]
 if !(ok1 && ok2 && pass == secret) {
 return mkErr("authentication failed")
 }

 // get args
 message, ok := args["message"].(string)
 if !ok {
 return mkErr("no message")
 }
 topic, ok := args["topic"].(string)
 if !ok {
 return mkErr("no topic")
 }
 partition, ok := args["partition"].(float64)
 if !ok {
 return mkErr("no partition")
 }

 // retrieving the connection
 p := Producer(args)
 if p == nil {
 return mkErr("cannot connect")
 }
 // sending the message
 err := Send(p, topic, int(partition), []byte(message))
 if err != nil {
 return mkErr(err.Error())
 }
 return map[string]interface{}{
 "body": "OK",
 }
}

Check the password against a secret.

Extract the mandatory topic, partition, and message parameters.

Create the producer, which can be cached, using other parameters.

Send the actual message.

If you get here everything is OK.

A Kafka Producer in Go | 305

Deploying and Testing the Producer
Our action is a Go action. The steps to compile and test it were described in the pre‐
vious chapter, but let’s review them again here:

1. Collect a third-party library with dep to generate a vendor folder.
2. Precompile the action for efficient deployment.
3. Deploy it using the cred.json to connect to che kafaa action.
4. Being a web action, test it with curl.

To retrieve the confluent-kafka-go library and set up the vendor folder, you need to
start from the following layout. Note that you need the src/main for the Go conven‐
tions (a vendor folder cannot be within the top-level folder). You also need the dep
tool to collect the dependencies:

cred.json
sender
└── src
 └── main
 ├── send.go
 └── sender.go

The commands to collect the dependencies and to compile and deploy the action are:

$ cd sender/src/main
$ GOPATH=$PWD/../.. dep init
Using ^0.11.6 as constraint for direct dep \
 github.com/confluentinc/confluent-kafka-go
Locking in v0.11.6 (460e8e4) for direct dep \
github.com/confluentinc/confluent-kafka-go
$ cd ..
$ zip - -qr main | docker run -i openwhisk/actionloop-golang-v1.11 \
 -compile main>../sender.zip
$ cd ..
$ wsk action create mesg/sender sender.zip \
 -P ../cred.json -p topic queue-p partition 0 \
 -p secret s3cr3t \
 --kind go:1.11 --web true
ok: created action mesg/sender
$ SEND=$(wsk action get --url mesg/sender | tail -1)

Collect dependencies with the dep tool.

Precompile the sources in a single binary.

Deploy the action, specifying Kafka credentials, our topic and partition, and the
secret.

306 | Chapter 11: Using Kafka with OpenWhisk

Save the URL to access the sender action.

You can now test if the action works correctly and send messages. You need to use
two terminals to verify this:

• In terminal 1, execute wsk activation poll mesg/logme.
• In terminal 2, execute curl "$SEND?message=hello&pass=s3cr3t".

If you see the expected output, your sender action is ready.

A Kafka Consumer in Go
Since you now know how to send messages to a topic and a partition, the next logical
step is learning how to receive messages. Kafka stores a message in a partition of a
topic and keeps it for a configurable amount of time. When you create topics, you
also specify how long messages should be retained. When you want to read messages
from Kafka you have to create a consumer that subscribes to a topic. Each consumer
is placed in a group using an identifier called group.id. A group is then assigned to a
partition, either asking explicitly for a given partition or letting Kafka select the parti‐
tion.

If there are too many consumers assigned to one partition, Kafka
can rebalance the consumers, reassigning them to other partitions.

Note that a consumer group tracks a partition of a topic, and when one consumer of
a group reads a message, the other consumers in that consumer group will not see it
anymore. In other words: each consumer of a consumer group consumes one message of
a partition of a topic, hiding it from other consumers of the group. All messages of a
topic are numbered, and Kafka remembers which message to read.

When you first create a consumer in a consumer group, Kafka automatically initial‐
izes the latest message so that only new messages are read. It is, however, possible to
read messages starting from the earliest available or even from a specific timeframe.

Creating a Consumer
Now let’s create a consumer. Since we want to use this function for a chat application,
there are some constraints we need to keep in mind.

To avoid losing messages, we use only a single partition, so we specify the topic and
the partition for each consumer in a specific consumer group. OpenWhisk executes

A Kafka Consumer in Go | 307

actions in multiple runtimes; it is the system that decides whether to reuse a runtime
that is already in existence or create a new one, so we can have multiple runtimes to
serve a single action.

To improve efficiency, when creating a consumer we will cache it, but we assign a
consumer group name for each user so even if there are multiple runtimes for execut‐
ing the action, messages are still seen in order and only once.

Using our Go library, we create the consumer in two steps: first we prepare a
ConfigMap passing all the configuration parameters, then we create the consumer. For
convenience, we split the operation into two functions: configConsumer to prepare
the configuration and Consumer to create the consumer.

In the following, most of the code is similar to the configProducer function already
described in “Creating a Producer” on page 301, so I do not comment on it again.
Instead, I focus on describing the additional details required for the consumer:

func configConsumer(args map[string]interface{}) *kafka.ConfigMap {

 // extract broker list from map
 brokers := ""
 for _, s := range args["kafka_brokers_sasl"].([]interface{}) {
 brokers = s.(string) ","
 }
 brokers = brokers[0 : len(brokers)-1]

 // generate configuration
 config := kafka.ConfigMap{
 "bootstrap.servers": brokers,
 "security.protocol": "sasl_ssl",
 "sasl.mechanisms": "PLAIN",
 "sasl.username": args["user"],
 "sasl.password": args["password"],
 "auto.offset.reset": "latest",
 "go.events.channel.enable": true,
 "go.application.rebalance.enable": false,
 "enable.auto.commit": true,
 }
 return &config
}

Initialize the offset to the latest available message.

Allow the consumer to read messages using Go channels.

Disable rebalancing, to keep consumers on the assigned partition.

Enable autocommit so the offset is advanced when you read a message.

308 | Chapter 11: Using Kafka with OpenWhisk

The consumer takes a configuration, a topic, a partition, and a group. It first tries to
find a cached consumer for the given group. If it doesn’t find one, it builds one,
caches it, and assigns it to a given topic/partition combination:

var consumers = map[string]*kafka.Consumer{}

func Consumer(config *kafka.ConfigMap, \
 topic string, partition int32, group string) \
 *kafka.Consumer {
 // return cached consumer, if any
 if consumer, ok := consumers[group]; ok {
 return consumer
 }

 // not found in cache,
 // create a consumer and return it
 config.SetKey("group.id", group)
 consumer, err := kafka.NewConsumer(config)
 if err != nil {
 log.Println(err)
 return nil
 }

 // assign to a specific topic and partition
 assignment := []kafka.TopicPartition{{
 Topic: &topic,
 Partition: partition}}
 consumer.Assign(assignment)

 // cache consumer and return it
 consumers[group] = consumer
 return consumer
}

Search for the consumer in the cache; it is a map indexed by the group name.

Instantiate the consumer with the configuration, augmented with the group id.

Create a pointer to a topic and partition, the offset defaults to the value chosen by
the options specified in the ConfigMap, then assign the consumer.

Cache and return the consumer.

Receiving a Message
Once you have a consumer, you can receive messages. Our library allows two ways to
get messages: one is by invoking the blocking Poll call, and the other is by receiving
events on a channel. The Poll call is a blocking one, but you can specify a timeout; if
you do not receive messages within the timeout the call will return.

A Kafka Consumer in Go | 309

We’ll use the more idiomatic Go implementation using channels. The Go way is to
listen on a channel (with the <- syntax) returned by Events wrapping the call with a
select. In this way, if there are no messages in the channel the default option is
picked, implementing a nonblocking call. Furthermore, the event returned by the
Events call can be one of several different types. In this context, we’re only interested
in a kafka.Message. In Go, you use a switch with the .(type) syntax to perform dif‐
ferent operations according to the underlying type returned by a generic method.

Using these techniques, we can write a Receive function that collects all the pending
messages and returns an array when there are no more messages. The code is admit‐
tedly using nontrivial Go programming techniques:

func Receive(c *kafka.Consumer) []string {
 messages := []string{}
 for {
 select {
 case ev := <-c.Events():
 switch e := ev.(type) {
 case *kafka.Message:
 v := string(e.Value)
 messages = append(messages, v)
 }
 default:
 return messages
 }
 }
}

Prepare an empty slice to return.

Loop forever; loop terminated by inner returns.

This select allows us to be nonblocking on the channel read.

Receive events from Kafka through a channel.

This switch with `the type allows us to determine the type of message.

Receive a message.

Extract the actual value from the message as a string.

Append to the slice we are going to return.

Return the collected messages when there are no more messages to receive.

310 | Chapter 11: Using Kafka with OpenWhisk

Writing a Receiver Action
The Consumer and Receive functions are fine from receiving messages from Kafka.
But now we want to wrap them in a web action to use in a web chat application. Since
we are going to expose this action to the public internet, we want to protect it with a
password, in the same way as we did for the sender action. Again, to avoid the com‐
plications of setting up a database for storing passwords we’ll use just one fixed pass‐
word, stored in the parameter secret provided at deployment. The topic and
partition parameters are also provided at deployment time.

To use the consumer, a client must provide the parameters pass and group, which
identifies a consumer group name. In this way, a client using the same group name
will see all the messages since the first use of the group name. The first use of a group
is a sort of “log in” procedure. If the client does not provide a group parameter, then a
new random group name is generated and returned. This name should be used for all
the subsequent interactions with the same client.

Let’s see the implementation. The action is a web action and we want to return a
JSON response, so, it must return a map with a key body for the body of the answer,
and another key headers specifying the content type. Since all the answers of our
action will be JSON, it makes sense to have a utility function mkBody to build such a
JSON answer:

func mkBody(key string, value interface{}) map[string]interface{} {
 return map[string]interface{}{
 "body": map[string]interface{}{
 key: value,
 },
 "headers": map[string]interface{}{
 "Content-Type": "application/json",
 },
 }
}

We’ll also want a utility function to generate the random numbers we use as group
names when we need to create these as part of our authentication scheme. So, let’s
prepare a generator of random numbers:

// generate a random number
var generator = rand.New(rand.NewSource(
 time.Now().UnixNano()))

Use the current time as a seed for the random number generator.

Now you can see the implementation of the main action. As a reminder, its type is:

func Main(args map[string]interface{}) map[string]interface{}

The action is a bit long, so we’ll split it into snippets and discuss them separately.

A Kafka Consumer in Go | 311

The action starts by checking the password against the secret (as we did for the
sender), then it reads the mandatory parameters for topic and partition:

// check password
pass, ok1 := args["pass"]
secret, ok2 := args["secret"]
if !(ok1 && ok2 && pass == secret) {
 return mkBody("error", "authentication failed")
}

var topic string
var partition float64
var ok bool

// check if there are a topic and partition
topic, ok = args["topic"].(string)
if !ok {
 return mkBody("error", "topic required")
}
partition, ok = args["partition"].(float64)
if !ok {
 return mkBody("error", "partition required")
}

Now we can implement the core logic, as described before. If there is no parameter
group, the action generates a random group name, then creates the consumer. The
consumer is cached so we create it only once for the action runtime.

If instead the client invokes the receiver providing the group name, the consumer is
retrieved from the cache and used to read the messages. The code uses the functions
Consumer and Receive from before:

// check there is a group then handle receive
if group, ok := args["group"].(string); ok {
 config := configConsumer(args)
 consumer := Consumer(config, topic, int32(partition), group)
 return mkBody("messages", Receive(consumer))
} else {
 // no group, generate a group name
 group := fmt.Sprintf("g%d", generator.Uint64())
 return mkBody("group", group)
}

There is a group name.

Create or retrieve a cached consumer.

Retrieve and send the messages.

No group provided, so generate one.

312 | Chapter 11: Using Kafka with OpenWhisk

Return the body of the message.

When there are too many requests, OpenWhisk creates more instances of the action
runtime to serve those clients. In this case, when retrieving the consumer, it will not
be in the cache so the new instance creates another consumer. However, since it uses
the same consumer group, it maintains continuity and order in the messages.

Usage of an action exposed to the public internet can grow rapidly.
OpenWhisk will spawn more action runtimes to handle the load, in
turn creating more connections to the Kafka brokers. At a certain
point, the brokers may stop accepting new connections. The tech‐
nique shown here is therefore not suitable for high scalability.

Testing the Consumer
You can now deploy and test the consumer in the same way as described in “Deploy‐
ing and Testing the Producer” on page 306; you only have to change sender to
receiver and deploy the action as mesg/receiver with the same parameters, includ‐
ing the secret. Let’s now look at a simple test of the action, with the help of the sender
action:

$ SEND=$(wsk action get --url mesg/sender | tail -1)
$ RECV=$(wsk action get --url mesg/receiver | tail -1)
$ curl "$RECV"
{
 "error": "authentication failed"
}
$ curl "$RECV?pass=s3cr3t"
{
 "group": "g3951381834954569784"
}
$ curl "$RECV?pass=s3cr3t&group=g3951381834954569784"
{
 "messages": []
}
$ curl "$SEND?pass=s3cr3t&message=\[1\]hello"
OK
$ curl "$SEND?pass=s3cr3t&message=\[2\]hi"
OK
$ curl "$RECV?pass=s3cr3t&group=g3951381834954569784"
{
 "messages": ["[1]hello", "[2]hi"]
}
$ curl "$RECV?pass=s3cr3t&group=g3951381834954569784"
{
 "messages": []
}

A Kafka Consumer in Go | 313

Get the URLs of the sender and receiver actions.

Invoke the action without a password, resulting in an authentication error.

Invoke the receiver action without the group, returning a new consumer group
name.

Try to use the new group name; it is empty.

Send a message to the topic.

Send another message.

Try to retrieve the messages.

Now both the messages are available in the topic queue.

The topic is now empty.

Implementing the Web Chat Application
The two actions developed so far (mesg/sender and mesg/receiver) are the building
blocks required to implement the simple web chat application shown in Figure 11-5.

Figure 11-5. User interface of the web chat application

314 | Chapter 11: Using Kafka with OpenWhisk

This chat is a web action; users of the chat access it with their browser and must join
it, providing an arbitrary nickname and the password (which is the same for all users
in our simple implementation). Once logged in, users can read messages from others
in the main text area, and they can add their own.

Overview
We implement the chat app by leveraging the two actions developed before for send‐
ing and receiving messages in Kafka. The application is a SPA (single-page applica‐
tion), and we reuse the technique in “Embedding Resources” on page 274. The Go
code for serving the embedded resources is the same as described there; the only dif‐
ferences are in the client part.

Here is the folder hierarchy:

chat
├── res
│ ├── bootstrap.min.css
│ ├── bootstrap.min.js
│ ├── favicon.ico
│ ├── index.html
│ ├── jquery-1.12.4.min.js
│ └── main.js
└── src
 ├── app
 │ ├── Gopkg.lock
 │ ├── Gopkg.toml
 │ ├── a_app-packr.go
 │ ├── assets.go
 │ ├── box.go
 │ └── vendor
 └── main.go

Here, the subfolder src uses the same code as before to embed static assets in a Go
action. In the subfolder res we put the resources for implementing the client part of
the chat app. In particular, you can see:

• The CSS library bootstrap
• The JavaScript library jQuery
• The HTML of our application, index.html
• The JavaScript of our application, main.js

We do not cover the libraries in detail, since both are widely known, but instead focus
on describing the HTML user interface of the application and then the JavaScript
logic.

