
John Chapin & Mike Roberts
Foreword by Dr. Tim Wagner

Programming
 AWS Lambda
Build and Deploy Serverless
Applications with Java

Praise for Programming AWS Lambda

If you’re a Java programmer hoping to unlock the benefits of serverless architectures,
you finally have the book you’ve been looking for!

—Dr. Tim Wagner, Vendia CEO and Cofounder

Mike and John have been my go-to people for all things Java and serverless over the past
several years. This book very nicely captures many of their core learnings and “gotchas”

in this space. A great addition to my bookshelf. Many thanks to them both!
—Daniel Bryant, Java Champion

If you’re a Java developer who wants to reap the benefits of serverless computing
while avoiding the pitfalls, this is the book you’ve been looking for.

—Brian Gruber, Principal Architect at Meetup

For developers who want to leverage their Java experience while taking advantage of new
architectural possibilities offered by AWS Lambda, this book provides a thorough guide

to building robust, scalable serverless applications.
—Stuart Sierra, Software Architecture Consultant

A clear and comprehensive introduction to programming lambdas in Java. This book
goes way beyond “hello world” to cover how to write, deploy, run, and support

Java-based lambdas that take full advantage of serverless architectures rather than just
“lifting and shifting” your application code.

—Sarah Wells, Technical Director for Operations & Reliability
at Financial Times

John Chapin and Mike Roberts

Programming AWS Lambda
Build and Deploy Serverless

Applications with Java

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04105-4

[LSI]

Programming AWS Lambda
by John Chapin and Mike Roberts

Copyright © 2020 Symphonia LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Development Editor: Virginia Wilson
Acquisitions Editor: Kathleen Carr
Production Editor: Katherine Tozer
Copyeditor: Kim Wimpsett
Proofreader: Charles Roumeliotis

Indexer: Judith McConnville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition
2020-03-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041054 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming AWS Lambda, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492041054

Table of Contents

Foreword. xi

Preface. xiii

1. Introduction to Serverless, Amazon Web Services, and AWS Lambda. 1
A Quick History Lesson 1
The Cloud Grows 3
Enter Serverless 3

Backend as a Service 3
Functions as a Service 4
Differentiating Serverless 5

What Is AWS? 6
Types of Service 6
Capacity 7
Who Uses AWS? 9
How Do You Use AWS? 9

What Is AWS Lambda? 10
Functions as a Service 10
FaaS as Implemented by Lambda 11
Why Lambda? 13
What Does a Lambda Application Look Like? 13
AWS Lambda in the Java World 16

Summary 17
Exercises 18

2. Getting Started with AWS Lambda. 19
Quick Guide to the AWS Console 19

Regions 20

v

Identity and Access Management 22
Lambda Hello World (as Quickly as Possible) 22
Setting Up Your Development Environment 26

AWS Command Line Interface 26
Java Setup 31
AWS SAM CLI Installation 33

Lambda Hello World (the Proper Way) 34
Creating Your First Java Lambda Project 34
Building Hello World 35
Creating the Lambda Function 35

Summary 38
Exercises 39

3. Programming AWS Lambda Functions. 41
Core Concepts: Runtime Model, Invocation 41

The Lambda Execution Environment 42
Invocation Types 43
Introduction to Logging 46

Input, Output 47
Lambda Function Method Signatures 48
Configuring the Handler Function in the SAM Template 49
Basic Types 49
Lists and Maps 50
POJOs and Ecosystem Types 52
Streams 54
Context 55

Timeout 57
Memory and CPU 59
Environment Variables 61
Summary 63
Exercises 63

4. Operating AWS Lambda Functions. 65
Build and Package 65
Uberjars 66
Assembling a ZIP File 67
Reproducible Builds 71
Deploy 72
Infrastructure as Code 73
CloudFormation and the Serverless Application Model 74
Security 76

The Principle of Least Privilege 77

vi | Table of Contents

Identity and Access Management 78
Summary 83
Exercises 83

5. Building Serverless Applications. 85
Lambda Event Sources 86

Writing Code to Work with Input and Output for Event Sources 86
Configuring a Lambda Event Source 90
Understanding Different Event Source Semantics 91

Example: Building a Serverless API 92
Behavior 92
Architecture 93
Lambda Code 95
Build and Package Using the AWS SDK BOM 103
Infrastructure 104
Deployment 107

Example: Building a Serverless Data Pipeline 111
Behavior 112
Architecture 112
Lambda Code 116
Build and Package Using Multiple Modules and Isolated Artifacts 122
Infrastructure 127
Deployment 130

Summary 132
Exercises 133

6. Testing. 135
The Test Pyramid 135

Unit Tests 136
Functional Tests 136
End-to-End Tests 136

Refactoring for Testing 137
Revisiting BulkEventsLambda 137
Refactoring BulkEventsLambda 140

Add Constructors 140
Isolate Side Effects 141
Split Methods 142

Testing BulkEventsLambda 142
Unit Testing 142
Functional Testing 145

End-to-End Testing 149
Local Cloud Testing 153

Table of Contents | vii

Cloud Test Environments 154
Summary 156
Exercise 156

7. Logging, Metrics, and Tracing. 157
Logging 157

CloudWatch Logs 158
LambdaLogger 159
Java Logging Frameworks 161
Structured Logging 165
Structured Logging in Java 166
CloudWatch Logs Insights 168

Metrics 170
CloudWatch Metrics 170
Lambda Platform Metrics 171
Business Metrics 172
Alarms 173
Distributed Tracing 175
Finding Errors 177

Summary 180
Exercises 180

8. Advanced AWS Lambda. 183
Error Handling 183

Classes of Error 183
The Various Behaviors of Lambda Error Processing 184
Deep Dive into Asynchronous Event Source Errors 186
Handling Kinesis and DynamoDB Stream Errors 191
Tracing Errors with X-Ray 192
Error Handling Strategies 192

Scaling 193
Observing Lambda Scaling 193
Scaling Limits and Throttling 195
Thread Safety 196
Vertical Scaling 197

Versions and Aliases, Traffic Shifting 198
Lambda Versions 198
Lambda Aliases 198
Traffic Shifting 199
When (Not) to Use Versions and Aliases 201

Cold Starts 201
What Is a Cold Start? 202

viii | Table of Contents

When Does a Cold Start Occur? 202
Identifying Cold Starts 203
Impact of Cold Starts 204
Mitigating Cold Starts 205
Provisioned Concurrency 208
Cold Start Summary 211

State 212
Persistent Application State 212
Caching 214

Lambda and Java Application Frameworks 215
Virtual Private Clouds 217

Architectural Concerns of Using Lambda with a VPCs 219
Configuring Lambda to Use a VPC 219
Alternatives 220

Layers and Runtimes 220
What Are Layers? 221
When to Use, and Not Use, Layers 221
Custom Runtimes 223

Summary 224
Exercises 225

9. Advanced Serverless Architecture. 227
Serverless Architecture “Gotchas” 227

At-Least-Once Delivery 227
Impacts of Lambda Scaling on Downstream Systems 230
The “Fine Print” of Lambda Event Sources 235

New Patterns of Architecture Enabled by Serverless Thinking 236
Published Components with the Serverless Application Repository 236
Globally Distributed Applications 238

Summary 244
Exercises 244

10. Conclusion. 245

Index. 249

Table of Contents | ix

Foreword

AWS Lambda—and both serverless and backend as a service in general—have had a
hugely disruptive effect on the software industry. They’ve greatly improved the pro‐
ductivity of millions of developers by eliminating many of the hassles, costs, and
“undifferentiated heavy lifting” of dealing with servers, from security patching to
autoscaler tuning. More importantly, though, serverless has changed the very defini‐
tion of an application, from a blob of code that we drop onto server farms into a con‐
figuration of multi-tenanted cloud services that we orchestrate with code in the sky.
Serverless is the next stage of cloud evolution—just as it once felt impossible to build
a company without its own data center, it’s quickly becoming possible for companies
never to own a server. It’s a fascinating transformation to watch and be part of!

When I was first coming up with the ideas that eventually became AWS Lambda, I
had many discussions with the AWS leadership team about the risks and opportuni‐
ties. The opportunities were massive—the chance to reimagine how compute and
applications were constructed and to change the very nature of software development
in the cloud. But the risks were equally great. The innovative “spark gap” of Lambda
was high, and crossing that chasm required a lot of energy: to gain the advantages of
serverless—pay per use, per-request scaling, built-in fault tolerance, and so much
more—we’d have to ask developers to give up conventional server- and container-based
deployments. They’d have to approach architecture in a completely different way, one
built around doing as little as possible rather than owning as much as possible. Back
in 2014 when we unveiled Lambda to the world, this was our biggest fear: would
developers make that leap and come on that journey with us?

Fortunately the answer over the last five years has proven to be a resounding “yes,”
and at the heart of that success are books like the one you’re reading now. A revolu‐
tion like serverless requires spreading the message to millions of developers—many
of whom will have existing code, in-place processes and tools, and a wealth of lan‐
guage and library knowledge that they need to preserve. Mike and John, the founders
of Symphonia and authors of Programming AWS Lambda, bring many years of expe‐
rience and expertise not just in working with AWS and Lambda but also in working

xi

with countless Java developers and mission-critical enterprise Java applications. This
insight helps them bridge the new world of serverless and the existing knowledge and
practices of enterprise Java developers and their teams. It’s this marriage of under‐
standing—the best of old and new together—that gives these authors their unique
insight and makes this material so essential.

If you’re completely new to serverless, this book will help you understand not just
what it makes possible but also why and how. If you’re getting started or have used
services like AWS Lambda in other languages, it will be your trusted companion as
you learn the best practices for architecting, developing, deploying, testing, and mon‐
itoring serverless Java applications of all types—from highly distributed mobile apps
to highly scalable data processing pipelines. Regardless of your skill level, this book
will help you design and deliver Java applications faster and more reliably.

Welcome to the serverless world, and enjoy your journey—your expert tour guides
await!

— Dr. Tim Wagner
Vendia CEO and Cofounder,

Original creator of AWS Lambda

xii | Foreword

Preface

About This Book
Welcome to Programming AWS Lambda. We’re glad you’re here!

Serverless computing is a revolutionary way of building systems. At its heart, server‐
less is about performing the minimum technical work necessary to sustainably pro‐
vide value to our users. A serverless approach does this by making the most of
services provided by cloud vendors, like Amazon Web Services (AWS).

In this book, you’ll learn how to architect, build, and operate serverless applications
that use AWS Lambda—the original, and widely adopted, serverless compute plat‐
form. AWS Lambda is rarely used by itself, however, and so while reading this book,
you’ll also learn how to successfully integrate Lambda with other serverless AWS
services, like S3, DynamoDB, and more.

Why We Wrote This Book
We have been using Lambda since 2015, ever since Lambda’s support for Java was
first announced. Within just a few weeks we saw the amazing ability that Lambda had
to let teams build new features far faster than we’d ever seen before. By removing a lot
of low-level aspects of developing and running systems, and instead focusing on a
clean, event-driven approach, we realized that many of the complexities that got in
the way of our teams no longer applied when using Lambda. Lambda also let us
amplify our use of the rest of the AWS platform—it had a multiplicative impact on
our effectiveness.

We initially had two concerns about Lambda—that it wouldn’t support the program‐
ming knowledge and software inventory that we’d built over the years in Java and that
it would be far too expensive to run at scale.

What we found instead surprised us.

xiii

Lambda’s support for Java was not merely an “add on.” In fact, Java is a first-class run‐
time within the Lambda platform. Building Lambda applications in Java freed us to
get back to the essence of programming, letting us use our skills and existing code.

Further, Lambda turned out to be less, not more, expensive to run than equivalent,
traditionally built systems. The efficiency of Lambda’s “pay-per-use” model, to sub-
second precision, allowed us to create systems that processed hundreds of millions of
events per day and yet were cheaper than their predecessors.

This combination of speed of development, embrace of existing languages, and cost
effectiveness led us to believe that serverless compute platforms, with Lambda at their
forefront, were the start of something special in our industry. In 2016 we started our
business, Symphonia, with the mission to help companies make the leap to this new
way of building systems.

Who This Book Is For
This book is intended primarily for software developers and software architects, but it
will be useful to anyone involved in the technical aspects of building software applica‐
tions in the cloud.

We assume that you already know or can learn the basics of the Java programming
language. You don’t need to have knowledge of, or experience with, any Java applica‐
tion frameworks (like Spring) or libraries (like Guava). We do not assume that you
have any prior knowledge of Amazon Web Services.

Why You Need This Book
In many ways serverless, and Lambda with it, is one of the most significant changes
to building server-side software in decades. While our code may look similar line by
line, and perhaps even class by class, to how it was written before, the architectural
constraints and capabilities of Lambda drive designs that have a very different shape
than what you’ve seen in the past.

Over the last few years we’ve come to understand how to successfully build systems
with Lambda. This book will give you a jump-start into learning these same lessons.

From getting started techniques to advanced architecture, from programming and
testing to deployment and monitoring, we cover the lifecycle of what you need to
understand to build production-quality systems with Lambda at scale.

What makes this book unique is we do all of this in the context of the Java program‐
ming language. We’ve both been Java programmers for more than two decades each,
so in this book we help you use your existing Java skills in a whole new way.

So strap in, and welcome to the age of serverless!

xiv | Preface

Using the End-of-Chapter Exercises
Each chapter of this book ends with some exercises. Some of these exercises encour‐
age you to take the lessons of the chapter and see them working “for real” in the AWS
Cloud. While certain elements of Lambda can be simulated locally, you’ll only really
get a feel for what Lambda development is like by using it in the context of the AWS
platform. The good news is that AWS provides a healthy “free tier” that should allow
you to experiment without incurring any costs.

Other exercises are intended to make you consider how you might work differently
with Lambda compared with other technologies. Serverless architecture is often a
very different way of thinking, and working through these exercises will start adapt‐
ing your brain in this way.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xv

https://aws.amazon.com/free

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/symphoniacloud/programming-aws-lambda-book.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming AWS Lambda by John
Chapin and Mike Roberts (O’Reilly). Copyright 2020 Symphonia LLC,
978-1-492-04105-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

xvi | Preface

https://github.com/symphoniacloud/programming-aws-lambda-book
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/programming-aws-lambda.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to our technical reviewers for giving their time and improving this book for
you: Brian Gruber, Daniel Bryant, Sarah Wells, and Stuart Sierra. Thanks to our for‐
mer coworkers at Intent Media who joined in with using a wild new technology four
years ago and showed us how it could transform teams. Thanks to all of Symphonia’s
clients, partners, and friends—we’re grateful for your continued trust and confidence.
Thanks to everyone at O’Reilly, especially our editorial team; it’s amazing to write our
own “animal” book two decades and more after we started reading them. And thanks
to all of the folk in the serverless community who we’ve been sharing this ride with!

Further thanks to the members of the AWS serverless team, especially Ajay Nair,
Chris Munns, Noel Dowling, and Salman Paracha, for producing a revolutionary
product and for chatting with us over the last few years. Finally thanks to Tim Wag‐
ner for leading Lambda through its infancy and for writing the foreword to this book!

John’s acknowledgments: First and foremost, thank you to my parents, Mark and
Bridget, who gave me the privilege and freedom to choose my own path in life and
the love and support to not fall off of it. Thanks of course to my coauthor and busi‐
ness partner, Mike, without whom this book and our company would have never

Preface | xvii

https://oreil.ly/programming-aws-lambda
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

existed—one day I’ll teach him how to write American English (but not today). And
endless thanks to my wife Jessica, who kept my spirits up and never asked what the
word count was.

Mike’s acknowledgments: There’s too many people to thank here, but I’ll give it a go.
Thanks to my senior school computer studies teacher, Ray Lovell, and to my college
tutor, Carroll Morgan. Thanks to my colleagues through the years, especially from my
time at ThoughtWorks. Daniel Terhorst-North has been a mentor and brain-twister
through most of my career; Daniel, please keep making me go “huh!?” Thanks to
Brian Guthrie, Lisa van Gelder, and the rest of the NYC eXtreme Tuesday Club com‐
munity. And to Mike Mason who has been a colleague (twice), a roommate (on sev‐
eral occasions), and the closest of friends for far more than half of my life. (Yes, Mike,
The Phrase is in the book—it’s your turn again now!)

My most significant appreciation, however, goes to three people “without whom…”
First, thanks to Martin Fowler for inspiration, for friendship, and also for publishing
my article on serverless architectures that led to what you’re reading here. Next,
thanks to my coauthor John for joining me in the roller coaster that is our company,
Symphonia. Finally, of course, thanks to my wonderful spouse, Sara, who supports
both the strange hours of me being self-employed and apparently me now being a
published author.

xviii | Preface

CHAPTER 1

Introduction to Serverless, Amazon Web
Services, and AWS Lambda

To start off your serverless journey, we’re going to take you on a brief tour of the
cloud and then define serverless. After that, we dive into Amazon Web Services
(AWS)—this will be new to some of you and a refresher to others.

With those foundations set, we introduce Lambda—what it is, why you might use it,
what you can build with Lambda, and how Java and Lambda work together.

A Quick History Lesson
Let’s travel back in time to 2006. No one has an iPhone yet, Ruby on Rails is a hot new
programming environment, and Twitter is being launched. More germane to us,
however, is that at this point in time many people are hosting their server-side appli‐
cations on physical servers that they own and have racked in a data center.

In August 2006 something happened that would fundamentally change this model.
Amazon’s new IT division, AWS, announced the launch of Elastic Compute Cloud
(EC2).

EC2 was one of the first infrastructure-as-a-service (IaaS) products. IaaS allows com‐
panies to rent compute capacity—that is, a host to run their internet-facing server
applications—rather than buying their own machines. It also allows them to provi‐
sion hosts just in time, with the delay from requesting a machine to its availability
being on the order of minutes. In 2006 this was all possible because of the advances in
virtualization technology—all EC2 hosts at that time were virtual machines.

EC2’s five key advantages are:

1

https://aws.amazon.com/ec2
https://aws.amazon.com/ec2

Reduced labor cost
Before IaaS, companies needed to hire specific technical operations staff who
would work in data centers and manage their physical servers. This meant every‐
thing from power and networking to racking and installing to fixing physical
problems with machines like bad RAM to setting up the operating system (OS).
With IaaS all of this goes away and instead becomes the responsibility of the IaaS
service provider (AWS in the case of EC2).

Reduced risk
When managing their own physical servers, companies are exposed to problems
caused by unplanned incidents like failing hardware. This introduces downtime
periods of highly volatile length since hardware problems are usually infrequent
and can take a long time to fix. With IaaS, the customer, while still having some
work to do in the event of a hardware failure, no longer needs know what to do
to fix the hardware. Instead the customer can simply request a new machine
instance, available within a few minutes, and reinstall the application, limiting
exposure to such issues.

Reduced infrastructure cost
In many scenarios the cost of a connected EC2 instance is cheaper than running
your own hardware when you take into account power, networking, etc. This is
especially valid when you want to run hosts for a only few days or weeks, rather
than many months or years at a stretch. Similarly, renting hosts by the hour
rather than buying them outright allows different accounting: EC2 machines are
an operating expense (Opex) rather than the capital expense (Capex) of physical
machines, typically allowing much more favorable accounting flexibility.

Scaling
Infrastructure costs drop significantly when considering the scaling benefits IaaS
brings. With IaaS, companies have far more flexibility in scaling the numbers and
types of servers they run. There is no longer a need to buy 10 high-end servers up
front because you think you might need them in a few months’ time. Instead, you
can start with one or two low-powered, inexpensive virtual machines (VMs) and
then scale your number and types of VMs up and down over time without any
negative cost impact.

Lead time
In the bad old days of self-hosted servers, it could take months to procure and
provision a server for a new application. If you came up with an idea you wanted
to try within a few weeks, then that was just too bad. With IaaS, lead time goes
from months to minutes. This has ushered in the age of rapid product experi‐
mentation, as encouraged by the ideas in Lean Startup.

2 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

http://theleanstartup.com

The Cloud Grows
IaaS was one of the first key elements of the cloud, along with storage (e.g., AWS Sim‐
ple Storage Service (S3)). AWS was an early mover in cloud services, and is still a
leading provider, but there are many other cloud vendors such as Microsoft and
Google.

The next evolution of the cloud was platform as a service (PaaS). One of the most
popular PaaS providers is Heroku. PaaS layers on top of IaaS, abstracting the manage‐
ment of the host’s operating system. With PaaS you deploy just applications, and the
platform is responsible for OS installation, patch upgrades, system-level monitoring,
service discovery, etc.

An alternative to using a PaaS is to use containers. Docker has become incredibly
popular over the last few years as a way to more clearly delineate an application’s sys‐
tem requirements from the nitty-gritty of the operating system itself. There are
cloud-based services to host and manage/orchestrate containers on a team’s behalf,
and these are often referred to as containers-as-a-service (CaaS) products. Amazon,
Google, and Microsoft all offer CaaS platforms. Managing fleets of Docker containers
has been made easier by use of tools like Kubernetes, either in a self-managed form or
as part of a CaaS (e.g., GKE from Google, EKS from Amazon, or AKS from
Microsoft).

All three of these ideas—IaaS, PaaS, and CaaS—can be grouped as compute as a ser‐
vice; in other words, they are different types of generic environments that we can run
our own specialized software in. PaaS and CasS differ from IaaS by raising the level of
abstraction further, allowing us to hand off more of our “heavy lifting” to others.

Enter Serverless
Serverless is the next evolution of cloud computing and can be divided into two ideas:
backend as a service and functions as a service.

Backend as a Service
Backend as a service (BaaS) allows us to replace server-side components that we code
and/or manage ourselves with off-the-shelf services. It’s closer in concept to software
as a service (SaaS) than it is to things like virtual instances and containers. SaaS is
typically about outsourcing business processes, though—think HR or sales tools or,
on the technical side, products like GitHub—whereas with BaaS, we’re breaking up
our applications into smaller pieces and implementing some of those pieces entirely
with externally hosted products.

The Cloud Grows | 3

https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://www.docker.com
https://kubernetes.io

BaaS services are domain-generic remote components (i.e., not in-process libraries)
that we can incorporate into our products, with an application programming inter‐
face (API) being a typical integration paradigm.

BaaS has become especially popular with teams developing mobile apps or single-
page web apps. Many such teams are able to rely significantly on third-party services
to perform tasks that they would otherwise have needed to do themselves. Let’s look
at a couple of examples.

First up we have services like Google’s Firebase. Firebase is a database product that is
fully managed by a vendor (Google in this case) that can be accessed directly from a
mobile or web application without the need for our own intermediary application
server. This represents one aspect of BaaS: services that manage data components on
our behalf.

BaaS services also allow us to rely on application logic that someone else has imple‐
mented. A good example here is authentication—many applications implement their
own code to perform sign-up, login, password management, etc., but more often than
not this code is similar across many apps. Such repetition across teams and busi‐
nesses is ripe for extraction into an external service, and that’s precisely the aim of
products like Auth0 and Amazon’s Cognito. Both of these products allow mobile apps
and web apps to have fully featured authentication and user management, but
without a development team having to write or manage any of the code to implement
those features.

The term BaaS came to prominence with the rise in mobile application development;
in fact, the term is sometimes referred to as mobile backend as a service (MBaaS).
However, the key idea of using fully externally managed products as part of our appli‐
cation development is not unique to mobile development, or even frontend develop‐
ment in general.

Functions as a Service
The other half of serverless is functions as a service (FaaS). FaaS, like IaaS, PaaS, and
CaaS, is another form of compute as a service—a generic environment within which
we can run our own software. Some people like to use the term serverless compute
instead of FaaS.

With FaaS we deploy our code as independent functions or operations, and we con‐
figure those functions to be called, or triggered, when a specific event or request
occurs within the FaaS platform. The platform itself calls our functions by instantiat‐
ing a dedicated environment for each event—this environment consists of an ephem‐
eral, fully managed lightweight virtual machine, or container; the FaaS runtime; and
our code.

4 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

https://firebase.google.com
https://auth0.com
https://aws.amazon.com/cognito

The result of this type of environment is that we have no concern for the runtime
management of our code, unlike any other style of compute platform.

Furthermore, because of several factors of serverless in general that we describe in a
moment, with FaaS we have no concern for hosts or processes, and scaling and
resource management are handled on our behalf.

Differentiating Serverless
The idea of using externally hosted application components, as we do with BaaS, is
not new—people have been using hosted SQL databases for a decade or more—so
what makes some of these services qualify as backends as a service? And what aspects
do BaaS and FaaS have in common that cause us to group them into the idea of serv‐
erless computing?

There are five key criteria that differentiate serverless services—both BaaS and FaaS—
that allow us to approach architecting applications in a new way. These criteria are as
follows:

Does not require managing a long-lived host or application instance
This is the core of serverless. Most other ways of operating server-side software
require us to deploy, run, and monitor an instance of an application (whether
programmed by us or others), and that application’s lifetime spans more than one
request. Serverless implies the opposite of this: there is no long-lived server pro‐
cess, or server host, that we need to manage. That’s not to say those servers don’t
exist—they absolutely do—but they are not our concern or responsibility.

Self auto-scales and auto-provisions, dependent on load
Auto-scaling is the ability of a system to adjust capacity requirements dynami‐
cally based upon load. Most existing auto-scaling solutions require some amount
of work by the utilizing team. Serverless services self auto-scale from the first
time you use them with no effort at all.

Serverless services also auto-provision when they perform auto-scaling. They
remove all the effort of allocating capacity, both in terms of number and size of
underlying resources. This is a huge operational burden lifted.

Has costs that are based on precise usage, up from and down to zero usage
This is closely tied to the previous point—serverless costs are precisely correlated
with usage. The cost of using a BaaS database, for instance, should be closely tied
to usage, not predefined capacity. This cost should be largely derived from actual
amount of storage used and/or requests made.

Note that we’re not saying costs should be solely based on usage—there may be
some overhead cost for using the service in general—but the lion’s share of the
costs should be proportional to fine-grained usage.

Enter Serverless | 5

Has performance capabilities defined in terms other than host size/count
It’s reasonable and useful for a serverless platform to expose some performance
configuration. However, this configuration should be completely abstracted from
whatever underlying instance or host types are being used.

Has implicit high availability
When operating applications, we typically use the term high availability (HA) to
mean that a service will continue to process requests even when an underlying
component fails. With a serverless service we expect the vendor to provide HA
transparently for us.

As an example, if we’re using a BaaS database, we assume that the provider is
doing whatever is necessary to handle the failure of individual hosts or internal
components.

What Is AWS?
We’ve talked about AWS a few times already in this chapter, and now it’s time to look
at this behemoth of cloud providers in a little more detail.

Since its launch in 2006, AWS has grown at a mind-boggling rate, in terms of the
number and type of service offered, the capacity that the AWS cloud provides, and
the number of companies using it. Let’s look at all of those aspects.

Types of Service
AWS has more than a hundred different services. Some of these are fairly low level—
networking, virtual machines, basic block storage. Above these services, in abstrac‐
tion, come the component services—databases, platforms as a service, message buses.
Then on top of all of these come true application components—user management,
machine learning, data analysis.

Sideways of this stack are the management services necessary to work with AWS at
scale—security, cost reporting, deployment, monitoring, etc.

6 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

This combination of services is shown in Figure 1-1.

Figure 1-1. AWS service layers

AWS likes to pitch itself as the ultimate IT “Lego brick” provider—it provides a vast
number of pluggable types of resources that can be joined together to create huge,
massively scalable, enterprise-grade applications.

Capacity
AWS houses its computers in more than 60 data centers spread around the world as
shown in Figure 1-2. In AWS terminology, each data center corresponds to an Availa‐
bility Zone (AZ), and clusters of data centers in close proximity to each other are
grouped into regions. AWS has more than 20 different regions, across 5 continents.

That’s a lot of computers.

While the total number of regions continues to grow, so does the capacity within each
region. A vast number of US-based internet companies run their systems in the us-
east-1 region in Northern Virginia (just outside Washington DC)—and the more
companies that run their systems there, the more confident AWS is in increasing the
number of servers available. This is a virtuous cycle between Amazon and its
customers.

What Is AWS? | 7

Figure 1-2. AWS regions (source: AWS)

When you use some of Amazon’s lower-level services, like EC2, you’ll typically spec‐
ify an Availability Zone to use. With the higher-level services, though, you’ll usually
specify only a region, and Amazon will handle any problems for you on an individual
data center level.

A compelling aspect of Amazon’s region model is that each region is largely inde‐
pendent, logistically and from a software management point of view. That means that
if a physical problem like a power outage, or a software problem like a deployment
bug, happens in one region, the others will almost certainly be unaffected. The region
model does make for some extra work from our point of view as users, but overall it
works well.

8 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

https://oreil.ly/61Ztd

Who Uses AWS?
AWS has a vast number of customers, spread all around the planet. Massive enterpri‐
ses, governments, startups, individuals, and everyone in between use AWS. Many of
the internet services you use are probably hosted on AWS.

AWS is not just for websites. Many companies have moved a lot of their “backend” IT
infrastructure to AWS, finding it a more compelling option than running their own
physical infrastructure.

AWS, of course, doesn’t have a monopoly. Google and Microsoft are their biggest
competitors, at least in the English-speaking world, while Alibaba Cloud competes
with them in the growing Chinese market. And there are plenty of other cloud pro‐
viders offering services suited to specific types of customer.

How Do You Use AWS?
Your first interaction with AWS will likely be via the AWS Web Console. To do this,
you will need some kind of access credential, which will give you permissions within
an account. An account is a construct that maps to billing (i.e., paying AWS for the
services you use), but it is also a grouping of defined service configurations within
AWS. Companies tend to run a number of production applications in one account.
(Accounts can also have subaccounts, but we won’t be talking about them too much in
this book—just know that if you’re using credentials supplied by a company, they
might be for a specific subaccount.)

If you haven’t been given credentials by your company, you’ll need to create an
account. You can do this by supplying AWS with your credit card details, but know
that AWS supplies a generous free tier, and if you just stick to the basic exercises in
this book, you shouldn’t end up needing to pay AWS anything.

Your credentials may be in the form of a typical username and password or may be
via a single sign-on (SSO) workflow (e.g., via Google Apps or Microsoft Active Direc‐
tory). Either way, eventually you’ll successfully log in to the web console. Using the
web console for the first time can be a daunting experience, with all 100+ AWS serv‐
ices craving your attention—Amazon Polly shouting “PICK ME!!!” in equal measure
to a strange thing called Macie. And then of course what about all of those services
known only by an acronym—what are they?

Part of the reason for the overwhelming nature of the home page of the AWS Console
is because it really isn’t developed as one product—it’s developed as a hundred differ‐
ent products, all given a link on the home page. Also, drilling into one product may
look quite different from another because each product is given a good amount of
autonomy within the AWS universe. Sometimes using AWS might feel like a

What Is AWS? | 9

https://console.aws.amazon.com

spelunking exercise in navigating the AWS corporate organization—don’t worry, we
all feel that way.

Apart from the web console, the other way of interacting with AWS is via its extensive
API. One great aspect that Amazon has had from very early in its history, even before
the times of AWS, is that each service must be fully usable via a public API, and this
means that for all intents and purposes anything that is possible to configure in AWS
can be done via the API.

Layered on top of the API is the CLI—the command line interface—which we use in
this book. The CLI is most simply described as a thin client application that commu‐
nicates with the AWS API. We talk about configuring the CLI in the next chapter
(“AWS Command Line Interface” on page 26).

What Is AWS Lambda?
Lambda is Amazon’s FaaS platform. We briefly mentioned FaaS earlier, but now it’s
time to dig into it in some more detail.

Functions as a Service
As we introduced before, FaaS is a new way of building and deploying server-side
software, oriented around deploying individual functions or operations. FaaS is
where a lot of the buzz about serverless comes from; in fact, many people think that
serverless is FaaS, but they’re missing out on the complete picture. While this book
focuses on FaaS, we encourage you to consider BaaS too as you build out bigger
applications.

When we deploy traditional server-side software, we start with a host instance, typi‐
cally a VM instance or a container (see Figure 1-3). We then deploy our application,
which usually runs as an operating system process, within the host. Usually our appli‐
cation contains code for several different but related operations; for instance, a web
service may allow both retrieval and updating resources.

Figure 1-3. Traditional server-side software deployment

10 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

From an ownership point of view, we as users are responsible for all three aspects of
this configuration—host instance, application process, and of course program
operations.

FaaS changes this model of deployment and ownership (see Figure 1-4). We strip
away both the host instance and the application process from our model. Instead, we
focus on just the individual operations or functions that express our application’s
logic. We upload those functions individually to a FaaS platform, which itself is the
responsibility of the cloud vendor and not us.

Figure 1-4. FaaS software deployment

The functions are not constantly active in an application process, though, sitting idle
until they need to be run as they would in a traditional system. Instead, the FaaS plat‐
form is configured to listen for a specific event for each operation. When that event
occurs, the platform instantiates the FaaS function and then calls it, passing the trig‐
gering event.

Once the function has finished executing, the FaaS platform is free to tear it down.
Alternatively, as an optimization, it may keep the function around for a little while
until there’s another event to be processed.

FaaS as Implemented by Lambda
AWS Lambda was launched in 2014, and it continues to grow in scope, maturity, and
usage. Some Lambda functions might be very low throughput—perhaps just execut‐
ing once per day, or even less frequently than that. But others may be executed bil‐
lions of times per day.

Lambda implements the FaaS pattern by instantiating ephemeral, managed, Linux
environments to host each of our function instances. Lambda guarantees that only
one event is processed per environment at a time. At the time of writing, Lambda also
requires that the function completes processing of the event within 15 minutes;
otherwise, the execution is aborted.

What Is AWS Lambda? | 11

Lambda provides an exceptionally lightweight programming and deployment model
—we just provide a function, and associated dependencies, in a ZIP or JAR file, and
Lambda fully manages the runtime environment.

Lambda is tightly integrated with many other AWS services. This corresponds to
many different types of event source that can trigger Lambda functions, and this leads
to the ability to build many different types of applications using Lambda.

Lambda is a fully serverless service, as defined by our differentiating criteria from
earlier, specifically:

Does not require managing a long-lived host or application instance
With Lambda we are fully abstracted from the underlying host running our code.
Furthermore, we do not manage a long-lived application—once our code has fin‐
ished processing a particular event, AWS is free to terminate the runtime
environment.

Self auto-scales and auto-provisions, dependent on load
This is one of the key benefits of Lambda—resource management and scaling is
completely transparent. Once we upload our function code, the Lambda platform
will create just enough environments to handle the load at any particular time. If
one environment is enough then Lambda will create the environment when it is
needed. If on the other hand hundreds of separate instances are required, then
Lambda will scale out quickly and without any effort on our part.

Has costs that are based on precise usage, up from and down to zero usage
AWS charges for Lambda only for the time that our code is executing per envi‐
ronment, down to a 100 ms precision. If our function is active for 200 ms every 5
minutes, then we’ll be charged only for 2.4 seconds of usage per hour. This pre‐
cise usage cost structure is the same whether one instance of our function is
required or a thousand.

Has performance capabilities defined in terms other than host size/count
Since we are fully abstracted from the underlying host with Lambda, we can’t
specify a number or type of underlying EC2 instances to use. Instead, we specify
how much RAM our function requires (up to a maximum of 3GB), and other
aspects of performance are tied to this too. We explore this in more detail later in
the book—see “Memory and CPU” on page 59.

Has implicit high availability
If a particular underlying host fails, then Lambda will automatically start envi‐
ronments on a different host. Similarly, if a particular data center/Availability
Zone fails, then Lambda will automatically start environments in a different AZ
in the same region. Note that it’s on us as AWS customers to handle a region-wide
failure, and we talk about this toward the end of the book—see “Globally Dis‐
tributed Applications” on page 238.

12 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

Why Lambda?
The basic benefits of the cloud, as we described earlier, apply to Lambda—it’s often
cheaper to run in comparison to other types of host platform; it requires less effort
and time to operate a Lambda application; and the scaling flexibility of Lambda sur‐
passes any other compute option within AWS.

However, the key benefit from our perspective is how quickly you can build applica‐
tions with Lambda when combined with other AWS services. We often hear of com‐
panies building brand new applications, deployed to production, in just a day or two.
Being able to remove ourselves from so much of the infrastructure-related code we
often write in regular applications is a huge time-saver.

Lambda also has more capacity, more maturity, and more integration points than any
other FaaS platform. It’s not perfect, and some other products in our opinion offer
better “developer UX” than Lambda. But absent any strong tie to an existing cloud
vendor, we would recommend AWS Lambda for all of the reasons listed earlier.

What Does a Lambda Application Look Like?
Traditional long-running server applications often have at least one of two ways of
starting work for a particular stimulus—they either open up a TCP/IP socket and
wait for inbound connections or have an internal scheduling mechanism that will
cause them to reach out to a remote resource to check for new work. Since Lambda is
fundamentally an event-oriented platform and since Lambda enforces a timeout, nei‐
ther of these patterns is applicable to a Lambda application. So how do we build a
Lambda application?

The first point to consider is that at the lowest level Lambda functions can be invoked
(called) in one of two ways:

• Lambda functions can be called synchronously—named RequestResponse by
AWS. In this scenario, an upstream component calls the Lambda function and
waits for whatever response the Lambda function generates.

• Alternatively, a Lambda function may be invoked asynchronously—named Event
by AWS. This time the request from the upstream caller is responded to immedi‐
ately by the Lambda platform, while the Lambda function proceeds with process‐
ing the request. No further response is returned to the caller in this scenario.

These two invocation models have various other behaviors, which we get into later,
starting with “Invocation Types” on page 43. For now let’s see how they are used in
some example applications.

What Is AWS Lambda? | 13

Web API
An obvious question to ask is whether Lambda can be used in the implementation of
an HTTP API, and fortunately the answer is yes! While Lambda functions aren’t
HTTP servers themselves, we can use another AWS component, API Gateway, to
provide the HTTP protocol and routing logic that we typically have within a web
service (see Figure 1-5).

Figure 1-5. Web API using AWS Lambda

The above diagram shows a typical API as used by a single-page web app or by a
mobile application. The user’s client makes various calls, via HTTP, to the backend to
retrieve data and/or initiate requests. In our case, the component that handles the
HTTP aspects of the request is Amazon API Gateway—it is an HTTP server.

We configure API Gateway with a mapping from request to handler (e.g., if a client
makes a request to GET /restaurants/123, then we can set up API Gateway to call a
Lambda function named RestaurantsFunction, passing the details of the request).
API Gateway will invoke the Lambda function synchronously and will wait for the
function to evaluate the request and return a response.

Since the Lambda function instance isn’t itself a remotely callable API, the API Gate‐
way actually makes a call to the Lambda platform, specifying the Lambda function to
invoke, the type of invocation (RequestResponse), and the request parameters. The
Lambda platform then instantiates an instance of RestaurantsFunction and invokes
that with the request parameters.

The Lambda platform does have a few limitations, like the maximum timeout we’ve
already mentioned, but apart from that, it’s pretty much a standard Linux environ‐
ment. In RestaurantsFunction we can, for example, make a call to a database—
Amazon’s DynamoDB is a popular database to use with Lambda, partly due to the
similar scaling capabilities of the two services.

Once the function has finished its work, it returns a response, since it was called in a
synchronous fashion. This response is passed by the Lambda platform back to API

14 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

Gateway, which transforms the response into an HTTP response message, which is
itself passed back to the client.

Typically a web API will satisfy multiple types of requests, mapped to different HTTP
paths and verbs (like GET, PUT, POST, etc.). When developing a Lambda-backed web
API, you will usually implement different types of requests as different Lambda func‐
tions, although you are not forced to use such a design—you can handle all requests
as one function if you’d like and switch logic inside the function based on the original
HTTP request path and verb.

File processing
A common use case for Lambda is file processing. Let’s imagine a mobile application
that can upload photos to a remote server, which we then want to make available to
other parts of our product suite, but at different image sizes, as shown in Figure 1-6.

Figure 1-6. File processing using AWS Lambda

S3 is Amazon’s Simple Storage Service—the very same that was launched in 2006.
Mobile applications can upload files to S3 via the AWS API, in a secure fashion.

S3 can be configured to invoke the Lambda platform when the file is uploaded, speci‐
fying the function to be called, and passing a path to the file. As with the previous
example, the Lambda platform then instantiates the Lambda function and calls it with
the request details passed this time by S3. The difference now, though, is that this is
an asynchronous invocation (S3 specified the Event invocation type)—no value is
returned to S3 nor does S3 wait for a return value.

This time our Lambda function exists solely for the purpose of a side effect—it loads
the file specified by the request parameter and then creates new, resized versions of
the file in a different S3 bucket. With the side effects complete, the Lambda function’s
work is done. Since it created files in an S3 bucket, we may choose to add a Lambda
trigger to that bucket also, invoking further Lambda functions that process these gen‐
erated files, creating a processing pipeline.

Other examples of Lambda applications
The previous two examples show two scenarios, with two different Lambda event
sources. There are many other event sources that enable us to build many other types
of applications. Just some of these are as follows:

What Is AWS Lambda? | 15

• We can build message-processing applications, using message buses like Simple
Notification Service (SNS), Simple Queue Service (SQS), EventBridge, or Kinesis
as the event source.

• We can build email-processing applications, using Simple Email Service (SES) as
the event source.

• We can build scheduled-task applications, similar to cron programs, using
CloudWatch Scheduled Events as the trigger.

Note that many of these services other than Lambda are BaaS services and therefore
also serverless. Combining FaaS and BaaS to produce serverless architectures is an
extraordinarily powerful technique due to their similar scaling, security, and cost
characteristics. In fact, it’s such combinations of service that are driving the popular‐
ity of serverless computing.

We talk in depth about building applications in this way in Chapter 5.

AWS Lambda in the Java World
AWS Lambda natively supports a large number of languages. JavaScript and Python
are very popular “getting started” languages for Lambda (as well as for significant
production applications) partly because of their dynamically typed, noncompiled
nature allowing for very fast development cycles.

We both got our start, however, using Lambda with Java. Java occasionally has a bad
reputation in the Lambda world—some of which is fair, and some not. If what you
need in a Lambda function can be expressed in 10 lines or so, it’s typically quicker to
put something together in JavaScript or Python. However, for larger applications,
there are many excellent reasons to implement Lambda functions in Java, a couple of
which are as follows:

• If you or your team is more familiar with Java than the other Lambda-supported
languages, then you’ll have the ability to reuse these skills and libraries in a new
runtime platform. Java is as much a “first-class language” in the Lambda ecosys‐
tem as JavaScript, Python, Go, etc., are—Lambda is not limiting you if you use
Java. Further, if you already have a lot of code implemented in Java, then porting
some of this to Lambda can be a significant time-to-market advantage, in com‐
parison to reimplementing in a different language.

• In high throughput messaging systems, the typical runtime performance benefit
of Java over JavaScript or Python can be significant. Not only is “faster” normally
“better” in any system, with Lambda “faster” can also result in tangible cost bene‐
fits due to Lambda’s pricing model.

16 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

For JVM workloads, Lambda natively supports, at the time of writing, the Java 8 and
Java 11 runtimes. The Lambda platform will instantiate a version of the Java Runtime
Environment within its Linux environment and then run our code within that Java
VM. Our code, therefore, must be compatible with that runtime environment, but
we’re not restricted to just using the Java language. Scala, Clojure, Kotlin, and more,
can all be run on Lambda (see more at “Other JVM Languages and Lambda” on page
223).

There’s also an advanced option with Lambda to define your own runtime if neither
of these Java versions is sufficient—we discuss this further in “Custom Runtimes” on
page 223.

The Lambda platform supplies a few basic libraries with the runtime (e.g., a small
subset of the AWS Java library) but any other libraries that your code needs must be
supplied with your code itself. You will learn how to do that in “Build and Package”
on page 65.

Finally, while Java has the programming construct of Lambda expressions, these are
unrelated to AWS Lambda functions. You are free to use Java Lambda expressions
within your AWS Lambda function if you’d like (since AWS Lambda supports Java 8
and later) or not.

Summary
In this chapter, you learned how serverless computing is the next evolution of the
cloud—a way of building applications by relying on services that handle resource
management, scaling, and more, transparently and without configuration.

Further, you now understand that functions as a service (FaaS) and backend as a ser‐
vice (BaaS) are the two halves of serverless, with FaaS being the general-purpose
computing paradigm within serverless. For more information on serverless in gen‐
eral, we refer you to our free O’Reilly ebook What Is Serverless?

You also have at least a basic knowledge of Amazon Web Services—one of the world’s
most popular cloud platforms. You’ve learned about the vast capacity that AWS has to
host our applications and how you access AWS both via the web console and the API/
CLI.

You’ve been introduced to AWS Lambda—Amazon’s FaaS product. We compared
“thinking in Lambda” to a traditionally built application, talked about why you may
want to use Lambda versus other FaaS implementations, and then gave some exam‐
ples of applications built using Lambda.

Finally, you saw a quick overview of Java as a Lambda language option.

Summary | 17

https://oreil.ly/nnjwh
https://oreil.ly/5YbLa

In Chapter 2 we implement our first Lambda function—get ready for a brave new
world!

Exercises
1. Acquire credentials for an AWS account. The easiest way to do this is by creating

a new account. As we mentioned earlier, if you do this, you’ll need to supply a
credit card number, but everything we do in this book should be covered by the
free tier, unless you get very enthusiastic with tests!
Alternatively you can use an existing AWS account, but if so, we recommend
using a “development” account so as not to interfere with any “production”
systems.
We also strongly recommend that whatever access you use grants you full admin‐
istrative permissions within the account; otherwise, you’ll be bogged down by
distracting security issues.

2. Log in to the AWS Console. Find the Lambda section—are there any functions
there yet?

3. Extended task: Look at Amazon’s serverless marketing page, specifically where it
describes the various services in its “serverless platform.” Which of these services
fully satisfy the differentiating criteria of a serverless service we described earlier?
Which don’t, and in what ways are they “mostly” serverless?

18 | Chapter 1: Introduction to Serverless, Amazon Web Services, and AWS Lambda

https://aws.amazon.com
https://console.aws.amazon.com
https://aws.amazon.com/serverless

CHAPTER 2

Getting Started with AWS Lambda

Chapter 1 provided you with the background for the rest of this book: the cloud,
serverless, AWS, and an introduction to what Lambda is, how it works, and what it
can be used for. But this is a practical book, for practical people, so in this chapter
we’re going to roll up our sleeves and deploy some working functions to the cloud.

We’ll start by getting you a little more acclimated with the AWS Console, and then
we’ll deploy and run our first Lambda function. After that we’ll get a local develop‐
ment environment ready, and finally we’ll build and deploy a locally developed func‐
tion to Lambda.

If you’re already experienced with AWS, please feel free to skip
ahead to “Lambda Hello World (as Quickly as Possible)” on page
22.

Quick Guide to the AWS Console
The first two exercises in Chapter 1 involved acquiring AWS credentials and then log‐
ging into the AWS Web Console. If you haven’t done that already, you should do that
now.

Slightly confusingly, there are three different types of credential that you may have
used to log in:

19

https://console.aws.amazon.com

• You may have used the account “root” user, using an email address and password.
This is equivalent to using the root user in a Linux system.

• You may have used an “IAM user” and password. In this case you will have also
needed to have provided the numeric AWS account ID (or an AWS account
alias).

• Finally, you might have used a single sign-on method (e.g., via a Google Apps
account).

Are you signed in successfully now? Great! Let’s go on a little tour of the AWS world.

First of all, a quick word of warning/explanation. The AWS Web
Console has frequent UX changes, and by the time you read this
book, some of the UI may look different than what you see here in
the book. We’ll do what we can to explain the intent of an example,
not just the interactions, so that you’ll still be able to follow along
when Amazon changes its UI.

Regions
Let’s dive in. First let’s talk regions. At the top right you’ll see the currently selected
region (Figure 2-1).

Figure 2-1. Currently selected region

As you learned in Chapter 1, AWS organizes its infrastructure into data centers called
Availability Zones (AZs) and then clusters AZs into a closely located group known as
a region. Each region operates semi-autonomously. Right now you’re looking at the
web console home page for a specific region—in our previous example that’s Oregon,
otherwise known as the us-west-2 region.

You don’t have to use the default region that was selected when you log in—you’re
free to traverse the globe in search of the right region for you. Click the region name
and see the list of regions available to you (Figure 2-2).

20 | Chapter 2: Getting Started with AWS Lambda

Figure 2-2. Pick a region

For what we’re going to be covering in this book, any region should be sufficient.
We’re going to be defaulting to US West (Oregon) for everything we do, and you may
want to use that too as a fallback choice, but feel free to use a region closer to your
home if you’d like.

Quick Guide to the AWS Console | 21

Identity and Access Management
Now let’s pick our first service. On the web console home page, either expand all
services and find the one named IAM or search for IAM in the search box, and select
it.

IAM stands for Identity and Access Management—it’s the most fundamental security
service within AWS. It’s also one of the few AWS services that is not tied to any one
region (note the reference to Global where your region used to be defined).

IAM lets you create “IAM users,” groups, roles, policies, and more. If you’re using the
AWS account you created for this book (and therefore used the “root” email address
user to log in), we recommend creating an IAM user for future work. We’ll describe
how to do this in “Acquiring credentials for the AWS CLI” on page 28.

Roles are like users, in that they can be used to allow a human, or process, to acquire
certain privileges in order to fulfill a task. Unlike users, they don’t have a username or
password, and instead a role must be assumed in order to be used.

One of the things you’ll quickly discover is that AWS are sticklers for security. When
you create Lambda functions, you must specify a role that it is to assume when it is
executing. AWS will not give it a default role if one isn’t specified. We’ll see this when
we create our first function in a moment.

It’s crucial that you have a fundamental understanding of IAM, since aspects like roles
and policies are ubiquitous in Lambda development. We give you a thorough
grounding of IAM in “Identity and Access Management” on page 78.

Lambda Hello World (as Quickly as Possible)
In this section we’re going to deploy and run our first Lambda function. We’ll let you
in on a little secret—we’re going to do this with JavaScript. Shhh—don’t tell our
editors—we promised this would be a Java book!

The reason for doing this first example in JavaScript is that we can do the whole exer‐
cise purely in the web browser, giving us a taste of what’s possible in Lambda in just a
few minutes.

First, go back to the AWS Web Console home screen, and pick Lambda. If you’ve
never used Lambda in this account before, you’ll get a screen that looks something
like Figure 2-3.

22 | Chapter 2: Getting Started with AWS Lambda

Figure 2-3. Lambda welcome screen

If Lambda has been used in this account before, the web console will look more like
Figure 2-4.

Figure 2-4. Lambda function list

Again, it might look different depending on when you read this due to Amazon’s
ever-changing UI designs.

Either way, click Create function, and then choose Author from scratch—there are
some other options here for getting started with more complicated functions, but
we’re going to be doing something very simple right now.

Lambda Hello World (as Quickly as Possible) | 23

In the name box (see Figure 2-5), type HelloWorld, and under Runtime click Node.js
10.x. Don’t worry, we’ll be working with Java soon! Now click Create function.

Figure 2-5. Create HelloWorld function

If after doing this the console expands the Permissions section, select Create a new
role with basic Lambda permissions in the Execution role drop-down, and then click
Create function again (see Figure 2-6).

24 | Chapter 2: Getting Started with AWS Lambda

Figure 2-6. Create HelloWorld function, specifying to create a new role

Lambda will create a Lambda function configuration within the Lambda platform
and bring you to the main console page for the Lambda function after a short wait.

If you scroll down, you’ll see that it’s even given the function some default code—that
code is perfectly fine for us for now.

Scroll back to the top, and click the Test button. This will open a dialog named Con‐
figure test event—enter HelloWorldTest in the Event name box, and click Create. This
will take you back to the Lambda function screen. Now click Test again.

This time Lambda will actually execute your function, and there will be a short delay
as it instantiates an environment for the code. Then you’ll see a box with Execution
result—it should say that the function succeeded!

Expand the Details control, and you’ll see the value returned from your function, plus
some other diagnostics (see Figure 2-7).

Lambda Hello World (as Quickly as Possible) | 25

Figure 2-7. HelloWorld executed

Congratulations—you’ve created and run your first Lambda function!

Setting Up Your Development Environment
Now that you have a little taste of running functions (no servers!), we’ll turn to
actually building and deploying Java Lambda functions in a way more suited to rapid
iteration and automation.

First you need to set up a local development environment.

AWS Command Line Interface
If you’ve used the AWS CLI before and already have it configured on your machine
you can skip ahead.

26 | Chapter 2: Getting Started with AWS Lambda

Installing the AWS CLI
Amazon and AWS are built on APIs. In this classic story of Amazon’s API mandate,
we see that “All teams will henceforth expose their data and functionality through ser‐
vice interfaces” and “All service interfaces, without exception, must be designed from
the ground up to be externalizable.” What this means is that almost anything that we
can do through the AWS Web Console UI we can also do using the AWS API and
CLI.