Implementing the Web Chat Application | 315

User Interface
Figure 11-5 shows the main parts of the user interface as well as the HTML id of each
component. The user interface has two parts: the heading, used only for logging in,
and the main body. A simplified version (I’ve removed style details for easier reading)
of the HTML of the heading follows:

<form id="form">
 <input id="nick" type="text"
 placeholder="Nickname">
 <input id="pass" type="password"
 placeholder="Password">
 <button id="join"
 type="button">Join</button>
</form>
<label for="comment">Chat Room</label>
<textarea class="form-control"
 rows="15" id="room" readonly></textarea>

<input id="message" type="text"
 placeholder="say something" disabled="true">

Container for the user interface section to join the chat.

Nickname input text box.

Password input text box.

Join button.

Text area to show received messages.

Area displaying the current nickname.

Input field to send messages.

Note that the message and room input fields are initially disabled.

Initializing
The HTML of the web chat application also includes the main.js file, discussed in this
section (in separate snippets as before). The chat application uses the actions sender
and receiver to perform its work. The action chat is just the container of the client
side and acts as a static web server (deployed as an action for convenience).

The client code needs to locate the URLs of the other two services. You can install the
three actions in any OpenWhisk server; however, I assume that chat, sender, and
receiver are all deployed in the same server, namespace, and package so that you can

316 | Chapter 11: Using Kafka with OpenWhisk

find the URLs of the other two from the URL of one of them. The JavaScript code
uses this assumption to locate the URLs of the other services. If the URL of the
HTML page is, for example

https://openwhisk.example.com/api/v1/web/my_namespace/mesg/chat/index.html

you can locate the sender and the receiver by reading the whole URL, removing /
chat/index.html and adding /sender or /receiver.

Translated into JavaScript, this is:

var base = location.href
base = base.substring(0, base.lastIndexOf("/"))
base = base.substring(0, base.lastIndexOf("/"))
var sender = base + "/sender"
var receiver = base + "/receiver"

Once we have initialized the variables for locating the services, we also initialize the
global variables to contain the nickname, password, and group. Those variables will
get proper values when a user joins the chat:

var nickname = ""
var password = ""
var group = ""

The application uses jQuery, so we complete the initialization by registering two han‐
dlers: one to handle the click the Join button and another to send messages to the
chat, intercepting keystrokes in the message input field. Let’s do just this for now
(we’ll see the functions join and message later):

$(function() {
 $("#join").click(join)
 $("#message").keyup(message)
})

Note that initially the input field to send chat messages is disabled. The user can only
click the Join button.

Joining
The user fills in the two fields, “nickname” and “password,” and then clicks the Join
button. The function join is an event handler registered to handle the click of the
button. It reads the fields and checks to see if they are empty. If the user provided
values and they are not empty, the URL of the mesg/sender action is invoked, passing
the password. The client code never sends the nickname to the backend; it is used
only on the client side and stored in the local variable nickname.

Here is the code for the join function:

// join the chat
function join() {

Implementing the Web Chat Application | 317

 nickname = $("#nick").val()
 password = $("#pass").val()
 if(nickname == "" || password == "") {
 alert("Please specify nickname and password")
 return
 }
 // first connection, get the group
 $.post(receiver,
 {"pass": password},
 joined)
}

Read the fields with the nickname and password.

Validate the values.

Invoke the backend action.

When the first invocation of the sender action completes, if it is successful (the pass‐
word was correct) it returns the group name and stores it in a local variable. At this
point, you need to get ready for the user to start chatting with others. You also need to
hide the login form to avoid multiple logins and enable the text area to write the mes‐
sages. But the most important step is starting to receive messages. Since currently
OpenWhisk does not support any form of invocations pushed by the server (like
WebSockets), you have to use a pull mechanism. So you enable a repeated invocation
of the poll function (discussed next) to read the upcoming messages:

// chat joined
function joined(data) {
 if(data.group) {
 group = data.group
 $("#form").hide()
 $("#me").text(nickname)
 $("#message").removeAttr("disabled")
 $.post(sender,
 {"message": "**** "+ nickname + " joined ****",
 "pass": password})
 setInterval(poll, 2000)
 } else if(data.error)
 alert(data.error)
}

Save the group name in a global variable.

Hide the entire login form.

Display the user’s nickname before the input text field.

Enable the input text field.

318 | Chapter 11: Using Kafka with OpenWhisk

Notify everyone in the chat of the new user.

Enable the invocation of the poll function every 2 seconds.

Display error messages, if any.

Receiving
After the user joined, the poll function executes every two seconds with the task of
updating the central area of the chat with the messages received from other members.
What it does is invoke the receiver action, using the group name and the password.
The receiver returns all the messages it can read in the topic. Since there is a unique
consumer group name for each member of the chat, the member is guaranteed to
receive messages starting from the time the user logged in:

function poll() {
 $.post(receiver,
 {"group": group, "pass": password},
 function (data) {
 if(data.error) {
 console.log(data.error)
 return
 }
 if(data.messages.lenght==0)
 return
 var curr = $("#room").val()
 for(message of data.messages) {
 curr += message + "\n"
 }
 $room = $("#room")
 $room.val(curr)
 $room.scrollTop($room[0].scrollHeight)
 })
}

Make an Ajax request to read messages, passing the group and password.

Something went wrong—log and continue.

There are no messages; just return.

There are messages, so read the current text area, append the messages, and
update.

Ensure the text area scrolls to the end so the user can see the messages added.

Implementing the Web Chat Application | 319

Sending
Finally, let’s examine the handler for sending messages. In the initialization step, we
attached an event handler to the message text input to inspect keystrokes. The pur‐
pose of this handler is to wait for the user to press Enter. When this happens, the
event handler does an Ajax call to the sender action. It passes the password and con‐
structs a message prefixing the nickname (that the code manages entirely client-side).
It waits for the action to complete and only checks if the returned value is OK (other‐
wise it displays an error message):

function message(e) {
 message = $("#message").val()
 if(message == "")
 return
 if(e.keyCode === 13) {
 $("#message").val("")
 $.post(sender,
 {"message": "["+nickname+"] "+message,
 "pass": password },
 function (data) {
 if(data!="OK")
 alert(data)
 }
)
 }
}

Check that there is a message, actually.

Check whether the user pressed Enter.

Clear the message input text.

Ajax invocation of the sender action, with a proper message and the password.

Show an error message if the value returned was not OK.

Summary
In this chapter we explored how to use Kafka as a messaging tool for OpenWhisk and
covered examples using Go. We started looking at Kafka and its main concepts, like
topics, partitions, and consumer groups, and we tested it interactively using the
messaging package and the kafkacat tool. Then we went into detail about how to
write Go actions able to read and write in Kafka. Finally, we wrote a simple web chat
application that leveraged Kafka features to keep track of users and distribute mes‐
sages to members of the chat.

320 | Chapter 11: Using Kafka with OpenWhisk

CHAPTER 12

Deploying OpenWhisk with Kubernetes

Apache OpenWhisk is available out of the box in the IBM Cloud and in the Adobe
Cloud as I/O Runtime, but it is a true open source project and can actually be
deployed everywhere. It can be installed in other clouds, either public or private, or
on your own servers. In this chapter, you will learn how to install OpenWhisk both
for development and production, and how to deploy complex applications in it. But
before going into all the details, let’s cover some of the basics.

OpenWhisk is actually built on Docker. Docker is known as a “lightweight” virtuali‐
zation environment. It provides a format for defining disk images, named Docker
images, and a way to launch them.

There is a public distribution point known as Docker Hub. OpenWhisk is distributed
on Docker Hub in the form of a collection of Docker images, deployed to create a
“control plan.” When you deploy an action, you communicate with the OpenWhisk
control plan, and it creates other containers to run actions. Runtimes to execute
actions are also Docker images.

Generally, Docker alone is not enough to run complex, multiserver applications. You
need another piece of software, called Kubernetes. In this chapter, we focus on run‐
ning OpenWhisk in Kubernetes, either locally for development purposes, in the
cloud, or on a bare metal server.

Docker is essentially a Linux product, but a version for Windows
and Mac (called Docker Desktop) exists. Docker Desktop also
includes Kubernetes. Linux versions are generally used for produc‐
tion and building clusters, whereas the Windows/Mac versions are
used for development, running a single-node Kubernetes cluster.

321

https://hub.docker.com/

In this chapter, we first install Kubernetes, and then install OpenWhisk in Kuber‐
netes.

The source code for the examples related to this chapter is available
on GitHub.

Installing Kubernetes
Figure 12-1 shows the architecture of a Kubernetes cluster and depicts what we will
deploy in this chapter.

Figure 12-1. Architecture of Kubernetes

As you can see, a cluster is comprised of a number of “nodes” (which are separate
servers, either VMs or physical servers) all running Docker. In addition, each node
also runs a Kubernetes-specific service called a kubelet. Everything else runs inside
Docker as a Docker container.

One node is the master node, acting as the coordinator, while the others are worker
nodes. The master node generally does not execute any useful work but just supervi‐
ses the worker nodes. Also note that in each worker node, there are two Kubernetes-
specific containers: one for the networking connection (here, we use weave) and
another one, called a proxy, that allows each container to provide external services in
a node-independent manner.

322 | Chapter 12: Deploying OpenWhisk with Kubernetes

http://bit.ly/2xdnQ2k

Installation Types
In this chapter, I describe multiple procedures to install Kubernetes and some related
tools needed for OpenWhisk. In particular, we cover the installation of:

• A single-node Kubernetes cluster and some Kubernetes tools on your local
machine, for Mac and Windows

• A multinode Kubernetes cluster on a cloud provider with VMs
• Kubernetes on a bare metal Linux server

Note that major cloud providers like Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud offer Kubernetes as part of their packages. However, it is also pos‐
sible to install Kubernetes on those cloud providers that do not provide it out of the
box as is the case in this chapter.

Installing kubectl and Helm
Before going into the details of the various installation procedures, first let’s down‐
load a couple of command-line Kubernetes tools: kubectl and Helm. You’ll need
these tools to control either your local Kubernetes cluster or a remote one.

kubectl does what the name suggests—it controls Kubernetes. In particular, it offers
many commands to read, create, update, and delete resources in Kubernetes. Those
resources are generally represented by a collection of descriptions in YAML format.

Although kubectl manages resources, it does not provide any features to organize
and parametrize those resources. Since Kubernetes clusters are not all created equal,
you’ll always need to change some parameters in the configuration for each specific
case. This is where Helm comes in. It is a tool used to manage Kubernetes resources
as groups, specifying parameters to adapt to different needs.

You should install the latest available versions of these tools. To see the latest available
version of kubectl, type:

$ curl https://storage.googleapis.com/\
kubernetes-release/release/stable.txt
v1.13.1

The actual version you see may be different.

For details on the latest version of Helm, check out its GitHub repository.

Let’s assume you want to download binaries of kubectl version 1.13.1 and Helm ver‐
sion 2.12.1.

Installing kubectl and Helm | 323

http://bit.ly/2FEZdAm

Both kubectl and helm are developed in the Go programming lan‐
guage and are available as binaries for all of the major operating
systems. Generally, the name of the kernel of the operating system
identifies the binary, then the architecture of the processor. For
Linux and Windows, the name of the kernel is just linux or win
dows; for macOS it is darwin (as this is the actual name of the
underlying operating system). For the architecture, currently, the
more widely used is the X8_64 (the 64-bit version of the X86
instruction set) normally identified as amd64. It is also possible (but
less common) to use a 32-bit version.

On macOS use the following commands to download and install the tools:

$ curl -LO https://storage.googleapis.com/kubernetes-release/\
 release/v1.13.1/bin/darwin/amd64/kubectl
$ chmod +x kubectl
$ sudo mv kubectl /usr/local/bin
$ curl https://storage.googleapis.com/\
 kubernetes-helm/helm-v2.12.1-darwin-amd64.tar.gz
$ tar xzvf helm.tar.gz --strip-component=1
$ sudo mv helm /usr/local/bin

For Linux, you should use the same commands, substituting linux for darwin. If you
are using Windows, open the PowerShell as an administrator and type:

PS> $client = new-object System.Net.WebClient
PS> $client.DownloadFile("https://storage.googleapis.com/kubernetes-release/\
 release/v1.10.3/bin/windows/amd64/kubectl.exe",\
 "C:\Windows\kubectl.exe")
PS> $client.DownloadFile("https://storage.googleapis.com/kubernetes-helm/\
 helm-v2.12.0-windows-amd64.zip", "C:\helm.zip")
PS> Expand-Archive C:\helm.zip -DestinationPath C:\Windows\
PS> move C:\helm\windows-amd64\helm.exe C:\Windows\

To make sure the commands are properly installed and available on the path, invoke
them to display their versions (these commands should work on all operating sys‐
tems):

$ kubectl version --client --short
Client Version: v1.13.1
$ helm version -c --short
Client: v2.12.1+g02a47c7

Since you have not yet installed Kubernetes, you are asking only for
the client version. You would get an error if you tried to connect to
the server (Kubernetes).

324 | Chapter 12: Deploying OpenWhisk with Kubernetes

Installing Kubernetes Locally
If you are using a Windows or Mac system as a development environment, you can
easily install a single-node Kubernetes cluster using Docker Desktop, available for
both platforms.

If you are using Linux you can follow the procedure described in
“Installing Kubernetes on a Bare Metal Server” on page 339 to
install Kubernetes on a server with just one master. There are other
options, but they are not, in my opinion, any simpler than instal‐
ling a virtual machine with Kubernetes as described here.

To download Docker Desktop, go to its download site. Register, follow instructions,
and download Docker Desktop. On a Mac, once you hve Docker Desktop up and
running, enable Kubernetes as depicted in Figure 12-2.

Figure 12-2. Enabling Kubernetes in Docker Desktop for Mac

The steps are as follows:

1. Click on the Docker icon in the menu bar and select Preferences.
2. Select the Kubernetes icon.
3. Check the Enable Kubernetes box and click Apply.
4. Now go back into the Docker menu and select About Docker Desktop.

Installing Kubernetes Locally | 325

https://dockr.ly/2Nj3PCt

5. Take note of the version of Kubernetes installed (in this case it is v1.10.3).

On Windows, after installing Docker Desktop you can enable Kubernetes as depicted
in Figure 12-3.

Figure 12-3. Enabling Kubernetes in Docker for Windows

Here are the steps:

1. Click on the Docker icon in the Windows taskbar and select Settings.
2. On the menu on the left, select Kubernetes.
3. Check the Enable Kubernetes box, and click Apply.
4. Now go back into the Docker menu and select About Docker Desktop.
5. Take note of the version of Kubernetes installed (in this case it is v1.10.3).

You can now check if you can connect to the local Kubernetes server. Type the follow‐
ing commands (either in Terminal or PowerShell) and check the results (your version
numbers may be different):

$ kubectl version --short
Client Version: v1.10.3
Server Version: v1.10.3
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-for-desktop Ready master 5d v1.10.3

326 | Chapter 12: Deploying OpenWhisk with Kubernetes

You may have kubectl configured to access other Kubernetes clus‐
ters than Docker Desktop. If you do not see docker-for-desktop
as the only node in the cluster, you need to change context with the
command kubectl config set-context docker-for-desktop.

Now that you have Kubernetes up and running, if you are not interested in deploying
a Kubernetes cluster in the cloud or on a local server, you can proceed to “Installing
OpenWhisk” on page 345.

Installing Kubernetes in the Cloud
Cloud providers usually offer, among other products, either VMs or physical
machines. In both cases, you have to deploy an operating system in it. Here we’ll
focus on installation in the cloud using VMs with Linux-based operating systems..

While you can install operating systems into VMs from scratch, it is generally an
awkward task, so vendors make them available as so-called cloud images for VM use.
A cloud image is a special version of an operating system designed to be easily
deployed in a cloud environment.

The main difference from a “classic” operating system installation lies in the way you
specify the initial configuration of the operating system itself. When you install from
scratch on a physical server with a monitor and keyboard, you generally have an
installer with a user interaface that guides you through the various options.

In the cloud, you do not have the luxury of an installer, so you have to resort to a
scripted installation. The package most frequently used for this purpose on Linux-
based operating systems is cloud-init. You can use it to launch a cloud image and
feed to it some “user data” that the cloud-init package uses to initialize the system.

For our purposes, we’ll use a configuration file that simplifies the task of creating a
Kubernetes cluster ready for installing OpenWhisk. The procedure requires a cloud
provider that specifically offers Ubuntu cloud images and supports initializing them
with a cloud-init user-data script.

The procedure can be adapted to other Linux distributions, like those based on Red
Hat, but here I’ll provide step-by-step instructions for the Hetzner and AWS clouds.

Architecture of a Kubernetes Cloud Deployment
Before starting, you need to understand the network architecture of a cloud deploy‐
ment. Cloud architectures can be very complex, so we focus only on the basics here,
including:

• Private versus public networks

Installing Kubernetes in the Cloud | 327

• Ports to use
• Public IP addresses and DNS names
• Sizing of VMs

Some cloud providers offer only servers accessible with public IPs. Others also offer
the ability to keep your servers in a private network with private IPs. You can then use
a public IP that will be forwarded to a private IP only for those servers you want to
expose to the internet. This scenario is illustrated in Figure 12-4.

Figure 12-4. Private and public networks

Of course, a cluster is useful only if it can expose services to the world. In our case,
OpenWhisk is entirely a web-based environment, so it will have to expose HTTP and
HTTPS ports. In our deployment we’ll add to the kit a frontend based on the reverse
proxy Traefik, deployed on the same node as the master.

In order to be able to use the frontend, you need to open two ports: the standard port
for HTTP, 80, and the standard port for HTTPS, 443. Since the installer is going to
request a SSL certificate for HTTPS, you will also need a DNS name for the master.
Generally, a DNS name is generated for each public IP, but you can always register the
IP with your domain name if you prefer. This is important, since your applications
will be exposed using that domain name.

328 | Chapter 12: Deploying OpenWhisk with Kubernetes

Last but not least are the required resources. To install Kubernetes with a reasonable
amount of resources, you need at least three virtual machines: one for the master with
at least 4 GB of memory and two virtual CPUs (vCPUs), and two workers with at
least 2 GB of memory each. I recommend, however, at least three workers with 4 GB
of memory each.

Generic Procedure for Installing Kubernetes with cloud-init
Now let’s take a look at the Kubernetes installation procedure. I’ll explain it in general
first, without focusing on a specific cloud provider. This approach can make the dis‐
cussion a bit abstract and vague, though, so in the following sections I provide two
practical examples using actual clouds, giving additional details. Before starting, you
should ensure that you understand the architecture and the network requirements, as
previously described.

Here are the steps for installing Kubernetes. First, create one server for the master
with an image based on Ubuntu; I tested on Ubuntu 16.04 LTS and 18.04 LTS. You
need at least 4 GB of memory and two vCPUs. The server must be able to communi‐
cate with the internet since it will download Kubernetes software from Google
servers. Also, it must be accessible via SSH since you will have to log in to complete
the installation.

Your cloud provider should provide a way to feed user-data for initializing your
image. Ubuntu supports the cloud-init format for initialization, and an initializa‐
tion script in this format that you can use for this purpose (e.g., by copying and past‐
ing) is available in the GitHub repository.

If your provider does not assign a password to the instance (most providers do), you
can set the root password on your own by uncommenting and editing the following
lines at the beginning of the script:

chpasswd:
 list:
 - root:Change-me!

Of course, change the password Change-me! to your password.

Since your server will be accessible from the public internet, it is
highly recommended that you avoid easy-to-guess passwords like
root or password.

Boot your server and wait until the boot process completes. Connect with ssh to the
address provided by your provider. Once logged in, type:

cloud-init status --wait

Installing Kubernetes in the Cloud | 329

http://bit.ly/2JfSfCC

At this point, you need to wait a bit (a minimum of a few minutes, but it can take up
to 10). The system is updating the whole set of packages to the latest release and
installing all the software required to run Kubernetes.

This command will show a sequence of dots, then once completed will disconnect
your SSH connection. Reconnect (you may need to retry until the connection is avail‐
able again) and type:

sudo kube-init <external-ip>

Here, the external IP is either the public IP of the VM or the public IP you have con‐
figured to forward traffic to the private IP (see “Architecture of a Kubernetes Cloud
Deployment” on page 327 for details). In general, it should be the address you used to
connect with ssh.

This installation script will run for a few minutes. If everything goes okay, it will pro‐
duce output similar to the following:

*** If you have a private network, add to Cloud-Init for Workers:
runcmd:
- kubeadm join 116.203.71.223:6443 --token mpkkl6.jbulhikuul4usw1v \
--discovery-token-ca-cert-hash sha256:7aff...
*** If you only have a public network, add to Cloud-Init for Workers:
runcmd:
- kubeadm join 116.203.71.223:6443 --token mpkkl6.jbulhikuul4usw1v \
--discovery-token-ca-cert-hash sha256:7aff...

When the system has only a public IP the two messages (for private
and public networks) are identical. In general, however, the script
emits both the command generated internally and the command
“modified” for external use.

Now you have to pick the right initialization command for the other nodes. If you
have a private network, you should use the first command, as the workers will con‐
nect to the master using the internal IP.

If instead you have a public network and both you and the workers can connect to
the master only using the public IP address, you should use the second command.

In a private setup, workers connect to the master using a different
IP than the one used to connect to the server, and you should not
use the public IP as the workers may be unable to access it from the
internal network.

Now you can create the workers. Your cloud provider should allow you to create mul‐
tiple VMs with the same setup, so that you can create all the workers in a single step.

330 | Chapter 12: Deploying OpenWhisk with Kubernetes

Create some servers (at least two) with at least 2 GB of memory. Copy the same user-
data.txt file you used for the master, then edit it as follows. Insert the two lines shown
in the output of the kube-init command at the beginning of the script, but after the
#cloud-config line. For example:

#cloud-config
runcmd:
- kubeadm join Y.Y.Y.Y:6443 --token aaa.bbb \
 --discovery-token-ca-cert-hash sha256:ccccc
... (rest of user-data.txt) ...

If this line is missing, cloud-init won’t execute.

Note that this line starts with -.

While the workers are starting and initializing you can monitor their creation from
the master by executing this command:

sudo watch kubectl get nodes

You should see the nodes joining the cluster and reaching the ready state. Other
servers will also appear in the list (again, all of this takes a few minutes to complete):

NAME STATUS ROLES AGE VERSION
kube0 Ready master 20m v1.11.6
kube1 Ready <none> 5m55s v1.11.6
kube2 Ready <none> 6m49s v1.11.6

If the whole process is not complete after 10 minutes, you can
assume something went wrong. To troubleshoot, try to log in to the
workers and see if you can reach the IP and the port specified in
the kubeadm join command, as this is generally the problem.

Provisioning
Once you reach the ready, you have a working cluster—but you still need to install
some components in the Kubernetes cluster before you can actually install Open‐
Whisk. In particular, you need a storage driver (for persisting data on disk) and an
ingress controller (for accessing OpenWhisk via HTTPS).

IP and DNS name. You need also to assign an IP and a DNS name to your master
server and request an SSL certificate. The DNS name is a prerequisite for the SSL cer‐
tificate, and the wsk command in OpenWhisk is accessible over SSL.

The IPs assigned to VMs by cloud providers are generally floating. This means that is
for some reason the server goes down, then your IP is lost. However, you can also
generally get a stable IP (for a fee) that persists and can be moved from one server to
another.

Installing Kubernetes in the Cloud | 331

When you launch a virtual machine, cloud providers
also normally provision ugly DNS names like
ec2-34-231-88-109.compute-1.amazonaws.com. If the URL of
your OpenWhisk server is not user-visible, you can use this, other‐
wise, you may want to register your own nicer-looking DNS name.

It is recommended at this point that you get a stable IP, assign it to the master server,
and assign a nice-looking DNS name to this IP. You can find details on how to do this
for Hetzner and AWS Cloud in the respective sections later in this chapter.

Rook and Traefik. Once you have configured your IP and DNS, you can execute on the
server the following provisioning command:

$ kube-provision <public-dns-name> <your-email-address>

This command downloads a storage driver (Rook) and an ingress controller (Trae‐
fik). It also configures the ingress to get an SSL certificate using the free service Let’s
Encrypt.

Now, wait a bit and make sure the storage driver is installed before continuing. You
can check the status by running this command:

$ sudo watch kubectl --namespace rook-ceph get pod

You should see something like this:

NAME READY STATUS RESTARTS AGE
rook-ceph-mgr-a-579779457d-pr287 1/1 Running 0 19h
rook-ceph-mon-a-6bd4886f59-62n2k 1/1 Running 0 19h
rook-ceph-mon-b-78bb4d69f6-btdx5 1/1 Running 0 19h
rook-ceph-mon-c-b7cbd46b4-rlf8q 1/1 Running 0 19h
rook-ceph-osd-0-8446f8bc49-rn8pc 1/1 Running 0 19h
rook-ceph-osd-1-87856b466-24fc2 1/1 Running 0 19h
rook-ceph-osd-2-58544b9c89-8nj6t 1/1 Running 0 19h
rook-ceph-osd-prepare-kube1-cmkcz 0/2 Completed 0 19h
rook-ceph-osd-prepare-kube2-rgfvc 0/2 Completed 1 19h
rook-ceph-osd-prepare-kube3-g7ldj 0/2 Completed 1 19h

Make sure you can see at least as many rook-ceph-osd-prepare pods in the “comple‐
ted” state as the worker nodes you have.

When your deployment completes, test it by creating a sample deployment with:

$ sudo kubectl apply -f /usr/local/etc/sample.yaml
namespace/sample created
persistentvolumeclaim/rook-claim created
pod/nginx-pod created
service/nginx-svc created
ingress.extensions/nginx-ingress created

332 | Chapter 12: Deploying OpenWhisk with Kubernetes

You may need to be a bit patient—getting the SSL certificate may take a few minutes
—but in the end at https://<public-dns-name>/welcome you should see a Welcome!
message without getting SSL errors in your browser.

Congratulations! You have a Kubernetes cluster ready for installing OpenWhisk.
Before we get to that, though, let’s look at a few examples of how to use the generic
procedure outlined here with some specific cloud providers.

Installing on Hetzner Cloud
The first example we’ll look at uses the Hetzner Cloud. This cloud offers VMs based
on cloud images including Ubuntu and supports initialization with cloud-init user
data, so it is a good fit for our setup procedure.

Before starting, you have to configure an SSH key to access the servers. If you do not
already have an SSH key, generate one with the command ssh-keygen. This com‐
mand will ask you a few questions; if you accept the defaults it creates a private key in
$HOME/.ssh/id_rsa and a public key in $HOME/.ssh/id_rsa.pub.

Now install the key as follows (see Figure 12-5):

1. From the Cloud Console, select the key icon in the menu on the left.
2. Click Add SSH Key.
3. Copy and paste the content of the file $HOME/.ssh/id_rsa.pub.

Figure 12-5. Adding an SSH key in the Hetzner Cloud

Installing Kubernetes in the Cloud | 333

https://<public-dns-name>/welcome
https://cloud.hetzener.com

Once your public key is installed you can log in to the VMs and create the master as
shown in Figure 12-6.

Figure 12-6. Configuring cloud-init in the Hetzner Cloud

Here are the steps:

1. In the Cloud Console, select Add Server.
2. Pick your location, then select Ubuntu.
3. Select the type. For the master, you need at least 4 GB RAM with two vCPUs.
4. Select “User data” and copy and paste the cloud-init initialization script into the

text area.
5. Don’t forget to select your SSH key; otherwise you will not be able to log in.
6. Name the server and launch it.

After you launch the server, it will show its public IP address. Connect to the server
with ssh root@<public-ip>. If you created the private key with the ssh-keygen

334 | Chapter 12: Deploying OpenWhisk with Kubernetes

command and it’s stored in $HOME/.ssh/id_rsa, you should be able to log in without
a password as the root user. Type cloud-init status --wait, and wait until the
command terminates. Generally, at the end your SSH connection will be disconnec‐
ted.

You can now reconnect and type the command kube-init <public-ip> to initialize
the Kubernetes master. Once the master is ready, you use the same procedure to cre‐
ate the workers, one difference: in the user data text area, after pasting in the cloud-
init script, you need to add after the #cloud-config line the two lines shown on
completion of the kube-init script (be sure to use the second command, for a public
network).

Now you can proceed with the rest of the installation procedure:

1. Return to the master and type watch kubectl get nodes.
2. Wait until all the nodes are in the ready state.
3. Complete the installation with the command kube-provision <dns-name>

<your-email-address>.

In the Hetzner Cloud, each server gets a temporary IP and you will
lose it if you have to recreate the server. So, it is advisable to allocate
a so-called “floating” IP and assign it to the server. Furthermore,
the Hetzner Cloud provides a DNS name for each server that you
can use as the <dns-name> for provisioning your server. This will
also be lost when you rebuild your VM. It is hence recommended
that you get a DNS name (from any registrar) and use it to refer to
your allocated IP.

Installing on AWS Cloud
Now let’s see how to install Kubernetes on the AWS Cloud.

AWS includes a service called Elastic Container Service for Kuber‐
netes (EKS) offering a ready-to-go Kubernetes cluster; there are
also tools like kops that can be used to create a Kubernetes cluster
on AWS. Both are alternatives to this procedure.

The required resources in AWS are not free. You will be charged for
creating a cluster.

Installing Kubernetes in the Cloud | 335

Before starting the installation process, install an SSH key on the AWS Cloud and
locate the subnet id where you are going to install your VMs. Figure 12-7 shows these
steps.

Figure 12-7. Preparing AWS for installation

If you do not have one already, create a private key with the command ssh-keygen. If
you accept the defaults, your public key will be stored in the file $HOME/.ssh/
id_rsa.pub. Let’s proceed by locating the IP range (aka the subnet) of your VMs and
installing the SSH key.

1. Click on “Services” in the menu bar and search for VPC.
2. Select “subnets”, and note the available subnets; pick one and write down the

name and the IPv4 CIDR.
3. Now click again on “Services” again and search for EC2, then select “Key Pairs.”
4. Click on “Import Key Pairs” and in the text area paste your public key.