The AWS API is a large collection of HTTP endpoints that we can call to perform
actions within AWS. While calling the API directly is perfectly supported, it’s also a
little laborious due to things like authentication/request signing, correct serialization,
etc. For this reason, AWS gives us two tools to make things easier—SDKs and the
CLI.

Software development kits (SDKs) are libraries that AWS provides that we can use
within our code to call the AWS APIs, smoothing some of the tricky or repetitive
points of doing so, for example authentication. We use the SDKs later in the book—
“Example: Building a Serverless API” on page 92 looks at this subject in depth.

For now though, we’re going to use the AWS CLI. The CLI is a tool you can use from
a terminal—it wraps the AWS API, so almost anything available through the API is
also accessible via the CLI.

You can use the CLI on macOS, Windows, and Linux; however, all the examples and
suggestions we give are for macOS. If you use a different operating system for your
development machine, then you should combine the instructions here with whatever
is specified in the AWS CLI documentation.

Follow these instructions to install the CLI. If you use a Mac and Homebrew, instal‐
ling the CLI is as simple as running brew install awscli.

To validate your install of the CLI, run aws --version from a terminal prompt. It
should return something similar to the following:

$ aws --version
aws-cli/1.15.30 Python/3.6.5 Darwin/17.6.0 botocore/1.10.30

The precise output will depend on your operating system, among other factors.

Setting Up Your Development Environment | 27

https://oreil.ly/AixTf
https://oreil.ly/84dGt
https://brew.sh

A Quick Note on Operating Systems
We developed this book using the Mac operating system (specifically macOS 10.14
Mojave), and all examples were tested with this OS.

Linux users should be able to use all the examples we give without any changes.

Windows users will need to modify the examples related to running commands from
a terminal in a number of places, in the following ways:

• Where we use an example starting with a $ (e.g., the one immediately preceding
this section: $ aws --version), you should run the command that follows after
the $ in your machine’s terminal/command prompt.

• Single quotes (') can often be substituted by double quotes (").
• Double quotes (") can be escaped with backslashes like this: \".
• For variable substitution (where in the examples we say, e.g., $CF_BUCKET) use the

form %CF_BUCKET%.
• Instead of the cat command, use the type command.
• The backslashes used to indicate multiline commands in the examples should be

removed—instead, make one long line and execute that at the command prompt.

Acquiring credentials for the AWS CLI
The credentials that you use with the AWS CLI are different from those that you used
to log in to the AWS Web Console. For the CLI, you need two values: an Access Key
ID along with its Secret Access Key. If you already have these values, feel free to skip
ahead to the next section.

The Access Key ID and Secret Access Key pair are credentials that are assigned to an
IAM user. It’s also possible to assign a key and secret to the account root user associ‐
ated with an email address, but AWS strongly advises against doing this for security
reasons, and so do we.

If you don’t already have an IAM user (because you logged in with the root user, or
because you used SSO), you’ll need to create an IAM user. To do this, go to the IAM
console in the AWS Web Console that we visited earlier in this chapter. Click on Users
and double-check that there isn’t a user on that screen for you (see Figure 2-8).

28 | Chapter 2: Getting Started with AWS Lambda

Figure 2-8. IAM user list

If you do in fact need to create a user, click Add user. On the first screen, give your
user a name and select both Programmatic access and AWS Management Console
access. Then select Custom password and enter a new password—this will be the pass‐
word for logging in to the AWS Web Console with this new user, should you wish to
do so. Deselect Password reset (see Figure 2-9). Then click Next: Permissions.

Figure 2-9. Add IAM user

On the next screen, select Attach existing policies directly and select Administrator
Access (see Figure 2-10). For the sake of learning Lambda, having a user with full

Setting Up Your Development Environment | 29

permissions is going to make our lives much easier. You should not do this for real
production accounts.

Figure 2-10. Add IAM user permissions

Click Next: Tags and on the screen after that Next: Review.

On the next screen, check that the details correspond to what we just described and
click Create user.

On the final screen you’ll be given the programmatic security credentials for your
new user! Copy the Access Key ID and the Secret Access Key (after revealing it) to a
note (keep it secure), or download the provided CSV file. Finally, click Close.

If you already had an IAM user, but no programmatic credentials, or you lose the cre‐
dentials for the account you just created, go back to the User list in the IAM console,
select the user, and then choose the Security credentials tab. You’ll be able to create a
new Access Key (and associated Secret Access Key ID) from there.

30 | Chapter 2: Getting Started with AWS Lambda

Configuring the AWS CLI

Now it’s time to configure the CLI. From a terminal run aws configure. For the first
two fields, paste the values you copied from the previous section. For your default
region name, type the region code that corresponds to your chosen AWS region.
You’ll see the region code in the drop-down in the web console (these mappings can
also be found in the AWS documentation). Because we’ve picked Oregon for our
examples in the web console, we’ll use us-west-2 for the examples at our terminal.
Finally, for the default output format, type json.

If you’ve already configured a different AWS account in the CLI
and are adding a new one for this book, you’ll need to create a dif‐
ferent profile; otherwise the preceding instructions will replace
your existing credentials. Use the --profile option of aws config
ure, and see more details in the AWS documentation.

To confirm your values, run aws configure again, and you’ll see your settings, some‐
thing like the following:

$ aws configure
AWS Access Key ID [********************]:
AWS Secret Access Key [********************]:
Default region name [us-west-2]:
Default output format [json]:

A good way to quickly validate your AWS profile is to run the command aws iam
get-user, which should result in something that looks like the following, where User
Name is the name of the correct IAM user:

$ aws iam get-user
{
 "User": {
 "Path": "/",
 "UserName": "book",
 "UserId": "AIDA111111111111111111",
 "Arn": "arn:aws:iam::181111111111:user/book",
 "CreateDate": "2019-10-21T20:27:05Z"
 }
}

If you need more help, visit the documentation.

Java Setup
Now that you have a local AWS environment, it’s time to get set up with Java.

Setting Up Your Development Environment | 31

https://oreil.ly/sV10t
https://oreil.ly/Aj5y5
https://oreil.ly/JMtUt

Java Versions and AWS Lambda
During almost all of the time we were writing this book, the only Java Runtime sup‐
ported by AWS Lambda was Java 8. Because of this, all of the examples in this book
assume Java 8, and we used the Java 8 Runtime and SDK for developing all of the code
examples.

Just as we were finishing our final edits AWS announced Lambda support for Java 11.
Because this announcement came right before we finished the book, we haven’t had
the chance to make any changes related to Java 11.

Our initial understanding of Java 11 support in Lambda, however, is that there are no
breaking changes with respect to the Java 8 Lambda runtime. This means you should
be able to use Java 9, 10, and 11 features in your Java code if you choose the Java 11
Runtime and that everything else in this book still holds true—you just may want to
update the code to use newer Java capabilities!

As we learn more about the Java 11 Lambda runtime, we’ll be updating our blog, so
please check in to see what we discover.

AWS Lambda supports Java 8 and Java 11, and it’s strongly recommended that you
have the same major version of the Java SE Development Kit available locally as you
are configuring your Lambda functions for. Most operating systems support having
multiple versions of Java installed.

If you don’t already have Java installed, then you have at least a couple of options:

• One is AWS’s own distribution of Java—Corretto. Corretto, in AWS’s words is, “a
no-cost, multiplatform, production-ready distribution of the Open Java Develop‐
ment Kit (OpenJDK).” See “What Is Amazon Corretto 8?"” for Java 8 or “What Is
Amazon Corretto 11?” for Java 11 for details of installing Corretto.

• Another option is Oracle’s own distribution; however, this now comes with
licensing caveats that may be an issue for your use.

At this time, the difference as far as Lambda developers are concerned between these
two options is mostly a legal, rather than technical, one. However, we expect AWS to
transition all of their Java environments to Corretto where they haven’t done so
already, so if in doubt we recommend Lambda developers pick the Corretto Java
SDK.

To validate your Java environment, run java -version from a terminal, and you
should see something like the following:

$ java -version
openjdk version "1.8.0_232"

32 | Chapter 2: Getting Started with AWS Lambda

https://blog.symphonia.io
https://oreil.ly/9AYfs
https://oreil.ly/SB2-J
https://oreil.ly/SB2-J
https://oreil.ly/WnBD8

OpenJDK Runtime Environment Corretto-8.232.09.1 (build 1.8.0_232-b09)
OpenJDK 64-Bit Server VM Corretto-8.232.09.1 (build 25.232-b09, mixed mode)

The precise build version of Java doesn’t matter (although it’s always prudent to keep
up-to-date with security patches), but it is important that you have the correct base
version.

We also use Maven—the build and packaging tool. If you’ve already installed Maven,
make sure it’s somewhat up-to-date. If you haven’t installed Maven and use a Mac,
then we recommend using Homebrew to install it—run brew install maven. Other‐
wise, see the Maven home page for installation instructions.

Open a terminal and run mvn -v to validate your environment. You should see some
output that starts with something like the following:

$ mvn -v
Apache Maven 3.6.0 (97c98ec64a1fdfee77...
Maven home: /usr/local/Cellar/maven/3.6.0/libexec
Java version: 1.8.0_232, vendor: Amazon.com Inc., runtime: /Library/Java...
Default locale: en_US, platform encoding: UTF-8
OS name: "mac os x", version: "10.14.6", arch: "x86_64", family: "mac"

Any 3.x version of Maven will be fine for our needs in this book.

Finally, you should be comfortable creating Java projects that use Maven in your
development editor of choice. We use the free version of IntelliJ IDEA, but you
should feel free to use whatever editor you want.

AWS SAM CLI Installation
The final tool you need to install is the AWS SAM CLI. SAM stands for Serverless
Application Model, and we explore it later in “CloudFormation and the Serverless
Application Model” on page 74. For now all you need to know is that the SAM CLI
layers on top of the regular AWS CLI to give us some useful extra tools.

To install SAM, refer to the comprehensive instructions. If you’re in a hurry, you can
skip the elements of the documentation that refer to Docker since we won’t use those,
at least not initially!

We use some features of SAM CLI that were introduced in late
2019, so make sure to update it if you’re using an earlier version.

Setting Up Your Development Environment | 33

https://maven.apache.org
https://oreil.ly/RWtqv
https://oreil.ly/slxxA

Lambda Hello World (the Proper Way)
With our development environment ready, it’s time to create and deploy a Lambda
function written in Java.

Creating Your First Java Lambda Project
There’s some “boilerplate code” necessary in building and deploying a Lambda func‐
tion in an automated way. We’re going to go through all the complexities over the
course of this book, but to get you up and running quickly, we’ve created a template
to speed things up.

First, go to a terminal and run the following command:

$ sam init --location gh:symphoniacloud/sam-init-HelloWorldLambdaJava

This will ask you for a project_name value, and for now just hit Enter to use the
default.

The command will then generate a project directory. Change into that directory, and
take a look. You’ll see the following files:

README.md
Some instructions on how to build and deploy the project

pom.xml
A Maven project file

template.yaml
A SAM template file—used for deploying the project to AWS

src/main/java/book/HelloWorld.java
The source code for a Lambda function

Now open the project in your IDE/editor of choice. If you’re using Jetbrains IntelliJ
IDEA, you can do that by running the following:

$ idea pom.xml

Within the pom.xml file itself, change the <groupId> to be more appropriate for your‐
self, if you’d like.

Now take a look at Example 2-1, which shows the src/main/java/book/Hello‐
World.java file.

34 | Chapter 2: Getting Started with AWS Lambda

Example 2-1. Hello World Lambda (in Java)

package book;

public class HelloWorld {
 public String handler(String s) {
 return "Hello, " + s;
 }
}

This class represents an entire Java Lambda function. Small, isn’t it? Don’t worry too
much about the whats and whys; we’ll get to them before too long. For now, let’s build
our Lambda deployment artifact.

Building Hello World
We deploy code to the Lambda platform by uploading a ZIP file, or in the Java world
we can also deploy a JAR file (a JAR is just a ZIP with some embedded metadata). For
now we’re going to create an uberjar—a JAR that contains all of our code, plus all the
classpath dependencies our code needs that aren’t in the JVM environment we’ll be
running on.

The template project that you’ve just created is set up to create an uberjar for you.
We’re not going to examine that now because in Chapter 4 we’ll go much deeper into
a better method of producing a Lambda ZIP file (“Assembling a ZIP File” on page 67).

To build the JAR file, from your project’s working directory, run mvn package. This
should complete successfully with the following lines near the end:

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

It should also create our uberjar. Run jar tf target/lambda.jar to list the contents
of the JAR file. The output should include book/HelloWorld.class, which is our
application code, embedded within the artifact.

Creating the Lambda Function
Earlier in the chapter we walked you through creating a Lambda function via the web
console. Now we’re going to do the same thing from the terminal. We’re going to use
two further commands using sam to do this.

Before we do that, however, we need to create or identify a staging bucket within the
S3 AWS Service where we can store temporary build artifacts. If you followed the
AWS instructions for installing the SAM CLI or already know that you have one of
these buckets available from your current AWS account, feel free to use it. Otherwise

Lambda Hello World (the Proper Way) | 35

you can create one using the following command, substituting your own name for
bucketname. Note that S3 bucket names need to be globally unique, across all AWS
accounts, so you may need to try a few to get one that’s available:

$ aws s3 mb s3://bucketname

Once you’ve done this successfully, note this bucket name—we’ll be using it a lot
throughout the rest of the book and will refer to it as $CF_BUCKET.

Wherever you see $CF_BUCKET from now on, use the bucket name
that you just created. Why CF? That stands for CloudFormation,
which we’ll explain in Chapter 4.

Alternatively, if you’re more shell-script-savvy, assign this bucket name to a shell vari‐
able named CF_BUCKET, and then you can verbatim use the references to $CF_BUCKET.

With the S3 bucket ready, we can create our Lambda function. Run the following
(after running mvn package):

$ sam deploy \
 --s3-bucket $CF_BUCKET \
 --stack-name HelloWorldLambdaJava \
 --capabilities CAPABILITY_IAM

Again, don’t worry too much for now what this all means—we’ll explain it later. If this
worked correctly, the console output should end with the following (although your
region may be different):

Successfully created/updated stack—HelloWorldLambdaJava in us-west-2

This means that your function is deployed and ready to run, so let’s do that.

Running the Lambda function
Go back to the Functions list in the Lambda web console, and you should now see
two functions listed: the original HelloWorld and a new one with a name that will be
something like HelloWorldLambdaJava-HelloWorldLambda-YF5M2KZHXZF5. If you
don’t see the new Java one, make sure you have your regions in sync between the ter‐
minal and the web console.

Click through to the new function and take a look at the configuration screen. You’ll
see that the source code is no longer available since the function was created with a
compiled artifact.

36 | Chapter 2: Getting Started with AWS Lambda

To test this function, we need to create a new test event. Click Test again, and on the
Configure test event screen (Figure 2-11), give the event name HelloWorldJavaEvent.
In the actual event body section, enter the following:

"Java World!"

Figure 2-11. Configure test event for Java Lambda function

Click Create to save the test event.

This should take you back to the main Lambda screen, with the new test event
selected (if it isn’t, select it manually). Click Test, and your Lambda function will be
executed! (See Figure 2-12.)

Figure 2-12. Result for Hello World in Java

Lambda Hello World (the Proper Way) | 37

Tearing Down Resources
In this book, almost every example we give will be deployed using CloudFormation—
either directly or indirectly using SAM. We talk in detail about CloudFormation in
Chapter 4 (see “CloudFormation and the Serverless Application Model” on page 74),
but one important aspect we want to discuss now is how you can clean up any
examples.

When you run sam deploy, it creates or updates a CloudFormation stack—a set of
resources that has a name, which you’ve seen already with the --stack-name parame‐
ter of sam deploy.

When you want to clean up your AWS account after trying an example, the simplest
method is to find the corresponding CloudFormation stack in the AWS Web Console
(in the CloudFormation section) and delete the stack using the Delete button.

Alternatively, you can tear down the stack from the command line. For example, to
tear down the HelloWorldLambdaJava stack, run the following:

$ aws cloudformation delete-stack --stack-name HelloWorldLambdaJava

The only example where we don’t use CloudFormation is the very first one earlier in
this chapter—the HelloWorld JavaScript function—which can be deleted using the
Lambda section of the AWS Web Console.

Summary
In this chapter, you learned how to sign in to the AWS Web Console and pick a
region. Then you created and ran your first Lambda function, via the web console.

You also prepared your local environment for Lambda development by setting up the
AWS CLI, Java, Maven, and the AWS SAM CLI. You learned the basics of developing
Lambda functions in Java by creating a project in your development environment,
building it, and deploying it using Amazon’s SAM tooling. Finally, you now under‐
stand how to perform simple testing of Lambda functions by simulating events using
the web console’s test event mechanism.

In the next chapter, we’ll start taking a look at how Lambda works, and the ways that
impacts how you write Lambda code.

38 | Chapter 2: Getting Started with AWS Lambda

Exercises
1. If you haven’t run through the step-by-step descriptions in this chapter, then it’s

worth doing that now since it’s a good way to validate your environment.
2. Create a new version of the Java Lambda function with slightly different code, by

using a different stack-name value at sam deploy time. Note how you can select
between these functions in the web console.

Exercises | 39

CHAPTER 3

Programming AWS Lambda Functions

This chapter is about digging into what it means to build Lambda functions—what do
they look like, how do you configure how they run, and how do you specify your own
environmental configuration. You’ll learn about these topics by examining core con‐
cepts for Lambda execution environments, input and output, timeout, memory and
CPU, and finally, how Lambda uses environment variables for application
configuration.

To start, let’s take a look at how Lambda functions are executed. Grab your hiking
boots—it’s time to explore.

Core Concepts: Runtime Model, Invocation
In Chapter 2, you created a Java class, uploaded it to the Lambda service somewhere
in the nebulous “cloud,” and magically were able to execute that code. You didn’t have
to consider operating systems, containers, startup scripts, deployment of the code to
an actual host, or JVM settings. Nor did you think about any of those pesky “servers.”
So how did your code execute?

To understand this, you need to first understand the basics of the Lambda execution
environment, as shown in Figure 3-1.

41

Figure 3-1. The Lambda execution environment

The Lambda Execution Environment
As we mentioned in Chapter 2 (see “Installing the AWS CLI” on page 27), both AWS
management and function operations (often referred to as the control plane and data
plane, respectively) make extensive use of APIs. Lambda is no different and offers an
API both for management of functions and for execution of functions.

A function is executed, or invoked, whenever the invoke command of the AWS
Lambda API is called. This happens at the following times:

• When a function is triggered by an event source
• When you use the test harness in the web console
• When you call the Lambda API invoke command yourself, typically via the CLI

or SDK, from your own code or scripts

Invoking a function for the first time will start the following chain of activity that will
end in your code being executed.

First, the Lambda service will create a host Linux environment—a lightweight micro-
virtual machine. You typically won’t need to worry about the precise nature of what
type of environment it is (which kernel, what distribution, etc.), but if you do care,
Amazon makes that information public. But don’t rely on it staying constant—Ama‐
zon can and does make frequent changes to the OS of Lambda functions, often for
your own benefit, including automatic security patches.

Once the host environment has been created, then Lambda will start a language run‐
time within it—in our case a Java virtual machine. At the time of this writing, the
JVM version will always be Java 8 or Java 11. You must supply Lambda with code
compatible with the version of Java that you choose. The JVM is started with a set of
environment flags that we can’t change.

42 | Chapter 3: Programming AWS Lambda Functions

You may have noticed when we wrote our code that there was no “main” method—
the top-level Java application is Amazon’s own Java application server, which we’ll
refer to as the Lambda Java Runtime; that’s the next component to be started. The
runtime is responsible for top-level error handling, logging, and more.

Of course, the Lambda Java Runtime’s primary concern is executing our code. The
final steps of the invocation chain are (a) to load our Java classes and (b) to call the
handler method that we specified during deployment.

Invocation Types
Great—our code is alive! What happens next?

To explore this, let’s start using the AWS CLI. In Chapter 2 we used the higher-level
SAM CLI tool—the AWS CLI is a little closer to the guts of the AWS machine. Specif‐
ically, we’re going to use a command in the AWS CLI for calling Lambda functions:
aws lambda invoke.

Assuming you ran the examples in Chapter 2, let’s start with a small update. Open the
template.yaml file (which we’ll refer to as the SAM template occasionally from now
on), and within the properties section, add a new property named FunctionName with
the value HelloWorldJava so that the resource section looks as follows:

HelloWorldLambda:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: HelloWorldJava
 Runtime: java8
 MemorySize: 512
 Handler: book.HelloWorld::handler
 CodeUri: target/lambda.jar

Run the sam deploy command from Chapter 2 again. This should complete after a
couple of minutes. If you go back to the Lambda console, you’ll see your strangely
named Java function has now been renamed to HelloWorldJava. In most real-use
cases, we like using the generated names that AWS provides, but when we’re learning
about Lambda, it’s nice to be able to refer to functions with more succinct names.

To use the Java 11 runtime instead of Java 8, simply change the Run
time: property in your SAM template from java8 to java11.

Core Concepts: Runtime Model, Invocation | 43

Let’s get back to invocation. From the terminal, run the following command:

$ aws lambda invoke \
 --invocation-type RequestResponse \
 --function-name HelloWorldJava \
 --payload \"world\" outputfile.txt

This should return the following:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

You can tell that everything was OK because StatusCode was 200.

You can also see what the Lambda function returned by executing the following:

$ cat outputfile.txt && echo
"Hello, world"

When we executed the invoke command, the Lambda function was first instantiated,
as we described in the previous section. With instantiation complete, the Lambda Java
Runtime, itself within the JVM, then called our Lambda function with the data that
we passed in the payload parameter—in this case the string "world".

Our code then ran. As a reminder, here it is:

public String handler(String s) {
 return "Hello, " + s;
}

It takes our input ("world"), and returns "Hello, world".

There’s an important but subtle point here. When we called invoke, we specified
--invocation-type RequestResponse—this means that we are calling the function
synchronously (i.e., the Lambda runtime calls our code and waits for the result). We
explained this in “What Does a Lambda Application Look Like?” on page 13. Syn‐
chronous behavior is useful for scenarios like web APIs.

Because we called the function synchronously, the Lambda runtime was able to
return the response to our terminal, and this is what was saved to outputfile.txt.

Now let’s invoke the function slightly differently:

$ aws lambda invoke \
 --invocation-type Event \
 --function-name HelloWorldJava \
 --payload \"world\" outputfile.txt

44 | Chapter 3: Programming AWS Lambda Functions

Notice that we’ve changed the --invocation-type flag to Event. The result is now as
follows:

{
 "StatusCode": 202
}

StatusCode is 202, not 200. 202 means Accepted in HTTP terms. If you take a look at
outputfile.txt, you’ll see that it’s empty.

This time we have called the function asynchronously. The Lambda runtime calls our
code precisely as before, but it does not wait for, or use, the value returned by our
code—that value returned by our code is discarded. The point of using asynchronous
execution is that we can perform a “side effect” on some other function or service. In
the asynchronous example in “What Does a Lambda Application Look Like?” on
page 13, the side effect was to upload a file to Amazon’s S3 service—a new, resized,
version of a photo.

As you start using Lambda, you’ll discover that most classes of Lambda function use
asynchronous invocation, embracing the idea that Lambda is an event-driven plat‐
form. We’ll explore this further later in the book when we start examining “Lambda
Event Sources” on page 86.

We used the same code in the previous two examples; however, if you know that your
Lambda function will never be used synchronously, you don’t need to return a value
—the method can have a void return type. Let’s see an example of that.

First, change your function’s method to the following:

public void handler(String s) {
 System.out.println("Hello, " + s);
}

Notice that we’ve changed the return type to void and are now writing a message to
System.out.

Now we need to rebuild and redeploy our code. To do this, run the same two com‐
mands you did in Chapter 2:

• mvn package

• sam deploy…

where … refers to the same arguments you used before. You’re going to be running
these commands often enough that you’ll probably want to put them in a script.

Now invoke the code again with the Event invocation type, and you should receive
another "StatusCode": 202 response. But where does that message to System.out
go? To understand that, we’ll take a quick look at logging.

Core Concepts: Runtime Model, Invocation | 45

You now know enough about the mvn, sam, and aws commands to
run the remaining examples in this chapter. If you get into a weird
state, go to CloudFormation in the AWS Web Console, delete the
HelloWorldLambdaJava stack, and deploy again.

Introduction to Logging
The Lambda runtime captures anything written by our function to either the stan‐
dard output or standard error process streams. In Java terms, these correspond to
System.out and System.err. Once the Lambda runtime has caught this data, it sends
it to CloudWatch Logs. If you’re new to AWS, this will need a little more explanation!

CloudWatch Logs consists of a few components. The principal one is a log capturing
service. It’s cheap, dependable, easy to use and handles all the scale you can throw at
it.

Once CloudWatch Logs has captured log messages, there are a few ways that you can
view or process them. The simplest way is to use the CloudWatch Logs log viewer in
the AWS Web Console.

There are various ways to get to this, but for now open up your Lambda function’s
page in the AWS Web Console (as we showed in “Running the Lambda function” on
page 36). If you click the Monitoring tab of that page, you should be able to see a
View logs in CloudWatch button—click that, as shown in Figure 3-2.

Figure 3-2. Access Lambda logs

What you’ll see next will depend a little on how the CloudWatch console is working,
but if you’re not already seeing log output, then click the blue Search Log Group but‐
ton and scroll down to the most recent log lines. You should then be able to see some‐
thing like in Figure 3-3.

46 | Chapter 3: Programming AWS Lambda Functions

Figure 3-3. Lambda logs

Notice there on the second line is the output we wrote from our Lambda function.

No good, self-respecting Java programmer does real production logging using
System.out.println, though—logging frameworks give far more flexibility and
control over logging behavior. We dig into logging practices in detail in “Logging” on
page 157.

Input, Output
When a Lambda function is executed, it is always passed an input argument, typically
referred to as an event. Within the Lambda execution environment, this event is
specifically always a JSON value, and in our examples so far we’ve been handcrafting
a string—by itself valid JSON.

In real use cases, the input to the Lambda function will be a JSON object that repre‐
sents an event from some other component or system. For example, it may be a rep‐
resentation of the details of an HTTP request, or some metadata of an image
uploaded to the S3 storage service. Again, we look in detail at tying event sources to
Lambda functions later in the book—see “Lambda Event Sources” on page 86.

The JSON that we create in our test events, or that comes from event sources, is
passed to the Lambda Java Runtime. In most use cases, the Lambda Java Runtime will
automatically deserialize this JSON payload for us, and we have several options of
how to guide this.

As you saw in the previous section, when we invoke a function synchronously, we can
return a useful value to the environment. The Lambda Java Runtime will automati‐
cally serialize this return value to JSON for us.

How the Java Runtime performs this serialization and deserialization depends on
types we specify within the function signature, so it’s time we took a deeper look at
what makes a Lambda function statically valid.

Input, Output | 47

Lambda Function Method Signatures
Valid Java Lambda methods must fit one of the following four signatures:

• output-type handler-name(input-type input)

• output-type handler-name(input-type input, Context context)

• void handler-name(InputStream is, OutputStream os)
• void handler-name(InputStream is, OutputStream os, Context context)

where:

• output-type can be void, a Java primitive, or a JSON-serializable type.
• input-type is a Java primitive, or a JSON-serializable type.
• Context refers to com.amazonaws.services.lambda.runtime.Context (we

describe this more later in the chapter).
• InputStream and OutputStream refer to the types with those names in the
java.io package.

• handler-name can be any valid Java method name, and we refer to it in our appli‐
cation’s configuration.

Java Lambda methods can be either instance methods or static methods, but must be
public.

A class containing a Lambda function cannot be abstract and must have a no-
argument constructor—either the default constructor (i.e., no constructor specified)
or an explicit no-argument constructor. The main reason to consider using a con‐
structor at all is for caching data between Lambda calls, which is an advanced topic
that we’ll get to later in the book—see “Caching” on page 214.

Beyond those limitations, there are no static typing requirements of a Java Lambda
function. You are not required to implement any interfaces or base classes, although
you may do so if you desire. AWS provides a RequestHandler interface if you want to
be very explicit about the type of your Lambda classes, but we have never found a
need to make use of this. Also, you can if you like extend your own classes, subject to
the constructor rules, but again we find this is rarely a useful ability.

You may have multiple Lambda functions defined in one class with different names,
but we don’t usually recommend this style. Since two different Lambda functions
never run in the same execution environment, we find it makes it clearer for subse‐
quent engineers when we cleanly separate the code for each function.

48 | Chapter 3: Programming AWS Lambda Functions

Lambda functions, statically, are simple in comparison with some other application
frameworks. The first two signatures listed earlier are the most common for Java
Lambdas, and we’ll look at those next.

Configuring the Handler Function in the SAM Template
So far we’ve made only one change to the SAM template file—template.yaml—to
change the function’s name. Before we go too much further, we need to look at
another property in that file: Handler.

Open the template.yaml file, and you’ll see that Handler is currently set to book.Hello
World::handler. What this means is that for this Lambda function, the Lambda plat‐
form will attempt to find a method named handler in a class named HelloWorld in
the package named book.

If you create a new class named Cow in a package named old.macdonald.farm, and
you have a method named moomoo that is your Lambda function, then you would set
Handler instead to old.macdonald.farm.Cow::moomoo.

With this information, you’re all set to create some new Lambda handlers!

Basic Types
Example 3-1 shows a class with three different Lambda handler functions (yes, we
just said a moment ago that we don’t tend to use multiple Lambda functions per class
in real use—we’re doing so here for brevity!)

Example 3-1. Basic type serialization and deserialization

package book;

public class StringIntegerBooleanLambda {
 public void handlerString(String s) {
 System.out.println("Hello, " + s);
 }

 public boolean handlerBoolean(boolean input) {
 return !input;
 }

 public boolean handlerInt(int input) {
 return input > 100;
 }
}

Input, Output | 49

To try this code, add the new class StringIntegerBooleanLambda to your source tree,
change the Handler in the template.yaml file (e.g., to book.StringIntegerBoolean
Lambda::handlerString), and then run your package and deploy commands.

The first of these functions is the same as we described in the previous section. We
can test this method by invoking it with the JSON object "world", and since it had a
void return type, it is meant for asynchronous usage.

From here on in you should assume that when we say to invoke a
function in an example, we mean you should invoke it synchro‐
nously unless we specify otherwise. You can do this either using the
--invocation-type RequestResponse flag when invoking from a
terminal or using the Test functionality in the AWS Web Console.

The second function can be invoked with a Boolean—any of the JSON values true,
false, "true", or "false"—and it will also return a Boolean, the inverse of the input
in this case.

The final function takes an integer (either a JSON integer or a number in a JSON
string, e.g., 5 or "5") and returns a Boolean.

In the second and third examples we’re using a primitive type, but you may use boxed
types if you prefer. For example, you are free to use java.lang.Integer instead of
plain int if you like.

What’s happening in all of these cases is that the Lambda Java Runtime is deserializ‐
ing the JSON input to a simple type on our behalf. If the event that is passed can’t be
deserialized to the specified parameter type, you’ll get a failure, with a message that
starts as follows:

An error occurred during JSON parsing: java.lang.RuntimeException

Strings, integers, and Booleans are the only basic types that are explicitly documented
as being supported, but with some experimentation we see other basic types, such as
doubles and floats, are also included.

Lists and Maps
JSON also includes arrays and objects/properties (see Example 3-2). The Lambda Java
Runtime will automatically deserialize those to Java Lists and Maps, respectively, and
will also serialize output Lists and Maps to JSON arrays and objects.

50 | Chapter 3: Programming AWS Lambda Functions

Example 3-2. List and Map serialization and deserialization

package book;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;

public class ListMapLambda {
 public List<Integer> handlerList(List<Integer> input) {
 List<Integer> newList = new ArrayList<>();
 input.forEach(x -> newList.add(100 + x));
 return newList;
 }

 public Map<String,String> handlerMap(Map<String,String> input) {
 Map<String, String> newMap = new HashMap<>();
 input.forEach((k, v) -> newMap.put("New Map -> " + k, v));
 return newMap;
 }

 public Map<String,Map<String, Integer>>
 handlerNestedCollection(List<Map<String, Integer>> input) {
 Map<String, Map<String, Integer>> newMap = new HashMap<>();
 IntStream.range(0, input.size())
 .forEach(i -> newMap.put("Nested at position " + i, input.get(i)));
 return newMap;
 }
}

Invoking the function handlerList() with the JSON array [1, 2, 3] returns
[101, 102, 103]. Invoking the function handlerMap() with the JSON object
{ "a" : "x", "b" : "y"} returns { "New Map → a" : "x", "New Map → b" :
"y" }.

Furthermore, you can use nested collections as you would expect; for example, invok‐
ing handlerNestedCollection() with

[
 { "m" : 1, "n" : 2 },
 { "x" : 8, "y" : 9 }
]

returns

Input, Output | 51

{
 "Nested at position 0": { "m" : 1, "n" : 2},
 "Nested at position 1": { "x": 8, "y" : 9}
}

Finally, you can also just use java.lang.Object as the type of the input parameter.
While not often useful in production (unless you don’t care about the input argu‐
ment’s value, which is sometimes a valid use), this can be handy at development time
if you don’t know the precise format of an event. For example, you can use .get
Class() on the argument to find out what type it really is, print out the .toString()
value, etc. We’ll show you a better way of getting the JSON structure of an event a
little later in this chapter.

POJOs and Ecosystem Types
The previous input types work well for very fairly simple inputs. An alternative for
more complex types is to use the Lambda Java Runtime’s automatic POJO (Plain Old
Java Object) serialization. Example 3-3 shows an example where we use this for both
input and output.

Example 3-3. POJO serialization and deserialization

package book;

public class PojoLambda {
 public PojoResponse handlerPojo(PojoInput input) {
 return new PojoResponse("Input was " + input.getA());
 }

 public static class PojoInput {
 private String a;

 public String getA() {
 return a;
 }

 public void setA(String a) {
 this.a = a;
 }
 }

 public static class PojoResponse {
 private final String b;

 PojoResponse(String b) {
 this.b = b;
 }

 public String getB() {

52 | Chapter 3: Programming AWS Lambda Functions

 return b;
 }
 }
}

Obviously this is a very simple case, but it shows POJO serialization in action. We can
execute this Lambda with the input { "a" : "Hello Lambda" }, and it returns
{ "b" : "Input was Hello Lambda" }. Let’s look a little more closely at the code.

First of all, we have our handler function, handlerPojo(). This takes as input the type
PojoInput, which is a POJO class we’ve defined. POJO input classes can be static nes‐
ted classes, as we’ve written here, or regular (outer) classes. The important thing is
that they need to have an empty constructor and have field setters that follow the
naming of the expected fields to be deserialized from the input JSON. If no JSON
field is found with the same name as a setter, then the POJO field will be left null.
Input POJO objects need to be mutable since the runtime will modify them after
they’ve been instantiated.

Our handler function interrogates the POJO object and creates a new instance of the
PojoResponse class, which we pass back to the Lambda runtime. The Lambda
runtime serializes it to JSON by reflecting over all the get… methods. There are fewer
limitations on POJO output classes—since they are not created or mutated by the
Lambda runtime, you are free to construct them as you please and free to make them
immutable. And like input classes, POJO output classes can be static nested classes or
regular (outer) classes.

For both POJO input and output classes, you can nest further POJO classes, using the
same rules, to serialize/deserialize nested JSON objects. Further, you can mix up
POJOs and the collection types we discussed (Lists and Maps) in your input and
output.

The example we gave previously follows most of the documentation you’ll see online:
using a JavaBean convention for fields. However, if you don’t want to use setters in
your input class or getters in your output class, you’re free to also use public fields.
For instance, Example 3-4 shows another example.

Example 3-4. POJO serialization and deserialization alternative definition

package book;

public class PojoLambda {
 public PojoResponse handlerPojo(PojoInput input) {
 return new PojoResponse("Input was " + input.c);
 }

 public static class PojoInput {
 public String c;

Input, Output | 53

 }

 public static class PojoResponse {
 public final String d;

 PojoResponse(String d) {
 this.d = d;
 }
 }
}

We can execute this Lambda with the input { "c" : "Hello Lambda" }, and it
returns { "d" : "Input was Hello Lambda" }.

One of the main uses for POJO input deserialization is when you tie your Lambda
function to one of the AWS ecosystem Lambda event sources. Here’s an example of a
handler function that would process the event of an object being uploaded to the S3
storage service:

public void handler(S3Event input) {
 // …
}

S3Event is a type that you can access from an AWS library dependency—we discuss
this more in “Example: Building a Serverless Data Pipeline” on page 111. You’re also
free to build your own POJO classes to handle AWS events.

Streams
The input/output types we’ve covered so far will be useful for you in many, and possi‐
bly all, of your use of Lambda in the real world. But what if you have a fairly dynamic
and/or complicated structure that you can’t, or don’t want to, use any of the previous
deserialization methods for?

The answer is to use option 3 or 4 of the valid signature list, making use of
java.io.InputStream for the event parameter. This gives you access to the raw bytes
passed to your Lambda function.

The signature for a Lambda using an InputStream is a little different in that it always
has a void return type. If you take an InputStream as a parameter, you must also take
a java.io.OutputStream as the second parameter. To return a result from such a
handler function, you need to write to the OutputStream.

Example 3-5 shows a handler that can process streams.

Example 3-5. Using streams as handler parameters

package book;

54 | Chapter 3: Programming AWS Lambda Functions

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

public class StreamLambda {
 public void handlerStream(InputStream inputStream, OutputStream outputStream)
 throws IOException {
 int letter;
 while((letter = inputStream.read()) != -1)
 {
 outputStream.write(Character.toUpperCase(letter));
 }
 }
}

If we execute this handler with the input "Hello World", it will write "HELLO WORLD"
to the output stream, which becomes the function’s result.

You may well want to use your own JSON manipulation code if you’re using an Input
Stream, but we’ll leave that as an exercise to the reader. You should also practice good
stream hygiene—error checking, closing, etc.

For more on this subject, see the official documentation on using streams in handler
functions.

One particularly handy use of this type of Lambda function is at development time
when you don’t know the structure of the event you are coding for. Example 3-6 will
log the received event to CloudWatch Logs so you can see what it is.

Example 3-6. Log received event to CloudWatch Logs

package book;

import java.io.InputStream;
import java.io.OutputStream;

public class WhatIsMyLambdaEvent {
 public void handler(InputStream is, OutputStream os) {
 java.util.Scanner s = new java.util.Scanner(is).useDelimiter("\\A");
 System.out.println(s.hasNext() ? s.next() : "No input detected");
 }
}

Context
So far we’ve covered signature formats 1 and 3 of our earlier list, but what of 2 and 4?
What’s that Context object about?

In all of our examples so far, the only input we’ve taken for a Lambda handler func‐
tion is that of the event that occurred. But that’s not the only information the handler

Input, Output | 55

https://oreil.ly/oXm39
https://oreil.ly/oXm39

can receive when it wants to do some processing. Additionally, you can add a
com.amazonaws.services.lambda.runtime.Context parameter to the end of any
handler parameter list, and the runtime will pass in an interesting object that you can
use. Let’s look at an example (Example 3-7).

Example 3-7. Examining the Context object

package book;

import com.amazonaws.services.lambda.runtime.Context;

import java.util.HashMap;
import java.util.Map;

public class ContextLambda {
 public Map<String,Object> handler (Object input, Context context) {
 Map<String, Object> toReturn = new HashMap<>();
 toReturn.put("getMemoryLimitInMB", context.getMemoryLimitInMB() + "");
 toReturn.put("getFunctionName",context.getFunctionName());
 toReturn.put("getFunctionVersion",context.getFunctionVersion());
 toReturn.put("getInvokedFunctionArn",context.getInvokedFunctionArn());
 toReturn.put("getAwsRequestId",context.getAwsRequestId());
 toReturn.put("getLogStreamName",context.getLogStreamName());
 toReturn.put("getLogGroupName",context.getLogGroupName());
 toReturn.put("getClientContext",context.getClientContext());
 toReturn.put("getIdentity",context.getIdentity());
 toReturn.put("getRemainingTimeInMillis",
 context.getRemainingTimeInMillis() + "");
 return toReturn;
 }
}

This is the first full example where we need to use a type outside of the Java standard
library. We’ll look in more detail at dependencies and packaging in the next chapter,
but for now add the following section anywhere under the root element of your
pom.xml file:

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

When you run mvn package now, it will compile your code using the core Lambda
library provided by AWS, enabling you to use the Context interface.

56 | Chapter 3: Programming AWS Lambda Functions

The Context object gives us information about the current Lambda invocation. We
can use this information during the processing of a Lambda event. When we invoke
the example (passing anything as an input event—it won’t be used), we’ll get some‐
thing like the following as a result:

{
 "getFunctionName": "ContextLambda",
 "getLogStreamName": "2019/07/24/[$LATEST]0f1b1111111111111111111111111111",
 "getInvokedFunctionArn":
 "arn:aws:lambda:us-west-2:181111111111:function:ContextLambda",
 "getIdentity": {
 "identityId": "",
 "identityPoolId": ""
 },
 "getRemainingTimeInMillis": "2967",
 "getLogGroupName": "/aws/lambda/ContextLambda",
 "getLogger": {},
 "getFunctionVersion": "$LATEST",
 "getMemoryLimitInMB": "512",
 "getClientContext": null,
 "getAwsRequestId": "2108d0a2-a271-11e8-8e33-cdbf63de49d2"
}

All the different Context fields are described in the AWS documentation.

Most of these fields will stay the same whenever you call them during the processing
of a particular event, but getRemainingTimeInMillis() is a notable exception. It’s
related to timeout, which is what we look at next.

Timeout
Lambda functions are subject to a configurable timeout. You are able to specify this
timeout when you create the function, or you can update it later in the function’s
configuration.

At the time of this writing, the maximum timeout is 15 minutes. That means the
longest a single invocation of a Lambda function can run is 15 minutes. This restric‐
tion is one that AWS may increase in the future, and they’ve done so before—for a
long time the maximum timeout was 5 minutes.

In our examples so far we haven’t specified a timeout setting, so it defaults to 3 sec‐
onds. That means if our function doesn’t finish executing within 3 seconds, then the
Lambda Java Runtime will abort it. You’ll see an example of this in a moment.

In the previous section, we looked at the Context object. Calling context.getRemai
ningTimeInMillis() will tell you how much time to run you have left at any given
point during execution before the function is aborted by the runtime. Subsequent

Timeout | 57

https://oreil.ly/oE2hP

calls will give an updated duration. This is useful if you are writing a fairly long-lived
Lambda and want to save any state before the timeout occurs.

One question you may be asking yourself—why not always configure the timeout to
the maximum of 900 seconds? As we’ll explore further in the next section, Lambda
costs are based significantly on how long functions run—if your function should only
ever run for at most 10 seconds, then you don’t want a billion invocations taking 90
times that long, since you’ll be charged 90 times as much as you want to be.

The timeout does not include the time our function is being instantiated—in other
words, the timeout period is not started during the cold start of a function. Or, to be
even more precise, the timeout applies only to the time from when Lambda calls our
handler method. We discuss cold starts further in “Cold Starts” on page 201.

The timeout maximum of 15 minutes is a significant constraint for Lambda functions
—if you are writing functionality that needs more than 15 minutes, you’ll need to
either break it up into multiple, orchestrated, Lambda functions, or not use Lambda
at all.

Enough theory, let’s look at timeouts in action.

Example 3-8 shows a Lambda function that will query the remaining time and then
eventually fail due to timeout.

Example 3-8. Looking at timeout with Context.getRemainingTimeInMillis()

package book;

import com.amazonaws.services.lambda.runtime.Context;

public class TimeoutLambda {
 public void handler (Object input, Context context) throws InterruptedException {
 while(true) {
 Thread.sleep(100);
 System.out.println("Context.getRemainingTimeInMillis() : " +
 context.getRemainingTimeInMillis());
 }
 }
}

Update your template.yaml file, adding a new property named Timeout to the Proper
ties section of your function. Set the value to be 2—this says that the function’s time‐
out is now two seconds. Also, remember to update your Handler property.

Then run your package and deploy steps as usual.

If we execute this using the test functionality in the web console, it will fail with the
message “Task timed out after 2.00 seconds.” The log output will be as follows:

58 | Chapter 3: Programming AWS Lambda Functions

START RequestId: 6127fe67-a406-11e8-9030-69649c02a345 Version: $LATEST
Context.getRemainingTimeInMillis() : 1857
Context.getRemainingTimeInMillis() : 1756
... Cut for brevity ...
Context.getRemainingTimeInMillis() : 252
Context.getRemainingTimeInMillis() : 152
Context.getRemainingTimeInMillis() : 51
END RequestId: 6127fe67-a406-11e8-9030-69649c02a345
REPORT RequestId: 6127fe67-a406-11e8-9030-69649c02a345 Duration: 2001.52 ms
 Billed Duration: 2000 ms Memory Size: 512 MB Max Memory Used: 51 MB
2019-07-24T21:22:30.076Z 444e6ae0-9217-4cd2-8568-7585ca3fafee
 Task timed out after 2.00 seconds

Here we can see the getRemainingTimeInMillis() method being queried as we’d
expect and then the function finally failing as Lambda’s timeout occurs.

Memory and CPU
Lambda functions do not have infinite amounts of RAM, and in fact every function is
configured with a memory-size setting. The setting defaults to 128MB, but this is
rarely enough for a production Java Lambda function, so you should treat memory-
size as something you actively think about for every function.

memory-size can be as small as 64MB, although for Java Lambda functions you
should probably use at least 256MB. memory-size must be a multiple of 64MB.

A very important thing to know is that the memory-size setting is not just for how
much RAM your function can use—it also specifies how much CPU power you get. In
fact, a Lambda function’s CPU power scales linearly from 64MB up to 1792MB.
Therefore a Lambda function configured with 1024MB of RAM has twice the CPU
power of one with 512MB of RAM.

A Lambda function with 1792MB RAM gets a full virtual CPU core—larger RAM
settings than that enable fractions of a second virtual core. This is worth knowing if
your code is not multithreaded at all—you may not see a CPU improvement for
memory settings higher than 1792MB in such a case.

We discuss how the Lambda execution environment interacts with
multiple threads in “Lambda and Threading” on page 196.

But why should you care about this—why not always just set memory-size to its max‐
imum of 3008MB? The reason is cost. AWS charges for Lambda functions by two pri‐
mary factors:

Memory and CPU | 59

• How long a function runs, rounded up to the nearest 100 ms
• How much memory a function is specified to use

In other words, given the same execution duration, a Lambda function that has 2GB
of RAM costs twice as much to execute as one with 1GB of RAM. Or, one with
512MB of RAM costs 17% of one with 3008MB. This, at scale, could be a big
difference.

Surely that means you should always use the smallest amount of memory possible
then? No, that’s not always the best choice. Since a function with twice as much mem‐
ory of a smaller function also has twice the CPU power, it might take half the time to
execute, meaning the cost is the same, and it gets its work done more quickly.

Right-sizing Lambda functions is something of an art. We recommend you stick with
somewhere between 512MB and 1GB to start with and then start tuning as your func‐
tions get bigger or as you need to scale them.

How Expensive Is Lambda?
Some people, when they first hear about Lambda, assume that it’s great for small tasks
—things that don’t run very frequently—but is too expensive for “grown up” applica‐
tions that service real-time multiuser applications. How much truth is there to this?
Let’s take a look at a couple of examples.

First, let’s think back to the photo resizer (see “File processing” on page 15). Let’s say
that we set that function to use 1.5GB RAM, it takes on average 10 seconds to run,
and it processes 10,000 photos per day. Lambda pricing consists of two parts—request
pricing, which is $0.20 per million requests, and duration pricing, which is
$0.0000166667 per gigabyte-second. Therefore we need to calculate both parts to esti‐
mate cost for our photo resizer:

• The request cost is $0.20 × .01 = $0.002/day, or $0.06/month.
• The duration cost is 10 (seconds/invocation) × 10,000 (invocations) × 1.5 (GB) ×

$0.0000166667 = $2.50/day, or $75/month.

Obviously the duration cost is the vast majority here.

$75/month is about the same cost as a “m5.large” EC2 instance—which is $70/month.
An m5.large EC2 instance is the smallest size VM in the m5 “general purpose” family;
it has 8GB RAM and two CPUs, so it would likely be about right as an alternative to
host our photo resizer. However, Lambda has significant benefits as a solution, even
though the costs appear at first glance about the same:

60 | Chapter 3: Programming AWS Lambda Functions

• Lambda doesn’t require the operations cost of managing an EC2 instance—
there’s no need to think about operating system patches, user management, etc.
Therefore our total cost of ownership (TCO) is lower for Lambda.

• Lambda already manages the “event driven” nature of the application, so we don’t
need to build that into the version we would run on a regular server.

• Lambda will auto-scale without effort and so will handle, without concern, any
spikes in traffic. A server-based solution may become overloaded or need to be
built to include buffering. In fact, the more “spikey” your application’s load, the
more cost effective Lambda is as a solution.

• Lambda is already highly available across AZs—to guarantee that availability
with a server-based solution, we would need to double or triple our costs for two
or three zones of availability.

Now let’s look back to our web API (see Figure 1-5). Let’s say we set the web API
Lambda functions to use 512MB RAM and each invocation takes no more than 100
ms to run. Let’s say the API processes on average 10 requests per second (864,000
requests/day) but can peak up to 100 requests per second.

• The request cost is $0.20 × 0.864 = $0.17/day, or $5.18/month.
• The duration cost is 0.1 × 864,000 × 0.5 × $0.0000166667 = $0.72/day, or $21.60/

month.

In other words, we need to spend $27/month to handle 10 requests/second average,
and this system could happily could peak to 10x that rate, without breaking a sweat
(or increasing the costs).

Now neither of these components by themselves is gargantuan in size, but they aren’t
trivial either. For many applications, these are not unrealistic performance needs and
so we can see that Lambda is often going to be a cost-efficient choice of platform.

The pricing example here assumes using Lambda in its regular, “on-demand” mode.
Lambda has alternative pricing when using Provisioned Concurrency, which we
describe in “Provisioned Concurrency” on page 208.

Environment Variables
The previous two sections were all about Lambda’s own system configuration—what
if you want to use configuration for your own application?

We can specify environment variables for our Lambda functions. This allows us to
alter how our function runs in different contexts for the same code. It’s very typical,
for example, to specify connection settings for external processes, or secure configu‐
ration, through environment variables.

Environment Variables | 61

Let’s try this. Example 3-9 shows a function that reads from the environment using
Java’s standard method for doing so.

Example 3-9. Using an environment variable

package book;

public class EnvVarLambda {
 public void handler(Object event) {
 String databaseUrl = System.getenv("DATABASE_URL");
 if (databaseUrl == null || databaseUrl.isEmpty())
 System.out.println("DATABASE_URL is not set");
 else
 System.out.println("DATABASE_URL is set to: " + databaseUrl);
 }
}

Update the template.yaml file to point to this new class and perform the package and
deploy process.

If we run this function (using any test input we like), the log output will include the
following:

DATABASE_URL is not set

Now update the template.yaml file again so that the HelloWorldLambda section looks
as follows (careful with your YAML tabbing!):

HelloWorldLambda:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: HelloWorldJava
 Runtime: java8
 MemorySize: 512
 Handler: book.EnvVarLambda::handler
 CodeUri: target/lambda.jar
 Environment:
 Variables:
 DATABASE_URL: my-database-url

After packaging and deploying, if we test the function now, the log output includes
this instead:

DATABASE_URL is set to: my-database-url

We are free to update the environment configuration as much as we would like.

When using environment variables, you often want to store sensitive data, for exam‐
ple access keys to remote services. There are a number of ways of doing this in a
secure way with Lambda, and they are explained in Amazon’s documentation.

62 | Chapter 3: Programming AWS Lambda Functions

Summary
The programming model for AWS Lambda is significantly different from other mod‐
els that you may be used to.

In this chapter, you explored what it means to program Lambda functions—what the
runtime environment is, how functions are invoked, and the different ways you can
get data in and out of functions.

Then you learned some aspects of configuration for Lambda functions—timeout and
memory—and what those settings mean. Finally, you saw how you can apply your
own application configuration through environment variables.

Now that you know how to program Lambda functions, in the next chapter we will
examine Lambda operations—packaging, deployment, security, monitoring, and
more.

Exercises
1. Take some time to work through the step-by-step descriptions in this chapter—

Lambda is very different than how you may have built and run Java applications
in the past.

2. Try logging something using System.err—the standard error stream—instead of
System.out. Does the log output appear any differently to System.out? Does it
change the result of calling the function, either asynchronously or synchro‐
nously?

3. Deliberately call a function with invalid input to see the parsing exception
described earlier: An error occurred during JSON parsing. Where do you see
this error? How does it impact the result of calling the function, either asynchro‐
nously or synchronously?