We refer to the name of the subnet as <subnet-name> and to the address range as
<subnet-cidr>. Now we can launch the VM as shown in Figure 12-8.

336 | Chapter 12: Deploying OpenWhisk with Kubernetes

Figure 12-8. Launching an instance in AWS

Here are the steps:

1. Go to the EC2 Dashboard and click Launch Instance.
2. Search for “Ubuntu” and locate the Ubuntu Server 18.04 LTS image.
3. Pick the 64-bit version and click Select.
4. Select for the master at least a “t3.medium” instance (4 GB of memory), then

click on “Next: Configure Instance Details.”

It is important that you configure the VM carefully (as shown in Figure 12-9) because
the details that follow are critical to making it work.

Installing Kubernetes in the Cloud | 337

Figure 12-9. Configuring an instance in AWS

In the section marked 1 in Figure 12-9:

• Select one instance and use the default VPC.
• Pick the <subnet-name> you noted in the previous step (this is important!).
• Select Enable in the “Auto-assign Public IP” drop-down.

Now scroll down to Advanced Details and open this section; it will show a text area to
put user data (marked as 2 in Figure 12-9). Select the “As text” option and paste in the
cloud-init script. Then click Next: Add Storage.

For the VM (3 in Figure 12-9), I recommend at least 20 GB of space. You can now
skip the next step, clicking Next: Add Tags, and then go on to Next: Configure Secu‐
rity Group.

Carefully set the security constraints (otherwise the cluster won’t work!), as shown in
Figure 12-10.

Figure 12-10. Configuring security for the AWS instance

338 | Chapter 12: Deploying OpenWhisk with Kubernetes

Leave open the default port 22, so you can access the instance with SSH. You also
need the master to expose to anyone the web ports, namely ports 80 (HTTP) and 443
(HTTPS). You also need to allow all the instances to talk to each other. To do this, you
need to add a rule enabling “All traffic” using as the source the <subnet-cidr>
address you noted earlier.

You are going to create a few instances that will talk to each other
(because Kubernetes requires this). To do so, it is critical you enable
traffic among the various instances of the Kubernetes cluster.

You are now ready to launch the master instance. When launching, remember to
select the key you uploaded earlier. Afterward, the AWS console will show a list of
VMs. Select the one you just started, and in the console you will see the IPv4
<public-ip> of the instance you have created.

Now you can log in to the VM using the command ssh ubuntu@<public-ip>. If you
recall the discussion in “Architecture of a Kubernetes Cloud Deployment” on page
327, now you are in the case of a network with private IPs.

Type cloud-init status --wait, and wait until until the command terminates.
Generally at the end it will disconnect your SSH connection. Reconnect and create
the cluster with the command sudo kube-init <public-ip>, waiting until the clus‐
ter is ready.

At the end of the procedure, take note of the command starting with kubeadm join
for the case of a private network.

You can now repeat the configuration, creating more instances (at least 2). The proce‐
dure is the same as described for creating the master, except in the user data text area
you have to edit the cloud-init script, adding after #cloud-config the two lines
shown in the output of kube-init.

Wait until the cluster is ready, monitoring the status with sudo watch kubectl get
nodes, then complete the initialization with sudo kube-provision <public-dns>
<your-email-address>.

Installing Kubernetes on a Bare Metal Server
Now let’s see how to install Kubernetes on a bare metal server running a Linux-based
operating system. We also leverage here the cloud-init installation we covered in the
previous section. The procedure is similar to the cloud-based one, but it is more com‐
plicated because you need to prepare disk images and configure networks to launch
the required VMs on your server.

Installing Kubernetes on a Bare Metal Server | 339

As a prerequisite, you need a physical server with a reasonable amount of memory (I
recommend at least 16 GB) where you’ve already installed a Linux distribution based
on Ubuntu, Red Hat, or some other flavors. Here we use a Ubuntu server, but the
procedure can be easily adapted to others (mostly by changing the names of the pack‐
ages to install).

We also use the libvirt package to manage the VMs; it is available in all major Linux
distributions. I’ll use the command line here to describe these steps, but Kubernetes
can also be installed using a graphical user interface (like virt-manager).

This section discusses installation on a single server, but Kuber‐
netes can be run on VMs running on different servers as long as
there is network connectivity among them. This is normally called
a “private cloud” setup. Generally, private clouds also have a user
interface. If you have a private cloud, see “Generic Procedure for
Installing Kubernetes with cloud-init” on page 329 for instructions
on how to create your Kubernetes cluster with your cloud manage‐
ment interface.

Collecting the Required Software
To build VMs in a server, you need to install:

• A VM manager (libvirt-bin)
• A VM installer (virtinst)
• Utilities to build ISO images (cloud-utils)
• A port redirector (rinetd)

You have to perform all the steps as the root user. You need a directory under /var/lib/
libvirt (e.g., /var/lib/libvirt/kube) for all the configuration files, and you’ll need to
download the Ubuntu cloud image and our cloud-init script. Log in as root and
type the following commands:

$ apt-get -y upgrade
$ sudo apt-get -y install libvirt-bin virtinst cloud-utils
$ mkdir /var/lib/libvirt/kube
$ cd /var/lib/libvirt/kube
$ curl -L https://learning-apache-openwhisk.github.io\
 /chapter12-deploy/user-data.txt \
 >user-data.txt
$ curl -L \
 https://cloud-images.ubuntu.com/\
 xenial/current/xenial-server-cloudimg-amd64-disk1.img \
 >base.img

340 | Chapter 12: Deploying OpenWhisk with Kubernetes

Install the required software.

Create the working directory.

Download the cloud-init script.

Download the Ubuntu cloud image on our server.

Network Configuration
It is mandatory that you enable IP forwarding to communicate with your VMs. Edit
the file /etc/sysctl.conf and include this line, if it’s not present:

net.ipv4.ip_forward=1

If you change it, execute sysctl -p to enable the change now. This change will be
picked up automatically at the next reboot.

You also need to open ports 80, 443, and 6443. The actual command to use depends
on the firewall software you are using. If you are using the package ufw (uncomplica‐
ted firewall), execute:

$ sudo ufw allow http/tcp
$ sudo ufw allow https/tcp
$ sudo ufw allow 6443/tcp

Next, you need to set up port forwarding from the server to the master VM. In par‐
ticular, you need to forward the ports 80, 443, and 6443 to reach the master. You can
do this with the rinetd server. Add to the file /etc/rinet.conf three lines in this format:

<server-ip> 80 <master-ip> 80
<server-ip> 443 <master-ip> 443
<server-ip> 6443 <master-ip> 443

Let’s see how to find the actual values to use with an example. The <master-ip>
depends on the id you will pick for the server, as described next. The id is used as the
last part of the internal IP address of the VMs. We explain the id in detail later, but
must be two digits. By default, libvirt creates an internal network at 192.168.122.
Hence, if you pick id=10 for your master, then its IP is going to be 192.168.122.10.
Now read your server’s IP address:

$ sudo hostname -i
123.45.67.8

Your actual IP will be different.

In this case, you would add the following lines:

Installing Kubernetes on a Bare Metal Server | 341

123.45.67.8 80 192.168.122.10 80
123.45.67.8 443 192.168.122.10 443
123.45.67.8 6443 192.168.122.10 6443

Scripts for the Installation
Since there are many operations you have to perform more than once, scripts can be
used. The first script, build.sh, helps to build images. It creates a disk image for the
VM, copying and resizing the base image you downloaded. The cloud image requires
cloud-init user data in an ISO image, so it also builds such an image with the data
for the initialization:

ID=${1:?id}
SZ=${2:?size}
INIT="${3:-}"
UD=user-data-$ID.txt
cp base.img node$ID.img
qemu-img resize node$ID.img ${SZ}G
cp user-data.txt $UD
echo "hostname: node$ID">>$UD
echo "runcmd:" >>$UD
test -z "$INIT" || echo "- $INIT">>$UD
cloud-localds node$ID.iso $UD

Copy the base image in a new disk image.

Resize the disk image to ensure it has the requested size.

Copy the base user-data.txt script to customize it.

Specify a different hostname for each image.

Add where required an additional initialization command.

Build the ISO image with the cloud-init user data script.

Next is a boot.sh script that can launch the image. The script first configures a new
entry in the DHCP server to assign an IP to the VM, then creates the VMs, specifying
all the parameters (memory, CPU, network interface, disk, and ISO):

ID=${1:?id}
MEM=${2:?memory}
OPT=${3:-}
ENTRY="<host name='node$ID' \
ip='192.168.122.$ID' \
mac='52:54:00:92:68:$ID'/>"
virsh net-update default \
add ip-dhcp-host "$ENTRY" --live --config
virt-install \

342 | Chapter 12: Deploying OpenWhisk with Kubernetes

--name node$ID \
--ram $(expr $MEM * 1024) \
--vcpu 2 \
--disk path=$PWD/node$ID.img \
--disk path=$PWD/node$ID.iso,device=cdrom \
--os-type linux \
--os-variant ubuntu16.04 \
--network bridge=virbr0,mac=52:54:00:92:68:$ID \
--graphics none \
--console pty,target_type=serial \
$OPT

Define IP and MAC address for the VM.

Create the entry in the DHCP server.

Start the VM.

Specify the name, memory, and number of virtual CPUs.

Specify the disk and cdrom image.

Specify the MAC address of the network connection.

Disable graphics and enable a serial console.

Creating the Cluster
Now you are ready to build your cluster. Before starting, you need to know your
<server-address>—either the IP address or the DNS name you use to reach your
server. This is generally the address you use when you log in with SSH. Sometimes
you have both a private IP address and a public IP address. In this case, the <server-
address> is generally the public IP.

Now, as a first step, edit the user-data.txt script, adding a password for the VMs you
are going to create. Ensure that you have uncommented the following lines, replacing
Change-me! with your password:

chpasswd:
 list:
 - ubuntu:Change-me!

Now prepare the master. You have to choose an id in the range 10–99 (must be
exactly two digits). The id will be used as the last digit of your IP address and as the
name of your VM. The id is also used internally in the MAC address of the virtual
machine, as you cannot assign an IP directly when creating a VM, but you can asso‐
ciate an IP with a MAC address in the DHCP server.

Installing Kubernetes on a Bare Metal Server | 343

If you choose 10 as your id, you will get the IP 192.168.122.10 for your VM and the
name node10. You can build an image specifying the id and the size of the disk image
in GB. After building the VM you can boot it, specifying again the id and the amount
of memory in GB to assign to it. For example, with id=10, to build a disk image of 20
GB and boot a VM with 4 GB of RAM you run the commands:

$ sh build.sh 10 20
Image resized
$ boot.sh 10 4
... output omitted ...

Now the VM boots and then initializes. Note that in your terminal, if you use these
two commands, you will see output for the VM, not your server. You should wait
until you see the message:

Reached target Cloud-init target.

You can now log in to the VM. Press enter and log in as ubuntu with your password.
First, you will be asked to change your password. Then, you can execute the com‐
mand to initialize the master:

sudo kube-init <server-address>

This command initializes Kubernetes. While the system software has been installed,
configuration files and Docker images have to be downloaded to actually install
Kubernetes. When this is done, you’ll see two snippets to add to the user data to join
the cluster in the format:

runcmd:
- kubeadm join <various-information>

You only need the kubeadm command.

The first snippet is the one you need because the cluster created with libvirt is
equivalent to a private network as described in “Architecture of a Kubernetes Cloud
Deployment” on page 327. Also, you do not need the whole snippet, only the com‐
mand part starting with kubeadm join.

Note that you are currently logged into the VM. You need to exit from it and come
back to the server. You can do this by pressing Ctrl-].

Once you are back in the server, save in a variable the INIT command to join the clus‐
ters.

export INIT="kubeadm join <various-informations>"

Now you have to build the workers. The absolute minimum is two, but it is better to
have three workers. To identify the workers, pick a few more ids in the range 10–99
that you have not used before.

344 | Chapter 12: Deploying OpenWhisk with Kubernetes

Now you can build three images, using again the build.sh script. As you may remem‐
ber, the first parameter is the id, and the second is the size in GB. The script also
accepts a third parameter, a command added to the cloud-init user data script. You
can use it to instruct the workers to join the Kubernetes cluster.

You can now build the worker images with:

$ for i in 11 12 13 ; do sh build.sh $i 20 "$INIT" ; done
Image resized.
Image resized.
Image resized.

Once the images are ready, you can boot all of them with the boot.sh script. Again, the
first parameter is the id and the second is the size of the memory in GB, but it also
accepts additional parameters .

Since you do not need to interact with the workers while creating them, use this
parameter to pass the option --noautoconsole to start the VMs in the background:

$ for i in 11 12 13 ; do sh boot.sh $i 4 "--noautoconsole" ; done
... output omitted ...

You can now come back to the master VM with the command virsh console
node10. Execute the command sudo watch kubectl get nodes and wait until all the
nodes are ready.

Now, stop the command with Ctrl-C. The next step is to provision the cluster. The
command to use depends on if your server has a public IP and if it is connected to the
internet. If it is not, you cannot get an SSL certificate, so just execute sudo kube-
provision.

If instead your server has a public IP address, you can provision it and also get an SSL
certificate using the command sudo kube-provision <server-address> <email-
address>, where <server-address> is the public IP address and <email-address> is
your email address.

If you do not have a public IP address and you cannot get an SSL
certificate, you will have to use the command wsk with the -i
switch to allow insecure access.

Installing OpenWhisk
Now that you have your Kubernetes cluster up and running, let’s install OpenWhisk
using Helm. Helm uses a package descriptor called a chart, which you can download
from GitHub with the command:

Installing OpenWhisk | 345

$ git clone https://github.com/apache/incubator-openwhisk-deploy-kube

The chart is in flux and changes frequently. Check the repository to
see updated documentation. A copy of the chart for this chapter is
archived in the book’s GitHub repository.

Configuring Kubectl
Kubernetes does not use passwords, but cryptographic certificates. To use Helm and
kubectl to install OpenWhisk, you’ll need a configuration file containing those cer‐
tificates. You can find this file on the master node of your Kubernetes cluster in /etc/
kubernetes/admin.conf. You need to copy this file locally in $HOME/.kube/config to
access the Kubernetes cluster.

If you are using Docker Desktop for Mac or Windows, this file will be configured
automatically. You can make sure everything is working by verifying that the follow‐
ing command returns this output:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-for-desktop Ready master 10d v1.10.11

If you instead want to access a remote Kubernetes cluster you’ve built, you can down‐
load the certificate from your cluster to your local workstation using the following
command:

$ ssh <user>@<master-ip> \
 sudo cat /etc/kubernetes/admin.conf >openwhisk.config

The <user>, <master-ip>, and credentials you need to access the cluster will depend
on your configuration. If you are on the cloud, you can use the same values used to
log in to the master.

If you instead are installing on your bare metal server, you may
need to log in to your server and use the IP 192.168.122.<id> to
access the VM, copy your certificate on the server, and then copy it
again on your workstation.

Now, check if you can access the server cluster. Note you have to use the <external-
ip> you provided when installing the cluster. For the cloud, the <external-ip> is the
IP you used to connect to the master VM. For the bare metal installation, it is the IP
of your server.