4. Try building your own POJO types and calling Lambda with JSON versions of
them. Do you prefer the JavaBean style, or public fields?

5. Try using the StreamLambda described earlier that outputs the entire input event
with one of the provided test event template objects in the Lambda web console.

6. Try converting one of your classes to use a static handler method, rather than an
instance method, to confirm that it works just as well.

Summary | 63

CHAPTER 4

Operating AWS Lambda Functions

This chapter will introduce a more advanced method of building and packaging Java-
based AWS Lambda functions. We’ll also go into more detail on the serverless-
oriented version of AWS’s infrastructure-as-code tool, SAM, which you first used in
Chapter 2. Finally, we’ll go over how Lambda functions and serverless applications
are affected by AWS’s security model and how to use SAM to automatically enforce a
least-privilege security model for our serverless application.

Before proceeding, we recommend that if you haven’t done so already that you down‐
load this book’s code examples.

Build and Package
The Lambda platform expects all user-provided code to be in the form of a ZIP
archive file. Depending on which runtime you’re using and your actual business logic,
that ZIP file may consist of source code, or code and libraries, or, in the case of Java,
compiled byte code (class files) and libraries.

In the Java ecosystem, we often package our code into JAR (Java ARchive) files, to be
run via the java -jar command, or to be used as libraries by other applications. It
turns out that a JAR file is simply a ZIP file with some additional metadata. The
Lambda platform doesn’t perform any special handling of JAR files—it treats them as
ZIP files, just as it does for the other Lambda language runtimes.

Using a tool like Maven, we can specify the other libraries that our code depends on
and have Maven download the right versions of those libraries (and any transitive
dependencies that they might have), compile our code into Java class files, and pack‐
age everything up into a single JAR file (often called an uberjar).

65

https://oreil.ly/t0Bgg
https://oreil.ly/aECWk

Uberjars
Despite using the uberjar approach in Chapters 2 and 3, there are a few problems
with it that are worth calling out before we go any further.

First, the uberjar approach unpacks and then overlays libraries on top of each other
in the target uberjar file. In the following example, Library A contains a class file and
a properties file. Library B contains a different class file and a properties file with the
same name as the properties file from Library A.

$ jar tf LibraryA.jar
book/
book/important.properties
book/A.class

$ jar tf LibraryB.jar
book/
book/important.properties
book/B.class

If these JAR files were used to create an uberjar (as we did in prior chapters), the
result would contain two class files and one properties file—but the properties file
from which source JAR?

$ jar tf uberjar.jar
book/
book/important.properties # Which properties file is this?
book/A.class
book/B.class

Because the JAR files are unpacked and overlaid, only one of those properties files
will make it into the final uberjar, and it can be difficult to know which one will win
without delving into the dark arts of Maven resource transformers.

The second major issue with the uberjar approach is oriented around creating a JAR
file—the fact that JAR files are also ZIP files that can be used by the Lambda runtime
is incidental from the perspective of the Maven build process. Two specific issues
arise from this JAR versus ZIP situation. One is that any JAR-specific metadata is
unused (and in fact, ignored) by the Lambda runtime. Things like a Main-Class
attribute in a MANIFEST.MF file—a piece of metadata common to JAR files—are
meaningless in the context of a Lambda function.

Furthermore, the JAR creation process itself introduces a certain amount of non-
determinism into the build process. For example, tool versions and build timestamps
are recorded in MANIFEST.MF and pom.properties files—and that makes it impossi‐
ble to reproducibly build the same JAR file from the same source code every time.
This nonreproducibility wreaks havoc on downstream caching, deployment, and
security processes, so we want to avoid it when possible.

66 | Chapter 4: Operating AWS Lambda Functions

Since we’re not actually interested in the JAR-ness of an uberjar file, it makes sense for
us to consider not using the uberjar process at all. Of course, the uberjar process itself
isn’t necessarily the only source of nondeterminism in our build process, but we’ll
deal with the rest of it later.

Despite these drawbacks, the uberjar process is simpler to configure and use for sim‐
ple cases, especially when a Lambda function has few (or no) third-party dependen‐
cies. This was the case in the examples in Chapters 2 and 3, which is why we used the
uberjar technique up until this point, but for any real-world use of Java and Lambda
of any significant scale, we recommend the ZIP file approach that we describe next.

Assembling a ZIP File
So, in the Java world, our alternative to using an uberjar file is to fall back to a trusty
old ZIP file. In this scenario, the archive layout is going to be a little different, but
we’ll see how a careful approach can avoid the issues with the uberjar and give us an
artifact that the Lambda platform can use. We’ll discuss how to achieve this using
Maven, but of course you should feel free to translate this method to your preferred
build tool—the outcome is more important than the process itself.

Starting Fresh with sam init
If you want to create a new project using the ideas we discuss in this chapter—pack‐
aging and deploying reproducible ZIP artifacts—then you can use a different version
of the sam init template we introduced in Chapter 2. Run the following, and it will
generate a version with the updated pom.xml and template.yaml files, along with the
lambda-zip.xml assembly descriptor file that we’ll be using later in the chapter:

$ sam init \
 --location \
 gh:symphoniacloud/sam-init-HelloWorldLambdaJava-zip

To make a more interesting example, first we’ll add a dependency on the AWS SDK
for DynamoDB to our Maven build for the Lambda function from “Lambda Hello
World (the Proper Way)” on page 34.

Add a dependencies section to the pom.xml file:

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 <version>1.11.319</version>
 </dependency>
 </dependencies>

Assembling a ZIP File | 67

With that dependency added, here’s what the desired ZIP file layout looks like for our
simple Lambda function and dependencies:

$ zipinfo -1 target/lambda.zip
META-INF/
book/
book/HelloWorld.class
lib/
lib/aws-java-sdk-core-1.11.319.jar
lib/aws-java-sdk-dynamodb-1.11.319.jar
lib/aws-java-sdk-kms-1.11.319.jar
lib/aws-java-sdk-s3-1.11.319.jar
lib/commons-codec-1.10.jar
lib/commons-logging-1.1.3.jar
lib/httpclient-4.5.5.jar
lib/httpcore-4.4.9.jar
lib/ion-java-1.0.2.jar
lib/jackson-annotations-2.6.0.jar
lib/jackson-core-2.6.7.jar
lib/jackson-databind-2.6.7.1.jar
lib/jackson-dataformat-cbor-2.6.7.jar
lib/jmespath-java-1.11.319.jar
lib/joda-time-2.8.1.jar

In addition to our application code (book/HelloWorld.class), we see a lib directory full
of JAR files, one for the AWS DynamoDB SDK, and one for each of its transitive
dependencies.

We can build that ZIP output using the Maven Assembly plug-in. This plug-in allows
us to add some special behavior to a specific part of the Maven build (in this case, the
package phase where the results of the Java compilation process are packaged up
alongside other resources into a set of output files).

First, we’ve configured the Maven Assembly plug-in in the pom.xml file for the
project, in the build section:

<build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>3.1.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>

68 | Chapter 4: Operating AWS Lambda Functions

 <descriptor>src/assembly/lambda-zip.xml</descriptor>
 </descriptors>
 <finalName>lambda</finalName>
 </configuration>
 </plugin>
 </plugins>
</build>

The two most important parts of this configuration are the assembly descriptor,
which is a path to another XML file in our project, and the finalName, which
instructs the plug-in to name our output file lambda.zip instead of something else.
We’ll see later how picking a simple finalName will aid in rapid iteration of our
project, especially after we start using Maven submodules.

Most of the configuration for our ZIP file is actually located in the assembly descrip
tor file, which was referenced in the pom.xml file earlier. This assembly configura‐
tion is a description of exactly which contents to include in our output file:

<assembly>
 <id>lambda-zip</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <dependencySets>
 <dependencySet>
 <includes>
 <include>${project.groupId}:${project.artifactId}</include>
 </includes>
 <unpack>true</unpack>
 <unpackOptions>
 <excludes>
 <exclude>META-INF/MANIFEST.MF</exclude>
 <exclude>META-INF/maven/**</exclude>
 </excludes>
 </unpackOptions>
 </dependencySet>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <unpack>false</unpack>
 <scope>runtime</scope>
 <outputDirectory>lib</outputDirectory>
 </dependencySet>
 </dependencySets>
</assembly>

We’ve given the assembly a unique name, lambda-zip.

The output format itself will be of type zip.

Assembling a ZIP File | 69

The output file will not have a base directory—this means that when extracted,
our ZIP file’s contents will be unpacked into the current directory rather than
into a new subdirectory.

The first dependencySet section explicitly includes our application code, by ref‐
erencing the project’s groupId and artifactId properties. When we start using
Maven submodules, this will need to be altered. Our application code will be
“unpacked.” That is, it won’t be contained in a JAR file; rather, it will just be a nor‐
mal directory structure and Java .class files. We’ve also explicitly excluded the
unnecessary META-INF directory.

The second dependencySet section handles our application’s dependencies. We
exclude the project’s artifact (as it was handled in the first dependencySet sec‐
tion). We only include dependencies that are in the runtime scope. We don’t
unpack the dependencies; rather, we just leave them packaged as JAR files.

Finally, instead of including all of the JAR files in the root of our output file, we’ll
put them all into a lib directory.

So how does this complicated new Maven configuration help us avoid the issues with
uberjars?

First, we’ve stripped out some of the unnecessary META-INF information. You’ll
notice we’ve been a bit selective—there are some cases where having META-INF
information (like “services”) is still valuable, so we don’t want to get rid of it
completely.

Second, we’ve included all of our dependencies, but as individual JAR files in a lib
directory. This avoids the file and path overwriting issue completely. Each depend‐
ency JAR remains self-contained. According to the AWS Lambda best practices docu‐
mentation, this approach also pays some performance dividends in that it’s faster for
the Lambda platform to unpack a ZIP file and faster for the JVM to load classes from
JAR files.

io.symphonia/lambda-packaging
Rather than copy and paste the lambda-zip assembly descriptor into all of your
projects, we have built a prepackaged descriptor that is available on Maven Central.
Just use the following configuration in the build section of your pom.xml file:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>3.1.1</version>
 <dependencies>
 <dependency>

70 | Chapter 4: Operating AWS Lambda Functions

https://oreil.ly/euF1U
https://oreil.ly/euF1U

 <groupId>io.symphonia</groupId>
 <artifactId>lambda-packaging</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptorRefs>
 <descriptorRef>lambda-zip</descriptorRef>
 </descriptorRefs>
 <finalName>lambda</finalName>
 </configuration>
</plugin>

Reproducible Builds
When our source code or dependencies change, we expect the contents of the deploy‐
ment package (the uberjar or ZIP file) to change too (after running our build and
packaging process). However, when our source code and dependencies don’t change,
the contents of the deployment package should remain the same even if the build and
packaging process is executed again. The output of the build should be reproducible
(e.g., deterministic). This is important because downstream processes (like deploy‐
ment pipelines) are often triggered based on whether a deployment package has
changed as indicated by the MD5 hash of the contents, and we want to avoid trigger‐
ing those processes unnecessarily.

Even though we’ve eliminated the autogenerated MANIFEST.MF and pom.properties
files using the lambda-zip assembly descriptor, we still haven’t removed all of the
potential sources of nondeterminism in the build process. For example, when we
build our application code (e.g., HelloWorld), the timestamp on the compiled Java
class files may change. These altered timestamps are propagated into the ZIP file, and
then the hash of the ZIP file’s contents changes even though the source code didn’t.

Fortunately, a simple Maven plug-in exists to strip these sources of nondeterminism
from our build process. The reproducible-build-maven-plugin can be executed
during the build process and will render our output ZIP file completely deterministic.
It can be configured as a plugin in the build section of our pom.xml file:

Reproducible Builds | 71

<plugin>
 <groupId>io.github.zlika</groupId>
 <artifactId>reproducible-build-maven-plugin</artifactId>
 <version>0.10</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>strip-jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Now, when we rebuild our deployment packages multiple times using the same
unchanged source code, the hash is always the same. You’ll see how this affects the
deployment process in the next section.

Deploy
There are many options for deploying Lambda code. Before we dive in, however, it’s
worth clarifying what we mean by deploy. In this case, we’re simply talking about
updating the code or configuration for a particular Lambda function, or a group of
Lambda functions and related AWS resources, through the use of APIs or other serv‐
ices. We’re not extending the definition to include deployment orchestration (like
AWS CodeDeploy).

In no particular order, the methods of deploying Lambda code are as follows:

• AWS Lambda web console
• AWS CloudFormation/Serverless Application Model (SAM)
• AWS CLI (which uses the AWS API)
• AWS Cloud Development Kit (CDK)
• Other AWS-developed frameworks, like Amplify and Chalice
• Third-party frameworks targeting serverless components that build primarily on

top of CloudFormation, like the Serverless Framework
• Third-party tools and frameworks targeting serverless components that build

primarily on top of the AWS API, like Claudia.js and lambda-maven-plugin from
Maven

• General-purpose third-party infrastructure tools, like Ansible or Terraform

In this book, we’ll address the first two (and indeed have already touched upon the
AWS Lambda web console and SAM in Chapters 2 and 3). We also use the AWS CLI,
although not as a deployment tool. With a solid understanding of those methods, you

72 | Chapter 4: Operating AWS Lambda Functions

should be able to evaluate the other options and decide whether one of them is a bet‐
ter fit for your environment and use case.

Infrastructure as Code
When we interact with AWS via the web console or the CLI, we’re creating, updating,
and destroying infrastructure manually. For example, if we create a Lambda function
using the AWS Web Console, the next time we want to create a Lambda function with
the same parameters, we still have to perform the same manual actions via the web
console. This same characteristic applies to the CLI as well.

For initial development and experimentation, this is a reasonable approach. However,
when our projects begin building momentum, this manual approach to infrastructure
management will turn into a roadblock. A well-proven way to address this issue is
called infrastructure as code.

Rather than manually interacting with AWS via the web console or CLI, we can
declaratively specify our desired infrastructure in a JSON or YAML file and submit
that file to AWS’s infrastructure-as-code service: CloudFormation. The CloudForma‐
tion service takes our input file and makes the necessary changes to AWS infrastruc‐
ture on our behalf, taking into account resource dependencies, the current state of
previously deployed versions of our app, and the idiosyncrasies and specific require‐
ments of the various AWS services. A set of AWS resources created from a CloudFor‐
mation template file is called a stack.

CloudFormation is AWS’s proprietary infrastructure-as-code service, but it’s not the
only option in this area. Other popular choices that work with AWS are Terraform,
Ansible, and Chef. Each service has its own configuration languages and patterns, but
all achieve essentially the same outcome—cloud infrastructure provisioned from con‐
figuration files.

A key benefit of using configuration files (rather than pointing and clicking in the
console) is that those files, which represent our application infrastructure, can be
version-controlled alongside our application source code. We can see a complete
timeline of changes to our infrastructure, using the same version-control tools we use
for the other pieces of our application. Furthermore, we can incorporate those config‐
uration files into our continuous deployment pipelines, so when we make changes to
our application infrastructure, those changes can be rolled out safely using industry-
standard tools, alongside our application code.

Infrastructure as Code | 73

CloudFormation and the Serverless Application Model
While there are obvious benefits to an infrastructure-as-code approach, CloudFor‐
mation itself has a reputation for being verbose, unwieldy, and inflexible. Configura‐
tion files for even the simplest application architectures can easily run into the
hundreds or thousands of lines of JSON or YAML. When dealing with an existing
CloudFormation stack of that size, there’s an understandable temptation to fall back
to using the AWS Web Console or CLI.

Fortunately, as AWS serverless developers, we have the good fortune to be able to use
a different “flavor” of CloudFormation called the Serverless Application Model
(SAM), which we used in Chapters 2 and 3. This is essentially a superset of CloudFor‐
mation, which allows us to use some special resource types and shortcuts to represent
common serverless components and application architectures. It also includes some
special CLI commands to ease development, testing, and deployment.

Here’s the SAM template we first used in “Creating the Lambda Function” on page 35,
updated to use our new ZIP deployment package (note that the CodeUri suffix has
changed from .jar to .zip):

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Description: Chapter 4

Resources:
 HelloWorldLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.HelloWorld::handler
 CodeUri: target/lambda.zip

We can deploy the new ZIP-based Lambda function using the same SAM command
you learned in Chapter 2:

$ sam deploy \
 --s3-bucket $CF_BUCKET \
 --stack-name chapter4-sam \
 --capabilities CAPABILITY_IAM

sam deploy starts by uploading our deployment package to S3, but only if the con‐
tents of that package have changed. Earlier in the chapter, we spent some time setting
up a reproducible build so that operations like this upload process don’t have to exe‐
cute if nothing has actually changed.

Behind the scenes sam deploy also creates a modified version of our template (also
stored in S3) to reference the newly uploaded S3 locations of our artifact(s), rather

74 | Chapter 4: Operating AWS Lambda Functions

than the local ones. This step is necessary because CloudFormation requires any ref‐
erenced artifacts within a template to be available in S3 at deployment time.

The files that s3 deploy stores in S3 should be considered merely
staging versions as part of a deployment process, rather than appli‐
cation artifacts to be kept. Because of this, we recommend that you
set a “Lifecycle Policy” on your SAM S3 bucket, if it isn’t being used
for anything else, that will automatically delete the deployment
artifacts after a period of time—we usually set it to a week.

After the upload step, the sam deploy command creates a new CloudFormation stack
if one doesn’t already exist with the provided name in this AWS account and region.
If the stack already exists, the sam deploy command will create a CloudFormation
change set, which lists which resources will be created, updated, or deleted before tak‐
ing action. The sam deploy command will then apply the change set to update the
CloudFormation stack.

Listing the stack resources, we can see that not only did CloudFormation create our
Lambda function, but it also created the supporting IAM roles and policies (which
we’ll explore later) without our having to specify them explicitly:

$ aws cloudformation list-stack-resources --stack-name chapter4-sam
{
 "StackResourceSummaries": [
 {
 "LogicalResourceId": "HelloWorldLambda",
 "PhysicalResourceId": "chapter4-sam-HelloWorldLambda-1HP15K6524D2E",
 "ResourceType": "AWS::Lambda::Function",
 "LastUpdatedTimestamp": "2019-07-26T19:16:34.424Z",
 "ResourceStatus": "CREATE_COMPLETE",
 "DriftInformation": {
 "StackResourceDriftStatus": "NOT_CHECKED"
 }
 },
 {
 "LogicalResourceId": "HelloWorldLambdaRole",
 "PhysicalResourceId":
 "chapter4-sam-HelloWorldLambdaRole-1KV86CI9RCXY0",
 "ResourceType": "AWS::IAM::Role",
 "LastUpdatedTimestamp": "2019-07-26T19:16:30.287Z",
 "ResourceStatus": "CREATE_COMPLETE",
 "DriftInformation": {
 "StackResourceDriftStatus": "NOT_CHECKED"
 }
 }
]
}

CloudFormation and the Serverless Application Model | 75

In addition to Lambda functions, SAM includes resource types for DynamoDB tables
(AWS::Serverless::SimpleTable) and API Gateways (AWS::Serverless::Api).
These resource types are focused on popular use cases and may not be usable for all
application architectures. However, because SAM is a superset of CloudFormation,
we can use plain old CloudFormation resource types in our SAM templates. That
means we can mix and match serverless and “normal” AWS components in our archi‐
tectures, gaining the benefits of both approaches, and the idempotent CLI semantics
of SAM’s sam deploy command. You’ll see examples of combining SAM and Cloud‐
Formation resources in one template in Chapter 5.

Security
Security permeates every aspect of AWS. As you learned in Chapter 2, we must deal
with AWS’s security layer, called Identity and Access Management (IAM), from the
very beginning. However, rather than gloss over the details by simply running every‐
thing with the broadest, least-secure set of IAM permissions possible, we’re going to
dive a little deeper in this section and explain how access to the Lambda platform is
controlled by IAM, how that affects our functions’ interactions with other AWS
resources, and how SAM makes it a bit easier to build secure applications.

Necessary Complexity
It would be undeniably easier for us to build applications in AWS if we didn’t have to
worry about IAM at all. Why do we need it, and why does AWS require it? To answer
those questions, let’s imagine how the AWS ecosystem might work without IAM.

Without IAM, our Lambda functions could access any other AWS resource, like a
DynamoDB table or S3 bucket. This is simple to reason about—if a resource exists,
we can use it. Of course, with no restrictions in place, we could even access resources
in other AWS accounts, and those other accounts could access our resources!

This world of “open access” might be convenient for developers, but unfortunately it’s
a nightmare for security and privacy. If we want to limit access to our applications
and data, we need a system to enforce those limitations. In AWS, IAM is that system.

IAM controls access to AWS services by limiting who can perform certain actions
against a set of resources. The who in this case is an IAM principal, which is a user or
role. The actions and resources are defined in an IAM policy. As you might imagine,
IAM introduces a tremendous amount of complexity into our AWS applications,
especially when we’re using many different serverless components and resources that
each has its own action and resource specifications.

But understanding IAM and using it correctly are critical to building serverless appli‐
cations, as we’ll see in this chapter.

76 | Chapter 4: Operating AWS Lambda Functions

The Principle of Least Privilege
Unlike in a traditional monolithic application, a serverless application could poten‐
tially have hundreds of individual AWS components, each with different behavior and
access to different pieces of information. If we simply applied the broadest security
permissions possible, then every component would have access to every other com‐
ponent and piece of information in our AWS account. Every gap we leave in a secu‐
rity policy is an opportunity for information to leak or be lost or be altered or for our
application’s behavior to be changed. And, if a single component is compromised, the
entire AWS account (and any other applications deployed in it) is at risk as well.

We can address this risk by applying the principle of “least privilege” to our security
model. In a nutshell, this principle states that every application and indeed every
component of an application should have the least possible access it needs to perform
its function. For example, let’s consider a Lambda function that reads from a Dyna‐
moDB table. The broadest possible permissions would allow that Lambda function to
read, write, or otherwise interact with every other component and piece of informa‐
tion in the AWS account. It could read from S3 buckets, create new Lambda func‐
tions, or even launch EC2 instances. If the Lambda code had a bug or vulnerability
(in parsing user input, for example), its behavior could be altered to do those things,
and it wouldn’t be constrained by its IAM role.

The principle of least privilege, applied to this particular Lambda function, would
lead to an IAM role that allows the function to only access the DynamoDB service.
Going a step further, we might only allow the function to read data from DynamoDB
and remove its ability to write data or to create or delete tables. We can go even fur‐
ther in this case and restrict the function’s read-only access to the single DynamoDB
table it requires. Taken to the logical extreme, we can even restrict which items in the
table the function can read, based on the user who has executed the function in the
first place.

Having applied the principle of least privilege to our Lambda function, we’ve now
limited its access to only the specific resources that it needs to perform its job. If the
Lambda function was compromised or hacked in some way, its security policy would
still constrain it to reading specific items from a single DynamoDB table. That said,
the principle of least privilege is not only applicable to preventing compromises. It’s
also an effective means of limiting the “blast radius” of bugs in your application code.

Let’s consider a situation in which our Lambda function has a bug that, for example,
uses the wrong value to delete data. In a wide-open security model, that bug could
result in the Lambda function deleting data for the wrong user! However, because
we’ve limited the “blast radius” of bugs by applying the principle of least privilege for
our Lambda function, this particular issue will result in it simply doing nothing or
throwing an error.

Security | 77

The Control Plane and the Data Plane
As we briefly mentioned in Chapter 3 (Figure 3-1), the Lambda service is split into
the control plane and the data plane. The control plane manages Lambda functions
and provides APIs like CreateFunction, DeleteFunction, and UpdateFunctionCode.
The control plane also manages integrations with other AWS services. Invocation of a
Lambda function is handled by the data plane, which provides the Invoke and
InvokeAsync APIs.

When considering how IAM is integrated with Lambda, it’s important to understand
which plane is involved.

Identity and Access Management
A working knowledge of IAM is critical to successfully building any kind of applica‐
tion on AWS, and as we discussed in the previous section, effectively applying the
principle of least privilege is even more important when building a serverless applica‐
tion. IAM is a complex, multifaceted service, and we’re not going to come close to
covering all of it here. Rather, in this section, we’re just going to dive into IAM from
the perspective of building serverless applications. Where IAM most commonly and
frequently comes into play for serverless applications is in execution roles, in the poli‐
cies attached to those roles, and in policies attached to specific AWS resources.

Roles and policies
An IAM role is an identity that can be assumed by an AWS component (like a
Lambda function). A role differs from an IAM user in that a role is assumable by any‐
one (or anything) who needs it, and a role doesn’t have long-term access credentials.
With that in mind, we can define an IAM role as an assumable identity, with an
attached set of permissions.

The phrase assumable identity might make it sound like anyone or anything can
assume an IAM role. If that were the case, then using roles wouldn’t really provide
any benefit because there would be no restrictions on assuming a role and therefore
no restrictions on what actions any given user or component could undertake. Fortu‐
nately, IAM roles are not assumable by just anyone. When building a role, we must
specify who (or what) can assume that role. For example, if we’re building a role for
use by a Lambda function, we must explicitly grant the Lambda service (in this case
the data plane) permission to assume that role, by specifying the following “trust
relationship”:

{
 "Version": "2012-10-17",
 "Statement": [
 {

78 | Chapter 4: Operating AWS Lambda Functions

 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

This statement specifies an effect (Allow), which applies to an action (sts:Assume
Role). Most important, however, it specifies a principal, which is the identity that is
allowed to assume the role. In this case, we’re allowing the Lambda service’s data
plane (lambda.amazonaws.com) to assume this role. If we tried to use this role with a
different service, like EC2 or ECS, it wouldn’t work unless we changed the principal.

Now that we’ve established who can assume the role, we need to add permissions.
IAM roles don’t inherently have any permissions to access resources or perform
actions. Also, IAM’s default behavior is to deny permission, unless that permission is
explicitly allowed in a policy. Those permissions are contained in policies, which state
permissions using the following constructs:

• An effect (like Allow or Deny)
• A set of actions, which are generally namespaced to a specific AWS service (like
logs:PutLogEvents)

• A set of resources, which are generally Amazon Resource Names (ARNs) that
define specific AWS components. Different services support varying levels of spe‐
cificity for resources. For example, DynamoDB policies can apply down to the
level of a table.

Here’s an example policy that allows a set of actions against the “logs” service (aka
CloudWatch Logs) and doesn’t restrict those actions to any particular “logs” resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Security | 79

We established earlier who can assume the role (the Lambda service’s data plane, as
specified by the principal identifier lambda.amazonaws.com) and what permissions
the role has. By itself, however, this role isn’t used until it’s attached to a Lambda func‐
tion, which we would need to explicitly configure. That is, we need to tell the Lambda
service to use this role when executing a particular Lambda function.

Lambda resource policies
As if the world of security and IAM weren’t complex enough, AWS also occasionally
uses IAM policies applied to resources (rather than identities) to control actions and
access. Resource policies invert control compared to an identity-based IAM policy: a
resource policy states what other principals can do to the resource in question. In
particular, this is useful for allowing principals in different accounts access to certain
resources (like Lambda functions or S3 buckets).

A Lambda function invocation resource policy consists of a series of statements, each
of which specifies a principal, a list of actions, and a list of resources. These policies
are used by the Lambda data plane to determine whether to allow a caller (e.g., a
principal) to successfully invoke a function. Here’s an example Lambda resource pol‐
icy (also called a function policy) that allows the API Gateway service to invoke a par‐
ticular function:

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "Stmt001",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "lambda:invokeFunction",
 "Resource":
 "arn:aws:lambda:us-east-1:555555555555:function:MyLambda",
 "Condition": {
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:execute-api:us-east-1:
 555555555555:xxx/*/GET/locations"
 }
 }
 }
]
}

In this policy, we’ve also added a condition, which more specifically limits the allowed
source of the action to only API Gateway deployments with an ID of “xxx” that
include the “/GET/locations” path. Conditions are service-specific and depend on
what information the caller makes available.

80 | Chapter 4: Operating AWS Lambda Functions

Let’s work through the scenario in which API Gateway invokes a Lambda function,
using Figure 4-1.

Figure 4-1. Overview of Lambda and IAM security

1. Did the caller have permission to call the API? For this scenario, we’ll assume the
answer is yes. Please see the API Gateway documentation for more information.

2. The API Gateway API is attempting to invoke the Lambda function. Does the
Lambda service allow this? This is controlled by a Lambda function invocation
resource policy.

3. What permissions should the Lambda function code have when it executes? This
is controlled by the Lambda execution role, and that role is assumed through a
trust relationship with the Lambda service.

4. The Lambda code is trying to put an item into a DynamoDB table. Can it do
that? This is controlled by a permission, which comes from an IAM policy
attached to the Lambda execution role.

5. DynamoDB doesn’t use resource policies, so calls from anyone (including
Lambda functions) are permitted, as long as their role (e.g., the Lambda execu‐
tion role) permits it.

SAM IAM
Unfortunately, the complexity of IAM puts its effective use somewhat at odds with a
rapid prototyping workflow. Throw a serverless application architecture into the mix,
and it’s no wonder so many Lambda execution roles have completely open policies,
allowing all forms of access to every resource in the AWS account. Even though it’s
easy to agree that the principle of least privilege provides valuable benefits, when
faced with the somewhat daunting task of implementing it using IAM for dozens or

Security | 81

https://oreil.ly/Sb6N2

hundreds of AWS resources, many otherwise conscientious engineers choose to forgo
security for simplicity.

Autogenerated execution roles and resource policies. Fortunately, the Serverless Applica‐
tion Model addresses this issue in a few different ways. In the simplest of cases, it will
automatically create the appropriate Lambda execution roles and function policies,
based on the various functions and event sources configured in the SAM infrastruc‐
ture template. This neatly handles permissions for executing Lambda functions and
allowing them to be invoked by other AWS services.

For example, if you configured a single Lambda function with no triggers, SAM will
automatically generate a Lambda execution role for that function, which would allow
it to write to CloudWatch Logs. If you then added an API Gateway trigger to that
Lambda function, SAM will generate a Lambda function invocation resource policy,
which allows the Lambda function to be invoked by the API Gateway platform. This
will make our lives a little easier in the next chapter!

Common policy templates. Of course, if your Lambda function needs to interact with
other AWS services in code (for example, to write to a DynamoDB table), it will likely
require additional permissions. For these situations, SAM provides a selection of
common IAM policy templates that allow us to concisely specify permissions and
resources. Those templates are then expanded during the SAM deployment process
and become fully specified IAM policy statements. Here we’ve added a DynamoDB
table to our SAM template. We’ve used a SAM policy template to allow our Lambda
function to perform create, read, update, and delete actions (aka CRUD) against that
DynamoDB table.

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Description: Chapter 4

Resources:

 HelloWorldLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.HelloWorld::handler
 CodeUri: target/lambda.zip
 Policies:
 — DynamoDBCrudPolicy:
 TableName: !Ref HelloWorldTable

 HelloWorldTable:
 Type: AWS::Serverless::SimpleTable

82 | Chapter 4: Operating AWS Lambda Functions

Here we’ve used the CloudFormation Intrinsic Function Ref, which allows us to
use the logical ID of a resource (in this case HelloWorldTable) as a placeholder
for the physical ID of the resource (which would be something like stack-name-
HelloWorldTable-ABC123DEF). The CloudFormation service will resolve logical
IDs to physical IDs when a stack is created or updated.

Summary
In this chapter, we covered building and packaging Lambda code and dependencies
in a reproducible, deterministic way. We started to use AWS’s SAM to specify our
infrastructure (e.g., our Lambda function and later a DynamoDB table) as YAML
code—we’ll explore this much further in Chapter 5. We then explored the two differ‐
ent kinds of IAM constructs that affect Lambda functions: execution roles and
resource policies. Finally, using SAM instead of raw CloudFormation meant that we
didn’t have to add very much additional YAML code to apply the principle of least
privilege to the IAM roles and policies for our Lambda function.

We now have nearly all the basic building blocks in place to create complete applica‐
tions using Lambda and associated tools. In Chapter 5 we’ll show how to tie Lambda
functions to event sources and then build two example applications.

Exercises
1. Deliberately misconfigure the Lambda function in this chapter by setting the Han

dler property to book.HelloWorld::foo. What happens when the function is
deployed? What happens when you invoke the function?

2. Read the IAM reference guide to learn which AWS services (and actions) can
have granular IAM permissions.

3. If you’d like an extra challenge, replace AWS::Serverless::Function with
AWS::Lambda::Function in the template.yaml file. What other changes do you
have to make for CloudFormation to deploy your function? If you get stuck, you
can look at the post-transform template (for the original stack) via the CloudFor‐
mation web console.

Summary | 83

https://oreil.ly/ScQ9Q
https://oreil.ly/nBdd9

CHAPTER 5

Building Serverless Applications

So far we’ve talked a lot about Lambda functions—how to program them, how to
package and deploy them, how to process input and output, etc. One important
aspect to Lambda, however, that we haven’t covered much so far, is that Lambda func‐
tions are rarely invoked directly from code we write in a different system. Instead, for
the vast majority of usages of Lambda, we configure an event source, or trigger, that is
another AWS service, and let AWS invoke our Lambda function for us.

We looked at a couple of examples of this in “What Does a Lambda Application Look
Like?” on page 13:

• To implement an HTTP API, we configure AWS API Gateway as the event
source.

• To implement file processing, we configure S3 as the event source.

There are many different AWS services that directly integrate with Lambda, and even
more that integrate indirectly. This means that we can build serverless applications,
using Lambda as the compute platform, that can perform a vast range of tasks.

In this chapter, we look at how to tie event sources to Lambda and then explore how
to build specific types of application with this technique. Along the way, you’ll learn
more about how to architect, build, package, and deploy Lambda-based applications,
building on our knowledge from the previous chapter.

If you haven’t done so already, you’ll likely want to download the example source
code before trying any of the examples in this chapter.

85

https://oreil.ly/8DQe_
https://oreil.ly/8DQe_

Lambda Event Sources
As you just learned, the typical usage pattern for Lambda is to tie a function to an
event source. In this section, we describe the workflow to follow when you build a
Lambda function to integrate with a particular upstream service.

Writing Code to Work with Input and Output for Event Sources
When programming a Lambda function to respond to a particular event source, the
first thing you’ll typically want to do is understand the format of events that your
Lambda function will receive.

The SAM CLI tool that we’ve already used has an interesting command to help with
this exercise—sam local generate-event. If you run this command, sam lists all the
services it can generate stub events for, which you can then examine and use to drive
your code. For example, part of the output for sam local generate-event looks like
this:

Commands:
 alexa-skills-kit
 alexa-smart-home
 apigateway
 batch
 cloudformation
 cloudfront
 cloudwatch
 codecommit
 codepipeline

Let’s say we’re interested in building a serverless HTTP API. In this case, we use AWS
API Gateway as our upstream event source. If we run sam local generate-event
apigateway the output includes the following:

Commands:
 authorizer Generates an Amazon API Gateway Authorizer Event
 aws-proxy Generates an Amazon API Gateway AWS Proxy Event

It turns out that API Gateway can integrate with Lambda in multiple ways. The one
we typically want from this list is the aws-proxy event, where API Gateway acts as a
proxy server in front of a Lambda function, so let’s give that a try.

$ sam local generate-event apigateway aws-proxy

{
 "body": "eyJ0ZXN0IjoiYm9keSJ9",
 "resource": "/{proxy+}",
 "path": "/path/to/resource",
 "httpMethod": "POST",
 "isBase64Encoded": true,
 "queryStringParameters": {

86 | Chapter 5: Building Serverless Applications

 "foo": "bar"
 },

This JSON object is a fully baked sample of a typical event a Lambda function
receives from API Gateway. In other words, when you set up API Gateway as a trigger
for your Lambda function, the event argument that is passed to the Lambda function
has this structure.

This sample event doesn’t necessarily help you with the semantics of the integration
with API Gateway, but it does give you the shape of the event that your Lambda func‐
tion receives, which in turn gives you a solid start to writing your code. You can use
this JSON object as inspiration, or you can take it a step further and actually embed it
in a test—more on that in Chapter 6!

Using the AWS Toolkit
We focus in this book on using the SAM CLI tool to provide various interactions with
AWS’s serverless services. However, AWS also provides some IDE plug-ins for this
purpose, for Jetbrains IntelliJ, Eclipse, VS Code, and more.

The IntelliJ Toolkit pictured in Figure 5-1 is introduced on its own page on the AWS
website. It offers a good number of features for Lambda developers.

Figure 5-1. AWS IntelliJ Toolkit

Lambda Event Sources | 87

https://aws.amazon.com/intellij

At the time of this writing, we think that most of these features have a few restrictions
that limit its use, but it is worth exploring, and for some of you it might fit well in
your workflow.

One feature that we particularly like is the Run (Invoke) the Remote Version of a Func‐
tion tool. There’s a couple of reasons we like this:

• It offers the same event templates offered by sam local generate-event (see
Figure 5-1).

• It provides quick access to Lambda logs as you invoke the function running on
AWS—this can occasionally be a frustrating thing to do otherwise.

The Toolkit also offers features to build and deploy Lambda functions/serverless
applications, but there are some restrictions here on how your code can be packaged.
At the time of writing, for example, the Toolkit doesn’t support our recommended
workflow for multimodule projects, which we explore later in this chapter.

Finally, the Toolkit enables local debugging of a Lambda function within a “platform-
like” environment, which can be useful to an extent, but again you’ll need to be able to
work in the constraints of how the tool packages applications.

Because you now know the format of the data that your Lambda function receives,
you are able to create a handler signature to process this format. Remember “POJOs
and Ecosystem Types” on page 52? That’s going to come into play now.

One option you have in setting up your handler is to create your own POJO input
type that fits the structure of the inbound event but only creates fields for the proper‐
ties you care about. For instance, if you cared only about the path and queryString
Parameters properties of the aws-proxy event, you could create a POJO as follows:

package book.api;

import java.util.Map;

public class APIGatewayEvent {
 public String path;
 public Map<String, String> queryStringParameters;
}

A second option is to use a library of types that AWS provides in a Java library pre‐
cisely for this purpose—the “AWS Lambda Java Events Library.” If you use this library,
refer to the documentation and look to find the latest versions in Maven Central.

If you want to use this library to handle aws-proxy events, then you need to first
include a library in your Maven dependencies. Add the <dependencies> section to
the root of your pom.xml file if it isn’t already there. Otherwise, add this <depend
ency> subsection to the preexisting <dependencies> section:

88 | Chapter 5: Building Serverless Applications

https://oreil.ly/5DMvp
https://oreil.ly/8WvbA

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>2.2.6</version>
 </dependency>
</dependencies>

With that update made, we can use the APIGatewayProxyRequestEvent class as our
input POJO.

Now we have a class to represent the event that our Lambda function is going to
receive. Next, let’s look at how to perform the same activity for the event that will be
our function’s response. As you know from “Input, Output” on page 47, this is where
POJOs come into play again.

The SAM CLI can’t help us this time, so alternatively you can look up the AWS docu‐
mentation to find valid output event structures and generate your own output POJO
type, or you can use the AWS Lambda Java Events Library again. This time, use the
APIGatewayProxyResponseEvent class if responding to an API Gateway proxy event
(see “API Gateway Proxy Events” on page 96).

Let’s say that you want to build your own POJO class and want to return just an
HTTP Status code and a body in the HTTP response. In that case, your POJO might
look as follows:

package book.api;

public class APIGatewayResponse {
 public final int statusCode;
 public final String body;

 public APIGatewayResponse(int statusCode, String body) {
 this.statusCode = statusCode;
 this.body = body;
 }
}

Whether you use the AWS-provided POJO types or code them yourself is not a par‐
ticularly clear-cut choice. At the present time, we default to using the AWS library for
a couple of reasons:

• While in the past the library has lagged behind significantly with what’s actually
available in the Lambda platform, these days AWS does a decent job keeping it
up-to-date.

• Similarly, this library used to bring in a huge number of SDK dependencies, and
so would significantly increase the size of your artifact. This is much improved

Lambda Event Sources | 89

https://oreil.ly/S1y95
https://oreil.ly/RnyUg
https://oreil.ly/RnyUg

now, and the base JAR (which is sufficient for quite a few event sources, includ‐
ing API Gateway and SNS) is less than 100KB.

That said, coding your own POJOs is a perfectly reasonable approach—it means your
deployed artifact will be even smaller, it reduces the number of library dependencies
your code has (including transitive dependencies), and it adds a succinctness to your
code, aiding maintainability later. In this chapter, we give examples of both
approaches.

Once your basic Lambda function is coded, it’s time to move on to the next step—
configuring the event source for deployment.

Configuring a Lambda Event Source
Just as there are multiple ways of deploying and configuring a Lambda function
(remember that long list of deployment tools from “Deploy” on page 72?), there are
multiple ways of configuring an event source. However, since in this book we are
using SAM to deploy our code, it makes sense, as much as possible, to use SAM to
configure our event sources too.

Let’s continue our API Gateway example. The simplest way of defining an API Gate‐
way event source in SAM is to update your Lambda function definition in your
template.yaml as follows:

HelloAPIWorldLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.HelloWorldAPI::handler
 CodeUri: target/lambda.zip
 Events:
 MyApi:
 Type: Api
 Properties:
 Path: /foo
 Method: get

Take a look at the Events key—that’s where the magic happens. What SAM does in
this case is create a whole bunch of resources, including a globally accessible API
endpoint (which we get to later in the chapter), but part of what it also does is config‐
ure API Gateway to trigger your Lambda function.

SAM can directly configure many different event sources. However, if it doesn’t do
enough for your requirements, you can always drop down to lower-level CloudFor‐
mation resources.

90 | Chapter 5: Building Serverless Applications

https://oreil.ly/s_4W2

Understanding Different Event Source Semantics
Back in Chapter 1 we described that Lambda functions can be invoked in two ways—
synchronously and asynchronously—and showed how those different invocation
types were used in different scenarios.

Unsurprisingly, that means there are at least two different kinds of event source—
those, like API Gateway, that invoke a Lambda function synchronously and wait for
the reply (“synchronous event sources”), and others that invoke a Lambda function
asynchronously, and don’t wait for the reply (“asynchronous event sources”).

In the case of the former group, your Lambda function needs to return the appropri‐
ate type of response, just like we did with the API Gateway earlier. For the latter
group, your handler function can have a return type of void, showing that you don’t
return a response.

It would be convenient to say, in fact, that all event sources fit into one of these two
kinds, but unfortunately there’s a slight complication—there’s a third kind, and that’s
Stream/queue event sources, such as:

• Kinesis Data Streams
• DynamoDB Streams
• Simple Queue Service (SQS)

In all three of these cases, we configure the Lambda platform to reach out to the
upstream service to poll for events, as opposed to all the other event sources where we
configure a Lambda trigger directly from the upstream service to push events to
Lambda.

This reversal for stream/queue sources has no impact on the Lambda handler pro‐
gramming model—the method signature is precisely the same. For example, here is
the format of a Lambda handler event for SQS (note the array of Records):

{
 "Records": [
 {
 "messageId": "19dd0b57-b21e-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1523232000000",
 "SenderId": "123456789012",
 "ApproximateFirstReceiveTimestamp": "1523232000001"
 },
 "messageAttributes": {},
 "md5OfBody": "7b270e59b47ff90a553787216d55d91d",
 "eventSource": "aws:sqs",

Lambda Event Sources | 91

 "eventSourceARN": "arn:aws:sqs:us-east-1:123456789012:MyQueue",
 "awsRegion": "us-east-1"
 }
]
}

Table 5-1. Lambda event source types

Event Source Type Event Sources
Synchronous API Gateway, Amazon CloudFront (Lambda@Edge), Elastic

Load Balancing (Application Load Balancer), Cognito, Lex,
Alexa, Kinesis Data Firehose

Asynchronous S3, SNS, Amazon SES, CloudFormation, CloudWatch Logs,
CloudWatch Events, CodeCommit, Config

Stream/Queue Kinesis Data Streams, DynamoDB Streams, Simple Queue
Service (SQS)

Stream/queue event sources are also a little different when it comes to error handling
(see “Error Handling” on page 183). But for now, we know enough about event sour‐
ces to explore a couple of detailed examples. Let’s dig into our serverless HTTP API.

Example: Building a Serverless API
In Chapter 1, we briefly discussed how Lambda can be used as part of a web API. In
this section, we will show how this is built.

Behavior
This application allows a client to upload weather data to an API, and then allows
other clients to retrieve that data (Figure 5-2).

Figure 5-2. Web API using AWS Lambda

The write path consists of making an HTTP POST request to the endpoint /events,
with the following JSON data structure in the body of the request:

92 | Chapter 5: Building Serverless Applications

{
 "locationName":"Brooklyn, NY",
 "temperature":91,
 "timestamp":1564428897,
 "latitude": 40.70,
 "longitude": -73.99
}

The read path consists of making a GET request to the endpoint /locations, which
returns the latest weather data for each location that we’ve saved data for. The format
of this data is a JSON list of objects in the same format as the write path. An optional
query string parameter limit can be added to the GET request to specify a maximum
number of records to return.

Architecture
We use AWS API Gateway to implement all of the HTTP elements of this application.
The read path and write path are implemented using two different Lambda functions.
These are triggered by API Gateway. We store our data in a DynamoDB table. Dyna‐
moDB is Amazon’s “NoSQL” database service. It’s a great fit for many serverless sys‐
tems because:

• It offers the same “lightweight operations” model as Lambda—we configure the
table structure we want and Amazon handles all runtime considerations.

• It can be used in a full “on-demand” scaling mode that scales up and down in
reaction to actual usage, just like Lambda does.

Because DynamoDB is a NoSQL technology, it isn’t the right choice for all applica‐
tions, but it’s definitely a quick way to get started.

For our DynamoDB table in this example, we declare a primary key named location
Name and use “on-demand” capacity control.

We treat all of these resources—an API Gateway definition, two Lambda functions,
and a DynamoDB table as one unified “serverless application.” We treat the code,
configuration, and infrastructure definitions as one, collectively deployed, unit. This
is not a particularly new idea just for serverless, though—encapsulating a database
within a service is a fairly common idea of microservice architecture.

Apart from adding a useful grouping, using the idea of a serverless application also
helps solve a concern that some people have when they consider how many Lambda
functions they might have in their organization—it’s tough enough herding hundreds
of microservices, but a company may end up with thousands or tens of thousands of
Lambda functions. How can we manage all of those functions? By namespaceing
functions within a serverless application, and by tagging or locating the deployed ver‐
sions of those applications by their environment/stage, we can start bringing some

Example: Building a Serverless API | 93

order to the chaos. This concept of a serverless application is not just a design-time
consideration—AWS actually supports it directly (see “Deployment” on page 107).

Which Flavor of API Gateway?
AWS API Gateway was launched in July 2015, using the terminology of a “REST API”
very much at its core (REST referring to the “representational state transfer” style of
building applications). Over the years since its launch, AWS has added a lot of fea‐
tures to API Gateway—security, request and response mapping, rate limiting, and
more.

At the time of writing, AWS has just launched, currently as a beta release, API Gate‐
way HTTP APIs. This is a different “flavor” of API Gateway that doesn’t have as many
features as the “REST API” version—it’s missing things like rate limiting and request/
response mapping, for instance—but it does come with approximately 70% cost sav‐
ings and better (lower latency) performance. Also note that while AWS names this
“HTTP APIs,” the “traditional” REST APIs variant still implements the HTTP proto‐
col. AWS’s choice of names for various things still continues to baffle us.

The reason that AWS has introduced HTTP APIs is that it has found that many cus‐
tomers don’t use most of the features of API Gateway. Many people instead just want
a simple way of exposing Lambda functions to the public internet, with a minimum
amount of complexity. HTTP APIs gives these people that, with a nice reduction in
cost.

Looking at the beta version of HTTP APIs, we see that from a programming model
point of view very little is different versus REST APIs. The changes are mostly archi‐
tectural—what the service can and can’t do—but that of course has an impact on what
code you may need to write. For example, the current version of HTTP APIs doesn’t
support custom/Lambda authorizers, but instead you could implement this feature
within your Lambda handler code.

It also appears that, if you’re using SAM at least, there’s not very much different for
the deployment template of a REST API versus an HTTP API—for simple use cases at
least, but remember, that’s what the HTTP API variant is built for.

In this book, we only use the REST API version of API Gateway. We recommend you:

• Don’t use an HTTP API if it’s still in beta.
• Otherwise, use an HTTP API if its limited feature set is sufficient for your needs,

knowing that you can migrate to the full REST API version later if necessary.

AWS goes into more detail on this choice in the API Gateway documentation.

94 | Chapter 5: Building Serverless Applications

https://oreil.ly/FdDze
https://oreil.ly/fOd1n
https://oreil.ly/fOd1n
https://oreil.ly/GmksV

Lambda Code

At this point in the book we don’t discuss error checking or testing
—we’ve done that for clarity of example. Don’t worry—both of
these important subjects are addressed later in the book!

We mentioned earlier that one of the first things you need to do when implementing
an application using Lambda is to understand the format of the events that your
Lambda function will receive, and the format of the response your Lambda function
should return (if any).

We already examined the API Gateway proxy types earlier. In this weather API, we
write our own classes for POJO serialization and deserialization, rather than using the
AWS-supplied library. Examples 5-1 and 5-2 are sufficient for our needs for both
Lambda functions.

Example 5-1. For deserializing API requests

package book.api;

import java.util.HashMap;
import java.util.Map;

public class ApiGatewayRequest {
 public String body;
 public Map<String, String> queryStringParameters = new HashMap<>();
}

Example 5-2. For serializing API responses

package book.api;

public class ApiGatewayResponse {
 public Integer statusCode;
 public String body;

 public ApiGatewayResponse(Integer statusCode, String body) {
 this.statusCode = statusCode;
 this.body = body;
 }
}

We wouldn’t actually recommend this approach in general—see earlier about whether
or not to use the AWS POJO type library (“Writing Code to Work with Input and
Output for Event Sources” on page 86)—but we wanted to show examples of both

Example: Building a Serverless API | 95

approaches. The second example in this chapter uses the AWS Library. When you
build your own production implementation of an HTTP API with Lambda, you can
substitute the APIGatewayProxyRequestEvent and APIGatewayProxyResponseEvent
classes in the com.amazonaws.services.lambda.runtime.events package for these
DIY classes.

Now let’s look in detail at the code necessary to implement this application. We start
with the write path.

API Gateway Proxy Events
You may have noticed that we keep using phrases like API Gateway proxy throughout
this chapter. This is because there are two different ways of triggering Lambda from
API Gateway for HTTP requests.

API Gateway Lambda proxy integration is the type we use in this serverless API
example. Integration is the API Gateway term for connecting to a backend service—
which can be Lambda, or other types of service too. A Lambda proxy integration is an
integration where API Gateway converts the whole original HTTP request into a
JSON form, passes this to the Lambda function, and then converts the Lambda’s
JSON response into an HTTP response. The proxy here means that API Gateway isn’t
doing any custom mapping to the request or response.

API Gateway “Lambda custom integrations”, on the other hand, have specific map‐
ping templates for both the request path and the response path. This is done by giving
API Gateway these mapping templates when the API is configured. With this type of
integration, the structure of the JSON that is passed to the backing Lambda function
will depend on the contents of the mapping template, which is why you don’t see an
option for these types of events in sam local generate-event.

The benefit of Lambda custom integrations is that the event objects passed to, and
returned from, the Lambda function are significantly less complicated, and in fact the
Lambda function doesn’t need to understand the details of the HTTP protocol at all.
For example, the status code can be set in the response template, and the Lambda
function doesn’t need to know its 200 s from its 418 s.

The drawback of Lambda custom integrations is that all that logic that does need to
know about HTTP requests and responses has to go into a Velocity template—these
are brittle and tricky to develop and unit test.

These drawbacks are so significant that we recommend in almost all circumstances
that you use the “Lambda proxy” integration type when integrating Lambda with API
Gateway. If necessary, you can pull some of the HTTP request/response wrangling
into shared code to reduce the burden on individual Lambda functions, but either
way it’s typically a lot easier and cleaner to define that in code, rather than in mapping
templates.

96 | Chapter 5: Building Serverless Applications

https://oreil.ly/kaTa0
https://oreil.ly/niw8d
https://oreil.ly/Iy3fi
https://oreil.ly/d1NlX

Two further quick points about using API Gateway with Lambda. We’re only going to
mention them here so that you’re aware of them:

• API Gateway has another meaning of the word proxy, and that’s when it’s used in
the phrase proxy resource. Here proxy is used to say that the path that is being
defined is partly or wholly a wildcard, e.g. /foo/{proxy} will map both the request
paths /foo/sheep and /foo/cheese to the same integration. You may use proxy
resources combined with proxy integrations but you aren’t required to.