Use the following command to check if you can see the nodes:

346 | Chapter 12: Deploying OpenWhisk with Kubernetes

http://bit.ly/2KDNshz

$ kubectl --kubeconfig=openwhisk.config \
 --server=https://<external-ip>:6443 get nodes
NAME STATUS ROLES AGE VERSION
node10 Ready master 22h v1.11.6
node11 Ready <none> 22h v1.11.6
node12 Ready <none> 22h v1.11.6
node13 Ready <none> 22h v1.11.6

In the certificate file there is only the value to connect using the
internal IP, but if you connect from your local machine, you are
using a different IP and you have to use the parameter --server to
use that certificate.

To avoid specifying the server when using the command line, you can edit the file
openwhisk.config, locate the line with server: https://<internal-ip>:6443, and
replace it with server: https://<external-ip>:6443. To avoid to specifying the
path of your openwhisk.config, you can either copy the file in $HOME/.kube/config or
set the environment variable KUBECONFIG to point to your configuration file.

If you also have Docker Desktop, copying openwhisk.conf over
$HOME/.kube/config will overwrite the existing configuration and
you will be unable to access the Docker for Desktop Kubernetes
cluster. Ensure that you do a backup copy before overwriting it.

Configuring Helm
I assume now that you have retrieved the Kubernetes admin.conf file, edited it to
point to the external IP of your server, and copied it as the default configuration (or
equivalently, you have set the KUBECONFIG environment variable). You are now ready
to use Helm.

Helm requires two steps before you can use it: initializing and obtaining permission.
The initialization installs a server-side component in Kubernetes and creates some
configuration files in your local workstation. You initialize Helm simply with:

$ helm init
...
$HELM_HOME has been configured at /Users/michelesciabarra/.helm.

Tiller (the Helm server-side component) has been installed into your Kubernetes
Cluster.
...
Happy Helming!

Helm is now up and running, but it requires some additional permissions to be
allowed to do its work. So, you must execute the following command:

Installing OpenWhisk | 347

$ kubectl create clusterrolebinding tiller-cluster-admin \
 --clusterrole=cluster-admin \
 --serviceaccount=kube-system:default

clusterrolebinding.rbac.authorization.k8s.io "tiller-cluster-admin" created

Congratulations! You are now ready to install OpenWhisk using Helm.

Installing in Docker Desktop
In this section I’ll show you how to use the Helm chart to install Kubernetes locally.
This deployment is intended for development only, since there is only one node, and
works without any certificate in insecure mode only.

To install OpenWhisk you need to:

1. Label the master to be able to execute the invoker.
2. Get the internal IP to use as a parameter.
3. Write a parameter file with the appropriate values.
4. Deploy the chart using the parameter file.

Let’s do these steps in order. (Before starting, ensure you are talking to the right clus‐
ter, and the configuration works properly, as described in “Configuring Kubectl” on
page 346.)

Label the master
In Kubernetes you can add labels to various resources, including nodes. The Open‐
Whisk Helm chart uses Kubernetes labels to decide which components to run in each
node. Some labels are optional, but it is mandatory to configure which nodes will run
actions.

In Docker Desktop, there is only one node, the master, so you can mark the node
with the following command and then check the node labels:

$ kubectl label nodes --all openwhisk-role=invoker
node/docker-for-desktop labeled
$ kubectl get nodes --show-labels
NAME STATUS ROLES AGE VERSION LABELS
docker-for-desktop Ready master 10d v1.10.11 beta.kubernetes.io/\
arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/hostname=docker-for-desktop,\
node-role.kubernetes.io/master=,openwhisk-role=invoker

Get the internal IP
In Docker Desktop, Kubernetes runs in an internal VM with its own IP address. You
need to know this IP and communicate it to the Helm chart. You can read the value
with the following command:

348 | Chapter 12: Deploying OpenWhisk with Kubernetes

$ kubectl get nodes -o=jsonpath='{.items[0].status.addresses[0].address}'
192.168.53.3

Your actual value may be different.

Write a parameter file
Now that you have gathered all the informations required to invoke the helm chart,
create a file called owlocal.yaml in the folder incubator-openwhisk-deploy-kube with
the following contents, changing the IP address after apiHostname:

whisk:
 ingress:
 type: NodePort
 apiHostName: 192.168.53.3
 apiHostPort: 31001
nginx:
 httpsNodePort: 31001

Change here the sample IP to the actual IP you found in the previous step.

Deploy the chart
You are ready to deploy. You have to invoke the chart (located in the folder helm/
openwhisk), also specifying a name and a namespace for the deployment and feeding
the parameters:

$ cd incubator-openwhisk-deploy-kube
$ helm install \
 --name openwhisk \
 --namespace ow \
 -f owlocal.yaml \
 ./helm/openwhisk

Invoke the install command for Helm.

Name of the deployment.

Namespace of the deployment.

Parameters of the deployment.

Helm chart of the deployment.

You have to use explicitly the name ./ to say to Helm that you want
to use a local chart. Do not use helm/openwhisk, because it will
search for it on the internet.

Installing OpenWhisk | 349

Now execute the following command to monitor the installation:

$ watch kubectl --namespace ow get pod

Then wait until the pod with the name starting with openwhisk-install-packages
completes. It can take some time since there are many initializations to complete.

You can now proceed to “Configuring the OpenWhisk Command-Line Interface” on
page 353 to configure the wsk CLI to access OpenWhisk.

Installing in the Kubernetes Cluster
In this section, I’ll show you how to use the Helm chart to install OpenWhisk in a
Kubernetes cluster you have built either in the cloud or on a local server.

The steps are as follows:

1. Label the workers to be able to execute the invoker.
2. Generate some security credentials.
3. Write a parameter file with the appropriate values.
4. Deploy the chart using the parameter file.

We’ll go over each of these steps in detail in the following subsections. Before starting,
ensure you are talking to the right cluster and have configured access to Kubernetes
properly, as described in “Configuring Kubectl” on page 346.

Label the workers
In Kubernetes you can add labels to various resources, including nodes. The Open‐
Whisk Helm chart uses Kubernetes labels to decide which components to run in each
node. Those configurations are mostly optional, but it is mandatory to label which
nodes will run actions.

Let’s assume we want to run actions in all the worker nodes of our Kubernetes cluster.
To do this we can first enumerate the workers, storing the value in a variable, and
then label each node with the label openwhisk-role=invoker, as follows:

$ WORKERS=$(kubectl get nodes -l \!node-role.kubernetes.io/master \
 -o jsonpath='{..name}')
$ for i in $WORKERS ; do \
$ kubectl label node $i openwhisk-role=invoker ; done
node/kube1 labeled
node/kube2 labeled
node/kube3 labeled

350 | Chapter 12: Deploying OpenWhisk with Kubernetes

Generate credentials
You are now going to deploy a cluster that can be used in production and exposed to
the public, so you cannot use default credentials; you have to provide secret values to
prevent unauthorized access to your cluster.

OpenWhisk puts authentication keys in this format:

23bc46b1-71f6-4ed5-8c54-816aa4f8c502:\
123zO3xZCLrMN6v2BKK1dXYFpXlPkccOFqm12CdAsMgRU4VrNZ9lyGVCGuMDGIwP

This key is not a random value: it is the default key used for the
guest namespace if you do not specify other values.

The first part (the user id) is a UUID version 4, while the second part (separated by
a :) is a random string of 64 alphanumeric characters. You can generate passwords
with this Python 3 script:

import uuid,random,string
user = uuid.uuid4()
chars = string.ascii_letters+string.digits
pswd = "".join(random.choices(chars,k=64))
print("%s:%s" % (user, pswd))

Run it twice to generate two credentials—one for the system and another for the
guest user.

Write a parameter file
Now you are ready to write your configuration file. This file must include the:

• <external-address> of your Kubernetes cluster
• <system-credentials> and <guest-credentials> for OpenWhisk
• <database-user> and <database-password> for the CouchDB database

Write the configuration file as follows, replacing the appropriate values:

whisk:
 ingress:
 type: Standard
 domain: <external-address>
 apiHostName: <external-address>
 apiHostPort: 443
 auth:
 system: "<system-credentials>"
 guest: "<guest-credentials>"
db:

Installing OpenWhisk | 351

 auth:
 username: "<database-username>"
 password: "<database-password>"

Deploy the chart
You can now deploy the Helm chart:

$ cd incubator-openwhisk-deploy-kube
$ helm install \
 --name openwhisk \
 --namespace ow \
 -f owcluster.yaml \
 ./helm/openwhisk

Invoke the install command for Helm.

Name of the deployment.

Namespace of the deployment.

Parameters of the deployment.

Helm chart of the deployment.

Now execute the command:

$ watch kubectl --namespace ow get pod

Then wait until the pod with the name starting with openwhisk-install-packages
completes. In the following, there is an example of the output of a successful deploy‐
ment:

$ sudo kubectl -n ow get po
NAME READY STATUS RESTARTS AGE
openwhisk-alarmprovider-556f977dc9-tpd7q 1/1 Running 0 3h
openwhisk-apigateway-589bf7d965-d7gkw 1/1 Running 0 3h
openwhisk-cloudantprovider-7659d5b855-l498t 1/1 Running 0 3h
openwhisk-controller-0 1/1 Running 2 3h
openwhisk-couchdb-7f7f9479b6-rsklx 1/1 Running 0 3h
openwhisk-init-couchdb-gs4cj 0/1 Completed 0 2h
openwhisk-invoker-5nl74 1/1 Running 0 3h
openwhisk-invoker-pbjk9 1/1 Running 0 3h
openwhisk-invoker-wgbgw 1/1 Running 0 3h
openwhisk-kafka-0 1/1 Running 0 3h
openwhisk-kafkaprovider-579b6ff6fd-79srl 1/1 Running 0 3h
openwhisk-nginx-76dc856998-xx7bc 1/1 Running 0 3h
openwhisk-redis-7cf6c88fd9-b7jnp 1/1 Running 0 3h
openwhisk-zookeeper-0 1/1 Running 0 3h

352 | Chapter 12: Deploying OpenWhisk with Kubernetes

Configuring the OpenWhisk Command-Line Interface
If you’ve followed along, you now have OpenWhisk installed. But to use it, you’ll
need to configure it at the command line with the API host and the authentication
key. Let’s see how to set those, first for a local deployment with Docker Desktop, then
for internet deployment.

Configuring wsk Insecurely for Docker Desktop
For a local installation using Docker Desktop the API host is localhost:31001, while
the default namespace is guest. You can find the default authentication key in the
Helm chart deployment, under helm/openwhisk/values.yaml, in the line starting with
guest:. The wsk command line has the wsk property set subcommand with the
flags --apihost and --auth to set them.

The local installation does not deploy SSL authentication, so you have to use wsk with
the -i (insecure) flag. It may be useful to set alias wsk=wsk -i. For example, you
can configure the wsk command from the command line with:

$ cd incubator-openwhisk-deploy-kube
$ eval $(grep guest: helm/openwhisk/values.yaml \
 | awk '{print "AUTH="$2}')
$ wsk -i property set --apihost http://localhost:31001
ok: whisk API host set to localhost:31001
$ wsk -i property set --auth $AUTH
ok: whisk auth set. Run 'wsk property get --auth' to see the new value.

Extract the authentication key to set the AUTH variable.

If instead you want to configure your cluster, if you followed the recommendations in
this chapter you know your API host (it is the public IP of your Kubernetes cluster)
and your API key, since you generated it. The namespace is default.

Creating a New Namespace
Now, let’s assume you have a deployment exposed to the public internet. As discussed
earlier, you should have changed the authentication key so your system and guest
users do not use the default values. You can then use the authentication key you have
set for the guest namespace. However, you will likely want to create more namespa‐
ces.

OpenWhisk allows creating multiple namespaces using the wskadmin utility. In gen‐
eral, to access this utility, you need to have direct access to the database. In a Kuber‐
netes deployment, the database is not exposed outside of the cluster, nor it is
advisable to do so. The Helm chart deploys a component (a pod in Kubernetes par‐
lance), configured to access the database, containing this utility with the environment

Configuring the OpenWhisk Command-Line Interface | 353

already configured to access the OpenWhisk database. If you have access to the
Kubernetes cluster, you can get shell access to this pod to perform administrative
tasks.

The name of the pod depends on the name and namespace of the Helm deployment
you used. If you followed the examples in “Installing OpenWhisk” on page 345, the
name of the deployment is openwhisk and the namespace is ow.

Under those assumptions, the command to access the wskadmin utility is:

$ kubectl exec -ti \
 --namespace ow \
 openwhisk-wskadmin \
 -- bash

Command to execute an interactive command in a pod.

The namespace is the one where you deployed OpenWhisk.

The pod name is wskadmin prefixed with the deployment name.

Run a shell in the pod.

Once you have shell access, you can create a namespace. OpenWhisk, however, inter‐
nally creates users then associates namespaces with them. So, you can create a user
(for example, devel) and a namespace with the same name in a single step with the
command:

wskadmin user create -ns devel devel
aaaaa:BBBBBBBBB

Run this command in the shell you launched with kubectl.

Simplified version; the real key is longer and with random characters.

The utility created the user, and you get in the output the authentication key to use
for your new namespace. Take note of it.

You can now exit from the kubectl shell (just type exit) and configure wsk to use the
new namespace with:

$ wsk property set \
 --apihost https://your.openwhisk \
 --auth aaaaa:BBBBBBBBB \
ok: whisk auth set. Run 'wsk property get --auth' to see the new value.
ok: whisk API host set to https://your.openwhisk

Change to your actual API host.

354 | Chapter 12: Deploying OpenWhisk with Kubernetes

Change to the actual generated key.

Summary
After reading this chapter you should be able to install Kubernetes and OpenWhisk
in your favorite environment.

We covered how to install Kubernetes as a single node using Docker Desktop and
how to create a cluster in general. Then you saw examples of installation on Hetzner
Cloud, AWS, and a private server. We also used the tool Helm to install OpenWhisk
in those environments.

Conclusion
We are at the end of our journey here. You have seen a lot of different ways to use
OpenWhisk, in JavaScript, Python, and Go.

You have also seen plenty of examples simple enough to use as starting points, includ‐
ing: a contact form, a CRUD application, a web chat application, and many useful
examples of design patterns. You’ve explored CouchDB, Kafka, and even learned how
to install Kubernetes.

Actually, the programming languages I picked are somewhat arbitrary, since the
number of available languages for OpenWhisk is pretty high. Among the scripting
languages we have are also PHP, Ruby, and Perl. You can also choose to use program‐
ming languages based on the Java Virtual Machine, like Java or Scala. And you can
compile programming languages, from the veteran C and C++ to the more modern
Swift and Rust.

This is the end of the book, but for you, it is just the beginning: you can now write
your cloud-native applications using open source technologies, with the freedom to
deploy them in any environment you want.

Summary | 355

Index

A
abstract factory pattern, 82
actions, 5, 45

-p and -P flags, 51
and action composition, 7
as facade pattern, 82
chaining, 8
creating, 51-57

chaining in sequences, 53
including libraries, 55

creating action sequence to send email, 43
creating for simple contact form, 27
CRUD actions in Cloudant package,

212-215
deploying CRUD application in Python, 221
developing in Go (see Go)
developing in Python (see Python)
execution constraints in OpenWhisk, 13-16

actions are event driven, 15
actions are functional, 14
actions are time bounded, 16
actions do not have local state, 15
ordering of actions, 16

execution in OpenWhisk, 9-13
asynchronous client, 12
controller, 11
invoker, 12
load balancer, 11
Nginx, 10

implementing the Singleton patten, 81
interacting with OpenWhisk from, using

openwhisk API, 37
invoking, 35

reading/writing to Cloudant database, 35

invoking in OpenWhisk API, 70-73
invoking multiple promises, 72

invoking using mocking library, 145
mocking parameters, 146
OpenWhisk as container for, 5
receiver action for Kafka consumer in Go,

311
receiving messages with, 298
specifying as relative, 49
to be tested by mocking, example, 139
unit testing, best practices, 128
writing sender action for Kafka producer in

Go, 304
writing to send email, 41

activation id, 11
retrieving data associated with in Go, 287
returned by firing a trigger, 286

activation ID, 51
using to save and retrieve results and logs,

57
activations

annotations for, 89
enabling polling for, 61
inspecting, 57-58
inspecting in OpenWhisk API, 75

adapter pattern, 106-108
aggregations

aggregate functions, calculation in
CouchDB with MapReduce, 183

performing with reduce functions in
CouchDB, 207-208

annotations, 86
adding additional information to entities, 86
for activations, 89

357

Apache OpenWhisk (see OpenWhisk)
Apache Software Foundation, CouchDB, 182

(see also CouchDB, using with OpenWhisk)
APIs, 52

(see also OpenWhisk API)
in Java EE vs. serverless, 21
interacting with OpenWisk from within an

action, 37
applets (Java), 18
application (OpenWhisk) in Python (see

CRUD application in Python)
application (simple), developing in Open‐

Whisk, 23-44
creating a contact form, 24, 27-29

bash CLI as prerequisite, 24
form validation, 29-32
saving form data, 32-39
sending an email, 39-43
using IBM Cloud, 25-26

application servers, 17
in Java EE vs. OpenWhisk, 21

architecture (OpenWhisk), 4-8
functions and events, 4
overview, 5

action chaining, 8
actions and action composition, 7
programming languages, 6

assertions to verify test results, 272
asynchronous processing

clients of OpenWhisk, 12
using callbacks, 66
using promises, 67

attachments (in CouchDB), 188
auth function, 281
authentication, 11

actions invoking database actions in Clou‐
dant, 211

decorating tokens using a sequence, 90
for viewing CouchDB attachments in

browser, 189
HTTP basic, in OpenWhisk REST API, 163
in action invocations in OpenWhisk API, 71
keys for OpenWhisk application running in

the cloud, 131
OpenWhisk installation in Kubernetes clus‐

ter, 351
requirement for accessing actions, 52

authorization, 11
AWS cloud, installing Kubernetes on, 335-339

B
bash CLI, 24
BeautifulSoup, using to manage HTML

markup, 229
bin folder in Go, 265
binary data returned by web actions, 251
binary languages, use in OpenWhisk, 6
bindings, 8

binding database to a package, 221
Cloudant database, 34
creating for messaging package, 297
for packages, 50
use of prototype pattern in package binding,

84
blocking invocations, 12

actions in Python, 168
in OpenWhisk API, 70

--blocking option in action invocation, 36
body (Kafka messages), 292
bookmarks (in CouchDB), 195, 225

controller processing bookmark in CRUD
application, 247

using in pagination to move to next page,
246

using to change pagination, 246
boot.sh script to boot virtual machines, 342,

345
bridge pattern, 108-110, 114
brokers (Kafka), 291

bootstrap server, 291
testing the broker, 299

browsers
HTTPS request/response for forms, 120
viewing CouchDB attachments with, 189
viewing web output from web actions in, 52

build.sh script for VM images, 342
business logic (Java EE), 18

C
C/C++, 6

librdkafka library, 291
calculator action in Go, 264
callbacks, 66
chain of responsibility pattern, 94-96
channels, 302

creating for sending events, 303
sending messages on, 304
using with Kafka consumer in Go, 310

chart (package descriptor), 345

358 | Index

deploying in OpenWhisk installation in
Kubernetes cluster, 352

invoking in OpenWhisk installation on
Kubernetes in Docker Desktop, 349

chat implementation for Kafka, 315
initializing, 316
joining, 317
sending messages, 320
user interface, 316

CLI (command-line interface), 45
(see also OpenWhisk CLI)
configuring for using OpenWhisk with

Kubernetes, 353-355
creating a new namespace, 353

CLI (command-line interpreter)
bash CLI as prerequisite for contact form,

24
installing IBM Cloud CLI, 25

clients (OpenWhisk), 10
asynchronous, 12
connecting to OpenWhisk API, 70
creating HTTP client, 283

clone method, 84
cloud, 21

(see also IBM Cloud)
installing Kubernetes on, 327-339

architecture for Kubernetes cloud
deployment, 327

generic procedure using Cloud-Init,
329-333

major providers offering Kubernetes in their
packages, 323

OpenWhisk and serverless, 3
OpenWhisk as cloud-independent, 23
private cloud setup, 340

cloud images, 327
Cloud-Init, 327

configuring in Hetzner cloud, 334
initialization script for user data, 329

Cloudant database, 181, 219
annotations for actions, parameters for

read, 88
creating instance using prototype pattern,

85
retrieving and editing configuration file, 85
using Cloudant package with OpenWhisk,

210-217
actions for CRUD operations, 212-215
query and view, 215-217

Cloudant datbase
creating, 32

clusters (Kafka), 289
connecting to, 291

clusters (Kubernetes)
creating for bare metal server installation,

343
installing OpenWhisk in, 350-353

generating credentials, 351
labeling the workers, 350
writing parameter file, 351

provisioning, 331
DNS name, 331
rook and traefik, 332

provisioning in bare metal server installa‐
tion, 345

command pattern, 96-99
command-line Kubernetes tools, kubectl and

helm, 323
compiled languages, use in OpenWhisk, 6
components in Java EE and OpenWhisk, 20
composite pattern, 115-117
concurrency, execution constraint in Open‐

Whisk, 13
configuration

Kafka consumer in Go, 308
Kafka producer in Go, 301

confluent-kafka-go library, 289, 301
connectors (in Java EE), 18

vs. packages in OpenWhisk, 21
consumer groups (Kafka), 293
consumers (Kafka)

in Go, 307
creating a consumer, 307
receiving a message, 309

testing consumer in Go, 313
contact form, creating for static website, 24

bash CLI as prerequisite, 24
form validation, 29-32

address validation, 30
returning the result, 31

writing the code, 27-29
containers, 12

(see also Docker containers)
control.py file (CRUD application example),

221
changes to handle form upload, 249
changing to propagate errors from model to

view, 244

Index | 359

controllers, 11
controller in OpenWhisk CRUD application

in Python, 233-234
changes supporting pagination, 247
testing controller using mocking, 236

CouchDB, using with OpenWhisk, 11, 181-217,
219
advantages of CouchDB, 181
aggregations with reduce functions, 207-208
CRUD application in Python

abstracting database access, 222-228
design documents, 198-200
how to query CouchDB, 182-191

attachments, 188
create operations, 185
delete operations, 187
retrieve operations, 186
update operations, 187
using Mango query language, 182
using MapReduce approach in Java‐

Script, 183
querying CouchDB, 191-195

bookmark feature, 195
fields, 193
indexes, 192
pagination support, 194
searching the database, 191

validation functions, 208-210
view functions, 200-207

extracting data with map functions,
201-203

implementing join with map functions,
203-205

joining with a single document, 205
create-document action, 212, 223
create-query-index action, 245
credentials, 130

(see also authentication)
generating for OpenWhisk installation in

Kubernetes cluster, 351
getting for Kafka instance in IBM Cloud,

296
storage in file .wskprops, 132

CRUD application in Python, 219-255
abstracting database access, 222-228
advanced web actions, 239-242
application architecture, 219
controller, 233-234
deploying the action, 221

improving, 241-239
processing operations, 234
side effects, 237

pagination, 244-248
controller processing the bookmark, 247
creating an index, 245
moving to the next page, 246
using bookmarks and limits, 246

uploading and displaying images, 248-255
file upload form, 249
generating IMG tag, 252
generating URL for image retrieval, 252
parsing the file upload, 250
rendering an image with HTTP request,

254
saving data in the database, 251

user interface, 228-233
BeautifulSoup, using for HTML markup,

229
rendering the table with view.table, 230
wrapper function for HTML markup,

229
validation and error reporting, 242-244

CRUD operations, 47
actions for, in Cloudant package, 212-215
executing in CouchDB, 185-188

create operations, 185
retrieve operations, 186
update operations, 187

curl command
connecting with OpenWhisk REST API,

164
retrieving invocation results in Python, 172

D
data: URL, 254
databases, 181

(see also CouchDB, using with OpenWhisk)
abstracting access in CRUD application

example, 222-228
binding Cloudant database using JSON con‐

fig file, 85
connectors in Java EE and OpenWhisk, 21
CouchDB in OpenWhisk, 11
creating and passing package name for

CRUD application, 221
IBM Cloud packages for, 50

DC/OS, 22
decorator pattern, 86-90

360 | Index

delete function (model.delete), 227
DELETE HTTP method, 187
delete operation (CRUD application example),

235
delete-document action in Cloudant, 214
dependencies

collecting using dep tool, 306
for packages installed with pip, 159

design documents (in CouchDB), 182, 198-200
creating, 199
creating an index with, 245
publishing, 204
validate.json, 242

design patterns, 79-99
built into OpenWhisk, 80

decorator pattern, 86-90
facade pattern, 82
prototype pattern, 84
singleton pattern, 81

commonly used in OpenWhisk and server‐
less, 90-99
chain of responsibility pattern, 94-96
command pattern, 96-99
strategy pattern, 91-93

integration patterns in OpenWhisk, 101-122
adapter, 106-108
bridge, 108-110
observer, 110-115
proxy, 103-106
user interaction patterns, 115

user interaction patterns
composite, 115-117
MVC (model-view-controller), 119-122
visitor, 117

DNS name
for Kubernetes cloud installation using

Cloud-Init, 331
for servers in Hetzner cloud, 335

doCall function, 283
Docker, 6

installing, 269
OpenWhisk built on, 321
using on Windows with kafkacat, 299

Docker containers, 9, 12
action execution and the filesystem, 15
managing in cloud with orchestrators, 22
virtual environment stored in, 160

Docker Desktop, 325

configuring OpenWhisk CLI for use with
Kubernetes, 353

installing on Mac or Windows, 325
installing OpenWhisk on Kubernetes,

348-350
getting internal IP for Kubernetes, 348
labeling the master, 348
writing parameter file, 349

doctest, 176, 225
documentation string (functions), 176
documentation, annotations for, 86

E
echoweb.py example, 239
edit operation (CRUD application example),

234
testing, 237

EJB (Enterprise Java Beans), 18
emails

proxy service sending, example, 103-106
sending in contact form example applica‐

tion, 39-43
configuring Mailgun, 40
writing action to send email, 41
writing an action sequence, 43

testing application locally in Jest, 128
embedding resources in Go actions, 274-276
entities

adding additional information using anno‐
tations, 86

commands as, 47
names in OpenWhisk, 48

environment variables
for local invocation of OpenWhisk, 177
OpenWhisk, displaying using Python script,

165
setting for unit testing in Jest, 130-133

errors
catching for asynchronous code, 68
error messages in CRUD application exam‐

ple, 243
mkError function in Go, 281
parametric error messages, 129

event streams, 293
events, 5

event handlers in mock for https module,
143

event sources for OpenWhisk, 289
event-driven actions, 15

Index | 361

Kafka as solution for event processing, 289
listing for on Go channel, 310
receiving notification of, using observer pat‐

tern, 111-115
sources of, in OpenWhisk, 4

examples
in Go tests, 272
in Python tests, 175

exec annotation, 89
execution model, 13

actions are event driven, 15
actions are functional, 14
actions are not ordered, 16
actions are time bounded, 16
actions do not have local state, 15
important execution constraints, 13

export/require mechanism, including libraries
with actions, 55

external interfaces, 83

F
facade pattern, 82
feeds, 8, 63-66, 83

creating for messaging package, 297
-p and -P flags, 51
using to implement observer pattern, 111

fields, extracting in CouchDB queries, 193
file upload (CRUD application example), 241

parsing, 250
saving data in the database, 251
uploading images, 248

filesystem, using files for temporary storage
while executing actions, 15

fill function, 233, 251
find function (model.find), 224

changing to support bookmarks, indexes,
and limits, 246

mocking, 236
testing, 225

firing action triggers, 8
forms

form state in CRUD application example,
220

in CRUD application in Python
file upload form, 249

in CRUD application UI, 219, 228
rendering with view.form, 232

frequency execution constraint, 13
functions, 4

actions in OpenWhisk, 14
aggregations with reduce functions in

CouchDB, 207-208
exporting for local testing as a module, 125
in Cloudant package, 212
in CouchDB design documents, 199
in CRUD application in Python, 221

for CouchDB abstraction layer, 222
in Go, 258
in Python, 158
in restpkgs.py, adding tests to, 175
testing in Go, 271
using callbacks for asynchronous computa‐

tions, 66
validation functions in CouchDB, 208-210
view functions in CouchDB, 200-207

map functions, extracting data with,
201-203

G
GET HTTP requests, 186, 240

mkGet function in Go, 287
Git for Windows, 24
GitHub repository for this book, 46
Go, 6

confluent-kafka-go library, 289
and librdkafka, 291

developing OpenWhisk actions in, 257-288
accessing OpenWhisk API, 280-287
actions using third-party libraries,

266-271
creating your first action, 258-261
embedding resources, 274-276
packaging multiple files, 261-266
retrieving data associated with activation

id, 287
serving resources with web actions,

276-280
testing actions, 271-274

Kafka producer in, 301-320
creating a consumer, 307
creating a producer, 301
deploying and testing the producer, 306
implementing web chat, 314
initializing chat application, 316
joining the chat, 317
Kafka consumer, 307
receiving messages in chat application,

319

362 | Index

sending a Kafka message, 303
sending messages in chat app, 320
user interface for web chat, 316
writing sender action, 304

kubectl and helm in, 324
GOPATH, 261

for actions with multiple packages, 264
for library downloads, 267
GOPATH=$PWD/../.., 268

GOROOT, 262

H
hello.go action example, 259
helm

configuring for OpenWhisk installation on
Kubernetes, 347

deploying chart for OpenWhisk installation
in Kubernetes cluster, 352

deploying chart for OpenWhisk installation
on Kubernetes in Docker Desktop, 349

installing, 323
help with OpenWisk CLI commands, 46
Hetzner cloud, installing Kubernetes on,

333-335
HTML

generating IMG tag to display image, 252
generating with web action in Go, 274
in user interface for Kafka web chat in Go,

316
HTML user interface (CRUD application exam‐

ple), 228-233
rendering the form with view.form, 232
rendering the table with view.table, 230
wrapper function producing HTML, 229

HTTP
JSON over HTTP in OpenWhisk, 21
making requests in Go, 282
rendering image with HTTP request, 254
requests/responses in web actions, 239

httpretty library, 179
https Node.js standard API, 66, 105

mock to replace https module, 140
mocking an https request, 138
writing a mock to replace https module,