• API Gateway has another way it can call Lambda—for authorizing requests
before passing to a backend resource (which may itself be any of the API Gateway
integration types). You’ll see that referred to by the “authorizer” event source type
when calling sam local generate-event apigateway with no other arguments.

For more information about using API Gateway and Lambda in this way, see the AWS
documentation.

Uploading weather data with WeatherEventLambda
We know that the rough skeleton of our code to process uploaded data is going to be
the following:

package book.api;

public class WeatherEventLambda {
 public ApiGatewayResponse handler(ApiGatewayRequest request) {
 // process request

 // send response
 return new ApiGatewayResponse(200, ..).;
 }
}

The first thing we need to do is capture the input of our event. Lambda deserializa‐
tion starts this work for us, and the structure of the ApiGatewayRequest object that is
passed to our function is as follows:

{
 "body": "{\"locationName\":\"Brooklyn, NY\", \"temperature\":91,...",
 "queryStringParameters": {}
}

We don’t care about the queryStringParameters field in this Lambda function—that
will be used in the querying function—so we can ignore that for now.

That body field, though, is a little tricky—the JSON object uploaded by the client is
still serialized as a string value. That’s because Lambda only deserialized the event that
API Gateway created; it also can’t deserialize the “next level in” of the weather data.

Example: Building a Serverless API | 97

https://oreil.ly/PWoi_
https://oreil.ly/PWoi_

No matter, we can perform our own deserialization for body, and one way we can do
that is to use the Jackson library.

Once we’ve deserialized the weather data, we’re ready to save it to the database.
Example 5-3 shows the full code for the Lambda function—you may also want to
open up the example code in the chapter5-api directory.

Example 5-3. WeatherEventLambda handler class

package book.api;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.fasterxml.jackson.databind.DeserializationFeature;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.IOException;

public class WeatherEventLambda {
 private final ObjectMapper objectMapper =
 new ObjectMapper()
 .configure(
 DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES,
 false);
 private final DynamoDB dynamoDB = new DynamoDB(
 AmazonDynamoDBClientBuilder.defaultClient());
 private final String tableName = System.getenv("LOCATIONS_TABLE");

 public ApiGatewayResponse handler(ApiGatewayRequest request)
 throws IOException {

 final WeatherEvent weatherEvent = objectMapper.readValue(
 request.body,
 WeatherEvent.class);

 final Table table = dynamoDB.getTable(tableName);
 final Item item = new Item()
 .withPrimaryKey("locationName", weatherEvent.locationName)
 .withDouble("temperature", weatherEvent.temperature)
 .withLong("timestamp", weatherEvent.timestamp)
 .withDouble("longitude", weatherEvent.longitude)
 .withDouble("latitude", weatherEvent.latitude);
 table.putItem(item);

 return new ApiGatewayResponse(200, weatherEvent.locationName);
 }
}

98 | Chapter 5: Building Serverless Applications

https://github.com/FasterXML/jackson

First you can see we create a few instance variables outside of the handler function.
We talk about why we do that in “Scaling” on page 193, but the summary is that the
Lambda platform typically uses the same instance of a Lambda function several times
(although never concurrently), so we can optimize performance a little by only creat‐
ing certain things once for the lifetime of the Lambda function instance.

The first instance variable is Jackson’s ObjectMapper, and the second is the Dyna‐
moDB SDK. The third and final instance variable is the table name within Dyna‐
moDB that we want to use. The precise value of that comes from our infrastructure
template, so we use an environment variable to configure our Lambda function, just
as we discussed in “Environment Variables” on page 61.

The remainder of the class is our Lambda handler function. First of all, you can see
the signature, with the types that you’d expect given the event source that we’re deal‐
ing with. One slight addition here, though, is that our Lambda handler declares that it
may throw an exception—this is completely valid, and we discuss error handling
more in “Error Handling” on page 183.

The first line of the handler deserializes the weather event embedded within the body
field of the original HTTP request. WeatherEvent is defined in Example 5-4 in its
own class.

Example 5-4. WeatherEvent class

package book.api;

public class WeatherEvent {
 public String locationName;
 public Double temperature;
 public Long timestamp;
 public Double longitude;
 public Double latitude;

 public WeatherEvent() {
 }

 public WeatherEvent(String locationName, Double temperature,
 Long timestamp, Double longitude, Double latitude) {

 this.locationName = locationName;
 this.temperature = temperature;
 this.timestamp = timestamp;
 this.longitude = longitude;
 this.latitude = latitude;
 }
}

Example: Building a Serverless API | 99

In this case, Jackson uses the no-argument constructor, and populates the fields of the
object based on the value passed in the body field of the original Lambda event.

Now we’ve captured our full weather event, we can save this to the database. We’re not
going to go into detail of how to use DynamoDB here, but you can see from the code
that:

• We use the environment variable of the table name to connect to our desired
table.

• We use the DynamoDB Java SDK’s “Document model” to save data to the table,
using the location name as the primary key.

Finally, we need to return a response. Since we got this far, we assume (for now!) that
everything worked successfully, in which case returning an HTTP 200 (“OK”)
response is the right thing to do, and to make it clearer to the client what we actually
did, we return the location name that was saved.

That’s all the code that we need to handle the write path of our API. Now let’s look at
the read path.

Reading weather data with WeatherQueryLambda

As you’d expect, WeatherQueryLambda is similar to WeatherEventLambda, but
reversed. Example 5-5 shows the code.

Example 5-5. WeatherQueryLambda handler class

package book.api;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.ScanRequest;
import com.amazonaws.services.dynamodbv2.model.ScanResult;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.IOException;
import java.util.List;
import java.util.stream.Collectors;

public class WeatherQueryLambda {
 private final ObjectMapper objectMapper = new ObjectMapper();
 private final AmazonDynamoDB dynamoDB =
 AmazonDynamoDBClientBuilder.defaultClient();
 private final String tableName = System.getenv("LOCATIONS_TABLE");

 private static final String DEFAULT_LIMIT = "50";

 public ApiGatewayResponse handler(ApiGatewayRequest request)

100 | Chapter 5: Building Serverless Applications

 throws IOException {

 final String limitParam = request.queryStringParameters == null
 ? DEFAULT_LIMIT
 : request.queryStringParameters.getOrDefault(
 "limit", DEFAULT_LIMIT);
 final int limit = Integer.parseInt(limitParam);

 final ScanRequest scanRequest = new ScanRequest()
 .withTableName(tableName)
 .withLimit(limit);
 final ScanResult scanResult = dynamoDB.scan(scanRequest);

 final List<WeatherEvent> events = scanResult.getItems().stream()
 .map(item -> new WeatherEvent(
 item.get("locationName").getS(),
 Double.parseDouble(item.get("temperature").getN()),
 Long.parseLong(item.get("timestamp").getN()),
 Double.parseDouble(item.get("longitude").getN()),
 Double.parseDouble(item.get("latitude").getN())
))
 .collect(Collectors.toList());

 final String json = objectMapper.writeValueAsString(events);

 return new ApiGatewayResponse(200, json);
 }
}

We see a similar set of instance variables. The DynamoDB one is slightly different
because of the DynamoDB SDK’s API, but the Jackson one is the same, and again we
capture the environment variable that specifies the table name.

In the WeatherEventLambda handler, we cared about the input event’s body field. This
time we care about the queryStringParameters field, and specifically the limit
parameter, if it’s set. If it is set, we use it. Otherwise, we default to 50 as the maximum
number of records we want to retrieve from DynamoDB.

The next couple of statements read the data from DynamoDB, and after those, we
convert the DynamoDB results back into WeatherEvent objects. With the weather
events captured, we use Jackson again to create a JSON string response to return to
the client.

Finally, we send our API response—again setting 200 OK as the status code, but this
time putting the useful response in the body field.

And that’s it for code! With very little code, even with the verbosity of Java, we have a
full HTTP API that reads and writes values to a database. But, of course, our code
isn’t all there is to defining the app. As we saw in Chapter 4, we also need to build and
package our code. And we actually need to define our infrastructure too.

Example: Building a Serverless API | 101

Serverless Without Lambda
Even though there is very little code in this serverless API example, the entire applica‐
tion as it stands could actually be implemented with zero lines of code. This is not
some strange wizardry, but in fact is due to another type of API Gateway integration.

As we mentioned earlier, API Gateway can integrate with Lambda (in two different
ways). That said, it can also integrate with any other HTTP application, acting more
like a traditional reverse proxy, or it can also integrate directly with another AWS ser‐
vice. In either of these other cases, you supply mapping templates to map requests to
the underlying service and map responses from the underlying service.

With this capability, we could implement our weather API by integrating API Gate‐
way directly with DynamoDB, mapping between HTTP formats and the underlying
storage format using mapping templates. This is described further on AWS’s blog.
With this solution, no Lambda functions are required, and therefore no code is
required.

An immediate follow-on question to this is, “Just because you can directly integrate
API Gateway with a AWS Service, does it mean you should?” There are differing
opinions on this in the serverless community. One school of thought is that this kind
of “Lambda-less” application is better because:

• It requires no code, and is therefore easier to maintain and safer.
• Since we don’t call Lambda, and API Gateway’s pricing is based on a “per-

request” model (no matter how complicated the definition of the request), then
it’s cheaper to use the “Lambda-less” solution.

On the other hand, “pro-Lambda” people argue:

• It’s a lot easier to maintain and test mapping code in Lambda, than it is to do the
same with Velocity mapping templates.

• Therefore, any money you save on Lambda invocations will be wiped out by the
time you spend getting your templates right.

Which group is correct? As is so often the case, “it depends.” Our own take is to
default to the code approach, with Lambda. However, if a particular element of your
application is simple enough to create easily with mapping templates, and if the
expected throughput is high enough that you’d see real cost savings if you don’t call
Lambda, then use the Lambda-free approach.

The client-facing part is API Gateway in both solutions, so you can change your mind
about architecture down the road without impacting clients.

We look at building and packaging next.

102 | Chapter 5: Building Serverless Applications

https://oreil.ly/CNtzT

Build and Package Using the AWS SDK BOM
In Chapter 4 we showed how to build and package a Lambda application using
Maven. In this example, we’re going to use the ZIP format that we described there, so
we need a pom.xml file, and an assembly description file. The latter of those is no dif‐
ferent to what we’ve seen before, so we ignore that here.

Let’s take a quick look at the pom.xml file, cut down a little for brevity:

Example 5-6. Partial Maven POM file for HTTP API

<project>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.600</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-dynamodb</artifactId>
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.10.1</version>
 </dependency>
 </dependencies>

 <!-- Other sections would follow -->
</project>

An element that we’ve added here since Chapter 4 is the <dependencyManagement>
section. In this tag we reference a dependency named aws-java-sdk-bom. This useful
element is a feature of Maven known as a “bill of materials” (BOM), and in essence it
groups all the version dependencies for a set of libraries. We use it here so that any

Example: Building a Serverless API | 103

AWS Java SDK dependencies that we use are guaranteed to be in sync with each other
with respect to versions.

In this particular project, we actually use only one AWS Java SDK library—aws-java-

sdk-dynamodb—and so using the BOM is less necessary for this example. But many
Lambda applications use multiple AWS SDKs, so it’s useful to start off on solid
footing.

You can also see that we don’t define the version for aws-java-sdk-dynamodb in the
<dependency> section, because it uses the version defined in the BOM. We do still
have to declare the version of aws-lambda-java-core because that’s not part of the
AWS Java SDK, and therefore not in the BOM—you can tell because it doesn’t have
“sdk” in its name. You can read more about the AWS Java SDK BOM in this blog arti‐
cle.

In this example, we collect the code for both of our different Lambda functions into
one zipped package. In the next example later in this chapter, we show how you can
break this package up into individual artifacts.

With the dependency updates defined, we can build and package our application,
using mvn package as usual.

Infrastructure
The one element we still need to define is our infrastructure template.

So far in this book we’ve only defined Lambda resources. Now we need to define our
API Gateway, and our database. How do we do that? Example 5-7 shows the
template.yaml.

Example 5-7. SAM template for HTTP API

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Description: chapter5-api

Globals:
 Function:
 Runtime: java8
 MemorySize: 512
 Timeout: 25
 Environment:
 Variables:
 LOCATIONS_TABLE: !Ref LocationsTable
 Api:
 OpenApiVersion: '3.0.1'

Resources:

104 | Chapter 5: Building Serverless Applications

https://oreil.ly/V1x9x
https://oreil.ly/V1x9x

 LocationsTable:
 Type: AWS::Serverless::SimpleTable
 Properties:
 PrimaryKey:
 Name: locationName
 Type: String

 WeatherEventLambda:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: target/lambda.zip
 Handler: book.api.WeatherEventLambda::handler
 Policies:
 — DynamoDBCrudPolicy:
 TableName: !Ref LocationsTable
 Events:
 ApiEvents:
 Type: Api
 Properties:
 Path: /events
 Method: POST

 WeatherQueryLambda:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: target/lambda.zip
 Handler: book.api.WeatherQueryLambda::handler
 Policies:
 — DynamoDBReadPolicy:
 TableName: !Ref LocationsTable
 Events:
 ApiEvents:
 Type: Api
 Properties:
 Path: /locations
 Method: GET

Let’s go through this from the top.

First of all we have our CloudFormation and SAM headers—these are no different to
what we’ve seen before.

Next is a new top-level section named Globals. Globals is a code-optimizing feature
of SAM that allows us to define some of the properties common to all the resources
of the same type in an application. We mostly use it here to define a few properties
common to both of the Lambda functions that we declare later in the file. We’ve
already seen Runtime, MemorySize, and Timeout, but the way we’ve declared LOCA
TIONS_TABLE in the Environment key, with the !Ref string, is new—we will come
back to that in a moment. Note that not all properties from a function definition

Example: Building a Serverless API | 105

work within the Globals section, which is why you don’t see CodeUri defined within
the Globals.

Finally, in the Globals section is a small configuration of the API Gateway settings to
use the most up-to-date version of SAM’s API configuration.

Then we move into the rest of the template, which consists of Resources elements.

The first one is new—it’s of type AWS::Serverless::SimpleTable. This is SAM’s way
of defining DynamoDB databases. It works for simple configurations, which is fine
for us in this example.

Note that what we’re doing here isn’t merely pointing to a database that already exists
—we’re actually declaring that we want CloudFormation to create a database for us,
and managing it in the same stack of components as our Lambda functions, etc. All
we do is specify what we want the primary key field to be named, and AWS does
everything else to manage the table on our behalf.

We don’t even give the table a physical name—CloudFormation generates a unique
name for us based on the name of the stack, the logical name of the table,
LocationsTable, plus some randomly generated uniqueness. That’s all well and good,
but if we don’t know the name of the table, how are we meant to use it from our
Lambda functions?

That’s where the !Ref LocationsTable value that we saw earlier comes in. CloudFor‐
mation substitutes that string for the physical name of the DynamoDB table, and so
our Lambda functions have an environment variable pointing them to the correct
location.

Moving on from the DynamoDB table, we see the definitions of our two Lambda
functions. These elements contain a lot of ideas we’ve covered already. We saw the
Policies section in Chapter 4—note how we’re embracing the principle of least priv‐
ilege here by:

• Only giving our functions access to one specific DynamoDB table (see !Ref
being used again)

• Only giving the Lambda function that is querying data read-only access (by
declaring the DynamoDBReadPolicy policy)

We also see the Events section in each Lambda function that we covered briefly ear‐
lier in this chapter. As we mentioned then, what’s happening here is that SAM is
defining an implicit API Gateway, and then is attaching our Lambda functions to that
Gateway with the Path and Method properties defined in the Events sections.

In many real-life scenarios, the implicit API Gateway configuration won’t be quite
enough for your needs, and in that case you can define either an explicit SAM API

106 | Chapter 5: Building Serverless Applications

Gateway resource (using a resource of type AWS::Serverless::Api), or the underly‐
ing CloudFormation API Gateway resource types. If you use the first of these options,
you can add a RestApiId property to the API Event property of your Lambda func‐
tions to tie them to your self-defined API.

You can also use Swagger/Open API as part of the CloudFormation/SAM definition
of your API Gateway. That way you’ll get better documentation, plus the opportunity
for some amount of “no code required” input validation—but definitely don’t rely on
Swagger/API Gateway as a complete input validator. Also there are certain aspects to
API Gateway’s configuration that can be defined only using AWS’s own OpenAPI
extensions. We could write an entire mini-book just on this area, though, so we’ll
leave you to go explore the AWS documentation for yourself if that’s what you need!

This is all a little theoretical, but fortunately we’ve finished looking at the template, so
it’s time to deploy and test our application!

Deployment

As is, the API in this example is publicly accessible on the internet.
While this is OK for experimentation (since the full API name isn’t
easily discoverable), it’s not something you want to leave around
forever since anyone can read and write to this API. In a produc‐
tion scenario you would want to add some amount of security at
least around the write path, but that’s beyond the scope of what
we’re going to cover here.

To deploy the application, use precisely the same incantation of sam deploy that
you’ve done already (if you need to refresh your memory, take a look at “CloudFor‐
mation and the Serverless Application Model” on page 74). The only thing you may
want to change is the stack-name so that you deploy this to a new stack (e.g., Chapter
FiveApi).

Once SAM and CloudFormation have completed, you’ll have deployed a new stack to
CloudFormation. We can see this in the CloudFormation section of the AWS Web
Console (Figure 5-3).

Example: Building a Serverless API | 107

https://oreil.ly/Cq-_T
https://oreil.ly/Cq-_T

Figure 5-3. CloudFormation stack for HTTP API

CloudFormation is a little low level, though, and so usefully AWS also provides a way
of viewing this deployment in a view called Serverless Application, just as we designed
earlier in “Architecture” on page 112. You can access this view via the Applications tab
of the Lambda console (Figure 5-4).

108 | Chapter 5: Building Serverless Applications

Figure 5-4. Serverless Application view for HTTP API

In this view you can see the DynamoDB table, the API Gateway (referred to as a
RestAPI in AWS terms), and our two Lambda functions. If you click any of these
resources, you are taken to the correct service console, and into that resource—try it
out for the ServerlessRestApi resource. This puts you in the API Gateway console.
Click Stages on the left and then Prod—you should see something like Figure 5-5.

Figure 5-5. API Gateway view for HTTP API

Example: Building a Serverless API | 109

The Invoke URL value is the publicly accessible URL for your API—make a note of it
since you’ll need it in a moment.

You can also see in the Serverless Application view that the physical names for the
resources have the partially generated/partially random structure we discussed earlier.
For example, in this case, our DynamoDB table is actually named ChapterFiveApi-
LocationsTable-WFRRTZNM7JTF. And sure enough, if we look in the Lambda con‐
sole at either of the two functions for this application, we can see that the
LOCATIONS_TABLE environment variable is correctly set to this value (Figure 5-6).

Figure 5-6. API Gateway view for HTTP API

Finally, let’s test our deployment by calling both API routes. To do this, you need that
URL from a moment ago.

First, let’s send some data. The base of the URL is the one from the API Gateway con‐
sole, but we append /events. We can call our API using curl, for example, as follows
(substitute in your URL):

$ curl -d '{"locationName":"Brooklyn, NY", "temperature":91,
 "timestamp":1564428897, "latitude": 40.70, "longitude": -73.99}' \
 -H "Content-Type: application/json" \
 -X POST https://hnymk3astd.execute-api.us-west-2.amazonaws.com/Prod/events

Brooklyn, NY

$ curl -d '{"locationName":"Oxford, UK", "temperature":64,
 "timestamp":1564428898, "latitude": 51.75, "longitude": -1.25}' \
 -H "Content-Type: application/json" \
 -X POST https://hnymk3astd.execute-api.us-west-2.amazonaws.com/Prod/events

Oxford, UK

This has saved two new events to DynamoDB. You can prove that to yourself by
clicking on the DynamoDB table from the Serverless Application console, and then
clicking on the Items tab once you’re in the DynamoDB console (Figure 5-7).

110 | Chapter 5: Building Serverless Applications

Figure 5-7. DynamoDB table for HTTP API

And now we can use the final part of our application—reading from the API. We can
use curl for that again, adding /locations to the API Gateway console URL, for
example:

$ curl https://hnymk3astd.execute-api.us-west-2.amazonaws.com/Prod/locations

[{"locationName":"Oxford, UK","temperature":64.0,"timestamp":1564428898,
 "longitude":-1.25,"latitude":51.75},
 {"locationName":"Brooklyn, NY","temperature":91.0,
 "timestamp":1564428897,"longitude":-73.99,"latitude":40.7}]

As expected, this returns the list of locations that we’ve stored weather for.

Congratulations! You’ve built your first full serverless application! While it has only
one simple feature, think of all the nonfunctional capabilities it has—it auto-scales up
to handle a vast load and then back down when not in use, it’s fault-tolerant across
multiple availability zones, it has infrastructure that is automatically updated to
include critical security patches, and it has a whole lot more besides.

Now let’s look at a different type of application, using a couple of other different AWS
services.

Example: Building a Serverless Data Pipeline
In Chapter 1 we listed two use cases for Lambda (“What Does a Lambda Application
Look Like?” on page 13). The first was an HTTP API that we just described in more
detail—an example of synchronous usage of Lambda. The second use case was file

Example: Building a Serverless Data Pipeline | 111

processing—uploading a file to S3 and then using Lambda to do something with that
file.

In this example, we’re building on that second idea to create a data pipeline. A data
pipeline is a pattern where we chain together multiple asynchronous stages and
branches of processing data. It’s a popular pattern where the scalability of cloud
resources gives a real-time alternative to batch systems.

Another important element of this example is that we’re going to change the build
and packaging phases of our application to create isolated output artifacts for each
Lambda function. As the amount of code in your Lambda functions grows—both
that which is specific to the function and that which is imported as libraries—then
deployment and startup will slow down. Breaking up the packaged artifacts is a val‐
uable technique to mitigate that.

Let’s get started.

Behavior
This example is going to be another take on the weather event system we started in
the previous example. This time an application will upload a list of “weather events”
in a JSON file to S3. A data pipeline will then process this file, and for now the side
effect will merely be logging the events to AWS CloudWatch Logs (Figure 5-8).

Figure 5-8. Data pipeline example behavior

Architecture
What we’ve just shown is the behavior of this application—the architecture has a few
more details (Figure 5-9).

Figure 5-9. Data pipeline example architecture

We start this application with an S3 bucket. The act of uploading a file, or in S3 terms
an object, to S3 will (asynchronously) trigger a Lambda function. This first function

112 | Chapter 5: Building Serverless Applications

(BulkEventsLambda) will read the JSON list of weather events, separate them out into
individual events, and then publish each one onto a SNS topic. This in turn will trig‐
ger (asynchronously again) a second Lambda function (SingleEventLambda) which
will then process each weather event. In our case, this will simply mean logging the
event.

This architecture is obviously far too complicated just for logging the contents of an
uploaded file! However, the important aspect of the example is that it provides a
“walking skeleton” of an application that has a complete, deployable, multistage data
pipeline. You could then use this as a starting point for adding interesting processing
logic.

All of these components are treated as one collectively deployed serverless applica‐
tion, just as we did in the HTTP API example.

Now we’ll dig in further to each of these stages of the architecture.

S3
S3 is one of the oldest services in AWS, as we described in “The Cloud Grows” on
page 3. While it’s often used in the application architecture of systems, it’s common‐
place too when deploying and operating AWS applications—we’ve used S3 a number
of times in this book already when deploying our Lambda-based applications.

More than that, however, we think that S3 is one of the earliest examples of a server‐
less BaaS product, at least on AWS. If we look back to Chapter 1 at the factors that
“differentiate” serverless, we can see it ticks all the boxes:

Does not require managing a long-lived host or application instance
Yes—we have no “file servers” or otherwise to manage when we use S3.

Self auto-scales and auto-provisions, dependent on load
Yes, we never have to manually configure how much capacity we want with S3—
it auto-scales both for total storage, and for traffic.

Has costs that are based on precise usage, up from and down to zero usage
Yes! If you have an empty bucket, you don’t pay anything. Alternatively, your cost
will be dependent on the amount of bytes stored, amount of traffic, and your
storage class (see next point).

Has performance capabilities defined in terms other than host size/count
Yes, again! S3’s performance capabilities are the storage class you choose—how
quickly you need to access data. The more quickly you want to be able to access
your data, the more you’ll pay.

Example: Building a Serverless Data Pipeline | 113

Has implicit high availability
And yes. S3 replicates data across AZs within a region. If one AZ has a problem,
you’ll still be able to access all of your data.

Because S3 is serverless, it is a great partner to Lambda, especially because of their
similar scaling capabilities. Further, S3 directly integrates with Lambda by allowing
Lambda functions to be triggered whenever data changes in an S3 bucket. This way of
reacting to changes automatically in S3 in an event-driven manner, rather than hav‐
ing to poll S3 to look for changes from a long-running traditional process, is cleaner,
easier to understand, and more efficient from an infrastructure costs point of view.

All of the non-Lambda services we use in these two examples—API Gateway, Dyna‐
moDB, S3, and SNS—are serverless BaaS services within the AWS ecosystem.

For now we won’t provide an “upload client” to S3 in the example, and instead will
use AWS tools to handle uploading. In a real application you may choose to allow
your end user client to upload directly to S3 by means of a “Signed URL”—this is a
“pure” serverless approach since you are not only not running servers, you’re in fact
pushing behavior to the client that you may otherwise have implemented in a server-
side application.

Lambda functions
When you see the code for the Lambda functions a little later, you won’t come across
anything new given everything you’ve already learned. The only real difference to
what we did in the first example is that these functions won’t need to return any val‐
ues since they are invoked asynchronously.

One question that might be on your mind, though, is why do we separate out pro‐
cessing for each event to a separately invoked Lambda function? This pattern is what
we often call fan-out. Alternatively, it’s the “map” part of a “map-reduce” system, and
there are a couple of reasons for using it with Lambda.

The first reason is to introduce parallelism. Each SNS message will trigger a new
invocation of our SingleEventLambda function. For each invocation of a Lambda
function, if the previous invocation is not complete, then the Lambda platform will
automatically create a new instance of the Lambda function, and call that instead. In
the case of our example app, if you upload a file of one hundred events, and each
event individually took at least a few seconds to process, then Lambda would create
one hundred instances of SingleEventLambda, and process each weather event in
parallel (Figure 5-10).

114 | Chapter 5: Building Serverless Applications

Figure 5-10. Data pipeline fan-out

This scaling aspect of Lambda is hugely valuable, and we’ll be discussing it further in
Chapter 8 (“Scaling” on page 193).

The second reason for introducing fan-out is if each individual event takes a long
time to process—say a few minutes. In this case, processing one hundred weather
events would take longer than the maximum 15-minute timeout we have with
Lambda, but putting each event into its own Lambda invocation means we may be
able to avoid a timeout concern.

There are other ways of solving Lambda’s timeout restriction. One alternative (which
is somewhat dangerous—see the following warning!) is to use a recursive call in a
Lambda function. In Chapter 3 (“Timeout” on page 57), we saw that we could use the
getRemainingTimeInMillis() method of the Context object passed to a Lambda
handler to keep track of how long a function has left until it times out. A strategy of
using this value is to asynchronously directly invoke the same Lambda function that’s
currently running, but only with the remaining data to be processed.

This is a better choice than “fan-out” if your data needs to be processed linearly.

Be careful when calling Lambda functions recursively since it’s easy
to have runaway scenarios where either (a) you never stop and/or
(b) you scale out your function hundreds or thousands of instances
wide. Either of these can seriously impact your AWS bill! Because
of reason (b), we recommend in the very rare case where a recur‐
sive Lambda call makes sense that you use a low “reserved concur‐
rency” configuration (see “Reserved concurrency” on page 196).

Example: Building a Serverless Data Pipeline | 115

SNS
SNS is one of AWS’s messaging services. On one hand, SNS offers a simple publish-
subscribe message bus; on another, it provides the capability to send SMS text mes‐
sages, and similar human-targeted messages. For our example, we only care about the
first of these!

SNS is another serverless service. You are responsible for asking AWS to create a
Topic, and then AWS handles all the scaling and operations of that Topic behind the
scenes.

It’s simple to publish a message with a string as its contents to a Topic using the SNS
SDK, as we’ll see later. There are also multiple subscription types for SNS, but we (not
surprisingly) are only going to use the Lambda subscription type in this example. The
way this works is that when a message is published to a Topic, all subscribers for that
Topic will be sent the message. In the case of Lambda, the Lambda platform will
receive the message, and then asynchronously invoke the Lambda function we’ve
associated with the subscription.

In the case of our example, we want a Lambda function to be asynchronously invoked
for each weather event in an uploaded file. We could have just directly called the
Invoke method of the Lambda SDK to directly (but asynchronously) invoke Single
EventLambda from BatchEventsLambda, but instead we used SNS as an intermediary
—why?

This is because we want to reduce the structural coupling between the two Lambda
functions. We want BatchEventsLambda to know that its responsibility is splitting up
a batch of weather events, but we don’t necessarily want it to be involved with what
happens to those weather events next. If we decide later to evolve our architecture so
that each event is processed by multiple consumers, or perhaps we substitute the
AWS Step Functions service for SingleEventLambda, then the code for BatchEvent
sLambda doesn’t need to change.

Finally, we chose SNS because of its simplicity and ubiquity within Lambda applica‐
tions. AWS offers a number of other messaging systems—SQS, Kinesis, and Event
Bridge are some examples, and you can even use S3 if you like! Which service you
choose really comes down to the specific requirements of your application, and the
various capabilities of each service. Picking the right messaging service for an appli‐
cation can be a little tricky, so it’s worthwhile to do appropriate research.

Lambda Code
Our code consists of three classes.

The first is the same WeatherEvent as we had in the first example, but copied into a
new package, for reasons that will become clearer later.

116 | Chapter 5: Building Serverless Applications

https://oreil.ly/D5jdc
https://oreil.ly/D5jdc
https://oreil.ly/LWX1e

Processing the batch with BulkEventsLambda

The next class is our BulkEventsLambda code.

As we’ve discussed already the first thing to do is understand the format of the input
event.

If we run sam local generate-event s3, we see that S3 can generate events for both
“puts” (creates and updates) and “deletes.” We care about the former, and the example
event looks as follows (trimmed a little for conciseness):

{
 "Records": [
 {
 "eventSource": "aws:s3",
 "awsRegion": "us-east-1",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "s3": {
 "bucket": {
 "name": "example-bucket",
 "arn": "arn:aws:s3:::example-bucket"
 },
 "object": {
 "key": "test/key",
 "size": 1024
 }
 }
 }
]
}

The first thing to notice is that the event contains an array of Records. In fact, S3 will
only ever send an array with exactly one element in it, but it’s good practice to code
defensively for this if it’s easy to do so.

The next thing to notice is that we are told what object has caused this event—
test/key in bucket example-bucket. It’s important to remember that S3 isn’t actually
a file system, even though we often treat it as such. It’s actually a key-value store
where it just so happens that we might consider the key as if it were a path in a file
system with directories.

The final thing to notice is that we don’t receive the contents of the uploaded object—
we’re only told the location of the object. In our example application, we want the
contents, so we need to load the object from S3 ourselves.

In this example, we’re going to use the S3Event class from the aws-lambda-java-
events library as our input event POJO. This class references other types from the
aws-java-sdk-s3 SDK library, so we need that in our library dependencies too. That’s

Example: Building a Serverless Data Pipeline | 117

OK, though, from the perspective of wanting to minimize library dependencies, since
we make direct calls to the S3 SDK anyway in this class.

An S3Event object, and its fields, includes everything we need for the input event,
and since this function is asynchronous, there is no return type. That means we’re
done with the POJO definition phase and can move on to writing code.

We’re leaving the package and import lines out of Example 5-8 because there are a lot
of them, but if you’re interested in seeing them, please download the sample code for
the book.

Example 5-8. BulkEventsLambda.java

public class BulkEventsLambda {
 private final ObjectMapper objectMapper =
 new ObjectMapper()
 .configure(
 DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES,
 false);
 private final AmazonSNS sns = AmazonSNSClientBuilder.defaultClient();
 private final AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient();
 private final String snsTopic = System.getenv("FAN_OUT_TOPIC");

 public void handler(S3Event event) {
 event.getRecords().forEach(this::processS3EventRecord);
 }

 private void processS3EventRecord(
 S3EventNotification.S3EventNotificationRecord record) {

 final List<WeatherEvent> weatherEvents = readWeatherEventsFromS3(
 record.getS3().getBucket().getName(),
 record.getS3().getObject().getKey());

 weatherEvents.stream()
 .map(this::weatherEventToSnsMessage)
 .forEach(message -> sns.publish(snsTopic, message));

 System.out.println("Published " + weatherEvents.size()
 + " weather events to SNS");
 }

 private List<WeatherEvent> readWeatherEventsFromS3(String bucket, String key) {
 try {
 final S3ObjectInputStream s3is =
 s3.getObject(bucket, key).getObjectContent();
 final WeatherEvent[] weatherEvents =
 objectMapper.readValue(s3is, WeatherEvent[].class);
 s3is.close();
 return Arrays.asList(weatherEvents);

118 | Chapter 5: Building Serverless Applications

 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

 private String weatherEventToSnsMessage(WeatherEvent weatherEvent) {
 try {
 return objectMapper.writeValueAsString(weatherEvent);
 } catch (JsonProcessingException e) {
 throw new RuntimeException(e);
 }
 }
}

The handler method loops over each record in the S3Event. We know that there
should only ever be one, but we’ll be safe with this code if that’s not the case.

The requirements for the remainder of the code are fairly simple:

1. Read uploaded JSON object from S3.
2. Deserialize the JSON object into a list of WeatherEvent objects.
3. For each WeatherEvent object serialize it back into JSON…
4. …and then publish it to SNS.

If you look at the code, you’ll see all of these expressed. We use Jackson for serializa‐
tion/deserialization just as we did in the first example. We use the AWS SDK twice—
once to read from S3 (s3.getObject()) and once to publish to SNS (sns.pub
lish()). While these are different SDKs, each requiring their own library depend‐
ency, they feel broadly the same to use as the DynamoDB SDK did in the previous
example.

One thing that’s interesting to notice is that just like in the first example we never give
any credentials when creating our connections to the AWS SDKs: when we call
defaultClient() on AmazonSNSClientBuilder and AmazonS3ClientBuilder, there
is no username or password. This works because the Java AWS SDKs, in the context
of running within Lambda, by default use the Lambda execution role that we config‐
ure for the Lambda (and which we discussed in “Identity and Access Management”
on page 78). That means there aren’t any passwords that can leak from our source
code!

Example: Building a Serverless Data Pipeline | 119

AWS SDK for Java Versions
Every time we’ve used the AWS SDK so far in this book we’ve been using the AWS
SDK for Java 1.11 (V1) version of the SDK. You can tell this because the Maven group
ID for all of our dependencies is com.amazonaws.

There is also a newer version of the Java SDK—AWS SDK for Java 2.0 (V2). This
offers performance improvements, automatic pagination, and more. The V2 version
of the SDK is available under the software.amazon.awssdk group ID in Maven
Central.

V2 was announced as being “generally available” in late 2018, so why don’t we use it in
the book?

While the lower-level elements of the complete AWS API are available in the V2 SDK,
there are a number of higher-level features available in V1 that aren’t available (at the
time of writing) in V2. These are things like the DynamoDB Object Mapper. Because
of these functional gaps, we felt safer in writing this book with the V1 SDK.

However, since the V2 SDK has performance improvements, and since V2’s function‐
ality may well have advanced by the time you read this, we recommend you assess the
V2 SDK and decide for yourself whether it would be a better fit for your needs.

Processing an individual weather event with SingleEventLambda
On to our final class. You should be getting the hang of this by now, so let’s zoom
through it!

First of all, the input event. Running sam local generate-event sns notification
gives us the following, and again this is trimmed a little:

{
 "Records": [
 {
 "EventSubscriptionArn": "arn:aws:sns:us-east-1::ExampleTopic",
 "Sns": {
 "Type": "Notification",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",
 "TopicArn": "arn:aws:sns:us-east-1:123456789012:ExampleTopic",
 "Subject": "example subject",
 "Message": "example message",
 "Timestamp": "1970-01-01T00:00:00.000Z",
 }
 }
]
}

120 | Chapter 5: Building Serverless Applications

Similar to S3, our input event consists of a single-element list of Records. Within a
Record, and the Sns object within that, are a number of fields. The one we care about
in this example is Message, but SNS messages also offer a Subject field.

We use the aws-lambda-java-events library again, as we did with BulkEvents
Lambda, but this time we want to use the SNSEvent class. SNSEvent doesn’t require any
other AWS SDK classes, so there’s no need to add any further libraries to our Maven
dependencies.

And again, this is an asynchronous event type, so there’s no return type to worry
about.

On to the code (see Example 5-9)! Again, we leave out the package and import state‐
ments here, but they’re in the book’s downloadable code if you’d like to see them.

Example 5-9. SingleEventLambda Handler Class

public class SingleEventLambda {
 private final ObjectMapper objectMapper =
 new ObjectMapper()
 .configure(
 DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES,
 false);

 public void handler(SNSEvent event) {
 event.getRecords().forEach(this::processSNSRecord);
 }

 private void processSNSRecord(SNSEvent.SNSRecord snsRecord) {
 try {
 final WeatherEvent weatherEvent = objectMapper.readValue(
 snsRecord.getSNS().getMessage(),
 WeatherEvent.class);
 System.out.println("Received weather event:");
 System.out.println(weatherEvent);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

This time our code is simpler:

1. Code defensively again for multiple SNSRecord events (even though there should
only be one).

2. Deserialize the WeatherEvent from the SNS event.
3. Log the WeatherEvent (we’ll look more at logging in Chapter 7).

Example: Building a Serverless Data Pipeline | 121

This time there are no references to SDKs because the input event included all the
data we cared about.

Build and Package Using Multiple Modules and Isolated Artifacts
With all of the code written, it’s time to build and package our application.

From a process point of view, nothing is different with this example from what we’ve
covered before—we’ll run mvn package before running sam deploy.

However, there’s a big structural difference to this example—we create separate ZIP
file artifacts for each Lambda function. Each ZIP file includes the classes for only one
Lambda handler and the library dependencies it needs.

While doing this for an application of this size is somewhat unnecessary, as your
applications get bigger, it’s valuable to consider breaking up the artifacts for a few
reasons:

• Cold start time will be reduced (we’ll talk more about cold starts in “Cold Starts”
on page 201).

• Deployment time from local machines will typically be reduced since only the
artifacts relating to changed functions will be uploaded for each deployment,
assuming the use of the reproducible build plug-in we covered in Chapter 4
(“Reproducible Builds” on page 71).

• You may need to do so to avoid Lambda’s artifact size limitation.

The final point relates to the 250MB size limit of (uncompressed) function artifacts in
Lambda. If you have 10 Lambda functions, all with different dependencies, and their
combined (uncompressed) artifact size is more than 250MB, you’ll need to break up
your artifact for each function to make deployment even possible.

So how do we implement this?

One way to think about it is that we’re effectively building a very small monorepo for
our serverless application. You can think of it, perhaps, as a “serverless application
MiniMono.” Regular monorepos consist of multiple projects in one repo; our Mini‐
Mono will consist of multiple Maven modules in one Maven project. While Maven
has its shortcomings, it does work very well as a way of declaring dependencies
between multiple components, and their dependencies on external libraries. And
IntelliJ does a great job of interpreting multimodule Maven projects.

Getting multimodule Maven projects working correctly is a little fiddly, so we’ll go
step-by-step through it here. We strongly recommend that you download the sample
code and open it up in IntelliJ, since it’s likely to make more sense to you that way.

122 | Chapter 5: Building Serverless Applications

https://oreil.ly/p8jk_

The top-level project
Our top-level pom.xml file is going to look a little like Example 5-10. We’ve cut out
some of it to give clarity to the explanation.

Example 5-10. Parent project pom.xml for data pipeline app

<project>
 <groupId>my.groupId</groupId>
 <artifactId>chapter5-Data-Pipeline</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>

 <modules>
 <module>common-code</module>
 <module>bulk-events-stage</module>
 <module>single-event-stage</module>
 </modules>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.11.600</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>2.2.6</version>
 </dependency>
 <!-- etc -->
 </dependencies>
 </dependencyManagement>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>3.1.1</version>
 <executions>
 <execution>
 <id>001-make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>

Example: Building a Serverless Data Pipeline | 123

 <configuration>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>
 <descriptor>src/assembly/lambda-zip.xml</descriptor>
 </descriptors>
 <finalName>lambda</finalName>
 </configuration>
 </plugin>
 <plugin>
 <groupId>io.github.zlika</groupId>
 <artifactId>reproducible-build-maven-plugin</artifactId>
 <version>0.10</version>
 <executions>
 <execution>
 <id>002-strip-jar</id>
 <phase>package</phase>
 <goals>
 <goal>strip-jar</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <outputDirectory>${project.build.directory}</outputDirectory>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>
</project>

There are a few takeaways here:

• We add the <packaging>pom</packaging> tag at the top level—this is declaring
that this is a multimodule project.

• We include the list of modules in the <modules> section.
• Note that we don’t declare any inter-module dependencies at this point.
• All of our external dependencies (not just the AWS SDK BOM) move into the
<dependencyManagement> section. It makes life easier to declare all the depen‐
dencies across the entire project here, and it guarantees that dependency versions
are common across the whole project, but you don’t have too.

• We’ll see in a moment that modules will declare which of these external depen‐
dencies they need.

• Notice that we’ve still got the AWS SDK BOM that we talked about in the first
example. We move our build plug-in definitions into a <pluginManagement> sec‐
tion so that they can be used by the modules.

124 | Chapter 5: Building Serverless Applications

• The configuration for the assembly plug-in remains at src/assembly/lambda-
zip.xml, or you can use the version we’ve created for you in Maven Central.

• There’s a whole bunch of other “Maven magic” detail here that we won’t go into!

With our top-level project in place, we can now create our modules.

The modules
We create one subdirectory for each module, named the same as each element of the
module list in the project pom.xml.

Within each module subdirectory we create a new pom.xml. We’ll start with the most
simple one for common-code, which allows us to write code that is shared by both
Lambda artifacts. In our example, it contains the WeatherEvent class.

Again, all of these Maven examples are slightly trimmed, so please refer to the book
source code for the complete versions.

Example 5-11. Module pom.xml for common-code

<project>
 <parent>
 <groupId>my.groupId</groupId>
 <artifactId>chapter5-Data-Pipeline</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <artifactId>common-code</artifactId>

 <build>
 <plugins>
 <plugin>
 <artifactId>reproducible-build-maven-plugin</artifactId>
 <groupId>io.github.zlika</groupId>
 </plugin>
 </plugins>
 </build>
</project>

We declare our parent, our module’s artifactId (which for the sake of sanity should
be the same as the module name), and then we declare which build plug-ins we want
to use. For this module we’re just creating a regular JAR file, of just the code in the
module itself. That means we don’t need to assemble a ZIP file, but we do still want to
make use of the reproducible build plug-in. The configuration for the plug-in comes
from our definition in the <pluginManagement> section of the parent bom.

Notice that there’s no <dependencies> section because this module doesn’t have any
dependencies at this time.

Example: Building a Serverless Data Pipeline | 125

Next, in the bulk-events-stage subdirectory we create the pom.xml as shown in
Example 5-12.

Example 5-12. Module pom.xml for bulk-events-stage

<project>
 <parent>
 <groupId>my.groupId</groupId>
 <artifactId>chapter5-Data-Pipeline</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <artifactId>bulk-events-stage</artifactId>

 <dependencies>
 <dependency>
 <groupId>my.groupId</groupId>
 <artifactId>common-code</artifactId>
 <version>${project.parent.version}</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 </dependency>
 <!-- etc. -->
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 </plugin>
 <plugin>
 <artifactId>reproducible-build-maven-plugin</artifactId>
 <groupId>io.github.zlika</groupId>
 </plugin>
 </plugins>
 </build>
</project>

The <parent> section is the same as for common-code, and <artifactId> follows the
same rule as before.

This time we do have dependencies. The first one is how we declare an inter-module
dependency, in this case to the common-code module. Notice that we pick up the ver‐
sion from the parent module. Then we declare all of our external dependencies.
Notice that there aren’t any versions for these—the versions come from the
<dependency-management> section in the parent pom.xml (or, transitively, from the
AWS SDK BOM).

126 | Chapter 5: Building Serverless Applications

And finally in the <build> section we declare our build plug-ins. This time we need
to create a ZIP file (which will be the ZIP file just for the BulkEventsLambda func‐
tion), and so we include a reference to maven-assembly-plugin. Again, the configu‐
ration for the plug-in is defined in the parent pom.xml.

The single-event-stage pom.xml looks almost the same as the bulk-events-stage
pom.xml, but with fewer dependencies.

With the Maven POM files complete, we then create src directories within each mod‐
ule. The end result of our project directory tree looks as follows:

.
+--> bulk-events-stage
| +--> src/main/java/book/pipeline/bulk
| | +--> BulkEventsLambda.java
| +--> pom.xml
+--> common-code
| +--> src/main/java/book/pipeline/common
| | +--> WeatherEvent.java
| +--> pom.xml
+--> single-event-stage
| +--> src/main/java/book/pipeline/single
| | +--> SingleEventLambda.java
| +--> pom.xml
+--> src/assembly
| +--> lambda-zip.xml
+--> pom.xml
+--> template.yaml

Running mvn package for this multimodule project will create separate lambda.zip
files in each of the two Lambda module directories.

Since we have parallel modules that don’t depend on each other we can actually tune
our use of Maven a little to increase build performance. Running mvn package -T 1C
will make Maven use multiple OS threads, one per core of your machine, when it can.

Infrastructure
Despite the significant change in the structure of our Java project, our SAM template
doesn’t change all that much. Let’s look at how it does change, plus the other AWS
resources that we use in Example 5-13.

Example 5-13. SAM template for data pipeline

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Description: chapter5-data-pipeline

Globals:

Example: Building a Serverless Data Pipeline | 127

 Function:
 Runtime: java8
 MemorySize: 512
 Timeout: 10

Resources:
 PipelineStartBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub ${AWS::StackName}-${AWS::AccountId}-${AWS::Region}-start

 FanOutTopic:
 Type: AWS::SNS::Topic

 BulkEventsLambda:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: bulk-events-stage/target/lambda.zip
 Handler: book.pipeline.bulk.BulkEventsLambda::handler
 Environment:
 Variables:
 FAN_OUT_TOPIC: !Ref FanOutTopic
 Policies:
 — S3ReadPolicy:
 BucketName: !Sub ${AWS::StackName}-${AWS::AccountId}-${AWS::Region}-start
 — SNSPublishMessagePolicy:
 TopicName: !GetAtt FanOutTopic.TopicName
 Events:
 S3Event:
 Type: S3
 Properties:
 Bucket: !Ref PipelineStartBucket
 Events: s3:ObjectCreated:

 SingleEventLambda:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: single-event-stage/target/lambda.zip
 Handler: book.pipeline.single.SingleEventLambda::handler
 Events:
 SnsEvent:
 Type: SNS
 Properties:
 Topic: !Ref FanOutTopic

First, while it’s still fresh in our minds, let’s look at the differences caused by the mul‐
timodule Maven project. They are solely the updates to the CodeUri properties on the
Lambda functions—where we used to have the same target/lambda.zip value for
both functions in the API example, it’s now bulk-events-stage/target/lambda.zip
for BulkEventsLambda, and single-event-stage/target/lambda.zip for the Single
EventLambda.

128 | Chapter 5: Building Serverless Applications

OK, now let’s go back to the top.

The Globals section is a little smaller this time. That’s because there are no shared
environment variables across the Lambda functions, and we don’t need any API
configuration.

Under Resources, first we declare our S3 bucket. There are a whole lot of properties
you can add here—access control–related properties are particularly popular. One
thing we typically like to add is server-side encryption as well as lifecycle policies. But
here we keep it to the defaults. One thing that’s here is an explicitly declared name.
Normally we wouldn’t want to do this, and instead have CloudFormation generate a
unique name for us, but due to an annoying aspect of CloudFormation’s S3 resource,
if we don’t declare a name, then we get a circular dependency with some of the other
elements of the file.

S3 bucket names have to be globally unique across all AWS regions and accounts. If
you create a bucket named sheep in the us-east-1 region, then you can’t also create
another one named sheep in us-west-2 (unless you first delete the one in us-east-1),
and I can’t create a bucket named “sheep” at all. This means that when you create a
bucket name explicitly via an automated tool like CloudFormation, you need to
include various context-unique aspects to avoid a naming collision.

For example, we use the following declared bucket name:

!Sub ${AWS::StackName}-${AWS::AccountId}-${AWS::Region}-start

There’s some CloudFormation smarts happening here, so let’s unpack that a little.

First of all !Sub is another intrinsic function, just like !Ref in the first example. !Sub
substitutes variables in a string. Often you will use variables you declare yourself in
template parameters, but in this case we are using CloudFormation pseudo parame‐
ters—variables that CloudFormation defines on our behalf. Say I created a stack
named my-stack, our account ID was 123456, and we had created the stack in us-
west-2, then the bucket name in this stack would be my-stack-123456-us-west-2-start.

The next resource is our SNS Topic. Look—no properties! SNS is partly configurable,
but it’s also super simple to use with no configuration at all.

And then we have our two Lambda functions.

BulkEventsLambda has an environment variable referring to the Amazon Resource
Name (ARN) of the SNS topic. The SNS Topic CloudFormation documentation tells
us that calling !Ref on a Topic resource returns its ARN.

For the security side of this Lambda we both need to read from the S3 bucket—which
we refer to with the same name as we used when declaring the bucket in the first
place—and we need to write (or publish) to the SNS topic. For the SNS topic, the
security policy doesn’t need the ARN (which is what is returned when we call !Ref on

Example: Building a Serverless Data Pipeline | 129

https://oreil.ly/NaRtL
https://oreil.ly/LUtMC
https://oreil.ly/LUtMC
https://oreil.ly/r6oVW

the Topic resource); it needs the Topic’s name. To get that, we use a third intrinsic
function—!GetAtt. !GetAtt allows us to read secondary return values from a Cloud‐
Formation resource. Again, when looking at the SNS documentation, we can see that
the name is returned when asking for TopicName, hence the value !GetAtt FanOut
Topic.TopicName.

Finally, for BulkEventsLambda we need to declare the event source. This is the S3
bucket, and we declare the type of S3 events we care about in the Events fields. You
can be much more prescriptive here if you like, for example including filter patterns
to only trigger events for certain S3 keys.

As you’d expect, SingleEventLambda is simpler since it doesn’t call any AWS resour‐
ces. For this function, we just need to declare the event source, which is the SNS
Topic, referred to by the Topic’s ARN.

Deployment
Deployment is similar to what you’ve seen before. Again, we’re using the principles of
a serverless application in that we collectively deploy all of the components together.

There’s one small change for deploying this app. Because we’re using the stack name
in the manually defined S3 bucket name, we have to use only lowercase letters in the
stack name (because S3 buckets can’t be named with uppercase letters):

$ sam deploy \
 --s3-bucket $CF_BUCKET \
 --stack-name chapter-five-data-pipeline \
 --capabilities CAPABILITY_IAM

Once the application is deployed, you can explore the deployed components via the
Lambda Applications console, or the CloudFormation console. Figure 5-11 shows
what it looks like in Lambda applications.

130 | Chapter 5: Building Serverless Applications

Figure 5-11. Serverless Application view for data pipeline

Clicking the resources will take you through to their own parts of the AWS Console.
To test this application, we need to upload a file to S3. One option is to do that man‐
ually through the web console.

A more automated approach is as follows.

First, query CloudFormation to get the name of the S3 bucket, and assign that to a
shell variable:

$ PIPELINE_BUCKET="$(aws cloudformation describe-stack-resource \
 --stack-name chapter-five-data-pipeline \
 --logical-resource-id PipelineStartBucket \
 --query 'StackResourceDetail.PhysicalResourceId' \
 --output text)"

Now use the AWS CLI to upload the sample file:

$ aws s3 cp sampledata.json s3://${PIPELINE_BUCKET}/sampledata.json

Now look at the logs for the SingleEventLambda function, and you’ll see, after a few
seconds, each of the weather events separately logged.

Congratulations—you’ve built your second serverless application!

As you can imagine, with the vast number of services available on AWS, the different
types of serverless application that can be built are innumerable. And that’s before we

Example: Building a Serverless Data Pipeline | 131

even consider the perfectly valid capability of calling services outside of AWS from
Lambda!

We hope that this chapter has given you a taste of what’s possible. The ability to
deploy complete, multicomponent, applications with just a few text files, in minutes
or seconds, and then tear them down again, makes for an extraordinarily valuable
“application sandbox” environment that can also scale to real production use.

Summary
We started this chapter by looking at how to trigger Lambda functions from other
AWS services. Understanding this is an important first step to embracing serverless
architecture.

We then explored two example serverless applications—wholly contained groups of
AWS resources that can be collectively deployed. The first example was a database-
backed HTTP API, using two synchronously invoked Lambda functions, along with
the AWS services API Gateway and DynamoDB.

The second example was a serverless data pipeline consisting of two asynchronous
processing stages, including a fan-out design. This example used Lambda, S3, and
SNS. In this example, we also explored using multimodule Maven projects to create a
“serverless application MiniMono.”

You now have a framework for building serverless AWS applications:

1. Identify the behavior you want your application to have.
2. Design the architecture of your application by choosing which services will imple‐

ment the different aspects of your system, and how those services will interact.
3. Program Lambda code to:

• Consume the correct event types.
• Perform the necessary side effects on downstream services.
• Where relevant, return the correct response.

4. Configure your infrastructure using a CloudFormation/SAM template.
5. Execute deployment using the correct AWS tooling.

So far all of our testing has been very manual. How can we do better, using automated
testing techniques? That’s what we explore in the next chapter.

132 | Chapter 5: Building Serverless Applications

Exercises
1. Another great event source for “getting started” with Lambda is CloudWatch

Scheduled Events, which we can use to build “serverless cron jobs.” We describe
this use of Lambda in “Example: Lambda “cron jobs”” on page 227. Build a
Lambda function that will run every minute, and for now that just writes out a
log statement when it’s called. See the SAM documentation on how to set up this
trigger.

2. Update your scheduled event Lambda from the previous exercise to post a mes‐
sage to SNS, similar to how we did so in BulkEventsLambda earlier in this chap‐
ter. Update your SNS topic to send an SMS, or text, message to your mobile
phone (see the AWS documentation on how to do this).

3. Reimplement the data pipeline example from this chapter to use an SQS queue,
rather than an SNS topic, between the two Lambdas. A couple of good starting
places to help with this are here and here in the Lambda documentation.

Exercises | 133

https://oreil.ly/C_FhY
https://oreil.ly/TrQct
https://oreil.ly/LKekx
https://oreil.ly/Cbvb3

CHAPTER 6

Testing

A good test suite, like the solid foundation of a house, provides a known baseline of
system behavior on top of which we can build confidently. That baseline gives us con‐
fidence to add features, fix bugs, and refactor without worrying that we’ll break other
parts of the system. When integrated into a development workflow, that same test
suite also encourages good practices by making it easier to maintain existing tests and
add new ones.

Of course, foundations aren’t free. The effort of maintaining tests must be balanced
with the value that the tests provide. If we spend all of our effort on testing, we’ll have
none left to work on the rest of the system.

For serverless applications, drawing the line between valuable tests and brittle techni‐
cal debt is harder than ever. Fortunately, we can use a familiar model to help consider
the trade-offs.

The Test Pyramid
The classic “Test Pyramid” (from the 2009 book Succeeding with Agile by Mike Cohn,
shown in Figure 6-1) is a useful guide in helping us decide which kinds of tests to
write. The pyramid metaphor illustrates the trade-offs between the number of tests in
a given slice, the value of those tests, and the costs to write, run, and maintain them.

135

Figure 6-1. The Test Pyramid

Testing in a serverless world isn’t substantively different than in a traditional applica‐
tion, especially nearer the base of the pyramid. However, as with any distributed sys‐
tem made up of different components and services, higher-level “end-to-end” testing
is more challenging. In this chapter, we’ll address testing from the bottom of the pyra‐
mid to the top, with plenty of examples along the way.

Unit Tests
At the base of the pyramid are unit tests—these tests should exercise specific pieces of
our components of our application, without relying on any external dependencies
(like databases). Unit tests should execute quickly, and we should be able to run them
regularly (or even automatically) during the course of development, with a minimum
of configuration and no network access. We should have as many unit tests as neces‐
sary to give us confidence that our code is working correctly. Unit tests not only cover
the “happy paths,” but thoroughly address edge cases and error handling. Even a
small application might have dozens or hundreds of unit tests.

Functional Tests
In the middle of the pyramid are the functional tests. Like unit tests, these tests
should execute quickly, and shouldn’t rely on external dependencies. Unlike unit
tests, we might have to mock or stub those external dependencies to meet the runtime
requirements of the component under test.

Rather than attempting to exhaustively exercise every logical branch of our code, our
functional tests address the major code paths for a component, paying particular
attention to failure modes.

End-to-End Tests
At the top of the pyramid are the end-to-end tests. An end-to-end test submits input
to the application (often via the normal user interface or API) and then makes asser‐
tions on the output or side effects. Unlike a functional test, an end-to-end test runs
against the complete application and all of its external dependencies, in a production-
like environment (although often isolated from production).

136 | Chapter 6: Testing

Because end-to-end tests are more expensive to run than functional and unit tests (in
terms of runtime and infrastructure cost), you typically should only test a few impor‐
tant scenarios. A good rule of thumb is to have at least one end-to-end test that covers
the most important path through an application (e.g., the purchase path in an online
shopping application).

Refactoring for Testing
We’re going to use the serverless data pipeline we built in Chapter 5 as the basis to
build out a suite of unit, functional, and end-to-end tests. Before we jump in, let’s do
a little refactoring to make our data pipeline Lambdas easier to test.

Recall from the previous section that unit tests exercise specific pieces of components
of our application. In our case, we’re referring to methods within the Java classes that
make up our Lambda functions. We want to write tests that provide input to certain
methods, and assert that the output (or side effects) of those methods are what we
expect.

Side Effects
In computer science, a side effect can be thought of as something that is observable
outside of the scope of the invoking function or method. For example, if a Java
method writes output to a file or makes an HTTP call, that method is said to have a
side effect. Even “read-only” operations might have observable side effects like modi‐
fying a system file descriptor or opening a network socket.

When testing applications, it’s important to validate both the application and the
result of any side effects it may perform.

To start, let’s review BulkEventsLambda, keeping in mind the unit and functional sli‐
ces of the Test Pyramid. This relatively simple Lambda function is interacting with
two external AWS services (S3 and SNS), as well as serializing and deserializing JSON
data.

Revisiting BulkEventsLambda
BulkEventsLambda is triggered whenever a file is uploaded to a specific S3 bucket.
The handler method is invoked with an S3Event object. For each S3EventNotifica
tionRecord within that event, the Lambda retrieves a JSON file from an S3 bucket.
That JSON file contains zero or more JSON objects. The Lambda deserializes the
JSON file into a collection of WeatherEvent Java objects. Each of those Java objects is
then serialized into a String and published to an SNS topic. Finally, the Lambda

Refactoring for Testing | 137

function writes a log entry to STDOUT (and hence to CloudWatch Logs) stating the
number of weather events that were sent to SNS.

The code you saw in Chapter 5 was written and organized for clarity, but not neces‐
sarily for ease of testing. Let’s take a look at the four methods in the BulkEvents
Lambda class.

First, the handler method, which receives an S3Event object:

public void handler(S3Event event) {
 event.getRecords().forEach(this::processS3EventRecord);
}

This is the only method accessible from outside the class—without refactoring, it
means that any tests for this class must invoke this method with an S3Event object.
Furthermore, the method has a void return type, so asserting success or failure is
difficult.

Moving on, we see that this method calls processS3EventRecord for each incoming
event record:

private void processS3EventRecord(
 S3EventNotification.S3EventNotificationRecord record) {

 final List<WeatherEvent> weatherEvents = readWeatherEventsFromS3(
 record.getS3().getBucket().getName(),
 record.getS3().getObject().getKey());

 weatherEvents.stream()
 .map(this::weatherEventToSnsMessage)
 .forEach(message -> sns.publish(snsTopic, message));

 System.out.println("Published " + weatherEvents.size()
 + " weather events to SNS");
}

This method is private, so it can’t be tested at all without changing the visibility to
“package-private” (by removing the private keyword). Like the handler function, it
has a void return type, so any assertions we make will be on the side effects rather
than the return value of the method. This method has two explicit side effects:

• The System.out.println call.
• The sns.publish call, which sends an SNS message to the topic named by the
snsTopic field. Because this is an AWS SDK call, a number of other environment
and system attributes must be accounted for:
— The appropriate AWS configuration must be in place and correct.
— The AWS API endpoint for the configured region must be accessible over the

network.

138 | Chapter 6: Testing

— The named SNS topic must exist.
— The AWS credentials we’re using must have access to write to that SNS topic.

To invoke processS3EventRecord as written, we have to address all of those items
ahead of time. For a unit test, this is unacceptable overhead.

Furthermore, if we also want to assert that processS3EventRecord has run correctly,
we need a way of knowing that the SNS message was sent to the correct topic. One
way to do that would be to subscribe to the SNS topic within our test process and wait
for the expected message to show up. As before, this is unacceptable overhead for a
unit test.

A common way to test these side effects in Java is to mock or stub the classes respon‐
sible for those side effects using tools like Mockito. This allows us to test our own
application classes that produce side effects, by replacing things like the AWS SDK
with a mock that looks and acts similarly but allows us to avoid actually setting up a
real SNS topic. Using techniques like argument capture, mocks can also save the
parameters used to call them, which allows us to make assertions about how they are
called—in this case we could assert that the sns.publish method was called with the
correct topic name and message.

To use a mock AWS SDK object like this, we need a way to inject it into the class
under test—typically this is done via a constructor that accepts the appropriate
parameters. BulkEventsLambda doesn’t have such a constructor, so we’ll need to add
one to be able to use mock objects.

The readWeatherEventsFromS3 method is another example of a method with a side
effect, in this case a remote API call. In this case, it uses the AWS S3 SDK client’s
getObject call to download data from the S3.

That data is then deserialized into a collection of WeatherEvent objects and returned
to the caller:

private List<WeatherEvent> readWeatherEventsFromS3(String bucket, String key) {
 try {
 final S3ObjectInputStream s3is =
 s3.getObject(bucket, key).getObjectContent();
 final WeatherEvent[] weatherEvents =
 objectMapper.readValue(s3is, WeatherEvent[].class);
 s3is.close();
 return Arrays.asList(weatherEvents);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
}

This method does two distinctly different things—it downloads data from S3 and
deserializes that data. That combination of actions makes it harder for us to test each

Revisiting BulkEventsLambda | 139

https://site.mockito.org
https://oreil.ly/GPdlH

piece of functionality in isolation. If we want to test how errors are handled during
JSON deserialization, we still have to make sure that the input to the method has the
correct S3 bucket and key even though that information isn’t relevant to the JSON
processing.

Finally, weatherEventToSnsMessage is an example of a method that should be easy to
test (if made visible outside of the BulkEventsLambda class). It takes a single Weather
Event object and returns a String, and it doesn’t cause any side effects.

Refactoring BulkEventsLambda
Having reviewed the four methods in BulkEventsLambda, here are some things we
can do to better enable unit and functional testing:

• Enable injection of mock AWS SDK classes via constructor arguments.
• Isolate side effects, so most methods can be tested without using mocks.
• Split methods up so most methods just do one thing.

Add Constructors
With those things in mind, let’s start by adding some constructors:

public BulkEventsLambda() {
 this(AmazonSNSClientBuilder.defaultClient(),
 AmazonS3ClientBuilder.defaultClient());
}

public BulkEventsLambda(AmazonSNS sns, AmazonS3 s3) {
 this.sns = sns;
 this.s3 = s3;
 this.snsTopic = System.getenv(FAN_OUT_TOPIC_ENV);

 if (this.snsTopic == null) {
 throw new RuntimeException(
 String.format("%s must be set", FAN_OUT_TOPIC_ENV));
 }
}

We now have two constructors. As we learned in Chapter 3, the no-arguments default
constructor will be invoked by the Lambda runtime when our function is run for the
first time. That default constructor creates an AWS SDK SNS client and an S3 client
and passes those two objects to the second constructor (this technique is called con‐
structor chaining).

The second constructor takes those client objects as parameters. In tests we can use
this constructor to instantiate the BulkEventsLambda class with mock AWS SDK

140 | Chapter 6: Testing

clients. That second constructor also reads the FAN_OUT_TOPIC environment variable,
and throws an exception if it isn’t set.

Isolate Side Effects
We noted three side effects from the BulkEventsLambda review:

• Download a JSON file from S3.
• Publish messages to an SNS topic.
• Write a log entry to STDOUT.

The first two impose a number of prerequisites on the test environment, slow down
test execution, and make tests more complex to write. While we definitely want to
test those side effects (using both mocks and the actual AWS services), isolating them
to as few methods as possible will help make our unit tests simple and fast.

With that in mind, let’s look at two new methods that isolate AWS side effects:

private void publishToSns(String message) {
 sns.publish(snsTopic, message);
}

private InputStream getObjectFromS3(
 S3EventNotification.S3EventNotificationRecord record) {

 String bucket = record.getS3().getBucket().getName();
 String key = record.getS3().getObject().getKey();
 return s3.getObject(bucket, key).getObjectContent();
}

The first method, publishToSns, takes a String parameter and publishes a message
to an SNS topic. The second, getObjectFromS3, takes an S3EventNotification
Record and downloads the corresponding file from S3.

These two methods are now called from a refactored handler method, which is
where the actual isolation of side effects is realized:

public void handler(S3Event event) {

 List<WeatherEvent> events = event.getRecords().stream()
 .map(this::getObjectFromS3)
 .map(this::readWeatherEvents)
 .flatMap(List::stream)
 .collect(Collectors.toList());

 // Serialize and publish WeatherEvent messages to SNS
 events.stream()
 .map(this::weatherEventToSnsMessage)
 .forEach(this::publishToSns);

Refactoring BulkEventsLambda | 141

 System.out.println("Published " + events.size()
 + " weather events to SNS");
}

There’s more going on in this new handler method, but for now just note that get
ObjectFromS3 and publishToSns are called from here (and nowhere else).

Split Methods
In addition to isolating our side effects, the new handler method now also contains
much of our processing logic. This might seem contrary to our goal, but this “glue”
logic orchestrates a number of simpler, single-purpose methods that are easier to unit
test. In this case, the readWeatherEvents method no longer requires access to S3 (or
to a mock S3 client). Its only purpose is to deserialize an InputStream into a collec‐
tion of WeatherEvent objects and handle errors (by rethrowing a RuntimeException,
which will halt the Lambda function).

List<WeatherEvent> readWeatherEvents(InputStream inputStream) {
 try (InputStream is = inputStream) {
 return Arrays.asList(
 objectMapper.readValue(is, WeatherEvent[].class));
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
}

Note that we’re now using Java’s try-with-resources feature to automatically close
the input stream. We also removed the private keyword from this and the weather
EventToSnsMessage method, so those can both be accessed from our test classes as
necessary.

Testing BulkEventsLambda
Now that we’ve refactored, let’s add some unit tests for BulkEventsLambda.

Unit Testing
These tests are completely isolated from side effects—we don’t have to configure or
connect to any AWS services or any other external dependencies. That isolation also
means that these tests execute quickly, in just a few milliseconds. We have only a few,
because BulkEventsLambda is fairly simple, but even hundreds of unit tests written in
this style could be run in a few seconds.

142 | Chapter 6: Testing

https://oreil.ly/LxRNY

Maven Surefire
Maven will automatically run our JUnit-based unit tests during the “test” phase of the
build lifecycle, using the Surefire plug-in. We don’t have to add any specific configura‐
tion—this will happen automatically as long as our test classes end with the word Test
and our tests themselves are annotated properly with the @Test (org.junit.Test)
annotation.

If we want to explicitly run the unit tests (and functional tests, as we’ll see in the next
section), we can do so by executing the mvn test command.

Here’s a unit test for the readWeatherEvents method of BulkEventsLambda:

public class BulkEventsLambdaUnitTest {

 @Test
 public void testReadWeatherEvents() {

 // Fixture data
 InputStream inputStream =
 getClass().getResourceAsStream("/bulk_data.json");

 // Construct Lambda function class, and invoke
 BulkEventsLambda lambda =
 new BulkEventsLambda(null, null);
 List<WeatherEvent> weatherEvents =
 lambda.readWeatherEvents(inputStream);

 // Assert
 Assert.assertEquals(3, weatherEvents.size());

 Assert.assertEquals("Brooklyn, NY",
 weatherEvents.get(0).locationName);
 Assert.assertEquals(91.0,
 weatherEvents.get(0).temperature, 0.0);
 Assert.assertEquals(1564428897L,
 weatherEvents.get(0).timestamp, 0);
 Assert.assertEquals(40.7,
 weatherEvents.get(0).latitude, 0.0);
 Assert.assertEquals(-73.99,
 weatherEvents.get(0).longitude, 0.0);

 Assert.assertEquals("Oxford, UK",
 weatherEvents.get(1).locationName);
 Assert.assertEquals(64.0,
 weatherEvents.get(1).temperature, 0.0);
 Assert.assertEquals(1564428897L,
 weatherEvents.get(1).timestamp, 0);
 Assert.assertEquals(51.75,
 weatherEvents.get(1).latitude, 0.0);

Testing BulkEventsLambda | 143

https://oreil.ly/aHfsc

 Assert.assertEquals(-1.25,
 weatherEvents.get(1).longitude, 0.0);

 Assert.assertEquals("Charlottesville, VA",
 weatherEvents.get(2).locationName);
 Assert.assertEquals(87.0,
 weatherEvents.get(2).temperature, 0.0);
 Assert.assertEquals(1564428897L,
 weatherEvents.get(2).timestamp, 0);
 Assert.assertEquals(38.02,
 weatherEvents.get(2).latitude, 0.0);
 Assert.assertEquals(-78.47,
 weatherEvents.get(2).longitude, 0.0);
 }

}

For convenience, we’re reading the input data from a JSON file on disk. We then cre‐
ate an instance of BulkEventsLambda—notice that we’re simply passing in null for
the SNS and S3 clients, because they’re not needed by this test at all. The readWeather
Events method is called, and we assert that it produced the right objects.

We can test the failure case with even less code:

public class BulkEventsLambdaUnitTest {

 @Rule
 public ExpectedException thrown = ExpectedException.none();

 @Rule
 public EnvironmentVariables environment = new EnvironmentVariables();

 @Test
 public void testReadWeatherEventsBadData() {

 // Fixture data
 InputStream inputStream =
 getClass().getResourceAsStream("/bad_data.json");

 // Expect exception
 thrown.expect(RuntimeException.class);
 thrown.expectCause(
 CoreMatchers.instanceOf(InvalidFormatException.class));
 thrown.expectMessage(
 "Can not deserialize value of type java.lang.Long from String");

 // Invoke
 BulkEventsLambda lambda = new BulkEventsLambda(null, null);
 lambda.readWeatherEvents(inputStream);
 }

}

144 | Chapter 6: Testing

Here we use a JUnit Rule to assert that an exception of the expected type is thrown by
our method.

As unit tests go, these are simple and effective. For a more complex Lambda function,
we might have dozens of tests like these to test as many logical paths and edge cases as
necessary.

Functional Testing
Like the unit tests, we want our functional tests to run without having to connect to
AWS. However, unlike the unit tests, we want to test our Lambda function as a single
component, and doing so means that we have to convince our code that it’s talking to
the cloud! To accomplish this feat of trickery and deceit, we’ll use Mockito to build
“mock” instances of the AWS SDK clients configured to return prearranged responses
to method calls. For example, if our code calls the getObject method on the S3 client,
our mock will return an S3Object complete with fixtured test data.

Here’s a functional test for the “happy path”:

public class BulkEventsLambdaFunctionalTest {

 @Test
 public void testHandler() throws IOException {

 // Set up mock AWS SDK clients
 AmazonSNS mockSNS = Mockito.mock(AmazonSNS.class);
 AmazonS3 mockS3 = Mockito.mock(AmazonS3.class);

 // Fixture S3 event
 S3Event s3Event = objectMapper
 .readValue(getClass()
 .getResourceAsStream("/s3_event.json"), S3Event.class);
 String bucket =
 s3Event.getRecords().get(0).getS3().getBucket().getName();
 String key =
 s3Event.getRecords().get(0).getS3().getObject().getKey();

 // Fixture S3 return value
 S3Object s3Object = new S3Object();
 s3Object.setObjectContent(
 getClass().getResourceAsStream(String.format("/%s", key)));
 Mockito.when(mockS3.getObject(bucket, key)).thenReturn(s3Object);

 // Fixture environment
 String topic = "test-topic";
 environment.set(BulkEventsLambda.FAN_OUT_TOPIC_ENV, topic);

 // Construct Lambda function class, and invoke handler
 BulkEventsLambda lambda = new BulkEventsLambda(mockSNS, mockS3);
 lambda.handler(s3Event);

Testing BulkEventsLambda | 145

https://oreil.ly/YeLiW

 // Capture outbound SNS messages
 ArgumentCaptor<String> topics =
 ArgumentCaptor.forClass(String.class);
 ArgumentCaptor<String> messages =
 ArgumentCaptor.forClass(String.class);
 Mockito.verify(mockSNS,
 Mockito.times(3)).publish(topics.capture(),
 messages.capture());

 // Assert
 Assert.assertArrayEquals(
 new String[]{topic, topic, topic},
 topics.getAllValues().toArray());
 Assert.assertArrayEquals(new String[]{
 "{\"locationName\":\"Brooklyn, NY\",\"temperature\":91.0,"
 + "\"timestamp\":1564428897,\"longitude\":-73.99,"
 + "\"latitude\":40.7}",
 "{\"locationName\":\"Oxford, UK\",\"temperature\":64.0,"
 + "\"timestamp\":1564428898,\"longitude\":-1.25,"
 + "\"latitude\":51.75}",
 "{\"locationName\":\"Charlottesville, VA\",\"temperature\":87.0,"
 + "\"timestamp\":1564428899,\"longitude\":-78.47,"
 + "\"latitude\":38.02}"
 }, messages.getAllValues().toArray());
 }
}

The first thing you should note is that this test is much longer than our unit tests.
Most of that additional code is setting up the mock objects and configuring the envi‐
ronment so that our Lambda function’s handler method thinks it’s running in the
cloud.

The second thing to note is that we’re reading the input data from a file on disk.
s3_event.json is a file that was generated using this sam command:

$ sam local generate-event s3 put > src/test/resources/s3_event.json

We then changed the key field to reference another local file, bulk_data.json, which
represents the weather data that would be stored on S3:

{
 "Records": [
 {
 ...
 "s3": {
 "bucket": {
 "name": "example-bucket",
 ...
 },
 "object": {
 "key": "bulk_data.json",

146 | Chapter 6: Testing

 }
 }
 }
]
}

Our mock S3 client returns the contents of the bulk_data.json file when the s3.getOb
ject method is called, and our Lambda function is none the wiser.

JSON Files to Java Objects
Some event types can be easily deserialized from JSON files using the out-of-the-box
functionality provided by the Jackson library. This allows us to use the sample events
generated by the sam CLI or copied from various AWS Web Console sources.

However, some events use legacy JSON formats that aren’t parseable without extra
configuration. For an example of this, take a look at the following Single Event
LambdaFunctionalTest:

public class SingleEventLambdaFunctionalTest {

 private final ObjectMapper objectMapper = new ObjectMapper()
 .registerModule(new JodaModule())
 .enable(MapperFeature.ACCEPT_CASE_INSENSITIVE_PROPERTIES);

 ...

 @Test
 public void testHandler() throws IOException {

 // Fixture SNS event
 SNSEvent snsEvent = objectMapper.readValue(getClass()
 .getResourceAsStream("/sns_event.json"), SNSEvent.class);

 // Construct Lambda function class, and invoke handler
 SingleEventLambda lambda = new SingleEventLambda();
 lambda.handler(snsEvent);

 ...

 }

}

Here we have to configure the Jackson ObjectMapper to use a different module for
date handling and parse property names without regard to capitalization. If you’re
trying to test with an event type that is difficult to parse from JSON, remember that
you can always fall back to simply building the Java object in your test code!

We could rewrite the previous test as follows and avoid having to deal with JSON
deserialization:

Testing BulkEventsLambda | 147

https://oreil.ly/P07R8

@Test
public void testHandlerNoJackson() throws IOException {

 // Fixture SNS content, record, and event
 SNSEvent.SNS snsContent = new SNSEvent.SNS()
 .withMessage("{\"locationName\":\"Brooklyn, NY\","
 + "\"temperature\":91.0,\"timestamp\":1564428897,"
 + "\"longitude\":-73.99,\"latitude\":40.7}");
 SNSEvent.SNSRecord snsRecord =
 new SNSEvent.SNSRecord().withSns(snsContent);
 SNSEvent snsEvent =
 new SNSEvent()
 .withRecords(Collections.singletonList(snsRecord));

 // Construct Lambda function class, and invoke handler
 SingleEventLambda lambda = new SingleEventLambda();
 lambda.handler(snsEvent);

 Assert.assertEquals(
 "Received weather event:\nWeatherEvent{"
 + "locationName='Brooklyn, NY', temperature=91.0, "
 + "timestamp=1564428897, longitude=-73.99, "
 + "latitude=40.7}\n"
 , systemOutRule.getLog());
 }

}

This avoids the Jackson configuration, but the result is a fair amount of boilerplate to
build up the required SNSEvent object. We recommend using a combination of these
two approaches, depending on the circumstances and the complexity of the event
objects.

Lastly, we want to assert that BulkEventsLambda publishes messages to SNS, but
without actually sending messages to AWS. Here we use our mock SNS client and
capture the parameters that are passed to the sns.publish method. If that method is
called the expected number of times with the right parameters, our test passes.

Another functional test asserts that the Lambda function throws an exception if it
receives bad input data. The last test asserts that an exception is thrown if the
FAN_OUT_TOPIC environment variable isn’t set.

These functional tests are more complex to write and take somewhat longer to run,
but they give us confidence that BulkEventsLambda will behave as we expect it to
when the Lambda runtime calls the handler function with an S3Event object.

148 | Chapter 6: Testing

End-to-End Testing
With the confidence gained from our suite of unit and functional tests, we can focus
our most complex and costly testing methodology on the critical path for our applica‐
tion. We can also take advantage of our infrastructure-as-code approach to deploy a
complete version of our serverless application and infrastructure to AWS, for the sole
purpose of running an end-to-end test. When the test has completed successfully,
we’ll clean up and tear it all down.

To run the end-to-end test, we simply need to execute the mvn verify command.
This uses the Maven Failsafe plug-in, which finds test classes that end in *IT and runs
them using JUnit. In this case, IT stands for integration test, but that’s just Maven
nomenclature—we could configure the Failsafe plug-in to use a different suffix.

For our end-to-end test, we exercise our application exactly as it would be used in
production. We upload a JSON file to an S3 bucket and then assert that the Single
EventLambda produces the correct CloudWatch Logs output. From the perspective of
the test, our serverless application is a black box.

Here’s the main body of the test method:

@Test
public void endToEndTest() throws InterruptedException {
 String bucketName = resolvePhysicalId("PipelineStartBucket");
 String key = UUID.randomUUID().toString();
 File file = new File(getClass().getResource("/bulk_data.json").getFile());

 // 1. Upload bulk_data file to S3
 s3.putObject(bucketName, key, file);

 // 2. Check for executions of SingleEventLambda
 Thread.sleep(30000);
 String singleEventLambda = resolvePhysicalId("SingleEventLambda");
 Set<String> logMessages = getLogMessages(singleEventLambda);
 Assert.assertThat(logMessages, CoreMatchers.hasItems(
 "WeatherEvent{locationName='Brooklyn, NY', temperature=91.0, "
 + "timestamp=1564428897, longitude=-73.99, latitude=40.7}",
 "WeatherEvent{locationName='Oxford, UK', temperature=64.0, "
 + "timestamp=1564428898, longitude=-1.25, latitude=51.75}",
 "WeatherEvent{locationName='Charlottesville, VA', temperature=87.0, "
 + "timestamp=1564428899, longitude=-78.47, latitude=38.02}"
));

 // 3. Delete object from S3 bucket (to allow a clean CloudFormation teardown)
 s3.deleteObject(bucketName, key);

 // 4. Delete Lambda log groups
 logs.deleteLogGroup(
 new DeleteLogGroupRequest(getLogGroup(singleEventLambda)));
 String bulkEventsLambda = resolvePhysicalId("BulkEventsLambda");

End-to-End Testing | 149

 logs.deleteLogGroup(
 new DeleteLogGroupRequest(getLogGroup(bulkEventsLambda)));
}

Here are a few points worth noting from this example:

• The test resolves the actual name (in AWS parlance, the “Physical ID”) of the S3
bucket from our CloudFormation stack. This technique for resource discovery is
useful because it allows us to deploy named stacks that don’t explicitly specify
names for resources (or that use the stack name as part of the resource name).
This means that we can deploy the same application multiple times in the same
account and even the same region, using different names each time for the
CloudFormation stack.

• For simplicity’s sake, our test simply sleeps for 30 seconds before checking if the
SingleEventLambda has executed. Another approach would be to poll Cloud‐
Watch Logs proactively, which would be more reliable, but obviously more
complex.

• We clean up some resources at the end of the test method. We do this so if the
test fails, those resources remain available for our investigation into the test fail‐
ure. If we had used JUnit’s @After functionality, that cleanup would happen even
if the test failed, thus hampering an investigation.

Now that you’ve seen the test method itself, let’s look at how we set up and tear down
the test infrastructure. We need to make sure that the S3 bucket, SNS topic, and
Lambda functions are in place for our test to run, but we don’t want to create those
resources individually. Instead, we want to use the same SAM template.yaml file as we
use for production.

For this example, we’re using the Maven “exec” plug-in to hook into the build lifecy‐
cle’s “pre-integration” phase, which will execute before the end-to-end test. Don’t be
put off by the fact that we’re using Maven here. You could just as easily do this with a
simple shell script or Makefile. What’s important is that we use the same tem‐
plate.yaml file as we would use for production, and if possible, the same AWS CLI
commands to deploy our application.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>001-sam-deploy</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>

150 | Chapter 6: Testing

 <basedir>${project.parent.basedir}</basedir>
 <executable>sam</executable>
 <arguments>
 <argument>deploy</argument>
 <argument>--s3-bucket</argument>
 <argument>${integration.test.code.bucket}</argument>
 <argument>--stack-name</argument>
 <argument>${integration.test.stack.name}</argument>
 <argument>--capabilities</argument>
 <argument>CAPABILITY_IAM</argument>
 </arguments>
 </configuration>
 </execution>
 </executions>
</plugin>

It takes several lines of XML to describe, but in this example we’re calling the SAM
CLI binary with the same arguments that we used in Chapter 5.

The ${integration.test.code.bucket} and ${integration.test.stack.name}

properties come from the top-level pom.xml file and are defined like this:

<properties>
 <maven.build.timestamp.format>
 yyyyMMddHHmmss
 </maven.build.timestamp.format>
 <integration.test.code.bucket>
 ${env.CF_BUCKET}
 </integration.test.code.bucket>
 <integration.test.stack.name>
 chapter6-it-${maven.build.timestamp}
 </integration.test.stack.name>
</properties>

Our Maven process populates the value of ${integration.test.code.bucket} with
the value of the $CF_BUCKET environment variable, which we’ve used in previous
chapters. The ${maven.build.timestamp.format} pom.xml documentation tells
Maven to construct a human-readable numeric timestamp, which we then use as part
of the ${integration.test.stack.name}. This gives us a (nearly) unique CloudFor‐
mation stack name, so multiple end-to-end tests could be run simultaneously using
the same AWS account and region (as long as they’re not started in the same
second!).

What we don’t see in this Maven configuration are any AWS credentials. Processes
started by the Maven “exec” plug-in will pick up environment variables automatically,
so this will use the AWS environment variables that we’ve been using for the last sev‐
eral chapters without any additional configuration on our part.

End-to-End Testing | 151

https://oreil.ly/FIl7J

Configuring the AWS SDK Versus the CLI
The AWS CLI pulls its configuration from two files, ~/.aws/config and ~/.aws/creden‐
tials. Unfortunately, while the AWS Java SDK V1 has some knowledge of those files, it
doesn’t parse them in the same way as the CLI.

While the AWS CLI uses a profile prefix in the ~/.aws/config file, the AWS SDK does
not. This means that the AWS SDK isn’t able to parse which region to use. Therefore,
for our “end-to-end” test to run successfully, we need to add a section to the ~/.aws/
config file as follows:

[default]
region = us-west-2

If you’re using a different named profile, just replace default with that profile name.

Alternatively, setting the AWS_REGION environment variable appropriately will have
the same effect. In AWS-managed environments like CodeBuild, this is done
automatically.

In most cases you should use separate AWS accounts for your test environments to
isolate test infrastructure and data. To achieve that here, simply supply a different set
of AWS credentials via environment variables.

After our end-to-end test runs, teardown of the CloudFormation stack works in the
same way, as part of Maven’s “post-integration-test” lifecycle phase:

<execution>
 <id>001-cfn-delete</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>
 <basedir>${project.parent.basedir}</basedir>
 <executable>aws</executable>
 <arguments>
 <argument>cloudformation</argument>
 <argument>delete-stack</argument>
 <argument>--stack-name</argument>
 <argument>${integration.test.stack.name}</argument>
 </arguments>
 </configuration>
</execution>

We’ve now reached the very top of the Test Pyramid. The end-to-end test brings a lot
of value: it deploys and runs the entire application. It tests the critical path just as it
would be executed in production. However, with that value comes a fairly high cost—
we need a lot of extra configuration and setup and teardown code to make sure the

152 | Chapter 6: Testing

test can be run repeatedly and without any affinity to a particular AWS account or
region. Despite those efforts, this test is still vulnerable to vendor outages, environ‐
ment changes, and the indeterminate behavior inherent in operating over a global
network.

In other words, our end-to-end test is brittle and costly to maintain compared to the
unit and functional tests. For this reason, you should try to write as few end-to-end
tests as possible and instead rely on more, lower-cost tests to fully exercise your
application.

Local Cloud Testing
For years, an inherent and unassailable property of a good development workflow
was the ability to run the entire application or system locally, without touching any
external resources. For a traditional desktop or server application, this might mean
just running the application itself, or perhaps the application and a database. For a
web application, the list of requirements might include a reverse proxy, a web server,
and a job queue.

But what happens when we start using vendor-managed cloud services? Our initial
reaction might be to try to achieve the same fully local development workflow we
were used to before, using tools like localstack and sam local (“sam local invoke” on
page 154). This approach might seem tenable at first, but it quickly puts us at odds
with a cloud-first architecture in which we want to take full advantage of scalable,
reliable, fully managed services provided by a cloud vendor. Most importantly, we
don’t want to limit our service choices to only those that enable our development
workflow. This is the tail wagging the dog!

What are the difficulties with fully local development in a world of vendor-managed
cloud services? The fundamental issue is fidelity: it is simply impossible for a local
version of a service (like S3 or DynamoDB or Lambda) to have the same properties as
the cloud version. Even if the local analogue is provided by the vendor (in this case
AWS), it will have at least some of the following issues:

• Missing features
• Different (or absent) control plane behavior (e.g., creating DynamoDB tables)
• Different scaling behavior
• Different latency (e.g., extremely low latency for the local analogue compared to

the cloud service)
• Different failure modes
• Different (or no) security controls

Local Cloud Testing | 153

https://oreil.ly/TbcEo

Having run into these issues time after time, we advocate for the pragmatic testing
approach taken in this chapter. We rely extensively on unit tests to verify the behavior
of specific pieces of functionality, and we use those tests to rapidly iterate during
development of individual Lambda functions. Functional tests exercise the capability
of a Lambda function using mocks or stubs in place of AWS SDK clients and other
external dependencies. Finally, a few full-fledged end-to-end tests let us execute the
entire application in the cloud, using the same SAM infrastructure template and CLI
commands that we would use in production.

sam local invoke
The SAM CLI provides a few different methods to execute Lambda functions locally,
with or without an API Gateway layer. While these methods can be useful for a brief
ad hoc test, they fall victim to the issues described in this section. The local execution
environment of a Lambda function lacks fidelity compared to the actual cloud ser‐
vice. We can see this lack of fidelity manifested in a couple of different ways, using
sam local invoke.

First, while sam local invoke parses the template.yaml file to find the relevant
Lambda resources and paths to local code artifacts, it doesn’t perform any kind of
higher-level validation of SAM (or CloudFormation) resources or of the structure of
the template in general.

Second, the runtime environment itself differs from the real Lambda platform. For
example, we can configure our Lambda functions to use less (or more) memory than
would be allowed by the Lambda platform, and sam local invoke won’t pick that up.

These issues (and others like them) aren’t significant in isolation. The real danger,
however, is that tools like sam local invoke allow developers to build up a sense of
confidence that a Lambda that correctly executes locally will run without errors in the
cloud. In many cases, those developers are then confronted by new issues when they
finally deploy their applications to the cloud.

Given the simplicity of the Lambda programming model, it’s unclear that sam local
invoke adds enough value (over the unit and functional tests described in this chap‐
ter) to make it part of a local testing process.

Cloud Test Environments
For the unit and functional testing we’ve described in this chapter, a local environ‐
ment with Java, Maven, and your favorite IDE will suffice nicely. For the end-to-end
tests, you need access to an AWS account. This is all straightforward for a single
developer working in isolation, but when working as part of a larger team, it can get
more complex.

154 | Chapter 6: Testing

When you’re working as a part of a larger team, what’s the best way to work with
cloud resources? We have found that a good place to start is for each developer to
have an isolated development account and for the team as a whole to have one
account per shared integration environment (e.g., dev, test, staging). Things can get
tricky when relying on truly shared resources (such as databases or S3 buckets), but
in general maintaining isolation during rapid development prevents an entire class of
issues ranging from accidental deletion to resource contention.

A rigorous infrastructure-as-code approach makes managing resources in multiple
accounts much easier. Taking it a step further, an infrastructure-as-code approach to
setting up build pipelines means that standing up and deploying a serverless applica‐
tion in a new account might be as simple as deploying a single CloudFormation stack
representing the build pipeline, which will then pull the latest source code and deploy
the application.

Canary Testing with CloudWatch Synthetics
CloudWatch Synthetics is a new service (in preview at the time of writing) that allows
developers to create small scripts, called canaries, that exercise a deployed application
in the same way a user might. Canaries can be run on a schedule or just once, and
they can trigger CloudWatch alarms if they fail. The code for a canary is written in
JavaScript and has access to the Synthetics library as well as Puppeteer and Chro‐
mium. As you might have guessed, behind-the-scenes canaries are simply managed
Lambda functions, and as such they have access to 1GB of RAM and up to a 10-
minute timeout.

You might think that this new capability could take the place of end-to-end tests.
While it can certainly be used across multiple environments (e.g., you can run a can‐
ary in your end-to-end test environment), keep in mind that Synthetics is meant to
exercise an application from the user’s perspective. This means that a canary shouldn’t
have access to components or services that a user doesn’t have access too, which pre‐
cludes testing asynchronous operations and side effects. Furthermore, Synthetics
tightly couples canary failures to alarms, which isn’t the mechanism by which test fail‐
ures should be surfaced.

Once Synthetics is generally available, we strongly recommend considering it as part
of your application monitoring strategy (see Chapter 7).

Cloud Test Environments | 155

https://oreil.ly/XbXfP
https://oreil.ly/SUDHt
https://www.chromium.org/Home
https://www.chromium.org/Home

Summary
Testing serverless applications is not substantively different than testing traditional
applications—it’s all about finding the right balance of coverage, complexity, cost, and
value, and scaling our testing approach to work for a team.

In this chapter, you learned that the Test Pyramid can guide your testing strategy for a
serverless application. We refactored our Lambda code to ease unit testing and to
enable functional testing without a network connection. The end-to-end test demon‐
strated the efficacy of an infrastructure-as-code approach as well as the high degree of
complexity inherent in testing a distributed application.

You saw that trying to run cloud services for local testing is subject to a host of issues,
especially the lack of fidelity that can be achieved locally. If you want to test a cloud-
based application, at some point you have to actually run it in the cloud! Finally, for a
team to work effectively in this way, developers should have isolated cloud accounts,
and teams should have shared integration environments.

Through testing, we now have confidence that our application will behave as
expected. In the next chapter, we’ll explore how to gain insight into the behavior of
our deployed applications through logging, metrics, and tracing.

Exercise
The code and tests in this chapter exercise S3 and SNS. Write an integration test for
the Chapter 5 application that makes HTTP calls from Java to the deployed API Gate‐
way and then asserts on the responses (and side effects). For extra credit, use Java 11’s
new native HTTP client!

156 | Chapter 6: Testing

https://oreil.ly/ctKPo
https://oreil.ly/ctKPo

CHAPTER 7

Logging, Metrics, and Tracing

In this chapter, we’ll explore how to enhance the observability of Lambda functions
through logging, metrics, and tracing. Through logging, you’ll learn how to gain
information from specific events occuring during the execution of your Lambda
functions. Platform and business metrics will give insight into the operational health
of our serverless application. Finally, distributed tracing will let you see how requests
flow to the different managed services and components that make up our
architecture.

We’ll use the Weather API from Chapter 5 to explore the wide variety of logging, met‐
rics, and tracing options available for serverless applications on AWS. Similar to the
data pipeline changes we made in Chapter 6, you’ll notice that the Weather API
Lambda functions have been refactored to use the aws-lambda-java-events library.

Logging
Given the following log message, what can we infer about the state of the application
that generated it?

Recorded a temperature of 78 F from Brooklyn, NY

We know the values of some of the data (the temperature measurement and location),
but not much else. When was this data received or processed? In the larger context of
our application, what request generated this data? Which Java class and method pro‐
duced this log message? How can we correlate this with other, possibly related, log
messages?

Fundamentally, this is an unhelpful log message. It lacks context and specificity. If a
message like this was repeated hundreds or thousands of times (perhaps with differ‐
ent temperature or location values), it would lose meaning. When our log messages

157

are prose (e.g., a sentence or phrase), they are more difficult to parse without resort‐
ing to regular expressions or pattern matching.

As we explore logging in our Lambda functions, keep in mind a few properties of
high-value log messages:

Data rich
We want to capture as much data as is feasible and cost-effective. The more data
we have, the more questions we can ask without having to go back and add more
logging after that fact.

High cardinality
Data values that make a particular log message unique are especially important.
For example, a field like Request ID will have a large number of unique values,
whereas a field like Thread Priority may not (especially in a single-threaded
Lambda function).

Machine readable
Using JSON or another standardized format that is easily machine readable
(without custom parsing logic) will ease analysis by downstream tools.

CloudWatch Logs
CloudWatch Logs is, as the name would suggest, AWS’s log collection, aggregation,
and processing service. Through a variety of mechanisms, it receives log data from
applications and other AWS services and makes that data accessible through a web
console as well as via an API.

The two main organizational components of CloudWatch Logs are log groups and
log streams. A log group is a top-level grouping for a set of related log streams. A log
stream is a list of log messages, usually originating from a single application or func‐
tion instance.

Lambda and CloudWatch Logs
In a serverless application, by default there is one log group per Lambda function,
which contains many log streams. Each log stream contains the log messages for all
the function invocations for a particular function instance. Recall from Chapter 3 that
the Lambda runtime captures anything written to standard output (System.out in
Java) or standard error (System.err), and forwards that information to CloudWatch
Logs.

The log output for a Lambda function looks something like this:

START RequestId: 6127fe67-a406-11e8-9030-69649c02a345
 Version: $LATEST
Recorded a temperature of 78 F from Brooklyn, NY

158 | Chapter 7: Logging, Metrics, and Tracing

END RequestId: 6127fe67-a406-11e8-9030-69649c02a345
REPORT RequestId: 6127fe67-a406-11e8-9030-69649c02a345
 Duration: 2001.52 ms
 Billed Duration: 2000 ms
 Memory Size: 512 MB
 Max Memory Used: 51 MB

The START, END, and REPORT lines are automatically added by the Lambda platform.
Of particular interest is the UUID value labeled RequestId. This is an identifier that’s
unique for each requested Lambda function invocation. The most common source of
repeated RequestId values in logs is when our functions have an error and the plat‐
form retries the execution (see “Error Handling” on page 183). Aside from that, since
the Lambda platform (like most distributed systems) has “at least once” semantics, the
platform may occasionally invoke a function with the same RequestId more than
once even when there are no errors (we examine “at least once” behavior in “At-Least-
Once Delivery” on page 227).

LambdaLogger
The log line between the START and END lines above was generated using
System.out.println. This is a perfectly reasonable way to get started with logging
from simple Lambda functions, but there are several other options that provide a
combination of sensible behavior and customization. The first of these options is the
LambdaLogger class that AWS provides.

This logger is accessed via the Lambda Context object, so we’ll have to alter our
WeatherEvent Lambda handler function to include that parameter, as follows:

public class WeatherEventLambda {
 …
 public APIGatewayProxyResponseEvent handler(
 APIGatewayProxyRequestEvent request,
 Context context
) throws IOException {

 context.getLogger().log("Request received");
 …
 }
}

The output of this log statement looks just as if it had been generated using Sys
tem.out.println:

START RequestId: 4f40a12b-1112-4b3a-94a9-89031d57defa Version: $LATEST
Request received
END RequestId: 4f40a12b-1112-4b3a-94a9-89031d57defa

You can see the difference between LambdaLogger and the System println methods
when we have output that includes newlines, like a stack trace:

Logging | 159

https://oreil.ly/lXGJB

public class WeatherEventLambda {
 …
 public APIGatewayProxyResponseEvent handler(
 APIGatewayProxyRequestEvent request,
 Context context
) throws IOException {

 StringWriter stringWriter = new StringWriter();
 Exception e = new Exception();
 e.printStackTrace(new PrintWriter(stringWriter));

 context.getLogger().log(stringWriter);
 …
 }
}

Using System.err.println the stack trace is printed on multiple lines, as multiple
CloudWatch Logs entries (Figure 7-1).

Figure 7-1. Stack trace output in CloudWatch Logs using System.err.println

Using LambdaLogger, that stack trace is a single entry (which can be expanded in the
web console, as shown in Figure 7-2).

This feature alone is a compelling reason to use LambdaLogger instead of
System.out.println or System.err.println, especially when printing exception
stack traces.

160 | Chapter 7: Logging, Metrics, and Tracing

Figure 7-2. Stack trace output in CloudWatch Logs using LambdaLogger

Java Logging Frameworks
LambdaLogger is often sufficient for simple Lambda functions. However, as you’ll see
later in this chapter, it’s often useful to customize log output to meet specific require‐
ments, like capturing business metrics or generating application alerts. While it’s cer‐
tainly possible to generate this kind of output using Java’s standard library, like
String.format, it’s easier to use an existing logging framework like Log4J or Java
Commons Logging. These frameworks provide conveniences like log levels, property
or file-based configuration, and a variety of output formats. They also make it easy to
include relevant system and application context (like the AWS request ID) with each
log message.

When Lambda was first made available, AWS provided a custom appender for a very
old, unsupported version of Log4J. Using this old version of a popular logging frame‐
work made it challenging to integrate newer logging features in Lambda-based serv‐
erless applications. As a result, we spent a fair amount of time and effort to build a
more modern logging solution for Lambda functions called lambda-monitoring,
which uses SLF4J and Logback.

However, AWS now provides a library with a custom log appender, which uses Lamb
daLogger under the covers, for the most recent version of Log4J2. We now recom‐
mend using this setup as AWS has outlined in the Java logging section of the Lambda
documentation. Setting up this method of logging simply involves adding a few addi‐
tional dependencies, adding a log4j2.xml configuration file, and then using
org.apache.logging.log4j.Logger in our code.

Logging | 161

https://oreil.ly/9qlLO
https://oreil.ly/rywdy
https://oreil.ly/CrRoX
https://oreil.ly/CrRoX
https://oreil.ly/8UEaw
https://oreil.ly/2YP8h

Here are the pom.xml additions for our Weather API project:

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.1.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.12.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.12.1</version>
 </dependency>
</dependencies>

The log4j2.xml configuration file should be familiar to anyone who has used Log4J. It
uses the Lambda appender provided by AWS, and allows customization of the log
pattern:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration packages="com.amazonaws.services.lambda.runtime.log4j2">
 <Appenders>
 <Lambda name="Lambda">
 <PatternLayout>
 <pattern>
 %d{yyyy-MM-dd HH:mm:ss} %X{AWSRequestId} %-5p %c{1}:%L—%m%n
 </pattern>
 </PatternLayout>
 </Lambda>
 </Appenders>
 <Loggers>
 <Root level="info">
 <AppenderRef ref="Lambda"/>
 </Root>
 </Loggers>
</Configuration>

Notice that the log pattern includes the Lambda request ID (%X{AWSRequestId}). In
our previous logging examples, that request ID wasn’t included in most output lines
—it just showed up at the beginning and end of an invocation. By including it in
every line, we can tie each piece of output to a specific request, which is helpful if we
inspect these logs using another tool or download them for offline analysis.

162 | Chapter 7: Logging, Metrics, and Tracing

In our Lambda function, we set up the logger and use its error method to log out a
message at ERROR level, as well as the exception:

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

public class WeatherEventLambda {
 private static Logger logger = LogManager.getLogger();
 …
 public APIGatewayProxyResponseEvent handler(
 APIGatewayProxyRequestEvent request, Context context)
 throws IOException {

 Exception e = new Exception("Test exception");
 logger.error("Log4J logger", e);
 ...
 }
}

The output from the Lambda Log4J2 appender is shown in Figure 7-3.

Figure 7-3. Stack trace output in CloudWatch Logs using Log4J2

It includes the timestamp, the AWS request ID, the log level (ERROR in this case), the
file and line that called the logging method, and a correctly formatted exception. We
can use Log4J-provided bridge libraries to route log messages from other logging
frameworks to our Log4J appender. The most useful application of this technique, at
least for our WeatherEventLambda, is to gain insight into the behavior of the AWS
Java SDK, which uses Apache Commons Logging (previously known as Jakarta Com‐
mons Logging, or JCL).

Logging | 163

https://oreil.ly/pygbx

First, we add the Log4J JCL bridge library to the dependencies section of our
pom.xml file:

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-jcl</artifactId>
 <version>2.12.1</version>
</dependency>

Next, we enable debug logging in the Loggers section of our log4j2.xml file:

<Loggers>
 <Root level="debug">
 <AppenderRef ref="Lambda"/>
 </Root>
</Loggers>

Now we can see detailed log information from the AWS Java SDK (Figure 7-4).

Figure 7-4. Detailed debug logging from the AWS SDK

We probably don’t want this information all the time, but it’s useful for debugging if
there’s a problem—in this case we see exactly what the body of the DynamoDB
PutItem API call contains.

By using more sophisticated logging frameworks, we gain additional insight into the
context surrounding our log output. We can separate the logs for different Lambda
requests using the request ID. Using the log level, we can understand if some log lines
represent errors, or warnings about the state of our application, or if other lines might
be ignored (or analyzed later) because they contain voluminous but less relevant
debugging information.

164 | Chapter 7: Logging, Metrics, and Tracing

CloudWatch Logs Costs
One word of caution—the cost of logging at high volume from Lambda functions is
often surprising. At the time of writing, CloudWatch Logs costs $0.50 per GB of data
ingested. If your Lambda functions generate 100KB of log output per invocation (per‐
haps by processing a batch of one thousand records from Kinesis and generating a
single line of output for each record), and are invoked 1M times, that’s 100GB of log
output, which will cost $50. At 1M invocations per day, that’s $1,500 of CloudWatch
Logs in a month!

The admonition here is not to eliminate logging from your Lambda functions but to
generate meaningful log output that’s worth the cost. We’ll discuss how to gain maxi‐
mum value from log output in the next section.

Structured Logging
Our logging system as described in the previous section is capturing a great deal of
useful information and context, ready to be used to inspect and improve our
application.

However, when it comes time to extract some value from this great store of log data,
it’s often difficult to access, it’s tricky to query, and because the actual messages are
still essentially free-form text, you usually have to resort to a series of inscrutable reg‐
ular expressions to find exactly the lines you’re looking for. There are some standard‐
ized formats that have established conventions for the values of certain space or tab-
delimited fields, but inevitably the regexes make an appearance in downstream
processes and tooling.

Rather than continue with the free-text free-for-all, we can use a technique called
structured logging to standardize our log output and make all of it easily searchable
via a standard query language.

Take this JSON log entry as an example:

{
 "thread": "main",
 "level": "INFO",
 "loggerName": "book.api.WeatherEventLambda",
 "message": {
 "locationName": "Brooklyn, NY",
 "action": "record",
 "temperature": 78,
 "timestamp": 1564506117
 },
 "endOfBatch": false,
 "loggerFqcn": "org.apache.logging.log4j.spi.AbstractLogger",
 "instant": {

Logging | 165

 "epochSecond": 1564506117,
 "nanoOfSecond": 400000000
 },
 "contextMap": {
 "AWSRequestId": "d814bbbe-559b-4798-aee0-31ddf9235a76"
 },
 "threadId": 1,
 "threadPriority": 5
}

Rather than relying on an ordering of fields to extract information, we can use JSON
path specifications. For example, if we want to extract the temperature field, we can
use the JSON path .message.temperature. The CloudWatch Logs service supports
this both for searching in the web console (see Figure 7-5), and for creating Metric
Filters, which we’ll discuss later in this chapter.