142-144

I
IBM Cloud

binding Cloudant package automatically, 35

creating Cloudant database, 32
creating Kafka instance in, 293-297
packages considered as facades for complex

subsystems, 83
packages for databases and message queues,

50
packages to communicate with services in,

21
using for simple OpenWhisk application,

25-26
ibmcloud command, 47
ibmcloud fn command, 26
images

uploading and displaying in CRUD applica‐
tion example, 241, 248-255
file upload form, 249
generating IMG tag, 252
generating URL for image retrieval, 252
parsing the file upload, 250
rendering an image with HTTP request,

254
saving data in the database, 251

imports in Go, 261
zerolog open source library, 266

indexes (CouchDB), 192
creating, 245

init function (model.init), 222
testing, 225

initialization script for Cloud-Init, 329
initialization, testing for model module (CRUD

application example), 225
insert function (model.insert), 223

error reporting, 243
testing, 225
testing using mocking, 238

integration patterns in OpenWhisk, 101-122
adapter pattern, 106-108
bridge pattern, 108-110
observer pattern, 110-115
proxy pattern, 103-106

integration testing, 123
interfaces, external, 83
interpreted programming languages, 6
invocations

action invocation in Go, 284
in Python, 168

blocking action invocation, 168
nonblocking trigger invocation, 170-171
retrieving results of, 172

Index | 363

invoking OpenWhisk API locally for
Python action tests, 177

invoke function, 70
invokers, 11

in OpenWhisk, 12
invoking actions, 10, 51

developed in Python, 152
reading/writing to Cloudant database, 35

IP address
for servers in Hetzner cloud, 335
for VMs in Kubernetes cloud installation,

331
internal, getting for Kubernetes in Docker

Desktop, 348
subnet for VMs in AWS cloud installation,

336
IP forwarding, enabling, 341

J
Java, 6, 257

and Java EE, 17
use in Kafka, 291

Java EE and serverless, 17-22
APIs, 21
application servers, 21
classic Java EE architecture, 17
components, 20
serverless equivalent of Java EE, 19
tiers, 19

JavaScript, 6
comparison with Python, 257
MapReduce approach to querying

CouchDB, 182
vue.js library, embedding in Go action, 274

JavaScript API, 66-69
asynchronous invocation with callbacks, 66
creating promises, 67
using promises, 67

Jest (testing tool), 124-137
installing, 124
running a test from command line, 126
running tests locally, 126-130

best practices for unit testing actions,
128

matching version of Node.js, 127
setting OpenWhisk environment variables

for testing, 130-133
snapshot testing, 133

updating a snapshot, 135

using a mock to test an action, 140-142
writing test for word count application, 125

jinja2 templating library, 228
joins

implementing in CouchDB with map func‐
tions, 203-205

joining with a single document in
CouchDB, 205

jq utility, 165, 202
generating validate.json from validate.js, 209
using to update document in Cloudant, 215

JSON
building response for web action, 311
file describing CouchDB index, 192
Mango query language based on, 182

querying CouchDB, 182
manipulating using jq, 165
rendering JSON data in HTML, 231
storage and retrieval of JSON objects in

CouchDB, 181
use in parameter passing in OpenWhisk, 8
use in RESTful APIs, 21

json.dumps function, 225

K
Kafka, using with OpenWhisk, 11, 289-320

creating Kafka instance in IBM Cloud,
293-297
creating a topic to access the instance,

295
creating an instance, 294
getting credentials, 296

introduction to Kafka, 290-293
brokers and protocol, 291
messages and keys, 292
offsets and client groups, 293
topics and partitions, 292

Kafka producer in Go, 301-320
consumer in Go, 307
creating a producer, 301
creating consumer in Go, 307
deploying and testing the producer, 306
implementing web chat, 314
initializing chat application, 316
joining the chat, 317
receiver action for the consumer, 311
receiving message with the consumer,

309

364 | Index

receiving messages in chat application,
319

sending a Kafka message, 303
sending messages in chat app, 320
testing the consumer, 313
user interface for web chat, 316
writing sender action for, 304

receiving messages with an action, 298
sending messages using kafkacat, 299
testing the Kafka broker, 299

using OpenWhisk messaging package, 297
kafkacat tool, 297

using to send a message, 299
kernel for operating systems, 324
keys (in Kafka messages), 292
Kotlin, 6
kubectl

accessing wskadmin utility and creating
namespace, 354

configuring for OpenWhisk installation on
Kubernetes cluster, 346

getting latest available version, 323
installing, 323

Kubernetes, 22, 321-355
installation types, 323
installing, 322
installing kubectl and helm, 323
installing locally, 325
installing on a bare metal server, 339-345

creating the cluster, 343
required software, 340
scripts for, 342

installing on the cloud, 327-339
architecture for Kubernetes cloud

deployment, 327
AWS cloud, 335-339
generic procedure using Cloud-Init,

329-333
Hetzner cloud, 333-335

installing OpenWhisk, 345-355
configuring helm, 347
configuring kubectl, 346
in Kubernetes cluster, 350-353
local install in Docker Desktop, 348-350

using OpenWhisk with, configuring CLI
for, 353-355

L
last invoked action, getting result of, 58

libraries
available in Python 2 runtime, 153
Go actions using third-party libraries,

266-271
how Go uses third-party open source

libraries, 266
selecting a given library version, 267

including with actions, 55
installing external library and deploying

with action code, 41
listing in Python runtime, 153
third-party, using to develop actions in

Python, 156-162
packaging application in zip file, 156-158
using virtualenv, 158

vendor folder in Go, 262
librdkafka (C library), 291, 301
libvirt package, 340
--limit <n> option, using with wsk activation

list, 58
limits (find function), 246
Linux

bare metal server running, installing Kuber‐
netes on, 339

Cloud-Init package for installation of OS in
VMs, 327

Docker, 321
installing kubectl and helm, 324
installing Kubernetes locally, 325
linux kernel, 324

Linux and macOS
bash on, 24

list option, wsk activation command, 58
load balancer, 11
logs, getting with wsk activation logs com‐

mand, 57

M
Mac systems

darwin kernel, 324
Docker on, 321
installing kubectl and helm, 324
installing Kubernetes locally, 325

Mailgun, 104
Mailgun, registering with and using to send

email, 40
main function

Main function in Go, 258, 259

Index | 365

main method, environment variables linking
library to rest of system, 38

main package, 258, 259
Go action with multiple files in, 263

__main__.py file (CRUD application example),
221

Mango query language, 182
executing a query in Cloudant, 215
querying CouchDB, 182

map functions in CouchDB, 201-203
implementing a join with, 203-205
joining with a single document, 205

MapReduce, use by JavaScript, 183
maps, creating in Go, 263, 281
master node, 322

for Kubernetes cloud installation in private
network, 330

in Kubernetes deployment in Hetzner cloud,
334

labeling in Docker Desktop, 348
message queues, 4

IBM Cloud packages for, 50
request from another ation arriving in, 15

messages
and keys in Kafka, 292
reading with Kafka consumer, 312
receiving for Kafka chat app, 319
receiving Kafka messages with an action,

298
receiving with Kafka consumer in Go, 309
sending from Kafka chat application, 320
sending Kafka message with Kafka producer

in Go, 303
sending with kafkacat, 299
writing sender action for Kafka producer in

Go, 304
messaging package in OpenWhisk, 289

using, 297
creating binding and feed, 297

mkGet function, 287
mkMap function, 281
mkPost function, 282
mocking, 137-148

example action to be tested by, 139
http requests

in testing of Python actions, 178
https requests, 138
insert and update operations in CRUD

application example, 237

mocks, 138
OpenWhisk API, 144-148

mocking sequences, 147
using mocking library to invoke action,

145
testing controller in CRUD application

example, 236
using a mock to test the action, 140-142
writing a mock for https module, 142-144

model-view-controller pattern (see MVC pat‐
tern)

model.py file (CRUD application example),
221, 222-228
error messages, 243
implementing model.find, 224
implementing model.init, 222
implementing model.insert, 223
implementing model.update and

model.delete, 226
invoking model.delete, 235
mocking model.find, 236
testing initialization, 225
testing model.find, 225
testing model.insert, 225, 238
testing model.update, 238

multipart Python library, 250
MVC (model-view-controller) pattern, 115,

119-122

N
namespaces

creating new for public deployment of
OpenWhisk with Kubernetes, 353

importing or binding third-party packages,
50

networks
architecture of Kubernetes cloud deploy‐

ment, 327
configuration for Kubernetes installation on

bare metal server, 341
new operation (CRUD application example),

234
testing, 237

Nginx, 10
Node.js, 6, 20

https module, 105
matching versions in testing OpenWhisk

applications, 127
unit testing the runtime, 123

366 | Index

nodes (Kubernetes), 322
nonblocking invocations, 11

trigger invocation in Python, 170
NoSQL databases, 181
npm test command, 133
npm tool

importing and installing mailgun-js library,
41

nvm tool, using to install and manage Node.js
versions, 128

O
observer pattern, 8, 110-115
observers, creating for mock of https module,

143
offsets (Kafka messages), 293
OpenAPI, 162
OpenWhisk

runtimes for specific versions of program‐
ming languages, 7

OpenWhisk API, 21, 69-76
accessing in Go, 280-287

firing a trigger, 285
HTTP requests, 282
invoking OpenWhisk action, 284
utility functions, 280

connecting to API server and dialoguing
with it, 69

features, 70
firing triggers, 73
inspecting activations, 75
invoking actions, 70-73
invoking locally for Python action tests, 177
mocking, 144-148

action parameters, 146
sequences, 147
using mocking library to invoke action,

145
rest.py interface in CRUD application, 221
using OpenWhisk REST API, 162-165

authentication, 163
connecting with curl, 164-165

OpenWhisk CLI, 45-66
creating actions, 51-57
defining packages, 49
inspecting activations, 57
managing triggers and rules, 58-63
using feeds, 63-66
wsk command, 46-49

operating systems
cloud images for virtual machines, 327
kubectl and helm for, 324

orchestrators, 22
__OW_ prefix for environment variables, 165
__OW_API_ and __OW_API_KEY environ‐

ment variables, 133

P
packages, 45

acting as connectors in OpenWhisk, 21
actions grouped in, 8
available in Python 3 runtime, 155
binding, 50, 84
creating for Cloudant database, 35
creating for simple contact form, 27
creating package.json file for Node.js npm

tool, 125
defining, 49
deploying an action in, 51
deploying multiple files in, 56
installing Python packages with pip, 158
listing using curl command with Open‐

Whisk REST API, 164
open source, registry in Python, 158
packages considered as Facades for complex

subsystems, 83
packaging multiple files in Go, 261-266

action with multiple files in main, 263
actions with multiple packages, 264
imports, GOPATH, and vendor folder,

261
pkg_resources library in Python, 153
preinstalled, for Node.js version 6, 127
purposes of, 49

packr tool, 275
pagination, 194

of output in CRUD application example,
241, 244-248
controller processing the bookmark, 247
creating an index, 245
moving to the next page, 246
using bookmarks and limits, 246

parameters
mocking for an action, 146
parametric error messages, 128
passing among multiple programming lan‐

guages, 8

Index | 367

passing in wsk action invoke command with
--param option, 36

setting for package, 49
partitions (Kafka), 292

assignment of consumer group to, 307
specifying to send message with Kafka pro‐

ducer, 303
passwords

generating for OpenWhisk with Python
script, 351

patch format, 43
persistence

long term, in OpenWhisk, 16
PHP, 6
pip package manager, 153

including libraries with requirements.txt
file, 161

installing packages in serverless environ‐
ment, 158

installing yattag package, 159
pkg folder in Go, 265
poll function to receive chat messages, 318
polling

enabling with wsk activation poll command,
61

poll option, wsk activation command, 58
port forwarding, setting up, 341
POST HTTP method, 192, 240

mkPost function in Go, 282
precompilation, actions in Go, 269
precompiled interpreted languages, 6
programming languages

for development of OpenWhisk actions, 257
for OpenWhisk, 6, 19

API for, 21
releases of OpenWhisk with specific lan‐

guage versions, 7
programming languages for OpenWhisk

parameter passing, standardization of, 8
Promise.all method, 72
promises, 67, 107

creating, 67
invoking from OpenWhisk API, 70
invoking multiple promises in OpenWhisk

API, 72
properties, 47

configuring for wsk command, 47
protocol (Kafka), 291
prototype pattern, 84-85

proxy pattern, 103-106
public and private networks in the cloud, 328

Kubernetes installation with Cloud-Init, 330
PUT HTTP requests, 185
PyPI (Python Package Index), 158
Python, 6

comparison with JavaScript, 257
developing OpenWhisk actions in, 151-180

blocking action invocations, 168
nonblocking trigger invocation, 170-171
overview of Python runtime, 152-156
Python runtime, 151
retrieving invocation results, 172
testing Python actions, 173-179
using OpenWhisk REST API, 165-168
using third-party libraries, 156-162

OpenWhisk application in
advanced web actions, 239-242
controller, 233-234
pagination, 244-248
uploading and displaying images,

248-255
user interface, 228-233
validation and error reporting, 242-244

OpenWhisk password generator script, 351
OpenWhisk web application in, 219-255

abstracting database access, 222-228
CRUD application architecture, 219-221

Q
query and view in Cloudant, 215-217

R
reduce functions in CouchDB, aggregations

with, 207-208
requiring a library, 56

in Jest tests, 141
OpenWhisk API, 69

response fields (in web actions), 239
REST APIs

format of URLs, 280
OpenWhisk API, 21
rest.py file in CRUD application example,

221
using OpenWhisk REST API, 162-165

authentication, 163
connecting with curl, 164-165

using OpenWhisk REST API in Python,
165-168

368 | Index

--result option in action invocation, 36
results of actions, 51

getting with wsk activation result command,
57

retention period for Kafka topics, 292
rook, installing in Kubernetes cloud deploy‐

ment, 332
rows function (CRUD application UI), 228, 231
rules for action triggers, 8, 45

creating, 60
enabling/disabling without removing, 62

runtime
for Go, 264
for librdkafka included in Go runtime, 291
for specific versions of programming lan‐

guages in OpenWhisk releases, 7
initializing, 269
Python, 151

overview, 152-156
recreating Python runtime environment

locally, 174
specifying for action deployed in zip file, 56

S
save operation (CRUD application example),

235
testing, 237

Scala, 6, 291
scalability of databases, 182
searching CouchDB database, 191
security, VM instances in AWS cloud installa‐

tion, 338
selectors, 191
sequences of actions, 45

creating, 53
creating for to send email in contact exam‐

ple application, 43
invoking as single action, 54
mocking, 147
using to implement chain of responsibility

pattern, 94
using to implement decorator pattern, 90

serverless environments, 3
comparison to Java EE, 17-22

APIs, 21
application servers, 21
components, 20
serverless equivalent of Java EE, 19
tiers in OpenWhisk, 19

event processing, 5
execution constraints, 13-16
functions, stateless, 4

servers
bare metal server, installing Kubernetes on,

339-345
creating for Kubernetes cloud installation

with Cloud-Init, 331
launching in Hetzner cloud, 334

serving resources with web actions, 276-280
servlets (Java EE), 18
side effects, inspecting in CRUD application

example, 237
singleton pattern, 81, 114
snapshots, testing, 133

updating a snapshot, 135
source code for this book, 46
src directory in Go, 265

precompiling code, 270
SSH

adding in Hetzner cloud, 333
for AWS cloud installation, 336

SSL certificates
for Kubernetes cluster installation of Open‐

Whisk, 346
getting for Kubernetes generic cloud instal‐

lation, 331
state, actions not having local state in Open‐

Whisk, 15
stateful web applications, 4
stateless functions, 4
storage

saving and storing form data, using bridge
pattern, 109

saving form data, 32-39
strategy pattern, 91-93

example implementation in contact form
validation, 91

example implementation using different val‐
idation logic, 92

subnet for VMs in AWS cloud installation, 336
Swift, 6
synchronous processing, 13