Figure 7-5. Using JSON Path expressions to search in the CloudWatch Logs web console

Structured Logging in Java
Now that we understand the benefit of structured logging using the JSON format, we
unfortunately run into immediate difficulty in trying to log JSON from our Java-
based Lambda functions. JSON handling in Java is notoriously verbose, and adding a
large amount of boilerplate code to construct log output doesn’t feel like the right way
to go.

Fortunately, we can use Log4J2 to generate JSON log output (Log4J2 JSONLayout).
The following log4j2.xml configuration will enable JSON-formatted output to STDOUT,
which for our Lambda functions means that the output will be sent to CloudWatch
Logs:

166 | Chapter 7: Logging, Metrics, and Tracing

https://oreil.ly/G4EYb

<?xml version="1.0" encoding="UTF-8"?>
<Configuration packages="com.amazonaws.services.lambda.runtime.log4j2">
 <Appenders>
 <Lambda name="Lambda">
 <JsonLayout
 compact="true"
 eventEol="true"
 objectMessageAsJsonObject="true"
 properties="true"/>
 </Lambda>
 </Appenders>
 <Loggers>
 <Root level="info">
 <AppenderRef ref="Lambda"/>
 </Root>
 </Loggers>
</Configuration>

In our Lambda code, we set up the Log4J2 logger as a static field:

...
private static Logger logger = LogManager.getLogger();
...

Rather than logging a string like Recorded a temperature of 78 F from Brook
lyn, NY, we’ll instead build up a Map with keys and values, as follows:

HashMap<Object, Object> message = new HashMap<>();
message.put("action", "record");
message.put("locationName", weatherEvent.locationName);
message.put("temperature", weatherEvent.temperature);
message.put("timestamp", weatherEvent.timestamp);

logger.info(new ObjectMessage(message));

Here’s the output from that log line:

{
 "thread": "main",
 "level": "INFO",
 "loggerName": "book.api.WeatherEventLambda",
 "message": {
 "locationName": "Brooklyn, NY",
 "action": "record",
 "temperature": 78,
 "timestamp": 1564506117
 },
 "endOfBatch": false,
 "loggerFqcn": "org.apache.logging.log4j.spi.AbstractLogger",
 "instant": {
 "epochSecond": 1564506117,
 "nanoOfSecond": 400000000
 },
 "contextMap": {

Logging | 167

 "AWSRequestId": "d814bbbe-559b-4798-aee0-31ddf9235a76"
 },
 "threadId": 1,
 "threadPriority": 5
}

A caveat worth noting—the information relevant to our application is there under the
message key, but it’s buried in a sea of other output. Unfortunately, most of that out‐
put is baked into the Log4J2 JsonLayout, so we can’t remove it without some work.
As we’ll see in the next section, however, the benefits of JSON-formatted log events
are well worth the increase in verbosity.

CloudWatch Logs Insights
Structured logging enables us to use far more sophisticated tools to analyze our logs,
both in real time as well as after incidents. While the original CloudWatch Logs web
console has some support for using JSONPath expressions to query log data (as
shown earlier), truly sophisticated analysis has, until recently, required either down‐
loading logs directly, or forwarding them to another service.

CloudWatch Logs Insights is a new addition to the CloudWatch Logs ecosystem, pro‐
viding a powerful search engine and purpose-built query language ideally suited to
analyzing structured logs. Taking our example JSON log line from the previous sec‐
tion, let’s now imagine that we had a month’s worth of hourly data that has been log‐
ged out to CloudWatch Logs. We might want to do some quick analysis of that log
data to see what the minimum, average, and maximum temperatures for each day
was, but only for Brooklyn.

The following CloudWatch Logs Insights query accomplishes just that:

filter message.action = "record"
 and message.locationName = "Brooklyn, NY"
| fields date_floor(concat(message.timestamp, "000"), 1d) as Day,
 message.temperature
| stats min(message.temperature) as Low,
 avg(message.temperature) as Average,
 max(message.temperature) as High by Day
| order by Day asc

Let’s look at what this query is doing, line by line:

1. First we filter the data down to log events that have a value of record in the mes
sage.action field, and a value of “Brooklyn, NY” in the message.locationName
field.

2. In the second line, we pick out the message.timestamp field and add three zeroes
to the end before passing it to the date_floor method, which will replace a
timestamp value (in milliseconds, hence needing to add zeroes) with the earliest

168 | Chapter 7: Logging, Metrics, and Tracing

https://oreil.ly/mPqKe

timestamp value for the given day. We also pick out the message.temperature
field.

3. The third line calculates the minimum, average, and maximum value of the mes
sage.temperature field, for a day’s worth of log events.

4. The last line orders the data by day, starting with the earliest day.

We can see the results of this query in the CloudWatch Logs Insights web console
(Figure 7-6).

Figure 7-6. CloudWatch Logs Insights

These results can be exported as a CSV file, or graphed using the built-in visualiza‐
tion tool (Figure 7-7).

There are a few caveats to keep in mind with regard to CloudWatch Logs Insights.
First, while the tool can be used quite effectively for ad hoc exploration of log data, it
cannot (yet) be used to directly generate additional custom metrics or other data
products (although we’ll see how to generate custom metrics from JSON log data in
the next section!). There is an API interface for running queries and accessing results,
however, so it is possible to roll your own solution. Last but not least, pricing for
queries is based on the amount of data scanned.

Logging | 169

Figure 7-7. CloudWatch Logs Insights visualization

Metrics
Log messages are discrete snapshots into the state of a system at a given point in time.
Metrics, on the other hand, are meant to produce a higher-level view of the state of a
system over a period of time. While an individual metric is a snapshot in time, a ser‐
ies of metrics shows trends and behaviors of a system as it runs, over long periods of
time.

CloudWatch Metrics
CloudWatch Metrics is AWS’s metrics repository service. It receives metrics from
most AWS services. At the most fundamental level, a metric is simply a set of time-
ordered data points. For example, at a given moment, the CPU load of a traditional
server might be 64%. A few seconds later, it might be 65%. Over a given time period,
a minimum, a maximum, and other statistics (such as percentiles) can be calculated
for the metric.

Metrics are grouped by namespace (e.g., /aws/lambda), and then by metric name
(e.g., WeatherEventLambda). Metrics can also have associated dimensions, which are
simply more granular identifiers—for example given a metric tracking application
errors in a nonserverless application, one dimension might be server IP.

CloudWatch metrics are a primary tool for monitoring the behavior of AWS’s services
as well as our own applications.

170 | Chapter 7: Logging, Metrics, and Tracing

Lambda Platform Metrics
Right out of the box, AWS provides a myriad of function and account-level metrics
with which to monitor the overall health and availability of your serverless applica‐
tions. We’ll refer to these as platform metrics, because they’re provided by the
Lambda platform without requiring any extra configuration from us.

For individual functions, the Lambda platform provides the following metrics:

Invocations

The number of times a function is invoked (whether successful or not).

Throttles

The number of times an invocation attempt is throttled by the platform.

Errors

The number of times a function invocation returns an error.

Duration

The number of milliseconds of “elapsed wall clock time” from when a function
begins executing to when it stops. This metric also supports percentiles.

ConcurrentExecutions

How many concurrent executions of a function are happening at a given point in
time.

For functions that are invoked by Kinesis or DynamoDB stream event sources, an
IteratorAge metric tracks the number of milliseconds between when the function
received a batch of records and the time the last record in that batch was written to
the stream. Effectively, this metric shows you how far behind the stream a Lambda
function is at a given point in time.

For functions configured with a dead letter queue (DLQ), a DeadLetterErrors met‐
ric is incremented when the function is unable to write a message to the DLQ (see
“Error Handling” on page 183 for more about DLQs).

Additionally, the platform aggregates the Invocations, Throttles, Errors, Duration,
and ConcurrentExecutions metrics across all functions in the account and region.
An UnreservedConcurrentExecutions metric aggregates the concurrent executions
for all functions in the account and region that do not have a custom concurrency
limit specified.

Metrics that are generated by the Lambda platform include the following extra
dimensions: FunctionName, Resource (e.g., function version or alias) and Executed
Version (for alias invocations, which are discussed in the next chapter). Each of the
per-function metrics mentioned can have these dimensions.

Metrics | 171

https://oreil.ly/-Njgn

Business Metrics
Platform metrics and application logging are important tools for monitoring our
serverless applications, but neither is useful in assessing whether our application is
performing its business functions correctly and completely. For example, a metric
capturing the duration of a Lambda execution is useful to catch unexpected perfor‐
mance issues, but it doesn’t tell us if the Lambda function (or the application as a
whole) is processing events correctly for our customers. On the other hand, a metric
capturing the number of weather events successfully processed for our most popular
location tells us that the application (or at least the part related to processing weather
events) is working correctly, regardless of the underlying technical implementation.

These business metrics can serve not only as a finger on the pulse of our business logic
but also as an aggregate metric that’s not tied to specifics of an implementation or
platform. Using our earlier example, what does it mean if Lambda execution time
increases? Are we simply processing more data, or did a configuration or code change
impact the performance of our function? Does it even matter? However, if the num‐
ber of weather events our application processes decreases unexpectedly, we know
something is wrong and it warrants an immediate investigation.

In a traditional application, we might use the CloudWatch Metrics API directly, by
using the PutMetricData API call to proactively push these custom metrics as they’re
generated. More sophisticated applications might push small batches of metrics at
regular intervals instead.

Lambda functions have two qualities that make the PutMetricData approach untena‐
ble. First, a Lambda function can scale to hundreds or thousands of concurrent exe‐
cutions very quickly. The CloudWatch Metrics API will throttle the PutMetricData
call (CloudWatch limits), so there’s a danger that the very action that’s attempting to
persist important data may in fact cause a dropout of metrics. Second, because
Lambda functions are ephemeral, there is little opportunity or benefit to batching
metrics during a single execution. There is no guarantee that a subsequent execution
will take place in the same runtime instance, so batching across invocations isn’t
reliable.

Fortunately, there are two features of CloudWatch metrics that handle this situation
in a scalable and reliable manner by moving the generation of CloudWatch metrics
data outside of the Lambda execution entirely. The first and newest, called the Cloud‐
Watch Embedded Metric Format, uses a special log format to automatically create
metrics. This special log format isn’t yet supported by Log4J (without a lot of extra
work), so we won’t use it here, but in other cases this is the preferred method for gen‐
erating metrics in Lambda.

The other feature, CloudWatch metric filters, can also use CloudWatch Logs data to
generate metrics. Unlike the embedded metric format, it can access data in columnar

172 | Chapter 7: Logging, Metrics, and Tracing

https://oreil.ly/zLHuA
https://oreil.ly/q2jmF
https://oreil.ly/pkNXB
https://oreil.ly/pkNXB
https://oreil.ly/beOVU

and arbitrarily nested JSON structures. This makes it a better choice for situations
like ours where we can’t easily add JSON keys to the top level of our log statements. It
generates metric data by scraping CloudWatch Logs and pushing metrics in batches
to the CloudWatch Metrics service.

Our use of structured logging makes setting up a metric filter trivial, using the follow‐
ing addition to our template.yaml file:

BrooklynWeatherMetricFilter:
 Type: AWS::Logs::MetricFilter
 Properties:
 LogGroupName: !Sub "/aws/lambda/${WeatherEventLambda}"
 FilterPattern: '{$.message.locationName = "Brooklyn, NY"}'
 MetricTransformations:
 — MetricValue: "1"
 MetricNamespace: WeatherApi
 MetricName: BrooklynWeatherEventCount
 DefaultValue: "0"

This metric filter will increment the BrooklynWeatherEventCount metric every time
a JSON log line contains a message.locationName field with a “Brooklyn, NY” value.
We can access and visualize this metric via the CloudWatch Metrics web console, and
we can configure CloudWatch alarms and actions just as with regular platform
metrics.

In this example we’re effectively incrementing a counter every time an event occurs,
but it’s also possible (when it makes sense to do so with the data) to use an actual
value from the captured log line. See the MetricFilter MetricTransformation doc‐
umentation for more details.

Alarms
As with all CloudWatch metrics, we can use the data to build out alarms to warn us in
case something is going wrong. At a minimum, we recommend setting alarms for the
Errors and Throttles platform metrics, if not on a per-account basis, then certainly
for production functions.

For functions invoked by Kinesis or DynamoDB stream event sources, the Iterator
Age metric is a critical indication of whether a function is keeping up with the num‐
ber of events in the stream (which is a function of the number of shards in the stream,
the batch size configured in the Lambda event source, the ParallelizationFactor,
and the performance of the Lambda function itself).

Given the BrooklynWeatherEventCount metric we configured in the previous sec‐
tion, here’s how the associated CloudWatch alarm is configured. This alarm will alert
us (via an SNS message) if that metric value drops to zero (indicating we’ve stopped
receiving weather events for “Brooklyn, NY”) for longer than 60 seconds:

Metrics | 173

https://oreil.ly/ksKJu
https://oreil.ly/ksKJu
https://oreil.ly/ogUdK

BrooklynWeatherAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 Namespace: WeatherApi
 MetricName: BrooklynWeatherEventCount
 Statistic: Sum
 ComparisonOperator: LessThanThreshold
 Threshold: 1
 Period: 60
 EvaluationPeriods: 1
 TreatMissingData: breaching
 ActionsEnabled: True
 AlarmActions:
 — !Ref BrooklynWeatherAlarmTopic

BrooklynWeatherAlarmTopic:
 Type: AWS::SNS::Topic

Figure 7-8 shows a view of that alarm in the CloudWatch web console.

Figure 7-8. BrooklynWeatherAlarm CloudWatch alarm

The SNS message generated when the previous alarm is “breached” can be used to
send a notification email, or to trigger a third-party alert system like PagerDuty.

As with application components like Lambda functions and DynamoDB tables, we
strongly recommend keeping CloudWatch metric filters, alarms, and all other infra‐
structure in the same template.yaml file as everything else. This not only allows us to
take advantage of intra-template references and dependencies, but it also keeps our
metrics and alarm configurations tied closely to the application itself. If you don’t
want to generate these operational resources for development versions of your stacks,
you can use CloudFormation’s Conditions functionality.

174 | Chapter 7: Logging, Metrics, and Tracing

https://www.pagerduty.com
https://oreil.ly/iXXkw

Distributed Tracing
The metrics and logging capabilities that we’ve covered thus far provide insight into
individual application components like Lambda functions. However, in the case of
nontrivial applications with many components, we would have a hard time piecing
together the log output and metrics for a request flow that might involve an API
Gateway, two Lambda functions, and a DynamoDB table.

Fortunately, this use case is covered by AWS’s distributed tracing service, X-Ray. This
service will essentially “tag” events either coming into or generated by our application
and will keep track of those events as they flow through our application. When a tag‐
ged event triggers a Lambda function, X-Ray can then keep track of external service
calls that the Lambda function makes and add information about those calls to the
trace. If the called service is also X-Ray enabled, the tracing will continue through. In
this way, X-Ray not only traces specific events but generates a service map of all of the
components in our application and how they interact with each other.

CloudWatch ServiceLens
CloudWatch ServiceLens is a new service (at the time of writing) that integrates
CloudWatch and X-Ray to provide a comprehensive, end-to-end overview of your
application. In general, almost everything that can be done from the X-Ray console
can now also be achieved through ServiceLens.

Over time, we anticipate that this will supersede the X-Ray console, so we encourage
you to try it! This AWS blog post offers an excellent overview of ServiceLens’ capabili‐
ties and usage.

For AWS Lambda, there are two modes for X-Ray tracing. The first is PassThrough,
which means that if an event triggering a Lambda function has already been “tagged”
by X-Ray, the invocation of the Lambda function will be tracked by X-Ray. If a trig‐
gering event hasn’t been tagged, then no trace information will be recorded from
Lambda. Conversely, Active tracing proactively adds X-Ray trace IDs to all Lambda
invocations.

In the following example, we’ve enabled tracing in our API Gateway, which will tag
incoming events with an X-Ray trace ID. The Lambda function is configured in Pass
Through mode, so when it’s triggered by a tagged event from the API Gateway, it will
propagate that trace ID to downstream services. Note that PassThrough mode is
enabled by default if the Lambda’s IAM execution role has permission to send data to
the X-Ray service; otherwise, it can be configured explicitly as we’ve done here (in
which case SAM adds the appropriate permissions to the Lambda execution role).

Metrics | 175

https://oreil.ly/kRn0I
https://oreil.ly/Vr1AX
https://oreil.ly/juSOL

Here’s the Globals section from our SAM template.yaml file from Chapter 5, updated
to enabled API Gateway tracing:

Globals:
 Function:
 Runtime: java8
 MemorySize: 512
 Timeout: 25
 Environment:
 Variables:
 LOCATIONS_TABLE: !Ref LocationsTable
 Tracing: PassThrough
 Api:
 OpenApiVersion: '3.0.1'
 TracingEnabled: true

With tracing enabled, we can also add the X-Ray libraries to our pom.xml file. By
adding these libraries, we’ll get the benefit of X-Ray tracing for all of the interactions
our Lambda function has with services like DynamoDB and SNS, without having to
make any changes to our Java code.

Like the AWS SDK, X-Ray provides a bill of materials (BOM), which keeps version
numbers in sync across whichever X-Ray libraries we end up using in our project. To
use the X-Ray BOM, add it to the <dependencyManagement> section of the top-level
pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-bom</artifactId>
 <version>2.3.0</version>
 <type>pom</type>
 <scope>import</scope>
</dependency>

Now we need to add the three X-Ray libraries that will instrument our Java-based
Lambda functions:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk</artifactId>
</dependency>
<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk-instrumentor</artifactId>
</dependency>

176 | Chapter 7: Logging, Metrics, and Tracing

Figure 7-9 shows the X-Ray service map for our API from Chapter 5, showing the
API Gateway, Lambda platform, Lambda function, and DynamoDB table:

Figure 7-9. X-Ray service map

We can also view a trace for an individual event (in this case, our HTTP POST),
which traversed the API Gateway, Lambda, and DynamoDB (Figure 7-10).

Figure 7-10. X-Ray trace

Finding Errors
What happens when our Lambda function throws an error? We can investigate errors
via the X-Ray console, through both the service map and the traces interface.

Metrics | 177

First, let’s introduce an error into the WeatherEvent Lambda, by removing that
Lambda’s permission to access DynamoDB:

 WeatherEventLambda:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: target/lambda.zip
 Handler: book.api.WeatherEventLambda::handler
 # Policies:
 # — DynamoDBCrudPolicy:
 # TableName: !Ref LocationsTable
 Events:
 ApiEvents:
 Type: Api
 Properties:
 Path: /events
 Method: POST

After deploying our serverless application stack, we can send an HTTP POST event
to the /events endpoint. When the WeatherEvent Lambda attempts to write that
event to DynamoDB, it fails and throws an exception. Figure 7-11 shows what the
X-Ray service map looks like after that happens.

Figure 7-11. X-Ray service map showing an error

178 | Chapter 7: Logging, Metrics, and Tracing

And when we drill into the specific request that caused the error, we can see that our
POST request returned an HTTP 502 error (Figure 7-12).

Figure 7-12. X-Ray trace showing an error

We can then easily see the specific Java exception that caused the Lambda function to
fail by hovering on the error icon next to the portion of the trace that shows the
Lambda invocation (Figure 7-13).

Figure 7-13. X-Ray trace showing a Java exception

Metrics | 179

Clicking through will then show us the full stack trace, right from the X-Ray trace
console (Figure 7-14).

Figure 7-14. X-Ray showing a Java exception stack trace

Summary
In this chapter, we covered the variety of ways we can gain insight into exactly how
our serverless application is performing and functioning, both at the individual func‐
tion or component level and as a complete application. We showed how using struc‐
tured JSON logging enables observability and gives us the ability to surface
meaningful business metrics from our highly scalable Lambda functions without
overwhelming the CloudWatch API.

Finally, we added a few dependencies to our Maven pom.xml and unlocked fully fea‐
tured distributed tracing capabilities, which not only trace individual requests but
also automatically build out a map of all the components of our serverless application
and allow us to easily drill into errors or unexpected behavior.

With the basics now covered, in the next chapter we’ll dive into the advanced Lambda
techniques that will make our production serverless systems robust and reliable.

Exercises
1. This chapter builds on the API Gateway code from Chapter 5. Add X-Ray instru‐

mentation to the updated data pipeline code from Chapter 6, and observe how
the interactions with SNS and S3 show up in the X-Ray console.

180 | Chapter 7: Logging, Metrics, and Tracing

2. In addition to incrementing a metric as we’ve done in this chapter, CloudWatch
Logs metric filters can parse a metric value from a log line. Use this technique to
generate a CloudWatch Logs metric for the temperature in Brooklyn, NY. For
extra credit, add an alarm for when the the temperature goes below 32 degrees
Fahrenheit!

Exercises | 181

CHAPTER 8

Advanced AWS Lambda

As we start getting towards the end of the book, it’s time to learn some of the aspects
of Lambda that are important as you start to build production-ready applications—
error handling, scaling, plus a few capabilities of Lambda that we don’t use all the
time, but are there—and important—when you need them.

Error Handling
All of our examples so far have lived in the wonderful world of rainbows and uni‐
corns where no systems fail and no one makes a mistake in writing code. Of course,
back in the real world, Things Go Wrong, and any useful production application and
architecture needs to handle the times when errors occur, whether those be errors in
our code or in the systems we rely on.

Since AWS Lambda is a “platform,” it has certain constraints and behavior when it
comes to errors, and in this section we’ll dig into what kind of errors can happen, for
which contexts, and how we can handle them. As a language note, we use the words
error and exception interchangeably, without the nuance that comes between the two
terms in the Java world.

Classes of Error
When using Lambda, there are several different classes of error that can occur. The
primary ones are as follows, in order roughly of the time in which they can occur
through the processing of an event:

1. Error initializing the Lambda function (a problem loading our code, locating the
handler, or with the function signature)

2. Error parsing input into specified function parameters

183

3. Error communicating with an external downstream service (database, etc).
4. Error generated within the Lambda function (either within its code or within the

immediate environment, like an out-of-memory problem)
5. Error caused by function timeout

Another way we can break up errors is into handled errors and unhandled errors.

For example, let’s consider the case where we communicate with a downstream
microservice over HTTP, and it throws an error. In this case, we may choose to catch
the error within the Lambda function and process it there (a handled error), or we
may let the error propagate out to the environment (an unhandled error).

Alternatively, say we specified an incorrect method name in our Lambda configura‐
tion. In this case, we are unable to catch the error in the Lambda function code, so
this is always an unhandled error.

If we handle an error ourselves, within code, then Lambda really has nothing to do
with our particular error handling strategy. We can log to standard error if like, but as
we saw in Chapter 7, standard error is treated identically to standard output as far as
Lambda as concerned, and no alarms are raised if content is sent to it.

Therefore, the nuances that come with handling errors in Lambda are all about
unhandled errors—those that bubble out of our code to the Lambda runtime via an
uncaught exception or that happen externally to our code. What happens to these
errors? Interestingly, this depends significantly on the type of event source that trig‐
gers our Lambda function in the first place, as we will now examine.

The Various Behaviors of Lambda Error Processing
Lambda divides what it does with errors according to the event source that triggers
invocation. Every event source is placed into one of the event source types we listed in
Chapter 5 (Table 5-1):

• Synchronous event sources (e.g., API Gateway)
• Asynchronous event sources (e.g., S3 and SNS)
• Stream/queue event sources (e.g., Kinesis Data Streams and SQS)

Each of these categories has a different model for processing errors thrown by a
Lambda function, as follows.

184 | Chapter 8: Advanced AWS Lambda

Synchronous event sources
This is the simplest model. For Lambda functions invoked in this way, the error is
propagated back up to the caller, and no automatic retry is performed. How the error
is exposed to the upstream client depends on the precise nature of how the Lambda
function was called, so you should try forcing errors within your code to see how
such problems are exposed.

For example, if API Gateway is the event source, then errors thrown by a Lambda
function will result in an error being sent back to API Gateway. API Gateway in turn
returns a 500 HTTP response to the original requestor.

Asynchronous event sources
Since this model of invocation is asynchronous, or event oriented, there is no
upstream caller that can do anything useful with an error, so Lambda has a more
sophisticated error handling model.

First, if an error is detected in this model of invocation, then Lambda will (by default)
retry processing the event up to twice further (for a total of three attempts), with a
delay between such retries (the precise delay is not documented, but we’ll see an
example a little later).

If the Lambda function fails for all retry attempts, then the event will be posted to the
function’s error destination and/or dead letter queue if either is configured (more on
this later); otherwise, the event is discarded and lost.

Stream/queue event sources
In the absence of a configured error-handling strategy (see “Handling Kinesis and
DynamoDB Stream Errors” on page 191), if an error bubbles up to the Lambda run‐
time when processing an event from a stream/queue event source, then Lambda will
keep retrying the event until either (a) the failing event expires in the upstream
source or (b) the problem is resolved. This means that the processing of the stream or
queue is effectively blocked until the error is resolved. Note that there are particular
nuances here when using streams that are scaled to multiple shards, which we recom‐
mend you research if this applies to you.

The following documentation pages are useful when you are considering error han‐
dling with Lambda:

• Error Handling and Automatic Retries in AWS Lambda
• AWS Lambda Function Errors in Java

Error Handling | 185

https://oreil.ly/4wxMf
https://oreil.ly/ag0cu

Deep Dive into Asynchronous Event Source Errors
Asynchronous event sources are a popular use of Lambda and have a complicated
error processing model, so let’s look at this topic a little deeper by way of an example.

Retries
We start with the following code:

package book;

import com.amazonaws.services.lambda.runtime.events.S3Event;

public class S3ErroringLambda {
 public void handler(S3Event event) {
 System.out.println("Received new S3 event");
 throw new RuntimeException("This function unable to process S3 Events");
 }
}

We wire this up to an S3 bucket in the same way that we did for the BatchEvents
Lambda function in Chapter 5, and we’ll see the SAM template for that a little later.

If we upload a file to the S3 bucket attached to this function, we see Figure 8-1 in our
logs.

Notice that Lambda tries to process the S3 event three times—once at 20:44:00, then
about a minute later, and then about two minutes after that. These are the three total
attempts to process an event that Lambda promises for an asynchronous event
source.

We are able configure the number of retries that Lambda will perform—0, 1, or 2—
using a separate CloudFormation resource. For example, let’s configure Lambda not
to attempt any retries for the SingleEventLambda function from “Example: Building
a Serverless Data Pipeline” on page 111. We can add the following resource to the
application template:

 SingleEventInvokeConfig:
 Type: AWS::Lambda::EventInvokeConfig
 Properties:
 FunctionName: !Ref SingleEventLambda
 Qualifier: "$LATEST"
 MaximumRetryAttempts: 0

186 | Chapter 8: Advanced AWS Lambda

Figure 8-1. Lambda logs during S3 error

If we don’t make any further changes, Lambda won’t do anything more after all the
retries (if any) are complete—brief data about the original event will be logged, but
eventually it will be discarded. For something like S3 this isn’t too bad—we can
always list all of the objects in S3 later. But for other event sources, this might be a
problem if we can’t go and regenerate the events once the cause of the error is fixed.
There are two solutions to this problem—DLQs and destinations. DLQs have been
around longer, so we’ll describe them first, but destinations have more capabilities.

Dead letter queues
Lambda provides the capability of automatically forwarding events (for asynchronous
sources) that fail all of their retries to a dead letter queue (DLQ). This DLQ can be
either an SNS topic or an SQS queue. Once the event is in SNS or SQS, you can do

Error Handling | 187

whatever you want with it either immediately, or manually later, in the case of SQS.
For example, you may register a separate Lambda function as an SNS topic listener
that posts a copy of the failing event to an operations Slack channel for manual
processing.

DLQs can be configured along with all the other properties of a Lambda function.
For example, we can add a DLQ to our example app, and also add a DLQ processing
function, with the SAM template.

Example 8-1. SAM template with DLQ and DLQ listener

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Description: chapter8-s3-errors

Resources:
 DLQ:
 Type: AWS::SNS::Topic

 ErrorTriggeringBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub ${AWS::AccountId}-${AWS::Region}-errortrigger

 S3ErroringLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.S3ErroringLambda::handler
 CodeUri: target/lambda.zip
 DeadLetterQueue:
 Type: SNS
 TargetArn: !Ref DLQ
 Events:
 S3Event:
 Type: S3
 Properties:
 Bucket: !Ref ErrorTriggeringBucket
 Events: s3:ObjectCreated:*

 DLQProcessingLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.DLQProcessingLambda::handler
 CodeUri: target/lambda.zip
 Events:
 SnsEvent:

188 | Chapter 8: Advanced AWS Lambda

 Type: SNS
 Properties:
 Topic: !Ref DLQ

The important elements to observe here are as follows:

• We define our own SNS topic to act as a DLQ.
• Within the application function (S3ErroringLambda), we tell Lambda that we

want a DLQ for the function, that it’s of type SNS, and that DLQ messages should
be sent to the topic we created in this template.

• We also define a separate function (DLQProcessingLambda) that is triggered by
events sent to the DLQ.

Our code for DLQProcessingLambda is as follows:

package book;

import com.amazonaws.services.lambda.runtime.events.SNSEvent;

public class DLQProcessingLambda {
 public void handler(SNSEvent event) {
 event.getRecords().forEach(snsRecord ->
 System.out.println("Received DLQ event: " + snsRecord.toString())
);
 }
}

Now if we upload a file to S3, we see the following in the logs for DLQProcessing
Lambda after the final delivery attempt to S3ErroringLambda:

Received DLQ event: {sns: {messageAttributes:
 {RequestID={type: String,value: ff294606-e377-4bad-8f2a-4c5f88042656},
 ErrorCode={type: String,value: 200}, ...

The event sent to the DLQ processing function includes the full original event that
failed, allowing you to save this off and process later. It also includes the RequestID of
the original event, which allows you to search within the application Lambda func‐
tion’s log for clues as to what went wrong.

While in this example we included all of the DLQ resources within the same template
as the application itself, you may choose to use resources outside of the application
and therefore share those DLQ elements across applications.

Destinations
At the end of 2019 AWS introduced an alternative to DLQs for capturing failed
events: destinations. Destinations are actually a more powerful feature than DLQ
since you can capture both errors and successfully processed asynchronous events.

Error Handling | 189

https://oreil.ly/XT6Ds

Further, destinations support more types of target than DLQs. SNS and SQS are sup‐
ported, just as they are with DLQs, but you can also route directly to another Lambda
function (skipping the message bus part) or EventBridge.

To configure a Destination, we use the same type of AWS::Lambda::EventInvokeCon
fig resource we created earlier when configuring retry counts (see “Retries” on page
186). For example, let’s replace the DLQ in the previous example with a Destination:

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Description: chapter8-s3-errors

Resources:
 ErrorTriggeringBucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub ${AWS::AccountId}-${AWS::Region}-errortrigger

 S3ErroringLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.S3ErroringLambda::handler
 CodeUri: target/lambda.zip
 Events:
 S3Event:
 Type: S3
 Properties:
 Bucket: !Ref ErrorTriggeringBucket
 Events: s3:ObjectCreated:*
 Policies:
 — LambdaInvokePolicy:
 FunctionName: !Ref ErrorProcessingLambda

 ErrorProcessingLambda:
 Type: AWS::Serverless::Function
 Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.ErrorProcessingLambda::handler
 CodeUri: target/lambda.zip

 S3ErroringLambdaInvokeConfig:
 Type: AWS::Lambda::EventInvokeConfig
 Properties:
 FunctionName: !Ref S3ErroringLambda
 Qualifier: "$LATEST"
 DestinationConfig:
 OnFailure:
 Destination: !GetAtt ErrorProcessingLambda.Arn

190 | Chapter 8: Advanced AWS Lambda

There are a few aspects to notice from this example:

• There are no explicit queues or topics.
• The Destination at the end defines that when S3ErroringLambda fails, we want

events to be sent to ErrorProcessingLambda.
• The application function needs to be given permission to invoke the error han‐

dling function, which we enable via the Policies property on the S3Erroring
Lambda resource.

The event that is sent to ErrorProcessingLambda is not the same type as that sent to a
DLQ. At time of writing, the aws-lambda-java-events library has not been updated
to include the Destination types, and deserializing these types is tricky due to some
unfortunate naming of fields within the sent objects. Ideally by the time you read this
book, this will have been fixed!

Destinations will likely replace most usages of DLQ, and we’re also interested to see
how people use the OnSuccess version of destinations to build interesting solutions.

Handling Kinesis and DynamoDB Stream Errors
In late 2019, AWS added a number of failure-handling features to the Kinesis and
DynamoDB stream event sources. These new features make it possible to avoid “poi‐
son pill” scenarios, where a single bad record could block stream (or shard) process‐
ing for up to a week (depending on how long the stream retains records).

The failure-handling features can be configured via SAM (or CloudFormation), and
are applied when a Lambda function fails to process a batch of records from either a
Kinesis or DynamoDB stream. The new features are as follows:

Bisect on Function Error
Instead of simply retrying the entire batch of records for a failed Lambda invoca‐
tion, this feature splits the batch into two. These smaller batches are retried
separately. This approach can automatically narrow failures down to whichever
individual records are causing a problem, and those records can be dealt with via
the other error-handling features.

Maximum Record Age
This instructs the Lambda function to skip records older than a specified Maxi‐
mum Record Age (which can be from 60 seconds to 7 days).

Maximum Retry Attempts
This feature retries failed batches for a configurable number of times and then
sends information about the batch of records to the configured on-failure destina‐
tion (the next feature in this list).

Error Handling | 191

https://oreil.ly/gWKX-

Destination on Failure
This is an SNS topic or SQS queue that will receive information about failed
batches. Note that it doesn’t receive the actual failed records—those have to be
extracted from the stream before they expire.

A comprehensive error-handling approach can (and should) combine all of these fea‐
tures. For example, a failed batch of records can be split (perhaps several times) until
there is a single-record batch causing a failure. That single-record batch might be
retried 10 times or until the record is 15 minutes old, at which point the details of the
batch (with its single failed record) will be sent to an SNS topic. A separate Lambda
could be subscribed to that SNS topic, automatically retrieve the failed record from
the stream, and store it in S3 for later investigation.

Tracing Errors with X-Ray
If you are using AWS X-Ray (discussed in “Distributed Tracing” on page 175), then it
will be able to show where errors are occurring in your graph of components. For
more details, see “Finding Errors” on page 177, and the X-Ray documentation.

Error Handling Strategies
So given everything we now know about errors, and Lambda’s capabilities and behav‐
iors regarding them, how should we choose to deal with errors?

For unhandled errors, we should set up monitoring (see “Alarms” on page 173), and
when errors occur, we will likely need some kind of manual intervention. The
urgency of this will depend on the context, and also the type of the event source—
remember in the case of stream/queue event sources that processing is blocked until
the error is cleared.

For handled errors, though, we have an interesting choice. Should we process the
error and rethrow, or should we capture the error and exit the function cleanly?
Again, this will depend on the context and invocation type, but here are some
thoughts.

For synchronous event sources, you will likely want to return some kind of error to
the original caller. Typically you’ll want to do that explicitly within the Lambda code
and return a well-formatted error. A problem here, though, is that Lambda won’t
know if this is an error, so you’ll need to track this metric manually. The problem
with letting unhandled errors bubble out from synchronously called Lambdas is that
you have no control over the error returned to the upstream client.

For asynchronous event sources, what you do will largely depend on whether you
want to use a DLQ or Destination. If you do, then there’s often no harm in either let‐
ting an error bubble out or throwing a custom error and then handling the error in
whatever is processing messages from the DLQ/Destination. If you don’t use a DLQ/

192 | Chapter 8: Advanced AWS Lambda

Destination then you may want to at least log the failing input event if the error
occurs within your code.

For Kinesis and DynamoDB stream event sources, using one of the failure-handling
features described earlier allows processing to continue even if some records cause
errors. With a properly configured Destination on Failure, this is an effective error-
handling strategy, although it assumes that it is safe for your application to potentially
process records out of order. If that isn’t the case, then consider omitting the failure-
handling features and relying on the platform’s automatic retry behavior (which in
this case would block processing until the error is resolved or the records expire).

For SQS you’ll typically want to handle errors within your code, since otherwise fur‐
ther processing is blocked. An effective way to do this is to put a top-level try-catch
block in your handler function. Within this block, you can set up your own retry
strategy or log the failing event and exit the function cleanly. In certain situations,
you really will want to block further event processing until the problem causing the
error is resolved, in which case you can throw a new error from the top-level try-
catch block and use the platform’s automatic retry behavior.

Scaling
In Chapter 5 we touched on one of the most valuable aspects of Lambda—its ability
to auto-scale without any effort (see Figure 5-10). In the data pipeline example we
used this auto-scaling ability to implement a “fan-out” pattern—processing many
small events in parallel.

This is the key to Lambda’s scaling model—if all current instances of a function are
currently in use when a new event occurs, then Lambda will automatically create a
new instance, scaling out the function, to handle the new event.

Eventually, after a period of inactivity, function instances will be reaped, scaling in the
function.

From a cost perspective, Lambda guarantees that we are only charged while our func‐
tion is processing an event, so it costs the same to process one hundred Lambda
events serially in one function instance as it does to process them in parallel in one
hundred instances (subject to any extra time costs involved in cold start, which we
describe later in this chapter).

Lambda scaling has limits, of course, which we’ll examine in a moment, but first let’s
take a look at Lambda’s magical auto-scaling.

Observing Lambda Scaling
Let’s start with the following code:

Scaling | 193

package book;

public class MyLambda {
 private static final String instanceID =
 java.util.UUID.randomUUID().toString();

 public String handler(String input) {
 return "This is function instance " + instanceID;
 }
}

Static and instance members of a function handler’s class are instantiated once per
instance of a function. We discuss this further later, in the section about cold starts.
Therefore, if we invoke the previous code five times in succession, it will always
return the same value for the instanceID member.

Now let’s change the code a little, adding a sleep statement:

package book;

public class MyLambda {
 private static final String instanceID =
 java.util.UUID.randomUUID().toString();

 public String handler(String input) throws Exception {
 Thread.sleep(5000);
 return "This is function instance " + instanceID;
 }
}

Make sure if you’re deploying this code to include a Timeout configuration of at least
six seconds; otherwise, you’ll see a good example of a timeout error!

Now invoke the function several times in parallel. One way to do this is by running
the same aws lambda invoke command from multiple terminal tabs. Depending on
how quick on the draw you are for navigating terminal sessions, you’ll now see that
different container IDs are returned for different invocations.

This behavior is visible because when Lambda receives the second request to invoke
your function, the previous container that was used for the first request is still pro‐
cessing that request, so Lambda creates a new instance, automatically scaling out, to
handle the second request. This creation of a new instance happens for the third and
fourth requests too, if you’re fast enough.

This is an example of invoking the Lambda function directly, but this is the same scal‐
ing behavior we see when Lambda is invoked by most event sources, including API
Gateway, S3, or SNS, whenever one instance of a Lambda function is not sufficient to
keep up with the event load. Magical auto-scaling, without any effort!

194 | Chapter 8: Advanced AWS Lambda

Scaling Limits and Throttling
AWS is not an infinite computer, and there are limits to Lambda’s scaling. Amazon
limits the number of concurrent executions across all functions per AWS account, per
region. By default, at the time of writing, this limit is one thousand, but you can make
a support request to have this increased. Partly this limit exists because of the physical
constraints of living in a material universe and partly so that your AWS bill doesn’t
explode to astronomical proportions!

If you reach this limit, you’ll start to experience throttling, and you’ll know this
because the account-wide Throttles CloudWatch metric for your Lambda functions
will suddenly have an amount greater than zero. This makes it a great metric to set a
Cloudwatch alarm for (we talked about built-in metrics and alarms in “Metrics” on
page 170).

When your function is throttled, the behavior exhibited by AWS is similar to the
behavior that occurs when your function throws an error (which we talked about ear‐
lier in this chapter—“The Various Behaviors of Lambda Error Processing” on page
184)—in other words, it depends on the type of event source. In summary:

• For synchronous event sources (e.g., API Gateway), throttling is treated as an
error and passed back up to the caller as an HTTP status code 500 error.

• For asynchronous event sources (e.g., S3), Lambda will retry calling your Lambda
function for up to six hours, by default. This is configurable, for example, by
using the MaximumEventAgeInSeconds property of the AWS::Lambda::EventInvo
keConfig CloudFormation resource that we introduced in “Retries” on page 186.

• For stream/queue event sources (e.g., Kinesis), Lambda will block and retry until
successful or the data expires.

Stream-based sources may also have other scaling restrictions, for example, based on
the number of shards of your stream and the configured ParallelizationFactor.

Since the Lambda concurrency limit is account-wide, one particularly important
aspect to be aware of is that one Lambda function that has scaled particularly wide
can impact every other Lambda function in the same AWS account + region pair.
Because of this, it is strongly recommended that, at the very least, you use separate
AWS accounts for production and testing—deliberately DoS’ing (denial-of-servicing)
your production application because of a load test against a staging environment is a
particularly embarrassing situation to explain!

But beyond the production versus test account separation, we also recommend using
different AWS “subaccounts” within one AWS “organization” for different “services”
within your ecosystem to further isolate yourself from the problems of account-wide
limits.

Scaling | 195

https://oreil.ly/by8cO
https://oreil.ly/by8cO
https://oreil.ly/4RSoj

Burst limits
The limits and throttling mentioned refer to the total capacity available to your
Lambda functions. However, there’s another limit to be occasionally aware of—the
burst limit. This refers to how quickly (as opposed to how wide) your Lambda function
can scale. By default Lambda can scale out a function by up to 500 instances every
minute, with perhaps a small boost at the beginning. If your workload can burst faster
than this (and we’ve seen some that can), then you’ll need to be aware of burst limits
and may want to consider asking AWS to increase your burst limit.

Reserved concurrency
We just mentioned earlier that one Lambda function that has scaled particularly wide
can impact the rest of the account by using all of the available concurrency. Lambda
has a tool to help with this—the optional reserved concurrency configuration that can
be applied to a function’s configuration.

Setting a reserved concurrency value does two things:

• It guarantees that the particular function will always have up to that available
amount of concurrency, no matter what any other functions are doing in the
account.

• It limits that function to scale no wider than that amount of concurrency.

This second feature has some useful benefits that we discuss in “Solution: Manage
scaling with reserved concurrency” on page 232.

If you are using SAM to define your application’s infrastructure, you can use the
ReservedConcurrentExecutions property of the AWS::Serverless::Function

resource type to declare a reserved concurrency setting.

Thread Safety
Because of Lambda’s scaling model, we are guaranteed that at most one event will be
processed per function instance at any one time. In other words, you never need to be
concerned about multiple events being processed at the same time within a function’s
runtime, let alone within a function object instance. Therefore, unless you create any
of your own threads, Lambda programming is entirely thread safe.

Lambda and Threading
Applications spawn threads for a few reasons, typically to:

• Provide scaling by enabling an application to handle multiple requests at one
time in the same process

196 | Chapter 8: Advanced AWS Lambda

• Perform parallel computation across a number of CPU cores
• Perform nonblocking I/O against an external resource so that work can continue

while the I/O request completes

Of these uses the first—spawning threads to scale to handle multiple requests—is
unnecessary in Lambda. As we’ve just described, the Lambda platform uses a process-
based scaling model, invoking a different instance of the Lambda runtime per request.

The second use is rare in Lambda development. However, if you do need this capabil‐
ity, then Lambda will provide two execution cores if you specify more than 1792MB
for your memory size. Typically, however, if you need to perform parallel computa‐
tion, you would “fan out” processing, like we did in “Example: Building a Serverless
Data Pipeline” on page 111.

The final case is a common usage pattern, though, even in Lambda development, and
one you may well come across. As such, it’s important that you understand how
Lambda interacts with threads that are spawned from your own code.

The key is this section from the AWS Lambda Execution Context documentation:

Background processes or callbacks initiated by your Lambda function that did not
complete when the function ended resume if AWS Lambda chooses to reuse the
execution context. You should make sure any background processes or callbacks in
your code are complete before the code exits.

What this means is that you are free to create your own threads, but you should know
two things:

• When you return from your handler function, those threads will be “frozen.”
• If the Lambda runtime where you spawned threads is reused, then those threads

will continue where they left off for the previously processed event.

You’ll typically want to make sure that all spawned threads have completed processing
before you return from your handler. In the context of nonblocking external requests,
this means that you’ll want to wait until either those requests have completed, or have
timed out, before continuing processing.

As a final note on this topic, remember that many Java libraries will create threads on
your behalf, so be aware when using any libraries that may do so.

Vertical Scaling
Almost all of Lambda’s scaling capability is “horizontal”—that is, its ability to scale
wider to handle multiple events in parallel. This is in contrast to “vertical” scaling—
the ability to handle more load by increasing the computational capability of an indi‐
vidual node.

Scaling | 197

https://oreil.ly/K5Ukb

Lambda also has a rudimentary vertical scaling option, however, in its memory
configuration. We discussed this in “Memory and CPU” on page 59.

Versions and Aliases, Traffic Shifting
In your experiments with Lambda so far, you may have occasionally seen the string
"$LATEST" appear. This is a reference to a Lambda function’s version. There’s more to
versions than just $LATEST though, so let’s take a look.

Lambda Versions
Whenever we’ve deployed a new configuration, or new code, for our Lambda func‐
tions, we’ve always overridden what came before. The old function was dead, long
live the new function.

However, Lambda supports keeping those old functions around if you want it to, by
way of a capability named Lambda Function Versioning.

Without using versioning explicitly, Lambda has exactly one version of your function
at any one time. Its name is $LATEST, which you can reference explicitly; alternatively,
if you don’t specify a version (or alias, which we’ll see in a moment), you are also
referring implicitly to $LATEST.

When you create or update a function, however, you are able at the time, or some
time later, to snapshot that function to a version. The identifier of the version is a lin‐
ear counter, starting at 1. You can’t edit a version, which means that it only ever
makes sense to create a versioned snapshot from the current $LATEST version.

You invoke a version of a function when calling it explicitly by adding a :VERSION-
IDENTIFIER to its ARN, or if using the AWS CLI, you can add a --qualifier
VERSION-IDENTIFIER parameter to the aws lambda invoke command.

You can create a version using various AWS CLI commands or the web console. You
can’t create a version explicitly using SAM, but you can do so implicitly when you use
aliases, which we’ll explain next.

Lambda Aliases
While you are able to explicitly reference a numbered version of a Lambda function,
when using versions, it’s more typical to use an alias. An alias is a named pointer to a
Lambda version—either $LATEST, or a numeric, snapshotted version. An alias can be
updated at any time to point to a different version. For example, you may start off
pointing to $LATEST, but then point to a specific version when you want to add stabil‐
ity to the alias.

198 | Chapter 8: Advanced AWS Lambda

You invoke an alias of a function in precisely the same way as you do with a function
version—by specifying it in an ARN or in the --qualifier argument of the CLI. An
event source can be configured to point to a specific alias, and if the underlying alias
is updated to point to a new version, then events from the source will flow to that new
version.

Be Careful If Introspecting the Invoked Alias
One useful thing to know if you’re using aliases and versions is that a Lambda func‐
tion is able to know which alias or version was used to invoke the function, if any, by
calling the getInvokedFunctionArn() method on the handler Context object. For
example, you may use this in your code to switch between different databases for two
aliases named DEV or PROD.

However, if both your DEV alias and your PROD alias are pointing to the same function
version, then one function instance can handle events for both aliases—this is because
the Lambda platform will reuse instances for a version no matter the alias that was
involved. Because of this, it’s imperative that any alias-specific logic you may have in
your Lambda function is sensitive to this scenario. For example, you might choose to
reset connections for each event invocation, or keep multiple cross-invocation state
objects for different aliases.

When you deploy a Lambda function with SAM, you can define an alias that is auto‐
matically updated to point to the latest, published version. You do this by adding the
AutoPublishAlias property, and giving an alias name as a value.

However, there’s a much more powerful way of using aliases with SAM.

Traffic Shifting
If you use the AutoPublishAlias property of a Lambda function with SAM, all events
from an event source immediately get routed to the new version of the function. If
something goes wrong, you can manually update the alias to point to the previous
version.

Lambda and SAM also have functionality to improve this process first by giving the
opportunity to split traffic, sending some to the new version and some to the old ver‐
sion. This means that if a problem occurs, and a rollback is required, not all traffic
has been impacted by the problem.

The second improvement is that a rollback can automatically be performed if an error
is detected, where you have the opportunity to define how the error is calculated in a
couple of different ways.

Versions and Aliases, Traffic Shifting | 199

There are a number of moving pieces involved in getting this working—Lambda
aliases, Lambda alias update policies, and use of the AWS CodeDeploy service. Fortu‐
nately, SAM does a good job of wrapping all of this up for you so that you don’t need
to worry about all of the gory details. The main thing you need to do is add a
DeploymentPreference property to your Lambda function in your SAM template,
which is thoroughly documented.

A choice you need to make when using traffic shifting is how you want your traffic to
be shifted to the new alias. This breaks down into four options:

All at once
While this may sound the same at first glance as AutoPublishAlias it’s actually a
lot more powerful, since you have the opportunity to automatically roll back
deployment through “hooks,” as we’ll describe in a moment. This is a fully auto‐
mated implementation of Blue Green Deployment for Lambda.

Canary
Send a small percentage of traffic to the new version, and if it works, then send
the remaining traffic; otherwise, roll back.

Linear
Similar to Canary, but send increasing percentages of traffic to the new version,
still allowing for rollback.

Custom
Decide for yourself how you want traffic to split across the old and new aliases.

As we mentioned already, a powerful element to this feature is that automatic rollback
can be implemented via two different mechanisms—hooks and alarms.

Hook-triggered rollback is available to any of the previous schemes. You can define
pretraffic hooks and/or posttraffic hooks. These hooks are simply other Lambda func‐
tions that will run whatever logic they need to decide whether deployment has been
successful—either before any traffic is routed to the new alias or after all traffic has
been shifted.

Alarms are available with schemes that offer gradual traffic shifting. You can define
any number of CloudWatch Alarms (which we discussed in “Alarms” on page 173),
and if any of those alarms transition to their alarm state, then a rollback to the origi‐
nal alias will be performed.

For more details on Lambda traffic shifting, see the SAM documentation.

200 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/t2gIB
https://oreil.ly/EhJaS
https://oreil.ly/qowK1
https://oreil.ly/SXGLS

When (Not) to Use Versions and Aliases
Lambda’s traffic shifting capability is very powerful, and if you don’t already have a
canary release scheme upstream of your Lambda code, then it may well be useful for
you.

However, apart from traffic shifting, we try to steer away from versions and aliases.
We find that they typically add unnecessary complexity, and instead we prefer to use
alternative techniques. For example, for separating development and production ver‐
sions of code, we prefer to use different deployed stacks. For “rolling back” code, our
preference is to use a fast-running deployment pipeline, and roll back at the source
repository, triggering a new commit through the pipeline.

Very occasionally you’ll see that some event sources use, and rec‐
ommend, using Lambda aliases. One example of this is when inte‐
grating Lambda with AWS Application Load Balancer (ALB).

If you do use versions and aliases, be aware of a couple of “gotchas,” beyond the func‐
tion instance warning earlier:

• Versions do not automatically clean up after themselves, so periodically you’ll
want to delete old versions. Otherwise, you may find you hit your account-level
“function and layer storage” limit of 75GB.

• The default CloudWatch metrics views in the AWS Web Console for Lambda are
a little odd when you’re using aliases and versions. Make sure you’re being
explicit about which version(s) or alias(es) you want to view data for when you’re
using CloudWatch metrics in this way.

Cold Starts
Now we move on to the thorny subject of cold starts. Depending on who you talk to,
cold starts may be a minor footnote in the life of a Lambda developer, or it may be a
complete blocker to Lambda even being considered a valid computation platform. We
find how best to approach cold starts is somewhere between these two points—worth
understanding and treating with rigor, but not a deal-breaker in most situations.

But what are cold starts, when do they happen, what impact do they have, and how
can we mitigate them? There’s a lot of fear, uncertainty, and doubt (FUD) surround‐
ing cold starts, and we hope to remove some of that FUD for you here. Let’s dive in.

Cold Starts | 201

https://oreil.ly/4U1ZD

What Is a Cold Start?
Back in Chapter 3, we explored the chain of activity (Figure 3-1) that occurs when a
Lambda function is invoked for the first time—from starting a host Linux environ‐
ment through to calling our handler function. In between those two activities the
JVM will be started, the Lambda Java Runtime will be started, our code will be loaded,
and depending on the precise nature of our Lambda function, more may happen
besides. We collectively group this chain into something we call a cold start, and it
results in a new instance (an execution environment, a runtime, and our code) of our
Lambda function being available to process events.

An important point here is that all of this activity occurs when our Lambda function is
invoked, not before. In other words, Lambda doesn’t create function instances solely
when Lambda code is deployed—it creates them on demand.

However, cold starts are special occurrences, rather than something that happens on
every invocation, because typically Lambda won’t perform a cold start for every event
that triggers our function. This is because once our function has finished executing,
Lambda can freeze the instance and keep it around for a little while in case another
event happens soon. If an event does happen soon, then Lambda will thaw the
instance and call it with the event. For many Lambda functions, cold starts in fact
occur less than 1% of the time, but it’s still useful to know when they do occur.

When Does a Cold Start Occur?
A cold start is necessary whenever there is no existing function instance available to
process an event. This situation happens at the following times:

1. When a Lambda function’s code or configuration changes (including when the
first version of a function is deployed)

2. When all previous instances have been expired due to inactivity
3. When all previous instances have been “reaped” due to age
4. When Lambda needs to scale out because all current instances for the required

function are already processing events

Let’s look at these four types of occurrence in a little more detail.

1. When we deploy our function for the first time, Lambda will create an instance
of our function, as we’ve already seen. However, Lambda will also create a new
instance whenever a function is invoked after we deploy a new version of the
function code, or when we change the Lambda configuration of our functions.
Such configuration doesn’t just cover environment variables—it also covers run‐
time aspects like timeouts, memory settings, DLQ, etc.

202 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/YrC-W

A corollary of this is that one instance of a Lambda function is guaranteed to
have the same code and configuration no matter how many times it is called.

2. Lambda will keep function instances around for a little while in case another
event happens “soon.” The precise definition of soon is not documented, but it
can be anywhere between a few minutes and a few hours (and is not necessarily
constant). In other words, if your function processes an event, and then a minute
later another event occurs, there’s a very good chance the second event will be
processed using the same instance of your function that was used to process the
first event. However, if there’s a day or more between events, your function will
likely experience a cold start for every event. In the past, some people have used a
“ping hack” to work around this and keep their function “alive,” but in late 2019
AWS introduced Provisioned Concurrency (see “Provisioned Concurrency” on
page 208) to solve this kind of concern.

3. Even if your Lambda event is fairly active, Amazon doesn’t keep instances around
forever, even if they’re being used every few seconds. How long AWS will keep
instances around is, again, undocumented, but at time of writing we see instances
lasting five to six hours, and after that they’re killed off.

4. Finally, a cold start will occur if all current instances of a function are already
busy processing events and Lambda “scales out,” as we described this earlier in
this chapter.

Identifying Cold Starts
How can you tell when a cold start has occurred? There are many ways of doing so,
but here are a few.

First, you’ll notice a latency spike. Cold starts typically add anywhere from 100 milli‐
seconds to 10 seconds to the latency of your function, depending on the makeup of
your function. Therefore, if your function typically takes less than that, a cold start
will be easy to see in the function’s latency metrics.

Next you’ll be able to tell when a cold start has occurred due to a way that Lambda’s
logging works. As we discussed in “Lambda and CloudWatch Logs” on page 158,
when Lambda functions log, the output is captured in CloudWatch Logs. All of the
log output for one function is available in one CloudWatch Log group, but each
instance of a function will write to a separate log stream, within the log group. There‐
fore if you see the number of log streams within a log group increase then you know a
cold start has occurred.

Also, you can track cold starts yourself within code. Since the Java object encapsulat‐
ing your handler is instantiated only once per instance of the actual function runtime,
any instance member or static member initialization will happen at cold start, and

Cold Starts | 203

never again for the lifetime of the function instance. Therefore, if you add a construc‐
tor, or static initializer, to your code, it will be called only when the function is experi‐
encing a cold start. You can add explicit logging to your handler class constructor to
see a cold start occurring in your function logs. Alternatively, we saw examples of
identifying cold starts earlier in this chapter.

You can also identify cold starts using X-Ray and some third-party Lambda monitor‐
ing tools.

Impact of Cold Starts
So far we’ve described what cold starts are, when they happen, and how you can iden‐
tify them. But why should you care about cold starts?

As we just mentioned in the previous section, one way to identify a cold start is that
you’ll typically see a latency spike in your event processing when one occurs, and this
is most often why people are concerned about them. While end-to-end latency of a
small Lambda function might be 50 ms in a usual case, a cold start could add at least
200 ms to this amount, and, depending on various factors, may add seconds, or even
tens of seconds. The reasons that cold starts add latency are because of all the steps
that need to occur during creation of a function instance.

Does this mean that we always need to care about cold starts? That depends a lot on
what your Lambda function is doing.

For instance, say your function is asynchronously processing objects created in S3,
and you are ambivalent as to whether it takes minutes to process such objects. Do you
care about cold starts in this situation? Probably not. Especially when you consider
that S3 has no guaranteed subsecond delivery of events anyway.

Here’s another example of where you likely won’t care too much about cold starts: say
that you have a function that is processing messages from Kinesis, that each event
takes about 100 ms to process, and that there’s typically always enough data to keep
your Lambda functions busy. In this case, one instance of your Lambda function may
process 200,000 events before it gets “reaped.” In other words cold starts might only
affect 0.0005% of Lambda invocations. Even if a cold start added 10 seconds to your
startup latency, it’s highly likely that you’ll be OK with such an impact in this sce‐
nario, when you consider amortizing that time over the lifetime of an instance.

On the other hand, say you’re building a web application, and there’s a particular ele‐
ment that calls a Lambda function, but that function gets called in AWS only once per
hour. This might mean you’re getting a cold start every time the function is invoked.
Further, let’s say for this particular function that the cold start overhead is five sec‐
onds. Is this a problem? It might be. If so, can this overhead be reduced? Perhaps, and
we’ll talk about that in the next section.

204 | Chapter 8: Advanced AWS Lambda

Although the concern with cold starts is almost always about latency overhead, it’s
also important to note that if your function loads data from a downstream resource at
startup, it will be doing that every time a cold start occurs. You may want to consider
this when you’re thinking about the impact your Lambda functions have on down‐
stream resources, especially when all of your instances cold start after a deployment.

Mitigating Cold Starts
Cold starts will always occur with Lambda, and unless we use Provisioned Concur‐
rency (described in the next section), such cold starts will always, occasionally, affect
our function’s performance. If cold starts are causing you a problem, there are various
techniques you can use to mitigate their impact. Just make sure that they really are
causing you a problem, though—like other forms of performance optimization, you
want to make sure you do this work only if it’s truly necessary.

Reduce artifact size
Often the most effective tool in reducing cold start impact is to reduce the size of our
code artifact. We can do that in two main ways:

• Reduce the amount of our own code in the artifact to just that needed by the
Lambda function (where “amount” means both size and number of classes).

• Prune dependencies so that only libraries that our Lambda function needs are
stored in the artifact.

There are a couple of follow-on techniques here. First, create a different artifact for
each of your Lambda functions, and execute the tasks for each artifact. This was the
point of the effort we went to in Chapter 5 when we created the multimodule Maven
project.

Second, if you want to optimize library dependencies further, then consider breaking
depended-upon libraries apart to just the code you need. And perhaps even re-
implement library functionality in your own code. Obviously there’s some work nec‐
essary here to do this correctly and safely, but it might be a useful technique for you.

These techniques reduce cold starts in two ways. First, there’s simply a smaller artifact
to copy and unpack before the runtime starts. But furthermore, there’s less code for
your runtime to load and initialize.

All of these techniques are somewhat unusual in modern server-side software devel‐
opment. We’ve become used to being able to add dependencies willy-nilly to our
projects, creating multi-hundred-megabyte deployment artifacts while Maven or
NPM “download the internet.” This is typically sufficient in traditional server-side
development since disk space is cheap, networks are fast, and most importantly, we

Cold Starts | 205

don’t care too much about startup time for our servers, at least not on the order of a
few seconds here and there.

But with functions as a service (FaaS), and Lambda in particular, we care about
startup time to a much more significant extent, so we need to be more judicious with
how we build and package our software.

To prune dependencies in JVM projects, you may want to consider using the Apache
Maven Dependency plug-in, which will report on how dependencies in your project
are used, or a similar tool.

Use a more load-speed-efficient packaging format
As we called out in Chapter 4, AWS recommends the ZIP file approach to packaging
a Lambda function, over the uberjar approach, because it decreases the time Lambda
needs to unpack your deployment artifact.

Reduce startup logic
Later in this chapter, we’ll look at state in Lambda functions. Despite what you may
have heard, Lambda functions aren’t stateless; they just have an unusual model when
it comes to thinking about state.

A fairly common thing to do with Lambda functions is to create or load various
resources when the function is first invoked. We saw this to a small extent in the
examples in Chapter 5 when we initialized our serialization libraries and SDKs. How‐
ever for some functions, it makes sense to grab this idea by the horns and create a
large local cache, loaded from some other resources, in the name of more quickly
handling events during the lifetime of the instance.

Such startup logic doesn’t happen for free though, and will increase cold start time. If
you are loading initial resources at cold start, you may find that you have a trade-off
to make between how much you improve the performance of subsequent invocations
versus how long the initial invocation takes. If possible, you may want to consider if
you can gradually “warm” your function’s local cache over a series of initial
invocations.

One big cause of slow startup is the use of application frameworks
like Spring. As we discuss later (see “Lambda and Java Application
Frameworks” on page 215), we strongly discourage the use of such
frameworks with Lambda. If cold starts are causing you a problem,
and you’re using an application framework, then we recommend
your first course of action should be to investigate whether you can
remove the framework from your Lambda function.

206 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/RZYMF
https://oreil.ly/RZYMF
https://oreil.ly/_S6Bb

Language choice
Another area that can impact cold start time is the choice of language runtime. Java‐
Script, Python, and Go simply take less time to start up than the JVM or .NET run‐
time. Therefore, if you’re writing a small function that isn’t called often, and you care
about reducing cold start impact as much as possible, you may want to use either
JavaScript, Python, or Go over Java, all other development aspects being equal.

Because of this difference in startup time, we often hear people dismiss the JVM
and .NET runtimes as Lambda runtimes in general, but this is a short-sighted opin‐
ion. For instance, in the situation we described earlier with the Kinesis processing
function, what if, on average, the JVM function took 80 ms to process an event, but a
JavaScript equivalent took 120 ms? In this case, you would literally be paying twice as
much for the JavaScript version of your code to run (since billable Lambda time is
rounded up to the next 100 ms). In this situation, JavaScript may be the wrong choice
of runtime.

It’s perfectly possible to use alternative (non-Java) JVM languages within Lambda
(which we talk about more at the end of this chapter). One important aspect to
remember, though, is that typically these languages come with their own “language
runtimes” and libraries, and both of these will increase cold start time.

Finally, on the topic of language choice, it’s worth keeping some perspective when it
comes to impact of language on cold start, or event-processing, performance. The
most important factor in language choice is how effectively you can build and main‐
tain your code—the human element of software development. The cost of runtime
performance differences between Lambda language runtimes may pale in comparison
with this.

Memory and CPU
Certain aspects of your function’s configuration can also affect cold start time. One of
the primary examples of this is the MemorySize setting you choose. A larger memory
setting also gives more CPU resources, and therefore a larger memory setting may
speed up the time it takes your JVM code to JIT compile.

Until late 2019, another configuration setting of a Lambda function
that could significantly increase cold start time was whether you
were using a virtual private cloud (VPC). We discuss VPCs in gen‐
eral later in this chapter, but for now all you need to know is that if
you see any documentation anywhere warning of awful Lamdba
startup times because of VPCs, then you can sit happy in the
knowledge that this has now been resolved. For more details on
what AWS did to improve this, see this article.

Cold Starts | 207

https://oreil.ly/UnES6

Provisioned Concurrency
In late 2019 AWS announced a new Lambda feature—Provisioned Concurrency. Pro‐
visioned Concurrency (PC) allows an engineer to effectively “pre-warm” Lambda
functions, thereby removing (almost) all of the impact of cold starts. Before we
describe how to use this feature, here are some important caveats:

• PC breaks the request-based cost model of Lambda. With PC you pay whether
your functions are invoked or not. Using Lambda with PC therefore negates one
of the main benefits of serverless: costs that scale to zero (see “FaaS as Imple‐
mented by Lambda” on page 11).

• To avoid paying for costs related to peak usage, you need to manually configure
AWS Auto Scaling with PC (see this AWS blog article on how to implement this).
This is extra operational overhead on your part.

• PC adds significant deployment time overhead. In our experiments, at the time
of writing, deploying a Lambda function with a PC setting of 1 (see below as to
what this means) has an overhead of about four minutes. Using a setting of 10 or
100 is about seven minutes.

• PC requires using either versions or aliases, which we described earlier in this
chapter (see “Versions and Aliases, Traffic Shifting” on page 198). As we men‐
tioned in that section, we do not recommend using versions or aliases in most
cases, due to the extra complexity they bring.

Given these significant caveats, our recommendation is that you
only reach for Provisioned Concurrency if you absolutely need to.
As we mention in the summary of this section, we find that most
teams that are concerned initially about cold starts find that they
are of no effective consequence once they start using Lambda at
scale in production, especially if the teams follow the other advice
we give in this chapter about cold start mitigation.

Now, we’ve told you why you almost certainly shouldn’t use Provisioned Concur‐
rency, let’s talk about what it is!

PC, at its simplest, is a numerical value (n) that tells the Lambda platform to always
have at least n execution environments of your function in a “warm” state. “Warm”
here means that the execution environment has been created, and your Lambda func‐
tion handler code has been instantiated. In fact, the entire execution chain (see
Figure 3-1) is performed during warming, apart from actually calling your handler
method.

208 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/9x0D6

Since under a PC context Lambda won’t call a nonwarmed function (apart from one
caveat about scaling, which we’ll describe in a moment), this guarantees that you
won’t have any performance-impacting cold starts at all! In other words, all of your
function invocations will respond in their regular “warm” time.

Another nice aspect to PC is that it is defined solely in deployment configuration—no
change to your code is required to use it (although you may want to change your
code, as we will describe about code instantiation in a moment).

Let’s look at an example. Say that we have the following function configured in our
SAM template:

HelloWorldLambda:
Type: AWS::Serverless::Function
Properties:
 Runtime: java8
 MemorySize: 512
 Handler: book.HelloWorld::handler
 CodeUri: target/lambda.zip
 AutoPublishAlias: live
 ProvisionedConcurrencyConfig:
 ProvisionedConcurrentExecutions: 1

The new lines here are those last three. First you’ll see that we’re using an alias—PC
requires configuring a ProvisionedConcurrentExecutions value for each version or
alias that we want PC for. We can’t configure a ProvisionedConcurrentExecutions
value for $LATEST—the default version.

In this example, we then specify that we want to always have one instance of our
Lambda function pre-warmed.

When we deploy this function for the first time, Lambda will instantiate the Java class
HelloWorld, which contains our handler, even before any invocations occur. Then,
when an event is received for the function, Lambda calls this pre-warmed function.
When we redeploy the function, Lambda will keep routing requests to the old (warm)
version and start using the new version only once all the provisioned instances for
that version have been created. Again, this makes sure that function invocation isn’t
impacted by cold starts.

In other third-party Lambda documentation, you may see recom‐
mendations to use a secondary, scheduled, “ping” function that
calls the application function, to avoid cold starts. PC, with a set‐
ting of 1, in almost any case is a more effective replacement of such
a mechanism.

Now, let’s cover a few details you should be aware of.

Cold Starts | 209

First, pricing. As mentioned, PC has (at the time of writing) a different cost model to
regular “on-demand” Lambda. As described in “How Expensive Is Lambda?” on page
60, on-demand Lambda costs are based on how many requests your Lambda function
receives and how long your Lambda function is executing (duration). For PC you still
pay the request cost, and a (smaller) amount for duration, but you also pay a charge
for the entire time your function is deployed, not just when it is processing requests.

Let’s build on “How Expensive Is Lambda?” on page 60, specifically the example for
the web API. Our cost estimate for just on-demand Lambda was $21.60/month. How
much does it cost using Provisioned Concurrency?

Again, we’ll assume 512-MB RAM, less than 100 ms to process a request and 864,000
requests/day. Let’s start with using a PC value of 10, since that’s what we expect to
peak up to. In this scenario, our Lambda costs are as follows:

• The request cost is unchanged at $5.18/month.
• The duration cost is 0.1 × 864000 × 0.5 × $0.000009722 = $0.42/day, or $12.60/

month.
• The Provisioned Concurrency cost is 10 × 0.000004167 × 0.5 × 86400 = $1.80/

day, or $54/month.

The total cost therefore has increased by a little over three times from approximately
$22/month to $72/month. Yikes!

Now, this is likely a “worst case” since we are setting PC at peak. One option we have
is to manually configure auto-scaling for PC. This is described on the AWS blog
introducing PC. Let’s say that doing this means our PC configuration averages around
2. In this case, our total costs are $29/month. This is still 30% more expensive than
on-demand, plus now we have the added complexity of managing PC auto-scaling.

There are some scenarios where if you have a very consistent usage model, then PC
works out cheaper than on-demand, but in most cases you should expect to pay a sig‐
nificant overhead to use PC.

Another issue related to costs is that you probably want to have different configura‐
tion for development versus production to avoid paying “always-on” costs for
development environments. You can do this using CloudFormation techniques, but
again this is extra mental overhead.

That’s enough about costs. Let’s move on to a different subject!

What happens if at a certain point in time you have more invocations than your PC
configuration? As we looked at earlier in this chapter, we know that Lambda always
increases the number of active execution environments to satisfy load. For example,
say that Lambda needs to use an 11th execution environment for your function, but
you have a PC setting of 10—what happens now? In this case, Lambda will spin up a

210 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/8p8K6
https://oreil.ly/8p8K6

new execution environment in the “traditional” on-demand model to cover the extra
load. You will be charged for this extra capacity in the usual on-demand fashion, but
be warned—the first event using that new extra environment will also incur cold-start
latency in the normal way!

Finally, a quick note on making the most of PC. AWS has been doing a great job over
the last few years in reducing the platform overhead of cold starts, so the main point
of PC is mostly to mitigate application overhead—the time taken to instantiate your
language runtime, code, and handler class. This last element—class instantiation—is
important since your handler class constructor is called during pre-warming. There‐
fore, you’ll want to move as much application setup as possible to class and object
instantiation time and not do this in the handler method itself. We’ve used this pat‐
tern throughout the book, but it’s especially important if you’re using PC.

Given all of our dire warnings about using PC, when do we recommend using it?
Here are a few scenarios where we can imagine PC being useful:

• When you have a Lambda function called very infrequently (say once per hour,
or longer) that you always want to return quickly (subsecond), and you are will‐
ing to pay the cost overhead.

• If your application has extreme “burst” scale scenarios (see “Burst limits” on page
196) that Lambda can’t handle by default, then you can pre-warm sufficient
capacity.

• If your function itself has significant code-level cold-start time (e.g., several sec‐
onds) that is not sufficient for application performance, and you have no other
way to mitigate this. This is typical if you’re using a heavyweight application
framework within your Lambda code.

Cold Start Summary
Cold starts might be nothing you need to ever spend too much effort on, depending
on what you use Lambda for, but it’s certainly a topic that you should be aware of,
since how cold starts are mitigated often runs counter to how we typically build and
package systems.

We mentioned FUD around cold starts earlier, and cold starts are also often “thrown
under the bus” for latency problems that turn out to actually have nothing to do with
cold starts at all. Remember to perform proper latency analysis if you’re having
latency concerns—make sure your actual problem isn’t, for example, how your code
is interacting with a downstream system.

Also make sure to continue to test latency over time, especially if you rule out a cer‐
tain use of Lambda because of cold starts. AWS has made, and continues to make,
significant improvements in this part of the Lambda platform.

Cold Starts | 211

In our experience, cold starts concern teams when they first use Lambda, especially
under spiky development loads, but once they see how Lambda performs under pro‐
duction loads, they often never worry about cold starts again.

State
Almost any application needs to consider state. Such state may be persistent—in other
words, it captures data that is required to fulfill subsequent requests. Alternatively, it
may be cached state—a copy of data that is used to improve performance, where the
persisted version is stored elsewhere.

Despite how it’s occasionally perceived, Lambda is not stateless—data can be stored in
memory and on disk both during and across requests.

In-memory state is available via a handler method’s object and class members—any
data loaded into such members is available the next time that function instance is
invoked again, and a Lambda function can have up to a total of 3GB RAM (some of
that will be used by the Lambda runtime).

Lambda function instances also have access to 512MB of local disk storage in /tmp.
While this state is not automatically shared across function instances, it will, again, be
available for subsequent invocations of the same function instance.

However, the nature of Lambda’s runtime model significantly impacts how such state
can be used.

Persistent Application State
The way that Lambda creates function instances, especially in the way that it scales,
has significant implications on architecture. For example, we have absolutely no guar‐
antee that sequential requests, for the same upstream client, will be handled by the
same function instance. There is no “client affinity” for Lambda functions.

This means that we cannot assume that any state that was available locally (in-
memory, or on local disk) in a Lambda function for one request will be available for a
subsequent request. This is true whether our function scales or not—scaling just
underlines the point.

Therefore, all persistent application state that we want to keep across Lambda func‐
tion invocations must be externalized. In other words, this means that any state we
want to keep beyond an individual invocation has to be either stored downstream of
our Lambda function—in a database, external file storage, or other downstream ser‐
vice—or it must be returned to the caller in the case of a synchronously called
function.

212 | Chapter 8: Advanced AWS Lambda

This might sound like a massive restriction, but in fact this way of building server-
side software is not new. Many people have been espousing the virtues of the 12-
factor architecture for years, and this aspect of externalizing state is expressed within
the sixth factor of that paradigm.

That being said, this definitely is a constraint of Lambda, and may require you to sig‐
nificantly re-architect existing applications that you want to move to Lambda. It may
also mean that some applications that require particularly low latency to state (for
example, gaming servers) are not good candidate applications for Lambda, nor are
those that require a large data set in memory in order to perform adequately.

There are various common services that people use to externalize their application
state with Lambda:

DynamoDB
DynamoDB is the NoSQL database of AWS. We used DynamoDB in the API
example in “Example: Building a Serverless API” on page 92. The benefits of
DynamoDB are that it is fast, fairly easy to operate and configure, and has very
similar scaling properties to Lambda. The chief drawback to DynamoDB is that
modeling data can get tricky.

RDS
AWS has various relational databases that it groups in the Relational/SQL Data‐
base Service (RDS) family, and all of these are available for use from Lambda.
One fairly new option within this family is Aurora Serverless—an auto-scaling
version of Amazon’s own Aurora MySQL and Postgres engines, made for server‐
less applications. The benefits of using a SQL database over a NoSQL one are
decades of experience building such applications. The drawbacks, versus Dyna‐
moDB at least, typically are higher latencies and more operational overhead
(with nonserverless RDS).

S3
Simple Storage Service (S3)—which we’ve used several times throughout this
book—can be used as a data store for Lambda. It’s simple to use, but isn’t particu‐
larly low latency, and also has limited querying capabilities in comparison with
one of the database services, unless you also use Amazon Athena.

ElastiCache
AWS offers a managed version of the Redis persistent cache application as part of
its ElastiCache family. Of these four options, ElastiCache typically offers the fast‐
est performance, but since it isn’t a true serverless service, it does require some
operational overhead.

Custom downstream service
Alternatively, you may choose to implement your own in-memory persistence in
a downstream service, built using traditional designs.

State | 213

https://12factor.net/
https://12factor.net/
https://oreil.ly/2Kc4E
https://aws.amazon.com/athena
https://aws.amazon.com/elasticache

AWS continues to make interesting developments in this area, and we recommend
that you investigate all recently announced advances whenever you pick a persistence
solution.

Caching
While we can’t rely on Lambda’s state capabilities for persistent application state, we
absolutely can use them for caching data that is also stored elsewhere. Put another
way, while it’s true that we have no guarantee that one Lambda function instance will
be called multiple times, we do know that it probably will be, depending on invocation
frequency. Because of this, cache state is a candidate for Lambda’s local storage.

We can use either or both of Lambda’s in-memory or on-disk locations for cached
data. For example, say that we always need a set of fairly up-to-date reference data
from a downstream service to process an event, but “fairly up-to-date” is on order of
“valid within the last day.” In this case, we can load the reference data once, for the
first invocation of the function instance, and then store that data locally in a static or
instance member variable. Remember—our handler function instance object will be
instantiated only once per runtime environment.

As another example, say that we want to call an external program or library as part of
our execution—Lambda gives us a full Linux environment with which to do this.
That program/library may be too big to fit in either a Lambda code artifact (which is
restricted to at most 250MB when uncompressed) or even a Lambda layer (see later
in this chapter about layers). Instead, we can copy the external code from S3 to /tmp
the first time we need it for a function instance, and then for subsequent requests for
that instance the code will be available locally already.

Both of these examples relate to state that consists of chunks of data—application
data, or libraries and executables. Another form of state in our Lambda applications
are the runtime structures of our code itself, including those that represent connec‐
tions to external services. These runtime structures either may take some amount of
time to create when the function is invoked, or in the case of connections to services
may take time to initialize, e.g., for authentication procedures. In either case, in
Lambda, we will very often store these structures in program elements that live
longer than the call to the method itself—in Java this means storing them in instance
or static members.

We showed examples of this earlier in the book. For example in Chapter 5 at
Example 5-3 we store the following in instance members:

• The ObjectMapper instance, because that is a program structure that takes some
time to instantiate

• The DynamoDB client, which is a connection to the external DynamoDB service

214 | Chapter 8: Advanced AWS Lambda

While we typically use this form of object caching for performance reasons in certain
situations, it can also significantly improve the cost effectiveness of our overall system
—see “Lambda Runtime Model and Cost Impact on Downstream Systems” on page
234 for more detail on this.

Sometimes Lambda’s own state capabilities are insufficient—for example, our total
cache state might be too large to fit in memory, too slow to load up during a cold
start, or update frequently (updating a locally cached version in a Lambda function is
a tricky thing to manage, although it can be done). In such a case, you may choose to
use one of the persistence services mentioned in the previous section as a caching
solution.

Lambda and Java Application Frameworks
So far in this book most of our guidance has been how to use AWS
Lambda, with a few warnings along the way. We’re now going to
take a brief tangent and talk about something we don’t recommend
doing.

Over the last two decades it’s been very common to build server-side Java applications
using some kind of container and/or framework. Back in the early 2000s, “Java Enter‐
prise Edition” (J2EE) was all the rage, with application servers like WebLogic, Web‐
Sphere, and JBoss allowing you to build your apps with the Enterprise JavaBeans
(EJB) or Servlet framework. For those of you not around then we can promise you,
from personal experience, that this was not a whole bunch of fun.

People realized that these big servers were often unwieldy and/or expensive, and so
they have been largely replaced by more “lightweight” equivalents, of which Spring is
the most common. Spring itself has evolved along the way, of course, into Spring
Boot, and people also use various Java web frameworks to build applications.

Because there is so much institutional knowledge in our industry on how to build
“Java applications” with these tools, there’s a very large temptation to carry on using
them, and just port the runtime from a running process to a Lambda function. AWS
has even put significant effort into supporting precisely this way of thinking, via the
serverless Java Container project.

While we admire AWS’s desire to “meet people where they are” in this way, we
strongly discourage the use of most Java frameworks when building applications with
Lambda, for the following reasons.

First, building a complete app in a single Lambda function misses the fundamental
point of Lambda. Lambda functions are meant to be small, individual, short-lived
functions that are event-driven, and programmed to accept a specific input event.

Lambda and Java Application Frameworks | 215

https://oreil.ly/T_ruW

“Java applications,” on the other hand, are literally servers that have a lifecycle and
state, and are typically designed to handle multiple types of request. If you’re building
miniservers, you’re not thinking serverlessly.

Next, most application servers assume that there is some amount of shared state from
request to request. While it’s possible not to work this way, it’s not a natural-feeling
way of working in these environments.

Another reason we think this is a bad idea is that it detracts from the value provided
by other AWS serverless services. For example, with the AWS project mentioned ear‐
lier, API Gateway is used, but in a “full proxy” mode. Here’s a snippet from the SAM
template from the Spring Boot example:

Resources:
 PetStoreFunction:
 Type: AWS::Serverless::Function
 Properties:
 Events:
 GetResource:
 Type: Api
 Properties:
 Path: /{proxy+}
 Method: any

Using API Gateway in this way means that all requests, no matter the path, are sent to
one Lambda function, and routing behavior needs to be implemented in the Lambda
function. While Spring Boot can do that, (a) API Gateway will give you that function‐
ality for free, and (b) it clutters up your Java code to keep it in the Lambda function.

Earlier in the book we mentioned that on the whole we’re wary of using too many
API Gateway features; for example, see the discussion of request and response map‐
ping in “API Gateway Proxy Events” on page 96. However, we feel that removing
routing is typically a step too far down the line of abstracting out the use of API
Gateway.

As we discussed earlier on in the section on cold starts, application frameworks typi‐
cally slow down function initialization. While some people may argue that this is a
good case to use Provisioned Concurrency, we would counter that this is a Band-Aid
and not a solution.

Finally, container and framework-based apps tend to have large distributable artifacts
—partly because of the number of libraries depended upon, and partly, again, because
such apps usually implement a number of functions. Throughout this book we’ve
been attempting to reduce the size of artifacts by minimizing dependencies, and
dividing up applications into multiple distributable elements, all in the name of keep‐
ing our Lambda functions clean and lean. Using an application framework runs
counter to this way of thinking.

216 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/KZYj3

In summary, building Java Lambda applications in this way is really a “square peg and
round hole problem.” Yes, you can make it work, but it’s inefficient, and you won’t get
all the benefits of Lambda if you work in this way. There’s a real danger of hitting a
“local maximum” of value from Lambda, and assuming that there are no further
upsides.

So if we don’t recommend using these frameworks, how do we suggest you use your
hard-earned knowledge and skills?

Typically we find that programmers switching to “pure” Lambda development don’t
take too long to shake off the frameworks they’ve been used to. There’s a certain
“lightness” that comes with just writing a handler function. Also, there’s nothing
wrong with bringing along old Java code to the party, as long as it’s not too ingrained
in an application framework. If you can extract your domain logic into something
that just expresses your business needs, then you’re on the right path.

Also, it’s still fine to use an ethos of “dependency injection” (DI), which the frame‐
works often provide. You may choose to “hand roll” such DI (our preference), as
you’ve seen in some of the examples (see “Add Constructors” on page 140). Alterna‐
tively, you can try to use a framework to provide just dependency injection, without
the other features they often come with.

Virtual Private Clouds
In all of our examples so far any external resources called by a Lambda function have
been secured via HTTPS/"layer 7” authentication. For example, when we called
DynamoDB in the serverless API example in Example 5-3, that connection was
secured solely by credentials that were passed to DynamoDB from our Lambda
function.

In other words, DynamoDB is not a “firewalled” service—it sits open to the internet,
and any machine anywhere else on the internet can connect to it.

While this brave new world of “firewall-less” computing is gathering pace, there are
still many situations where a Lambda function is going to need to connect to a
resource that is shielded behind some kind of IP-address limited protection. A com‐
mon way of doing that with AWS is to use a VPC.

VPCs are a lower-level piece of infrastructure than anything else we’ve discussed so
far in the book. They require understanding things like IP addresses, elastic network
interfaces (ENIs), CIDR blocks, and security groups, and also expose the fact to us
that AWS regions are made up of multiple AZs. In other words, “Here be dragons!”

Lambda functions can be configured to be able to access a VPC. Three typical reasons
a Lambda function would need this are:

Virtual Private Clouds | 217

• To be able to access an RDS SQL database (see Figure 8-2)
• To be able to access ElastiCache
• To be able to call an internal microservice running on a container cluster using

IP/VPC-based security

Figure 8-2. Lambda attached to VPC to access RDS database

You should configure Lambda to use a VPC only if it actually needs it. Adding a VPC
is not “free”—it impacts other systems, it changes the behavior of how Lambda
interacts with other services, and it adds complexity to your configuration and
architecture.

Further, we recommend you configure Lambda to use a VPC only if either (a) you
understand VPCs and the implications of doing so or (b) you’ve discussed this
requirement with another team in your organization that understands this.

In the rest of this section, we assume that you understand, broadly, VPCs in general,
but not necessarily any specifics with Lambda and VPCs. As such, there are certain
VPC terms, like ENIs and security groups, which we’ll mention but not explain.

218 | Chapter 8: Advanced AWS Lambda

Architectural Concerns of Using Lambda with a VPCs
Before you even enable Lambda to use a VPC, there are a few things to be aware of
that might change your mind!

First, each subnet you specify in your VPC configuration is specific to an AZ. One of
the nice things about Lambda is that we’ve completely ignored AZs until this point. If
you’re using Lambda + VPC, you need to make sure you configure enough subnets,
across enough AZs, to allow you to continue to have the level of high availability
(HA) you need.

Second, when a Lambda function is configured to use a VPC, then all network traffic
from that Lambda will be routed through the VPC. That means if your Lambda func‐
tion is using non-VPC AWS resources (like S3) or is using resources external to AWS,
then you’ll need to consider network routing for those resources, just like you would
any other service within the VPC. For instance, for S3 you’ll likely want to set up a
VPC endpoint, and for external services you’ll need to make sure your NAT Gateway
is correctly configured.

Configuring Lambda to Use a VPC
You’ve read all the warnings, and you’ve figured out which subnets and security
groups to use. How do you now actually configure your Lambda to use a VPC?

Fortunately, SAM comes to the rescue, and makes it fairly simple. By examining the
example provided by AWS (slightly trimmed), we can see the additions that you need
to make to each Lambda function:

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Parameters:
 SecurityGroupIds:
 Type: List<AWS::EC2::SecurityGroup::Id>
 Description: Security Group IDs that Lambda will use
 VpcSubnetIds:
 Type: List<AWS::EC2::Subnet::Id>
 Description: VPC Subnet IDs that Lambda will use (min 2 for HA)

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 Policies:
 — VPCAccessPolicy: {}
 VpcConfig:
 SecurityGroupIds: !Ref SecurityGroupIds
 SubnetIds: !Ref VpcSubnetIds

Virtual Private Clouds | 219

https://oreil.ly/388NC

In summary, you need to:

• Add privileges for the Lambda function to attach to the VPC (e.g., by using VPC
AccessPolicy)

• Add VPC configuration, with a list of security group IDs, and subnet IDs

And that’s it! This particular example assumes that you’ll use CloudFormation
parameters to pass in the actual security group and subnet IDs at deployment time,
but you should feel free to hardcode them in your template too.

Alternatives
Say that all of our dire warnings were enough to put you off of using VPCs with
Lambda. What should you do instead? Here are a few approaches.

The first is to use roughly equivalent services that don’t require a VPC. For example,
if you were going to use a VPC to access an RDS database, consider using Dyna‐
moDB instead (although we do acknowledge that DynamoDB is not a relational data‐
base!). Or think about using Aurora serverless, and its Data API.

Next is to re-architect your solution. For example, instead of calling a downstream
resource directly, would it be possible to use a message bus as an intermediary?

Third—if what you needed to connect to was an internal service, then consider giving
that internal service a “layer 7” authentication boundary. One way to do this is to add
an API Gateway to your internal service (or update an existing API Gateway if it
already has one), and then use API Gateway’s IAM/Sigv4 authentication scheme.

Finally, if you can’t modify your service, you could do something similar to the previ‐
ous idea, but in this case use API Gateway as a proxy to your downstream service.

Of course, there is one more option—wait and see what AWS introduces next! For
example, the Data API for serverless Aurora that we mentioned is fairly new, and sig‐
nals that there may be more functionality coming that will help Lambda developers
avoid the perils of VPCs!

Layers and Runtimes
If you take a look at one of your Lambda functions in the AWS Web Console, you’ll
now know what almost everything on there is for. Roles, environment variables,
memory, VPCs, DLQs, reserved concurrency, and more. However, for the observant
among you, you’ll see that there’s something towards the top of the page that is an
omission so far: layers. To close out this chapter, we’ll explain what layers are, why
you (as a Java developer) probably won’t care about them too much, and how they
relate to another capability known as custom runtimes.

220 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/0xs3v
https://oreil.ly/0xs3v
https://oreil.ly/uf2KE
https://oreil.ly/RJVSO
https://oreil.ly/OKiid

What Are Layers?
As you know by now, typically when you deploy a new version of a Lambda function,
you package up the code and all of its dependencies into a ZIP file, and upload that
file to the Lambda service. As your dependencies get bigger, however, this artifact gets
bigger, and deployment slows down. Wouldn’t it be nice to be able to speed this up?

This is where Lambda layers come in. A layer is part of the deployed resources of
your Lambda function, which is deployed separately from the function itself. If your
layer stays constant, then when you deploy your Lambda function, you only need to
deploy the changes to your code that aren’t within the layer.

Here’s an example. Say that you are implementing the photo processing example from
way back in Chapter 1 (“File processing” on page 15), and say that the actual part of
your Lambda function that performs the image manipulation uses a third-party tool
like ImageMagick.

Now, ImageMagick is probably a dependency that changes rarely. With Lambda lay‐
ers you can define a layer (which is just a ZIP artifact containing any content that you
want) that contains the ImageMagick tool, and then refer to that layer with your code
in the photo processing Lambda. Now when you update your Lambda function,
you’ll only need to upload your own code, not your code and ImageMagick.

ImageMagick is often used by calling an external process from your
application, rather than via a library API call. It’s perfectly OK to
call an external process like this from within a Lambda function—
the Lambda runtime is a full Linux environment.

Another useful aspect to layers is that you can share layers across Lambda functions,
and other AWS accounts—layers can in fact be shared publicly.

When to Use, and Not Use, Layers
When layers were announced, certain parts of the Lambda-using world were very
excited, since they saw layers as a universal dependency system for Lambda functions.
This was especially true for people using the Python language, since Python’s depend‐
ency management tools can be a little tricky for some people (e.g., your authors!) to
wrap their heads around. The Java ecosystem however, for all its faults, has a very
strong story to tell around dependency management.

We feel that there are some specific times when layers are useful. However, there are
also a number of concerns that we have about embracing them wholeheartedly, for
example:

Layers and Runtimes | 221

https://imagemagick.org/index.php

• Since layers are combined with your Lambda function after you’ve uploaded the
function, it’s not necessarily true that the version of a dependency you’ve used at
test time (before deployment) is the same as that which is used with the deployed
version. This, to us, is a (typically) unnecessary headache of coordination that
needs to be managed.

• Lambda functions are limited to the number of layers that can be used (five), and
so if you have more than five dependencies, you’re going to need to use a local
deployment tool anyway, so why add the extra complexity of layers?

• Layers don’t particularly provide any functional benefit—they are a deployment
optimization tool (we’ll talk about cross-cutting behavior as a caveat for this).

• Particularly for developing Lambda in Java—Java does a pretty good job of defin‐
ing its “own world.” For example, it’s usual to only depend on third-party code in
Java that itself runs in the JVM, as opposed to calling out to system libraries or
executables. Given this, and the ubiquity of Maven dependencies, it’s easy to have
one consolidated dependency management system with a Java application that
doesn’t include the use of Lambda layers.

• Some people like the fact that a layer can be manually updated for a function
without having to deploy a new version of the function itself. We personally
believe strongly that apart from extenuating circumstances, the best way to
deploy any changes to production is through an automated continuous delivery
process, and therefore the difference between changing an application library
dependency versus a configured template layer dependency should almost always
be moot.

We’d be remiss if we didn’t also point out the places that layers can be useful.

First, if part of what a Lambda function executes is unrelated to the application, but
more related to an organization’s cross-cutting technical platform, then using layers
as an alternative deployment path can be useful. For example, say that there is a secu‐
rity process that needs to be run, but as far as application developers are concerned,
it’s just a “fire-and-forget” call. In this case, publishing that code in a layer, and being
able to query all the Lambda function configurations across an organization and
making sure they’re using the correct version of the layer, aids in organizational
governance.

Another place where layers are useful is where a dependency is a large, system binary
that rarely changes. In this case, the extra complexity of using layers may be worth the
value of improved deployment speed, especially if the number of deployments of
functions using that layer is on the order of hundreds per day or more.

A helpful example of this second case is where a Lambda function is using a custom
runtime, which we’ll explore now.

222 | Chapter 8: Advanced AWS Lambda

Custom Runtimes
Throughout this book we have been using the Java Lambda runtime, apart from our
very first example, which used the Node 10 runtime. AWS offers a number of
runtimes associated with different programming languages, and this list is frequently
updated.

However, what happens if you want to use a language or runtime that AWS don’t sup‐
port? For example, what if you have some Cobol code you want to run in a Lambda
function? Or, perhaps more likely, what if you want to run a highly customized JVM,
rather than the one AWS provides?

The answer here is to use a custom runtime. A custom runtime is a Linux process that
runs in a Lambda execution environment, and that can process Lambda events. There
is a specific execution model that a custom runtime needs to fulfill, but the basic idea
is that when the runtime instance is started by the Lambda platform, it is configured
with an instance-specific URL that it can query for the next event to process. In other
words, custom runtimes use a polling architecture.

As a Java developer, it will typically be rare that you want or need to use a custom
runtime for production usages. Two reasons for this are as follows:

• The custom runtime code itself needs to be part of your function’s deployed
assets. While you can package the runtime in a Lambda layer to avoid uploading
it on every deployment, it will still be using up some of your 250MB total
unpacked deployment package size limit. Most JVMs are going to use a consider‐
able part of that, if you want to ship a custom JVM, and so this will cut into the
space available for your application code.

• You will need to reimplement in your custom runtime a lot of what AWS has
already implemented in its standard runtimes, such as deserialization/serializa‐
tion of events and responses, error handling, and more.

That being said, for organizations of a certain size, building a custom runtime that
handles various organizational-platform-related tasks might make actual Lambda
development even more effective, but we would suggest a through analysis before
jumping in!

Other JVM Languages and Lambda
This book has been focussed on the Java language, running on the Java runtime.
However, there are many other languages that can run on the JVM—Scala, Clojure,
Kotlin, and more. Since Lambda only specifies the Java runtime, it’s perfectly reason‐
able to use alternative languages. In fact, we know of people using Scala and Lambda
for significant load systems (thousands of concurrent executions).

Layers and Runtimes | 223

https://oreil.ly/uLMNz
https://oreil.ly/uLMNz
https://oreil.ly/onv6J
https://oreil.ly/02nUm
https://oreil.ly/02nUm

From the Java Lambda runtime’s point of view, all it cares is that you configure it with
a valid handler method, so the way that most people use alternative JVM languages
with Lambda is to use the Java runtime, and then an “interop” hook into their han‐
dler. Here’s an example using Kotlin and Groovy on the AWS blog. Depending on
your specific language, the POJO serialization provided by the Java runtime may or
may not play nicely, but alternatively you can use the InputStream/OutputStream
handler signature to get the raw bytes of a JSON event.

One drawback to using an alternative JVM language, especially one like Scala, is that
it adds to your cold start time because the JVM has to JIT compile the language
classes, as well as your application classes. But the general rules about cold starts that
we discussed earlier in this chapter still hold, especially if your functions are high
throughput.

An alternative to using the AWS Java runtime is to use a custom runtime to support
your JVM language, but typically that isn’t necessary, assuming the standard Java run‐
time can support your alternative JVM language.

Summary
In this chapter, we took a deep dive into some advanced aspects of Lambda. Some of
these behaviors and configurations will be crucial as you deploy your serverless appli‐
cations to production.

You learned about the following:

• The various different error handling strategies of Lambda and how you may
choose to configure and program your functions to process errors

• The liberating way that Lambda scales without any effort on your part, how you
can control that scaling, and what this behavior means in the context of multi-
threaded programming

• What Lambda versions and aliases are, and how to use them with a “traffic shift‐
ing” approach for releasing new features

• What cold starts are, when they occur, whether you should be concerned about
them, and how to mitigate them if you need to reduce their impact in your
applications

• How to consider persistent and cache state in Lambda development
• How to use Lambda with AWS VPCs
• What Lambda layers and custom runtimes are, and when to think about using

them

224 | Chapter 8: Advanced AWS Lambda

https://oreil.ly/4qUvM

In the next chapter, we carry on rounding out our discussion of the more advanced
aspects of Lambda, but this time in the context of how Lambda interacts with other
services.

Exercises
1. Update WeatherQueryLambda in “Example: Building a Serverless API” on page 92

to throw an exception. What behavior do you see when you try to call the API?
2. If you implemented the exercise from Chapter 5 to use an SQS queue, then

update the Lambda function that reads from SQS to throw an exception. Does
Lambda’s retry behavior do what you’d expect?

3. Investigate what happens with background threads and Lambda—start with the
“Hello World” example from Chapter 2 (see “Lambda Hello World (the Proper
Way)” on page 34) and within the handler use a ScheduledExecutorService and
its scheduleAtFixedRate method to repeatedly log the event that you received.
What happens? Try using some Thread.sleep statements too.

4. Update “Example: Building a Serverless API” on page 92 to use traffic shifting,
starting with the Linear10PercentEvery10Minutes deployment preference.

5. Extended task: If you program on the JVM with a different language—perhaps
Clojure, Kotlin, or Scala—try building a Lambda function in one of those
languages.

Exercises | 225

https://oreil.ly/6cz67

CHAPTER 9

Advanced Serverless Architecture

In Chapter 8 we looked at some more advanced aspects of Lambda that are important
once you start thinking about productionizing your applications. In this chapter, we
continue that theme, looking more broadly at the impact of Lambda on architecture.

Serverless Architecture “Gotchas”
First we look at areas of serverless architecture that might cause you problems if you
don’t consider them, and we offer different solutions for addressing these problems
depending on your situation.

At-Least-Once Delivery
The Lambda platform guarantees that when an upstream event source triggers a
Lambda function, or if another application explicitly calls the Lambda invoke API
call, then the corresponding Lambda function will be called. But one thing the plat‐
form doesn’t guarantee is how many times the function will be called: “Occasionally,
your function may receive the same event multiple times, even if no error occurs.”
This is known as “at-least-once delivery,” and it exists due to the fact that the Lambda
platform is a distributed system.

The vast majority of the time a Lambda function will be called only once per event.
But sometimes, very occasionally (far less than 1% of the time), a Lambda function
will be called multiple times. Why is this a problem? And how do you deal with this
behavior? Let’s take a look.

Example: Lambda “cron jobs”
If you’ve been developing software in industry long enough, you’ve probably come
across a server host that runs multiple “cron jobs”—scheduled tasks that run perhaps

227

https://oreil.ly/p1OWt
https://oreil.ly/p1OWt

every hour or every day. Because these tasks typically don’t run all the time it would
be inefficient to run only one on each host, so it’s very typical to run multiple types of
job on just one host. This is more efficient, but can cause operational headaches—
dependency clashes, ownership uncertainties, security concerns, etc.

You can implement many kinds of activity that would otherwise be performed in a
cron job as a Lambda function. To get the schedule behavior of cron, you can use a
CloudWatch Scheduled Event as a trigger. SAM gives you a concise syntax to specify
this as a trigger for a function, and you can even use cron syntax to specify a schedule
expression. There are various benefits to using Lambda as a cron platform—includ‐
ing improving all the operational headaches from the previous paragraph.

The chief drawbacks to using Lambda to implement a cron task are if the function
takes longer than 15 minutes to run (Lambda’s maximum timeout) or if it needs more
than 3GB memory. In either of these situations, if you can’t break up your task into
smaller chunks, then you may want to look at Step Functions and/or Fargate instead.

But there is one other drawback to using Lambda: very, very, occasionally your cron
job may run more than once at or near its scheduled time. Often this won’t be a prob‐
lem worth considering—maybe your task is a cleanup job where performing the same
cleanup twice is slightly inefficient but functionally correct. Other times, though, this
might be a big problem—what if your task is calculating mortgage interest for the
month—you wouldn’t want to charge that twice to a customer.

This at-least-once delivery characteristic of Lambda applies to all event sources and
invocations, not just scheduled events. Fortunately, there are a number of ways to
tackle this problem.

Solution: Build an idempotent system
The first, and typically the best, solution to this concern is to build an idempotent
system. We say that this is “typically the best” solution because it embraces the idea
that we are building distributed systems when we use Lambda. Instead of working
around, or ignoring, the attributes of distributed systems, we actively design to work
with them.

A system is idempotent when a specific operation can be applied one or more times,
and have the same effect no matter how many times it was applied. Idempotence is a
very common requirement when considering any distributed architecture, let alone a
serverless one.

An example of an idempotent operation is uploading a file to S3 (ignoring any possi‐
ble triggers!). Whether you upload the same file to the same location once or ten
times, the net result is that the correct bytes will be stored in S3 at the expected key.

We can build an idempotent system with Lambda when any significant side effects of a
function are, themselves, idempotent. For example, if our Lambda function uploads a

228 | Chapter 9: Advanced Serverless Architecture

https://oreil.ly/vFPnk
https://oreil.ly/488um
https://oreil.ly/488um
https://oreil.ly/YDDyY
https://oreil.ly/NP0Sq
https://oreil.ly/rmaFI

file to S3, then the complete system of Lambda + S3 is idempotent. Similarly if you
are writing to a database you can use an upsert operation (“update or insert”), like
DynamoDB’s UpdateItem method, to create idempotence. Finally, if you are calling
any external APIs, you will likely want to look to see if they offer idempotent
operations.

Solution: Accept duplicates, and perhaps deal with problems if/when they come up
Sometimes a perfectly reasonable way to deal with possible multiple invocations is to
be aware that it can happen, and accept it, especially since it happens so rarely. For
example, say you have a scheduled task that generates a report and then emails it to a
company-internal mailing list. Do you care if that email occasionally goes out twice?
Perhaps not.

Similarly, maybe the work to build an idempotent system would be significant, but
dealing with the impact of very occasional task repetition is actually simple and
cheap. In this case, rather than building in idempotence, it might be better to monitor
for a job being run multiple times for one event and then have a manual or automa‐
ted task that performs cleanup if it ever occurs.

Solution: Check for previous processing
If repeated side effects aren’t ever acceptable, but your Lambda function is also using
downstream systems that don’t have idempotent operations, then you have another
way to solve this problem. The idea is to make your Lambda function itself idempo‐
tent, rather than relying on downstream components to provide idempotence.

But how do you do this, knowing that Lambda may call a function multiple times for
the same event? The key here is to also know that even if Lambda calls a function
more than once for the same event, then the AWS request ID that Lambda attaches to
an event will be the same for each call. We can read the AWS request ID by call‐
ing .getAwsRequestId() on the Context object that we can choose to accept in our
handler method.

Assuming we can keep track of these request IDs, we’ll know if we’ve seen one before,
and if we have we can choose to discard the second call, guaranteeing “exactly-once”
overall semantics.

All we need now is a way of checking, for each invocation of our function, to see if
the function has already seen the request ID before. Because multiple function invo‐
cations for an event could in theory overlap, we need a source of atomicity to provide
this capability, and this suggests that using a database would help.

DynamoDB can provide this for us by way of its conditional writes feature. In a simple
scenario, we could have a table with just a primary key of request_id; we could
attempt to write to that table at the beginning of our handler with the event’s request

Serverless Architecture “Gotchas” | 229

https://oreil.ly/OTfZP
https://oreil.ly/gh-Bw
https://oreil.ly/DBne-

ID; immediately stop execution if the DynamoDB operation failed; and otherwise
continue our Lambda’s functionality as normal, knowing that this is the first time an
event has been processed (see Figure 9-1).

Figure 9-1. Checking for a previous event with DynamoDB

If you choose to go down this path, your actual solution will likely have some nuance.
For example, you may choose to delete the row in DynamoDB if an error occurred
(so as to continue to be able to use Lambda’s retry semantics—the retried event will
also have the same AWS request ID!). And/or you may choose to have a more com‐
plicated “lock with timeout” style of behavior to allow for overlapping calls where the
first could fail.

There are also a few DynamoDB concerns to think about with this solution. For
example, you probably want to set up a Time to Live (TTL) property on the table to
automatically delete rows after a certain period of time to keep things clean, typically
set to a day or to a week. Also, you may want to consider the expected throughput of
your Lambda function and use that to analyze costs of the DynamoDB table—if the
costs are too high, you may want to choose an alternative solution. Such alternatives
include using a SQL database; building your own (non-Lambda) service to manage
this repetition; or, in extreme cases, replacing Lambda entirely for this particular
function with a more traditional compute platform.

Impacts of Lambda Scaling on Downstream Systems
In Chapter 8 we looked at Lambda’s “magical” auto-scaling (“Scaling” on page 193).
To quickly summarize, Lambda will automatically create just as many instances as
necessary of your function, and its environment, to handle all events to be processed.
It will do this, by default, up to one thousand Lambda instances per account, and
more than that if you ask AWS to increase your limit.