T
tables (CRUD application example), 219, 220,

228
errors in, 244
rendering with view.table, 230

Index | 369

templating library for HTML UI, 228
testing, 123

(see also unit testing)
functions in CRUD application in Python,

225
Go actions, 271-274

using examples, 272
writing tests, 271

HTML output in CRUD application UI, 228
Python actions

invoking OpenWhisk API locally, 177
mocking requests, 178
recreating Python runtime locally, 174
unit test examples, 175-177

then function, 72
time bounded actions in OpenWhisk, 16
timestamps (Kafka messages), 292
topics (Kafka), 292

consumer subscribing to, 307
creating for Kafka instance in IBM Cloud,

295
specifying to send message with Kafka pro‐

ducer, 303
traefik, installing in Kubernetes cloud deploy‐

ment, 332
triggers, 8, 45

creating and firing in Go, 285
firing in OpenWhisk API, 73
implementing using singleton pattern, 81
managing triggers and rules, 58-63

creating and inspecting a trigger, 60
creating rules, 60

nonblocking invocaion in Python, 170-171
-p and -P flags, 51
using to implement adapter pattern, 107
using to implement observer pattern, 111

type checking, 257
type field for CouchDB documents, 222

U
Ubuntu cloud images, 327
unit testing, 123-148

mocking
action to be tested by, 139
example https request, 138
mocks, 138
using a mock to test the action, 140-142
writing a mock for https module,

142-144

mocking OpenWhisk API, 144-148
mocking a sequence, 147
mocking action parameters, 146
using mocking library to invoke action,

145
unit test examples for Python actions,

175-177
using Jest, 124-137

running tests locally, 126-130
snapshot testing, 133
updating a snapshot, 135

Unix-like CLIs, 24
update command, 52
update function (model.update), 226

error reporting, 243
testing, 238

updates
in Cloudant, 214
in CouchDB, 187

uploading an attachment, 188
validation of, 210

url function, 280
URLs

accessing actions by, 28, 51
for REST API, 165
for viewing CouchDB attachments in

browser, 189
format for REST APIs, 280
generating to retrieve an image, 252
in HTML IMG tag, 252

user data for cloud-init, 329
user interaction patterns, 115

composite pattern, 115-117
MVC (model-view-controller), 119-122
visitor pattern, 117

user interface (UI)
for Kafka web chat written in Go, 316
OpenWhisk CRUD application in Python,

228-233
rendering form view, 232
rendering table view, 230
testing HTML output, 228
using Beautiful soup for HTML markup,

229
wrap function producing HTML

markup, 229

V
validation

370 | Index

data validation in CRUD application exam‐
ple, 241, 242

validation functions in CouchDB, 208-210
validation (form), 29-32

address validation, 30
example implementation of chain of respon‐

sibility pattern, 94
example implementation using strategy pat‐

tern, 91
returning the result, 31
testing email application locally in Jest, 128

vendor folder (in Go), 262, 267
for embedded resources in actions, 276
generating for Kafka producer, 306

version control system, vendor folder and, 268
view.py file (CRUD application example), 221
views

in Cloudant database, 215
in CouchDB, 183

functions for, 200-207
OpenWhisk CRUD application in Python

propagating errors from model, 244
rendering the form, 232
rendering the table, 230

virtual machines (VMs), 327
for Kubernetes cloud installation, 329
in AWS cloud installation, configuring and

launching instance, 336
in AWS cloud installation, subnet for, 336
in Hetzner cloud Kubernetes installation,

333
installing software on Ubuntu server, 340
IP address in the cloud, 331
NodeJs for JavaScript, 20

virtualenv
automating the virtual environment, 160
building virtual environment and including

a library, 161
how it works, examining with yattag pack‐

age, 159
using in Python to develop actions, 158

visitor pattern, 117-119
vue.js, embedding in Go action, 274

W
web actions, 52

(see also --web true flag for actions)
advanced, 239-242
for CRUD application in Python, 221

JSON response for, 311
returning binary data in base64 format, 251
serving resources with, 276-280
URLs, 252
wrapping multiple promises in, 73

web applications, 219
(see also CRUD application in Python)
stateful, 4
using feeds to invoke third-party interfaces,

83
web chat, implementing for Kafka, 314
--web true flag for actions, 28, 35, 52
websites, event origination from, 15
/whisk.system/messaging, 289

(see also messaging package in OpenWhisk)
whiskInvoke function, 284
whiskRetrieve function, 287
whiskTrigger function, 286
Windows

Docker version for, 321
installing bash on, 24
installing kubectl and helm, 324
installing Kubernetes locally, 325
using kafkakat with Docker, 299
windows kernel, 324

worker nodes, 322
creating for Kubernetes cloud installation

with Cloud-Init, 330
labeling in OpenWhisk installation in

Kubernetes cluster, 350
wrapper functions

for asynchronous code, 68
wrap function in CRUD application UI, 229

testing using BeautifulSoup, 229
wsk action command, 51

and subcommands, 47
update, 52

wsk action invoke command, 36
wsk activation command, 57
wsk command, 26, 46-49

configuring insecurely for use in Docker
Desktop, 353

configuring properties for, 47
getting help, 46

wsk package bind command, 84
wsk package create command, 49
wsk property get command, 164
wsk rule create command, 60
wsk trigger create command, 60

Index | 371

wsk trigger fire command, 60
wskadmin utility, 353

Y
yattag

installing, 159
using, 160

Z
zerolog library, 266
zip files

deploying actions in, 56
Go actions in, 264
packaging a Python application in, 156-158
with precompiled binaries in Go, 270

372 | Index

About the Author
Michele Sciabarrà is a veteran of information technology and is currently CEO of
sciabarra.com, a consultancy focused on Kubernetes and Serverless solutions. He’s
also a contributor to the Apache OpenWhisk project, most notably as the author of
the high-performance ActionLoop runtime for Go, Swift, Rust, Java, and other pro‐
gramming languages.

Colophon
The animal on the cover of Learning Apache OpenWhisk is the armed hermit crab
(Pagurus armatus), also known as the black-eyed hermit crab. There are over 1,100
species of hermit crab, and they’re found in all kinds of environments, including fresh
water, salt water, and dry land. The armed hermit crab inhabits the Pacific coast
extending as far north as British Columbia, Canada.

Like all hermit crabs, the armed hermit crab lacks an exoskeleton on its long, soft
abdomen, so must wear the abandoned shell of a mollusk, such as a sea snail or
conch. At 43 mm in length (about 1.7 inches), the armed hermit crab is one of the
largest species. In addition to its characteristic large, black, compound eyes, the
armed hermit crab has spiny, red, orange, and white striped legs. It feeds on the eggs
of other sea creatures, such as lobsters and fish, as well as zooplankton and carrion.

Some people keep hermit crabs in aquariums as pets, but the armed hermit crab can’t
survive in captivity.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover image is a color illustration by Karen Montgomery, based on a black and
white engraving from Animal Life in the Sea and on the Land. The cover fonts are Gil‐
roy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://sciabarra.com/

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

http://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Part I. Introducing OpenWhisk Development
	Chapter 1. Serverless and OpenWhisk Architecture
	OpenWhisk Architecture
	Functions and Events
	Architecture Overview
	Programming Languages for OpenWhisk
	Actions and Action Composition
	Action Chaining

	How OpenWhisk Works
	Nginx
	Controller
	Load Balancer
	Invoker
	Client

	Serverless Execution Constraints
	Actions Are Functional
	Actions Are Event-Driven
	Actions Do Not Have Local State
	Actions Are Time-Bound
	Actions Are Not Ordered

	From Java EE to Serverless
	Classic Java EE Architecture
	Serverless Equivalent of Java EE

	Summary

	Chapter 2. A Simple OpenWhisk Application
	Getting Started
	The Bash CLI
	The IBM Cloud

	Creating a Simple Contact Form
	Form Validation
	Address Validation
	Returning the Result

	Saving Form Data
	Invoking Actions
	Storing in the Database

	Sending an Email
	Configuring Mailgun
	Writing an Action to Send Email
	Creating an Action Sequence

	Summary

	Chapter 3. The OpenWhisk CLI and JavaScript API
	The wsk Command
	Configuring the wsk Command
	OpenWhisk Entity Names

	Defining Packages
	Package Binding

	Creating Actions
	Chaining Sequences of Actions
	Including Some Code of Your Own as a Library

	Inspecting Activations
	Managing Triggers and Rules
	Putting the Trigger to Work

	Using a Feed
	Generic JavaScript APIs
	Asynchronous Invocation
	Using Promises
	Creating a Promise

	Using the OpenWhisk API
	Invoking OpenWhisk Actions
	Firing Triggers
	Inspecting Activations

	Summary

	Chapter 4. Common Design Patterns in OpenWhisk
	Built-in Patterns
	Singleton
	Facade
	Prototype
	Decorator

	Patterns Commonly Implemented with Actions
	Strategy
	Chain of Responsibility
	Command

	Summary

	Chapter 5. Integration Design Patterns in OpenWhisk
	Integration Patterns
	Proxy
	Adapter
	Bridge
	Observer

	User Interaction Patterns
	Composite
	Visitor
	MVC

	Summary

	Chapter 6. Unit Testing OpenWhisk Applications
	Using the Jest Test Runner
	Using Jest
	Running Tests Locally
	Snapshot Testing

	Mocking
	What Is a Mock?
	Mocking an HTTPS Request

	Mocking the OpenWhisk API
	Using the Mocking Library to Invoke an Action
	Mocking Action Parameters
	Mocking a Sequence

	Summary

	Part II. Advanced OpenWhisk Development
	Chapter 7. Developing OpenWhisk Actions in Python
	The Python Runtime
	What’s in the Python Runtime?
	Libraries Available in the Runtime

	Using Third-Party Libraries
	Packaging a Python Application in a Zip File
	Using virtualenv
	How Virtualenv and Pip Work
	Automating the Virtual Environment
	Using the yattag Library
	Building the Virtualenv, Including a Library

	Using the OpenWhisk REST API
	Authentication
	Connecting to the API with curl

	Using the OpenWhisk REST API in Python
	Invocations, Activations, and Triggers in Python
	Blocking Action Invocation
	Nonblocking Trigger Invocation
	Retrieving the Result of an Invocation

	Testing Python Actions
	Recreating the Python Runtime Environment Locally
	Unit Test Examples
	Invoking the OpenWhisk API Locally
	Mocking Requests

	Summary

	Chapter 8. Using CouchDB with OpenWhisk
	How to Query CouchDB
	Exploring CouchDB on the Command Line
	How CouchDB works
	Creating Database
	Create
	Retrieve
	Update
	Delete
	Attachments

	Querying CouchDB
	Searching the Database
	Indexes
	Fields
	Pagination Support
	Bookmark Feature
	Selectors
	Operators

	CouchDB Design Documents
	Creating a Design Document

	View Functions
	Extracting Data with map Functions
	Implementing a Join with map Functions
	Joining with a Single Document
	Aggregations with reduce Functions

	Validation Functions
	Using the Cloudant Package
	CRUD Actions in the Cloudant Package
	Queries and Views with Packages

	Summary

	Chapter 9. An OpenWhisk Web Application in Python
	CRUD Application Architecture
	Deploying the Action

	Abstracting Database Access
	Implementing model.init()
	Implementing model.insert()
	Implementing model.find()
	Testing insert and find
	Implementing model.update() and model.delete()
	Testing update and delete

	The User Interface
	Testing
	Rendering the Table with view.table
	Rendering the Form with view.form

	The Controller
	Processing Operations
	Side Effects

	Advanced Web Actions
	Improving the CRUD Application
	Validation and Error Reporting
	Storing Error Messages

	Pagination
	Creating an Index
	Using Bookmarks and Limits
	Pagination
	Processing the Bookmark

	Uploading and Displaying Images
	File Upload Form
	Parsing the File Upload
	Saving Data in the Database
	Generating an Tag
	Generating a URL to Retrieve an Image
	Rendering the Image with an HTTP Request

	Summary

	Chapter 10. Developing OpenWhisk Actions in Go
	Your First Golang Action
	From Echo to Hello

	Packaging Multiple Files
	Imports, GOPATH, and the vendor Folder
	Actions with Multiple Files in main
	Actions with Multiple Packages

	Actions Using Third-Party Libraries
	How Go Uses Third-Party Open Source Libraries
	Selecting a Given Version of a Library
	Action Precompilation

	Testing Go Actions
	Writing Tests
	Testing Using Examples

	Embedding Resources
	Using packr

	Serving Resources with Web Actions
	Accessing the OpenWhisk API in Go
	Utilities
	HTTP Requests
	Invoking an OpenWhisk Action
	Firing a Trigger
	Retrieving the Data Associated with the Activation ID

	Summary

	Chapter 11. Using Kafka with OpenWhisk
	Introducing Apache Kafka
	Kafka Brokers and Protocol
	Messages and Keys
	Topics and Partitions
	Offsets and Client Groups

	Creating a Kafka Instance in the IBM Cloud
	Creating an Instance
	Creating a Topic
	Get Credentials

	Using the messaging Package
	Creating a Binding and a Feed
	Receiving Messages with an Action
	Sending Messages Using kafkacat
	Testing the Kafka Broker

	A Kafka Producer in Go
	Creating a Producer
	Sending a Kafka Message
	Writing a Sender Action
	Deploying and Testing the Producer

	A Kafka Consumer in Go
	Creating a Consumer
	Receiving a Message
	Writing a Receiver Action
	Testing the Consumer

	Implementing the Web Chat Application
	Overview
	User Interface
	Initializing
	Joining
	Receiving
	Sending

	Summary

	Chapter 12. Deploying OpenWhisk with Kubernetes
	Installing Kubernetes
	Installation Types

	Installing kubectl and Helm
	Installing Kubernetes Locally
	Installing Kubernetes in the Cloud
	Architecture of a Kubernetes Cloud Deployment
	Generic Procedure for Installing Kubernetes with cloud-init
	Installing on Hetzner Cloud
	Installing on AWS Cloud

	Installing Kubernetes on a Bare Metal Server
	Collecting the Required Software
	Network Configuration
	Scripts for the Installation
	Creating the Cluster

	Installing OpenWhisk
	Configuring Kubectl
	Configuring Helm
	Installing in Docker Desktop
	Installing in the Kubernetes Cluster

	Configuring the OpenWhisk Command-Line Interface
	Configuring wsk Insecurely for Docker Desktop
	Creating a New Namespace

	Summary
	Conclusion

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