230 | Chapter 9: Advanced Serverless Architecture

https://oreil.ly/JFDQg

This is, in general, a very useful feature, and one of the key reasons people find
Lambda valuable. However, if your Lambda function interacts with downstream sys‐
tems (and most do!), then you need to consider how such scaling could impact those
systems. As an exercise, let’s consider the examples in Chapter 5.

In “Example: Building a Serverless API” on page 92, we had two functions—Weather

EventLambda and WeatherQueryLambda—that both called DynamoDB. We would
need to know that DynamoDB could handle the load of however many upstream
Lambda instances existed. Since we used DynamoDB’s “on-demand” capacity mode,
we know that this is, in fact, the case.

In “Example: Building a Serverless Data Pipeline” on page 111, we also had two func‐
tions—BulkEventsLambda and SingleEventLambda. BulkEventsLambda calls SNS,
specifically to publish messages, so we can look at the AWS service limits documenta‐
tion to see how many publish calls we can make to the SNS API. That page says that
the limit is between 300 and 30,000 “transactions per second,” depending on the
region we’re in.

We can use that data to make a judgment call as to whether we think SNS can handle
the load we may put on it from our Lambda function. Also, the documentation says
that this is a soft limit—in other words, we can ask AWS to increase it for us. It’s worth
knowing that should we exceed the limit, then our use of SNS will be throttled—we
could pass this error back up through our Lambda function as an unhandled error
and therefore use Lambda’s retry mechanism. It’s also useful to know that this is an
account-wide limit, so any other components using SNS in the same account would
also be throttled if our Lambda function caused us to hit the SNS API limit.

SingleEventLambda only calls CloudWatch Logs indirectly via the Lambda runtime.
CloudWatch Logs has limits, but they’re very high, so for now we’ll assume it has suf‐
ficient capacity.

In summary, the services that we’ve used in these examples scale up to high through‐
puts. That shouldn’t be surprising—these examples were designed to be good exam‐
ples of serverless architecture.

However, what happens if you’re using downstream systems that either (a) don’t scale
as much as your Lambda function may scale or (b) don’t scale as quickly as your
Lambda function may scale? An example of (a) might be a downstream relational
database—it may only be designed for one hundred concurrent connections, and five
hundred connections might cause it serious problems. An example of (b) might be a
downstream microservice using EC2-based auto-scaling—here the service may even‐
tually scale wide enough to handle unexpected load, but Lambda can scale in seconds,
as opposed to EC2, which will scale in minutes.

In either of these cases, unplanned scaling of your Lambda functions can cause per‐
formance impacts on downstream systems. Often times if such problems occur then

Serverless Architecture “Gotchas” | 231

https://oreil.ly/SHRmW
https://oreil.ly/rv4GW
https://oreil.ly/rv4GW

the effects will also be felt by other clients of those systems, not just the Lambda func‐
tion inflicting the load. Because of this concern, you should always consider Lambda’s
impact on downstream systems with regards to scaling. There are multiple possible
solutions to dealing with this.

Solution: Use like-scaling infrastructure
One solution is, where possible, to use downstream systems that have similar scaling
behaviors and capacities to Lambda itself. We chose DynamoDB and SNS in the
Chapter 5 examples partly due to this design motivation. Similarly, sometimes we
may choose to actively migrate away from certain solutions precisely because of scal‐
ing concerns. For example, if we can easily switch to using DynamoDB from an RDS
database, it may make sense to do so.

Solution: Manage scaling upstream
Another way to solve the problem of Lambda scaling too wide for downstream sys‐
tems is to make sure it never needs to scale in the first place, or in other words to
restrict the number of events that trigger execution. If you’re implementing a
company-internal serverless API, then this might mean making sure the API’s clients
do not make too many requests.

Some Lambda event sources also offer functionality to help manage scale. API Gate‐
way has rate limiting (with usage plans and throttling limits), and Lambda’s SQS inte‐
gration allows you to configure a batch size.

Solution: Manage scaling with reserved concurrency
If you can’t manage scale upstream, but still want to restrict how wide your function
will scale, you can use Lambda’s reserved concurrency feature that we looked at in
“Reserved concurrency” on page 196.

When using reserved concurrency, the Lambda platform will only scale out your
function at most as wide as the configured amount you have given. For example, if
you set reserved concurrency to 10, then you’ll have at most 10 instances of your
Lambda function running at any one time. In this case, if 10 instances of your
Lambda are already processing events when another event arrives, then your function
is throttled, just as we looked at in Chapter 8.

This kind of scale limitation is great when you have event sources like SNS or S3
where you may easily have a “burst” of events—using reserved concurrency means
that these events are processed over a period of time, rather than all immediately. And
because of Lambda’s retrying capability for throttling errors and asynchronous
sources, you’re guaranteed that all of the events will eventually get processed, as long
as processing can occur within six hours.

232 | Chapter 9: Advanced Serverless Architecture

https://oreil.ly/FR4eX
https://oreil.ly/LxNTp

One behavior you should know about reserved concurrency is that it doesn’t just
limit concurrency—it guarantees concurrency by removing the configured amount
from the account-global Lambda concurrency pool. If you have 20 functions all with
a reserved concurrency of 50, then you won’t have any more capacity for other
Lambda functions, assuming an account-wide concurrency limit of 1,000. This
account-wide limit can be increased, but that’s a manual task that you’ll need to
remember to perform.

Solution: Architect deliberately hybrid solutions
A final idea is to build deliberately “hybrid” solutions (as opposed to accidentally
hybrid solutions) consisting of serverless and traditional components.

For example, if you used Lambda and Amazon’s (nonserverless) RDS SQL database
service, without considering the scaling concerns, we’d call this an “accidentally”
hybrid solution. However, if you put thought into how your RDS database could be
used more effectively with Lambda, then we’d call this “deliberately” hybrid. And to
be clear—we think that some architectural solutions are going to be better with a
mixture of serverless and nonserverless components, due to the nature of services like
DynamoDB, and Lambda itself.

Let’s consider an example where you are ingesting data into a relational database via a
Lambda function, perhaps behind an API Gateway (Figure 9-2).

Figure 9-2. Direct writes to a relational database from a Lambda function

A concern with this design is that if you have too many inbound requests, then you
may end up overloading your downstream database.

The first solution you may consider is to add reserved concurrency to the Lambda
function backing the API, but the problem here is now your upstream clients will
have to deal with throttling caused by your concurrency restrictions.

A better solution, therefore, might be to introduce a messaging topic, a new Lambda
function, and use reserved concurrency on the second Lambda function (Figure 9-3).

Figure 9-3. Indirect writes to a relational database from a Lambda function via a topic

Serverless Architecture “Gotchas” | 233

With this design, your API Lambda function can still, for example, perform input val‐
idation, returning an error message to the client if necessary. However, instead of
writing directly to the database, it would instead publish a message to a topic, for
example, with SNS, under the assumption that your messaging system can handle
sudden load more effectively than your database. The listener of that message would
then be another Lambda function, whose job is purely to perform the database write
(or “upsert” to handle duplicate invocations!). But this time the Lambda function can
have reserved concurrency applied to protect the database, while at the same time
making use of the retry semantics within AWS itself, rather than requiring the origi‐
nal external client to perform a retry.

While this resulting design has more moving parts, it successfully solves the scaling
concerns while still mixing serverless and nonserverless components.

In late 2019 Amazon announced the RDS Proxy service. At the
time of writing, it is still in “Preview” and so many of the details
and capabilities it will have when it is released to general availabil‐
ity (GA) aren’t yet known. However, it certainly should help with
some of the concerns discussed in this chapter in connecting
Lambda to RDS.

Lambda Runtime Model and Cost Impact on Downstream Systems
This section has been about the functional impacts of Lambda’s scaling. It’s also useful
to consider how scale, external systems, and Lambda’s runtime model impact overall
system financial costs.

Say, for example, that you have the following piece of Lambda code. This particular
handler uses the AWS service KMS to decrypt an encrypted environment variable:

public class LambdaWithApiKey {
 public void handler(Object event) {
 final String encryptedAPIKey = System.getenv("ENCRYPTED_API_KEY");
 final String apiKey = decryptWithKms(encryptedAPIKey);
 // ... use apiKey to process event
 }

 private String decryptWithKms(String encryptedCypherText) {
 // Use AWS to decrypt encryptedCypherText, and return the value
 }
}

We’re leaving out the actual KMS service implementation here for brevity’s sake.

This Lambda function would work correctly. But say we changed the code to the
following:

234 | Chapter 9: Advanced Serverless Architecture

https://oreil.ly/alAqq
https://aws.amazon.com/kms

public class LambdaWithApiKey {
 private final String apiKey;

 public LambdaWithApiKey() {
 final String encryptedAPIKey = System.getenv("ENCRYPTED_API_KEY");
 apiKey = decryptWithKms(encryptedAPIKey);
 }

 public void handler(Object event) {
 // ... use apiKey to process event
 }

 private String decryptWithKms(String encryptedCypherText) {
 // USE AWS KMS TO DECRYPT, AND RETURN
 }
}

This code, functionally, does precisely what the first version did—we just moved
some code to the constructor. So what is the difference? One difference is that at an
average of 200 events per second the first version increases your AWS costs nearly
$20,000/year in comparison to the second version! This is because the first version
calls KMS to decrypt the API key on every event, but the second version calls KMS
only once per function instance. AWS charges for KMS by the number of times we
call its API, so KMS costs increase linearly with how many times the Lambda func‐
tion calls it.

This is not a hypothetical situation—we’ve seen an example of the first version of the
code. We recommended switching to the second version, saving one of our clients
approximately $20,000/year.

While Lambda has a simple runtime model, how you use it can still have substantive
impacts on other components and services, and also your AWS bill.

The “Fine Print” of Lambda Event Sources
The first couple of sections in this chapter have been about architectural concerns
that come about because of nuances of Lambda itself. There are other areas that can
impact a serverless design because of the services that exist upstream of Lambda. Just
like the fact that “at-least-once” delivery isn’t front and center of the first document
you read about Lambda, you’ll only find some of these nuances with upstream serv‐
ices through deep exploration of documentation, or hard-earned experience.

When you start to get beyond the “tinkering” stage with any Lambda event source,
read as much AWS documentation as you can on the services you’re using. Seek out
non-AWS articles too—while they’re not authoritative, and sometimes wrong, occa‐
sionally they can nudge you in a direction, architecturally, that you may not have con‐
sidered otherwise.

Serverless Architecture “Gotchas” | 235

New Patterns of Architecture Enabled by Serverless
Thinking
Sometimes when we’re building serverless systems, our architecture, viewed from a
certain distance, might not look that different than how we could have designed it
using containers or virtual machines (VMs). “Cloud-native” architecture is not the
sole domain of Kubernetes, no matter what you may have otherwise heard!

For example, our serverless API that we built back in “Example: Building a Serverless
API” on page 92, from a “black-box” point of view, looked just like any other
microservice-style API. In fact, we could replace the Lambda functions with an appli‐
cation running in a container and, architecturally, the system would have been very
similar.

As serverless starts to mature, however, we’re seeing new architectural patterns that
either wouldn’t make sense with traditional services, or wouldn’t even be possible. We
alluded to one of these earlier in Chapter 5 when we talked about “Serverless Without
Lambda” on page 102. To close out this chapter, we’ll look at a couple of other pat‐
terns, using Lambda, that break into new territory.

Published Components with the Serverless Application Repository
We’ve talked a few times through the book about “serverless applications”—groups of
components that we collectively deploy as one unit. We had our serverless API, using
API Gateway, two Lambda functions, and a DynamoDB table, all grouped as a unit.
We defined this collection of resources using a Serverless Application Model (SAM)
template.

AWS provides a way to reuse and share these SAM applications, via the Serverless
Application Repository (SAR). With SAR you publish your application, and you can
then deploy it later, multiple times, to different regions, accounts, or even different
organizations if you choose to make the SAR application publicly available.

Traditionally you likely have either distributed code or a shipped environment–
agnostic deployment configuration. With SAR the code (by way of packaged Lambda
functions), the infrastructure definitions, and the (parameterizable) deployment con‐
figuration are all wrapped up in one shareable, versioned, component.

There are a couple of different ways that SAR apps can be deployed that make them
useful in different situations.

First, they can be deployed as standalone applications, just as if you had called sam
deploy directly on them, rather than using SAR. This is useful when you want to
deploy the same application in multiple locations or across multiple accounts or
organizations. In this case, SAR acts somewhat like a repository of application

236 | Chapter 9: Advanced Serverless Architecture

https://oreil.ly/Oa8HO
https://oreil.ly/Oa8HO

deployment templates, but by bundling the code, it also includes the actual applica‐
tion code.

Examples of SAR application suited to this type of usage abound in the public SAR
repository—it’s especially useful for third-party software providers who want to make
it easier for customers to deploy integration components to their AWS account. A
good example is this log forwarder from DataDog.

SAR applications can also be used as embedded components within other, parent,
serverless applications via CloudFormation nested stacks. SAM enables nesting SAR
components via the AWS::Serverless::Application resource type. When using
SAR in this way, you are abstracting higher-level components as SAR apps, and
instantiating those components within multiple applications. Using SAR in this way is
a little like using a “sidecar” in container-oriented applications, but without the low-
level network-oriented communication patterns that sidecars require.

These nested components may include Lambda functions that may be invoked
directly, or indirectly (e.g., via SNS topic, perhaps also included in the SAR), by the
parent application. Alternatively, these nested components may not contain any func‐
tions at all, and instead solely define infrastructural resources. A good example here
are SAR applications that standardize monitoring resources.

We prefer the embedded deployment scheme in general, even if there are no other
components in the parent application. This is because deploying SAR apps, along
with their parameter values that can be defined as part of the AWS::Server
less::Application resource in your template file, is no different than deploying any
other SAM-defined serverless application. Further, if you choose to update the version
of a deployed SAR app, then that too can be tracked in version control just like any
other template update.

SAR apps can be secured so that they are accessible only to accounts within a particu‐
lar AWS organization, and therefore they are a great way of defining standard compo‐
nents that can be used across a whole company. Examples of using this with the
embedded component deployment scheme are custom authorizers for API Gateway,
standard operational components (e.g., alarms, log filters, and dashboards), and com‐
mon patterns of message-based inter-service communication.

SAR does have some limitations. For example, you can’t use all CloudFormation
resource types within it (for example, EC2 instances). However, this is an interesting
way of building, deploying, and composing Lambda-based applications.

For details on how to publish SAM applications to SAR, see the documentation, and
for details of deploying SAR apps see the previous link for the AWS::Server
less::Application resource type.

New Patterns of Architecture Enabled by Serverless Thinking | 237

https://oreil.ly/QyOkD
https://oreil.ly/QyOkD
https://oreil.ly/z-s8e
https://oreil.ly/1sJjI
https://oreil.ly/aY0-G
https://oreil.ly/9k3Xl
https://oreil.ly/nhOUb

Globally Distributed Applications
In days of yore (i.e., about 15 years ago), most of us building server-based applica‐
tions often had a fairly good idea where our software was physically running, at least
to within one hundred meters or so, and often closer than that. We could pinpoint the
data centers, server rooms, and perhaps even the racks or individual machines where
our code was humming along.

Along came the “cloud,” and our understanding of the geographic deployment of our
apps got a little, well, cloudy. With EC2, for example, we know, roughly, that our code
is running in the region of “Northern Virginia” or “Ireland” and we also know when
two servers are running in the same data center, via their Availability Zone (AZ) loca‐
tion. But it’s extremely unlikely that we’d be able to point on a map to the building
where our software is running.

Serverless computing immediately expands our radius of consideration a little fur‐
ther. Now we’re only thinking of the region—the AZ concept is hidden in abstraction.

One of the reasons to know where your applications are running is when you con‐
sider availability. When we run applications in a data center, we would need to know
that if the data center lost internet connectivity, then our applications would be
unavailable.

For many companies, certainly those who are used to deploying to one data center,
this regional level of availability we get with the cloud is sufficient, especially since
serverless services guarantee high availability across a region.

But what if you want to think bigger? For example, what if you want to guarantee
resilience of your application even if an entire region of AWS becomes unstable? This
happens—just talk to anyone that’s used us-east-1 for at least a couple of years. The
good news is that it’s very rare that AWS has any kind of cross-region outage. The vast
majority of AWS downtime is constrained to one region.

Alternatively, looking beyond just availability, what if your users are spread around
the world, from Sao Paulo to Seoul, and you want all of them to have low-latency
access to your applications?

Solving these problems has been possible in the cloud ever since multiple regions
became available. However, running applications in multiple regions is complicated,
and can get expensive, especially as you add more regions.

Serverless, however, makes this problem significantly easier and cheaper. It’s now pos‐
sible to deploy your application to multiple regions around the world, without much
added complexity, and without breaking your budget.

238 | Chapter 9: Advanced Serverless Architecture

Global deployment
When you define your application in a SAM template, you don’t typically hardcode
any region-specific resources. If you need to refer to the region in which a stack is
deployed in a CloudFormation string (as we did in the data pipeline example in
Chapter 5), we recommend using the AWS::Region pseudo parameter. For any region-
specific resources that you need to access, we recommend passing those by reference
as a CloudFormation parameter.

With these techniques you can define your application template in a region-neutral
way, and you can deploy it to as many AWS regions as you like.

Actually deploying your application to multiple regions isn’t quite as easy as we’d like
it to be. For example, when you deploy an application with CloudFormation (e.g.,
using sam deploy) any packages that you refer to in the CodeUri properties in the
template file must be available in a S3 bucket that is located within the same region you
are deploying to. Therefore, if you want to deploy an application to multiple regions,
then its packaged artifacts need to be available in multiple S3 buckets, one per region.
This is nothing a little scripting can’t solve, but it’s something that you have to think
about.

AWS has improved the experience of multiregion deployment by enabling “cross-
region actions” in CodePipeline. CodePipeline is Amazon’s “continuous delivery”
orchestration tool and allows us to define the source control repository for a project;
build and package an application by calling out to CodeBuild; and finally deploy it
using SAM/CloudFormation. CodePipeline is effectively an automation system on
top of the commands we’ve been running manually in this book. It will do a lot more
than this too—the flow here is just an example.

“Cross-region actions” within CodePipeline allow you to deploy to multiple regions,
in parallel, to as many regions as currently support CodePipeline at the current time.
This means that one CD pipeline can deploy an application to the US, Europe, Japan,
and South America.

There’s still some trickiness to setting all of this up. For more, please see our example
project on Github.

Another tool that helps multiregion deployment is the Serverless Application Reposi‐
tory, which we described in the previous section. When you publish an application to
SAR via one region, it is made available globally to all regions. At the time of writing,
this is only the case for publicly shared applications, but we hope that this feature will
be enabled for private apps before too long.

Localized connectivity, with failover
Once you’ve deployed your application around the world, how do your users connect
to a version that’s near to them? One of the points of global deployment, after all, is to

New Patterns of Architecture Enabled by Serverless Thinking | 239

https://oreil.ly/7Xe9-
https://oreil.ly/E_DJr
https://oreil.ly/fSD1_
https://oreil.ly/6X5vB
https://oreil.ly/xzWiI
https://oreil.ly/xzWiI

accept that the speed of light is limited, and therefore to route user requests to the
closest geographic version of your application to their client, giving users the lowest
latency experience you can.

One way is to hardcode the region-specific location, typically a DNS hostname,
within the client itself. It’s crude, but sometimes effective, especially for organization-
internal apps.

An alternative that’s usually better, because it adapts dynamically to the user’s loca‐
tion, is to embrace Amazon’s Route53 DNS Service, and specifically its Geolocation
feature. For example, if users connect to your application via an API Gateway
deployed in parallel to three different regions, then you can set up your DNS in
Route53 such that the user is connected to the API Gateway in the region closest to
them.

Since you’re already using some advanced features of Route53 by this point, you may
as well go one step further and use Health Checks and DNS Failover. With this feature
of Route53, if the version of your application nearest to a user becomes unavailable,
then Route53 will instead reroute that user to the next nearest, available, version of
the application.

Now we have active-active versions of our applications and localized routing. We
have built an application that is resilient and has better performance. And so far there
have been no updates to our application architecture, only operational updates. How‐
ever, we should really address the elephant in the room.

Global state
We said earlier that serverless makes it possible to deploy your application to multiple
regions around the world, without much added complexity. We just described the
deployment process itself, and we talked about how users can access your application
over the internet.

A big concern, however, with global applications is how to treat state. The simplest
solution is to have your state in only one region and have your service using that state
deployed to multiple regions (Figure 9-4).

240 | Chapter 9: Advanced Serverless Architecture

https://oreil.ly/4RCb2
https://oreil.ly/XlUX9

Figure 9-4. Multiple compute regions and one database region

This is the same model that content delivery networks (CDNs) use—there is one “ori‐
gin” somewhere in the world, and then CDNs cache state in tens, or hundreds, of
“points of presence” around the globe.

This is fine for cacheable state, but what about noncacheable situations?

In this case, the single-region-for-state model breaks down since all of your regions
will be calling the centralized database region for every request. You’ve lost the benefit
of localized latency, and you run the risk of a regional outage.

Fortunately, AWS and the other major cloud providers now provide globally replica‐
ted databases. A good example of this on AWS is DynamoDB global tables. Say you’re
using the serverless API pattern from Chapter 5—you can replace the DynamoDB
table in your design from that example with a global table. You can then happily
deploy your API to multiple regions around the world, and AWS will do the hard
work of moving your data safely around the planet. This gives you resilience, and
improved user latency, since the table replication is performed by DynamoDB asyn‐
chronously (Figure 9-5).

New Patterns of Architecture Enabled by Serverless Thinking | 241

https://oreil.ly/UaAj5
https://oreil.ly/fEZAG

Figure 9-5. Multiple regions with a replicated database

AWS does charge a premium for global tables, but they’re not too much more expen‐
sive than having a table per region, especially when compared with building a state
replication system yourself.

Pay-per-use
On the subject of costs, this is where serverless computing really clinches the deal
when it comes to multiregion deployment. Back in Chapter 1 we said that a specific
differentiator of a serverless service is that it “has costs that are based on precise
usage, up from and down to zero usage.” This applies not just to one region but across
regions.

Say, for example, you have deployed a Lambda application to three regions because
you want to have two backup regions for disaster recovery. If you are using only one
of those regions, then you are paying only for the Lambda usage in that one region—
the backup versions you have in the other two regions are free! This is a huge differ‐
ence from any other computing paradigm.

On the other hand, say you start off with an application deployed to one region, but
then you deploy your API Gateway + Lambda application to ten regions, using the
Geolocation DNS routing we discussed earlier. If you do this, your Lambda bill won’t
change—whether you run in one region or ten—because Lambda still only charges
you by the amount of activity that occurs in your functions. Your previous usage
hasn’t increased; it’s now just distributed across ten regions.

242 | Chapter 9: Advanced Serverless Architecture

We think that this vastly different cost model, in comparison to traditional platforms,
will make globally distributed applications much more common than they’ve been in
the past.

There’s a slight caveat here to the “no change in costs” point for
Lambda. AWS may charge slightly differently for Lambda for dif‐
ferent regions. That’s an element of region-specific pricing, how‐
ever, not because of running your application across multiple
regions.

Edge computing/"regionless”
The examples we’ve talked about in this section so far are all about deploying to mul‐
tiple regions around the world, but they do still require us to understand that Ama‐
zon’s entire cloud is broken up into those different regions.

What if you didn’t need to think about regions at all? What if you were able to deploy
your code to a global service, and then AWS just did whatever it needed to run your
code, giving users the best latency possible, and guaranteeing availability even if one
location went offline?

It turns out that this wild idea of the future is already here. Sort of. First, AWS already
has some services that are “global services”—IAM and Route53 are two of them. But
so is CloudFront: AWS’s CDN. While CloudFront does the thing you’d expect of any
other CDN—caching HTTP traffic to enable faster websites—it also has the capabil‐
ity of being able to invoke a special class of Lambda functions via a service named
Lambda@Edge.

Lambda@Edge functions are mostly similar to Lambda functions—they have the
same runtime model and mostly the same deployment tooling. When you deploy a
Lambda@Edge function, AWS replicates your code around the world, so your appli‐
cation truly becomes “regionless.”

There are, however, a number of significant limitations to Lambda@Edge, including:

• The only event source available is CloudFront itself—so you can only run
Lambda@Edge as part of processing an HTTP request within a CloudFront
distribution.

• Lambda@Edge functions, at the time of writing, can be written only in Node or
Python.

• The Lambda@Edge environment has more restrictions with regard to memory,
CPU, and timeout than regular Lambda functions.

Lambda@Edge functions are fascinating, and even at the time of writing are great for
solving certain problems. But more than that, they point to a future of truly global

New Patterns of Architecture Enabled by Serverless Thinking | 243

https://oreil.ly/_0EUS
https://oreil.ly/6D4yw

cloud computing, where locality is completely abstracted. If AWS can bring
Lambda@Edge closer in capability to regular Lambda, then as architects and develop‐
ers we are well on the road to leaving region-thinking behind us. We might still need
to think about locality when people are running applications on Mars, but we’re a few
years away from that yet. Lambda promises to be serverless, not planetless!

Summary
When we’re building serverless systems, the amount of effort that we spend on code
and operations decreases, but some of that effort needs to be exchanged for more
architectural thinking than we have done in the past, especially about the capabilities
and limitations of the managed services we’re using. In this chapter, you learned more
detail of some of these concerns, and examined a number of mitigation approaches.

Serverless computing also presents entirely new ways of architecting software. You
learned about two such ideas—the Serverless Application Repository, and globally
distributed applications. As Lambda, and serverless more generally, evolves over the
coming years, we expect to see many more new models of architecting applications.

Exercises
1. Update the data pipeline example from “Example: Building a Serverless Data

Pipeline” on page 111—set SingleEventLambda to have a reserved concurrency
of 1. Now upload the sample data—you should see throttling occur (if necessary,
add a few more elements to the sampledata.json file). Use the “Throttle” behavior
from the Lambda web console to set reserved concurrency to zero.

2. Update “Example: Building a Serverless API” on page 92 to use a DynamoDB
global table—make sure to separate the table itself into its own CloudFormation
stack! Then deploy just the API component (with its Lambda functions) to multi‐
ple regions. Are you able to write data to one region and then read it from
another?

244 | Chapter 9: Advanced Serverless Architecture

CHAPTER 10

Conclusion

The goal of this book was for you to learn what it means to build and run applications
using serverless technology on AWS, with AWS Lambda at the core of those systems.
We hope that you feel empowered to do this, safe in the knowledge that Java is truly a
first-class language choice in the serverless world.

We encourage you to reflect on some of the points we’ve tried to emphasize in this
book:

• Above all, know that trying out ideas with serverless systems is quick, and cheap.
If in doubt, experiment!

• Remember that Lambda code is “just code.” Lambda is not a framework, or an
“application server” in the traditional sense—your Lambda functions are just
small pieces of Java that process a JSON event. This makes unit testing, and
incremental development within your IDE, fast and nimble. Similarly, try not to
bloat your functions with unnecessary libraries and frameworks that were
designed for alternative runtime models.

• Automate the scripting of building and deploying your functions to the AWS
Cloud. You want to be able to rapidly iterate in the same environment that will be
processing production events. Use the techniques we’ve shown throughout the
book with Maven, SAM, and CloudFormation to enable this.

• As we showed in Chapter 6, spend most of your testing time on quick unit and
functional tests that run locally within one JVM along with functions under test,
but also invest in the automation of end-to-end tests that exercise your functions
running on the Lambda platform.

• Try to keep each of your Lambda functions focused on solving one task. Just
include the code and libraries necessary to handle each function’s own events.

245

Where necessary, use code sharing as we described in “Build and Package Using
Multiple Modules and Isolated Artifacts” on page 122.

• Don’t give in to the fear of cold starts! Typically either they won’t be a concern for
you once your application is in production, or you can use one or more remedia‐
tion techniques if necessary.

• Secure your serverless applications appropriately, considering the principle of
least privilege, using AWS IAM. Your organization may end up with thousands of
deployed Lambda functions, so you want to reduce the blast radius of each to
reduce the impact of bugs or perhaps malicious intent.

• Remember that logging and metrics work a little differently in this new world of
Lambda. Use structured logging as much as you can; remember that you want to
be able to observe behavior of your complete system, not just an individual func‐
tion. Consider what metrics best indicate the health of the system as far as your
users are concerned.

• As you build your serverless applications, embrace an “event-driven” mode of
thinking. Even for functions invoked synchronously, consider how each invoca‐
tion represents the passing of a self-contained message from one component to
the next. And then think about how you can make your system as asynchronous
as possible.

• Don’t necessarily throw away your nonserverless services. Things like relational
databases might still be the best way for you to solve certain problems, especially
if they already exist in your larger ecosystem. But do think carefully about how to
use them in a world where scale is handled very differently.

• Finally, serverless is a lot bigger than just Lambda—consider how you can lean
on BaaS products from AWS and others to reduce the amount of code you need
to write and operate. Even when you’ve settled on a particular service, investigate
all of its features—it may have some hidden gems that can save you days or weeks
of work.

We hope you’ve enjoyed this book, have found it valuable, and that it continues to be
a useful resource to you over the coming months and years. We will continue to write
and speak about what we learn and build with Lambda and other AWS technologies.

You can find our work at the following locations:

• On Twitter at https://twitter.com/symphoniacloud, https://twitter.com/johnchapin,
and https://twitter.com/mikebroberts

• Our blog at https://blog.symphonia.io
• Our website at https://www.symphonia.io
• Our GitHub repositories at https://github.com/symphoniacloud

246 | Chapter 10: Conclusion

https://twitter.com/symphoniacloud
https://twitter.com/johnchapin
https://twitter.com/mikebroberts
https://blog.symphonia.io
https://www.symphonia.io
https://github.com/symphoniacloud

And of course, we’d love to hear how you get along. Please feel free to drop us a line at
johnandmike@symphonia.io.

Thanks for reading, and go serverless!

Conclusion | 247

mailto:johnandmike@symphonia.io

Index

Symbols
$LATEST, 198

A
Access Key ID, 28
accounts, set up and use, 9
alarms, building for metrics, 173, 200
aliases

introspecting, 199
invoking, 198
rolling back, 200
traffic shifting, 199
when not to use, 201

Amazon Resource Names (ARNs), 79
Amazon Web Services (AWS)

account set up and use, 9
capacity, 7
command line interface (CLI), 10, 27-31
free tier, 9
global infrastructure, 7
interacting through API, 10, 27
types of service, 6
uses for, 9

API Gateway
as upstream event source, 86
Integration versus Proxy events, 96
purpose of, 14
SAM resources, 76
versions of, 94

APIs (see serverless APIs, building)
applications
artifacts

isolating for packaging, 122-127
reducing size of, 205

assumable identity, 78
asynchronous event sources

error handling strategies, 192
error processing, 185-191
polling and, 91
scaling limits and throttling, 195

at-least-once-delivery
accepting duplicates, 229
building idempotent systems, 228
checking for previous processing, 229-230
defined, 227
using Lambda as a cron platform, 227

Auth0, 4
auto-provisioning, 5, 12
auto-scaling

defined, 5
DynamoDB and, 93
fan-out pattern, 193
impacts on downstream systems, 230
transparency of, 12

Availability Zones (AZs), 12, 20
AWS (see Amazon Web Services (AWS))
AWS CLI

acquiring credentials for, 28-30
aws lambda invoke command, 43
configuring, 31
configuring for testing, 152
installing, 27
modifications for Windows users, 28

AWS Lambda (see also Lambda applications;
Lambda functions)
application overview, 13-16
as cost-efficient choice, 60
benefits of, xiii, 12, 60

249

best practices documentation, 70
development environment set up, 26-33
FaaS implementation by, 11
FaaS versus server-side software deploy‐

ment, 10
getting started with, 19-22
Hello World, Java version, 34-38
Hello World, quick version, 22-26
key benefit of, 13
Lambda platform metrics, 171
language selection, 16, 207
language support, 16
resources for learning about, 246
threading and, 196
tips for using, 245

AWS Lambda Java Events Library, 88
AWS SAM

versus CloudFormation, 74
configuring Handler function in SAM tem‐

plates, 49
installing, 33

AWS SDK BOM, 103-104
AWS Toolkit, 87
AWS Web Console

account set up, 9
guide to using, 19-22
navigating the home page, 9

aws-proxy events, 88

B
backend as a service (BaaS), 3
best practices documentation, 70
BOM (bill of materials) feature

aws-java-sdk-bom, 103
aws-xray-recorder-sdk-bom, 176

building and packaging Lambda functions
io.symphonia/lambda-packaging, 70
load-speed-efficient formats, 206
overview of, 65
reproducible builds, 71
serverless API example, 103-104
serverless data pipeline example, 122-127
uberjars, 66
ZIP archive files, 67-71

BulkEventsLambda
basics of, 137-140
functional testing, 145-148
refactoring, 140-142
unit testing, 142-145

burst limits, 196
business metrics, 172

C
CaaS (see containers-as-a-service (CaaS))
canary testing, 155
CLI (see AWS CLI)
cloud computing

Amazon Web Services (AWS), 6
AWS Lambda, 10-17
brief history of, 1
serverless, 3-6
technologies spurring growth of, 3

CloudFormation
change sets, 75
deploying code using, 73
drawbacks of, 74
versus Serverless Application Model (SAM),

74
tearing down resources, 38

CloudWatch Embedded Metric Format, 172
CloudWatch Logs

components of, 158
costs of, 165
end-to-end testing, 149
example policy, 79
overview of, 46

CloudWatch Logs Insights, 168-169
CloudWatch Metric Filters, 172
CloudWatch Metrics, 170
CloudWatch Scheduled Events, 16, 133, 228
CloudWatch ServiceLens, 175
CloudWatch Synthetics, 155
code examples, obtaining and using, xvi
CodeDeploy service, 200
CodePipeline, 239
Cognito, 4
cold starts

advice on, 246
defined, 201
identifying, 203
impact of, 204
mitigating, 205-207
occurrences of, 202
overview of, 211
Provisioned Concurrency, 208-211

command line interface (CLI) (see AWS CLI)
comments and questions, xvii, 247
compute as a service, 3

250 | Index

constructor chaining, 140
contact information, xvii, 247
containers, 3
containers-as-a-service (CaaS), 3
content delivery networks (CDNs), 241
control plane, 42, 78
Corretto, 32
costs

based on precise usage, 5, 12
benefits of auto-scaling feature, 193
benefits of Lambda, 60
calling Lambda functions recursively, 115
CloudWatch Logs, 165
impact of runtime model on downstream

systems, 234
Lambda versus EC2, 60
pay-per-use of globally distributed applica‐

tions, 242
Provisioned Concurrency, 208-210
request versus duration pricing, 60

credentials
acquiring for AWS account set up, 9
acquiring for AWS CLI, 28-30
types of, 19

cron jobs, 227
cross-region actions, 239

D
data pipelines (see serverless data pipelines,

building)
data plane, 42, 78
dead letter queues (DLQs), 187-189
deliberately hybrid solutions, 233
deployment

infrastructure as code, 73
methods of, 72
serverless API example, 107-111
Serverless Application Model (SAM), 74-76
serverless data pipeline example, 130

destinations, 189
development environment

AWS CLI configuration, 31
AWS CLI credentials, 28
AWS CLI installation, 27
AWS SAM CLI installation, 33
Java setup, 31
pitfalls of fully-local development workflow,

153
distributed tracing service, 175-180

Docker, 3
duplicate tasks, 229
duration pricing, 60
DynamoDB

benefits of, 93
conditional writes, 229
Document model, 100
error handling, 191, 193
globally replicated database, 241
scaling capabilities, 14
support for, 76
Time-to-Live (TTL) property, 230

E
EC2 (see Elastic Compute Cloud (EC2))
edge computing, 243
Elastic Compute Cloud (EC2), 1, 8
email-processing applications, 16
end-to-end tests, 136, 149-153
environment variables, 61
error handling

asynchronous event source errors, 186-191
classes of errors, 183
documentation pages, 185
errors versus exceptions, 183
finding and investigating, 177
Lambda error processing, 184
strategies for, 192
unhandled errors, 231

event sources
asynchronous event sources, 91, 185-191
at-least-once delivery and, 227-230
configuring Lambda event sources, 90
event notification failures, 235
event source semantics, 91
purpose of, 86
stream/queue event sources, 91, 185
synchronous event sources, 91, 185
writing code to work with I/O, 86-90

Events key, 90
exceptions (see error handling)
execution environment

autogenerated execution roles, 82
invocation types, 43-45
logging, 46, 79
overview of, 42

exercises
AWS account set up, 9, 18
building serverless applications, 133

Index | 251

getting started with AWS Lambda, 39
how to use, xv
logging, metrics, and tracing, 180
operating AWS Lambda functions, 83
programming AWS Lambda functions, 63
serverless architecture, 244
testing, 156

F
FaaS (see functions as a service (FaaS))
fan-out pattern, 114, 193
file processing, 15
Firebase, 4
framework, for building serverless applications,

132
freezing and thawing instances, 202
fully-local development workflow, 153
functional tests, 136, 145-148
functions as a service (FaaS)

basics of, 4
benefits of, 5
implementation by AWS Lambda, 11
versus server-side software deployment, 10

G
globally distributed applications

edge computing (regionless), 243
global deployment, 239
global state, 240-242
localized connectivity with fail-over, 239
pay-per-use arrangement, 242
regional versus global availability, 238

H
HA (see high availability (HA))
Handler function, 49-50
Hello World

Java version, 34-38
quick version, 22-26

Heroku, 3
high availability (HA), 6, 12
hooks, 200-200
hybrid solutions, deliberate versus accidental,

233

I
IAM (see Identity and Access Management

(IAM))

idempotent systems, 228
Identity and Access Management (IAM)

basics of, 22
creating IAM user, 28
Lambda resource policies, 80
roles and policies, 78
SAM IAM, 81

infrastructure as code, 73
infrastructure-as-a-service (IaaS), 1
input/output

configuring Handler function in SAM tem‐
plates, 49

Context object, 55-57
JSON deserialization and serialization, 47,

50, 147
Lambda function method signatures, 48
Lists and Maps, 50
POJOs and ecosystem types, 52-54
streams, 54
types of handler functions, 49
writing event source code to work with,

86-90
instances, freezing and thawing, 202
IntelliJ IDEA, 33
intended audience, xiv
invocation models, 13, 42, 80
io.symphonia/lambda-packaging, 70
IteratorAge metric, 171, 173

J
Jackson library, 147
Java

AWS SDK for Java versions, 120, 152
benefits of, 16
deserializing legacy JSON formats, 147
development environment setup, 31
JAR (Java ARchive) files, 65
Lambda function method signatures, 48
logging frameworks, 161-164
structured logging in, 166-168
try-with-resources feature, 142
versions supported by AWS Lambda, 32

Java Commons Logging, 161

K
Kinesis, 191, 193
Kubernetes, 3

252 | Index

L
Lambda (see AWS Lambda)
Lambda applications

examples of, 15
file processing using, 15
HTTP protocols with API Gateway, 14
invocation models, 13

Lambda functions (see also cold starts)
at-least-once delivery and, 227-230
avoiding recursive calls, 115
building and packaging, 65-72
CloudWatch Logs and, 158
core concepts for execution environments,

41-47
creating Hello World (Java version), 34-38
creating Hello World (quick version), 22-26
deploying, 72-76
effect of AWS security model, 76-83
finding and investigating errors, 177
freezing and thawing instances, 202
HTTP protocols with API Gateway, 14
implementing in Java, 16
input and output, 47-57
invocation models, 13
invoking aliases, 198
invoking specific versions, 198
memory and CPU, 59, 207
serverless data pipeline example, 114
specifying environment variables, 61
state and, 206
timeouts, 57, 228
tips for creating and using, 245

Lambda Java Runtime, 43
lambda-monitoring, 161
Lambda@Edge, 243
LambdaLogger, 159-160
language selection, 207
language support, 16
Lifecycle Policy, 75
like-scaling infrastructure, 232
Linux, 28
Lists and Maps, 50
Log4J, 161
Log4J2, 166
Logback, 161
logging

benefits of, 157
CloudWatch Logs, 46, 158
CloudWatch Logs Insights, 168-169

creating high-value log messages, 157
custom log appender, 161
example policy, 79
Java logging frameworks, 161-164
LambdaLogger, 159-160
structured logging, 165-168
tips for using, 246
versus metrics, 170

M
Maps and Lists, 50
Maven

assembling ZIP files, 67
Assembly plugin, 68
BOM (bill of materials) feature, 103
exec plugin, 150
Failsafe plugin, 149
Maven Central, 70, 88
purpose of, 65
reproducible-build-maven-plugin, 71
Surefire plugin, 143
versions of, 33

memory-size setting, 59, 207
message-processing applications, 16
metrics

benefits of tracking, 157
building alarms, 173
business metrics, 172
CloudWatch Metrics, 170
distributed tracing, 175-180
Lambda platform metrics, 171
versus log messages, 170
Throttles, 195
tips for using, 246

mobile backend as a service (MBaaS), 4
Mockito, 139, 145
modules, using multiple for building and pack‐

aging, 122-127
mvn package command, 35, 45, 56
mvn verify command, 149

N
NoSQL databases, 93, 213

O
operating systems, 28

Index | 253

P
permissions, 79
photo resizer, 15, 60
platform as a service (PaaS), 3
platform metrics, 171
poison pill scenarios, 191
POJO (Plain Old Java Object) serialization,

52-54
polling, 91
prerequisite knowledge, xiv
previous process, checking for, 229-230
principle of least privilege, 77
Provisioned Concurrency, 208-211
proxy integration, 96
PutMetricData API calls, 172

Q
questions and comments, xvii, 247

R
RDS Proxy, 234
refactoring

BuldEventsLambda, 140-142
for testing, 137

region, selecting, 20
regionless computing, 243
request pricing, 60
reserved concurrency, 196, 232
resource policies, 80, 82
resources, tearing down, 38
REST (representational state transfer), 94
retries, 186-187
roles, 22, 78
rollbacks, 200

S
S3 (see Simple Storage Service (S3))
sam deploy command, 36, 43, 45, 74
SAM IAM, 81
sam init command, 34, 67
sam local generate-event command, 86, 117
sam local invoke command, 154
scaling

auto-scaling feature, 5, 12, 93, 193, 230
impacts of scaling on downstream systems,

230-235
observing Lambda scaling, 193
scaling limits and throttling, 195-196

thread safety, 196
vertical scaling, 197

scheduled-task applications, 16
Secret Access Key pair, 28
security

control plane and data plane, 78
Identity and Access Management (IAM),

78-83
necessary complexity and, 76
principle of least privilege, 77
storing sensitive data, 62
tips for implementing, 246

serverless APIs, building
application architecture, 93
application behavior, 92
application infrastructure, 104-107
building and packaging, 103-104
deployment, 107-111
framework for building, 132
impacts of scaling on downstream systems,

231-235
Lambda code, 95
reading data, 100
uploading data, 97-100
without using Lambda, 102

Serverless Application Model (SAM) (see AWS
SAM)

Serverless Application Repository (SAR),
236-237

serverless applications
building serverless APIs, 92-111
building serverless data pipelines, 111-132
event-driven approach to, 246
framework for building, 132
Lambda event sources, 86-92
overview of, 85

serverless architecture
benefits of, 16
dealing with at-least-once delivery, 227-230
event notification failures, 235
globally distributed applications, 238-244
impacts of scaling on downstream systems,

230
Serverless Application Repository (SAR),

236-237
serverless cloud computing

backend as a service (BaaS), 3
differentiating, 5
functions as a service (FaaS), 4

254 | Index

serverless compute, 4
(see also functions as a service (FaaS))

serverless data pipelines, building
application architecture, 112-116
application behavior, 112
application infrastructure, 127-130
building and packaging, 122-127
deployment, 130
framework for building, 132
impacts of scaling on downstream systems,

231-235
Lambda code, 116-122
overview of, 112

side effects
BulkEventsLambda and, 138
defined, 137
idempotent, 228
isolating, 141
Lambda functions and, 15
testing in Java, 139

Simple Notification Service (SNS), 116, 148,
174

Simple Que Service (SQS)
configuring batch size, 232
dead letter ques (DLQs), 187
error handling, 184
Lambda handler event for, 91

Simple Storage Service (S3)
as a serverless BaaS product, 113
as key element of Cloud growth, 3
Lifecyle Policy, 75
staging buckets, 35
uploading files to, 15

SLF4J, 161
software development kits (SDKs), 27
split methods, 142
SQS (see Simple Que Service (SQS))
stacks, deleting, 38
staging buckets, 35
startup logic, reducing, 206
stream/queue event sources

error handling strategies, 193
error processing, 185, 191
Lambda Handler programming model and,

91
scaling limits and throttling, 195

streams, 54
structured logging, 165-168
synchronous event sources

error handling strategies, 192
error processing, 185
polling and, 91
scaling limits and throttling, 195

System.err.println, 160
System.out.println, 159

T
task repetition, avoiding

accepting duplicates, 229
building idempotent systems, 228
checking for previous processing, 229-230
issues with at-least-once-delivery, 227
pitfalls of using Lambda as a cron platform,

227
Test Pyramid, 135
testing

balanced approach to, 135
benefits of, 135
BulkEventsLambda, basics of, 137-140
BulkEventsLambda, refactoring, 140
BulkEventsLambda, testing, 142-148
canary testing, 155
cloud test environments, 154
deciding which tests to write, 135
end-to-end tests, 136, 149-153
functional tests, 136
local cloud testing, 153
refactoring for, 137
tips for using, 245
unit tests, 136

thread safety, 196
throttling, 195-196
timeouts, 57, 228
tracing

benefits of, 157
distributed tracing, 175-180

traffic shifting, 199
trust relationships, 78

U
uberjars, 35, 66, 70, 206
unhandled errors, 231
unit tests, 136, 142-145
upsert operations, 229

V
versions

Index | 255

invoking specific versions, 198
rolling back, 200
when not to use, 201

vertical scaling, 197

W
web API, 14, 61
Windows, 28

X
X-Ray, 175-180, 192

X-Ray BOM, 176

Z
ZIP archive files, 65, 67-71

256 | Index

About the Authors
John Chapin has more than 15 years of experience as a technical executive and senior
engineer. He was previously VP of Engineering, Core Services & Data Science, at
Intent Media, where he helped teams transform how they delivered business value
through serverless technology and Agile practices. Outside of Symphonia, he can be
found running along the west side of Manhattan, surfing at Rockaway Beach, or plan‐
ning his next trip abroad.

Mike Roberts is an engineering leader who has called New York City home since
2006. During his career he’s been an engineer, a CTO, and other fun positions in
between. Mike is a long time proponent of Agile and DevOps values and is passionate
about the role that cloud technologies have played in enabling such values for many
high-functioning software teams. He sees serverless as the next evolution of cloud
systems and as such is excited about its ability to help teams, and their customers, be
awesome.

Colophon
The bird on the cover of Programming AWS Lambda is a migratory shorebird called a
red knot (Calidris canutus). Its vast range includes the Arctic Cordillera mountains
from Canada to Russia in the summer and coastal areas of South America, Africa,
Europe, Australia, and New Zealand in the winter. Red knots fly more than nine
thousand miles each year.

In the winter, red knots are not red but gray. Their plumage takes on color in the
spring when they breed. These birds are not dimorphic; both males and females have
this gray to red coloring, as well as round bodies, small heads, and short dark beaks.
Adults are about 9–10 inches long with a 19–21-inch wingspan. Red knots weigh 4.8
ounces on average and can double their weight before migration. They peck for
insects, mussels, and crabs along the shores and tundra of their seasonal homes.

Male red knots build nests in the ground near the water where they forage for food.
These birds are seasonally monogamous. Females typically lay three to four eggs,
which are pale olive green with dark speckles, and both adults take shifts incubating.

Red knots have a conservation status of Near Threatened, with variation across differ‐
ent populations (in the United States, they are classified as Threatened). Many of the
animals on O’Reilly’s covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Wood’s Illustrated Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	About This Book
	Why We Wrote This Book
	Who This Book Is For
	Why You Need This Book
	Using the End-of-Chapter Exercises
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Serverless, Amazon Web Services, and AWS Lambda
	A Quick History Lesson
	The Cloud Grows
	Enter Serverless
	Backend as a Service
	Functions as a Service
	Differentiating Serverless

	What Is AWS?
	Types of Service
	Capacity
	Who Uses AWS?
	How Do You Use AWS?

	What Is AWS Lambda?
	Functions as a Service
	FaaS as Implemented by Lambda
	Why Lambda?
	What Does a Lambda Application Look Like?
	AWS Lambda in the Java World

	Summary
	Exercises

	Chapter 2. Getting Started with AWS Lambda
	Quick Guide to the AWS Console
	Regions
	Identity and Access Management

	Lambda Hello World (as Quickly as Possible)
	Setting Up Your Development Environment
	AWS Command Line Interface
	Java Setup
	AWS SAM CLI Installation

	Lambda Hello World (the Proper Way)
	Creating Your First Java Lambda Project
	Building Hello World
	Creating the Lambda Function

	Summary
	Exercises

	Chapter 3. Programming AWS Lambda Functions
	Core Concepts: Runtime Model, Invocation
	The Lambda Execution Environment
	Invocation Types
	Introduction to Logging

	Input, Output
	Lambda Function Method Signatures
	Configuring the Handler Function in the SAM Template
	Basic Types
	Lists and Maps
	POJOs and Ecosystem Types
	Streams
	Context

	Timeout
	Memory and CPU
	Environment Variables
	Summary
	Exercises

	Chapter 4. Operating AWS Lambda Functions
	Build and Package
	Uberjars
	Assembling a ZIP File
	Reproducible Builds
	Deploy
	Infrastructure as Code
	CloudFormation and the Serverless Application Model
	Security
	The Principle of Least Privilege
	Identity and Access Management

	Summary
	Exercises

	Chapter 5. Building Serverless Applications
	Lambda Event Sources
	Writing Code to Work with Input and Output for Event Sources
	Configuring a Lambda Event Source
	Understanding Different Event Source Semantics

	Example: Building a Serverless API
	Behavior
	Architecture
	Lambda Code
	Build and Package Using the AWS SDK BOM
	Infrastructure
	Deployment

	Example: Building a Serverless Data Pipeline
	Behavior
	Architecture
	Lambda Code
	Build and Package Using Multiple Modules and Isolated Artifacts
	Infrastructure
	Deployment

	Summary
	Exercises

	Chapter 6. Testing
	The Test Pyramid
	Unit Tests
	Functional Tests
	End-to-End Tests

	Refactoring for Testing
	Revisiting BulkEventsLambda
	Refactoring BulkEventsLambda
	Add Constructors
	Isolate Side Effects
	Split Methods

	Testing BulkEventsLambda
	Unit Testing
	Functional Testing

	End-to-End Testing
	Local Cloud Testing
	Cloud Test Environments
	Summary
	Exercise

	Chapter 7. Logging, Metrics, and Tracing
	Logging
	CloudWatch Logs
	LambdaLogger
	Java Logging Frameworks
	Structured Logging
	Structured Logging in Java
	CloudWatch Logs Insights

	Metrics
	CloudWatch Metrics
	Lambda Platform Metrics
	Business Metrics
	Alarms
	Distributed Tracing
	Finding Errors

	Summary
	Exercises

	Chapter 8. Advanced AWS Lambda
	Error Handling
	Classes of Error
	The Various Behaviors of Lambda Error Processing
	Deep Dive into Asynchronous Event Source Errors
	Handling Kinesis and DynamoDB Stream Errors
	Tracing Errors with X-Ray
	Error Handling Strategies

	Scaling
	Observing Lambda Scaling
	Scaling Limits and Throttling
	Thread Safety
	Vertical Scaling

	Versions and Aliases, Traffic Shifting
	Lambda Versions
	Lambda Aliases
	Traffic Shifting
	When (Not) to Use Versions and Aliases

	Cold Starts
	What Is a Cold Start?
	When Does a Cold Start Occur?
	Identifying Cold Starts
	Impact of Cold Starts
	Mitigating Cold Starts
	Provisioned Concurrency
	Cold Start Summary

	State
	Persistent Application State
	Caching

	Lambda and Java Application Frameworks
	Virtual Private Clouds
	Architectural Concerns of Using Lambda with a VPCs
	Configuring Lambda to Use a VPC
	Alternatives

	Layers and Runtimes
	What Are Layers?
	When to Use, and Not Use, Layers
	Custom Runtimes

	Summary
	Exercises

	Chapter 9. Advanced Serverless Architecture
	Serverless Architecture “Gotchas”
	At-Least-Once Delivery
	Impacts of Lambda Scaling on Downstream Systems
	The “Fine Print” of Lambda Event Sources

	New Patterns of Architecture Enabled by Serverless Thinking
	Published Components with the Serverless Application Repository
	Globally Distributed Applications

	Summary
	Exercises

	Chapter 10. Conclusion
	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

